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THE EFFECT ON STATISTICAL INFERENCE OF THE

DEGREE OF PRECISION OF ROUNDED D A TA

A  R TRICKER

ABSTRACT

This thesis concerns the effect of rounding on statistical procedures, where rounding 
is taken to be the grouping of data at the midpoints of equally spaced intervals.

The characteristic function of the rounded distribution is obtained. This is used to 
derive general expressions for the moments of univariate and bivariate distributions 
that have been subject to rounding. The interactive effect of rounding and
skewness on the moments is examined.

The performance of certain normal test statistics is examined for rounded data. A  
study is carried out to obtain precise values for the significance level and power of 
these statistical tests for rounded data, over many distributions. Guidance is given 
on what is an appropriate degree of precision for normal data. Special 
consideration is given to how much non-normality can be allowed without the 
effect of rounding seriously distorting the significance level and power of a test.

Standard methods of estimating the parameters of a distribution are compared with 
respect to loss in information caused by rounding. Normal, gamma and 
exponential distributions are examined. Computational methods are presented for
computing the maximum likelihood estimates from rounded normal and gamma 
data.

In general it is concluded that the effect of rounding on statistical procedures can 
be increased by the departure from normality of the population. It was found that 
less precision is required of the recorded data than that which is usually given.



CONTENTS

Page

CHAPTER 1

INTRO DUC TIO N . NO TATIO N AND REVIEW  OF LITERATURE

1.1 Introduction 1.2
1.2 Rounding Process. Notation and Terminology 1.2
1.3 Literature Review 1.7

1.3.1 Relationship between the moments of the 1.7
rounded variable Xr  and the underlying
continuous variable X

1.3.2 Point estimation 1.16
1.3.3 Regression 1.24
1.3.4 Tests of significance and confidence 1.30

intervals
1.3.5 Rules of rounding 1.33

CHAPTER 2

EFFECTS OF ROUNDING ON TH E MOMENTS OF A  
PROBABILITY DISTRIBUTION

2.1 Introduction 2.2
2.2 Univariate Distributions 2.3

2.2.1 Characteristic function and moments of 2.4
rounded distribution

2.2.2 Moments of rounded normal and gamma 2.19
distributions

2.2.3 Relationship between the shape of a 2.36
distribution and the effect of rounding
on its moments

2.3 Bivariate Distributions 2.49
2.3.1 Characteristic function and moments of 2.50

rounded bivariate distribution
2.3.2 Bivariate normal 2.54

2.4 Conclusions 2.64

CHAPTER 3

TH E EFFECT OF ROUNDING ON TH E SIGNIFICANCE  
LEVEL OF CERTAIN NORMAL TEST STATISTICS

3.1 Introduction 3.2
3.2 Description of the Investigation 3.5
3.3 Test Statistics 3.9

3.3.1 One sample t-test 3.10
3.3.2 Chi-squared test for variance 3.17
3.3.3 Two sample t-test 3.21
3.3.4 F-test for equality of two variances 3.28



Page

3.3.5 Analysis of variance 3.36
3.4 Discussion and Conclusions 3.46

CHAPTER 4

TH E EFFECT OF ROUNDING ON THE POWER LEVEL  
OF CERTAIN NORMAL TEST STATISTICS

4.1 Introduction 4.2
4.2 Description of Investigation 4.2
4.3 Test Statistics 4.4

4.3.1 One sample t-test 4.5
4.3.2 Chi-squared test for variance 4.10
4.3.3 Two sample t-test 4.15
4.3.4 F-test for equality of two variances 4.19
4.3.5 Analysis of variance 4.24
4.3.6 Compensation for rounding 4.29

4.4 Discussion and Conclusion 4.33

CHAPTER 5

TH E EFFECT OF ROUNDING ON TH E SIGNIFICANCE  
LEVEL AND POWER OF CERTAIN NORMAL TEST 
STATISTICS FOR NO N-NORM AL D ATA

5.1 Introduction 5.2
5.2 Description of Investigation 5.3
5.3 Test Statistics 5.6

5.3.1 One sample t-test 5.8
5.3.2 Chi-squared test for variance 5.15
5.3.3 Two sample t-test 5.20
5.3.4 F-test for equality of two variances 5.26
5.3.5 Analysis of variance 5.31

5.4 Test Statistic : Exponential Data 5.36
5.5 Discussion and Conclusions 5.38

CHAPTER 6

ESTIM ATION OF ft AND a 2 FOR NORMAL ROUNDED D A TA

6.1 Introduction 6.2
6.2 Maximum Likelihood Estimation 6.3
6.3 Other Methods of Estimation 6.4
6.4 Approximate EM  Algorithm 6.11
6.5 Conclusion 6.19



Page

CHAPTER 7

ESTIM ATION OF PARAMETERS FOR ROUNDED D A TA  
FROM NO N-NO RM AL DISTRIBUTIONS

7.1 Introduction 7.2
7.2 Gamma Distribution 7.3

7.2.1 Maximum likelihood estimation 7.4
7.2.2 Approximate maximum likelihood estimation 7.12
7.2.3 Sheppard's method 7.14
7.2.4 Naive methods 7.17

7.3 Exponential Distribution 7.19
7.3.1 Maximum likelihood estimation 7.20
7.3.2 Other methods of estimation 7.22

7.4 Discussion of Results 7.23

CHAPTER 8

CONCLUDING REMARKS 8.1-8 .7

APPENDIX A

COMPUTER PROGRAMS AND OUTPUT FOR CHAPTER 2 A1

APPENDIX B

COMPUTER PROGRAMS AND OUTPUT FOR CHAPTERS B1-B16
3 AND 4

APPENDIX C

COMPUTER PROGRAMS AND OUTPUT FOR CHAPTER 5 C1-C22

REFERENCES R1-R8



CHAPTER 1

INTRO DUCTION. NO TATIO N AND REVIEW  OF LITERATURE

1.1 Introduction

1.2 Rounding Process. Notation and Terminology

1.3 Literature Review

1.3.1 Relationship between the moments of the 
rounded variable Xr  and the underlying 
continuous variable X

1.3.2 Point Estimation

1.3.3 Regression

1.3.4 Tests of Significance and Confidence Intervals

1.3.5 Rules of Rounding

1.1



1.1 Introduction

In statistics the rounding of data, ie the grouping of continuous data at the 

midpoints of equi-spaced intervals, is common.

When data are collected, values are usually rounded to a common degree of 

precision. This may result from limitations in the accuracy of available measuring 

devices or cost restrictions necessitating the need for cheap and consequently 

inaccurate methods of data collection. In other situations rounding may be 

desirable to simplify subsequent statistical calculations.

As a consequence of rounding, each recorded value will have an associated error, 

the size of which can have an important effect on the validity of statistical 

techniques. It therefore becomes important to ensure that the advantages of 

rounding are not outweighed by distortion in the information obtained.

This thesis investigates the effect on statistical techniques of the degree of precision 

of the rounded data. There are four main parts in this thesis: a literature review

(Chapter 1), a discussion of the implications of rounding on the moments of a 

distribution (Chapter 2), a study of the behaviour of test statistics for rounded data 

(Chapters 3, 4 and 5) and a comparison of estimation procedures when the data 

are rounded (Chapters 6 and 7).

1.2 The Rounding Process. Notation and Terminology

If  the values of a continuous random variable X  are rounded, the result is a new 

discrete random variable Xr . If  values of X  are rounded into intervals of width
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w, with midpoints Xr  and the centre of the interval containing zero is cw, then

Xr  has the following values.

... cw -  3w, cw -  2w, cw -  w, cw, cw + w, cw + 2w, ... (1 .2-1)

(1 .2-1) will be known as the rounding lattice. Here c determines the position of 

the rounding lattice relative to the origin (zero) and may be located anywhere 

between - w/ 2 and w/ 2 . The mathematical relationship between X  and X r  is such 

that if

cw + (n-£)w  < X  <  cw + (n+£)w
(1.2-2)

then midpoints Xr  = (c+n)w n = 0,±1,±2,...

The values of Xr  will be termed the rounded data.

The following notation will be adopted throughout the thesis for the moments and 

related measures.

The mth moment of the random variable X  (or of the distribution of X ) about the 

origin and mean will be denoted by and respectively.

= E[Xm] , n n  = E ^ X - ^ n

Similarly for the random variable Xr  (or of the distribution of Xr ) we have
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The following related measures will be used

m e a s u r e X X r

m e a n M M r

v a r i a n c e a 2 o - 2 r

s k e w n e s s =  t l
a 3

«/0 l R  "
M 3 ]

3

° R

k u r t o s i s 0 2

_ V-A

° A
0 2 R  =

M 4 R

4

° R

Under the 'usual' decimal rounding rule, which stipulates that data be truncated to

a certain number of decimal places (cf Eisenhart 1947) we have c = 0 .  The

rounding lattice is then of the form

k j ( l O ) ^ 2 where k 1 = 0 , ± 1 , ± 2 , . . .

k 2 is a f i x e d  in teger

However this may not always be so, as the following examples show.

0 -  

2 -  

4 -  

6 -

th is  grouping implies  

w = 2, c = £

2 .5

5.5

8.5  

11.5

th is  grouping impl ies  

w = 3, c = V 3

(For example: 0 -  means, includes all values from zero to less than 2).
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When data from a population distribution are rounded, the severity of rounding

does not depend solely on w but also on the standard deviation cr of the

population. The severity of rounding of a distribution can be regarded as the loss

of information due to the process of rounding, which is determined by the number 

of points on the rounding lattice determining the distribution. If  a distribution has 

a small <r, it will need a smaller w to be represented by a given number of points 

on the lattice, than does a distribution with a large cr. Hence the loss of

information caused by rounding is better measured by the ratio r = w/cr. This will 

be called the degree of precision of the rounded data.

Estimation

Throughout the thesis the following terms will be applied to an estimator 0 of a 

parameter 0.

(i) Unbiased estimator

The estimator 0 is said to be unbiased for 0 if E[0] = 0. The bias in 

0 will simply be E[0] -  0.

(ii) Mean Square Error (MSE1

If  0 is an estimator of 0, then the MSE of 0 is:

MSE(0) = E [ (0 -0 )2] = V(0) + [E (0)-0 ]2 .
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(iii) Efficiency

If  By, 62 are estimators of 6 based on the same sample size, then the
A A

efficiency of 0 1 relative to 6 2 is the ratio

.  .  MSE(0 2)
e ( By , B2) ----------- J -

M S E ( 0 , )

Summary of notation used in the rounding process

w -  width of the rounding interval 

c -  position of the rounding lattice relative to origin

r -  the degree of precision of the rounded data

X  -  continuous random variable

Xr  -  a discrete random variable obtained when X  is rounded into

intervals of width w, with lattice position c, and takes the value 

of the interval midpoints 

fjL -  mean of X

/-ir  -  mean of Xr

cr2 -  variance of X

c 2r  -  variance of Xr

,//51 -  measure of skewness of X

y/SjR -  measure of skewness of Xr

/S2 -  measure of kurtosis of X

/3 2R “ measure of kurtosis of X r
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1.3 Literature Review

There is a large amount of literature on the grouping of data. There are many 

different methods of grouping, of which rounding is one. In this literature review 

the effect of rounding on statistical techniques will be reviewed. Previous work on

rounding can be broadly divided into the following areas.

1.3.1 Relationship between the moments of the rounded variable Xr  and the 

underlying continuous variable X

This section concerns the relationship between the moments of the unrounded and 

rounded variables X  and Xr  respectively. Much of the past literature has

considered this relationship in terms of using Sheppard's corrections and the

justification on various types of distributions.

The early work concerning rounding concentrated on the estimation of population

moments from grouped data. Sheppard (1898) was the first to establish that for 

data which had been classified into equally spaced groups, the class centre may be 

used to calculate the various moments and the bias introduced by this procedure 

can be connected by the use of Sheppard's corrections. Sheppard sought to find 

formulae relating the moments of the grouped variables to those of the underlying 

continuous data distribution. He considered the relation between the mth

population moment

.+00

=  E [X m] =  x m f ( x )  d x



of continuous random variable X  with p.d.f. f(x) and the mth moment of the 

grouped data:

* R i  +  W/ 2

f ( x )  dt

XRi " W/2

where the values of X  have been grouped into classes of width w and midpoints 

XRi- We thus have the very familiar Sheppard's corrections:

/MR -  A

» i w2
^2R — ̂ 2 + 12

« i w2 i
^3R = ^3 4~ /*1

+00

JhnR =
i = - o o

The general expression for these formulae is

B]
j - 0

where |^ j is  the in te g ra l  part  o f

Sheppard based his corrections on the Euler-Maclaurin sum theorem, which 

connects summation with integration. In his paper he implied that the conditions 

for the applicability of the corrections to hold for a given case are



(i) f(x) is continuous on a finite range (a,b)

(ii) f(x) is such that f(x) and the derivatives of f(x) vanish at the limits, ie

it has high order contact.

For several years after the publication of this paper the conditions under which the 

corrections were valid were subject to argument. In particular, what degree of 

high order contact should a distribution have before the corrections are valid?

Kendall (1938) attempted to clarify when the corrections are valid. He showed 

that the conditions of the validity of Sheppard's corrections are in the main the 

conditions under which the remainder term in the Euler-Maclaurin expansion used 

to derive the corrections may be neglected to a satisfactory degree of 

approximation. By establishing conditions under which the remainder term is small 

enough to be neglected, Kendall gave the following statement concerning the 

validity of Sheppard's corrections.

Let f(x) be a continuous distribution. The Sheppard's corrections (1 .3 -1 ) will be 

accurate to order w^ ie to the order of the terms applied in the corrections, if

(a) the range of f(x), (a,b) is finite

(b) the order of terminal contact is k ie f(x) and its first k derivatives of

f(x) vanish at a and b

(c )
dk+i
— s—— [ F ( x ) j  is not large in the range ( a , b ) ,  where 
dxK+1

F(x )  = Xm 

(d)  2 g ]  < k.

W/2
f(x+e)de

_w/2
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Kendall pointed out that where the range is infinite no set of conditions as given 

above can be stated. However, many such distributions taper off strongly to zero 

at the ends of the range in such a way that the corrections will be valid. He 

drew attention to two situations where the corrections may be inaccurate. These 

are:

(i) the distribution of f(x) is markedly skewed

(ii) the degree of precision r (w/<r) is large.

Baten (1931) and Wold (1934) derived Sheppard’s corrections for the bivariate 

situation. Hartley (1950) presented a simplified form of Sheppard's correction 

formulae which are computationally more convenient. Also his corrections in some 

cases allow for simultaneous correction for the rounding interval and shift of origin.

Expression (1 .3-1) is complicated, particularly when inverted so as to express the 

moments as linear functions of the rounded moments PmR- When we deal 

with cumulants the relationship becomes much simpler. Under the same conditions 

as for the validity of Sheppard's corrections we have

Ks -  KSR -  Bs s > 1 ( 1 . 3 - 2 )

where Kg and KgR are the sth cumulant of X  and X r  respectively, and Bs is the 

sth Bernoulli number.

The alternative result (1 .3-2) was proved by Langdon and Ore (1930). Wold

(1934) provided a similar result for bivariate distributions.
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Corrections to the moments where the distribution does not have terminal contact, 

as in J and U  shapped distributions, were first given by Pearson (1902). Pearson, 

like Sheppard (1898), based his corrections on the Euler-Maclaurin theorem. Let 

f(x) be a continuous distribution with finite range (a,b), where the values of x 

have been grouped into classes of width w. By assuming 'that a = 0 and that the 

derivatives of f(x) vanish at b, Pearson obtained the following corrections:

i i w4 wG
Mi “  Mi R " 720 a 3 + 30240 &5

, W 2 W 4  w 6

M2 “  M2R “ 12 “ 120 a 2 + 30240 &4

where a,. = -  [—  f ( x ) l  fo r  s = 2 , 3 , . . .
S Ldx8 " 1 J x = 0

If  there is 'high contact at both ends', then as = 0, and we have the usual 

Sheppard's corrections.

Using techniques similar to those of Pearson (1902), Pairman and Pearson (1918) 

considered corrections to moments where there is no terminal contact at one or 

both ends of the distribution. However, the corrections they developed for the 

moments are often tedious to make. Sandon (1924) presented a simplified set of 

formulae for where the distribution has an exponential curve. Following on the 

work by Pairman and Pearson (1918), Pearse (1928) considered how the moments 

should be corrected where the distribution has an infinite range. Martin (1934), 

using a similar approach to that of Pearse, derived moment corrections for where 

the lower range of a distribution may be unknown and as a result the width of the 

first class is not known.
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Lewis (1935) suggested corrections that were more reliable than Sheppard's but not 

so difficult to make as those given by Pairman, Pearson and Pearse. His approach 

was to estimate the frequency curve in each interval in the rounding lattice by a 

quadratic density function f(t) = a + bt + ct2. When the constants a, b and c 

have been obtained for each interval, f(t) is used to determine the moments /xmR 

of the rounded distribution. However his formulae for /*mR are in general long 

and complex. Davies and Bruner (1943) developed a correction for the second 

moment by a similar approach to that of Lewis.

The relationship between the moments of the unrounded and rounded distributions 

X  and X r  respectively, has mainly been obtained by the use of Sheppard's 

corrections. Although these corrections are only approximate and can be unreliable 

they have been regarded as the accepted method. Several authors have suggested 

alternative methods to Sheppard's corrections, but none of these has come into 

general use, the reaosn being that these alternative methods are generally difficult 

to use and specific to certain distributions.

In communication engineering the parallel to rounding is the quantization of signals. 

The theory of quantization has been developed by electrical engineers for signal 

analysis. Some of the results of this theory can be adapted for use with rounded 

data. However, this work has been mainly ignored in the statistical literature 

concerned with rounding until Tricker (1984b) used quantization theory to derive a 

relationship between the first two monents of the distribution of X  and X r . The 

content of this paper forms part of the work contained in Chapter 2. A  copy of 

this paper can be found at the end of this thesis.
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An important contribution to the theory of quantization is due to Widrow (1956, 

1961), who derived the characteristic function of a quantized signal. This is 

equivalent to the characteristic function of a random variable which has been 

rounded according to a rounding lattice, with rounding interval of width w and 

lattice position c. Using the characteristic function, Widrow obtained expressions 

for the mean and variance of normal rounded data. However they are 

approximate and restricted to a rounding lattice with c equal to zero. He also 

considered the joint first moment of quantized signals for a bivariate normal 

distribution, and gave an approximation to the bias in this moment caused by 

quantization. The approximation is only suitable for c equal to zero and as shown 

in Chapter 2 is incorrect.

Watts (1961) generalised the approach by Widrow (1956, 1961) to include 

quantizers in which scaling (multiplying factors) and shifting (addition and 

subtraction) are allowed. The probability density functions and characteristic 

function of a quantized signal for univariate and bivariate distributions are derived. 

Watts said little about the association between quantization and rounding. In 

Chapter 2 it will be shown how the results of Watts can be adapted to consider 

the effect of rounding on the moments of a distribution.

Although statistical literature concerned with rounding has made very little reference 

to the work of quantization, this is not so for other subject areas. In chemistry, 

Lowell (1980) extended the work of Widrow (1956, 1961) to find the first two 

moments of normal rounded data for the more general case of non-zero mean. 

His results could have been obtained more simply by using the work of Watts 

(1961). However, Lowell made no reference to Watts' paper.
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Several authors have considered the relationship between the moments of X  and 

Xr  for a normal population. To date, very little has appeared in the literature 

concerning this relationship with respect to other populations. Holland (1975) 

considered the effect of rounding on the moments of non-normal data. His 

approach was as follows.

Let X  be a continuous random variable with p.d.f. f(x). Values of X  are rounded 

to a rounding lattice with interval of width w and lattice position c. The result is 

the rounded random variable X r . Holland uses the p.d.f. of X r  given by

P [X R= c  +  nw)

to calculate E [X r ] and V [X r ].

c  +  ( n + £ ) w

f ( x )  d x  , n  =  0 ,  ± 1 ,  ± 2 ,

c  +  ( n - £ ) w

His approach does not provide any explicit expressions for the mean and variance

of X r . He considered only distributions where the distribution of X r  has a closed

form or are tabulated in great detail. The two non-normal distributions considered

are the exponential and triangular. Although the possible effect of the lattice

position is ignored, Holland was the first to mention that the shape of the

distribution may be important in determining the effect of rounding on the

moments of a distribution. Elsewhere, Tricker (1984a) also derived the p.d.f. of a 

rounded exponential data and investigated the distortion caused by rounding in the 

mean and variance. Tricker considered the lattice effect, which he showed to be 

important in determining the effect of rounding on the moments. The content of 

this paper forms part of the work contained in Chapters 5 and 7. A  copy of this

paper can be found at the end of this thesis.
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Another paper by Tricker (1984b) uses the theory of quantization to obtain explicit 

functions for the mean and variance of X r . It examines the interactive effect of

rounding and skewness on the moments of a univariate distribution.

In Chapter 2 it will be shown how the theory of quantization can be applied to 

the process of rounding. A  more detailed examination of the effect of rounding 

on the moments of a distribution than that given in Tricker (1984b) will be 

presented.

Average Corrections

There is a distinct type of problem which also leads to Sheppard's corrections 

(1 .3-1) often referred to as 'average corrections'. If  the rounding lattice is located 

at random on the distribution, then Sheppard's corrections hold on average, no 

matter what form the distribution takes. This result was first given by Abernethy 

(1933). The parallel result for cumulants can be found in Cornish and Fisher 

(1937). As pointed out by Kendall (1938), Sheppard's corrections regarded as

average corrections require the rounding lattice to be located at random. This 

condition is not always met in practice. For example, many J and U-shaped 

distributions naturally begin with an interval starting at zero. The rounding lattice 

is then not located at random and Sheppard's corrections are not legitimate even 

on average.

Sheppard's corrections are customarily applied to the moments about the mean of 

the rounded distribution, namely by omitting the dashes in (1 .3 -1 ) and putting

P iR  = = 0* ^  noted by Kendall (1938) this is legitimate for the same

conditions for which the corrections apply to the moments about zero. However,
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for average corrections it is no longer valid to drop the dashes in order to obtain 

corrections for moments about the mean of the rounded distribution.

Craig (1941) presented a set of expressions for the average correction to the 

moments about the mean. If  the location of the rounding lattice is random then, 

for example, the average correction for the second moment is given by

<r2 = <rj -  + a 2R 12 m

where the variance of X  and X r  are respectively a 2 and <t 2r , and cr2m is the 

variance of the means of the rounded distribution over all possible rounding lattice 

positions. It is usually unrealistic to be able to obtain cr2m and in practice the 

above correction has limited use.

1.3.2 Point Estimation

Maximum Likelihood Estimation

The method of obtaining a maximum likelihood estimate (M LE) from grouped data 

has been extensively studied in the literature. We shall be interested in the 

situation where the M L method can be applied to rounded data, ie where the 

group intervals are equal and each interval is represented by its midpoint.

The M L procedure has been used by many researchers to estimate the mean and 

variance of grouped normal data. Gjeddebaek (1949) presented a method of 

obtaining the MLEs of /a and a 2 for a normal distribution, whether or not the
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grouping is into equal intervals. However his precedure for obtaining the MLEs is 

troublesome to use because of its iterative character. Gjeddebaek (1956) considered 

the efficiency of the MLEs of p and a 2 from a sample of normal rounded data, 

where the sample size is large. He defined the efficiency of these estimates as the 

mean square error (MSE) of the MLE from unrounded data divided by the MSE

of the MLE from rounded data. He gave the asymptotic efficiencies of the MLEs

of p and <7 2 for various degrees of precision r. He showed that the position of 

the rounding lattice (c) has a negligible effect on the efficiencies of p. and o'2, if

the value of r is less than 2.0 and 1.6 respectively. Gjeddebaek (1957, 1959)

considered two types of estimator for the mean and variance of a rounded normal 

distribution, these being the M L and naive estimators. The naive estimators are 

the usual estimators of the mean and variance applied to the midpoints of the 

rounding intervals. Gjeddebaek showed that, when Sheppard's corrections are 

applied to the naive estimators, they are "practically as efficient" as the M L  

estimators for r < 2.0 and n < 100.

Grundy (1952) presented a method of estimating the MLEs of p and cr2 for a 

truncated normal distribution, when the data have been grouped. The MLEs are 

obtained by using 'adjusted moments' and the effect of grouping on large sample 

covariance matrix is discussed. When the group intervals are equal (rounding) the 

iterative method for finding the MLEs is simpler than that given by Gjeddebaek 

(1949). Swamy (1960) extended the work of Gjeddebaek (1949) by deriving the 

MLEs of p and cr2 for rounded data from a single and doubly truncated normal 

distribution. He obtained the MLEs by the same troublesome iterative method as 

was used by Gjeddebaek (1949).
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When parameters are estimated from rounded data, there is a probability that the 

MLE will not exist. Even though this probability may tend to zero as the sample 

size increases, Kulldorff (1961) referred to what are conditional M L estimators, with 

the condition being existence. Kulldorff gave sufficient conditions for the existence, 

uniqueness, consistency and asymptotic efficiency for M L estimators for grouped 

data. However the set of sufficient conditions are complicated.

Kulldorff (1961) considered the estimation of the parameters of the normal and 

exponential distributions. He found the MLEs of p and cr for rounded normal 

data. He used an iterative process called the ’Scoring System' to obtain the roots 

of the likelihood equations. This iterative procedure is less laborious and converges 

more rapidly than the one used by Gjeddebaek (1949). When estimating p with a 

known, Kulldorff showed that the optimum groups (optimum in the sense of 

minimum asymptotic variance) are not very far from equidistant. However, when 

estimating a  with p. known the optimum groups are far from equidistant.

Kulldorff also derived the MLEs for both the scale and location parameters in the 

exponential distribution, together with their asymptotic variances for rounded data. 

He studied the MLE of the scale parameter. An approximation to the mean and

variance of the MLE of the scale parameter is derived by use of asymptotic

expansions. Using these approximations, he showed the extent to which the

asymptotic properties of the MLE are satisfactory. For rounded data the results

indicate that if the exponential distribution is of the form

x

F ( x |0 )  = 4  e 6 x > 0, 0 > 0
v
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then the asymptotic mean and variance of the MLE of 8 can be safely used for 

sample sizes in excess of 24, when r < 2.0.

Tallis and Young (1962) discussed the M L estimation of parameters for truncated 

normal, log normal and bivariate normal distributions from rounded data. For 

each distribution they gave only the M L equations. Algner and Goldberger (1970) 

investigated the problem of estimating the scale parameter in the Pareto distribution

from grouped observations. They showed that, for rounded data, the MLE of the

scale parameter has an exact solution.

For rounded data, the MLE must usually be obtained iteratively. Since the use of 

computers in statistics becomes widespread, iterative methods have been presented 

for finding the MLEs. Generally the iterative techniques are for grouped data, of 

which rounding is simply a special case.

Gjeddebaek (1949) used the Newton-Raphson iterative process in finding the MLEs 

of p and cr from rounded normal data. Although the iterative procedure was not

very simple, he provided tables to assist with the computation. Kulldorff (1961)

described an iterative method for finding the MLEs of p and cr, when one of the 

two parameters is known. He used the method of scoring, due to Fisher (1925). 

This method is generally far superior to that used by Gjeddebaek (1949), in terms 

of simplicity and rate of convergence. Tallis and Young (1962) also suggested the 

method of scoring for finding the MLEs of p and a, since an estimate of the 

variance-covariance matrix is obtained as part of the computational routine. Swan 

(1969) used a Newton-Raphson procedure written in ALGOL to obtain MLEs of p 

and a 2 from a normal sample which may be grouped in any way. At the same 

time approximations to their variances and covariances are obtained. Benn and
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Sidebottom (1976) gave a method and a FORTRAN program which can be derived 

from Fisher's method of scoring for M L estimation of location and scale 

parameters from grouped data. Wolynetz (1979a) described an algorithm and gave 

a FORTRAN program which was derived from the expectation-maximisation (EM ) 

algorithm, for grouped and censored normal data. Wolynetz (1979b) gave an 

algorithm for the normal linear model where the dependent variable is subject to 

rounding. Schader and Schmid (1984) investigated the performance of the EM , 

Newton-Raphson, scoring and fixed-point methods for obtaining the MLEs of p 

and a  from grouped normal data. One of their main results is that the method 

of scoring is best both in number of iterations and CPU time. Deken (1983) used 

the EM  algorithm to obtain the MLEs of grouped multivariate normal data. His 

approach was to approximate the E-step in order to reduce the computer time for 

the EM  algorithm. However the formulae used are complicated.

Approximate Maximum Likelihood Estimation

Consider a random sample of n observations from a p .d .f. f(x 10), rounded into 

intervals of width w, with midpoints yj (i= l,...,n ). If  we let

■yi+w/ 2
P ( y i )  = f ( x i 0 )  dx

J y i - w / 2

then the MLE of 0 is obtained by maximising 

n
L ( 0 ) - n  p ( y i )  ( 1 . 3 - 3 )

i= l

However, much work is often needed to obtain this, and it is reasonable to search 

for an approximate method requiring less effort. Lindley (1950) established a
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method for obtaining approximate MLEs for parameters of univariate distributions 

under equal interval groups. His approach was as follows.

Consider a single group of width w with midpoint yj. By use of Taylor's theorem 

we have

P (y i>  = w f(y j)  + ^  f n(y i)  + 0(w 4) (1 .3 -4 )

where f(yj) and f"(yj) are the p.d.f. and second derivative respectively evaluated at 

yp From (1.3-3) and (1.3-4) we have

L ( » )  -  ^  [ w f ( y i ) [ l  +  f t  +  0 (w 3 ) ]

and

lo g  L ( 0 )  =  ^  [ lo g  w f ( y i ) +  ^  'f -C'y i ) "  +  0 <w3>]

If  6 0 is the MLE of 0 using the midpoints yj, then by applying the 

Newton-Raphson method, using d Q as the first approximation, and adjusted 

estimate is given by

6 = e 0 +  5

where 5 = -  ^-r 24

n

d 0
i = l

1  ^ 2[ lo s f ( y i ) ]

(1 .3 -5 )

i = l

d 2

1.21



If  the third derivative of f(x 10) exists the error in 5 is of order 0 (w 3), where if 

the fourth derivative exists the error is of order 0 (w 4). Lindley showed that the 

approximate MLEs are equivalent to Sheppard corrected moment estimators in the 

case of rounded normal data. He also derived a formula for the loss in efficiency 

caused by rounding.

Tallis (1967) presented a method for obtaining the approximate MLE for grouped 

data. The method is a slight but convenient modification of the method of 

Lindley. The modification replaces the various terms in Lindley's method by their 

expectation and 5 (1 .3-5) now becomes the average bias caused by grouping. He 

also obtained approximate MLEs for parameters for multivariate distributions under 

equal grouping and univariate distributions under unequal grouping. Tallis shows 

that the approximate MLEs for rounded bivariate normal data agree with Sheppard 

corrections given by Wold (1934). In Don (1981) this result of Tallis is 

generalised to rounded multivariate normal data.

In the area of probit analysis Tocher (1949) obtained MLEs for grouped data. He 

derived the equations for an iterative solution to the MLEs of the mean fi and 

variance a 2 in the underlying normal distribution of grouped probit data. However 

the steps in the iteration involve lengthy calculations and make the whole process 

tedious. Using a similar approach to that of Lindley (1950) he obtained 

approximate MLEs for \i and a 2 where the data is rounded. These approximate 

estimates are found to be equivalent to the Sheppard corrected moment estimates.

1.22



Other Methods of Estimation

Although the method of M L has been the most common approach for estimating 

the parameters of a distribution for rounded data, other methods of estimation have 

been suggested.

A  consistent estimator for rounded data was presented by McNeil (1966). It is 

computationally simpler than the MLE and is consistent even when the M LE is 

not. However, it is very difficult to apply for multivariate distributions. With 

today's computing facilities the computational problems in obtaining the M LE have 

become less important. As a result the McNeil approach has not become a 

worthwhile alternative to that of the ML.

Others who have considered alternatives to the M L approach are Yoneda and 

Uchiyama (1956). They advocated the use of ordered statistics to estimate the 

mean and variance of coarsely rounded normal data. The method of minimum 

chi-square was suggested by Hughes (1949) to estimate the variance of rounded 

bivariate normal data.

Often rounding is ignored and standard estimation procedures are applied to the 

midpoints of the rounding intervals. This naive method of estimation can lead to 

misleading inferences. Tricker (1984a) showed this for exponential rounded data. 

He used the interval midpoints to compute the M L estimator for unrounded data. 

This naive estimator has bias which does not decrease to zero as the sample size 

increases. He illustrated how the magnitude of the bias is dependent on the 

degree of precision of the data and on position of the rounding lattice. For 

sample sizes exceeding 50, he showed how to compensate for rounding and reduce
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the bias in this naive M L estimator.

In past literature, estimation with regard to rounded data has concentrated on the 

normal distribution. In Chapter 7 the efficiency of various estimation procedures 

will be investigated when applied to non-normal rounded data.

1.3.3 Regression

Consider the regression model

Y  = 1  (50 + X  ^  + E (1 .3-6)

where Y is the (n x l) vector of observations of the dependent variable, X  is the 

(nxk) matrix of the values of k independent variables, 1. is the (n x l) vector of 

ones, E is the (n x l) vector of errors assumed to be uncorrelated with zero mean 

and variance cr2, and = (j3t ,...,/3jc)' is the (k x l) vector of regression

coefficients to be estimated.

Durbin (1954) considered the problem of error of measurement in the variables of 

the simple regression model that passes through the origin, ie /30 = 0 and k = 1 

in (1 .3-6). The error of measurement can be caused by several factors, of which 

one can be the process of rounding. Durbin devoted part of his paper to the 

effect of rounding on the least squares estimate (LSE) of /3r  He stated that, 

under the traditional assumptions concerning errors of measurement, the LSE of /3, 

will be unbiased for rounded data. However, as pointed out by Haitovsky (1973, 

Ch 6), one of the assumptions concerning errors of measurement is that the errors 

are uncorrelated with the correct values. He showed that, for rounded data, this
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is not so and that Durbin's statement about the bias in LSE of /31 is in doubt.

Haitovsky (1973) considered the rounding in the simple regression model (k = 1 in

1.3-6). He investigated the bias in the LSEs of 0 Q and 0 1 for rounded data that 

takes into account the correlation between the rounding error and the correct

value. He derived approximate formulae for the bias in the LSEs of 0 Q and 0 1

when Y and X  are both subject to rounding. He showed that if the distributions 

of the independent and dependent variable are symmetrical and unimodal then:

(i) the direction in the bias in the LSEs depends on whether the number

of categories into which the independent variable is grouped is larger or

smaller than the number of categories into which the dependent variable 

is grouped

(ii) the bias and loss in efficiency in the LSEs is minimized when the 

independent and dependent variables are grouped into the same number 

of categories.

Swindel and Bower (1972) considered the regression model (1 .3-6) where the 

independent variables are subject to rounding. They showed rounding will cause 

the LSEs of the regression coefficients to be biased, and derived bounds on this 

bias. However these bounds are dependent on knowing the true value of the 

regression coefficients and the rounding errors.

Beaton, Rubin and Barone (1976) investigated the effect of rounded data on the 

regression model (1 .3-6). They use computer simulation to recreate the unknown 

(X ,Y ) by adding a uniform rounding error onto the rounded value (X r .X r )- This 

simulation process is carried out many times, computing the LSE of 0  from (X ,Y )
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each time. The main point of this method is that these recreated LSEs are useful 

in showing the possible disturbances due to rounding. Beaton et al (1976)

illustrated their technique on the much analysed Longley (1967) data. They

showed how high correlation between the independent variables should be avoided, 

in order to reduce the effect of rounding. A  simple adjustment strategy for

improving the LSE of 0  is given when the data is rounded. They suggested that, 

for small rounding intervals an improved LSE of 0  can be obtained by adding 

w 2/1 2  to the diagonals of the sample covariance of (X r .Y r ).

Beaton et al (1976) assumed that the rounding error is independent of the rounded 

value and uniformly distributed with mean zero and variance w 2/12. In fact the 

rounding error is conditional on the value of the rounded observation and

knowledge of the rounded value can convey information about the rounding error.

Dempster and Rubin (1982) pointed out the failure of Beaton et al to use a 

conditional distribution for the rounding error. They illustrate by using an artificial 

example how the adjustment suggested in their paper to compensate for rounding 

error can lead to increased bias in the LSESs. For model (1 .3-6) Dempster and 

Rubin considered three sample approaches to the problem of rounding in (X ,Y ) for 

least squares regression, these being:

(i) ignore the effect of rounding on the data

(ii) add an adjustment of w 2/12 to the diagonals of the covariance

matrix (Beaton et al; adjustment)

(iii) subtract an adjustment of w 2/12 from the diagonals of the 

covariance matrix (Sheppard's correction).
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Approaches (i) and (ii) are shown to lead to considerable bias in the regression

coefficients, especially when the design matrix is ill-conditioned.

Likelihood analysis, which uses the conditional distribution of the unrounded values

given the rounded value, can produce a more reliable adjustment. When the

width of the rounding interval is small, this adjustment is shown to be (iii) above 

in two situations

(a) (X ,Y ) is jointly normal

(b) normal residuals, large sample and the distribution of the independent 

variables are 'regular' (meaning the distribution is relatively smooth).

An adjustment (iii) is suitable only for small rounding intervals. For 'moderate'

rounding the adjustment required will vary considerably depending on the

distributional form of the independent variables.

Cameron (1987) investigated the effect of rounding on parameter estimation in 

simple regression, where the error has different distributional forms. He compared 

two methods of estimating the parameters. In the first, the rounding is ignored 

and the LS estimators are applied to the midpoints of the rounding intervals; this 

method is referred to as the OLS method. The second is the M L method for 

grouped data, which recognize the rounding in the data. A simulation experiment 

demonstrated that, where the errors are normally distributed, the OLS method

yields virtually identical point estimators of the intercept and slope compared to 

those obtained from the grouped M L method, when the degree of precision r is

less than one. While for the same range of r, the OLS method gives only slightly 

different estimates of the error variance. However, when the distribution of errors
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deviates from the normal curve, the OLS method does not necessarily perform 

well. As the skewness in the errors increases, so does the distortion in the 

parameters when the OLS method is used.

The use of the M L estimators for regression models, for grouped data has lead to 

some research into iterative procedures. Burridge (1981) determined for a class of 

regression models (eg normal, logistic, extreme value), where the dependent 

variable is grouped, a parameterization in which the log-likelihood is guaranteed to 

be concave, thereby ensuring the existence of a global maximum. He 

demonstrated by simulation that this reparameterization of the regression model 

improved considerably the speed of convergence of iterative procedures based on 

the Newton-Raphson method.

Burridge (1982) presented a more general set of results on concavity of 

log-likelihoods, derived from grouped data. In general, concavity of the 

log-likelihood alone does not imply that the MLE exists. In Burridge (1986), for 

regression models considered in Burridge (1981), a necessary and sufficient 

condition is given for the existence of MLEs, where data is grouped.

Approximate Maximum Likelihood Estimation in Regression Models

The method of obtaining MLEs of the parameters in a regression model, where the 

likelihood recognizes the rounded data is often said to produce the "full maximum 

likelihood" (FM L) estimates. As finding these usually calls for considerable 

computational effort, alternative methods have been used.
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Fryer and Pethybridge (1972) extended the approach of Lindley (1950) to obtain 

approximate MLEs for the parameters in the simple regression model (k = 1 in

1 .3 -6 ), when (X ,Y ) has a bivariate normal. They considered having either or both 

of the variables rounded. Their simulation results suggest that the approximate 

MLEs and their corresponding variances are adequate substitutes for the FM L  

estimates if the degree of precision r does not exceed 1.6.

Pethybridge (1973) extended the work of Fryer and Pethybridge (1972) to 

polynomial regression. In Pethybridge (1975) the approximate MLEs in the simple 

regression model for rounded data are considered from two aspects: firstly their

behaviour in small samples, secondly, if slight departures from normality of X  have 

any effect on their suitability in large samples. Simulation results suggest that the 

approximate MLEs and their corresponding variances are suitable substitutes for the 

FM L estimates if r does not exceed 0.8 when the sample size is 25, and if r does 

not exceed 1.6 for sample sizes of at least 100. Also slight 'non-detectable' 

departures from normality in X  are shown not to affect the acceptance of the 

approximate MLEs as a suitable approximation to the exact MLEs when the sample 

size is large.

Indrayan and Rustagi (1979) considered the regression model (1 .3-6) where the 

independent variable Y is subject to rounding and the errors are normally 

distributed. They derived approximate MLEs for the parameters in the regression 

model. Simulation experiments showed how these approximate MLEs compare with 

those based on unrounded data. However, the authors provided no indication of 

the value of r that will give a suitable agreement between the approximate MLEs 

and the MLEs for unrounded data.
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1.3.4 Tests of Significance and Confidence Intervals

In  the literature the effect of rounding on tests of significance and confidence 

intervals has been generally unexplored. For example, how will the distribution of 

a test statistic be altered by rounded data and which statistical tests are sensitive to 

rounding? Answers to such questions as these have not been well covered in the 

literature.

William Sealy Gosset, better known as "Student", was probably the first to discuss 

the effect of rounding on statistical procedures. In his paper on "The probable 

error of the mean", Student (1908) discussed the statistical effects of using "wide 

groups" for data. Student's experimental results suggest that the distribution of the 

one sample t statistic for rounded and unrounded data will be approximately the 

same if the sample size is large.

A  classic statistical procedure for rounded data is the use of Sheppard's corrections. 

However, Fisher (1936, Ch 3, App D ) advised that

These adjustments should be used for purposes of estimation, but not usually 

for tests of significance.

This was reiterated by Eisenhart (1947, p203), who pointed out that use of 

Sheppard's correction can make the t value imaginary as the corrected estimate of 

variance can be negative. Further reiteration came from Gjeddebaek (1968). He 

showed that S 2p/n is a better estimate of the sampling variance of X r , than the 

corrected alternative (S2p -w 2/12)/n; where Xr  and S 2r  are the usual estimates of 

the population mean and variance, applied to rounded data. His advice is that
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S2r  should be used without Sheppard's correction when XR and S 2R are 

brought together in testing procedure or in a statment of confidence limits for 

the population mean.

Krutchoff (1967) pointed out that rounding can cause the F statistic for equality of 

two variances to have a non-zero probability of a zero in the demoninator. Thus 

the mean of this statistic will not exist.

Eisenhart (1947) was the first to study in any detail how rounding affects a test 

statistic. For samples drawn from a rounded normal population, he concluded:

If  the sample size n is sufficiently large and the rounding interval width w is 

sufficiently small to render the discontinuities in the rounded distribution 

negligible then the distribution of the

(i) test statistic

X> -  <n -l>S g /[«r* + £ ] .

will closely approximate a x 2 distribution with n-1 degrees of freedom 

for rounded data

(ii) test statistic

= (Xr- fO
SR/y n

will closely approximate a t distribution with n-1 degrees of freedom for 

rounded data.

Eisenhart was unable to find a rigorous answer to the question of how large the

sample size n needs to be for a given w and how small w needs to be for a
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given value of n, before (i) and (ii) may be considered correct. His criterion for 

judging the suitability of a particular coarseness of rounding was based on the 

probability of the sample variance, S 2r  for the rounded data being zero. He 

proposed that P[S2r  = 0|n ,w ] < 0.001 evaluated on the assumption that sampling 

is from a normal population be adopted as a definition of values of n and w for 

which (i) and (ii) can be safely used on rounded data. Eisenhart recommended 

the following combinations of n and r (w/(r) for which the test statistic \ 2 an<2 * 

can be used to make inferences about <r2 and /i respectively.

Degree of Precision r______________Sample size

r < 0.005 n > 2

r < 0.01 n > 3

r < 0.5 n > 5

r < 0.8 n > 6

r < 1.0 n > 7

Eisenhart also suggested that, if the values of (n,r) satisfy the recommendation 

given above, then the F-test for equality of two variances may be applied to 

rounded data.

The problem with Eisenhart's recommendations is that they are based on the 

probability of the sample variance from rounded data being zero. This gives no 

indication of the performance of the test statistic with respect to level of 

significance or power under rounding. In Chapters 3 and 4 this issue is 

investigated.
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Preece (1982) examined text book examples of the paired t-test with respect to the 

degree of precision of the recorded data. He illustrated how the paired t statistic 

depends crucially both on the rounding interval and position of the rounding grid 

relative to the origin. Using a similar approach to that of Preece, Riley, Bekele 

and Shrewsbury (1983) investigated the effect of rounding on the analysis of 

variance. The degree of precision of data sets taken from standard literature was 

varied, to illustrate how rounding effects the main squares. Their analysis showed 

that data could be rounded appreciably before loss of information became 

signficiant.

The investigations by Preece and Riley et al consisted of looking at the effect of 

rounding on specific examples. As a result no general conclusions could be 

established about the performance of a test statistic for rounded data.

1.3.5 Rules of Rounding

Throughout the literature various rules have been suggested for the degree of 

precision that should be used when recording data. The rules are mainly 

concerned with data rounded from a normal distribution. There seems to be no 

standard rule. The purpose of this section is to summarise the rounding rules that 

have been adopted in the literature.

Although Student (1908) discussed the statistical effect of using poor precision in 

recording data, it was Fisher (1922) who was probably the first to suggest a rule 

for rounding data. In this paper, Fisher obtains results on the loss in efficiency 

due to grouping when the parameters of a normal distribution are estimated from a 

sample which has been rounded. He showed that, provided the degree of precision
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r does not exceed a quarter, the loss in efficiency is less than 1 per cent.

Yates (1937) suggested a rule for rounding in terms of significant figures, after 

working with British agricultural field experiments. He advised that

only three significant figures need to be retained in a variate for an analysis

of variance provided that the standard error of a single observation is not less

than 3-5 per cent of the mean (as in the yields of field plots).

Eisenhart (1947) used the work of Fisher (1922) as a basis for his recommendation. 

He stated that

the width of the rounding interval [should] be less than one-third, or better, 

less than one-fourth the standard deviation of random sampling.

Snedecor and Cochran (1967) echoed this

For accurate work, the advice commonly given is that I  [the width of the

rounding interval] should not exceed <7/4.

Cochran and Cox (1957) translated the <r/4 rule across to experimental data in the 

words

the rounding interval should not exceed one quarter of the standard error per 

observation.
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However, Nicholson (1979) wrote of the "often quoted rule of thumb" that the 

width of the rounding interval should not exceed cr/2. This was also the advice of 

Dyke (1974) and Anon (1975).

Although various rules have been suggested for the degree of precision that should 

be used in recording data, opinion seems to be divided on which rule to use. 

Riley et al (1983), when investigating the effect of rounding in the analysis of 

variance, found Yates' (1937) rule too conservative, whereas Dyke's (1974) rule 

gave a safe degree of precision for every set of data analysed. In Chapters 3-5 it 

is shown that, for certain normal test statistics, the rounding rules given in the 

literature are generally too conservative.
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CHAPTER 2

EFFECTS OF ROUNDING ON TH E MOMENTS OF A  

PROBABILITY DISTRIBUTION

2.1 Introduction

2.2 Univariate Distributions

2.2.1 Characteristic Function and Moments of Rounded Distribution

2.2.2 Moments of Rounded Normal and Gamma Distributions

2.2.3 Relationship between the Shape of a Distribution and the 
Effect of Rounding on its Moments

2.3 Bivariate Distributions

2.3.1 Characteristic Function and Moments of Rounded Bivariate 
Distribution

2.3.2 Bivariate Normal

2.4 Conclusions
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2.1 Introduction

This chapter considers the effect of the rounding process on the moments of a 

continuous distribution. This problem spans the modern era of statistics. 

Information is obviously lost through rounding and the moments of the distribution 

may be distorted. This chapter is concerned with the relationship between the 

moments of the unrounded and rounded distribution X  and Xr  respectively. We

will not be concerned with the problem of estimating the moments from rounded

data. A  relationship between the moments of X  and Xr  can be obtained by the

use of Sheppard's corrections. Over the years these have been universally regarded

as the 'acceptable' method. However, as pointed out by Kendall (1938),

Sheppard's corrections can be dangerous to use if:

(a) the distribution is markedly skew

(b) the distribution is highly concentrated, ie the standard deviation is of the

order of the group interval.

As mentioned in the literature review, other researchers have found corrections to 

the moments where Sheppard's corrections are invalid. However, these corrections 

are often tedious to make and specific to certain distributions.

This chapter shows how the relationship between the moments of X  and X r  can

be obtained from the characteristic function of X r . General expressions for the 

moments of X r  are derived. These are found to be more reliable than Sheppard's 

corrections and provide a means for taking the lattice position into account. For 

the first time the implications of the shape of the distribution on the effect of 

rounding on the moments will be investigated. Section (2.2) considers the
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univariate distribution, while section (2.3) the bivariate distribution.

In communication engineering the parallel to rounding is the quantization of signals. 

This work to date has been mainly ignored in statistical literature on rounding. 

Some of the results of quantization theory can be adapted for use with rounded 

data. Throughout the chapter such results are indicated and used where possible.

2.2 Univariate Distributions

This section deals with the implications of rounding on the moments of a 

univariate distribution. The approach is via the characteristic function (CF) of the 

rounded distribution X r . In communication engineering Widrow (1961) was the 

first to demonstrate how the CF of quantized signals was the same as the CF of 

X r  under certain conditions. However his expression for the CF of X r  was 

suitable only for lattice position c = 0. Watts (1961) extended Widrow's work. 

He obtains the CF of a quantized signal which has been subject to scaling and 

shifting. Watts however made very little connection between his work and that of 

rounding. Section (2.2.1) shows how we can derive the CF of X r  for any r and 

c from Watts' result. A  proof is given for the CF of X r  which is much simpler 

and more elegant than the one presented by Watts for the CF of quantized signals.

In section (2.2.1) explicit expressions for moments of X r  are obtained for the first 

time. These are general results, that allow the amount of distortion caused by 

rounding on the moments to be measured for a given degree of precision r and 

lattice position c. This change in moments as a result of rounding is shown for 

the normal and gamma distributions.
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To the author's knowledge the only results on the effect of rounding on the 

moments in non-normal distributions are by Holland (1975). He considers the first 

two moments of the rounded exponential and triangular distributions. However, he 

considered only the first two moments of these distributions. Also he ignored the 

possible effect of lattice position. In order to gain some insight into the behaviour 

of the moments from rounded non-normal data, a system of distributions is looked 

at. For each distribution in the system the effect of rounding on the first four 

moments about the mean is investigated, for various degrees of precision and lattice 

positions.

2.2.1 Characteristic Function and Moments of Xr

Throughout this chapter the characteristic function (CF) y’xCO ° f  a random variable 

X  with p.d.f. f(x) is defined by

=

+CO
i t x  . 

e f ( x )  dx

Theorem 2.1

Let X  be a continuous random variable with p.d.f. f(x) and CF ^x(t). Values of 

X  are rounded, corresponding to a rounding lattice with intervals of width w and 

lattice position c. The result is the rounded random variable X r . Under slight 

regularity conditions for f(x), the CF of X r  is given by
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+00

- j .  " i *  *  Si ; . - S B  <2 -2 - i>

For the proof of this theorem we require the following results.

Fourier Transform (FT)

Let g(x) be a continous function defined on -o o  <  x <  co. Then the FT of g(x) 

is

f+OO
Fg (u ) - 1 U X  ,  .

e g ( x )  dx

Note: <Pg(~u) = Fg(u) where g has unit mass.

Convolution Theorem

Let f n(x) and f 2(x) he two given functions, with FTs F ,(u ) and F 2(u) respectively. 

The convolution of f,(x ) and f 2(x) is given by

.+ 00

f ( x )  = f , ( s) f 2 ( x - s ) ds

The FT of f(x) is F 1(u)F2(u).
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The Poisson Summation Formula (eg Dym and Mckean, 1972)

If  g(x) has FT Fg(u) then for each fixed T ,

in27rx+CO +CO --- ----
I  g ( x - n T )  -  T  I  e

n=-c» n=-oo

provided g is twice differential and satisfying additionally

I g(x) | + ig'Cx) | + Ig"(x)| < constant x (1+x2)-1 

Proof Theorem 2.1

Let the random variable X  have p.d.f. f(x). This distribution is rounded into 

intervals of width w and the centre of the initial interval is a.

Consider the function

P ( a )  = f ( x )  dx = f ( a - x )  dx

w
L e t  k ( x )  =  1 f o r  | x l  < ^

=  0 e ls e w h e re
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Then P ( a )  =

+00
k ( x )  f ( a - x )  dx w h ich  is  a c o n v o lu t io n  and th e  FT o f

P(a) using the convolution theorem is:

• fuwl
s 1 n l ~2 J

F p (u )  =  Fk ( u ) F f ( u )  F f (u )  ( 1 )

2

Consider a new function G(a) = eltaP(a). Then the CF of the rounded random 

variable is

+O0 . +00

PXr CO = 1  e l t  a+nW P(a+nw ) =  2  G(a+nw) (2)
n = - c o  n = - o o

Hence provided G(a) is twice differentiable and bounded as indicated, the Poisson 

Summation Formula gives

l 2 xna
t +00 -------------- ~

<pxrM  = w 1 e f g K t ]  (3)
n = - o o

[It is the conditions on G that impose the regularity conditions on f. In general 

for statistical distributions these conditions will be satisfied.]

However, the FT of G(a) equals the FT of e*taP(a), ie

S i n f ^ ( u - t ) ]
Fg ( u ) -  F p ( u - t )  ^ ( u - t )------- F f ( u - t )  f ro m  ( 1 )
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Hence from (3)

1 2 xna
+001 ■" —  S in f ^ T —  - t i l1 v  w ,, f 2 xn  i  L2 L w JJ

1 r 2 xn
n = - o o  — I -

2 L w -*]

As f ( x )  is  a p . d . f . ,  F f [ ~ ~  - t j  = y?x[t_  where i s the CF o f

X. Letting k = -n  we have

i  2 xka  „ .  r l , _ , . i
, .x  T  L l  2xkT S ln [2 (tw+2Tk>]

"  kL »  ^  ' i < tw+2Tk)------

Letting the centre of the initial interval be a = cw, where cw is the centre of 

interval containing zero, we have the required results.

Watts (1961) derived the CF of the general quantizer system for an electrical 

signal. By letting the gain and shift be equal to w and c respectively in the 

quantizer system, we can obtain (2 .2-1). Although in communiction engineering a 

similar result to (2 .2-1) has been used for the CF of the quantizer output, Tricker 

(1984) was the first to apply the parallel result for rounded data in the statistical 

literature. Watts' method of obtaining the CF of the quantized signal was to first 

find the p.d.f. and then derive the CF from this. A  simpler approach could be 

applied to find the CF of Xr . However the proof given above is far simpler than 

if we were to use Watts' approach.
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The moments of the rounded random variable Xr  can be derived from its CF 

(2.2- 1).

Corollary 2.1 to Theorem 2.1

Let Xr  be the rounded random variable with CF <p x r O0- Assume the nth 

moment of X  exist. Xr  has the following moments.

For n odd

g ] 2k( 2k+ D  ’ E fx"  2k]

oo n

+  2 ( - l )
2

k = l  r = l
^  £  nCr f r ( irk )  |̂ Bn r C o s ( 2 x k c ) -A n  r S i n ( 2 i r k c ) j

( 2 . 2 - 2 )

For n even

g ] 2k(2k+ l ) - ’ E [xn- 2k]

n— oo n
+  2 ( - l ) 2 ^ I n<: f r (^ k )  fAn " r C o s (2 x k c )+ B n " r S in (2 7 rk c )

k = l  r = l  r

(2.2-3)

where ( i ) is  th e  i n t e g e r  p a r t  o f  ^



( i i )  A° + iB° = m [ * £ \

r d S 0 9 v ( t  )  ■,
As +  iB s =  - ^X 1 , s =  1 , 2

L cj t s J. 2 x k  ’
t  = w

Proof of Corollary 1

The CF of Xr  is

+00
/ 4 v v  - i 2 xkc r , 2 xkT S in  £ ( tw + 2 x k )  

0  " kL 6  ̂ •' Htw +2xk)

The moments of Xr  are given by

w c (t )  -  —^x  d t n

+00

2 • '
k = - o o

- i 2 xkc r 2 x k l  S in  £ ( tw + 2 x k )5 T̂rk-ira[t+ —  J £ ( tw + 2 x k )

Interchanging the order of summation and differentiation

p x < 0
+00

I  •
k = - o o

- i 2 xkc dn r r 2 x k i  S in  £ ( tw + 2 x k )  
(jtnL^L w J £ ( tw + 2 x k )

+00

-  2 e
k = - o o

- i  2xkc n

2
Lr=0

v  n n - r  „ r
2 cr ^  f (3)
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where

From

where

From 4

n!
( n - r ) ! r !

«[«■ ¥ \ j  =  0

.&[*[*♦ *£]] j  -  1 , 2 ,

S in  £ ( tw + 2 x k )
j  =£ ( tw + 2 x k )

dJ rS in  | ( t w + 2 x k ) '  
l-dtJ I- i ( t w + 2 x k ) J-

and (3)

+°° . ,, . Nn - i 2 xkc
( - O  2  e

k = - o o

n

<*>r=0

p £ (z )  =
p x ( z )

dJ

Sin z

f j (z) -
fW| J fdJ [ S in  f | ]
I 2 J q j r r — JJt=2
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n
-  ( - O n 2  ncr ^ - r ( 0 ) f r ( 0)

r=0

oo n
, ,  . Nn  v  v  n _  r - i 2 x k c  n - r  f ^ x k l  r r . 1N i  2 x k c  n - r f  2 x k ' | r . r /  . N1+  < - » >  2 2 r l e  *x [— J f  ( T k ) + e  J f  ( - T k ) Jk=l r ==0

(5 )

The first summation of (5), S1 is the corrections to the moments given by 

Sheppard's corrections.

We have

hence

f r (0 )
g ]  g y C - D 172 f o r  r  -  2k ( k - 0 , 1 , . . . )

0 fo r  r  = 2k+ l

S, = X "C 2 k g ]  ( 2 k + l ) - , ( - l )  ( 0 )
k=0

2 k

® „ *n_ rw V ^ /01 i1n“ 1, . Nn - 2k n - 2k /n .
2  c 2k h J  (2k+1)  ( - °  ( 0 )k=0

2 k

I " c  , g l  ( 2 k + l ) _ , E[Xn' 2 ] 
k - 0

2 k
(6)

(6) is the expression for Sheppard's corrections (eg Kendall & Stuart, 1968).
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For the second summation S2

oo n
S 2 =  ( - i ) n  X  X nCr [e-i2Tk° ^ - r [ ^ ] f r (xk)+ei - kV r [- ^ ] f r ( - k ) ]

k = l r=0

For the function fr( .), f°(xk) = 0, and fr(-z ) = ( - l ) rf(z), thus

oo n
„ . . Nn v  v  n_ - . r .  1 N r  - i 2x k c  n - r r 2 i r k ' | ,  i  27r k c  n - r r  27rkl .

-  < -D  2 I  C  f  (Tk) e [— J+e v  J ( - l )  J
k =l r= l

( - i )n i 2 nC f r (x k )
k = l  r = l

Let

(7 )

then

(̂t) - £jk(t>] -y>x ( t )  -  A ° ( t )  + i B ° ( t )  j  -  0

AJ ( t )  +  iB J ( t ) j -  1 n

4 (t) +  -  2A j ( t )

4 ( t )  '  ^X (_ t )  "

^ ( t )  + ^ ( - t )  -  i2Bj ( t )

px(t )  ■ '4 ( - t )  ■ 2A-i(t)

fo r  j  = 0, 2, 4, ( 8 )

fo r  j  = 1, 3, 5,

The results in (8) can easily be shown to be true, using Corollary 2 (Lukacs, 1970 

Pp22).
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For n odd

Using (7) and the CF results given in (8), the S2 for n odd denoted by S0 is

co n
S 0 =  -  2 ( - i ) I  2  f r ( x k ) [ B n " r C o s ( 2 x k c ) -A n " r S i n ( 2 x k c ) l

k = l  r = l  r

n+3
  oo n

= 2 ( - l )  2 2 2 "C f r (x k )  fBn" r Cos(27rkc)-An " r S in (27rkc)l
k = l  r = l  r  J

where

AO + iB o -  ^ [ M ]

.s  ^  ._s  s r 2 x k lA +  lB fu r X ^  1 -n s r ix k i  .
*■ d t s  + -  2 x k  ^ X L  w J S ’ * ' * ’ nt  =

w

f » ( . k ) .  s =  1 ........... n
12J Ld t s l  t  J i t  _  xk

For n even

Using the same approach as for n odd, the summation for n even, denoted by Sg 

is

n
— oo n

SE =  2 ( - 1 )  2 2 2  " c  f r ( x k )  [An " r C o s(27 rkc )-B n " r S i n ( 2 x k c ) l
k = l  r = l  r

Hence

Ernl
S 1 + S Q n odd

.S1 +  SE n even
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Under general conditions for the distribution of X, an explicit relationship between 

the moments of unrounded and rounded data has been obtained. This allows us to 

examine the effect of rounding on the moments of a distribution. In the past 

Sheppard's corrections have often been used uncritically to obtain a relationship 

between the moments of X  and Xr . Although to some extent Sheppard's 

corrections may be used for this purpose, they are only approximate. Our results 

are more general than Sheppard's corrections in that they allow correction for 

rounding with respect to w and c.

Sheppard's Corrections

I I
PiR =

' ' w2
^ 2R = + 1 2

’ ' w2 '
^ 3R “  /*3 + 3-  /*i ( 2 . 2 - 4 )

' w2 ' w4
/*4R /*4 + 2  + 80

Sheppard's corrections are customarily applied to the moments about the mean of 

the rounded distribution, namely by omitting the dashes in (2.2-4) and putting /x ]r  

-  f i \ = 0. Using these corrections, a relationship between the mean, variance, 

skewness and kurtosis of X  and X r  can be obtained.
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/*R “

y/slR -
3 / 2

( 2 . 2 - 5 )

where r w/<r.

The expressions in (2.2-5) will be valid only if Sheppard's corrections are also

valid for the moments about the mean.

For some distributions occurring in practice which have resonably high order 

contact Sheppard's corrections (2.2-4) will provide reasonable results. However as 

pointed out in section (2.1), there are two cases in particular where such an

assumption would be dangerous, if the distribution is markedly skewed or rounding 

is coarse. Where there is no high order contact, such as J and U  shaped 

distributions, Sheppard's corrections may break down. Corrections for such 

situations have been considered by Pairman and Pearson (1918) and Pearse (1928) 

but are very complicated and tedious to carry out.

If  the rounding lattice itself is considered a random quantity, Sheppard's corrections 

hold on average, no matter what the unrounded distribution. However, the 

assumption of a random imposition of rounding lattice seems unreasonable in most 

circumstances. For example a randomly imposed rounding lattice may introduce

data rounded to values outside a distribution's range of positive probability.
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Derived from the CF of Xr  (2.2-2) and (2.2-3) are an alternative to such

methods as Sheppard’s corrections. They are more reliable than these corrections 

on a wider class of distributions. Doubt about the validity of Sheppard's

corrections can also be demonstrated by examining the CF of Xr . When the 

condition (2.2-6) is placed on the CF of X, only the central section of (2.2-1) 

enters the calculation of the moments of Xr .

p x ( t )  -  0  i t  I >

o r  ( 2 . 2 - 6 )

r a [ ^ r ]  -  0 k -  ±1. ±2, . . .

ie the CF of X  vanishes outside of a finite interval of t.

The expression for the central section of (2.2-1) is

« * < * >  I c e n t r a l  s e c t i o n  “  « < < * >  < 2 ' 2 - 7 >

The central section (2.2-7) can be thought of as a CF in its own right. It is the

product of the CF of X  and a variable which is uniform, distributed between -w/2

and w/2. Satisfaction of condition (2.2-6) suggests that the moments of Xr  are 

the same as those of the sum of the moments of X  and a statistically independent 

error, uniformly distributed on (-w/2,w/2).

This statement implies that Sheppard's corrections are valid if (2.2-6) holds, ie if 

the CF of X  vanishes outside of a finite interval. Distributions whose CF is zero 

outside of a finite range of t do exist. An example of such a distribution is given
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below.

1 -  I t  i i t  i <  1
00 <  X  <  00

0 I t  I >  1

f(x)

PxCO

0 x - 1 0 +1 t

However the moments of this distribution do not exist.

Polya's theorem (Lukas, 1970) or the method presented by Kawata (1940) may be 

used to construct a CF which vanishes outside of a finite interval. However,

statistical distributions where the CF has this property are rare. We may deduce 

that the validity of Sheppard's corrections can be in doubt, as satisfaction of

(2.2-6) is uncommon, the reason being that it is rare to have a probability 

distribution whose CF is zero outside of a finite range of t. But the value of the 

CF outside of the region (2.2-6) is often very small and may be regarded as 

negligible for the accuracy we are interested in. As a result in many practical

situations Sheppard's corrections may be reliable.

Kullback (1935) gave a proof of Sheppard's corrections based on the CF. He

shows that if the distribution has high order contact then
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2  t w
P X r ^ )  = S in  2 ” (2 .2 -8 )

Clearly from the work in this section, (2.2-8) is only an approximate result. This 

point is not made clear from his paper.

The next section uses the expressions given in Theorem (2.2) to find the first four 

moments of the rounded distribution. At the same time the reliability of

Sheppard's corrections and the effect of the shape of the distribution on the 

rounding process are examined.

2.2.2 Moments of rounded Normal and Gamma data 

From Corollary 1 the first four moments of Xr  are given by

w  00 ( - 1 1 ^  r  n
E [X r ] =  E [X ]  +  -  £  — ^  B° Cos[2 i rkc ]  -  A 0 S i n [ 2 x k c ]

X  i m K. L Jk = l

( 2 . 2 - 9 )

E [X r ] =  E [ X 2 ] +  ^

00

-  2  ( - 1 ) S [ A ' Cos [ 2 x k c ]  +  B' S i n [ 2 i r k c ]  j
k = l

-  [a 0 C o s ( 2 x k c )  +  B° S i n [ 2 x k c ] j

(2 .2 -1 0 )
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Note

3 00 w
E [XR ] -  E [ X 3 ] -  3 2  ( - 1 )  * [ & ] [  B 2 C o s ( 2 x k c )  -  A 2 S i n ( 2 x k c ) J

k = l

-  [~ ^ j [ b 1 C o s (2 x k c )  -  A 1 S i n ( 2 x k c ) j  

+  T I & )  > < * > * ] [  B° C o s ( 2 x k c )  -  A 0 S i n ( 2 x k c ) j

( 2 . 2- 11)

E [X R ] =  E [ X 4 ] +  5 -  E [ X 2 ] +

V  A
‘ - d *  S H  A 3 C o s ( 2 x k c )  +  B 3 S i n ( 2 x k c ) j

k = l

-  6 [a 2 C o s ( 2 x k c )  +  B 2 S i n ( 2 x k c ) j

+  [6 -  ( x k ) 2jj^A' C o s ( 2 x k c )  +  B' S i n ( 2 x k c ) j

+  [ ( ^ k ) 2- 6 ] | a ° C o s ( 2 x k c )  +  B° S i n ( 2 x k c ) j

( 2 . 2 - 12)

where A° +  i B °  =

As +  i B s =
rds^ x ( t > i 

*■ d t s = 2xk
w

s =  1 ,2 , . . .

(i) The expressions for the moments of XR simplify considerably if the

distribution of X  is symmetric (f(x) = f(~x)), as the CF is real and 

Bs = 0 for all s.
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(ii) /%!R can t>e obtained by using results connecting the moments about the

origin and mean (cf Kendall & Stuart, 1968).

Normal Distribution

As the normal distribution is central to the theory of statistical inference, the effect 

of rounding on this distribution is important. Several authors have looked at the 

problem of rounding in the normal distribution with respect to the moments. Of 

course we have the well known approach of Sheppard's corrections. The first real 

attempt to use Fourier analysis in the investigation of grouped moments was by 

Fisher (1922) who expressed the grouped moments in terms of a Fourier Series. 

He obtained an approximation to the first four moments of the standard normal 

distribution where the data has been grouped. In fact his approximation takes into 

account only the first periodic term in the Fourier Series. This is equivalent to 

using (2.2-9 to 2.2-12) with k = 1. He concludes that if the rounding interval is 

less than the sd (r <  1) the periodic terms are small and may be ignored for 

normal rounded data. This is rather conservative, as is shown later. Fisher makes 

no real attempt to investigate the influence of the lattice position or distributions 

other than normal.

From the CF of Xr , Widrow (1961) obtained expressions for the mean and 

variance of normal rounded data. They are approximate and equivalent to using 

(2.2-9) and (2.2-10) with k = 1 and c = 0. As shown later, Widrow's method 

will give a good approximation to the mean and variance of normal rounded data 

for r < 1. However this may not be so for non-normal rounded data, as 

disregarding the effect of lattice position will cause Widrow's approximation to be 

inaccurate. Lowell (1980) gave expressions for the mean and variance of normal
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rounded data for the more general case of non-zero mean. In this paper only the 

first two moments were investigated with respect to rounding.

The expressions for the moments of Xr  given in the previous section, will be used 

to show how the moments in a normal distribution may be affected by rounding. 

This will extend the work of previous researchers, in that it will consider the effect 

of both the degree of rounding and of the lattice position on the first four 

moments and related measures of skewness and kurtosis.

In order to gain insight into the effect of rounding on the moments, the first 

moment will be considered first.

Let the random variable X  have a normal distribution with mean /t and variance 

a 2. Let X r  be the random variable corresponding to a rounding lattice with 

interval of width w and lattice position c. Using the CF

Let it = cw + nw + ow, where the mean ft lies a distance cw from the nearest 

midpoint cw + nw and r = w/cr, then from (2.2-^13)
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E [ X R ] -  E [ X ]  +  <r |  £  e x p [ - 2 [ ^ i ] 2] s i n ( 2 x k a )  ( 2 . 2 - 1 4 )

The difference between the expected value of Xr  and X  will depend on

(i) the ratio r = w/o-, which is a measure of the severity of rounding

(ii) the value of a, where ow is the distance between the nearest midpoint

Equation (2.2-14) indicates that the effect of rounding on the first moment of X  is 

dependent not only on the predetermined lattice given by c and w, but also on

the position of the normal distribution relative to zero, ie the value of p. Before

the effect of rounding on the moments of the normal distribution can be calculated

the values of r, /t and c must be known.

The result (2.2-13), for the expected value of Xr , is more general than has been 

presented in the past. Both Widrow and Lowell considered a rounding lattice with 

c = 0. Also using (2.2-9) and (2.2-10) we can obtain the V(Xr ), which will be 

required in Chapter 6.

For c = 0, expressions (2.2-13) and (2.2-15) agree with the mean and variance of 

Xr  given in Lowell (1980).

and the mean p. a  has the range to £.

k = l
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In considering the effect of rounding on the normal distribution it will be assumed,

without loss of generality that the mean is zero. The expressions for the moments

of X r  will be simplified and a  becomes equal to -c. For a normal distribution

with mean zero and variance a 2, from (2.2-9) to (2.2-12) the first four moments

of X r  are:

E[XR] = -  a
r  00 f - n k
-  J  v J  D S i n ( 2 x k c )  
T k = i k

E[X r ] -  a-

E [ X R ] =  <t 3

E [XR ] -  o'

1 +  1 2  +  4 2  2] d  C os(2 i rkc )
k = l

3 r  "  ( - l ) k r ,  , r2irk-|* , 1 f r  1 2 r 2l „  N
x 2  k [ 1 + [  r  J +  2 L k J  " 12J S ln ( 2lrkc>

k = l

k = l

+  2 r x k j D  C o s (2 x k c )

, n T 2 x 2k 2]where D =  expj^- — J

( 2 . 2 - 1 6 )

A Fortran program was written to calculate the first four moments (2.2-16) and 

related measures <t2r , y ^ R  and |32r . The rounding precision r varied upto 5, 

for lattice positions c = -0 .5, -0.45,..., 0.45, 0.5. The ranges of the first four 

moments of Xr  are given in Table (2.2.1). These are compared with results 

(2.2-5) given by Sheppard's corrections. Table (2.2.2) shows the maximum bias 

caused by rounding in the measures /i, a 2, y/3n and (32. The basis for each 

parameter is defined as:
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B2

( 2 . 2 - 17 )
<^lR “ @ 2R ^2

The maximum bias is simply the maximum value of Bp

The range in the values of the moments is caused by the lattice position c. As

the moments of X r  were obtained for 21 values of c, the results in Table (2.2.1)

and Table (2.2.2) are an indication of the possible range of the moments and

maximum bias respectively. The values for ̂ ir  and ct2r  in Table (2.2.2) agree

with Widrow (1961) for r < 1.0. For r >  1.0 they differ, as Widrow uses an 

approximation to find ^ r  and <t2r  and considers only lattice position c = 0. The 

results in Table (2.2.2) demonstrate how the lattice effect increases considerably as 

the rounding becomes more coarse. This being more noticeable in the 2nd and 

4th moments. Sheppard's corrections provide a very good approximation to the 

moments and related measures of X r  for r < 1.0. For r >  1 the lattice effect is 

seen to cause these corrections to become less effective in adjusting for rounding 

and are unreliable for r >  2.0.

As r increases in size the lattice position (or position of the mean fx relative to

nearest midpoint) is crucial in deciding how much the normal distribution is

distorted by rounding. This can be illustrated by examining the biases in the four 

measures /i, a 2, y / 3 nr  and / 3 2 r  due to rounding over the range of c. Figures 

(2.2.1) to (2.2.4) show the curves for these baises for c ranging between and £ 

and r up to 5.0 (except for B 4 when r is upto 4). These Figures illustrate how

the biases are dependent on the value of c. In the graph for B lt the bias is zero

for c = 0 and ± £. In general, whenever the mean coincides with the boundary
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or centre of a rounding interval then the bias is zero. For the variance, the bias 

B 2 is symmetrical about c = 0. When c is between ± 0.2 the value of £T2r  can

be less than that of a 2. The graph for B 3 is very similar to that for B 1, again

having zero bias at c = 0 and ± £. The interesting feature about the bias caused

by rounding in /32 is that, as r rises in value, B 4 rapidly increases as c

approaches zero. This is caused by the fact that <t2r  tends to zero in the region 

of c = 0 for large r.

In Tricker (1984) the bias in the mean and variance is given with respect to the 

lattice position for a Laplace distribution which has been subject to rounding. This 

bias in the mean was found to be generally larger than for the normal, where the 

bias variance was similar.
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Table 2.2.1

Range of the first 4 moments of rounded normal data (Sheppard's Corrections in 

brackets)

r E[XR]/<r E [ X R ) / c r 2

1 ± 8 . 1 0 ( 1 0 )“ 10 , ( 0 . 0 ) 1 . 0 8 3 3 - 1 . 0 8 3 3 ( 0 ,  (1 .0833)

2 ± 4 . 3 6 ( 1 0 ) " 3 , ( 0 . 0 ) 1 .3077-1 .3650  , (1 .3333)
3 ± l . O l ( l O ) - 1 , ( 0 . 0 ) 1 .2020-2 .2986  , (1 .7500)
4 ± 3 . 5 3 ( 1 0 ) _1 , ( 0 . 0 ) 0 .6964 -4 .0020  , (2 .3333)

r E[Xr ]/(T3 E[Xr ] / ^

1 ± 9 . 8 0 ( 1 0 ) “ 8 , ( 0 . 0 ) 3 . 5 1 2 5 - 3 . 5 1 2 5 ( 0 ,  (3 .5125)

2 ± 1 . 4 0 ( 1 0 ) _1 , ( 0 . 0 ) 4 .6745 -5 .7255  , (5 .200 )
3 ± 1.55 , ( 0 . 0 ) 6 .1559-10 .8500  , (8 .5125)
4 ± 3 .19  , ( 0 . 0 ) 11.9813-16.0811 , (14 .2000)

( 1) no range in values correct to four decimal places.

Table 2.2.2

Maximum bias in fi, a 2, y/31 and /32 caused by rounding (Sheppard's Corrections 

in brackets) for normal distribution

r B, b2 b3 b4

1 8 . 10 (1 0) - 1 0 (0 .0 ) 8 .3 3(1 0) " 2 ( 8 . 3 3 ( 1 0 ) ” 2<72) 8 .9 0(1 0) -* (0 .0 ) 7 . 1 0 (1 0 ) -*  ( 7 .10 (1 0) - *
2 4 . 3 6 ( 1 0 ) “ 3 ( 0 .0 ) 3 .6 7 ( 1 0 ) - ’ ( 3 . 3 3 ( 1 0 ) - V 2) 1 . 0 1 ( 1 0 ) - ’ (0 .0 ) 4 . 9 1 ( 1 0 ) - ’ (7 .5 (1 0)  —2)
3 1 . O l ( l O ) " 1 ( 0 .0 ) 1.30 ( 7 . 5 ( 1 0 ) - ’<r2) 1.03 (0 .0 ) 4.51 ( 2 . 2 ( 1 0 ) “ ’ )
4 3 . 7 3 ( 1 0 ) " ’ (0 .0 ) 3 .00 ( 1 .33(r2) 2.22 (0 .0 ) 21.10 ( 3 . 9 ( 1 0 ) - ’ )
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Figure 2.2.1 Figure 2.2.2
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Figure 2.2.1 B t for values of c between ± \  and r ranging upto 5

Figure 2.2.2 B 2 for values of c between ± \  and r ranging upto 5

Figure 2.2.3 B 3 for values of c between ± \  and r ranging upto 5

Figure 2.2.4 B 4 for values of c between ± £ and r ranging upto 4
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Gamma Distribution

Past research into the moments of rounded non-normal distributions has 

concentrated on finding specific corrections to moments where Sheppard's

corrections are known to break down. Most of this work was carried out before

the Second World War by such authors as Pairman & Pearson (1918), Pearse 

(1928), Martin (1934) and Sandon (1924). These corrections are very difficult to 

make. This section shows how the general result for the moments of Xr  given in 

section (2.2.1) can be applied to a non-normal distribution. Secondly it shows the 

importance of the shape of the distribution in determining the effect of rounding. 

No attention has previously been given to this. Only Holland (1975) when 

investigating the bias in the mean and variance of rounded data points out that

skewness of a distribution may influence the rounding effect. It shall be 

demonstrated by using the gamma distribution how the rounding bias in ft, a 2,

yB, and /32 is strongly dependent on the shape of the distribution.

Let the random variable X  have a gamma distribution with the following p.d.f.

with mean o>.B and variance a 2 = olO 2 .

Let X r  be the random variable corresponding to a rounding lattice with interval of 

width w and lattice position c. Using the CF of (2.2-18) we obtain from (2.2-9) 

to (2.2-12) expressions for the first four moments of X r
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E [X R ] =  E [X ]  +  cr

a
r f - 1 )k  2
-  2 ~— \T  G S in(c^-2xkc)  
T k=l  K

E [ X R ] -  E [ X 2 ] +  a 2 12 0  sk=l

(a + i )
( - l ) k r " 2 

k 2 G (2 .2 - 1 9 )

X M  Sa S in [ (a + l )^ -2 x k c ]  + G^Cos (aii/'-2xkc) j

E[Xg ]  =  E [ X 3 ] +  (T=

(a + 2 )

r y “ - 3 0 3 2 2
k = l

[ (a+1) [ ^ ] 2S in [ (a+2)^ -2xkc ]  -  [ ^ ]  (c*G) *Cos [ (a + l )^ -2 x kc ]

+ y^-[6-(xk)  2J g  Sin(a\^-2xkc) j

E[xg] =  E [ X 4 ] = r 2(a + l )  , r 4
* E + 0  .2k=l

(a + 3 )

[4 ^ j 3 (a + lK a + 2 )  s in [ ( a + 3 ) ^_2xkc]

+ 6 [ ^ ] 2(a+l)G^ Cos[ (a+2)^-2xkc]

-  [ ^ ] [ 6 - ( x k ) 2 ]yaG S in [ (a + l )^ -2 x k c ]

+ i [ ( x k ) 2-6 ]G 3 /2Cos(a^-2xkc)]

, _ f i  . ( 2 x k ) 2i „ , 2xkwhere G -  1 +   , tan  \p =  ,L a r 2 J Y rya
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The shape of the distribution will be an important determinant of the effect of 

rounding on the moments. For example the dominant term in E [ X 2r ] is 

q -(q :+ i)/2 } where a  is the shape parameter of the gamma distribution. For fixed 

r, G~(a + 1V 2 will approach E [X 2] + a 2r 2/12 (Sheppard's correction) as the 

distribution becomes more symmetrical. In general we would expect the moments 

of X r  to tend towards Sheppard's corrections as the distribution becomes less 

skewed.

A  Fortran program was written to calculate the first four moments (2.2-19) and 

related measures <t2r , y/3., r  and /32r . The rounding precision r varied up to 4, 

for lattice positions c = -0 .5, -0.45, ..., 0.45, 0.5. For the gamma distribution, 

the rounding lattice where c is less than zero, may cause data to be rounded to 

values outside of its range. This is really a theoretical point, because in practice 

rounding lattice with this value of c would be uncommon. Generally for

distributions which have a finite terminal at the end of one of its ranges, the 

rounding lattice may cause data to be rounded to values outside its range.

Selected results are given in Tables (2.2.3) and (2.2.4). Only results for the 

related measures are shown, as their general behaviour with respect to the shape of 

the distribution will be similar to that of the moments.

The results in Table (2.2.3) indicate how crucial the shape of the distribution is in 

determining the rounding effect. As the distribution becomes more skewed the 

lattice effect increases, causing a greater bias in the rounded parameters /ir , ô r ,

y/3, r  and /3 2r . As implied by the expressions for the moments of X r , as a

increase, the values of these parameters tend towards those given by Sheppard's 

corrections. For a > 5 Sheppard's corrections are reliable for r < 1.0. Table 

(2.2.4) shows the maximum bias that may occur in the parameters. For the
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exponential distribution (a = 1) this bias may be severe, but quickly reduces as ot 

increases. As expected for increasing a, the bias in the parameters approaches 

those of the normal distribution. Figures (2.2.5) and (2.2.6) show curves for B 1 

and B 2 for c ranging between and r = 1 and a up to 4. These illustrate 

how B, and B 2 can vary considerably for different lattice positions. The same 

was also found true for B 3 and B 4.

Table 2.2.3

Range in mean, variance, skewness and kurtosis for gamma rounded and unrounded 

data. (Sheppard's corrections in brackets).

a r Mr * 2r # i R 0aR

0 1 .00 1.00 2 .00 9 . 0 0

1 0 .5 0 . 9 9 - 1 . 0 2 ( 1 . 0 ) 0 . 9 8 - 1 . 0 4 ( 1 . 02 ) 1 . 8 8 - 2 . 0 6 ( 1 . 9 4 ) 8 . 5 2 - 9 . 2 4 ( 8 . 76 )

1 .0 0 . 9 6 - 1 . 0 8 ( 1 . 0 ) 0 . 9 2 - 1 . 1 7 (1 . 0 8 ) 1 . 5 5 - 2 . 2 4 ( 1 . 7 7 ) 7 . 3 0 - 1 0 . 0 5 ( 8 . 11 )

2 .0 0 . 8 4 - 1 . 3 1 ( 1 . 0 ) 0 . 7 3 - 1 . 7 2 (1 . 3 3 ) 0 . 6 7 - 3 . 01 ( 1 . 3 0 ) 4 . 4 0 - 1 4 . 3 ( 6 . 30 )

0 2 .23 1.00 0.89 4 . 2 0

5 0 .5 2 . 2 4 - 2 . 2 4 ( 2 . 2 3 ) 1 . 0 2 - 1 . 0 2 ( 1 . 02 ) 0 . 8 7 - 0 . 8 7 ( 0 . 8 6 ) 4 . 2 0 - 4 . 2 0 ( 4 . 15 )

1.0 2 . 2 3 - 2 . 2 4 ( 2 . 2 3 ) 1 . 0 8 - 1 . 0 9 ( 1 . 08 ) 0 . 7 7 -0 . 8 1 ( 0 . 7 9 ) 4 . 0 0 - 4 . 0 3 (4 . 02 )

2 .0 2 . 1 9 - 2 . 2 8 ( 2 . 2 3 ) 1 . 1 6 - 1 . 5 0 ( 1 . 33 ) 0 . 2 5 - 1 . 0 4 ( 0 . 5 8 ) 2 . 8 2 - 3 . 9 8 ( 3 . 60 )

0 4 .47 1.00 0.45 3 . 3 0

20 0 .5 4 . 4 7 - 4 . 4 7 ( 4 . 4 7 ) 1 . 0 2 -1 . 0 2 (1 . 0 2 ) 0 . 4 4 - 0 . 4 4 ( 0 . 4 4 ) 3 . 3 0 - 3 . 3 0 ( 3 . 29 )

1.0 4 . 4 7 - 4 . 4 7 ( 4 . 4 7 ) 1 . 0 8 - 1 . 0 8 ( 1 . 08 ) 0 . 4 0 - 0 . 4 0 ( 0 . 4 0 ) 3 . 2 0 - 3 . 3 0 ( 3 .2 5 )

2 .0 4 . 4 8 - 4 . 4 8 ( 4 . 4 7 ) 1 . 2 7 - 1 . 4 0 ( 1 . 33 ) 0 . 1 1 - 0 . 4 8 ( 0 . 2 9 ) 2 . 3 1 - 3 . 2 0 ( 3 . 09 )

Note: All values in table for / i r  and ct2r  are multiples of cr and a 2 respectively

and correct to two decimal places.
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Table 2.2.4

Maximum bias expected for mean, variance, skewness and kurtosis caused by 

rounding in gamma distribution.

B, b 2 b 3 b 4

X 1.0 2 . 0 1.0 2.0 1.0  2 .0 1.0 2 .0

1.0 8 .2 ( 1 0 ) - 2 3 . 1 ( 1 0 ) - 1 17.5 72.0 4 . 4 ( 1 0 ) - ’ 1.3 1.7 5 .3
5 .0 0 . 1 ( 1 0 ) - 2 4. 2 ( 1 0 ) -2 8 .9 49 .6 1 . 1 ( 1 0 ) - ’ 6 . 4 ( 1 0 ) - ’ 4 . 4 ( 1 0 ) - ’ 1.4
10 N-t o 1 0> 2 . 1 ( 1 0 )~ 2 8 .4 43.1 7 . 4 ( 1 0 ) ~ 2 4 . 7 ( 1 0 ) - ’ 1 . 1 ( 1 0 ) - ’ 1.2
30 1.0(10) -® 8 . 7 ( 1 0 ) “ 3 8 .3 38.5 4 . 1 (1 0) ~2 2 . 8 ( 1 0 ) - ’ 4 . 2 ( 1 0 ) “ 2 ( 8 . 1 ) ( 1 0 ) “ ’
40 5 . 2 ( 1 0 ) - 9 7 . 7 ( 1 0 ) - 3 8 .3 38.1 3 . 6 ( 1 0 ) - 2 2 . 6 ( 1 0 ) - ’ 3 . 4 ( 1 0 ) " 2 7 . 2 ( 1 0 ) “ ’
Normal

01O00 4 . 4 (1 0 ) "3 8 .3 36.7 7.6 (10) -® 1 . 1 ( 1 0 ) “ ’ 7.1 (10)- '* 4 . 9 ( 1 0 ) - ’

For the two distributions considered in this section the CFs had a closed form and 

the values of As and Bs in the expressions for the moments of Xr  presented no 

problems. Not all distributions have a CF with a closed form and the values of 

As and Bs will have to be obtained by numerical integration or series expansion. 

With today's computing facilities this should not present much of a problem.
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2.2.3 Relationship between the shape of a distribution and the effect of

rounding on its moments

The two distributions studied in the previous section indicate that the moments of 

the normal distribution are very robust to the process of rounding, while departure 

from non-normality can cause rounding to have an increased effect. In practice 

we often deal with non-normal distributions and hence the effect of rounding on 

the moments of such distributions is of interest. An example is when dealing with 

the effect of non-normality on test statistics. The influence of non-normality on 

these tests is to some extent determined by the values of y/3, and (32 in the 

population. The degree to which rounding may change these two parameters under 

non-normality is important, as this will influence the behaviour of the test statistic.

As mentioned in the previous section, there has been research into the effect of 

rounding on the moments of a normal distribution, but none concerned with the 

effect of non-normality. For the first time the association between the bias caused 

by rounding in the moments and the shape of the distribution will be considered. 

This present section aims to set out in an unsophisticated way the relationship 

between the change in moments due to rounding and the shape of the distribution. 

This relationship will be presented diagrammatically to make it easy to assimilate. 

Results will be given for the moments pi and a 2 and moment ratios y/31 and /32. 

These have been chosen as they are usually of more practical use than the first 

four moments about zero.

To study the association between rounding on the moments and shape of 

distribution, it is helpful to look at a system of distributions. The best known is 

the Pearson System, which covers many well known statistical distributions.
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However the Pearson family lacks a clear systematic basis and would be more 

difficult for examining the effect of rounding. Another family of distributions that 

could be used is the Bessel Function Distributions introduced by McKay (1932). 

The advantage of this system is that there is a standard closed expression for the 

CF and thus the moments of X r  can be easily obtained from (2.2-9) to (2.2-12). 

However the system is restricted in the ((3,,(32) plane. This system of distributions 

will provide one distribution for (|32-3 )(3, >  1.5 ie below the type I I I  line. A  

system of distributions that is convenient to use and covers the (|3^,(32) plane is 

the Johnson System. Johnson (1949) described a system that permits a simple 

transformation of a normal variate such that, for any possible pair of values 

1 * ^ 2 there is just one member of this family. In fact there are three 

transformations, which are defined in Table (2.2.5).

Table (2.2.5)

Transformations for Johnson Distributions, where z denotes a standard normal 

variate

Name Form o f v a r i a t e  x Range

Johnson Sg 

Johnson Sg 

Lognormal Sl

z = 7  + 6 l o g [ x / ( l - x ) ] 

z = y  + Ssinh_1x 

z = 7  + 5logx

( 0 , 1 ) 
( - 0 0  , 00) 

( 0  , 00)

The Johnson System was used for two main reasons. It was simple to use and 

covered the (jS,/^) plane. Secondly it would be useful to use the computer 

tracings of the various Johnson distributions given by Pearson and Please (1975). 

An advantage in using the Pearson System would be that it covers well known
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statistical distributions. However authors such as Pearson and Please (1975) have 

demonstrated that the Johnson System can be used in place of the Pearson System 

with very little difference in results. The relationship between the Pearson and 

Johnson Systems is given in Figure (2.2.7) for the region of the (/3, ,/32) considered 

in this study.

It was decided to use the same set of 29 Johnson distributions as used by Pearson 

and Please (1975). Four more were added to this set to include distributions that 

were U  shaped. These being /32 = 2.0, y/3, = 0.8 and 0 2 = 1.7, where 

y|31 = 0.0, 0.2, 0.4. A  computer program was written to obtain an outline of 

these four distributions. This set of 33 distributions adequately covers the various 

distribution shapes that may be seen in practice. Each of the distributions was 

standardised to have a mean zero and variance one. This simplifies the rounding,

as r = w and the distance from the mean to the nearest midpoint is the lattice

position c. We lose no generality in the results by standardizing the distributions. 

The curves for the standardized Johnson distributions are shown in Figures (2.2.8) 

and (2.2.9). The dashed curves are normal distributions with mean zero and

standard deviation one.

The main advantage in using distributions from Johnson's System lies in the simple 

relationship between their variables and a standard normal variable. This means 

that in terms of simulation purposes they are very efficient to use. For this

reason, the behaviour of the moments for rounded data was investigated by 

simulation.

2.38



•v/5,-^0-2 04  04 08— ,--------- , 1 1--------------
00  0-1 0-2 0-3 04  0-5 0-6 07  08

2 -0

2-2

24

2-6

TVpclCO) 
Beta curve

28

3-2

34

3-6

3-8

4-0

Type IV4-2

\  Type VI 
\  V

44

4-6

, 01 02 0-3 04 0-5 0-6 0-7 08

Figure 2.2.7 Regions and boundaries in /32) plane of Pearson and Johnson 

distributions

2.39



0.
0 

0.
2 

0.
4 

0.
6

Figure 2.2.8 Curve for Johnson distributions -  the dashed curves are standard 

normal distributions

2.40



rs  vo
1 n  • n  ro

Figure 2.2.9 Curves for Johnson distributions, the dashed curves are standard 

normal distributions

2.41



Simulation Study

A Fortran program JMOMENTS was written for the simulation. Deviates from 

each of the 33 standardized Johnson distributions were obtained using the 

transformations given in Table (2.2.5) with NAG routines used to generate the 

standard normal deviates. The Johnson deviates were rounded according to a 

rounding lattice with rounding interval w and lattice position c. For various

combinations of r and c each Johnson deviate was obtained 100,000 times. From 

these 1 0 0 ,0 0 0  replicates the mean, variance, skewness and kurtosis of the rounded 

Johnson distribution were obtained. The rounding precision varied upto 2, for

lattice positions c between ±£.

In order to simulate Johnson deviates which had a distribution with specific 

we required the values of the parameters 8, y  in Table (2.2.5). Unfortunately

Pearson and Please (1975) did not provide these. The parameters 8 and y  were

obtained by using tables from Pearson and Hartley (1972) Vol 2.

The program was fully tested. For example, to check the generation of Johnson

deviates, the values of /*, a, y|31 and /32 given by the simulation were compared 

with their expected values. Appendix A gives a list of all the output produced by 

the JMOMENTS program.

Discussion of Simulation Results

A major problem in this study was to summarise the large number of results. 

These consisted of the parameters c 2r ,  7/3 and |32r  for each of the 33

distributions, each of 3 values of r and 11 lattice positions. The results are given
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in the form of contour diagrams so that they can be more easily understood. 

Each contour diagram shows the maximum bias expected in the parameter, over 

the region 0 < y<31 < 0.8 and 1.7 <  /32 <  4.4 for a given r. The bias for 

each parameter is defined as (2.2-16).

Before considering the results a point should be made concerning the outlines of 

the Johnson distributions in Figures (2.2.8) and (2.2.9). For /S2 <  3 a value of 

y/31 will cause a greater degree of non-normality than for the same value of y/31 

when |S2 >  3. Clearly as shown by the outlines, it is the joint values of y/3., 

and /S2 that determine the degree of non-normality.

The results are presented in figures (2.2-10) to (2.2-12). They provide a good 

evaluation of the bias expected in the parameters / i r , c t 2 r , y ^ R  and / 3 2 r  over a 

practical range of (/31 ,|32). The figures speak for themselves and the reader may 

readily determine the general trend of what happens to the bias for different values 

of (/3n However a number of obvious remarks can be made concerning the

results given in the figures. A  striking feature is the extent to which the 

departure from normality determines the bias caused by rounding. The most 

important feature of non-normality being the extent to which the distribution 

departs from symmetry. The largest biases are found in the top right hand corner 

of the ((3,(32) region considered, where the departure from symmetry is greatest.

Sheppard's corrections are reliable in the region of (/3, where the departure 

from normality is less. The size of this region is determined by the value of r. 

For the mean, this region is about 80% of (/Sn ,/32) region under consideration for 

r = 0.5 and only 17% for 1.5, whereas for the variance, Sheppard's corrections 

are reliable for about 80% of (|31 ,i32) region under consideration for r = 0.5 and
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falls to 35% for r = 1.5. It has been customary to assume that Sheppard’s

corrections are reliable if the distribution has high order contact. The Johnson

System of distributions all have high order contact and thus would expect

Sheppard's corrections to be reasonably reliable. However, as the results indicate

this is not always true.
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2.3 Bivariate Distributions

This section shows how some of the results of section (2.2) may be extended to 

the bivariate case. The moments of the rounded distribution are obtained via the 

CF. Special consideration is given to the implications of rounding on the joint 

first moment of a bivariate normal distribution.

In communication engineering the quantization of signals from bivariate distributions 

was first investigated by Widrow (1961) and Watts (1961). Watts obtained the CF 

of quantized signals from a bivariate distribution by the same approach as he used 

for the univariate. Section (2.3.1) will show how the CF for the bivariate 

distribution can be derived from Watts' result. While he gave no proof for his 

CF result, a simple proof will be obtained for rounded distributions. Widrow 

(1961) considered the joint first moment of quantized signals for a bivariate normal 

distribution. He obtained an approximation to the bias caused by rounding in this 

moment. However his approximation is only suitable for lattice position c = 0 and 

is in fact incorrect. Using the CF for the rounded distribution, for the first time 

an exact expression is derived for the joint first moment for any bivariate 

distribution. It is shown how this expression can be further simplified if the CF 

exhibits certain symmetric properties.

The statistical literature has customarily assumed that Sheppard's corrections are 

suitable for finding the relationship between the moments of unrounded and 

rounded data from a bivariate distribution. For the bivariate normal it will be 

shown how Sheppard's corrections applied to the joint first moment may break 

down when there is high correlation. The implications of this on the correlation 

coefficient will be demonstrated.
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2.3.1 Characteristic Function and Moments of a Rounded Bivariate Distribution

Let the two dimensional random variable (X,Y) have a bivariate distribution f(x,y). 

The CF of (X,Y) will be denoted by

Theorem 2.2

Let (X,Y) be a two dimensional random variable with CF v’X Y ^ i’^ )  values ° f  X  

and Y  are rounded respectively into rounding lattice with intervals of width w 1s w 2 

and lattice positions c 1# c 2. The result is the two dimensional random variable 

(X r ,Y r ). The CF of (X r ,Y r ) is given by

P X Y ^ i >*2) “ e i t i x + i t 2y  f ( x , y ) d x y

-0 0  -0 0

+ 0 0  + 0 0
2 x121

w2 J
k = - o o  Q=

(2 .3 -1 )
S i n [  £ ( t  1w1+ 2 x k )  ] S i n [  £ ( t  2w2+2xf i )  ]

x
^ ( t 1wl + 2 x k ) ^ ( t  2w2+2xf i )

Proof of Theorem 2.2

Using the convolution theorem and Poisson summation formula for two dimensions, 

the method of proving theorem (2 .2 ) is similar to that given for the univariate 

distribution in section (2 .1 ).



By letting the gain and shift in the bivariate quantizer system be (w 1 ,w2) and

(c1 ,c2) respectively, (2.3-1) can be obtained from Watts (1961). Watts provided 

no proof for the CF of the bivariate quantizer system. However, as indicated

above, the proof for the CF of (Xr ,Yr ) can be straight forward. Although a

similar result to (2.4-1) has been used in quantization theory, this is the first time 

the parallel result has been applied to a rounded bivariate distribution.

The CF (2.3-1) can be used to determine the moments of (Xr .Yr ). However it 

is useful only for joint moments, as the moments for the marginal distributions of 

Xr  and Yr  can be obtained from expressions for moments in the univariate case. 

O f particular importance in multivariate analysis is how much the joint first 

moment between two variables may be affected by rounding.

Corollary 2.2 to Theorem 2.2

Let (X,Y) be a two dimensional random variable with CF ^XY^i >*2)- Values of 

X  and Y  are rounded respectively into a rounding lattice with intervals of width 

w 1f w 2 and lattice positions c n, c 2 the result is the two dimensional random

variable (Xr ,Yr )
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E[XRYR] -  E[XY] -  I  e_ l 2 l k c ' W C Y ^ .  ° ]
k=-oo i

W 2
“ 2 ^ 2  e ‘ — Q—  ^XY „

x  J2   *  2

( 2 . 3 - 2 )

+ ° °  ^  - i  2 7 r ( k c 1 + i 2 c 2 )  ( - 1 ) ^ + 5  f 2 x k  2 7 r J 2 ' |
5 —  —  -

"*"<X> - i 2 xi2 c 2 ( - 1 ) ^  1 2xJ2‘
[ ° -  I t ]

w,w1 2

4x 2 k=-00 Q = -CO
^XY

r2 xk
Lwr"’ w2 J

where VXy [ ^ .  ° ]  "  g j - ^ X Y ^  i . 1 2) ] _ 2 xk
v 1 w,
t 2 -  0

_ 27I"k
2

2W.

denoting summation excluding the zero term.

Proof

Due to the lengthy manipulation involved, only an outline proof will be given.

Partitioning the CF (2.3-1) into four parts we have

0. * i wi t 2w 2Sin — =— Sin —s—
^XYR( t i » t 2) = ^XY<t i » t 2) —----------7

p*1w2~i r*

rWhen k = Q. = 0 

Let t h is  term 

be A ( t , , t 2)

- I 2 xfic_ + ) e 2

J2=-oo

c. * i wi~ . Sin — ~— f 2 XJ21 2
<p xY [t  ̂ »t 2+ —  J— :----------L 2 t 1W1

2  Sin £ ( t 2w2+2x£)  

£( t 2w2+2 xfi)

when k=0 , 
#5*0 . Let 
t h i s  term be 
B ( t 1 , t 2)
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+00 1

+ 2 •
k = - o o

- i  2 xkc 2xk  . 1 S i n i ( t l w1+ 2 x k ) S i n
t 2w2

£ ( t  1w1+ 2 x k ) t 2 "  2

when k^O,
Q. =  0 .  Let  
t h i s  t e r m  be 
C ( t , , t 2)

+00  1 +00  1

+ 2  2  •
k = - 0 0  j2 =  -00

- i  2 x ( k c 1+J2 c 7 ) r 2 x k   ̂ 2x l2 i 
m j t , +  - j r .  t 2+ — J

S i n  £ ( t 1w1+ 2 x k )  S i n  £ ( t 2w2+ 2 x £ )  

£ ( t 1w1+ 2 x k )  £ ( t 2w2+2xf i )

When k  o r  J2^0 
L e t  t h i s  t e r m  be 

LD( t  , t  2 )

We have, changing order of differentiation and summation

r d2A(t  1 , t  2) i
L d t 11 2 J 1 1 t  2 =  0   E[XY]

r d2B ( t , , t 2) i  _
L d t 11 2 J t ,  = t „  = 0 “

+00  ’
- i 2 xi2 c 2 ( - 1 ) ^  1 2xJ2

pd2C ( t , , 1 2) i  - i 2 x k c 1 ( - l ) k  ' f 2 x k
v s r r , — Jt. -  t 2 -  o " J  e — r ~  »*n-5:*0J <3>1 2  1 2 R =_oo  1

r d 2D ( t  t , t  2 ) 1  - i  2 x ( k c 1+ f ic 2) ( - l ) k + £
[ -  d t - t :  - J t ,  -  t j  "  J- 2  e  - - -

1 2  1 2 J< =  —00 £  =  -00

r 2xk  2xj2i . . .
x « 0f l - 5 7 * "5 ;J (4)

E [XRYR] -  ( - i ) 2 dt -  t 2 -  -  [ ( D + ( 2 H ( 3 ) + ( 4 ) ]

the required result.

If the CF has the following symmetric property

^XY(t i , t2) = ^XY(- t i»t 2) tie CF realJ
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the result given in Theorem (2.2) can be further simplified to

w i  ' r 2 i r k  tE[XrYr ] -  E[XY] -  J (!,XY[-£ £ ,0 jC o s (2 x k o 1) ( 2 . 3 - 3 )
k = l  1

w2 " <-i)c ' r„ ,, „ s- T i el t 2 m l°.-^Jc°s (2^c2)

wi » 2 "  "  ( - i ) k+er .  r2 * k m
2  2  kfi I v’Xy I w » w ICos [ 2 i r ( k c 1+ f ic 2) ]
= 1 0 = 1 L L W 1 2

ox 2 Zi z. w> 
k = l fi-1

r2xk 2xi2
'‘’x n - ' v  ‘  — 2j c o s [ 2 x ( k c 1- £ c 2) ]

2.3.2 Bivariate Normal

Let the two dimensional random variable (X,Y) have a bivariate normal distribution 

with the following p.d.f.

f ( x , y )  =     exp(-^Q) oo < x  < oo ( 2 . 3 - 4 )
2^dy(T^A-p2 -0 0  <  y  <  oo

where

1 r ( x -M x)2 2p ( x -^ x ) (  y-/*Y> (y -M y )2]
( l - p 2)L o-^ c r^ Y  +  U”y  J

— 1 <  p <  1 , o"x -> 0, <ry >  0, —oo <  <  —00» —0° <  /*y  <

In this section it will be assumed that = = ® anc* °”X  = aY = <j2' We

lose no generality in the results by making such an assumption. Usually values of

X  and Y  will be rounded corresponding to the same rounding lattice, ie

w 1 = w 2 = w and c 1 = c 2 = c. This is the most likely situation under rounding
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and the only case considered in this section.

The CF of (2.3-4) where = PY = ® an£* aX  “ &Y = cr is 

<PXY( t i » t 2 > = exp ["  J -  ( t ? + 2 p t , t 2+t2 ]

^  iPXy(t i»t 2) = ^XY(“t i>“t 2) j° int ^rst moment of (X r .Y r )  can be obtained 

from (2.3-3). If  values of (X,Y) are rounded into a rounding lattice with intervals 

of width w and lattice position c, then E [X rY r ]  from (2.4-3) is

E[X RYR ] =  E[XY]  +  4pcr2 £  ( - l ) k ex p [ -  C o s ( 2 x k c )
k = l  l r  j

( 2 . 3 - 5 )

r 2a 2 % % ( - l ) k + £ r  r 2 x 2 . _ n- 0- 2“  2 2 — e lexP[- ^ r (k 2+C2+2pkC)]
k=l 12=1

x Cos [2xc(k+ i2 )  ] +  expj^- '~pr~( k 2+l22-2pkl2)  j C os2 xc (k - l2 )  j

The main importance of (2.3-5) is that it allows us to determine how the joint 

first moment is distorted by rounding. This can be illustrated by examining the 

rounding bias in this moment relative to cr2

E [X RYR ] -  E[XY]
B  L- g ..-g..J. -------------  ( 2 . 3 - 6 )

cr2

This bias B can be obtained exactly from (2.3-5). In the literature two 

approximations to this bias have been used.

2.55



(a) In communication engineering, Widrow (1956) suggested that the bias B is 

given very closely by the approximation

( 2 . 3 - 7 )

However this approximation should be treated with caution for two reasons. Firstly 

at arriving at (2.3-7) Widrow assumed a lattice position c = 0. Thus the 

approximation does not reflect the possible effect of the lattice. Secondly the 

approximation was derived incorrectly. This was pointed out by Watts (1961). In 

arriving at his approximation Widrow missed out the term

The accuracy of Widrow's approximation will depend on whether (2.3-8) may be 

considered negligible and the extent to which the lattice effect may be ignored.

(b) In statistical literature the customary adjustment to the moments for rounding 

is that provided by Sheppard's correction. For the joint first moment we have

This implies that the bias B is r 2/12 when X  = Y and zero elsewhere. As in the 

univariate case, Sheppard's correction will be strictly valid only if the CF vanishes 

outside a finite interval, ie for the bivariate case

00
27T2k 2

r 24 pa2 J  ( - l ) ^  e x p [ “  k = l
■J C o s  ( 2 x k c ) ( 2 . 3 - 8 )

E [ X RY R ] -  E [ X Y ]  + X  =  Y

-  E [ X Y ] X  *  Y
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-  0 for  i ‘ i > ^

Widrow's approximation and Sheppard's correction have both been used in the past 

to estimate the bias caused by rounding in the joint first moment. No study has 

been made of the reliability of these two methods. The validity of these methods 

was investigated as follows.

A  Fortran program was written to calculate B(2.3-6) and B^y(2.3-7). The 

rounding precision varied upto 2, for lattice positions c = -0 .5,-0 .45,...,0 .5. 

Selected resutls for p >  0 are given in Table (2.3.1). Similar values of |3 were 

obtained for p <  0. Table (2.3.2) shows the bias given by Sheppard's method. 

As expected, the bias in the joint first moment increases as r and p increase in 

value. Widrow's approximation for p <  1 over estimates this bias, this being 

more marked for r >  1.0 and high correlation. The results show that Sheppard's 

method can be poor in estimating the rounding bias. This being especially so for 

high correlation and coarse rounding (r >  1 .0 ).

The results indicate that Widrow's approximation gives a reasonable approximation 

to the bias in the joint first moment caused by rounding for r < 1.0. For 

Sheppard's method this is only so when r < 0.5.
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Table 2.3.1

Bias B caused by rounding in joint first moment of a bivariate normal distribution. 

(Widrow's approximation B \y in brackets)

p r  -  2 0 r  -  1 5 r  - 1 .0 r  - 0 .5

1 .0 0 .3 0 1 -0 .3 6 5 (0 .3 3 3 ) 0 .1 8 7 -0 .1 8 8 (0 .1 8 8 ) 0.083 (0 .0 8 3 ) 0 .021 (0 .0 2 1 )

0 .99 0 .2 0 0 -0 .2 6 1 (0 .3 0 2 ) 0 .1 1 2 -0 .1 1 4 (0 .1 5 7 ) 0 .037 (0 .0 5 6 ) 0 .003 ( 0 .0 0 4 )

0 .98 0 .1 6 4 -0 .2 2 3 (0 .2 7 4 ) 0 .0 8 7 -0 .0 8 8 (0 .1 3 2 ) 0 .024 (0 .0 3 8 ) 0 .001 (0 .0 0 1 )

0 .97 0 .1 3 9 -0 .1 9 7 (0 .2 4 8 ) 0 .0 7 0 -0 .0 7 2 (0 .1 1 1 ) 0 .016 (0 .0 2 5 ) 0 (0 )

0 .9 6 0 .1 1 9 -0 .1 7 6 (0 .2 2 5 ) 0 .0 5 8 -0 .0 5 9 (0 .0 9 3 ) 0.011 (0 .0 1 8 ) 0 (0 )

0 .95 0 .1 0 3 -0 .1 5 9 (0 .2 0 3 ) 0 .0 4 8 -0 .0 4 9 (0 .0 7 8 ) 0 .007 (0 .0 1 2 ) 0 (0 )

0 .90 0 .0 5 0 -0 .1 0 3 (0 .1 2 4 ) 0 .0 1 9 -0 .0 2 0 (0 .0 3 2 ) 0.001 (0 .0 0 2 ) 0 (0 )

0 .85 0 .0 2 2 -0 .0 7 1 (0 .0 7 6 ) 0 .0 0 8 -0 .0 0 9 (0 .0 1 3 ) 0 (0 ) 0 (0 )

0 .80 0 .0 0 5 -0 .0 5 1 (0 .0 4 6 ) 0 .0 0 3 -0 .0 0 4 (0 .0 0 6 ) 0 (0 ) 0 (0 )

0 .5 0 0 -0 .0 1 6 (0 .0 1 2 ) 0 0 (0 ) 0 ( 0 )

0 .10 0 -0 .0 0 3 (0 .0 0 1 ) 0 0 (0 ) 0 (0 )

Note all values in table are multiples of o’ 2

Table 2.3.2

Bias in joint first moment given by Sheppard's method

r p -  1 P *  1

2 0 .3 3 33 c -2 0

1 . 5 0 . 1 8 7 5 c 2 0

1 . 0 0 . 0 8 3 3 c 2 0

0 . 5 0 .0 2 08 c -2 0
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Although not common, one variable of a bivariate distribution may be subject to 

rounding. What implications may this have on the effect of rounding on the joint 

first moment? For a bivariate distribution in which only one variable is rounded, 

say X, the CF of the two dimensional rounded random variable (Xr ,Y) is

+00

. v - i  2 xkc r 2xk l S in £(tw+2xk) Q.e wcrlt, + — . t2J — j (tw+2Tk) <2-3-8)

From (2.3-8) it follows that the joint first moment of (Xr ,Y) is given by:

•{“ CO  ̂ 1

E[XRY] -  E[XV] -  ^  2 e- i2Tkc ( 2 - 3 - 9 )
k = - o o

For the bivariate normal distribution (2.3-9) becomes

CO

E[Xr Y] = E[XY] -  2a 2p J  ( - l ) k e x p f -  ^ ^ - 1  cos(2xkc) ( 2 . 3 - 1 0 )
k = l  r

where r = w/cr.

There is only one error term in (2.3-10), which can be very small even for coarse

rounding. When only one variable has been rounded, the rounding bias in the

joint first moment can be considerably reduced, as compared when both variables 

are rounded, this being more so for coarse rounding. This is illustrated by the

results shown in Table (2.3.3) for r = 1.5, 2.0 at c = 0.5.
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Table 2.3.3

Bias in joint first moment relative to a 2, for bivariate normal distribution for 

r = 2.0, 1.5 at c = 0.5

One v a r ia b le rounded Both v a r ia b le s rounded
p

r = 1 .5 r  = 2 . 0 r  = 1 .5 r  = 2 . 0

0.95 2 .9 4 ( 1 0 ) “ 4 1 .3 7 (1 0 ) " 2 0.049 0.159

0.90 2 .7 9 ( 1 0 ) “ 4 1 .2 9 ( 1 0 ) " 2 0 . 0 2 0 0.103

0.70 2 . 1 7 ( 1 0 ) “ 4 l . O l ( l O ) " 2 0 . 0 0 1 0.031

0.50 1 . 5 5 ( 1 0 ) “ 4 7 .1 9 ( 1 0 ) " 3 3 . 1 ( 1 0 ) " 4 0.016

0 . 1 0 3 . 1 0 ( 1 0 ) “ 5 1 .4 4 (1 0 ) “ 3 1 . 2 ( 1 0 ) ” 4 0.003

Population Correlation

The correlation for the rounded distribution of (X r ,Y r ) is given by

_ E [X RYR ] -  E [X r ] E [ Y r ] ..................
PR ---------------------------------------------------------------------- ( 2 .3 - 1 1 )

J V [ X R ] V [ Y R ]

As we have already obtained expressions for the expectations and variances in 

(2.3-11) the value of p r  can be obtained. Generally rounding caused the 

correlation to decrease, ie I p r I <  Ip I. The one exception is when p is unity. 

When X  and Y are rounded according to the same lattice and p = 1, then 

XR = YR. Thus from (2.3-11) p r  is also unity. This makes sense. When p is 

unity, (X,Y) lie on a line, rounding only rearranges them along the line. 

However, more generally, when X  and Y are rounded according to a different 

rounding lattice, rounding will cause (X,Y) values to be displaced either side of the
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line and make pr  <  1.

Figure (2.3.1) shows a plot of p against p r  for three values of r at c = 0.5. 

This is typical of the relationship found between p and p r . As illustrated by 

Figure (2.3.1) the correlation is more affected by the rounding process for values 

of p between 0.95-0.5, this being more noticeable as the rounding becomes more 

coarse.

The reduction in correlation as a result of rounding has an interesting implication 

on the usual estimate of p. For unrounded data the estimate of p is

P
i  *  ( X i - X ) ( Y r Y)  

y SX x SY

where S 2 =  I  ( X j - X ) 2/ ^  and S 2 =  I  ( Y j - Y ) 2/ ^  x  i i  I

If  no adjustment is applied to p for rounding, then p will tend to under estimate 

p. If  Sheppard's corrections are applied to the variance, while leaving the 

covariance unaltered (ie zero correction) then p may exceed unity in situations of 

high correlation.

In section (2.3) the results for the univariate situation were extended to bivariate 

distributions. The expression for the CF of a rounded univariate distribution can 

be generalised to an n-dimensional rounded random variable. From this CF the 

moments of a rounded multivariate distribution can be obtained. However, this 

extension may not always be necessary. For example, consider the multivariate 

normal distribution. The most important joint moment is the joint moment about

2.61



two variables. The effects of rounding on this moment can be obtained from the 

bivariate result given by (2.3-5).
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Figure 2.3.1 p vs pR for r  = 2.0, 1.5, 1.0 at c = 0.5
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2.4 Conclusions

This chapter has given a general method for assessing the extent of the bias in the 

moments of a continuous distribution caused by rounding. This has been a more 

detailed study than any given in the past, as it has considered not only the degree 

of rounding, but also lattice position and shape of the distribution. Also the 

reliability of Sheppard's corrections have been considered.

For the normal distribution Sheppard's corrections were found to be a reasonable 

approximation to the moments of rounded data for r < 2.0. As illustrated by the 

gamma distribution, departure from normality may result in rounding causing a 

greater bias in the moments. This makes Sheppard's corrections less reliable. The 

mount of bias in the moments caused by rounding was found to be closely related 

to the shape of the gamma distribution. As it became increasingly less 

symmetrical, the bias increased. Previous work on precision of data has

concentrated on the effect of the degree of precision of the rounded data (r) on 

the distribution. The results from the normal and gamma distributions suggest that 

this is not the only important factor. The position of the rounding lattice, and 

especially the shape of a distribution must be taken into account.

In section (2.2.3) the Johnson System of distributions was used to illustrate the 

relationship between the shape of a distribution and the bias in the four parameters 

/x, a, and |S2 caused by rounding. The results indicated the extent to which 

y/31 and 0 2 determined the rounding bias in these four parameters. The departure 

from symmetry was a crucial factor in deciding the size of the rounding bias. 

Generally as the distribution became increasingly non-symmetrical, the rounding bias 

increased. The importance of this rounding bias in the four parameters to the
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statistician will depend upon the particular application. Usually values of r 

encountered in practice are often sufficiently small to render this bias negligible. 

However, as the results indicate, the value of r for which this may be so can vary 

depending on the shape of the distribution.

In section (2.3), the effect of rounding on the moments of a bivariate distribution

was considered. Attention was focussed on the joint first moment. For the

bivariate normal distribution, rounding bias in the joint first moment depends on

the correlation. For fixed r, as the correlation increased so did the rounding bias 

in this moment. Sheppard's corrections were less reliable than Widrow's in 

approximating this bias. Both methods were a poor approximation for coarse 

rounding (r >  1 .0 ).

Generally in the bivariate normal, rounding decreased the correlation between the 

variables. Where high correlation existed Sheppard's correction could be unreliable 

in adjusting the joint moment for rounding. This could lead to the correlation 

coefficient p exceeding unity. This demonstrated how Sheppard's corrections should 

be handled with care in the bivariate (multivariate) situation. Although only the 

bivariate normal was considered, the theory developed can be used to investigate 

the effect of rounding on other bivariate distributions.
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CHAPTER 3

TH E EFFECT OF ROUNDING ON TH E SIGNIFICANCE LEVEL

OF CERTAIN NORMAL TEST STATISTICS

3.1 Introduction

3.2 Description of the Investigation

3.3 Test Statistics

3.3.1 One sample t-test

3.3.2 Chi-squared test for variance

3.3.3 Two sample t-test

3.3.4 F-test for equality of two variances

3.3.5 Analysis of variance

3.4 Discussion and Calculations
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3.1 Introduction

The underlying theory upon which many statistical tests are based, assumes that the 

variable or variables sampled are continuous. There is no such thing, in practice, 

as a continuous variable. It is often expedient for us to consider observations as 

being rounded from an underlying continuous distribution. To date, there has been 

very little research into the effect of rounding on a statistical test. This chapter 

investigates the performance of test statistics under rounding. We will be 

particularly interested in the degree of precision (r) to which a set of data should 

be recorded before applying a statistical test. There is considerable vagueness 

concerning what level of precision should be used. Most statisticians know, for 

example, that tests of means tend to be robust under departures from normality 

and that chi-squared and F tests of variance do not. However, they know little 

about what happens to the significance level and power when the data have been 

rounded. The reason for this lack of quantitative knowledge has been the absence 

of a careful accurate study of the effect of rounding on statistical tests. The 

absence of such a study is primarily due to the following:

(a) the problem of determining the exact distribution of the test statistic for 

rounded data;

(b) mathematical approximations that have been studied lack accuracy;

(c) Monte Carlo studies in the past required an exorbitant amount of computer 

time to achieve respectable precision in the results.

Because large computers are now available, studies by Monte Carlo methods offer 

an excellent approach to investigating the effect of rounding on test statistics. 

However, to date no one has published a study of this type.
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Several authors have considered the problem of rounding and test statistics. 

Student (1908) gives a most interesting discussion into the possible problems of 

coarse rounding on statistical procedures. Student's experimental results suggest 

that the distribution of the single t statistic for rounded and unrounded data will 

be approximately the same if the sample size is large. Although Student made no 

detailed study of the performance of the t statistic under rounding, he was the first 

to point out the possible implications that rounding may have. Fisher (1936) 

advocated that Sheppard's corrections should be used for the purpose of estimation, 

but not usually for tests of significance. Eisenhart (1947) pointed out that use of 

a Sheppard's correction can make the t value imaginary, as the corrected estimate 

of the variance can be negative. Geddeback (1968) advocated that Sheppard's 

corrections should be avoided in the analysis of variance. Krutchoff (1967) states 

"There is no such thing, in practice, as a continuous random variable. It is often 

expedient for us to consider observations as being rounded from an underlying 

continuous random variable." He illustrates this point by showing how rounding 

can cause the F statistic to have a non-zero probability of a zero in the 

denominator and as such the mean of this statistic will not exist.

Eisenhart (1947) was the first to study in any detail how rounding affects statistical 

tests. He gave a set of rules, to the problem of how large a sample size n needs 

to be for a given w for judging the suitability of a particular coarseness of 

rounding when applying the one sample t-test, chi-squared test for a variance and 

F-test for equality of two variances. [Details in literature review]. His study has 

the following limitations. Eisenhart's recommendations were based on the 

probability of a sample variance obtained from the rounded data being zero. This 

gives no indication of the performance of the test statistics with respect to level of 

significance or power under rounding. His recommendations were based only on
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samples as large as n equal to 7. In Preece (1982), text book examples of the 

paired t-test are examined with respect to the degree of precision of data 

recording. From these examples, he concludes that, for coarse rounding, the value 

obtained for a paired t-statistic depends crucially both on the rounding interval 

applied and the position of the rounding grid relative to the origin. As Preece

points out, final conclusions cannot be drawn from several examples and further

work on the effect of rounding on test statistics is called for. Riley, Bekele and 

Shrewsbury (1983) adopt a similar approach to Preece in investigating the possible

effect of rounding on test statistics. To examine the effect that different degrees

of precision have on the analysis of variance, they present several examples where 

data has been recorded initially to a good degree of precision. For each example 

the analysis of variance is obtained for various degrees of rounding. From this

small set of examples they make some general points about the effect of rounding

on the mean squares. The main finding can be summarised as follows. As 

rounding became more and more severe the mean squares began to behave very 

erractically. However data could be rounded appreciably before loss of information 

became significant. With respect to the various recommendations to what degree 

of precision should be used on rounded data, they concluded that Dyke's rule

(Dyke, 1974 ppl63-164) gave a safe degree of precision for every set of data they

examined.

The investigations by Preece (1982) and Riley, Berkele and Shrewsbury (1983) have 

a major limitation. They consisted of looking at the effect of rounding on specific 

examples. The actual distribution of the test statistic for rounded data was not 

obtained. As a result no general conclusions could be established about the 

performance of a test statistic for rounded data. A  study which involved the 

probability distribution of the test statistic under rounding would enable significance
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level and power to be considered. Such a study would be of value in supplying 

answers about how robust specific test statistics are for rounded data. A  problem 

in producing such a study, however, is the very large amount of computer time 

required. Either one must find a way to find this time or a way of reducing the

amount of time required without decreasing the quality of the study. The study

undertaken in this chapter does both through the development of purpose written 

programs which reduce the required computer time to "only a large amount" and 

through the Polytechnic computer service support via low priority computer use 

over a long period of time.

The objective of the present extensive study is to precisely quantify the significance 

level and power of statistical tests on rounded data over many distributions. The 

study has two sections, namely when the parent population is normal or

non-normal. Chapters 3 and 4 respectively considers the significance level and 

power levels of these tests when data comes from a rounded normal distribution. 

Chapter 5 deals with both significance level and power for a selection of

non-normal rounded distributions.

3.2 Description of the Investigation

This chapter is concerned with the effect of rounded normal data on the 

significance level of a test. Many statistical tests could have been investigated. It 

was decided to investigate test statistics which are frequently used in practice, these 

being the one sample t-test, the chi-squared test for variance, the two sample 

t-test, F-test for equality of variances and F-test in the one and two way analysis 

of variance. Choosing such a selection of tests allowed a wide coverage of the 

possible implications of rounding on test procedures.
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The main distortion caused by rounding is the discreteness it introduces into the 

sampling distribution of the test statistic. Although the moments may not be 

widely affected, the area in the tails of the sampling distribution may be changed. 

Examining the moments of the test statistic under rounding will indicate the 

possible effect of rounding. However evaluation of the exact distribution of the 

sampling distribution of the test statistic under rounding is required for a detailed 

examination of the possible changes in the tails of the sampling distribution.

The following approaches were used to examine the implications of rounding on 

the significance level of a test:

(i) Approximations to the sampling moments of the test statistics. These 

theoretical results have some bearing on the distribution of the test 

statistics in sampling from rounded normal populations. However they 

will provide only a rough outline of what characteristics are to be 

expected when sampling from rounded normal populations, they do not 

supply answers in numerical terms of the effect of rounding on the 

significance level of a test. This is why the exact distribution of the 

sampling distribution of the test statistic is required.

(ii) The exact distribution of the test statistic for rounded data was obtained. 

By constructing all sample configurations, the exact distribution of the 

test statistic for rounded data can be obtained. This method was used 

for small sample sizes. However, it became uneconomical to use this 

method for large samples and for the analysis of variance.

(iii) The sampling distribution of the test statistic for rounded data was 

obtained by Monte Carlo methods. Simulation was used where it was 

impractical in terms of computer time to obtain the exact distribution in



(ii).

Two Fortran programs were written for the necessary analysis. The program 

EXACT generated every possible sample of size n from a normal population that 

had been rounded according to a lattice with rounding interval w and lattice 

position c. The required test statistic was calculated and the percentage of samples 

where the designated statistic fell about or below the a  significance level limits for 

normal theory conditions was recorded.

The program SIMUL generates N random samples of size n from a normal 

population which has been rounded to the specific w and c. As in the program 

EXACT, from each rounded sample the required statistics are calculated and the 

percentage of samples where the designated statistic fell about or below the a 

significance level limits for normal theory conditions was recorded. Both the 

EXACT and SIMUL programs gave the mean and variance of the test statistic for 

rounded data.

For this study the significance level of the test statistic under rounding was 

evaluated for values corresponding to the lower and upper 0.1%, 1.0%, 2.5% and 

5% points under normal theory conditions, with no rounding. This range of 

significance levels allowed us to cover one tailed tests at a  = 0.001, 0.01, 0.05 and 

two tailed tests at a  = 0.05. Sample sizes from 2 to 25 were considered for the 

one and two sample t-tests, chi-squared test and F-test. As the sample size 

increased in size the discreteness in the sampling distribution of the test statistic 

caused by rounding had less effect. As a result a sample size of 25 was found to 

give in most situations a good indication of the effect of rounding for larger 

sample sizes. Where this was not so, sample sizes larger than 25 were considered.
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For the one and two way analysis of variance various levels of the factor(s) were 

considered. The degree of precision ranged upto 2 and lattice positions c = -0.5, 

-0 .4, ..., 0.4, 0.5 were used. A  value of r beyond 2 is extremely coarse 

rounding and is impractical in most situations.

The results from the simulation were based on 100,000 iterations. That is, 100,000 

values of each test statistic were generated for estimating each significance level 

under rounding. This number of iterations was necessary for respectable precision, 

especially for the 0.1% level of significance. Of course the results obtained for 

the significance levels by simulation are subject to sampling errors. For simulations 

of 100,000 iterations these will be small. For example, the standard error of our 

estimates of the significance level will be 6.89(10)-4  for a = 0.05 and 3.15(10)-4  

for a = 0 .0 1 , by simple binomial calculations.

Quality of Results

Both the EXACT and SIMUL programs were tested to check the validity of their

results. For example, an independent check on the results given by SIMUL

program was provided by obtaining the significance levels for the test statistics

when the normal population was subject to no rounding. They were found to be 

in very close agreement with the expected results. An independent check of the 

EXACT program was provided by comparing the results with those obtained

manually. Of course this was only possible for small sample sizes (n=2,3). A  

final check was established by comparing the results for significance levels obtained 

from both EXACT and SIMUL programs. They were found to be in very close 

agreement.
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3.3 Test Statistics

In this section it is assumed that the normal distributions have mean zero and 

variance one. This is convenient as in this situation r = w and the effect of the 

position of the distribution on the rounding lattice is simply given by the value of 

c. By using a standardised normal we lose no generality in the results. 

Throughout this section a  will denote the level of significance of the test for 

samples drawn from a normal population subject to no rounding, while o r  will be

the resulting level of significance of the test where the samples have been drawn

from a rounded normal population, o r  is simply the probability that for rounded 

data, the test statistic fell above or below the a  significance level limits, o r  may 

be regarded as the ’true’ level of significance for normal rounded data.

The results are presented as follows. For each test statistic:

(i) Before discussing the results, approximate expressions are given for the

moments of the test statistics for a normal population that has been

subject to rounding. These approximate moments help to indicate any

possible changes in the distribution of the test statistic under rounding.

(ii) Results from EXACT and SIMUL programs will be discussed. The

discussion for convenience is divided into three sections according to

sample size n, these being for n < 5, n = 10, and n = 25.

(iii) Finally a table is given which provides the values of the degree of

precision r that may be regarded as acceptable for n = 5, 10 and 25. 

When using a single or two tailed test, r is acceptable if the oP/o

significance level for unrounded normal data is:
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(a) 5%, while for rounded data with degree of precision r, or  lies

between 4% -6% .

(b) 1% , while for rounded data with degree of precision r, o r  lies

between 0.5%-1.5%.

(c) 0.1% , while for rounded data with degree of precision r, o r  lies 

between 0 .0 % - 0 .2 %.

The results indicate the extent to which the test statistics are affected by rounding. 

The object of providing recommended values of (n,r) in which the level of

significance is within certain bounds is not to limit the loss of information caused 

by rounding, but to indicate the circumstances under which rounded data can be 

validly analysed while keeping the level of significance within reasonable bounds.

Of course in some situations the decision whether to reject H 0 or not will be

different for rounded or unrounded data. Rounding may cause the test statistic to

change from being significant to not significant or vice versa. However, overall, 

the significance level of the test will remain within acceptable bounds for the

recommended values of (n,r).

At the end of the chapter the degree of precision r that may be regarded

acceptable for values of n besides 5, 10, and 25 is given. Appendix B gives a list 

of all the output produced by the EXACT and SIMUL programs. This appendix 

also contains tables of results that are referred to in this chapter.

3.3.1 One sample t-test

Let X  = ( X X n) be a random sample of size n from a normal population X. 

Let X r  = ( X r 1 j-.-.X rh ) be the rounded sample where X r j  is the rounded value
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Xj corresponding to a rounding lattice with interval of width w and lattice position 

c. For testing the hypothesis H 0:/i = / * 0 the t-test statistic is given by:

t - “ Sj J r  X ~ N [ „ 0 .<r»] ( 3 . 3 - 1 )

and under rounding

w here

t Xr  '  ^  n  7
R “  SR/y n  <3 - 3- 2>

x  "  ? i T -  s 2  -  f  (X i -X > 2. xR -  f  - r -  sr  = f  (xRi-xR) 2

As we have assumed that X  ~ N[0,1], (3.3-2) becomes

XR
tp  =  - — r—  where r  == w

K SR/y n

To obtain the approximation to the moments of tR , we can use the work of Geary 

(1947), where he found expansions for the moments of a one sample t-test 

statistic, for samples drawn from non-normal populations. From Geary's results:

E[tRl -  -  27H " ° ( " ' 3 /2>

V [ t R] -  1 + J(8+70lR) / n  + 0 ( n - 3 )
( 3 . 3 - 3 )

^ ( t R )  2 y0 lR/y n  -  0 (n - 3 / 2)

0 2 ( t R) = 3 + 2(6- |32R+60lR) / n  + 0 ( n " 2)
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In Chapter 2 expressions were obtained for finding the four parameters / i r ,  <t 2 r , 

y ^ R  and 0 2 r . For example, by substituting the values of y / ^ R  and / 3 2 r  into 

(3.3-3) the moments of tR can be obtained for a given r and c, when the sample 

size is large. However we only require the moments of a test statistic where n is 

large, to provide a rough outline of what to expect when sampling from a rounded 

normal population. Thus an approximation to the parameters / * r ,  c t 2 r ,  y / 3 ,  r  and 

(32 r  will be suitable. In Chapter 2 Sheppard's corrections were found to give a 

reasonable approximation to these parameters for r < 2  when the distribution is 

normal. From (2 .2 -5) and assuming a standard normal distribution we have:

/*R = 0

a  ̂ \  + r 2 / 1 2

( 3 . 3 - 4 )
y£lR = o

Hence using (3.3-3) and (3.3-4) approximations to the moments of t R ,  when X  

has a standard normal distribution, are given by:

E [ t R] = 0 -  0 (n - 3 / 2)

V [ t R] -  1 + \  + 0 ( n - 2 )

( 3 . 3 - 5 )
y/3, ( tR) -  0 -  0 (n -3 / 2)

(̂32 ( t R) = 3 + 2  [3 + ^ / [ l  + Y2] ] +

If  the normal population is subject to no rounding we have:
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E [ t ]  = 0

. r r  .. n - 1  .. 2  .V [ t ]  = — =■ =  1 +  — +  0 ( n  2 )L J n-3 n
( 3 .3 - 6 )

t )  = 0

^ (t) -  f ^ i r ' 3 + 1 + 0 ( n ' 2 )

Study of the moments of tR (3.3-5) and t (3.3-6) shows that in terms of order 

n” 1, rounding affects only the kurtosis, and that the effect is clearly negligible for 

r < 2.0. These moment results suggest that the distribution of t and tR are

similar. However the moment results are for large n and the discontinuities in tR 

have a serious effect on the significance level of the test for small n.

EXACT/SIMUL Results

n < 5

In Appendix B, Table (B .l) shows the range in values of o r  for n = 5, where 

r = 2.0, 1.0 and 0.5.

Like the distributions of all functions of rounded observations, the distribution of tR 

is discontinuous. Generally for a given r, as n decreases in size the discontinuities 

in tR become more numerous in any given interval and the steps increase in size. 

A  further complication as n becomes small is that the probability of S 2r  = 0 

increases. This causes t R  to be either +oo or -a > , according to the sign of the 

numerator of (3.3-2). The exception is where X r  equals the population mean, 

when tR = 0/0, which can be defined to be equal to zero. This seems a sensible 

definition as 0 / 0  indicates that the X r j  are all the same and are equal to the
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population mean and under H 0 we would expect tR = 0. Table (3.3.1) shows that 

values t^  = +00 or 0 / 0  occur with annoying frequency in very small samples, 

especially for coarse rounding (r >  1). The value of c is important in 

determining the probability of such values of tr  for r >  1.0. For such small 

values of n, the infinite values of tR caused an inbalance in the values of o r  

between the upper and lower tails. As expected increasing n or decreasing r 

caused the inbalance to become low. As shown by the tR values for n = 5 in 

Table (B .l), this inbalance is very noticeable for r = 2.0.

T a b l e  3 . 3 . 1

P r o b a b i l i t y  t h a t  t R  =  + < »  o r  0 / 0  f o r  s a m p l e s  o f  s i z e  n  d r a w n  f r o m  a  r o u n d e d  

n o r m a l  p o p u l a t i o n  i n  a  s i n g l e  s a m p l e  t - t e s t .

r 2 1 .5 1 . 0 0 .5 0.25

X 0 0.5 0 0.5 al  1 c a l l  c a l  1 c

2 0.511 0.457 0.391 0.384 0.271 0.140 0.070

3 0.326 0.271 0.183 0.163 0.085 0 . 0 2 2 0.006

4 0.218 0.104 0.094 0.071 0.028 0.004 0 . 0 0 0

5 0.148 0.049 0.051 0.031 0.009 0 . 0 0 1

6 0.125 0.024 0.028 0.013 0.003 0 . 0 0 0

7 0.069 0 . 0 1 1 0.015 0.006 0 . 0 0 1

8 0.047 0.005 0.008 0 . 0 0 2 0 . 0 0 0

Note: The probabilities in Table (5.3.1) are also the probability that S 2r  is

equal to zero.
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For small n, tR will have a large number of discontinuities, especially for coarse 

rounding. This will result in the distribution of tR being a poor approximation to 

the distribution of t. We would expect the a  and o r  values to be considerably 

different unless the value of r is low. The results for o r  confirm this. For 

example, as shown by the results in Table (B .l), a  and o r  are only in close 

agreement for n = 5, where r < 0.5.

A  clear pattern emerged in the values of o r , which were caused by the influence 

of the lattice. For c in the range [-0.5,0), the lower tail values of o r  are the 

same as the upper tail values, for c in the range (0,+0.5]. For c = 0 and ± 0.5 

the upper and lower tail values of o r  are the same. An example of this pattern 

is seen in Table (B .l). For the one sample t-test, this pattern will always occur 

when the unrounded distribution is symmetrical.

n = 1 0

Table (B.2) shows the range in values of c r  for n = 10, where r = 2.0, 1.5, 1.0 

and 0.5.

For this size sample values of tR = +co or 0/0 are no real problem. Only for

r > 1.5 is there a strong disagreement between the a and o r  values.

n = 25

Table (B.3) shows the range in values of o r  for n = 25, where r = 2.0 and 1.5.

Also given in the corresponding range in the mean and variance of t R .  Even for

rounding as coarse as r = 2 .0 , the mean and variance of t  and t R  were found to
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be very similar. This confirmed the results from the moments (3.3-5), which 

indicated the mean and variance of tR will be very close to those for t for large 

n and r < 2.0. For n as large as 25, the distribution of tR will closely 

approximate that of t, even for coarse rounding. This is evident from the results 

in Table (B.3) where for practical purposes there is very little difference between 

the values of o r  and a  for rounding as coarse as r = 1 .5 .

Table (3.3.2) gives the values of the degree of precision r that may be regarded as

acceptable for n = 5, 10 and 25 (definition of 'acceptable' in section 3.3). In this

table, the column 0.1/1.0/5.0 gives the range of r which is acceptable for these 

three levels of significance. Column 0.1/5.0 gives the range of r which is 

acceptable at both these levels of significance. Column 5.0 gives the range of r

which is acceptable for just this level of significance.

T a b l e  3 . 3 . 2

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

n  =  5 ,  1 0  a n d  2 5  i n  a  o n e  s a m p l e  t - t e s t .

One t a i l e d  t e s t Two
t a i l e d  
t e s t

a(°/o) 0 . 1 / 1 . 0 / 5 . 0 1 . 0 / 5 . 0 5 . 0 5 . 0

n LT UT LT UT LT UT

5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5

10 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0

25 r  < 1 . 5  r  < 1 . 5 r  < 1 . 5  r  < 1 . 5 r  < 1 . 5  r  < 1 . 5 r  < 1 . 5

Note: LT = lower tail U T = upper tail 
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Immediately noticeable from Table (3.3.2) is that there is no difference in the 

ranges of r between lower and upper tails. As n increases in size, the degree of 

precision of the data can be decreased without any further deterioration in the 

significance level.

3 . 3 . 2  C h i - s q u a r e d  t e s t  f o r  v a r i a n c e

Let X  = (X 1 ,...,X n) be a random sample of size n from a normal population X. 

Let X r  = ( X ^ , . . . ^ )  be the rounded sample where X r j  is the rounded value 

of Xj corresponding to a rounding lattice with interval of width w and lattice 

position c. For testing the hypothesis H 0 :cr2 = a 2, the chi-squared test statistic is 

given by:

X 2  -  ( n ^ ) S 2  ( 3 . 3 - 7 )
u 0

and under rounding

( n - l ) S R
X R  ( 3 . 3 - 8 )

w here S 2 and S 2r  are d efined  as in  ( 3 .3 - 2 ) .

As we have assumed that X  ~ N[0,1], (3.3-8) becomes

= ( n - l ) S 2 and r  = w ( 3 . 3 - 9 )

To obtain the moments of X 2r  we can use the exact first and second moments of 

S2 in terms of the moments of the population from which the sample has been 

drawn (Church, 1925).
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E [ S | ]  =  (Tr (3 .3 -1 0 )

Using (3.3-10) and Sheppard's corrections (3.3-4), approximations to the first two 

moments of x 2R> where X  has a standard normal, are given by

Study of the moments of x 2R  (3.3-11) and x 2 (3.3-12) shows that the controlling 

factor is ( l+ r 2/12), which will never vanish no matter what the size of n. Of

course the shape of the distribution of x 2 changes under rounding, but it will be

the increased mean and variance which will have the greatest effect on the

significance levels. The increased mean will cause the distribution of x 2 to shift

to the right, resulting in the values in the lower tail being generally less than 

those in the upper tail.

E [ X r ]  =  [ l  +  T l J C " - 1 ) ( 3 . 3 - 1 1 )

If  the normal population is not subject to rounding we have

E [ x 2] = n - 1  , V [X2] = 2 ( n - l ) ( 3 . 3 - 1 2 )

3.18



EXACT/SIMUL Results

n < 5

Table (B.4) shows the range in values of or  for n = 5, where r = 2.0, 1.0, 0.5

and 0.25.

For values of n < 5, a major problem caused by rounding is that there is a high 

probability that x 2R  = as the probability of S 2r  = 0 is high. [Table(3.3.1)j. 

For very small n (n = 2 or 3), or coarse rounding (r >  1.0), this caused a high 

concentration of probability at zero and resulted in the lower tail values of o r  

being greater than the upper tail values. The values of o r  for n = 5 where

r = 2.0 given in Table (B.4) are typical of the type pattern found for coarse

rounding.

The first moment of x 2R  indicated that rounding would cause a shift to the right 

in the distribution of the test statistic. Generally, the influence of this shift in the 

distribution was not clear until the probability of x 2R  being zero was low. For 

example at n = 5, the effect of this shift in the distribution on the values of o r  

was not noticeable until r < 1.0 [Table (B.4)]. The probability of x 2R  being zero 

can cause the lower tail significant levels to have identical values for r > 1 .0 .

The results indicated that the values of or  and o would only be in close

agreement if the data had been recorded to a high degree of precision. As shown

by the results in Table (B.4) for n = 5, this was so for r < 0.25 only.
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n = 10 and 25

Tables (B.5) and (B.6 ) show the range in values of o r  respectively at n = 10 and 

25, where r = 1.5, 1.0, 0.5 and 0.25.

For these sample sizes, values of x 2R = 0 have no noticeable influence on the 

significance level of the test. The results from the moments (3.3-11) indicated 

that rounding will cause the mean and variance of x 2 test statistic to increase by a 

factor ( l+ r 2/12) and ( l+ r 2/12) 2 respectively. The increase in the mean has the 

greatest effect on the significance level of the test. As indicated by the results in 

Tables (B.5) and (B.6 ), this will cause the values of o r  in the lower tails to be 

less than those in the upper tail. For fixed n, as r increased the inbalance in the 

values of o r  between the two tails increased. However, more unusual is that for 

fixed r, as n increased the results showed a tendency for the inbalance between 

the two tails to increase also. This is because the amount by which rounding 

causes the distribution of the test statistic to shift to the right is dependent on the 

value of n. Table (3.3.3) illustrates this point for n = 10, 25 and 90, where

r = 1 .0 .

Table (3.3.3)

Range of values of o r  for n = 10, 25 and 90 when r = 1.0

a(H)  lower t a i l a(%) upper t a i l

n 0.1 1.0 2 .5 5 . 0 5 . 0 2.5 1 .0 0.1

10 0 . 0 6 - 0 . 0 9 0 . 4 4 - 0 . 6 0 2 . 0 5 - 2 . 4 7 3 . 3 2 - 3 . 3 3 6 . 7 2 - 6 . 7 5 3 . 7 4 - 3 . 7 7 1 . 7 5 - 1 . 7 7 0 . 2 3 - 0 . 23

25 0 . 0 5 - 0 . 0 7 0 . 5 1 - 0 . 6 3 1 . 4 3 - 1 . 72 2 . 8 8 - 3 . 1 7 8 . 7 4 - 9 . 3 9 5 . 0 4 - 5 . 3 4 2 . 2 3 - 2 . 3 5 0 .3 0 - 0 . 32

90 0 . 0 1 - 0 . 0 2 0 . 2 4 - 0 . 2 7 0 . 6 7 - 0 . 7 6 1 . 5 7 - 1 . 64 13 .9 5 - 1 4 . 23 8 . 1 5 - 8 . 31 3 . 9 9 - 4 . 1 2 0 . 6 0 - 0 . 68
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As shown by the results in Tables (B.5) and (B.6 ), there was a strong agreement 

between values of o r  and a at n = 10 and 25 when r < 0.25. Table (3.3.4) 

gives the values of the degree of precision r that may be regarded as acceptable 

for n = 5, 10 and 25.

T a b l e  3 . 3 . 4

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

n  =  5 ,  1 0  a n d  2 5  i n  a  c h i - s q u a r e d  t e s t  f o r  a  v a r i a n c e .

One t a i l e d  t e s t Two
t a i l e d  
t e s t

a(°/o) 0 . 1 / 1 . 0 / 5 . 0 1 . 0 / 5 . 0 5 . 0 5 . 0

n LT UT LT UT LT UT

5 r  < 0 . 5  r  < 0 . 2 5 r  < 0 . 5  r  < 0 . 2 5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5

10 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5  r  < 0 . 5 r  < 1 . 0

25 r  < 0 . 5  r  < 0 . 2 5 r  < 0 . 5  r  < 0 . 2 5 r  < 0 . 5  r  < 0 . 5 r  < 0 . 5

The results in Table (3.3.4) indicate how the chi-squared test for a variance is not 

very robust to rounding particularly in the upper tail. For the two tailed situation 

the effect of rounding seems to be less, as two tailed tests have a compensating

factor between the upper and lower tails.

3 . 3 . 3  T w o  s a m p l e  t - t e s t

Let X  = ( X X n i ) and Y = (Y , , . . . ,Ynz) be independent random samples of

sizes n 1 and n 2 from normal populations X  and Y with means PY anc*
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variances a2x, c2y respectively. Let X p  = (X p , . . . . . X p ^ )  be the rounded sample 

where Xpj is the rounded value of Xj corresponding to a rounding lattice with 

interval of width w 1 and lattice position c 1 . Y p  = (Yp., . . . . .Y p ^ )  be the rounded

sample where Ypj is the rounded value of Yj corresponding to a rounding lattice

with interval of width w 2 and lattice position c 2.

For testing the hypothesis H Q:^ x  = Z4Y> assuming cr2x  = c 2y  = ° '2> the t-test

statistic is given by:

X, Y  are the sample means and S2x , S 2y , the usual estimates of the common 

variance a 2.

In the first instance we first consider equal sample sizes, n , = n 2 = n, with both 

standard normal populations rounded according to the same rounding lattice (ie 

w, = w 2 = w ,  c 1 = c 2 = c ) .  The test statistic for rounded data is given by:

t w here Sp
(n i- l)Sx  + (n2-l)Sy

( 3 . 3 - 1 3 )

Xr  -  y r
( 3 . 3 - 1 4 )

where

and both Xj and Yj rounded to precision r = w/cr.
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To obtain the approximate moments of tj^ we use expansions for the monents of a 

two sample t-test statistic, for samples drawn from non-normal populations (Geary, 

1947). Geary's results are general, allowing for different moments in the two 

populations, besides unequal sample sizes. Assuming equal sample sizes and the 

same degree of rounding for both populations we have

E [ t R ]  -  0

V [ t R] -  1 + I  + 0 (n -2 )

( 3 . 3 - 1 5 )
«/01 (*r ) = 0

( S , ( t R )  -  3  +  |  +  0 ( n - 2 )

To order n- 1  the expressions (3.3-15) contain no population parameters.

If  the normal populations are not subject to rounding we have 

E [ t ]  -  0

V [ t ]  =  =  1  +  I  +  0 ( n “ 2 )L 1 ( n - 2 )  n
( 3 . 3 - 1 6 )

-  0

y ( S 2 ( t )  -  3 +  ^ -  3 +  ^  +  0 ( n - 2 )

It follows from (3.3-15) and (3.3-16) that where both sample sizes are equal and 

rounded to the same rounding lattice, we expect the distribution of t to change 

very little for rounded data.
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EXACT/SIMUL Results

As tR is symmetrical about zero there is no difference between the upper and 

lower tail values of o r . Nevertheless, values of or  obtained from the SIMUL 

program will show slight variation due to sampling errors.

n < 5

Table (B.7) gives the range in values of o r  for n = 5, where r = 1.5 and 1.0.

For small values of n a major problem caused by rounding in the one sample

t-test were the values +«> and 0/0. As in the one sample t-test, tR = 0/0 was 

defined to be equal to zero. With the two sample t-test the probability of such 

values considerably reduced [Table (3.3.5)]. This together with the fact that tR in

the two sample case will be less discrete, than the one sample test, we would

expect the two sample t-test to be more robust to rounding. The results for o r  

confirmed this. For example, as shown by the results in Table (B.7) o  and o r  

were in close agreement for n = 5 where r < 1.0. For the one sample t-test this 

was only true for r < 0.5 [Table (B .l)]. Even for rounding as coarse as r = 1.5, 

the values of o r  and a  were in reasonable agreement for the two sample t-test 

[Table (B.7)].
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Table 3.3.5

P r o b a b i l i t y  t h a t  t R  =  ±<x> o r  0 /0  f o r  s a m p l e s  o f  s i z e  n  d r a w n  f r o m  n o r m a l  r o u n d e d  

p o p u l a t i o n s  i n  a  t w o  s a m p l e  t - t e s t

r 2 . 0 1 .5 1 . 0 0 .5 0 .25

X
0 0 .5 0 0 .5 a l  1 c a l l  c a l  1 c

2 0.260 0.209 0.153 0.147 0.073 0.019 0.005

3 0.106 0.047 0.033 0.027 0.007 0.005 0 . 0 0 0

4 0.047 0.011 0.009 0.005 0 . 0 0 1 0 . 0 0 0

5 0 . 0 2 2  0 . 0 0 2 0 . 0 0 2  0 . 0 0 1 0 . 0 0 0

n = 10 and 25

Table (B.8 ) gives the range in values of o r  for n = 10 and 25, where r = 2.0.

The robustness of this two sample test to very coarse rounding is striking. For

r < 2.0 the values of o r  and a  were in close agreement. As expected an 

increase in n from 10 to 25 caused an improvement in this agreement [Table 

(B.8 )].

Table (3.3.6) gives the values of the degree of precision r that may be regarded as

acceptable for n = 5, 10 and 25.
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Table 3.3.6

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

n  =  5 ,  1 0  a n d  2 5  i n  a  t w o  s a m p l e  t - t e s t .

One t a i l e d  t e s t Two
t a i l e d  
t e s t

a(°/o) 0 . 1 / 1 0 / 5 . 0 1 . 0 / 5 . 0 5 0 5 . 0

n LT UT LT UT LT UT

5 r < 1 . 5 r  < 1 . 5 r < 1 . 5  r  < 1 . 5 r < 2 . 0 r < 2 . 0 r  < 2 . 0

10 r < 2 . 0 r  < 2 . 0 r < 2 . 0  r  < 2 . 0 r < 2 . 0 r < 2 . 0 r  <  2 . 0

25 r < 2 . 0 r  < 2 . 0 r < 2 . 0  r  < 2 . 0 r < 2 . 0 r < 2 . 0 r  < 2 . 0

The ranges of r given in Table (3.3.6) indicate how very robust the two sample 

t-test is, with respect to the level of significance for rounded data.

U n e q u a l  n ' s ,  c ' s  a n d  r ' s

The previous section was restricted to equal sample sizes with both populations 

rounded to the same rounding lattice. These are the conditions likely to be striven 

for in designing a comparison between means. However it is of interest to explore 

the situation when this restriction is not met.

Using Geary (1947) results, the approximate moments of tR, where the rounding 

lattice is different in the two populations and the sample sizes are unequal 

indicated that:
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(a) unequal sample sizes will have a negligible effect on the distribution of tR

(b) different rounding lattices in the two population will cause the distribution of 

tR to change very little from its form where both populations have been 

rounded the same.

From (a) and (b) above, we would expect the effect of rounding on the 

significance level of the test to be similar whether or not the two populations 

correspond to the same rounding lattice, and whether or not they have the same 

size. Simulation results for values of o r , with differing rounding lattices and 

sample sizes confirmed this. For example, Table (3.3.7) shows the range in values 

of o r  where both sample sizes are equal to 5 and the two populations have been

rounded to r = 1.5 and 0.1 respectively. These values of o r  are compared with

the situation where both populations have been rounded to r = 1.5. As the table 

shows, the difference in the range of values of o r , between the situation where 

both populations have precision equal to r = 1.5, or r = 1.5 and 0.1 respectively 

is small.

T a b l e  3 . 3 . 7

Range of o r  values for sample sizes of size 5, where the two populations have

been rounded to r = 1.5 and 0.1 respectively.

Pop. a(H) lower t a l l a(%) upper t a l l

X Y 0.1 1.0 2 .5 5 .0 5 .0 2.5 1.0 0.1

r 1.5 1.5 0 . 04- 0 . 10 0 . 55 -0 .9 5 2 .60-2 .9 2 5 .1 0-5 .3 2 5 .09 -5 . 33 2 . 57 -2 . 89 0 . 54 -0 .9 3 0 .0 4-0 .0 9

r 1.5 0.1 0 .08-0 .17 0 .9 1 -1 .1 0 2 .41-2 .7 2 4 .81-5 .11 4 . 8 1 -5 .1 0 2 . 37- 2 . 69 0 .9 1- 1 . 1 2 0 .0 8-0 .1 6

3.27



3.3.4 F-test for equality of two variances

Let X  = (X 1 , . .. ,Xn i ) and Y  = ( Y Y n2) be independent random samples of size 

n 1 and n 2 from normal populations X  and Y, with means f ix , HY anc* variances 

cr2x» or2y  respectively. Let X r  = (^R i »*--»^Rni) be *he random sample where 

Xpj is the rounded value of Xj corresponding to the rounding lattice with interval 

of width w, and lattice position c 1. Y r  = (Y r ,  . . . . .Y r ^ )  be the rounded sample 

where Ypj is the rounded value of Yj corresponding to a rounding lattice with 

interval of width w 2 and lattice position c 2.

For testing the hypothesis H 0 :<r2x  = c 2y  = v z> the F-test statistic is given by:

where S2x  and S2y  are the usual estimates of the common variance a 2.

We shall first consider equal sample sizes, n , = n 2 = n, with standard normal 

populations both rounded according to the same rounding lattice (ie w 1 = w 2 = w, 

c n = c 2 = c). The test statistic for rounded data is given by;

F =  Sx /S y ( 3 . 3 - 1 7 )

f R =  sx r / sy r ( 3 . 3 - 1 8 )

? ( YR i" YR) 2 an<* b o t h  X j  and Y jw here Sx r

rounded to precision r = w/n under H 0.

We now use approximations to the first two moments of Fr  (Gayen, 1950):
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E[FR] -  1 +  i  ( 0 2R -1 ) +  0 (n -2 )  

V [f r ] -  i  (|32r - 1 )  +  0 (n " 2)

(3 .3 -1 9 )

where |32r  is the measure of kurtosis for the two rounded normal populations.

Approximations to the first two moments of Fr , using (3.3-19) and Sheppard's 

corrections (3.3-4), are given by

e [Fr ] - l + In 2 -
120

2 - |  2 + 0 ( n - 2 ) ( 3 . 3 - 2 0 )

V[Fr ] -  - 2 -
120 + 0 (n“ 2)

If  the normal populations are not subject to rounding we have:

E[F] = = 1 + -  + 0 (n )J n-3 n

V [F ] -  “  “  + ° ( n' 2) L J ( n - 3 ) 2 (n -5 )  n

( 3 . 3 - 2 1 )

It follows from (3.3-20) and (3.3-21) that, where both sample sizes are equal and 

rounded to the same rounding lattice, we expect Fr  to change very little for 

rounded data.
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EXACT/SIMUL Results

Where both sample sizes are equal there is no difference between the upper and 

lower tail values of o r . However, lower and upper tail values of o r  obtained 

from SIMUL program will show slight variation due to sample errors.

n < 5

Table (B.9) gives the range in values of o r  for n = 5, where r = 1.5, 1.0 and 

0.5. Similar considerations apply to the distribution of F r  as to the distribution of 

tR in section (3.3.3), namely that for small n the discontinuities in F r  will be 

numerous and that there is a possibility that either S 2x r  or S 2y r  is equal to 

zero. In particular, F r  will equal zero whenever S 2x r  is zero; it will equal 

infinity whenever S 2y r  is zero; it may be defined to be one when both S 2x r  

and S 2y r  are zero. This definition of F r  = 0/0 equal to one seems sensible, as 

0/0 indicates that the variances of X r  and Y r  are the same and under H 0 would 

expect F r  to equal one. The probability that F r  equals <» or 0/0 is identical to 

the probability that tR equals +<» or 0/0; these probabilities are given in Table 

(3.3.1). Table (3.3.1) shows that F r  equal to +» or 0/0 can occur with annoying 

frequency in very small samples, especially for coarse rounding (r >  1). For 

small values of n, F r  = 0 or +<» cause the tails of the distribution of F r  to 

contain greater probability than is expected in the unrounded situation. The effect 

of this is to inflate the ex values. As expected, increasing n or by decreasing r 

will reduce the amount by which ex values are inflated by F r  = 0 or +oo. For 

example, as shown by the results for n = 5 in Table (B.9), the degree’ to which 

F r  = 0 or +oo inflates the value of a  is dependent on the degree of precision r. 

At r = 2.0 all the four values of a are inflated in both tails, whereas at r = 1.0
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only the value of a = 0 . 0 0 1  has been inflated by F r  = 0  or oo.

For small n, F r  will have a large number of discontinuities especially for coarse 

rounding. This will result in the distribution of F r  being a poor approximation to 

the distribution of F. We would expect then ot and o r  values to be considerably 

different unless r is low. Our results for o r  confirmed this. For example, as 

shown by the results in Table (B.9), o; and o r  are in reasonable agreement for 

r < 0.5 only.

n = 10 and 25

Tables (B.10) and (B .ll)  show the range in values of o r  for n = 10, r = 1.0, 0.5 

and n = 25, r = 1.5, 1.0 respectively.

For these sample sizes, values of F r  = oo or 0/0 are now no real problem. For 

n = 10, r < 0.5 and n = 25, r < 1.0, the values of o r  and ot are in close 

agreement. As expected an increase in n will improve this agreement. The 

similarity of the distributions of F and F r  for moderate size n was demonstrated 

by the close agreement between their means and variances. For example, for 

n = 25, the distributions of F r  and F had mean and variance 1.10, 0.225 and 

1.10, 0.23 respectively. This confirms the results from the moments, which 

indicated that the mean and variance of F r  will be close to those of F for large 

n.

Table (3.3.8) gives the values of the degree of precision r that may be regarded as 

acceptable for n = 5, 10 and 25.
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Table 3.3.8

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

n  =  5 ,  1 0  a n d  2 5  i n  a  F - t e s t  f o r  e q u a l i t y  o f  t w o  v a r i a n c e s .

One t a i l e d  tes t Two
t a i l e d  
tes t

a(°/o) 0 . 1 / 1 . 0 / 5 . 0 1 . 0 / 5 . 0 5 .0 5 .0

n LT UT LT UT LT UT

5 r  < 0 .5  r  < 0 .5 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0

1 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1.5  r  < 1.5 r  < 1.5

25 r  < 1.5 r  < 1.5 r  < 1.5  r  < 1.5 r  < 1.5  r  < 1.5 r  < 1.5

Unequal n's, c's and r's

The previous section was restricted to equal sample sizes and both populations 

rounded according to the same rounding lattice. These are the conditions likely to 

be striven for in designing a comparison between variances. Unequal sample sizes 

will have a very small influence on how the rounding process will affect F r ,  unless 

n 1 and n 2 are very far apart. For this reason only different rounding lattices will 

be considered.

Let the normal populations X  and Y be rounded according to rounding lattice with 

precision and lattice positions r.,, c., and r 2, c 2 respectively. Essentially X r  and 

Y r  will be two different populations. We shall assume that both samples are of 

size n. Expansions for the first two moments of F r , the test statistic where 

rounding is not the same in both populations, can be obtained from Gayen (1950).
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E [F r ] -

V [F R ] -

°R
2

°R-

°R
4

aR-

1 + I  +  [ ^ l H  +  0 ( n " 2 )

(3 .3 -2 2 )

H + Ti + ^ 2 R +^2R"6 > + ° ( n 2)

where X r  and Y r  have variance and kurtosis, <t 2r , |32r  and (t2r , |32r

respectively.

Approximations to the first two moments of F r  using (3.3-22) and Sheppard's 

corrections (3.3-4) are given by:

r12+r?l 
E tFR] -  [tJ+F7]

r r 4 1 1 2
1 1201 + -  
n

2 -  , 

f i  + r i l

+ 0 ( n " 2)

L1 + T lJ  .
( 3 . 3 - 2 3 )

V [F R ] = r12+ri i 2
L l2+ r2J 

2

'  r 4 r 4 1 1 2

4 1 120 + 120
+  0 ( n " 2)n n

f i  +  r ? l  f !  +  r i ] 2
.1 1 2 J I 12J . .

Comparing (3.3-21) and (3.3-23) we have to the same order of approximation for 

r < 2 . 0

12+ r 2 _ 12+ r 2 2
F [ F r ]  “  ["1 2 + r 7] E[F] 1 V[FR] = [tJhF7 ] V[F] ( 3 . 2 - 2 4 )

2 2

The first two moments of F r , indicate if r 1 >  r 2, then rounding will cause the 

test statistic to have an increased mean and variance. For r 1 <  r 2 there will be 

a decrease in the mean and variance. These moment results suggest that if
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r 1 *  r 2 then rounding will shift the distribution of F to the right or left, 

depending if r , <  r 2 or r , > r 2. If  r n > r 2 the significance level will be less

than expected in the lower tail and greater than expected in the upper tail. For

r 1 <  r 2 the situation will be in reverse. Obviously this shift in distribution of F 

will be dependent on the values of r 1 and r 2. This effect will not diminish as n 

increases.

In order to gain insight into the behaviour of the significance level of the F-test 

for unequal rounding lattices, values of or  were obtained for various r's and c's. 

To provide an indication of the possible effect, values of n and r given in Table 

(3.3.8) were considered. Table (3.3.8) gives the ranges of r that may be regarded

as acceptable in the sense that o r  values fall within the ranges in section (3.3).

Of interest is if these ranges of r are still suitable when the samples have not 

been rounded to the same rounding lattice.

For all three values of n, unequal r's resulted in a shift of the F distribution, as 

indicated by the moments of F r . As expected, this in general caused rounding to 

have greater effect than with equal r's. Table (3.3.9) shows a selection of results 

for n = 25.
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Table 3.3.9

V a l u e s  o f  o r  f o r  F - t e s t  f o r  s a m p l e s  o f  s i z e  2 5 ,  w h e r e  v a l u e s  o f  t h e  p o p u l a t i o n s  X  

a n d  Y  h a v e  b e e n  r o u n d e d  t o  r o u n d i n g  l a t t i c e s  w i t h  c  =  0  b u t  d i f f e r e n t  v a l u e s  o f  r .

X Y o(°/o) lower t a i l «(%) upper t a i l

r 1 r 2 0 . 1 1 . 0 2 .5 5 .0 5 .0 2 .5 1 . 0 0 . 1

1.5 1.5 0 . 1 2 1.08 2.58 5.06 5.14 2.60 1.08 0 .14

1.5 1 . 0 0.07 0.63 1.58 3.15 7.70 3.95 1.70 0 .18

1.5 0.25 0 .04 0 .42 1.06 2.19 10.53 5.81 2 .58 0.31

0.25 1.5 0.31 2.60 5 .82 10.50 2.18 1.05 0 .44 0 .04

The results in Table (3.3.9) demonstrate how different r values will shift the F 

distribution to the right or left depending i f r 1 <  r 2 or r ,  >  r 2. As the

difference in r 1 and r 2 increased so did the shift in the distribution, causing

rounding to have a greater effect on the a  values. Although for r., = r 2 = 1 . 5  

the values of a  and o r  are in reasonable agreement, this is not always so for

r , ^ r 2. The results in Table (3.3.9) are typical of the values of or  found for

r i *  r 2-

The simulated results for the values of o r , suggested a 'rule of thumb* that may

be applied when the rounding is not the same in both populations:

12 + r?
L e t  R = 12 +  r 2 where r1 > r 2

2

The ranges of r given in Table (3.3.8) are only suitable for r 1 and r 2 for n = 5

if R < 1.08. For n = 10 and 25 the corresponding values are R < 1.06 and
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R < 1.04 respectively.

Different lattice positions (c1 *  c 2) were found to have far less effect than

r i *  r 2 -

3.3.5 Analysis of Variance (ANOVA)

The consequences when the assumptions for the ANOVA are not satisfied have

been studied by many authors. However to date the only research into the effect 

of rounding on the ANOVA has been by Riley, Bekele and Shrewsbury (1983), 

who considered only specific examples; they made no attempt to obtain general 

conclusions. In this section, unlike in the previous authors, a simulation method is 

used to investigate the sensitivity of the significance level to rounded data in the 

one and two-way ANOVA.

One-way Analysis of Variance -  Fixed Effects Model

The structure we shall assume for the one-way layout fixed effect model is given

by:

Xy = + cq + ey i = l , . . . ,k  j = l , . . . ,n

where \i is the overall mean

cq is the ith sample effect and are fixed constants

ejj are errors distributed normally and independently about zero with the 

same variance a 2
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This study was restricted to equal sample sizes. For testing the hypothesis 

H 0 :o!1 = a 2 = ... = t%, the test statistic is given by:

Q ^Ck-l)
F = n / /  i u  (3 .3 -2 5 )Q2 / (n k -k )

k _  _
where Qi = S n (x i “x  ) 2 the  between sum o f squares

i= l

k n _
Q2 = 7 2 (X j s —Xi ) 2 the w ith in  sum o f squares

i - 1  j - 1

Under H 0 F(3.3-25) is distributed as a central F distribution with k-1 and nk-k 

degrees of freedom.

Let the ith sample be drawn from the ith normal population which has been 

rounded according to a rounding lattice with rounding interval Wj and lattice 

position q . We shall first assume that all normal populations have been rounded 

to the same rounding lattice (ie w 1 = w 2 = ... w r  = w; c, = c 2 = ... %  = c). 

The test statistic for rounded data is given by

< W < k - l )  , ,  ,
FR Q2R/(n k -k )  (3 .3 -2 6 )

where
k _  _  k n _

QiR = 2 n (xRi ." XR. . ) 2> Q2R = 2 2 (xR i j" xR i . ) 2 and
i - 1  i - 1  j - 1

Xjj rounded to precision r = wIcr and lattice position c.
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Once again for convenience the normal populations will be assumed to have zero 

means and variances equal to one. Again using results of Gayen (1950) we have

E[Fr ] -  1 + |  + 0 ( N - 2 )

(3 .3 -2 7 )

VIPR] = k§T + N flbry [5+k-(02R-3>] + 0 (N -*)

where N = nk and |32r  is the measure of kurtosis for the rounded normal 

populations.

The approximations to the first two moments of Fr  using (3.3-27) and Sheppard's 

corrections (3.3-4) are given by:

E[Fr ] = 1 +  j j  +  0 ( N “ 2 )

(3 .3 -2 8 )

V I Fr ] "  17TT +k-1  N ( k - l ) 5 + k + 120
2 +  0 ( N “ 2 )

If  the normal populations are not subject to rounding we have

E[F] -  m  "  1 + r  + °<N‘ 2>
(3 .3 -2 9 )

V fF l = 2 (N -k ) 2 (N -3)____  = 2 -----------2 ( 5 +^) + o(N - 2 )
L J (k -1 ) (N -k -2 ) 2 (N -k -4 ) k-1  N ( k - l )  k }  ̂ ;

Comparison of (3.3-28) with (3.3-29) implies that when N is large we expect the 

distribution of F to change very little under rounding.
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SIMUL Results

For ANOVA only the SIMUL program was used to obtain results. Values of or  

were obtained for k = 3, 5 and 10, where n = 5, 10 and 25.

k = 3

Table (B.12) shows the range in values of o r  for k = 3, where n = 5, 10 and 

25.

For this value of k the discontinuities in F r  can be numerous and there is a

possibility that either Q tR  or Q 2r  are equal to zero. In particular, F r  will equal

zero whenever Q , r  is zero; it will equal infinity whenever Q 2 r  is zero; it may 

be defined to be one when both Q , r  and Q 2 r  are zero. The last mentioned 

situation cannot occur unless all the values in the (kxn) data set are identical and 

this will have a very small probability of occurrence. For coarse rounding 

(r >  1) F r  equal to zero or infinity can occur with annoying frequency for small 

n. The result is that values of F r  equal to zero or infinity can distort the a 

values. As the probability of F r  equal to zero is greater than F r  equal to 

infinity, the lower tail values of a  will be more affected by the rounding process. 

As shown by the results in Table (B.12) the degree to which F r  = 0  o r  oo distorts 

the values of a  is dependent on n and r. For n = 5, the lower tail values of a 

are severely affected and to some extent the upper tail values for r > 1 . 0  while

for n = 10, it is only the lower tail values of a  affected for r > 1.5.

The approximations for the first two moments of Fr  indicate that the moments 

will change very little for rounded data, where N is large. As shown by the
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results for the moments of F r  given in Table (B.12), this was true for N as small 

as 15. However, rounding will cause the distribution of F r  to become discrete. 

It was the discrete nature of F r  that made the a  values distorted. Generally the 

lower tail values of a  were more affected by this discretization of the F 

distribution. Although we are interested in the upper tail values of a, as we are 

dealing with a one-tailed test, the lower tail values will show an indication of how 

the F distribution behaves with respect to rounding.

k = 5 and 10

Table (B.13) shows the range in values of o r  for k = 5, 10 where n = 5.

For these larger values of k, there will be a corresponding increase in N (nk). 

This larger value of N will mean that the F r  distribution will have less 

discontinuities and a lower probability that F r  = 0/0, oo and 0. The results in 

Table (B.13) show how this larger value of k generally improve the agreement 

between the a and o r  values. This being more so in the lower tail.

To obtain a more accurate recommendation for when the degree of precision r 

may be regarded as acceptable, values of o r  were obtained for k = 3 and 4, for 

n ranging between 6  and 10. Table (3.3.10) gives the values of the degree of 

precision r that were found acceptable.
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Table 3.3.10

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

N  =  i i k  i n  a  o n e  a n d  t w o  w a y  a n a l y s i s  o f  v a r i a n c e .

a(°/o) 0 . 1 / 1 . 0 / 5 . 0 1 . 0 / 5 . 0 5 .0

N* -  15 

N > 16

r  < 1.5  

r  < 2 . 0

r  < 1.5  

r  < 2 . 0

r  < 1 .5  

r  < 2 . 0

*N  = nk when k = 3,4,... and n -  5,6,...

The ranges in Table (3.3.10) apply only to the upper tail values of o r , as we are 

dealing with a one-tailed test. However the lower tail values of a are far more 

distorted by rounding and the ranges of r given in the table do not necessarily 

apply.

Unequal r's and c's

Consider the situation where the k samples of size n have been drawn from 

normal populations rounded according to different rounding lattices. The ith 

sample will have rounding precision q and lattice position q . Essentially the 

samples will have been drawn from different populations with parameters ^ rj,  

o^Ri* ^ iR i»  £ 2Ri (i= l,...,k ). As indicated by the results in Chapter 2 for 

normal populations with r < 2 . 0  the discrepancy between these four parameters and 

their values for unrounded data is not very serious. As a result we would expect 

different rounding in the k populations to have a similar effect on the a's as the 

situation when the populations have all been rounded the same. For example
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consider the variances. With different rounding in the populations the variances 

er2Ri are approximately equal to 1 + r 2/12. From Box (1954) for equal sample 

sizes, the maximum effect on the significance level of the test will be when the 

variances ct2j r  are in the ratio 1 : 1  : 1  : 1  : 0 , where 0 is the

max(o’2iR)/min(o'2iR). For r = 2.0, the maximum value of 0 will occur at 

r 1 = 2.0, r 2 = 0, ..., r^ = 0, giving 0 = 1.33. Thus at the most severe 

rounding considered the maximum value of 0 is only 1.33. With such a small 

value of 0 , Box's results indicate that unequal variances will have little effect on 

the significance level of the test.

Simulation results for values of o r , with differing rounding lattices in the 

populations were obtained. Table (3.3.11) shows a selection of results for the 

upper tail values of o r  for populations rounded so that 0 has its maximum value. 

These are compared with values of o r  where the rounding is the same for all 

populations (ie 6 = 1). The results in the table are typical of the values of o r  

found for unequal rounding lattices.
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Table 3.3.11

V a l u e s  o f  o r  w h e r e  t h e  p o p u l a t i o n s  h a v e  b e e n  r o u n d e d  a c c o r d i n g  t o  d i f f e r e n t  

r o u n d i n g  l a t t i c e s .

Anova
r a

Upper t a i  1 a(°/o)

kxn
V

5 .0 1 . 0 0 . 1

3x5 1.5 i * 4 .7 0 .9 0 .09

1.19+ 5.1 0 . 1 0 . 1 0

3x10 2 . 0 1 5 .2 1 . 1 0.09

1.33+ 5 .0 1 . 0 0 . 1 0

3x25 2 . 0 1 5 .0 1 . 0 0.09

1.33 5 .0 1 . 0 0 . 1 1

5x5 2 . 0 1 4 .4 0 .7 0 . 1 0

1.33 5 .0 1 . 0 0 . 1 0

5x10 2 . 0 1 4 .8 1 . 0 0.09

1.33 5 .0 1 . 0 0 . 1 0

5x25 2 . 0 1 5 .0 1 . 0 0 . 1 1

1.33 5 .0 1 . 0 0 . 1 2

* 0 = 1 -  all samples rounded to same r

f  maximum value of 6 for given r.

As Table (3.3.11) shows, the only noticeable effect of unequal precision in the 

populations is for small N ( i e k  = 3, n = 5). As the value of N increases the

effect of unequal r's diminishes.

In general the simulation results for o r  indicated that different rounding in the k

populations will have no more effect on the significance level of the test than

when the populations have the same rounding.
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Two-way Analysis of Variance -  Fixed Effects Model

The structure we assume for the two-way layout fixed effects model is given by:

x i j  “  M + « i + Pi + e j j  i = l , . . . , k

j  = 1 , . . . , n

where ft is the overall mean

cq is a fixed effect due to ith row 

|3j is a fixed effect due to jth column

ejj are errors distributed normally and independently about zero with the 

same variance a 2

For testing the hypothesis Hpia,  = ,..., the test statistic is given by

k _  _  k n  _ _ _
where Q, = n J ( X j . - X  QE = 2 I  (x i j -*x i . "x . j + x . . )

i= l  i= l  j - 1

Under H 0 F is distributed as a central F distribution with k-1 and (n - l) (k - l )  

degrees of freedom.

Let Xjj be rounded to the same rounding lattice for all i,j where the rounding 

interval is w and lattice position c. The test statistic for rounded data is given 

by:
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< W ( k - l )
R Q E R /(n - l) (k - l)  (3 .3 -3 1 )

k _  _  k n  _ _ _
where Q,R = n £ (XR i -XR ) J . QER -  £ £ (XR i j -XRi -XR j+XR ) 2

1 - 1  i —1 j - 1

and rounding precision r = wJcr and lattice position c.

The difference between the values of F for the one-way (3.3-25) and two-way

ANOVAs is caused by the denominators Q 2 and Qg. Hence the only difference 

in the numerical calculations performed between the one and two way ANOVAs is 

the smaller residual term in the two-way test (ie a smaller denominator in the F 

ratio). As shown by the one way ANOVA results, the ratio of quadratic forms 

used is fairly insensitive to rounding.

We would expect the situation to be similar for the two way ANOVA. As Qg is 

a more 'complicated' quadratic form than Q 2, the discontinuities of Fr  in the two 

way ANOVA will be less numerous than for the one way situation. This will

result in the two way ANOVA being less effected by rounding, especially for small

N (nk).

Values of or  were obtained for k = 3, 5 and 10. Table (B.14) compares the

values of or  obtained for k = 3 and n = 5 in the one and two way ANOVA.

As expected the results were very similar for both tests. Although only the results 

for k = 3 and n = 5 are shown, they do faithfully represent the entire body of

results. In general the values of o r  were very similar for both one and two way

ANOVA. Closer investigation of the simulation results indicated that in the two

way ANOVA the significance level was slightly less affected by rounding. This was
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noticeable for small values of N (nk) the ranges of r given in Table (3.3.10) were

also found to be suitable for the two-way ANOVA.

3.4 Discussion and Conclusions

This chapter has investigated the effect of rounding on the significance level of a 

statistical test. The results have been given in such a way that the reader can 

readily determine the general trend of what happens to the significance level as the 

degree of precision in the data is allowed to vary. Five basic tests were 

investigated. The behaviour of one and two-way ANOVAs has provided insight 

into the effect of rounding on this general statistical procedure.

The t and F tests were as robust to rounding as each other. In both tests

rounding as coarse as r = 1.0 and 1.5 in samples of size 10 and 25 respectively

were found to give suitable levels of significance. However, different rounding 

lattices in the samples made the F-test more sensitive to rounding.

Of all the tests considered the two sample t -  test was the most insensitive to

rounding. For all values of n considered, rounding as coarse as r = 1.5 gave

acceptable levels of significance. Different rounding lattices in the samples did not 

alter the effect of rounding to any extent.

The chi-squared test was the most sensitive to rounded data, the main reason 

being that rounding increased the mean and variance of the test statistic. This

correspondingly caused the significance levels to be distorted. Satisfactory levels of 

significance were obtainable only for low values of r (ie r = 0.25 or 0.5).
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The section dealing with the ANOVA demonstrated how this statistical technique is 

robust to rounding. The results for both the one and two way ANOVAs showed 

how data could be rounded appreciably without any serious change in the 

significance level of the test. The ratio of quadratic forms which made up the F 

statistic were found to be extremely robust to rounding. The quadratic forms used 

in the one and two-way layouts are similar to the quadratic forms in higher way 

layouts. Our results suggest that generally the ANOVA technique is insensitive to 

rounded data with respect to the level of significance.

In this chapter ranges of r that give satisfactory levels of significance have been 

given for three values of n, ie n = 5, 10 and 25. In order to present a more 

detailed picture of the effect of rounding on the significance level of a test, values 

of o r  were obtained for other values of n. Table (3.3.12) shows the ranges of r 

and n which may be regarded as acceptable. To keep the computing to within 

manageable bounds, only values of ct = 0.05 and 0.01 were considered. It is clear 

from the results in Table (3.3.12) that all tests except the chi-squared are robust 

to rounding.

As mentioned in the literature review, various rules have been suggested for the 

degree of precision that should be used when recording data. It is of interest to 

see how suitable these rules are. Rules for rounding have been given by several 

authors. There seems to be no standard set of rules. The most commonly quoted 

is that r should not exceed \  (eg Eisenharht, 1947) or the less stricter rule that r 

should not exceed j  (eg Nicholson, 1979). Although the results in Table (3.3.12) 

show that for all tests except the chi-squared, using r less than £ or  ̂ will giye 

satisfactory levels of significance, they are generally too conservative. An 

acceptable level of significance is possible with far more coarse rounding.
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There are many persons, both sophisticated statisticians and others who would like 

to know when they could apply standard normal theory tests to rounded data. 

The results of this study indicate the extent to which data may be rounded without 

adversely affecting the level of significance of the test. In most situations we can 

use far less precision in rounding than originally realised and still apply standard 

tests.
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Table 3.3.12

Values of (n,r) which may be regarded as acceptable for five standard tests

»(%) 5 . 0 / 1 .0 5 . 0 two t a i l e d

t e s t lo w e r  t a i l u ppe r  t a i l lo w er  t a i l u pp er  t a i l 5 . 0

( “ 5 ) r < 0 .25
' ‘ 1 ....

( - 5 ) r < 0 .5

A'2 ( 5 , 5 0 ) r < 0 . 5 ( 6 , 2 4 ) r < 0 .5 ( 5 , 5 0 )  r < 0 .5 ( 5 , 2 5 ) r < 0 .5 ( 6 , 9 ) r < l  . 0

0 5 1 ) r < 0 .25 0 2 5 ) r < 0 .25 0 5 1 )  r < 0 . 2 5 0 2 6 ) r < 0 . 2 5 O 1 0 ) r < 0 .5

one ( 5 , 7 ) r < 0 . 5 ( 5 , 7 ) r < 0 .5 ( 5 , 8 ) r < 0 .5

sample ( 8 , 1 3 ) r < l  . 0 ( 8 , 1 3 ) r < l  . 0 same as 5 . 0 / 1 . 0 ( 9 , 1 3 ) r < l  . 0

t ( 1 4 , 2 9 ) r < l . 5 ( 1 4 , 2 9 ) r < l  .5 ( 1 4 , 2 9 ) r < l  .5

0 3 0 ) r < 2 .0 0 3 0 ) r < 2 . 0 0 3 0 ) r < 2 .0

two ( 5 , 6 ) r < l  . 5 ( 5 , 6 ) r < l  . 5 0 5 )  r < 2 . 0 0 5 ) r < 2 . 0 0 5 ) r < 2 .0

sample 0 7 ) r < 2 . 0 0 7 ) r < 2 . 0

I

( 5 , 1 0 ) r < l  . 0 ( 5 , 1 0 ) r < l  . 0 ( 5 , 9 )  r C l . O ( 5 , 9 ) r < l  . 0 ( 5 , 9 ) r < l  . 0

F O H ) r < l  . 5 O H ) r < l  . 0 O 1 0 )  r < l  . 5 O 1 0 ) r < 1 . 5 O 1 0 ) r < l  . 5

Anova N - 1 5 r < l  .5 - N<15 r < l  . 5 -

N>16 r < 2 . 0 N>16 r < 2 . 0

Note: notation: (a,b) *  a < n < b

(=a) *  n = a

(>a) 4  n > a

* N = kn where k = 3,4,...

n = 5,6,...
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4.1 Introduction

The effect of rounding on the significance level of tests has been studied in 

Chapter 3. The results indicate that in most situations, the significance levels of 

these tests are insensitive to rounding. For each test a range of r was 

recommended that gave acceptable levels of significance under rounding. This 

chapter investigates whether the powers of these tests are adversely affected for 

those recommended values of r given in Chapter 3. At the end of the chapter a 

method for compensating for the effect of rounding in the chi-squared test is 

discussed.

In the literature many investigations have studied the effect that departure from 

normality has on the power of standard statistical tests. However to date no work 

has looked at the effect of reduced precision on the power of a test for rounded 

normal data.

4.2 Description of the Investigation

The power was evaluated for each statistical test in Chapter 3. To keep the 

investigation within reasonable bounds the power of the tests under rounding was 

found for a  = 0.05 for one tailed tests. However for some tests the power was 

also found for a = 0.01 and 0.001. The power was evaluated mainly for values 

of r for which the significance level of the test was found acceptable, for n = 5, 

10 and 25. The usual lattice positions c = -0 .5, ..., 0.5 were considered for each

value of r. The value of a  = 0.05 was chosen as this is normally the first level 

of significance at which the null hypothesis is rejected. To consider in detail the 

power for other values of a would have required much computer time. The range
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of n considered closely reflects the sample sizes most commonly used in practice. 

The sample size of 25 was found in most situations to give a good indication of 

the effect of rounding on the power for large samples. For the two sample t-test, 

F-test for equality of variances and F- test in one and two way analysis of variance j 

only samples of equal size will be considered. The power of each test under 

rounding was evaluated for values of the alternative hypothesis H.,, corresponding 

to powers of 0.3, 0.5, 0.7 and 0.95 under normal theory conditions.

In the previous chapter the significance level of the test for rounded data was 

examined by determining: (1 ) approximations to the sampling moments of the test

statistics; (2 ) the exact distribution of the test statistic for rounded data; 

(3) an estimate of the sampling distribution of the test statistic for rounded data 

by Monte Carlo Methods. However, for most test statistics it was found not to be 

necessary to obtain approximations to the sampling moments, the reason being that 

the effects of rounding on the test statistics under H 0 and H 1 were similar.

Two FORTRAN programs were written for the analysis. The program PEXACT 

generated every possible sample of size n from a normal population that has been 

rounded according to a rounding lattice with rounding interval w and lattice 

position c. The required test statistic was calculated and the power of the test for 

rounded data was obtained under normal theory conditions. The program PSIMUL 

generated N random samples of size n from a normal population rounded to a 

specific w and c. As in the program PEXACT the power of the test for rounded 

data was obtained. Both programs also gave the mean and variance of the test 

statistic for rounded data.
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The PEXACT program required an exorbitant amount of computer time. As a 

result it was decided to use the PSIMUL program to generate the required powers. 

The PEXACT program was used only for checking the results of PSIMUL. The 

results from the simulation were based on 1 0 0 ,0 0 0  iterations, ie 1 0 0 ,0 0 0  values of 

each test statistic were generated for estimating each power under rounding. Of 

course, the results obtained for the powers from the simulation are subject to 

sampling errors. For simulations of 100,000 these will be small. The standard 

errors for the estimates of powers equal to 0.3, 0.5, 0.7 and 0.95 will be all less 

than 1.60(10)" 3.

Quality of Results

Both the PEXACT and PSIMUL programs were tested to check the validity of 

their results. For example an independent check on the results given by PSIMUL 

was provided by obtaining the powers for each test statistic when the normal 

populations were not subject to rounding. They were found to agree very closely 

with the expected results. Another check was established by comparing a selection 

of results from both PEXACT and PSIMUL programs.

4.3 Test Statistics

In this section it is assumed that; when the null hypothesis ( H 0) is satisfied, the 

normal distributions have mean zero and variance one. The non-null situation 

(H.,) was handled by adjusting the required parameters in the standard normal 

distribution to give the required power under normal theory conditions. 

Throughout this section P will denote the power of the test for samples from 

unrounded normal populations, while Pr  will be the resulting power of the test for
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samples from rounded normal populations. P r  may be regarded as the true power 

of the test when the data have been rounded. The results are presented as 

follows. For each test statistic:

(i) Before discussing the simulation results, the behaviour of the test statistic

for rounded data under H 1 will be examined.

(ii) The power values P r  for which the significance level of the test was

found acceptable under rounding, for n = 5, 10 and 25 are discussed. 

For convenience the P r  results are tabulated.

Appendix B gives a list of all the output produced by the PSIMUL program.

4.3.1 One sample t-test

Let X  = ( X X n) be a random sample of size n from a normal population X. 

Let X r  =  (XR 1  . . . . . X r h )  be the rounded sample where Xrj is the value of Xj 

corresponding to a rounding lattice with interval of width w and lattice position c. 

For testing the hypothesis H q:/i = [ iQ vs H , \\i *  n Q the test statistic is given by 

(3.3-1). Under H ,

X -  H
* “  ~ * n - .  w  <4 -3 - 1>

where tn_.,(S) is a non-central t distribution with non-centrality parameter 

5 = ~  (n~n0) and n is  the value o f  the populat ion  mean under H1 

and under rounding
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XR ~ /*o
R sR/</n

( 4 .3 - 2 )

where X r  and S r  are defined as in (3.3-2).

Under H 0, for values of r within the recommended ranges given in Table (3.3.2), 

the distribution of tR (3.3-2) closely approximated that of a t distribution. Under 

H , we would expect a similar situation, namely that the distribution of tR (4.3-2) 

will be in close agreement with a non-central t distribution for these recommended 

values of r. As the population is subject to rounding the non-centrality parameter 

will be:

^ 3  

R <rR

As the population is normal, good approximation to / i r  and o r  are given by 

Sheppard's corrections. Applying Sheppard's corrections to approximate j i r  and <j r  

we have

5r  -

Jn
< 8 ( 4 . 3 - 4 )

From (4.3-4) we would expect the distribution of tR to be in close agreement with 

a non-central t distribution, t(5R), where 6 r  is less than 5. This reduction in the 

non-centrality parameter caused by rounding will result in the test becoming less 

powerful for rounded data. If  values of r satisfy the recommendations given in 

Table (3.3.2), then it is reasonable to approximate the distribution of t R  by t (S R ) .



This can be illustrated as follows.

For various values of r within the recommended ranges given in Table (3.3.2) for 

a  = 0.05 (one tailed)

(i) the mean and variance of the distribution of tR were obtained by

simulation and compared with those for a t (5 j^) distribution.

(ii) the powers of the test for values of H , corresponding to powers of 0 .3 ,

0.5, 0.7 and 0.95 under normal theory conditions were obtained by 

simulation and compared with those given by the distribution of t (5 p).

T a b l e  4 . 3 . 1

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  t R  w h e n  n  =  1 0  a n d  

r  =  1 . 0  f o r  a  o n e  s a m p l e  t - t e s t

Power Pr ( s i m u l a t i o n ) P R ( t ( 5 R ) ) e I ' r )* V [ tR]*

P lower t a i l uppe r  t a i l lower & upper  
t a i  1

s im u l -  
a t  iont

s i m u l -  
a t  ion^

0.30 0 .279 -0 .299 0 .2 7 6 -0 .2 9 8 0.285 1.27 1.28 1.40 1.39

0.50 0 .474-0 .489 0 .4 64 -0 .4 8 9 0.474 1.87 1.87 1.52 1.55

0.70 0.663-0 .684 0 .663-0 .6 83 0.669 2.47 2.47 1.78 1.74

0.95 0.933-0 .940 0.935-0 .941 0.931 3.75 3.76 2 .38 2 .32

The mean and variance are given only for the upper tail. The values for

lower tail were very similar with a change in sign for E[tR]. 

t  The simulated values of the mean and variance differ only in their third 

decimal place for values of c.
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Table 4.3.2

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  t R  w h e n  n  =  2 5  a n d  

r  =  1 . 5  f o r  a  o n e  s a m p l e  t - t e s t

Power Pr ( s im ul a t i on ) E l t R l * V [ t R] *

P lower t a i l upper t a i l lower & upper s imu l - s lmul -
t a i l at  ion t ( « R > 1at ion K « r )

0.30 0 .259-0 .281 0 . 2 5 7 - 0 .2 84 0 .265 1 . 0 9 - 1 . 1 0 1 .09 1 . 1 2 - 1 . 1 3 1.12

0.50. 0 .435 -0 .466 0 . 4 4 3 - 0 .4 64 0 .446 1 . 6 0 - 1 . 6 1 1.61 1 . 1 4 - 1 . 1 5 1.13

0.70 0 .624 -0 .654 0 .62 3 -0 .65 1 0 .635 2 . 1 0 - 2 . 1 1 2 .12 1 . 1 9 - 1 . 2 0 1.18

0.95 0 .911 -0 .924 0 . 91 0 -0 .92 1 0 .915 3 . 2 0 - 3 . 2 1 3.21 1 . 3 2 - 1 . 3 3 1.33

The mean and variance are given only for the upper tail. The values for

lower tail were very similar with a change of sign for E[tR].

Tables (4.3.1) and (4.3.2) show a selection of results for a  = 0.05. They illustrate 

the close agreement between the simulated results and those obtained from the 

distribution of t(5R). The value of the means and variances indicate that the

distribution of t(5R) will closely approximate that of tR. This is also evident by

the close agreement of the P r  values from simulation and the distribution of U S r ) .  

To obtain the P r  values from the distribution of t (d > R ) ,  tables given by Owen 

(1965) were used.

The range in the simulated values of the mean, variance and Pr  values is caused 

by the lattice position c.

Some values of P r  were also obtained for a  = 0.01 and 0.001. Close agreement 

between the distributions of t(§R) and tR was also found for these two levels of



significance, if the value of r was in the recommended range. It is reasonable to 

conclude that if the value of r is in the recommended range given in Table (3.3.2) 

the distribution of t( 5r ) will be a good approximation to tR. For values of r 

outside the range of values given in Table (3.3.2) the simulation results showed 

that the distribution of tR became progressively unlike a non-central t distribution.

Simulation Results

In section (3.3.1) the recommended ranges of r for which the significance level of 

the test was found acceptable under rounding for a  = 0.05 (one tailed) were:

r < 0.5 when n = 5, r < 1.0 when n = 10 and r < 1.5 when n = 25. The

power of the test will be generally more affected by the rounding process at the 

maximum value of r allowed. As a result P r  values for the maximum value of r 

are of most interest. This would indicate the worst possible effect that rounding 

can have on the power of a test within the recommended range of r. For

a = 0.05, values of P r  for n = 5 at r = 0.5, n = 10 at r = 1.0 and n = 25 at

r = 1.5 are shown in Tables (4.3.1 to 4.3.3).

Table 4.3.3

Range of values of Pr  for a single sample t-test for a  = 0.05, n = 5, r  = 0.5

p
PR

lower t a i l upper t a i l

0 .30

0 .50

0.70

0.95

0 .2 94 -0 .30 6

0 .49 4 -0 .50 5

0 .6 93-0 .701

0 .9 46 -0 .94 9

0 .29 2 -0 .30 4

0 .4 91 -0 .50 2

0 .6 92 -0 .69 9

0 .9 47 -0 .94 9
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As expected, rounding has caused a reduction in the power of the test. As 

indicated by (4.3-4), as the value of r increased, the reduction in the power 

becomes greater. In general the results indicate that the four power levels are not 

adversely affected by rounding if the values of r are in the recommended ranges 

for a  = 0.05 given in Table (3.3.2).

Although in this section the power of tR test has been found by simulation, an 

estimate of this power can be obtained from tables or from an approximation for 

values of r. Assuming that values of r are within the ranges given in Table 

(3.3.1) then tables or a suitable approximation can be used to estimate the power 

Pr , which is given by P[t(5R) > tn_ 1>a]. For example, tables given by Owen 

(1965) or an approximation to the cumulative distribution of the non-central t in 

Johnson and Kotz (1970) may be used.

4 . 3 . 2  C h i - s q u a r e d  t e s t  f o r  a  v a r i a n c e

Let X  = (X 1 ,...,X n) be a random sample of size n from a normal population X. 

Let X r  = (X rp .^ X rh )  be the rounded sample where Xrj is the value of Xj 

corresponding to a rounding lattice with interval of width w and lattice position c. 

For testing H 0 :cr2 = <r2 vs H 1 :a2 *  the test statistic is given by (3.3-7). 

Under H 1

~  ^  ( 4 . 3 - 5 )

where X n -i *s a chi-squared distribution with n- 1  degrees of freedom and a? is 

the value of c 2 under H v
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Under rounding

Xr  ( 4 - 3 6 )

where S2r  is defined as in (3.3-8).

For both H 0 and H 1 the test statistics are essentially the same, each having a 

chi-squared distribution with n-1 degrees of freedom. Hence rounding will have 

the same effect on the test statistic under H 0 as for H 1. From section (3.3.2), 

we know the main effect of rounding will be to cause the distribution of the test 

statistic (4.3-5) to shift to the right. As r increases so does the size of the shift.

For any given sample of rounded data, w and c are fixed. For a e H 0 the 

degree of precision is r = w/cr0 , while for c e H 1 it is r ̂  = w /c1. Thus giving 

a relationship between r and r 1 of the form r 1 = ro'0/o‘1.

If (i)

(ii)

H ,:<j 2 = u 2 >  (r2 then

H ^cr2 = cr2 <  <r2 then

r 1 <  r

>  r

Unlike hypothesis tests for the mean ft, those concerned with the variance a 2, will 

not have a constant degree of precision. The degree of precision will be 

dependent on the 'true' value of the parameter a. For upper tailed tests (i), 

rounding will have less effect under H t than under H 0. In lower tailed tests (ii), 

the situation will be in reverse. The shift in the distribution to the right caused 

by rounding will reduce the power in the lower tail and increase it in the upper 

tail.
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Simulation Results

In section (3.3.2) the recommended range of r for which the significance level of 

the test was found acceptable under rounding for a  = 0.05 (one tailed) was

r < 0.5 for n = 5, 10 and 25. As in the t-test, the Pr  values for the maximum

value of r are of most interest. For a  = 0.05 values of P r  obtained by

simulation for n = 5, 10 and 25, at r = 0.5 are shown in Tables (4.3.4 to 4.3.6).

T a b l e  4 . 3 . 4

R a n g e  o f  v a l u e s  o f  Pr  f o r  a  c h i - s q u a r e d  t e s t  f o r  a  =  0 .0 5 , n  =  5 a n d  r  =  0 .5

-
PR

lower t a i l upper t a i l

0.30 0 .3 06 -0 .3 08 0 .30 7 -0 .3 0 8

0.50 0 .4 96 -0 .5 02 0 .50 6 -0 .50 7

0.70 0 .662 -0 .684 0 .70 4 -0 .70 5

0.95 0 .8 89-0 .92 3 0 .9 5 0 -0 .9 5 0

a = 0.05 0 .0 58 -0 .0 58 0 .0 55 -0 .05 5
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Table 4.3.5

R a n g e  o f  v a l u e s  f o r  P r  f o r  a  c h i - s q u a r e d  t e s t  f o r  a  =  0 . 0 5 ,  n  =  1 0  a n d  r  =  0 . 5

p
PR

lower t a i l upper t a i l

0 .30 0 .2 72-0 .27 5 0 .31 0 -0 .3 1 2

0.50 0 .45 7 -0 .45 8 0 .5 08 -0 .5 09

0.70 0 .64 7 -0 .64 9 0 .7 04 -0 .7 05

0.95 0 .91 7 -0 .91 9 0 .9 51 -0 .9 52

a = 0.05 0 .0 46 -0 .0 46 0 .0 56 -0 .0 56

T a b l e  4 . 3 . 6

R a n g e  o f  v a l u e s  o f  P r  f o r  a  c h i - s q u a r e d  t e s t  f o r  a  =  0 . 0 5 ,  n  =  2 5  a n d  r  =  0 . 5

P
PR

lower t a i l upper t a i l

0 .30 0 .2 66 -0 .26 8 0 .3 18 -0 .31 9

0.50 0 .4 52 -0 .45 4 0 .5 17 -0 .51 9

0.70 0 .64 7 -0 .65 0 0 .71 1 -0 .71 3

0.95 0 .92 2 -0 .92 5 0 .9 5 1 -0 .9 5 2

a = 0.05 0 .0 41-0 .04 5 0 .059-0 .061

The P r  values in Tables (4.3.4 to 4.3.6) illustrate how rounding has caused the 

power to be reduced in the lower tail and increased in the upper tail. As 

expected the difference between the P and P r  values is far greater in the lower 

than in the upper. Although in upper tail tests rounding can cause the test to be 

more powerful, there is also a corresponding increase in the significance. In 

general the results indicate that the four power levels are not adversely affected by
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rounding if values of r are in the recommended ranges for a  = 0.05 (one tailed) 

given in Table (3.3.4).

For values of r outside the range of values given in Table (3.3.4) for a  = 0.05, 

the simulation results showed how the change in power can be severe, especially in 

the lower tail. This is illustrated by the values of P r  given in Table (4.3.7) for 

n = 1 0 , where r = 1 .0 .

Table 4.3.7

Range of values of Pr  for a chi-squared test for a  = 0.05, n = 10 and r = 1.0

p
PR

lower t a i l upper t a i l

0.30 0 .1 91 -0 .1 96 0 .3 23 -0 .32 5

0.50 0 .3 25 -0 .33 9 0 .5 15 -0 .51 7

0.70 0 .47 7 -0 .5 0 2 0 .7 05 -0 .70 7

0.95 0 .76 1 -0 .80 3 0 .950-0 .951

O! = 0.05 0 .0 33 -0 .0 33 0 .06 7 -0 .0 6 8

In this section P r  values have been simulated for a = 0.05. However, the

behaviour of the test statistic under rounding is the same for all a. Thus we 

would expect the change in power caused by rounding to be similar for a  = 0 .0 1  

and 0.001. Furthermore, if the values of r are restricted to the ranges given in 

Table (3.3.2) the power of the test should not be adversely affected.
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4.3.3 Two sample t-test

Let X  = (X 1 ,...,X n) and Y  = ( Y Y n) be independent random samples of size n 

from normal populations X  and Y  with means mx> MY anc* variances <r2x> 0"2y  

respectively. Let (X r i.Y r j)  be the rounded values of (Xj,Yj) corresponding to a 

rounding lattice with interval of width w and lattice position c.

For testing the hypothesis H 0:/*x = MY ^  * * i :MX *  MY assuming cr2x  = c 2y  the 

test statistic is given by (3.3-13). Under H 1

t -  (X' Y ) , ;  d ~ t 2n_ 2 ( i )  ( 4 . 3 - 7 )

where t 2n_ 2(5) is a non-central t distribution with non-centrality parameter 

6 = 3 ^ 2 ’ ^ = " ^Y» the d i f fe re n c e  between Mx anc  ̂ My under

Under rounding

(Xr -Yr ) -  d
t R  | 2 2  ̂ 3 “ 8 )

SXR + SYRj SXR +

where X r, Y r, S 2x r  and S 2y r  are defined as in (3.3-13).

Under H 0, for values of r within the recommended ranges given in Table (3.3.6), 

the distribution of tR (3.3-13) closely approximates that of a t distribution. Under 

H , we would expect a similar situation, namely that the distribution of tR (4.3-8) 

is in close agreement with a non-central t distribution for the recommended values
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of r. Using the same approach as in the single t-test, the non-centrality 

parameter under rounding will be

« R  =  , r °  - * ■ , <  6 ( 4 . 3 - 9 )

/[' * S]

where 8 is the non-centrality parameter of the corresponding non-central t 

distribution for unrounded data. As for the one sample t-test, rounding will result 

in the test (4.3-7) being less powerful. Using an approach similar to that with 

the one sample t-test, it can be shown that if r satisfies the recommendation given 

in Table (3.3.6), then a reasonable approximation to the distribution of tR (4.3-8) 

is given by t(5R).

T a b l e  4 . 3 . 8

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  t R  w h e n  n  =  1 0  a n d  

r  =  2 . 0  f o r  a  t w o  s a m p l e  t - t e s t

Pr  ( s i m u l a t i o n ) PR( t ( 6 R» E [ ‘ r ] v [ t R]
p

lo w e r  t a i l lo w e r  t a i l s i m u l a t  i o n t<«R) s i m u l a t  i o n t  ( 6 r )

0.30 0.239-0 .253 0.248 1 . 0 4 -1 .0 8 1.06 1 . 0 9 - 1 .1 8 1.13

0.50 0 .397-0 .4 18 ‘ 0.411 1 .5 2 -1 .5 7 1.55 1 . 1 0 - 1 .3 0 1.19

0.70 0 .577-0 .597 0.589 2 .0 0 - 2 .0 9 2.04 1 . 1 2 - 1 .5 0 1.28

0.95 0. 879-0 .8 89 0.883 3 . 0 1 -3 .2 0 3.09 1 .2 1 -1 .4 1 1.30
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Table 4.3.9

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  t R  w h e n  n  =  2 5  a n d  

r  =  2 . 0  f o r  a  t w o  s a m p l e  t - t e s t

p
Pr ( s i m u l a t i o n  

lower t a i l

Pr CUSr ))  

lower t a i l

e [*r ]

s im u la t  ion t ( $ R )
v [ t R ]

s im u la t  ion t (6r )

0.30 0 .246-0 .2 50 0.253 1.00 -1 .01 1.00 1 .0 3 - 1 .0 6 1.05

0.50 0.409-0 .4 14 0.411 1 .50-1 .51 1.47 1 .0 4 - 1 .0 8 1.06

0.70 0.588-0 .5 94 0.595 1 . 9 2 -1 .9 5 1.94 1 . 0 4 -1 .1 1 1.07

0.95 0.883-0 .8 88 0.883 2 . 9 0 - 3 .0 0 2.94 1 . 0 6 - 1 .2 0 1.12

Tables (4.3.8) and (4.3.9) show a selection of results for lower tail tests where 

a  = 0.05. Results for the upper tail were very similar.

There is clearly close agreement between the simulated results and those obtained 

irom the distribution of t ( S R ) .  The values of the mean and variance indicate that 

the distribution of t(5R) will closely approximate that of tR. This is also evident 

from the close agreement between the P r  values from simulation and the 

distribution of t(S R ). To obtain the P r  values from the distribution of t(5 R ), 

tables given by Owen (1965) were used.

Some values of P r  were also obtained for a = 0.01 and 0.001. Close agreement 

between the distributions of U 6 r )  and tR was also found for these two levels of 

significance, if the value of r was in the recommended range. It is reasonable to 

conclude that if the value of r is in the recommended range given in Table (3.3.6)
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the distribution of t(Sj^) will be a good approximation to tR.

Simulation Results

In section (3.3.3) the recommended range of r for which the significance level of 

the test was found acceptable under rounding for a = 0.05 (one tailed) was 

r < 2.0 for n = 5, 10 and 25. For a = 0.05 values of Pr  obtained by simulation 

for n = 5, 10 and 25, where r = 2.0 and 1.5, are given in Table (4.3.10) for 

lower tail tests. Pr  values for upper tail tests were very similar.

T a b l e  4 . 3 . 1 0

R a n g e  o f  v a l u e s  o f  Pr  f o r  a  t w o - s a m p l e  t - t e s t  f o r  a  =  0 . 0 5  ( l o w e r  t a i l )

n -  5 n -  10 n -  25

p r  -  2 . 0 r  -  1 .5 r  -  2 . 0 r  -  1 .5 r  -  2 . 0 r  -  1.5

0.30

0.50

0.70

0.95

a  -  0.05

0 . 26 1 -0 .26 7

0 . 42 6 -0 .43 5

0 . 60 5 -0 .61 3

0 . 8 90 - 0 .8 94

0 . 05 1 -0 .05 4

0 . 2 6 6 - 0 .2 72

0 .4 44 -0 .4 47

0 . 6 3 2 - 0 .6 36

0 . 9 1 4 - 0 .9 16

0 .0 51 -0 .0 53

0 . 2 3 9 - 0 .2 5 3

0 . 3 9 7 - 0 .4 1 8

0 . 5 7 7 - 0 .5 97

0 .8 7 9 - 0 .8 8 9

0 .0 4 9 - 0 .0 5 3

0 . 2 6 5 - 0 .2 7 0

0 .4 4 1 - 0 .4 4 9

0 . 6 3 1 - 0 .6 3 8

0 . 9 1 6 - 0 .9 1 8

0 . 0 5 0 - 0 .0 5 0

0 . 2 4 6 - 0 .2 50

0 . 4 0 9 - 0 .4 14

0 . 5 8 8 - 0 .5 94

0 .8 8 3 - 0 .8 8 8

0 . 0 4 9 - 0 .0 5 0

0 .26 7 -0 .269

0 .44 4 -0 .44 8

0 .63 5 -0 .637

0 .91 1 -0 .914

0.050 -0 .051

The Pr  values are consistent across the range of n. The only exception is n = 5 

at r = 2.0, where the power levels are slightly greater than expected. This has 

been caused by the more discontinuous nature of tR, which is a result of the small 

sample size and rounding as coarse as r = 2 .0 .
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For the ranges of r given in Table (3.3.6) the distribution of tR can be 

approximated by t ( § R ) .  Tables or a suitable approximation can be used to

estimate the power Pr  [refer to section 4.3.1].

Let X  = ( X X n) and Y  = (Y 1 ,...,Y n) be independent random samples of size n 

from normal populations X  and Y  with means /*x» /*Y and variances a^, <j \  

respectively. Let (X r^ Y r j)  be the rounded values of (X^Yj) corresponding to a

rounding lattice with interval of width w and lattice position c.

For testing the hypothesis H Q:a f = a \  vs H., :<r̂  ^ the test statistic is given 

by (3.3-17). Under H ,

where Fn _ 1 > n _ 1 is an F distribution with (n - l ,n - l )  degrees of freedom.

Without any loss of generality we assume that u \  is fixed and a f  = Qa\. For 

testing the hypothesis H o : 0  = 1 vs H 1:6 *  1, under rounding the test statistic is

4 . 3 . 4  F  t e s t  f o r  e q u a l i t y  o f  t w o  v a r i a n c e s

n - 1 , n - i ( 4 . 3 - 1 0 )

( 4 . 3 - 11 )

2 2
where and SyR a r e  d e f i n e d  as i n  ( 3 . 3 - 1 6 ) .
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For any given sample of rounded data, w and c are fixed. Under H 1 the degrees 

of precision of the X r j  and Y jy  values are r 1 = w/<r2 y0 and r 2 = w /c 2

respectively. The normal populations X  and Y  have been rounded to differing

degrees of precision. This is as in section (3.3.4) where the F statistic was 

considered for differing precision in the two populations. We can again make use 

of the work of Gayen (1950) and Sheppard's corrections of the mean and variance

of the test statistic Fr  (4.3-11). These are given by

where E [F ]h t and V [F ] jj1 are the mean and variance of F (4.3-10) and 

r 1 = r 2/ y e .

The first two moments of F r  indicate that if r 1 >  r 2, then rounding will cause 

the test statistic to have an increased mean and variance. For r , <  r 2 there will 

be a decrease in the mean and variance. The change in the mean will be the 

most important factor indicating the effect of rounding on the power of the test. 

The degree to which rounding will change the mean of the distribution of F is 

controlled by the factor

1 2 + r 2
1 2 +r?'

eEf1Hi > vtF*] “
’1 2 +r? l 2 
■ ^ - 4  V12+r2

B =
1 2 + r f

(4 . 3 - 13 )
1 2 + r |

The value of B will depend on r 1 and r 2. In
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(i) lower tailed tests, as 0 <  1, r , > r 2 an(* B >  1. Rounding will

cause the distribution of F to shift to the right, resulting in a reduction 

in power.

(ii) upper tailed tests, as 0 > l , r 1 < r 2 and B <  1. Rounding will

cause the distribution of F to shift to the left, resulting in a reduction 

in power.

For a fixed level of power the shift in the distribution of F will be greatest in the 

lower tailed tests. Hence we would expect rounding to cause a greater reduction 

in the power for this type of test.

Simulation Results

In section (3.3.4) the recommended ranges of r for which the significance level of 

the test was found acceptable under rounding for a  = 0.05 (one tailed) were 

r < 1.0 when n = 5, r < 1.5 when n = 10 and 25. For a  = 0.05, values of P r  

obtained by simulation for n = 5, 10 and 25 are shown in Tables (4.3.11 to 

4.3.13).

T a b l e  4 . 3 . 1 1

R a n g e  o f  v a l u e s  o f  P r  f o r  a  F - t e s t  f o r  a  =  0 . 0 5 ,  n  =  5 ,  r  =  0 . 5  a n d  1 . 0

p

0.30

0 .50

0 .70

0.95

r  -  0 .5 r  = 1 . 0

lower t a i l upper t a i l lower t a i l upper t a i l

0 .28 5 -0 .28 7

0 .4 64 -0 .4 67

0 .6 41 -0 .6 43

0 .80 6 -0 .92 4

0 .2 94 -0 .29 6

0 .49 3 -0 .49 5

0 .69 5 -0 .69 6

0 .94 8 -0 .94 9

0 .1 9 7 -0 .2 6 8

0 .2 41 -0 .47 3

0 .2 53-0 .691

0 .2 5 4 -0 .9 4 3

0 .2 8 5 -0 .2 8 7

0 .4 7 7 -0 .4 7 8

0 .6 78 -0 .6 81

0 .9 4 3 -0 .9 4 4
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Table 4.3.12

R a n g e  o f  v a l u e s  o f  P r  f o r  a  F - t e s t  f o r  ct =  0 . 0 5 ,  n  =  1 0 ,  r  =  0 . 5 ,  1 . 0  a n d  1 . 5

p
r  -  0 .5 r  -  1 .0 r  -  1 .5

lower t a i l upper t a i l lower t a i l upper t a i l lower t a i l upper t a i l

0 .30

0.50

0 .70-

0.95

0 .28 8 -0 .29 0

0 .4 74 -0 .477

0 .66 4 -0 .66 6

0 .921 -0 .923

0 .2 93 - 0 .2 94

0 .4 90 -0 .4 92

0 . 6 90 - 0 .6 89

0 . 94 6 -0 .94 7

0 . 2 5 8 - 0 .2 6 0

0 . 4 0 9 - 0 .4 1 4

0 .5 4 5 -0 .5 8 7

0 . 6 6 9 - 0 .8 8 9

0 . 2 7 6 - 0 .2 7 9

0 . 4 6 7 - 0 .4 6 8

0 .6 6 5 - 0 .6 6 7

0 .9 3 7 - 0 .9 3 8

0 . 1 2 0 - 0 .2 8 5  

0 .1 4 2 -0 .4 8 7  

0 . 1 5 0 - 0 .7 0 0  

0 . 1 5 2 - 0 .5 4 0

0 . 2 5 4 - 0 .2 58

0 . 4 3 1 - 0 .4 36

0 . 6 3 0 - 0 .6 34

0 . 9 2 4 - 0 , 9 2 5

T a b l e  4 . 3 . 1 3

R a n g e  o f  v a l u e s  o f  P r  f o r  a  F - t e s t  f o r  a  =  0 . 0 5 ,  n  =  2 5 ,  r  =  0 . 5 ,  1 . 0  a n d  1 . 5

P
r  -  0 .5 r  -  1 .0 r  -  1 .5

lower t a i l upper t a i l lower t a i l upper t a i l lower t a i l upper t a i l

0 .30

0.50

0 .70

0.95

0 .2 91 - 0 .2 93

0 .4 81 - 0 .4 82

0 .675 - 0 .6 76

0 .93 3 -0 .935

0 . 29 2 -0 .29 5

0 . 49 0 -0 .49 2

0 .68 8 -0 .68 7

0 .94 6 -0 .94 7

0 . 2 6 3 - 0 .2 6 7

0 . 4 3 0 - 0 .4 3 4

0 . 6 0 4 - 0 .6 1 0

0 .8 7 4 - 0 .8 8

0 . 2 7 5 - 0 .2 7 8

0 . 4 6 1 - 0 .4 64

0 . 6 5 8 - 0 .6 5 9

0 . 9 3 2 - 0 .9 34

0 . 2 0 8 - 0 .2 5 0

0 .3 0 7 - 0 .4 1 4

0 .4 01 -0 .5 91

0 . 5 1 5 - 0 .9 0 4

0 . 2 4 1 - 0 .2 53

0 . 4 1 4 - 0 .4 24

0 . 6 0 8 - 0 .6 1 8

0 . 9 0 5 - 0 .9 73

As expected the P r  values show that the effect of rounding is greatest in the 

lower tail. For the maximum value of r allowed in the recommended range of r, 

the power can be considerably reduced. At these maximum values of r, the lattice 

effect c can result in the P r  values having a wide range. For fixed r, increasing
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the size of n was seen to reduce the effect of rounding on the power. For 

example comparing the P r  values for r = 1.0, n = 5, with those for r = 1.0, 

n = 1 0  clearly shows this.

The values of P r  have indicated that the power of the F—test can be adversely 

affected by rounding if the recommended ranges of r for a  = 0.05 given in Table 

(3.3.8) are applied. The results from the simulation suggest that a better 

recommendation for ot = 0.05, which would give more acceptable levels of power, 

is:

n *= 5 r  < 0 .5

n = 10 r  < 0 .5

n = 25 r  < 1 .0

In this section values of Pr  have been generated only for one tailed tests where

a  = 0.05. However, the results clearly indicate that the recommended ranges of r 

in Table (3.3.8) are unsuitable with respect to the level of power. In the light of 

the power results for a  = 0.05, 'safer' recommended values of r that may be 

regarded as acceptable for n = 5, 10 and 25 are given in Table (4.3.14).

4.23



Table 4.3.14

V a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  n  =  5 ,  

1 0  a n d  2 5  i n  a  F - t e s t  f o r  e q u a l i t y  o f  t w o  v a r i a n c e s

One t a i l e d Two 
t a i l e d  

5 .0<*(%) 0 . 1 / 1 0 /5 . 0 1 . 0 / 5 . 0 5. 0

n LT UT LT UT LT UT

5 r < 0 .5 r  < 0 .5 r < 0 .5 r  < 0 .5 r < 0 .5 r  < 0 .5 r  < 0 .5

1 0 r < 0 .5 r  < 0 .5 r < 0 .5 r  < 0 .5 r < 0 .5 r  < 0 .5 r  < 0 .5

25 r < 1 . 0 r  < 1 . 0 r < 1 . 0 r  < 1 . 0 r < 1 . 0 r  < 1 . 0 r  < 1 . 0

4 . 3 . 5  A n a l y s i s  o f  V a r i a n c e  ( A N O V A )

In the one-way ANOVA, for testing the hypothesis H  0 raj = 0 vs H 1 *  0 

(i= l,...,k ), the test statistic is given by (3.3-25). Under H 1

Q , / ( k - l )

F = Q?/(n k -k )  ~ Fk - i , k ( n - i ) W  ( 4 . 3 - 1 5 )

where Fjc_ 1 is a non-central F distribution with k-1 and k (n -l)  degrees

/nXcq
o f freedom and n o n - c e n t r a l i t y  parameter <p = I - 2 where a j = l i - m

and /x and /xj respectively the overall mean and ith population mean.

Let all the k samples be drawn from normal populations which have been rounded 

according to the same rounding lattice, with rounding interval w and lattice position 

c. The test statistic under H 1 for rounded data is
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^ Q i R / ( k - D  
* *  Q2R/(n k -k ) (4 . 3 - 16 )

where Q , r  and Q 2r  are defined as in (3.3-26).

Under H 0 for values of r within the recommended ranges given in Table (3.3.10) 

the distribution of F r  (3.3-26) closely approximated that of an F  distribution. 

Under H 1 we would expect a similar situation. Namely that the distribution of F r  

(4.3-16) will be in close agreement with a non-central F  distribution for the 

recommended values of r. As the normal populations are subject to rounding the 

non-centrality parameter will be

where OjR is the ith sample effect under rounding and a 2R the variance of the 

rounded normal populations. The effect ajR is simply the difference ^ r - ^ r ,  

where / i r  and are respectively the overall mean and ith population mean for 

rounded data. By applying Sheppard's corrections to approximate /h r ,  ^ r  and 

c t 2 r ,  an estimate of <^r  is given by:

n  I  ( n - f i i ) 2
i

< <P ( 4 . 3 - 1 7 )
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Hence from (4.3-17), we would expect under H n the distribution of F r  to be in 

close agreement with a non-central F distribution, F k -i ,k(n-i)(pR)> where PR is 

less than <p. This reduction in the non-centrality parameter caused by rounding 

will result in the one-way ANOVA becoming less powerful for rounded data. 

Using an approach similar to that for the t-tests, it can be shown that if the 

value of r satisfies the recommendation given in Table (3.3.10), then the 

distribution of F r  is approximate to F k -i ,k (n - i/^ R ) ' Table (4.4.15) and (4.4.16) 

show a selection of results. They illustrate the close agreement between the 

simulated results and those obtained from the distribution of F k -i ,k(n-i)(pR)- 

The values of the mean and variance indicate that the distribution of Fr  will 

closely approximate that of F k -i ,k(n-i)(pR)* This is also evident from the close 

agreement of the Pr  values for ot = 0.05, from the simulation and the non-central 

F distribution. To obtain the Pr  values from the distribution of F k -i ,k(n-i)(pR ) 

tables given by Tiku (1967) were used.

T a b l e  4 . 3 . 1 5

R a n g e  o f  v a l u e s  o f  Pr  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  Fr  f o r  k =  5 ,  n  =  5  

a n d  r  =  2 . 0  i n  a  o n e - w a y  a n a l y s i s  o f  v a r i a n c e

p
Pr  ( s i m u l a t i o n ) Pr I F ( p r ) ] E [ F r ]

s i m u l a t  i on F ( p r )

V [ F r ] 

s i m u l a t  i on f ( p r )

0 . 3 0 0 . 2 1 8 - 0 . 2 4 0 0 . 2 4 8 2 . 0 4 - 2 . 0 9 2 . 0 7 2 . 3 5 - 2 . 5 3 2 . 4 4

0 . 5 0 0 . 3 6 7 - 0 . 3 8 4 0 . 3 7 8 2 . 7 7 - 2 . 8 0 2 . 7 7 3 . 6 7 - 3 . 9 8 3 . 7 1

0 . 7 0 0 . 5 4 4 - 0 . 5 6 1 0 . 5 4 8 3 . 6 0 - 3 . 6 8 3 . 6 1 4 . 9 4 - 6 . 3 8 5 . 5 0

0 . 9 5 0 . 8 5 6 - 0 . 8 6 3 0 . 8 5 5 5 . 7 1 - 5 . 8 8 5 . 9 0 9 . 1 1 - 1 2 . 0 1 1 1 . 1 0
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Table 4.3.16

R a n g e  o f  v a l u e s  o f  Pr  a t  a  =  0 . 0 5 ,  m e a n  a n d  v a r i a n c e  o f  F R  f o r  k =  3 ,  n  =  2 5  

a n d  r  =  2 . 0  i n  a  o n e - w a y  a n a l y s i s  o f  v a r i a n c e

p
Pr  ( s i m u l a t i o n ) p r I f ( ^ r ) 1 E [ F r )

s i m u l a t  io n F ( ^ r )

V [ F r ] 

s i m u l a t  i o n f ( ^ r )

0 . 3 0 0 . 2 3 1 - 0 . 2 3 8 0 . 2 3 3 2 . 1 3 - 2 . 1 6 2 . 1 4 3 . 5 0 - 3 . 6 7 3 . 5 8

0 . 5 0 0 . 3 8 3 - 0 . 3 9 0 0 . 3 8 5 2 . 9 8 - 3 . 0 4 3 . 0 0 5 . 3 6 - 5 . 7 2 5 . 5 4

0 . 7 0 0 . 5 6 0 - 0 . 5 7 0 0 . 5 6 9 4 . 0 7 - 4 . 1 7 4 . 1 3 7 . 8 2 - 8 . 4 9 8 . 1 6

0 . 9 5 0 . 8 6 5 - 0 . 8 7 1 0 . 8 6 9 7 . 0 8 - 7 . 2 9 7 . 1 8 1 4 . 8 3 - 1 5 . 6 4 1 5 . 6 4

Some values of PR were also obtained for a  = 0.01 and 0.001. Close agreement 

between the distributions of F k -i ,k(n-i)(V ’R) an<̂  Fr  was also found for these two 

levels of significance, if the value of r was in the recommended range. It is 

reasonable to conclude that if the value of r is in the recommended range given in 

Table (3.3.10) the distribution of will be a good approximation to FR.

Simulation Results

In section (3.3.5) the recommended ranges of r for which the significance level of 

the test was found acceptable under rounding for a = 0.05 were r < 1.5 when 

N = 15 and r < 2.0 when N > 16. For ot = 0.05 values of PR were obtained by 

simulation for a selection of N and r values. Table (4.3.17) contains some of 

these results.
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Table 4.3.17

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5  f o r  k  =  3 ,  n  =  5 ,  2 5  a n d  k  =  5 ,  n  =  5  i n  a  

o n e - w a y  a n a l y s i s  o f  v a r i a n c e

kxn 3x5 3x25 5x5

P r  -  1 . 5 r  -  2 . 0  r  -  1 . 5 r  -  2 . 0  r  -  1 . 5

0 . 3 0

0 . 5 0

0 . 7 0

0 . 9 5 .

0 . 2 4 7 - 0 . 2 5 0

0 . 4 2 1 - 0 . 4 2 3

0 . 6 0 9 - 0 . 6 1 1

0 . 9 0 4 - 0 . 9 0 5

0 . 2 3 1 - 0 . 2 3 8  0 . 2 5 6 - 0 . 2 5 9  

0 . 3 8 3 - 0 . 3 9 0  0 . 4 2 6 - 0 . 4 3 1  

0 . 5 6 0 - 0 . 5 7 0  0 . 6 1 7 - 0 . 6 2 0  

0 . 8 6 5 - 0 . 8 7 1  0 . 9 0 4 - 0 . 9 0 6

0 . 2 1 8 - 0 . 2 4 0  0 . 2 4 9 - 0 . 2 5 3  

0 . 3 6 7 - 0 . 3 8 4  0 . 4 2 3 - 0 . 4 2 6  

0 . 5 4 4 - 0 . 5 6 1  0 . 6 1 1 - 0 . 6 1 4  

0 . 8 5 6 - 0 . 8 6 3  0 . 9 0 0 - 0 . 9 0 3

Although Table (4.3.17) shows only a selection of the Pr  values obtained, they

faithfully represent the entire body of results.

For the ranges of r given in Table (3.3.10) the distribution of Fr  can be

approximated by F^.., fk(n-i)faR)* Hence tables or a suitable approximation to

the non-central F distribution can be used to estimate the power Pr . For

example tables given by Tiku (1967) or an approximation to the cumulative

distribution of the non-central F may be obtained by a method outlined by Norton 

(1983).

From section (3.3.5) the significance levels in a one-way or two-way ANOVA

were found to be very similar for rounded data. We would expect the same

situation in the case of the power. For the simulations (Appendix B) the Pr

values were in close agreement for the one and two-way ANOVA.
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4.3.6 Compensation for Rounding

The chi-squared test statistic has been found to be the least robust to rounding. 

Both the significance level and power of the test were found to be very sensitive 

to rounding. This sensitivity was a result of the mean and variance of the test 

statistic being increased for rounded data. The increases in the mean and variance 

are approximately of the same order for all n; thus it may be possible to use a 

standard correction to the test statistic to compensate for the rounding effect. If 

the denominator in (3.3-8) is changed to c 2 + w 2/12 then the adjusted test 

statistic, denoted by x 2C

(n - l )S R
2 , w 2  

O'o + 1 2

( 4 . 3 - 1 8 )

From (3.3-10) the approximate mean and variance of the distribution of x 2C are 

respectively (n -1 ) and 2 (n - l) .

This adjustment to the test statistic will compensate for the effect of rounding. 

For large enough n (4.3-18) will be in closer agreement with a chi-squared 

distribution than is (3.3-8). For small n, the distribution of x 2C may have too 

many discontinuities and the adjusted test statistic may not be very effective in 

compensating for the rounding process. To study the effectiveness of the adjusted 

test statistic, values of or  and Pr  were obtained by simulation for various 

combinations of (n,r).
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Simulation Results

For n < 5 the distribution of x 2C was f°und to be in poor agreement with a 

chi-squared sistribution. The probability of x 2C ~ 0 was st^  high for this size of 

n and resulted in the a  values being severely distorted by rounding. For n >  5 

the x 2C test statistic gave a closer agreement between the a  and o r  values than 

did x 2R (3.3-8). Table (4.3.18) shows a selection of results. In this table the 

values of o r  for x2c and X2R test statistics are compared.
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Table 4.3.18

Minimum and maximum values of g r (% ) found for 11 values of c in the x 2R and 

X2c  test statistics

n = 1 0

a(°/o) lower t a i l a(°/o) upper t a i l

r
tes t

s t a t i s t i c 0 . 1 1 . 0 2.5 5 .0 5 .0 2 .5 1 . 0 0 . 1

1.5 X2C min 0.05 0 .58 0.58 2.72 3.06 2.19 0 .69 0.03

max 0.24 2 . 1 1 2 . 1 1 5.43 3 .76 2 .54 0.95 0.07

X 2R min 0.05 0.58 0.58 0.58 11.58 4 .76 2 .52 0.40

max 0.24 2 . 1 1 2 . 1 1 2 . 1 1 12.84 6 .04 2 .77 0.43

1 . 0 x 2c min 0.06 0 .99 3 .32 5.04 5.03 2 . 2 1 1.04 0.09

max 0 . 1 0 1.07 3.33 5.26 5.18 2.35 1.06 0.09

- x 2r min 0.06 0.44 2.05 3.32 6.72 3.74 1.75 0.23

max 0.09 0.60 2.47 3.33 6.75 3 .77 1.77 0.23

n = 25

a(°/o) lower t a i l a(°/o) upper t a i l

r
tes t  

s ta t  i s t  ic 0 . 1 1 . 0 2 .5 5 .0 5 .0 2 .5 1 . 0 0 . 1

1.5 X 2C min 0 . 0 2 0.33 2 .13 3.68 4.80 2 .27 0 .85 0.09

max 0 . 2 0 0.95 2.90 4.81 5.21 2.47 0.94 0 . 1 0

x 2r min 0 . 0 0 0.06 0.33 1.31 15.24 9.71 4.81 0.85

max 0.06 0.37 0.95 2.17 15.46 10.72 5.21 0.94

1 . 0 x 2c min 0.09 0.09 2 . 2 2 4.83 4.94 2 .36 0.90 0.09

max 0.13 0.98 2.55 5.21 5.12 2 .39 1.04 0 . 1 1

x 2r min 0.05 0.57 1.43 2 . 8 8 8.74 5 .04 2 .23 0.30

i max 0.07 0.63 1.72 3.17 9 .39 5 .34 2.35 0.32
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Table (4.3.18) shows that the difference between a and o r  values is less for the 

X2c  test statistic. This is especially true in the upper tail. As n increased in 

value, x 2C became a better approximation to a chi-squared distribution with n-1 

degrees of freedom. This is apparent by comparing the values of a  and aR for 

n = 10 and 25 in Table (4.3.18).

In using the adjusted test statistic x 2C> ^ was possible to extend the range of r 

for which the significance level of the test will be acceptable. Table (4.3.19) 

shows the values of r for which or  was found acceptable for n = 5, 10 and 25.

T a b l e  4 . 3 . 1 9

T h e  v a l u e s  o f  t h e  d e g r e e  o f  p r e c i s i o n  r  t h a t  m a y  b e  r e g a r d e d  a s  a c c e p t a b l e  f o r  

n  =  5 ,  1 0  a n d  2 5  i n  a  c h i - s q u a r e d  t e s t  f o r  a  v a r i a n c e  u s i n g  t h e  x2C t e s t  s t a t i s t i c

One t a i l e d  tes t Two 
t a i l e d  

tes t

a(°/o) 0 . 1 / 1 . 0 / 5 . 0 1 . 0 / 5 . 0 5 .0 5 .0

n LT UT LT UT LT UT

5 r  < 0 .5  r  < 0.25 r  < 0 .5  r  < 0.25 r  < 0 .5  r  < 0 .5 r  < 0 .5

1 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0

25 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0  r  < 1 . 0 r  < 1 . 0

In comparing Table (3.3.4) and (4.3.19), using x 2C a^ows the range of r to be 

extended to 1.0 for n = 10 and 25. For x 2C» values of P r  are shown in Table 

(4.3.20) for a  = 0.05 (one tailed), for r = 1.0 where n = 10 and 25. These 

values of Pr  indicate what loss in power to expect if the maximum recommended 

value of r is used for n = 10 and 25. For lower values of r, the power
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reduction will be less.

T a b l e  4 . 3 . 2 0

R a n g e  o f  v a l u e s  o f  P r  a t  a  =  0 . 0 5  f o r  t h e  t e s t  s t a t i s t i c s  \ 2C  ^ o r  r  =  1 . 0  w h e r e  

n  =  1 0  a n d  2 5

n = 1 0  r = 1 . 0 n = 25 r = 1 . 0

p 1 <Dwer t a i  1 upper ta i  1 lower t a i  1 upper t.ai 1

0 30 0 .237- - 0 .274 0 276-- 0 .278 0 .259- - 0 .274 0 270-- 0 .275

0 50 0 .389- - 0 .446 0 464-- 0 .465 0 .424- - 0 .444 0 457-- 0 .459

0 70 0 .554- - 0 .614 0 662-- 0 .663 0 .604- - 0 .619 0 654-- 0 .657

0 95 0 .836- - 0 .882 0 936-- 0 .937 0 .880- - 0 .883 0 932-- 0 .933

4 . 4  D i s c u s s i o n  a n d  C o n c l u s i o n s

In Chapter 3 recommended ranges or r were given for n = 5, 10 and 25, in 

which the significance level of the test may be considered acceptable. It is natural 

to investigate what the power of the test will be using these recommendations. 

Although the power of each test was considered mainly for a  = 0.05, it provided a

clear indication of the level of power we should expect under rounding.

For hypothesis tests concerned with means, rounding resulted in a loss of power. 

The main result of this section was that by adjusting the non-centrality parameter 

in the non-central distribution, an estimate of the power under rounding could be 

obtained. For values of r for which the significance level was found acceptable,

this estimate of power for rounded data was found to be reasonably accurate.

This estimate of power can be useful in practice, in providing an idea of the 

expected loss in power under rounding.
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For the one sample t-test, for values of r for which the significance level was 

found acceptable, the power is still of an appreciable magnitude. However for the 

two sample t-test, one and two-way analysis of variance, a lower value of r than 

that recommended for the significance level may be necessary to limit the loss in 

power caused by rounding. Although for the analysis of variance only two layouts 

were considered, the results suggest the likely level of power to expect with such 

statistical procedures for rounded data.

Unlike hypothesis tests for means, those concerned with variances will not have a 

constant degree of precision r under H 1. This was found to make the power 

more sensitive to rounding. With the chi-squared test its lack of robustness to 

rounding meant that acceptable levels of significance were obtainable only for low 

values of r. For these low values of r, the power was not found to be adversely 

affected for a = 0.05. In general, the results indicate that the chi-squared test 

will be only slightly less powerful for values of r for which the significance level 

was found acceptable. However for the F-test, the reduction in the power could 

be severe for values of r for which the significance level was found acceptable. In 

order to maintain a more suitable level of power the recommended ranges for r 

had to be reduced.

The chi-squared test could be made more robust to rounding by making a simple 

adjustment to the test statistic. Test of hypothesis regarding the value of a 2 

should be based on the adjusted test statistic, x 2C- using this adjusted test

statistic it was possible to extend the range of r for which the level of significance 

of the test is acceptable. However by extending the range of r there will be a 

corresponding loss in power.
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In this chapter we have confined our attention to values of n < 25. However the 

power levels for n = 25 provide a good indication of what level of power to 

expect for larger sample sizes.

The results of Chapter 4 have provided a 'good feel' for the robustness of the 

tests considered in Chapter 3, with respect to power. More importantly we now

know what level of power a test may have for the values of r for which the 

significance level was found acceptable.
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CHAPTER 5

TH E EFFECT OF ROUNDING ON TH E SIGNIFICANCE LEVEL  

AND POWER OF CERTAIN NORMAL TEST STATISTICS FOR  

NON-NORMAL DA TA
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5.1 Introduction

In Chapters 3 and 4 the effect of rounding on the significance level and power of 

certain test statistics was considered, for an underlying normal population. 

However in many situations the statistical tests in Chapter 3 must be used when 

the assumption of normality is invalid. There has been much research on the 

robustness of these tests when the population is non-normal. To date there has 

been no study of the possible effects of rounding on a statistical test when the 

assumption of normality is invalid. The following illustrates how non-normality 

may increase the effect of rounding on a statistical test.

Chapter 2 showed that the normal distribution is very robust to rounding with 

respect to its moments. For example the maximum error in the population 

moments ft, a 2, y/31 and |S2 are less than 1 0 “ V ,  0 .2 (7 , 1 0 “ 2 and 1 0 ” 1

respectively for rounding as coarse as r = 1.5, when the population is-normal. 

However, for non-normal populations the situation can change, as shown by the 

contour diagrams in Chapter 2. Increased skewness and kurtosis in a population 

can result in a greater rounding error in the population moments. The moments 

of the sampling distribution of a test statistic depend on the moments of the 

parent population. Any change in the population moments caused by rounding will 

directly affect the sampling distribution of the test statistic. For example how will 

this greater effect on the moments of non-normal populations caused by rounding 

be reflected in the significance level of a test? This chapter aims to indicate how 

much 'non-normality' can be allowed without the effect of rounding seriously 

distorting the significance level and power of the tests in Chapter 3.
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Chapter 3 considered only test statistics where the population is assumed to be 

normal. However in section (5.4) a paper by Tricker (1984a) is reviewed, which 

investigates the effect of rounding on a test statistic where the population is 

assumed to be exponential.

5.2 Description of the Investigation

As in Chapter 2, the family of Johnson distributions is taken to represent the 

family of non-normal distributions, and we use the same set of 29 Johnson

distributions as were used by Pearson and Please (1975). The four added to this 

set in Chapter 2 to represent U  shaped distributions will not be considered. This 

study deals with only moderate departures from normality; where the population is 

very non-normal one may argue that such tests as those in Chapter 3 should not 

be used.

In this present study the significance and power level were evaluated for each 

statistical test in Chapter 3. The following results were obtained by simulation, 

with sample sizes of n = 10 and 25:

(i) for each Johnson distribution, the significance level of the test under

rounding was evaluated for values corresponding to the lower and upper 

5% points under normal theory conditions, with no rounding;

(ii) for a selection of Johnson distributions, the power of the test statistic

under rounding was evaluated for values of the alternative hypothesis H 1 

corresponding to powers 0.3 and 0.7 under normal theory conditions 

with o! = 0.05.
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The usual lattice positions c = -0 .5, -0.4, ..., 0.4, 0.5 were considered for each 

value of r. These eleven lattice values will indicate the effect of the position of 

the rounding lattice on the significance level and power of a test.

The value of a = 0.05 was chosen as this is normally the first level of significance 

at which the null hypothesis is rejected. To keep the computing within reasonable 

bounds, the study of the power was restricted. The power was evaluated at a 

'low' and 'high' level for a  = 0.05 for a selection of Johnson distributions.

Sample sizes larger than 25 were not considered, as there is then a reasonable 

chance that non-normality can be detected and some corrective action taken.

The emphasis of this chapter is to provide guidance on what happens to the

significance level and power of the tests in Chapter 3, if the values of r which

were recommended for normal populations are applied when the population is 

non-normal. Essentially how far can the degree of precision r recommended for 

normal populations be applied to the non-normal situation? Hence the values of r 

considered will be in the vicinity of those which were recommended for sample 

sizes 10 and 25, when the population is normal. In this study the following 

approaches were used:

(a) The effect of rounding on the significance level of a test

(i) Approximations to the sampling moments of the test statistics were

examined to provide a rough outline of what characteristics are to be

expected when sampling from rounded non-normal data.

(ii) Estimation of the sampling distribution of the test statistic for rounded 

data was obtained by Monte Carlo methods.
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(b) The effect of rounding on the power of a test

As in Chapter 4 for normal populations, only Monte Carlo methods were used to 

estimate the power of a test for rounded non-normal data.

In this investigation the significance level and power for each test for samples 

drawn from unrounded Johnson distributions were also obtained. Pearson and 

Please (1975) in their work on the robustness of normal test statistics for 

unrounded data, considered the same set of Johnson distributions used in this 

study. They used simulation to consider the effect of non-normality on the 

significance level of a test statistic. The results were presented in the form of 

charts.

In addition to test statistics investigated by Pearson and Please, the one and 

two-way analysis of variance are considered. Also the robustness of a test statistic 

is looked at from both a level of significance and power aspect for unrounded 

data.

To perform the necessary analysis two previous FORTRAN programs were adapted. 

The programs SIMUL and PSIMUL were modified to allow samples to be drawn 

from Johnson distributions as well as from normal distributions. As the 

significance and power level for each test for samples drawn from unrounded 

Johnson distributions were also required, a further program USIMUL was written.

The results of the SIMUL, USIMUL and PSIMUL programs were based on 10,000 

iterations, which gave adequate precision for the 0.05 level of significance, and the 

0.3, 0.7 levels of power. Of course the results obtained by simulation will be
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subject to sampling errors. However, these errors will be small for 10,000 

iterations.

Quality of Results

The SIMUL and PSIMUL programs were tested to check validity of their results. 

As both programs were adapted from earlier programs only the generation of 

deviates from the Johnson distributions had to be checked. The USIMUL program 

was checked by comparing the results with those of Pearson and Please (1975).

Although their results were in diagrammatic form, there was no apparent 

disagreement between these results and those given by the USIMUL program. A  

final check was established by comparing the results from SIMUL and PSIMUL

programs, where the Johnson distributions are not subject to rounding, with the 

results from the USIMUL program.

5.3 Test Statistics

In this section it is assumed without any loss of generality that in the null case 

(H 0) the Johnson distributions have a mean of zero and variance one. The 

non-null case (H 1) was handled by adjusting the parameters in the standardised 

distributions to give the required power under normal theory conditions. 

Throughout this section a  will denote the level of significance of the test for

samples drawn from normal populations subject to no rounding, while a j  and ojr

will be the resulting levels of significance of the test where the samples have been 

drawn fron non-rounded and rounded Johnson populations respectively. Thus a j  

and a jR  are simply the probabilities that the test statistic fell above or below the 

a  significance level limits for non-rounded and rounded data respectively. A

5.6



similar notation will be used for the power of the test. P will denote the level of 

power for samples drawn from normal populations subject to no rounding, while P j 

and Pj r  will be the resulting power of the test where the samples have been 

drawn from non-rounded and rounded Johnson populations respectively.

The results are presented as follows for each test statistic:

(i) Before discussing the results, approximate expressions are given for the

moments of the test statistic for a Johnson population that has been

subject to rounding. These approximate moments help to indicate any 

possible changes in the distribution of the test statistic under rounding.

(ii) The level of significance o j r  will be discussed for a  = 0.05, where the 

sample sizes are n = 10 and 25.

A  diagram will show the values of (/3.,,|32) that may be regarded as

acceptable for a given value of r at n = 10 and 25, where a  = 0.05.

When using a single tailed test, values of ({3 ,,02) will be considered

acceptable if the significance level for unrounded normal data is 5%, 

while for rounded Johnson data with degree of precision r, o j r  lies 

between 3% -1% . The values of r considered will be those that were 

recommended when the underlying population is normal (Chapter 3). 

Such a diagram allows the reader to know the range of (3, and |S2 

values that may be used for the values of r recommended for normal 

populations, while keeping the level of significance within reasonable 

bounds. Essentially the diagrams provide guidance on how far the 

degree of precision r recommended for normal populations can be
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applied to the non-normal situation, with respect to the level of

significance.

(iii) The power values Pj r  will be discussed for a selection of Johnson

distributions for n = 10 and 25, where a = 0.05. The main purpose of 

this section will be to investigate if the level of power for values of 

(/31 , 0 2) which gave a level of significance o j r  between 3%-1%  is

adversely affected by rounding.

Appendix C contains tables showing the values of

(0 ^JR f° r entire (/St »/32) plane f° r n = 10 and 25 where a = 0.05;

(ii) Pj r  for a selection of Johnson distributions for n = 10 and 25, where

a  = 0.05.

These tables will allow the reader to determine the general trend of what happens 

to the significance and power level for a test for non-normal data which has been 

subject to rounding. For a list of all output produced by the SIMUL, PSIMUL 

and USIMUL programs in the study, refer to Appendix C.

5.3.1 One sample t-test

Let X  = ( X ,  Xn) be a random sample of size n from a Johnson population X,

with shape parameters and /32. Let Xr  = (Xp^.....Xp^) be the rounded 

sample where Xrj is the rounded value of Xj corresponding to a rounding lattice

with an interval of width w and lattice position c. For testing the hypothesis

H 0: ft = n Q the t-test statistic is given by
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X-Mo
t = s7yH <5 -3- ^

where X  ~ J( y/3n ,(32) ie a Johnson distribution with shape parameters S(3, and |3

As we have assumed that the Johnson distributions have mean zero and variance 

one, then under rounding (5 .3 -1 ) becomes

-  S l f e  ( 5 . 3 - 2 )

w h e r e  X  -  I  S *  -  J i .  I  ( X j - X ) * ,  X R  =  I  * £ 1 , s |  -  ^  I  ( X R 1 - X R )

To be able to use Geary (1947) results to obtain an approximation to the moments 

of tR as in section (3 .3.1), the population means of Xr  and X must be equal. 

As illustrated in Chapter 2 for non-normal populations the means of Xr  and X 

are often unequal. However, there are methods which can be used to find the 

approximate mean and variance of some function of random variables. [Details of 

this method are given in Appendix C]. Approximations to the first two moments 

of tR (5 .3 -2 ) for large n are given by:

^  f 1 +  I  -  27H

2
1 Mr Mr

V [ t R] » 1 + 2  <02r - 1 )  -  20lR ( 5 . 3 - 3 )4 ' " 2 *  * /  ffR

where ; * r ,  < t 2 r ,  ^ r  and /32r  are the rounded parameters of X r . [Proof in 

Appendix C].

If  the Johnson populations are not subject to rounding we have from Geary (1947)
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E [ * ]  "  -  27H -  0 ( n ‘ 3 / 2 )

( 5 . 3 - 4 )

V [ t ] - 1 + 5  (8+7(3, ) /n  + 0 (n -= )  

where ft, a 2, y/31 and (32 are the parameters of X.

Although (5.3-3) and (5.3-4) indicate that the variance of the test statistic will 

change under rounding, the change in the mean is more important, as it will cause 

the greatest effect on the significance levels. As we have set ft = 0 under H 0, 

/ar represents the change in the population mean due to rounding. It is this value 

of / a r  that is crucial in determining how the mean alters. The contour diagram 

Figure (2.2.10) shows that the change will be greatest in the top right hand corner 

of the (j3.,,|32) region, where the departure from symmetry is greatest. Hence we 

would expect the significance level a j  to be more affected by rounding in the top 

right hand corner of the (j3n,/32) region. This effect will not diminish as n

increases.

Simulation Results : Significance Levels

In Appendix C, Tables (C .l) and (C.2) show the range in values of a j  and o j r  

when n = 10 and 25, for a  = 0.05. The results presented in these two tables

provide a good evaluation of what happens to the significance level of a one

sample t-test for rounded non-normal data. The results speak for themselves and 

the reader may determine the general trend of what happens to the level of 

significance for a given r over the region.

For Johnson distributions not subject to rounding, the simulation results are in 

agreement with the charts of Pearson and Please (1975). In Table (C .l)  when
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n = 10, the results show how increasing population skewness draws the lower and 

upper tail a j  values in opposite directions. For n = 25 (Table C.2) the shift in 

the significance levels is much less than for n = 10. For neither value of n does 

the population kurtosis /32 produce much effect.

As suggested by (5.3-3) the greatest change in the a j  values caused by rounding is 

in the top right hand corner of the (j31}/32) region. This coincides with the 

region where the rounding error in the population mean is largest and departure 

from symmetry in the distribution X  greatest. Increasing n to 25 generally results 

in rounding having less effect on the a j  values, except in the top right hand 

corner of the ( jS ,,^ )  region, where the effect is slightly greater. This suggests 

that where the departure from symmetry is severe, increasing the sample size may 

not diminish the effect of rounding; in fact it may increase it. Generally for 

increasing skewness the lattice effect (c) caused the range in the ckjr values to 

widen. This was especially noticeable for |S2 < 2.4 and > 0.6.

In a normal population, with a  = 0.05 (one tailed) the recommended ranges of r 

for n = 10 and 25 were respectively r < 1.0 and r < 1.5. For values of r in 

these ranges, Figures (5.3.1) and (5.3.2) show the values of (/31 ,/32) where the a j  

and a jR  values lie between 3% -1% . The figures are so presented to allow a 

comparison to be made between that region of (/3j,/32) plane for which the 

significance level lies between 3 % -l%  for unrounded data and that region of 

(/31}/32) plane for which the significance level lies between 3%-7%  for rounded 

data. This provides guidance on how far the degree of precision r recommended 

for a normal population can be applied to non-normal situations, without making 

the test less robust with respect to the level of significance.
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Figure S.3.1: Region in plane where a j[J ] and o ;j r ( X )  values lie

between 3%-7%  in a one sample t-test for n = 10 and a  = 0.05 

(one tailed), where r = 1.0 and 0.5.
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Figure 5.3.2: Region in (/5t ,/52) plane where a j  [J] and cxjr (X ) values lie

between 3% -7%  in a one sample t-test for n = 25 and a  = 0.05 

(one tailed), where r = 1.5 and 1.0.
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The striking feature from Figures (5.3.1) and (5.3.2) is the similarity of the regions 

in the (/S1 ,/S2) plane where a j  and lies between 3% -7% . For both n = 10

and 25, where r < 1.0 these regions are almost identical.

Simulation Results : Power Levels

In Appendix C Table (C.3) shows the range of values of P j and Pj r  when

n = 10, for P = 0.3 and 0.7, where |S2 = 2.0, 2.4 and 4.4.

The power of the one sample t-test has been studied by such authors as Ghurye 

(1949), Srivastava (1958) and Posten (1978), the main conclusions being that 

positive skewness causes a reduction in power in the region of low power and

increase in power in the region of high power, for upper tail tests. For lower tail 

tests there is a reverse in the situation. The results in Table (C.3) for Johnson 

distributions not subject to rounding exhibit this pattern.

The changes in the P j values due to rounding were similar to those found for the 

significance levels a j.  The greatest change occurred in the top right hand corner 

of the (/S, ,/32) region. For n = 25 the power levels P j and Pj r  were of similar 

magnitude as for n = 10 except in the region |S2 < 2.4 and y/31 > 0.6. In this 

region for r > 1.0 the distortion in the P j values caused by rounding was 

noticeably greater for n = 25. In general the results indicated that for n = 10, 

r < 1.0 and n = 25, r < 1.5 for values of (jS^jSj) which gave levels of

significance cxjr between 3% -7% , values of P j are not adversely affected by

rounding. Table (C.3) shows a selection of power levels Pj r  for n = 10.
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5.3.2 Chi-squared test for a variance

Let X  = ( X X n) be a random sample of size n from a Johnson population X, 

with shape parameters y/3, and |S2. Let Xr  = (Xr , . .. . .X r h ) be the rounded 

sample where Xrj is the rounded value of X, corresponding to a rounding lattice 

with interval of width w and lattice position c. For testing the hypothesis

H 0:(72 = eg the chi-squared test statistic is given by

X 2 -  -(ny l —  ( 5 . 3 - 5 )

where X  ~ JCy/3, ,|S2).

As we have assumed the Johnson distributions have mean zero and variance one, 

under rounding (5.3-5) becomes:

X | -  (n - l)S g  (5 .3 -6 )

w here S 2 and S 2r  are d efin ed  as in  ( 5 .3 - 2 ) .

From (3.3-10) the exact first and second moments of x 2R are given by

E [*R ] =
(5 .3 -7 )

V[x|] -  <r«[2<n-l)+[l -  i ] 2(P2R-3)]

where <t 2 r  and / 3 2 r  are the variance and kurtosis of a rounded Johnson 

distribution. If  the Johnson population is not subject to rounding we have
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E[X 2] = (n -1 )
( 5 .3 - 8 )

V[X2] -  [2 (n - l )  + [ l  -  £ ] 2(02-3)]

Study of the moments suggests that the values of <t2r  and |32r  will control how 

the mean and variance of the test statistic will alter for rounded data. For a 

normal population these values could be approximated by Sheppard's corrections 

(3.3-4). As shown in section (2.2.3) this is not necessarily so for non-normal 

populations. The contour diagrams Figures (2.2.11) and (2.2.13) show that the 

change in cr2 and /32 can vary considerably over the (/31 ,̂ 32) plane for rounded 

data. However except for the top right hand corner of the (/31}/32) plane there 

will be reasonable agreement between the values of c 2r  and |32r  and those 

obtained for a normal population. We would then expect the effect of rounding 

on the significance levels to be similar for normal and non-normal populations, this 

effect being that rounding causes the lower tail values to decrease while the upper 

tail values will increase. In the top right hand corner of (/31 ,/32) plane where 

departure from symmetry is greatest, the parameters c 2r  and /32r  can be 

considerably different in value than for a normal population. In this region of 

(/31 ,/32) we would expect the effect of rounding on the significance levels to be 

different than under normality.

Simulation Results : Significance Levels

Tables (C.4) and (C.5) show the range in values of a j  and o j r  for n = 10 and 

25, for a  = 0.05.

5.16



For Johnson distributions not subject to rounding, the simulation results are in 

agreement with the charts of Pearson and Please (1975). In Tables (C.4) and 

(C.5) the results for a j  show that for |S2 <  3 there is less than expected in the 

tails and for /32 > 3  there is more than expected. The change in the significance 

levels is much the same for all values of y/31 and always present for n = 10 and 

25. As n increases, so does the disagreement between the values of a  and a j.

As expected for a large area of the (|31,|32) plane rounding causes the a j  values

in the lower and upper tails to respectively decrease and increase. [Tables C.4

and C.5]. Rounding had the same effect as when the population is normal 

(section 3.3.2). Only when /32 < 2.4 and y/3, > 0.6 is this not necessarily so. 

In this region of the (/31 ,/32) plane the ckjr values are more erratic in behaviour 

and the lattice effect (c) considerably greater. Generally rounding resulted in a 

greater inbalance between the lower and upper tails, this being worse as r and n 

increased in size.

In a normal population with a  = 0.05 (one tailed) the recommended range of r 

for n = 10 and 25 was r < 0.5. For values of r in this range Figure (5.3.3)

shows the values of (/31,|32) where for a. = 0.05, the a j  and o j r  values lie

between 3% to 1%.
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Figure 5.3.3 Region in (/3t ,/32) plane where a j[J ] and a j^ (X ) values lie 

between 3% —1% in a chi-squared test for a variance for n = 10 

and 25, where a  = 0.05 and r < 0.5
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Figure (5.3.3) shows that for n = 25 the similarity of the regions in the (|31t(32) 

plane where a j  and o :jr lie between 3%-7%  is less than for n = 10. The 

reason is that as n increases in size rounding causes the agreement between a j  and 

a jR  to deteriorate.

Simulation Results : Power Levels

Simulation results for the power were obtained for /32 = 2.0, 2.4, 3.6 and 4.4, 

when n = 10 and 25. Table (C.6) shows the range in values of P j and P j r

when n = 10, for P = 0.3 and 0.7, where (32 = 2.4 and 3.6.

When the Johnson distributions are not subject to rounding the power values P j

showed a tendency to be less than expected in the lower tail and more than

expected in the upper tail, for |32 <  3. For (32 > 3  the simulation was in

reverse.

For both H 0 and H 1 the distribution of the test statistics are essentially the same. 

Thus we would expect rounding to have the same effect on the test statistic under 

H 0 and H 1, this effect being to shift the distribution to the right. As expected 

this caused the P j values in the lower and upper tails to respectively decrease and 

increase. As with the significance levels this may not be so in the top right hand

corner of the (/31 2) plane. The simulated values of Pj r  for n = 10 and 25

showed this to be so, as is evident from the selection of results in Table (C.6) for

n = 10.

In general the results show that if the degree of precision r recommended for a 

normal population for n = 10 and 25 (r < 0.5) is used, there will not be a large
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difference between the significance and power levels for unrounded and rounded 

data. The only exception to this may be for 0 2 < 2.4 and y/3, > 0.6.

5 . 3 . 3  T w o  s a m p l e  t - t e s t

Let X  = (X 1}...,X n) and Y = ( Y Y n) be independent random samples of size n 

from Johnson populations X  and Y, with shape parameters y/3., and (32. The 

means and variances of X  and Y  are /*x> £<Y anc* °’2X> °’2Y  respectively. Let 

(Xpj.Ypj) be rounded values of (Xj,Yj) corresponding to a rounding lattice with 

interval of width w and lattice position c.

For testing the hypothesis H Q:/xx = t-test statistic is given by

t
X -Y ( 5 .3 -9 )

where X  and Y  ~ J(y/31,j32) 

and under rounding

Xr -Y r (5 .3 -1 0 )

w h e r e

To obtain approximations to the first four moments of t^  (5.3-10) we use 

expansions for the moments of a two sample t-test statistic, for samples drawn



from non-normal populations from Geary (1947).

E [ t R ]  -  0

V [ t R ] -  1 +  I  + 0 ( n - ^ )

(5 .3 -1 1 )
JPl ( tR) = 0

0 - , ( t R )  =  3  +  |  +  0 < n - 2 )

To order n_1 the expressions (5.3-11) are also the first four moments of the test 

statistic t (5.3-9), where the Johnson distributions are not subject to rounding. It 

follows that we expect there to be little difference between the distribution of t 

and tR for non-normal populations. In fact the expressions (5.3-11) are also the 

first four moments of the test statistic for normal rounded data (3.3-15). This 

indicates that there will be very little difference between the distributions of the 

test statistic for rounded normal or non-normal data.

Simulation Results : Significance Levels

There is no difference between the upper and lower tail significance levels, as the 

distribution of the test statistic is symmetrical about zero. The o j and o j r  values 

for n = 10 and 25 were very similar. Table (C.7) shows the range in values of 

a j  and o j r  when n = 10 for a  = 0.05, only for the lower tail. Table (C.8) 

shows the range in the level of significance (o r ) for rounded normal data.

For Johnson distributions not subject to rounding the simulated values of a j  for 

n = 10 and 25, were in agreemeent with the charts of Pearson and Please (1975). 

For the entire region of the (jS^/Sj) plane there was close agreement between the
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a j  and a  values. This is illustrated by the values of a j  for n = 10 given in 

Table (C.7). As concluded by Pearson and Please (1975), where the two sample 

sizes are equal, the two sample t-test is very robust to departures from normality, 

with respect to level of significance.

As the approximate moment calculations had led us to expect, there was a very 

close agreement between the a j  and o jr  values for very coarse rounding. As

expected an increase in n from 10 to 25 caused a slight improvement in this

agreement. The results given in Table (C.7) for n = 10 illustrate the close

agreement found between the significance levels for rounded and unrounded data

from Johnson populations.

The striking feature of the two sample t-test is that departures from normality 

make very little difference to the effect that rounding has on the significance level. 

The significance levels for rounded normal data (o r ) and rounded non-normal data 

(°Jr ) were very similar. Comparison of the results in Tables (C.7) and (C.8)

illustrate this point.

Where the populations are normal, for a = 0.05 (one tailed) the recommended 

range of r for n = 10 and 25 was r < 2.0. For values of r in this range Figure 

(5.3.4) shows the values of (0 , ,/32) where the otj and o ijr  values lie between

3 % -l% .  For both n = 10 and 25, where r < 2.0, the regions in the (/31,/32)

plane for rounded and unrounded data are identical. This would also be true if

the interval 3% -1%  was reduced to A% -6% .
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Simulation Results : Power Levels

For the two sample t-test simulation results for the power were obtained for the 

entire ( jS ,,^ )  plane for n = 10 and 25. Table (C.9) shows the range in values 

of P j and Pj r  for n = 10, for P = 0.3 and 0.7, where |S2 = 2.0, 2.5 and 4.4, 

for lower tail. Values of P j and Pj r  for the upper tail were very similar.

Posten (1978) carried out an extensive computer simulation study of the effect of 

non-normality on the power levels of a two sample t-test, where the sample sizes 

are equal, his conclusions being that, departures from normality have very little 

effect on the power levels of the test. The P j value found confirmed this, as 

illustrated by a selection of results given in Table (C.9).

Before discussing the power levels for rounded data, an explanation is required on 

their behaviour under normality.

Under H 0 the population means n x  anc* are assumed equal. This means that 

for a given r and c, the positions of the distributions X  and Y on the rounding 

lattice are identical. Thus under H 0 the effect of rounding on the parameters of 

the populations X  and Y will be the same. However for H 1 this is not necessarily 

so. Under H 1 the population means y x  and /*y are unequal and the positions of 

the distributions X  and Y on the rounding lattice may be different. For a given r 

and c this may cause rounding to have a different effect on the parameters of the

populations X  and Y. This means that rounding can cause the difference in the

population means under H 1 to change thus resulting in a change in the alternative 

hypothesis. When the departure from normality is moderate, the position of the

distribution on the rounding lattice will have little effect on the population means.
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When the departure is more extreme, the effect can be considerably greater. The 

more extreme distributions occur in the top right hand corner of the (<?, ,/32) 

plane. It is in this region where the change in the value of the alternative 

hypothesis caused by rounding will become significant. This change in the 

alternative hypothesis will result in less agreement between the P j and Pj r  values.

Although the significance levels changed very little for rounded data this was not 

so for the power of the test. Generally in the (/31 ,/S2) plane the effect of 

rounding on the power was greater than when the populations were normal. The 

results showed that increasing skewness increased the range of the Pj r  values, this 

being especially so for /S2 < 3 .  As expected the distortion in the P j values

caused by rounding was very noticeable in the top right hand corner of the

(0 , ,0 2) plane. [Table C.9]. For n = 25 the power levels P j and Pj r  were of a 

similar magnitude as for n = 10, except in the region 0 2 < 2.4 and y/31 > 0.6.

In this region for r < 1.5 the distortion in the P j values caused by rounding was

greater for n = 25. Except for ( y # , ,^ )  = (0.6,2.0) and (0.8,2.4), for r < 1.0

the power for rounded normal and non-normal populations was similar. As an

illustration Figure (5.3.5) indicates the region in the (j31}|32) plane where the level

of power is in excess of 0.25 and 0.60 respectively for P = 0.3 and 0.7, for

n = 10 and 25, where r < 1.5 and r < 1.0. Figure (5.3.5) shows that for

rounding as coarse as r = 1.5, for over 75% of the (|31,(32) plane the power is 

still in excess of 0.25 and 0.60 respectively for P = 0.3 and 0.7.
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Figure 5 .3 .4  Region in ( 0 l t 0 2) plane where a j [ J ]  and c*j r (X )  values lie 

between 3 % -l%  in a two sample t-tes t fo r n =  1 0  and 25,
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5.3.4 F-test for equality of two variances

Let X  = ( X , ..... Xn) and Y = (Y 1,...,Y n) be independent random samples of size n

from Johnson populations X  and Y, with shape parameters and (32. The

means and variances of X  and Y are ^x» /*Y an(* <j2X> °’2Y  respectively. Let 

(Xrj,Yrj) be the rounded values of (Xj,Yj) corresponding to a rounding lattice with 

interval of width w and lattice position c.

For testing the hypothesis H 0:<j2x  = o'2y  = o'2* the F-test statistic is given by

F = Sx/Sy (5 .3 -1 2 )

and under rounding

F = sxr / syr (5 .3 -1 3 )

2 2 2 2 where Sx* Sy, Sxr  and SyR are d e fin ed  as in  (5 .3 -1 0 ) .

From (3.3-19), approximations to the first two moments of Fr  are

E[Fr ] = 1 + I  ((32R -1) + 0 (n -2 )

(5 .3 -1 4 )

V[FR] = 2  ((32r - 1) + 0 (n -» )

where / 3 2 r  is the measure of kurtosis for the populations.

If  the Johnson populations are not subject to rounding we have
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E[F] -  1 + i  ( 0 2- l )  + 0 (n - 2 ) 

V[F] -  I ((52- l )  + 0 (n - 2 )

(5 .3 -1 5 )

Study of the moments suggests that the difference between the values of (32 and

|32r  will be important in determining how the mean and variance of the test

statistic will alter for rounded data. The contour diagram Figure (2.2.13) shows

how this difference can vary considerably over the (/31}/32) plane under rounding.

It will be the size of this difference which is important in determining how the a j  

values are distorted by rounding.

Simulation Results: Significance Levels

Tables (C.10) and (C .l l)  show the range in values of a j  and a jR  when n = 10

and 25 for a  = 0.05.

For Johnson distributions not subject to rounding the simulation results are in

agreement with the charts of Pearson and Please (1975). In Tables (C.10) and 

(C .l l)  the results for a j  show that for |32 < 3  there is less than expected in the 

tails and for 0 2 > 3  there is more than expected. This change in the 

significance levels is much the same for all values of y/S, and always present for n 

= 10 and 25. As n increases so does the agreement between the a  and a j  

values.

As suggested by the approximate moments, the size of the difference between /32 

and | 3 2 r  was important in determining how the a j  values were influenced by 

rounding. The contour diagram Figure (2.2.13) shows the maximum difference
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between |S2 and /32r ,  over the ((3,,(32) place. Comparing this contour diagram 

with the results in Tables (C.9) and (C.10) shows a strong relationship between this 

maximum difference and the amount of distortion in the o j values due to 

rounding.

For |S2 < 3  the distortion in the a j  values due to rounding was generally greater 

than for |S2 > 3 .  Rounding has the most effect in the top right hand corner of 

the (j31}|32) plane. For fixed r, increasing population skewness increases the effect 

of rounding, as shown by the wider range in the o jr  values. [Tables CIO and 

C ll ]. For r < 1.0 when n = 10 and 25 there was reasonable agreement between 

the a j  and chjr values except in the region /32 <  3 and y/31 > 0 .6 .

In a normal population, the recommended ranges of r given in Table (3.3.8) for 

the level of significance were adjusted because of the level of power (section 

4.3.4). The modified values of r that may be regarded as acceptable with respect 

to level of significance are given in Table (4.3.14). For a = 0.05 (one tailed) the 

recommended values of r for n = 10 and 25 from this table are r < 0.5 and 

r < 1.0 respectively. For values of r in these ranges Figure (5.3.6) shows the 

values of (/31 ,|S2) where for a  = 0.05, the a j  and a jR  values lie between 3% to 

1%. For both n = 10 and 25 the regions in the (/31 ,̂ 32) plane where a j  and 

aJR between 3%-7%  are almost identical.
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Figure 5.3.6: Region in (/31t/S2) plane where o j[J ] and o j r ( X )  values lie

between 3% -7%  in a F-test for equality of variances for n = 10 

and 25, where a  = 0.05.
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Simulation Results : Power Levels

For the F-test, simulation results for the level of power were obtained for 

|S2 = 2.4, 2.8, 3.2 and 3.6 where n = 10 and 25. Tables (C.12) and (C.13) show 

the range in values of P j and Pj r  when n = 10 and 25 respectively, for P = 0.3 

and 0.7. Table (C.13) gives power levels for only the lower tail.

For Johnson distributions not subject to rounding the results indicated that for 

/S2 <  3, there was a reduction in power in the region of low power (P = 0.3) 

and an increase in power in the region of high power (P = 0.7). For /32 > 3  

the situation is the reverse. The P j values are much the same for all values of 

✓01-

As with normal populations (section 3.3.4), rounding will cause the distribution of 

the test statistic under H 1 to shift to the right or left. This will result in a 

reduction in power. As indicated by the selection of results in Tables (C.12) and 

(C.13) rounding results in a similar effect on power levels as that found for 

normality, this effect being to reduce power in both tails, with the lower tail 

having the greater reduction. The greatest change in P j values due to rounding is

in the top right hand corner of the (/31 ,/S2) plane.

When n = 10 and r < 0.5, for values of (/!?, ,/S2) which gave levels of significance

aJR between 3 % -l%  the P j values were not adversely affected by rounding. This 

is illustrated by a selection of results given in Table (C.12). When n = 25 and 

r < 1.0, for values of (/31 ,/32) which gave levels of significance between 3%-7%  

the P j values were only distorted severely by rounding for lower tail tests when 

0 2 = 2.4 and y/3, > 0.4 [Table C.13].
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5.3.5 Analysis of Variance (ANOVA)

One-way Analysis of Variance -  Fixed Effects Model

The structure we shall assume for the one-way layout fixed effect model is that 

given by (3.3-25). Let the samples be drawn from Johnson distributions with

shape parameters y/3, and |S2. We shall assume that all the Johnson distributions 

have been rounded to the same rounding lattice, with rounding interval w and 

lattice position c. For testing the hypothesis = a 2 = ... = o r , the test

statistic for rounded data is given by

R Q2R/(n k -k )  (5 .3 -1 6 )

n _  _  k n _
where QlR = J n(XRi -XR ) 2 , Q2r = £ £ <XR i j -XR i> )

i-1  i -1  j - 1

Again using the results of Gayen (1950) we have

E [ f r ] -  1 +  |  +  0 ( N " 2 )

(5 .3 -1 7 )

v 1f r ] "  k l i  + f f ( | r T )  [5+k-((32R- 3 ) ]  + 0 (N - 2 )

where N = nk and /32r  is the measure of kurtosis for the rounded Johnson 

populations.

If the Johnson populations are not subject to rounding we have

5.31



E[F] -  1 + |  + 0(N’ 2)
(5 .3 -1 8 )

V[F] "  k^T + N ( F 7 )  [5+k-((32R- 3 ) l  + 0 (N -2)

Study of the moments suggests that rounding will cause the variance to change, the 

change depending on the difference between |32 and /32r . Although for 

non-normal distributions this difference can vary considerably over the (/31,|52) 

plane, its effect will diminsh as N increases.

It follows that we would expect the distributions of F and Fr  to be very similar 

for non-normal populations.

Simulation Results : Significance Levels

Significance levels o j and q i j r  were obtained for k = 3 and 5, when n = 10 and 

25, for a  = 0.05. A  selection of these results is in Table (C.14) for k = 3 and 

n = 10.

The effects of non-normality on the level of significance of the F-test in the one 

way ANOVA has been studied by several authors. For example, investigations by 

Pearson (1931), Geary (1947) and Grayen (1950) have indicated that the 

significance level of the F-test is very insensitive to non-normality of the parent 

populations. The simulated values a j  confirm this. The values of q i j  given in 

Table (C.14) illustrate how robust the F-test is to departures from non-normality 

with respect to level of significance.
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As the approximate moment calculations have led us to expect, there was 

reasonable agreement between the a j  and o j r  values for rounding as coarse as 

r = 2.0. A s k o r n  increased there was a slight improvement in the agreement 

between the a j  and ckjr values. The results in Table (C.14) illustrate the type of 

agreement found between the significance levels for rounded and unrounded data 

for the ANOVA layouts considered. In the one way ANOVA, departures from 

normality made very little difference to the effect rounding had on the significance 

level. The significance levels for rounded normal data (o jr )  and rounded 

non-normal data (o jr ) were found to be similar. Comparison of the results in 

Tables (C.14) and (C.15) illustrates this point. When the populations are normal, 

for a  = 0.05 the recommended range of r for nk > 16 was r < 2.0. For the one 

way layouts considered the a j  and o j r  values were found to lie between 3%-1%  

for the entire (/3n ,/S2) plane. This would also be true if the interval 3 % -l%  was 

reduced to 4% -6% .

Simulation Results : Power Levels

Power levels P j and Pj r  were obtained for k = 3 and 5, when n = 10 and 25, 

for a  = 0.05. Table (C.18) shows the range in values of P j and Pj r  for k = 3 

and n = 10, where P = 0.3 and 0.7.

The effect of violation of the normality assumption on the power in the analysis of 

variance has been studied by several authors. Kanji (1976, 1977) used simulation 

to study the effects of non-normality on the power in analysis of variance for both 

one and two way layouts. David and Johnson (1951) considered the extent to 

which non-normality affects the F-test. Their findings indicate that the inferences 

concerning means the power calculated under normal theory is only slightly affected
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by non-normality. The simulated values of P j confirmed this.

As with the two sample t-test, under H 1 rounding can cause the differences 

between the population means fi[ to change. This will result in a change in the 

alternative hypothesis. When the departure from normality is extreme, rounding

will cause the change in H , to be greater. The more extreme distributions occur

in the top right hand corner of the (/31}/32) plane. It is in this region where the

change in H 1 due to rounding will be greatest and thus result in less agreement

between the P j  and Pj r  values.

The simulation values of Pj r  indicated that the effect of rounding on the power 

levels is greater than for normal populations. Increasing skewness generally widen 

the range in the Pj r  values, this being especially so for @2 < 3 .  As expected 

the distortion in the P j  values due to rounding was greatest in the top right hand 

corner of the (/S1 ,/S2) plane. For the values of k considered the power values

Pj r  were of similar magnitude for both n = 10 and 25, except in the region

(32 < 2.4 and y/31 > 0.6. In this region for r > 1.5 the distortion in the P j

values caused by rounding was greater for n = 25. Table (C.16) gives a selection 

of Pj r  values for k = 3 and n = 10. Except for (y /S ,,^ ) = (0.6,2.0) and

(0.8,2.4), there was reasonable agreement between the range in Pj r  and Pr

(normal population) values for r < 1.0. This is illustrated by the comparison of 

Pj r  values (Table C.16) and Pr  values (Table C.19), where k = 3 and n = 10.

As an illustration Figure (5.3.7) indicates the region in the ((3,,(32) plane where 

the power is in excess of 0.25 and 0.6 respectively for P = 0.3 and 0.7 for the 

one way layouts concerned.
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Figure 5.3.7: Region in (0 1#0 2) plane
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For normal populations, rounding had a similar effect on the significance and 

power levels in the one and two way ANOVA. We would expect the same 

situation for non-normal populations. To confirm this, q jr  and Pj r  values were 

obtained for a selected number of ( f l , , ^ )  values. (Appendix C). For the 

simulations carried out the significance and power levels were in close agreement 

for the one and two way ANOVA.

5.4 Test Statistic : Exponential Data

Tricker (1984a) considered the effect of rounding on hypothesis tests where the 

underlying population is assumed exponential. This paper is important for two 

reasons. It is the only time in the literature where

(a) the effect of rounding on the significance level of a test is considered

(b) the exact sampling distribution of the test statistic is given for rounded

data.

This section reviews the work in Tricker (1984a) which is concerned with the effect 

of rounding on hypothesis testing.

Let X  = ( X X n) be a random sample of size n from an exponential random 

variable X  with unknown parameter 0, with p.d.f. given by (5.4-1)

x

f ( x | 0 )  = i e  0 x > 0 e > 0 ( 5 . 4 - 1 )u

The Xj is subject to rounding where the rounding lattice has interval of width w

5.36



and lattice position c.

n

T h e n  =  E  X j r  h a s  t h e  f o l l o w i n g  p r o b a b i l i t y  d i s t r i b u t i o n .  

i = l

(Tricker 1984a).

P [ S ^  -  ( m + c n ) w ]

( k ' ) f o r  m  =  0

[ A i n k , n “ 1 k e ” r c  +  A 2 n k ' n - 2 k 2 e - 2 r c ( m - l )  . . .  ( '

A n n k n e “ n r c ( m - 1 )  • • •  ( m - n + 1 ) ] e " r m

f o r  m  =  1 ,2 , . . .

w h e r e  k ■ _  1  .  e - > - ( i + c ) ,  k  -  e r / 2  -  e - r / 2 ,  A  =  " C j / ( j - 1 )  ! ,  r  =

A more elegant expression for (5.4-2), which is not given in Tricker (1984a),

P [ S ^  =  ( m + c n ) w ]  =

( k ’ ) n

e - r r a

f o r  m  =  0

n

n k ’ ^ k  +  I  k ' n - 1 k J e “ j r C

j = 2

j < m f o r  m  =  1 , 2 , .

For testing the hypothesis H o:0 = 0 0 the test statistic is given by

n

T  =  S n  w h e r e  T  ~  y -  x * n  a n c *  S n  =  I  X j

i = l

under rounding

T r  = w here th e distribution o f  T r  is g iven  by ( 5 .4 - 2 )

. 4 - 2 )

w/0
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For combinations of the values of r, c and n, Tricker compared the distribution of 

T and T r . He showed that it is r not c or n which is dominant in determining 

how close the fit is between T and T r . For a given rounding lattice and sample 

size the fit is always better in the right hand tail than in the left hand tail. 

Finally Tricker showed the effect of rounding on the significance level of the 

hypothesis test H o:0 = 8 0 vs H 1:8 < 8 0. His results indicate that the significance 

level can be severely distorted for for r > 1.0. Although one must be cautious 

about making statements on such a limited set of results, it appears that the 

distortion caused by rounding in the significance levels is far greater for tests 

concerned with exponential populations than for normal populations.

5.5 Discussion and Conclusions

Chapters 3 and 4 recommended ranges of r in which the significance and power 

level of certain normal tests may be considered acceptable, when the parent 

population is normal. This chapter has investigated the effect of rounding on 

these tests when the parent population is non-normal. The main emphasis of this 

chapter has been to give guidance on what happens to the significance and power 

level of these tests, if the values of r which were recommended for normal

populations are applied when the population is non-normal. Although the study is

restricted to a  = 0.05 and sample sizes of n = 10 and 25, it indicates clearly the

behaviour of normal test statistics when applied to rounded non-normal data.

Of all the tests considered the two sample t-test and F-test in the analysis of 

variance were the most insensitive to rounded non-normal data. In general the 

results showed that for sample sizes n = 10 and 25, if the value of r

recommended for normal populations is used (r < 2.0) rounding has very little
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effect on the significance level for the entire (/31 ,/32) plane considered. However 

the power results suggest that, to obtain an acceptable level of power over a large 

area of the (/S1 ,/32) plane, a more suitable level of precision should be r < 1.5.

For the one sample t and F-tests, departures from normality in the parent 

population increased the distorting effect of rounding on the significance level of 

these tests. This distortion was greatest for very skewed distributions found in the 

top right hand corner of the (/31}/32) plane. For both tests, the region in the 

(|31 ,/32) plane where the significance level is between 3% -1%  was found to be 

very similar for rounded and unrounded data, if the range of r recommended for 

normal populations is used. For this range of r the level of power within this 

3 % -l%  region of the (/31 32) plane was of a reasonable magnitude, the only 

exception being for the F-test when (32 = 2.4 for y/3, = 0.4 and 0.6.

In the chi-squared test if the range of r recommended for a normal population 

(r < 0.5) is used, the significance and power levels were in fairly close agreement 

for unrounded and rounded non-normal data, when n = 10 and 25. The only 

exception to this was for /32 < 2.4 and y/S1 > 0.6. The region in the (/31}|32) 

plane where the significance level lies between 3 % -l%  was found to be very 

similar for unrounded and rounded data when n = 10. Increasing the sample size

to n = 25 resulted in this similarity decreasing.

In Chapter 5 we have aimed to show how much 'non-normality' can be allowed 

without the effect of rounding seriously distorting the significance level and power 

of a test. The evidence suggests that if the range of r recommended for a normal

population is used, then these tests can be applied to a wide range of non-normal

populations.

5.39



This study has considered sample sizes upto n = 25. What about larger sample 

sizes? We must remember that increasing the sample size does not necessarily 

diminish the effect of rounding. As an illustration, consider the two sample t-test. 

When the departure from normality is extreme, rounding can cause the difference 

between the population means under H , to change. This will distort the power of 

the test. Our results suggest that as n increases, this distortion will become 

greater.
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CHAPTER 6

ESTIMATION OF n AND a 2 FOR NORMAL ROUNDED DA TA

6.1 Introduction

6.2 Maximum Likelihood Estimation

6.3 Other Methods of Estimation

6.4 Approximate EM  Algorithm

6.5 Conclusions
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6.1 Introduction

In the previous chapters we have considered the effects of rounding on test 

statistics. In this chapter and the next, we shall compare five different procedures 

for estimating the parameters of a distribution which has been subject to rounding. 

The first three, maximum likelihood (ML), approximate M L and Sheppard's

correction try to compensate for rounding effect. The remaining two, where the

method of moments and M L are applied to the midpoint of the rounding intervals

will be called naive methods, and make no attempt to compensate.

In this chapter we discuss the five methods of estimation for a normal r.v. X  with 

unknown mean and standard deviation, where X  has been rounded. We shall

mainly consider these estimation procedures for the degree of precision r up to 2.

For larger values of r we are dealing with extremely coarse rounding which is 

generally unreasonable.

As pointed out earlier in the literature review, work has been carried out by 

Gjeddebaek (1949, 1956) and Kulldorf (1961) into the properties of maximum 

likelihood estimates (MLE) of the parameters of grouped normal data. Gjeddebaek 

(1957, 1959 ) compared the efficiency of Sheppard's correction with that of ML. 

He showed that Sheppard's correction is practically as efficient as M L for r < 2.0 

and n < 100. In section (6.2) it is shown how Gjeddebaek results can be more

easily obtained using the results of Chapter 2 and his recommendation for

Sheppard's correction is clarified. In the same section the efficiencies of the naive 

methods of estimation are also examined.
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In the past literature several algorithms have been put forward by various authors 

for finding the MLE of parameters of a distribution, where the data has been 

rounded. Dempster, Laird and Rubin (1977) pointed out that the EM  algorithm 

may be a useful method. Recently Schader and Schmid (1984) obtained a closed 

expression for the EM algorithm for grouped normal data. Utilising the results of 

Chapter 2 an approximate EM-algorithm in section (6.4) is presented for the 

normal distribution, which is computationally simpler than the 'full' EM  algorithm. 

Its rate of convergence is compared with that of a standard method and is shown 

to converge slowly for very coarse rounding.

6 . 2  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  ( M L E )

Maximum Likelihood estimation of n and <j2 in the normal distribution has been 

covered by such authors as Gjeddebaek (1949, 1956) and Kulldorf (1961), details of 

which are given in the literature review. A  major result of Gjeddebaek's work 

was obtaining large sample properties of MLE for normal rounded data. He 

defined the efficiency of these estimates, as the MSE of the MLE from ungrouped 

data divided by the MSE of MLE for grouped data. Essentially this efficiency is a 

measure of the loss of information caused by the rounding process. In Gjeddebaek 

(1957) he showed that the efficiency of the M L estimator of the mean is virtually 

independent of sample size for r < 2.0. When investigating the sample distribution 

of Sheppard estimators, Gjeddebaek (1959 , pp437) assumed the efficiency of the 

M L estimator of the variance to be approximately the same for all sample sizes. 

Results from a simulation study in section (6.4) confirm this.
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6.3 Other Methods Of Estimation

As shown by Tallis (1967) for the normal distribution when the data has been 

rounded, the approximate M L and Sheppard's method produce the same estimates 

of mean and variance.

X  = (X 1 ...Xn) is a random sample of size n from a normal random variable X  

with mean /i and variance a 2. Let X r  = ( X r 1 ,...,XRn) be the rounded sample

where Xrj is the rounded value of Xj corresponding to a rounding lattice with

interval of width w and lattice position c. The estimates of /z and a 2 by 

Sheppard's method are:

?r  = Xr  = sR -  ( 6 . 3 - 1 )

where

> SR  -  S I T  I  ( x R i - * R ) 2

(6.3-1) are also the estimators given by the approximate M L method. From now

on we shall refer to them simply as the Sheppard estimators for /z and a 2.

For r < 2.0 and n < 100 Gjeddebaek (1959 ) states that Sheppard estimators are 

almost as efficient as M L estimators. This statement has often been

misinterpreted. For example, Krusal and Tanur (1978) states that Sheppard 

estimators of /z and a 2 have the same efficiency as the M L estimators, for r < 2 . 0  

and n < 100. This is not strictly correct. In order to clarify Gjeddebaek's 

statement we proceed as follows.
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To express how 'good' Sheppard estimators are, Gjeddebaek compared the MSE of 

these estimators for rounded and unrounded data. He defined the efficiency of a 

Sheppard estimator as the MSE of this estimator for unrounded data divided by the 

MSE of the estimator in question for rounded data. This gives

Essentially the efficiencies in (6.3-2) are a measure of the loss of information 

caused by the rounding process.

Using the same definition of efficiency as Gjeddebaek, we require the MSEs of 

Sheppard estimators. By using the results of Chapter 2, these can be obtained by 

a different method from Gjeddebaek's.

The mean and variance of jir and <t2r  are given by:

M S E ( jn )

M S E ( £ r )
e(VR,(r2) ~

M S E ( c 2 )

M S E ( o -£ )

where

a = X and a 2  \ r  I  (X,- -X ) 2r  n-1 t 1l

E [ / * r ] =  E [ X R ] =  ^ R E [ ? R ]  =  E [ S R ] -  ^  -  c r |  -  ^

2

V[?R] -  V[XR] -  ^  V [5 |]  -  v [ s |  -  £]

from (3 .3 -1 0 )

6.5



hence MSEs:

2
~ v  k

MSE[/ir ] =  —  +  (/*R- / 0 2 ( 6 .3 - 3 )

m s e [?R ] "  [ i^ T n

As in Gjeddebaek (1957, 1959 ), we shall assume a normal distribution with mean 

zero and variance one. By using a standard normal distribution we lose no 

generality in the results.

The expressions in (6.3-3) are computationally simpler than those given in 

Gjeddebaek (1957, 1959 :). They only require the calculation of /*r , ct2r  and 

(32R* These can be evaluated from expressions in (2.2-16) Chapter 2. These 

expressions quickly converge and are easy to calculate. However Gjeddebaek*s 

expressions for MSE require the calculation of the normal distribution function 

several times and are troublesome to handle.

Using the expression in (6.3-3) and the MSE for the Sheppard estimators for

unrounded data, the efficiencies of Sheppard estimators were calculated. Table 

(6.3.1) presents the results for e(^R,/*) and e(o’2R,o’2) for r = 2.0 and 1.5, for 

three lattice positions. Gjeddebaek in his paper has given a smaller set of results 

which are in agreement with ours. In the table the efficiencies of Sheppard 

estimators are compared with those for M L estimators for rounded data when n is 

large given in Gjeddebaek (1957). As stated in section (6.2), this is reasonable as 

the efficiencies for M L estimators are approximately the same for all n for 

r < 2.0. From the results in Table (6.3.1) the following may be stated:
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For r < 1.5 Sheppard and M L estimators have the same loss in efficiency when 

applied to rounded data.

For 1.5 < r < 2.0 and n < 100 the loss in efficiency in Sheppard estimators can 

be up to 15% more than M L estimators.

In Gjeddebaek (1959 ) it stated that Sheppard estimators of fx and a 2 are 

practically as efficient as M L estimators. The above is a clear statement of what

is meant by practically as efficient. It removes the confusion that it implies that 

Sheppard estimators have the same efficiency as M L estimators for n < 100 and 

r < 2.0.

T A B L E  6 . 3 . 1  :  E f f i c i e n c y  O f  E s t i m a t e s  O b t a i n e d  B y  S h e p p a r d ’ s  M e t h o d

L a t t i c e P o s i t io n

n c = 0 c == 0.25 c = 0 .5

e(o£,<r2) e(?R»?) ,cr2) r >/0 e(cr£,cr2)

r  = 1.5  10 84.3 71.4 84.2 72.0 84.2 72.6

100 84.3 71.3 84.2 72.0 84.2 72 .6

100,000 84.3 71.3 84.2 71.9 84.2 71.5

r  = 1.5 MLE 
large n

84.6 72.2 84.2 72.1 84.7 71.8

r  = 2 .0  10 74.8 50.3 74.8 58.2 73.2 68.7

100 74.8 48.5 74.4 58.4 73.2 68.5

500 74.8 43.9 74.4 58.4 73.2 60.2

1000 74.8 39.8 72.7 58.4 73.2 52.5

r  = 2 .0  MLE 
large n

75.5 63.5 75.1 58.7 74.6
i

54.1
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Although Gjeddebaek has shown that Sheppard and M L estimators have a similar 

loss in efficiency when applied to rounded data; we need to compare these 

methods of estimation directly under rounding. In order to compare Sheppard and 

M L methods, the efficiency of Sheppard estimators relative to M L estimators will 

be defined as follows:

e (/*R> /*r ) -

M S E ( £ R )
MSE(^r ) M S E ( £ r )

where (^r ,<t 2r ) and (/*r ,<t 2r ) are respectively the Sheppard and M L estimators for 

rounded data.

Table (6.3.2) presents these efficiencies for r = 2.0, r = 1.5 and r = 0 (no 

rounding) for three lattice positions.



TABLE (6.3.2) : Efficiency of Sheppard Estimators Relative to M L  Estimators

...............................  H
L a t t i c e  P o s i t io n

n c = 0 c = 0.25 c = 0 .5

£(?r >£r ) e(^R^R) <K?r ,Mr ) e(^R ^R ) e(/*R,/*R) e(^R^R>

r  = 1.5  10 99.6 84.7 100 85.4 99.4 86.4

20 99.6 91.9 100 92.9 99.4 94.1

100 99.6 97.1 100 98.4 99.4 99.6

1000 99.6 98.0 100 99.1 99.4 99.6

r  = 2 10 99.1 71.0 99.6 84.8 98.1 108.6

20 99.1 74.1 99.2 92.6 98.1 118.1

100 99.1 76.2 99.0 99.5 98.1 124.7

1000 99.1 62.0 96.0 99.5 98.1 97.0

10,000 99.1 22.5 86.2 99.5 98.1 28 .8

n <K?r ,Mr ) 6(^r ^ r )

r  = 0 10 100 85.5

20 100 93.1

100 100 98.5

1000 100 99.9

The results from Table (6.3.2) indicate that for r < 1.5, Sheppard estimators are 

almost as efficient as M L estimators. For this degree of precision there is little 

differnce between the efficiencies for rounded and unrounded data. For r = 2.0,
A

this is not the case. The efficiency can be considerably lower as n

increase in size. However, for r < 2.0 and n < 100 it may be of little preference 

to use M L method instead of Sheppard's method. The reduction in efficiency in 

using Sheppard estimators may be worth while in view of their computational 

simplicity.
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Naive Methods

Often rounding of data is ignored and the midpoint of the rounding intervals are 

used to estimate the parameters of a distribution. We briefly investigate this naive

approach using the method of moments and ML. For the normal distribution they

result in the same estimators of fi and a 2

= Xr  , (T2n  = i  I  (XR i -XR) 2 = [ l  -  i ] s |  ( 6 . 3 - 4 )

A A

In this section we investigate the efficiency of the naive estimators (AtN>°r2N) 

relative to Sheppard estimators (/xR ,cr2R). The naive estimator of n is the same 

as that given by Sheppard's method and needs no further investigation.

A

The mean and variance of o"2n  are given by

E [ ^ ]  -  E [ [ l  -  I ) s | ]  -  [ l  -  I]<r*

- v [ ( i  - i ] s ’ ] -  ( i  -  I ] 2 V [ S | ]

f ro m  ( 6 . 3 - 3 )

hence MSE is

M S E ( ^ )  -  [ l  +

( 6 . 3 - 5 )
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A A

Although the variance of (r2isj is smaller than (t2r , the bias in <t2n  is generally
A

larger. Because of the bias in (T2n > the MSE of this estimator can be 

considerably larger than for the Sheppard estimator <t2r  (6.3-3). For certain

values of n and r the naive estimator could be at least as efficient in terms of 

MSEs as the Sheppard estimator. For example, this was true for r < 1.0 where 

n < 50 and r < 1.5 where n < 20.

6.4 Approximate Expectation -  Maximisation (EM) Algorithm

Several authors considered the problem of finding MLE of p and a 2 for rounded 

data, for example Gjeddebaek (1949), Kulldorf (1961) and Swann (1969). More 

recently Dempster, Laird and Rubin (1977) proposed that the 

Expectation-Maximisation (EM) algorithm as a suitable method for obtaining the 

MLE for grouped data. Schader and Schmid (1984) were the first to present an

expression for the EM algorithm for data from a normal distribution subject to

rounding. In this section using the results of Chapter 2 an approximate EM

algorithm is presented which is computationally simpler than that given by Schader 

and Schmid (1984). Because of its reliability, it makes it an attractive alternative 

to other methods. For completeness the EM method is summarised below.

For a given parameterisation 6_ choose a complete data sufficient statistic t = t(X) 

ie a statistic sufficient for 6_ when X  is full observation. Starting at estimate 0p

compute the conditional expectation of tp of t given the rounded data and 

assuming 0p to be true. This is known as the E-step. Next compute 

0p+1 = 0(tp) where 0{t) is the MLE of 6_ when complete data sufficient statistic t 

has been observed, this is the M-step.
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The approximate EM algorithm can be obtained in the following way:

X  = (X .,...Xn) is a random sample of size n from a normal random variable X

with mean fi and variance a 2 with p.d.f. f(x| f i ,a2). The Xj are subject to

rounding when the rounding lattice has intervals of width w and lattice position c.

Let nj be the number of sample values with midpoint Y j = cw + jw, for some 

integral value of j, where In j = n. The lower and upper boundaries of each

rounding interval are given by Lj = Yj -  w/ 2 and U j = Y j + w/ 2.

The joint sufficient statistics for /* and a are

t ^ X )  = I  Xj and t 2(X) = I  X 2 
i i

Let jwp,<r2p be the pth estimate of / i2 and a 2. The E-step is given by:

e [i  Xj
Li

Y, n, up,  I ’ ]  -  n j  [ £ A ]

E [ |  X f | Y, n, ,ip , <r|] -  n I  £ * ]

X T ( x l Up , Op)dx

f  (x| /ip ,0 p)dx

( 6 . 4 - 1 )

X2f  (x I /*p,Op)dx

f  (x|  /^p,orp)dx

where

Y -  ( .  . .Y_., . Y ^ Y ,  . . . )  and n = ( . . . n , , , n 0 , n , . . . )

If the sample size is reasonably large and rounding coarse, then to the first order 

of approximation
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rU
f  (x|/-tp,CTp)dx

From (6.4-1) it follows that an approximate E step is

U.
x f  ( x I /ip , (Tp) = n E[X|/ip,(7p]E [ l  Xj |Y, n, ftp, o-pl = n J

i 1 J .

[ 2l *J 2 2 2 | 2
I  Xj |Y, n, up,  (TP = n J x f ( x l / * p , a P) -  n E[X \ i tp,(Tp]
i 1 J JLi

The MLEs for unrounded data are

Xi IX?
I  —  and — -
i n n

hence the M  step is

V-P+i = E [X|/*p,o-p] 

°"P+i = Vt^lMpj^p]

( 6 . 4 - 2 )

Using (2.2-13) and (2.2-15) and expressions for the mean and variance of X  are 

given by:

E [ X I  / ip , <Tp ] = E[Xp] -  E 1 ( / ip jC p ]

9 u/2 9
V [ X h i p , a p ]  =  V [X R ] -  j z  -  E 2 ( u p , d p ]

( 6 . 4 - 3 )
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where

E,<M>,rp] -  ;  I  • ^ • kD S in [2 » k [^  -  c ] ]
k= l

00

E2(^p,o-p) = 4 £ ( " l ) k [<Tp + [ ^ ]  ] D C o s [ 2 x k [ ^  -  c ] ]
k=l

" [E i ( / 4P»° 'p )]

where

D = expj^- 2x2k 2Cp/w2j

If  n is reasonably large Xr  and S2r  will be precise estimates of E[XpJ and V[Xr ] 

respectively. Thus (6.4-3) may be approximated by

E [ X | / ip ,a p ]  = Xp -  E,(np,crp)
( 6 . 4 - 4 )

V[X|/tp ,<Tp) -  s| -  ^  -  E 2 (flp,<7p)

Substituting (6.4-4) into (6.4-2) gives the approximate EM  algorithm as:

— 2 
PP+i =  XR “ E i (#*p»0p)

( 6 . 4 - 5 )
2 2 W 2 2

° P + i  =  SR " y j  “ E 2 (/*P ,o-p)

The approximate EM has two advantages over the 'full' EM given by Schader and 

Schmid (1984). The approximate EM is computationally simpler and does not 

require the evaluation of normal density and distribution functions. This fact

becomes more important as n increase, as the number of cells containing
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observations will also increase. This will result in the normal routines which 

calculate the density and distribution functions being called more often. Secondly 

the approximate EM requires less information from the sample. The full EM  

algorithm requires the number of observations in each cell (nj) whereas the 

approximation does not.

In obtaining the approximate EM it was assumed that the rounding was coarse and 

sample size large. Under such conditions the number of rounding intervals will be 

few and nj/n should be a good approximation to the probability of an observation 

falling in a particular interval. Also Xr  and S2r  should be precise estimates of 

E[Xr ] and V[Xr ] respectively. As a result we would expect the approximate EM  

to produce accurate MLE when the rounding is coarse and sample size large. To 

ascertain the region of (n,r) where the approximate EM is a reliable method for 

obtaining the MLE, we proceed as follows.

To test the approximate EM algorithm we must compare its results with those of 

the 'true' MLE. Any standard method which gives us the MLE would have been 

adequate. Also worthwhile is to investigate the rate of convergence of the 

approximate EM  algorithm.

£
Schader and Schmid (1984) adapted an algorithm used by Van-Warden (1973) by 

using Taylor Series to obtain the MLE for grouped normal data. They showed 

that this algorithm is identical with the algorithm obtained with Fisher's method of 

scoring, but does not require any second derivatives. It was demonstrated that this 

algorithm SCOR gave a better average number of iterations than did 

Newton-Raphson and Fixed Point methods. We decided to use SCOR to obtain 

the 'true' MLE as it also provided information on how the number of iterations of
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the approximate EM compared with that for a very efficient algorithm.

The MLEs produced by the approximate EM and SCOR algorithms were compared 

by simulation study, as were their rates of convergence. The simulation study used 

a purpose-written program, with Nag routines used to generate random samples of 

normal deviates. The normal deviates were rounded before MLEs were obtained, 

using both algorithms. The mean and variance of the normal deviates were set to 

0 and 1 respectively. By using a standard normal distribution we lose no 

generality in the results. Using a normal distribution with mean fi and variance 

a 2 would simply cause the difference between the MLE of n and a 2 produced by 

the two algorithms to be multiplied by a  and a 2 respectively. In the study the 

rounding precision r varied in the range 0.5 to 3.0 for lattice positions c = 0.0, 

0.25 and 0.5. Sample sizes considered were n > 50.

For each value of r and c the MLEs were obtained 1000 times for each algorithm. 

From these 1000 replicates estimates of the mean and standard error of the MLE  

of pt and a 2 were obtained, together with the average number of iterations taken 

for each algorithm to converge. Convergence to MLE had occurred if the absolute 

values of the differences between successive estimates of p. and a 2 were both less 

than 10“ 5. In all runs considered both algorithms converged for the same 

samples. In some cases to compare the results given by the two algorithms in 

detail, the actual MLEs were produced. To check the validity of the program a 

sample of size 2000 was run. The MSEs of the estimators of n and a 2 were in 

close agreement with the theoretical results given by Gjeddebaek (1956).
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For rounded data there is a probability that the MLEs of n and a 2 do not exist. 

This probability will tend to zero as the sample size increases. Essentially we are 

dealing with conditional MLE, the condition being existence. Kulldorf (1961) gives 

sufficient conditions for an MLE to exist. In the present study their existence is

not a problem as the sample sizes are large. Although we are dealing with

conditional MLEs we shall refer to them merely as the MLEs.

Simulation Results

The means and standard errors of the MLEs of fi and cr2 for the approximate EM

and SCOR methods were in close agreement in the region r > 1.0 and n > 100.

This result was not surprising as the MLEs for individual samples were also in

close agreement for the same region. Table (6.4.1) shows the results for r = 1.0,

c = 0, n = 100 and r = 3, c = 0 and n = 500. As expected these results in the

table show that as r and n increase the difference between MLEs from the two

methods decreases. To obtain the differences between the MLEs produced by the 

two algorithms, when the distribution is normal with mean /x and variance a 2, we 

simply multiply columns 1 and 2 of Table (6.4.1) by a  and cr2 respectively.

By obtaining MLEs from the SCOR algorithm for n > 10 we confirmed

Gjeddebaek's (1959?.) assumption concerning the M L estimator of a 2. The results 

endorse his conjecture that the M L estimator of a 2 has approximately the same 

efficiency for all sample sizes, where efficiency is defined as in section (6.2).
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TABLE 6.4.1a : Sample of MLE From Approximate EM  and SCOR Algorithms

r  = 1 .0 c = 0 n = 100 r -  3. 0 c = 0 n — 500

EM SCOR EM SCOR
A A

a 2
A A

a 2
A A

a 2
A

V
A

<J2

-0 .120 0 882 -0 .120 0 881 0 000 1 096 0 .000 1 .096

-0 .010 0 767 -0 .010 0 766 0 135 0 873 0 .135 0 .873

0 240 1 100 0 .240 1 100 -0 008 0 961 -0 .008 0 .961

0 070 0 802 0 .070 0 801 0 029 1 095 0 .029 1 095

0 000 1 217 0 .000 1 216 0 110 0 869 0 .110 0 869

-0 040 0. 815 -0 .040 0 816 - 0 . 008 1 023 -0 .008 1 022

- 0 020 0 976 -0 .020 0 976 0 . 007 1 150 0 .007 1 150

0 080 1. 270 0 .080 1 270 0 . 086 0 974 0 .086 0 974

0 200 0. 877 0 .200 0 875 - 0 . 016 0 992 - 0 .016 0 992

0 240 0. 699 0 .241 0 697 - 0 . 024 0 941 - 0 .024 0 941

TABLE 6.4.1b : Summary Statistics for MLE

Mean (Standard E r ro r ) *-

EM SCOR
A

/*
A

a 2
A

V-
A

CT2

r  = 
c = 
n =

i . o ,

0
100

0 .0 0 2 (0 .1 0 4 ) 0 .9 9 1 (0 .1 5 0 ) 0 .0 0 2 (0 .1 0 5 ) 0 .9 9 0 ( 0 .1 4 9 )

r  = 
c = 
n =

3 .0 ,
0
500

0 .0 0 1 (0 .0 6 3 ) 1 .00 0 (0 .07 7 ) 0 .0 0 1 (0 .0 6 3 ) 1 .0 0 0 ( 0 .0 7 7 )
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Dempster, Laird and Rubin (1977) stated that the linear rate of convergence of the 

EM  algorithm is dependent on the amount of information lost: the smaller the

loss in information, the quicker the rate of convergence. The results for the 

approximate EM  clearly display this. For example, for a sample of size 100 with 

r = 1.5 and c = 0, the average number of iterations for convergence was 3.1. 

This compared with 5.5 when r = 2.0 and c = 0. Table (6.4.2) shows the range 

for the average number of iterations taken for each algorithm to converge when 

n = 250, over the three lattice positions considered.

TABLE 6.4.2

Average number o f i t e r a t io n s  when 
n = 250 fo r  c = 0, 0 .25 and 0 .5

r Approx EM SCOR

1 .0  -  2 .0  

2 .5  

3 .0

2 - 5 . 6  3 -  4.1  

7 .5  -  13.4 3 .5  -  4 .5  

17.1 -  43.5  3 .4  -  6 .4

Although Table (6.4.2) shows only the number of iterations for n = 250, they do 

represent closely the results for other sample sizes.

6.5 Conclusions

In this chapter the estimation of /i and a 2 for normal rounded data where r < 2.0 

has been considered. Using the results of Chapter 2, it has been established that 

for r < 1.5 there is little difference between the efficiency of Sheppard's and M L  

methods for estimating and a 2. Even for r < 2.0 and n < 100 it may be of 

little preference to use the M L method. The loss in efficiency in using Sheppard
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estimators is far outweighed by their computational simplicity. For values of r up 

to 2, the M L method is preferrable in terms of efficiency over Sheppard's method, 

in the region r = 2 and n >  100. In this region of r and n the approximate 

EM  gave reliable results with a rate of convergence only slightly less than that for

the SCOR method. Together with its simplicity is is an attractive alternative to

other standard methods for obtaining MLEs.

Generally the approximate EM was found to be a suitable method for obtaining

MLEs for r > 1.0 and n > 100. However its rate of convergence was slow for 

r >  2.0. This should be borne in mind whenever an EM  approach is considered. 

This is something which has not been demonstrated in the literature before for 

rounded data.

The naive estimators were found to be at least as efficient as Sheppard estimators 

for only a restricted range of r and n. Hence Sheppard estimators are preferrable 

as they generally have a higher efficiency and are computationally as simple.
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7.1 Introduction

Studies of estimation from rounded data have concentrated largely on the normal 

distribution. For this distribution, estimation procedures have been found to be 

very robust to the effects of rounding data. Chapter 6 showed that the M L and 

Sheppard estimators of ft and a 2 have a high efficiency even for coarsely rounded 

data. In this chapter we investigate if this is true for other distributions too.

The past literature contains very little on the estimation of parameters in 

non-normal distributions, subject to rounding. The MLE of the exponential was 

given by Kulldorff (1961) for grouped data. Tricker (1984a) considered the 

estimation of the exponential parameter in terms of MSE. Tallis and Young 

(1962) obtained the MLE of the parameters of the log normal for grouped data. 

In these papers or in previous literature, there has been no work concerning the 

efficiency of various estimation procedures, applied to non-normal rounded data. 

Generally only the M L method has been applied to non-normal rounded data. 

Other methods of estimation have not been considered.

There are many non-normal distributions that could be looked at. In this chapter 

two such distributions have been chosen to demonstrate the implications of 

rounding. The exponential has been chosen because of its simplicity and the 

gamma as this is a more complicated p.d.f., where the shape of the distribution 

can range from near normality to extreme non-normality. As in Chapter 6 the 

same five estimation procedures will be discussed for these two distributions for r 

upto 2. To find the MLE for gamma rounded data, the EM algorithm is used. 

This is the first time this algorithm has been applied to non-normal rounded data.
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7.2 Gamma Distribution

In this section the five methods of estimation are discussed for a gamma random 

variable X, with unknown parameters a  and 8, where X  has been rounded. The 

p.d.f. for the gamma distribution is given by

As far as the author is aware the estimation of the parameters for gamma rounded 

data has not appeared in previous literature.

For gamma rounded data explicit expressions for the MLE of the parameters are 

unavailable, hence the appropriate distributions cannot be examined directly. 

However some insight could be obtained by examining large sample properties of 

the MLE. For the method of moments and Sheppard's method, explicit 

expressions can be found for the estimators. However like M L estimators, it is 

still possible to derive only large sample properties. This study is interested also

in moderate size n and these large sample results would at best be only

approximate. For M L estimators for unrounded data, the large sample results are 

rather inaccurate unless n is very large (Lawless 1982). There is no reason to 

believe that this does not extend to rounded data. Because of the inaccuracy of 

the large sample properties for moderate n, the five estimation procedures were 

examined by simulation.

The simulation study used a single purpose written program, with Nag routines used

to generate random samples of gamma deviates. These deviates were rounded

f ( x | 0 , a : )  = UJ 8 8, a > 0 ( 7 . 2 - 1 )
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before the various estimators were obtained. In addition the M L estimator for 

unrounded data was calculated. The rounding precision r varied upto 2, for lattice

positions c = 0, 0.25 and 0.5. Sample sizes considered were n = 25, 50, 100 and 

500. Fixing 6 = 1, a  took the values 1, 5, 10 and 20. Setting 0 = 1  would not 

alter the generality of the results and the range of a  would span various degrees 

of non-normality. For various combinations of r, c, n and a, each estimator was 

obtained 2000 times. From these 2000 replicates the mean, variance and MSE of 

estimators were found. The number of iterations taken for the EM algorithm to 

converge was recorded. The number of replicates was limited to 2000 due to the 

complex calculations involved and the iterative nature of the simulation. A  larger 

simulation was not practical on the Polytechnic computer.

Several procedures were used to verify the validity of the program. For example, 

to check the generation of gamma deviates, the values of a  and 6 given by the 

simulation were compared with their expected values.

7.2.1 Maximum Likelihood Estimation

In this section the main aim is to find the MLE for rounded data. Various 

standard methods could have been used. However, it was decided to use the EM  

methods because, as already mentioned in section (6.1), this has been put forward 

as a possible approach for rounded data. Although the EM may be slower to 

converge than some other methods, this must be put against the fact that it is 

simple to program and robust. (For example, it is less concerned about initial 

starting values). The EM algorithm may be obtained in the following way.
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EM-Algorithm for Gamma Distribution

X  = (X , . . .Xn) is a random sample of size n from a gamma random variable X  

with parameters a and 0 with p.d.f. f(xiai,0) given by (7.2-1). The Xj are 

subject to rounding where the rounding lattice has intervals of width w and lattice 

position c. Let nj be the number of sample values with midpoints Y j  = cw + jw  

for some positive integral value j, 

where S nj  = n *
j

The lower and upper boundaries of each rounding interval are given by 

/i v, w , w
£j  "  Yj  •  2 and uj  "  Yj  + T

The joint sufficient statistics for a  and 6 are

2 X j and [j Xj
1 i

In this problem it is more convenient to deal with the sufficient statistics

2 X j / n  and J log X j / n .  
i i

This will not affect the algorithm's convergence behaviour as it is independent of 

the sufficient statistics used. Let Op and 0p be the pth estimates of a and 0 

respectively. For the E step we require:

E j l  X j jY ,  n 0p , cxpj ( 7 . 2 - 2 )

Ej’Z log X i | Y ,  n, 0p, Op j ( 7 . 2 - 3 )

where Y  = ( Y ^ Y ^ . . . )  and n = (n^n, , . . . ) .
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An expression for (7.2-3) can be found as follows:

E[Xi I Y j  ,n j  , 0p,Q!p] —
0pr(Q!p)

 ̂ rx j aP-1
. x I d e x p [ -  * - ]  dx

lJ ^  ^ p -1Gy e xp [ -  2 - ]  dx

[■G[Uj/0p,Q!p+ 1 ] -  G[fi j / 0 p , O ! p + 1 ]-1

V p lc [ u j /0 p,ap] -  G [C j /e pap ] J

where the incomplete gamma function is given by

G[x,p] r(p) e x p ( - t )  t*3 1 dt

For the interval containing zero ie the first interval (j=0)

rG[u n/^D>®D+1 
E [ X i l Y o, n o,O!p,0p] = ap0p [ G [ u o/ 0 p ,a]  ]

Hence (7.2-2) denoted by is

e - p  =
Op«p

n
fG[uo/0 p ,a p +1 "

n ° l G[u0/ f lp ,a]  I  + A  " j I
j  = l

G [ u j / 0 p ,a + l ] -  G[£ j/0p>O!p-[-i ]
G [ u j / 0 p ,a] -  G[fij/0p,Q!p]

( 7 . 2 - 4 )
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To obtain an expression for (7.2-3):

For j = 1,2,.

E[ lo g  X j  | Y j  , r i j  ,Q!p, 0p]

ruj /0 p
log(x0p)xaP 1e X dx

r(o!p) [G [u j /0 p ,o;p] -  G[fij/^pjOfp] j

For j = 0, first interval

uj / e p
log(x0D)xaP"1e X dx

E [lo g  X i lY 0 ,n 0 ,ap>«p] r ( a p)G [u o/ 0 p ,a p]

Hence (7.2-3) denoted by E 2p is given by:

1
2P n r ( a D)

n o! o
+ I " j ' j

where I 0 =

• j  -

c [ u (j/^p ittp ] j —i  ^ ~

( 7 . 2 - 5 )

U j / » p

0

U j/0p

Cj / 0P

log(x0p)x°!P” 1 e X dx

log(x0D)xaP“ 1e X dx ( j = l , 2 , . . . )
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The M step is given by

log(ap+1) -  ^(ap+1) -  log(Eip) + E zp = 0

^p+i ^ ip ^ p + i

(7.2-6)

where , the digamma fu nct ion .

Given the starting estimates (ap,0p) the next estimates (ap+1,0p+1) are obtained 

by solving (7.2-6) (p=0,l,2 ,...) in the normal way. (7.2-6) is the EM  algorithm 

for estimating the parameters a  and 0 for gamma rounded data.

A  subroutine in the main program calculated the MLE for a  and 0 using (7.2-6). 

In this subroutine, a Nag routine (DOIAJF) was used to compute an approximation 

to the integrals. Algorithms from Applied Statistics were used to find values of 

such functions as the incomplete gamma (Lau 1980) and digamma (Bernardo 1976). 

Convergence to the MLE had occurred if the absolute values of the difference 

between successive estimates of a  and 0 were both less than E = 10- 5 .

To check the validity of the algorithm and subroutine, the following procedure was 

adopted. Using a Nag Quasi-Newton algorithm (E04JAF) the MLE were found 

for various samples of rounded data. For these samples the MLE from the EM  

subroutine and Quasi-Newton agreed.
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Simulation Results

Throughout the rest of this chapter the M L estimators for unrounded and rounded
A A A A

data will be denoted by (a ,8) and (o r ,0r ) respectively. We define the efficiency 

of the M L estimators for rounded data as follows:

M SE(a) M SE(0)
e(a;R , 0! ) ---------------------- , e (0 R> 6 )  =

MSE(aR) M SE(0r )

As in section (6.3) these efficiencies may be considered as a measure of the loss 

of information due to rounding.

Again as in section (6.4) the MLEs are conditional, the condition being existence.

Where non-existence of MLE occurred, only samples where MLEs existed for both

rounded and unrounded data were used to calculate the MSE.

The results from the simulation clearly showed the effect of the parameter a  in 

influencing the efficiency of the MLE for rounded data. Generally as a  decreased 

in value, so did the efficiency of the MLE. The loss in efficiency was greatest in
A A A

o r. The biases in o r  and 0 r  were of the same order; it was the larger
A

variance in c r  that caused the loss in efficiency to be greater. Table (7.2.1) gives 

a selection of results for r = 1.0 and 1.5. Table (7.2.2) gives some indication of
A A

the possible influence of the lattice position on the efficiency of o r  and 0 r . The 

effect of the lattice was seen to lessen as a  increased in value. This was not

unexpected, since the effect of rounding decreases as the distribution becomes less 

skewed.
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Table 7.2.1

A A

Efficiency of M L estimators or  and 0r

n = 25 n = 100 n = 500

r a e (aR,a) e (0 R ,0)
A

e(QR,G!) e(0R>0) e (aR,o) e ( 0 R , 0)

1.0 1 41.3 56.4 41.9 58.0 43.6 60.9

5 66.4 69.1 70.9 81.9 73.9 80.9

10 73.1 73.8 80.6 82.4 85.1 83.2

20 76.4 77.8 84.1 84.5 87.6 85.6

1.5 1 26.1 43.2 27.7 44.9 29.8 45.7

5 43.2 61.4 50.7 66.2 59.8 66.7

10 58.7 63.9 59.2 65.4 60.3 67.9

20 65.5 64.2 64.8 65.9 65.6 69.2

Note: all efficiencies in table at lattice position c = 0.

Table 7.2.2

Efficiency of M L estimators o r  and 0r  for n = 100, r = 1.0 and three lattice 

positions.

c = 0 c = 0.25 c = 0 .5

O! = 1
A A

e(0!R,Q!) 41.9 28.4 17.4

e (0 R ,0) 58.0 47.6 35.7

a = 5 e(SR,S) 70.9 71.4 67.8

e (0 R ,0) 81.9 81.1 79.4

For the sample sizes and lattice positions considered, the results indicated that 

efficiencies of o r  and 0 r  in the range 85-95% could be expected only for o: > 5
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where r < 0.5. For ot = 1, the range was 65-80% when r < 0.25. This is in 

sharp contrast to the story for normal rounded data, where the efficiencies of 

MLEs of n and <7 2 were in the range 85-92% for r < 1.0.

A

For coarse rounding of r = 2.0, the efficiency was as low as 6% and 33% for o r  

and 0r  respectively, for sample sizes as large as 500, when a = 1. At a  = 20
A

the efficiency for the same n and r could be as low as 49% and 53% for o ir  and
A

6r  respectively.

We would expect the rate of convergence of the EM  for the gamma to be slower 

than for the normal, the reason simply being that in a skewed distribution the loss 

of information caused by rounding is generally greater. As the rate of convergence 

of the EM  is proportional to the loss in information, this will result in a slower 

convergence. Average numbers of iterations taken to converge when E = 10” 5 are 

given in Table (7.2.3) for the gamma and normal EM  algorithms, when n = 100.

Table 7.2.3

Range of the average number of iterations for n = 100 across c = 0, 0.25 and

0.5.

Average number o f i t e r a t io n s

r Gamma Normal

1 a < 5 7 - 3 1  2. 5

a  > 5 6 - 7

1. 5 a < 5 10 -  71 3. 1

a. > 5 8 - 1 0
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Table (7.2.3) shows that the gamma uses more iterations than the normal does. 

How much more expensive this may be is largely determined by the value of a.

7.2.2 Approximate Maximum Likelihood Estimates

Tallis (1967) gave methods for obtaining the approximate MLE for grouped data. 

The method was a slight but convenient modification of the results of Lindley 

(1950). The modification was to replace the various terms in Lindley's result by 

their expectations and obtain the average bias caused by rounding.

Using Tallis' method on the p.d.f. given by (7.2-1) we obtain the following 

approximate M L estimators for a and 6, for c *  0 and a >  2.

( 7 . 2 - 7 )

? = _ ^[°o(<xo-v(<x0- 2n<x0r (< x 0) - l ] p

a 0 and 0 0 are the usual MLEs obtained from the midpoints of the rounding 

intervals and ^ '(z) is the trigamma function.

The restriction on c is obvious. If  c = 0, then there is a possibility that the first 

rounding interval with midpoint zero has a non zero frequency. Then a  0 and 6 0 

will not exist. The probability that a  0 and 6 0 do not exist is dependent on n, r 

and a.
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Table 7.2.4

P r o b a b i l i t y  t h a t  M L E  c * 0 ,  6 Q d o  n o t  e x i s t  a t  c  =  0 .

a r n = 10 n = 100 n = 500

1 0 .1 0.39 0.99 1.00

0.25 0.72 1.00 1.00

5 1.0 0.06 0.43 0.94

2 .0 0.51 1.00 1.00

10 2 .0 0.01 0.14 0.53

15 2 .0 0.00 0.00 0.01

As shown by the results in Table (7.2.4) an increase in n or r, or a decrease in 

a, will cause the probability to rise. As n tends to infinity this probability will 

approach one. The results indicate that for a <  15 where r < 2.0, there is a 

probability that a 0 and 6 0 will not exist, for samples as large as 500.

The restriction on a  is caused by the fact that to obtain (7 .2-7) we require the 

expected values of the reciprocals of x and x 2. These only both exist for a >  2.

Usually the main advantage of the approximate M L method is that it is numerically 

simpler than the full M L method. However, for the gamma distribution, this 

should be put against the fact that the approximate M L method can only be used 

for a >  2, and there is a definite probability at c = 0 that the estimates do not 

exist. Because of the disadvantages of this method of estimation it was decided 

not to investigate it any further.
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7.2.3 Sheppard's Method

For the gamma distribution, Sheppard's method has obvious advantages over the 

M L approach, namely it is simple to use and it requires no iterations. From 

section (6.3) it has been shown that for r < 1.5 there is little difference between 

the efficiency of Sheppard's and M L methods for estimating the parameters of a 

normal distribution from rounded data. Even for r < 2.0 and n < 100 it may be 

of little preference to use the M L method. In this section we consider if such a 

region exists in the (r,n) plane for the gamma distribution.

X  = (X 1 ,...,X n) is a random sample of size n from a gamma random variable X  

with parameters a and 6. Let X r  = ( X r , , . . . ,X r ^  be the rounded sample where 

X r j is the rounded value of Xj corresponding to a rounding lattice with interval of 

width w and lattice position c. The estimates of a and 6 by Sheppard's method 

are:

a  =
x |

Sr  -

_ 2

R " 12
w
12

( 7 . 2 - 8 )
Xr

where X r  and S 2r  are the usual estimators of the mean and variance applied to 

midpoints of the rounding intervals. (a, 0) will be called Sheppard estimators of 

( a , 8).

In order to compare Sheppard and M L methods the efficiency of a Sheppard 

estimator will be defined as the MSE of the M L estimator divided by the MSE of 

the estimator in question. For unrounded data, we are simply comparing the
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efficiency of the moment estimator with that of the ML estimator.

In the gamma distribution for unrounded data, the moment estimators are not 

appreciably less efficient than M L estimators in small to moderate size samples,

though they are in large samples (Lawless 1982). The main purpose of the 

simulation study in this section is to investigate the situation for rounded data and

to see if there is a region in the (r,n) plane where the moment estimators with

Sheppard's corrections have a similar efficiency to the M L estimators.

Simulation Results

cm =  1

For this value of a  the efficiency of Sheppard estimators could be very poor. At 

r = 1, the efficiency of these estimators could be as low as 27% for n = 100 and 

2% at n = 500. Even with r = 0.25 the efficiency of a  and 8 could be as low 

as 60% and 63% respectively for n = 100. The larger MSE of Sheppard 

estimators was mainly caused by a higher bias in these estimators than in M L

estimators. As expected an increase in r caused this bias to enlarge and

consequently the efficiency to fall. The poor efficiency of Sheppard estimators at

a = 1 is not surprising. The results of Chapter 2 indicated that Sheppard

Corrections can be unreliable in adjusting the moments of rounded data when the

distribution is skewed.
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Region a  > 5

Simulation results were obtained for a  = 5, 10 and 20, and any discussion refers 

to this set of values.

In this region of a  the efficiency of Sheppard estimators was greater than for

a  = 1. This is to be expected as Sheppard Corrections are generally more reliable 

as the distribution becomes less skewed. For r < 1 . 0  the bias in Sheppard

estimators was of the same order as in the M L estimators. It was the greater 

variance in the Sheppard estimators that caused them to be less efficient. 

However for coarse rounding (r >  1.0) both the biases in a  and 6 and their 

variance were greater than for M L estimators. This resulted in a sharper decrease 

in efficiency, which was especially noticeable for n >  100.

Simulation results indicated:

(i) For 5 < a  < 20 and r < 1.0, Sheppard estimators were at least 85% as 

efficient as M L estimators for sample sizes 500 or less.

(ii) For 5 < a < 20 and r < 1.5, Sheppard estimators were at least 75% as

efficient as M L estimators for sample sizes 100 or less.

Although the study was limited for values of a  upto 20, the results indicated that

(i) and (ii) would hold for all values of a of 5 or more.

In regions of (r,n) in (i) and (ii), it may be preferable to use Sheppard's methods 

instead of the M L method. The loss in efficiency in using Sheppard estimators
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may be worthwhile in view of their computational simplicity.

7.2.4 Naive Methods

In this section we briefly investigate the naive methods, ie method of moments and 

M L applied to the midpoints of the rounding intervals.

Define X r  = (x R i ....jX rh ) as in section (7.2.3). The naive M L estimators
A A

(°N»0n ) are obtained by solving (7.2-9)

lo g (a N) -  \K «n ) " 1oS(xr ) + lo S (I]xR i) = 0 

.  _  „ 1 ( 7 . 2 - 9 )

Naive M L estimators

As mentioned in section (7.2.2) if c = 0 there is a probability that the MLE do 

not exist. This is a restriction on this method of estimation.

The results from the simulation showed the inconsistency of the M L approach 

applied to the midpoints. As n increased in size the expected values of the 

estimators became increasingly off target. Table (7.2.5) illustrates this point for

°N = xrA*N

The naive moment estimators ((*n ,0n ) are given by

( 7 . 2 - 1 0 )
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a = 5.

Table 7.2.5

Expected values of Naive M L estimators and M L estimators, for a  = 5, r  = 1.0 

and c = 0.5.

Naive ML estimators ML est imators

n E[aN] E[0N] E[Or ] E [ 0 r ]

25 4.94 1.13 5.99 0.94

50 4.52 1.16 5.41 0.97

100 4.35 1.17 5.19 0.98

500 4.23 1.19 5.02 1.00

A A

Because of the bias in (0 ^ ,0 ^ ), the MSE of these estimators could be considerably 

larger than M L estimators (o:r ,0r ). Hence the efficiencies of the estimators
A A A A

(°N»0n ) relative to ( g r , 0 r )  were generally poor unless the rounding was relatively 

low and sample size not very large. This was illustrated by the simulation results 

when they indicated that for a > 1, this efficiency was 80% or more only when 

r < 0.25 and n < 100.

Naive Moment Estimators

Once again the simulation results demonstrated that a naive method of estimation

can lead to misleading results. As n increased the expected values of (o!n ,0 n )

became increasingly off target. This was especially so for c^ . The results showed

that E[o?jsj] <  E[a] and E[0jsj] >  E[0]. Also in both cases the variances of

(°N»0n) were generally lower than (a ,6). Table (7.2.6) illustrates these points for
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O! = 5. For certain values of n and r the naive estimators could be at least as 

efficient in terms of MSE's as the Sheppard estimators. For example, this was 

true for a > 1 when r < 1.0 and n < 50.

T a b l e  7 . 2 . 6

M e a n  a n d  v a r i a n c e  o f  N a i v e  M o m e n t  a n d  S h e p p a r d  e s t i m a t o r s  f o r  a  =  5 ,  r  =  1 . 0  

a n d  c  =  0 . 5 .

N aive Moment Est imators Sheppard Est imators

n E[oN] e [ 0n ] V[aN] V[0N] E[a] E [0] V[a] V[0~]

25 5 .30 1.04 3.23 0.11 5.64 1.00 4.63 0.125

50 4.93 1.06 1.27 0.06 5 .29 1.00 1.76 0.06

100 4.76 1.07 0.58 0.03 5.13 1.00 0.80 0.03

500 4.63 1.09 0.11 0.01 5.01 1.00 0.15 0.01

7.3 Exponential Distribution

This section briefly discusses the five methods of estimation of an exponential 

random variable X  with unknown parameter 0, where X  has been rounded. The 

p.d.f. for the exponential distribution is given by:

x

f ( x | 0 )  = i  e 6 x > 0, e > 0 ( 7 . 3 - 1 )

Kulldorff (1961) devoted much of his book to the estimation of 0 in the

exponential distribution. He studied completely or partially grouped data with

grouping having a finite number of intervals, an infinite number of intervals and
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intervals of equal and unequal length. Where the data are rounded we are 

interested only in an infinite number of intervals, where the first group containing 

zero may be unequal from the other groups. For Kulldorff's estimators of 6 for 

grouped data, the lattice position c was equal to a half. To limit the study of 

exponential rounded data, only that same value of c will be considered. Where 

necessary, reference will be made at other lattice positions.

7 . 3 . 1  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n

From Kulldorff (1961) the M L estimator of 0 for (7 .3-1), where the sample data 

has been grouped into equal widths w and finite number k, is given by:

0 R  =  w  /  l o g 1 +
n -  nk

1 ( i - 1 ) n i
i = 2

( 7 . 3 - 2 )

w i t h  a s y m p t o t i c  v a r i a n c e
n w -

W' 2 - w k w '

1 - e e
0

- e
T~

where nj is the number of observations in the ith group (i= l,...,k ) and

n -  I  n j .  

i - 1

For rounded data where k is infinite, (7 .3-2) can be written as follows for a 

rounding interval w and lattice position c =
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0r ------------   ( 7 . 3 - 3 )
R 2 tanh-1 [-2 -1  

L2 X r J

4 64 rw l  4 6 2 r r i
The asymptotic varian ce  is  now s *n^ L2 0 J = nr"2 s ^n^ 2 [2J

where Xr  is the mean of the rounded sample X  = (Xr 1 ...^ X r^).

The expression (7 .3-3) is the same as that given in Tricker (1984a). For c *  £
A

an explicit form for 0r  cannot be found and the likelihood equation has to be 

solved iteratively for 0r .

A

Kulldorff (1961) investigated the properties of 0 for moderate n. It can be 

established from his results that the asymptotic results can be safely used for 

n > 25 when r < 2.0. As for the gamma distribution the efficiency of 0r  can be 

defined as:

MSE(0) r 2e (015,0) = ------\  , which is  approximately equal to   —
MSE(6R) 4 s in h 2 g J

( 7 . 3 - 4 )

for n > 25, from Kulldorff's results. Table (7.3.1) shows the approximate 

efficiency for 0r , compared with the efficiency of the parameters of normal and 

gamma distributions. The results in this table indicate that the M L estimators for 

gamma rounded data are considerably less efficient than those for normal and 

exponential rounded data. The results suggest that the efficiencies of the M L

estimators of 0 and /i are very similar.
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Table 7.3.1

Exponent ia l  
n > 25

Normal 
a l 1 n (X

Gamma 
= 1

n = 10
o t = 10

r e ( 0 R >  S)
A A A A

e(/tR , /0  e(<r2R,o-2)
A A

e (aR,a) e ( 0 R ,0)
A

e(aR, 0 !) e ( ^ R , 0 )

1 92.1 92.3  85.5 17.4 35.7 77.6 78.4

1.5 83.2 84.2 71.8 12.3 25.6 64.1. 68.9

2 .0 12 A 74.6  54.1 17.3 17.3 62.4 62.6

Note: all efficiencies in table at lattice position c =

7.3.2 Other Methods of Estimation

Tallis (1967) gave the approximate M L estimator of 6 for exponential rounded 

data. At c = £, the M L estimator (7 .3-3) is simple to obtain, thus the 

approximate M L estimator has no advantage. However for c *  £ this is not so 

and the approximate M L method may be a suitable approximation to the exact 

MLE until rounding becomes quite coarse.

For exponential rounded data the naive method of moments and M L, together with

Sheppard's method, all produce the same estimator of 6, namely

0 = XR (7.3-5)

This will be referred to simply as the Sheppard estimator of 0.
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Using the expressions for E[XpJ and V[Xr ] from Tricker (1984a), the MSE of 0 

at c = £ is given by:

~ f l 2 r r 2e- r  -1 r *• r e - r / 2 i  2
MSE'*1 " + ^ t1 - T + ( 7 - 3 ' 6)

For n > 25, the approximate efficiency of the Sheppard estimator 0 relative to M L  

estimator 0 r  is the asymptotic variance of 0 r  divided by the MSE(0). Some of 

these efficiencies are given in Table (7.3.2). The results in this table suggest that, 

for r < 0.5 and n < 100, Sheppard's and M L methods are equally efficient. 

Outside this region of (r,n) Sheppard's method is far less efficient. For c # £ we 

would expect efficiencies similar to those given in Table (7.3.2).

Table 7.3.2

Efficiency of 0 relative to 0r  for c = £

e (0> 0r )

r n = 25 n -  100 n = 500

0 .5 100 99.7 85.4

1.0 99.8 68.2 25.5

1.5 4 .0 1.0 0 .2

7.4 Discussion of Results

In this chapter estimation procedures for rounded data from non-normal 

distributions have been considered. For the gamma distribution the EM  algorithm 

was used to obtain the MLE of the parameters, for rounded data. The loss in
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efficiency of the MLE due to rounding was larger than for the normal distribution. 

This was especially so for a <  5, where the rounding was coarse (r >  1). For 

a  < 5, we could expect losses in efficiency between 5-15%  for rounding with 

r < 0.5. In contrast, for normal rounded data such losses in efficiency would not 

take place until r = 1.0.

In Chapter 6, Sheppard's method was found to be competitive with the M L  

approach in terms of efficiency, for normal rounded data. This was found to be 

less so for gamma rounded data, especially when the distribution is very skewed. 

However, as shown in section (7.2.3) there are regions in the (r,n) plane where it 

may be preferable to use Sheppard's method instead of the M L method. The loss 

in efficiency in using Sheppard estimators being counter balanced by their 

simplicity.

The approximate MLE could be found in only a restricted range of a  and may 

not exist when c = 0. As a result this method of estimation was limited for 

rounded gamma data.

The naive methods of estimation for gamma rounded data had limited use. The 

naive MLE had a problem of existence at c = 0, and was found to have poor 

efficiency relative to MLE unless the rounding precision r was low and sample size 

not very large. The naive moment estimators were found to be at least as 

efficient as Sheppard estimators for only r < 1.0 and n < 50. Hence Sheppard 

estimators are preferable as they have higher efficiency over a large range of r 

and n.
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For the exponential distribution the loss in efficiency of the MLE due to rounding 

was considerably less than for the gamma. In fact the efficiency of the M L  

estimators of 6 and n in the exponential and normal respectively were almost

identical. As in the gamma the efficiency of Sheppard estimators relative to M L

estimators were poor outside a limited region of r and n.

Several points need to be made in the light of the results in this chapter.

1. For the normal distribution the loss in efficiency in MLE due to rounding is

small. This gives an optimistic impression of the effect of rounding on the 

method of maximum likelihood. The results in this chapter indicate that for 

non-normal distributions the loss in efficiency in the MLE when the data has 

been rounded can be considerable.

2. For normal rounded data simpler methods of estimation than M L were as 

efficient for very coarse rounding. The results in this chapter suggest that, 

for other distributions, the M L method will be generally more efficient than 

other standard methods of estimation.

3. As shown in Chapter 6, when the EM  algorithm is applied to normal rounded 

data it is not very expensive in terms of number of iterations for r < 2.0. 

The results in this chapter indicate that this is not necessarily true for other 

distributions.
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The aim of this study was to examine the effect of rounding on certain statistical 

procedures. The question has been investigated whether or not one should be 

concerned about the degree of precision of the recorded data. The study has 

illustrated the suitability of certain statistical methods to rounded data.

In the literature there is a large amount of scattered information concerned with 

rounding. It became evident that a coherent survey of this work was needed. 

Chapter 1 of this thesis contains the first major comprehensive literature review on 

the topic of rounding. It soon became obvious that certain areas had been 

thoroughly investigated while others, notably the consequences of rounding on tests 

of significance and suitability of estimation procedures for rounded data, had been 

neglected.

Most of the early statistical literature on rounding dealt with the derivation of 

relationships between the moments calculated from data before and after rounding. 

Chapter 2 is concerned with this relationship. Adapting the quantization theory 

from communication engineering, the characteristic function of the rounded 

distribution Xr  is obtained. A  proof of the characteristic function of X r  is 

presented which is much simpler and more elegant than the one presented in 

quantization theory. For univariate distributions via the characteristic function of 

Xr , explicit expressions for the moments of X r  are obtained for the first time. 

These are used to determine the bias in the moments of a distribution caused by 

rounding. This has been the most extensive study to date, as it has considered 

not only the degree of rounding, but also lattice position and shape of the 

distribution. The results show how departure from symmetry was a crucial factor 

in deciding the size of the rounding bias in the moments. Generally as the 

distribution becomes increasingly non-symmetrical, rounding bias increases. The
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degree of precision r which render this bias negligible is dependent on the shape 

of the distribution. In the final part of the chapter it is shown how the 

theoretical results can be extended to higher dimensional rounded random variables. 

A new result giving an exact expression for the joint first moment of a bivariate 

distribution is derived. It is shown how this expression can be further simplified if 

the characteristic function exhibits certain symmetric properties. Attention was 

focussed on the joint first moment of the bivariate normal distribution. The 

rounding bias in this moment was found to be dependent on the correlation. As 

the correlation increased so did the bias.

Over the years Sheppard's corrections have been universally regarded as the 

acceptable method for determining the relationship between the moments of X  and 

Xr . For the normal distribution these corrections were found to be a reasonable 

approximation to the moments of rounded data for r < 2.0. However departure 

from normality can result in these corrections becoming very unreliable. Further, 

as illustrated by the bivariate normal, Sheppard's corrections can be unreliable in 

adjusting the joint first moment for rounded data. It is concluded that these 

corrections should be handled with care.

Whereas the previous literature is informative on the behaviour of the moments for 

rounded data, the effect of rounding on tests of significance has been generally 

unexplored. There is considerable vagueness in the literature concerning what level 

of precision should be used when applying a statistical test. In Chapters 3 and 4 

the effect of rounded normal data on the significance level and power of five 

normal test statistics is investigated.
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Generally it is impossible to obtain an explicit form for the sampling distribution of 

the test statistic for rounded data. The approach under this constraint was to 

combine extensive simulation with approximations to the sampling moments of the 

test statistics, in order to examine the effect of rounding on a test statistic. This 

approach was found to be very successful in determining the performance of a test 

statistic with respect to the significance level and power for rounded data. The 

results showed that tests of means are more robust under rounding than tests of 

variances. The two sample t-test and F-test in the anlysis of variance are found 

to be the least affected by rounded data, while the chi-squared test for a variance 

is the most sensitive. For tests of means the power under rounding can be 

approximated using a non-central distribution with a given adjustment to the 

non-central parameter. This provides a good estimate of the power under 

rounding. It is also shown in Chapter 4 how the chi-squared test can be made 

more robust to rounding by making a simple adjustment to the test statistic. Tests 

of hypothesis regarding the value of variance should be based on this adjusted test 

statistic if the data is subject to rounding.

In the literature various rules have been suggested for the degree of precision that 

should be used when recording data. There seems to be no standard rule. There 

is a need to know when normal theory tests can be applied 'safely' to rounded 

data. In Chapters 3 and 4 guidance is given on what is an appropriate degree of 

precision to use when applying certain tests to normal rounded data. The results 

show that we can use far less precision in the data than originally realised, without 

the significance level and power of the test being adversely affected. The usual 

rules of rounding presented in the literature were generally found to be too 

conservative.
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In Chapter 2 it is shown how non-normality can increase the effect of rounding. 

In many situations the tests considered in Chapters 3 and 4 are used where the 

assumption of normality is invalid. It is only sensible to investigate how the tests 

will perform for rounded non-normal data. The results of such an investigation 

are given in Chapter 5. Guidelines are given on how the previous degree of

precision recommended for normal populations can be applied when the population 

is non-normal. A  notable result of this investigation is the robustness of the two 

sample t-test and F-test in the analysis of variance over a large number of 

rounded non-normal populations. The results of Chapter 5 give, for the first 

time, an indication of how much non-normality can be allowed before the effect 

of rounding distorts the significance level and power of certain normal tests.

The effect of rounding on both the moments and test statistics can be increasd by

the departure from normality of the population. The last two chapters of this 

thesis are concerned with how standard estimation procedures perform in terms of 

efficiency for normal and non-normal rounded data.

For normal rounded data simpler methods of estimation than maximum likelihood 

are found to be as efficient for coarse rounding. Moment estimators with 

Sheppard's corrections are found to be competitive in terms of efficiency as

maximum likelihood estimators. However, evidence from the non-normal 

distributions considered suggests that, if rounding is coarse or the distribution is 

very skewed, the maximum likelihood approach is preferable in terms of efficiency.

Previous research has shown that the loss in efficiency in the maximum likelihood 

estimate due to rounding is small. That research was restricted to the normal 

distribution. This has given an optimistic impression of the effect of rounding on
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the method of maximum likelihood. Our results indicate that the loss in efficiency 

can be considerable for non-normal rounded data.

To find the maximum likelihood estimates from normal and gamma rounded data 

the EM  algorithm was used. This is the first time this algorithm has been applied 

to non-normal rounded data. For normal rounded data the EM  algorithm was not 

very expensive in terms of the number of iterations required. However for 

rounded gamma data far more iterations were needed. The results indicate that 

when the rounding is coarse or the distribution very skewed the rate of 

convergence of the EM  algorithm can be slow. This is an important point to 

consider when deciding on the suitability of this algorithm for rounded non-normal 

data.

Further Research

Throughout the course of this study, it has become apparent that there is further 

research to be carried out into the subject of rounded data. In Chapter 5 only 

sample sizes of n = 25 are considered. There is evidence that when the departure 

from normality is extreme, increasing the sample size can cause rounding to have a 

greater effect on the significance level and power of a test. Further work in this 

area is worthy of investigation.

In this thesis it has been shown that normal test statistics are more robust to 

rounded data than previously realised. However, what about other statistical tests? 

The difficulty of applying tests based on ordered data, such as Shapiro-Wilk test 

and Spearmans rank correlation test, is that sample data may contain ties resulting 

from rounding. This problem of ties can disturb the sampling distribution of the
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test statistic. Further work on what is an appropriate degree of precision for the

recorded data for such tests is required.

It is clear from the work in this thesis that departures from normality in a 

population generally increase the effect of rounding. The impact of rounding on 

non-normal regression models needs further investigation. The problems in 

estimating the parameters of multivariate distributions when the data has been

subject to rounding, have not been well covered. However a possible difficulty in

this area is that the maximum likelihood method may be restricted, this being 

caused by the difficulties encountered in evaluating the necessary integrals.

Model selection is another area which needs further investigation when dealing with 

rounded data. Techniques such as plotting procedures and tests for examining a 

model's suitability for rounded data could be included in this investigation.

One of the major difficulties when dealing with rounded data is that there is a 

lack of relevant statistical theory which can be applied. As a result we often have 

to look at specific cases. Another problem is that the application of statistical 

methods on rounded data often requires numerical techniques. In the past, 

progress on analysing rounded data has been restricted by the computational effort 

associated with these techniques. However, with advances in computing, this is 

now becoming less of a problem. Thus we would expect further development in 

rounded data research.
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APPENDIX A : COMPUTER PROGRAMS AND OUTPUT FOR CHAPTER 2

Several FORTRAN programs were written to investigate the effect of rounding on 

the moments of a probability distribution. All the programs were run under the 

FORTRAN 77 compiler on the IBM Mainframe computer at Sheffield City

Polytechnic.

The main program in this chapter was JMOMENTS. This program obtains by 

Monte Carlo methods an estimate of the mean, variance, skewness and kurtosis of 

data from a Johnson distribution which has been subject to rounding. The

following is a list of all the output produced by this program, upon which the 

contour diagrams Figures (2.2.10) to (2.2.13) are based.

The four parameters / i r ,  <t 2 r ,  y / 3 . , R  and | 3 2 r  were estimated for a series of 

Johnson distributions whose shape parameters y/31 and 0 2 fell on a grid with

y/3, = 0.0, 0.2, 0.4, 0.6, 0.8 and 0 2 = 1.7, 2.0, 2.4, 2.8, 3.2, 3.6, 4.4. 

Omitting |32 = 1.7 where y/3, = 0.6 and 0.8, produced 33 distributions. For each 

combination of ( y/3n ,/32), the four parameters were found for r = 1.5, 1.0 and

0.5, each of 11 values of c ie -0 .5 , -0 .4 , ..., 0.4, 0.5.

A  listing of all the output mentioned above is available on request.
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APPENDIX B : COMPUTER PROGRAMS AND OUTPUT FOR

CHAPTERS 3 AND 4

In this appendix computer programs written to find the significance level and

power of a test for rounded normal data are considered. A  list of output

produced by these programs is provided. This appendix also contains tables of 

results for or  (significance level of test under rounding) which are referred to in 

Chapter 3.

Several FORTRAN programs were written to investigate the effect of rounded 

normal data on the significance level and power of a test. All the programs were 

run under the FORTRAN 77 compiler on the IBM  Mainframe computer at 

Sheffield City Polytechnic. A  list of the purpose written programs used are given 

below.

(i) EXACT -  this program calculates the exact value of the significance

level of 4 standard tests for rounded normal data for various 

combinations of r, n and a, over a range of c values. The tests were 

the one and two sample t-tests, chi-squared test and F-test.

(ii) SIMUL -  this program obtains an estimate of the significance level of 6

standard tests for rounded normal data by Monte Carlo Methods. The 

significance level can be obtained for various combinations of r, n and 

a, over a range of c values. The tests were: one and two sample

t-tests, chi-squared test and F-test, together with the F-test in the one 

and two way analysis of variance.
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(iii) PEXACT -  this program calculates the exact value of the power of the

4 standard tests given in (i), for rounded normal data, for various

combinations of r, n and a  over a range of c values.

(iv) PSIMUL -  this program obtains an estimate of the power of the 6

standard tests given in (ii) for rounded normal data by Monte Carlo

Methods. This estimate of power can be obtained for various

combinations of r, n and a, over a range of c values.

A  listing of the above programs is available on request.

The following is a list of all the output produced by the four programs given in

(i) -  (iv), upon which the study of the effect of rounded normal data on the

significance level and power of a test was based.

SIGNIFICANCE LEVEL OF A  TEST

The significance level of each test under rounding was evaluated for values 

corresponding to the lower and upper 0.1% , 1.0% , 2.5% and 5% points under 

normal theory conditions with no rounding. For each combination of n, k and r 

given below the eight percentage points were found for 11 values of c, ie 

c = -0 .5 , -0 .4 , ..., 0.4, 0.5. The results from the SIMUL program were based 

on 100,000 iterations.
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One sample t-test

EXACT: n = 2 to  15 w i th  r  = 0 .25 ,  

SIMUL: n = 25, 30 w i th  r  = 0 .5 ,

Chi-squared test

EXACT: n = 2 to  15 

SIMUL: n = 25, 26, 30 

n -  50, 100

Two sample t-test

EXACT: n =

SIMUL: n =

F-test

EXACT: n =

SIMUL: n =

n =

2 to  7 w i th  

10, 25 w i th

2 to 5 w i th  

10, 25 wi th  

40, 100 wi th

w i th  r  = 0. 

w ith  r  = 0. 

w ith  r  = 0.

r  = 0 .25 ,  

r  = 0 .25 ,

r  = 0 .25 ,  

r  = 0 .25 ,  

r  = 1 .5 ,

B.3

0 .5 ,  1 .5 ,  2 .0  

1 .0 ,  1 .5 ,  2 .0

25, 0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

25, 0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

5

0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

0 .5 ,  1 .0 ,  1 .5 ,  2 .0

0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

.0



One Way Analysis of Variance

SIMUL: k = 3 , n = 5 to  10, 25 with r = 0 .2 5 ,  0 .5 ,  1 .5 , 2 .0

k = 4, n = 5, 6, 10 with r -  0 .2 5 ,  0 .5 ,  1 .5 , 2 .0

k = 5, n = 5, 10, 25 with r -  0 .5 ,  1 .5 ,  2 .0

** II >—i o , n = 5, 10 with r = 0 .5 ,  1 .5 ,  2 .0

Two Way Analysis of Variance

SIMUL: k = 3 , n = 5 , 10, 25 wi th  r  = 0 .2 5 ,  0 .5 ,  1 .5 ,  2 .0

k = 5, n = 5, 10 w i th  r  = 1 .0 ,  1 .5 ,  2 .0

k = 10, n = 5, 10 w i th  r  = 1 .0 ,  1 .5 ,  2 .0

POWER OF A  TEST

The PEXACT program was only used to check the results of the PSIMUL 

program. All power results given in Chapter 4 were obtained by simulation using 

the PSIMUL program. The power of each test under rounding was evaluated for 

values of the alternative hypothesis H 1: (one tailed) corresponding to powers of 

0.3, 0.5, 0.7 and 0.95 under normal theory conditions with level of significance a. 

For each combination of n, k, r and a  given below, the four power levels were 

found for 11 values of c using the PSIMUL program. The estimate of each power 

was based on 100,000 iterations.
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One sample t-test

a = 0 .05 :  n = 5 w i th  r  = 0 .5 ,  1 .5 ,

n = 10 w i th  r  = 1 .0 ,  1.5

n = 25 w i th  r  = 1 .0 ,  1.5

a  = 0.01 and 0.001:  n = 10 w i th  r  >

n = 25 w i th  r  ■

Chi-squared test

a = 0 .05 :  n = 5, 10, 25 w i th  r  = 0

Two sample t-test

a = 0 .05 :  n = 5, 10, 25 w i th

a. = 0 .01 and 0 .001:  n = 10, 25 w i th

F-test

a  = 0 .05 :  n = 5 w i th  r  = 0 .25 ,  0.

n = 10 w i th  r  = 0 .25 ,  0.

1.0

1.5

25, 0 .5 ,  1 .0

r  -  0 .5 ,  1 .0 ,  1 .5 ,  2 .0  

r  = 1 .5 ,  2 .0

, 1.0

, 1 .0 ,  1.5
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One Way Analysis of Variance

a  = 0 .05:  k = 3, n = 5 w i th  r

k = 3, n = 10, 25 w i th  r

k = 5, n = 5, 25 w i th  r

T w o  W a y  A n a l y s i s  o f  V a r i a n c e

o: = 0 .05:  k = 3, n = 5 w i th  r  = 1.5

k = 5, n = 5 w i th  r  = 2 .0

A  listing of all the output mentioned above is available on request.

-  1 .0 ,  1.5  

= 1 .5 ,  2 .0  

= 1 .5 ,  2 .0
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TABLE OF RESULTS FOR OR (Chapter 3)

T a b l e  B . l

V a l u e s  o f  o r  ( % )  f o r  o n e  s a m p l e  t - t e s t  f o r  n  =  5  w h e n  r  =  2 . 0 ,  1 . 0  a n d  0 . 5

ot(%) lower t a i  ] a(°/o) upper t a i l

r c 0 .1 1.0 2 .5 5 .0 5 .0 2 .5 1 .0 0 .1

2 .0 -0 .5 2 .48 2.48 3 .12 3 .13 3 .13 3 .12 2 .48 2 .48
-0 .4 4 .74 4.75 6 .52 6 .52 1 .37 1 .32 1.32 1 .12
-0 .3 7 .82 7.82 8 .53 12 .09 4 .72 0 .49 0 .49 0 .43
-0 .2 11 .16 11.18 11 .39 13 .13 1 .98 1 .86 0.16 0 .14

-0 .1 13 .82 13.87 14 .55 14 .57 0 .72 0 .72 0.04 0 .04

0 .0 0 .01 0 .22 0 .23 2 .09 2 09 0 23 0 .22 0 .01

0 .1 0 .04 0 .04 0 .72 0 72 14 57 14 55 13.87 13 .82
0 2 0 14 0.16 1 86 1 98 13 13 11 39 11.18 11 16
0 3 0 43 0.49 0 .49 4 72 12 09 8 53 7.82 7 82
0 4 1 12 1.32 1 32 1 37 6 52 6 52 4 .75 4 74
0 5 2 48 2.48 3 12 3. 13 3. 13 3 12 2 .48 2 48

1.0 -0 5 0 47 0.87 2 70 4 13 4. 13 2 70 0.87 0 47
-0 4 0 59 1.26 3 89 4. 52 4. 24 2. 01 1.72 0 36
-0 3 0 70 1.07 3 86 6. 44 6. 77 1. 29 1.17 0 29
-0 . 2 0. 78 1.37 2. 57 5. 62 4. 63 2. 21 0.73 0 20

-0 . 1 0. 86 1.42 3 54 4. 96 3. 25 2. 96 0.47 0 13
0. 0 0. 08 0.92 1. 89 6. 08 6. 08 1. 89 0 .92 0 08

0. 1 0. 13 0.47 2. 96 3. 25 4. 96 3. 54 1.42 0. 86

0. 2 0. 20 0.73 2. 21 4. 63 5. 62 2. 57 1.37 0. 78

0. 3 0. 29 1.17 1. 29 6. 77 6. 44 3. 86 1.07 0. 70

0. 4 0. 36 1.72 2. 01 4. 24 4. 52 3. 89 1.26 0. 59

0. 5 0. 47 0.87 2. 70 4. 13 4. 13 2. 70 0.87 0. 47
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Table B .l (continued)

a(°/o) lower t a i l a(°/o) upper t a i l

r c 0.1 1.0 2.5 5 .0 5 .0 2 .5 1.0 0.1

0 .5 - 0 . 5 0 .14 0.88 2 .40 5.12 5 .12 2 .40 0 .88 0 .14

- 0 . 4 0.16 1.09 2.46 4.76 5.05 2.50 1.03 0.11

- 0 . 3 0.14 0.99 2.83 5.09 5.57 2.17 1.19 0 .12

- 0 . 2 0.11 1.01 2.33 5.04 4 .97 2 .16 0.96 0.10

-0 .1 0.08 0.99 2.61 5.10 4.80 2.85 0.91 0.09

0 .0 0.07 0.90 2.43 5.18 5.18 2.43 0.90 0.07

0.1 0.09 0.91 2.85 4.80 5.10 2.61 0.99 0.08

0 .2 0.10 0.96 2.16 4.97 5.04 2.33 1.01 0.11

0.3 0.12 1.19 2.17 5.57 5 .09 2.83 0.99 0.14

0 .4 0.11 1.03 2.50 5.05 4.76 2.46 1.09 0.16

0 .5 0.14 0 .88 2.40 5 .12 5.12 2.40 0.88 0.14

T a b l e  B . 2

M i n i m u m  a n d  m a x i m u m  v a l u e s  o f  o p ( % )  f o u n d  f o r  t h e  1 1  v a l u e s  o f  c ,  i n  a  o n e  

s a m p l e  t - t e s t  f o r  n  =  1 0

a(°/o) lower t a i l a(°/o) upper t a i l

r 0 .1 1 .0  2 .5  5 .0 5 .0  2 .5  1 .0  0.1

2 .0 min

max

0.01 0.37  1.22 2.03  

1.91 4 .04  4.23  10.00

2 .03  1.22  0 .37 0.01 

10.00 4 .23  4 .04  1.91

1.0 min

max

0.07 0 .86 2.21 4 .82  

0.15 0 .12  2.71 5 .60

4 .82  2.21 0 .86  0.07  

5 .60  2.71 0 .12  0.15

0 .5 min

max

0.09 0 .96 2 .44 4.95  

0.11 1.03 2 .56 5.17

4 .95 2 .44  0 .96  0.09  

5.17 2 .56  1.03 0.11
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Table B.3

Minimum and maximum values of or(%) found for the 11 values of c, in a one

sample t-test for n = 25

a(°/o) lower t a i l o:(0/o) upper t a i l mean var iance

r 0.1  1 .0  2 .5  5 .0 5 .0  2 .5  1 .0  0.1 t t R t t R

2 .0

1.5

min

max

min

max

0.03  0.65 1.66 4.31  

0.27  1.34 3.17  6.68

0 .06  0 .90 2 .40 4 .79  

0.12  1.15 2.85 5 .70

0.03 0 .65 1.66 4.31  

0.27 1.34 3 .17 6.68

4.79  2 .40  0 .90 0 .06  

5.70  2 .85 1.15 0 .12

0 -0 .0 1  1.09  1.09  

0 0 1.09  1.11

0 -0 .0 1  1.09 1.09  

0 0 1.09 1.11

T a b l e  B . 4

M i n i m u m  a n d  m a x i m u m  v a l u e s  o f  o r ( % )  f o u n d  f o r  t h e  1 1  v a l u e s  o f  c ,  i n  t h e  

c h i - s q u a r e d  t e s t  f o r  a  v a r a i n c e ,  f o r  n  =  5

0!(°/o) lower t ai 1 a(°/o) uppe r t a i  1

r 0 1 1 0 2. 5 5 0 5 0 2. 5 1 0 0 1

2 .0 min 4 95 4 95 4. 95 4 95 14 74 14. 74 1 43 0 86

max 14 85 14 85 14. 85 14 85 15 43 15. 43 2 12 1 11

1.0 min 0 94 0 94 0. 94 0 94 5 98 3. 54 1 32 0 20

max 0 99 0 99 0. 99 0 99 6 04 3. 56 1 35 0 21

0 .5 min 0 07 0 68 1. 86 5 81 5 50 2. 87 1 53 0 12

max 0 07 0 68 1. 86 5 81 5 51 2. 88 1 60 0 12

0.25 min 0 13 0 77 2. 47 5 34 5 10 2. 53 1 02 0 09

max 0 13 0 77 2. 47 5 34 5 10 2. 53 1 02 0 09
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Table B.5

Minimum and maximum values of qr(%) found for the 11 values of c in the

chi-squared test for a variance, for n = 10

a(°/o) lower t a i l a(°/o) upper t a i l

r 0.1 1.0 2 .5 5 .0 5 .0 2 .5 1.0 0.1

1.5 min

max

0.05

0.24

0.58

2.11

0.58

2.11

0.58

2.11

11.58

12.84

4 .76

6 .04

2 .52

2.77

0.40

0.43

1.0 min

max

0.06

0.09

0.44

0.60

2.05

2.47

3 .32

3.33

6.72

6.75

3 .74

3.77

1.75

1.77

0.23

0.23

0.5 min

max

0.11

0.11

0.90

0.90

2 .36

2 .36

4.63

4.63

5 .56

5 .56

2 .88

2 .88

1.12

1.13

0.12

0.12

0.25 min

max

0.11

0.11

0.91

0.91

2.45

2.45

4.89

4.89

5 .17

5.17

2 .56

2 .56

1.02

1.02

0.11

0.11

T a b l e  B  . 6

M i n i m u m  a n d  m a x i m u m  v a l u e s  o f  o r ( % )  f o u n d  f o r  t h e  1 1  v a l u e s  o f  c  i n  t h e  

c h i - s q u a r e d  t e s t  f o r  a  v a r i a n c e ,  f o r  n  =  2 5

a(°/o) lower t a i l a(°/o) upper t a i l

r 0.1 1.0 2.5 5 .0 5 .0 2 .5 1.0 0.1

1.5 min 0.00 0.06 0.33 1.31 15.24 9.71 4.81 0.85

max 0.06 0.37 0.95 2 .16 15.46 10.72 5.21 0.94

1.0 min 0.05 0.51 1.43 2.88 8.74 5.04 2.23 0.30

max 0.07 0.63 1.72 3.17 9.39 5.34 2.35 0 .32

0 .5 min 0.08 0.88 2.15 4.41 5.94 3 .02 1.24 0.13

max 0.11 0.90 2.23 4.49 6.00 3 .10 1.29 0.14

0.25 min 0.09 0.95 2.45 4.87 5.21 2.63 1.03 0.11

max 0.11 1.00 2.49 4.93 5 .32 2.67 1.08 0 .12
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Table B.7

Minimum and maximum values of or(%) found for 11 values of c in the two

sample t-test, for n = 5

a(°/o) lower t a i l a(%) upper t a i l

r 0.1 1.0 2 .5 5 .0 5 .0 2 .5 1.0 0.1

1 .0  min 0.07 0 .89 2.53 4.81 4 .79 2.50 0.88 0.07

max 0.10 0 .94 2.59 4.93 4.91 2 .58 0.95 0.10

1.5  min 0.04 0.55 2.60 5 .10 5 .09 2.57 0.54 0.04

max 0.10 0.95 2 .92 5 .32 5.33 2.89 0.93 0.09

T a b l e  B . 8

M i n i m u m  a n d  m a x i m u m  v a l u e s  o f  c *r ( % )  f o u n d  f o r  1 1  v a l u e s  o f  c  i n  t h e  t w o  

s a m p l e  t - t e s t  f o r  n  =  1 0  a n d  2 5  w h e r e  r  =  2 . 0

a(°/o) lower t a i l a(°/o) upper t a i l

n 0.1 1.0 2 .5 5 .0 5 .0 2 .5 1.0 0.1

10 min 0.04 0.86 2.27 4.92 4 .90 2 .26 0 .86 0 .04

max 0.14 1.02 2.45 5.26 5 .24 2 .44 1.06 0.14

25 min 0.09 0.98 2.51 4.90 4.89 2.49 0.96 0.09

max 0.12 1.06 2.62 5.03 5.05 2 .60 1.05 1.13
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Table B.9

Minimum and maximum values of qr(%) found for 11 values of c in the F-test

for both samples of size 5

a (°/») lower t a i l a (°/o ) uppe r t a i l

r 0 1 1 .0 2 .5 5 .0 5 0 2 5 1 .0 0 1

2 .0 min 4 71 4 71 4.71 4 90 4 90 4 71 4 .71 4 71

max 12 64 12 64 12.64 12 78 12 78 12 64 12 .64 12 64

1.0 min 0 93 1 10 2.05 4 94 4 94 2 05 1 .10 0 93

max 0 98 1 16 2.11 4 97 4 97 2 11 1 .16 0 VO 00

0 .5 min 0 09 1 06 2.52 5 13 5 13 2 52 1 .06 0 09

max 0 10 1 10 2.56 5 23 5 23 2 56 1 .10 0 10

T a b l e  B . 1 0

M i n i m u m  a n d  m a x i m u m  v a l u e s  o f  q r ( % )  f o u n d  f o r  1 1  v a l u e s  o f  c  i n  t h e  F - t e s t  

f o r  b o t h  s a m p l e s  o f  s i z e  1 0

a (°/o) lower t a i l a(%) upper t a i l

r 1 .0 1.0 2 .5 5 .0 5 .0 2 .5 1.0 0.1

1.0 min

max

0.08

0.11

1.02

1.08

2.41

2.61

5.01

5.22

5 .00

5.20

1.01

1.08

2 .39

2.60

0.08

0.11

0 .5 min

max

0.10

0.12

1.03

1.07

2.51

2.60

5.01

5.11

5.01

5.10

2.50

2.59

1.01

1.06

0 .10

0 .12
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Table B .ll

Minimum and maximum values of or(%) found for 11 values of c in the F-test

for both samples of size 25

a(°/o) lower t a i l a(%) upper  t a i l

r 0.1 1.0 2.5 5 . 0 5 . 0 2.5 1.0 0.1

1.5 min

max

0.04

0.15

0.80

1.08

2.24

2.58

4.66

5.06

4.64

5.05

2.24

2.56

0.78

1.07

0.04

0.14

2. 0 min

max

0.09

0.11

0.97 

1.04

2.41

2.52

4.80

5.00

4.83

5.10

2.42

2.53

0.10

1.05

0.09

0.11

Tabler B.12

Minimum and maximum values of or (%) found for the 11 values of c, in a 

One-way Analysis of Variance for k = 3 and n = 5, 10, 25

k = 3 n = 5

a(°/n) lower t a i l a(%) upper  t a i l mean v a r i a n c e

r 0.1 1.0 2 .5  5 . 0 5. 0  2 . 5  1.0 0.1 F f R f  f R

2. 0 min

max

5.20 5 .20 5.20 5.20 

5.81 5.81 5.81 5.81

3.97 2.21 0.45 0.05 

5.31 3.41 0 .90 0.23

1.20 1.19 2 .16  2.05

1.20 1.21 2 . 16  2.35

1.5 min

max

3.42 3.42 3 .42 3.49 

3.56 3.56 3.56 3.63

4.67 2.51 0.87 0 .08 

4.85 2 .79 0.93 0 .16

1.20 1.20 2 .16  2.06 

1.20 1.21 2 .16  2.33

1.0 min

max

1.66 1.63 1.69 4.39 

1.77 1.77 1.80 4.57

4.66 2.45 1.00 0.10 

4.82 2.54 1.04 0.12

1.20 1.20 2 . 16  2.13

1.20 1.21 2 . 16  2.21

0.5 min

max

0.43 0.62 2.65 4.99 

0.49 0.69 2.79 5.08

4.91 2 .48 0.97 0.10 

5.06 2 .56 1.06 0.12

1.20 1.20 2 .16  2.14

1.20 1.21 2 . 16  2.21

0.25 min

max

0.10  0.97 2.49 5.03 

0.14 1.06 2.61 5.11

4.91 2 .49 1.02 0.11 

5.00 2 .54 1.05 0.12

1.20 1.20 2 .16 2.16 

1.20 1.20 2 . 16  2.18
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Table B.12 (continued)

k = 3 n = 10

a(°/o) lower t a i l a(°/o) upper t a i l mean variance

r 0 .1  1 .0  2 .5  5 .0 5 .0  2 .5  1 .0  0 .1 F f R f  f R

2 .0 min

max

2 .42  2 .40  2 .40  2 .40  

2.81 2.81 2 .82  2 .84

4 .44  1.93 0 .74  0.03  

5.09  2 .70  1.04 0 .14

1.08 1.05  1.37 1.21

1.08 1.08  1.37 1.41

1.5 min

max

1.56 1.56 1.63 3.05  

1.97 1.97 1.97 3.73

4 .46  2 .20  0 .82  0.05  

5.06  2 .69  1.03 0 .14

1.08 1.05 1.37 1.25

1.08 1 .08 1.37 1.39

1 .0 min

max

0 .66  0 .66  1.50  4.93  

1.03 1.03 1.92  5 .42

4 .66  2 .37 0 .92  0 .04  

5.06  2 .55 1.08 0.13

1.08 1 .06 1.37 1.27

1.08 1.07  1.37 1.33

0 .5 min

max

0 .14  0 .93 2 .14  4 .46  

0 .28  1.24 2 .65  5 .12

4.63 2 .26  0.91 0.05  

4.91 2 .55 1.00 0 .10

1.08 1 .06 1.37 1.27

1.08 1.07 1.37 1.32

0.25 min

max

0.03 0.81 2 .20  4.55  

0 .12  0 .95 2 .45 4 .89

4 .75 2.31 0 .94  0.05  

4.83 2 .52  1.01 0 .09

1.08 1 .06 1.37 1.29

1.08 1 .06 1.37 1.30

k  = 3 n = 25

a(%) lower t a i l a(°/o) upper t a i l mean varian ce

r 0 .1  1 .0  2 .5  5 .0 5 .0  2 .5  1 .0  0 .1 F FR F f R

2 .0 min

max

1.06 1.06 1.07 6.73  

1.15 1.15 1.16 7 .12

4.80 2 .43  0 .97 0 .09  

5.04  2 .57  1.01 1.11

1.03 1.03 1 .12 1.10

1.03 1.03 1 .12  1.13

1.5 min

max

0.68 0 .68  2 .54  4.71  

0.73  0 .73 2 .62  4.83

4.85 2 .45 0 .95 0 .10  

5.02  2 .54  1.02  0.11

1.03 1.03 1 .12  1.11

1.03 1.03 1 .12 1.12

1.0 min

max

0.32 0 .49  2 .28  5.27  

0.36 0 .55 2 .40  5.43

4.95 2 .48  0 .97 0 .09  

5.07 2 .56  1.02  0 .12

1.03 1.03 1 .12  1.12

1.03 1.03 1 .12  1.13

0 .5 min

max

0.08 0 .90 2 .42  4 .92  

0.11 0 .99  2 .56  5.01

4.96  2.47 0.95  0 .09  

5.12  2 .54  1.00 0.11

1.03 1.03 1 .12 1.11

1.03 1.03 1 .12 1.12

0.25 min

max

0.13 0 .98 2 .44  4 .94  

0.16 1.07 1.07 5 .06

5.01 2 .49  0.97  0 .10  

5.05 2 .54  1.01 0.11

1.03 1.03 1 .12  1.12

1.03 1.03 1 .12  1.12
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Table B.13

Minimum and maximum values of qr(%) found for the 11 values of c, in a

One-way Analysis of Variance for k = 5, 10 where n = 5

k = 5, n = 5

a ( 0/o) lower t a i l a(°/o) upper t a i l

r 0.1 1.0 2.5 5 .0 5 .0 2 .5 1.0 0.1

2 .0 min

max

0.37

0.45

0.43

0 .52

1.80

2.19

5 .26

5 .86

4 .44

5 .15

2 .12

2 .90

0.73

1.12

0.09

0 .16

1.5 min

max

0.16

0.17

0.70

0.88

2.75

2.84

4.71

4 .88

4 .94

5 .24

2 .49

2 .60

0 .94

1.04

0 .08

0 .12

1.0 min

max

0.03

0.06

0.98

1.03

2.39

2.53

4.85

5 .06

5.03

5 .14

2 .56

2.61

1.00

1.04

0 .09

0 .10

0 .5 min

max

0.09

0 .12

0.98

1.07

2.49

2 .59

4.97

5 .06

5 .08

5.15

2 .52

2 .59

0.97

1.03

0 .09

0 .10

0 .25 min

max

0.94

0.11

1.00

1.08

2.51

2.57

5.05

5 .09

5 .08

5 .14

2 .53

2 .60

1.00

1.03

0 .09

0 .10

k = 10, n = 5

a(°/o) lower t a i l a(°/o) upper t a i l

r 0.1 1.0 2 .5 5 .0 5 .0 2 .5 1.0 0.1

2 .0 min 0.08 0.97 2 .39 4.89 4.76 2 .34 0.97 0 .08

max 0.13 1.02 2.63 5.08 5.13 2.63 1.08 0.11

1.5 min 0.09 0.99 2.47 4.98 4 .82 2 .39 0.93 0 .08

max 0.12 1.07 2 .60 5.09 5.07 2.56 1.03 0.11

1.0 min 0.09 1.01 2 .49 4 .94 4.91 2 .44 0.95 0 .09

max 0.13 1.07 2 .60 5 .06 5.01 2 .54 1.00 0.10

0 .5 min 0.10 0.98 2 .48 4.96 4.94 2 .44 0 .96 0 .09

max 0.12 1.06 2.60 5.08 5.00 2 .48 1.00 0 .10

0.25 min 0.10 0.98 2.50 4.99 4.91 2 .42 0.96 0 .09

max 0.12 1.02 2.58 5.07 5.00 2 .46 0 .99 0 .10
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Table B.14

Minimum and maximum values of or(%) found for the 11 values of c, in a One

and Two-way Analysis of Variance for k = 3 and n = 5

a(°/o) lower t a i l 0 !(%) upper t a i l

r 0.1 1.0 2.5 5 .0 5 .0 2 .5 1.0 0.1

One-way 1 .5 min 3.42 3.42 3.42 3.49 4.67 2.51 0.87
f

0.08

max 3.56 3.56 3.56 3.63 4.85 2 .79 0.93 0 .16

1.0 min 1.66 1.63 1.69 4.39 4 .66 2 .45 1.00 0.10

max 1.77 1.77 1.80 4.57 4.82 2 .54 1.04 0.12

0.5 min 0.43 0.62 2.65 4.99 4.91 2 .48 0.97 0.10

max 0.49 0.69 2.79 5 .08 5.06 2 .56 1.06 0 .12

Two-way 1 .5 min 3.39 3.39 3.39 3.63 4.73 2 .27 0 .92 0.09

max 3.49 3.49 3.49 3.73 4.88 2 .36 0.97 0 .13

1.0 min 1.62 1.62 1.76 4.51 4.85 2.40 1.00 0 .09

max 1.74 1.74 1.87 4.68 5 .00 2.50 1.05 0 .12

0.5 min 0.43 0.70 2.50 4 .88 4.89 2 .45 0 .98 0 .10

max 0.48 0.76 2.60 4.96 5.02 2 .58 1.02 0 .12
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APPENDIX C : COMPUTER PROGRAMS AND OUTPUT FOR CHAPTER 5

In this appendix computer programs written to find the significance and power 

level of a test for rounded Johnson data are considered. A  list of output 

produced by these programs is provided. The appendix also contains tables of 

results for o jr  (significance level of a test under rounding) and PpR (power of a 

test under rounding) which are referred to in Chapter 5. Finally details of the 

method used in section (5.3.1) for obtaining the mean and variance of the test 

statistic are given.

The FORTRAN programs SIMUL, PSIMUL referred to in Appendix B were 

modified to allow samples to be drawn from Johnson distributions with shape 

parameters 3, and /32. These two programs estimated the significance and power 

level of a test for Johnson rounded data by Monte Carlo methods. A  program 

USIMUL was also written to obtain the significance and power level of a list for 

Johnson distributions whch are not subject to rounding.

The following is a list of all the output produced by the programs SIMUL, 

PSIMUL and USIMUL, upon which the study of the effect of rounded non-normal 

data on the significance and power level of a test was based.

S i g n i f i c a n c e  l e v e l  o f  a  t e s t

The significance level of each test for unrounded data (a j)  and rounded data 

( o j r )  from 29 Johnson distributions with shape parameters (y/S^jSj) were evaluated 

for values corresponding to the lower and upper 5% points under normal theory 

conditions. The shape parameters fell on a grid with y/31 = 0.0, 0.2, 0.4, 0.6
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and 0.8 and |S2 = 2.0, 2.4, 2.8, 3.2, 3.6 and 4.4. Omitting /32 = 2.0 and

y/3, = 0.8 produced 29 distributions. For each of the 29 distributions

(i) a j  was obtained for combinations of n and k given below

(ii) a jR  was obtained for 11 values of c(-0.5,...,0 .5), for combinations 

of n, k and r given below.

The results from SIMUL and USIMUL programs were based on 10,000 iterations.

One sample t-test 

a j : n = 10, 25

o j r : n = 10, 25 w i th  r  = 0 .5 ,  1 .0 ,  1.5

Chi-squared test 

a j : n = 10, 25

a jR : n = 10, 25 w i th  r  = 0 .2 5 ,  0 .5 ,  1.0

Two sample t-test 

a j :  n = 10, 25

o j j r : n = 10, 25 w i th  r  = 1 .0 ,  1 .5 ,  2 .0

F-test

o:j: n = 10, 25

Q!j r : n = 10, 25 w i th  r  = 0 .5 ,  1 .0 ,  1.5
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One way analysis of variance

«JR:

k = 3, n = 10, 25

** II n = 10, 25
** II Oi n = 10, 25-

k = 5, n = 10, 25.
with r = 0 . 5 ,  1 . 0 ,  1 . 5 ,  2 . 0

Two way analysis of variance 

a j :  k = 3 , n = 10, 25

aJR: k = 3, n = 10, 25 w i th  r  = 0 .5 ,  1 .0 ,  1 .5 ,  2 .0

A  listing of all output mentioned above is available on request.

P o w e r  o f  a  t e s t

The power level of each test for unrounded data (Pj) and rounded data (Pj r ) 

from a Johnson distribution with shape parameters ( y<t?1 ,/32) was found. The 

power was evaluated for values of the alternative hypothesis H 1 (one tailed) 

corresponding to powers of 0.3 and 0.7 under normal theory conditions, where 

a = 0.05. For Johnson distributions corresponding to a kurtosis of f i2 given below

(i) P j was obtained for values of n stated below.

(ii) P j r  was obtained  for 11 values o f  c ( - 0 .5 , . . . , 0 .5 )  for  com b ination s  

o f  n , k and r stated  b elow .

One sample t-test

P j:  n = 10, 25

Pj r : n = 10,  25 wi th r 0 . 5 ,  1 . 0 ,  1 . 5J  

C.3
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Chi-squared test

P j :  n = 10, 25

PjR" n = ^5 w i th  r  = 0 .25 ,  0 .5 ,  1.0.

fo r  (3.

Two sample t-test 

Pj :  n = 10, 25

Pj r : n = 10, 25 w i th  r  = 1 .0 ,  1 .5 ,  2.0.

fo r  (3,

F-test

P j :  n = 10, 25

P j r : n = 10, 25 w i th  r  = 0 .5 ,  1 .0 ,  1.5

fo r  (3.

One way analysis of variance 

a j : k = 3 ,  n = 10, 25

k = 5, n = 10, 25

0 ! j r  : k = 3, n = 10, 25

k = 5, n = 10, 25 w i th  r -  1 .0 ,  1 .5 ,  2 .0 .

Two way analysis of variance

k = 3, n -  lO j fo r  ^  

^JR" k = 3 , n = loJ

A list of all output mentioned above is available on request.

= 2 .0  and 4 .4  each at 
and 0 .8
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Table C7

Lower tail range of c*j r (%) values found for 11 values of c in the two sample

t-test for n = 10 and a  = 0.05, where r = 2.0, 1.5 and 1.0. J gives the level of

significance (c tj% ) when the Johnson distribution is not subject to rounding.

0 .0 0 .2 0 .4 0 .6 0 .8

02 r
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t a i  1
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t a i  1

lower 
t a i  1

lower 
t a i  1

lower 
t a i  1

2 .0

J

1.0

1.5

2 .0

5.1

5 .0 - 5 . 1

4 .9 - 5 . 1

4 . 9 - 5 . 7
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5 . 0 - 5 . 2

4 . 8 - 5 . 2

4 . 9 - 5 . 5
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4 .7 - 5 . 1

4 . 8 - 5 . 4

2 .4

J

1 .0

1.5

2 .0

5.1  

5 . 0 - 5 . 2

4 .9 - 5 . 1

4 . 9 - 5 . 2

5.1  

5 .0 - 5 . 1

4 . 8 - 5 . 2

4 . 9 - 5 . 3

5.1  

5 .0 - 5 . 1

4 .8 - 5 . 1

4 . 9 - 5 . 2
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Table C.8

Lower tail range of the significance levels (or(%) found for 11 values of c in the

two sample t-test for n = 10 and a  = 0.05 for rounded normal data.

r lower t a i l

1 .0 5.1 -  5 .2

1.5 4 .9  -  5.1

2 .0 4 .9  -  5 .3

C.12



Table C.9

Range of Pjr (% ) values found for 11 values of c, in a two sample t-test for

n = 10 and P = 0.3 and 0.7, where r = 1.0, 1.5 and 2.0. J gives the level of

power (Pj% ) where the Johnson distribution is not subject to rounding.

P -  0 .30
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5 6 .8 -6 1 .2

70.7

6 6 .9 - 6 8 .3

6 0 .9 - 6 8 .3  

5 2 .8 - 6 5 .6

70.5

6 5 .0 -7 0 .7

5 5 .9 - 7 4 .4

4 6 .2 - 7 5 .3

70.3

6 3 . 1 - 7 3 . 8

4 3 . 1 - 8 2 . 4

3 0 . 2 - 8 4 . 9

4.4

J

1.0

1.5

2 .0

72.1

6 8 .6 -6 9 .3

6 4 .1 -6 4 .9

5 5 .9 -6 4 .4

72.0

6 8 .7 -6 9 .1

6 4 .1 -6 5 .8

5 5 .9 -6 4 .4

71.9

6 8 .3 - 6 9 .0

6 4 .2 - 6 6 .0

5 6 .0 - 6 3 .9

72.1

6 8 .4 - 6 9 .0

6 4 .5 - 6 5 .8  

5 7 .0 -6 4 .1

71 .8

6 8 .2 -6 9 .1

6 4 .3 - 6 6 .1

5 6 . 4 - 6 4 . 6
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Table C.13

R a n g e  o f  P j r ( % )  v a l u e s  f o u n d  f o r  1 1  v a l u e s  o f  c ,  i n  a n  F - t e s t  f o r  e q u a l i t y  o f  

t w o  v a r i a n c e s  f o r  n  =  2 5  a n d  P  =  0 . 3  a n d  0 . 7  ( l o w e r  t a i l ) ,  w h e r e  r  =  0 . 5 ,  1 . 0  

a n d  1 . 5 .  J  g i v e s  t h e  l e v e l  o f  p o w e r  ( P j % )  w h e r e  t h e  J o h n s o n  d i s t r i b u t i o n  i s  n o t  

s u b j e c t  t o  r o u n d i n g .

P -  0 .3

/ / 3 ,
0 .0 0 .2 0 .4 0 .6 0 .8

l o w e r l o w e r l o w e r l o w e r l o w e r

02 t a i  1 t a i  1 t a i  1 t a i  1 t a i  1

J 27.4 27 .2 27 .0 26 .8 26 .4

2 .4 0 .5 2 6 .0 -2 6 .5 2 5 .9 - 2 6 .8 2 5 .5 - 2 6 .7 2 3 .6 - 2 9 .3 1 7 .6 -3 7 .2

1.0 2 3 .3 -2 4 .5 2 2 .6 - 2 5 .7 1 9 .7 -2 8 .5 1 4 .2 -4 1 .1 1 1 .7 -6 2 .3

1.5 1 6 .9 -2 5 .2 1 4 .4 -2 8 .3 1 0 .1 - 3 7 .2 7 .4 - 5 6 . 9 4 . 6 - 8 9 . 7

J 32.0 32 .0 31 .8 32 .0 32.3

3 .6 0 .5 3 0 .7 -3 1 .7 3 0 .5 - 3 1 .7 3 0 .4 - 3 1 .1 3 0 .7 - 3 1 .3 3 1 . 0 - 3 1 . 4

1.0 2 8 .1 -2 8 .8 2 7 .8 - 2 9 .2 2 7 . 7 - 2 8 . 8 2 7 .0 - 2 9 .0 2 6 . 1 - 3 1 . 0

1.5 2 0 .8 -2 8 .0 2 0 .6 -2 8 .1 2 0 . 6 - 2 8 . 3 1 8 .1 -3 3 .1 1 5 .4 - 3 5 .6

P -  0 .7

2 .4

J

0 .5

1.0

1.5

73 .9

7 0 .3 -7 0 .9

6 1 .6 -6 3 .3

5 0 .1 -5 2 .7

73 .6

7 0 .1 - 7 0 .8

5 9 .9 -6 4 .5

4 1 .7 - 6 3 .7

73 .4

6 9 .2 - 7 2 .3

5 4 . 8 - 7 0 . 8

2 9 .6 - 7 7 .7

73 .4

6 8 .0 - 7 3 .4

4 3 .1 - 8 2 .9

2 5 .1 - 9 1 .9

73.1

5 8 .2 - 7 8 .9

3 5 . 9 - 9 4 . 0

2 0 . 0 - 9 7 . 8

J 68.7 68.7 68.5 68 .4 68.4

3 .6 0.5 6 5 .9 -6 6 .9 6 5 .7 -6 6 .7 6 5 . 9 - 6 6 . 6 6 5 .7 - 6 6 .4 6 5 .6 - 6 6 .3

1.0 5 9 .4 -6 0 .6 5 9 .1 - 6 0 .6 5 8 . 8 - 6 0 . 9 5 6 .1 - 6 1 .3 5 4 . 6 - 6 5 . 6

1.5 3 7 .2 -6 2 .1 3 7 .2 - 6 1 .9 3 7 . 3 - 6 2 . 8 3 1 .4 - 6 7 .3 2 7 . 4 - 7 2 . 9

C.17



Table C.14

Range of <*j r (% ) values found for 11 values of c in a one-way analysis of

variance for k = 3 and n = 10, where a  = 0.05. J gives the level of significance

(c l j°/o ) where the Johnson distribution is not subject to rounding.

02 r  s _ 0.0 0 .4 0 .8

J 5.1 5.1

2 .0 1.0 5 .0  -  5 .2 4 .9  -  5.1

1.5 4 .8  -  5 .3 4 .7  -  5 .3

2 .0 4 .2  -  5 .4 4 .2  -  5 .4

J 5 .0 5 .0 4 .9

2 .4 1.0 4 .9  -  5.1 4 .9  -  5.1 4 .8  -  5.1

1.5 4 .8  -  5 .2 4 .7  -  5 .2 4 .4  -  5 .2

2 .0 4 .7  -  5 .4 4 .5  -  5 .4 4 .5  -  5 .3

J 4 .7 4 .8 4 .7

4 .4 1.0 4 .7  -  4 .8 4 .7  -  4 .9 4 .7  -  4 .8

1.5 4 .7  -  5.1 4 .6  -  5.1 4 .6  -  5 .0

2 .0 4 .7  -  5 .2 4 .7  -  5 .2 4 .5  -  5 .2

Table C.15

Range of the significance level (q r% ) found for 11 values of c in a one way 

analysis of variance for k = 3 and n = 10, where a  = 0.05 for rounded normal 

data.

r aR(°/o)

1 .0

1 .5

2 .0

4 .7  -  5 .1  

4 .5  -  5 .1  

4 .4  -  5 .1
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Table Cl 6

Range of P jr (% )  values found for 1 1  values of c in a one way analysis of 

variance for k = 3 and n = 10 and P = 0.3 and 0.7, where r = 0.5, 1.0, 1.5 and 

2.0. J gives the level of power (P j% ) where the Johnson distribution is not 

subject to rounding.

JPy 0 .0 0 . 4 0.8

p 2 r P-0.3 P-0.7 P-0.3 P-0.7 P- 3.3 P-<3.7

J 29.1 69.7 29.2 69.9
2 .0 0.5 28 .3-28 .9 68 .5-69 .1 28 .2-29 .6 68 .5-69 .5

1.0 26 .5-28 .2 64 .1-67 .5 25 .2-30 .1 62 .2-70 3
1.5 23 0-28 .8 60

VOio

7 19 .4-31 .4 57 6-68 9
2.0 17 9-28 0 48 .2-66 1 13 9-34 7 41 9-77 1

J 29.4 70.3 29.5 70.0 29.8 69.8
2 4 0.5 28 7-29 3 68 8-69 3 28 6-29 2 68 7-69 4 27 1-32 .6 66 3-71 6

1.0 27 2-27 7 66 0-66 3 27 2-28 2 65 4-67 0 21 1-35 .8 59 7-75 8
1.5 25 1-26 1 61 2-62 5 24 5-27 1 60 2-64 5 12 4-45 .7 48 9-79 4

2 .0 21 8-24 5 54 2-59. 8 18 7-27 2 50. 4-63. 7 10 7-49 .0 28 3-83 0

J 30.9 71.4 30.9 71.4 31.1 71.8
4 4 0.5 30. 3-30 8 70 3-70. 9 30. 2-30. 8 70. 3-70. 9 30 3-30 .7 70 4-71 1

1.0 28. 3-29 5 67 4-68. 3 28. 2-29 4 67. 5-68. 5 28 4-30 .6 67 5-71 2

1.5 26. 0-26. 9 62. 8-63. 8 25. 9-26. 9 62. 6-63. 8 25 6-27 .7 62 3-64 8

2.0 21. 5-25. 8 54. 6-60. 6 21. 4-25. 9 54. 5-60. 8 21 6-27 .1 54 1-62 8
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Table C.17

Range in power (Pr ) found for 11 values of c in a one way analysis of variance

for k = 3 and n = 10, for P = 0.3 and 0.7 where a = 0.05, for rounded normal

data.

r P = 0 . 3 P = 0 .7

0 . 5 2 8 .7  -  29 .3 6 8 .8  -  6 9 .3

1 .0 2 7 . 2  -  2 7 .7 6 6 .0  -  6 6 .3

1 .5 2 5 .4  -  2 6 .5 6 1 .7  -  6 2 .8

2 . 0 2 2 .8  -  24 .1 5 6 . 4  -  5 7 .8
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Approximation Formulae for the mean and variance of functions of random 

variables X  and Y

In general, there are no simple exact formulae for the mean and variance of 

functions of random variables X  and Y; however there are approximate formulae 

which are sometimes useful. We have from Mood, Graybill and Boes (1974) 

approximate formulae for the mean and variance of a function g(X 1 ,X 2)

E [ g ( X , , X 2 ) ]  «  g +  i<r?
8 2g

x i Pi
X 2~P 2

8 2g
3 x f x i= ^ i

X 2~P 2

+ Cov(xi - x * > [ ^ ; ] x 1̂ 1 (1)

V[g(x , ,x2)] *  <r
2

X 2~P 2

+ (T |

+  2 C o v ( X , , X 2 ) [ | - ] X i = ; ( i  x  [ g j  ( 2 )

X 2= /A2 

2

2 -^ i */*-,
X 2=P 2

3g

X 2=P 2 X 2 /* 2

where the mean and variance of X 1 and X 2 are respectively ,cr )̂ and ( j i2 ,(r|).

Using (1) and (2) above we can obtain approximate expressions of the mean and 

variance of t^  (5.3-2). From (5.3-2) we have

Xr
t p  =

SR/Vn

Consider the function

x i
g ( X 1 5 X 2 ) =  —  w h e r e  X ,  =  X R , X 2 =  S 2R

‘2
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We have

ft, -  E [ X , ]  =  E [X R ] =  n 2 -  E [ X 2] =  E [ S | ]  -  o-|

2

cr? = V [ X J  = V[Xr ] = ^  0 -1=  V[ X2] = V[S| ]

-  y r  * P ^ K

From Kendall and Stuart (1968, pp233)

C o v ( X 1 , X 2) -  Co v (Xr , S 2 )  =  - i f :  t o  o r d e r  n " 1 .
K n

Using (1) we have

E [ g ( X , , X 2) ]  =  Eg | ]  «  ^ [ l  +  |  ( P 2R - D / n ]  -  ^ , R

V [ g ( X , , X 2) ]  =  v g | ]  -  I  +  J  g  [ ( (J2R- l ) / n ]  -  g  ^  
R R K

hence E [ t R ] -  yn E [ g ]  -  ^  [ l  +  |  CP2R- l ) / n ]  -  ^  t f lR

V [ t R] -  n v [ g ]  “ 1 + ^ 5  (<,lR_1) " S  * ’ *R R K
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Effects of Rounding on the Moments of a Probability 
Distribution

A. R. T R IC K E R

D epartm ent o f  M athematics, Statistics and Operational Research, Sheffield City Polytechnic

Abstract: This paper looks at the effects of rounding data sampled from a probability 
distribution. Using the characteristic function of the rounded observations, the influence of the 
rounding process on the first two moments is examined. The normal, Laplace and gamma 
distributions are considered. The results indicate that both the degree of rounding and the 
skewness of a distribution are important in determining how much the mean and variance are 
distorted by the rounding process.

1 Introduction

We are often  faced with the problem  tha t data sam pled from  continuous distributions have 
been rounded . The reduction in precision of the data can som etim es distort the inform ation 
conveyed by the m easurem ents. Some discussion of this topic has appeared  in E isenhart 
(1947), F isher (1922), G jedderbaek  (1968) and Lowell (1980). M ost o f these w orks are 
confined to  the norm al distribution. Only Lowell (1980) deals specifically with the effect of 
rounded  data on the m om ents of the norm al distribution. In the present paper the necessary 
theory  is developed to  allow the m om ents of any distribution to be investigated. By deriving the 
characteristics function of the rounded distribution, general expressions for its m ean and 
variance are ob tained. This m akes it easy to m easure the am ount of distortion caused by the 
rounding process on the m ean and variance. Both symm etrical and non-sym m etrical 
distributions are considered. To the au th o r’s knowledge nothing has been w ritten about the 
association betw een skewness and the rounding process. The change in m om ents caused by 
rounding, toge ther w ith the effect o f skewness, is shown for the norm al, Laplace and gam m a 
distributions.

2 Characteristic function of the rounded distribution

If values from  a continuous random  variable X  are rounded , the result is a new discrete random  
variable X ' . L et x  and x ' represen t values of the random  variables X  and X '  respectively. If 
values of x  are rounded  into intervals of width w, with m idpoints x ' , and the centre of the 
interval containing zero is ato, then x ' has the following values.

aw, a w ± w , a w ± 2 w , . .  . (2.1)

(2.1) will be known as the rounding lattice. H ere a determ ines the position of the rounding 
lattice and may be located at random  betw een —w/2 and w/2. Thus the m athem atical
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relationship between x and x ' is such that if:

aa)+(n—¥2 )0 ) < x ' ̂ aa)+(n+¥i)co

then

x'=(a+n)co, n=0 , ± 1 , ± 2 , . . .  (2 .2 )

The relationship (2.2) can easily be adapted for where the random variable is defined only for 
positive values of x. Watts (1961) derived the characteristic function of the general quantizer 
system for an electric signal. By letting the gain and shift be equal to co and a respectively in the 
quantizer system, we can obtain the characteristic function <pX’(t) of X  given by:

* /  2jrfc\sin ¥2 (tco+2jzk)
(f>x'(0= 2  exp ( l —Hnka) cj)x \ t+   —— ----- —7 —  (2.3)

k—" \  co J ¥ 2  (tco+2jzk)

where cpx ( . )  is the characteristic function of the continuous distribution X.

{ dscpx’(t))
e m - v  { - * - } „  <*■«>

To derive the effect of rounding on the mean and variance, we require the first two moments of 
X '. If the operation indicated in (2.4) with 5=1 and 2 is applied to (2.3), the first two moments 
of X ' can be found after lengthy manipulations. General expressions will be obtained for the 
first two moments for a continuous distribution, which may be either symmetrical or 
non-symmetrical.

The results that follow are only valid for continuous distributions which are uniquely 
determined by their moments in which case (2.3) is a convergent series (e.g. Kendall & Stuart 
1968).

Case 1: Continuous distribution -  symmetrical about zero
If values from a continuous distribution symmetrical about zero are rounded into intervals of 
width co, and the centre of the interval containing zero is aco, then we have the following results:

1 0  00 (—1)* {Tjzk)
E {X ')= ------ 2  - - — ~4>x~-------sin(27rA:fl) (2.5)

jr k=1 k co

CO2 “
E(X,2)=E (X 2)+ —  + £  ( - l ) fccos {lizka)

«co \ 2 (2 jtk \  2co ( 2jck\\
<2-6>

where cpx ( .)  is the characteristic function of continuous random variable X  

(2jzk\ f d \
Pxl  = | “T ^ ( 0

\  ®  /  I *  )t=2jzklco

Case 2: Continuous distribution -  non-symmetrical
For a non-symmetrical distribution we have the following results.

co 00 ( - 1)*
E (X ')=E (X )+ —  2  -— — {B cos (2jtka)—A  sin (2jtka)} (2.7)

jt * =1 k
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CO 00 , \ l  CO \
E (X '2)=E (X 2)+ —  + ]£ (-1 )*  1— 1 {A cos (2jtka)+B sin (2jzka)}

12 *=1
2w

(2.8)
2a)

 (A' cos (2jtka)+B' sin (2jzka)}
jzk

where

(px  ('2jtk/a)) =A +iB  

(px > (2jtk/a>)=A'+iB'

When the condition (2.9) is placed on the characteristic function of X, only the central section 
of (2.3) enters in the calculation of the moments of X '.

2jz

(0
or

(px (2jtk/(o)=0, k= ±  1, ±2 . . .  (2.9)

The expression for the central section of (2.3) is

sin (tw/2)
0 ( O a "  I central section <t>x{t) ~z ( 2 .1 0 )

tw/2

The central section (2.10) can be thought of as a characteristic function in its own right. It is the 
product of the characteristic function of X  and a variable which is uniformly distributed 
between —<ol2 and co/2. Satisfaction of condition (2.9) suggests:

the moments of X ' are the same as those of the sum of the moments of X  and a statistically 
independent error, uniformly distributed on (-co/2, co/2) (2 .11)

The implications of (2.11) are: E(X ')=E(X)\ V(X')=V(X)+(o2/12.
The most common assumptions (Fisher, 1922; Eisenhart, 1947) concerning properties of 

rounding are those of (2.11). However their validity is often in doubt, as satisfaction of (2.9) is 
uncommon, the reason being that it is rare to have a probability distribution, whose 
characteristic function is zero, outside a finite range of t. The value of a characteristic function 
outside the region given by (2.9) is often very small and may be regarded as negligible for the 
accuracy we are interested in. As a result, (2.11) may be assumed to be true and the effect of the 
rounding process on the moments slight. In the following section we shall investigate whether 
this distortion in the moments may be considered negligible for certain distributions.

3 Symmetrical distributions -  normal and Laplace

We consider the normal distribution first, to demonstrate how the moments may be distorted
by rounding. Using the characteristic function of a normal distribution with mean zero and
variance cr2 we obtain the following from equations (2.5) and (2.6).

co 00 ( - 1)*
E (X ')= -------2  ^— L Dsm(2jtka) (3.1)

jc * -1 k

co2 00 f ( 0 ) \ 2)
E(X '2)=a2+ — +4 £  (-1)" D |a 2+ y— j |  cos (2nkd) (3.2)
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where D=exp (—2k2 Jt2 o2lm2) and —Vz^a^Vz.
If we let m=ro, then r measures the degree of rounding with respect to the standard deviation

o. As r indicates the severity of rounding we express equations (3.1) and (3.2) in the form of r.

where D'=exp (—2k2 Ji^lr2).
Of particular interest is the bias in E(X'). Equation (3.5) shows this bias relative to m. The 

effect of rounding on the variance is best shown by expressing the V(X') relative to V(X) 
(equation (3.6)).

Figures 1 and 3 show curves for B and V for a ranging between —Vz and Vz, and r up to 5.0.
The procedure for obtaining the first two moments for a normal distribution can also be used 

on the Laplace distribution, which has the following probability density.

with mean zero and variance o2=2f32.
Using the characteristic function of (3.7) we can obtain from (2.5) and (2.6) expressions for 

the first two moments in terms of r.

Figures 2 and 4 show curves for B and V respectively for the Laplace distribution, for a 
ranging between —V2  and Vz and r up to 5-0.

Figures 1-4 illustrate the effect of rounding on the two distributions. The graphs for B are 
symmetrical about a= 0 and the bias is zero at a= 0 and a=±V:2. In general, whenever the 
mean coincides with the boundary or centre of a rounding interval, then the bias is zero. 
Clearly the amount of bias caused by rounding is more severe in the Laplace distribution. 
For r= l the maximum bias in the mean for the normal is 8 T (10) -1 0  and for the Laplace is

0-2 to 0-5 and — 0*5 to -0-2. When a is between ±0-2 the V(X ') can be considerably lower 
than the V(X). This is not true for the Laplace.

Of interest is the limiting behaviours of the expectation and variance of X ' when the 
distribution is symmetrical. From equations (3-1-3-9) it can be shown that as r approaches 
zero, E(X ') and V(X ') tend to zero and o2 respectively. When r approaches °° the position 
of am is very important. Figure 5a shows when the distribution is between cell boundaries. 
All values will be rounded to am, thus E(X ’)=am and F(^T')=0. Figure 5b shows the

(3.3)

2jzk

r

■ncos (2jrka) (3.4)

„ E (X ')-E (X )
B — ------------------- (3.5)

m

V=V(X')!V(X) (3.6)

(3.7)

(3.8)

(3.9)

= (l+ 2k2n2r2).2 _2 „2\ — 1

1*5 (10) 2. For the variance (Figures 2 and 4) the effect of rounding is similar for a between
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Fig. 1. B (equation (3.5)) for values of a between ±Vz and r  ranging up to 5 for normal distribution.
Fig. 2. B (equation (3.5)) for values of a between ± xh  and r ranging up to 5 for Laplace distribution.
Fig. 3. V (equation (3.6)) for values of a between ± V i and r  ranging up to 5 for normal distribution.
Fig. 4. V (equation (3.6)) for values of a between ± V i and r  ranging up to 5 for Laplace distribution.
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I------
a a ) -c o /2 aoj +  o j /2  ao> -  co/2 aw + co/2

£(*')=««, V(Z') = 0  

(a)

£ (Z ')= 0 , V {X ')= (d2IA 

(b)

Fig. 5. Rounding of values x with normal and Laplace distribution when r is large, (a) When zero does not 
coincide with a cell boundary, (b) When zero does coincide with the cell boundary ato+(ol2.
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Fig. 6. B (equation (3.5)) for values of a between ±Vz, r=  1 and m up to 4 for gamma distribution.
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Fig. 7. V (equation (3.6)) for values of a between ±V i, r=  1 and m up to 5 for gamma distribution.

Table 1. Maximum errors expected for mean caused by rounding (percentage of 
standard deviation)

m r

0-25 OS 1-0 1-5 2-0 3-0

1-0 0-5a 2-1 8-2 18-1 31-4 65-6
1-25 0-2 1-1 5-2 12-8 23-9 55-5
1-50 0-1 0-6 3-1 8-7 17-9 46-5
1-75 0-5 (1 0 )-1 0-4 2-3 6-8 14-0 38-7
2-0 2-5 (10)~2 0-2 1-6 5-5 12-5 34-5
3-0 2-7 (10)~3 4-1 (lO)"2 0-6 2-7 7-3 26-4
4-0 3-3 (10)~4 9-6 (lO )'3 0-3 1-7 5-3 22-1
5-0 1-3 (lO)"4 2-6 (10)~3 0-1 1-1 4-2 20-0

aIndicates maximum error in mean is 0-5 per cent of a.
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situation when the origin of the distribution coincides with the cell boundary acu+oo/2. In 
this situation a=—V2 . Half the values will be rounded to ao) and half to aco+co. Thus 
E(X')=aco+a)/2=0 and V(X’)=(o2/4.

4 Non-symmetrical distributions -  gamma

The gamma distribution which has the following probability density:

*  - 1f(x)=   (Xx)m e x^O, X> 0, m ^l (4.1)
T(m)

with mean m/X and variance o2=m/X2.
Using the characteristic function of (4.1), we can obtain from (2.7) and (2.8) expressions 

for the first two moments in terms of r.

E (X ')=E (X )+o  (  —  X G~m'2 sin (m6-7jzka)\ (4.2)
[ jt k=l k j

E (X '2)=E (X 2)+ o2  1------ 2  (—l)fc G w/2 { —  cos im6—7jika)
12 jz k=1 [jrk

2  / G \ “ 1/21 
H 1 —  1 > sin {(m+1) 6—2rcka} (4.3)

where
2jzk ( (2jzk)

tan 6= — 1= ,  G=  ̂1+- 
rJm

For a given value of r, the effect of rounding on the moments is determined by the skewness 
of the distribution. For example, equation (4.2) shows that this is true for the mean. E(X') 
is dominated by the factor G-m/2, which for fixed r approaches zero as m increases. Thus 
the rounding process causes less bias in the mean as the gamma distribution becomes more 
symmetrical.

Figures 6  and 7 show curves for B and V for a ranging between —V2  and V2 , r=  1 and m up 
to 5. For various values of m and r the maximum errors expected for the mean and variance

Table 2. Maximum errors expected for variance caused by rounding 
(percentage of variance)

m r

0-25 0-5 1-0 1-5 2-0 3-0

1 -0 l * l a 4-1 17-5 40-0 72-0 171-0
1-25 0 -8 3-5 15-1 35-9 65-2 160-8
1-50 0-7 3-1 11-4 33-6 64-0 160-1
1-75 6-1  ( 1 0 ) - 1 2-9 11-3 32-3 61-0 156-5
2 -0 5-9 (lO ) " 1 2 -6 11-2 30-5 60-3 153-8
3-0 5-3 (10) - 1 2 -2 9-7 27-0 54-7 149-9
4-0 5-2 (lO ) " 1 2-1 9 .4 23-6 52-0 146-6
5-0 5-2 (10)-* 2 -0 8-9 23-3 49-6 143-9
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aIndicates maximum error in variance is IT  per cent of o2.



Table 3. Maximum expected for mean and variance caused by rounding for the gamma and 
normal distribution

m Maximum error in mean 
(percentage o f  standard 
deviation)

Maximum error in variance 
(percentage o f  standard 
deviation)

r r

11 2-1 3-0 1-0 2-0 3-0

10 1-1 (10)“ 2 2-1 15-5 8-4 43-1 139-3
20 6-0 (10)“ 4 1-2 12-6 8-3 39-6 132-7
30 1-0 (10)“ 4 8-7 (10)_1 12-3 8-3 38-5 132-5
40 5-2 ( 1 0 r 7 7-7 (lO)” 1 11-9 8-3 38-1 132-0
Normal 8-1 (10)~8 4-4 (lO )"1 10-1 8-3 36-7 130-0

are given in Tables 1 and 2 respectively. The influence of skewness can be seen in F igure 6. 
As m  increases, the range in bias decline. For the exponential distribution (m  = 1) the bias in 
the first two m om ents is m ost severe. As m  increases the bias quickly reduces. For r— 1 the 
maxim um  erro r in the m ean is 8-2cr(10)_2 at m =  1, while m - 2 it is l-6a(10 )-2 . As expected  
for increasing m , the errors in the m om ents approach those for the norm al d istribution 
(Table 3). G enerally  the V ( X ' )  is g reater than V(X) .  In the ou ter ranges of a, the value of 
V  is less than 1, indicating that V( X' )  is less than V(X) .  This has im plications for estim ation 
procedures, which have been discussed in Tricker (1984) for m  = l.

5 Conclusions

By obtaining the characteristic function of the rounded random  variable X , we have found a 
m ethod of determ ining how the rounding process affects the m om ents. The differences 
betw een the m om ents of X  and X '  depend on three main factors: the skewness of X , the 
degree of rounding (r) and the position of the rounding lattice (a).

The degree of skewness of a distribution is of crucial im portance in determ ining how the 
m om ents of a d istribution can be distorted by rounding. For sym m etrical distributions, such 
as the norm al and Laplace, the maximum errors in the m ean and variance are small even 
for r = 2. H ow ever, when the distribution is highly skewed, the situation changes. F or the 
exponential d istribution the errors in the m ean and variance can be considerable for r> 0 .2 5 . 
R esults from  the gam m a distribution illustrate that when the degree of skewness reduces so 
does the e rro r in the m om ents.

G enerally  as r decreases, so does the effect of rounding. The value of r for which the 
errors in the m ean and variance are small depends on the skewness of the distribution. F or 
exam ple the errors for the gam m a may be considered negligible for m = 1, r<0-25 , and for 
m —2, r<0-5 .

The influence of the position of the rounding lattice on the m om ents is less im portan t 
than both  the skewness of the distribution and the value of r.

W hen data are rounded , it is often assumed that no account need be taken  of the 
resulting error. This is reasonable for the norm al distribution but may not be sensible for 
skew ed distributions. Previous work on the precision of data has concentra ted  on the effect 
of the degree of precision of the recorded data (r) on the distribution. O ur analysis and  
exam ples suggest that this is not the only im portant factor. The position of the rounding  
lattice, and especially the skewness of a distribution must be taken into account.
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Abstract

This paper looks at the effects of rounding data sampled from the exponential 

distribution. It examines the nature of the rounded distribution, together w ith the 

resulting error distribution. The influence of these distributions on estimates and 

tests of hypothesis is investigated. The results indicate that even a moderate degree 

of rounding can cause the bias in an estim ator to increase, whereas in hypothesis 

tests level of significance is altered.

1. Introduction

When dealing w ith data, we are usually forced to round our values to a certain degree 

of precision. This introduces "rounding error", the size of which can have an 

important influence on the statistical influences that are to be made. Some of the 

consequences of rounding errror were discussed by Eisenhart (1947), Fisher (1922), 

Gjedderbeak (1968), K ulldorff (1961) and Lowell (1968). Most of these works are 

confined to the normal distribution and only K ulldorff (1961) dealt w ith the 

exponential distribution, when he showed how the method of maximum liklehood can 

be used for grouped data. Very litt le  has been w ritten  on how rounding error can 

distort the inform ation conveyed by data drawn from an exponential population. The 

effect of this distortion on the mean and variance is shown, w ith its possible 

consequences on estimation and hypothesis testing.

Eisenhart's (1947) recommendation that the width of the rounding interval should be 

either less than one third or one fourth of the standard deviation is also considered.



If  values from a random variable X are rounded, the result is a new random variable

X 1. L e t x and x1 represent values from the random variable X  and X' respectively.

Then we may w rite:

x' = x + e

where e is the rounding error, itself a random variable which w ill be denoted by Z. I f  

w is the width of the rounding interval, so that any value between x-w / 2  and x+w / 2  

w ill be rounded to x1, then Z w ill be distributed between -w / 2  and w /2 . O ften it  is 

assumed that:

(i) Z is uniform ly distributed on (-w /2 , w /2 )

(ii) X  and Z are independent.

The implications of these assumptions are:

(iii) E(Z) = 0, V(Z) = w 2/12 , which may imply that

(iv) E(X') = E(X); V(X ') = V(X) + w 2/12 .

In fac t X  and Z cannot be treated as independent and hence the valid ity of the above 

statements are in doubt. However the statements (i), (iii) and (iv) may be suitable in 

many practical situations. The validity of these three statements, together with the 

general e ffe c t of rounding on the expon ential distribution w ill be looked at in this 

paper.

2. D istribution of X 1 the rounded variable

If  the random variable X follows an exponential distribution, then the probability 

density function is:

f(x) = I e - X/  6 x 0 , e >, 0
0

where E (X )=  0 a n d V (X )= 0 2.

I f  values of x are rounded into intervals of width w w ith midpoints x', and the centre 

of the interval containing zero is c, then x' has the following values:

c, c+w, c+2 w, c+3 w , ................................................................................................. (2 .1 )
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(2.1) is known as the rounding la ttice . The probability distribution of X ’ is: 

” (-w/2+c

P(X' = mw+c) = ■

f ( x ) d x  fo r  m = 0
o

(2.2)
rmw+c+w/2
i f ( x ) d x  f o r  m = 1 , 2 , 3 . . . .
mw+c-w/2

X' is the rounded distribution and Figure 1 illustrates how its distribution is formed. 

The probability distribution of X' from (2.1) is:

' l - e  1/0{C+w/2) fo r  m = 0

(2.3)P (X ’ = mw+c) = .

, w/28 -w /20 ( - 1 / 6 ) (mw+c) .  • _ _ . ,(e -e  )e  ■fo r  m — 1 , 2 . . . .

Where c is the centre of the interval containing zero and its value determines the 

position of the rounding la ttice  on the underlying distribution. O ften  the rounding 

la ttice  is imposed at random on the underlying distribution. This means when values 

from an exponential distribution are rounded, zero shall not inevitably be the lower 

extrem ity of the lowest rounding interval -  in fact c itself may be a negative number. 

Thus c may be located at random between -w / 2  and w /2 .

If  we let w = rc, then r measures the degree of rounding with respect to the standard 

deviation a. As r indicates the severity of rounding it w ill be useful to express the 

probability distribution of X' given in (2.3) in form of r. Thus we have: 

r f o r  m -  0

P(X' = (m+a)w) = ' (2.4)r / 2  - r / 2  - r(m+a)  -(e - e  ) e f o r  m = 1 , 2 , 3 -------

where r = w/o = w /0and a = c /w . In fac t a lies between and and it  determines 

the position of c. For example a = £ gives c = w /4 , thus the centre of the in terval 

containing zero is w /4 . The cumulative distribution of X' for r = 2, 1, £ and a = 0

or £, are given in Figures 2, 3, 4, 5 and 6 respectively, where they are compared with  

the corresponding distribution of X , which is exponential.
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The large number of steps in the X' distribution shown in these figures, illustrates its 

discontinuous nature. It  is impossible to find smooth curves that w ill approximate 

these step functions closely at all points. The P(X 4  w) w ill approximate closely the 

P(X' 4  w) only for certain values of w, ie those near a point of intersection of the X 

curve with the horizontal position of a step in X'. This approximation improves 

considerably as the value of X' increases, being caused by the ta il o ff e ffe c t of the 

exponential distribution.

3. Mean and Variance of X'

Using the probability distribution of X' given in (2.4) we have:

E[X '] = S ta r -  ------^ -------- /  (3.1)r / 2  - r / 2

V (X ’)=  9J ( r i e "r ( 3 /2 ^a;   - 1- : (3.2)
: i - e ~ r r

O f particu lar interest is the difference between l [X '] and E[X] and between V(X) and 

V(X'). Equations (3.1) and (3.2) can be rew ritten  as follows:

= E [ x ' !  -  i l l !  (3.3)
E [Xi

, VI*' j  -  c m  0 M
ViX!

Expressions (3.3) and (3.4) now represent the percentage changes in E [X ] and V(X) 

caused by rounding. Figures 7 and 8 show curves for M and V respectively for a 

Fanging between and and r up to 1. Figure 7 shows that the value of M is 

influenced considerably by the value of r. For a fixed a, as r increases the departure 

of M from zero becomes greater. On this scale for r 4  £ tfie curves are 

indistinguishable from a horizontal line passing through M = 0. For r = 1, M ranges 

between -4.05 to 8.20. As expected the range in M decreases as r decreases. O f 

interest is the region in Figure 7 where the curves intersect the line M = 0, indicating
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E [X ] = E[X ']. These two regions are in around a = -0 .3  and a = 2.5. This could be of 

relevence in the estim ation of 0, dealt w ith in Section 5.

Figure 8  again shows the influence of r and a on V. For r = £, the range in V is only - 

0.52 to 1.06. Further calculations show that for t 4 ht the maximum values of M and 

V are 0.5 and 1.1 respectively. I t  is thus reasonable to assume that E[X '] = E [X ] and 

V[X*] = V [X ] for r {  £.

O f interest is the lim iting  behaviour of the expectation and variances of X '. We firs t 

consider what happens when r approaches zero, ie when the rounding interval w is 

much sm aller than 8 . From  equations (3.1) and (3.2) it can be shown that as r 

approaches zero, E(X ') and V(X') tend to 0 and respectively. When r approaches«  

then w is much larger thane. In this situation the position of c is very im portant. 

Figure 9 a shows when the exponential distribution is between the cell boundaries and 

zero does not occur on a cell boundary. A ll values of x w ill be rounded to c, thus 

E[X '] = c. As all the values of X 1 are the same then V(X') = 0. Figure 9b shows the 

situation when the origin of the exponential distribution coincides with the cell 

boundary c + w ^ .  In this situation the value of c is -w /2 . A ll the x values w ill be 

rounded to c + w which equals w /2 ; giving E[X '] = w /2 . Again as all the values of X' 

are the same the V(X ') = 0. When zero coincides w iththe other cell boundary c -w /2 , 

then E [X '] = c = w /2 .

4. The Error Distribution

As the distribution of errors is o ften assumed to be uniform on [ -w /2 > w /2 ], it  w ill be 

of interest to investigate whether this assumption can reasonably be made for the 

exponential distribution.

I f  the probability distribution of the error distribution is denoted by g(z) then:
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g(z) = Z f ( c  + kw -  z ) -w / 2  £ z £ c
k=0

E f ( c  + kw -  z) c ^ z ^ w/2 (4.1)
k = l

where f(.) is the exponential probability density function. We may express g(z) as:

[ e w /6- l ]  9

1 /0  ( c - z ) c ^ z ^ w/ z (4 . 2)
9

The distribution g(z) is shown in Figure 10. The value of c is important in 

determining this distribution, as can be seen from  equation (4.2). O ften , the rounding 

error of rounded data is assumed to follow a uniform distribution. Quite obviously 

g(z) is far from  being a f la t  topped distribution. To investigate the departure of g(z) 

from  uniform ity we can consider the following function:

h(z) = x 100  (4.3)
1 /w

We shall consider the value of this function for values of z = (-0 .5  + 0.05k)w for k = 1, 

2, ...., 21. I t  can be shown that the value of (4.3) is determined by r and c. As r is 

the main influence on the value of h(z) we shall only consider its value for c = 0 . 

Table 1 contains the values of h(z) for various r values. As expected for r }  1, the 

departure from  uniform ity is considerable. As r decreases the g(z) distribution tends 

to uniform ity.

From  (4.2) we have:
-w /e

E[Z] = -  &f c + —v/ 2q - w / 2 0  
e -e

R ew riting  (4.4) in terms of r and a we have
- a r

E[Z] =0[ar + ■r / 2 r e -^ 7 2~' "  1] (4>5)
e -e
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As expected E[Z] approaches zero as r tends to zero. However the value of (4.5) for 

specific r's and a's is im portant as it  is often assumed that E[Z] = 0 . Table 2 gives the 

end points of the possible range in values of E[Z] for given values of Z, the end points 

being expressed as percentages of the param eter 0. The wide range in values is 

caused by the la ttic e  e ffe c t.

5. Estimation of

Given a random sample of size n drawn from  the exponential distribution, the 

unbiased estim ate of 0 is X . However, if the data has been rounded what influence 

w ill this have on the estimator? Using (3.1) we have

^  ■ 6(ar * r / 2e~ -r /2 } (5-Ue -e

V(X ') = 02 ( r J e"r  (3 /2+ a ) [.1+.e-r ~e,r-(.* .— ] } (5.2)
( l - e ~r )2

As E[X '] is independent of n, the bias caused by rounding namely E[X '] - 0  does not  

decrease to zero even if  n becomes large. On the other hand, the bias in V(X '),
-  Q 2

namely V (X ')  does contain n, and so vanishes for large n. I f  the data are rounded
n

X' is no longer on unbiased estimates of 0. This bias in X1 depends on r and on the 

position of the rounding la ttice . We can use the following expression to express this 

bias re la tive  to the rounding interval w.

a  .  ^ 4 ^  (5 .3 )

Figure 11 shows the curves of B for various values of r ranging up to 2. For r less 

than 0.1 the curves are almost horizontal passing through zero. Rounding error has 

caused X* to become a biased estim ator of 0 . A 3 expected the biasness increases as 

rounding becomes more severe. The position of the rounding la ttice  has considerable 

influence on how biased an estim ator X' can become. For r < 2 the bias is minimum
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in the region of a = -0 .3  and a = 0.25. This implies that to reduce the bias in X* as an 

estim ator of 9 , we should choose the centre of the interval containing zero in the 

region of -0 .3w  and 0.25w.

We can show the e ffe c t of rounding on the variance by the following expression:

R = (5.4)
V(X)

Figure 12 shows the curves for R , for r ranging up to 2. For r less than 0.25 the 

curves are almost horizontal passing through 1. Generally as r increases there is a 

corresponding increase in R , indicating that the V(X') is greater than V(X). However 

in the outer ranges of a, the value of R is less than 1, indicating that the V(X ') is less 

than V(X). This implies that rounding may sometimes cause X' to be more precise 

than X  as an estim ator of 0, although, rounding has resulted in a reduced amount of 

inform ation from  the data.

However, we have only considered the E[X '] and V[X '] for r ^  2. Using the results

from Section 3, it is easy to see that the E[X '] w ill tend to a lim it and V(X') w ill tend

to zero fo r large r.

Whether an estim ate is unbiased is not the only crite ria , the size of the sampling 

variance is also im portant. L e t us, therefore, consider the mean-square-error 

(M .S.E.) of an estim ator.

m .s .e . = E [e -e ]2 = v(D + [e (§  -  efl*

where 0is the estim ator of 0.

- — — 0 2 . —
Obviously if  0 = X  the M.S.E. is V(X), which is -n. I f  we round the data and use 0= X'

n

then

M.S.E. = V (X ‘) + [E (X ') - 0 ?  = 0?b (5.5)

where b can be found from  (5.1) and (5.2) for a given a and r.

O



Most practical situations w ill involve r>£ 1. Figure 13a and 13b show curves of M .S.E. 

for r ranging upwards to 1, where the sample size is 5 and 20. As expected the value 

of the M.S.E. is influenced by the size of r and a. The range in the value of the 

M.S.E. increases considerably as r  increases. When r^[ 0.1 the M .S.E. of ^  and X 1 are 

almost equal. O f particu lar interest is where the minimum value of the M .S.E. 

occurs. I t  can be shown that when n 4  15 the minimum value is situated at a = J and 

a = -^  on the rounding la ttice . As n increases beyond 15 the dominating influence on 

the M.S.E. value is the amount of bias in X '. This causes the minimum value to move 

towards the position on the la ttice  where the bias in X' is least. This is illustrated  

in Figure 13b,where an increase in the sample size to 20 has caused the minimum  

value fo r r = 1 to move to a = 0.41. Examination of the M .S.E. for large values of r is 

really of no practical importance. However, it  is easy to see that as r becomes large, 

the range in the value of M.S.E. increases and its minimum value occurs on the

la ttice  where the bias in X* is least.

O f crucial importance is the e ffe c t of rounding on the mean and variance of the 

distribution. Table 3 gives the maximum errors expected for the mean and variance 

caused by rounding. When r = 1, the maximum error in the mean to 8.2 per cent of0  

(8.2 per cent of the standard deviation) and for the variance is 17.5 per cent of 0s 

(17.5 per cent of the variance). For the normal distribution, Widrow (1961) shows 

that the maximum errors in the mean and variance are 8.3(10)“ 8 per cent of the 

standard deviation and 1.1(10)“6 per cent of the variance respectively (fo r r  = 1). He  

showed that even for r = 2 the errors in the mean and variance are sm all. However, 

for the exponential distribution these errors can be considerable fo r small r, as Table  

3 shows.

The errors in the mean are the amount of bias in X1 as an estim ator o f0 . For a given

value of r the amount of bias w ill depend on the value of a; the position on the

rounding la ttice . A3 mentioned in the section concerning the mean and variance of
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X', a value of a can be chosen such that X' is an unbiased estim ator of 6. However, 

this causes an increase in the variance of X 1, especially for small values of n. For

this kind of situation, the minimum M.S.E. estim ator for 6 may be b e t te r .

6. Compensation for Rounding Error

For data rounded to a given precision, a value of a, can be chosen such that the

sample mean X' is an unbiased estim ate o f0 . From equation (5.1) we have:

- a r
re

E t X - ] =  S t * *  + r / 2  - r / 2 >

For a given r, X ’ w ill be an unbiased estim ate of0 if  a is chosen such that

ar *  *  1 (6 a )  e -e

Table 4 gives the value of a which make X' an unbiased estim ate of .

The above illustrates the importance of choosing a suitable value of a to reduce the 

bias in X' as an estim ator of 0 . For example i f  an experim enter has decided to round 

the data where r ^  2, then choosing a in the region 0.23 to 0.29 w ill considerably 

reduce the bias in X '.

Now consider the problem where we have obtained X 1 and we would like to 

compensate for the rounding error to make the sample mean a better estim ator of 0 . 

We use an approach sim ilar to that of Lovell (1980), who compensated for rounding 

error, when estim ating parameters in the normal distribution. Rounding error can be 

compensated for by using the following equation:

- a w / 0

E[X*] = aw + w/2e -w /20  (6*2)
e -e
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I f  the sample size is not too small, X' w ill be a precise estim ate of E[X '] and we can 

obtain an estim ate of 0, namely 0from

  -aw /6

™  + W/28 -W/2S e -e

Rewriting equation (6.3) we have

2(X’ -  aw)Sinh[w / 2  ] -  we“aw/®= 0 (6.4)

Obtaining 9 from equation (6.4) gives us an improved estim ate of 6 , in that the 

rounding error has been compensated. A solution to equation (6.4) can only be 

obtained only if w/  0 is not too large. This restriction usually causes no problem. If  

the sample size is small then X' is a poor estim ate of E[X '], thus the rounding 

corrections themselves are random variables and subject to sampling error. This can 

cause § to be ineffective  in compensating for the rounding error. For a = 0 equation 

(6.4) simplifies to:

§ = ------------- ” ------------ (6.5)
2Sinh_ 1 (w /2X ')  

and for a = £

§ =  ^  (6.6)
2tanh (w /2X ')

For a = £, 8 is the maximum likelihood estim ator of 0. Using the large sample 

properties of the maximum likelihood estim ator we have

§ . N[e, 48tSinh2.(w/2e)| 
nw‘

To illustrate how 0 may compensate for rounding error, a set of data was simulated in 

the following way. A process was set up on the computer to generate a random  

sample of size n, of rounded data from the exponential distribution, w ith 9 = 1 .  The 

width of the rounding interval is w and a is set to zero. From this process the mean 

X' is calculated. Using equation (6.5) 0 was then calculated. Table 5 shows the 

results for n ranging between 50 and 1000 and r between 0.5 and 7. In Table 5,



column 3 shows the bias in X' and column 4 shows the bias in 9. Inspection of the 

table indicates that § is e ffec tive  in giving an improved estim ate forQ ; for values of r 

between 1 and 3. For values of r less than 1, the sampling errors are large as 

compared w ith the bias in X 1; thus § becomes unreliable as an estim ate of 9. For r 

greater than 3 the bias in X' increases considerably and as a result 9 tends to be very 

effective  as an improved estim ate of 0 . Values for r = 7 in table 5 illustrate this 

point.

Although the bias in § may be less than X ', what about the standard error (S.E.) of §? 

Further simulation has shown that the S.E. of § is slightly smaller than that of X 1. 

When r = 1, the S.E. of is 0.96 per cent of the S.E. of X'.

The above example shows that § is e ffec tive  in compensating for rounding error for r 

^  1, where the sample size is 50 or more. As r increases in value, then § w ill be 

e ffec tive  for sm aller values of n.

7. Sampling Distribution of S'n =EX'i

When dealing w ith the exponential distribution we often require the sampling 
n

distribution of Sn = E xj, when making in ferentia l statements about the parameter 0.
1=1 n

In this section we find the distribution of S'n = I  x'j the sum of n rounded values from
1=1

the exponential distribution.

A random sample x]_, ..., xn of size n is drawn from  the exponential distribution.

Each xj is rounded into an interval of width w w ith midpoint x'j, where the centre of
n

the interval containing zero is aw. Then S'n = I  x'j has the following probability
1=1

distribution.
(k ')  fo r  m = 0

[A k ' n -1 ke“ ra  + A k (n" 2k 2e "2 r a ( m - l ) . . .A  kne“ n r a (m -l) In  2n nn

. . . .  (m-n+1 l i e 1111 fo r  m = 1 , 2 , . .

) fo r  m = 0

P [S 'n  = (m+an)w] =■*

e
P [S 'n  = (m+an)w] =  ̂ n

3  ̂ A1 k ,n_3k3e“ 3 r a (m - l) (m -2 ) . . . (m -j + 1) fo r  m = 1 ,2 ,
j = l  J

( 7 .1 )
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where k' = l - e - r ( i+ a ), |< _ er/2_e- r /2 } / \ j n -  c /( j - l) ! ,  r = w/0 and -0.5<a^0.5.
j

For a = -0 .5  the probability distribution of S'n is the same as for a = 0.5.

O f interest is how well S'n compares with the continuous distribution Sn. The 

comparison may be made by investigating their cumulative distribution. The

cumulative distribution for S'n can be obtained from equation (7.1). For Sn we have 

the relationship

2Sn/9 -  (7.2)
2 n

or rew riting in terms of r and w

Sn -  (7.3)
2 r

Thus the cumulative distribution of Sn can be expressed in terms of w for a given r 

and n.

Of. interest is how well S'n compares w ith the continuous distribution Sn. In an earlier  

section we looked at the distribution of X', which is a special case of the S'n 

distribution where n = 1. Many of the observations we made concerning X' apply to 

S'n. Figures 14a to 14g show S'n for certain values of r, a and n, where it is compared 

with the appropriate distribution of Sn. As expected as r decreases in value the f i t  

between S'n and Sn improves as r decreases. This is shown in figures 14a to 14d. 

Where the degree of rounding is severe, the disparity between the Sn and S'n 

distributions can be considerable, as shown in Figure 14a. As the size of the sample 

increases the magnitude of the steps in S'n decrease, in so doing improving the f it  

between S'n and Sn. This is illustrated in Figures 14b, 14e and 14f, where n is 5, 10 

and 20 respectively. Although it  is r not n which is the dominating fac to r in 

determining how close the f it  is between S'n and Sn. Varying a, has the e ffe c t of 

shifting S'n. Figure 14g illustrates how changing a from 0 to 0.5 causes a shift to the 

right in the S'n distribution.



The distribution of Sn is im portant in determining confidence lim its and carrying out 

testing hypothesis for 0 . As a result the e ffe c t of the degree of rounding on the 

percentage points of Sn is crucial.

8. Effect of Rounding on the Percentage Points of Sn

L et S j represent that value of the Sn distribution w ith probability of obtaining values 

of Sn less than S]̂  isa or P(Sn ^  S^) = ctj_. S im ilarly, le t S2 equal the point at which 

P(Sn ^ S2 ) = 012* The values of S i and S2  can easily be obtained by using equation 

(7.3). When the data is rounded we are dealing w ith S'n instead of Sn. O f interest is 

w hether the value of 0̂  and ct2 change as a result of the S'n distribution.

For a given and the points S i and S2  on the Sn distribution are such that 

P(Sn ^  ctĵ ) = ^  P(Sn >  S2 ) =

However the actual distribution is S'n, thus

P(S'n^ S i) = a 'i  P(S'n }  S2) =<*'2

Although we have chosen S i and S2 according to the probabilities a i  anda2  on the Sn 

distribution, the actual probabilities w ill be 01' and 0 2 ' fo r rounded data. These may 

be obtained from  the S'n distribution. To illustrate how rounding of the data affects  

the percentage points we shall consider the le f t  hand ta il of the Sn distribution, 

where a i has the values 0.05, 0.01 and 0.001. For these a values, cq/ was obtained for 

a fixed r and n, and a = -0 .5 , -0 .4 , . ..., 0.5. Table 6 contains the range in values ofcti' 

fo r values of r and n. The range in the values has been caused by the position of the 

rounding la ttic e . We have only obtained the values of <*1 ' for only eleven positions on 

the rounding la ttic e . Thus the range given in the tables is an indication of the 

maximum possible range. To obtain the maximum range would have required  

considerable amount of computing, and this was not considered worthwhile. We have 

only considered samples up to size 25 only.
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Table 6 indicates how rounding the data can cause the probability to change

considerably. For example, is chosen for a sample of size 5 such th a ta  ̂= 0.05.

Rounding the data w ill cause to change, as we are now dealing with the S'n 

distribution. For r = 1, can be between 0 to 0.102. The following example,

illustrates how im portant the change in cx̂  can be.

A random sample of size 5 is drawn from  an exponential distribution w ith param eter . 

We wish to test the following hypothesis.

For ct̂  = 0.05 we w ill re ject H 0 if  Sn^[ S j. Thus the probability of re jecting H 0 when 

in fac t it is true is 0.05 (type 1 error). However, if  the data is rounded, thena i  is no 

longer 0.05, but may vary considerably. Suppose the data has been rounded, where 

the rounding interval w = 0.5, then r = 1 under H 0. In this situation a j_' can lie  

between 0 and 0.102. This means that the probability ot a type 1 error can be 

anything between 0 to 0.102.

What determines the range of o j \  The most important factor is the size of r. As 

expected, an increase in r  w ill cause a corresponding increase in the range of o^\ 

Even for r = 0.25, the difference between a i and a ] /  can be considerable. For n = 5 

andq = 0.001, ĉ 1 can lie  between 0 and 0.002. The influence of an increase in n on 

decreasing the range of eg/ can be seen from  Table 6.

The problem is what combination of r and n i3 suitable such that the range in a ^ 1 is 

tolerable. I t  appears from  Table 6 that a satisfactory combination is:

(8.1) is only an indication of the circumstances under which a  ̂ is not too greatly  

affected by rounding. More analysis is needed before a more detailed  

recommendation can be given.

H 0: 9= 0.5

H i :  0< 0.5

r ^  0.25

r ^ 0.1

(8.1)
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Sim ilarly we could consider the right hand tail of the Sn distribution. From the 

figures showing the cumulative distribution of Sn and S'n it can be easily seen that 

the f it  between Sn and S'n is considerably improved in the right hand tail as compared 

with the le ft hand ta il. Thus the percentage points in the right hand ta il w ill be less 

influenced by rounding.

In this section we have only investigated the le ft hand ta il of the Sn distribution. A 

more detailed analysis is required to form ulate actual recommendations on the 

degree of rounding and its influence on the percentage points of Sn.

9. Conclusions

Rounding values of X always results in a discrete disribution X'. How well X' 

approximates to X depends on the degree of rounding (r) and the position of the 

rounding la ttice  (a). Reducing r from 1 to 0.25 (Figures 2, 3, 4 and 5) improves the f it  

between X and X' considerably. The influence of the value of a on this f it  is less 

im portant than the value of r. Changing the value of a causes a shift in the 

distribution of X' (Figure 6).

The results in Table 1 indicate that the error distribution is definnitely not fla t  

topped. For r = £ the departure from uniform ity is still present. For any practical 

value of r it is unreasonable to assume that the error distribution is uniform.

The errors in the mean and variance of the exponential distribution may be 

considered negligible for r ^ 0.25. However for larger values of r these errors can 

cause the sample mean CX') to have a significant amount of bias, as an estim ator of 9. 

Where the sample size is large enough it is possible to compensate for this bias.

Our analysis and examples suggest that Eisenhart (1947) is justified in recommending 

that the width of the rounding interval should be less than one fourth of the standard



deviation. However this degree of rounding is not precise enough for hypothesis 

testing for small sample sizes; the width of the rounding interval should then be less 

than one tenth of the standard deviation.
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n = 5

b

n *  20
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F igures 13a and 13b. MSE curves fo r  n=5 and 20. P lo tte d  fo r
values o f a between ±} and r  rang ing  up to  1.
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P (S ’ n<S')
.0

0 .8

0.6

.4

0 .2

0
0 2w 4w 6w 8w lOw 12w 14w 16w 18w S'

F ig u r e  14b. C u m u la tiv e  d is t r ib u t io n  o f  Sn and S 'n  w here n = 5 , r = l  and a=0
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Figure 14c. Cum ulative d is t r ib u t io n  o f  Sn and S ’ n where n =5 , r= 0 .5  and a=0
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F ig u re  14d. C u m u la tive  d is t r ib u t io n  o f  Sn and S 'n  w here n=5 r = 0 .2 5  and a=0
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TABLE 1 Values of the Function h(z)

Z | h(z)

r=2 II r=0.5 r=0.25 r=0.1

- 0 .  5w - 1 4 . 9 1 - 4 . 0 5 - 1 . 0 3 - 0 . 2 6 - 0 . 0 4

- 0 . 4 5 w - 5 . 9 6 0 . 8 7 1 . 4 7 0 . 9 9 0 . 4 6

- 0 . 4 0 w 3 . 9 3 6 . 0 4 4 . 0 4 2 . 2 7 0 . 9 6

- 0 . 35w 1 4 . 8 6 1 1 . 4 8 6 . 6 7 3 . 5 5 1 . 4 7

- 0 . 30w 2 6 . 9 4 1 7 . 2 0 9 . 3 7 4 . 8 5 1 . 9 8

- 0 . 2 3 w 4 0 . 2 9 2 3 . 2 0 1 2 . 1 4 6 . 1 7 2 . 4 9

- 0 . 20w 5 5 . 0 5 2 9 . 5 2 1 4 . 9 8 7 . 5 0 3 . 0 0

- 0 . 1 5 w 7 1 . 3 5 3 6 . 1 6 ■ 1 7 . 8 9 8 . 8 6 3 . 5 2

- O . l O w 8 9 . 3 8 4 3 . 1 4 2 0 . 8 8 1 0 . 2 3 4 . 0 4

- 0 . 0 5w 1 0 9 . 2 9 5 0 . 3 3 2 3 . 9 4 1 1 . 6 1 4 . 5 6

O.OOw - 6 8 . 7 0 - 4 1 . 8 0 - 2 2 . 9 2 - 1 1 . 9 8 - 4 . 9 2

0 . 0 5 w - 6 5 . 4 0 - 3 8 . 8 1 - 2 0 . 9 7 - 1 0 . 8 7 - 4 . 4 4

O. l Ow - 6 1 . 7 7 - 3 5 . 6 8 - 1 8 . 9 7 - 9 . 7 5 . - 3 . 9 6

0 . 1 3 w - 5 7 . 7 4 - 3 2 . 3 8 - 1 6 . 9 2 - 8 . 6 2 - 3 . 4 8

0 . 20w - 5 3 . 3 0 - 2 8 . 9 2 - 1 4 . 8 2 - 7 . 4 7 - 3 . 0 0

0 . 2 5 w - 4 8 . 4 0 - 2 5 . 2 7 - 1 2 . 6 6 - 6 . 3 0 - 2 . 5 7

0 . 30w - 4 2 . 9 6 - 2 1 . 4 4 - 1 0 . 4 5 - 5 . 1 2 - 2 . 0 2

0 . 3 5 w - 3 6 . 9 6 - 1 7 . 4 1 - 9 . 3 5 - 3 . 9 3 - 1 . 5 3

0 . 4 0 w - 3 0 . 3 3
,

- 1 3 . 1 8 - 5 . 8 6 - 2 . 7 2 - 1 . 0 4

0 . 4 5 w - 2 3 . 0 1 - 8 . 7 3 - 3 . 2 8 - 1 . 5 0 - 0 . 5 4

0 . 30w - 1 4 . 9 1 - 4 . 0 5 - 1 . 0 3 - 0 . 2 6 - 0 . 0 4

*

9
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TABLE 2 Endpoints of the possible range in values of E(Z) 

for values of r

i , 2.0 1.0 0.5 0.25 0.1

Range of 
E[Z] 31.40 to -16.10(1) 8.20 to -4.10 2.07 to -1.03 0.52 to -0.26 0.08 to -0.04

Range of E[Z] expressed as a percentage of 6 

(1) indicates E[Z] lies between 31.40 and -16.10 0

TABLE 3 Maximum errors expected for mean and variance caused by

rounding

r Max error in mean 
(% o f standard deviation)

Max error in variance 
(% of variance)

0.10 0.1 e 0.2 e1

0.25 0 .56 1.1 e?

0.50 2.1 6 4.o e2

1.00 8.20 17.5 Q2

1.50 18.16 40.0 8*

2.00 31.46 72.2 e2

I



TABLE 4 Values of a which make X ’ an unbiased estimate of 6

r Value of a for which 
E[X'] = 0

2 .00 0 .233 -0 .3 4 0

1.50 0 .247 -0 .3 2 8

1 .00 0 .261 -0 .3 1 6

0 .75 0 .268 -0 .3 0 9

0 .50 0.275 -0 .3 0 2

0.33 0 .279 -0 .2 9 8

0 .2 5 0 .282 -0 .2 9 6

0 .1 0 0 .286 -0 .29 1



TABLE 5 Examples of Compensation Calculations

r n X' 0 ; x'- e i ,0 -§,

0 .5

50
100
250
500

1000

0.860
0 .840
1.102
1.070
0 .966

0.872
0.852
1.111
1.080
0.976

0.140
0 .160
0.102
0.070
0 .034

0 .128
0 .148
0 .111
0 .080
0 .024

1 .0

50
100
250
500

1000

0.780
0.953
1.032
0.933
0.922

0.828
0.994
1.070
0.975
0.964

0 .220
0 .047
0 .032
0 .067
0 .078

0 .172
0 .006
0 .0 70
0 .025
0 .036

1 .5

50
100
250
500

1000

0.750
0 .780
0.910
0.847
0.905

0.851
0 .878
0 .998
0 .940
0.993

0 .250
0 .220
0 .090
0 .153
0.095

0 .149
0 .1 22
0 .0 02
0 .0 60
0 .0 07

2 .0

50
100
250
500

1000

0.760
0 .853
0 .904
0 .836
0 .922

0 .919
1.002
1.048
0.986
1 .064

0.240
0.147
0.096
0 .164
0.078

0.081
0 .002
0 .0 48
0 .0 1 4
0 .0 64

3 .0

50
100
250
500

1000

0.420
0.680
0.540
0.756
0.670

0.756
0.979
1.117
1.044
0.970

0.580
0 .320
0 .160
0 .244
0 .330

0 .244
0 .021
0.117
0 .0 44
0 .0 30

7 .0

50
100
250
500

1000

0.280
0.210
0.175
0 .252
0 .214

1.087
0 .998
0.949
1.052
1.003

0.720
0.790
0.825
0.748
0.786

0 .0 87
0 .0 0 2
0.051
0 .0 52
0 .0 03
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TABLE 6 Range of on1 values

r

2.0 1.5 1.0 0.5 0.25 0.1

n=5 ct1 = 0 .001 0 -0 .1 1 7 0 -0 .0 4 9 0 -0 .0 2 9 0 -0 .0 0 4 0 -0 .0 0 2 0 .0 0 1 -0 .0 0 1

0 .0 10 0 -0 .2 2 9 0 -0 .0 7 5 0 -0 .0 5 5 0 .0 0 6 -0 .0 2 8 0 .0 0 7 -0 .0 1 5 0 .0 0 9 -0 .0 1 1

0 .0 50 0 -0 .3 2 1 0 -0 .1 8 3 0 -0 .1 0 2 0 .0 2 8 -0 .0 6 5 0 .0 4 1 -0 .0 5 6 0 .0 4 8 -0 .0 5 3

n=15 cq = 0 .001 0 -0 .0 0 8 4 0 -0 .0 3 4 0 -0 .0 1 1 0 .0 0 1 -0 .0 0 3 0 .0 0 1 -0 .0 0 1 0 .0 0 1 -0 .0 0 1

0 .0 10 0 -0 .2 2 0 0 -0 .0 7 8 0 -0 .0 3 3 0 .0 0 6 -0 .0 1 5 0 .0 0 9 -0 .0 1 1 0 .0 1 0 -0 .0 1 0

0 .0 50 0 -0 .3 1 3 0 -0 .1 8 0 0 .0 0 7 -0 .1 1 1 0 .0 2 9 -0 .0 6 2 0 .0 4 4 -0 .0 5 3 0 .0 4 8 -0 .0 5 1

n=25 a i  = 0 .001 0 -0 .0 8 1 0 -0 .0 3 0 0 -0 .0 0 8 0 .0 0 1 -0 .0 0 2 0 .0 0 1 -0 .0 0 1 0 .0 0 1 -0 .0 0 1

0 .0 10 0 -0 .1 5 2 0 -0 .0 8 7 0 .0 0 1 -0 .0 3 7 0 .0 0 6 -0 .0 1 5 0 .0 0 8 -0 .0 1 1 0 .0 1 0 -0 .0 1 0

0 .0 50 0 -0 .3 3 1 0 -0 .1 6 6 0 .0 0 6 -0 .1 0 7 0 .0 3 8 -0 .0 6 5 0 .0 4 8 -0 .0 5 6 0 .0 4 9 -0 .0 5 1


