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Abstract

This thesis describes the development and characterisation o f dye sensitised 
Inorganic:Organic, (10) heterojunction photovoltaic (PV) cells o f the form 
Au/M Pc/Ti02/InSn02 or F-Sn02 (where MPc= copper phthalocyanine, 
chloroaluminium phthalocyanine or lead phthalocyanine).

The transparent T i0 2 films were prepared by Sol-Gel techniques and characterised 
optically, structurally and electrically. The effects of and interactions between Sol-Gel 
process parameters have shown that the parameters undergo significant interaction with 
particular effects on the T i0 2 film thickness and thickness related properties obtained 
during dip coating. The film refractive index n was in the range 2.73-1.81 and 
wavelength dependent. The conductivity of the films derived from A u/Ti02/InSn02 
structure was 4.26x10‘6S/cm. E0 varied from 3.4-3.35eV where 5=2 indicting an indirect 
allowed transition in 1 layer thick films to E0 ~3.2eV where 5=3 indicating indirect 
forbidden transition as the number of coating layers increased.

The spectral response, dark and illuminated J(V) and dark C(V) characteristics o f the 
dye sensitised 10 PV cells have been determined. Spectral response indicates that all o f 
the organic dyes studied can be used to sensitise Sol-Gel derived T i0 2 into the visible 
region Corresponding photovoltaic and junction parameters were derived. Photovoltaic 
effects were observed in all devices studied, however cell efficiencies were poor, in the 
range (rj-O.OOO 1-0.046%). The low quantum efficiencies were anticipated to be a 
consequence of the presence o f recombination centres at the T i0 2/MPc heterointerfaces 
and the high observed series resistance due to the low conductivity of the MPc films.

The M Pc/Ti02 junction formed a rectifying contact. C(V) analysis indicated that the 
junction was electrically abrupt. The dark J(V) characteristics were divided into three 
regimes, (i) A reverse bias regime in which the device acts as a p-n heterojunction, (ii) 
an intermediate forward voltage regime, where the derived values of m>2 indicating the 
presence of a high density o f interface states (iii) High forward regime. All devices 
deviate from the standard diode equation as a consequence o f space charge effects in the 
organic layer, the ideality factors m » 2 .  Temperature dependence measurements o f 
PbPc/Ti02 heterojunctions show that the junction currents are a composite of tunnelling 
and recombination.

PV cell parameters were influenced by changes in ambient conditions, the thickness o f 
organic layers and variations in incident intensity. The Jsc and Voc were proportionally 
and logarithmically dependent on the incident intensity respectively. The high Rs is 
believed to be responsible for the poor cell efficiencies reducing FF, Jsc and r|. A 30 fold 
increase in r| was observed when the organic film thickness was reduced from 500nm to 
lOOnm. Exposure to atmosphere reduced p and is likely to be a consequence o f 0 2 
trapping centres.

The work has demonstrated the feasibility of a low cost solid state IO heterojunction 
photovolatic cell. However improvements in efficiency are required to produce a 
commercially viable device.
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Chapter

Introduction

Conventionally, optoelectronic devices such as the photovoltaic cell, photodiodes 

and phototransistors have been fabricated from inorganic materials such as silicon, 

gallium arsenide, cadmium selenide and the more recent CdTe and Cu-In-diselenide 

alloys. However, during the last 20 years, there has been increasing interest in organic 

alternatives. In the case of photovoltaic devices, this is primarily due to the realisation 

that there is not necessarily a single optimum material and/or fabrication solution and that 

a range of devices are required, engineered for specific applications and suited to a 

variety of environmental factors.

Organic dyes such as the merocyanines, perylenes and phlhalocyanines have been 

intensively investigated for photovoltaic applications1'3. However the single layer 

Scholtky barrier type organic cells have not been able to compete with their inorganic 

counterparts due to problems such as low fill factors and quantum efficiencies. 

Notwithstanding this, there are a number of potential benefits of using organic dye 

materials which include low cost and ease of fabrication and consequently there remains 

considerable interest in their use. One area of particular promise for the use of these 

materials is dye sensitisation4'6.

1



Phthalocyanines are a particularly interesting class of organic dyes of this type. Whilst 

these compounds have inherently low charge carrier mobilities3’7, (typically 10'4-lcm 2/Vs 

compared with monocrystalline silicon which is in the order of 1350cm2/Vs) they exhibit 

considerable absorption within various parts of the visible spectrum. These materials can 

therefore be exploited for their excellent photocarrier generation capabilities. To 

overcome the problem of low mobility, recent work6,8 has aimed at the development of 

composite devices exploiting materials with higher carrier mobilities to carry out the 

function of carrier transportation, in conjunction with the organic phthalocyanine 

photocarrier generator. This leads to the fabrication of a n-type (inorganic)/p-type 

(organic) or (IO) heterojunction photovoltaic cell.

It is postulated that the operation of such devices involves the photo-induced creation of 

electron-hole pairs within the phthalocyanine, the electrons transfer to the conduction 

band of the metal oxide layer due to its higher electron affinity. From here they are 

transported in-plane, the holes remaining within the phthalocyanine layer and 

subsequently transported therein6.

The ultimate aim of this work is to present the results of investigations on three such dye 

sensitised photovoltaic devices incorporating the organic dyes, lead phthalocyanine 

(PbPc), chloroaluminium phthalocyanine (ClAlPc) and copper phthalocyanine (CuPc) 

respectively as the organic component. The material chosen to form the inorganic n-type 

layer was titanium dioxide (Ti02). This material exhibits characteristics (outlined in 

section 2.5) that make it a most suitable choice. In order to fully understand and 

consequently optimise these devices it is necessary to appreciate the characteristics of the 

various materials from which they are constructed.
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This thesis is presented in nine chapters. Chapters two to four comprise a critical review 

of the literature and relevant theories. The second chapter describes the development of 

the dye sensitised solar cell, addresses some of the more notable historical advances that 

have led to an interest in devices of this type. The third chapter reviews the necessary 

theoretical information required for. an understanding of the optical, electrical and 

photoelectrical characterisations performed on both materials and devices during these 

studies. The concepts of photogeneration in specifically metal substituted 

phthalocyanines are reported and the current thinking on the mechanisms of dye 

sensitisation is introduced. A brief review of the Sol-Gel processing technique of the 

type used in this research is contained within chapter four. Chapter five describes the 

experimental methods and procedures. Chapters six and seven describe the experimental 

results obtained in the work, for the T i02 Sol-Gel films, and the dye sensitised (IO) 

heterojunction devices respectively. Additional work was carried out on PbPc, 

investigating both the steady state and spectroscopic characteristics, the results are 

presented in the form of a paper given in appendix D.

Discussion of the results is contained within chapter eight, while chapter nine outlines the 

conclusions and possibilities for future work stemming from this research.
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Chapter

The Development of the Dye Sensitised 
Photovoltaic Device

2.1 Introduction

Becquerel’s discovery1 in 1839 that a silver halide coated metal electrode would 

produce a small voltage and current when placed in an electrolyte solution and exposed 

to sunlight sparked the beginning of what has now become an immense interest amongst 

scientists and engineers to develop cheaper, more efficient and reliable devices for 

converting light into electricity.

By 1876, 37 years after Bequerel’s first photovoltaic (PV) cell (or battery cell), progress 

had been made towards understanding the concepts of the PV phenomenon. Materials1 

such as selenium and cuprous oxide had been shown to produce significant light 

dependent voltage and semiconducting materials were isolated as the most suitable for 

light to electric conversion. Major advancements in PV technology occurred with the 

developments of the first p-n junction, constructed from diffused silicon by RCA and Bell 

Laboratories in 19542 and the first cuprous sulphide/cadmium sulphide heterojunctions3 

which were responsible for the subsequent investigations into thin film photovoltaics.4
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The major application of the PV cell is for commercial electricity generation. Due to the 

limited supply of fossil fuels the pollution problems associated with present day power 

stations and the general environmental concern over nuclear fuels, solar energy is a 

popular alternative. But for solar energy to become a realistic possibility a number of 

conditions need to be satisfied. Firstly, the energy generation costs using PVs has to be 

competitive with other ways of producing energy. Furthermore, the total amount of 

energy obtained during the lifetime of the PV must be larger than the energy required to 

manufacture and operate it, and there must be an abundance of the raw materials 

required for production of the cell.

The major drawback of today’s single crystal cells are the high material and processing 

costs, primarily due to the purity of the materials required. Research into polycrystalline 

and amorphous silicon succeeded in lowering the production costs of the cells but both 

alternatives are not without problems. The oxide thickness required by the 

polycrystalline-Si (MIS) structures would be difficult to mass produce, and a-Si cells 

have limitations on efficiency and long term stability5. For cadmium based devices such 

thin film n-CdS/p-CdTe heterojunction cells6, there could be limitations on the 

availability of cadmium, as well as the potential toxicity hazards7.

There subsequently remains a demand for research into novel PV materials and device 

structures. In particular, research into stable materials which are sensitive to wide ranges 

of the solar spectrum. The future widescale use of solar energy could depend on the 

successful development of cost efficient, large area devices, that are constructed by 

manufacturing processes which are environmentally acceptable.
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In recent years particular attention has been given to organic materials for PV 

applications5,8, especially those organics based on chlorophyll, as this is a highly abundant 

material. One such group of organics are a class of commercial dyes known as the 

phthalocyanines. The phthalocyanines contain highly absorbing chromophores within the 

solar spectrum. This significant property has stimulated the recent interest in their use as 

a sensitising material for the development of dye-sensitised PV devices910, in which a 

wide band gap inorganic semiconductor with high charge carrier mobility can be made 

sensitive to wavelengths outside its intrinsic sensitivity. Such a concept offers inherently 

less complex manufacturing techniques and substantially lower costs, together with the 

potential for reaching conversion efficiencies that are comparable with commercial Si 

cells11. This combination of properties would be highly attractive to potential 

manufacturers and end users of PV devices.

2.2 The Metallo-Phthalocyanines

The phthalocyanine molecule was discovered in 1907, when a study was conducted on 

1,2-cyanobenzamide. When the benzamide was heated in an alcoholic solution 

precipitation of a highly insoluble blue product was observed12. Linstead and co

workers13 were the first to carry out an in-depth study on phthalocyanine compounds and 

determine their basic structure, though the structure was later confirmed using X-ray 

analysis techniques14. The similarity of chlorophyll to the Phthalocyanine ring is shown in 

Figure 2.1. A wide variety of metallo-phthalocyanines (MPcs) can now be prepared, in 

fact almost all metal atoms can be substituted into the phthalocyanine ring, hence 

allowing a range of different energy levels12.

7



The central metallic ion in the macro-ring alters the electronic state density of the 

molecule, and can have significant effects on the optical and electrical properties of the 

resulting compound. The MPcs have become extensively investigated due to their large 

number of inherent properties. In particular, they are tinctorially strong, abundant, 

chemically and thermally stable, cheap and easy to fabricate, easily crystallised and 

sublimed, so that the material may be obtained in a highly pure form and suitable for a 

number of deposition techniques which include Langmuir-Blodgett (LB)15 and vacuum 

sublimation16. In addition, they often exhibit semiconducting properties, which were first 

observed by Vartanyan17. Later work by Sussman18 identified as-evaporated films 

exhibited semiconductivity that was inherently p-type, due to the large number of 

acceptor stales which inject holes into the valence band.

2.2.1 Lead, Chloroaluminium and Copper Phthalocyanine

Although a wide variety of MPcs are available the studies were restricted to three, 

namely lead (PbPc), chloroaluminium (ClAlPc) and copper (CuPc) phthalocyanine. 

These were chosen as they are easily acquired, purified and vacuum sublimed. They are 

also complementary, in that each is sensitive to different regions of the solar spectrum, 

structurally distinct and each has been researched to varying degrees, while the CuPc has 

been intensively investigated PbPc and especially ClAlPc are less well documented.

8



2.2.1.1 Structural Properties

The molecular structures of PbPc, ClAlPc and CuPc have been studied5,12,19. The CuPc 

molecule is similar in structure to most metallo-phthalocyanine molecules. It comprises 

of a large macrocylic ring with the copper atom comfortably fitting in the space between 

the four nitrogen atoms. The planarity is reported to be within 0.3A9. In contrast, both 

PbPc and ClAlPc comprise of a non-planar molecular structure possessing a 'cone' 

arrangement. In the case of PbPc the lead atom deviates from the plane of the free 

molecule by 0.37-0.40A due to the steric repulsion of the relatively large radius lead

'M)atom .

CuPc can exist in a variety of polymorphic forms (or phases), a  and P are among the 

most common. Both forms possess the ‘herringbone’ stacking arrangement, however the 

angle between the stacking axis and the normal to the molecular plane is 25° for the a  

phase and 45° for the p phase21. The p phase is also considered to be more stable than 

the a  phase. Indeed, it has been reported that p-CuPc is more stable than cx-CuPc by

10.3 kJ/mol21.

9



M e

(a) (b)

F igu rc.2 .1. Chem ical structure o f  (a) chlorophyll and (b) m etal-substituted phthalocyanine. For
m elallophthalocyanincs the metal atom is substituted into the phthalocyanine ring, betw een  
the nitrogen atom s (denoted 'M'). M =Cu; A l-C l or Pb lor copper phthalocyanine, 
chloroalum inium  phthalocyanine or lead phthalocyanine respectively.

Figure 2.2. Structures o f  (a) m onoclinic and (b) triclinic lead phthalocyanine

10



The non-planar PbPc and ClAlPc also have distinct polymorphs. Those formed by PbPc 

are regarded as being analogous to the a  and P phases formed by the planar metallo- 

phthalocyanine molecules. These are known as triclinic and monoclinic and are shown in 

Figure 2.2. The molecules in the monoclinic phase stack linearly to form a molecular 

column parallel to the c-axis. In the triclinic structure the molecules stack along the a- 

axis22. The crystalline structure of ClAlPc is believed to possess a similar structural 

arrangement to the monoclinic PbPc21. Chloro related MPcs are reported to possess a 

‘slipped disc’ arrangement where the molecules are bound in a linear polymeric chain23.

The crystallographic structure of PbPc, CuPc and ClAlPc vacuum sublimed film have 

been shown to be dependent upon deposition conditions such as the substrate type and 

temperature, the evaporation rate and any subsequent heat treatment of the films 21-24*28. 

Predominantly monoclinic PbPc films have been prepared when glass substrate 

temperatures are 50-100°C, above 150°C, triclinic single phase films have been 

produced25. At room temperature, PbPc films are primarily amorphous25. However, it has 

been observed that when substrates are held at room temperature films produced at a 

low deposition rate (l-2A/s) contain a mixture of monoclinic and triclinic phases, with 

the monoclinic phase predominating26. The fraction of triclinic phase can be decreased by 

increasing the evaporation rate. At a rate of lOA/s, films of monoclinic with an 

amorphous phase have been reported26.

Predominantly amorphous ClAlPc films have been produced when deposited onto glass 

substrates held at room temperature, using an evaporation rate of 5nm/min24. Gradually 

increasing the substrate temperature to a maximum of 200°C resulted in a corresponding 

decrease in film discontinuity, however the predominantly amorphous phase of the films



remained. This is in contrast to ClAlPc films prepared on n-Si and InSnCb electrodes, 

where an increase in substrate temperature resulted in crystal growth of ClAlPc10,28. 

Studies on films of CuPc show that room temperature deposition onto Corning 7059 

substrates results in films which are predominantly of the a  polymorph and subsequent 

heat treatment results in a transformation to the more stable p-form27. A deposition rate 

of 0.1 to 2.5nm/sec was used. This is in agreement with results obtained for many MPcs 

sublimed under vacuum pressures of < 50torr, onto substrates which are held at room 

temperature12.

2.2.1.2 Optical Properties

Due to the weak Van der Waals forces between molecules of the phthalocyanine 

lattice12, optical absorption results in a discrete transition between ground and excited 

electronic states. In phthalocyanines this refers to the so-called %-%* transition, and is 

considered to be the cause of the strong bands observed in MPc absorption spectra.

MPcs have high absorption coefficients29 (~ lO'^cm'1), a substantial amount of work has 

therefore been devoted to investigations of the optical properties of these materials as 

thin sublimed films20,29*31, vapours30, single crystals30,32 and in solvent solutions31. The 

effects of the substituted metal atoms on absorption properties of phthalocyanines have 

been extensively investigated by Davidson33.

Many phthalocyanines are known to form molecular aggregates which cause a 

broadening and splitting of the long wavelength band of the spectrum into two bands one 

red the other blue.34
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The bands are referred to as the Soret band (300-400nm) and the Q-band (650- 

700nm)12. Such bands have been observed in ClAlPc31, CuPc33, and PbPc20. The 

absorption spectra of CuPc as observed by Yoneyama35 is shown in Figure 2.3.

Zhang31 and co-workers studied the absorption properties of ClAlPc in CH2CI2 solution 

as well as in Ihe solid state. In solution a strong band at 684nm was observed. In thin film 

form the band split into two, located at 415nm and 912nm. Monoclinic PbPc films20 have 

shown two absorption bands at photon energies >2.6eV and at <2.1eV.

The early work of Chadderton30 on CuPc identified similarities in the absorption spectra 

of CuPc in vapour, evaporated films and single crystal form. The results were interpreted 

in terms of a simple band model, in which the sharp energy levels of the free molecule 

become broad quasi-continuous bands when the material is crystallised.

For MPcs in solution, the Q-band is observed as a narrow peak which is transformed into 

a broad peak when the material is in solid state form. A splitting of this peak is observed 

and commonly referred to as Davydov splitting12. The amount of splitting is dependent 

on the interaction energy between molecules. A correlation between the magnitude of 

Davydov splitting and the amount of out of plane bonding of the central metal ion has 

been observed by Day and Williams32.
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2.2.1.3 Photovoltaic Properties

Due to the materials’ excellent ability to photogenerate free charge carriers12, the 

potential application of MPc compounds in photovoltaic devices has been investigated by 

a number of workers5,35'37. Photovoltaic cells constructed from these materials have 

usually consisted of a sandwich structure where the absorbing dye layer is placed 

between two metals each having different work functions, forming a Schottky barrier 

cell5.

The photoelectrical properties of CuPc have been investigated in both single crystal38 and 

thin film form35. Asymmetrically substituted CuPc35 in the form Al/15asy-CuPc/Ag, and 

prepared using the LB technique15, exhibited J/V photoelectric behaviour typical of a p- 

type schottky solar cell where Jsc was negative and flowed from Ag to A1 electrode. A 

close match was observed between Jsc action spectra and the absorption spectra. The 

maximum Jsc ~ 10'8Acm'2 for lOOjLlWcm'2 of monochromatic light.

PbPc solar cells of the form M/PbPc/Au where M=Pb, Ni or Sn, were investigated by 

Verzimacha36. Voc, Jsc and m were higher when illumination was through the bottom 

electrode i.e. Pb, Sn or Ni. The spectral response of Voc and Jsc correlated well with the 

spectral dependence of the absorption coefficient, a . Though there was an anticorrelation 

when ooK ^cm '1. The diode quality factor m was between 1 and 2, and found to be 

dependent on the incident light intensity.

Photocurrent as a function of wavelength has been measured for ClAlPc films evaporated 

onto glass substrates by Yanagi37 and co-workers.
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The action spectra of the films did not match the absorption spectrum of a ClAlPc film, 

as shown in Figure 2.4. This spectral mismatch was attributed to a morphology 

dependent recombination of charge carriers. The magnitude of the photocurrent was 

found to be highly dependent on the amount of absorbed O2 in the amorphous films.

A variety of factors are believed to contribute to the low conversion efficiencies obtained 

for cells of the type described. Often aluminium is used as the blocking contact and gold 

as an ohmic contact, illumination of the cell is through one of these contacts, causing a 

reduction in the incident light directly available to the dye layer. There has also been the 

suggestion that the quantum yields from this type of cell may have a fundamental limit 

due to Forster radiationless transfer of excitons from the dye to the metal contacts where 

heat is produced rather than carrier pairs.5

The low charge carrier mobility of these materials, (for CuPc values of approximately 

Sx K TW v 's*1 are reported39), the insulating nature of the organic layer (therefore 

causing a large series resistance) especially if the dye layer is thick and the low 

absorption coefficient if the dye layer is very thin may also contribute.

Recent attempts to increase power conversion efficiency include a surface plasmon 

polariton enhancement technique (SPP) as applied to a Au/CuPc/Al organic solar cell40. 

The power conversion efficiency was increased by a factor of 7, this was thought to be a 

consequence of enhanced light absorption under SPP excitation causing an increase in 

photocarrier generation in the CuPc layer. Nevertheless, the current single layer organic 

solar cell seems unlikely to compete with present inorganic technology.
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2.3 The Evolution of Dye Sensitisation

In 1873 Hermann Wilhelm Vogel noticed that commercially available photographic 

plates had an unexpected spectral sensitivity beyond 540nm. It was discovered from the 

British manufacturer Stuart Worthly, that the plates contained organic dyes. A range of 

dyes were tested including coralline and methyl green and all could sensitise 

photographic silver halide plates optically for wavelengths > 540nm, outside the normal 

sensitivity of the Ag-Halide used. It was concluded that the mechanism responsible could 

either be electron or energy transfer. For the following 50 years most of the work in the 

field was carried out by Eastman Kodak mainly on silver halide plates for photographic 

applications41.

Spectral sensitisation of semiconductors is a concept that is now approximately 20 years 

old. One of the earliest attempts came from Regansburger and Petruzzella42 in 1971, 

where photoinduced injection of charge carriers from metal free phthalocyanine (ILPc) 

into selenium was achieved. The H2Pc proved to be an efficient sensitiser for amorphous 

selenium and a gain of 0.6 electrons/incident photon was measured.

Light in the 570-700nm region did not lead to a photoconductive response in Se and so 

the observed response of the device to red light was ascribed to light absorption in the 

fLPc layer.

Unfortunately the mechanisms of spectral sensitisation are still not well understood. 

Gurney and Mott43 in 1938 suggested a mechanism of electron transfer which is the 

currently accepted theory. However, an alternative mechanism involving energy transfer



was believed to be the most important until the 1967 symposium on spectral 

sensitisation. In 1969, West and Gilman44 produced an extensive review in which the 

theory of spectral sensitisation energies and mechanisms were discussed. It was 

concluded that spectral sensitisation must involve either (i) direct transfer of an electron 

from the optically excited dye to the semiconductor, (ii) energy transfer from the excited 

dye so as to bring about an electron liberating process in the surface of the 

semiconductor, or (iii) both of these mechanisms may be present simultaneously. 

Recently, T.Sakata45 and co-workers outlined an alternative mechanism suggesting that 

electron transfer from the excited dye to the surface states and from the surface states to 

the continuum of the semiconductor may occur. However, from a comparison of 

theoretical with experimental investigations the direct electron transfer mechanism is the 

most favoured.

2.4 Heterojunction Photovoltaic Devices Incorporating Organic 

Materials

The principle of dye sensitisation has been applied to the development of PV 

heterojunction devicesl1,19,46'54. The overwhelming advantage of PV devices which 

incorporate organic materials such as those which will be described, is their use of low to 

medium purity materials which are widely available and have low processing costs in 

comparison to silicon. It has recently been demonstrated by O’Regan and G ratzel11 that 

it is possible to produce an organic/inorganic device with a power conversion efficiency 

comparable with that of some silicon devices. The cell reached an overall light to 

electrical energy conversion efficiency, (rj) of 12% in diffuse daylight. When compared

18



with the recently reported efficiency of 12.7% for an amorphous Silicon55 terrestrial cell 

measured under the global AMI .5 spectrum the results are encouraging.

In the literature there exists a variety of PV cell structures that utilise organic materials. 

These have been of the form, organic/organic46,47 and organic/inorganic19,48'50. Even 

multilayer structures of alternating layers of organic and inorganic materials9 have been 

investigated. The heteromultilayer cell, developed by Takada et al9 consists of alternating 

layers of CuPc and T i02. A 50-fold increase in photoconduction compared with a single 

layer CuPc device was observed, although the dominant photoconductivity mechanism 

was not fully recognised. Whether such multilayer systems would be cost effective for 

large scale production is debatable due to the fabrication technologies employed for their 

manufacture. The multilayer structure was also inhibited by charge separation difficulties 

from the dye to the transporting layer, as a consequence of recombination effects in the 

CuPc films.

Work by Harima46 and co-workers, reported an energy conversion efficiency of 2% for 

an organic/organic PV cell of the form Au / ZnPc (zinc phthalocyanine) / TPyP 

(5,10,15,20-tetra(3-pyridyl)porphyrin) /Al. This was achieved under monochromatic 

light at 430nm corresponding to a maximum in the absorption spectra of the TPyP film. 

In this device a good spectral match to the solar spectrum was achieved and a strong 

spectral sensitisation of the ZnPc by the TPyP, as a consequence photocurrent generation 

was substantially enhanced across the visible region. Charge separation induced by light 

absorption was thought to occur at the interface between the two materials. The ZnPc 

was shown to be responsible for hole transport while the TPyP responsible for electron 

transport.



It is more desirable however to obtain conversion efficiencies for cells illuminated under 

the entire solar spectrum rather than at wavelengths of maximum absorption. This is 

especially true if the cell is being designed for terrestrial PV applications. Nevertheless, 

this efficiency represents one of the highest achieved for a purely organic PV device, 

though the reasons why these particular organics in combination should display such 

relalively high conversion efficiencies are unclear. An organic/organic device of the form 

CuPc/ PTV(a perylene tetrocarboxylic derivative) prepared by Tang47 achieved a power 

conversion efficiency of ~ 0.95% and a fill factor, (FF) of 0.65 under simulated AM2 

illumination. According to Tang47, a similar situation as that described for the Hirama46 

cell occurs in which both organic materials contribute to the generation of charge 

carriers. Dissociation of excitons created by absorption of light in both the CuPc and the 

PTV layers occurs at the interface between the two organic materials, holes are 

transported within the CuPc and the electrons within the PTV. This is in contrast to 

single layer devices in which the electrode/material interface is responsible for 

photogeneration47. Organic/organic designs of this type are still limited by the low carrier 

mobilities associated with organic dyes, their high resisitivity and in some cases can be 

limited by instability due to light fatigue of the dyes31.

The organic/inorganic device structures have the advantage that inorganic materials are 

often associated with higher carrier mobilities and are thus able to transport charge 

carriers more effectively than the dye layers. In addition, depending on the fabrication 

technique employed, the inorganic layer can be structurally engineered to enhance light 

harvesting efficiency (LHE). This has been successfully demonstrated by O ’Regan and 

Gratzel11 and Knodler52 in the TiCb/dye photoelectrochemical (PE) cells.
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The cell developed by O’Regan and Gratzel11 at the Swiss Federal Institute of 

Technology, comprises of a specially engineered porous T i00 film, hence possessing a

high surface area. It is coated with a monolayer of an antenna dye complex. Photovoltaic 

measurements revealed an overall conversion efficiency of 7.1-7.9% under simulated 

solar light, the fill factor remained above 0.7 even under low light conditions. The LHE 

of the incident solar energy flux was 46%, and attributed to the increased T i0 2/dye 

interfacial area due to the porous nature of the T i02 layer. This represents a vast 

improvement over previous PE cells. MPc/(n-Ti02 or n-WC>3 ) single crystal electrodes

in aqueous solution53 have shown low quantum efficiencies. The cause was considered to 

be the inefficient production or the rapid recombination of charge carriers. However, the 

low light harvesting efficiency, due to the smooth surface of the inorganic films could 

contribute. Among the PE cells fabricated by Korsunovskii54 those which consisted of a 

T i0 2 film deposited onto a titanium substrate, and sensitised by Rhodamine B only 

reached a quantum efficiency (Z) of 5x1 O'5 electrons/photon. The efficiency was 

presumed to be strongly dependent on the technique of fabrication, porosity and 

conductivity of the electrode, and the dye treatment.

There is still debate as to the cost and practicality of the large scale production of PE 

cells56. The cells in the past have been prone to corrosion, electrolyte evaporation and 

dye degradation through electrochemical reactions with the electrolyte, caused by 

photogenerated minority carriers52. Although the Knodler52, O’Regan and Gratzel11 cells 

have recently demonstrated high efficiency and improved stability, there is nevertheless 

continuing interest in the development of alternative, low cost solid state PV devices.
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As previously mentioned one of the first attempts to produce a solid state dye sensitised 

inorganic/organic PV device came from Regansburger and Petruzzella42 in 1971. They 

also demonstrated that sensitisation was strongly field dependent. At high fields, in the 

order of dxKfVcm '1, a gain of 0.6 was observed and a quantum efficiency of 0.8 

electron injected per absorbed photon. The efficiency of sensitisation decreased as the 

applied field decreased. The field dependence of the generation and/or injection 

efficiency was dominant and transport was not found to limit the performance of the 

device. The low field electron injection from H2Pc to Se was accounted for by 

examination of the respective energy levels of the materials. The valence band of H2Pc 

lies at 5-5.3eV while that of Se is reported to lie at 6eV. Absorption of 1.7eV radiation 

in H2Pc is believed to form excitons which dissociate forming mobile electrons. The 

electrons are then easily injected across the H2Pc interface then move through the Se in 

the applied field. This model accounted for the lower hole injection from H2Pc into Se 

which was also observed at low applied fields. A similar model was applied to a 

ZnO/merocyaninc cell fabricated by Kudo and Moriizumi50. The photovoltaic effects 

observed were attributed to light absorption in the dye layer and separation of 

photoexcited carriers at the ZnO/Merocyanine interface, a relatively low efficiency of

0.5% was observed and attributed to the high resistivities of the ZnO and the 

merocyanine dye. However a good spectral match between the short circuit current, Tsc 

action spectra and the dye absorption spectra was observed as shown in Figure 2.5, 

indicating that the Tsc was due to the sensitising effects of the dye.

Few MPcs have been explored as potential sensitisers for inorganic semiconductors, 

specifically for use as solid state photovoltaic devices. In 1987 Borsenburger49 attempted 

spectral sensitisation of a-Si by bromoindium phthalocyanine.
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Sensitisation of a-Si into the wavelength range of 730-780nm was achieved, a quantum 

efficiency of 0.3 was measured. CuPc19 has been successfully used to sensitise cadmium 

sulphide (CdS).

The current/voltage characteristics of the InSnO2(300nm) /CdS(lOOOnm) /CuPc(500nm) 

/Cu cell are shown in Figure 2.6, under darkness and white light illumination with an 

incident intensity (I0) of 10mW/cm2. The cell exhibited both rectifying and photovoltaic 

properties. The diode quality factor (m) and reverse saturation current density (Js) were 

estimated to be 2.54 and 1.36x1 O'7A/cm2 respectively.

These results indicated that a large number of defects were present al the CdS/CuPc 

interface thus facilitating electron/hole recombination. At higher forward voltages space 

charge limited conduction (SCLC) was observed, typical of an organic molecular 

semiconductor containing an exponential trapping distribution within the band gap. 

Various PV parameters were calculated for the device, the highest conversion efficiency 

obtained was 0.115%, the fill factor, FF ~0.53± 0.01, open circuit voltage, Voc -375 

±10mV, and the short circuit current density, Jsc -5 8 .12± 0.01 A/cm2.

The thickness and morphological dependent photovoltaic properties of a Au/ClAlPc/n-Si 

cell have recently been assessed by Yanagi10 and co-workers. Both the and r\% were 

found to be dependent on the thickness of the ClAlPc layer, where T|~6.4x10'3% for a 

150nm ClAlPc film, and 71-5.7x10''% for a lOnm film. It was anticipated that the thicker 

ClAlPc films resulted in the formation of a higher series resistance. The action spectra of 

the devices were analysed in terms of the morphology of the dye layer.
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A significant difference between the spectra of devices consisting of homogenous layers 

of ClAlPc and those in which discontinuous islands of ClAlPc were formed onto the n-Si 

electrode (when held at temperatures of 200°C) was detected. Discontinuous ClAlPc 

islands had no sensitising effect on the n-Si electrode, and the observed photoactivity 

was attributed to the Au/n-Si junction. For devices comprising of homogenous layers of 

ClAlPc the action spectra was primarily due to photocarrier generation within the ClAlPc 

layer and the subsequent sensitisation of the n-Si electrode.

These investigations have identified the future potential of a dye sensitised PV cell, 

indicating the requirements for further research into areas such as the development of 

materials, fabrication technologies and device behaviour. In particular there are 

requirements fo r ;

(i) identification of the most appropriate sensitising dyes. Factors such as the conductive 

behaviour, ambient effects, film morphology and structure need to be considered. In 

principle, the selected dye must have an excited state level that is above the conduction 

band edge of the semiconductor, and its ground state must lie within the band gap, thus 

allowing dissociation of charge carriers at the dye/semiconductor interface. The MPcs 

previously discussed fulfil this condition and in keeping with the aim to produce low cost 

devices offer the use of relatively low cost manufacturing technologies.

(ii) determination of the energy band structure of the devices and subsequently apply the 

most appropriate charge separation and transport mechanisms to explain the observed 

device behaviour.

25



(iii) obtaining satisfactory spectral sensitisation of the transporting layer by ensuring 

there is a good spectral match between the photocurrent action spectrum and the 

absorption spectrum of the dye (indicating that the observed photocurrent is due to 

charge carrier injection from dye into the transporting material).

(iv) identification of the most appropriate transporting material and associated fabrication 

technology. The transporting material must have higher electron affinity (%) than the dye, 

in order for charge carrier transfer to occur.

Sol-Gel derived T i02 has been chosen to act as the transporting layer for these studies, 

the following sections review this material and offer justification for the choice of 

fabrication technology.

2.5 Titanium Dioxide

Titanium dioxide (TiO ) is an inorganic material which exists at moderate temperatures

in three stable crystalline phases, brookite57, anatase57 and rutile57,58, though the material 

may be prepared in amorphous form59. It has found applications in a wide variety of 

areas. T i0 2 films have been examined for their suitability as NOx gas sensors60, as 

electrochromic materials for display devices61 and planar waveguides62. The material is 

also commercially available as ceramic membranes for use in food processing, gas 

separations and biomedical processes63, and is used as an infra-red reflecting coating on 

commercial energy saving glass products, (e.g. IROX glass)64. It is suitable for
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fabrication by a number of techniques including sputtering63, plasma enhanced chemical 

vapour deposition58 and Sol-Gel59 ,(as used in the present studies).

It exhibits good transmittance within the visible region59,65, chemical stability66, and a 

high dielectric constant £ (the highest amongst the metal oxides)66,67 . The large £ makes 

it suitable to sustain high fields, hence its suitability for microelectronic device 

fabrication67. The £ has been found to vary with annealing temperature. The work of 

Vorotilov66 identified an increase in dielectric constant from 20 to 150 as the annealing 

temperature was raised from 400 to 800°C. T i02 films heated to 850WC had a dielectric 

constant of between 130 and 150.

The material has also been shown to possess a relatively high refractive index, n. This 

also was found to vary depending on annealing temperature which in turn induces 

structural changes65,66. Vorotilov66 determined an index of 2 for anatase and 2.2 for rutile 

films, and identified that amorphous T i0 2 possesses a lower n than the crystalline phases. 

The n of T i02 films has also been found to be wavelength dependent. Takahashi65 

measured the n of Sol-gel derived T i02 films in both anatase and rutile forms. The films 

were manufactured by dipcoating onto glass substrates. The n was observed to decrease 

exponentially with increasing wavelength. The absorption coefficient (a) of reduced T i0 2 

films has been measured by Ardakani68. At 514nm a  was in the range 0.68-1.52 xlO7!!!'1 

depending on the substrate temperature and hydrogen pressure.

For determination of an energy band diagram for the dye sensitised (IO) PV cell, 

knowledge of the band structure of the T i02 films is essential. The optical band gap 

energy (E 0) of T i02 films prepared by a variety of methods has been determined for



both rutile and anatase forms. In a fashion similar to the n, the E0 has been found to vary, 

depending on fabrication procedures. Leinen69 and co-workers have recently reported a 

band gap in the range 3.42eV to 3.36eV for Ti02 films prepared by ion induced chemical 

vapour deposition. The films displayed peaks in the X-ray diffraction spectra indicative 

of the anatase form. The E0 was found to decrease with increasing thickness, similar to 

that observed in CdS thin films by Chun70. This observation is thought to be a 

consequence of the quantum size effect70 whereby the physical properties of a solid 

became dependent on its characteristic geometric dimensions when the dimensions 

become comparable to the de Broglie wavelength of the charge carriers. In contrast pure 

anatase single crystals have a reported band gap of 3.28eV71.

The nature of interband transitions are not as clear. Yoko72 and co-workers determined 

the band gap of both anatase and rutile forms prepared by Sol-Gel methods. T i0 2 anatase 

was reported to have only an indirect bandgap at 3.03eV while T i0 2 rutile an indirect 

bandgap at 2.92eV and a direct bandgap at 3 .13eV.

From Hall voltage measurements Forro71 concluded that anatase T i0 2 is an n-type 

semiconductor, with a high mobility of charge carriers (»1 cm2V '1s '1 for temperatures 

>50K), which are produced by thermal excitation. Ardakani68 investigated the electrical 

properties of ‘hydrogen reduced’ titanium dioxide films deposited by pulsed excimer 

laser ablation. Activation energies at room temperature were in the range 8meV to 

160meV. The low average activation energy indicated that at normal temperature nearly 

all of the electrons were free to contribute to conduction. The activation energy of

0.16eV was attributed to hopping of an electron from singly ionised centres to free 

oxygen vacancies. In comparison, Konenkamp and Henninger73 also measured a room
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temperature activation energy of 0.16eV and a typical room temperature conductivity of 

10'9(£2cm)'‘ under a vacuum environment. Conduction was attributed to transport in 

extended states, with the Fermi-level near mid-gap.

In the design of the proposed dye sensitised (10) solid state PV device, the transporting 

layer must have a higher carrier mobility to ease carrier transport, a higher electron 

affinity to allow charge transfer, a high n to reduce reflection losses and be readily 

formed at low cost. A review of literature on T i02 has revealed that these characteristics 

are intrinsic, there is consequently sufficient potential to justify its use. The properties 

required for the successful fabrication of a dye sensitised T i02 PE cell could be applied 

to the PV cell.

According to Knodler52, for a successful dye sensitised T i02 PE cell, the transporting 

T i02 layer must fulfil the following requirements: (i) a high specific surface area to 

increase the LHE of the cells, (ii) a predominantly anatase phase structure. It has been 

reported that rutile forms have lower transmittance than anatase. Largely due to the 

optically anisotropic rutile crystals65, (iii) A homogenous and crack free surface structure. 

These characteristics are capable of being engineered using Sol-Gel technology64.

2.6 Sol-Gel Technology

Sol-Gel processing64 is a low temperature chemical route for the production of inorganic 

oxide materials. The process can be used to produce a wide range of single and multi- 

component oxides in crystalline or amorphous (glass) form. The process can be used to 

produce bulk materials but is particularly suitable for the production of thin film coatings.



Some of the earliest literature relating to the Sol-Gel method appears in 1943 in the form 

of a patent by Gefficken and Berger74 on oxide coatings, particularly silica. The first 

major industrial use of Sol-Gel appeared in 1959 for the volume production of coated 

rear view mirrors for the automotive industry, the system being T i0 2-S i02-T i0274. An 

important review appeared in 1969 by Schroeder75 which explains oxide layers deposited 

from organic solutions. Schroeder also reviews the deposition techniques available to the 

Sol-Gel technologist, and the production of both single and multioxide coatings. By 

1970, dip-coating had been applied by Schroeder64 to glasses in order to modify their 

optical properties. From this time Sol-Gel was fully recognised as a viable way of 

producing inorganic materials, and in particular metal oxides. The last decade has seen 

intensive interest in Sol-Gel technology, due to possibilities for engineering the 

properties of glassy and ceramic materials.

Sol-Gel offers many attractive advantages over conventional ways of producing oxide 

materials. These include the possibility of varying the film properties extensively by 

changing the composition of the solution (to produce change in film microstructure) and 

a relatively low process cost. In addition Sol-Gel overcomes the difficulties of producing 

a high quality dielectric-semiconductor interface, and obtaining a stoichiometric ratio of 

elements and molecular homogeneity in multicomponent oxide films76. There are many 

forms in which the oxide gel product can be produced. These include powders, coatings, 

monoliths and fibres63,64,76 which often require very low processing temperatures. The 

possibility of the use of high purity starting materials and the ease with which large and 

complex shaped substrates can be coated has meant that this technique is becoming 

increasingly attractive to optoelectronic specialists. The need for low-cost thin film
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production processes has increased the interest in Sol-Gel (and other non-vacuum 

deposition techniques) capable of deposition at high rates and over larger areas.

2.7 Summary

Solar power has not become the major alternative energy source it was once anticipated 

to be. This is mainly due to the high material and processing costs associated with 

conventional PV cells. While there is considerable research effort into the development 

of amorphous silicon (a-Si), and cadmium technologies, there is an interest to develop 

PV cells constructed using less traditional materials and methods that may offer a cost 

effective alternative.

MPcs are organic dyes that are sensitive to various regions of the visible spectrum and 

have therefore been intensively investigated for PV applications. Added to this they are 

chemically and thermally stable, abundant, cheap and easy to fabricate. But as PV cells 

they have not reached the required high conversion efficiencies. This limitation is due to 

the materials’ poor ability to collect and transport charge carriers.

Recent research has emphasised the potential of using organic dyes to spectrally sensitise 

wide band gap semiconductors for use in PV applications, an approach which offers 

relatively low cost materials and fabrication methods. It is anticipated that with the 

addition of the MPc sensitising dyes; ClAlPc, CuPc, and PbPc the absorption of light in 

the PV cell is modified to the dyes spectral sensitive region resulting in a much broader 

range of the solar spectrum being utilised therefore in contrast to traditional PV cells the
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photoeffect (or production of photogenerated carriers) does not take place inside the 

semiconductor but in the sensitising dye on its surface.

MPcs are organic based macromolecules which have potential as the dye species, they 

are inherently p-type semiconductors with an energy gap of ~2eV. It is expected that the 

photoinduced electrons created in the MPc layer are transferred to the conduction band 

of the inorganic semiconductor (T i02), which has a higher mobility, a larger energy gap 

and exhibits no photoconduction sensitivity over most of the visible region.

Although it is the principal intention of the author to investigate the feasibility of 

spectrally sensitising Sol-Gel derived T i02, the constituent materials from which the 

devices are constructed are optically, structurally and electrically characterised. This will 

assist in reproducibility and future optimisation. It is recognised that Sol-Gel process 

parameters have a major influence on factors such as refractive index and structure of 

Sol-Gel products. The full extent to which Sol-Gel processing parameters interact to 

affect the properties of T i0 2 films are not known, and could have serious implications for 

the PV cell performance.

It is hoped that this work will help in the identification of the most appropriate dyes and 

demonstrate the versatility and advantages of using Sol-Gel technology in the 

manufacture of the T i0 2 transporting layer.
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Chapter 

Theoretical Background

3.1 Introduction

In this work attempts have been made to give physical interpretation of experimental 

results. This chapter is devoted to the theories that are used for this purpose. Optical 

absorption and DC conduction in semiconducting materials are reviewed. Attention is 

drawn to current thinking on the dye sensitised (10) heterojunction photovoltaic cell 

function. Current transport and the processes of photocarrier generation and charge 

transfer are described as well as the assessment methods used to evaluate the cells 

performance.

3.2 Optical Absorption

The process of optical absorption in semiconductors can be inteipreted using band 

theory1,2. If light is incident on a crystalline semiconductor, optical absorption will take 

place when an electron is promoted from the valence band to the conduction band of the 

semiconductor.
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The minimum amount of energy required for the transition is given by the expression;

E8 = /‘VS = X £ = Ec- E v 3.1

where E gis the fundamental energy band gap, Ec, Ev the conduction and valence band

respectively, t)gand ^ gare the frequency and wavelength of the incident electromagnetic

radiation respectively and h is Planck’s constant. Therefore, for absorption to occur the 

energy of the incident photon must be greater than or equal to the energy of the band gap

i.e. hv  > E g. In an absorption spectrum this transition is observed as a sudden increase

in absorption at a particular frequency and is commonly termed the ‘fundamental 

absorption edge’. Figure 3.1 is a plot of optical density as a function of wavelength in 

microns for clear rutile titanium dioxide3, where the absorption edge at 0.41jim is clearly 

visible.

In crystalline semiconductors there are two types of optical transition processes that can 

occur at this edge, direct and indirect. In a direct transition the interaction of a photon 

leads to the vertical transition of an electron from the maximum of the valence band to 

the minimum of the conduction band, as shown in Figure 3.2 (a). If the formation of 

excitons (electron-hole interaction) is disregarded then a theoretical calculation of the 

probability for direct transitions gives the well known power law dependence of the 

absorption coefficient as a function of photon energy 4,5;

, . B ( t o - E 0)
a(co) = —  oJ- 3.2

'  tm
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where a(co) is the absorption coefficient as a function of optical angular frequency (0, B 

is assumed to be constant in the optical frequency range, E 0is the optical band gap, 

(h = h / 2 n ) ,  and 8 is the power index which describes the nature of electronic 

transitions. The value of 8 can take on two values depending on whether the transition is 

a direct allowed transition or a direct forbidden transition, in which case 8 = 1 / 2  or 3/2 

respectively.

Conversely an indirect transition occurs when the photon interacts with phonons in order 

to conserve momentum i.e. the wavevector k. The main role of the phonon is therefore 

to transfer momentum. As the photon is absorbed, one or more phonons are 

simultaneously absorbed or emitted. In a semiconductor exhibiting this type of 

behaviour, the maximum in the valence band and minimum in the conduction band occur 

at different values of k, with the absorbed/emitted phonons providing the necessary 

change in momentum (Figure 3.2(b)).

Calculations of transition probabilities therefore reveal5 that the absorption coefficient for 

an indirect transition is the sum of both these absorption and emission processes, the first 

and second term respectively in the formula;

a n r m J m ~ E° + h V ^  3 3
eXp(/,D„ll/ * T ) - l  1 - e x p ( -  /,!)„„ / k  T)

where n is the refractive index, k is the Boltzmann constant and 'i)phthe phonon 

frequency, all other terms being defined previously.
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Figure 3.1. Optical density o f  pure clear rutile titanium d ioxide at 4°K. The fundam ental absorption  
edge is seen clearly at - 0 .4  lp m . After Grant (1959 )3
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Figure 3.2. Photon absorption by (a) a direct gap sem iconductor; where the conduction band m inim um  
and valence band m axim um  are at the sam e value o f  k. (b) an indirect gap sem iconductor; 
where the valence band m axim um  occurs at different values o f  k to the conduction band 
m inim um .
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Again values of 8 denote whether the transitions are allowed or forbidden, (2 and 3 

respectively).

In amorphous materials the fundamental edge is often observed as a gradual increase in

edge after Urbach(1953)6. A dependence of this type has been observed in both

where y is a temperature dependent parameter and T the absolute temperature. Although 

this exponential behaviour has been observed in many materials, its origin remains 

controversial The equation predicts that ln(a) is proportional to tica, Figure 3.3 is an 

example of this dependence observed in amorphous vanadium tellurite (VoCVTeCF) 

blown films9.

For photon energies above the exponential tail10 (or Urbach tail) amorphous 

semiconductors have been observed to obey equation (3.2) for a(co)>104m'1. Assuming a 

parabolic density of states (N(E)«= E l/2) the exponent 8 is predicted to be equal to 2.

Mott and Davis11 have assumed a linear function of density of states N(E) as depicted in

absorption sometimes extending over several eVs5. This edge is described as an Urbach

crystalline and non-crystalline materials for example, anatase TiCV and amorphous 

GaAs8. Within the Urbach region the absorption coefficient has an exponential 

dependence on photon energy given by6;

3.4

Figure 3.4.
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Figure 3.4. T he density o f states N (E ) as a function o f  energy E in amorphous sem iconductors
(according to M ott and D av is11 1979). AE is the range o f  localised  states, E„ the optical 
band gap.
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In this case an equation similar to (3.2) was derived where a quadratic dependence of 

a(o))//coon //a) may be obtained, the assumption is that all transitions where both the 

initial and final states are localised are neglected. Assuming that the probability of 

transitions between localised states is the same as other transitions then a cubic relation 

can be observed,

. . C (/ico -E 0)
a(to) = — --------- —  3.5

v '  ha>

Where C = (47tcro / 3nc) / (AE)2 3.6

c is the speed of light, a o the metallic conductivity and AE the range of localised states. 

For some materials such as binary vanadate glasses12 this relation has been found to 

provide a better fit to experimental data.

3.2.1 Organic Semiconductors

At this point careful consideration must be given to the case of optical absorption in 

organic semiconductors such as the metallophthalocyanines. The models already 

discussed can be used to interpret the absorption properties of inorganic semiconductors 

yet caution must be taken when applying such models to organic semiconductors.

It has been noted that in inorganic semiconductors the absorption of light involves the 

transition of an electron from the valence band to the conduction band . The strong ionic 

or covalent bonds between atoms of the lattice forming the energy bands. A distinct
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optical energy gap is observed, as depicted in Figure 3.5. This model first proposed by 

Mott-Wannier13 may be applied to semiconductors whose dielectric constant is large. For 

organic semiconductors this is often not the case and the model proposed by Frenkal14 is 

adopted.

In the Frenkal model light absorption is considered to be a molecular process due to the 

weak Van der Waals forces that bond the molecules together. Photon absorption results 

in discrete transitions between the ground state and the excited electronic states of the 

free molecule. The result is the formation of an ‘excition’, (or tightly bound electron-hole 

pair) as shown in Figure 3.6. The energy gap of a transition is therefore a molecular 

properly and is characteristic of molecular structure. The band gap energy of the organic 

semiconductor refers to the energetic gap between the HOMO (highest occupied 

molecular orbital) and the LUMO ( lowest unoccupied molecular orbital). Heavy doping 

of organic semiconductors may increase their dielectric constant and consequently the 

Mott-Wannier model can become applicable.13

3.2.2 Computation of Optical Band Gap, E0

Calculation of the optical band gap can be determined using equation (3.2). The slope of 

a linear plot of (a/ico)1/b against ftco will give the optical band gap En, the value of the 

absorption coefficient is calculated from a knowledge of the sample absorbance and 

thickness, the value of 8 however must be assumed. This assumption of 8 has resulted in 

conflicting values of E 0 for similar materials13.
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An alternative technique was developed by Ray and Hogarth15 to allow the determination 

of E 0and 8 simultaneously from the absorption data, obviating the need for an 

assumption of the optical transition processes occurring in the material. This alternative 

method, described in more detail below is particularly useful as the thickness of the film 

is not required to deduce these optical parameters.

The absorption coefficient a(o)) = ln((j)o/(j))/t, where t is the material thickness and (J)0 and 

(}) are the intensities of incident and transmitted light respectively. If the substitution 

Y=Ln((j)o/(}))/iCL) for absorption coefficient is made into the power law (equation (3.2)), 

then a modified version of the power law is obtained given as;

Y = C (/ico-E 0)s 3.7

C is a constant coefficient for a given material thickness yet it is dimensionally different 

from B in equation (3.2). Taking the derivative of Y with respect to co, then Y/Y* 

becomes;

From this equation it can be observed that a plot of Y’/Y against tico will be linear and 

reveal 8 and Eo/8 as the gradient and intercept respectively. Y* can be calculated using 

the midpoint difference rule.
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3.2.3 Computation of t, a  and n.

In the case of a thin film on a non-absorbing substrate, if the film thickness is 

homogeneous and of the same order of magnitude of the wavelength of the incident 

visible light, it is possible to observe oscillating curves in the transmission spectra caused 

by interference effects due to multiple reflections. In 1976, Manifacier16 and co-workers 

proposed a method of calculating the optical constants and thicknesses of thin weakly 

absorbing dielectric films surrounded by non-absorbing media from these transmission 

interference patterns. Later, work by Swanepoel17 developed the method further showing 

that an accuracy in the order of 1% for thickness t, absorption coefficient a(X) and 

refractive index n{X) could be achieved.

This technique presents a number of advantages over the conventional method that 

requires detailed computer iteration procedures using both the transmission and 

reflection spectra. A particular advantage is that an assumption of the film refractive 

index n is not required to determine the film thickness, t and vice versa. In fact a variety 

of optical constants as well as the film thickness are derived directly from the same 

transmission spectra. The following is a brief review of this technique in relation to these 

studies, for a more detailed theoretical interpretation the reader is referred to 

Manifacier16 (1976) and Swanepoel17 (1983).

The theory is designed for use on a system in which a thin film is coated onto a 

transparent substrate as shown in Figure 3.7.
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Assuming the film, glass and surrounding air are homogenous and optically isotropic, the 

complex refractive index of the film nc(X) is given by;

nc(X) = n(k) -  ik(X) 3.9

where nQi) is the film refractive index and k(A.) is the extinction coefficient given by;

k =  —  3.10
4 ti

Consideration of the effects of multiple interactions and transmissions that occur at all 

three interfaces leads to a complex function for the transmission, (T) which in the case of 

this optical system is given by Heavens18;

T = T(A,,»s,/i,t,a )  3.11

where ns is the substrate refractive index and all other symbols have been previously 

defined. For the substrate alone the well known10 expression for an interference free 

transmission spectrum, (Ts) is given by;

(1 -  R)2
t< = 1 T r^  3-12

R is the reflection coefficient and is equal to ;

R =  3 .13
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Substitution o f  R into Ts gives;

3 .14

3.15

The refractive index of the substrate ns(X) can therefore be determined from 

experimentally determined values of the interference free Ts(^).

If ns is known, the complex function in equation (3.11) may be rewritten in terms of n{X) 

and the absorbance A(k);

where A(A,) is the absorbance. Making the assumption that k=0 over the visible 

spectrum, equations were derived to represent T M and T„„ the maximum and minimum

continuous functions Tm and TM in Figure 3.8. For a particular wavelength Tmi has a 

corresponding value T m i -

Swanepoel17 divided the spectrum into 4 regions outlined in Table 3.1. In the region of 

strong absorption the refractive index, n must be determined by extrapolation of previous 

calculated values of n in other parts of the spectrum as in this region fringes do not 

occur.

T = T(/?,A) 3.16

extremes of the interference fringes16. These are shown as two curves representing the
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For the transparent region the transmission at the maxima of the interference fringes TM 

coincides with Ts the substrate transmission. From Swanepoel17 the refractive index, n 

may then be calculated according to the formula;

When the maxima TM begins to fall away from Ts, (i.e. as the wavelength decreases), 

absorption begins to take place. It is this region (the weak to medium absorption region) 

that is usually of most interest. For the calculation of refractive index n(k), values of Tm 

and the corresponding values of Tm must be obtained for a variety of wavelengths.

It is usual to determine values of Tm and TM between experimentally determined points, 

with interpolation between 3 nearest points being used to allow the determination of 

these intermediate values. As n0 (the refractive index of air) and ns are known, the 

refractive index of the film n\ can be calculated according to the formulae;

3.17

where M is defined as;
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iii is a first approximation to the refractive index. This accuracy may be improved after 

determination of the film thickness, t.

If ;/c i and nc2 are the refractive indices at two adjacent maxima or minima located at X\ 

and X2 respectively. Considering the basic equation for interference fringes

2ni = mX, 3.21

where m is an integer for a maxima and a half integer for minima, the thickness t can be 

determined from the equation;

( = ____ ^ 2 _____ 3.22
' 2(X,n>. , - X 2nel)

Equation (3.22) is very sensitive to errors in the refractive index and therefore results in 

an inaccurate estimation of t. However this initial estimate ti can be used with the initial 

estimate of / / 1 (determined from equation (3.19)) in equation (3.21) to obtain a value m0. 

Taking the nearest integer or half integer of m0 and using ii\ in equation (3.21) a new 

value of the thickness t2 can be calculated. The more accurate determination of n can 

then be found by again using equation (3.21) and the new values of mi and t2 to estimate 

n2.

n2 can be determined accurately for a variety of wavelengths. The new value of n2 can be 

plotted against 1/X.2, fitted to a linear function using the method of least squares and 

extrapolated to shorter wavelengths in the region where the transmission fringes 

disappear. The result is an accurate knowledge of the refractive index for a wide range of
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wavelengths. The absorption coefficient may then be calculated according to the 

equation

A exp (-a t) 3.23

where from Swanepoel17 , A(A,) can be determined in a variety of ways with the 

suggested method being to use values of Tm according to;

E m - [ e 2m - ( , i2- 1 ) ’(«2 - , ;s4)?
A = ------- --------   —--------- —  3 24

( n - l ) 3(» -/z s2)

where : E N1 = —— + (n2 -  l)(n2 -  3.25

Finally once a(X) is known if required k(A-) can be determined using equation (3.10).
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Region a Absorption Cause of Transmission effects

A Very strong Strong Almost entirely due to a  of the film

B Large Medium Mainly due to a

C Small Weak a  has limited effect on T

D =0 Transparent Determined by n and ns through multiple 

reflections

Tabic 3.1. D ivision  o f  transmission spectrum according to Sw anepoel17 (1983). A -D  refer to regions as 
depicted in Figure 3.8.
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3.3 DC Conduction

3.3.1 Density of States

The models used in interpreting electrical data depend on whether the semiconductor is 

amorphous, polycrystalline or crystalline. The material structure also determines the form 

of the density of states (or energy levels) at the band edges which in turn determines the 

electrical transport properties It is therefore worth reviewing the major differences in the 

variation of density of states N(E) (or the number of states per unit volume) with 

electron energy (E), that have been proposed for both amorphous and crystalline 

semiconducting materials.

Crystalline semiconductors have a well defined forbidden gap due to the sharp band 

edges at the valence and conduction bands. This is a direct result of the inherent lattice 

periodicity and the short and long range atomic order19. The density of states N(E) is 

proportional to E 1/2 as shown in Figure 3.17 (a). Amorphous materials have been 

observed to have some short range order although long range order is lost19. 

Nevertheless, some of the features of the electronic band structure that apply to 

crystalline materials may be applied to both polycrystalline and amorphous materials. In 

non-crystalline materials the N(E)°cE1/2 relationship is not expected. Mott and Davis5 

assume a N(E) °cEs relationship where s can be determined experimentally.

A number of models have been proposed for the density of states in amorphous 

materials. All are based on the concept of localised states in the band tails.



Of the most widely recognised are the Davis-Mott11 model in which a distinct energy 

gap is identified and the Cohen-Frilzsche-Ovshinsky (CFO)20 model, in which an 

overlapping of valence and conduction band tails is proposed. In the CFO model the 

Fermi level is pinned in the centre of the overlap, the tail overlap being a consequence of 

the large disorder in the semiconductor as shown in Figure 3.17 (b). This leads to a 

relatively high density of states in the middle of the gap. However sharp absorption edges 

have been observed in truly non-crystalline materials e.g. in V 2 O 5  amorphous thin films.21 

This suggests that an overlapping of conduction and valence band tails docs not occur. 

Nevertheless, the concept of a mobility gap rather than a well defined ‘forbidden gap’ 

which evolved from this model is now widely accepted for amorphous semiconductors. 

The mobility gap (depicted in Figure 3.17 (b)) was derived from the concept of a 

mobility edge introduced by Mott22.

The Davis-Mott model11 is one of the most widely used models for amorphous 

semiconductors23. One of the most significant differences to the CFO model being the 

introduction of a defect level in the middle of the gap and localised tail states which 

extend less into the mobility gap as shown in Figure 3.17 (c). From this model at least 

three conduction processes have been proposed, which are dependent on the 

temperature regime. At low temperatures thermally assisted tunnelling between states at 

the Fermi level is responsible for conduction. At intermediate temperatures, charge 

carriers are excited into the localised states of the band tails and the carriers in these 

localised states are transported by hopping. At high temperatures carriers are excited 

across the mobility gap into the extended states.
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3.3.2 Metal-Semiconductor Contacts

The type of contact made to a semiconducting and/or insulating material is of extreme 

importance in determining whether the observed conduction process is barrier or bulk 

limited24 It is therefore worth mentioning at this point the various types of metal- 

semiconduclor contacts.

The type of contact made to a semiconducting material is dependent on the relative 

workfunctions of both the metal ((j)m) and the semiconductor ((j)s) under investigation1'2. 

The work function ((])) is simply the energy required to remove an electron from the 

Fermi level to the vacuum outside the material. In general two types of contact can be 

formed, the rectifying (otherwise known as the blocking or Schottky barrier) and the 

ohmic contact. Table 3.2 summarises the conditions required for both ohmic and 

rectifying contacts depending on the type of semiconductor.

If ({),„= (j)s a third type of contact is formed called a neutral contact. In this case the 

vacuum and Fermi levels align without charge transfer. No space charge exists and in the 

energy band diagram no band bending is present. Simmons24 described this type of 

contact as effectively a transitional stage between ohmic and rectifying.
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N[E)

N(E)

N(E)

mobility
gap

N(E)

(a) (b)

N(EJ

(c)

Figure 3 .17. (a) D ensity o f  states N (E ) in a crystalline sem iconductor (n-type) at room  temperature.
(b) The CFO m odel o f  overlapping valence band and conduction band tails.
(c) Proposed D avis-M ott11 m odel for the density o f  states o f  an ideal am orphous 

sem iconductor show ing a real gap and overlapping bands o f  donor and acceptor levels  
(U = E X-Ey.) W here Ef, Ec, and Ev, represent the energy (E) o f  the Ferm i level, conduction  
band, valence band respectively.

Type of Contact —» 
Type of Semiconductor 1 Rectifying Ohmic

n-type ^ <l>s ^ <j>s

p-type Dm  <  ( )s <l>m > <|>s

Table 3.2. C onditions o f  the respective work functions o f  rnetal((})m) and sem ico n d u cto r^ ) for the 
formation o f  either rectifying or ohm ic contacts.
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3.3.3 Temperature Dependent DC Conductivity

Electrical conduction suggests that on application of an external electrical field there will 

be a net transport of charge carriers within the material. In crystalline extrinsic 

semiconducting materials this transport is assumed to be due to free carriers and 

conductivity is simply the sum of the number of available carriers n, p, the corresponding 

charges e, and mobilities p;

0 = n|ej|.ic + p|ejnh 3.26

where a  is the conductivity (£2 cm'1). For an intrinsic semiconductor n=p=n, (where n, is 

the intrinsic carrier concentration) and the equation becomes;

o = e(nc + n ll)ni 3.27

The variation of n, p, pe and ph with temperature therefore determines the temperature 

dependence of the conductivity. From a knowledge of the temperature dependence of 

carrier mobility and carrier concentrations, the total conductivity ( a tota i)  for an extrinsic 

semiconductor is given as the sum of both the extrinsic and intrinsic contributions25;

^ to ta l  =  ° o i  e X P
f_jV)

2 k l )
+ a « e x p  -

k l
3.28
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OoU °oe are constants, Eg the energy band gap and E; is the impurity level excitation 

energy.

Thus, if the temperature dependence of conductivity is measured, a plot of lna against 

1/T (an ideal case is shown in Figure 3.18) will reveal Ej and Eg from the slope. Where 

Ej dominates at low temperatures and Eg at higher temperatures.

An analysis of the temperature dependence of the conductivity of organic 

semiconducting materials is required in order to make an adequate identification of the 

energy distribution of traps.

The following phenomenological Arrhenius equation is often reported for organic 

materials13,26 when the temperature dependence is studied.

o = g 0exp
- E
*t

3.29

where E = activation energy, g0 = pre-exponential factor. In organic materials the 

activation energy represents the energy required for thermally-activated hopping of 

carriers in states near the Fermi level, rather than Eg, which is the energy difference 

between the occupied valence band and the empty conduction band.

60



In o

x  INTRINSIC REGIME

Grad =-Eg 

V 2*T

EXTRINSIC REGIME

LOW THIGHT

Figure 3.18. Ideal variation o f conductivity with reciprocal temperature for an extrinsic semiconductor.
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3.4 The N-p (Inorganic:Organic) Heterojunction

The metallo-phthalocyanines (MPcs) and the TiC>2 used in these investigations are 

regarded as p-type13,27 and n-type28 semiconductors respectively. For the purposes of 

these investigations it is therefore hypothesised that the resulting dye sensitised 

photovoltaic cells form what could be regarded as an anisotype or N-p heterojunction. 

(Where the N (T i02) material has the wider bandgap.). Analysis of the measured cell 

characteristics are primarily carried out under the assumption of the formation of such a 

junction.

Extensive literature exists regarding the theoretical concepts of a wide variety of purely 

inorganic heterojunctions such as n-CdO/p-CdTe29, and particularly Si and GaAs based 

devices1,2,30. However, little information exists on the theoretical aspects of junction 

formation and behaviour as well as charge transport and transfer mechanisms associated 

with N-p (Inorganic:Organic) or ‘10’ heterojunctions. Forrest and So31 have presented a 

transport theory, that results in an expression for diffusion-limited current in (IO) 

heterojunction diodes, from which the barrier energy (j)bp and AEV may be determined. 

The IO heterojunction J(V) behaviour was predicted to be more complex than that of its 

inorganic counterpart, and identified the existence of three working regimes which were 

dependent on the applied biases (see section 3.4.4). Antohe32 has confirmed this 

behaviour in a study of In/PTCDI/p-Si and Ag/CuPc/p-Si diodes. However, generally 

relatively little experimental evidence exists in support of this model.

The following is a brief review of heterojunction physics and analysis in relation to 

photovoltaic applications. Current thinking on the mechanisms responsible for charge



generation, transport and transfer in IO heterojunctions for the purposes of these 

investigations arc also reviewed. For more detailed interpretation the reader is referred 

to the texts of W ang1, Tyagi2, Forrest and So31, Sakata33, Antohe34,35 and Hovel36.

3.4.1 Photocarrier Generation and Charge Transfer

The processes of photocarrier generation particularly in MPcs has been reviewed by 

Simon and Andre13. The mechanisms available to describe phologeneration of carriers in 

molecular semiconductors, can be classified into two basic groups, those which involve 

the dissociation of excitons and those which do not as summarised in Table 3.3. In 

phthalocyanines the photogeneration of free electron hole pairs is usually described by an 

cxciton-dissociation process. Direct photogeneration is rarely observed37. The absorption 

of a photon creates a loosely bound excilon which then dissociates at either a free 

surface or at some internal dissociation centre e.g. an impurity.

Dye sensitisation is usually described as the process by which absorbed dyes are 

photoexcited and then inject electrons or holes into the semiconductor onto which they 

are absorbed38"40, (i.e. the process of photocarrier generation and charge transfer). 

Although several models40 have been proposed to explain the processes of charge 

separation and transfer the detailed mechanisms of dye sensitisation are still not well 

established. Dye-sensitisation systems have been investigated by Sakata40. Experimental 

observations of Rhodamine/ZnO systems strongly suggest the direct electron transfer 

from the excited dye to the conduction band of the oxide semiconductor as the most 

likely sensitisation process, depicted in Figure 3.19.
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A model for the electron transfer rate from the excited dyes to the conduction band of 

the semiconductor was proposed, in which the electron transfer rate is dependent on the 

electron exchange energy t), the normalised state density p0 and the energy difference 

between the energy level of the excited dye and the bottom of the conduction band of the 

oxide semiconductor AE. The electron transfer rate Ket is then expressed as;

K „ =  | d 2P „ ( 4 £ - 1 )  3 .30

where

p„(E) = p ( E ) / N  3.31

p(E) is the state density and is proportional to N  the number of atoms or molecules of 

the oxide semiconductor.

The mechanism was further reviewed by Takada41 in which the complete charge 

generation and separation of carriers for IO heterojunction was considered. The 

photoinduced exciton in the organic semiconductor diffuses to the heterointerface due to 

the built in electric field and donates its excited electron directly into the conduction 

leaving a free hole in the valence band of the organic semiconductor.

Further mechanisms include energy transfer from the excited dye to the surface states 

followed by electron (or hole) injection from the excited states and electron transfer from 

the excited dye to the surface states and from surface states to the continuum of the 

semiconductor.40
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D issociation

processes

1. Exciton dissociation at clcclrodc/scm iconductor interface

2. Exciton d issociation due to interaction o f  excitons and trapped carriers

3. Exciton dissociation due to interaction o f  excitons and im purities

N on-dissociation

processes

1. D irect excitation o f  trapped carriers into CB or V B

2. D irect band to band transitions

Table 3.3. Processes o f  photocarrier generation in m olecular solids after Nespurek (1993) 37

excited state

CB
resonance state

surface state

ground state

MoleculeVB

Semiconductor

Figure 3.19  D ye sensitised electron transfer. D yes arc photocxcilcd under illum ination to create excitons  
which d issociate at the IO heterointerface. Electrons transfer from the excited  dye to the 
conduction band. A ccording to Sacata’s m odel o f  electron transfer (1990 ).40
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3.4.2 Energy Band Diagram

From the Anderson model42 which assumes no interfacial layer between the two 

materials and no interface states, it is possible to construct an energy band diagram for an 

ideal N-p heterojunction. It is the work function <|>i, (j)2, (difference between the vacuum 

level Evac and the Fermi level, Ef), the electron affinity %i,% 2  (difference between Evac and 

conduction band edge Ec) and the band gap energies of the two semiconductors, Egi, E g 2 

that determines the band diagram and the depletion region1,2,36. The built in potential (])hp 

which arises between the p-type and N-type neutral regions is calculated from the 

difference in the work functions of the two materials, ((th-^) which is equivalent to the 

sum of voltages that appear across the two semiconductors (i.e. Vbi+Vh2)- At equilibrium 

the Fermi levels are aligned En = Ef2 and are constant throughout the device.

The essential difference between a p-n homojunction and the p-n heterojunction is the 

formation of a discontinuity in the conduction band due to the difference in energies of 

the conduction band edges in the two materials. The discontinuity AEC may be calculated 

from the difference in electron affinities according to:

AEt- = |x2 -  Xi) 3.32

Similarly the hole affinity difference can be used to determine the offset at the valence 

band edge AEV and is given by;

AEv =: |Eg2 + %2 — E g, — %,| 3.33
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Figures 3.20 and 3.21 indicate the formation of an energy band diagram constructed for 

an ideal N-p heterojunction under thermal equilibrium conditions. It is assumed that the 

transition region between the p and N-type regions is abrupt1,2,36. It must be noted that 

the actual energy band profile for the heterojunction is dependent on the relative values 

of Eg, % and § for the two semiconductors and therefore energy band profiles for 

different heterojunctions differ. A comprehensive description of types of heterojunctions 

has been given by Milnes and Feucht.43

Weakly coupled molecular crystals such as the phthalocyanines are not usually assigned 

to conventional band diagrams. The value of Eg simply refers to the difference between 

the HOMO (highest occupied molecular orbital) and LUMO (lowest occupied molecular 

orbital) rather than a distinct energy band gap. Nevertheless they are a useful aid in 

describing observed diode characteristics.

A band diagram for an IO heterojunction has been proposed by Anthoe, Tomozeiu and 

Gogonea35 based on the organic materials PTCDI and CuPc in conjunction with p-type 

Si substrates. The proposed diagram includes the presence of an interfacial layer which 

can be attributed to range of factors such as cross-diffusion, chemical interaction, or 

surface damage.

In practical heterojunction devices a non-ideal situation occurs which modifies the 

idealised energy band diagram. In the CuPc/p-Si and PTCDI/p-Si devices the applied 

voltage Va was the sum of Vbi, Vb2 , and the voltage drop over the organic, inorganic, 

and the interfacial region respectively. The determination of a high ideality factor (m) for 

the Ag/CuPc/p-Si diodes indicated the existence of a high density of interface states.
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AE

N P
(Ti02)

Figure 3.20. Two neutral, isolated semiconductors one N-type one p-type.

ev, vac

AE

AE Efl = Ef = Ef2 

N„>Nj Xn>X]

N

Figure 3.21. Energy band diagram for an ideal anisotype N-p heterojunction after contact has been
made. It is assumed that the electron affinity % o f N  type is greater than p-type and that the 
junction is abrupt.
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In the current studies on TiCVMPc (IO) heterojunctions an energy band diagram for the 

device has been proposed (chapter 8), based on both available reported data and 

parameters measured during the course of these investigations.

3.4.3 Spectral Response

Comparison of the dyes absorption spectra with the short circuit (Jsc) photocurrent- 

density action spectra J(A,) of dye sensitised cells is a direct indication of the ability of the 

dye to sensitise the wide band gap inorganic semiconductor .to wavelengths outside its 

intrinsic sensitivity. A J(A,) dependence which is similar to A(^) of the dye is strong 

evidence for spectral sensitisation as demonstrated in the recent photoelectrochemical 

cells of Shen44 (ZnPc/Ti02) and Kudo45 (merocyanine/ZnO).

The spectral response is directly related to the cell’s quantum efficiency, Z%. or the ratio 

of photocurrent collected at each wavelength to the number of photons incident on the 

surface at that wavelength. Measurements of the devices responsivity allows the 

calculation of Z according to the law46;

^  R  he
Z = —-  3.34

where R is the responsivity of the device and is defined as the ratio of photon generated 

current Jsc (A/cm2 ) to the watts of optical power incident <|> (mW/cm2). Xe is the 

wavelength of the incident radiation, and all other symbols have their usual meaning.
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Quantum efficiency (Z) gives an indication of the potential of the cell to generate useful 

charge carriers per incident photon, the higher Z the more ideal the device. Low quantum 

efficiencies reported in p-n junctions have been attributed to the presence of 

recombination centres at the heterojunction interface29. It is also worth noting that in the 

literature often the only indication of a cell performance is the quoted maximum quantum 

efficiency measured for the cell at a specified wavelength and is therefore the only 

available performance parameter to compare against. Although Z is a useful parameter to 

indicate the cell potential, quality and aids in device optimisation, it is nevertheless the 

cell performance over the entire solar spectrum rather than over a small portion of the 

spectrum which is of most interest, i.e. the overall power conversion efficiency rj% 

rather than Z%.

3.4.4 Current Transport

In a typical p-n heterojunction several current transport mechanisms may be present at 

the hctcrointerface43,47. These consist of (i) recombination-generation currents (ii) 

diffusion or emission currents (iii) recombination through interface states at the junction 

(iv) tunnelling from band states to localised defect states in the band gap across the 

heterointerface and (v) band to band tunnelling, as depicted in Figure 3.22.

In the case of an abrupt anisotype heterojunction, three models have been proposed to 

account for current transport.

(i) The Anderson model42, in which the effects of dipoles and interface states are 

neglected as well as any recombination-generation within the space charge region. 

Current transport is believed to be by diffusion of one type of carrier only (electrons or
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holes) due to the effects of the discontinuities in the band edges at the interface, (ii) 

Interface recombination as seen in Ci^S/CdS helerojunclions48. and (iii) Tunnelling.43,47 

Heterojunctions are often dominated by a tunnelling current, due to the many energy 

states that are introduced within the band gap. This form of current transport has been 

observed as a major contributor to the dark current in heterojunction solar cells.36

Ag/CuPc/p-Si and In/PTCDI/p-Si heterojunction diodes have been studied by Antohe, 

Tomozeiu and Gogonea35. The observed temperature dependent J(V) behaviour was 

explained by a model of transport proposed by Forrest and So31. The current transport 

was believed to be limited by thermionic emission (TE) at low current densities and SCL 

as the current density was increased. Under low forward and reverse bias the device 

performance was analogous to a metal-insulator-semiconductor (MIS) structure, (the 

organic layer’s behaviour being similar to a leaky insulator). Under large forward bias the 

diode behaviour was compared to that of a Schottky diode. In this regime the conduction 

in the organic film became space charge limited. Under moderate to high reverse bias the 

device performed in a heterojunction regime, whereby minority carrier generation in the 

semiconductor substrate was balanced by recombination at the IO heterointerface. The 

various modes proposed for IO heterojunction operation are shown in Table 3.4.

According to So and Forrest31, under large reverse bias, the IO heterojunction interface 

is not strongly inverted due to the poor insulating properties of the organic layer. 

Charges must either recombine at the interface or diffuse to the ohmic metal contact 

made to the organic layer surface. A very large reverse current leads to a breakdown in 

the inorganic layer, after which charge transport is limited by space charge effects in the 

organic semiconductor.



I ae,

AE

Figure 3.22. Current transport mechanisms in a typical heterojunction diode.

Regime Voltage Range Current Density Organic Conductivity

Schottky “V a»(j)bp J>JS Space charge limited

MIS I Va | <Eg/e J<JS Leaky insulator

Heterojunction V J~JS Ohmic

Table 3.4 Operating regimes lor organic/inorganic semiconductor hcterojunctions. Alter Forrest and 
So31. Js is the saturation current density, Va the applied voltage, Eg is the energy band gap o f  
the inorganic semiconductor. The organic conductivity describes the current transporting 
nature o f the organic film.
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3.4.5 Dark J(V) Characteristics

The dark J(V) characteristics are determined by the current transport mechanisms and 

can therefore reveal a great deal of information on the transport properties of the 

devices. They are also determined by any series or shunt resistances that may arise.

The current voltage characteristics of Schottky or p-n-junction diodes are often assumed 

to follow the empirical relationship47;

" eV '
exp -1

j m k T  _

where Js is the reverse saturation current density, m is the ideality factor and >1 (or diode 

quality factor) and is used to indicate the dominant type of conduction mechanism.

Values of m ~1 indicate the dominance of injected current (diffusion) whereas at low 

injection levels values of m~2 are attributed to recombination mechanisms. The ideality 

factor m and saturation current density Js may then be determined from the slope and 

intercept of a ln(J) against V plot. These factors were therefore measured for the IO 

hctcrojunctions manufactured in these studies for dark forward biases.

It has been suggested49 that this relationship (equation 3.35) cannot physically be realised 

since the reverse current must be affected by the same mechanisms that makes m >l for 

the forward current. As such the term (-Js) must contain m also. An alternative test of the
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ideality of a diode was therefore proposed by Missous and Rhoderick5 0 using the J(V) 

relationship that results from tunnelling through the barrier;

( eV Y  f-eV Y l
J = J s e x w J r H T r J J  3 3 6

This equation has been shown to be valid if departure from ideality is due to the voltage 

dependence of the barrier height50, and describes J(V) characteristics resulting from all 

transport mechanisms. The ideality factor m can therefore be used to deduce junction 

parameters . The advantages are that in this case the reverse current also depends on m 

and a plot of In {I/I[ 1 -exp(-eV//:T)]} against V should be linear for reverse voltages and 

forward voltages less than 3&T/e. The plot reveals the ideality factor (m) and the 

saturation current Js from the slope and intercept respectively.

This equation has been tested successfully on Al/GaAs49 Schottky diodes, although the 

authors anticipated that it will hold true for p-n junction diodes. The J(V) characteristics 

of the TiCb/ MPc devices have therefore been assessed according to the method of 

Missous and Rhoderick5 0 for V<3kT/e, to both test the validity of the method and to 

derive m and Js within this voltage regime.

In CuPc/CdS heterojunctions' for high forward voltages, the J(V) characteristics were 

better described by a J°cKVQ dependence, where Q>2. This dependence was indicative of 

space charge limited currents, as a consequence of the organic layer, where the electrical 

characteristics were controlled by an exponential distribution of traps. In the current 

studies, the dark J(V) characteristics of the TiCVMPc (IO) heterojunction cells have also
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been analysed in terms of this dependence. In order to identify whether the TiC^/MPc 

contact formed is rectifying, the rectification ratio (r) of the devices was determined, 

where r is defined as the ratio of forward current to reverse current at an applied bias of 

+V and -V respectively.

3.4.6 Illuminated J(V) Characteristics

The overall photovoltaic cell performance is primarily assessed through illuminated J(V) 

characteristics36,43,47’48. Figure 3.23 is a typical example of the characteristics that would 

be obtained for a p-n junction cell under dark and illuminated conditions. The open 

circuit voltage Voc, the short circuit current density Jsc, as well as Vmp and Jmp (defined 

below) are indicated on the figure. For an ideal p-n junction solar cell the current voltage 

characteristics may be described by;

where JL is the photocurrent density, J0 a pre-exponential factor, Jout the measured output 

current density, Vout the measured output voltage and all other parameters have been 

defined previously. J0l,t, Jl, and Vout are shown in Figure 3.24 the solar cell equivalent 

circuit model.

The open circuit voltage is defined as the light created voltage output for infinite load 

resistance (as shown on Figure 3.24). For an ideal PV cell it is related to the built in 

potential, (and theoretically cannot be greater than <j)bp).

3.37
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[mA]

Voltage (mvj

Figure 3 .23. Typical J(V ) characteristics o f  a p-n junction photovoltaic cell under dark and illum inated  
conditions. Isc the short circuit current, V octhe open circuit voltage.

ph

R, I out

V,out r t

-0 o-

Figure 3 .24. Equivalent circuit o f  a solar cell including series and shunt resistance’s.
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V (>c is given by;

vvliere Jsc, the short circuit current density is the current for zero net bias voltage across 

the device. It can differ from photocurrent if a large series resistance is present. 

Assuming the effects of series and shunt resistances are ignored then the short circuit 

current density Jsc for a p-n junction is theoretically predicted to increase linearly with 

increasing intensity36, (j)0. A linear dependence of Jsc on <j)0 therefore predicts a logarithmic 

dependence of Voc with (j)0 according to equation 3.38 and as shown in Figure 3.25.

The overall conversion efficiency r|% is used to assess the device performance and is 

given by36;

V J FFT, _  —oc_sc  3  3 9

p,.

where Pin are the watts of optical power incident on the cell, FF is the Fill factor, defined 

as the fraction of the product of Jsc and available as power output and is given by;

Vmp and Jmp represent the voltage and current density respectively at the maximum power 

point, as indicated on Figure 3.24.
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Figure 3 .25. Theoretical variation o f  V oc and Jsc as functions o f  incident light intensity, <|)0. for an ideal 
p-n junction PV cell.
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In determining the performance and potential of a photovoltaic cell (PV) the effects of 

series and shunt resistances are considered. Shunt resistances (RS|,) indicate the presence 

of surface leakage caused by for example dislocations and grain boundaries. Rsi, may be 

determined from the reverse bias J(V) illuminated characteristics where the reverse 

current changes linearly with the reverse bias voltage. In an ideal PV cell R Sh= 0 ° .

The series resistance (Rs) can be calculated from the slope of the illuminated 

characteristics at forward bias voltages >V()C.; where the forward current density does 

not vary exponentially with the applied bias. Rs indicates any contact resistance or the 

effects of the bulk film resistance. In an ideal PV cell Rs=0.

A great amount of work on Si, GaAs, and CdS based PV cells has revealed how Rs and 

Rsi, affect the cells performance36,48. For example Rs is known to lower Jsc but does not 

affect Voc while Rsh does the opposite. However both of these resistances are known to 

degrade the FF, and consequently ij. For photovoltaic cells it is highly desirable that 

contacts are ohmic, therefore having minimal resistance and no rectification 

characteristics. Gold was chosen as the contact material in these studies as it is known to 

provide an ohmic contact to the MPcs used51.

It is worth mentioning at this point the importance of carrier lifetime in a PV cell. Carrier 

lifetime is determined by the amount and nature of impurities and lattice imperfections in 

the semiconductor36. Their presence results in the formation of recombination centres, 

which may be either in the bulk (i.e. dislocations, vacant sites, impurities) or at the 

surface (i.e. dangling bonds, chemical residuals). An effective recombination centre has 

its energy level away from the band edges, deep within the forbidden gap, therefore the 

photogenerated carriers can be lost through bulk and surface recombination before they
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can be collected, resulting in a reduction in the carrier lifetime. In traditional silicon and 

gallium arsenide p-n junction PV cells the minority carrier lifetime is one of the most 

important parameters in determining the cell performance, and is highly dependent on 

preparation procedures36.

3.4.7 C(V) Characteristics

Measurement of the p-n hctcrojunclion capacitance as a function of voltage allows the 

calculation of (j)bP the built-in-potential and W the depletion layer width. The unit area 

capacitance for an anisotype heterojunction based on Anderson’s abrupt junction 

diffusion model42 and reviewed by Chopra48 is obtained by solving Poisson’s equation 

and may be expressed as;

C _ I eNdiNa2e , e , e 0 1 

V 2(e,Nd, + e 2Na2 K p - V

where N^i and £| the donor concentration and permittivity respectively of the n-type 

material and N .,2 and 8 2  the acceptor concentration and permittivity respectively of the p- 

type material. Taking the derivative of C ' 2 with respect to the applied voltage V, the 

slope of the (C ' 2 Vs. V) line can be given by;

dC 2 _  ̂ (£|Nd1 +£2Na2) 342
dV (a2eNd1Na2e,e2)

where a is the active device area. Linearity of the C ' 2 plot indicates that the junction 

formed between the two materials is abrupt.
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Extrapolation of C ' 2 against V to C'2=0 provides the value of (j)bp. The total width of the 

depletion layer (W) is then calculated from;

\ f \ J  —  1 ^ 2 ^  ( ^ a 2  ~ ^ ^ d l )

e (E l^d1  £ 2 ^ a 2 ) ^ d 1 ^ a 2

The width of the space charge regions Xi and x2 (or the penetration depth of the 

depletion region into the respective semiconductors) may then be calculated according 

to;

2

3.43

xi =
2 ^ a 2 ^  | ^ 2 ^ o  V't'bp - v y

3.44

and

Xo =
^ ^ d 1 ^  l ^ 2 ^ o \ T D p - v y
® ^ a2  (£  I^d1 £  2 ^a2  )

3.45
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Chapter

Sol-Gel Processing

4.1 In trod u ction

A primary consideration in the present investigations was low cost and ease of

fabrication. The required material parameters such as thickness, structure and
I

conductivity must also be easily engineered. For the production of TiC>2 films'a process 

that has potentially all of these attributes is Sol-Gel1"2. The possibility of using high purity 

starting materials and the case with which large and complex shaped substrates can be 

coated has meant that this technique is becoming increasingly attractive to optoelectronic 

specialists24.

The Sol-Gel process is a chemical route to preparing inorganic (oxide) compounds. 

There are two distinct variants of the process, known as the aqueous and alkoxide route 

respectively. The latter was employed in this case. The process consists of a two step, 

hydrolysis and polycondensation reaction of the precursor metal alkoxide molecules with 

water. The reaction produces a polymeric (or macro)molecular metal oxide network in 

the form of a colloidal dispersion (SOL) in a carrier liquid, which normally consists of an 

alcohol or diol. These macro-molecules subsequently cross link and/or join by



intermolecular forces to form a highly porous GEL product, characterised by a gradual 

increase in the viscosity of the medium.

The resultant gel, known as an alcogel, can be transformed to a rigid solid metal oxide by 

heal treatment at relatively low temperatures (typically 350-750°C) to remove residual 

organic material and sinter the porous gel to a dense film or monolith.

4.2 The Hydrolysis and Condensation Reactions

As previously explained, the Sol-Gel process involves a two stage chemical reaction with 

water. The two stages are known as the hydrolysis reaction and the 

polymerisation/condensation reaction. In the case of the Sol-Gel production of T i0 2, 

these take the following form.

(i) Hydrolysis.

Reaction formula = Ti (OR ) 4 + 4H20  —> Ti (OH ) 4 + 4ROH.

The metal alkoxide compound, Titanium Isopropoxide (TIP) undergoes a hydrolysis 

reaction with water present in the carrier solvent (e.g. ethanol) forming the intermediate 

compound Ti(OH ) 4 when completely hydrolysed.

OR H H OR

OR OR
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(ii) Polymerisation Condensation Reaction 

Reaction = (n)Ti(OH ) 4 —> (n)Ti02 + 2(n)H20

The polymerisation/condensation reaction involves the removal of unwanted OH groups, 

transforming the material into the oxide form in which the metal atoms are linked via 

oxygen linkages to form a polymeric network molecule. Water is evolved as the reaction 

occurs:

OH OH

OH —  Ti — OH +' HO —  Ti —  OH

OH OH

OH OH

OH —  Ti —  O —  Ti —  OH

I | I

OH 4, OH

h 2o

O o

The molecular clusters grow and 

polymerisation takes place, to form a 

polymer network commonly termed the ‘Gel’

O —  Ti —  O —  Ti —  O Polymer network (Gel)

O O —  Ti — O

O
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4.3 Reaction Modifiers

In the case of many alkoxides, particularly those of the transition metals, the compounds 

arc highly susceptible to the hydrolysis reaction5, and the nature of the reaction product 

from these rapidly reacting compounds tends to take the form of particulate rather than a 

three dimensional cross linked network or gel. Since these particulates are unsuitable for 

the production of thin films, it is necessary to add various modifying agents to the 

reactants to retard the hydrolysis reaction and allow the desired gel type products to be 

formed.

A number of additives have been successfully employed to control the reaction of TIP, 

either by chemically replacing the reactive alkyl groups with less reactive species, e.g. 

acetylacetone, acetic acid6 or by controlling the hydrolysis reaction kinetics via the pH of 

the solution e.g Nitric and Hydrochloric acid7. In both cases, the reaction modifying 

additions increase the stability of the Sol, and produce changes in the Sol viscosity and 

subsequently film thickness.

4.4 Deposition Methods

Probably one of the greatest advantages of the Sol-gel technique over other film 

deposition methods is its versatility. Prior to gelation, the Sol can be spin-coated, 

sprayed, or dipcoated1'2. Each of these methods has respective advantages and 

drawbacks.



In the case of dip coating as used in this study, it is possible to achieve good control 

over thickness, and requires less expensive equipment than the other techniques. 

Homogeneity and uniformity are easily achieved as long as the withdrawal is smooth and 

vibration free.

4.5 Drying

The drying stage is an important aspect of the Sol-Gel process. This stage, which is 

normally carried out at temperatures between ambient and approximately 150°C, causes 

the mobile alcogel to transform to a rigid solid known as a xerogel or aerogel1'2.

During this time most of the residual solvent and water is removed. This process causes 

the gel film to shrink and to eventually form a solid which is highly porous in nature1,2,8. 

The drying procedure alone does not however remove all of the trapped solvent and 

water. For that, a subsequent higher temperature heat treatment is required that 

essentially densifies the gel and results in the diffusion of the residual aqueous and 

organic components to the surface from where they are removed by evaporation and/or 

pyrolysis1,8.

4.6 Sintering and Densification

Yet another attractive feature of the Sol-Gel process is that compared to conventional 

ways of producing glasses, i.e. by fusion of oxides, the densification takes place at much 

lower temperatures9,10. In an extensive study by Brinker and Scherer1 it was proposed
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that the densification process is a combination of four mechanisms each occurring in 

varying degrees and at varying temperatures.

At low temperatures during the drying stage the gel will shrink as the solvent evaporates 

and the pores begin to contract. As the temperature begins to increase condensation 

polymerisation occurs and density of cross-links increases, the overall effect is to shrink 

the Gel further. If the temperature reaches the glass transition temperature (Tg) for the 

material then structural relaxation will occur where the excess free volume ( or the 

volume available to an atom not including that required for thermal vibrations) is 

decreased. After this temperature a further increase results in ‘viscous sintering’ when 

the pores remaining in the gel collapse, the material increases in viscosity and begins to 

flow eventually forming a dense, solid material. At even higher temperatures the gels can 

begin to crystallise, an effect which has been observed in the TiC>2 gel residues prepared 

in these studies is outlined in chapter 6 .

4.7 The Effects of Sol-Gel Process Parameters on Thin Films

It is recognised that process parameters have a major influence on the properties of Sol- 

Gel derived thin films. Parameters such as heat treatment conditions, Sol reactivity and 

viscosity, oxide ratio and the number of coatings have been shown in some cases to 

drastically alter the electrical, optical and structural properties of the films11' 16’19.
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Heat treatment conditions are known to have an effect on the structural properties of 

Sol-Gel derived films. T i0 2 films prepared from Sols manufactured from TIP in ethanol, 

and stabilised with CH3 COOH have been found to be amorphous when annealing 

temperatures of 350°C have been used11. Sol-Gel derived T i0 2 films heat treated to 

400°C are reported to be anatase in structure12. Changes in crystalline structure have 

been shown to correspond to changes in the measured refractive index (/?) of T i02. Sol- 

Gel processing is used to engineer refractive index13 for a variety of optical and 

optoelectronic applications.

Many process parameters have been shown to have effects on film thickness. For 

example the thicknesses of S i0 2 films were dependent on the Sol viscosity 14. The oxide 

concentration of the solution, heat treatment temperature and time are also used to 

control film thickness. 14,15 Dip-coating is a common technique for the film manufacture. 

The variation of thickness as a function of withdrawal rate has been examined by 

Huang15 on Na+ Super ionic conductor (NASICON) thin films. Thickness increased 

linearly with increasing withdrawal rate. For multidipping coatings the thickness o f the 

first layer was observed to be thicker than subsequent layers. The thickness had relatively 

little dependence on the number of sinterings.

The effect of heat treatment on the dielectric constant (e) and resistivity (p) of T i0 2 Sol 

Gel films deposited on Silicon substrates were assessed by Vorotilov16. p decreased as 

the heat treatment temperature was raised >700°C. Values of s  and n were observed to 

increase with increasing temperature and these rises were attributed to observed 

structural changes.
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The models developed to explain and predict the behaviour of the types of observations 

described have tended to characterise the role of individual factors in the process, and 

remain of limited general applicability. Consequently the development of novel systems 

has tended to occur on a largely empirical basis. Little published work exists on the role 

and nature of interactions between the process parameters to allow a more general 

understanding of the role of the process parameters to be developed.

Factorial experimental design (FED ) 17 is a useful, highly efficient statistical technique for 

assessing and predicting the effect of both individual factors (i.e. process parameters), 

and any interaction between factors that may exist, (described in more detail in chapter

5.) Originally developed by Fisher in 192618, it is a technique that offers a number of 

advantages (outlined in 5.4) over the traditional 'one-factor-at-a-time' approach, in which 

the effect of changing any one variable is assessed independently of the others.

As well as characterising the Ti0 2  Films manufactured in these investigations, for 

example in terms of their conductivity, refractive index and optical band gap, the effects 

of process parameters on properties such as thickness and absorption of the T i0 2 films 

have been assessed using FED 19 (see Appendix C). It is anticipated that these 

observations will be applicable to a wide variety of similar alkoxide systems, and that 

elucidation of the nature of interactions between the process parameters will lead to a 

greater understanding of their role.
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Chapter 

Experimental Methodology

TV /?

5.1 Introduction

This chapter is divided into two sections the first describes the device fabrication 

procedures used during these investigations and the precautions necessary to ensure high 

quality films. The second section is concerned with the characterisation techniques and 

the equipment employed for an accurate compilation of experimental data. Safety 

precautions are also reviewed.

5.2 Device Fabrication

5.2.1 Substrate Type and Preparation

A variety of substrate types were used depending on the characterisation method 

employed. The substrates were either one of four types (i) Pre-fabricated Yoshi slides 

(lithographically interdigitated platinum electrodes), (ii) glass slides (manufactured from 

clear white glass as supplied by BDH) (iii) Indium Tin Oxide coated glass or (iv) 

Fluorine doped Tin Oxide coated glass, both as supplied by Pilkington Glass. Figure 5.1 

shows the %transmission as a function of wavelength for the InSn0 2  and Fluorine doped 

S n0 2 coated substrates used in the construction of the dye sensitised cells. Both exhibit
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an average of 80%  transmission in the visible region. The sheet resistance (R st) of the 

conductive glass substrates was determined using the four point probe technique and 

found to be 11 .6  £2 / and 18 .6  £2/ for the InSnC>2 and F-doped SnC>2 respectively.

5.2.1.1 Substrate Cleaning

The structure and properties of thin films are known to be affected by the quality of the 

substrate surface onto which they are deposited1. A rough or dirty surface can lead to a 

R st which varies across the substrate surface causing ‘hot spots’ and eventually device 

failure, particularly for dielectric films'. Cleaning the substrate will improve its adherence 

to the deposited film and remove the minute particles of dust and debris which can have 

catastrophic effects on film quality, resulting problems are likely to include pinholes, 

cracking and unhomogeneity2. The cleansing processes employed were therefore very 

thorough and carried out under a class 100 specification clean room environment. Table

5.1 summarises the substrate cleansing procedure. The use of the ultrasonic bath not only 

agitates the solution for effective cleaning but also has a heating effect which enhances 

the effectiveness of the solvents. The solvents were all supplied by BDH. After each step 

the substrates were spray rinsed in de-ionised water prepared in-house by a Milli-pore 

water purification system. The water had an electrical resistance of 18 M£2 and can 

therefore be regarded as contaminant free. The substrates were finally dried in air, ready 

for film deposition.
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Figure 5.1. % Transm ission versus w avelength (nm ) for the conducting glass substrates used  in the 
production o f  the dye sensitised cells.

Chemical Formula and Purity Sonification Time (mins)

D ilute D econ  90 M ixed w ith de-ionised  

water approx. lpart in 10

10

Analar *DCM CH2C12 99.5% 5

Analar Propan-2-ol (CH3)2CHOH 99.7% 5

Aristar *DCM CH2C12 99.5% 5

Aristar propan-2-ol (CH3)2CHOH 99.8% 5

Table 5.1. Order o f  cleansing procedure for all substrates used. *D CM  (D ichlorom ethane).
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5.2.1.2 Preparation for Film Deposition and Device Configurations

Both sandwich and planar device configurations were used throughout these studies, as 

shown in Figure 5.2 with a summary of the corresponding materials used and 

characterisations performed. A scanning electron micrograph o f the Yoshi slide as 

shown in Plate 5.1 was used to determine the electrode dimensions. Each o f the 15 

electrodes were 186p wide and 60p apart, and overlapped by 3.125mm. The intrinsic 

conductivity of films on such slides could then be calculated according to the formula ;

where cy is the intrinsic conductivity (S/cm), S is the measured conductance, t the film 

thickness (cm), P the electrode perimeter and d the electrode spacing.

For refractive index measurements it was necessary to deposit a T i0 2 film onto one side 

of the glass substrate. A consequence, was that one side o f the substrate had to be 

shielded from the Sol-Gel mixture. This was successfully achieved by covering the 

selected area with heated wax, allowing it to solidify, depositing the required film and 

finally removing the wax by peeling and subsequent cleaning with acetone. This method 

was also used to shield the platinum electrical contacts from the Sol mixture in order 

that a clean electrical contact could be made.
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A,B,C,D
Au
MPc
T i02
InSnC^/F-SnOv
G lass

A,B,C,D
lnSn02
F-SnG2

PbPc

Glass

A,E,G
lnSn02
G lass

E,F,G MPc
Glass

T i02
G lass

T i02/Pt

Figure 5.2. Summary of device configurations and characterisations performed during
these investigations. Where letters denote characterisation performed; A=dark J(V); 
B= illuminated J(V); C=J(A.); D=C(V); E=optical absorption/transmission; F=n, E0’; 
G=thickness.

Plate 5.1. Scanning electron micrograph of the platinum interdigitated electrodes (xl6 mag).

99



As shown in Figure 5.2, for the construction of the PbPc/Ti02 device a section of the 

InSn0 2 or F-Sn02 coating film from the glass substrate was removed. This was 

achieved by preparing a paste o f zinc powder and water which was subsequently coated 

over the area of the conductive glass film to be removed, this was allowed to dry in air. 

Placing the zinc coated area into concentrated Hydrochloric acid for approximately five 

seconds removed the InSn0 2 or F-Sn0 2 effectively, leaving the insulating glass 

exposed5. The substrates were then ready for phthalocyanine or titanium dioxide 

deposition.

5.2.2 Film Deposition

5.2.2.1 Titanium Dioxide via the Sol-Gel Process

The three components used in the production of the T i0 2 Sol-Gel films were as follows: 

Titanium Isopropoxide (TIP) Ti[OCH(CH3 ) 2 ] 4 = Ti(OR ) 4 purity 97%, Acetic acid 

CH3 COOH purity 99.5% and Ethanol CH3 CH2OH purity 99.7-100%, all chemicals 

were as supplied by Aldrich Chemicals Ltd. TIP is a metal alkoxide, where metal 

alkoxides have the general formula M(OR)n M=metal R=alkyl group and n is the 

valence of the metal atom (in this case 4).

The required volume of TIP was added by pipette to a beaker containing a mixture o f 

glacial acetic acid and ethanol that had been mixed for five minutes. The mixture was 

continually stirred using a magnetic stirrer during addition and for a further two minutes 

after addition of the precursor. The volumes of TIP used were calculated, relative to the 

volume of ethanol solvent to give the required concentration (either 6.3% or 12.6% by 

volume) of TIP solution. The volume of acetic acid used was calculated to give the
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required molar ratio (either 3.14:1 or 4.16:1) of acetic acid to the TIP. The Sol 

concentration was altered in order to assess the effects of ratios and concentrations.

The effects of altering molar ratios o f acid:TIP on the thickness and absorption 

properties of the films were investigated in these studies and are discussed in chapter 

six. The Sols manufactured according to the method described above were immediately 

used to produce coatings on the various substrates.

The dipcoating apparatus used, shown in Plate 5.2 was developed by Nima technology. 

The apparatus contained a linear motor, ensuring that the dipping rate was constant and 

that the resulting films were homogeneous. The apparatus allowed the withdrawal rate 

to be altered in the range 2-200mm/min. This was an important variable as it has proved 

to be significant with regard to the quality of the films and in particular film thickness.

After dipcoating the films contain residual ethanol and very probably water from the 

condensation reaction. The T i0 2 deposited film samples were therefore left to dry in 

ambient temperatures under a clean room environment for approximately 24 hours, prior 

to the sintering heat treatment.
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Plate. 5.2. Linear dipping apparatus developed by Nima Technology.
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For the densification process a Carbolite type CSF 11/3 furnace was used, which has a 

temperature range of 28-1100°C and is accurate to +/-5°C. The temperature and duration 

of sintering are dependent on the film requirements, and the limitations of the substrate. 

In this study a variety of sintering times and temperatures up to 500°C have been 

investigated to assess their effects on overall film quality.

5.2.2.2 Metal-Substituted Phthalocyanine (MPc)

The organic materials used during the course o f these investigations were Copper 

Phthalocyanine (CuPc), Lead Phthalocyanine (PbPc) and Chloroaluminium 

Phthalocyanine (ClAlPc).

The PbPc and CuPc were obtained in powder form from commercial suppliers such as 

Kodak and Fluka AG, and subsequently purified to remove contaminants used in their 

synthesis by the process o f entrainer sublimation6. The ClAlPc was prepared within the 

Physics department at Lancaster University according to the following method. A 

mixture of 40g Phthalonitrile, lOg A1C13 and 200ml Quinoline (doubly distilled and 

deoxygenated under a Nitrogen gas atmosphere) was refluxed for 1.5 hours. The 

resulting hot mixture was then filtered using a glass filter, then cooled to room 

temperature and filtered again. The solid, isolated, was washed sequentially with 

toluene, carbon tetrachloride and acetone, then dried under vacuum to 150°C.
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Semiconducting materials have a wide range of vapour pressures7. The vapour pressure 

is that pressure at which the gaseous phase of the material is in equilibrium with the 

liquid or solid phase o f the material when both phases are at the same temperature. This 

can be equated to the resulting equilibrium gas pressure of the material at that 

temperature when the gas atom condensing on the substrate surface are at the same rate 

as atoms evaporating from the material surface. As organic materials such as the 

phthalocyanines have vapour pressures below their fusion temperatures they sublime

easily (where the material undergoes direct transition from a solid to a vapour form) and

• • * 8  are therefore well suited to this technique . The process sublimation has the added

advantage as acting as a further purification step.

The method of vacuum sublimation was therefore employed to manufacture the MPc 

thin films. All o f the phthalocyanines used during these investigations have been 

previously vacuum sublimed9' 11.

The PbPc and the CuPc films were prepared at the HSE (Health and Safety Executive) 

and the ClAlPc films at Lancaster University though the preparation procedures were 

similar. The phthalocyanines were sublimed from resistively heated metallic boats 

constructed from either molybdenum or tantalum depending on the sublimation 

temperatures. Upon heating the MPc turned into vapour and was deposited onto the 

required substrates which were held at a distance o f ~15cm above the boat. The 

sublimation process took place in a well degassed vacuum chamber, the vacuum was 

~10’5 mbar. For consistency all substrates were held at room temperature during the 

sublimation process and a low deposition rate of l-10A/sec was used.
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5.2.2.3 Electrical Contacts and Thickness Monitoring

For any electrical or pliotoclcctrical characterisation it is necessary to apply metal 

electrodes to the film surface. Metals have high vapour pressures7 so evaporation is a 

simple technique to employ. The procedure was again carried out using a resistively 

heated source mounted inside a vacuum chamber. The choice o f source is dependent 

upon the evaporation temperature o f the electrode material. For the evaporation o f Gold 

contacts a molybdenum boat was used. This prevented the occurrence o f metallic 

impurity contamination in the electrodes.

The choice of electrode material and configuration when studying semiconducting 

materials is extremely important. Knowledge of the work function o f the electrode metal 

is required to ascertain the type of contact made to the material i.e. rectifying, ohmic or 

neutral . For the heterojunction devices investigated in these studies it is desirable to 

have ohmic contacts on both sides of the junction. Gold was therefore chosen as this is

• • 19known to provide good ohmic contacts to phthalocyanine . The gold, supplied by 

Aldrich Chemicals Ltd was o f high purity -99.999%.

For all contacts a masking system determined the electrode configuration, the 

dimensions of which were known in order that an accurate determination o f device 

active areas could be deduced. Evaporation was carried out under a background pressure 

o f 10'3Pa. The evaporation rates of the contact material were initially very low 

~0.1nm/s, especially if deposition was directly onto an organic film and gradually 

increased to O.Snm/s.
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This prevents any thermal damage to the underlying organic layer, for example in the 

form of resublimation. Copper wires were used for electrical connections from the 

measuring equipment to the devices which were attached to the electrodes using a silver 

conducting paste.

An Edwards Bir-Vac vacuum evaporation chamber was used for both the deposition of 

organic films and for electrode fabrication. A schematic representation o f the system is 

shown in Figures 5.3 and 5.4. The vacuum system consists of a rotary pump and an oil 

diffusion pump. The rotary pump is used to obtain a vacuum of around 10''torr, by 

roughing the sample chamber and backing the diffusion pump. The diffusion pump 

(Figure 5.4) provides the high vacuum of up to 10'6torr.

A Maxtek quartz crystal oscillator was used to determine the deposition rate and to 

obtain an estimation of electrode and MPc thicknesses in situ. The monitor measures the 

change in oscillating frequency of the quartz crystal (due to its change in mass) and is 

placed as close as possible to the sample to obtain the highest accuracy. The amount of 

material actually deposited on the crystal is therefore proportional to its change in 

oscillating frequency.
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5.2.3 Safety Considerations

The processes that have been described involve a variety o f chemicals some o f which 

can be dangerous if contact is made with the skin. All chemical procedures were 

therefore performed in a fume cupboard supplied with an adequate grade o f filter, and 

the appropriate protective clothing was worn e.g. lab coat, gloves. In the case o f acids 

and TIP a mask provides an extra precaution against inhalation. Gloves were also worn 

when handling phthalocyanines which can be toxic. These procedures also prevent 

grease contamination of both materials and equipment.

5.3 Characterisation Equipment

5.3.1 Optical Absorption/Transmission

Analysis of optical absorption/transmission spectra allows determination o f a variety of 

fundamental material parameters such as film thickness t, refractive index n, absorption 

coefficient a  and the optical band gap E0.

To obtain absorption and/or transmission data in the wavelength range 300-900nm an 

ATI Unicam UV/Visible spectrometer in conjunction with 'Vision' software was used. 

As depicted in figure 5.5 the Unicam spectrometer measures light transmitted by a thin 

film along the axis of a probe beam at wavelength (A), and compares it with intensity of 

the probe beam before the interaction at the same wavelength. A bandwidth o f 2nm was 

used which prevented the need for slit width correction according to Swanepoel4 (1983).
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In order to remove the effects of substrate absorption an uncoated substrate was 

measured and used as a baseline. The absorption (A) measured by the instrument is 

related to transmission (T) by the following formula, A=2-log(%T). The ‘Vision’ 

software was consequently able to convert absorbance data into % transmission as and 

when required.

The signal to noise ratio of the absorbance peaks was increased using the specially 

designed Tntelliscan’ function. The instrument monitored the energies in both the 

sample and reference beams, reducing the scan speed during absorbance peaks where 

noise tends to be higher. This has the effect of increasing the time available for 

measurement at each data point. The instrument then increased the signal to noise ratio 

by averaging out random noise in the signal. The peaks were therefore measured with an 

improved signal to noise ratio. In the low absorbance areas of the spectrum, the scan 

speed was increased so that little time was spent on these areas.

5.3.2 The Electrical and Photoelectrical Characterisation System

The electrical characterisations perfonned on the materials and devices throughout these 

studies can be divided into three main areas AC , DC and photoelectrical. To make these 

characterisations easier to perform much o f the equipment used was interfaced with a 

Famell SW1B IEEE-488 switching unit and from there to an IBM-PC. The software 

developed in house enables the user to perform automatic Capacitance/voltage C(V), 

and current/voltage I(V) investigations for temperatures in the range 77K-300K. Plates 

5.3 and 5.4 display the electrical characterisation system used.
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For electrical measurements a Keithley 617 electrometer was used as a voltage source 

and ammeter to record I as a function of the applied bias potential. The electrometer is 

capable of supplying a voltage in the range +/- 100V in steps o f 0.05V and measuring 

currents from 2mA to as low as 10'12A. The electrometer has a cut off at 2mA, 

therefore for more conductive samples the electrometer was replaced for a Famell 

LT30-1 stabilised power supply and a Fluke 8010A digital multimeter.

DC conductivity (a DC) was then calculated according to the fonnula;

J t
a DC ~  y  5.2

where J is the measured current density, V the applied bias and t is the material 

thickness. For determination of the sheet resistance (RST) of the conducting glass 

electrodes a 4 point probe analysis was performed as depicted in Figure 5.6. RST was 

then calculated according to the fonnula;

V
RsT = 4.53— 5.3S T  j

For C(V) measurements a precision Hewlett Packard LCR meter with an oscillating 

voltage of IV peak to peak and a frequency range of 20Hz-lMHz was used. A DC bias 

could be varied across the device, which allowed C(V) analysis to be performed for 

constant frequencies. A schematic representation of the electrical characterisation 

system is shown in Figure 5.7.
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Illumination for wavelength dependent measurements was provided by a SPEX 1682p 

broad band radiation source. The 1683L tungsten/halogen incandescent lamp supplies 

illumination over 300 to 3000nm although the wavelength range o f interest in these 

studies was kept within the visible region 300-900nm. The intensity was found to be in 

the order of 32 pW/cm measured using an Anritsu optical power meter model 

ML9001A.

Intensity stability over the wavelength range was provided by an optical feedback circuit 

that regulates the magnitude of the current applied to the lamp by the 1683P power 

supply. Any fluctuations due to line voltage or lamp ageing were therefore avoided. The 

lamp intensity varies by +/- 1.25% / hour after warm up.

The radiation source was used in conjunction with a Spexl681 0.22m spectrometer and 

1673 minidrive which provided and controlled the desired wavelength respectively.

A model 9500 solar simulator with a lkW  high pressure metal halide lamp supplied by 

Applied Photophysics was used as a light source. The lamp had a spectral distribution 

closely matching that o f the AM2 solar spectrum (equivalent to the sunlight reaching the 

earth’s surface).

The simulator was not equipped with the ability to vary intensity although moving the 

lamp nearer or further from the cryostat optical window allowed a range o f stable 

intensities from 2-25 W/m . The photocurrent was therefore measured for 5 intensities 

within this range. The intensity was corrected for absorption losses due to the cryostat. 

The actual range of intensities used in these studies was 0.16-2 mW/cm .
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For the determination of the Solar simulator intensity, values were measured using a 

CM11 Kipp and Zonen Pyranometer in conjunction with a CC10 Kipp and Zonen Solar 

integrator. The pyranometer measures global radiation (the downward component o f the 

direct and diffuse solar radiation) in a spectral range of 305-2800nm. It produces a 

voltage which is directly proportional to the solar irradiance level. The voltage is read

by the integrator where it is amplified to a normalised value. The irradiance is then

-2converted to Wm’ by dividing the output voltage in pV by the sensitivity o f the

-2pyranometer in pV/Wrn" . The sensitivity o f the pyranometer was pre-determined in the

-2manufacturers lab as 4-6.5 pV/Wm’ . The integrator had a measurable range o f 2- 

200Wm'2 and a resolution of lW m '2. Irradiance measurements were taken automatically 

every 0.6 seconds. A diagram of the photoelectrical characterisation set-up is shown in 

Figure 5.8

A thorough electrical and photoelectrical characterisation of materials and devices 

ideally requires measurements to be taken at a range of temperatures and if  possible 

ambient conditions, i.e. under Nitrogen, vacuum or atmospheric conditions.

For temperature and/or ambient dependent measurements the devices were mounted in 

an Oxford Instruments Liquid Nitrogen cryostat. The cryostat in conjunction with an 

ITC4 Intelligent temperature controller allowed measurements to be taken in the 

temperature range 77K to 292K and under a variety of ambient conditions. For 

temperature dependent measurements surrounding the devices in nitrogen gas prevented 

ice formation on their surface. Figure 5.9 is a cross section o f the liquid Nitrogen 

cryostat.
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5.3.3 Structural Characterisation Techniques

The chemical and physical properties of materials are strongly influenced by their 

structure at an atomic level13. Therefore, in order to understand the properties o f 

materials, it is necessary to understand their structures. Structural characterisation 

involved X-ray diffraction studies, thickness measurements, scanning electron 

microscopy and optical microscope studies.

5.3.3.1 Infra Red

Infra red analysis was carried out using an ATI Mattson Genesis Series FTIR

spectrometer in the wavenumber range 500 to 4000 cm . These studies were necessary 

in order to identify the presence of any organic residue, water or solvent left after heat 

treatment of the Sol-Gel derived products. Due to problems associated with substrate 

absorption all infra red analysis was carried out on Sol-Gel residues.

The KBr disc method14 proved to be the most appropriate. Approximately 1% by mass 

o f the powdered sample was added to KBr powder and crushed into a thin pellet suitable 

for infra red analysis. A pure KBr pellet, was formed to provide a baseline.
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5.3.3.2 X-Ray Diffraction

X-ray diffraction studies highlight any internal regularity and in the case of T i0 2 will 

distinguish between the various forms (i.e., anatase, rutile, brookite) or will reveal if  the 

films are amorphous15. In order to determine the effect o f the process route and heat 

treatment conditions on the structure of the Sol-gel product powder X-ray diffraction 

studies were performed on residues of the Sol mixture. Gels were dried and subjected to 

identical heat treatment to the coating films. These experiments were carried out using a 

Philips PW1710 diffractometer with monochromated Cu radiation and a scan speed of 

0.01 degree (20) per second.

5.3.3.3 Scanning Electron and Optical Microscopy

A Philips XL40 Scanning Electron Microscope and a Zeiss optical microscope were 

required to investigate the surface quality of the materials used , i.e. whether the films 

were cracked/homogeneous/porous. SEM studies were also used to determine T i0 2 

film thickness, the samples were investigated in cross section and were therefore 

snapped or cut using a diamond saw.

For SEM studies, it was necessary for the samples to be coated in conductive materials 

such as gold, platinum or carbon. This prevented ‘shadowing’ which can inhibit 

viewing. Shadowing is caused by highly charged areas repelling electrons, the result is a 

dark patch around a very bright charged area. SEM studies were also used to accurately
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calculate electrode width and interelectrode spacing of the interdigitated electrodes as 

shown in Plate 5.1.

5.3.3.4 Surface Profiling for Thickness Determination

A planar surfometer (Surfcom 300) was used to measure the T i0 2 film thickness to an 

accuracy of approximately ±0.01 p. The surface profiler measured the thickness o f the 

T i0 2 coating by traversing a stylus across the slide to the coating edge and beyond for a 

total distance of 2mm. For each coated sample a total of 4 thickness measurements was 

made (2 on each side of the sample). Vertical movement o f the stylus under the 

application of a small force is amplified electronically and reordered as a graphical 

representation of the difference in level between the surface of the substrate and the 

T i0 2 coating. As the stylus traverses it reveals information on the surface contour, 

therefore as well as thickness, to some extent surface quality may be assessed.

5.4 Factorial Experimental Design

Factorial experimental design is a useful statistical technique for analysing variation in 

experimental results, which may be caused by an individual factor (i.e. feature o f the 

experimental conditions) or an interaction o f two or more factors16. Each factor may 

take on a number of levels where a specific combination o f factor levels is called a 

treatment combination. The numerical results of treatment combinations are termed the 

responses or observations, which must be expressed quantitatively. An experiment 

refers to the whole set of treatment combinations carried out.
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It must be noted that there are two types of factors, qualitative and quantitative. A 

qualitative factor is one for which the different levels cannot be assigned in order of 

magnitude, for example a particular brand or make of a similar material used. The 

quantitative factors can be arranged in order of magnitude, temperature or applied 

voltage for example.

The factorial design technique is the most efficient to use when two or more factors are 

to be examined. It offers many advantages over the traditional one-factor-at-a-time 

approach in which the effect of changing any one variable is assessed independently of 

the others. Most importantly the factorial experiment detects and estimates any 

interaction, which a one-at-a-time analysis cannot do. When there are interactions, 

(although initially unknown) a factorial design is necessary to avoid misleading 

conclusions. When no interactions exist the factorial design method gives maximum 

efficiency in the estimation of the effects. In addition, for n factors the design will 

require n times fewer measurements than the traditional approach to achieve the same 

precision.

The procedure for designing an experiment for factorial analysis is straight forward, 

though the analysis requires a knowledge o f statistical techniques. In particular the area 

of hypothesis testing, which also includes an understanding of the analysis o f variance 

method (ANOVA)'1.

The technique was used to investigate the effects and interactions between various Sol- 

Gel process parameters on the thickness and absorption properties o f the T i0 2 films.
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5.4.1 For T i0 2 Analysis

There are a number of types of factorial designs which may be used, the simplest and 

most efficient is a design that involves factors at 2 levels, a 2n design where n is the 

number of factors. This was the design adopted in the current studies. The Sol-Gel 

parameters or factors studied are given in Table 5.2, along with the corresponding levels 

(2 levels for each factor representing high and low).

The factors are conventionally denoted using higher case letters, hence A-D, while the 

treatment combinations denoted using lower case letters a-d. The absence o f the lower 

case letter demonstrates that a particular factor is at a low level. For example, the 

combination 'acd' represents a treatment where the withdrawal rate used was high 

(250mm/min), the molar ratio of acetic acid:TIP was low (3.14:1), the number of 

coatings was high (4) and the concentration o f coating solution was high (12.6%). The 

observations or results o f the particular experiment are written in a standard order 

shown in Appendix B, Tables 1, 3, 5 and 7. These observations are numerical and in 

these studies represented overall coating thickness, individual layer thickness, 

absorption and absorption coefficient. As such n=4, and consequently this is a 24 design 

which represents 16 combinations (or samples to produce).

The total effects of each treatment combination were calculated using the systematic

18tabular method derived by Yates , where columns o f sums and differences are derived.

n
For a 2 design the calculation is carried out n times to obtain n columns o f sums and 

differences.
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To demonstrate this procedure, the results obtained for the overall coating thickness are 

used as a worked example. The corresponding Yates table is shown in Appendix B, 

Table 1. Referring to the table, the effects of each treatment combination are written 

beside the corresponding letters of the treatment combination, i.e. the overall coating 

thickness measured on a sample prepared according to the condition ‘ac’ (where the 

withdrawal rate and the number o f coating layers were at a high level and all other 

factors were at a low level) was 0.15p. This is continued for all factors and 

combinations as far as ‘abed’, (which had an overall coating thickness of 0.38p).

In order to carry out the statistical analysis an estimate o f the experimental error is 

required. There are a number of ways in which this can be obtained, the most accurate 

was used which is to replicate the observations, (i.e. repeat the experiment). The 

replicate observations are entered into the table in a similar fashion to the original 

measurements. For experiments with replication, the sum of the original and repeated 

measurements (i.e. the sum of the replicate observations) are entered in the standard 

order depicted in Appendix B, Table 1. Then a series of columns are generated (4 

columns for a 24 design.) in the manner now described. The first 8 numbers in each 

column are obtained by adding together successive pairs o f the numbers in the 

preceding column (e.g. the first number in column (1) is 0.29 which is (0.15+0.14)), 

with the final 8 numbers being obtained by subtracting successive pairs o f numbers in 

the preceding column, (e.g. the last figure in column (1) is 0.41 which is (0.77-0.36)). 

This process is continued for columns (2) to (4) (e.g. the final figure in column (4) is

0.12 which is (0.25-0.13)).
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Code Factor High Level Low Level

A Withdrawal Rate 250 mm/min 100 mm/min

B Molar Ratio acetic acid:TIP. 4.16:1 3.14:1

C No of coatings. 4 1

D Concentration of TIP to anhydrous 

ethanol. 12.6% 6.3%

Table 5.2. Factors studied with corresponding high and low levels.

Order Procedure Comments

l Decide on null hypothesis II0 The null hypothesis implies no difference, i.e. in these 
investigations it represents no significant effects or 
interaction between factors

2 Decide on alternative 
hypothesis H,

i.e. that the opposite o f  H0 is true

3 Decide on significance level i.e. 5% level states that there is a 5% risk o f  rejecting H0 in 
favour o f  H, when Hn is actually correct

4 Calculate appropriate test 
statistics

5 Find from tables appropriate 
tabulated test statistic

6 Compare tabulated and 
calculated

If Fcaic^tab then reject H0

7 State conclusions and 
assumptions o f  test

i.e. i f  H0 is rejected the effect or interaction is significant 
at the chosen significance level.

Table 5.3. Complete hypothesis test.
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The figures in column (4) represent the total factorial effects o f the factors and 

interactions [A] to [ABCD]. The mean factorial effects and interaction effects are 

calculated by dividing the total factorial effect by 2"'1, where n, in this case, equals 4. 

The next step is to carry out a complete hypothesis test. The procedures for this test are 

outlined in Table 5.3.

Parts 4-7 of the hypothesis test use the analysis of variance (ANOVA) method17 in order 

to decide if the main effects and/or the interactions are significantly large. Again, the 

ANOVA table derived for the overall coating thickness given in Appendix B, Table 2 is 

used as an example. The test statistic used is the F-distribution. Fca,c is derived for each 

observation, this is obtained by first calculating the sum of squares (SS) for each 

observation given by equation 5.4, where r = number o f replicates and in this case is 

equal to 2.

g s  = ( t o t a l _  e f f e c t ) : 5  4

2 "r

e.g. the sum of squares of the effect of withdrawal rate [A] is given by;

o o  (0.78)2 S S  = =  0.019
2 4 x 2

The means squares (MS) for each observation is then calculated using equation 5.5, 

where d f = degrees o f freedom.



Fcalc for each effect is then the ratio of the mean square of that effect to the error 

(residual) mean square. This is the difference between the total sums o f squares o f all 

(2n.r) individual observations and the ’sum o f the sum of squares for the treatments 

divided by the degrees of freedom.

Fca|c is then compared with Ftab (which is obtained from statistical tables o f the F- 

distribution using the appropriate degrees of freedom and significance level). If  Fca]c is 

greater than Ftab, H0 is rejected and the effect or interaction can be concluded to be 

significant at that level.

A large interaction indicates that the effect of one factor is markedly dependent on the 

level of the other, yet when quoting the effect of one factor the level o f the other is 

specified. When the interaction can be assumed to be negligible it may be inferred that 

the factors operate independently. A single factor need only be tested for significance if 

it does not interact with other factors.
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I  1
Chapter W ;

Ti02 Characterisation : Results

6.1 Introduction

In the Sol-Gel process there are many parameters that may be considered, for 

example, relative concentrations of the precursor, acid and solvent, number of coatings 

layers, withdrawal rates, annealing temperature, annealing time and substrate type. An in 

depth examination of the effects and interactions of all these would be outside the limits 

of this programme of research. Consequently, the study was restricted to those factors 

which, after preliminary investigations, were observed as having notable effects on the 

Sol stability and the optical, structural and electrical properties of the resulting films.

Initial studies conducted on TiC>2 samples were to discover a suitable procedure for film 

production, this could then be used to fabricate samples for a factorial design experiment 

and ultimately in the construction of the dye sensitised cell.
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6.2 Sol Stability

Factors that affected the overall Sol stability and lifetime were found to include 

respective concentrations of acetic acid and Titanium Isopropoxide (TIP), and the 

procedure used for Sol preparation. The effect on Sol stability on omitting the reaction 

modifying acetic acid was an immediate precipitation and films produced from this Sol 

were inhomogenous. Pre-reacting the TIP with the acetic acid resulted in a strong initial 

exothermic reaction, and rapid gelation. On adding this mixture to the solvent, gel 

residues were left on equipment used, which had catastrophic effects on the accuracy of 

the volumes added. Films prepared from Sols of this type were also inhomogenous and 

contained small clusters o f TiOx, these were visible under the SEM shown in Plate 6.1. 

Mixing the TIP with a pre-acidified solution proved to be a more accurate method and 

reduced cloudiness in the Sols as observed by Yoldas1. This procedure was adopted for 

the production of all T i0 2 films.

For Sols containing less than 4 moles of acetic acid per mole o f TIP, and low 

concentration of TIP the Sols became cloudy after a period of approximately 1 hour and 

underwent gelation in approximately 2 hours. Sols prepared with more than 4 moles o f 

acetic acid per mole o f TIP and of high concentration were found to remain stable and 

clear for at least 24 hours after which precipitation appeared. Plate 6.2 shows a variety 

o f gels as a function of time. The most stable Sol was that in which the TIP was added 

to a acidified ethanol solution in a molar ratio o f TIP:acid, 1:4.16 and where the TIP 

concentration in ethanol was 12.6%.
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(i)

(ii)

Plate 6.1. SEM Micrographs of T i02 film surface. The Sol was prepared by pre-reacting the TIP with the 
acetic acid before adding to ethanol, (i) x2000 magnification (ii) xlOOOO magnification.
Clusters are estimated to be between 0.5-1 pm in diameter.
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(iii)

Plate 6.2. Degradation of Sols as a function of time. Molar ratios of acid:TIP and TIP concentration in 
ethanol are as follows, (A) 3:1:1 and 6.3% (B) 3:1:1 and 12.6% (C) 4.1:1 and 6.3% (D) 4.1:1 
and 12.6%. Plate (i) after 1 hour (ii) after 12 hours (iii) after 1 day.
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6.3 Surface Quality: Optical Microscopy

The annealing temperature, annealing time and the TIP:Acetic acid molar ratio, all had 

an effect on the overall film surface quality. Plate 6.3 is an optical micrograph obtained 

for a T i0 2 film. The film was prepared from a Sol containing a low concentration of TIP 

in ethanol and a molar ratio TIP:acid o f 1:1.6. The film was annealed to a temperature of 

500°C for 30mins. Plate 6.4 shows the surface o f a film prepared from an identical Sol, 

however the film was heated to 120°C again for 30mins. Both films exhibit a degree of 

porosity, however the film heated to 500°C appears to have a higher pore density/unit 

area. Qualitative analysis revealed that low heat treatment temperatures and times 

resulted in larger pore sizes and consequently a visibly lower pore density/unit area. 

Films that did not undergo any annealing procedure were also highly porous, but had 

poor adherence to the glass substrates. The annealing is an important part o f the Sol-Gel 

process densifying the gel and removing residual organics and solvent as discussed in 

chapter 4.

Plate 6.5 shows the surface o f a film prepared from the most stable Sol, containing a 

high concentration of TIP and an increased proportion o f Acid to TIP.. Annealing films 

o f this nature for longer times (~5 hours) and to high temperatures (up to 500°C) 

resulted in densification of the film. The films were visibly transparent, uniform, robust 

and had no visible porosity at the highest magnification available (x900). The 

micrograph in Plate 6.5 was taken in an area close to the film edge and cracks are 

therefore visible. Away from the film edge the films were completely crack free.
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Plate 6.3. Optical Micrograph, (magnification x900) of a T i0 2 film surface. TIP in ethanol concentration 
(-1.4%), Molar ratio of Acetic acid:TIP was 1.6:1. Film was annealed to 500°C for 30mins.

Plate 6.4. As for plate 6.3. In this case film was annealed to 120°C for 30mins.
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TI 02 X900250

Plate 6.5. T i0 2 film surface, produced from a Sol prepared with a concentration of TIP (12.6%) and a 
ratio of 1:4.1 TIP:acid. The film was left to dry in air for 24 hours and subsequently annealed

to 500°C for 5 hours, (x 900mag).

Plate 6.6. Example of film shrinkage and cracking at film edge, (x 900mag).



Shrinkage and as a consequence cracking are known to occur during the annealing 

process as the organics and solvent are removed from the Sol2, both Plates 6.5 and 6.6 

are examples of this effect. The causes of shrinkage have been examined by Brinker3 in a 

study of multicomponent borosilicate glass. At low temperatures negligible shrinkage 

occurs at higher temperatures cross linking and polymerisation of the network results in 

some shrinkage, however at even higher temperatures large shrinkage results, explained 

as viscous flow sintering which causes the pores in the gel to collapse. Large shrinkage 

and little or no pores are visible in the films prepared from the most stable Sols which 

could be explained by viscous flow sintering.

6.4 X-Ray Diffraction

Figures 6.1 and 6.2 are examples of the powder X-ray diffraction patterns obtained from 

Sol residues, heated to 350°C and 500°C respectively. Both were heated for five hours 

and manufactured under identical conditions. A good correlation between the measured 

interplanar spacings (d-values) of a Gel heated to 500°C and T i02 anatase reference 

d-values obtained from Philips PC-APD diffraction software was observed, as is shown 

in the table inset of Figure 6.2. It is therefore concluded that an increase in the heat 

treatment temperature to 500°C caused a gradual crystallisation of the material to the 

anatase structure. The amorphous phase of T i02 was obtained from Sols that underwent 

no heat treatment. The rutile and brookite forms of T i02 were not observed during these 

investigations.
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6.5 Infra Red Studies

The infra red results are shown in Figure 6.3 for residual gels that are a) unheated b) 

heated to 350°C and c) heated to 500°C for a time period of five hours. The doublet 

observed for the unheated gel located at 1500cm’1 has been attributed previously to 

chelating acetates4. As the heat treatment temperature increases reduction in the 

intensity o f the doublet is observed. The frequency separation o f these peaks also 

noticeably reduces. It is suggested therefore that only the chelating acids remain4.

At 500°C the spectra shows that there is some absorption remaining from the organic 

residues, although this is minimal. It is suggested that this absorption may have been 

eliminated in submicron thickness films rather than the bulk gels. Higher heat treatment 

temperatures were not be investigated due to the limitations of the glass substrates used.

6.6 Thickness Studies

6.6.1 Via Scanning Electron Microscopy.

Plate 6.7 and 6.8 are SEM micrographs showing fracture cross sections o f T i0 2/ glass 

substrates. The samples were prepared via a diamond saw or by snapping the sample 

into cross sections. In both cases the T i0 2 layer is visible. For the sawn sample, (Plate 

6.7) the film appears to be less than a 1pm thick. Contrary to this for the snapped 

sample (Plate 6.8) the film appears to be much thicker by ~2-3pm. The SEM was not an 

exact method of accurately determining T i0 2 film thickness.
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Figure.6.3. Infra R ed absorption spectra for variously heat treated T i0 2 gels.
(A ) unheated (B ) 350°C  and (C) 500°C. A ll gels w ere heated for 5 hours.
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The insulating nature of the substrate, and the identification of glass/Ti02 boundaries 

were factors that contributed to this. The appearances of the fracture cross sections 

confirmed the excellent adherence o f the films to the substrates.

6.6.2 Via Surface Profiling

An example o f a surface profiling trace is shown in Figure 6.4. In all cases there was 

evidence of a small region of considerably greater thickness (approximately 1 pm) close 

to the top edge o f the coated region. Although this increase in thickness may be 

attributed to the jump of the 'stylus' as it traverses the slide and hits the film. Further to 

this, there was some evidence of a slight and gradual reduction in coating thickness 

towards the bottom of the dip coated substrate. This latter point was extremely difficult 

to confirm due to variations in the flatness o f the substrate at this scale.

However, outside of these areas the results of the thickness determinations carried out 

on the coated glass substrates indicated that this was generally consistent across the 

coatings, with total film thickness’ in the range 0.03 to 0.37 pm being produced 

according to the process parameters used. The results obtained for thicknesses 

determined via the surface profiling technique were analysed using FED as discussed in 

section 5.4 the results of which are detailed in section 6.6.4.
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Plate 6.7. SEM of fracture cross section showing T i02/glass boundary. Section was prepared using 
a diamond saw.

Plate 6.8 Similar cross section sample was prepared by snapping.
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6.6.3 Via the Swanepoel Method of Interference Fringes

Interference spectra were not observed for samples with less than 4 coatings. This 

suggested that the total coating thickness for samples with more than 4 coatings must be 

in the order of the wavelength of visible light. The samples under investigation were 

prepared from the most stable Sol, where the molar ratio of Acetic acid:TIP was 4.16:1 

and the concentration of TIP in ethanol 12.6%, the films were annealed to 500°C for 5 

hours.

Typical transmission interference fringes observed for the Sol-Gel derived T i0 2 films 

are shown in Figure 6.5, for 5, 6, and 7 T i0 2 layers. The transmission spectrum of the 

glass substrate, (Ts) is also shown. As the number of layers (hence thickness) increased 

more interference maxima and minima became visible.

An approximately linear relationship was observed between the number o f applications 

and the overall coating thickness, as shown in Figure 6.6. The film thickness was likely 

to be controlled by the number of coating applications. The effect o f withdrawal rate on 

the T i0 2 film thickness was considered. Two withdrawal rates, a high rate of 

250mm/min and a low rate of lOOmm/min were used. Figure 6.7 is an example o f the 

effect of each withdrawal rate on the interference fringe patterns. The higher rate caused 

more fringes to become visible, again implying an increase in film thickness. Analysis 

of the transmission fringes according to the Swanepoel5 method confirmed that this was 

the case. A higher rate produced thicker films.
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A dependence of withdrawal rate on film thickness has been observed for a variety of 

materials prepared by dip-coating. Yang6 found that ultrathin polymer coatings could be 

prepared via dipcoating and that the thickness o f the films was dependent on the square 

toot of the substrate withdrawal speed. Takahashi and Matsuoka found a similar 

dependence on a study of dip-coated T i02 films, prepared from a Sol derived from a 

Ti(0-I-PrOH)4-diethanolamine-H20-i-PrOH system. The significance o f the withdrawal 

rate on the coating thicknesses has been discussed in these studies using the FED 

technique.

Examples o f tables produced for the T i0 2 Sol-Gel films using the Swanepoel5’ method 

can be found in Appendix A. The tables list n  and the film thickness (t) and in 

conjunction aid in the demonstration o f the Swanepoel5 procedure.

6.6.4 Factorial Investigations of Film Thickness

Section 5.4 details the FED experiment and contains Table 5.2 which displays the 

factors studied, namely the withdrawal rate, acetic acid:TIP molar ratio, number of 

coatings applied, and the concentration of TIP in ethanol. The corresponding high and 

low levels are also stated. A summary of the results of factorial experiments on film 

thicknesses are shown in Table 6.2, for both the overall coating thickness and the

average coating layer thickness, (or the average thickness of an individual layer). The

8 • associated analysis o f variance tables and results of Yates analysis may be found in

appendix B.
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The main effects for a factorial experiment represent the effect of each factor, averaged 

over all levels and combinations of the other factors. Thus in systems in which 

considerable multi-factor interaction occurs, the main effects are believed to be of 

limited significance, since the effect of each factor is dependent upon the levels of the 

other factors present, and should be interpreted with some caution.

The calculated main effects of the dipping speed, ([A] in Table 6.2) indicates an 

increase in both overall coating thickness and average coating layer thickness as the 

dipping speed is increased. No significant effect could be identified for the acetic 

acid.TIP mole ratio [B] in the thickness factorial experiments. This was somewhat 

unexpected since, as discovered during tests on Sol stability, the level of acid present 

resulted in a change in the reactivity (and gelation times) o f the alkoxide precursor, and 

might therefore be expected to result in a change in the viscosity of the coating solution. 

This discrepancy may be due to the short time elapsed between alkoxide addition and 

the dip coating process, resulting in relatively small differences between the progress o f 

the relative reactions of the Sols containing different levels of acid addition. However, it 

is also possible that the presence of such an effect may be masked by the large 

interaction effects involving this factor.

The total thickness of the coating showed the expected increase as the number of 

coating layers [C] was increased from 1 to 4 (by an average o f 0.16pm averaged over 

all levels and combinations of the other factors).
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However, the estimated factorial effect of the number of coatings 0 1 1  the thickness o f the 

individual coating layers was not found to be significantly large. Significant interaction 

effects were found involving this factor, and are discussed in detail in section 8.1.1.

The estimated main effects o f TIP concentration ([D] in the factorial experiments) 

showed an increase in both total coating thickness and individual layer thickness with an 

increase in the concentration of the TIP, as might be intuitively expected. However, the 

magnitude of the calculated factorial effect for this factor has little practical significance 

due to the presence of numerous interactions involving this factor. The effect of 

changing TIP concentration on the coating thickness depends upon a number o f other 

factors.

As shown in Table 6.2 the results o f the factorial experiments for both overall coating 

thickness and average coating layer thickness indicated the presence o f numerous 

interaction effects. A number of significant two and three factor interaction effects were 

identified in the experiment for the overall coating layer thickness which appear to be 

not significant in the experiment for the individual average coating layer thickness. 

However, this apparent discrepancy is most probably due to the increased sensitivity of 

the former experiment in detecting what are in all cases relatively small effects relative 

to the error in the thickness determinations.
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1 0.055 1 0.055
a 0.050 [A] = 0.049 * * * a 0.050 [A] =  0.015 * * *

b 0.040 [B] =  0.006 N/S b 0.040 [B] =  -0.004 N/S
c 0.120 [C]= 0.164 * * * c 0.030 [C] =  -0.002 N/S
d 0.070 [D] =  0.068 * * * d 0.070 [D] =  0.390 kick

Two :actor nteractions
ab 0.045 [AB] =  0.026 ab 0.045 [AB] =  0.008 kk

ac 0.120 [AC] =  0.041 ac 0.030 [AC] =  0.008
ad 0.085 [AD] =  0.030 ■kifk ad 0.085 [AD] =  0.010
be 0.170 [BC] = 0.021 •kk'k be 0.043 CD O II O o

bd 0.050 [BD] =  -0.033 * * * bd 0.050 [BD] =  -0.160
cd 0.260 [CD] =  0.048 * * * cd 0.064 [CD] =  0.004 N/S

Three Factor Interactions
abc 0.245 [ABC] = 0.024 * * * abc 0.061 [ABC] =  0.005 N/S
abd 0.065 [ABD] =  0.005 N/S abd 0.065 [ABD] = 0.000 N/S
acd 0.335 [ACD] =  0.023 acd 0.084 [ACD] =  0.003 N/S
bed 0.160 [BCD] =  -0.028 ★★★ bed 0.040 [BCD] =  -0.005 N/S

Four Factor Interactions
abed 0.365 | [ABCD] = .  0.008 | N/S abed 0.091 [ABCD] =  0.003 | N/S

KEY: a,b,c,d, ab =  treatment includes specified factor at high level
[A],[B],[C],[D],[ABC] =  calculated mean effect of that factor or interaction
A =  effect of withdrawal rate, B =  effect of acetic acid:TIP mole ratio
C =  effect of number of coatings, D =  effect of T.I.P. concentration
* * *  —Significant at f<1% level 1** Significant at f<5% level
* =  Significant at f<10% level, 'N/S =  Not significant

Table 6.2 . Summary o f  results o f  FED  experim ent on overall coating and individual average coating  
layer thickness for Sol-G el derived T i0 2 Films.
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6.7 Optical Characterisation

Figure 6.8 displays the optical absorption spectra obtained for films obtained from the 

most stable Sol (molar ratio acetic acid:TIP 4.16:1 and TIP concentration in ethanol 

12.6%). Such films were used in the fabrication of the (inorganic:organic) 10 

heterojunctions. Films were prepared using a dipping speed of 250mm/ min. The spectra 

shown are for a varying number of coating layers. The optical absorption edge is clearly 

visible (Figure 6.9 displays the absorbance as a function of photon energy in the range 

3.5-4.leV). The absorption edge was observed to increase to higher wavelengths with 

increasing number of coating layers. This is expected to correspond to a decrease in the 

value of the optical band gap, E0. The effect was later confirmed from investigations of 

E0 detailed in the following section. The absorption coefficient (a) o f the T i0 2 films and 

its dependence on Sol-Gel process parameters was analysed using the FED technique 

the results o f which are shown in section 6.7.2.

6.7.1 Optical Band Gap and Nature of Optical Transitions

From the optical absorption spectra, the optical band gap E0 was calculated according to 

Tauc9 from plots o f (ahv)1/8 against hv and for comparison according to the technique 

developed by Ray and Hogarth10. Figures 6.10 to 6.13 are Tauc plots where 5 (which 

must be assumed) was taken to be 1/2, 3/2, 3 and 2 respectively. Analysis was performed 

for photon energies (hv) greater than the absorption edge.
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For hv less than the absorption edge interference effects were observed and therefore not 

used in the analysis.

Straight line fits were applied to the curves for /iv>3.6eV, and the deviation from 

linearity measured. The worst fits were for 5=1/2 and 5=3/2. Particularly for 5=1/2 

where extreme deviation was observed. The electronic transitions responsible for 

absorption in these films are therefore not expected to be allowed direct transitions or 

forbidden direct transitions. Better fits were observed for 5=2 and 5=3. The calculated 

deviation from linearity is given in Table 6.3. A slightly better fit to the experimental 

data was observed when 5=3 for 5-8 layers, however for 1 layer 5=2 provided the best 

fit. The most favoured nature of electronic transitions in these films is anticipated to be 

through an indirect allowed transition (where 5=2) for thin films (1 coating layer) and an 

indirect forbidden transition (where 5=3) as the thickness increases.

The room temperature experimental values of E0 as a function of the number o f coating 

layers were derived from the 5=3 and 5=2 plots. The values o f E0 (listed in Table 6.3) 

generally decreased as the number o f coating layers increased. A further observation 

was that as the number of layers increased the values o f E0 converged. E0 ~ 3.2eV for 

the indirect forbidden transition and E0 ~3.4-3.35 eV for the indirect allowed transition. 

The value of E0 was also calculated according to the technique of Ray and Hogarth10 in 

this technique the value of 5 need not be assumed but is calculated from the 

experimental data. Values of Y and Y ’ were determined from Figure 6.9 for each o f the 

curves at different photon energies within the absorption edge.
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Number of coating layers

M ethod 1 5 6 7 8

(a) 3.36 3.2 3.2 3.16 3.17
(0.035) (0.0106) (0.0107) (0.0133) (0.0232)

(b) 3.5 3.41 3.4 3.36 3.35
(0.012) (0.0336) (0.0507) (0.0449) (0.0327)

(c) 3.55 3.25 3.16 3.27 3.21
8=1.81 5=2.9 5=3.2 8=2.64 5=2.8

Tabic 6 .3 . The optical band gap E0 (eV ) as a function o f  the number o f  coating layers. E„ calculated  
according to the fo llow ing m ethods, (a) Tauc9 where 8=3, (b) Tauc9 where 8=2, (The  
deviation from linearity o f  the fitted data is show n in brackets) (c) Ray and H ogarth10 where 
calculated value o f  8 is shown.
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Figure. 6 .14 . E xam ple o f  Y /Y  as a function o f  photon energy in the range 3 .7 -4eV , observed for Sol Gel 
derived T i0 2 films.
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Figure 6.14 is an example of the resulting (Y/Y’) plots as a function of photon energy. 

Table 6.3 contains the values of 6 and E0 derived from this technique. The results 

supported those obtained from the Tauc plots. The optical band gap and nature of 

electronic transition was again found to be dependent on the number of coating layers. 

For very thin (1 layer) film, E0 -3.55 and 6-1.8 in close agreement with that which was 

observed from Tauc plots when 6=2 giving the best fit. For higher number o f coating 

layers the values of E0 and 6 were in agreement with that which was observed from 

Tauc plots when 6=3, which again provided the best fit. It is suggested therefore that 

both the nature of electronic transitions giving rise to absorption in these films and the 

optical band gap E(1 is thickness dependent.

6.7.2 Factorial Investigations of Absorbance and a

The optical absorption (at standard photon energy of 4eV, within the absorption band 

edge) and the optical absorption coefficient a  (cm"1) at this photon energy were 

measured for the T i0 2 Sol-Gel derived films together with the estimated factorial effects 

and associated analyses of variance. The recipe o f calculation was described in section 

5.4. The results are shown in Table 6.4 and the complete ANOVA table can be found in 

Appendix B.

The results of the experiments for optical absorption indicate the presence o f large 

numbers of apparent effects of interactions. However, when these effects are converted 

to absorption coefficient, to incorporate the effect of film thickness, the majority o f 

these are eliminated, indicating that these changes in optical absorption can be attributed
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to the variation in film thickness associated with changes in the process parameters. The 

remaining effects which were significant in both optical absorption and absorption 

coefficient experiments, indicate effects which cannot be attributed solely to changes in 

film thickness. These effects must arise due to changes in the behaviour o f the coating 

films themselves.

The most significant effects in both experiments were associated with the effect o f the 

number of coating layers applied, which was also the largest factor affecting the 

thickness of the coating. The main effects of the number of coating layers [C] showed 

the expected increase in overall optical absorption as the number o f coating layers, and 

hence coating thickness increased (manifested as a positive factorial effect). However, 

once the effects o f coating thickness are taken into account (i.e. in the absorption 

coefficient), the calculated effect of this factor was found to change from a positive to 

a negative effect (-0.472).

One possible explanation of this phenomena is that a large contribution to the apparent 

optical absorption may be due to reflectance at the coating/substrate interface due to 

refractive index mismatch. This effect will occur only for the initial coating layer (since 

subsequent layers will have identical refractive index to the first), and thus subsequent 

coating layers will produce a smaller effect on absorption, and apparent absorption 

coefficient than the first. This would be manifested as a negative factorial effect for the 

number o f coatings in the absorption coefficient experiment.
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Measured absorption at 4eV Calculated absorption coefficient at 4eVT
reatm

ent

M
ean 

absorbance

M
ean 

factorial 
effect

Significance

T
reatm

ent

M
ean 

calculated 
absorption 

coefficient

M
ean 

factorial 
effect

Significance

1 0.56 1 1.175
a 0.607 [A] = 0.532 * * * a 1.425 [A] = 0.178 N/S
b 0.804 [B] = -0.140 * * * b 1.870 [B] = 0.065 N/S
c 0.900 [C] = 1.077 *** c 0.868 [C]= -0.472 ***

d 0.520 [D] = 0.645 *** d 0.860 [D] = -0.057 N/S
Two irac to r nteractions

ab 0.544 [AB] = -0.076 * ab 1.490 [AB] = -0.234 N/S
ac 1.555 [AC] = 0.322 *** ac 1.523 [AC] = -0.028 N/S
ad 1.025 [AD] = 0.257 ad 1.390 [AD] = 0.048 N/S
be 0.917 [BC] = -0.082 * be 0.628 [BC] = -0.328 **
bd 0.564 [BD] = -0.059 N/S bd 1.343 [BD] = 0.159 N/S
cd 1.835 [CD] = 0.469 **★ cd 0.830 O O ii o _i O 00 N/S

Three Factor Interactions
abc 1.305 [ABC] = -0.009 N/S abc 0.623 [ABC] = -0.052 N/S
abd 0.840 [ABD] = 0.000 N/S abd 1.740 [ABD] = 0.089 N/S
acd 3.060 [ACD] = 0.076 ★ acd 1.048 [ACD] = -0.222 N/S
bed 1.545 [BCD] = -0.046 N/S bed 1.112 03 O O II O _k 00 N/S

Four =ac to r nteractions
abed 2.695 [ABCD] = 0.048 N/S abed 0.850 [ABCD] = -0.045 N/S

KEY: a,b,c,d, ab = treatment includes specified factor(s) at high level
[A], [B],[C],[D], [ABC] =Calculated mean effect of that factor, or interaction.
A = effect of withdrawal speed B = effect of acetic acid:TIP mole ratio.
C = effect of number of coatings, D = effect of T.I.P. concentration
*** = Significant at f<1% level ** Significant at f<5% level
* = Significant at f<10% level, N/S = Not significant

T able 6 .4 . Summ ary o f  results o f  FED experim ent for optical absorption and absorption coeffic ient, 
(1 0 5cm ‘l) for Sol-G el derived TiC>2 film s.
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6.7.3 Transmission

Typical transmission spectra observed for the T i0 2 films annealed to 500°C for 5 hours 

are shown in Figures 6.15 and 6.16 as a function o f withdrawal rate, Sol concentration 

and molar ratio of acetic acidiTIP. The % transmission spectra have been corrected for 

the effects o f substrate absorption. The transmission spectra o f the glass substrate is 

shown and was measured to be in the order of 90.8% over the wavelength range 

~550nm to ~900nm.The transmission of the films was dependent on the withdrawal rate 

o f the substrate from the Sol. Three dipping speeds were chosen in the range 50- 

200mm/min speeds less than 20mm/min produced visibly unhomogenous, low quality 

films and were disregarded. Previous studies on thickness indicated that as the 

withdrawal rate increases the thickness increases. These results also confirm that lower 

transmission results from thicker films as may be intuitively expected. Transmission 

decreases from 93% for a speed of 50mm/min to 89.3% for a withdrawal rate o f 

lOOmm/min to 83.8% for 200mm/min measured at wavelength o f 600nm.

The molar ratio of acetic acidiTIP and TIP concentration also had a visible effect on the 

transmission properties of the T i02 films. O f the films prepared from a Sol with a low 

TIP concentration (6.3%) those which contained a molar ratio o f 3.14:1 (acetic 

acidiTIP) had lower transmission than the 4.16:1 (acetic acid:TIP) films. Similarly, of 

the films produced using the higher TIP concentration (12%) Sols, those with an acetic 

acid:TIP molar ration of 4.16:1 possessed a higher transmission than the 3.14:1 films 

for films A>600nm.
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Figure 6 .15. T ransm ission spectra o f  Sol-G el T i0 2 film s (m olar ratio acid:TIP 4 .16:1; TIP concentration  
in ethanol 6.3% ; sam ples annealed at 500°C  for 5 hours; 2 coating layers). W ithdrawal rates 

used w ere A =50m m /m in, B =100m m /in in ,. C =200m m /m in  T s represents the g lass substrate.
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Figure 6 .16 . T ransm ission spectra o f  T i0 2 film s w here A ,B ,C ,D  w ere prepared according to 
‘a ’/ a d ’/ a b ’, and ‘abd’ respectively as described in  section  5 .4 .1 .
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The opposite was true for A,<600nm. In all cases the transmission o f the films was 

observed to decrease rapidly from between 340nm-370nm into the UV region. The 

average transmission of the films obtained from the most stable Sols (molar ratio acetic 

acid:TIP 4.16:1 and TIP concentration in ethanol 12.6%) exhibited an average 

transmission of 87% in the wavelength range 350-900nm. These films were 

subsequently used for the fabrication o f the 10 heterojunctions.

6.7.4 Refractive Index Determination

The refractive index n(X) was calculated from the interference fringes using the 

Swanepoel5 method.

Values of // for the T i0 2 films are listed in Appendix A and were found to vary between 

2.73 and 1.81 measured as a function of the number of coating layers (5,6,7,8), the 

dipping speed (100 mm/min or 250mm/min) and the wavelength, X (in the range 300nm 

to 900nm). For all films the calculated n was observed to decrease as X increased. Figure 

6.17 is a typical example of the n(X) against X dependence observed in the films.

The wavelength dependent refractive index was analysed in terms o f the single 

oscillator model11 where the optical dispersion may be expressed mathematically as;



Es is the single effective oscillator energy, Ed the dispersion energy and hv the photon

energy. The parameter Ed is a measure of the strength o f interband transitions. The

2 2average oscillator strength is defined as S0=EdEs/(/j c ) and the average oscillator 

position, X0, is related to the natural frequency of the particles, v0 by the equation

^0=c/v0 where c is the speed of light. It may be deduced from equation (6.1) that a plot

2 2of l/(/i -1) against (hv) should be linear. Such plots were derived for the T i0 2 films, an 

example is shown in Figure 6.18 for a T i0 2 coating film 8 layers thick. The oscillator 

energy, E0 and dispersion energy, Ed were derived from the slope and zero energy 

intercept o f the straight line. The values estimated from the linear plots as a function of 

number o f coating layers are shown in Table 6.5. As shown in Figure 6.19 the 

theoretical curve of refractive index as a function o f photon energy was generated using 

the estimated values of Es and Ed. The theoretical curves were in good agreement with 

the experimental values over the energy range studied. The refractive index was found 

to be relatively independent of the sample thickness indicated in Table 6.5, for the 

thickness ranges studied.

6.8 Electrical Characterisation

The measured conductivity o f the Sol-Gel derived T i0 2 films varied depending on the 

type of device configuration used. T i0 2 films (prepared according to the ‘high level’ in 

Table 5.2 and heat treated to 500°C for 5 hours) deposited on InSn02 base electrodes 

with Au counter electrode (hence in sandwich configuration) had a measured 

conductivity of 4.27x10’4S/m under atmospheric conditions and 4.26x10’4S/m when 

measured under vacuum.
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re 6 .17. Exam ple o f  the spectral dependence o f  the refractive index n at room  temperature, for a
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Figure 6 .18 The plot o f  l / (« 2- l )  against (h v)2 for sam ple ‘A 8 ’ as show n in A ppendix A .
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Speed

(m tu/iuiu)

N um ber  
o f  layers

O verall 
coatin g  

th ick n ess (nin)

Es (eV ) E j (eV ) it
(at 500n m )

100 5 164 4.09 8.29 2.18
“ 5 176 4 7.91 2.19
<< 6 302 5.24 13.36 2.07
<< 6 268 3.79 10.03 2.41
“ 7 345 5.21 14.64 2.16
“ 7 320 4.39 10.55 2 .12
“ 8 399 5.16 13.45 2.1
“ 8 392 5.18 12.88 2.07

250 5 330 4.84 13.4 2.18
<< 5 345 2.86 8.38 2 .12
“ 6 367 3.99 7.85 2 .02
<( 6 367 3.68 6.21 2.07
<< 7 426 4.28 9.5 2.03
a 7 455 4.88 13.56 2.18
a 8 515 4.48 11.34 2.13
“ 8 498 4 .22 9.63 2.18

Tabic 6.5 Optical paramters o f  the T i02  film s (prepared from a Sol consisting o f ; molar ratio acetic  
acid:TIP 4 .16:1 , concentration TIP in ethanol 12.6%, film s annealed to 500°C  for 5 hours)
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Figure 6 .19. Comparison o f  single oscillator m odel (------) with experim ental data for sam ple ‘A 8 ’ (as
described in appendix A)
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Ambient conditions were observed to have little effect on the film conductivity. 

Conversely, for T i0 2 films (heated to 350°C) deposited on Pt interdigitated electrodes 

(planar configuration) the measured conductivity was in the order of lxlO '5S/m.

It was not possible to determine the conductivity of the films heat treated to 

temperatures in excess of 350°C in planar configuration due to degradation o f the Pt 

electrodes at heat treatment temperatures in excess of this. The effects o f heat treatment 

temperature up to 350°C on the conductivity o f the T i0 2 films was measured. The 

results are shown in Figure 6.20. Conductivity measurements were taken for 3 heat 

treatment temperatures and repeated at each temperature. The results show that there 

was an apparent decrease in conductivity in the films heat treated at 200°-300°C 

compared to the non heat treated films. The results also show that increasing heat 

treatment temperature in the range 200-300°C produced a diminishing reduction in the 

conductivity of the film.

The temperature dependence of the electrical conductivity was measured in the range 

77K-290K for the T i0 2 films. The conductivity increased with increasing temperature 

and began to saturate as room temperature was reached. In order to determine the 

activation energy associated with the material within this temperature regime, Arrhenius 

plots were produced as shown in Figures 6.21 and 6.22 for T i0 2 films 0.36p and 0.455p. 

thick respectively.

The activation energies were calculated from the slopes o f the lna against 1/T curves. In 

both cases very low activation energies were deduced AE~0.49meV for TiO2(0.455p) 

and AE~0.64meV for TiO2(0.36p). These results are discussed further in section 8.1.3.
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Chapter

Dye Sensitised IO Heterojunction : Results

7.1 Introduction

This chapter reports the photovoltaic and electrical measurements carried out on 

the TiCVMPc, inorganic:organic (IO) heterojunction cells. Three devices are constructed 

containing chloroaluminium phthalocyanine (ClAlPc), copper phthalocyanine (CuPc) and 

lead phthalocyanine (PbPc) as the photogenerating layer respectively. The properties 

investigated include the spectral response in relation to the absorption of the dyes, dark 

current density/voltage (J(V)), illuminated J(V), and capacitance-voltage (C(V)) 

characteristics.

For all illuminated J(V) measurements, irradiation of the T i02/MPc junction was directed 

through the InSn02/Ti02 or F-SnCVTiC^ faces. In all measurements the polarity of the 

forward voltages was always positive at the Au electrode. The devices being of the form 

Au/MPc/Ti02/F-Sn02 or InSn02, where the Sol-Gel T i02 film was manufactured 

according to code ‘B ’ in Table 5.3 and annealed to a temperature of 500°C for 5 hours 

unless otherwise stated. A table containing all solar cell parameters obtained for the 

devices tested in these studies may be found in Appendix C.
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C(V) characteristics were analysed in terms of Anderson’s abrupt junction model1 as 

discussed in chapter 3. Values of S\ (the permittivity of T i02 anatase), e2 (the permittivity

2 5of the MPc) and Ntl as required by the formula are well reported in the literature' . 

Therefore the depletion layer width W, depletion layer penetration into the T i02 and the 

MPc’s, xi and x2, respectively and Na the ionised acceptor concentration were estimated 

using the following values N(i-9x l018cm3, £i~l.77xlO‘12Fcm‘1 and £2(CuPc)~3.19x10* 

13Fcm'!, f2(ClAlPc)~3.54x10'13Fcm‘! and ^ (P b P cH ^S x lO '^F cm '1.

7.2 SEM Micrographs

Plate 7.1, 7.2 and 7.3 are scanning electron micrographs of the surface of vacuum 

sublimed PbPc, ClAlPc and CuPc respectively. The films were all sublimed onto T i02 

Sol-Gel films which had been coated onto InSn02 coated glass substrates. The 

micrographs indicate that the MPc films were not compact but discontinuous and 

granular in appearance.

The elongated nature of the PbPc ‘crystallites’ are highly visible and could be a 

consequence of the non-planar nature of the PbPc molecule. The length o f the PbPc 

crystallites were between 0.2-0.3pm.

The CuPc and ClAlPc ‘crystallites’ are spherical in appearance. The CuPc were of 

slightly smaller diameter at -0.1pm  than the ClAlPc which were between 0.2-0.3 pm.
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Plate 7.1. SEM micrograph of the PbPc sublimed film surface deposited onto T i0 2 Sol-Gel derived film.

14.9 4856

Plate 7.2. SEM micrograph of the ClAlPc sublimed film deposited on Sol-Gel derived T i0 2 film.
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Plate 7.3. SEM micrograph of a sublimed CuPc film surface deposited on a Sol-Gel derived T i02 film.

Plate 7 .4 . A s for P late 7.3 at ~  x2  h igher m agnification.



7.3 CIAlPc/Ti02

7.3.1 Spectral Response

Figures 7.1 and 7.2 display the short circuit photocurrent density Jsc as a function of 

wavelength (X) for a Au/ClAlPc(~500nm)Ti02(~50nm)/InSn02 heterojunction cell, 

measured at room temperature under vacuum and atmospheric conditions respectively. 

The wavelength dependence of Jsc in both cases is similar to the absorption spectra of the 

ClAlPc sublimed film. Photocurrent maxima are located at approximately 380nm and 

700nm. Under vacuum the maximum Jsc was 0.133pA/cm2 at 700nm, and 0.029pA/cm2 

at 380nm. Using equation (3.34) this corresponded to a maximum calculated quantum 

efficiency (Z) of 0.74% and 0.3% at 700nm and 380nm respectively. A reduction in the 

short circuit photocurrent was observed when measurements were taken under 

atmospheric conditions. At 700nm the measured photocurrent density, Jsc was 

~0.038pA/cm2 such that Z~0.21%. At 380nm Jsc~0.027|_iA/cm2 and Z~ 0.28%.

The photocurrent action spectra were found to be fairly reproducible with F-Sn02 base 

electrodes, as shown in Figure 7.3. A change of substrate base electrode material to F- 

doped Sn02 resulted in lower Jsc ~0.087pA/cm2 and a corresponding quantum efficiency 

of 0.48% at 700nm under vacuum. A shift in the second maxima to 345nm was 

observed, the photocurrent density was higher at this wavelength than the device 

consisting of an InSn02 substrate at ~0.07pA/cm2 where Z~ 0.79%. A suppression in the 

magnitude of Jsc, was observed at 380nm in the device containing an InSn02 substrate 

when measured under vacuum. This suppression was observed in subsequent 

measurements using the alternative dyes and is discussed section 8.3.1.
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Figure 7.1. Jsc (p A /cm 2) (□) action spectra o f  a A u /C lA lP c(~ 500n m )/T i02(~ 5 0 n m )/ln S n 0 2 cell.
A bsorption spectra o f  C lA lPc film  only (— ). Absorption spectra o f  T i0 2 film  only (— ). 
M easurem ents taken under vacuum  at room  temperature.
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Figure 7 .2 . Jsc (pA /cm 2) (O) action spectra o f  a A u /C lA lP c(~ 500n m )/T i02(~ 5 0 n m )/In S n 0 2 cell.
Absorption spectra o f  C lA lPc film  only (— ). Absorption spectra o f  T i0 2 film  only (— ). 
M easurem ents taken in  air at room  temperature.
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Figure 7.3. Jsc action spectra (p A /cm 2) (O) o f  a A u /C lA lP c(~ 5 0 0 n m )/T i0 2 (~ 5 0 n m )/F -S n 0 2  cell.
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7.3.2 Dark J(V) Characteristics

The forward and reverse dark J(V) characteristics typically observed for the 

Au/ClAlPc(~500nm)/Ti02(~50nm) heterojunction cells are shown in Figure 7.4, the base 

electrode was InSn02. Similar characteristics were observed for devices consisting of F- 

Sn02 base electrodes. Measurements were made at room temperature under both 

vacuum and atmospheric conditions. The cells exhibited rectifying properties, although 

the rectification ratios (r) were very low (between 1.3 and 4.94 at 0.3V), a summary is 

shown in Table 7.1. The devices exhibit a degree of reproducibility, the repeat of the 

measurements taken under atmospheric conditions is shown in Figure 7.4 for 

comparison.

As previously discussed, a plot of ln[I/{l-exp(-eV/ AT}] against the bias voltage V(V) 

will be linear for all values of V, for both reverses voltages and forward voltages less 

than 3AT/e, which corresponds to 75.5 mV. Figures 7.5 and 7.6 are such plots for 

devices consisting of InSn02 and F-Sn02 base electrodes respectively. For V< 3/rT/e, a 

linear dependence is observed. The ideality factor, m and the saturation current density, 

Js were calculated from the slope and interrcept respectively and are given in Table 7.1. 

The diode ideality factors were l<m<1.2 for all devices comprising of both types of base 

electrodes. Although, those consisting of F-Sn02 base electrodes had consistently slightly 

higher factors than the devices constructed with InSn02 electrodes. Ambient conditions 

had negligible effect on the ideality factors.

Slight variations in the saturation current density, Js were observed depending on the 

ambient conditions and base electrodes, although high values of Js were observed in all 

the ClAlPc/Ti02 devices studied.
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Figure 7.4. Dark forward and reverse J(V) characteristics of a Au/ClAlPc(500nm)/Ti02(50nm)/InSn02 cell.
Measurements were made at room temperature and under vacuum or atmospheric conditions as 
indicated. A repeat measurement is also shown.
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Figure 7.5. Plot o f  ln(I/[l-exp(-eV /& T )]) against V for the Au/ClAlPc(500nm)/TiC>2(50nm)/InSn02 cell.
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Figure 7.6. Logarithm ic plot o f  I/[ 1-exp(-eV//cT)] against V for the A u /C lA lP c(500n m )/T i02(50nm )/F - 
S n 0 2 cell.

Substrate Ambient m Js (x 10'9A/cm2) y Tc Rectification 
Ratio, r at 

0.3V
In S n 0 2 A ir 1.01 5.1 1.93 564 1.62

(( 1 5.64 1.87 546 1.47

Vacuum  

(~ 10 3torr)

1.01 3.42 1.98 578 4 .9 4

<< 1.15 5.11 3.28 958 1.33

F -S n 0 2 1.11 10.3 0 .52 152 1.3

n Air 1.18 0.93 0.47 137 3 .06

Table 7.1 . Electrical characteristics o f the C lA IP e/T i02 heterojunction ce lls, m and Js w ere obtained  
from reverse characteristics and for V<3/:T/e according to M issous and R hoderick6.
* T i0 2 layer annealed to a temperature o f  100°C for 5 hours.
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The forward characteristics were fitted to the standard diode equation, (equation (3.35)). 

Plots of InJ against applied bias V are therefore displayed in Figures 7.7 and 7.8. In all 

cases m>2, regardless of ambient conditions, substrate type or forward voltage range. 

Very high values of m were determined for higher forward voltages. An improvement in 

device performance was observed for the ClAlPc/Ti02 cell measured under vacuum with 

InSn02 base electrode, although m~2.6 the saturation current density Js ~7xl O'1'A/cm2 

which is relatively low. At higher forward voltages (V>~0.4V) a dependence JocKVQ 

was observed where Q>1. This is similar to the situation of space charge limited 

conduction7. Under these circumstances the current density is described according to 

Helfrich8;

BVY+1
J = --------  7 1SCLC j,2y +1 11

where Jsci.c the the space charge limited current density, B is a constant, t the film 

thickness and y=Tc/T, where Tc is a parameter characteristic of the trap distribution. 

Values of Tc and y were calculated from logarithmic plots of the high forward J(V) 

characteristics. Significantly lower values of Tc were observed for those devices 

comprising of F-Sn02 base electrodes.

Figure 7.9 shows the dark forward and reverse characteristics obtained for a 

ClAlPc/Ti02 cell in which the T i02 had been densified to a much lower temperature of 

100°C. The significant difference observed was the measured value of Tc -958 compared 

to Tc~578 for a similar device in which the T i02 had been heated to 500°C. All the 

deduced electrical parameters are shown in Tables 7.1 and 7.2.



Log V(V)

- 0.6 -0.4 - 0.2- 0 .:
-7.0-16

A--------- -A Vacuum (Log J/Log V)
■  -  -  Hi Air (Log J/ Log V)
• --------- -•  Air Repeat (Log J/Log V)
V----------V Air (Ln J/ V)
G----------0  Vacuum (Ln J/ V)
B --------d  Air repeat (Ln J/ V)

-7.5-17

EO
^  -18 - 8.0

c_i

-8.5-19

-9.0- 2 0 1—  

-0.50 0.750.25 0.50-0.25 0

V(V)
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Su bstrate A m b ien t V oltage R ange (V) Q ni J s(x l()'9A /cm 2)

ln S n 0 2 Air 0 .17 -0 .2 5.2 1.53
tt “ 0 .2-0 .37 3.23 7.48 2 .06

“ a 0 .37-0 .5 V >0.4V 5.5 1.02
<< “(Repeat) 0 .17 -0 .2 4 .72 1.02
“ u 0 .2 -0 .37 3.18 7.41 1.67
c < “ 0.37-0 .5 V >0.4V 5.6 9 .26

“ Vacuum 0.25-0 .36 2.6 0 .07
“ “ 0 .3 -0 .4 3.96 3.46 0.21

“ u 0.4 -0 .6 V > 0.4V 5.08 0.93
* << 0-0.3 4 .4 4 .59
* “ << 0.3 -0 .6 4.28 4.03 2.28
* “ 44 0 .6 -0 .8 V >0.4V 8.08 41 .4

F -S n 0 2 Air 0 .05 -0 .12 6.6 3 .76
<c 0 .12 -0 .22 1.47 5.17 2 .52

“ “ 0.22-0 .3 V > 0.15V 9.26 5 .6
«( Vacuum 0.05 -0 .12 2.65 2 .28

tc 0 .12-0 .22 1.68 5.3 5.07
“ “ 0 .22-0 .3 V > 0.15V 5.82 6.19

T able 7.2 . Electrical parameters o f  the C lA lP c /T i0 2 heterojunction cell as obtained from forward
characteristics using standard diode equation. * where T i0 2 annealed to 100°C for 5 hours.

2x1 O'6
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Figure 7.9. R oom  temperature J(V) characteristics o f  a A u /C lA lP c(500n m )/T i02(5 0 n m )/In S n 0 2 device  
in darkness and under vacuum
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Figure 7 .10. Logarithm ic plot o f  l/[l-exp (-eV //:T )] V s. V  for the A u/C IA lP c(500nm )/T iO 2 
50nm )/InSnO 2 device.
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Figure 7.11 In J V s. V  and log  J V s. log  V o f  forward characteristics for C lA lP e /T i0 2 device
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7.3.3 Illuminated J(V) Characteristics

The J(V) characteristics of a Au/ClAlPc(500nm)/Ti02(50nm)/InSn02 device measured 

under atmospheric conditions are shown in Figure 7.12, for a variety of intensity levels. 

The highest overall conversion efficiency obtained for the cells was r)~0.0015% at an 

intensity level of 1.12mW/cm2, the corresponding FF, Voc and Jsc at this intensity were 

0.165, 0.468V, and 2.19x1 O'7 A/cm2 respectively.

The intensity dependence of Jsc, Voc and subsequently FF and r\% of the cells was 

investigated. The dependencies are shown in Figures 7.13 and 7.14. It is observed that 

Voc is virtually proportional to the logarithm of the incident light intensity, increasing 

with intensity to a relatively high maximum value of -0.5V.

The photocurrent increased approximately linearly with the light intensity (|). An exponent 

of y=0.88 was derived according to Jsc0̂ .  The FF generally increased as the incident 

intensity increased, although the behaviour was erratic at low intensities. A 

corresponding increase in the overall conversion efficiency with increasing intensity was 

also observed, however at high intensities r|% reduced slightly even though FF, Voc and 

Jsc were at the maximum observed values.

From the J(V) plots under illuminated conditions, the average series resistance, (Rs) for 

the cell was determined from the slope of the plots in forward bias where V>V0C. From 

the reverse characteristics where JccV, Rsh was calculated (for ideal p-n junction P V cells 

Rs~ oncn f2, RSh~ooncm'2). Rs and R8i, were calculated to be 1.2Mf2cm‘2 and 5.2MQcm'2 

respectively.
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Figure 7 .12. J(V) characteristics obtained for a A u /C lA lP c(500n m )/T i02(50nm )/In Sn02 heterojunction  
cell under atm ospheric conditions. In darkness and under sim ulated A M 2 radiation, at a 
variety o f  intensities as indicated. Illum ination through the In S n 0 2 side.
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Figure 7.13 Graph show ing V oc ( ) with logarithm ic fitting and Jsc (O) with linear fitting as a function  
o f  incident light intensity for the A u /C lA lP c(500n m )/T i02(50 n m )/In S n 0 2 heterojunction  

cell under atm ospheric conditions
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In order to investigate the effects of ambient conditions the measurements were repeated 

for the same cell measured under vacuum (~10'3torr). The J(V) characteristics of the cell 

in darkness and under illumination for a variety of intensity levels are shown in Figure 

7.15. The highest overall conversion efficiency r\% obtained for the cell under vacuum 

was 0.0047% at an intensity level of 1.12mW/cm2f this corresponded to Voc, FF, and Jsc 

values of 0.479V, 0.304 and 3.64x1 O'7 A/cm2 respectively. The value o f r|% for cell 

measured under vacuum represents an increase of -200%  compared to the cell measured 

under atmospheric conditions.

Figures 7.16 and 7.17 show the dependencies on the intensity of Jsc, Voe, FF and r|%. V„e 

increased with increasing intensity although a weaker dependence was observed 

compared to that measured for the device under atmospheric conditions. Jsc also 

increased with the increasing intensity and saturated at higher intensities. A fit of 

Jsoc(|)y resulted in y=0.32. The values of Rs and Rsh were 2.27M ncm'2 and 0.7M ncm ‘2 

respectively.

The FF increased with increasing intensity to a maximum at 1.12mW/cm2 which 

coincides with a peak in rj%. At high intensities the FF decreased which was followed by 

a decrease in r|%. At low intensities rj% increased, which could be a consequence of the 

relatively high Voc measured at these intensities. The peak in r|% was observed under 

both atmospheric and vacuum conditions at 1.12mWcm'2.
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Figure 7 .14. Fill factor ( ) and overall conversion efficiency r\%  (O ) as a function o f  incident light 
intensity <}>, m W /cm 2. M easurem ents m ade under atm ospheric conditions.
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Figure 7 .15. J(V) characteristics obtained for A u /C lA lP c(500n m )/T i02(50n m )/ln S n 02  heterojunction  
cell under vacuum , in darkness and under sim ulated A M 2 radiation, at a variety o f  
intensities as indicated.
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Figure 7 .16. Graph show ing variation o f  V oc ( □ )  w ith  logarithm ic fitting and Jsc (O) w ith  linear fitting  
as a function o f  incident light intensity <j> for the cell as in  Figure 7 .15 .
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Figure 7 .17 . F ill factor ( O) and r\%  (□) as a function o f  incident light intensity §  o f  the ce ll as in  F igure  
7.15.
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7.3.4 C(V) Characteristics

The dark C(V) measurements of Au/ClAlPc(500nm)/Ti02(50nm)/InSn02 heterojunction 

cells were carried out at room temperature, atmospheric conditions and at a fixed 

frequency of 500Hz, with an oscillating voltage level of IV. Figure 7.18 presents a plot 

of C'2 as a function of reverse applied bias V(V). The linearity of C'2(V) characteristics 

indicates the presence of an abrupt junction.

Using equation (3.42) a value of Na~4.6xl019cm'3 was deduced. However the 

capacitance was found to be virtually independent of the reverse bias voltage. Most of 

the applied bias may have therefore been dropped over the high series resistance ((Rs~ 

1.2MQ) as observed from illuminated J(V) data) of the cells rather than the junction. As 

a consequence the junction capacitance would be insensitive to the applied bias. 

However, the independence may also have been attributed to high interface state density 

and pin holes. Nevertheless, this resulted in an unrealistic value for the built in potential 

4>bp which was deduced from the intercept (i.e. -192V). The value of Na as calculated 

above must therefore be taken with caution. Indeed, calculation of the transition region 

width using this model leads to W~544nm, practically the thickness of the device.

Observation of the entire C'2(V) characteristics, shown in Figure 7.19, indicates that a 

Bethe type9 type barrier may be present. According to the Bethe model9 the intercept of 

the 1 /C2 against V plot with the horizontal asymptote , rather than the base lines gives 

the built in potential (|>bp.

186



A value of cj)bp -0.02V  was obtained. From the Bethe model9 the density of ionised 

trapping centres contributing to the barrier capacitance is H~1.41xl018cm'3 and the 

barrier width (where C0 ~224.328pF) is W~473nm, which is still unrealistic. However, 

combining the Bethe model9 with Andersons abrupt junction model1 , the substitution of 

(j)bp gives a depletion layer width of 5.55nm, which is comparable with later studies of 

the depletion layer width on the CuPc/Ti02 and PbPc/Ti02 cells.
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Figure 7 .18. 1/C2 against reverse applied bias V (V ) for a A u /C lA lP c(500n m )/T i02(50nm )/InSn02  
heterojunction cell under darkness and atm ospheric conditions.
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Figure 7 .19. C'2(V ). (O) and C (V) (□) characteristics o f  the A u/ClAlPc(5(K )nm )/TiO 2(50n in )/lnSn O 2 
hetcrojunction cell under darkness and atm ospheric conditions.



7.4. CuPc/Ti02

7.4.1 Spectral Response

Figures 7.20 and 7.21 show the Jsc and Voc action spectra respectively as a function of 

wavelength, X for a Au/CuPc(~500nm)/Ti02(50nm)/InSn02 cell, measurements were 

taken under both atmospheric conditions and under N2 gas. The maximum observed 

quantum efficiencies, Z under both N2 and atmospheric conditions occurred at A,~350nm 

as Z~ 0.34% and Z~0.43% respectively. The corresponding Jsc at this wavelength were 

0.031 pA/cm2 and 0.039 pA/cm2 respectively. Under both conditions higher Jsc was 

observed at the A,~590nm maxima. (Jsc~0.034 pA/cm2 under N2 and Jsc~0.043 pA/cm2 

under atmospheric conditions). However this did not give rise to a corresponding 

increase in Z. (Z~0.22% under N2 and Z~0.28% under atmospheric conditions). A 

decrease in Jsc and Z was observed at the A,~700nm maxima. Where Z~ 0.15% and 

JS(:~0.027 pA/cm2 under N2, and Z~0.2% and Jsc~ 0.036 pA/cm2 under atmospheric 

conditions. The open circuit voltage Voc was found to vary as a function of incident 

wavelength under both N2 and atmospheric conditions. The values of V„c under N2 at 

peak wavelength positions were 16mV at 350nm, 12mV at 590nm and 6.5mV at 700nm. 

Under atmospheric conditions maximum Voc observed were 15.5mV at 350nm, 14.8mV 

at 590nm and 8.3mV at 700nm.

Maxima in the absorption spectra coincided with observed maxima in the Jsc and Voc 

action spectra. Therefore indicating that the dye had sensitised the T i02 to wavelengths 

outside the materials intrinsic sensitivity. An increase in both open circuit voltage and 

short circuit current density were observed for measurements carried out under 

atmospheric conditions.
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7.4.2 Dark J(V) Characteristics

Figure 7.22 shows typical dark forward and reverse J(V) characteristics of a 

Au/CuPc(500nm)/Ti02(50nm)/InSn02 heterojunction cell, the measurements were taken 

under vacuum and at room temperature. Identical devices measured under N2 and 

atmospheric conditions exhibited similar characteristics. Rectification effects were 

observed under all conditions, the ratios (r) are given in Table 7.3. The lowest values of r 

were for those cells measured under vacuum r~l 1 and increased to r~30 for devices 

measured under N2 gas.

For bias voltages V<3AT/e, values of the saturation current density Js and the ideality 

factor m (summarised in Table 7.3) were deduced from plots of ln[I/{l-exp(-eV/&T}] 

against V(V), shown in Figure 7.23. Both m and Js were found to be reproducible. The 

ideality factor was in the range l>m>1.2 and the saturation current density in the range

2. 2<Js<4.6 (x 1 O'7A/cm2).

Table 7.4 summarises the results obtained from the forward characteristics when fitted to 

the standard diode equation (equation (3.35)), over the voltage ranges as indicated. 

Reasonable fits to the equation were observed at low forward voltages ~V<0.15V. In 

this range values of m ~ 2, though m~2.3 under vacuum. Very high Js~(3-5)xlO'7A/cm2 

was observed under all conditions. For V>0.15V deviation from the standard diode 

equation was observed. At these applied bias the J(V) characteristics displayed a good fit 

to the relation J=KVQ.
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Figure 7 .22. Dark forward and reverse J(V) characteristics o f  a A u /C u P c(500nm )/T i02/(50nm )/In Sn02  
cell. M easurem ents were made at room  temperature and under vacuum.

Ambient Rectification 
Ratio, r  a t 0.3V

m J s (xlO'7A/cm2) y Tc

Air 21.3 1.13 2.79 0.9 263

“ repeat 19.8 1.13 2.79 0.9 263

n 2 30.4 1.09 2.52 0.82 239

“ repeat 29.3 1.11 2.28 0.81 237

Vacuum 10.64 1.15 4.59 0.73 213

“ repeat 11 1.15 4.16 0.78 228

Table 7.3. E lectrical characteristics o f  the Au/CuPc/TiCVInSnCb heterojunction ce lls , m and Js w ere  
obtained from reverse characteristics and where V <3£T /e according to M issous and 
R hoderick6.
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Figure 7 .23. Logarithm ic plot o f  I/[l-exp(-eV/A'T)] against V  for the A u /C u P c/T i02/I n S n 0 2 cell 
_____________ measured under N 2._______________________________________________________________

Ambient Voltage Range m J s (xl O'7A/cm2) Q, V>0.15V

V (a) (a) (b)
Air 0.05-0.15 1.99 3.38

0.15-0.3 4.69 15.2 1.84

“ repeat 0.05-0.15 2.2 3.74

0.15-0.3 4.68 15.2 1.83

n 2 0.05-0.15 2.06 4.13

0.15-0.3 5.03 16.7 1.75

“ repeat 0.05-0.15 1.81 3.06

0.15-0.3 5.15 18.5 1.7

Vacuum 0.05-0.15 2.3 5.04

0.15-0.3 5.27 18.5 1.64

“ repeat 0.05-0.15 2.26 4.56

0.15-0.3 5.13 17 1.68
Table 7 .4 . Electrica parameters o f  the A u /C iiP c/T i02/In S n 0 2 heterojunction cell as obtained from

forward characteristics using (a) standard diode equation for V < 0 .15  V  and (b) U sin g  
Jcc''/3 relationship at V >  0 .15V .
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Values o f the exponent Q are displayed in Table 7.4. These values were fairly 

reproducible. An example of such characteristics are shown in Figure 7.24 for a cell 

measured under atmospheric conditions.

Values of Tc and y were derived from log(J)/log(V) plots in the high forward voltage 

region, these are shown in Table 7.3. Tc was found to be highest under atmospheric 

conditions, the lowest values of Tc were derived under vacuum. However all values were 

in the range -210-265.

7.4.3 Illuminated J(V) Characteristics

The r|%, FF, Voc, and Jsc obtained from the illuminated J(V) characteristics of the 

Au/CuPc(500nm)/Ti02(50nm)InSn02 cells under vacuum and atmospheric conditions 

are shown in Appendix C. Figure 7.25 is an example of the characteristics obtained from 

the cells measured under atmospheric conditions after two days. The effects of prolonged 

exposure to air were assessed including the effects of vacuum for a constant incident 

intensity of 2.4mW/cm2.

The maximum calculated rj% -  0.063 (xlO'2) % for a cell which had been immediately 

exposed to air, the corresponding FF, Voc and Jsc were 0.217, 0.109V, and 6.35x10* 

?A/cm2 respectively. After 24 hours exposure the conversion efficiency fell to r|~0.05 

(xl0*2)% and after two days a further decrease was measured to r|-0.038 (xl0*2)%. The 

FF increased with prolonged exposure to air from 0.217 to 0.246 while Jsc decreased.
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Figure 7 .25. J(V ) characteristics o f  a A u /C uP c(500nm )/T i02(50nm )/InSn02 heterojunction ce ll under 
darkness (O) and sim ulated A M 2 radiation (2 .4m W /cm 2) (□). H eld under atm ospheric 
conditions for 2  days.
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Under vacuum the FF dropped to 0.198, though little change was observed in the value 

of 11% when compared to cells which had been exposed to air for two days.

The effects of the incident intensity on the cell parameters were examined under vacuum 

conditions. Very high incident intensities (~60.6mW/cm2) had detrimental effects on the 

cell performance. Although a comparably high Jsc was observed the Voc was very low 

(-0.024V). This therefore led to a correspondingly low r|~0.022 (x l0 '2)% one of the 

lowest measured for the CuPc/Ti02 devices. Accordingly at low intensities 

((|)~0.56mW/cm2) a low Jsc was observed and although the FF increased, r|~0.026 

(xl0 '2)% . The series resistances Rs determined from the illuminated plots where V>V0C 

and Rsh where the reverse voltage has an approximately linear dependence on the reverse 

current density J are shown in Table 7.5. In all cases a very high series resistance was 

observed, and this is believed to inhibit the cell performance especially at high intensities 

where Rs is known10 to significantly reduce the Voc in p-n junction cells.
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Ambient Light Intensity 
inW/cm2

Rs (MO)/cm2 Rsi, (M£2)/cm2

Vacuum 60.6 2.36x10'3 2.33x10'3

<< 2.4 0.127 0.102

c< 0.56 0.455 1.29

Ait- 2.4 0.143 0.163

Air (1 day) (< 0.157 0.236

Air (2 days) a 0.098 0.203

Tabic 7.5. Series anti Shunt resistance’s obtained from the A ii/C uP c(50()nm )/T i02(50nm )/InSn02 cell.
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Figure 7.26 . C (V ) characteristics o f  A u /C uP c(500nm )/T i02(50nm )/InS n02 hcterojunction cell for tw o  
fixed frequencies o f  1kHz (□) and 100H z (O). M easurem ents taken under darkness and 
atm ospheric conditions.
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7.4.4 C(V) Characteristics

C(V) characteristics are shown in Figure 7.26 for a Au/ CuPc(500nm) /TiO2(50nm) 

/InSn02 heterojunction cell under vacuum, using fixed frequencies of 1kHz and 100Hz. 

At 1kHz, a hysteresis loop was observed which is believed to be attributed to the 

polarisation charges of the device. A plot of 1/C2 against V was linear for the reverse 

applied bias as shown in Figure 7.27. From the intercept of the curve the built in 

potential was measured to be <|)bp~ 0.14V. Using Anderson’s abrupt junction model1, Na 

the net ionised acceptor concentration was Na~ 6.8xl019cm'3. The depletion layer width, 

W was estimated to be W~9.82nm, where the depletion width penetration Xj and X2 into 

the TiC>2 and the CuPc layer was calculated as xi~ 8.67nm and x2~ 1.15nm respectively. 

x2 is less than xi which is as expected since Na is less than Nd.

1/C2 against V is shown in Figure 7.27 for a fixed frequency of 100Hz. Again a linear 

dependence was observed which indicates an electrically abrupt junction. From the V 

axis intercept the built in potential (J)bP was ~ 0.32V. In this case, using similar values for 

Nd, S\ and e2 the value of Na~5.2xl019cm'3, and the depletion layer width W~34.5nm. 

The penetration o f the depletion region into the T i02 and the CuPc layers was 29.4nm 

and 5.1nm respectively. Again the depletion layer penetrated further into the least heavily 

doped side of the junction, namely the TiC>2 .
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Figure 7 .27. C'2 as a function o f  reverse applied bias V (V ) for the A u /C u P c(500n in )/T i02(5()n in)/InSn02  
hcterojunction measured under darkness and atm ospheric conditions.
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7.5 PbPc/Ti02

7.5.1 Spectral Response

Figures 7.28 and 7.29 are typical action spectra obtained for short circuit current density 

Jsc and open circuit voltage Voc respectively of a Au/PbPc(100nm)/Ti02(50nm)/InSn02 

heterojunction cell. Measurements were taken under atmospheric conditions. Both 

spectra have a distinct maximum located in the Q-band region at approximately 665nm. 

A photocurrent maximum of 0.067pA/cm2 was measured at >,~665nm. This maximum is 

located at a wavelength which is in close agreement with the absorbance maximum the 

PbPc film. The measured photocurrent corresponds to calculated quantum efficiency of 

Z~0.4%. A second maxima in Jsc is located at ~335nm again corresponding to a maxima 

in the PbPc absorption spectra. A lower Jsc was measured (~0.059fiA/cm2) however the 

calculated quantum efficiency was higher at Z~0.68%. The spectral dependence of Voc 

matched that of the absorption spectra of the PbPc films with maximum of 61mV and 

66mV at ~665nm and 335nm respectively.

The measurements were repeated on similar devices held under vacuum The observed 

photocurrent action spectra is shown in Figure 7.30. Maximum Jsc were significantly 

higher reaching 0.14}.iA/cm2at ~375nm and 0.363|,iA/cm2 at ~680nm. The corresponding 

quantum efficiencies were also increased to Z~1.45% and Z~2.07% at 375nm and 

680nm respectively. The measured maximum Voc increased reaching 92mV at 680nm. 

Measurements were taken under atmospheric conditions on a similar cells in which the 

thickness of the PbPc film was increased to 500nm. Figures 7.31 and 7.32 display the 

photocurrent action spectra and Voc for such a device.
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Figure 7 .29  Absorption spectra o f  a PbPc film  only (------- ) and a T i0 2 film  (-----------). M easurem ents
w ere taken in air at room  temperature V oc (m V ) (O) as a function o f  A for the 
A u /P b P c(100n m )/T i02(50n m )/In S n 02 cell.
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Figure 7.33. R oom  temperature dark J(V) characteristics under vacuum  (□) and air (O ) o f  
A u/ P b P c(100n m )/T i02(50n m ))/In S n 02 heterojunction cell.
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A good correlation between the absorption spectra of the PbPc film and the spectral 

dependencies of Voc and Jsc was observed. The quantum efficiency decreased for the 

thicker film to Z~0.42% at the lower maxima ~360nm. At the higher maxima ~680nm, 

little change in the value of Z~ 0.41% was observed for the cell containing a thicker 

PbPc film. However the values of Voc were observed to increase to 155mV at 340nm and 

115mV at~700nm.

In all cases a suppression in the photocurrent was observed at ~350nm which 

corresponds to a maximum absorption for the PbPc film and the onset of absorption in 

the TiC>2 film.

7.5.2 Dark J(V) Characteristics

Figure 7.33 displays the typical forward and reverse, dark, room temperature J(V) 

characteristics obtained for a Au/PbPc(100nm)/Ti02(50nm)/InSn02 heterojunction cell. 

The characteristics obtained for this cell under both atmospheric and vacuum conditions 

are shown. The cell exhibited rectifying properties although the rectification ratios were 

very low r~1.3. The ideality factor, m and saturation current density, Js were calculated 

according to both Missous and Rhoderick6 and using the standard diode equation 

(equation (3.35)). A summary of the electrical characteristics obtained from this cell are 

shown in Table 7.6. As predicted by equation 3.36 a plot of ln[I/{l-exp(-eV/&T}] 

against V was linear over the expected voltage range (V< 3&T/e) as shown in figure 

7.34. From this curve the ideality factor m~1.2, and was found to be relatively 

independent of ambient conditions. Js increased from 3.6xlO‘8A/cm2 under vacuum to 

4.85xl0'8 A/cm2 under atmospheric conditions.
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For forward voltages ~>3AT/e V a non-linear dependence of ln[I/{l-exp(-eV/&T}] on V 

was observed. Very high values of m were observed when the forward characteristics 

were fitted to the standard diode equation m~2.8 for example for low forward voltages 

and increased to as high as 7.3. A change of ambient conditions from atmospheric to 

vacuum do not appear to influence m. Very high values of Js were again obtained from 

the forward characteristics. For voltages >0.3 V a theoretical fit to the relation J=KVQ as 

shown in Figure 7.35 revealed that values of Q were >2.

The measurements were repeated for a similar device where the PbPc film was 5000A 

thick. The J(V) characteristics obtained from this device under both vacuum and 

atmospheric condition are shown in Figure 7.36. Rectification was again observed with 

r~6.4 and 2.9 at 0.3V under air and vacuum respectively. A good fit to equation 3.36. 

was observed as shown in Figure 7.37. From this curve the ideality factor 01-1.15 and 

1.05 under air and vacuum respectively. A fit to the standard diode equation revealed 

that for low applied voltages V<0.25V under vacuum conditions m~1.03. As the forward 

voltage was increased departure from ideality was observed and for V>0.25V m~3.1 and 

3.2 under vacuum and air respectively. Fits to the high forward voltage regime according 

to J=KVq produced values of Q>2 under both conditions. Values of Js were lower than 

those measured for the Au/PbPc(100nm)/Ti02(50nm)/InSn02 cell. The values o f Tc 

calculated from the high forward characteristics within the SCL regime were very high 

for the Au/PbPc(500nm)/Ti02(50nm)/InSn02 cell Tc -1065 and 1203 under air and 

vacuum respectively, compared to Tc~ 321 and 400 under vacuum and air respectively 

for the Au/PbPc(100nm)/Ti02(50nm)/InSn02 cell. A summary of the electrical 

parameters obtained is contained within Table 7.7.
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Figure 7.34  Logarithm ic plot o f  I/[l-exp(-eV //cT )] V s. V  for the A u /P b P c(100n m )/T i02(50nm )/In Sn02  
hetcrojunction cell under vacuum  (□) and A ir (O ) for V<3&T/e V .
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Figure 7.35 Plot o f  (a) log(J) V s. log(V ) and (b) In J V s. V  for A u /P b P c(100n m )/T i02(50n m )/In S n 02  
cell. Forward characteristics.
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A m bient m

(a)
J s(xl0*8
A /cm 2)

(a)

m
(b)

J s(x l0 '8
A /cm 2)

(b)

Y T c Q r
(0.3V)

Vacuum 1.18 3.6

(0 .05 < V < 0 .J )  
2.8 2.1

1.1 321

(V <0.3V )
1.12

1.3
(0 .1< V < 0 .5 )
7.3

6 .2 (v> o .3 V )
2.1

A ir 1.2 4.85

(0 .0 5 < V < 0 .1 )
2.8 2.78

1.37 400

(V <0.3V )
1.13

1.17
(0.1 < V < 0 .5 ) 
7.2

8.3 (V >0.3V )
2.37

Table 7.6. Electrical characteristics o f  a A u/P bPc(1000A )/T i02(500A )/InSn 02 heterojunction ce ll, (a) 
A ccording to M issous and Rhodcrick where V<3AT/e. (b) Standard diode equation (equation  
3.35). V alues obtained for Tc, r (rectification r a tio ), and Q arc also show n.
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Figure 7 .36. R oom  temperature dark J(V) characteristics o f  a A u/P bP c(500n m )/T i02(50nm )/InSn 02  
hcterojunction cell under both vacuum and atm ospheric conditions as indicated.
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Figure 7 .37. Logarithm ic plot o f  I /[l-exp (-eV /k T )] V s. V  for the A u /P b P c(500n in )/T i02(50nm )/InS n02  
heterojunction cell under vacuum  and atm ospheric conditions w here V<3fcT/e V.
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Figure 7 .38 . P lot o f  (a) log(J) V s. log(V ) and (b) In J Vs. V  for A u /P b P c(500n m )/T i02(5 0 n m )/ln S n 0 2 
cell. Forward characteristics.
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A m bient in

0 0

J ,(x l()'8
A /cm 2)

(a)

ni
(b)

J , ( x l 0 8
A /cm 2)

(b)

Y T t Q r
(0.3V )

(0 :0 5 < v < 0 .5 )

3.2

(V >0.3)
4.65

Air 1.15 0.76 0.056 3.65 1065 (0 .15 > V > 0 .3 )  
2.7

6.4

(V < 0.15)
0 .76

(0 .25< V < 0 .5 )
3.1

(V >0.3)
5.12

Vacuum 1.05 0 .014 0.015 4.12 1203 (0 .2 < V < 0 .3 )
4.24

2.9
(V <0.25)
1.03

(V <0.2)
6.73

Table 7.7. E lectrical characteristics o f  a A n /P b P c(500nm )/T i02(50nm )/In Sn02 heterojunction cell, (a) 
A ccording to M issous and Rliodcrick where V<3AT/e. (b) Standard diode equation (equation  
3 .35). V alues obtained for Tc, r (rectification r a tio ) , and Q are also show n
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Figure 7 .39 . Typical J(V) characteristics o f  a A u /P bP c(100nm )/T i02/(50n m )/In S n 02  cell as a function o f  
temperature in  the range 250-100K .
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A study of the temperature dependence of the dark characteristics provides information 

on the junction transport mechanisms. Figures 7.39 to 7.41 are typical plots obtained for 

the PbPc/Ti02 devices at various temperatures within the range 100 to 250K. From 

analysis of the characteristics it was found that both the saturation current density Js and 

the ideality factor m are temperature dependent parameters.

The ideality factor (as shown in Table 7.8) increased with decreasing temperature 

varying from m~1.45 at 250K to m~3.64 at 100K according to method (a) and 6.3 at 

250K to 12.94 at 100K according to method (b).

The saturation current density was thermally activated increasing with increasing 

temperature. In reverse bias the slopes of the lnI/[l-exp(-eV/AT)] against V 

characteristics were practically independent of temperature (over the temperature range 

studied). In foiward bias the slopes of In J(V) characteristics became temperature 

independent at very low temperatures T<150K. As the temperature decreased the 

saturation current density became less temperature dependent.
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7 .40 . Logarithm ic plot o f  I/[l-exp (-eV /£T )] V s. V  for a A n /P b P c(100n m )/T i02(50nm )/InSn 02  
heterojunction ce ll as a function o f  temperature in  the range 250-100K .

-16

100 K 
150 K 
200 K 
250 K

-18

0.1 0.2 0.3 0.4

V(V)

Figure 7 .41 . Plot o f ln (I ) /V  for a A u/PbPc(100m n)/T iO 2 (50nm )/InSnO 2 cell as a function o f  
temperature. Forward characteristics.
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Temperature
(K)

m
(a)

Js (xlO 8 
A/cm2) 

(a)

3/cT/e (mV) m
(b)

Js ( X l O 8 

A/cm2) 
(b)

100 3.64 3.6 25.8 12.94 5.36
150 2.43 3.97 38.8 8.69 8
200 1.85 4.85 51.7 6.9 14.6
250 1.45 8.85 64.6 6.3 26.6

Table 7.8. Summary o f  the temperature dependent electrical parameters obtained or a
A u /P b P c(100n m )/T i02(50nm )/InSn02 cell. Ideality fa c to r , m and saturation current density  

were calculated according to (a) M issous and Rhodcrick6 and (b) From the forward 
characteristics using equation 3.35.
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Figure 7 .42. T he J(V) characteristics obtained for a A u/P bPc(100nm )/T i02(5()nm )/InSn02
heterojunction cell under vacuum . M easurem ents m ade in  darkness and under sim ulated  
A M 2 radiation for a variety o f  intensity levels as indicated, ( m W /cm 2).
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7.5.3. Illuminated J(V) Characteristics

Figure 7.42 and 7.43 are typical J(V) characteristics obtained for the 

Au/PbPc/TiO2(50nm)/InSnO2 heterojunction cell under vacuum and at room temperature 

where the PbPc was lOOnm and 500nm thick respectively. The characteristics shown are 

in darkness and under simulated AM2 radiation for a variety of intensities as indicated. 

Higher photocurrent densities were measured in the cell containing a 1 OOnm thick PbPc 

film. This cell also exhibited higher overall conversion efficiencies. The highest r\% 

measured was 4.6 xlO'2 % at an incident intensity of 1.12mW/cm2 compared to 0.14x10' 

2% at the same intensity for the cell consisting of a 500nm thick PbPc film. This 

represents a 30 fold increase in conversion efficiency. Consistently higher values of FF, 

Jsc, and Voc were measured at all intensities investigated in the device consisting of the 

thinner lOOnm PbPc film.

The intensity dependence ((()) of Jsc, Voc, FF, and r\% for both cells was investigated. The 

dependencies are shown in Figures 7.44 and 7.45.

Voc was found to increase logarithmically with increasing intensity for both cells studied, 

increasing with increasing intensity to maximum values of 0.328 and 0.296 for the cells 

consisting of PbPc(lOOnm) and PbPc(500nm) respectively. Jsc had a linear dependence 

on incident intensity. A fit to the relation Jsccc(|)y produced values of y~ 0.95 and y~ 1.31 

for the cells containing a PbPc(lOOnm) and PbPc(500nm) thick films respectively.
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Figure 7 .43 . Dark and illum inated J(V) characteristics for a A u /P b P c(500n m )/T i02(50nm )/InSn 02
licterojunction cell under vacuum. M easurem ents made in darkness and under sim ulated  
A M 2 radiation at a variety o f  intensity levels as indicated (m W /cm 2).
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Figure. 7 .44 . Graph show ing V oc with logarithm ic fitting and Jsc with linear fitting, as a function o f
incident light intensity ((J>), for the Au/PbPc/TiO 2(50nm )/InSnO 2 cells under vacuum . PbPc 
film  thickness as indicated on graph.

214



» -------- +  ,f/0 (x102) PbPc (5000A)
H% (x10‘2) PbPc (1000A)

Q  FF PbPc (5000A)
G O FF PbPc (1000A)

4.5

0.3

3.0

G------------
u_
11.

0.2

-O'-O

0.1
0.5 1.5

2
Incident Intensity mW/cm

Figure 7.45. FF and r|% as a function o f  incident intensity (<|>), for cells as described in  Figure 7.44.

Incident Intensity (<!>) mW/cm2
PbPc film 
—thickness 

nm
Dark 0.16 0.56 1.12 1.6 2

100 R s 570 85.5 74.6 86.2 98 85.5
100 R su 610 490 210 130 100 100
500 R s 1610 48.3 71.9 31.7 28.4 24.1
500 R s h 195700 3860 780 570 390 300

Table. 7 .9  Series (R*) and Shunt (R^) resistance’s (kQcm f2) obtained for the 
Au/PbPc/TiO 2(50nin)/InSnO 2 heterojunction cells under vacuum .
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In the cell containing PbPc(500nm), r\% increased slightly with increasing intensity, 

while the FF slightly increased only at the highest and lowest intensity. However both 

factors displayed a relatively weak intensity dependence in comparison to the 

PbPc(lOOnm) cell. In this cell the FF and the r\% had a similar intensity dependence. A 

maximum was observed at an intensity level of ~1.12mW/cm2 Both factors decreased at 

intensities where 1.12inW/cm2<(j)<l. 12mWcm2.

It has been previously stated that the J(V) characteristics are dependent upon Rs|, and Rs 

the shunt and series resistance respectively of the cell10. Table 7.9 summarises Rsh and Rs 

obtained for the both cells in darkness and under various intensity levels.

In all cases Rs<Rsi, as expected. For both cells the measured series resistances were less 

under illumination than those measured in darkness. Similarly, the measured shunt 

resistances Rsh were less under illumination than those measured in darkness. In both 

cells the Rsh reduced with increasing intensity and the values of Rsi, were poorer in the 

PbPc(lOOnm) device (note that ideal Rsj,~oo). The series resistances Rs in all cases were 

relatively high and far from the ideal (Rs=0). Nevertheless, the values of Rs and RSh 

measured for the cell consisting of PbPc(500nm) is an improvement over the devices 

containing ClAlPc(500nm) and CuPc (500nm).

Figure 7.46 displays the J(V) characteristics of a Au/PbPc(500nm)/Ti02(50nm)/InSn02 

cell under atmospheric conditions. The measured V„c and Jsc were lower when the device 

was measured under atmospheric conditions. However both Jsc and Voc saturated at high 

intensities.
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Figure 7 .46. Dark and illum inated J(V) characteristics o f  a A u /P b P c(500n m )/T i02(50n m )/InSn02  
heterojunction cell under atm ospheric conditions. M easurem ents m ade in darkness and 
under sim ulated A M 2 radiation at a variety o f  intensity leve ls as indicated.
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Figure 7.47 . V oc and Jsc as a function o f  intensity (<{)) m W /cm 2, for a
Au/PbPc(500nm)/Ti02(50nm)/InSnC>2 cell under atm ospheric conditions.
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Figure 7 .49 . Illuminated J(V) characteristics (Intensity: 1.12m W /cm 2) o f  the
A u/P bP c(100nm )T i02(50nm )InSn02 cell at a variety o f  temperatures as indicated.
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Rsh again decreased as the intensity increased The value of Rsh is reduced under 

atmospheric conditions, both in darkness to 111.2M£2cm'2 and under illumination to 

370kncm'2 at 2mWcm'2. Rs in darkness was decreased under atmospheric conditions to 

~ 971 kHcm'2 but under illumination Rs was higher than that measured under vacuum 

(i.e., 57.5 kHcm'2)

The temperature dependent J(V) characteristics are shown in Figure 7.49 for a 

Au/PbPc(100nm)/Ti02(50nm)/InSn02 heterojunction cell at an intensity level of 

1.12mW/cm2. It is clearly seen from the characteristics that Jsc is temperature dependent. 

Figure 7.50 is therefore an Arrhenius plot of Jsc for a variety of incident intensities. The 

short circuit current density of the heterojunction is thermally activated, increasing with 

increasing temperature. The temperature dependence of the open circuit voltage is 

shown in Figure 7.51. Voc generally increased with increasing temperature and started to 

saturate at temperatures T>200K.

The increase in V„c and Jsc with temperature was manifested as an increase in conversion 

efficiency, r\% with temperature, which again saturated as room temperature was 

reached shown in Figure 7.52. r\% was more sensitive to the incident intensity at higher 

temperatures. The cell parameters as a function of temperature derived from this work 

are given in Appendix C.
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Figure. 7 .53 . C'2 V s. V  for a A u/P bPc(100n m )/T i02(50n m )/InS n02 heterojunction cell m easured under 
darkness at room temperature.
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7.5.4 C(V) Characteristics

Figure 7.53 displays the dark 1/C2 as a function of reverse applied bias at a fixed 

frequency of 500Hz for a Au/PbPc(100nm)/Ti02(50nm)/InSn02 heterojunction cell. 

Measurements were made at room temperature and under both atmospheric and vacuum 

conditions as indicated. The 1/C2 against V  curves were linear, indicating the presence 

of an electrically abrupt junction. Extrapolation of the curves to the voltage axis gave 

built in potentials of (})bp of 0.95 V  and 0.78 V  under vacuum and atmospheric conditions 

respectively.

From the expression for an abrupt junction according to the Anderson model1 and 

assuming an ionised donor concentration of Na ~9xl018 cm’3 and permittivities of E\ ~ 

1.77xlO*12Fcm*1 (T i02) and ^-B .lbxlO '^Fcm '1 (PbPc) as described in section 7.1, the 

ionised acceptor concentration N a~  5.24xl019cm'3 and 2.82xl019cm'3 under atmospheric 

and vacuum conditions respectively..

The depletion layer widths were calculated to be 11.8nm under atmospheric conditions 

and 12.4nm under vacuum (~10'3torr) conditions. Under atmospheric conditions the 

penetration depths of the depletion layer were x2~ 1.6nm and xj~ 9.4nm into PbPc and 

T i02 respectively. Under vacuum the penetration depths were x2~ 2.9nm and xi~ 9.1nm 

into PbPc and T i02 respectively. In both cases N a> N d  and as such the depletion layer 

penetration distance was greatest into in the T i02 film.

222



REFERENCES

1. Anderson, R. L. Solid State Elec., 5 (1962) 341.

2. Tang, H., Prasad, K., Sanjines, R., Schmid, P.E., and Levy, F. J. Appl. Phys. 75(4) 

(1994) 2042-2047.

3. Yanagi, FI., Kataura, H., and Ueda, Y. J. Appl. Phys. 75(1) (1994) 568-576.

4. Gould, R. D. Thin Solid Films 125 (1985) 63-69.

5. Ahmad, A., and Collins, R. A. Phys. Stat. Sol. (a) 123 (1991) 201-211.

6. Missous, M., and Rhoderick, E. H. Elec. Letts. 22 (9) (1986) 477-478.

7. Lampert, M. A. Rep. Prog. Phys. 27 (1964) 329-367.

8. Helfrich, W. Phys. Letts. 16 (1966) 401.

9. Sze, S. M. Physics o f  Semiconductor Devices. Wiley, (1969).

10. Hovel, H. J. Semiconductors and Semimetals, Solar Cells. Vol. 1 1 .  Academic Press 

New York. (1975)

223



Chapter

Discussion of Experimental Results

8.1 H O 2 via Sol-Gel Technology

The Sol stability was dependent on the procedure adopted for manufacture, the 

molar ratio of the metallo-organic precurser titanium isopropoxide (TIP):acetic acid and 

TIP concentration. Increasing the acid content resulted in Sols which were stable for 

longer periods of time. It is anticipated that the acid has an effect of slowing down the 

hydrolysis-condensation reaction by replacing the OR groups of the alkoxide precursor. 

The reaction results in a reduction in the gelation time of the Sol. These effects have 

been observed by Livage1 on studies of similar titania Sol systems.

Many of the effects observed on stability are also similar to those of Yoldas2 .The 

formation of clear solutions was dependent on the TIPiacetic acid molar ratio. However, 

according to Yoldas2 for the most stable solutions too high or too low an acid:alkoxide 

ratio results in cloudiness. No upper limit for acid concentration was observed in the 

current studies which may suggest that further experimentation with the Sol-Gel 

parameters is required in order to optimise the stability.
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8.1.1 Structural Studies

The heat treatment temperatures and times had influence on both the film surface 

quality, the crystalline structure and organic content of the films. It is believed that the 

three qualities are interlinked. Previous studies have shown that the crystallisation may 

correspond to the release of residual organics from the gel during heat treatment . The 

observed transformation from an amorphous state obtained for unfired gels to a 

crystalline state of the anatase structure for gels heated to 500°C could be therefore be a 

consequence o f a change in molecular separation caused by the removal o f organic 

residuals observed in the infra red studies. Studies on titania gels2 heated to 500°C have 

shown that when molecular spacing was 1 no rutile was formed however when the 

molecular spacing was 3 rutile forms appeared.

The pores visible in the unheated and low temperature films are attributed to removal of 

the solvent during the drying process. As the heat treatment temperature increases 

densification and crystallisation results, the pores collapse, and the film shrinks resulting 

in the observed cracking at the film edges.

Film thickness was found to be dependent on the withdrawal speed, increasing as the 

withdrawal speed increased. A similar dependence o f withdrawal rate as a function of 

thickness has been found in a study o f NASICON (Na+ Super Ionic Conductor) thin 

films, prepared by the Sol-Gel method3 and is consistent with theory proposed by 

Brinker4 The effect has been explained as being due to the effect of viscous drag on the 

liquid meniscus5.
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It is suggested that the interaction effects can be attributed to three probable factors, 

which could produce the effects identified in these experiments. These factors being (i) 

the viscosity of the coating solution, (ii) the mechanism and kinetics of the reaction of 

the alkoxide precursor, and (iii) the surface interactions between the substrate and 

coating solution.

Referring to Table 6.2, the significant (positive) interaction effects between withdrawal 

speed with acid:TIP molar ratio [AB] and TIP concentration [AD] are most probably 

indicative o f non-Newtonian5 properties in the deposited film of the coating solution 

during dip coating, which appear to be exaggerated by the presence o f either reaction 

modifying acetic acid, or the reaction precursor TIP at high concentrations. An increase 

in coating thickness would be predicted from an increase in the Sol viscosity during 

deposition. Other workers6 have found evidence o f non Newtonian behaviour during dip 

coating at withdrawal rates in excess of approximately 50 mm/min as used in these 

studies.

The interaction effects between the number of coatings with withdrawal speed [AC], 

acetic acid concentration [BC], and concentration of TIP [CD], and the three factor 

interaction between the number of coating layers with withdrawal speed and acetic acid 

concentration [ABC] can be attributed to a change in the surface interaction between the 

substrate and coating solution as these factors are varied. Previous work5 has suggested 

that the thickness of the coating film produced during dip coating is determined by a 

number of factors related to surface effects including the viscous drag exerted on the 

liquid by the moving substrate. These effects are likely to be different between the 

coating liquid and a coated or uncoated substrate.
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Previous studies' have also suggested that the thickness of the first coating layer in a 

multi layer coating is greater than that in subsequent coating layers. However, it can be 

deduced from the interactions identified in this work that such a phenomena is highly 

dependent upon the levels o f other factors, and cannot be assumed to take place.

The significant negative interaction effect between the concentrations o f the TIP 

precursor and acetic acid reaction modifier [BD] would appear to be indicative o f a 

change in the kinetics, and perhaps mechanism of the hydrolysis and polycondensation 

reactions responsible for the gelation process. A reduction in film thickness would be 

expected if such an interaction resulted in a reduction in the reaction rate and/or solution 

viscosity. It is probable that the hydrolysis inhibiting reaction which occurs between the 

TIP and acetic acid1 occurs faster and to a greater degree when the two reactants are 

present at a higher concentration.

8.1.2 Optical Studies

The computational technique of Ray and Hogarth7 derived for non-crystalline materials 

was used to deduce 5 (the nature o f electronic transitions in the T i0 2) and E0 (the optical 

band gap). The results obtained using this technique were in good agreement with those 

derived from Tauc8 plots. In the latter method the nature of electronic transitions must 

be assumed, and has therefore led to differing values of E0 for the same materials . It 

appears from these studies that the computational technique was successful on thin films 

of anatase T i0 2 and it is anticipated therefore that the method can be extended to other
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materials of this type. The results identified a dependence o f the optical band gap E0 and 

the nature of optical transitions on the number of coating layers (hence film thickness). 

The E0 decreased as the thickness increased. This dependence is attributed to a quantum 

size effect9 which could be either a result o f the small size o f crystalline grains in the 

films and/or the low film thickness itself, as observed in CdS films9 and T i0 2 prepared 

via ion beam induced chemical vapor deposition (IBICVD)10 (see section 2.5).

The value of the E0 was ~3.4-3.35eV (where 6=2 denoting an indirect allowed

transition) for 1 coating layer and converged to E0~3.2eV (where 6=3 denoting an

indirect forbidden transition) as the number of coating layers increased. The latter value

for E0 is in good agreement with Tang11 as determined for anatase T i0 2 thin films. In

contrast to these results, the transition was reported to be an indirect allowed transition.

The former value for E0 is in reasonable agreement with Leinen10 on T i0 2 film prepared

by IBICVD. However, a value of E0 ~ 3.03eV an indirect gap for anatase T i0 2 thin

12films prepared via Sol-Gel has been reported . Inaccuracies in the assumption o f 6 and 

quantum size effects due to small crystallites or the low film thicknesses used are 

believed to be to the reasons for the discrepancy.

The absorption coefficient (measured at a photon energy of 4eV) was between 0.623-

1.87xl05cm '1, depending on the Sol parameters. Only the number of coating layers had 

a significant (negative) factorial effect on the absorption coefficient which was 

attributed to refractive index mismatch.
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The values of the calculated absorption coefficient were comparable with H2 reduced

13Ti0 2.x films prepared by pulsed excimer laser ablation (PLA). Pure T i0 2 has an

• 13absorption coefficient lower than those measured in these studies . Reasons for the 

variance may be the scattering of light by surface and volume imperfections such as 

surface roughness or rough grain boundaries or due to a difference in the stoichiometry.

The calculated values of the refractive index n (shown in appendix A) o f the T i0 2 

anatase films in these studies are comparable with those reported in literature (e.g. 2.66 

at 394nm compared to a reported value of 2.6 at 430nm )>10’13’14 xhe high value of n for 

the T i0 2 films (as a high as 2.7 in these studies) has previously been attributed to the 

high compactness of the films10.

// was found to decrease with increasing wavelength (7,). This is similar to the 

dependence observed by Takahashi and Matsuoka15 for anatase T i0 2 films prepared 

from a Ti(0-I-PrOH)4-diethanolamine-H20-i-PrOH system. The n(X) dependence was 

well described by the single oscillator model.16 The parameter Ed (the single oscillator 

strength) was lower than that reported for single crystal T i0 2 . Ed is a quantity that is 

related to the dielectric constant and to the chemical bonding. The difference in the value 

of Ed could be due to the polycrystalline nature o f the film in comparison to the single 

crystal T i0 2 in which the strength of optical transitions is stronger. Es the single 

oscillator energy was in good agreement with that reported by Wemple16 for T i0 2.
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The observed thickness independent // is in contrast to that reported by Leinen10 on 

IBICVD T i02 films, in which n decreased slightly with increasing thickness and was 

attributed to the accumulation of defects and/or a small amounts of residual impurities 

as the layer grew. In contrast, Vorotilov14 reported that for T i0 2 Sol-Gel derived films 

the n increases as the thickness (number of applications) increases, due to the larger 

crystallites in the thicker films, owing to their longer heat treatment time. The 

//(thickness) dependence stabilised as the thickness increased. In the films studied this 

threshold could therefore have been reached due to the long heat treatment times used 

(five hours) and as a consequence no measurable thickness dependence was observed.

8.1.3 Electrical Studies

The value of the conductivity measured for the anatase T i0 2 thin film deposited on 

InSn02 substrates was~4.26xlO'6S/cm. Single crystal anatase T i0 2 has a much higher 

reported conductivity of between 10-0.7S/cm which is likely to be a consequence o f the 

higher charger carrier mobility due to the absence of imperfections such as grain 

boundaries. The measured conductivity is higher than that reported by Vorotilov14 by 

several orders of magnitude (~lxlO '12S/cm) for Sol-Gel derived T i0 2 films deposited 

on silicon substrates. The higher conductivity is therefore presumably due to the effects 

of the base electrode used. In the current studies the high heat treatment temperature 

used would have resulted in diffusion of T i02 with the InSn02 resulting in a low 

resistance high quality ohmic contact as observed from J(V) characteristics, in contrast 

to the T i0 2/Si in which a relatively high interface trap density was observed.
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The effects of heat treatment temperature indicated that a higher conductivity was 

measured for the unheated films. This is believed to have arisen from the contribution 

(to the conductivity) of residual organic material identified in the infra-red spectroscopy, 

and possibly also to the presence of adsorbed water in the pore structure o f the gel. The 

reduction in conductivity as the heat treatment temperature increased is presumably due 

to the removal of the majority of these residual impurities.

As discussed in section 3.3.3 the total conductivity is the sum of both the extrinsic and 

intrinsic contribution. Due to the low temperatures used in these studies the observed 

conduction is believed to be extrinsic. Very low activation energies were observed, 

which suggests that nearly all electrons are free to contribute to conduction and 

indicates the possible presence of an impurity level. The low activation energy also 

suggests that conduction is likely to be through charge carrier hopping.

• • 17An activation energy 1.6 eV was observed by Konenkamp over temperature range 

434-322K and was believed to be intrinsic i.e. band to band conduction, however

13Ardakani has observed low temperature activation energies in the range 0.008-.16 eV 

for hydrogen reduced non-stoichiometric T i0 2.x conduction was believed to be through 

charge carrier hopping involving either neutral centres or from singly ionised centres to 

free oxygen vacancies.
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8.2 The Inorganic/Organic Heterostructure

8.2.1 Spectral Response

To spectrally sensitise T i02 into the visible region the sensitiser (Pc) must show 

appreciable absorption in the visible region. Both the Soret bands and Q-bands normally 

associated with MPcs were visible in all the film absorption spectra. The T i0 2 films 

were highly transparent over the visible wavelength range. Any wavelength dependence 

o f Jsc observed is therefore anticipated to be a consequence o f photocarrier excitation in 

the MPc and a subsequent charge separation and transfer mechanism at the M Pc/Ti02 

interface.

For all devices studied the Jsc action spectra displayed a similar wavelength dependence 

as the absorbance spectra of the MPcs. The similarity o f the absorption spectra to the 

action spectra indicated that sensitisation of the T i0 2 Sol-Gel layer with MPc dye 

molecules occurred resulting in the extension o f the absorbance of T i0 2 into the visible 

region. V oc(k) also displayed a good match to the absoiption spectra studied in 

CuPc/Ti02 and PbPc/Ti02 cells.

An increase in Jsc was observed for those samples held under vacuum compared to 

atmospheric conditions in the ClAlPc/Ti02 and PbPc/Ti02 cells. The lower Jsc for these 

devices measured under atmospheric conditions could be a consequence o f oxygen 

doping. 0 2-electron acceptor impurities capture electrons generated through 

phototexcitation (e/o pairs). Therefore electrons are trapped by 0 2 centres rather than 

transfer to the T i0 2 layer. This was further substantiated on observation o f the effect on
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quantum efficiency which increased under vacuum conditions for both cells. Also, 

under N2 relatively little change was observed in both Jsc and Z for the CuPc cell in 

comparison to measurements made under atmospheric conditions. Therefore it is 

believed that evacuating the sample chamber and adding N2 does not remove 0 2 

molecules from the MPc film as effectively as a continuous vacuum.

The effects of altering the base electrode from InSn02 to F-Sn02 was assessed on the 

CuPc/Ti02 device. Both Jsc and Z decreased at the higher wavelength range ~700nm, 

this may be caused by the observed lower transparency of the F-Sn02 at this wavelength 

compared to the InSn02. At lower wavelengths ~345nm both Jsc and Z increased in the 

devices consisting o f F-Sn02 however, at this wavelength both substrates are o f similar 

transparency.

Low quantum efficiencies <1% were observed in all devices comprising o f 500nm thick

organic layers. Several explanations are proposed to account for the low values o f Z.

In heterojunction devices, low quantum efficiencies are often associated with the

• 1 8 *presence of recombination centres , which are likely to be present at the M Pc/Ti02 

heterointerfaces. The recombination centres may be in the form of surface states at the 

T i0 2 surface, impurities in the MPc layer or grain boundaries within the T i0 2 or Mpc 

polycrystalline films. The low electrical conductivity o f the T i0 2 and MPc films also 

causes a high series resistance (later studies on illuminated J(V)) characteristics show 

that the devices suffered from a high Rs). A reduction in the thickness o f the organic 

layer, hence effective series resistance, resulted in a higher measured quantum 

efficiency in support of this claim.
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The depression in Jsc and Voc in the Soret bands region (wavelengths of strong 

absorption) are likely to be caused by attenuation o f light reaching the heterojunction 

through the T i0 2 layer due to the onset of absorption in T i0 2 for A,<~320nm. The T i0 2 

being transparent to photon energies less than the band gap of 3.2eV.

In summary the spectral responses indicate that the Sol-Gel derived T i0 2 film can be 

sensitised to wavelengths outsides its intrinsic sensitivity by the MPc dyes under 

investigation.

8.2.2 Dark J(V) Characteristics

No blocking contact was formed at the T i0 2/InSn02 interface and MPc/Au contacts are 

known to exhibit ohmic behaviour19. The cell parameters are therefore determined by 

the M Pc/Ti02 contact and the resistivity of the constituent materials. All devices 

exhibited rectifying behaviour, although the rectification ratios were very low. It can 

therefore be assumed that a rectifying contact is formed between all the MPcs studied 

and T i0 2. This is encouraging since rectifying behaviour is required for charge 

separation.

The CuPc/Ti02 devices had a significantly higher rectification ratio than the other 

devices studied. The reasons for this are unclear. Superior junction quality due to the 

planarity of the CuPc molecule in comparison to the PbPc and ClAlPc molecules, 

reduced pinhole formation resulting in a superior Au/MPc contact are believed to be 

contributing factors.
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According to the theoretical models used, the dark characteristics of the devices can 

generally be divided into three working regimes, (i) A low forward/ reverse bias regime 

where V<3kT/e, (ii) an intermediate forward regime and (iii) a high forward regime.

(i) For reverse bias and low forward voltages where V<3kT/e V, the results are well

20represented by the Missous and Rhodenck modified diode (equation (3.36)). Any 

departure from ideality of the devices was apparent and probably caused by generation 

/recombination within the depletion region. The calculated ideality factors for all 

devices studied were within the range l<m<1.2. Factor values o f around 1 indicate a 

predominance o f the diffusion current within this regime. In most cases the diode 

quality factors were slightly higher than 1 indicating that although diffusion current 

dominates, recombination mechanisms may be present.

(ii) Generally, for all o f the devices studied the standard diode equation (3.35) provided 

a good fit to observed forward J(V) characteristics. However the voltage ranges over 

which the characteristics were in agreement with the equation varied from device to 

device, presumably a consequence o f differences in the MPc conductivities. In all 

devices the ideality factor m>2 over the higher bias ranges and for the 

ClAlPc(500nm)/TiO2 and PbPc(100nm)/TiO2 devices m>2 over the entire range 

studied.

This type of behaviour has been observed in 10 heterojunctions o f the form Ag/CuPc/p-

Si and attributed to the presence of a high density o f interface states in equilibrium with

• 21 the inorganic layer. The states facilitate electron-hole recombination .
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In the CuPc(500nm)/TiO2 device m~2 indicating the predominance o f recombination 

currents for low applied forward voltages and for the PbPc(500nm)/TiO2 under vacuum 

m~l in the low forward voltage region indicating the predominance o f diffusion current. 

It is unknown why such variations in the value of m under low forward biases were 

observed, it is proposed that this is a result o f space charge effects (see (iii) below) in 

the organic layer, which would cause m to be subject to errors. Within this regime the 

value of m must therefore be interpreted with some caution.

(iii) A common feature of the J(V) characteristics observed in all devices was a 

deviation from the standard diode equation as the forward applied bias increased. A

non-linear dependence of this type has been observed in many MPcs and is caused by

22space charge effects in the organic layer . Within this high forward voltage regime the 

behaviour o f the 10 heterojunctions is similar to that of a Schottky diode as the 

conduction in the organic materials is extrinsically space charge limited. It is expected 

that within this regime the electrical characteristics of the 10 heterojunction are 

controlled by an exponential distribution of traps within the mobility gap o f the organic 

materials.

From regions (i) and (ii) the saturation current densities Js were calculated. In all devices 

studied high values of Js were observed, which is evidence of the presence o f a high 

density of defects at the T i0 2/MPc interfaces.

236



The temperature dependence of the dark J(V) characteristics were investigated for a 

PbPc/Ti02 heterojunction. Both the ideality factor m and saturation current density Js 

were temperature dependent parameters regardless of the method used to calculate them. 

Js increased as the temperature increased and m decreased as the temperature increased.

The fact that in reverse bias the slopes of the lnI/[l-exp(-eV//cT)] against V plots were 

temperature independent indicates that over this temperature and voltage range the

93junction currents are controlled by recombination in the depletion region .

Also as the temperature decreased the saturation current density became less 

temperature dependent indicating that the tunnelling of carriers through the interface 

was the dominant current transport mechanism24. The junction current is therefore 

believed to be a composite of tunnelling and recombination currents.

8.2.3 Solar Cell Characteristics

Continuous exposure o f the CuPc/Ti02 devices to atmosphere resulted in a drop in the 

overall conversion efficiency, r|. The r\ was also higher under vacuum for both the 

ClAlPc/Ti02 and PbPc/Ti02 cells than that measured under atmosphere. Exposure to 

atmosphere resulted in a decrease of the short circuit current density Jsc and open circuit 

voltage, Voc which are among the parameters that determine the potential power output 

of the cell. As observed in the studies of spectral response, this dependence is 

presumably due to 0 2 centres which capture electrons generated through photoexcitation 

o f the dye layer. The magnitude of charge transfer is therefore reduced.
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In all devices the J(V) characteristics were dominated by high series resistances R  ̂

which seriously undermined the performance of the cells by reducing both the Jsc and 

FF fill factor. The series reistances obtained are expected to be a consequence of the low 

conductivity of the organic semiconductor, although the occurrence o f pinholes may 

also contribute to a high Rs. In the CuPc/Ti02 cells the Rs reduced after prolonged 

exposure to atmosphere which is likely to be due to the enhanced conductivity o f the 

CuPc films from 0 2 doping. However the reduction in R  ̂did not significantly affect the 

r| which fell after prolonged atmospheric exposure. Hence, although Rs reduced, it did 

not counter effect the detrimental effects of electron hole recombination.

In both the CuPc/Ti02 and PbPc/Ti02 cells the Rsh decreased with increasing intensity. 

The Rs also decreased with increasing intensity as observed in the CuPc/Ti02 cells. This 

can be attributed to photoconductive effects in the organic layer. The excess 

photogenerated carrier density becoming comparable or larger than the dark equilibrium 

carrier density, with a corresponding increase in conductivity, at higher intensities and 

therefore a correspondingly lower Rs.

The serious effects of the high Rg on the performance of the devices was further 

demonstrated when the organic layer film thickness was reduced. A 30 fold increase in 

q was observed in the PbPc(100nm)/TiO2 cells compared to the PbPc(500nm)/TiO2 

cells which is further evidence of the low conductivity of the organic film contributing 

to the high series resistances. Illumination of the 10 junction was directed through the 

T i0 2 face, hence losses through recombination effects within the organic layer are not 

expected to significantly contribute.
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In the PbPc/Ti02 cells the measured series resistances were less under illumination than 

those measured in darkness, again this could be a consequence of the photoconductive 

effects of the organic layer (increasing the conductivity o f the film therefore lowering 

any series resistance caused by the film bulk). Similarly, the measured shunt resistances 

(Rsh) were less under illumination than those measured in darkness which would be 

explained if  the levels of generation /recombination within the depletion region 

increased on illumination.

The Rs decreased when the film thickness decreased, ideally RSh~°°- It therefore appears 

that as the thickness of the organic film decreases the device becomes more prone to the 

effects of Rsh namely, diffusion along grain boundaries, or the formation o f filamentary 

metallic bridges through pinholes and cracks in the films.

A logarithmic dependence of Voc on light intensity is predicted by equation (3.38), and

23would be expected for a typical Schottky or p-n junction photovoltaic cell . Such a 

dependence of the Voc was observed in both the PbPc/Ti02 and the ClAlPc/Ti02 cells. 

The equation also predicts a linear dependence o f Jsc on intensity ((j>), (where Jsc 

For the PbPc(100nm)/TiO2 cells y~0.95. y~l is expected in the absence o f carrier

25recombination or when charge carriers recombine through monomolecular processes . 

However a sub linear dependence was observed in the ClAlPc/Ti02 cells. Values o f y 

lower than 1 can be explained if  the photocurrent is limited by space charge at high light 

intensities by the presence o f both monomolecular and bimolecular processes or by a

25combination of deep and shallow traps .

It must be noted that the Jsc°c<|) dependence is expected when the series and shunt

25 • • •resistances are negligible . Very high Rs and Rsh were observed in the ClAlPc/Ti02
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cells and hence a significant and another probable source of the sublinear Js dependence 

on intensity.

Rs influences cell parameters at high intensities23. In the ClAlPc/Ti02 cells, the very 

high Rs associated with the cells could be the cause of the reduction in r\% observed at

• • • 91higher intensities. The effects o f Rsh are known to dominate at low intensities , which 

would explain the lower Voc and FF values at these intensities, however the value o f Rs 

is relatively high and although FF and Voc are very low a slight increase in r\% is 

observed. It is therefore anticipated that the high series resistance is the dominating 

factor in explaining the poor performance of the cell rather than Rsh.

The peaks in the p (c|>) dependence measurements in both PbPc/Ti02 and ClAIPc/Ti02 

cells are therefore presumably due to the effects o f R  ̂ at high intensities and Rsh at low 

intensities.

The temperature dependencies of Voc and Jsc were contradictory to that which would be 

expected for a typical Si or GaAs cell, in which the Voc is expected to decrease as the

23temperature increases . This is due to the strongly temperature dependent dark current 

increasing with increasing temperature. In conventional cells the dark current is made 

up of three current components J jnj  (injected current), J rg (recombination-generation 

current) and J tun (tunnelling current)23,24. The first two are strongly temperature 

dependent increasing with increasing temperature, however the tunnelling current is not.

23Tunnelling dominates in heterojunctions such as Cu2S-CdS where the Voc is constant 

with temperature.
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Tunnelling is likely therefore be a pertinent conduction mechanism in the current 10 

heterojunctions, in partial agreement with the findings obtained from the dark J(V) 

characteristics.

In the PbPc/Ti02 device both Jsc, Voc and r\ increased with increasing temperature and 

saturated as higher temperatures were reached. Temperature dependent measurements of 

conductivity in the PbPc samples (appendix D) indicated two different activation 

energies. The activation energy for temperatures <162K was very low. The Jsc o f the 

PbPc/Ti02 cell saturates for higher temperatures and shows activated behaviour for low 

temperatures, therefore it is suggested that the Jsc seems not to be restricted by the 

conductivity of PbPc film. Such an effect has been reported in a recent organic n-p cell 

comprising of a phthalocyanine/perylene helerojunction26.

In organic cells degradation under strong illumination has been reported to be a major 

problem" . At room temperature no such degradation was observed in the cells. Studies

27of merocyanine/ZnO have also shown no degradation . It is believed that the T i0 2 and 

the InSn02, F-Sn02 electrodes act as filters to the UV content of the solar simulator.

The overall conversion efficiencies were relatively low in comparison with present day

28
commercial inorganic photovoltaic cells . They are comparable with a recently reported

29efficiency for ZnPc/Ti02 heterojunction cell with an r|~ 0.01%. In these studies the 

highest r|~ 0.046% for a PbPc(100nm)/TiO2 cell.
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Several explanations are proposed to account for the low efficiencies observed in the 10 

heterojunctions. The presence o f defects at the T i0 2/MPc interfaces would be expected 

to result in a reduction of r| as the defects would act as recombination centres for the 

photogenerated electron-hole pairs. These defects may take the form of surface states on 

the T i02 surface due to the lack of any surface treatment, similarly observed in the

29recent T i0 2/ZnPc cell . Defects may also be introduced via grain boundaries and 

impurities on the surface and within the T i02 and MPc. The overall conversion 

efficiency is anticipated to be a function of the electrical resistance of the cell. The low 

electrical conductivity of the MPc films causes a high series resistance which lowers r\. 

The non-ideal Rsh indicates the presence of pinholes and short circuits in the organic 

films which again undermines the devices efficiency.

8.2.4 C(V) Characteristics

The C(V) analysis on the PbPc/Ti02 and the CuPc/Ti02 cells allowed calculation o f the 

built in potentials c|)bp. These were greater than the highest measured Voc o f the cells, 

which is expected since the Voc cannot physically be greater than the built in potential of

23the heterojunction . The calculated acceptor concentrations Na o f the MPc films varied 

between 2.82xl019-6.8xl019cm'3, which is in close agreement with the reported values 

o f the ionised acceptor concentrations of the MPcs30.

2 , 
For all the devices the C" (V) characteristics were linear and indicates that the M Pc/Ti02

junctions formed were electrically abrupt. Since the calculated acceptor concentrations

Na>Nd (the donor concentration in the MPc) it is expected that the penetration distance
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(x2 and x, into the p-type and n-type material respectively) of the depletion layer will be 

greater into the T i0 2 (n-type material). Calculated values o f x2 were all less than Xj 

indicating that this was indeed the case.

In the PbPc/Ti02 films the calculated penetration distance o f the depletion layer into the 

T i0 2 was greater under atmospheric conditions than under vacuum presumably a 

consequence o f the increased hole concentration in the PcPc film due to 0 2 molecules. 

PbPc is known to be highly sensitive to 0 2 which increases the free carrier 

concentration31.

Using derived parameters and available reported parameters an energy band diagram for 

the 10 (T i02/PbPc) heterojunction is proposed, shown in Figure 8.1.
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PbPc

Figure 8.1. Proposed energy band diagram for the dye sensitised 1 0  Heterojunction. x=penetration
depth o f  the depletion layer w idth, w here x i> x 2, 8ss=interface states, W =depletion  layer w idth, 
X=electron affinity. x (T i0 2)>  x(M Pc) according to Takada32. Eg (PbPc) from  
Schm eifler33.Eg(T i0 2) as derived in  these studies.
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Chapter

Conclusions and Suggestions for Further Work

The main emphasis of this work was put on obtaining a working dye sensitised 

photovoltaic (PV) cell from T i02 produced by Sol-Gel techniques which promises low 

cost manufacturing. The work was divided into two main research areas (i) development 

and investigations of Sol-Gel derived T i02 for use in the PV IO heterojunclion and (ii) 

investigations of the spectral, dark and phototvoltaic properties of the IO heterojunction 

cells.

As a result of the trials on preparations procedures and conditions and experiments 

carried out on dip coating and heat treatment processes, a robust, chemically and 

thermally stable T i02 film which was largely free from cracks and other surface defects 

was formed onto a conducting glass support. The films had strong adherence to the 

substrates following heat treatment.

The factorial investigations have confirmed the effect of previously documented factors 

such as withdrawal speed, alkoxide concentration and number of coatings on the 

properties of alkoxide derived Sol-Gel films. However, the results have also shown that 

these factors undergo significant interaction with particular effects on the thickness 

obtained during dip coating, with corresponding effects on thickness related properties



such as optical absorption and electrical properties of the coatings. The effects are 

explained by three main areas (i) the viscosity of the coating solution, (ii) the 

mechanism and kinetics of the reaction of the alkoxide precursor, and (iii) the surface 

interactions between the substrate and coating solution.

The presence of these interactions may explain the limited scope of existing theoretical 

models developed to predict and explain the behaviour of such materials, which has 

hitherto resulted in new systems being developed by a largely empirical process. An 

improved understanding of their causes and effects may allow the future development of 

more flexible predictive models for the behaviour o f Sol-Gel systems.

The studies identified that the computational technique of Ray and Hogarth is in good 

agreement with Tauc in determining E0 and 5 the optical band gap and the nature of 

electronic transitions respectively, the former method having the advantage that 8 need 

not be assumed. The E0 varied from 3.4-3.35eV where 8=2 indicting an indirect allowed 

transition in 1 layer thick films to E0 ~3.2eV where 8=3 indicating indirect forbidden 

transition as the number of coating layers increased.

The film refractive index n was in the range 2.73-1.81 and wavelength dependent. Good 

correlation between the experimental values and the single oscillator model was 

observed. The conductivity of the films determined from a Au/Ti02/lnS n02 structure 

was 4.26x10'6S/cm. Higher conductivities were observed in unheated films due to 

residual impurities and absorbed water within the pore structure.
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Over the temperature range 100-250K low activation energies were observed and 

indicated that charge carrier hopping is the most likely conduction mechanism in the 

films.

The spectral response, dark and illuminated J(V) and dark C(V) properties of 

Aii/MPc/Ti02/InSn02 or F-Sn02 IO heterojunction diodes (where MPc= copper 

phthalocyanine , chloroaluminium phthalocyanine or lead phthalocyanine) have been 

determined. Analysis o f the results leads to the following conclusions.

The correlation between the short circuit current density of the cell and the absorption 

spectrum of the MPc films suggests that the major part o f the incident light effectively 

contributes to the photocarrier generation because o f the wide band gap of T i0 2 and that 

excited MPc molecules are responsible for photocarrier generation in these devices. All 

of the organic dyes studied can be successfully used to sensitise Sol-Gel derived T i0 2 

into the visible region. The low quantum efficiencies are anticipated to be a 

consequence of the presence of recombination centres at the T i0 2/MPc heterointerfaces 

and the high series resistances o f the organic layers. A reduction of the organic layer 

thickness increased the quantum efficiency.

The M Pc/Ti02 junction produces a rectifying contact. Capacitance/voltage 

measurements confirm that the junction is abrupt. The dark J(V) characteristics were 

divided into three regimes.

(i) The reverse bias regime in which the device acts as a p-n heterojunction, the ideality 

factors were l<m<1.2 and indicated that although diffusion current dominates 

recombination mechanisms may be present, (ii) The intermediate forward voltage
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regime. Within this regime, generally the derived values of m>2 and therefore the 

presence of a high density o f interface states in equilibrium with the inorganic layer is 

expected to exist. The development of space charge limited currents in the organic films 

gave rise to variations and potential errors in m. Temperature dependence measurements 

of PbPc/Ti02 heterojunctions show that the junction currents are a composite of 

tunnelling and recombination, (iii) High forward regime. All devices deviate from the 

standard diode equation (3.35) as a consequence of space charge effects in the organic 

layer, the ideality factors m » 2 .

Photovoltaic effects were observed in all the devices studied. The characteristics are 

highly influenced by changes in ambient conditions, the thickness of organic layers and 

variations in incident intensity. Prolonged exposure to atmosphere and the high series 

resistances due to the low conductivity of the organic layers, reduces the overall 

conversion efficiency. The Voc(<j)) and Jsc((|)) are logarithmically and directly 

proportional to light intensity respectively. At high intensities the conversion efficiency 

is limited by space charge and very high while at low intensities by Rsh. The 

presence of tunnelling current was further supported by the observed Voc / temperature 

dependence.

It is anticipated that electron-hole pairs are created within the phthalocyanine on 

application of a light source, however, because of the higher electron affinity o f T i0 2 

the electrons are injected into the T i02 semiconductor, the ionised dye molecule is 

reduced by electron injection from the top electrode. Therefore in comparison with 

conventional PV devices the photoeffect (or production of photogenerated carriers) does 

not take place inside the semiconductor T i02 but in the sensitising dye on its surface.
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The future potential of the IO heterojunction cell, particularly in competing with 

commercial Si devices, lies in the improvement of the overall conversion efficiency. 

The best performance characteristic in these studies was 0.05% for a 

Au/PbPe/Ti02/InSn02 cell compared to ~10-12% for commercial Si cells, hence 

substantial improvements are necessary. However, the inherent advantages o f the 

successful development of such cells are highly attractive. In comparison to commercial 

Si the manufacturing technologies are relatively simple, in addition only small 

quantities of active materials are required to fabricate the thin film cells. This results in 

dramatically reduced costs. The bulk of the material required to fabricate IO devices is 

likely to comprise conventional glass, to which the active layers are added by 

evaporation techniques. The most expensive component of the devices is likely to be the 

evaporated Au electrode. However, the total thickness o f this layer is only o f the order 

of 10-50nm, and thus the high costs are of relatively limited significance.

In summary the T i0 2/MPc heterojunction cell offers an alternative approach for PV 

devices. The overwhelming advantages are the low cost materials and manufacturing 

technologies. However, optimisation of these devices is now required. For achieving 

higher efficiencies the following routes are suggested.

The use of dyes with broader ranges in absorption therefore utilising more o f the solar 

spectrum, higher current densities should be obtained.
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The minimisation of losses through recombination via defects in the form o f surface, 

and bulk imperfections, by the use of well purified materials and surface treatment o f 

the inorganic films.

An in depth assessment o f the effects of film thickness, in particular the organic layer as 

a route to reducing the series resistance’s induced by it.

Increasing the conductivity of the inorganic layer. For example by the introduction of 

dopants into the Sol during the manufacturing process.

Further analysis of the temperature dependence o f dark and illuminated J(V) 

characteristics needs to be carried out for a greater understanding o f the junction 

transport phenomena.

Further investigations into the effects of Sol-Gel parameters on the device performance 

are required. In particular emphasis should be placed on a detailed quantitative 

assessment of the effects on efficiency of the porosity of the T i0 2 film. In these studies 

a large fraction o f the MPc molecules had no direct contact with the T i0 2 film, therefore 

electron transfer from these molecules into the conduction band of T i0 2 can occur only 

with difficulty or not at all. Aji increase in the direct contact of MPc molecules with the 

T i0 2 film is required to increase the quantum efficiency of these devices. Therefore 

direct measurements of the light harvesting efficiency as a function o f the T i0 2 porosity 

would be of great benefit in the cell optimisation process.
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Alternative constructional options include the formation of a T i0 2/phthalocyanine 

matrix, in which the dye is embedded within the T i02 forming a novel optical material 

with a very high interfacial area and hence potential light harvesting capabilities. 

Unfortunately, little information on the effectiveness of introducing dye molecules into 

Sol-gel networks exists. An additional option is the formation o f a multilayer device 

consisting o f a wide band gap inorganic transporting material such as a T i0 2 layer in 

conjunction with multilayers of thin dye layers. The dyes would be sensitive to 

complementary regions o f the solar spectrum and an electron affinity gradient between 

the layers would ensure an effective charge transfer.
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APPENDIX A : SWANEPOEL PROCEDURE

The tables contained within this appendix refer to section 6.6.3 and 6.7.4. They contain 

values of TM, Tm, the refractive indicies, ns, rii, n2, derived thicknesses, di, d2, and the 

values of m0, and m as a function of wavelength (X). The average values determined for 

thickness diav and the second more accurate estimate d2av are also shown.

All are for Ti02 Sol-Gel films prepared from a molar ratio of Acetic acid:TIP of 4.16:1 

and concentration of TIP in ethanol 12.6%., the films were annealed to 500°C for 5 

hours.

The accuracy to which n and d can be determined depends on the accuracy to which X, 

Tm, and T,„ can be measured. The scale used for X yields an accuracy of +/- 5nm and the 

maximum accuracy with which Tm, and Tm could be determined was +/- 5% (+/- 0.005). 

This yields an overall thickness accuracy of +/- 2%.

The sample references indicate the withdrawal rate, denoted ‘A’ and ‘B ’ for lOOmm/min 

and 250 mm/min. respectively and the number of coating layers denoted 5,6,7 or 8. 

Repeat measurements are also shown.
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APPENDIX B: ANOVAS AND TABLES DERIVED FROM YATES ANALYSIS

1. Overall Coating Thickness
Table 1. Yates Analysis 
Table 2. ANOVA

2. Average Coating Layer Thickness
Table 3. Yates Analysis 
Table 4. ANOVA

3. Measured Absorption at 4eV
Table 5. Yates Analysis 
Table 6. ANOVA

4. Calculated Absorption Coefficient (105cm’1)
Table 7. Yates Analysis 
Table 8. ANOVA
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APPENDIX C: IO HETEROJUNCTION PARAMETERS

1. Spectral Response Characteristics

2. Solar Cell Characteristics

3. Temperature Dependent Characteristics for Au/PcPc/Ti02/InSn02 cell.
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Tem perature
(K)

Intensity
(mW/cin2)

Voc
(mV)

Isc
(x108A)

FF Tj%
(xlO-2)

100 0.16 80 0.797 0.2 0.266
CC 0.56 145 1.147 0.24 0.238
c c 1.12 175 1.91 0.252 0.251
c c 1.6 194 2.19 0.248 0.22
c c 2 218 3.21 0.206 0.24

150 0.16 110 1.29 0.217 0.642
c c 0.56 184 3.84 0.216 0.908
c c 1.12 241 7.06 0.238 1.21
c c 1.6 256 7.97 0.259 1.1
c c 2 269 9.1 0.257 1.05

200 0.16 254 2 0.208 2.2
c c 0.56 336 6.88 0.21 2.89
c c 1.12 404 11.2 0.247 3.33
cc 1.6 434 12.7 0.257 2.95
c c 2 458 14 0.252 2.69

250 0.56 320 6.64 0.206 2.61
c c 1.12 404 13.2 0.237 3.76
c c 1.6 410 16.5 0.245 3.45
c c 2 410 20 0.268 3.66

Summary o f  results obtained for V oc, Isc, FF and r|% o f  a A u /P b P c(100n m )/T i02(5 0 iim )/In S n 0 2 
heterojunction ce ll as a function o f  temperature. D ev ice active area 0 .07cm 2 m easurem ents m ade under 
vacuum.
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THE ROLE AND INTERACTIONS OF THE PROCESS 
PARAMETERS ON THE NATURE OF ALKOXIDE 

DERIVED SOL-GEL FILMS

S.M . Tacey , S.N.B. Hodgson**, A.K. Ray*, and Z . Ghassemlooy*
‘S h effie ld  H allam  U n iversity , S chool o f  E ngineering and Inform ation T ech n ology , U K  

“ U n iversity  o f  H um berside, S ch oo l o f  E ngineering, U K

A B S T R A C T

D ip-coated  TiC>2 so l-ge l film s have been used as a representative system to investigate the effects of, 
and interactions betw een , the principle parameters for the so l-gel process. T he studies have been carried 
out on various aspects o f  the optical, structural and electrical nature o f  the films, using the statistical 
analysis technique, factorial experimental design (FED) w here appropriate. The w ork has identified the 
existence o f  highly significant interactions betw een process parameters such as withdrawal rate, sol 
concentration and the num ber o f  coating layers. Appropriate models are proposed in order to  explain 
the observed effects.

1. IN T R O D U C T IO N .

The so l-g e l m ethod offers many advantages over other methods o f  producing inorganic thin 
films. For exam ple, the lo w  processing temperature; the possibility to change the sol com position and 
therefore p roduce a chan ge in film microstructure, and low  processing cost com pared to som e 
com petitive p rocesses such  as C .V .D . In addition, the problems o f  producing good  stoichiom etric ratio 
o f  elem ents and m olecular hom ogeneity are overcom e, [1]. Many inorganic thin films have been 
produced using this technique and have found applications in a w ide variety o f  areas including 
antireflective coatings, gas sensors, magnetic core materials, electrical and optoelectronic devices, [2 -6 ].

It is recogn ised  that process parameters have a major influence on the properties o f  sol-gel 
products. Param eters such  as heat treatment conditions, sol reactivity and viscosity, ox ide ratio, and the 
number o f  coatin gs have been  shown in som e cases to  drastically alter the electrical, optical and 
structural properties o f  the films, [7 ,8]. H ow ever, the m odels developed to  explain and predict the 
behaviour o f  such  system s have tended to  characterise the role o f  individual factors in the process, and 
remain o f  lim ited general applicability. C onsequently the developm ent o f  novel system s has tended to 
occur on a largely em pirical basis. Little published w ork exists on the role and nature o f  interactions 
betw een the p rocess param eters to  alio.v a m ore general understanding o f  the role o f  the process 
parameters to  be d eveloped .

Factorial experim ental design (FE D ) is a useful, highly efficient statistical technique for 
assessing and predicting the effect o f  both individual factors (i.e. process parameters), and any 
interaction b etw een  factors that may exist, [9]. Originally developed by Fisher in 1926 [ 10], it is a 
technique that offers a num ber o f  advantages over the traditional 'one-factor-at-a-time' approach, in 
w hich the effect o f  changing any one variable is assessed independently o f  the others. For exam ple, for n 
factors the design  requires n tim es fewer m easurements than the 'one-factor-at-a-tim e' approach to 
acquire the sam e inform ation. U sing a 'one-factor-at-a-time' approach there exists the possibility o f
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drawing m isleading conclusions in system s w hich undergo interaction, these can be effectively avoided  
through the u se  o f  FED.

Our investigations have been conducted on Titanium dioxide films obtained through hydrolysis 
o f  Titanium Isopropoxide (TIP). This material is a popular choice for use in many electronic and 
optoelectronic devices, due to its high dielectric constant, chemical stability, high refractive index, and 
low  sensitivity to  temperature and frequency, [11]. A s a consequence, this material has attracted  
considerable interest, [8, 12 , 13],

It is anticipated that the findings presented in this paper will be applicable to a w ide variety o f  
similar a lkoxide systems, and that elucidation o f  the nature o f  interactions between the process  
parameters w ill lead to a greater understanding o f  their role.

2. E X P E R IM E N T A L  M E T H O D O L O G Y .

2.1. P r o d u c tio n  o f  T iO z film s.

The T i0 2  thin films w ere prepared through the room temperature hydrolysis o f  the m etal-organic  
precursor, T itanium (IV) Isopropoxide Ti[O CH (C H 3) 2]4 (97%  pure) supplied by Aldrich Cherrvcals. 
This w as perform ed in the presence o f  (99.5% ) pure glacial acetic acid CH3 COOH, which has the 
effect o f  controlling the rate and extent o f  the hydrolysis o f  the TIP, [14], The acetic acid w as first 
added to (99 .7 -100% ) anhydrous ethanol (50m l) and allowed to mix for 5 minutes after w hich the 
precursor material w as added with the solution continuously stirred for a further 2 minutes. D ip coating  
was then im m ediately carried out.

A  linear dipping mechanism supplied by N im a Technology w as used to deposit the film s onto  
appropriate substrates under atmospheric conditions. All samples w ere dried in air for 24 hours at room  
tem perature then heat treated in air at temperature o f  500°C  (unless specified otherw ise) for 5 hours. 
For the m ultiple coated samples the heat treatment process w as repeated after each subsequent 
deposition. T he solution w as dip coated onto chem ically and ultrasonically cleaned glass substrates at a 
dip w ithdraw al speed o f  100 or 250 mm/minute.

2 .2 . In fra  red  stu d ies.

Infra red studies were carried out on residues o f  the sol mixture in the wavenumber range 500  to  4 0 0 0  
cm - 1. T hese studies w ere necessary in order to  identify the presence o f  any organic residue, w ater or 
solvent left after heat treatment. Analysis was performed using an A T I M attson Genesis Series FTIR  
spectrom eter on  pressed KBr discs containing 1% by mass o f  the pow dered sample.

•

2.3. X -R a y  d iffraction .

In order to determ ine the effect o f  the process route and heat treatment conditions on the structure o f  
the so l-gel product X-ray diffraction studies w ere performed on residues o f  the sol mixture subjected to  
identical heat treatment to  the coating films. T hese experiments w ere carried out using a Philips 
P W 1710 diffractom eter with monochromated Cu radiation at a scan speed o f  0.01 degree (2 0 ) per 
second.

2 .4 . C o n d u c tiv ity  m easurem ents

The effect o f  the heat treatment conditions on the electrical conductivity o f  the TiC>2 sol ge l film s w as  
determ ined using specially prepared films which w ere dip coated, as a single layer onto a g lass slide  
preprinted w ith platinum interdigital electrodes. A  dip withdrawal speed o f  250  mm/minute w as used.
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Each o f  the 15 electrodes w ere 186p. w ide and 60fi apart, and overlapped by 3 .125m m  providing  
approxim ately 252 squares o f  surface electrode (N ). The intrinsic conductivity o f  the film s applied to  
this e lectrode could then be estimated from the equation, [15];

W here cr is the intrinsic conductivity (S /cm ), S  the measured conductance, /  the film th ickness (cm ) and 
V is  the number o f  squares in the electrode. A  Keithley 617 programmable electrom eter measured the 
current as a function o f  applied D C  voltage in the range ± 40V . C onductance (5 )  values were 
determ ined from the slope o f  I/V  plots. All measurements w ere performed in an O xford Instruments 
Cryostat under a vacuum o f  ~  O.ltorr. The measurements w ere performed on slides coated  under the 
fo llow ing conditions: M ole ratio o f  acetic acid to TIP =  4:1 and TIP concentration =  6 .3  mis in 50 ml 
ethanol.

2.5. A p p lica tio n  o f  F actoria l exp erim en ta l design  to th e presen t in v estig a tio n s.

In these investigations each factor or process parameter w as represented by tw o leve ls (a high and a 
low ) g iv ing  a 2n design, w here n w as the number o f  factors studied. A  system atic tabular method 
derived by Yates [16] has been used to  calculate the total effects for each treatment com bination (or 
particular combination o f  factor levels). These effects w ere then used to produce an A N O V A  (analysis 
o f  variance) in which, the significance o f  effects and interactions w ere  assessed  against the 
f-distribution. In order to carry out the statistical analysis effectively an estim ation o f  the experimental 
error w as required, which w as achieved by replicating the experiments.

F or the factorial design the factors investigated w ere (a) the effect o f  dip w ithdraw al speed, (b) 
the effect o f  the relative m ole ratio o f  acetic acid: TIP, (c) the effect o f  the number o f  coating layers 
applied, and (d) the effect o f  the concentration o f  TIP precursor used . In the latter case, the 
concentration o f  acetic acid w as varied proportionally to  maintain the respective m ole  ratio o f  acetic 
acid to  TIP. Standard notation has been used in these experim ents w here the upper ca se  letter e.g. [A] 
denotes the calculated effect o f  a factor or interaction (e.g. [A B ]) and the lo w er  case letter e.g . [a,b,c,d] 
indicates that the sample w as prepared with that factor at a high level.

2 .5 .1 . T h ick n ess m easu rem en ts.

A planar surfometer (Surfcom  3 0 0 ) w as used to measure the film thickness to  an accuracy o f  
approxim ately ±0.0  lp m . T hickness measurements w ere carried out by m easuring the step height o f  the 
coating film relative to the substrate, at a fixed distance (2m m ) from the top  ed ge o f  the coating. For 
each coated  sample a total o f  4 thickness measurements w ere made (2 on each side o f  the sample). The 
process parameters investigated as factors and their respective levels are listed in table 1.

(1)
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Table. 1. N otation used and process parameters investigated during factorial experiments.

E ffect F actor H igh  L evel L ow  L evel

[A] Withdrawal speed 250 mm/min 100 mm/min

P I M ole ratio o f  acetic a c id :T P 4.1:1 3.1:1

[Cl N o  o f  coating layers 4 1

[D ] Concentration o f  T P  in ethanol, 

(acetic acid increased proportionally)

6.3m l T P  

50 ml ethanol

3.15m l T P  

50 ml ethanol

2 .5 .2 . A b sorp tion  coeffic ient.

An ATI Unicam (U V 2-100) U V /V IS  spectrophotometer w as used to  determine the absorption spectra 
o f  the films in a wavelength range o f  300-800nm . Both the total absorption and absorption coefficient
(a )  o f  the films w ere studied, where the absorption o f  the films is defined as the ratio o f  In^j/I) where I0 
and I are the initial and transmitted light intensity respectively, and the absorption coefficient is the 
ratio o f  absorption to the film thickness. The absorption behaviour w as wavelength dependent, and a 
standard photon energy o f  4eV , w hich was within the absorption band edge, w as therefore used in these 
calculations. The process parameters investigated were as listed in table 1.

3 . R E S U L T S  A N I) D IS C U S S IO N .

3 .1 . T he dip  coating  process.

The dip coating and heat treatment processes resulted in all cases in a robust, chemically and thermally 
stable transparent T i0 2 film which w as free from cracks and other surface defects. N o  evidence o f  
precipitation or crystallisation could be identified either visually, or by optical or electron m icroscopy.

The stability o f  the coating solutions was found to be dependant upon the respective 
concentrations o f  acetic acid and TIP used. For sols containing less than 4 m oles o f  acetic acid per m ole 
o f  T P , the sols became cloudy after a period o f  approximately 1 hour and underwent gelation in 
approximately 2 hours. Sols prepared with more than 4 m oles o f  acetic acid per m ole o f  T P  w ere  
found to remain stable and clear for at least 24 hours.

3 .2 . Infra red absorp tion  m easu rem ents.

The results o f  the infra red absorption measurements carried out on the variously heat treated gels  
show'ed the expected reduction in the absorption peaks due to residual organic groups, as heat 
treatment temperature was increased, Fig. 1. In particular, a reduction w as observed in the intensity o f  
the tw o absorption peaks at approximately 1500 cm*1, which have been attributed to bridging acetate 
groups, [ 12], from the reaction m odifying acetic acid.

The results show  that, even at the highest heat treatment temperature used (500°C ) there 
remained a small, but significant absorption from these organic groups, show ing that these had not been  
com pletely eliminated. It is suggested that these impurities may have been effectively eliminated at 
low er temperatures for the (submicron thickness) coating films compared to the bulk gels used in this 
study, but this could not be determined due to problems o f  substrate absorption. Future w ork is planned 
using silicon substrates to  confirm this.
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Figure. 1. Infra Red absorption spectra for variously heat treated T i0 2 gels , 
a) unheated, b) 350°C  c) 500°C

3 .3 . X -R ay  d iffra c tio n  m easurem ents.

The results o f  the X -R ay diffraction studies carried out on bulk gel sam ples sh ow ed  that the structure o f  
the gel product varied according to the heat treatment conditions used . For the unfired gels, the X -R ay  
diffraction patterns obtained w ere in all cases indicative o f  an am orphous structure. In ge ls heat treated 
to  a temperature o f  3 50° C the structure w as predominantly am orphous although there w as evidence o f  
crystallisation beginning to  take place. A t a temperature o f  500°C  diffraction peaks characteristic o f  the 
anatase crystal structure w ere obtained indicating that crystallisation had occurred. Presumably the 
crystal size w as to o  small to  be determined by m icroscopy. O ther studies, [14], have identified  
crystallisation in titanium ethoxide derived T i0 2 gels heat treated to  tem peratures as low  as 150°C with 
the temperature stability being found to be a function o f  the alkoxide precursor used  and the dilution o f  
the alkoxide precursor. It has been suggested, [14], that the on set o f  crystallisation may correspond to 
the release o f  residual organics from the gel during heat treatment.

3 .4 . E lectr ica l co n d u ctiv ity .

The results o f  the experim ental determination o f  the effect o f  heat treatm ent conditions on the electrical 
conductivity o f  so l-gel derived T i0 2 films are show n in F ig.2 . T he results sh ow  that there w as an 
apparent decrease in conductivity in films heat treated at 200°-350°C  com pared to  the non-heat treated  
films. The greater conductivity o f  the unheated films most probably arises from  the contribution (to  the 
conductivity) o f  residual organic material identified in the infra-red sp ectroscop y , and possibly a lso  due
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to the presence o f  adsorbed water in the pore structure o f  the gel. T hese w ould be expected to be 
removed during heat treatment. The diminishing reduction in the conductivity o f  the film is presumably 
due to removal o f  the majority o f  these residual impurities. It w as not possib le to determine the effect o f  
heat treatment temperatures in excess o f  350°C  in this study due to  degradation o f  the metal electrodes 
at heat treatment temperatures in excess o f  this. Further studies are planned using I.T .O  coated glass 
substrates as electrodes to investigate the effect o f  higher heat treatm ent temperatures. The change in 
electrical behaviour also correlated broadly with the onset o f  crystallisation in the specim ens, and it is 
possible that this crystallisation may be either the cause o f  the change in behaviour, or may arise from  
the same phenom ena (the removal o f  residual orgamcs).

«  lx lO *9
-acoU

200100 300

H eat Treatment Temperature (°C )

Figure 2 - The effect o f  heat treatment on the conductivity o f  T i0 2 film.

3.5. F actoria l exp erim en ts.

3.5.1. F ilm  th ick n ess determ ination s.

The results o f  the thickness determinations carried out on the coated glass substrates indicated  
that this w as generally consistent across the coatings, with total film thicknesses in the range 0 .03 to  
0.37 pm being produced according to the process parameters used. H ow ever, in all cases there w as  
evidence o f  a small region o f  considerably greater thickness (approxim ately 1 pm ) c lo se  to  the top edge  
o f  the coated region, and som e evidence o f  a slight and gradual reduction in coating thickness tow ards 
the bottom  o f  the dip coated substrate. This latter point w as extrem ely difficult to  confirm due to  
variations in the flatness o f  the substrate at this scale.

The results o f  the factorial experim ents and the associated  analyses o f  variance for the effect o f  
withdrawal speed, acetic acid : TIP m ole ratio, number o f  coatings applied, and the concentration o f  
TIP on both the total coating thickness, and the individual coating layer thickness are show n in table 2.

3 .5 .1 .1 . In terp reta tion  o f  calcu lated  m ain  effects.

The calculated main effects for a factorial experim ent represent the effect o f  each factor, 
averaged over all levels and combinations o f  the other factors. T hus in system s in which considerable 
multi-factor interaction occurs, the calculated main effects are o f  lim ited significance, since the effect o f  
each factor is dependent upon the levels o f  the other factors present, and should be interpreted with  
som e caution.

The calculated main effects o f  the dipping speed, ([A ] in table 2 ) indicates an increase in both  
total film and coating layer thickness as the dipping speed is increased. This is consistent with theory

1273



Ta
bl

e 
2: 

Ta
bl

e 
3:

R
es

ul
ts

 
of

 
fa

ct
or

ia
l 

ex
pe

ri
m

en
t 

R
es

ul
ts

 
of

 
fa

ct
or

ia
l 

ex
pe

ri
m

en
t 

fo
r

for
 

co
at

in
g 

an
d 

co
at

in
g 

la
ye

r 
th

ic
kn

es
s.

 
op

tic
al

 a
bs

or
pt

io
n 

an
d 

ab
so

rp
tio

n 
co

ef
fi

ci
en

t, 
(l

O
^

n
r1

A dvances in Materials and P rocessing Technologies ‘95

o

Significance

Mean factorial 
effect

Mean calculated 
absorption coefficient

Treatment

Significance

Mean factorial 
effect •

Mean absorbance

Treatment

CO 05 . 0) 
2 2 1 2

CO 05 0) 
2 2 2

05 05 
2 2

03 in o  n  N (O N w •r- o  o
o ’ o ' o ’ o ’

II II It II
< m o Q

in  in  o  co cN N N (D (O— Tf CO CO OO

TO X  O X

m S  03 S  ® CD CO (N CM o  o j q o n ^ i :  
9  9  o ’ o ' o ’ o ’

It It II II II II
m O Q O Q  Q 
< .  <  co m  o

O  CO O  CO CO ocn cn cn cm rr n
■m- m  co co co co
t-’ t- O -r-̂ O

x5 o x :  u  ri x  TO TO TO X X O

CO CO CO CO 
2 2 2 2

™ a> ™ com k> cm So  5  (N ;
9  d  0  d

C O Q Q 
CO CD O  O
<  <  <  OQ

00 CM "T *—o —

co X  X  X  X X O O TO TO TO X

05 .

co ^  r -
co (M CM CT» C5
t :  cm m  5  12 tc

co n  9  R  ■»
9  o ’ d  co o  d

CO CO 05 
2 2 * 2

C3 O  CD CDR o n *; CO O o  o
9  o ' o ’ 9

II II II II c
<  5 * o  Q ~

CO
2

ii a ii ii ii ii .2  ii ii n it §  ii
m O Q O Q Q U  O Q  O Q  ~  o '  
<  <  < m m o u tD m o u  ro o

“  .2 < < < ca ^cnc  —  — - £  <

r -  -m- o  o  
O  O  O  CM CO CO C3 m
o ’ o’ o’ o ’

ro x  o x

m- tn in n  m- in o
TT in  CM i -  CD CO 51
m  m  o  cn m  co J5
0  » - d  d  t— u .

 ---------------------   CL'

in o  o  mO M (D ifco co o  m

X  O  X  O  
TO TO TO X

0)X X Ux  o  x  
H

ro x  x  x  x  x  u o
TO TO TO X

o ^£  cn
u  CO

. e i L
E 10— o
O  X  

U . TO

0 0*

0
c c " 5

a £ C
c 0 O

E CC0 0 .
u
O h

c
<D >

O T 3 O
c CJ

c a O 0
CO 0 vO

CO

£

O

O
CL

t o c
CO0

c

0 O
CO H "co c

1 5
u

' o 0 c
CO

CO

0 u O 0
a>

c
CO

CD

<D

<1)

a>
* E0

2

ti

II 'I
m o

co 05

TO — C TO
X Oro n to _
“  O 
II 03 
x <

■O C —
TO ~  TO<u ro > 
c .  o  ro  « O —  .  vOTO o P
$ _ 
to a)

^  E

T3 Q w 
O ^  ©
x" O O

-3 “  ro

CQ 
>• “  
LU •— ^ <

TO TO 
II II
< o

C TO X
O §: u
O X:
ro  . 3 c

0 J O 
II CO
i 11

Sianificance

Mean factorial 
Effect (urn)

Mean coating layer 
thickness (um)

Treatment

Significance

Mean factorial 
Effect (um)

Mean Measured 
Coating Thickness 
(um)______________

T reatm ent

CO CO CO CO CO CO 
2  2  2  2

<  m o  c

in  o  o  o  o
in  in  0 - co n
q  o  o  o  c
o ’ 0  0  o  d

co o  o  1- w To  o  - 1— cc o
0 0 0 0 2 0  
o ’ o  o  d  p  o
11 :i 11 11 11 11

co o  o '  o '  o '  cT
<  <  <  CO CD Q

in o  in o  o  x
•a- c o  00 o -  m  cd0 0 0 0 0 0  
o’ o’ o’ o’ o’ o’

cn in  
o  C O o  
d  p

O O C Q 
G3 CD O O 
<  <  <  CD

TO X  O  X5 O X O X 3« ro x  x

-  in x  o  
cd co  co  r r  0 0 0 0  
d o d o ’
o X X X X X o  o  ro ro ro x

xo
X

CO

O ) CO ' f  CO 
*3- O  CD CDo  o  t- o  
d o d o

cn11 11 11 11 c  
< O O Q  =

TO
ro

CO T- o  -r- CO cow x  n  w 2  xo  o  o  o  P  o
o  o  o  o  p  o
11 11 11 11 11 11

x  in  n  ©  
CM O  C\l P  O O O p  
o  d  o  9

11 11 ti
C Q O Q O Q Q  o q q q q< < < m m o 2 m m o o

•— TO <  <  <  CD

CO

o
q

cn
s J L
O o  
2 m 
£  <  c  “

in  o  o  0  o  i_
in  in  tt cm n  oo  o  o  o  -E
o  o’ d  o’ o’ ^-------------------u.
T - TO X  O  X  ?

in  o  in  o  o  o  o  in  in  in  o  
o  t-  o  t-  o  cm “  
d d d o ’ d d u - d

-c  co co 10
CM O  CO t-

d  o  o

in

x  o x  u x 
to ro ro x  x x  c.ro x

o x x  x E
X  X  O  O  TOro ro ro x

to _TO c  
C C 
£  TO 
— C _H o toD) O

— £ ro c TOro o 
i_  ro
o 2

x  
0ro o 
M  CL
TO —
TO t J  —  TOro c

o ' r-
*0 ra

= O 0  0  O TO TO
Q . ©

- E  -  C

O to: at T

II O 
X CQ< =

-  Oo ==*

TO '—f

>-* £  
UJ -~
s: 2 L

t5CD
t 3
•2

ca0 0
2

'S CD ccn 11
I! II CO CO

CD u
cncnr

* 2

CD (5 (D> CD>
2 00

_CD Q>
vO0^£ O

CO 0>
■0-C

JO
F <5

5
3C cCO

CO

0 O 0 CO0
0Q) OQ)

ca> c
or CO c n

0) cd 11 ( 0
II 11 K

<r O *

1274

14



A dvances in Materials and Processing T echnologies ‘95

proposed by other workers, [17J, and has been explained as being due to the effect o f  viscous drag on  
the liquid m eniscus, [ 1].

N o  significant effect could be identified for the acetic acid: TIP m ole ratio [B ] in the thickness 
factorial experim ents. This was som ewhat unexpected since, as discussed in section  3.1 , the level o f  
acid present resulted in a change in the reactivity (and gelation tim es) o f  the alkoxide precursor, and 
might therefore be expected to result in a change in the viscosity o f  the coating solution. This 
discrepancy may be due to the short time elapsed between alkoxide addition and the dip coating  
process, resulting in relatively small differences betw een the progress o f  the relative reactions o f  the sols 
containing different levels o f  acid addition. H ow ever, it is also possible that the presence o f  such an 
effect m ay be m asked by the large interaction effects involving this factor.

T he total thickness o f  the coating show ed the expected increase as the number o f  coating layers 
[C] w as increased from 1 to 4 (by an average o f  0 .16  pm averaged over all levels and com binations o f  
the other factors). H ow ever, the calculated factorial effect o f  the number o f  coatings, on the thickness 
o f  the individual coating layers w as not found to  be significantly large, significant interaction effects 
were found involving this factor, and these are discussed in more detail in subsequent sections.

T he calculated main effects o f  TIP concentration [D] in the factorial experim ents show ed an 
increase in both total coating thickness and individual layer thickness w ith an increase in the 
concentration o f  the TIP as might be intuitively expected. H ow ever, the m agnitude o f  the calculated  
factorial effect for this factor has little practical significance due the presence o f  numerous interactions 
involving this factor. The effect o f  changing TIP concentration on the coating thickness depends upon a 
number o f  other factors.

3 .5 .1.2 . In teraction  effects.

T he results o f  the factorial experiments for both total coating and individual coating layer 
thickness indicated the presence o f  numerous interaction effects. A  number o f  significant tw o and three 
factor interaction effects could be identified in the experiment for the overall coating layer thickness 
which appear to  be not significant in the experiment for the individual coating layer thickness. 
H ow ever, this apparent discrepancy is most probably due to the increased sensitivity o f  the former 
experim ent in detecting what are in all cases relatively small effects relative to  the error in the thickness 
determ inations.

It is suggested  that the interaction effects can be attributed to  three probable factors, which  
could produce the effects identified in these experiments. These factors being (i) the v iscosity  o f  the 
coating solution, (ii) the mechanism and kinetics o f  the reaction o f  the alkoxide precursor, and (iii) the 
surface interactions betw een the substrate and coating solution.

T he significant (positive) interaction effects between withdrawal speed with acid: TIP molar 
ratio [A B ] and TIP concentration [A D ] are m ost probably indicative o f  non-N ew tonian  properties in the 
deposited  film o f  the coating solution during dip coating, which appear to  be exaggerated by the 
presence o f  either reaction modifying acetic acid, or the reaction precursor TIP at high concentrations. 
An increase in coating thickness w ould be predicted from an increase in the so l v iscosity  during 
deposition. Other workers, [18], have found evidence o f  non-N ewtonian behaviour during dip coating  
at w ithdraw al speeds in excess o f  approximately 50 mm per minute as used in this study.

T he interaction effects betw een the number o f  coatings with withdrawal speed [AC], acetic acid 
concentration [BC ], and concentration o f  TIP [CD], and the three factor interaction betw een the  
number o f  coating layers with withdrawal speed and acetic acid concentration [A B C ] can be attributed 
to a change in the surface interaction betw een the substrate and coating solution as these factors are 
varied. P revious work, [ 1], has suggested that the thickness o f  the coating film produced during dip 
coating is determ ined by a number o f  factors related to surface effects including the v iscous drag 
exerted on the liquid by the m oving substrate. These effects are likely to  be different betw een the 
coating liquid and a coated or uncoated substrate.
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P revious studies, [19], have suggested that the thickness o f  the first coating layer in a multi-layer 
coating is greater than that in subsequent coating layers. H ow ever, it can be deduced from the 
interactions identified in this w ork, that such a phenomena is highly dependent upon the levels o f  other 
factors, and cannot be assumed to take place.

The significant negative interaction effect betw een the concentrations o f  the TIP precursor and 
acetic acid reaction modifier [B D ] w ould appear to be indicative o f  a change in the kinetics, and 
perhaps mechanism o f  the hydrolysis and polycondensation reactions responsible for the gelation 
process. A  reduction in film thickness w ould be expected if  such an interaction resulted in a reduction in 
the reaction rate and/or solution viscosity. It is probable that the hydrolysis inhibiting reaction which 
occurs betw een the TIP and acetic acid, [12], occurs faster and to a greater degree when the two 
reactants are present at a higher concentration.

3 .5 .2 . O p tica l ab sorption  exp erim en ts.

The results o f  the measured optical absorption and calculated optical absorption coefficient 
values for the so l-gel derived films together with the calculated factorial effects and associated analyses 
o f  variance are show n in table 3.

The results o f  experim ents for optical absorption indicate the presence o f  large numbers o f  
apparent effects o f  interactions. H ow ever, when these effects are converted to  absorption coefficient, 
to incorporate the effect o f  film thickness, the majority o f  these are elim inated, indicating that these 
changes in optical absorption can be attributed to the variation in film thickness associated with changes 
in the process parameters. T he remaining effects, which w ere significant in both  optical absorption and 
absorption coefficient experim ents indicate effects which cannot be attributed solely  to  changes in film 
thickness and w hich must arise due to  changes in the behaviour o f  the coating film s them selves.

The m ost significant effects in both experiments w ere associated w ith the effect o f  the number o f  
coating layers applied, which w as also the largest factor affecting the th ickness o f  the coating. The 
calculated main effects o f  the number o f  coating layers [C] show ed the expected  increase in overall 
optical absorption as the number o f  coating layers, and hence coating thickness increased (m anifested as 
a positive factorial effect). H ow ever, once the effects o f  coating thickness are taken into account (i.e. 
in the absorption co e ffic ien t), the calculated effect o f  this factor w as found to  change from a positive 
to a negative effect (-0 .472).

One possible explanation o f  this phenomena is that a large contribution to the apparent optical 
absorption may be due to reflectance at the coating/substrate interface due to  refractive index mismatch. 
This effect will occur only for the initial coating layer (since subsequent layers w ill have identical 
refractive index to the first layer), and thus subsequent coating layers w ill have a smaller effect on 
absorption and apparent absorption coefficient than the first. This w ould be m anifested as a negative 
factorial effect for the number o f  coatings in the absorption coefficient experim ent.

4. C O N C L U S IO N S .

T he results o f  this study have confirmed the effect o f  previously docum ented  factors such as 
withdrawal speed, alkoxide concentration and number o f  coatings on the properties o f  alkoxide derived 
sol-gel films. H ow ever, the results have also shown that these factors undergo significant interaction 
with particular effects on the thickness obtained during dip coating, w ith  corresponding effects on 
thickness related properties such as optical absorption and electrical properties o f  the coatings.

T he presence o f  these interactions may explain the limited scope o f  existing theoretical models 
developed to predict and explain the behaviour o f  such materials, which has hitherto resulted in new  
system s being developed by a largely empirical process. An im proved understanding o f  their causes and 
effects may allow  the future developm ent o f  more flexible predictive m odels for the behaviour o f  sol-gel 
systems.
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ABSTRACT

A three stage synthesis o f  the 2-(l-methylpyridinium-3-yl) benzimidazolate betaine is described. The 
reaction o f the betaine with an equimolar proportion of tetracyanoquinodimethane (TCNQ) in the 
presence o f acetonitrile results in the formation o f a novel semiconducting black microcrystalline adduct. 
Microanalysis o f the material indicates a betaine/TCNQ ratio o f 1:1. J(V) characteristics have revealed 
that conduction in this adduct is ohmic over the range studied, with room temperature conductivity being 
4.7x10*3 S/cm . The ohmic activation energy was 51meV. Hopping is believed to be the dominant 
conduction mechanism.

1.0 INTRODUCTION

Charge-transfer complexes of donor molecules with the electron acceptor 

tetracyanoquinodimethane (TCNQ) have been studied extensively over the past thirty 

years. A great variety of such complexes has now been characterised, with electrical 

conductivities spanning the whole range from insulator to semi-conductor to organic 

metal. As part of this development, there have been extensive studies of the interactions 

of TCNQ with nitrogen heterocycles, and their related quaternary salts derived from 

iodoalkanes1. Interest in this area continues2. We have recently developed synthetic 

routes to a range of phosphonioaryl benzimidazolate betaines, e.g. (I ) , 3 and are 

interested in comparing their properties with those of the related 

N-alkylpyridinium systems (2), the chemistry of which has been developed by Alcalde 

et a t .  Such dipolar systems have considerable potential as materials that may exhibit 

phenomena such as molecular rectification, solvato-chromism, halochromism, non

linear optical and other properties that can form the basis of sensing techniques5 ' 7 . In 

this paper, we describe the synthesis and DC electrical characterisation of a TCNQ
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adduct of the pyridinium betaine (5), a black solid which exhibits a significant level of 

semiconductivity at room temperature.

ph>pHOHc30)
I

c h 3

(1) (2)

RESULTS AND DISCUSSION

The synthetic proceedure used to prepare the betaine/TCNQ adduct is outlined in 

scheme 1. The 3-pyridylazole(3) starting material was prepared as previously described 

by Alcalde et alz. Conversion of the pyridylazole into the corresponding N-alkylated 

salt(4) was carried out using methyl iodide under standard conditions9. Treatment of 

the salt with an equimolar proportion of sodium hydroxide in ethanol gave the stable 

betaine(5). Reaction of the betaine(5) with an equimolar proportion of TCNQ in 

acetonitrile resulted in the formation of a black microcrystalline 1 : 1  adduct.
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NH2 X O O H

*NH ‘N‘

(5)

(iv)

(i)

(iii)

(3)

(ii)

(4)

[Betaine] [TCNQ] (6)

Scheme 1. Reagents and percentage yields: (i) PPA, (81%); (ii) methyl iodide(69%); 

(iii) 1M sodium hydroxide(95%); (iv) TCNQ (6 8 %).

The infrared spectrum of the adduct exhibited C = N stretching vibrations at 2194 and 

2174 cm '1, consistent with a significant degree of charge transfer from the betaine to 

TCNQ. For comparison, neutral TCNQ 10 exhibits v (C = N) at 2234 cm '1, whereas 

the TCNQ-radical anion11 has the related absorption at 2186 cm '1.

The adduct was soluble in both acetonitrile and DMF, to give green solutions, the uv- 

visible spectrum of which showed significant absorption in the region 700-900 nm, 

consistent with the presence of the TCNQ' radical anion. Thin layer chromatography 

studies indicated that the adduct dissociated to reform the betaine and TCNQ.

3



The DC conductivity (a) of a compressed pellet of the material has been measured at 

room temperature and was found to be 4.7x10'^ S/cm, well within the semiconducting 

range. The room temperature J(V) characteristic was linear, with a gradient of 0.99 ±

0.01, and reproducible for both polarities, (F ig .l.). An estimation of the carrier 

concentration (n) may be obtained from:

(1)

where J  is the measured current density for an applied potential V, A is the active 

electrode area, d  is the pellet thickness, e is the elementary charge and is the carrier 

mobility. Using a value of =  6.49xlO'6cm2 V‘1S*1 determined for Ag-TCNQ, which 

has a similar room temperature conductivity12, the carrier concentration is estimated to 

be n =  4.52xl021cm‘3.

Temperature dependence of the conductivity was measured in order to determine the 

type of conduction process which prevails in this material. Figure 1 shows a typical 

plot of the natural logarithm of conductivity as a function of inverse temperature in the 

range 80-300K. The curve shows a linear dependence of ln(a) on temperature which 

indicates the presence of one type of conduction regime within the range of study. This 

temperature dependence was found to obey the following relation which is observed for 

many organic semiconductors:

J  = ne\a f -

a = a n exp A E  

kT
(2)

where AE  is the activation energy, k  is the Boltzman constant, T  is the absolute 

temperature and cr0  is a constant (pre-exponential factor). Using equation (2) a value of 

51meV was derived from the slope of Fig.2. This low activation energy may suggest
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that the charge transport is limited by grain boundaries which could be caused during 

the pellet preparation13. It may also indicate that band conduction is not likely to be 

responsible for charge transport, and that hopping of charge carriers via trapping sites, 

which could be in the form of grain boundaries, is the most likely conduction 

mechanism. Similar results have been found for other TCNQ adducts prepared as thin 

films9. A trap to trap transition is a form of low field hopping where a carrier is excited 

from a lattice trap14. The probability of a carrier hopping is affected by the energy 

barrier of the trap which in turn is controlled by the activation energy. The carrier 

migrates between molecules until it falls into another trapping site.

For comparison, we have also investigated the reaction of the pyridium salt (4) (the 

precursor of the betaine (5)) with, respectively, lithium TCNQ’, and neutral TCNQ. 

Reactions of this type have been commonly empoloyed by others for the synthesis of 

TCNQ charge transfer systems. However, in the above cases, neither system gave 

well-defined products which showed any resemblance to the black crystalline adduct of 

the betaine (5) with TCNQ. The reaction of the salt (4) with lithium TCNQ’ in DMF 

gave a dark brown amorphous solid, of composition approximating to a 1 : 1  complex of 

the pyridinium cation with the TCNQ’ anion. Infrared studies revealed v (C^N) at 

2177 and 2141 cm '1. The room temperature conductivity of a compressed pellet was 

1.13 x 10' 5 Scm'1. The related reaction of the salt (4) with neutral TCNQ also gave a 

dark brown amorphous solid, of poorly defined composition, which exhibited v (C=N) 

at 2202, 2170 and 2158 cm '1, and a room temperature conductivity of 1.38 x 10' 7 

Scm'1'. Neither of these materials, therefore, resembles the initial adduct of the betaine

(5) with TCNQ, which appears to be a well-defined semiconducting charge-transfer 

adduct. As yet, we have been unable to grow single crystals of the adduct which are 

suitable for X-ray diffraction studies, and so the solid state structure remains unknown.
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EXPERIMENTAL

nmr studies were carried out using a Briiker AC 250 FTNMR spectrometer. Mass 

spectra were recorded on a VG Micromass 7070F instrument using the FAB technique. 

Infrared spectra were recorded as a KBr disc or mull using a Phillips PU9706 

spectrometer. UV-Vis spectra were recorded on a Unicam UV-Vis spectrometer. Silica 

cells were used with a 1cm path length. Acetonitrile was used as the solvent unless 

otherwise stated.

2-(3'-Pyridyl)-lH-benzimidazole (3)

Prepared essentially as described by Alcalde8 by condensation of pyridine-3-carboxylic 

acid with o-phenylenediamine suspended in polyphosphoric acid, and heated in an oil 

bath at 170-200°C for four hours. The reaction mixture was cooled and poured into 

ice-water and the resulting solution neutralised to pH 8  with aqueous ammonia. The 

precipitated solid was then recrystallised from a methanol-water solvent (70:30 v/v), to 

give pale cream crystals (81%), m.p. 242-243°C. (Found: C,73.70;H,4.65; N,21.50. 

Calc, for C 12H9N3,C.73.85; H.4.65; N,21.50%). m/z 195(M+).

1-Methyl-3-(2-benzimidazolyl)pyridinium Iodide (4)

To a solution of the pyridylbenzimidazole (7.27g, 35.8 mmol.) in anhydrous acetone 

was added, drop wise, a solution of iodomethane (5g, 35.2 mmol.) in anhydrous 

acetone, and the resulting solution heated under reflux for three hours. On cooling, 

the pale yellow solid was collected by filtration and recrystallised from ethanol-water 

(70:30), to give pale yellow crystals, (5.95g, 48%), mp 222-223°C. (Found: C,46.40; 

H,3.55; N ,12.40. C 13H 12N3I requires C,46.30;H,3.60; N ,12.45%).
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6'H(CD 3 OD):4.6(3H,s,CH3); 7.35(m,2ArH); 7.75(m,2ArH); 8.25(t,lH ,pyridine ring); 

9.0(lH,d,pyridine ring); 9 .10(lH,d,pyridine ring), and 9.6 (s,lH ,pyridine ring)ppm 

X max (CH3CN) 318 nm.

2-(l-methylpyridinium-3-yl) benzimidazolate (5)

To a solution of the above salt (3g, 14 mmol) in ethanol was added dropwise an 

aqueous solution of sodium hydroxide (1 mol dm’3, 14 cm3). A yellow crystalline solid 

precipitated out almost instantaneously, and was collected by filtration and washed 

repeatedly with aqueous ethanol to give the betaine. (2.78g, 95%). m.p. 205°C (from 

ethanol-water 70:30 v/v). (Found: C,63.35;H,6.20;N,16.8. C 13H n N3. 2HzO requires 

63.65;H,6.10;N,17.15%). FABMS:m/z 210 (M+ +1). X max (CH3CN):345 nm. 

5'H(CD 3OD): 4.25(s,3H,CH3); 7.05(m,2ArH);7.55(m,2ArH); 7.85(t,lH ,pyridine 

ring); 8 .4(d,lH,pyridine ring); 8 .95(d,lH,pyridine ring), and 9 .15(s,lH,pyridine 

ring)ppm.

Betaine-TCNQ Adduct

The adduct was prepared by heating together betaine (5) with TCNQ (1) in equimolar 

quantities in acetonitrile under reflux for several hours. On cooling the dark brown 

solution deposited a black microcrystalline solid (6 8 %). Attempts to prepare crystals 

suitable for x-ray diffraction, using the slow diffusion technique, have been 

unsuccessful to date. m.p.above 260°C decomp. (Found: C, 71.47; H, 3.46. N,

24.39. C2 5 H 1 5 N7.MeCN requires: C, 71.35; H, 3.99; N, 24.65%). i.r. (KBr): 2194, 

2174 (CN) cm_l. FABMS m/z 210 (M + +  l ,  betaine component).

For comparison purposes the following adducts were prepared :-

7



(Pyridinium iodide salt) (4) (LiTCNQ) adduct

The adduct was prepared by heating together the salt (4) with LiTCNQ in equimolar 

quantities in DMF under reflux for several hours. The mixture was evaporated and the 

residue triturated with water resulting in a crude dark brown solid (54%). (Found: C, 

68.60; H, 4.09. N, 21.09%). i.r. max (KBr): 2177, 2141 (CN) cm 'l.

(Pyridinium iodide salt(4)) (TCNQ) adduct

The adduct was prepared by heating together compound (4) with TCNQ in equimolar 

quantities in DMF under reflux for several hours. The mixture was evaporated and the 

residue trimrated with ether resulting in a crude dark brown solid (6 8 %). Found: C, 

56.01; H, 3.52. N, 17.06%. o  max (KBr): 2202, 2170, 2158 (CN) cm '1.

DC conductivity studies

For the electrical measurements, the 0.425mm thick TCNQ-adduct pressed powder 

pellets were sandwiched between two vacuum evaporated gold electrodes. The 

electrode active area was «25mm . Cu wires were attached to the electrodes using 

silver conducting paint. Measurements were taken with the devices placed in an Oxford 

Instruments Liquid Nitrogen Cryostat and to prevent the formation of ice particles on 

the sample surface they were held under a Nitrogen gas atmosphere. The temperature 

range studied was 80K to 300K; this was monitored via an ITC4 proportional / 

integral / derivative temperature controller and determined by a thermocouple 

positioned close to the samples inside the cryostat. The circulating current Ic , was 

measured as a function of the steady state voltage applied to the pellet, from 0V to IV 

in steps of 0.1V, using a Keithley 617 programmable electrometer.



REFERENCES

1 G J Ashwell, Phys Status Solidi b 1978, 86, 705: J B Torrance,Acc. Chem.

Res., 1979, 12, 79 and refs therein; R M Metzger, N E Heimer, and G J 

Ashwell, Mol. Cryst., Liq. Cryst., 1984, 107, 133.

2 A M  Grainger, Synthetic Metals, 1994, 66, 291.

3 D W Allen and P Benke, Phosphorus, Sulfur, Silicon, Related Elem., 1994.

86, 259; J  Chem Soc Perkin Trans 1, 1995, 2789.

4 E Alcalde, Advances in Heterocyclic Chemistry, 1994, 60, 197, and refs

therein.

5 R M Metzger, Advances in Chem. Series, 1994, 240, 81, and refs

therein.

6  C Reichardt, Chem. Soc. Reviews, 1992, 147; Chem. Revs., 1994, 94, 2319.

7 A S  Martin, J R Sambles, and G J Ashwell, Phys. Rev. Lett., 1993, 70, 218

8  E Alcalde, I Dinares, L Perez-garcia and T Roca, Synthesis, 1992, 395.

9 A E Tschitschibabin and E D Ossetronan, Chem. Ber, 1925, 58, 1708.

10 R Bozio, I Zanon, A Girlando, and C Pecile, J. Chem. Soc., Faraday

Trans. 2, 1978, 74, 235.

11 A Girlando, and C Pecile, Spectrochim Acta, Part A, 1973, 29, 1859.

9



12 G Zhongze, W Yu, and L Juzheng, Mat. Sci. Eng., 1993, B20, 298.

>
13 G Kossmehl, D Kabbeck-Kupijai, Syn. Metals, 1993, 53, 347.

14 A K Jonscher, J. Vac. Sci. Tech., 1971, 8, 135.

dwa/tcnqpap.doc



>T1

tg'

o3i-t<-{
cd
3r-*

a
cd3

<
3

CTO
CDO
3 *3

&CD
HO
2 ;
/O
CO33 .3o

oo
3
3
3►3
CD>-t



Log 
V

oltage 
V

(V
)

Log Current Density J(A/cm2)

o



0.0035 
0.0070 

0.0105 
0.0140

Lna (S/cm)

o 00 CDo



SOL-GEL DERIVED T i02 / LEAD PHTHALOCYANINE 
PHOTOVOLTAIC CELLS

S. M. Tracey*1’, S .N .B .H odgsona, A . K. Rayb 
"U niversity o f  H um berside an d  Lincolnshire, School o f  E ngineering an d Inform ation Technology. 

'’Sheffield  H allam  U niversity, School o f  E ngineering Inform ation Technology.

Keywords: Heterostructures; Solar Cells; Titanium D ioxide; Lead Phthalocyanine

Abstract

Transparent T i0 2 film s w ere deposited onto a base electrode com prising an InSnC>2 glass substrate using  
the (alkoxide) Sol-G el technique. Lead Phthalocyanine was subsequently vacuum  sublim ed onto the 
T i0 2 surface. T he resulting InSnC^/TiC^/PbPc/Au heterojunction cell was investigated for its 
illum inated current density/voltage, and spectral characteristics. The ideality factor (m) and saturation  
current (J0) were determ ined from J(V) m easurem ents. Photoelectrical m easurem ents were conducted  
under both sim ulated A M 2 solar radiation and within a wavelength range o f  300-900nm . T his allow ed  
calculation o f  V„c, Jxc, FF, Z and the overall conversion efficiency, r\%. Typical photovoltaic  
characteristics were obtained indicating the devices potential for solar cell applications, how ever 
effic ien cy  im provem ents are required.

1. Introduction

The principle drawbacks of conventional Si-Based cells are the high material and 
manufacturing costs. Consequently, a number of alternative material and device 
structures have been considered, including both organic [ 1 ] and hybrid organic/inorganic 
systems, [2]. The main aims of these investigations are to improve overall conversion 
efficiency while also reducing production costs. Research has shown that organic dyes 
can be successfully used to spectrally sensitise wide band gap metal oxide 
semiconductors, resulting in a low cost photoelectrochemical cell, [3]. Such devices 
incorporate a liquid electrolyte and there are significant concerns regarding their long 
term stability. Consequently there is considerable interest in the development of solid 
state inorganic/organic heterostructures as low cost photovoltaic devices. This paper 
describes the development and results obtained from such a cell, which is in the form; 
Au/Lead Phthalocyanine (PbPc) /T i0 2/InSn02.
PbPc and T i0 2 can be considered to be p-type and n-type semiconductors respectively. 
Therefore the contact formed between the PbPc and T i0 2 will produce an 
inorganic/organic (10) p-n heterojunction. The nature of the charge transfer and 
transport mechanisms in 1 0  heterojunctions of this type remains the subject of some 
debate with a direct electron transfer mechanism being the most favoured to explain the 
observed photovoltaic behaviour. Within the heterostructures the organic layer absorbs 
light, generating excitons which diffuse to the heterointerface and dissociate. Electrons 
transfer to the T i0 2 layer which provides electron transport, and the holes remain within 
the organic layer and are transported therein. [4] The electrical current is supported only 
by majority charges. Therefore such devices drastically differ from conventional p-n 
semiconductor devices in which the electrical current is supported by minority carriers
[5]. and would be anticipated to be less sensitive to surface and bulk defects obviating 
the need for the supertechnology and costs associated with most semiconductor device 
manufacture.



The fabrication of such devices entails the need to manufacture thin films of the organic 
and inorganic components. The fabrication of the inorganic layer in particular requires a 
relatively low cost, low temperature process capable of providing an optically 
transparent, electrically semiconducting, mechanically and chemically stable thin film, 
with good electronic contact with the substrate electrode. The Sol-Gel process is thus 
ideally suited for this application.
Titanium dioxide is an n-type semiconductor, easily formed by the Sol-Gel method and 
has the advantage of both chemical and thermal stability. Added to this it possess 
economical and environmental advantages of over some of the more prominent PV 
materials such as CdS, Si and GaAs. Lead Phthalocyanine, (PbPc) belongs to a class of 
organic materials that have over the years received considerable attention [6 ] this is 
mainly due to their semiconductive properties. Added to this they are abundant, stable 
and relatively cheap. However, attempts to produce substituted Phthalocyanine solar 
cells have consistently shown low overall conversion efficiencies and in most cases this 
has been attributed to their low quantum efficiency and/or low charge carrier mobility
[6 ]. They are however good photogenerators of free charge carriers.

2. Experimental Procedures
2.1 Device Fabrication

The device comprised a sandwich structure of an In-Sn0 2 glass electrode and substrate, 
transparent Sol-Gel derived T i02, PbPc dye and Au counter electrode. The complete 
device structure is shown in the inset of figure 1 .
Optically transparent T i0 2 films were deposited onto ultrasonically cleaned InSn0 2 glass 
substrates by dip coating at a withdrawal rate of 250mm/min.. The dip coating solution 
consisted of 12.6 volume % of Titanium Isopropoxide (TIP) in ethanol, stabilised with 
glacial acetic acid additions in a molar ratio 4.16:1 TIP:ACID
The entire procedure was carried out under atmospheric conditions. The films were left 
to dry in air for 24 hours then heated under atmospheric conditions to 500°C for 5 hours. 
X-ray diffraction analysis carried out on residues of the Sol mixture revealed that for gels 
heated to 500°C anatase is the predominant physical structure. The thickness of the T i0 2 

films were measured using a planar surfometer and estimated to be in the order of 50nm. 
Films of Lead Phthalocyanine (PbPc) were prepared by vacuum sublimation. The T i0 2 

coated substrates were held at room temperature and under a vacuum of ~ 1 0 ' 5 mbar 
during the sublimation process. A deposition rate of l-10A/sec was used. The final film 
thickness was in the order of 500nm, determined by a quartz crystal monitor in situ. 
Electrical connections were provided by evaporation of Au contacts onto the PbPc 
surface.

2.2 Photoelectrical Measurements

The performance of the cell was assessed using both the wavelength dependent short 
circuit phototcurrent density Jsc, and the illuminated current-density/voltage, J{V) 
characteristics under simulated solar radiation.

Comparison of the PbPc absorption spectra with the, JK(k) action spectra allowed 
calculation of the quantum efficiency (Z) defined as the ratio of photocurrent collected at 
each wavelength to the number of photons incident on the surface at that wavelength 
according to the following equation;



z = Mic
cX

( 1 )

Where R is the device responsivity given by (Jst/ty), ^ is the incident intensity level in 
W/m2, h is Planck’s constant, c the speed of light, X the wavelength of the incident 
monochromatic radiation and e the electronic charge. Comparison of the PbPc 
absorption spectra with the Jsc action spectra is also a direct indication of the ability of 
the dye to spectrally sensitise the T i0 2 to wavelength regions outside its intrinsic 
sensitivity.
The illumination for wavelength dependent measurements was provided by a Spex 1681 
0.22m spectrometer in conjunction with a SPEX 1682A broad band radiation source. A 
1683L tungsten/halogen incandescent lamp provided illumination over the wavelength 
range 300-900nm. The V()C and Jsc of the cell were measured as a function of wavelength 
(A,) in this range. The monochromator intensity level ((j)) was found to be in the order of 
32 pW/cm2. A UV/Vis Unicam spectrometer was used to provide optical absorption 
spectra of the PbPc and T i0 2 films for comparison with the action spectra.
Illuminated J(V) characteristics were used to determine the performance of the cell under 
white light conditions. The following photovoltaic cell parameters were obtained; Open 
circuit voltage (V„c), ;Short circuit current density (Jsc),\ The fill factor (FF) or the 
fraction of the product of Jsc and Voc available as power output given by;

V Jpp' _  »'/> »'/> £2 )
^  else

where Vmp and J,„p represent the voltage and current at the maximum power point 
respectivelyrcf r\%, the overall conversion efficiency may then be calculated according to;

V J FF
r i  =  ( 3 )

Pin

where Pin is the power of the incident intensity (W/m2).
Illuminated J(V) measurements were performed under atmospheric conditions, using an 
electrometer. In all measurements the polarity of the forward voltages was positive at the 
Au electrode. For all illuminated J(V) measurements, irradiation of the T i0 2/PbPc 
junction was directed through the InSn0 2/T i0 2 face. An Applied Physics, model 9500 
solar simulator provided AM2 radiation at an intensity level of 1.52mW/cm2.

3. Results and discussion
3.1 Action spectra

To demonstrate photosensitisation of the T i0 2 photocurrent action spectra were 
obtained over the range of visible light. Figure 1 displays the JSC(X) action spectra 
obtained for the PbPc/Ti02 cell in comparison with both the PbPc and T i0 2 absorption 
spectra. The PbPc film exhibits appreciable absorption in the 320-500nm and ~580- 
900nm ranges, typical of that observed in sublimed thin films of the material [7]. The 
T i0 2 films were highly transparent over the visible wavelength range.

Good agreement between the absorption spectra of the PbPc film and the spectral 
dependence of Jsc was observed for most of the visible region. Anomalies were observed



for wavelengths below ~400nm. Most probably due to a combination of optical 
absorption effects in T i0 2 and the InSn02 glass substrate. The similarity of the 
absorption spectra to the action spectra indicates that sensitisation of the T i0 2 Sol-Gel 
layer with PbPc dye molecules occurred resulting in the extension of the absorbance of 
T i0 2 into the visible region. The observed wavelength dependence of Jxc must therefore 
be a consequence of photocarrier excitation in the PbPc and a subsequent transfer 
mechanism to the T i0 2 film.
The calculated quantum efficiencies (Z) at PbPc absorption maxima were Z~0.42% at the 
lower maxima ~360nm and Z~ 0.41% at the higher maxima ~680nm, the corresponding 
Jsc were 0.031 |iA/cm2 and 0.072pA/cm2 respectively. This is an interesting observation, 
since a lower measured Jsc at 360nm did not give rise to a lower value of Z in fact little 
difference in Z was observed. Two possible arguments are proposed to account for this 
effect, firstly the increase in absorption of the PbPc film may contribute to a higher 
density of excitons within the organic layer. Alternatively the onset of absorption in the 
T i0 2 film at these wavelengths may result in increase charge carrier generation. This is in 
agreement with recent studies on ZnPc/Ti02 cells which have shown that UV absorption 
in Ti0 2 results in an increase in carrier density and conductivity of the T i0 2 film and that 
the UV absorbed in the space charge layer of the T i0 2 contributes to the photovoltaic 
effect [8 ]. It is anticipated therefore that both of these mechanisms results in the 
observed Z(k) dependence.
The quantum efficiencies obtained for this device were low. However such efficiencies 
are not atypical of similar devices, the low efficiency having been previously attributed to 
recombination centres at the heterojunction interface, [8 ], which may be present at the 
T i0 2 surface. The T i0 2 film was not treated in any way and as a consequence surface 
slates could be present which can act as recombination centres. Impurities in the PbPc 
layer or grain boundaries within the T i0 2 or PbPc, polycrystalline films would also act as 
trapping sites for charge carriers.
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3.2 Illuminated J(V) characteristics

From the illuminated characteristics under simulated AM2 radiation, the following values 
were obtained for typical solar cell parameters. V„c = 200mV, 7V(=4.67xl0'7A/cm2, and 
FF (fill factor) = 0.162. These values corresponded to an overall power conversion 
efficiency of r|% ~ 0.001%, according to equation 3.
The relatively low values obtained for the conversion efficiency can be attributed both to 
interfacial and bulk effects as follows:
The presence of defects at the T i02/PbPc interface would be expected to result in a 
reduction of the power conversion efficiency as explained in the previous section. In 
addition the overall conversion efficiency would be anticipated to be a function of the 
electrical resistance of the cell. The low electrical conductivity of the PbPc films would 
be expected to cause a high series resistance. This was confirmed from measurements of 
the series resistance (Rs) which under illuminated conditions was found to be Rs~ 
57.5kn/cm2. Such a high Rs indicates the disadvantage of the low conductivity of the 
organic semiconductor.

4. Conclusions

A low cost photovoltaic cell based on a p-PbPc/n-Ti02 thin film heterojunction has been 
successfully produced utilising the Sol-Gel technique.
The results indicate that a Sol-gel derived T i0 2 film can be sensitised to wavelengths 
outsides its intrinsic sensitivity. The observed response is anticipated to be a consequence 
of light absorption in the dye layer and the separation of photoexcited carriers at the 
PbPc/Ti02 helcroinlerface.
The high series resistance caused by the organic layer is believed to be responsible for the 
low conversion efficiency of the cell and efficiency improvements are required. 
Preliminary investigations on devices incorporating thinner and/or more conductive 
organic layers are currently on going, and are yielding encouraging results with 
conversion efficiencies of at least an order of magnitude higher than this reported.
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