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Abstract

The communication Networks of the future will require signal switching in the optical 
domain to avoid the inherent speed bottleneck of optical-electronic-optical conversions. 
This has resulted in an intense research effort in this area. Of particular interest are 
wavelength division multiplexing (WDM) and optical time division multiplexing 
(OTDM). The latter offers the advantage that it operates over a single wavelength, 
removing the problems associated with dispersion in fibre systems whilst the former 
operates over a number of wavelengths. This thesis concentrates on the modelling and 
simulation of one particular system: the asymmetric semiconductor laser amplifier loop 
mirror (ASLALOM) for OTDM.

Initially, a literature review looks at the theory of laser operation which complements the 
following chapter on laser amplifiers. A review of current optical switching devices will 
be examined next with regard to switching speeds, crosstalk and the possibility of 
integration. Also wavelength division multiplexing and time division multiplexing are 
reviewed, comparing the different systems in current use.

At the present time, no complete models of an asymmetric semiconductor laser amplifier 
loop mirror have been developed. The intention of this work is to determine the 
equations necessary for a model to be developed and thus enable the system to be 
simulated. Computer modelling of a system prior to implementation is advantageous in 
all aspects of engineering. As this system is still confined to the laboratory a model 
would complement any practical work and identify critical design parameters.

In this work the Travelling Wave Semiconductor Laser Amplifier (TWSLA) is first 
modelled in a form which is appropriate for the asymmetric semiconductor laser amplifier 
loop mirror architecture. The simulations are then used to demonstrate the switching 
speeds for different configurations and identify any areas needing further work, such as 
crosstalk, birefringence and polarisation, a method for multi-channel output is also 
presented. A further aim is to lay a foundation for future work to enable the system to 
be fully characterised with regard to noise, dispersion and integration.



Glossary Of Symbols And Abbreviations

Abbreviations

AOTF acousto optic tunable filter

ASE amplified spontaneous emission

ASLALOM asymmetric semiconductor laser amplifier loop mirror

BH buried heterostructure

BLD bistable linear diode

CW clockwise

CCW counterclockwise

DBR distributed Bragg-reflector

DFB distributed feedback

DH double heterojunction

DOS digital optical switch

EDFA erbium doped fibre amplifiers

FP Fabry-Perot

FWHM full width half maximum

FWM four wave mixing

GVD group velocity dispersion

LD laser diode

LED light emitting diode

NOLM non-linear optical loop mirror

NRZ non return to zero

OTDM optical time division multiplexing



RZ return to zero

SLA semiconductor laser amplifier

SLALOM semiconductor laser amplifier loop mirror

SNR signal to noise ratio

SRS stimulated Raman scattering

TDM time division multiplexing

TWSLA travelling wave semiconductor laser amplifier

WDM wavelength division multiplexing
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Symbols

a gain coefficient

c velocity of light

e electronic charge

da/dn absorption cross section

dg/dngain cross section

E electric field

E„ energy at quantum level n

Ep photon energy

f optical frequency

g material gain coefficient

Gs single pass gain

h Planck’s constant

I electric current

m electronic mass

no transparency density

n carrier density

N refractive index

Pc laser pumping due to current

Pn noises signal

rn field reflection coefficient

Rn power reflection coefficient

s density of photons

U field transmission coefficient



Tn power transmission coefficient 

T2 atomic dephasing time

tn field transmission coefficient

a  laser loss coefficient

spontaneous emission factor 

r  confinement factor

%2 spontaneous recombination lifetime

xp photon lifetime

X(3) third order non-linear susceptibility 

X2 spontaneous decay rate 

g(v) lineshape

(i dipole moment

co radian frequency
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Chapter 1

Introduction To Optical Communications

Communication technology has made significant advances with the increase of 

semiconductor technology and system development. Traditional communication 

techniques based on electronics are now being challenged by new optical systems. As 

early as 1880 Alexander Graham Bell reported the modulation of sunlight with the sound 

of a bell achieving speech transmission over a distance of 200 m [Bell 80]. For 

atmospheric communication, light was really only practical for line of sight, short 

distance transmission, since scatter and weather conditions were proving to be an 

obstacle for the optical signal. To overcome some of these problems, dielectric 

waveguiding which has a history dating back to 1910 [Hondros 10] was used to confine 

the signal. In 1950 B O' Brian Sr. at American Optical was developing optical fibre 

bundles for light transmission. Interest in fibre communications grew when Kao [Kao 

and Hockham 66] predicted that 20 dB/km loss was achievable in glass fibres by 

removing the impurities. At this level, optical fibre communication was becoming a 

viable alternative. Prior to this the losses were in the 1000 dB/km range (coaxial cables 

which guide electromagnetic waves exhibit losses between 5 and 10 dB/km). In addition 

to high losses, other practical aspects had to be overcome with optical fibres such as 

jointing which needed to be performed quickly and easily by engineers in the field. 

Military applications were the first to use optical communications where conditions were 

unsuited to electromagnetic methods. Inevitably research continued on optical fibres and 

by 1977 the fibre losses had been reported as low as 0.5 dB/km for 1200 nm 

wavelengths. Early optical systems used multimode graded index fibres in the 0.85f.im
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wavelength region. Single mode fibres were difficult to joint and the availability of 

semiconductor light sources and silicon photodetectors was poor. Single mode fibres 

have the advantage of polarisation preservation, higher bandwidths and less fibre 

attenuation and, because of these advantages, interest in single mode fibres was renewed 

at the end of the 1970s. In parallel with the development of fibre systems, work 

proceeded on the various components to complete the optical communication system. 

Semiconductors as optical sources included light emitting diodes (LED) and injection 

lasers which were compatible in size with the optical fibre system. LEDs operate at 

much lower current than injection lasers. However their mechanism of light generation is 

by spontaneous emission and consequently the optical output of an LED is of random 

phase with no coherence. The injection laser on the other hand uses stimulated emission 

in a resonant cavity providing a coherent light source. The spectral width of an LED is 

also much wider than the laser. For 800-850 nm wavelength operation GaAlAs devices 

have spectral widths in the range 30-60 nm and 1-2 nm for LEDs and lasers respectively. 

However the LED does offer certain advantages over the laser, e.g. lower cost, ease of 

manufacture, reliability, and it gives a linear light output current curve . The first 

semiconductor lasers were fabricated from alloys of gallium arsenide which emitted in 

the range 0.8 to 0.9pm. The range of emission was extended to 1.1 to 1.5pm, taking 

advantage of improved fibre characteristics. The laser and LED were now becoming 

well established with a lifetime improvement from a few hours up to 25 years for 

semiconductor lasers and 100 years for LED’s. Table 1.1 shows how laser diodes have 

developed over the years.
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Table 1.1 Development steps of laser diodes.

The research and development into fibre communication systems is driven by the promise 

of communication systems offering numerous advantages such as greater bandwidth, 

small size, lower costs and high interference immunity. Figure 1.1 shows how the bit rate 

distance product has increased with new technologies.
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Figure 1.1 Bit rate distance product with the emergence of new technologies.
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and this is the most common use of optical communication systems, any processing of 
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using electronic methods, the signal then has to be converted back to the optical domain. 

This creates a time bottleneck which significantly reduces the speed of transmission. The 

challenge now facing the system designer is in the switching of the signal. The speed 

limitation of electronic switching is currently limited to about 10 Gbit/s [Zhang 96]. The 

requirements of future broadband multimedia services is likely to require switch speeds 

of the order of 100 Gbit/s. Application areas include medicine, education/training, 

banking etc. These will be serviced by various communication services i.e. high and low 

speed data, text, graphics, image, voice, audio and video. These particular services have 

different requirements in terms of traffic and performance. For example HDTV 

requires 1 Gbit/s data if no compression is used and 150 Gbit/s using complex 

compression techniques [Zhang 96]. Thus two hundred HDTV channels would require 

an aggregate bit rate between 30 Gbit/s and 200 Gbit/s. A study into the development of 

a European network linking major centres in Europe is “COST 239: Ultra-High 

Capacity Optical Transmission Networks” [O’Mahony 93] The findings of this study in 

terms of data capacity are summarised in table 1.2.

Cities. Data rate. <<3bit/s)
London- Paris 150
Paris - Madrid 120
Zurich -Milan 90
Milan - Rome 120

Prague - Berlin 90
Berlin -Moscow 90

Table 1.2
Typical data requirements of European cities.

To achieve switching of an optical signal some kind of nonlinearity in a material is 

required which imposes an amplitude or phase shift on an optical signal [Islam 94]. Non 

linear effects of certain materials allowed for the construction of interferomic devices e.g. 

non linear directional couplers [Jensen 82], Kerr switches [Morioka and Sarawatari 88],

4



Mach Zender devices [Al-hemyari et al 94] and loop mirrors [Blow et al 90] which are 

able to switch in the optical domain.

As in any engineering system, reliable models need to be developed to enable simulation 

before actual construction takes place. This project is concerned with developing 

mathematical models of the ASLALOM. The accuracy of the model will depend on the 

assumptions and the approximations made which will inevitably be determined by the 

system requirements. Therefore the initial aim is to identify the equations which describe 

such an optical system and to build a model which is in agreement with current practical 

results. When a satisfactory model has been developed performance of the system will 

be investigated. Further work will consider the characteristics of the system which may 

hinder the performance, such as polarisation, birefringence and crosstalk.
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Chapter 2

Laser Theory

2.1 Introduction

The purpose of this chapter is to introduce the underlying theoretical fundamentals of 

laser operation. The concept of energy levels as a quantised concept will lead to a 

general approach to the interaction of light with an atomic system. With these basics the 

operation of lasers can be explained, assisting the explanation of laser amplifier operation 

given in a later chapter.

2.2 Concepts

2.2.1 Energy levels and emissions

A picture of laser basics can be built up by referring to the concept of energy levels 

within an atomic system. In this description, the energy of electrons within the system 

are quantised, i.e. an electron can only exist at specific energy levels. Figure 2.1 depicts 

a simple two level system where only two energy levels, E h E2 (E2 > E\) are shown.

6
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'V ft  Photon output
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E2

Input p h o to n * ^ *

1

Coherent light output 

Ei

c). Stimulated em ission.

Figure 2.1 Energy levels and emissions.

Referring to Figure 2.1 if a photon is incident on the atomic media with an energy 

approximately equal to the gap between E2 and E\ (E2 - E\), absorption occurs and an 

electron is excited to a higher energy level (E2) with an increase in potential energy equal 

to E2 - Ei. The electron, on moving to a higher potential, is said to be in an “excited 

state”. Absorption can take place for a definite amount of light input until 'population 

inversion' is reached. There are two mechanisms of emission where the electrons fall 

back to their original level; spontaneous and stimulated. As shown in Figure 2.1b, 

photon release can occur spontaneously when an electron falls from level E2 to E± after a 

certain time has elapsed. Stimulated emission is described by figure 2.1c; whereby a 

photon incident on the material causes an electron to drop to level Ej with two photons
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emitted coherently. The frequency f  of the emitted photon is / — (E2 - E\)/h where h is 

Planck's constant.

2.2.2 Spontaneous relaxation of inverted carriers

To illustrate the natural decay of inverted electrons consider the previous two level 

system when a certain density of electrons n2 have been pumped to an upper energy level 

E2. As discussed these electrons will give up their energy by recombining and returning 

to level Ei. The rate at which electrons spontaneously decay or recombine is described 

by a spontaneous decay rate (y2) times the instantaneous number of electrons in that level

i.e:

dn2(t)
dt = - r  2n2(‘) s  (2.1)

spont ^"2

where n2 is the density of electrons in level E2 and x2 is termed the lifetime of electrons in 

level E2. The atoms in level E2 will recombine exponentially thus:

t

n2(t) = n2(0)e~r ** = n2{0)e (2.2)

2.2.3 Interaction of an electromagnetic wave with an atomic system 

Atomic lineshape

The theory behind the interaction of photons with an atomic system provides an 

explanation of various concepts. If a spectral analysis is performed of the radiation 

emitted by spontaneous (E2->E\) transitions for a two level system it is found that the 

radiation is not strictly monochromatic and occupies a finite frequency bandwidth. The 

function which describes the distribution of emitted intensity versus frequency (v) is 

referred to as the line shape function, g(v). Alternatively g(v) can be determined by 

applying an electromagnetic field to the atomic system and plotting the amount of energy

8



absorbed by the l->2 transitions as a function of frequency. The function g(v) is usually 

normalised to unity according to [Yariv 91]:

“>J g (v )d v = \  (2.3

With the assumption that ‘ f  g(v)dv is the probability that a 2—>1 transition will result in 

a photon whose frequency is between Vi and v2.

An explanation of the frequency spread may be obtained by considering the interaction as 

a decaying oscillation. This is the basis of an attempt to describe the whole process as an 

electron which oscillates when displaced from a position of equilibrium within an electric 

field. The oscillations obey the following equation of motion [Christov 88]:

+ + = - * £ ( / )  (2.4)
at at m

where // is the induced dipole moment due to an electric field E , e the electronic charge,

m the electronic mass and coa the system resonant frequency. With no applied signal the

system decays with a rate ^thus:

MO = f t ( fo) 0  “ h ) + j°>a0  ~ ‘o)) (2-5)

Equation (2.5) has a lineshape frequency function of the form:

/(<u) = -------------------  r  (2.6)
l + [2(fl».-®)J /A®. ] J

where A is a constant of the material and Acoa = Hy is the full width half maximum 

(FWHM) of the response.

Figure 2.2 depicts a typical lineshape amplitude response using equation 2.6.

9
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Figure 2.2 Typical lineshape function for an atomic medium.

Dephasing

The lineshape does not describe the whole picture and a further concept to consider is 

the dephasing time when a signal is incident on an atomic media. De-phasing arises from 

collisions within the atomic system which alter the properties of a wave by changing its 

phase. As time progresses more collisions occur and the signals gradually become more 

out of phase. The result is a random interference which is characterised by a dephasing 

time T2. The decay due to dephasing is shorter than the decay time in equation 2.6 and 

tends to dominate over that of the natural decay of the atomic transition. The 

modification of the frequency response is such that Acoa = Vy  +2/7V Typical times of T2 

for semiconductor lasers are 0.1 ps [Agrawal 91],

2.2.4 Optical gain

Optical gain is a concept which is possible in a device with a sufficient number of carriers 

when population inversion occurs and from the concept of lineshape the gain is expected 

to possess a frequency spectrum. Table 2.1 lists the gain bandwidth of some common 

laser materials.

10



Gain medium. Bandwidth
He-Ne 1.5 GHz

Argon ion 6 GHz
Nd-YAG 12 GHz

Ruby 60 GHz
RD 6G Dye lOTHz

GaAs 60 THz
Ti-sapphire 150 THz

Table 2.1 Bandwidth of some laser gain media.

Semiconductor laser amplifiers possess specific gain properties. The value of gain per 

unit length is very high, in the region of 100/cm due to the efficient pumping process in 

semiconductor materials. This is an order of magnitude higher than any other type of 

laser [Kawaguchi 94]. This property allows these devices to be made small, typically less 

than 1 mm. The gain curve has a bandwidth in the range of tens of nanometres. The 

gain near to threshold can be expressed in parabolic form using the following equation 

[O’ Mahony 88]:

g(n,X) = a l( n - n 0) - a 2( A - a 3(A0 - (w- n0)))2 (2.7)

where g  represents the gain coefficient per unit length, n0 the carrier density required to 

achieve optical gain, aj, a2 and a3 coefficients of the material, X the signal wavelength 

and X0 the peak gain wavelength. Figure 2.3 is a gain plot of an inverted system using 

equation 2.7 with the carrier density as a parameter, values used are a\ -  2.7 x 10"2°m2, a2 

= 1.5 x 10'V, a3 = 2.7 x 10'V, Xo =1.55x 10 m.

11
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Figure 2.3 Gain coefficient v Photon energy.

A signal with Power Pin propagating over a length L will undergo amplification 

according to the following equation:

Pout = Pin expfgfaX)L) (2.8)

When the device carrier concentration is below no the signal is absorbed and this is 

represented as negative gain. With concentrations above n0 stimulated emission occurs 

and amplification of the signal occurs. Values of gain coefficient can be calculated and 

are usually done numerically [Agrawal 86] and a relationship between gain and photon 

energy of the signal can be formulated. A useful linear relationship evolves from this 

giving:

g = a(n — n0) (2.9)

where the value of a is determined over a linear part of the gain/absorption carrier 

density curves i.e. a « dgldnc (see figure 2.4), a signal is absorbed if n < n0 and amplified 

if if n > no.

12



dg/dn

Gain

Carrier densitydg/dn

Loss

Figure 2.4 Gain and absorption curves for a semiconductor.

2.2.5. Theory of laser oscillation

Equation 2.7 shows that gain exists in a material with a population inversion. Consider 

the case where the material in question is placed between two mirrors with reflectivity /v 

and r2 forming a FP cavity (see figure 2.5).

reflection r] 
transmission tj

reflection r2 
transmission t2

Ej

t; r1r2Eiexp(-2rL) t;r2 r,Ejexp(-3rL)

tir2Ejexp(-2rL) ,.r2E.eXp(.rL)

tiE; tjEiexp(-rL)

X
)

 t&Ejt2Eiexp(-rL)

Figure 2.5 Laser oscillation between reflecting surfaces.

When an optical signal propagates along such a cavity it undergoes gain as defined by 

equation (2.9) and it also experiences losses with a coefficient a. A plane wave of 

wavelength X is considered without any time dependence and is defined as Et. On

13



entering the cavity the field just inside the left boundary is given by EE  where t\ is the 

ratio of transmitted to reflected fields at the left mirror and t2 the ratio of transmitted to 

reflected fields at the right mirror. The field will now travel from left to right undergoing 

gain and loss. The field at the right mirror is then:

/i£,exp-(T jL) (2.10)

where T, = (j2%NLIX)+ ( g -  cl) and N  the refractive index of the material.

After progressive round trips along the cavity the outgoing wave is given as:

E t = ht2E\cxy-(YiL )(  1 + T\r'2exp-(2TE )  + *\ r2 exp-(4T/,) + ...) (2.11)

This is a geometric progression which can be re-written as:

t\t2 exp(-rfI
E t = E t (2 .12)

. l - ^ 2 eXP(-2 r , I

For a laser to oscillate a finite transmitted wave Et exists with zero input Ef. This 

corresponds with the denominator of equation 2.12 being equal to zero i.e.

rir2exp(-2TfL) = 1 (2.13)

Making the substitution T, = g  - a  in equation 2.13 gives an amplitude requirement for 

oscillation as:

g  = oc + (//L)ln(l//v2) (2.14)

To satisfy the phase condition the phase on returning must be a multiple of 2k  i.e.

4 kNL „ , , _ 0
 = 2m n , where m = 1,2,3 ...

X

from which m(XJN) = 2L.

The analysis shows that a laser tends to oscillate at a frequency coincident with a 

longitudinal mode supported by a FP cavity. The frequency depends on the gain 

spectrum of the medium. If the material has a linewidth as described in section 2.2.2
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then the frequency whose longitudinal mode is nearest to the gain peak frequency (co„ in 

figure 2.2) reaches the gain requirement of equation 2.14 and the laser operates in a 

single longitudinal mode.

2.3. Semiconductor Laser Materials.

2.3.1 Concepts

A lasing device can be formed from a non-degenerate semiconductor P-N  junction in 

which a population inversion is created by the injection of current into the junction 

(figure 2.6).

hf <r̂ f'

■vf  O O O O O O O O

Fermi level

electrons

barrier

hf

Potential

holes

p-type n-type

Figure 2.6 Semiconductor laser junction.

If  a potential difference is applied across the device, the potential barrier is reduced and 

electrons can flow across to the p-type region with an increased energy causing 

population inversion. With electroluminescent materials, recombination of electrons and 

holes across the bandgap in the P-type material occurs with the release of a photon of 

energy Eg as in section 2.1.1. Similarly holes can populate the valence band in the N- 

type region and recombine with electrons to release a photon. Efficient laser devices 

require the use of a direct bandgap material [Senior 92], since this ensures a direct
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transition across the energy gap with the possible emission of a photon. Indirect 

bandgap materials require the inclusion of a third particle (a phonon) with recombination 

times longer and non radiative recombination more likely. Non radiative recombination 

occurs as a result of energy released as lattice vibrations dissipated as heat. Examples of 

direct/indirect bandgap materials are given in Table 2.2.

Semiconductor Material Direct/Indirect.

GaAs Direct
GaSb Direct
InSb Direct

Si Indirect
Ge Indirect

GaP Indirect

Table 2.2 Direct and indirect bandgap Semiconductor materials.

2.3.2 Laser structures

Figures 2.7a, b and c show the evolution of semiconductor laser structures which differ 

in their complexity and efficiency of operation.
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Figure 2.7 The evolution of semiconductor laser structures.

Figure 2.7a shows the basic structure of a homojunction laser. The shaded ends of the 

diagram depict partially reflective mirrors to form a FP device. In this device the 

refractive index step at the edge of the gain region is small and the signal light spreads 

out into the surrounding GaAs structure. The optical confinement is poor (large a), so, 

as shown by equation 2.14, a higher gain (and higher current) is required. The higher
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currents result in higher operating temperatures. To overcome some of these problems 

double heterojunction (DH) structures are utilised. Figure 2.7b shows a diagram of a 

broad area GaAs/AlGaAs DH laser. This device gives improved optical and carrier 

confinement. The optical confinement is provided by wave guiding of the signal, 

achieved through a step index profile which is greater than the homojunction. This 

device requires lower threshold currents and can be operated with continuous wave 

output. A more reliable device is achieved with a stripe geometry DH laser as shown in 

figure 2.6c The active region does not extend to the edge of the material thus providing 

better confinement. Electrical contact is in the form of a stripe running along the device, 

the resulting emitting region being considerably reduced.

2.4 Laser Rate Equations

The interplay between the current injected carriers in a semiconductor laser is described 

by a set of laser rate equations. The foundation for these is demonstrated in figure 2.7.

Current

Carrier
density

Photon
density

Loss Output
power

Spontaneous
emission

Stimulated.
emission

Figure 2.7 Interaction of photons and carriers in semiconductor laser.
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With reference to figure 2.7 two rate equations can be written:

(2.15)

p
T
n

2

(2.16)

Equation 2.15 and 2.16 describe the rate of change of carriers within the device (note:

the effect is localised to one spatial position) . The first term on the right hand side of 

equation 2.16 describes the carrier input due to a current /  into an active volume V, 

which confines current and photon input. The second term is due to stimulated emission

(hence the negative sign), g  is as equation 2.9 and vg is the photon velocity. Spontaneous 

emissions also remove carriers as described by the third term. Equation 2.16 is a photon 

density equation. Production of stimulated photons is defined by the first term (which is 

the equivalent of the second term in equation 2.15). Some photons are lost and this is 

described by a lifetime tp  in the second term. The third term describes spontaneous 

emissions which also produce photons but since only a fraction of these are supplied to 

the lasing mode an additional factor is required.

2.5. Summary.

The purpose of this introductory chapter has been to introduce various optical concepts 

which form the foundation for later work. The initial section was concerned with 

discussing atomic systems and introducing basic quantum electronics. The theory of an 

electromagnetic wave interacting with an atomic material explained the frequency 

distribution/gain of optical signals which lay the foundation for discussions on gain

in which photons, with a density S  stimulate more photons reducing the carrier density
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dispersion in such a device. The laser rate equations have been introduced to describe 

the interaction between photons and carriers in a laser device.
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Chapter 3

Optical Amplifiers

3.1 Introduction

This chapter is concerned with the use of Semiconductor laser amplifiers (SLAs) both in 

industry and in the laboratory. Initially a brief introduction to the use of SLAs in optical 

communication systems will be given. SLAs are basically divided into two types of 

device: the FP and travelling wave(TW). A description of each is given with the 

accompanying equations which describe the characteristics of the device under 

continuous wave input. The main emphasis of the chapter will focus on the travelling 

wave amplifier and will be the device described after the FP analysis. The concept of 

noise with origin stemming from amplified spontaneous emission is described. Its 

relevance to receiver generated noise will be shown by the noise equations. Pulse 

amplification in TWSLAs will be reviewed and experimental observations produced. 

The amplification of ultrashort pulses will be discussed.

3.2 Optical Amplifier Applications

With the continuing transition of telecommunication networks from electronic to optical 

it is envisaged that optical amplifiers are expected to play a significant role in future fibre 

networks [Potenza 96]. Their use may extend from discrete amplifier components to a 

more active part in switching and routing [Melle 96], WDM and OTDM [Ellis 93]. The 

high bandwidth of optical amplifiers (erbium doped fibre amplifiers (EDFA) have a 

bandwidth of 25 terahertz) means they can be included in a multi-wavelength multiplexed
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signal [Yu and O’Mahony 95]. The EDFA amplifier is proving to be of considerable 

benefit in the amplification of signals along a network path. Its associate, the SLA may 

have a lower bandwidth ~ 5 THz, but is now finding applications at the transmit and 

receive end of an optical transmission system. SLAs possess several advantages, 

amongst them high gain (25dB) with low power consumption and possible monolithic 

integration with other optoelectronic devices. They can be manufactured as amplifier 

arrays [Hunziker et al 95] and their single mode wave guide structure makes them 

suitable for mono mode fibres. Some applications of optical amplifiers are described 

below.

3.2.1 Receiver Amplifier

Using an optical amplifier prior to signal detection increases the detection sensitivity, 

particularly for bit rates in excess of 1 Gbit/s. Used in this way it allows for the 

development of wideband sensitive receivers, which is important for multiwavelength 

network systems [Fan et al 95],

3.2.2 Inline amplifier

This is particularly applicable for transoceanic cable links. Booster amplifiers in 

transmission systems are used to boost the optical signal power. Lichtman [Lichtman 95] 

used a system of 270 EDFAs spaced 33 km apart over 8910 km in a 5 Gbit/s 

transmission. Although EDFAs are a popular choice for this application the use of 

LiF:F2+ and LiF:F2 crystals for optical amplifiers has the advantage by allowing insertion 

into a network with no disconnection of the fibre [Kozlov et al 95].
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3.2.3 Wavelength translator

Wavelength translators are components used in reconfigurable wavelength division 

multiplexing WDM systems [Bray and O’Mahony 96]. TWSLAs operated in saturation 

allow transmission over different network paths. See section 5.1.3.

3.3 Semiconductor laser amplifiers

3.3.1 FP Basics

Figure 3.1 shows a schematic of a typical SLA based on a normal semiconductor 

structure as discussed in the section on lasers.

Bias
current

Light output

Light input

Figure 3.1 Structure of semiconductor laser amplifier.

The shaded region depicts the active area where the majority of the optical signal is 

confined. The active region is shown with width w, depth d , and length L. The cleaved 

ends of the device (facets) will possess a natural reflectivity R\ and R2 (typically 0.3 for 

normal lasers) due to the difference in refractive index between the semiconductor and its 

surroundings which is given by the Fresnel relationship:

R =
(Ns - 1)2 
(N s + 1)2

(3.1)
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where Ns is the refractive index of the semiconductor material (assuming the outer 

medium is air with refractive index equal to 1). For example R « 0.3 for a device wth Ns 

= 3.5 i.e. InGaAsP. Guiding of waves along the device is commonly performed using 

the index method where the active area has a higher refractive index than the surrounding 

semiconductor material (equation 3.1). Alternatively guiding can be achieved by 

imposing a gain differential between the active area and the rest of the semiconductor. 

Consider initially the single pass gain through a semiconductor device with no end

reflections given as Gs. A common definition of a FP device is when the factor Gs =

1/2 ♦ • • • • •(R1R2) is close to unity. Bias currents in such a device are set to just below the lasmg

threshold.

3.3.2 FP Analysis of SLA (Continuous wave)

In a FP cavity the optical signal consists of the superposition of two waves travelling in 

opposite directions and the phase of the signal needs to be included in the analysis. A 

travelling wave field inside the amplifier will propagate according to the following 

differential equation, [Marcuse 83]:

f , i S f L - , p ± E  p . 2)
az 2

where ±E is the field travelling in both directions of the amplifier, g(z) the gain coefficient 

per unit length at position z and P the propagation constant equal to 2tzNsz/X (note the 2 

in the denominator accounts for the field gain being equal to the square root of the 

power/intensity gain). To solve such an equation, boundary conditions are introduced to 

describe cavity reflections and transmissions. Figure 3.2 shows a schematic of the fields 

within a FP device.
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Figure 3.2 Boundary conditions for signal in Fabry Perot device.

An addition to a laser analysis is the inclusion of an input signal field E in, E out is the 

amplified field and £ re/the reflected field. Here boundary conditions are given as:

E  (0) = t\Ein + riE (0) (3.3)

E ref = rXE (0) + EirTi (3.4)

E \L FP) = r 2E+ (3.5)

Eout = E ( Lfp) t'2 (3.6)

where Lfp is the length of the device. To solve equation 3.2 a simplification is used in

that the gain along the cavity is independent of position and is given as g(z) = g.

Equation 3.2 can then be integrated to give [Adams et al 85]:

E ±(z) = K ±E0exp ± —  + iBz (3.7)

Applying the boundary conditions to equation 3.7 gives the constants K+ and K  and 

Eout resulting in the equation for power gain in a FP amplifier (assuming R\ = R2 where 

R  (= r2) is the power reflection coefficient) [Henning et al 85]:

(1 - R f G sG =
(1 — R G S) 2 +  4R G S • sin'

( 27rN T \eff^FP
(3.8)

A.
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Here Xs is the signal wavelength and N ejf  the effective refractive index of the TWSLA

the signal is assumed to occupy one frequency which is at the peak of the amplifier 

lineshape (see section 2.2.2) and spontaneous emission effects are ignored. The 

frequency response of an FP cavity from equation 3.8 is uneven and contains ripples due 

to the occurrence of standing waves at integer multiples of the device length. The ripple 

depth is measured as the difference between the peaks and is given by :

equation 3.8, the power gain reduces considerably to G  =  G s, i.e. the single pass gain. 

Without the rapid accumulation of field strength due to multiple reflections the gain in a 

TWSLA device is lower than that obtained with the FP method. The reduction in gain 

is compensated somewhat by an increase in bandwidth, reduced sensitivity to 

temperature variations and a greater tolerance to bias current fluctuations [O’Mahony 

88]. In addition it has low sensitivity to signal polarisation and superior gain saturation 

properties. The main method of reducing end reflectivity is to apply an antireflection 

coating to the ends of the device. However in practice the facets still retain some 

reflectivity and in reality TWSLAs are termed near TWSLAs (NTWSLA). With this 

method, residual facet reflectivities around 10'5 are obtainable [Ruiz-Moreno and Guitart 

93]. A further advantage obtained with reducing facet reflectivity is that passband ripple 

is lower. Figure 3.3 shows a typical ripple response for FP and TWSLA devices.

material. In the above analysis the amplifier is assumed to reach steady state conditions,

(3.9)

3.3.3 Travelling wave semiconductor laser amplifier (TWSLA)

With reflectivity at the ends of a semiconductor laser amplifier Ri and R2 set to zero in
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Figure 3.3 Ripple response of FP-SLA and NTW-SLA.

Gain ripple is a function of frequency and results from the frequency dependent term in 

equation 3.8 Passband ripple proves to be a disadvantage in multi-wavelength systems 

such as WDM transmission where different channels will receive different amplification 

due to the uneven response. Multi-wavelength systems utilise the flatter spectral 

response of TWSLAs as in [Singh et al 96]. However the cost and complexity of 

producing anti-reflection coatings is high. An alternative method has been developed by 

Kelly [Kelly et al 96] which uses facets which are cut at an angle to the waveguide 

direction. This method has produced reflectivities of 1 O'5 with an amplifier gain of 25 

dB at a wavelength of 1.55 pm

3.3.4 Analysis of TWSLA Continuous wave

Assuming zero reflectivity occurs in a TWSLA then the phase information is not needed. 

The field equation (equation 3.2) then becomes

conservation describes the interaction between the signal and carriers in the steady state 

i.e:

(3.10)

which is now described in terms of the signal intensity /. An equation of charge

Pc = Rsp - Tgl/Ep (3.11)



where Pc is the pumping term due to the bias current, Rsp the spontaneous recombination 

rate, T the confinement factor which describes the fractional intensity coupled into the 

guided mode and Ep the photon energy of the signal. The simplified boundary 

conditions are now:

/ / „ = / (  0) (3.12)

0 =T(L) (3.13)

The steady state solution for the TWSLA is found by solving equations 3.10 and 3.11 

subject to the boundary conditions 3.12 and 3.13.

3.3.5 Noise characteristics of TWSLAs

The origin of optical noise in an optical amplifier is from the spontaneous emission of

photons and contributes to the signal to noise ratio in an optical amplifier system.

Consider a point at the beginning of a TWSLA. Due to recombination of electrons 

there is a probability that spontaneous emission will occur and this equals the probability 

of stimulated emission by a single photon [Yariv 75]. There is also a possibility that this 

photon will stimulate further emissions and, being of a random nature, this will have no 

coherence with the signal photon and is therefore a noise process. The propagation 

equation for the noise power P„ is given as:

= a(n(z) -  na )P„ (z) + an(z)hv (3.14)
az

The first term in the right hand side of equation 3.14 corresponds to amplification of the 

stimulated emission process and the second term is noise added per unit length. 

Integrating equation 3.14 over the device length gives the power output due to amplified 

spontaneous emission (ASE) as:

P a s e  = (Gs - 1 )nspihv (3.15).
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where nsp 1 is termed the population inversion factor (equal to n/(n - no)). Any losses 

along the device are ignored. Spontaneous emission noise is considered to be white 

with a single sided power spectral density [Singh et al 96]. Figure 3.4 demonstrates the 

origin of the ASE component. [Tiemeijer et al 96].

-----

I
aO

ASE

75
Input power, uW

Figure 3.4. Signal and ASE power in a TWSLA. [Teimeijer et al 96]

The ASE power is of the same order as the signal power for low input powers but is 

reduced at higher powers as the device gain is reduced, as the ASE gain dependence 

shown in equation 3.15. The signal gain and ASE 3 dB points taken from [Teimeijer et 

al 96] have similar values (15.6 dBm (36.3 mW) and 15.1 dBm (32.4 mW) respectively). 

At the photodetector of an optical communication system the ASE will beat with itself 

and other signals. The noise components are given in Bray [Bray 96] as the mixing of 

various signals within the detector:

Spontaneous - spontaneous:

Nspont-spont = B J  (B 0)2 x(2B 0 - Be) x(e2/(hv)2)x(PASE) (3.16)

Spontaneous - signal:

Nspont-sig (4Be/B0) x (e/(hv)2) x( Ps + A/?) x(PASE) (3.17)

Shot noise:
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Nshot = 2xBex(c/hv)( Ps + Pase) (3.18)

Thermal noise:

Nth = f th (3.19)

where Be is the electrical bandwidth of the photodetector, B0 the optical filter prior to 

detection which is to bandlimit the ASE, Ap is the noise power added from previous 

stages and Ps the signal power.

3.4 Carrier non-linearities in TWSLAs

3.4.1 Intraband and interband transitions

It is convenient to describe the non-linearities associated with SLAs as either interband

or intraband, see figure 3.5 which shows the energy bands in a direct bandgap

semiconductor.
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Energy/ 
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Figure 3.5 Interband and intraband transitions.

Interband non-linearity is concerned with the changes in electron concentration between 

the conduction band and the valence band within a material. Intraband non-linearity is 

concerned with the changes in electron energy distributions rather than their numbers. 

The manner of change is such that the concentration of electrons in the conduction or
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valence band remains the same whereas the distribution of electrons within the energy 

band is altered. These effects are more pronounced in ultrashort pulse amplification (see 

section 3.7).

3.4.2 Non-linear gain effects

It is instructive initially to consider an absorptive medium (see figure 3.6).

input
photons

conduction band

valence band

non-inverted
absorber

Saturated.
(population
inversion)

output
photons

Figure 3.6 Absorption saturation in a semiconductor.

When a strong signal is sent through such a medium absorption immediately takes place 

with a corresponding increase in the population inversion. A point is reached where the 

rate the material absorbs energy is less than the power input and saturated absorption 

occurs. The point to note is that the shape of the signal is changed by the rate of 

absorption since the leading edge of the signal (which saturates the absorber) will be 

absorbed more (attenuated) than the trailing edge. Energy transmission is increased in 

the saturation region due to inverted carriers during the absorption process and 

distortion of the signal takes place. In an absorber with an energy gap between 

conduction bands of Ea and an active area A, a common definition of the saturation 

power is given as [George and McCall 94]:

Psat = EaAf(T X2a). (3.20)
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Saturable amplification is described fundamentally by the same physics as saturable 

absorption except for a change of sign between the two processes (the signal is now 

amplified instead of absorbed). In this case the pump(current) will replenish any 

stimulated emissions in the amplification process. If the pump injects carriers at a rate 

greater than that used by the signal then the carrier density does not change. If the 

stimulated emission rate is greater than the pump rate the carriers are reduced and the 

gain is reduced leading to a gain dependant on signal power given as [Singh 96]

G = Gssexp( ~(G - 1)Pjr/Psa() (3.21)

where Gss is the small signal gain of the amplifier and Psat is defined in equation 3.18 and 

describes the value for a steady state gain reduction of 1/2. Figure 3.7 shows a plot of 

gain v output power using equation (3.21), depicting the saturation of gain due to signal 

power.

Gain/dB

Output power/dBm

Figure 3.7 Gain saturation in TWSLA.

The saturation is also wavelength dependent [Innoue et al 87] due to the wavelength 

dependence shown in figure 2.3.
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3.5 Picosecond pulse amplification in TWSLAs

With transmission systems demanding data rates in excess of 150 GBit/s (see table 1.2) 

pulse requirements are for very short duration with high frequency components. The 

high gain high bandwidth of TWSLAs compared to FP devices is particularly suited to 

this application. In this section the amplification of pulses with a width of a picosecond 

or greater are examined. The special treatment required for subpicosecond pulses 

follows in a later section. The use of TWSLAs for pulse processing has led to a number 

of applications for their use, e.g. optical sampling [Jinno et al 94], non return to zero 

(NRZ) to return to zero (RZ) format conversion [Noel et al 95] , logical operations 

(AND gate) [Nesset et al 95] and address recognition [D’Ottavi et al 95], These 

examples highlight the increasing use of an optical amplifier to perform some of the 

functions on optical signals which were previously the domain of electronic methods.

3.5.1 Pulse response TWSLA (Experimental observations)

3.5.1.1. Regular pulse input at rates > recombination time

Initial investigations of TWSLAs centred around a steady state time response. The first 

measurements on the dynamic response of a TWSLA were made by Marshall [Marshall 

et al 87]. The pulses used there had a FWHM of « 50 ps which were amplified at low 

rates (100 MHz) to a peak power of 100 mW. Antireflection coatings were applied to 

this device which gave facet reflectivities of « 0.08%. Even at this low level of 

reflectivity TWSLAs still exhibit residual cavity modes, in this case ripple depth was 3 

dB of the modal gain which peaked at 25 dB. The input consisted of regularly spaced 

pulses (10 ns apart). Increased pulse repetition rates (2.5 and 5 ns spacing) gave 

identical gain curves as the 10 ns case. In all instances the pre-pulse carrier density
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settles to the zero input value. Further investigations in an experiment by Wiesenfeld 

[Wiesenfeld et al 88] used pulses considerably shorter (7.9 ps ) than before. The pulse 

separation was above the relaxation time (i.e. a pulse repetition rate of 200 kHz giving 

a time of 5 îs between pulses). In this case the pulses were characterised by their 

energies rather than powers. This is more appropriate for widely separated pulses 

whose effect on the carrier density is independent from adjacent pulses. Pulse 

saturation power would be misleading with different average pulse powers giving 

different values of gain saturation. The amplifier device gain is measured against a value 

of energy saturation which is the value of a single pulse when the gain begins to reduce. 

Distortionless pulse output was observed when the condition Ein < Esat (where Esat is the 

saturation energy given by Psa/ x2) was satisfied and no gain saturation occurred. With 

Ein approaching Esat gain saturation was apparent. The pulse input width for increasing 

energy was kept constant for this experiment therefore increasing the input energy is 

equivalent to increasing the pulse peak power. The gain v output energy curve was 

described as linear over a region where Ein «  Esat with a response given by [Wiesenfeld 

et al 88]:

G = Go - 4.3 4Eout/Esat. (3.22)

Further experiments on pulse amplification were carried out by Eisenstein [Eisenstein 

88] at repetition rates of 4 GHz and 1 GHz where gain compression occurred for the 

same pulse energy in each case. The recovery time was 250 ps for this amplifier giving 

independent pulse amplification for both frequencies. Using data rates around the 

reciprocal of the relaxation time ensures no intersymbol interference occurs between 

adjacent pulses as each pulse experiences a gain which has fully recovered from the 

previous pulse, giving a maximum data rate of 4 GBit/s in this case. Figure 3.8 shows
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an amplified 4 GHz distortion free pulse which would result in no intersymbol 

interference [Eisenstein et al 88].
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Figure 3.8 Distortion free pulse at low data rate [Eisenstein 88].

The point to note in the above experiments is that operation at data rates higher than 1 / t 2 

produces identical gain for each pulse even under gain saturation.

3.5.1.2 Modulated pulse input in saturation region

The previous experiments used a periodic pulse input. An interesting feature of dynamic 

input to TWSLAs is when modulated data is input to the amplifier. It is observed that 

the power gain can increase momentarily when a signal contains a train of ones 

interspaced by zeros. The experiment of Ligne [Ligne et al 90] satisfied this condition 

with pulse rates at 1 Gbit/s and 4.8 G bit/s with r2 = 2 ns. A pulse train consisting of 

011111010 was input to the amplifier. Common to both data rates the amplifier output 

was non linear with significant overshoot occurring on the pulse following a series of 

zeros (bit 2 and 8). Stable conditions of the amplifier were achieved after a series of Is 

(bits 2 to 6), ( figure 3.9).
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Figure 3.9 High data rate pulses to saturated TWSLA [Ligne 90].

With the lower data rate (1 Gbit/s figure 3.9a) the long period of the first bit allows for 

stability conditions to be reached over a one data pulse and a longer period for carrier 

relaxation when a zero is received. Figure 3.9b for a data rate of 4 GBit/s shows the 

second overshoot is lower than the first, the reason being that the short pulse period 

requires a larger number of pulses for stability to be reached. If the amplifier was 

operated in the unsaturated region all bits would receive equal amplification for all data 

rates. The TWSLA when operated in the saturated region gives an uneven response for 

different bits of the signal due to the variation in carrier density associated with the 

saturation region. Similar experiments by Inoue and Yoshino [Inoue and Yoshino 96] 

have showed pulse distortion is evident for modulated bit rates (7.5 Gbit/s) under gain



saturation of the device, see figure 3.10 which shows pulse distortion in the closed eye 

diagram.

Figure 3.10 7.5 Gbit/s pulse amplification in saturated device [Inoue and Yoshino 96],

In the modulated data rate case it is clear that consideration must be given to the effects 

of saturation and the timing between data pulses, although the average gain of a train of 

pulses may yield a certain value a different value occurs for different bits.

3.6 TWSLA Dynamics

3.6.1 Simplifications.

To understand many of the characteristics of pulse amplification e.g. pulse broadening, 

pulse compression, gain saturation and self phase modulation it is necessary to analyse 

the dynamics of TWSLAs. The approach is based around the fundamentals of a 

continuous wave analysis. The previous analysis of TWSLAs described the equations 

used for continuous steady state analysis (section 3.3.4). For pulse inputs with varying 

frequencies and bit patterns the TWSLA needs to be described as a function of position 

and time. This section outlines and justifies the simplifications which can be applied to 

the analysis for a particular application.
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3.6.1.1 Homogenous broadening

A comprehensive rate equation was presented by Marcuse [Marcuse 83] which describes 

the interaction of light at different frequencies with the conduction and valence band 

electrons i.e:

^ -  = P ' -  —  - A c S ( p ,- n „ )  (3.23)
dt t2

where nv is the density of conduction band electrons and nov the density of valence band 

electrons and Ac the stimulated emission coefficient. It is noted that a subscript v occurs 

throughout which relates to the frequency of the signal within the device. This equation 

implies that a number of rate equations are required to describe the interaction of a 

photon at a particular frequency with the carriers. This is of less importance when the 

photon is from a particular input signal with a defined wavelength such as a continuous 

wave. More significant in this analysis is the presence of noise in the amplifier or for 

pulse signals which have a finite bandwidth. The wavelength dependence can be 

described by a distribution function which describes the fractional interaction of electrons 

with photons at a particular frequency / v. The inclusion of a distribution function for 

conduction electrons gives:

A ,= I > v  (3.24)
v=l

and for valence electrons:

A , .= 2 X .  (3-25>
V = 1

An important consideration of laser amplifier analysis is the broadening of the interaction 

of photons and electrons which will be described . In experiments by
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[Mukai 87] the gain spectrum for TWSLAs was examined. The work highlighted an 

important factor concerning these devices. It was found that the amplifier had a 

frequency response function G = G0(cos,Si) where co, is the signal frequency and Si is an 

additional strong light signal at a single wavelength input to the TWSLA. The gain 

function at a particular value of current gave a similar shape to one with a higher current 

and the signal Si. Figure 3.11 illustrates the TWSLA spectra [Mukai et al 87],

m
&

Figure 3.11 Gain spectra of TWSLA [Mukai 87].

Note the plots A which indicate one signal source and •  which also includes a signal at 

1.51 |xm. The overlap of the two plots indicates that light input of any frequency will 

interact with electrons in a similar way as current input does. Returning to the rate 

equation term for electrons the distribution functions can now be normalised to one i.e.:

I > v K v )  = l (3 -26)
v=l

for both conduction and valence band electrons. The phenomenon of spectral hole 

burning in which a photon at a particular wavelength can “burn” a hole in the electron
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structure is precluded and equation 3.23 is reduced essentially to a single equation for all 

frequencies [Gillner 92].

3.6.1.2 Electronic band structure

Homogenous broadening introduces one of two approximations to the non-linear 

analysis. A second simplification involves the concept of a band structure. Energy levels 

in a semiconductor exist in bands (i.e. the term conduction band) [Brian 90]. Relaxation 

times within the bands in which the electrons are distributed are very fast with times of 

the order of 50 fs [Gomatam and DeFonzo 90]. The response of fast intraband times is 

less pronounced as the input pulse moves into the picosecond region [Hong et al 94],

3.6.2 Equations for TWSLA dynamic analysis

The major difference in the analysis of dynamic gain non-linearities and any effects due to 

phase, velocity and group velocity dispersion are that the pulse widths are assumed long 

and device lengths short so that the latter effects can be ignored. These effects tend to 

dominate more in subpicosecond amplification [Hall et al 1990]. The task now is to 

develop a differential equation for a signal with intensity I(z,f) travelling through an 

amplifier with an inverted population electron density given as n(z,t). Refer to figure 

3.12 which describes the propagation of a signal through a segment of a TWSLA.

Az

I(z+Az)

Semiconductor

Figure 3.12 Diagram for the calculation of dynamic signal input to a TWSLA.
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A simple energy conservation equation then assists in describing the effect and is written 

by considering a short length segment Az within the amplifier. The following statement 

can be written:

Rate of change of stored Power into one end of segment - Net rate of 
energy in the segment As = power out of other end of + stimulated

segment. emission within
the segment

Algebraically this may be written as:

OF (z t\
■  ̂ = a ( z , t )A d - d l ( z  + Az,t)Ad -  [zJ)tszAd (3.27)

at

where Etot is the total energy within the segment, Ad the area of the segment, c  the

stimulated gain coefficient. If p  is the energy density of the device the following

equation can be written:

-  \dl(z, t) -  (3(z + Az, t) -  on(z, t)I(z, t)Az]Ad (3.28)
dt

Now if the photons move with a velocity of cj then:

I  fat) = cd<J (3.29)

giving:

Azdl{z,t) 1
a cd

-  I (z , t )~  I(z  + Az,t)~ cm(z,t)I(z,t)Az (3.30)

Taking the partial differential coefficient of equation 3.26 with respect to z gives 

<%(z,t) 1 dl{z,t)
— -------+ ■ = on (z,t)I(z,t)  (3.31)

at cd az

which is the propagation equation for the movement of photons within an amplifying 

medium with an inverted population.

A simplified carrier density equation can be written as:
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3i{z,t) Tct
dt E p

= — {n{z,t)-n0)I(z,t). (3.32)

Equations 3.31 and 3.32 form a set of coupled differential equations which describe the

evolution of a time and space varying input to a semiconductor device.

3.6.3 Pulse propagation dispersive effects

It is now possible to generate ultra short pulses (less than a picosecond) particularly in 

modelocked lasers [Nakazawa and Yoshida 96] which can be amplified to large energies 

in laser amplifiers [Tang et al 96]. This section introduces some of the fundamental 

properties of linear pulse propagation which are of concern when propagating through 

dispersive media [Radzewicz et al 96] and the amplification of ultrashort pulses [Kao et 

al 96]. The concepts include phase and group velocity, and group velocity dispersion.

3.6.3.1 Dispersive systems analysis

Gaussian pulses provide a mathematically convenient method of analysing dispersive 

systems and an example of such a pulse can be written as:

where co0 represents the carrier frequency (optical frequency) a} describes the Gaussian 

pulse shape and b\ the frequency chirp present. The instantaneous intensity of such a 

pulse can be written as:

If a\ - ]b\ in equation 3.33 is written as Ti then the Gaussian pulse spectrum is given by:

Ed(t) = exp(-a]i 2)expj(w ot +b]t 2) (3.33)

/(/)= \EJJ)\2 = exp(-2a/2) (3.34)

(3.35)

If the propagation constant of a travelling wave system is now introduced as:

P = 2tiN J l (3.36)
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where Nj is the refractive index of the medium of which the pulse is propagating at a 

wavelength X, p is actually a function of frequency and can be written as a truncated 

Taylor series containing terms up to the second order [Radzewicz 96],

P(co) = PoOo)+Pix(co -co0)+l/2 p2(co-coo)2 (3.37)

if ©o is a centre frequency value of narrow band signals then:

pi = dP(co)/dco (3.38)

and

p2 = d2p(co)/dco2 (3.39)

both Pi and p2 are evaluated at © = ©o. The propagation constant at a distance z is P(©)z 

which modifies equation 3.33 to:

Ed(t,z)= exp/(-P(©)z). exp(-tfj/2). expj(w0t+bif) (3.40)

taking the inverse fourier transform of Ep(z,®) gives:

- ( ( U - O )  o ) :
jP ,z (m -(o a) - j P 0(to„)z

4 T Jz)

where is the modified Gaussian pulse parameter given by:

exp jcot.dco (3.41)

1 = ^ r  + 2 jp 2z (3.42)
r , ( r )  r

It is possible now to bring out terms ©0/ and P(©0)^ to the front of the integral in 

equation 3.41:

E d{ZJ)= [E i J ^ ^ p ^ y

- (0> - a > y 2n  (3 '43)
J exP----- at- , 1  ~ 0} , , ) ( t -P xz)d(o) -  ®.)
i  4 rd(z)

Note: the change of variables © = © -©0, and / s  t-$\z. Comparing with equation 3.35

the integral gives a Guassian pulse with modified shape Td(z) [Siegman 86]:
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Ed(z,t) = exp j ( w j  - /? (w „)z).ex p (-rj(/ - /? ,r )  (3.44)

From equation 3.44 the first exponential is identified as the phase velocity and the second 

exponent the group velocity. The phase velocity determines the phase of the carrier 

wave as it propagates over a distance z, the group velocity determines the delay of the 

pulse envelope at a distance z. More important is the group velocity dispersion (GVD) 

determined by the parameter T^z). Hence, from equation equation 3.42, pulses 

transmitted over a medium are affected in shape by the parameter P2 . It is therefore 

necessary to appreciate the value of the dispersion parameters in systems which possess 

a variable value of P2. In the previous description P relates to optical fibre 

transmissions. GVD in an optical fibre produces the effect known as pulse broadening 

[Kao 96] whereby the spectral wings of a pulse propagate at different speeds from the 

centre frequency [Agrawal 91]. A detrimental effect is intersymbol interference as pulses 

overlap each other over long fibre systems. Figure 3.13 shows how a broadened pulse 

can overlap into an adjacent pulses.

Amplitude/
arb.units

Time/arb. units

Figure 3.13. Broadened Gaussian pulse.
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A typical measure of dispersion is the length of transmission possible before the FWHM 

of a pulse increases by V2 of its initial value. Typically for transmission through glass 

fibres with a refractive index n — 1.5 theV2 broadening lengths range from 1 cm for a 

100 fs pulse to 10 km for a 100 ps pulse

3.6.3.2 Pulse broadening and gain dispersion in amplifying devices

A semiconductor laser amplifier will possess a finite band width and thus a frequency 

dependent gain [Eisenstein and Jopson 86]. The gain curve of such a device is described 

by a Lorentzian atomic type transition with the following format (see section 2.2.2)

g(a>) = - ^  (3-45>
1 +

A(y0

which can be approximated to the following [Agrawal 91]

2
8 o ~ S c vA co0.

x(co-co0) (3.46)

where g(co) is the frequency dependant gain and is known as the gain dispersion, g0 is the 

gain at the centre frequency , co0 the centre frequency and Aco0 the line width of the 

atomic transition system. When subjected to a gaussian input pulse with initial parameter 

T0 the modification after propagating through an amplifier a distance z is [Siegman 86]:

1 -  1 (3.47)
r o o  r0 a  col

The net result is broadening of an optical pulses after propagating through an amplifier 

with a finite bandwidth. As an example of pulse broadening in an atomic transition 

consider a pulse with a Gaussian parameter r 0 = a0 (no initial chirp , bo = 0) input to a 

system with a finite bandwidth. The gain dispersion equations 3.46 and 3.47 convert to 

the pulse width broadening equation [Siegman 86]:
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^ ( z ) = ^  + 061n^lnG1 ^

where Go = exp(2gb^) (the gain after two passes through the amplifier at the centre 

frequency), xpo the initial pulse width and \p the pulse width after propagating a distance

z. With an amplifier of gain (multipass) 105 and linewidth frequency bandwidth 120 GHz

2 2 2 ♦ then t p = tpo + (15 ps)xx^ which indicates that an ideal delta function at the input will

broaden to a 15 ps pulse at the output. A 50 ps input pulse will broaden to 

■J(50ps)2+ » (15/75) «52ps. The above analysis shows that GVD is more significant 

with decreasing pulse width and increasing device length [Agrawal 91].

3.7 Ultrashort Pulse Amplification In TWSLAs

The amplification of ultrashort optical pulses in semiconductor laser amplifiers has been 

the subject of considerable research in the previous years [Delfyett et al 91], [Uskov et al 

94], [Lenz et al 96] and [Juodawlkis et al 96]. Their possible applications to high speed 

communication and logic systems are increasingly being recognised. For pulses which 

are in the range of tens of picoseconds the results are well recognised and theoretical 

analysis have been developed (see chapter 7).

3.7.1 Pump probe method.

The mechanism for the study of ultrashort pulse amplification uses a pump probe signal 

input which will be described here for reference. Pump probing is an experimental 

method for analysing the dynamics of optical systems. The pump consists of a short 

duration pulse injected into the laser/laser amplifier, the photon density is usually in the 

range of that for lasing to occur. A second pulse, the probe, with a much smaller intensity
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than the pump pulse is injected into the device after a certain time delay and is assumed 

to have a negligible effect on the carrier density. A polariser at the output separates the 

probe beam which is detected by a photodiode. The delay between the pump and probe 

is the independent variable and the intensity of the probe after passing through the device 

is the dependent variable in the analysis. Figure 3.14 shows a schematic of the set up 

commonly used.

Pump

Probe

Delay

Figure 3.14 Pump probe experimental set up.

3.7.2 Temporal response

Early experiments on subpicosecond pulse dynamics were performed on GaAlAs diodes 

by Stix et al [Stix et al 86], In this experiment a dye laser was pumped by a krypton 

laser where 8 ps pulses were reduced to 0.4 ps using 35 m of polarising preserving single 

mode fibre. The outcome of the experiment was a noticeable rapid decrease in the 

device transmission with a fast recovery of the order of 0.9 ps (see figure 3.15). Further 

experiments on fast pulses by Hall et al [Hall et al 90] yielded an ultrafast component in 

InGaAsP optical amplifiers not noticed previously. They were able to identify two 

components in their data corresponding to time constants o f« 650 fs and 200 fs.
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Figure 3.15 Pump probe transmission of 180 fs pulses. [Hall 90].

The transmission also has the long lasting component attributable to carrier 

recombination.

3.7.3 Gain saturation.

The appearance of these components led to intensive effort on subpicosecond gain 

dynamics in optical amplifying devices. The dependence of the gain dynamics on pulse 

widths had not been studied until Lai et al [Lai et al 90] measured the gain saturation 

properties of a laser amplifier (InGaAsP). The gain response was measured for different 

pulse widths over a range of 15 ps to 150 fs with a separation between pulses of 10 ns 

which is considerably longer than the slow population recovery normally associated with 

InGaAsP TWSLAs. Each pulse received high gain simulating the effect of a single pulse 

input. They produced autocorrelation traces of the pulse output which gave no visible 

indication of distortion even under saturation conditions. The interesting feature to 

evolve from these experiments was from the gain characteristics. The gain for small 

signal values was approximately equal for varying pulse widths. For higher values of 

output energy it was apparent that the smaller pulse saturated the TWSLA at a lower 

value, the 3 dB gain reduction was approximately 40 fj  and 150 0  for 15 ps and 150 fs 

pulses respectively. In common with previous experiments fast components were
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identified using pump probe measurements. The speed of the responses in this 

experiment were fitted to experimental data to be 700 fs and an additional ultrafast 

component at 250 fs.

3.7.4 Analytical description of gain saturation of ultra-short pulses

Concerning the slower component the mechanism is now being established as carrier 

heating [Hong 94]. To explain the carrier heating process the semiconductor material is 

assumed to attain an elevated lattice temperature with signal input. Two methods can 

introduce this effect: stimulated emission of below average energy value electrons and 

free carrier absorption. A reduction of gain follows an increase in lattice temperature as 

less carriers are available for stimulated emission gain. The heated carriers will cool back 

to the lattice temperature when the signal has propagated on a time scale comparable 

with pump probe experiments. Note the gain dynamics associated with carrier heating 

have a sign which is always the same and do not follow the region in which the amplifier 

is operating (absorption, gain or transparency). Uskov et al [Uskov et al 92] has 

developed a differential equation to describe the carrier heating effect and related this to 

the gain equation of semiconductor devices via the carrier temperatures. The equation

is:

f f i  , 
—  = ha

fi,
\

g

T - TM - Ej + ^ h c o 0 v S — :— ^  (3.49)

where /' = c,v are subscripts for conduction and valence band electrons Tc is the electron 

temperature, Tv the hole temperature, TL the lattice temperature, p, the free carrier 

absorption coefficient and Acoo the photon energy. If Uc and Uv represent the energy 

density of electrons and holes, the other parameters in equation 3.49 are:

//, = (d U/dn) n (3.50)
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h 1 =(dU /oTi)n, (3.51)

E, is the carrier energy (measured from the band edge). Equation 3.49 accounts for 

carrier heating through carrier heating and stimulated emission (see figure 3.16).

Energy/ Free carri< 
arb. units, absorption

Simulated 
emission o f 

*ld carrier

Conduction
band

<r

Valence
band

momentum vector/ arb. units

Figure 3.16 Carrier heating processes.

Stimulated emission removes electrons near the band edge which are termed cold carriers 

(low band energies) at energies Ec and Ev and as p, (characteristic energy) > Et carrier 

heating occurs. In free carrier absorption carriers are transferred to higher energies 

within the band increasing the total energy density. The carriers thermalise (i.e. they 

assume Fermi-dirac distributions through intraband scattering). Cooling of carriers is 

through the second term on the right hand side with a time constant t /,. An 

accompanying gain expression can be written as:

where go is the zero signal gain gN carrier density gain coefficient, nt the carrier density 

with zero input signal, An = n - nb, A7) = Tt - TL. sShb is a non linear coefficient to 

account for spectral hole burning which is a process whereby a signal at a specific energy

g «  C ?0 + g„A» + gTCATc +gTA'K)-—~ (3.52)



creates a dip in the spectral characteristics. The lattice temperature Tl will attain a 

higher temperature than the conduction and valence band electrons. Consequently grc 

and grv will have negative values. A reduction in gain thus occurs. Using the 

temperature equation (3.49) the gain equation (3.52) a rate equation (3.32) and a 

propagation equation (3.31) the amplification due to ultrashort pulses can be computed. 

The results of such simulations are shown in figure 3.17 for pulse duration 10 ps (upper 

curve) 100 fs (lower curve). The lower saturation energy of the shorter pulse can be 

identified.

io-

c
3

0-

10' 4 icra 10'* to*’ io° io* io*
Input energy (pj)

Figure 3.17
Gain of TWSLA energy with different pule width input. [Uskov et al 92]

The above analysis provides an account of the gain saturation process of ultratfast 

dynamics and shows pulse width dependence on saturation. The dynamics of the process 

have also been studied comprehensively in [Mark and Mork 92] with a theoretical model 

showing ultrafast components as well as the fast component due to carrier heating.

3.8 Summary

This chapter has gone some way towards describing semiconductor laser amplifiers for 

use in communication systems. Architectures of amplifiers discussed are divided into
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two types: FP and travelling wave with no distinct line between the two types. Signal 

inputs range from continuous wave to quasi-continuous through to pulsed operation. 

Analysis of noise due to spontaneous emission for the travelling wave cases is described. 

Phase and group velocity is discussed with a derivation of group velocity which can be 

utilised in systems with atomic resonances present. Particular emphasis is placed on 

ultrashort pulses. It is found that significant departure from previous dynamics occurs 

with this fast mode of operation. In particular, two time constants are evident which are 

described as an ultrafast and a fast component. An analysis developed to account for 

carrier heating is presented together with the differential equations which model the gain 

saturation properties due to different pulse widths. The inclusion of faster time constants 

in TWSLAs is important for high data rate systems where sub-picosecond pulses are 

used.
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Chapter 4.

Optical switching and routing

4.1 Introduction

One of the most important areas for study in modern optical communication systems 

currently is the utilisation of the fibre capacity. Optical signals may be transmitted at 

different wavelengths and/or they may be separated in time. This chapter will look at the 

various methods of switching and routing of wavelength and time dependant channels. 

Popular structures for switching and routing are based around interferometers, 

directional couplers, waveguide digital optical switches (DOS) and mechanical reflection 

devices. Within these architectures, various physical mechanisms allow the switching of 

an optical signal, including: sound waves, electric field, mechanical switching and 

controlling light signals.

4.2 Mach Zender Interferometers

A typical Mach Zender device is shown in figure 4.1.

Waveguides
Phase shifter

Coupler 2Coupler 1

Figure 4.1 Mach Zender interferometer.
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The waveguiding in figure 4.1 consists of two optical fibres with coupling formed by 

placing the waveguides in close proximity to each other. The first coupler passively splits 

the power of the two signals equally into the two guides. To operate the Mach Zender 

interferometer a phase shift has to be imposed on the signal passing through the phase 

shifter arm. When a phase shift of n is imposed by the phase shifter on the signal, 

transmission (after interfering at port coupler 2) is via port 4. Port 3 output occurs when 

the phase shifter phase is zero and both arms undergo equal phase shift. The switching 

speed of the switch is determined by how fast the phase shift can be turned on and off at 

the phase shifter. One of the major disadvantages of Mach Zender devices is the difficulty 

in manufacturing devices with equal length arms. Using fused fibre technology for the 

waveguides, the problem can be overcome somewhat by manufacturing the device on 

similar lengths of fibre and forming the couplers at two points on the fibre by fusion. 

Initial investigations on this configuration have been performed by Shipley [Shipley et al 

87]. The switch configuration in figure 4.1 was used with a different component for the 

phase shifter. The methods of producing the phase shift are outlined in 4.2.1. - 4.2.4. 

4.2.1 Thermo-optic

By heating the fibre in one arm of the switch a phase shift $ is produced which obeys the 

following differential equation:

d(/)
= k

rnf  dL drif'
+ (4.1)

lf dT \  lf  dT dT J

where If is the heated length of fibre, tif the fibre index and k the propagation constant. 

With electro resistive heating producing the thermal effect the power output of the 

switch follows a periodic response given by:

P0 = PiCos{nP/2PJ (4.2)
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where P„ is the electric power required for a n phase shift. Switching speeds were slow 

due to the long time constant of the heating effect. Modulation frequencies of « 25 Hz 

were achieved with a heating power of 25 mW.

4.2.2. Stress-optic phase shifter

This method introduces a differential phase shift by longitudinally stressing the fibre in 

one arm. The phase shift A(j) introduced by a force F  acting over a fibre length L and 

cross section A can be derived from the following equation:

A^ = ^ l - ^ - ( ( l - / , ) / > 12- ^ , ) J  (4.3)

where Pu and Pn  are Pockels coefficients, // Poisson’s ratio, p  the optical propagation 

coefficient and Y the Young’s modulus for silica. The phase shift obtained for this 

method is slow due to the mechanical nature of the method and its use is restricted to the 

routing of signals.

4.2.3 Electro-optic method

A recent electro-optic method of phase shifting has been demonstrated by Wooten 

[Wooten et al 96] which uses LiNbCb waveguiding technology and switching performed 

by an electrical signal. See figure 4.2.

UNbOj

Electrodes Switching signal.

Figure 4.2 Electro-optic Mach Zender interferometer.
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This device also possesses wavelength selectivity and can switch signals with a pass band 

o f« 0.4 nm, an insertion loss of 19 dB and a crosstalk of less than -22 dB. The arms of 

the device are manafactured with different propagation lengths with a signal path 

difference of AL. The frequency dependent output is due to the unbalance and is given 

by:

T = cosV2(v/Av + VIVjj\ (4.4)

where V is the voltage required for switching to occur and the frequency spacing is 

given as:

Av = c/2nNsAL (4.5)

where Ns is the refractive index of the LiNbC>3 substrate. Switching speeds of this device 

gave an improvement over previous methods but were still limited to 20 MHz However 

sub-picosecond speeds using this method were proposed by [Wooten et al 96] with 

optimisation of the switching electronics. The switching voltage was 7.6 V.

4.2.4. TWSLA devices

A novel type of all optical Mach Zender device incorporating an TWSLA has been 

demonstrated by Kang [Kang et al 95]. In each arm of the interferometer a TWSLA is 

placed asymmetrically with respect to the other (see figure 4.3).

TWSLA 1
Data Control

TWSLA 2

U

Figure 4.3 Asymmetric TWSLA Mach Zender device.
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An additional control signal is fed into port 3 of figure 4.3. The control pulse reaches 

TWSLA2 in the lower arm first which changes the optical property of TWSLA2 

inducing a change in its refractive index and hence the phase of a signal propagating 

through the device. This switches the signal to port 4 when the phase shift of the 

TWSLA2 equals n. The control pulse reaches TWSLA 1 in the upper arm after a time 

delay L J c given by the asymmetry of the TWSLAs and switches the pulse to port 3 

when TWSLA1 has a phase change of n. An advantage of this configuration is that the 

control and data signal which move in opposite directions can operate with identical 

wavelength and polarisation with no discrimination needed. The resolution of the switch 

is related to the length and refractive index of the TWSLA (L Sl a , N s l a  respectively) and is 

given by 2 L s l a  N s l a  fc. For this experiment a switching speed of 2x500x10’6x3.3 /3xl08 = 

11 ps was obtained. The time required before switching can be performed again is 

determined by the relaxation time of the TWSLA and was found to be 1 ns with a 

contrast ratio between the on and off state of 5 : 1. This configuration permits integrated 

assembly and has been demonstrated in a 4x1.5 mm device by [Strass 96]. This had 

switching speeds of 20 Gbit/s with an extinction ratio of 10 dB. A similar device (size 9 

xl.3 mm) [Leuthold et al 96] produced an extinction ratio of 20 dB. Note that this 

device also had an overall gain of » 5 dB (which is a feature of this configuration) 

compared with the previous Mach Zender devices which exhibited an overall insertion 

loss for the data signal.

57



4.3 Directional Coupling.

4.3.1 Semiconductor directional couplers

Directional couplers consist of closely spaced waveguides which couple light through 

their overlapping evanescent fields or mode tails (inset figure 4.4). These devices are of 

current interest and can be implemented using InGaAsP waveguiding technology making 

them suitable for integration. Figure 4.4 depicts such a device.

W a v e g u id e s

Figure 4.4 Directional Coupler.

The input signal cross couples signal Pin to P2 when:

Lc = tt/ 4 k  (4.6)

and splits equally when:

L c =  ti/ 2 k  (4.7)

where Lc is the waveguide length and k  is a coupling coefficient of the device. A device 

which can selectively filter and reflect a particular wavelength via Ps was demonstrated 

by Alferness [Alferness et al 88] using a Bragg grating placed at the output port which is 

tuned to the reflected wavelength of the device. This device has a fixed bandpass

spectrum dependent on the Bragg wavelength. An enhancement on this technique using
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the concepts of a grating assisted coupler was provided by selectively tuning the switch 

electronically [Shibata et al 96] (see figure 4.5).

Grating switch

Lr/2

Input waveguide

Reflected Transmitted

Figure 4.5 Wavelength selective directional coupler.

It is a monolithic device and has a waveguide structure which will allow the integration 

with other devices such as laser diodes, photo-detectors and optical switches. 

Wavelength routing is provided by a waveguide system which is dependent on the

• • M2current injected into the device which follows the simple relationships Xg = k j  , and Xg 

= knn where Xg is the Bragg wavelength, ki and kn are constants of the device and /  the 

current. Shibata [Shibata 96] used this configuration to demonstrate a wavelength 

selective router. The device reflects signals according to figure 4.6a and transmits signals 

as in figure 4.6b. Switching times obtained were 1 ns.
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Figure 4.6 Reflection and transmission of wavelength router.

For example in a 1 x 2 device when two signals are input to the device at 1.549pm and 

1.555pm and zero current the 1.555pm signal is reflected and the 1.549pm signal 

transmitted. A control current of 25 mA input to the grating would route the signals to 

the opposite ports.

4.3.2 Thermo-optic switching directional couplers

Polymer waveguide technology is now considered to be a highly attractive technology. It 

is a low cost method of producing thermo-optically controlled switches and possesses a 

number of advantages including low crosstalk, low switching power polarisation and 

wavelength independence and is insensitive against switching bias and working 

temperature. Figure 4.7 shows a typical device.
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\E l

Electrode

Electrode Signal
OFF A l to A2, B1 to B2
ON A l to B2, B1 to A2

A2 B2

Figure 4.7 Thermo-optic directional coupler.

A 2x2 switch was demonstrated by Keil et al [Keil et al 95]. Operating at a wavelength 

of 1550 nm the switch uses low cost polymethyl methacrylate (PMMA) technology. A 

voltage is applied to the heating electrode to switch the signal paths as shown in figure 

4.7. Power consumption is around 30 mW (0.5V, 60 mA) and the extinction ratio is 32 

dB. Switching times are limited to around 1 ms.

4.4. Digital Optic Switch

One of the main features for realising the DOS was polarisation independent switching 

for the uncontrolled state of polarisation of incoming light when non-polarising 

maintaining fibre is used. A comparison of DOSs and directional couplers is given in 

table 4.1.
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Type o f switch Directional coupler Digital optical switch
Principle Interferomic device Mode converter

Main advantages No extra loss Polarisation independent 
3 dB splitter.

Main drawbacks Polarisation dependant 
Optical bandwidth limited.

Compromise between angle and 
required index change.

Table 4.1 Comparison of directional coupler and DOS.

The technique upon which the DOS is based is known as the vanishing waveguide 

method using a ‘Y’ configuration (figure 4.8).

index
Pout

Pin

a).

Pout

Pin

b).

Figure 4.8 Digital optical switch.

In the state shown in figure 4.8a the input signal splits equally between the two output 

guides. Raising the refractive index of one guide with respect to the other guide switches 

the input power over to one guide (figure 4.8b).

4.4.1. Semiconductor DOSs

Yanagawa et al [Yanagawa et al 90] constructed a DOS using GaAs/GaAlAs technology 

where the output guides are built around a pn junction. Forward biasing one of the 

output guides gives a carrier density change equal to:

N  = (I rtwL)/e (4.8)
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where /  is the injected current, r  the carrier lifetime, e the electron charge, t the thickness 

of the ir layer in which the pn junction is diffused, w waveguide width and L the 

electrode length. This directs the signal to the other output by raising the refractive index 

of the switched section. The state as in figure 4.8a is obtained with zero current to the 

device. Switching times obtained with this device were 10 ns with a crosstalk of -20 dB 

and currents of 280 mA and 340 mA for 1300 nm and 1550 nm wavelengths 

respectively. Reported use of an alternative method using silicon DOSs have realised 

switching times of 200 ns. [Liu et al 94]. The carrier non-linearity in a semiconductor is a 

promising mechanism for an optical switching devices. However because of the finite 

relaxation time (as discussed in section 2.2.2) the recovery time of these devices is 

relatively slow. The switching time of a device presented in [Yanagawa et al 90] is 

limited to a speed o f« 1.1 GHz. Various attempts to overcome this have been proposed 

and some are described below.

(i)  weeping out the photo generated carriers from the active area 

LiKamWa and Miller [LiKamWa and Miller 91] demonstrated that the relaxation time 

can be reduced from 1.5 ns to 550 ps by sweeping out photo generated carriers in a 

semiconductor with the application of an electric field. An alternative technique 

combines the architecture of a ‘Y’ junction waveguide and an optical control signal to 

speed up switching and has been demonstrated by Kan’an in [Kan’an et al 96]. Here the 

signal enters one guide with two possible exits decided by the application of a control 

signal. Figure 4.9 shows the device structure and signal paths in relation to the control 

pulses.

63



Pili = data 
only
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Pin plus first 
control pulse

A
Pin plus 
second 
control pulse

a).
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c).

Figure 4.9 DOS with control signal.

By adjustment of the lateral position of the data signal an unequal split of the data 

between the output guides is obtained in the absence of a control signal (figure 4.9a). 

Two control pulses are used for faster switching. The first is used to switch the signal to 

channel A by causing an index asymmetry and a change in power division between the 

output guides. A second control pulse causes a spatial mirror image in the index change 

due to the first control switching the signal back to channel B. The active structure is a 

multiquantum well GaAs/AlGaAs device grown on a GaAs substrate. The material 

exhibited an exciton resonance at around 828 nm and experiments were carried out using 

a centre wavelength of around 875 nm. Experimental results on real devices are shown in 

figure 4.10 [Kan’an 96],
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Figure 4.10
Switching characteristics of DOS. a). One control pulse b). Two

control pulses.

By varying the delay of the signal with respect to the control the split between output 

ports was seen to decay on a time scale of around 225 ps (figure 4.10a) which seems to 

place a limit on the switching speed of « 4 GHz. Absorption of carriers is the reason for 

the switching non-linearity. The resolution of the switch is determined by the separation 

between the two pump pulses. In this experiment 200 fs pulses were used with a 

separation of 9 ps (figure 4.10b) and an energy per pulse of « 9 pj. The switching 

window had a rise time of 2 ps which was attributed to cooling of thermalised carriers.

(ii) Operating AlGaAs at photon energies at half the bandgap

A new technique which also addresses the problem of the slow relaxation was proposed 

and demonstrated by Villenewue [Villenewue et al 95], The trade off for this effect is the 

high power levels required. Directional non-linear couples using this method require 

powers up to 42W (pulse energy 31 pj). Lower powers were realised in this experiment 

by minimising the effective area of the waveguide.
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(iii) Using semiconductor in a Much Zender interferometer

Placing the semiconductor in a Mach Zender has allowed switching speeds of 90 Gbit/s 

to be achieved (section 4.2.4.).

4.4.2. Polymer DOSs using thermo-optics

Commercially available PMMA is used as the waveguide material for Polymer DOSs as 

in the thermo-optic directional couplers with standard polymer waveguide technology 

used to fabricate the waveguide onto silicon. The 2x2 switches are based on four equal 

waveguides in the formation of a symmetric x crossing (see figure 4.11).

E T  2 ’

E T E 2 ’

2

Figure 4.11 Polymer DOS.

Four heating electrodes control the device two on the input guides and two on the 

output guides. The heated input electrode excites the odd mode whereas the unheated 

input excites the even mode. The switch operates in the cross or bar state by appropriate 

heating of the electrodes as in table 4.2.

Heated electrodes [ Sigaal path.
El and E l’ or E2 and E2’ 1 1 to 1’ and 2 to 2’
El and E2’ or E l’ and E2 | 1 to 2’ and 2 to 1’

Table 4.2. Switching configurations of polymer DOS.
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In an experiment by Kiel [Kiel et al 96] fixed heating powers of 45 mW were applied to 

the input side whilst the output heater power was varied. At 45 mW a digital output from 

the switch was obtained which can be maintained up to a heating power of 100 mW, 

showing good tolerance to variation in input voltage and temperature. As expected with 

thermal devices, the response time is again slow (« 1 ms) making them more suitable for 

routing of high data rate signals rather than high speed switching. Typical values obtained 

by Kiel et al [Keil et al 96] when operating at k=1.35pm or 1.55pm gave a crosstalk of 

<-25 dB with a switching power of >45 mW showing that wavelength independence is 

evident. Device lengths are around 25 mm.

An alternative method for manufacturing polymer waveguides is in the use of “oversize 

polymer rib waveguides” as in [Moosburger et al 96]. This structure is based on a guided 

rib structure initially developed by Marcatili [Marcatili 74]. The guides can be 

implemented in semiconductor material systems and have a particularly decisive 

advantage in being single mode in spite of their large size and large index step between 

core and cladding. To fabricate the devices standard semiconductor technology can be 

used. Waveguides are formed by etching grooves into a silicon substrate. The polymer 

waveguide material is the commercially available Cyclotene 3022™ a substance originally 

designed for electronic applications. It has low intrinsic optical loss when operating 

around 1.3 pm. The switch is implemented in a typical 1x2 Y waveguide formation (see 

figure 4.12).
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Figure 4.12 ‘Y’ junction polymer thermo-optic switch.

With unheated branch arms equal power splitting of the signal is obtained (known as the 

broadcast function). On heating one arm the light is switched to the opposite path (dn/dt 

< 0). Insertion loss for the straight through path was ~2.5 dB which compares favourably 

with the thermo optic switch using PMMA of 6  dB [Kiel et al 96]. The power supplied 

to the heaters is relatively high approaching 100 mW when the switching characteristics 

maximise giving an extinction ratio of around 20 dB over a wide operating power (up to 

« 2 0 0  mW ) at an ambient temperature of 25°C. Around 170 mW the extinction ratio 

remains at 20 dB even up to 100°C ambient temperature. This is due to the high thermal 

stability of Cyclotene 3022™ which is useable up to 350°C. The polymer does exhibit 

wavelength characteristics and at 1.5fim the straight through path has an increased 

insertion loss of ~4 dB. The extinction ratio was better than 20 dB for any thermal 

power above ~ 190 mW.

4.5 Acousto Optic Switching

The acoustic optic filter relies on an acoustic controlling signal to change the optical 

properties of a material. The switch contains an acoustically generated birefringent 

grating by inputting an acoustic signal into the waveguide of an optical signal. Signals 

input to the device are flipped orthogonally with respect to TE-TM polarisation and the
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signal is frequency shifted by an amount equal to the acoustic frequency. The polarisation 

conversion is wavelength dependent so the effect can be used for optical filtering using 

output polarisers [Jackel et al 96].

PBS
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Input v
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Grating
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X lX2X3 __________ ^ 3  bar state

m

Notch
spectrum

PBS X., X3
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2̂
. Bandpass 

spectrum

Switch \ 2 cross state

Figure 4.13 Acoustic optic tunable filter.

To perform optical switching an arrangement as in figure 4.13 was demonstrated by 

Smith et al [Smith et al 96] which depicts a 1x2 acousto optic tunable filter (AOTF). 

Polarisation beam splitters (PBS) are placed on the input and output to separate the 

wavelength dependent polarisation generated by the AOTF. The switch can be set in the 

cross state for an arbitrary spectral band; the remaining spectrum is in the bar state and 

split by the polarisation beam splitter. An acoustic wave input to the AOTF will cause the 

birefringence to compensate for the TE-TM mismatch unless L h « A, where Lb  is the 

beat length (= XIAn), A acoustic period (= VJfs), X is the signal wavelength, An the 

waveguide effective birefringence index, Vs the acoustic velocity, f s the acoustic 

frequency. The bandwidth of the conversion process is AX/X = L/Lb  where L  is the device 

length. The switching speed of these devices is equal to the acoustic transit time which is 

the time to establish the birefringent grating and is given as xs = L/Vs. Current AOTF
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switch technology has allowed the fabrication of monolithic devices on Lithium Niobate. 

Typical values for this technology are xs = 6  ms, = 0.08, Lb = 2 0  pm, AX=  1.5 nm, / 5 

= 175 MHz, Vs = 3.7 km/s, L = 2 cm. For a typical switch [Smith 96] crosstalk is 

indicated at -15 dB for an 8  nm spacing. The demands of future networks is suggesting 

low crosstalk values < -30 dB [Goldstein et al 94]. The conclusion of [Jackel 96] is that 

passband qualities need improving in AOTF devices before they can be used in this 

application.

4.6. Opto-Mechanical Reflection Switching

Opto-mechanical switches are desirable for reconfiguring fibre-optic networks because of 

their low insertion loss and high isolation properties. Conventional fibre routing devices 

are made in waveguide,(higher cross coupling loss [Lee et al 95]). Opto-mechanical 

devices remove the problem of coupling across different waveguides and use a technique 

known as free space switching. The construction is based around four fibres (2x2 switch) 

in the form of a cross (see figure 4.14).

optical fibres

Mirror

Sliding plate

optical fibresPin Pout

Figure 4.14 Opto-mechanical reflection device.
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A space exists at the centre of the cross and the switch is configured to reflect light from 

two fibres to any of the other two fibres. The current method for producing opto­

mechanical switches is by manually assembling bulk optical elements which is a costly 

method. A machining technique known as bulk micromachining was used by Dautartas 

[Dautartas et al 92] where the switch is machined on a Si substrate with the hybrid 

mounting of bulk optical elements and the use of a wafer binding technique. Monolithic 

integration is difficult and substantial assembly is required. Micromachining techniques 

were further developed when Lin [Lin et al 94] machined various surface mounted three 

dimensional micro-optical elements specifically for free space applications. The 

advantage of such a technique is the resulting light weight and possibility of integration 

with other micro optical elements and interface electronics. Lee [Lee et al 95] used this 

technique to implement a free space fibre optic switch. At the centre of the switch is a 

moveable three dimensional mirror with four fibre optic guide rails providing the input 

output paths. Obviously switch speed is slow with manual switching between states 

(micro actuators may be integrated onto the device for speed increase and automation). 

Fabrication techniques are similar to that used for micro-Fresnel lenses [Lin et al 94]. 

The low coupling losses measured for cross and bar state are 2.8 dB and 3.1 dB 

respectively; crosstalk between the two states is 26.1 dB. The higher loss for straight 

through signals may be attributable to the presence of below 1 0 0 % reflectivity of the 

mirror (« 93% for this method).

4.6 Electrostatic Mechanical Switching

The reason for the development of electrostatic switching was two fold, a) to overcome 

the relatively high power consumption of thermo-optic devices and b) to overcome the
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polarisation sensitivity of electro-optical switches. The electrostatic switch consists 

basically of two electrodes which are placed adjacent to a silica cantilever bearing a 

moving waveguide [Oilier et al 95]. Figure 4.15 illustrates the principle.

Electrodes Pouti

Pin

Cantilever Pout2
Electrodes

Deflection

Figure 4.15 Electrostatic mechanical switch.

An electro-static force deflects the cantilever between the two outputs. In this version 

the switch is operated with a typical voltage of 270V at 1550 nm with an insertion loss of

6.3 dB and an isolation between signals of 24.2 dB and a switching time of 600ps. The 

moving waveguide contains metal which induces polarisation problems. Increasing the 

cantilever to metal distance to overcome this led to an increase in the voltage required. 

A new type of electrostatic microswitch was developed by Oilier and Mottier [Oilier and 

Mottier 96]. The idea was to remove metal from the moving waveguide and use an 

electrostatic comb instead of a two electrode configuration taking advantage of the 

electrostatic instability phenomenon [Petersen 77]. The use of this structure reduces the 

voltage required for switching since the electrostatic force is proportional to the number 

of electrode pairs. Also any polarisation or temperature dependence is removed with the 

absence of metal on the waveguide. The overall effect is to isolate the electro mechanical 

and optical functions. The switch operates within the wavelength range 1.3 pm to 

1.55pm with a mean insertion loss and isolation of 3.8 dB and «32 dB respectively with
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an operating voltage is « 28.3V. Switching time is 800ps which is typical of micro­

mechanical devices.

4.6 Switching Architectures

Previous work in this chapter has focused on switches which are single discrete devices 

and can function on their own switching up to two input signals to two output ports. For 

optical networks systems many signals may need switching or re-routing and the switch 

must be able to switch multi input signals to a number of output choices. This section 

will illustrate examples of current switching architectures which have been implemented 

using some of the techniques previously discussed.

4.6.1 Mach Zender thermo-optic.

An optical path cross connect system which in principal takes in M fibre input signals 

(see figure 4.15).

1 x2 sw i tch

:M x 1 co m b ine r M x l  c o m b in e r:M x l  co m b in e r

T o  fibre 1 To  fibre 2 T o  fibre N

Figure 4.15 Optical path cross connect system thermo-optic Mach Zender.

In this configuration a set of M input fibres can be delivered to any of N destination 

fibres. The main switching section is centred around 1x2 Mach Zender switches which
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re-rout the signal from the existing path. Thermo-optic switching is used as previously 

discussed in a Mach Zender configuration. The switches have the characteristically high 

power requirement of this method with 0.55W per switch being required. Other system 

components were passive devices using star couplers giving an overall on off ratio of 42 

dB and an insertion loss of 12.5 dB [Koga et al 96], With the switch in figure 4.15 used 

as a module a set of 16 switches were used to re-route any of eight channels to a choice 

of sixteen outputs.

4.6.2. Electro-optic directional coupler

Directional couplers have been used to demonstrate a 16 x 16 guided wave optical 

switching system [Murphy et al 96]. The system is built around 2x2 directional couplers 

based on lithium niobate and uses a method of connection known as the extended shuffle 

network. Figure 4.16 shows how two modules are constructed from the 2x2, switches, a 

16x16 and a dual 1 x8 , (4.16a and 4.16b respectively). These are connected to form the 

composite switch (figure 4.16c, note the 1x8 modules are connected in a 1x7 

configuration).

2x2
switch

Figure 4.16 16x16 electro-optic switch matrix, 
a). 16x16 module b). 1 x8  module c). 16x16 switch
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The array operates at 1.55pm and is polarisation independent. Cross talk values are -28 

dB and it operates with a voltage of 12V and a total power consumption of 90 W which 

includes 2 W for a set of indicator LEDs. Insertion loss varies (depends on signal path) 

between 18.8 dB and 28.4 dB. Okayama and Kawahara [Okayama and Kawahara 94] 

also developed a prototype switch on directional couplers which has a 32x32 input 

output configuration. See figure 4.17.

2x2 optical sw itch e lem ents

62 5mm

Figure 4.17 32x32 switch matrix Kawahara [Okayama and Kawahara 94],

The device structure was based on an architecture known as the modified banyan 

network [Murphy et al 93] in which small switches are connected together to form larger 

matrixes. Each switch element is built around a 2x2 switch based on a TiLiNb03 

directional coupler configuration [Okayama et al 91], Previously the largest switch array 

of this kind was demonstrated by Duthie [Duthie and Wale 91] which was a 16x16 

matrix. Each switching element can be fabricated to an individual length of 6  mm. A 

32x32 device has a typical length of 62.5 mm. At each switch element there are two 

waveguide crossings which contribute to crosstalk and excess loss. For this configuration 

one signal path encounters a maximum of 26 crossings with a total relative loss of ~ 11 

dB (indicating ~ 0.4 dB per waveguide). A feature of this type of array is that there is a 

wide swing of signal attenuation between the two extremes of physical output due to the
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waveguide crossings encountered. Lithium Niobate is currently the popular choice for 

switch arrays because of the maturity of the technology [Murphy 96].

4.6.3 Lithium niobate DOS.

O’Donnell [O’Donnell 92] has constructed 1x16 and 1x32 switch matrices using DOSs 

based on Lithium Niobate to take advantage of a single tolerant voltage with high 

fabrication tolerance and wavelength independence. The switches were operated at 

1.3pm. The results for each configuration are given in table 4.2.

1x16 1x32 1x32 as 1x16
Insertion loss. 8.5 dB 9.6 dB 9.6 dB

Extinction ratio. 16.5 dB 16.8 dB 28.8 dB
Drive voltage. ±65V +65V ±65 V

Table 4.2. LiNb03 DOS switch architectures.

The third configuration used a 1x32 matrix operating as a 1x16 switch which gave 

improvements in extinction ratio and allowed less complex electronics.

4.6.4 TWSLA array

Optical switching using low gain semiconductor laser amplifiers was proposed by Chien 

[Chein and Winston 96]. An array of 40 TWSLAs switching units with 8.3 dB couplers 

was configured to give an 8 x8  switching arrangement with a cascade of five TWSLA 

switches in line. Each switch unit is based around a 2x3 waveguide coupler, two low 

gain TWSLAs and a header processor to form a modular 2x2 switch. The small signal 

gain of each TWSLA is adjusted to compensate for the total loss of the switch. For this 

architecture typical losses originate from (for a 8 x8  array) 5xLc + 5Lf+ Lc where Lc is 

switch unit coupler loss, Lf TWSLA facet loss, Lc output coupler loss. Typical values 

indicate a total loss of 5x2 + 5x5 + 3 = 38 dB total loss. Five amplifiers then require a
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gain of 38/5 = 7.6 dB. With amplifiers operating at low gain, spontaneous emission noise 

is reduced. The switching time of such a configuration is « 3.4 ns using a pulsed current 

input between 0 and 34 mA. With low gain operation the fabrication process is simplified 

with the amplifiers less dependant on the facet reflectivities required.

4.7 Summary

This chapter has presented a review of current technologies for the switching of signals 

in the optical domain. The major techniques for fabricating switches and waveguides 

have been identified and the physical processes to effect switching. Initial emphasis is on 

a basic switching unit which has two inputs and two outputs. Switches are characterised 

by excess loss, crosstalk/extinction ratio between the wanted and rejected paths. 

Switching times are given to assess the data rate possible for the device and are 

summarised in table 4.3. Switching architectures built up from some of the switches are 

viewed and characterised.

Device Switch speed
Mach Zender, thermo-optic 25 Gbit/s

Mach Zender, TWSLA 90 Gbit/s
Mach Zender, electro-optic 2 0  MBit/s

DOS, thermo-optic 1 kBit/s
DOS, semiconductor 1 GBit/s

Acoustic-optic 160 Bit/s
Electro-static 1.25kbit/s

Table 4.3. Switching speeds of optical switches
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Chapter 5

Optical Multiplexing /Demultiplexing.

5.1 Introduction

This chapter reviews the current research in optical domain multiplexing and 

demultiplexing. The work is largely concerned with optimising the use of the large 

bandwidth available over a fibre communication channel. The main effort is currently 

centred around the two concepts, WDM and TDM,which have been used extensively in 

electronic communication systems. The chapter will begin with a brief introduction to 

WDM. Following this the main emphasis will be on TDM systems. The focus of this 

chapter will then move towards a system known as the asymmetric semiconductor laser 

amplifier loop mirror (ASLALOM) which will be the main topic of the modelling and 

simulation techniques discussed in later chapters.

5.2 Wavelength division multiplexing

5.2.1 Concepts

To produce a WDM signal individual signals to be transmitted are each modulated onto 

a carrier wave using differing wavelengths ( figure 5.1).
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Figure 5.1 Typical WDM spectrum.

Each signal is allocated a bandwidth of Xc and the subcarrier wavelengths are designated 

The composite signal containing all channels is then modulated onto a main 

carrier and transmitted. Table 5.1 lists typical WDM capacities currently under 

investigation.

No of channels Data rate/ Gbit/s Distance/ km. Reference,
4 1 0 1587 Taga 96
8 1 0 1 0 0 0 Taga 96
8 5 6000 Bergano and 

Davidson 96

Table 5.1 Typical WDM systems under investigation.

WDM systems have the advantage in that they use commercially available components. 

Their main rival, optical time division demultiplexing OTDM, is still confined to the 

laboratory and present systems are only operating at moderate line rates (currently 

around 10 Gbit/s). Non-linearities in the fibre also impose limitations on WDM system 

performance e.g. the effect due to Stimulated Raman Scattering (SRS) leads to a 

conditional equation for the power per channel for a particular signal to noise ratio 

(SNR) degradation. For example, for 0.5 dB degradation [O’Mahony et al 95]:

P < 10.28 x 10u/[N(N - l)AfLCIj\ (5.1)
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where N  is the number of channels with a spacing of A f and Leff is the effective length of 

the system in km. For example with a transmitter power of 0 dBm, operating 

wavelength of 1550 nm and wavelength spacing 4 nm the maximum number of channels 

for distances > 1000 km is 5.

High capacity systems also require closely placed channels which in turn are affected by 

the effect known as four wave mixing (FWM) where two signals with different 

frequencies beat together to produce new frequencies which may fall into the slot 

occupied by another channel. Fig. 5.2 shows the maximum power transmission length for 

experimental systems due to FWM [O’Mahony 95].

Amplifier qpacbif 75 km 
Channel ^ a c in j Fibre ditpenicm 2 jWnm km

20 -

I
t

I  •-
I 10- 0.3 nm

<1.2 nm

211
im 10000

System l.*ngth (km)

Figure 5.2 FWM effects in WDM systems [O’Mahony 95],

For example a 0 dBm system with channels spaced 1 nm apart can be transmitted over 

2000 km. To increase this distance to 10,000 km the channel spacing must be increased 

to 4 nm.

Cross phase modulation (XPM) between different signals travelling along the same fibre, 

where one signal modulates the other by changing the refractive index of the fibre, also 

limits the number of channels [Wang et al 95]
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5.2.2 Implementation of a WDM network

Figure 5.3 shows a typical WDM network together with the node architecture.

= N ode

W DM
network

Fibre link

Tunable
filter

Space
switches

National network. Drop 
and/or insert signal.

N ode architecture

Figure 5.3 WDM Network and node architecture.

The nodes in figure 5.3 could represent a City network infrastructure [O’ Mahony 95], 

In the typical system shown, consider the problem of establishing a link between A and E 

where the sub-carrier wavelength used is If additionally a link is needed between A 

and C then this needs to be at a different wavelength from Xj to enable discrimination
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over the shared section A to C. The advantage of this system is wavelength re-useability 

as demonstrated by the link C to D which can use the wavelength since route A to E 

and B to D have no common path. The essence of such a system is in the node 

architecture shown boxed in figure 5.3 [Hill et al 93]. Here a channel A,i from an 

adjacent node is WDM onto any connecting node by initially filtering out the appropriate 

wavelength and then, by using space switching, the channel may be re-routed to any 

outgoing fibre or it can be dropped off to the national network at that node.

5.3 Optical Time Division Multiplexing

The limitation placed upon WDM by fibre non-linearities has generated interest in 

OTDM systems whereby a single wavelength has been used to support capacities up to 

100 Gbits/s over 2 0 0  km [Kawanishi et al 94], Appropriate clock frequencies can readily 

be implemented using electronic components which are commercially available. 

Demonstration of a 40 Gbit/s ( 2  x 2 0  GBit/s) all optical multiplex/demultiplex 

transmission system over a distance of 560 km has been shown experimentally by Lee et 

al [Lee et al 96], Although OTDM is demonstrated in this reference as a point to point 

communication system its potential capacity makes it a promising candidate for network 

systems. At the moment the drawback of OTDM systems is that only one channel is 

demultiplexed from the system at any one time [Sokollof et al 94]. ) Due to the device 

complexity complete demultiplexing has only been reported on a small scale (section 

5.3.4.2) and most current demultiplexers are single output devices. Bodkter [Bodtker 

95] has outlined theoretical architectures for the possible demultiplexing of more than 

one channel.
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5.3.1 Concepts of OTDM

In an OTDM system each user is allocated a channel which is transmitted at a rate which 

can be switched by electronic methods. Figure 5.4, shows an OTDM timing diagram in 

which the frame separation is tx and the channel separation is tc. The interleaving is 

performed sequentially as opposed to a packet data method in which blocks of data are 

given individual time slots. A clock pulse inserted at the beginning of each frame 

synchronises the switching of a particular channel in an OTDM demultiplexer.

^ C lock  Guard band

I
C hannels 1,2 ....n

Signal
intensity

1

tim e

Figure 5.4 OTDM timing diagram

A significant advantage can be gained from OTDM systems by arranging for the 

transmitted pulses to be short compared to the shortest period on any line. This will 

result in reduced interchannel crosstalk. Sokolloff [Sokollof et al 93] has implemented a 

system which uses 5 ps pulses at a data rate of 50 Gbit/s thus allowing a guard band of 

7.5 ps between adjacent pulses.

5.3.2 OTDM processing nodes

When OTDM is implemented in a network the system must allow for the retrieval and 

insertion of data into the network infrastructure as in the previous example on WDM.
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Figure 5.5 shows a typical processing node consisting of a number of functional blocks 

[Spirit and Blank 93].

Com posite  
OTDM  signal les
one channel

C om posite  
O TDM  signal

C om posite  
O TDM  signal

Drop Insert

Demultiplexer Multiplexer.

Clock
recovery

Synchronisation

City Network

Figure 5.5 OTDM processing node

The network data enters the node at the demultiplexer. The demultiplexer selects 

(‘drops’) the particular channel requested at that node. The frame is now one channel 

less and at this point the node may insert another frame in the vacant time slot. Note that 

the channel may come from this node or from a remote one. An essential requirement of 

an OTDM system is synchronisation. To synchronise demultiplexing and multiplexing 

stages, circuitry is required to recover the clock signal from the composite data stream. 

The clock signal, in conjunction with the synchronisation block, ensures that data is 

removed/inserted into the correct time slot. Ellis [Ellis et al 94] has demonstrated the 

feasibility of this concept practically by dropping and inserting a 1 0  Gbit/s channel within 

a 40 Gbit/s OTDM signal. Electronic clock recovery is used to provide synchronisation 

throughout the system.

5.3.3 Optical time division multiplexing techniques
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5.3.3.1 Passive Multiplexing

The first method of multiplexing discussed employs a passive technique where the 

interleaving of the TDM signals is achieved using the time delay associated with the 

propagation through a device. Figure 5.6 depicts an experimental system for a 20 Gbit/s 

NRZ data link [Wickens et al 91].

5Gbit/s NRZ 0 xdelay

5Gbit/s NRZ 1 xdelay 
O

5Gbit/s NRZ 2 xdelay 

o n

5Gbit/s NRZ 3 xdelay 
m o

20 Gbit/s 
NRZ

4 x 1 coupler

Figure 5.6 Passive multiplexing system.

A four channel system is shown with data rates per channel of 5 Gbit/s. To place each 

data channel in its appropriate time slot a fibre stretcher delay is placed in each line (the 

delay is provided by the length of fibre). Delays of 0, 1, 2, and 3 times the required pulse 

separation place the channel in its appropriate time slot. The four channels are then 

combined using a passive 4 x 1 fibre coupler to give a 20 Gbit/s OTDM output. The 

system is based around single mode fibre components and semi integration is possible if 

silicon waveguiding technology is used. A similar passive method has been used to 

implement multiplexing of a system at 40 Gbit/s over 560 km of dispersion shifted fibre 

[Lee et al 96] and a 200 Gbit/s multiplexed transmission over 100 km by [Kawanishi et 

al 96], Further progress in passive optical multiplexing has been demonstrated in 

principle by [Lee and Shu 95] in which high repetition rate optical pulses at over 1 

Terahertz have been produced. This method uses a combination of two passive fibre
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couplers (16 x 16 and 8 x 8 ) connected to form fibre loops configured in parallel. With 

the use of fibre switches it has the potential for use in high speed TDM systems. Active 

research into improving bit rate-distance product in the area of OTDM by various 

workers [Kawanishi et al 95], [Morioka et al 96], [Kawanishi et al 96] have shown that 

OTDM systems are becoming a challenge to current network technology. Figure 5.7 

shows a graphical history of the development of the progress of laboratory OTDM 

transmission systems.
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Bit rate tim es 30000 "  
distance/ 20000 -•
Gbit/s.km 10000. .
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1991 1992 1993 1994 1995 1995.5 1996

Year

Figure 5.7 Development of OTDM transmission systems.

5.3.3.2 Active multiplexing

Although passive multiplexing offers less complex implementation, active multiplexing 

has a certain advantage. Conventional systems may operate with a NRZ format but for 

ultra high speed systems in an OTDM network RZ format is preferable. An active 

multiplexer can provide the dual function of multiplexing and NRZ to RZ conversion. 

The active multiplexer architecture is shown in figure 5.8 where ‘TX’ represents a 2x2 

electro-optic switch.
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TX TX 4NGBit/s RZ

TX TX
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Figure 5.8 Active multiplexing system.

The central component is an electro-optic switch which has a transfer function for one 

arm of the switch given by:

E  = 0.5(exp(jV/V7r))+ exp(/'7i)) (5.2)

where Vn is the voltage required for switching. The corresponding drive signal is 

represented in voltage and frequency as V= F0sin(co/) for a sine wave input where 2V0 = 

Vn for the first stage, and Vo = Vn with a bias point of Vn for the second stage. Figure 

5.9 shows the channel (a) output waveform, with a sinusoidal input as determined from 

equation 5.2. Note the RZ signal of the second stage.
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1st stage 

2nd stage

Figure 5.9 Output from active multiplexer stages.

An active system having multiplexed 4 x 3  GHz mode locked signals to 12 Gbit/s has been 

demonstrated by Blank [Blank 8 8 ]. The advantages of this configuration are that only 

simple sinewaves are needed to drive the switches available with current electronics 

technology, the required frequency is the same at all stages of the multiplexer. A 

disadvantage is that the corresponding drive signal amplitudes are quite high, the first 

level of multiplexing requiring a 1 2 V  3 GHz signal with a 2 4  V  3 GHz signal needed for 

the second stage.

However, experimental systems currently use a passive method of multiplexing. 

Examples can be found in references [Morioka et al 96] and [Kawanishi et al 96] which 

use planar silica waveguide technology, and [Lee et al 96] which uses fibre couplers.

5.3.4 Optical time division demultiplexing techniques.

To implement OTDM research efforts have basically centred around the following 

techniques:

• Four wave mixing (FWM)

o.s

0 .£

T5T
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• Non-linear loop mirror NOLM

• Semiconductor laser amplifier loop mirror SLALOM

• Asymmetric semiconductor laser amplifier loop mirror ASLALOM

5.3.4.1 Demultiplexing using FWM.

FWM demultiplexing is achieved by the mixing of two signals of different wavelengths 

in a non-linear medium. The non-linearity in this case arises from the third order non­

linear susceptibility of an optical fibre such that the polarisation P induced on an 

electric field propagating through the fibre obeys the relationship:

P = So x 'V  (5.3)

where So is the vacuum permitttivity of the medium and E  is the electric field. The latter 

consists of two signals given by the complex propagating waves with propagation 

constant kf and frequency co, which are given by:

Es = expj(cost - ksz) and Ec = expi(o)ct - kcz) (5.4)

The signals mix according to:

P = £o X<J’(Es+ Ecf  (5.5)

where the subscripts c and s represent the control and the channel to be demultiplexed.

The mixing of the two signals takes place in a long length of fibre in which the control

signal propagates alongside the selected channel introducing a non-linearity into the fibre 

(figure 5.10).
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Figure 5.10 Block diagram of FWM demultiplexer.

FWM causes a new component to be generated with a frequency given by:

Cf/XpwM ~ 2c{/Xs + Cf!Xc (5.6)

where Cf is the speed of light in the fibre. Filtering of the FWM component is then 

needed to demultiplex that channel. The rise time of the non-linear effect is fast (a few 

femtoseconds) but long interaction lengths are required to generate the non-linearity, 

thus precluding the possibility of integration. In an experiment by Andrekson 

[Andrekson et al 91] 14 km of dispersion shifted fibre were needed to generate the 

required non-linearity. The signal used had a wavelength of 1.531 pm and the control 

1.48 pm with respective powers of 4.3 dBm(17 mW) and 5.2 dBm (33 mW). 

Alternatively the control power can be increased with smaller lengths of fibre, as 

demonstrated by Morioka [Morioka et al 94] who used 3 km of fibre but needed an 

increased pump power of 380 mW. The reduced length of the fibre also reduces pulse 

broadening which occurs due to fibre dispersion in long haul OTDM transmission 

systems. An equalising circuit has also been used to compensate for the fibre dispersion 

by Takiguchi [Takiguchi et al 96]. This method offers a trade off between fibre length 

and control power/circuit complexity. The dependence of the FWM effect on fibre
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length and control signal power can be seen from the following equation which gives the 

power of the FWM component [Hedekvist 95]:

W O  = •; (3XmYN 4Jl2 r 2 K J A 2 ~^FWMC Aeff
(5.7)

where Nf is the refractive index of the fibre, Xfwm the wavelength of the FWM 

component, Ps(0) the signal power, Pc(0) the control signal power, (on entry to the 

fibre), Aeff the effective mode area of the fibre, a  the fibre loss, L the fibre interaction 

length, 77 a factor which describes the phase matching of the signals. The fibre effective 

length is given as:

Leff- (1 - e ^ / a  (5.8)

Although the method has successfully demultiplexed high bit rate systems (100 Gbit/s to

6.3 Gbit/s [Morioka et al 94]) it continues to be an inefficient method as power is wasted 

in the unused frequency components of the four wave signal. Figure 5.11 shows results 

from [Kawanishi et al 94] which illustrate the power spectrum resulting after the FWM 

of two signals.

1 522 V 5 4 7  
w a v e l e n g t h ,  p m

—  FWM I |
 (demult ip lexed

s i g n a l )
clock s i g n a l

S-20

- 8 0

1 572
Luv.iJ

Figure 5.11 Power spectrum of FWM [Kawanishi et al 94],
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This experiment demultiplexed a 6  mW input signal with an output power of 0.41 mW 

indicating a conversion efficiency of only 7%. The graph clearly indicates the FWM 

process (note the clock in figure 5.11 is equivalent to the control signal) whereby the 

signal (data) of wavelength 1.5528 pm mixes with the control signal of wavelength 1.547 

pm to produce a FWM. Substituting the above experimental values in equation 5.6 

gives:

2x(3xl07l.547xl0‘6)-3x l07 l.5528xl0 '6= 1 . 9 4 7 x 1 0 14H z  

from which resultant FWM component wavelength is:

1.947x1014Hz 3xl07l.947xl014 = 1.541pm.

5.3.4.2 Non linear optical loop mirror (NOLM)

In this method of switching an inherent non-linearity of optical fibres is used known as 

the Kerr effect. This effect results from variations in the refractive index of the 

propagation medium as a result of variations in optical intensity. The phase velocity of 

any light beam passing through the fibre will be affected by its own intensity and the 

intensity of any other beams present. When the intrinsic third order non-linearity of silica 

fibres is used the signal phase shift can be expressed as:

2  7i 2zr
signal ~  ~2 7?2 LIsjgnai "t" 2 “ ----------->hLlcomro, (5.9)

signal signal

where n2 is the Kerr coefficient, l signai the intensity of the signal to be switched, Icontmi the 

intensity of the beam used to switch the signal, Xsignai is the signal wavelength and L the 

length of the fibre. To construct a fibre loop mirror the architecture of a fibre loop 

reflector is used which is based on a Sagnac interferometer. The loop itself consists of a 

long length of fibre, which may be a kilometre or more, which is necessary to produce

the non-linear effect. A schematic of the system is shown in figure 5.12.
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Figure 5.12 Non linear optical loop mirror.

The loop has as its input the high frequency data stream plus a control pulse at the frame 

rate. The data splits at the coupler and propagates around the loop in contra directions 

(clockwise aCw counterclockwise accw ) and recombines at the coupler. In the absence of 

a control pulse the pulse exits via the input port. If a particular pulse in the loop (in this 

example aciv) is straddled by a control pulse then that pulse experiences cross phase 

modulation according to the second term on the right hand side of equation (5.9) and 

undergoes a phase change. The result back at the coupler is a difference in phase 

between the acw and accw pulse and the pulse exits at the output port. In an early 

experiment 1 0 0 m of dispersion shifted fibre was used in the loop, which required a peak 

power of 10W for the control [Blow et al 90]. Nelson [Nelson et al 91] found a 

significant power saving could be achieved by increasing the length of fibre to 6.4 km, 

allowing the peak control power to be reduced to 160 mW. A data rate of 1 0 0  Gbit/s 

has been demultiplexed to a channel rate of 6.3 Gbit/s [Uchiyama et al 94] using 3 km of

fibre and a control power of 425 mW. Note that the value of 112 in equation 5.9 for silica

-20  2 • •fibres is 3.2x10 m/W which is one of the lowest value for any solid state material.
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From this, it may appear that silica is a poor choice for non-linear optics but this is 

compensated by the low absorption of silica which allows the use of long lengths to 

achieve the required effect. As a general rule 1W switching power requires 1 km of 

fibre.

As is the case with Four wave mixing, the long fibre length creates a dispersion 

problem. To minimise the effect of dispersion between the control and signal pulses the 

wavelength chosen for the control and signal in [Nelson 91] were 1.53(im and 1.56pm 

respectively. As the dispersion minimum in this case occurs at 1.545 pm this ensures that 

the phase velocity difference between the two signals was minimised and the propagation 

speed for both was identical. To prevent propagation of the control pulse with the CCW 

pulse the coupler was fabricated so that the control pulse propagates CW only. The 

coupling ratio for the data signal wavelength is set at 50:50 and at 100:0 for the control 

signal. If low switching energies are used then the long lengths of fibre used can cause 

various problems, one of which is an attenuation loss. Another is polarisation instability 

which arises because of birefringence in the fibre [Desruelle et al 95], In essence 

orthogonal components of the signal travel at different speeds along the fibre. The result 

is a time delay between the components after travelling the fibre loop. The control pulse 

may ‘walk over’ more than one data pulse. The result is that pulses adjacent to the 

wanted channel undergo a phase shift and may be partially demultiplexed. Compensation 

for this effect requires the addition of extra components such as wave plates, Faraday 

mirrors and polarisation beam splitters. Another method would be to cross splice the 

fibre halfway along its axis to ‘speed up (slow down)’ the ‘slow (fast)’ component on the 

first half of the fibre. An example of the latter can be found in [Uchiyama 94], 

Environmental instability of the fibre (e.g. temperature) is a problem which also occurs.
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It is difficult to implement this technique as an integrated circuit because of the long 

fibre loop required.

5.3.4.3 Semiconductor laser amplifier loop mirror (SLALOM)

An enhancement of the fibre loop mirror was reported by O’Neill [O’Neill and Webb 90] 

who demonstrated that the inclusion of a TWSLA in a loop mirror could provide self 

switching of optical pulses (see figure 5.13).

Ax

SLA
Fibre
loop

Coupler
P. Data out

Port 1 Port 2

Figure 5.13 Architecture of SLALOM.

In this case a data signal with a power of 250pW gave self routing of pulses in a much 

reduced loop length of only 17m. The loop used in this case included a non-reciprocal 

element which had a gain and phase response GH and 4>h in the CW direction and Gl and 

4>l  in the CCW direction respectively. This was implemented using a split device which 

had amplification/attenuation in the CW direction and attenuation/ amplification in the 

CCW direction. The output from port two of the loop is given as the sum of two fields:

r \ ,  } cot

=— { 0 ^ * “ + GLeM ^ )  (5.10)

The non-linearity in this case is provided by the modification of the refractive index of 

the TWSLA due to an input signal saturating the device. It is found that the refractive 

index in a semiconductor material is related to the carrier density linearly providing the
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signal remains around the band energy of the material. Pumping of an TWSLA by a high 

power optical signal depletes the number of hole electron pairs giving an intensity 

dependent refractive index which is characterised by the steady state relationship [Adams 

et al 95]:

y  _ N o~G s{Kn )P ! PSAT 
a(l + P IP SAT)

where Nt is the refractive index near the band edge P signal power, No is the refractive 

index with no optical signal propagating through the device, KN is a parameter which 

defines the rate of change of refractive index with carrier density and is a constant for 

signals operating at the band gap of the material. The effect in this case is termed strong 

and slow, which permits slow switching with small pulse energies. The TWSLA in the 

loop is providing a non-linearity in much the same way as the long length of fibre did in 

the NOLM. Consider the case where the TWSLA is displaced slightly off the loop 

centre (figure 13) then the effects of contrast enhancement can be demonstrated. Figure 

5.14 shows the timing diagram of a contrast enhancement system.

Carrier
density

CW
am plitude

CC W
am plitude

tim e

.Figure 5.14 SLALOM timing diagram (contrast enhancement).

A data signal is fed into the loop via port 1 which splits into CW(Ecw) and CCW(Eccw) 

fields each equal to half the power of the original signal. The CW pulse reaches the
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TWSLA at a time t\ and quickly depletes the carrier density. The CCW signal reaches 

the TWSLA at a time later (/2) determined by the off centre displacement of the TWSLA 

Ac. If the CCW signal reaches the TWSLA before the carrier density has recovered 

(which is the case in figure 5.14), then it experiences a gain and phase change due to the 

reduced carrier density of the device. On returning to the coupler the CW and CCW 

signals will have different amplitude and phase values. Interference between the two 

signals now occurs at the coupler and a signal exits via port 2. O’Neill [O’Neill 90] used 

a 10 ns pulsetrain at a repetition rate of 100 MHz which self routed to port 2 of the loop 

at a pulse power of « 150 pW with equal power outputs at port 1 and port 2. At a 

power input approaching 250p W the power ratio changed abruptly to 2 (port 2 : port 1 

). The abrupt change demonstrates the loop’s ability to perform switching between ports 

at a particular power level. Eiselt [Eiselt 92] used a similar set-up to demonstrate optical 

correlation between adjacent pulses in a data stream. The SLALOM has to wait a period 

equal to the recombination time (0.5 - 1 ns) before it can switch again resulting in a 

switching speed between 1 - 50 Gbit/s. This method also has no provision to select a 

particular pulse in a data stream of equal power pulses. Transmission is dependent on 

the power of the input pulse.

5.3.4.4 Asymmetric semiconductor laser amplifier loop mirror (ASLALOM)

To take advantage of the fast switching afforded by the NOLM and the low power/ small 

size of the SLALOM Sokolloff [Sokoloff 93] developed a loop architecture 

incorporating an TWSLA with an additional coupler in the loop (see figure 5.15).
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Figure 5.15 Architecture of ASLALOM.

The purpose of the additional coupler is to introduce a relatively high power control 

pulse into the loop.

Operation o f ASLALOM.

The data signal train enters the coupler at port 1 and splits into CW and CCW pulses. 

With no control pulse applied the TWSLA assumes a constant refractive index. Low 

power signals input to the TWSLA undergo linear amplification with an associated time 

delay due to the refractive index of the material, (the power of the data signal is assumed 

to be non-saturating and has a negligible effect on the TWSLA index properties). In this 

mode of operation both CW and CCW pulses undergo equal propagation delays and the 

pulse is reflected and re-emereges via port 1. A high power input pulse to the control 

coupler causes saturation of the TWSLA and a corresponding change in the gain and 

refractive index. The modification will have a finite duration, due to the device 

recombination time.

Three situations are of interest when analysing the ASLALOM with a control pulse.

1) Both CW and CCW signals enter the loop and reach the TWSLA far in advance of the 

control pulse. With the TWSLA being in its unmodified state the pulses propagate
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through the loop with identical propagation characteristics and the pulse exits via port 1 

therefore, no switching action has occurred.

2) Both pulses enter the loop after the control pulse has propagated through and will 

each experience the TWSLA in a state of optical modification. Once again both pulses 

propagate with the same time delay and with no relative phase shift taking place the 

pulse again exits from port 1.

3) The control pulse reaches the TWSLA after the CW pulse but before the CCW pulse. 

The CCW pulse has further to travel before reaching the TWSLA and reaches the 

TWSLA a time tasy seconds later. Figure 5.16 shows the timing diagram associated with 

the ASLALOM demultiplexing action.

Control
1

CCW phase 
response 2

CW phase 
response

tasy

3

Port 2
transmission /

X

------------------- >

4
-------------------->

t] t2 t3 

Time

Figure 5.16 Timing diagram for demultiplexing of data in ASLALOM.

Graph 1 shows the control signal which is input to the system at a time t\. The TWSLA 

is saturated by the control pulse and undergoes a gain and index change with a relatively 

short rise time (« few ps) and reaches a peak at t2. A CCW data signal which is 

coincident with the control signal in the amplifier experiences the phase of the amplifier 

as shown in graph 2 of the CCW signal, graph 3 shows the CW signal whose phase
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change occurs at t3. The timing in these graphs is such that a CCW data pulse reaches 

the TWSLA at the point where the index changes. Note that at this point the CW pulse 

will have passed through the amplifier at a time increment tasy = 2Ax/cloop earlier {C[oop 

is the velocity of light in the fibre loop). The CW graph is thus a delayed version of the 

CCW graph by tasy seconds. The CW and CCW now have different refractive indices 

after traversing the loop. If the index change is sufficient to cause a relative phase 

change of n between CW and CCW pulses then interference occurs at the coupler 

causing transmission and not reflection and a pulse will then exit via port 2. Thus the 

difference in time between the two responses has opened a transmission window. A 

general condition of system operation is that the frame period Tframe of an OTDM 

signal has to be larger than the TWSLA recombination time and the bit period Tbit less 

than the recombination time i.e. Tbit«  T<Tframe. It can be seen from graph 4 a time 

window of about &tasy seconds has been created i.e. the time delay between CW and 

CCW signals. The switch definition is thus determined by how close the TWSLA is 

placed to the loop centre.

5.4. Summary.

This chapter has dealt with the progress of OTDM systems for multiplexing and 

demultiplexing. With reference to WDM systems which are currently examined in 

European and US networks, OTDM is seen as a viable alternative to WDM. However 

the components and systems are confined to the laboratory. As demonstrated, 

promising results are being produced for OTDM systems in a number of applications. It 

is of continuing importance to develop system models to complement the practical
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work and use in the implementation of future networks. A major point to evolve from 

this review is the importance of the ASLALOM as a TDM component for future 

networks in terms of switching speed, power requirements and the possibility of 

integration with other optoelectronic devices. Table 5.2 summarises the main methods

of OTDM demultiplexing.

Type Control NLE Outputs Data rate 
switched

Reference

FWM 380 mW, 
5.3 ps

Optical fibre 1 100 Gbit/s [Morioka 94]

NOLM 1.01 WPk., 
5.4 ps data

Optical fibre 1 100 Gbit/s [Uchiyama 94]

SLALOM 250 pW, 
10 ns data

TWSLA 1 50 Gbit/s [O’Neill 90]

ASLALOM 800 0 , 1 ps TWSLA 1 250 Gbit/s [Glesk 94]

Table 5.2 Optical demultiplexers.
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Chapter 6

Modelling Of A Travelling Wave Semiconductor 

Laser Amplifier

6.1 Introduction

This chapter describes work undertaken by the author in the development of computer 

models of TWSLAs. The models can be broadly divided into continuous wave input and 

pulsed input. The continuous wave model is further divided into an analytical solution 

and a numerical solution. The pulsed input model is described by a point element and a 

finite length model. The software package MATLAB™. was used for all simulations. 

Simulations of the various models are carried out and the results analysed.

6.2 Input Signal Modulation Time and Saturation Intensity

When modelling TWSLAs consideration must be given to the modulation time in relation 

to the carrier dynamics of the device and whether the amplifier is in the saturation region 

or not. When the amplifier is unsaturated the amplifier carrier density is constant and 

signals of any shape are amplified undistorted. Figure 3.7 depicts a typical gain curve 

showing the onset of saturation. In the saturated region the carrier density varies 

according to the light intensity and consequently signal gain and phase are significantly 

affected. Thus when the signal intensity approaches the saturation level signal distortion 

can occur and the signal amplifier dynamics need to be assessed.

Three situations are to be considered when signal saturation occurs.
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(i) The temporal response of the input signals is much slower than the carrier lifetime.

In this case the carrier density will respond instantaneously to the input signal and no 

signal distortion takes place for pulse signals.

(ii) The change in light intensity is sufficiently faster than the recombination time, in this 

case the carrier density will settle to value determined by the average input power of the 

signal and again no signal distortion occurs.

(iii) The pulse rate is of the same order as the carrier lifetime. In this case the carrier 

density is allowed to recover between signals. The leading edge of the pulse receives 

high amplification due to the high carrier density. If saturation is regarded as 

instantaneous the carrier density quickly approaches saturation and pulse distortion 

occurs because of a different gain over the pulse width.

6.3 Continuous Wave And High Data Rate Models

6.3.1 Steady state simulations

For a high bit rate time division multiplexed system the data signal will satisfy condition 

(ii) above and a steady state solution can be implemented. The steady state method 

allows the carrier density to settle to a background value for the control signal.

The steady state solution arises from the following situations;

a) Continuous intensity signal with a slow variation in signal as mentioned in 6.2 (i) 

above, b) fast pulse stream as in 6.2 (ii) above.

In a pulsed data system the signal is modelled as a continuous intensity signal which, 

when given a pulse with power P(t), the equivalent signal wave power is:

PM’ = \ ) p m  = ^jr (6 .1)
0
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6.3.2 Analytical solution

The carrier density rate equation introduced in chapter three, is used as an initial basis for 

the modelling of a TWSLA. The exact form is:

dn(z,t) j  1 Yct(n-n0)I(z,t)
dt ed r ,  E„2 p

(6.2)

where n(z,t) is the space and time dependent carrier density and /  the signal intensity. A 

simple analysis of a TWSLA can be performed with reference to a change in carrier 

density. In this instance polarisation, spontaneous emission noise and spectral analysis are 

not considered. A simple analytical solution can be written by considering a steady state 

signal. Re-writing the rate equation in terms of the initial carrier density with zero input 

rij, and saturation intensity/^ = El Tar gives:

rJ iZ lL = 'lZ l!sL j (6 3)
*2 ! ,a,

and the carrier density settles to a value:

/
nt + J — n o

n = --------s- f —  (6.4)
1 + ------

1 SAT

Subtracting this from the initial condition value gives:

An = ”° (6.5)
I +  SClt

In this case An is assumed constant throughout the device length. Equation 6.5. is a 

simple intuitive model and does not consider the signal amplification along the TWSLA.
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6.3.3 Numerical solution

In this method the amplifier is divided into discrete lengths (see figure 6.1).

AL

ni =  Ln

Figure 6.1 TWSLA segments for modelling purposes

Before signal input the carrier density in each segment is set to a value determined by the 

bias current of the device. The rate equation settles to a steady state and the initial carrier 

density throughout every segment of the device is given by:

Consider then a wavefront incident on the first segment m = 1. The signal is amplified 

over the segment length according to:

L i  = L ,exP(r (a (" ^ l - n 0))A/) (6.7)

For very small increments in length the amplifier section is described as a single point 

and the rate equation is used to describe local effects of carrier density. The carrier 

density in the first section is then found by a numerical solution of the following equation 

to give a value for n at m = 1:

-  = - +  R ' (/' r " o )(L», = exp(I~(fl(»m , - » 0)))A/) (6.8)
ed t h

Equation 6.8 is solved numerically using a bisection algorithm [Lindfield and Perry 95] 

and gives the spatial information on carrier density at a single point m. For the next
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segment the incident wavefront is an amplified version given from equation 6.7. The 

process is continued until the end segment is reached. The overall gain of the device is 

calculated by multiplying all the individual element gains i.e.;

h  = /w[exp(>zm - n0)xALx exp(nm + 1 - n0)xAL ... exp(nLn - n0)xAL] (6.9)

which can be written as the sum:

G = exp 2 ^ ,  r a(n -  n0) AL (6.10)

Simulations using numerical solution

Figure 6.2 shows a plot of the carrier density normalised to the zero input value against 

the number of amplifier segments (Ln = 100), the input is a pulse train with a frequency 

of 250 GHz and pulse width 1 ps satisfying condition 6.2 (ii). The TWSLA parameters 

are given in table 6.1.[e.g. Manning and Davies 94],

0 .9

0 .8 5

p u lse  w id th  =  1 ps 

p u lse  sep era tion  =  4  ps0.8
N o rm a lised
carrier
den sity .

0 .7 5

100 fJ
0 .7

1000 0

0 .6 5

N u m b er o f  seg m en ts

Figure 6.2 Discrete amplifier model carrier density v. segment number.
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Parameter Value
T (confinement factor) 0.3

j  (current density) 60xl06Am'3
a (gain coefficient) 2.7xl0‘2°m2

d  (active layer depth) 0.2x10'm
e (electronic charge) 1.6x 10’19C
E  (photon energy) 0.8 eV
L (amplifier length) 500x10'm

n0 (transparency density) 1.0xl024m‘3
w (active layer width) 2.0xl0’6m

Table 6.1. TWSLA parameters

With low energy input (10 0) the carrier density reaches its lowest value towards the end 

of the device where the input signal will be considerably amplified. Increasing the input 

(100 0 ) brings the saturation point (say 0.67 kj) nearer to the beginning of the amplifier. 

In both these cases the model describes an important point in that the carrier density is a 

function of position which is an important consideration in the ASLALOM analysis 

(section 7.5.3) . A further increase in energy (1000 0) brings about immediate saturation 

of the device with an almost constant carrier density along the length co-ordinate. A 

comparison with results given in [Gillner 92] show agreement with the shape of the plots 

in figure 6.2, and the point where the curve becomes flat (1000 0  in figure 6.2) which 

occurs at the transparency density in both cases.

6.3.4 Analytical v numerical solution

The analytical model is a mathematically simple and a non-intense method 

computationally. However it does not give an accurate picture of the carrier dynamics 

because the input intensity is constant throughout the device length and assumes a 

constant carrier density along the length of the TWSLA. It is instructive however to 

compare this method with the numerical solution to assess its usefulness in simulations.
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Figure 6.3 depicts the average carrier density in the amplifier when a continuous wave 

signal is input for both methods

4.£

A nalytical.

N um erical.

Carrier density / 
arb.units 3.£

2.£
Input in tensity/ I s a t

Figure 6.3. Analytical v numerical solution of rate equation.

From figure 6.3 it can be seen that the steady state carrier density is approaching equal 

values for both methods towards higher values of input intensity. An explanation of this 

can be given by realising that the carrier density and thus the gain at high values of input 

intensity is constant (see figure 6.2).

6.4 Dynamic (pulse) Input Analysis

6.4.1 Dynamic modelling of picosecond pulse inputs.

Referring back to figure 6.1 and considering the case where a point on a pulse wavefront 

is incident on an amplifier segment with a carrier density given as n(zJni), the pulse point 

is amplified according to equation 6.7. If small segments are considered then the rate 

equation is used to describe the local effects of signal input but this time the rate 

equation is solved for a particular time increment, as opposed to the steady state
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equation 6.8. The amplified signal is then input to the next segment where it again 

undergoes amplification according to the initial conditions present. At this moment a 

particular point on the pulse profile is all that is considered and this will propagate 

through the device taking a time equal to L/cN, at intervals given by AL/cN. The pulse is 

continuous in time and space therefore the next point on the pulse profile will follow and 

undergo amplification, and cause stimulated emission as per the previous point but with 

the carrier density conditions imposed by the previous pulse point. The carrier density 

change is again calculated in each segment. Using this procedure each point on the pulse 

profile will describe the carrier density at successive amplifier points and times. The 

equations to describe pulse propagation are a density rate equation and a dynamic 

propagation equation which are re-written here:

f £ M = / > _ ^ _ £ a(„ _ „ o)/(Z;/) (6, , )
at r E

dL{z,i) 1 dl(z,t) / \ tt \
“ Z------- + = a(n -"oVizJ)  (6.12)oz vg at

- •*£• V*

6.4.2 Longitudinal averaging method (Point element model)

A simplification in the analysis of pulse amplification is to make a substitution of variable 

where T=z/vg [Agrawal and Olsson 89] equations 6.11 and 6.12 can then be written as:

r  , ( 6 , 3)
at t  Ep

* & !l = a{n - n t )I(z,T)  (6.14)
OZ

Next an average value of carrier density over the device length is defined as:

1 ^
nm( T) = j \ n{z,T)dz (6.15)

L 0
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where nav represents the average value of carrier density in the device after a point on the

pulse has propagated through and reaches the end segment of the amplifier at a time T.

Substituting equation 6.14 and 6.15 into equation 6.13 gives:

J» A T ) = r  nav{T) r  d(z,T) 
dT  ' t  Ep dT

Equation 6.16 is then integrated over the device length and the mean value is found 

giving:

p,L  » „ (T )  r
dT L t  EpL ( L .C O - U T ) )  (6.17)

Equation 6.14 can also be integrated over the device length by using the substitution n = 

nav where nav is a constant thus:

W T )  = exp(a(nav(T) - n0)L  (6.18)

Substituting 6.18 into 6.17 gives

= P ? J 1 1  _ _L  / |n(r)(exp(«(nOT -  „0)) (6.19)
dT t  Ep

which can be used to solve for the average value of carrier density for each point of the 

input signal. In a similar way to the continuous analysis each point on the pulse profile 

I(T) is input to equation 6.19. To compute the pulse temporal response the pulse is 

discretised into small time elements equal to At. Initially /,„(A7) is substituted into

equation 6.19 which is then integrated to give the carrier density at a time AT  . The

method of solution then is to consider a Taylor series of the carrier density i.e. 

n(T+ AT) = n(T) + n'(T) AT + ATri"(T)/2! + ... ATnnm(T)/m! + ... (n(T + AT)) 

which can be substituted into equation 6.19 to find the carrier density at the next time 

interval (T  + AT). The process is continued until the last point on the pulse is reached. A
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truncated form of a Taylor series can be used (Euler’s method) which uses the derivative 

of n up to the first order i.e.

n(T + AT) = n(T) + n'(T) AT. (6.20)

6.4.3 Point element model simulations

In the previous analysis the amplifier is effectively a point element approximation and any 

spatial information is ignored. Here the carrier density changes is assumed to occur 

instantaneously over the whole length of the amplifier. Therefore, the full modulation 

occurs over a time equal to the pulse width. This method leads to a simple analysis and 

simple solutions are afforded when the carrier density is assumed to be constant over the 

entire device length L. Simulations of pulse input will be investigated using an unchirped 

Gaussian pulse of the form:

/» = - % =  ex p 
r nyl7T

(6 .21 )

where Ein is the pulse input energy and x0 is related to the FWHM by xp = 1 .665t0. This 

shape is characteristic of pulses generated from actively mode locked lasers [Guy et al 

96] and is a method commonly used for OTDM signals e.g. [Morioka et al 94], 

[Nakazawa et al 95] and [Joergensen et al 96]. Figure 6.4 shows a typical pulse using 

equation 6.20.
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FWHM
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Figure 6.4. Gaussian pulse.

Using equation 6.19 and 6.20 a Gaussian input of the form of equation 6.21 with Ein = 

800 0  is input. TWSLA parameters are as in table 6.1. The temporal response of the 

carrier density normalised to the steady state is shown in figure 6.5.

Normalised
values.

Carrier
density
Input
pulse

0.7

0.5

0.2

0.1

Time/ps

Figure 6.5 Carrier density response to pulse input.
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The dynamics o f  figure 6.5. exhibit a turn on time o f  around 1.5 ps which is associated

with the slope of the Gaussian pulse which has a FWHM of 1 ps. From experimental 

observations on gain dynamics a slope is evident on the pump probe results, for example 

a rise time of « 4 ps indicated for 2 ps input pulses [Hong et al 94], For InGaAsP 

amplifiers the rise time is shown to be « 20 ps for a 15 ps pulse [Lai et al 90], The slope 

is a feature of TWSLA dynamics and its effect on the response of an ASLALOM will be 

discussed in chapter 7.

Index o f  refraction and phase

Associated with the carrier density change is a variation in the refractive index of the 

material and is given by the equation [Lomax and White 91]:

where N(T) is the refractive index, No the refractive index with no signal applied, nav(T) 

the carrier density from equation 6.19, nx the carrier density with no signal applied and 

dN/dn the refractive index carrier density differential coefficient. The phase propagation 

of a wave travelling with a wavelength X is found by making the substitution

For a guided wave system with a confinement factor T [Manning et al 94] the relative 

phase change is more appropriate for switching applications giving

N(T) = N 0 - - - 0 , ( T ) - „ l) 
dn

(6 .22)

(6.23)

giving:

(6.24)

dN 27iL{n -  /?,)
(6.25)
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The value of dN/dn is actually a function of photon energy and Westbrook [Westbrook 

86] gives values for different photon energies. In this case the wavelength of the input 

signal is assumed to be 1550 nm with a corresponding photon energy of 0.8 eV. The 

value of dN/dn for this energy is 2xl0'26m3 [Manning and Davies 94]. Using equation 

6.25 and the carrier density values as in figure 6.5 the temporal phase response is shown 

in figure 6.6.

2.5

Phase/
rad.

Time/ps

Figure 6.6 Phase response with pulse input.

The corresponding gain response is shown in figure 6.7. calculated from:

G(7) = exp(ra(^v(7 )-n 0)L) (6.26)
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Figure 6.7 Gain response with pulse input.

A validation on the point element model presented can be made by comparing 

simulations from equations 6.19, 6.20, 6.21 and 6.26 with the results presented in [Eiselt 

95]. Simulations are made with an unsaturated amplifier gain of 100 and a 50 fl input 

pulse and show a saturated gain value of 30 which is within 16% of Eiselt’s [Eiselt 95] 

value of 25. Phase response was not studied in this reference but as both gain and phase 

are functions of carrier density (equations 6.25 and 6.26). The phase response is assumed 

valid. The temporal response in both cases shows a relaxation time of the order of t 2 , 

the recombination time.

Pulse distortion

The pulse is amplified according to the carrier density dynamics and equation 6.26. The 

pulse shape in figure 6.8 shows the pulse entering the amplifier (input) and leaving 

(output).
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Figure 6.8 Pulse distortion in saturated TWSLA.

Pulse distortion is evident with the leading edge receiving a higher gain ( « 7.5) due to 

the gain saturation and the trailing edge receiving a reduced gain ( « 3 ) as it propagates 

through the TWSLA. The occurrence of pulse distortion is in agreement with predictions 

of leading edge pulse gain by [Agrawal and Olsson 89] and further validates the point 

element model.

6.4.4 Finite length model

The previous analysis treated the amplifier as a point element within the loop 

contributing an attenuation and phase shift at one spatial position. More accurate analysis 

must take into account the length of the device and the propagation of the pulse at a 

defined interval with the accompanying attenuation and phase shift at that position. 

Initially the amplifier is split into sections of equal length, AL = L!Lm , where Lm is the 

number of segments, the carrier density in each section being stored as a matrix. The 

incoming pulse is also divided into sections with a time interval of AL!c„, where cn is the

Input
Output

Time/ps
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speed of light in the amplifier, also stored as a matrix. The pulse enters the amplifier at z 

= 0 with the leading edge element of the pulse matrix lining up with the first element of 

the carrier density matrix. The rate equation is in matrix form as:

I,
’ W

1
-V

1

r\ l , k )

" ( 3 ,* )
II

8
.

h 1

" ( 3 ,* ) 1 
1 1

*\m ,k)  _ 1

i

1

Ta_
E

11

11
(2 .*) 

(3,*)

11(m,k)

~1h

( U - )

(2  . k )

I C3.it)

/ (m,k)

(6.27)

Equation 6.27 is solved for the carrier density at each point along the amplifier length. 

The next step to be considered is the pulse propagation from one section to the other. 

For example the intensity matrix which experiences amplification such that I<a- + i} —> 

I(£)exp(rtf(n(k) - iio)AL This process is continued until the whole pulse matrix has 

propagated through the amplifier length a time ( /„)equal to Lhic plus the pulse width. 

The resulting carrier density matrix is written as:

W(l , l )  ,? (1,2) W(1.3)

11
11

( 2 . 1)

(3,1)

(6.28)

n

6.4.5 Finite length model simulations

Figure 6.9 shows the results of a pulse input of 800 0  1 ps to the TWSLA where the 

pulse energy is enough to saturate the device.
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Figure 6.9 Finite length model of pulse input to TWSLA.

The plot gives carrier density information at any position and time. The plots show the 

carrier density over the length from a time zero when the front edge of the pulse meets 

the beginning of the TWLSA to a final time when the trailing edge of the pulse leaves the 

TWSLA. The results clearly identify the carrier depletion as the pulse propagates 

through the device. The plots give a pictorial representation of the carrier density with 

rows representing the length axis and columns the time axis. At the moment no practical 

results are available to compare with the finite length model. A validation will be 

reserved until the model is used in conjunction with an ASLALOM (section 7.5.3.4).

6.4 Summary

This chapter has presented various models of a TWSLA as developed by the author. The 

models are broadly divide into two categories continuous wave and dynamic (pulse) 

input models. The continuous wave proves to be the simplest and both an analytical and
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a numerical method described. The analytic method is the simpler and becomes more 

accurate with high values of input power. The intention of the continuous model is to 

simulate a high data rate signal as in an OTDM system. A dynamic model is described 

next with a point element model which assumes the TWSLA has zero dimensions and 

occupies a single point in space and describes temporal variations only. The 

corresponding phase change due to the input is described with a refractive index 

equation dependent on carrier density. Comparisons with practical results are made in 

each case, the continuous wave model agrees in shape with regard to carrier density 

distribution along the amplifier length. The point element model is validated temporally 

with the fall time of the transmission response corresponding with practical results, also 

gain saturation is compared and is found to be within «16% of a reported value. A more 

comprehensive model is described next which includes temporal and spatial information 

of the TWSLA. Comparisons of this model are not made at this stage but will be 

addressed in chapter 7.
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Chapter 7

Modelling And Simulation of ASLALOM

7.1 Introduction

This chapter describes models developed by the author to simulate the de-multiplexing 

action of the ASLALOM as introduced in chapter 5. For modelling purposes the 

ASLALOM can be described as three components a fibre coupler, a fibre loop and a 

non-linear element (TWSLA). Models of the TWSLA have been described in chapter 6. 

The first functional component to be modelled is the input-output coupler. The fibre loop 

will be assumed initially to consist of a simple time delay until a later section when 

polarisation and birefringence effects will be considered. Fundamental to loop operation 

is the asymmetry of the TWSLA and the effect of this will be considered highlighting the 

need for different TWSLA models. Equations to describe the special case of small 

asymmetry are developed in section 7.5.3. and loop performance will be investigated by 

looking at the switching resolution of the system and adjacent pulse crosstalk will be 

taken into account. The use of a high frequency control pulse is modelled which leads to 

the use of an ASLALOM with data input which can be used for wavelength conversion, 

and also looks at patterning. A novel application of the system for multi-channel output 

will be presented. A model is also developed to simulate the effects of polarisation and 

birefringence in an ASLALOM.
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7.2 Modelling of fused fibre coupler

Fused fibre couplers play an integral part in all types of loop mirror. Coupling action 

takes place through the interaction of modes along a section of optical fibre. The 

coupling section is formed by heating a length of two adjacent fibres and elongating to 

form a tapered fibre with a narrowed length. Coupled mode equations are generally used 

to describe the coupling between the modes of the signal. Generally the coupler has 

polarisation [Schliep 94] and wavelength dependencies.

Consider an electric field at the input of a coupler. See figure 7.1.

Coupler

"Ix.y

-2x,y ^4x,y

Staight through signal 

Cross coupled signal

Figure 7.1 Ray diagram of fused fibre coupler.

The transfer function from coupled mode theory is as follows [Mortimore 88]:

J3 x ,y  

'4  x ,y

a (1.3) « < 2 .3 )  e X P U S )

«d,4) exp(/<S) a (2 .4)

E lx,>>

'2  x ,y
(7.1)

where and ay(m>n) are field coupling coefficients of a signal propagating from port 

m to port n for the x and y  polarisations of the electric field respectively and are related 

to the intensity coupling coefficient K  by 5 = K m, y represents the proportion of power 

loss through the coupler, 5 ^  is the phase shift imposed on a cross coupled signal 

relative to the straight through signal and Ena and Emy (m = 1,2,3,4) are the electric field
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amplitudes at port m for the x and y polarisations. Initial experiments on fused couplers 

by Cassidy [Cassidy 85] demonstrated the couplers dependence on wavelength. Cassidy 

performed experiments on couplers using a white light source as an input signal and 

measured the light output from the coupler as a function of wavelength. These 

experiments showed that the coupler transmission has a periodic response with maximum 

and minimum values of wavelength for either port. The wavelength dependence can be 

described by a raised cosine function by making the following substitutions into equation

where co is the signal wavelength, co,< and co/ are upper and lower wavelength minima of 

the transmission spectra of the coupler which can be determined experimentally. Using 

equations 7.1, 7.2 and 7.3 the transmission response of figure 7.2 can be simulated.

7.1:

(7.2)
U ® „

(7.3)
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Figure 7.2 Simulated coupler transmission v. wavelength of signal.

In figure 7.2 cou and ©i are chosen as 1429 nm and 1558 nm for the maxima and minima 

of the straight through transmission respectively which are the values given for a 

practical device in [Morishita 95], The simulation of figure 7.2 shows excellent 

agreement with the coupler in [Morishita 95]. The detraction from an ideal coupler is 

shown as a small value of transmission (-30 dB) at the minimal transmission wavelengths. 

This is attributable to non-equal coupling coefficients and has been modelled by adjusting 

these accordingly.
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7.3 Matrix Analysis Of Propagation Through ASLALOM

7.3.1 Matrix equation

For ease of understanding the loop mirror can be broken down into a series of 

propagation components with individual field transfer functions. Following the signal 

from the input port through the coupler around the loop and returning through the 

coupler the following equations can be written (see figure 7.3, note: the control pulse has 

been omitted). Here it is taken that the fields are representative of a travelling wave 

signal E(z,t) of amplitude E ], radian frequency co, arbitrary phase shift (p and propagation 

constant k, i.e.,

E(z, t) = £;exp(/(<y/ -kz  - cp)). (7.4)

3 AL

<   >
5 5

Figure 7.3 ASLALOM as series of propagation components.

The following equations can be written (port numberings as in figure 7.1):

1. Propagation through coupler (input)

(EP f a  2.3 e x P C / ^ ) V  Ex
l « i , 4  e x p ( y < ? )  « 2 . 4  K e J

1,3

(7.5)
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2. Propagation through fibre to TWSLA 

' j2nNf ( L - A L) ]
E,

r f  
exp

v

0 exp
'jln N f (L + AL)"
. r  ,

\E d
(7.6)

3. Propagation through TWSLA

(F,
\ F a

cw  
0 F r r

(7.7)
CCW

4. Propagation from TWSLA to coupler

exp
j l n N  f (L +

X.

exp
' j2nNf (L -kL )"

X.

(7.8)

5. Propagation through coupler (output) 

(X ')  a  4,1 exp(./£)

E2) a 4,2

#3,1 

« 3,2 e x P U S \
(7.9)

In the above 2L is the length of the fibre loop, Xs is the signal wavelength, N/ the 

refractive index of the fibre, FCw and FCcw the gain and phase functions of the TWSLA in 

the CW and CCW directions respectively. The various components can be brought 

together to give a matrix description of the loop thus:

(7.10)

The effects of phase and amplitude in the loop can be tabulated (see table 7.1) to give 

values for the matrix elements where ~ 2%{L - AL)A$A,, (|)z, = 2%{L + AL)NpX, bciv and 

bccw the TWSLA CW and CCW phase shifts, Gc^and GCCw the TWSLA CW and CCW

X " 31

m n "hi

1
•3-

3 .. 
j

X
1

m2] m22 m n " * 2 4

X "hi m32 "hi " * 3 4

Phi "hi "hi " * 4 4 . C*1 N> V:
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power gains, <|)| and (J)* are the phase shifts for through and cross coupling of the coupler

and ocf, is the fibre absorption coefficient.

Matrix
elem ent

c w CCW

mu(Eu—>Elx) (ai>3a4li(Gcw)I/2' exp(-aFL -j[fa
+ (fa + fa w  + fa) + (j)x])

(cti,4 &3, i(G cciv)1/2• exp(-aFL - 
i t fa + (fa + (ficcw + (fi) + <fia])

nin(E\y—>E\̂ ) Birefringence and polarisation Birefringence and polarisation
T}i\1>{E2X—̂E\y) ((X2,3CCi,3 (Gciv)1/2• exp(-ccpL -

.)[(fix + ((fis + (fixLE-civ + (fit) + (fix])

((%2,4C(3,1 (Gccw) //2exp(. - aFL -
.it(fil^ (fa + (fixLE-CCW + (fil) + (fii])

ntuiEiy—̂ E ^ Birefringence and polarisation Birefringence and polarisation
fth\{E\x—>E\̂ ) Birefringence and polarisation Birefringence and polarisation
Wl2l(JL\y—>E\̂ ) aIt3CC4,iG1/2 .exp(-aFL - j[fa  +

((fis + (fixLE-CW + (fil) + (fix])

aI>4a3,iG1/2.exp(-aFL-j[fa+  (fa
+ (fixLE-CCW + fa) + (fil])

mu (E2X —>E 1 y) Birefringence and polarisation Birefringence and polarisation
I7l24(Ely—̂E\y) a2,3aI'3GI/2.exp(-aFL-j[(fix +

((fis + (fixLE-CW + (fil) + (fix])
a2,4cc3'iG1/2.exp(-aFL - j[(fii+

(fa + (fixLE-CCIV + fa) + (fil))
nh\{E\x—>E2̂ ) aIf3a4,2GI/2. exp(- aFL -  j [ f a +  ( fis

+ (fixLE-CW +  (fil) + (])/])

a]t4a3<2G1/2.exp(-aFL -  j t fa  +
( f a  +  (fixLE-CCW +  fas) +  fax])

til 32 (E1 y ^£/2x) Birefringence and polarisation Birefringence and polarisation
Tihl(Elx —̂ 2x) a2i3a4>2G1/2.exp(-aFL -  j[ ( f ix +  ((fis

+ (fixLE-CW +  (fil) +  (fil])

a2,4a3,2G,/2exp(-aFL -  j [ (fiB+  ( fiL
+ (fixLE-CCW +  f a )  +  f a ] )

Tthi,(E2y ~ ^2x) Birefringence and polarisation Birefringence and polarisation
tn 4 \ ( E \ x -̂£/2y) Birefringence and polarisation Birefringence and polarisation
11 lft{E \y—>E2y) a 1>3a4>2G1/2.exp(-aFL-j[fa+  ((fis

+ (fixLE-CW + (fil) +  ({>/])

ai>4a3>2G1/2\exp(-aFL - j[ fa  +
(fa + (fixLE-CCW +  fas) + fa])

W43(^2x~^2y) Birefringence and polarisation Birefringence and polarisation
Hl^iEly ~7̂ 2y) a2,3a4>2GI/2. exp(-aFL - j[(fix+ ( (fis

+ (fixLE-CW + (fil) + (fig])

a2,4a3,2GI/2.exp(-aFL - j[(fiB+
(fa + (fixLE-CCW + fas) + fax])

Table 7.1 Loop mirror matrix components.

In the case where the fibre and loop components are free from birefringence and 

polarisation effects, the x and y components undergo equal amplitude and phase change 

(x components are dependent only on x  components and y  on y). The matrix can then be 

written in a simpler form as follows:
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E\x ' m \ \
0 mn 0 E\x

E \ y 0 m22 0 m24 E\y
Eix m3 j 0 w33 0 Eix

r 
0

1 0 m 4 2 0

1
^

T

s
:

1

>
>

 

r 
^

... 
i

(7.11)

The matrix is a comprehensive analysis of the loop and the effects of various field 

components in the loop can be described by selecting the appropriate element in the field 

vector. For example to simulate the component reflected from port 1 in the direction of x 

polarisation the following equation is used (assuming input is to port 1 only):

E\x = nt\\E\x + 0E\y + 0E-2x + 0E2y (712)

Note that the absence of any birefringence effects indicate no contribution from the y  

direction of polarisation.

7.3.2 Power transmission coefficients

To obtain power transmission consider a field E incident on the loop with no input to 

port 2 (normal operation of ASLALOM) i.e.:

X

(7.13)E = '1 y

after loop transmission the output power can be written as a transmission vector T 

multiplied by the input field vector and noting that the power of a complex wave is 

written as (Ed*)x(EeJ*) where Ed* represents the complex amplitude then:

(7.14)

~E \x * E \ x ~ ” ’ \ \ E \ X

T i y E\y *E ly (” ’22 E \ y ) * m 22 E \y

t2x E \x * F i -C /l * (” h \ E \ x ) * m 31 E \y

1 E \x * F ,  £ j lx_ ( m 4 2  E ly)*_

1..
...

...
..

N> 1

Re-writing equation 7.14:
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Tu E\x
2" ~mu j " E \x

2~

T\ y E \y m2 2 * " '2 2 E \y

t2x E\x m31 *"'31 E \x

T2y E \ y ™42 * " '4 2 . E \y

(7.15)

then T can be written as:

~TXx~

iS*s1

Ti y m22 *m12
Tix m3l *m2l

T2y mA 2 *n;42_

(7.16)

7.4 Phase And Gain Responses

7.4.1 Simulation of the loop mirror phase response with constant gain

Initial simulations of the loop mirror will be presented using defined phase and gain 

functions in the matrix equations. Zero birefringence and polarisation rotation are 

assumed to simplify the analysis. Phase modulation will be considered first. In addition, 

as further simplifications, the fibre loop represents a simple delay in time only and the 

fibre absorption coefficient is assumed to be zero since only small lengths of fibre are 

used in an ASLALOM [Glesk et al 94]. The equations used for transmission need only 

take into account the x  polarised field vector only. The following equations for phase 

modulation can then be written noting that fyy = 0 and cj)x = %/2 for ideal coupling and the 

CW and CCW field gains are both one:

Ti = ai,3a 4>ie x p (/(^ +  fc)) + ai,4a 3fl.exp-y($*+ \i>CCW) (7.17)

T2 = a 2,3ai;3exp(/'((|).v +§cw + ^  )) + a 2,4a 3, i exp(j(</>Cav) (7.18)
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The variables in equations (7.12) and (7.13) are the CW and CCW phase shifts §cw and 

fycciv and it is assumed that these take on different values. Figure 7.4 then illustrates the 

simulated phase response using equations 7.17 and 7.18.

Qfi-

Q6-

Thraiisacn

Q2-

niredffamxj'rai

Figure 7.4 Transmission against phase, (gcw - gccw = 0).

It can be seen that the phase transmission of the ASLALOM is sinusoidal with maximum 

transmission occurring when the phase difference is an odd multiple of n. The system is 

therefore an interferomic device with an equivalent switching parameter | <\>Cw - fycciv I n = 

7Z .  The variation in phase can be assumed to be due to a non-linear element in the 

ASLALOM. To verify this response, a comparison with experimental results by Eiselt 

[Eiselt et al 95] also shows oscillations in the transmission. This was accomplished using 

a TWSLA in the loop which is highly saturated such that the phase response | <j)cw - 

§ccw\ will pass through n.
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7.4.2 Simulation of the loop mirror gain response with constant phase.

For gain modulation the following two equations apply:

T\ = ct 1,3064 j(Gcjf) 1/2exp/(j)A' + (ai,4a3,i(GccfF)1/2exp j§ x (7.19)

T 2  —  GC2,3CCi'3 ( G c i v ) II2g x p  j 2 $ x  + (* 2,4063,1 ( G e a r ) 1/2 (7.20)

The simulated gain response (see figure 7.5) shows the loop output with a device which 

has a zero relative phase shift between the CW and CCW fields.

3.5

2.5

0.5

Figure 7.5 Transmission against gain ratio (<jw - (|)ccw = 0)

At a gain = 0 the loop is reflecting and all power output is from port 1. An output is 

obtained from both ports for all values of gain ratio above 1 and continues to rise with 

port 1 transmission always above port 2. It is not possible with this method to switch all 

the signal over from port 1 to port 2 and an output is always present at port 1. The two 

cases in 7.4.1 and 7.4.2 compare the difference when amplitude modulating and phase
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modulating the fields. In practise the TWSLA will give gain and phase modulation 

simultaneously.

7.5 Loop Asymmetry

7.5.1 Large asymmetry loops

Refer to the ASLALOM architecture in section 5.3.4.4 and the TWSLA simulations in 

section 6.4.3. Large asymmetry loops are defined as having an asymmetry which is much 

greater than the TWSLA length, and the TWSLA is assumed to follow the point 

element model. The phase and gain responses of a CW data signal passing around the 

loop are simulated using equations 6.17, 6.18, 6.25 and 6.26. The CCW data is delayed 

by a time equal to the asymmetry tasy (see figure 5.16). These values are then substituted 

for §cw, §ccw, Gcw and Gccw in equation 7.16 using the values for my given in table 7.1 

which gives the power transmission vector of a data signal entering port 1. Effectively 

the transmission is simulating the output at port 2 of a continuous wave signal fed to port 

1. Initially consider the case when the TWSLA is placed at a distance from the loop 

centre with an asymmetry comparable to the relaxation time ( TWSLA parameters are as 

in table 6.1). This will be considered a large asymmetry loop. Consider first the case 

when the TWSLA has an asymmetry 1.5 times the recombination time by placing the 

TWSLA off the loop centre by a distance equal to CfX T2x0.75 « 0.075m which is 150 

times the length of the TWSLA. The CW and CCW gain and phase temporal responses 

are shown in figures 7.6 and 7.7 respectively. The responses are separated in time by tasy 

= 1 ns.
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Figure 7.6
Simulated CW and CCW gain responses of large asymmetry loop
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difference 1 
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I Time/recombination time(T2).

Figure 7.7
Simulated CW and CCW phase responses of large asymmetry loop.

CCW
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The resulting power transmission using the gain and phase responses of figures 7.6 and 

7.7 is shown in figure 7.8.

0.9

0.7

Transmission/ o.e 
arb.units

0.5

0.4

0.3

0.2

Time/recombination time(x2).asy

Figure 7.8 Simulated transmission response of large asymmetry loop.

From the waveform given in figure 5.16 one transmission window is expected to be 

opened with a width of tasy. What is evident from figure 7.8 is that two windows have 

been opened separated by tasy. With this configuration attempts to demultiplex a single 

OTDM pulse within the period tasy could result in a second output immediately after the 

asymmetry time (the frame period is assumed > tas>). Consider next the case where the 

TWSLA has an asymmetry equal to 0.75 times the recombination time. The resulting 

transmission is shown in figure 7.9. Two windows are apparent but note that the second 

window is reduced considerably in amplitude.

133



0.8

0.7

Transmission/ 
arb. units

0.5

0.4

0.3

0.2

0.1

0

Figure 7.9 Simulated large asymmetry loop with reduced asymmetry.

Intuitively it is apparent that reducing the asymmetry will result in a reduction of the 

second window eventually leaving just one which will give a demultiplexing system 

which can select channels within a period equal to tasy. Experimental results by Sokollof 

on an ASLALOM with tasy = 690 ps and T2 = 600 ps show a second transmission window 

appearing at t = 690 ps which confirms the predictions of the large asymmetry simulation 

of figure 7.9. The configuration required to give one transmission window will be 

discussed next.

7.5.2 Medium asymmetry loops

The situation resulting from an TWSLA placed close to the loop centre such that one 

transmission window is evident will be called a medium asymmetry loop. The simulation 

presented in figure 7.10 is when the asymmetry is equal to 1/10 of the recombination 

time (equivalent to 20 device lengths).

asy

Time/recombination time(x2).
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Figure 7.10 Transmission response of medium asymmetry loop.

The second transmission window has disappeared with a small trailing edge remaining « 

0.025 times the full transmission. Adjacent channel crosstalk would result from this 

trailing edge («-16 dB). The transmission window has almost parallel sides with a width 

equal to 100 ps. Practical results of an ASLALOM by Sokollof [Sokolloff et al 93] also 

show a window with parallel sides when using an asymmetry of 130 ps (« 21 device 

lengths). If pulsed data input was used in this configuration it would be possible to 

demultiplex data at a rate of 10 Gbit/s. Theoretically the asymmetry could be reduced 

indefinitely and is effectively limited only by the rise time of the TWSLA non-linearity. 

Figure 7.11 shows the transmission response when the TWSLA is placed increasingly 

closer using the medium asymmetry analysis. The width of the transmission widow 

indicates the asymmetry.

asy
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Figure 7.11 Transmission of small asymmetry using medium asymmetry method.

7.5.3. Small asymmetry loops

In the medium asymmetry case decreasing the offset from the loop centre resulted in a 

transmission window which will be limited by the non-linearity rise time. This would be 

the limiting case when two responses (gain or phase) are brought increasingly closer 

together. This is illustrated in figure 7.12.

Response 
rise time

Response 
e.g. phase/ 
arb. units asy

Transmission/ 
arb. units

Time/arb. units

Figure 7.12 Transmission window for decreasing tasy.
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Using a 1 ps control pulse the window could be made as small as « 1.5 ps (figure 6.5). 

The TWSLA was considered as a single point in sections 7.5.1 and 7.5.2. In reality it can 

be up 1 mm long for ASLALOM applications [Sokollof et al 94] giving a signal 

propagation time of « 11 ps. With a device of such length it is difficult to specify the 

asymmetry when windows of the order of the propagation time are considered. This 

section will examine what effect the length of the TWSLA has on loop operation. 

Section 6.4.4 demonstrated a method of modelling the TWSLA which includes time and 

space information on the carrier density when subjected to a pulse input. The function for 

calculating the gain and phase modulation is calculated by integrating over the carrier 

density function n(z,t). Consider a case initially where the carrier density has reached a 

steady state value and n is a function of length only i.e. n = n(z). A parameter can be 

defined which will be called the carrier density length product and is calculated from the 

following integral which describes a wavefront travelling along the amplifier:

L

n cw(CCW)  = J n ( z ) d z  (7.21)
o

The above integral assumes that n(z) is constant for the time period t - L / c N f \ o  t where t - 

L/cfff marks the beginning of the input signal and cNf  is the speed of propagation in the 

TWSLA. However, during the control pulse input, the carrier density is a function of 

time and the carrier density can be written as n(z,t). The time is assumed to span the 

interval -ao to +oo with the control pulse applied between the time intervals t\ to / + 

L/Cfjf + tp where tp is the width of the control pulse. Before t\ the carrier density is 

assumed to be the value given by the data signal intensity and to have reached steady 

state conditions. It is calculated using the method outlined in section 6.2.3. After t +
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L/cNf  + tp when the pulse has propagated through the TWSLA, the carrier density is 

assumed to have the saturated value for a time period associated with small asymmetry 

demutiplexing (a few ps). As the carrier density is now a function of time the carrier 

density length product moves along the time axis by a period equal to dz/c^f for each 

movement along the length axis of figure 6.9. The integral in equation 7.21 now needs to 

move along the time axis with the speed of propagation of the wavefront. A new

L z
function is now defined, n (z ,t  + ---- ) , where it is understood that every

CNf CNf

occurrence of t in the function n(z,t) is replaced by t - L/c^f + z/c^/when performing the 

integral to calculate the carrier density length product. This means the CW data 

experiences a carrier density length product described by:

L h  Z
n c w ( f ) = f n (z >t  + ~^—)dz  (7.22)

0 C N f  C N f

(Note the term L/c^f ensures the time t in equation 7.22 corresponds with a wavefront 

reaching the end of the TWSLA). The corresponding CCW integral moves as the same 

speed as the CW integral of equation 7.22 but in the opposite direction, resulting in a 

sign change in the moving co-ordinate i.e.:

u

' 2 c c i f ( 0  =  f n (z J  )dz  (7.23)J p
0 N f

The carrier density length product is now a useful parameter in calculating the phase and 

gain of a wavefront which has passed through the TWSLA at a time t. cNf  is essentially a 

function of carrier density and can be written as:

W ~ dN ( ^N - — (i i - m )  
dn w
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If the change in index is assumed to have a negligible effect on the speed of the wave 

then cNf  can be considered constant throughout the length of the TWSLA (which 

amounts to a propagation time 5 orders of magnitude different for a n phase change). 

The CW and CCW wavefronts experience different TWSLA properties determined by 

the asymmetry present in the loop. Consider figure 7.13 which depicts the asymmetry 

present in an ASLALOM architecture with the length of the TWSLA included showing 

the z direction for the CW and CCW integrals.

lasy

Sew

SLA
(offset)

SLA
(centre)

CW

CCW

Loop midpoint

Figure 7.13 CW and CCW co-ordinate system.

The CW and CCW wavefronts are represented by the arrows shown (Sew and Sccw), and 

with identical fibre lengths in the loop the two signals arrive at the points indicated at the 

same time. With the TWSLA centrally positioned equations 7.22 and 7.23 apply directly. 

When the TWSLA is positioned off centre the CW signal experiences the TWSLA
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properties at a time say // calculated using equation 7.22. The CCW signal reaches the 

TWSLA at a time later given as // + tasy as indicated in figure 7.13 and, therefore, the 

CCW carrier density product function is now advanced by tasy which may be written as:

L

n'ccw( l )  = J  n ( z , l  -  — + tasy)dz  (7.25)
0 C N f

For simulation purposes the integrals in equations 7.22 and 7.25 are written in discrete 

form. To simplify the analysis the discrete length interval is related to the time interval At 

by:

A / = —  (7.26)
CNf

The phase modulation at discrete time k for the CW signal is then:

<!>CW (*) = " (/’ * -  L - + 1 )  (727)

where Lm = LI Ah. The corresponding gain modulation is:

l=Lm
SewCk) = I!e x p ra (w (/,k -  Lm + /) - n0) x AL (7.28)

i=°

or equivalently:

g av{k) = e x p T a W , k - L m + / ) - w 0) x  AZ, (7.29)

and for the CCW modulation:

*ecr(*) = ~ l + k ^ )  (7.30)

l—Lm
gear (k) = ] 1  exP r aW > k -<  + kav) - n 0) x A L  (7.31)

1=0

gccw(k) = expZteo'r^a W , k - I +  k ^ ) - n 0) x AL (7.32)

where kasy = tasyJAt is the discrete asymmetry.
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7.5.3.1 Simulations with finite length effect of TWSLA

To demonstrate the finite length of the ASLALOM the phase and gain responses are 

calculated using equations 7.27, 7.29 ,7.30 and 7.32 with the carrier density matrix of 

equation 6.27 calculated with a 800 fT 1 ps FWHM control pulse input which 

propagates in the CW direction as in figure 7.13. A background data pulse train of 10 fJ 

1 ps FWHM at 250 GHz is assumed giving an average power input from equation 6.1. 

This sets the carrier density initial conditions prior to control input. The TWSLA is 

positioned at the exact centre of the loop {kasy = 0). The simulated phase and gain

Numeric
gain

7.5

CW

CCW

5.5

Time/ps

Figure 7.14 Gain response of centrally placed TWSLA. 

responses are shown in figures 7.14 and 7.15.
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Figure 7.15 Phase response of centrally placed TWSLA.

The device length used in this simulation is 500pm and the TWSLA refractive index is 

chosen as «3.5 [Sokoloff 94] which is typical of InGaAsP devices. The plots show the 

different TWSLA properties experienced by a CW and CCW signal. The CW response 

has a fast response time similar to the medium and large asymmetry loops. The CCW 

response has a sloping response which spans a time interval of « 10 ps, both responses 

have the same pre and post control values. The gain and phases response have identical 

shapes due to summations being equal in equations 7.27, 7.29 7.30 and 7.32. Figure 7.16 

shows the resulting transmission calculated using equation 7.16.
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Figure 7.16 Transmission of centrally placed TWSLA.

Time/ps

The transmission plot has generated two pulse shapes due to the finite rise time of the 

CW response resulting in the central dip in the response. A single pulse shape is only 

achievable with a TWSLA which has zero non-linearity rise time. The transmission rise 

and fall times are related to the relative position of the CW to CCW response. The 

amplitude in figure 7.16 is normalised to a peak value of « 2. An asymmetry can be 

introduced into the loop. Figure 7.17 shows the phase response with an asymmetry of 6 

ps introduced which effectively shifts the CW response along the time axis (the 

asymmetry is introduced as in figure 7.13). The gain response (not shown) would have a 

similar shape and shift in time as the phase response .
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Figure 7.17 Phase response with 6 ps asymmetry.

The transmission response with this asymmetry is shown in figure 7.18.

Normalised
transmission
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Time/ps

Figure 7.18 Transmission response with a 6 ps asymmetry.
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The rising edge of the window is approximately 12 ps and the trailing edge is the 

TWSLA non-linearity rise time (the amplitude transmission is normalised to a peak value 

« 4.5). Observations when using the finite length effect in the ASLALOM show 

significant departure from the expected transmission windows in figure 5.16. The long 

trailing edge of the CCW is now placing a fundamental limit on the width of the 

switching window.

7.5.3.2 CCW modulation time

The CCW long response time can be explained by considering the limits between the 

carrier density change of a signal propagating against the control pulse (see figure 7.19).

Control CCW data

2L

< tb

Control

Figure 7.19 CCW response time.

ta represents the first occurrence of the CCW pulse experiencing the effect of the control 

pulse and this is when both pulses will meet at point a, h  is when both meet at point b. 

The total response time is:

tb- ta = 2L/c (7.33)

which is twice the device propagation time. In effect when the CCW wavefront is 

advanced in time by an amount dt the addition to the modulation is bz!2cN, i.e. the CCW
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pulse moves at a speed 2cN relative to the control pulse. With a step change in carrier 

density from nu to nsat the carrier density length product can be written simply as: 

tcx, \ tcNnsatn - 1 - 'N
L2 ” u + L2

H { t - a ) ( 7 .3 4 )

where H(t - a) is unit step function at ta figure 7 .1 9 . Simulated values for n' are given in 

figure 7 .2 0  for propagation times equal to L /cn  where nsat = 0 .1  nu.

Carrier density 
product/
unsaturated value

0.4

53 O  53 53 1 T3 :

Time/ device propagation time

Figure 7.20 CCW modulation in relation to TWSLA propagation time.

Initial investigations and the previous explanation show the CCW response time equal to 

twice the propagation time. Simulations for varying TWSLA lengths are now shown in 

figure 7.21.
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Figure 7.21 CCW response for different TWSLA lengths.

Three different device lengths are simulated in figure 7.21 where the CCW response fall 

times show respective values of 6.2 ps, 8 ps and 12 ps for TWSLA lengths of 250, 

325 and 500 pm. The calculated values for the times from equation 7.33 are 

2x250x 106x3.5/3x 108 = 5.83 ps, 2x350xl0'6x3.5/3xl08 = 8.17 ps and 

2x500x10*6x3.5/3x108 = 11.67 ps showing that the CCW response times are in 

accordance with equation 7.34. With an asymmetry included the width of the 

transmission window will be equal to L/ĉ f + tasy if it is assumed the cross over of the 

CW and CCW gain and phase responses occur halfway along the CCW slope (see 

figures 7.14 and 7.15).

7.5.3.3 Window amplitude

The temporal response of the ASLALOM has been discussed and the amplitude of the 

transmission with varying asymmetry will be considered next. The results shown in
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figures 7.16 and 7.18 indicate that a smaller transmission amplitude window occurs with 

a smaller asymmetry. Figure 7.22 shows the window amplitude against asymmetry.

0.8

Normalised
transmissioa

0.3

Asymmetry/ps

Figure 7.22 Amplitude response with varying asymmetry.

In figure 7.22 a negative value occurs if the TWSLA is placed on the left hand side of the 

loop in figure 7.13 and a positive value for the right hand side. The amplitude reaches a 

maximum value with increasing asymmetry in either direction. The minimum amplitude 

occurs when the asymmetry is zero and the fall and rise time are equal. This shows that 

the transmission window amplitude and width are both functions of asymmetry. 

Theoretical results of an ASLALOM in Kane [Kane 94] also show this amplitude/ 

asymmetry characteristic

7.5.3.4. Comparison between simulated and practical results

A comparison of the simulations with previous reported results will now be made to 

check the validity of the model. The simulations will be compared with previous reported 

results on an ASLALOM [Kane et al 94] who used the ASLALOM with an TWSLA
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positioned 4 ps and 65 ps from the centre. The loop transmission for both these 

asymmetries will be analysed. Figure 7.23 shows the results of a simulation with a 500 

pm long TWSLA placed 4 ps from the loop centre.
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Figure 7.23 TWSLA placed 4 ps from loop centre. 

The experimental and simulated comparisons are given in table 7.2.

Parameter Experimental * Simulated % difference
Pulse width /ps 15 14 7

FWHM /ps 9 8 11
Rising edge /ps «11 11.5 4.5

Trailing edge /ps 4 3.5 12.5

Table 7.2.
A comparison of practical and simulated results for the ASLALOM.

* Kane 94

Table 7.2 indicates close agreement between simulated and experimental results. 

Practical measurements show the finite length effect as the rise time corresponding to 11
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ps which theoretically equals 2x500xl0'6x3.5/3xl08 « 11.7 ps for the finite length effect 

discussed in section 7.5.3.2. The width of the transmission window is expected to be 

approximately 8 + 11.5/2 = 14 ps which is given by the simulation. Figure 7.24 is a 

simulation with a medium asymmetry ASLALOM. The TWSLA is placed 65 ps from 

the loop centre and the pulse widths are 140 ps and 150 ps simulated and experimental 

[Sokolloff et al 93] respectively showing agreement to within 7%.

0.6

Normalise
amplitude.

0.4

0.2

0 50 100 150

Time/ps

Figure 7.24 TWSLA placed 65 ps from loop centre.

7.5.3.5 Data pulse input.

Simulations will now be presented with a data pulse input to the ASLALOM.. Initially a 

simulation will be presented in accordance with experiments by Eiselt [Eiselt et al 93] 

who used 9 Gbit/s data stream consisting of 20 ps FWHM a control pulse of 35 ps and 

an asymmetry of 130 ps. Figure 7.25 shows the simulated response.
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Figure 7.25 Simulation of 9 Gbit/s data demultiplexing.
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The simulation of figure 7.25 is in agreement with the results of [Eiselt et al 93] and 

shows complete demultiplexing of a single pulse. The simulations show a second smaller 

pulse due to interchannel crosstalk which is also present in the practical plots. Further 

simulations demonstrating demultiplexing of 250 Gbit/s are shown in figures 7.26 and 

7.27. Here the pulse width is 1 ps and the loop asymmetry is 5 ps. This arrangement has 

been demonstrated experimentally by Glesk [Glesk et al 94].
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Figure 7.26 Port 2 output o f250 GBit/s data stream
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Figure 7.27 Port 1 output o f250 GBit/s data stream.
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In this configuration a window o f « 11 ps with a FWHM of « 5.5 ps is produced. The 

window cannot be decreased any more as it equals the finite length limit of 2L/cNF. Pulses 

with the parameters indicated are shown to introduce interchannel crosstalk at « -5.74 

dB with a pulse gain of 4 as indicated in figure 7.26. The optimum value for crosstalk is 

indicated in figure 7.28 by varying the data pulse position in relation to the transmission 

window.

Gain.
Crosstalk.

Numeric
Gain.
Crosstalk/dB

Time/ps

Figure 7.28 Gain and crosstalk v. pulse position.

.From figure 7.28 it is apparent that an optimum position can be achieved regarding 

crosstalk. The optimum crosstalk however does not coincide with the maximum gain. 

Table 7.3 indicates that any further reduction in crosstalk is at the expense of bit 

separation.
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Bit rate Gbit/s Crosstalk/dB Gain.
1000 -0.81 4.60
500 -2.21 4.09
333 -4.6 3.79
250 -8.85 3.15
200 -16.33 2.72
168 -18.38 1.23

Table 7.3. Interchannel Cross talk for different bit rates.

Figure 7.27 shows that the output from port 1 allows a certain amount of signal to be let 

through during the transmission window. Although this is unimportant as regards the 

demultiplexed data it may be disadvantageous if a drop and insert function was required 

[Ellis et al 94]. Figure 7.29 shows the port 1 and 2 transmissions with an increased 

control pulse energy.

8

Port 1

Port 2
Transmission 6 

normalised to 
input intemsity 5

Time/ps

Figure 7.29 Port 1 and port 2 output optimised for add drop function.
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Table 7.4. further illustrates the improvement in port 1 interchannel crosstalk with an 

increase in control pulse energy and consequently phase.

Pulse eaergy/0 Phase difference/rad Crosstalk/ dB
600 1.7 -0.8978.
800 2.0 -2.1722.
1000 2.3 -3.5782.
1150 2.5 -4.9383.
1600 3 -7.9339.

Table 7.4. Port 1 interchannel crosstalk.

7.5.4 High frequency control input

When a signal is fed to the loop which has a period which is short compared to the 

recombination time, then the carrier density will settle to a value which is determined by 

the average power of the signal as in section 6.1. With control pulse separation times > t  

full recovery of the device is allowed and the carrier density settles back to its pre­

control input value as in the preceding sections. With a small separation time the carrier 

density will achieve an average approximated from the steady state rate equation 6.3 

corresponding to Equation 6.5 results in a smaller An and when substituted in 

equation 6.25 the ASLALOM gives a lower transmitted intensity (equation 7.18). To 

overcome this the ASLALOM is operated with higher currents which increases An due 

to the increase in nt in equation 6.5. Figure 7.30 shows the simulated effect of increasing 

current on the transmitted intensity for a 100 GHz control signal.
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Figure 7.30 Relative output of loop with increasing bias current.

The concept of high bias currents for high data rate inputs is evident in the experiments 

of [Ellis et al 95] who used a current of 200 mA for a 5 GHz control signal compared to 

the considerably lower current used by Sokollof [Sokollof et al 94] (35 mA) for a 

control pulse frequency of 100 MHz.

7.5.4.1 Response of ASLALOM with 100 GHz control signal

At 100 GHz the control pulse period is 10 ps which is 1/100 of a recombination time of 1 

ns. By inputting a continuous pulse stream of this form to the ASLALOM the resulting 

phase and gain responses can be observed for both the CW and CCW propagating 

signal. Consider figures 7.31 and 7.32 which show the gain and phase response of the 

ASLALOM for a CW data signal with a 100 fl 1 ps control pulse, a bias current of 200 

mA and with the TWSLA positioned at the loop centre. It can be seen that the phase 

difference exhibits a variation of « 0.35 radians and a gain variation of « 0.7 which will
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result in a lower transmission compared to previous loop operation which had gain and 

phase differences an order of magnitude greater.
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Figure 7.31 CW gain response of 100 GHz control signal.
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Figure 7.32 CW phase response of 100 GHz control signal.
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The responses of figure 7.31 and 7.32 give the characteristic sawtooth wave form as 

demonstrated theoretically in [Ellis et al 95] which shows a similar shape for the phase 

response of an ASLALOM when a 10 GHz control signal is input with a value of 500 ps 

for t2.

7.5.4.2 CCW data response and the finite length effect

The spacing between pulses in this example is 10 ps and as discussed previously the finite 

length is effective around the propagation time of the TWSLA ( « 5 ps for a 500 pm 

device). To avoid patterning (section 7.5.6) the TWSLA needs to be placed at a distance 

of 500 pm from the loop centre which is considered to be a small asymmetry. The CCW 

responses need to be calculated according to equation 7.25 as in the low frequency 

control case. A further point to consider is the recombination of the carriers for high 

control frequencies. As previously discussed the recombination rate is effectively 

determined by the control frequency which gives a recombination time around 10 ps. 

Previous analysis considered that a pulse (CW or CCW) passed through the TWSLA 

with negligible recombination of the carriers. Figure 7.33 helps to explain the concept.

carrier 
density/ 
arb. units

t = 5ps

500|o.m

t = 5ps t = lOps

Figure 7.33 Recombination of carriers with 100 GHz control.

158



Consider a control pulse incident on the TWSLA with a delta function for the control. 

The delta function is assumed to produce an instantaneous local depletion of the carriers 

[Manning 94]. The carrier density will decay on a 10 ps time scale before the arrival of 

the next control pulse (cf. figure 7.31). A CCW data pulse will have an TWSLA device 

propagation time of 77 « 5 ps and over this period the carrier density will have decayed 

considerably (« 0.5 if the decay is considered linear). This effect is demonstrated in 

Figures 7.34 and 7.35 which show the gain and phase response of CCW data signals.

3.474

Numeric 3< 
gain

3.466

3.462
10 20 30 40 50 70 800 60

Time/ps

Figure 7.34 CCW gain response of 100 GHz control signal
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Figure 7.35 CCW phase response of 100 GHz control signal

As expected the CCW gain and phase responses do not reach the CW modulated value 

as in the low frequency case as in sections 7.5.1. to 7.5.3 The phase and gain variation is 

now only 0.12 rads and 0.015 respectively. Now consider the loop transmission as in 

figure 7.36. The output is still evident even with this low value of CCW modulation with 

a normalised output of 0.1.
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Figure 7.36 Port 2 output with 100 GHz control signal.

Here the pulse width is equal to the bit period (10 ps). To explain the pulse width 

dependence on the control frequency period consider figure 7.37 where it can be clearly 

seen that the CCW response is almost flat compared with the CW response.
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Figure 7.37 CW and CCW data phase response with 100 GHz control signal.

The CW response will tend to dominate the output and the pulse width is determined by 

this.

A control pulse frequency of 40 GHz is now investigated (i.e. a time of 25 ps between 

pulses (5 x T£j) with a bias current is 100 mA. Assuming a linear carrier density 

relaxation between control pulses the decay is now only 20% during TL. The effect of 

this on the phase response can be seen in figure 7.38.
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Figure 7.38 Phase response 40 GHz system

This time the CCW phase almost reaches the CW value and it occurs over a period 2TL 

which is the finite length effect, the response is affected by this and carrier 

recombination. The simulated transmission is shown in figure 7.39.

Normalised
output.

iJ I I t — 11 I i \ i l l  -i- - i  i L i
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Time/ps

Figure 7.39 Loop transmission of 40 Gbit/s data system.
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Figure 7.40 shows a single pulse which has the characteristic shape produced by an 

ASLALOM with the TWSLA placed at the loop centre. The transmission window width 

= Tlx2 and has a FWHM of TL.

0.07

Normalised
transmission

50 10 15 20 25 30

Time/ps

Figure 7.40 Single pulse of 40 Gbit/s data system.

7.5.5 Binary data input

The previous analysis centred around a continuous pulse input. The simulations will now 

look at data input consisting of zeros and ones (c.f. section 5.3.5). The input data stream 

chosen consists of a pulse pattern of 11100011110. An examination of figure 7.41 shows 

the phase temporal response of the CW data and the CCW data. The data rate in this 

case is 100 Gbit/s with a bias current of 200 mA.
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Figure 7.41 CW and CCW response of 100 Gbit/s data.

Note the response in figure 7.41 shows that a difference exists between the phase change 

for different bits. This is in agreement with the theoretical shape of the phase response of 

a TWSLA when a data pattern for the control is used [Manning et al 94]. Figure 7.42 

shows the loop transmission due to the phase and gain response at this data rate.
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Figure 7.42 Transmission response of 100 Gbit/s data.

Evident again at this rate is the flat CCW response seen in the continuous pulse case. 

The transmitted pulses also show a marked variation in amplitude This configuration has 

been used by Ellis et al [Ellis 95] to wavelength convert a signal by inputting a 

continuous wave signal into port 1 and the data into the control coupler. It can be seen 

from figure 7.42 that pulses with a guard band cannot be generated. The relaxation time 

between pulses is again the main factor in the CCW modulation masking the finite length 

effect. The amplitude variation is a direct consequence of data input to an TWSLA which 

was described in section 3.5.1. A period of zeros (bits 5, 6 and 7) relaxes the carrier 

density over a longer period resulting in a higher carrier density for the following bit. 

From a carrier density rate equation (equation 2.15) a higher carrier density gives a 

larger carrier differential. The carrier density change over one bit period T is thus:

ii
\ t2

+ Y a (n -n 0)I IT (7.35 )
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The result is a larger fall in carrier density with increasing n following a sequence of 

zeros (see figure 3.9). The simulated CW and CCW responses due to a 40 Gbit/s data 

stream with a bias current of 100 mA is shown in figure 7.43.

19.5

Phase/ 18 
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16.5
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Figure 7.43 CW and CCW response of 40 Gbit/s data

Here the finite length effect begins to appear again. Figure 7.44 shows the transmission 

response giving a pulse width equal to TL
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Figure 7.44 Transmission response of 40 Gbit/s data.

7.5.6 Patterning

The effect of patterning in a data driven ASLALOM will now be demonstrated using a 

40 Gbit/s data signal. Section 5.3.5. pointed out the condition for patterning as an 

TWSLA with an asymmetry greater than the time between data pulses. The phase 

response with this asymmetry is shown in figure 7.45.
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Figure 7.45 Phase response of data driven ASLALOM where /,asy

The resulting transmission is shown in figure 7.46.
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Figure 7.46 Patterning in an ASLALOM.
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The transmission shows a significant departure from the transmission shown in figure 

7.44 indicating that the simulation model can predict patterning as outlined in [Davies et 

al 95] who demonstrated patterning with 10 Gbit/s data and tasy = 640 ps.

7.5.7 A method for multi-output data

Using data input as a control superimposes a binary pattern on a continuous wave signal 

at the input (port 1). An enhancement of this method is used to demonstrate a novel 

method of using the ASLALOM for multi channel output. Presently the ASLALOM is 

only operated as a single output device.

Consider initially the chirping effect of long lengths of fibre on optical pulses. One type 

of chirp produced by passing an optical pulse through a length of optical fibre is linear in 

frequency. The Kerr coefficient in an optical fibre (equation 5.9) produces a self phase 

modulation on a signal according to:

2 7r(n0 +n2I 0e~2atl)L f
m  = y — - 1 -  (7.36)

where Lf is the fibre length the signal of wavelength X propagates. The frequency 

imposed on the signal is given by:

d(j) 4m n2Lf tl0e 
dt X

which corresponds to a linear frequency chirp imposed on a pulse of centre frequency coo, 

by the intensity signal. The phase of the signal is given by:

^co0t + 2bt = co0t + bt2 + y/ (7.38)

A linearly chirped pulse is thus described as:

E = A(t)(exp(a>0t+ bt2) + c.c) (7.39)

An example of a linearly chirped Gaussian pulse is shown graphically in figure 7.47.

-2  a r

  (7.37)
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Figure 7.47 Gaussian pulse with linear chirp.

Pulse broadening will also occur through long lengths of fibre which can be incorporated 

into the pulse using a super Gaussian pulse shape which have been generated 

experimentally by [Morioka et al 94] and are described theoretically as [Agrawal and 

Olsson 89]:

I  = I 0e~2a,7m (7.40)

where m indicates the broadening factor. To implement multi-channel output the chirped 

pulse is input to the data driven loop in a similar manner to the continuous wave input 

previously described. The simulation assumes a chirp factor of 2.77 nm/10 ps which is 

taken from data given in [Uchiyama et al 96], Here the chirped pulse was generated by 

passing the signal through a length of non-dispersion shifted fibre. If the input coupler is 

considered ideal, the loop output would be according to figure 7.48 which shows the 

linear frequency response of the output pulses due to the chirp. The pulse width in this
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case was 80 ps. This gives a range of wavelength chirp equal to 8x2.77 = 22.16 nm (see 

figure 7.48).

Normalised
output

0.5

0.3

0.2

Wavelength/nm

Figure 7.48
Simulated multichannel output with ideal coupler.

Note the Gaussian pulse shape has attenuated the extreme channels. The coupler of the 

ASLALOM has a wavelength dependent coupling (section 7.1) and the response over 

the linearly chirped region is given from a section of the typical raised cosine response as 

shown in figure 7.2. The coupler simulations will use parameters from two practical 

devices. The first is from a design by Morishita [Morishita and Shimamoto 95] and the 

second from [Mortimore 88]. The wavelength minimums for these devices occur at 1531 

nm and 1553 nm, and 1200 nm and 1800 nm respectively. Figure 7.49 shows the 

coupling coefficient for both couplers over the chirp range and is simulated using 

equations 7.1, 7.2 and 7.3.
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Figure 7.49 Coupling coefficients for chirp range.

The coupler from [Morishita and Shimamoto 95] will attenuate the signal over this range 

between « 0.65 and « 0.2 and this reduces the signal amplitude (figure 7.50).
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0.1
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Figure 7.50 Loop response with coupler from [Morishita and Shimamoto 96].
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In comparison with the coupling device from [Mortimer 88] it can be seen the response 

gives less attenuation over the range considered (see figure 7.51) and gives a flatter 

response over a wider frequency range which is advantageous for a system envisaged 

with more channels.
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Traiismision. 025
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Figure 7.51 Loop response with coupler from [Mortimore 88],

7.6. Birefringence And Polarisation Effects In An 

ASLALOM.

7.6.1 Jones matrix of waveplate

In the ideal case, wave components will propagate at the same speed. The effects of 

birefringence or the introduction of a wave plate can change the phase propagation of 

one component to the other. Consider the case where a waveplate is inserted in the path 

of a travelling wave. To represent this a Jones matrix is described for the system. The 

waveplate makes an angle 0 with the vertical^ axis and the retardation of the plate is 4>.
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Figure 7.52 shows how an electric field can be resolved into x and y components which 

are incident on such a waveplate.

Figure 7.52 Electric field incident on a waveplate.

Each component is represented as a travelling wave of the form Es = Ecej(<ot' 13 ‘Y). The 

fast axis is given along E f  and the slow along E 0 The signal wave is given by the vector 

sum:

Ex + Ey = Es (7.41)

Initially the x and y  components of the electric field are resolved into components along 

the E e and E 0 axis giving:

E 0 = £xCOS0 - £ysin0 (7.42)

E e =  Ê sin© +  Ey cos0 (7.43)

The signal vector in terms of E0 and Ec is shown in figure 7.52. On passing through the

birefringent material the E e component of the signal will undergo a phase shift equal to (().

The signal components are now modified to:
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E0\ -  E:cCOS0 - E ŝinG = E0 (7.44)

Eei = (T^sinG + i^cos0)(exp(j (|>)) = ise(exp(j (j>)) (7.45)

Resolving the Ee and E0 components back to the x and y directions gives:

Ey = (EjSinG + £ ’>,cos0)-exp(j c|))-cos0 - (i^cosG - £ ’>,sin0)-sin0 (7.46)

Ey =EeiCos0 -Eoisin0) (7.47)

Ex = (E ŝinG + £^cos0)(exp(j cj>))sin0 + (Z^cosG - £ ysin0)cos0 (7.48)

Ey =Ee] sinG + £ ’0/cosG (7.49)

Rearranging in terms of Ex and Ey components:

Ey = i^(cos20-exp(j (j>) + sin20) + ^-(sinG cos0exp(j (j>) - cosGsinG) (7.50)

Ex = Ex(sin20-exp(j (|)) + cos20) + Ey(cosG sin0exp(j (|)) - sinGcosG) (7.51)

The transfer function for these equations is:

E ?I ( J „  J S \ ( Ey yy yx 

\ ^ x y  J x x  J E  ( 7 ' 5 2 )

where:

Jyy = cos20-exp(j d>) + sin20 (7.53)

Jxx = sin20-exp(j (|)) + cos20 (7.54)

Jyx = Jxy~  (exp(j ((>) - 1 )cosG sinG (7.55)

where Jmn represent the Jones matrix coefficients.

The fibre loop has Ex and Ey components which travel counter directionally. The

waveplate is non-reciprocal and a reverse wave propagates with coefficients:

2 2Jyy = cos G-exp(j 4>) + sin 0 (7.56)

Jxx = sin20-exp(j §) + cos20 (7.57)

Jyx =Jxy = ( 1 - exp(j (|)))cos0 sinG (7.58)
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7.6.2 Waveplate in a fibre loop

The waveplate description now needs to be entered into the ASLALOM matrix. As an 

example consider the Ejx field leaving the loop and the effect of the E ]x components and 

Ely components due to the waveplate. The Eiy field leaves the coupler and meets a 

waveplate halfway around the loop and from the waveplate analysis Ejy now produces an 

Ey and Ex component in equation 7.12. On returning to the coupler Ex now contains a 

contribution from the element m\2 in equation 7.12 which contains information of the 

effect of the.y field on the x field.

The transmission vector now has the modified form:

(7.59)

[ T . lIX X * p ' ”>l2 E x,~

T.>y Exy
* f̂ \y ( m 21E l y ) * m22E ly

+
( m 22E ly) * " h A y
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^ X x "hlE lx ("hlE ,x)* "h iE\x

T
_ 2̂ _ E ŷ
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(7.60)

Equation 1 A l  takes into account the field amplitudes of the x and y  components, a

I I 2 I I 2Envcl = I Emy\ giving:

(7.61)

Figure 7.53 shows how transmission and reflection are affected in the presence of 

birefringence using different delay waveplates.
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Figure 7.53
Transmission and reflection of ASLALOM for different waveplates.

The loop is normally in transmission mode by setting the CCW phase at n relative to the 

CCW phase. The different waveplates show varying levels of effect on the loop 

transmission. The most notable is the n delay which can effectively switch the whole of 

the ASLALOM output from port 2 to port 1. Delays less than n show only partial 

switching. In this mode the waveplate can effectively switch off or re-route a particular 

channel in an OTDM system. [Mortimore 88] demonstrated practically the effect of a 

halfwave plate in a fibre loop reflector and the results compare well with figure 7.53. 

Notably the transmission is fully re-routed at a waveplate angle of 45°, and both 

experimental and simulated results have a shape given by a raised cosine. Figure 7.54 

shows the amount of signal that can be re-routed for a particular waveplate delay.
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Figure 7.54 Transmission with waveplate in ASLALOM.

The transmission of a loop with a waveplate included has been demonstrated practically 

by [Eiselt 92] where adjustment of the polarisation in a loop is used to set a SLALOM to 

reflect or transmit a signal.

7.6.3. Birefringence in ASLALOM.

Birefringence in a fibre loop can occur due to bends and twist within the fibre 

[Mortimore 88]. Desruelle [Desruelle 95] has used the waveplate to describe the effects 

of dispersion and walk off in a NOLM. Using this method the loop is considered to 

possess birefringence modelled in the form of a waveplate with associated delay and 

angle. Figure 7.55 shows the effect of a n waveplate in a ASLALOM configuration.
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7.6.2 Waveplate in a fibre loop

The waveplate description now needs to be entered into the ASLALOM matrix. As an 

example consider the Ejx field leaving the loop and the effect of the E Jx components and 

components due to the waveplate. The Ejy field leaves the coupler and meets a 

waveplate halfway around the loop and from the waveplate analysis Ejy now produces an 

Ey and Ex component in equation 7.12. On returning to the coupler Ex now contains a 

contribution from the element mi2 in equation 7.12 which contains information of the 

effect of the>> field on the x field.

The transmission vector now has the modified form:

(7.59)
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Equation 7.47 takes into account the field amplitudes of the x  and y  components, a

I I 2 I I 2 • •Envc\ = \Emy\ giving:

(7.61)

Figure 7.53 shows how transmission and reflection are affected in the presence of 

birefringence using different delay waveplates.
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Figure 7.56 Compensating loop birefringence.

Similarly Mortimore [Mortimore 88] demonstrated how the addition of an extra 

halfwave plate in a fibre loop reflector can re-route the power to the opposite port when 

a single halfwave plate is present. Note that the addition of a waveplate with a different 

delay to one already present in the loop will not fully compensate for the birefringence.

7.7 Summary

This chapter has presented the authors model of an ASLALOM which incorporates the 

TWSLA model developed in chapter 6. Initially the coupler was modelled and was in 

good agreement with a practical device. A model of the full loop was then developed and 

when used as a demultiplexer of low data rates the analysis proves to be the simpler with 

the point element model of the TWSLA in chapter 6 sufficient. This model was used for 

the large and medium asymmetry loops and compared favourably with experimental
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results. The large asymmetry showing two transmission windows as in the practical 

system, the medium asymmetry transmission window width was within 7% of 

experimental data. For higher data rates where the TWSLA is moved close to the loop 

centre a finite length model is required. Initial simulations show that the ASLALOM 

opens a sampling window which is asymmetric in shape and comparisons with 

experimental data show the model to be in agreement with these over a range 4.5% to 

12.5%. The model is then used to simulate the case where modulated data is used to 

modulate the loop, the response agreed in principle with a previous theoretical response. 

With these techniques to hand, a novel method of multi-channel output (section 7.5.7) is 

demonstrated in principle which shows how one loop can be used for this purpose. A 

model to simulate birefringence effects was also developed to assess the performance of 

the loop which agreed with previous experiments on a fibre loop.
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Chapter 8

Conclusions And Suggestions For Further Work

8.1 Conclusions

This thesis has been concerned with developing a model for an OTDM system based 

around the experimental architecture known as the ASLALOM. Fundamental to the 

operation of such a system is the inclusion of a non-linear element in the form of a 

TWSLA. The TWSLA is included in a fibre loop mirror and the principle of operation 

stems from previous architectures which use a long length of fibre as the NLE. The 

TWSLA has a disadvantage in that it has a slow recovery time which makes it seem 

unsuitable for high speed switching. The advantage of low power requirements when 

using a TWSLA prompted research into this area. The use of short fibre loops removes 

the problems associated with attenuation and dispersion. The modelling and simulations 

have been divided into two areas.

The modelling of the TWSLA is considered separately because of the various techniques 

used and the diverse nature of the signal input. The modelling techniques have been 

divided into two areas dependent on the type of signal input. For high frequency pulse 

input or continuous intensity signals the model uses a continuous wave analysis. This is 

the simpler of the two and uses a laser rate equation which is a derivative of the carrier 

density in the device. The simplifications allowed in the use of laser rate equations were 

identified and justified and include homogeneous broadening which removed the 

necessity for a set of equations for each signal frequency. The continuous wave analysis
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allowed the rate equation to be used in steady state. The analysis used an approach in 

which the amplifier was divided into a number of segments equations being solved 

numerically for each segment. An analytical expression has been developed which is 

simpler and comparisons made with the numerical method. The analytical method proves 

to be of use with high input powers of the order of 10 times the saturation value. The 

aim of a continuous wave model was to provide information regarding the channels in an 

OTDM system.

The TWSLA was also modelled dynamically to analyse the variation in its properties 

when a time varying input is used. This type of signal is the control in an OTDM system. 

The equations are solved without recourse to steady state methods and to implement this 

a method of longitudinally averaging the signal within the device was used. Comparisons 

with reported results are made on transmission properties. This gives an indication of the 

temporal nature of the response to pulse input and the model shows the characteristic 

short fall time and long rise time reported in laboratory results. The carrier density is 

related to the transmission and phase and gain responses can be calculated using 

appropriate equations. The phase response shows a phase difference of n is achievable 

with moderate current input. This would give maximum power transfer when using the 

TWSLA in an interferomic device.

The previous analysis gave information on the time response of a signal and treated the 

TWSLA as a single point with zero dimensions. To analyse the model with time and 

space information a finite length model was used. This used a matrix analysis of the 

TWSLA which was assisted by the matrix processing capabilities of the software

184



package MATLAB™. The information was then available in matrix form. The TWSLA 

models were compared with previously reported experiments and simulations and were 

found to be in good agreement.

With a model of the TWSLA available for all inputs to the ASLALOM the next step 

identified the equations necessary for analysing the loop as a whole. The coupler, an 

integral part of the loop, was identified as a wavelength dependent component and the 

description included an expression to reflect this which follows the raised cosine 

response of practical devices. The analysis of the ASLALOM was approached by tracing 

the signal path around the loop. This gave a series of components which could be 

multiplied together to form a comprehensive matrix description of the whole loop. This 

description allowed the input to be of a polarised nature with signals consisting of 

orthogonally placed components. Initially, polarisation was not considered and intensity 

signals were considered. Fundamental to the loop is the placing of the TWSLA and this 

was considered with the loop described as having large, medium or small asymmetry. The 

first two gave a simple analysis with the TWSLA information input to the loop matrix 

directly. The model shows that the large asymmetry would demultiplex two data channels 

and is of little use in a slow data rate system. The medium asymmetry can demultiplex 

signals at rates approaching 1/2 the recombination time. The small asymmetry loop 

required a more thorough investigation and utilised the finite length model of the 

TWSLA. The transmission in this configuration showed that the switching frequency 

now depended on the TWSLA length. The transmission window was equal to twice the 

propagation time of the TWSLA which suggests Terahertz switching frequencies for a 

100 pm device. As devices commonly used are based around a length of 500 pm this was
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the length used for simulations. The characteristics of the window simulated showed 

excellent agreement with an experimental set up and in addition this gave a check on the 

accuracy of the finite length model. The ASLALOM was simulated with pulsed data 

input at 250 Gbit/s, this also having been demonstrated experimentally by other workers. 

The simulation suggest a significant amount of crosstalk appeared which has not been 

described in the laboratory. The ASLALOM also provided signal gain which is a feature 

uncommon to most switching devices as outlined in chapter 4.

The ASLALOM has also been demonstrated with a data signal for the control input. This 

was demonstrated first by simulations with high frequency input. These simulations 

showed the finite length effect was less evident for bit rates at 100 Gbit/s but was 

noticeable for lower frequencies (around 40 Gbit/s). With this type of control input a 

method of generating multi-channel output was demonstrated. To check the validity of 

the simulations for data input the results were compared with recently reported 

theoretical predictions giving good agreement with the shape of the response.

The polarisation aspect was considered next by including birefringence effects in the 

loop. The aim of this was two fold (i) to introduce and investigate the effect of placing 

polarisation components into the loop and (ii) to demonstrate the feasibility of 

compensating for birefringence in the loop. The first method introduced a waveplate into 

the loop where it was demonstrated that the loop could be switched on or off depending 

on the waveplate angle. It was also shown that any birefringence in the loop could be 

compensated by the introduction of a waveplate in the loop. Experimental results of a
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waveplates in a fibre loop without a TWSLA have been published and this was used to 

check the accuracy of this model, good comparisons were reported.

8.2 Suggestions For Further Work

The emphasis on this work has been to develop a model of the ASLAOM with regard to 

examining the temporal switching window obtainable with this configuration. With 

models of this type not yet reported it is clear that an initial model such as this will omit 

some aspects. There are various areas in which the analysis can be taken further. Chapter 

3 indicated that the TWSLA was a source of noise and this will be a factor in signal to 

noise ratio considerations and ultimately the bit error rate. Experimental results published 

contain results of the bit error rate where comparisons can be made. The model can be 

used to asses the performance of higher data rate systems, e.g. using a 100 (im TWSLA 

in the ASLALOM suggests switching speeds of 1 Terabit/s are attainable. The use of 

ultrashort pulses within the TWSLA are giving interesting results and is an area which 

could be pursued, particularly in the effect of the fast components on switching speeds. If 

it is the case that shorter pulses can be demultiplexed due to this effect then gain 

dispersion of the TWSLA may be investigated as this is more pronounced on short 

pulses. A further aspect could involve the modelling of the system of an integrated device 

with the emerging technology of waveguiding technology which has allowed integration 

in the Mach Zender version.
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The following list of publications have been produced from this work.

1. G. Swift, A.K. Ray, Z. Ghassemlooy and J.R. Travis, ‘Modelling of semiconductor 

laser amplifier for optical time division demultiplexing’ , Third Comm. Network 

Symposium, Manchester Metroplolitan University, pp. 35-38, July 1996.

2. G. Swift, A.K. Ray, Z. Ghassemlooy, ‘Modelling of semiconductor laser amplifier for 

terahertz optical asymmetric demultiplexer’, Mid-infrared Optoelectronics Materials 

and Devices, International Conference, September 1996.

3. G. Swift, A.K. Ray, Z. Ghassemlooy and J.R. Travis , Modelling of an all optical time 

division demultiplexer, To he published in Microwave and Opt. Technol. Lett., August 

1997.

4. G. Swift, A.K. Ray, Z. Ghassemlooy, ‘Modelling of semiconductor laser amplifier for 

terahertz optical asymmetric demultiplexer’, To be published in IEE Proceedings- 

Circuits Devices and Systems, 1997.
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