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ABSTRACT

In this work, CdS and ZnS semiconducting colloid nanoparticles coated with 

organic shell, containing either SO3' or NH2+ groups, were deposited as thin films using 

the technique of electrostatic self-assembly. The films produced were characterized with 

UV-vis spectroscopy and spectroscopic ellipsometry - for optical properties; atomic 

force microscopy (AFM) - for morphology study; mercury probe - for electrical 

characterisation; and photon counter - for electroluminescence study.

UV-vis spectra show a substantial blue shift of the main absorption band of both 

CdS and ZnS, either in the form of solutions or films, with respect to the bulk materials. 

The calculation of nanoparticles' radii yields the value of about 1.8 nm for both CdS and 

ZnS.

The fitting of standard ellipsometry data gave the thicknesses (d) of nanoparticle 

layers of around 5 nm for both CdS and ZnS which corresponds well to the size of 

particles evaluated from UV-vis spectral data if  an additional thickness of the organic 

shell is taken into account. The values of refractive index (n) and extinction coefficient 

(k) obtained were about 2.28 and 0.7 at 633 nm wavelength, for both CdS and ZnS.

Using total internal reflection (TIRE), the process of alternative deposition of 

poly-allylamine hydrochloride (PAH) and CdS (or ZnS) layers could be monitored in- 

situ. The dynamic scan shows that the adsorption kinetic of the first layer of PAH or 

nanoparticles was slower than that of the next layer. The fitting of TIRE spectra gave



thicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. It supports the 

suggestion of the formation of three-dimensional aggregates of semiconductor 

nanoparticles intercalated with polyelectrolyte.

AFM images show the formation of large aggregates of nanoparticles, about 40- 

50 nm, for the films deposited from original colloid solutions, while smaller aggregates, 

about 12-20 nm, were obtained if the colloid solutions were diluted.

Current-voltage (I-V) and capacitance-frequency (C-f) measurements of 

polyelectrolyte/nanoparticles (CdS or ZnS) films suggest the tunnelling behaviour in the 

films while capacitance- voltage (C-V) and conductance-voltage (G-V) measurements 

suggest that these nanoparticles are conductive. The electroluminescence was detected 

in sandwich structures of (PAH/CdS/PAH)N using a photon counting detector, but not in 

the case of ZnS films.
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CHAPTER 1

INTRODUCTION

1.1. GENERAL INTRODUCTION

In the last decade, research on design and fabrication of nanostructured materials 

has rapidly grown and attracted much attention from many research groups [1]. Metal 

and semiconductor nanoparticles, particularly, have been generating continuous interest 

because of their unique electrical and optical properties [2, 3]. Various techniques have 

been developed, in order to prepare metal and semiconductor nanoclusters as 

dispersions in organic or inorganic media or as aggregates [4, 5]. Werner Kern and 

Klaus K. Schuegraf [6] classified the deposition techniques in three main groups: pure 

physical, pure chemical and physical-chemical methods. Physical methods, such as 

Molecular Beam Epitaxy (MBE), Metal-Organic Chemical Vapour Deposition 

(MOCVD) or Sputtering deposition, are much more complicated and expensive as 

compared to chemical methods.

Because of simplicity and economical reasons, chemical methods have rapidly 

grown as an alternative to physical methods to synthesise and deposite semiconductor 

nanoparticles. Various chemical techniques have been already developed such as 

chemical bath deposition [7, 8], Langmuir-Blodgett films [9-13], colloid synthesis [14, 

15], reverse micelle [16, 17], core shell [18-20] and electrostatic self-assembly [21-65]. 

The latter method of electrostatic self-assembly (ESA) is particularly interesting, 

because it mimics the natural processes of molecular bonding, where the molecules 

adjust themselves to minimum thermodynamic conditions. The structures are stabilized 

by anion and cation groups as complementary units. The composition of each layer can 

be controlled by the incorporation of appropriately chosen molecules [25], and the
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structure of each layer can be manipulated by adjusting the deposition parameters [21, 

29, 35, 39]. As a result, a very good nanosized structures, as precise as MBE, could be 

produced at a much lower cost. Therefore, electrostatic self-assembly has been used for 

the deposition of ultrathin films containing different type of molecules such as charged 

polymers (polyions) [21-39], dyes [40-42], nanoparticles (metallic, semiconducting, 

magnetic, insulating) and clay nanoplates [43-55], and bio-objects (proteins, DNA, 

virus) [56-65].

Nanostructured II-VI semiconductor materials have been and still are the subject 

of an intensive study because of their chemical stability at room temperature compared 

to unstable III-V compounds; the range of bandgap energies that encompass the entire 

visible spectrum, and direct bandgap. By far, nanoparticles of cadmium sulfide (CdS) 

and zinc sulfide (ZnS) are the most studied systems among the semiconducting 

nanoparticles. The size dependent effect of these nanoparticles’ optical and electronic 

properties have been studied experimentally and theoretically for possible application in 

photovoltaic and electroluminescence devices as well as other optoelectronics 

applications [66-72].

Although there are many publications on different methods of synthesis and 

different physical properties of CdS ands ZnS nanoparticles such as optical absorption, 

luminescence, and electrical properties, the use of electrically charged CdS and ZnS 

nanoparticles, suitable for electrostatic self-assembly, is rather rare. The characterisation 

of CdS and ZnS or mixed of CdS-ZnS electrostatically assembled multilayer was not 

extensive. The study of optical properties of such nanostructure using spectroscopic 

ellipsometry (especially highly sensitive total internal reflection ellipsometry) has never 

been attempted.

In this study, CdS and ZnS nanoparticles were prepared by aqueous-phase 

synthesis and deposited on solid substrate using the electrostatic self-assembly
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technique. The optical properties of these thin films were studied using UV-Vis 

spectroscopy and spectroscopic ellipsometry along with the electrical characterisation 

using the mercury probe, and atomic force microscopy (AFM) morphology study. The 

use of a nondestructive mercury contact (instead of traditional evaporated metal 

contacts) for electrical measurements in electrostatically deposited films was recently 

proposed by Nabok [73, 74] and established in the research group. This method allows 

the measurements of tunnelling current in ultrathin films containing CdS and ZnS 

nanoparticles which have not been attempted before.

1.2. AIMS AND OBJECTIVES

The main purposes of this research are to fabricate CdS and ZnS semiconductor 

nanostructures by low-cost electrostatic self-assembly technique, and to study 

morphology, optical and electrical properties of these materials with a view of possible 

applications in light-emitting devices.

The objectives of this research are:

1. To fabricate multilayers of CdS and ZnS thin films by using electrostatic self- 

assembly method.

2. To characterise the optical properties and to evaluate the thickness (d), refractive 

index («) and extinction coefficient (k) parameters of CdS and ZnS nanostructures, 

by using UV-Vis spectrophotometry and Ellipsometry.

3. To study the morphology of CdS and ZnS nanostructures such as the uniformity, 

particles' size, and roughness of the thin films using AFM.

4. To investigate the electrical behaviour of the multilayered nanostructures using the 

mercury probe technique.

5. To measure the electroluminescence of the nanoparticles deposited onto solid 

substrates.
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1.3. DISSERTATION OUTLINE

This dissertation is organized into six chapters.

Chapter 1 presents a general introduction to the thesis. It provides the 

background, motivation, aim and objectives of the research.

Chapter 2 presents the review of the theory of semiconductor nanostructures 

and their special properties due to high dispersity of nanocrystaline systems and 

quantum confinement. In this chapter, a basic theory of semiconductors is briefly 

introduced followed by the theoretical background of semiconductor nanostructure 

systems and their energy levels. Theoretical models of quantum confinement effects 

along with the optical and electrical properties in nanoparticles semiconductor were also 

reviewed.

Chapter 3 contains literature review of deposition and characterisation methods 

of CdS and ZnS films. The details of ESA process were discussed. The remaining part 

of the chapter presents the previous work on CdS and ZnS thin films using different 

depositions and characterisations methods.

Chapter 4 describes the theoretical background, procedure, and details of the 

experimental techniques for samples' preparation and investigation. It describes the 

details of the aqueous-phase synthesis of cooloid semiconductor nanoparticles. The 

details of the substrates modification procedure and fabrication of CdS and ZnS 

multilayers using ESA method along with the experimental details of each 

characterisation method are also given there.

Chapter 5 contains the results and analysis of optical properties, morphology, 

electrical and electroluminescence characteristics of CdS and ZnS thin films.

Chapter 6 concludes this dissertation with the summary of all results obtained. 

In addition, the suggestions for further work in this area are made.
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CHAPTER 2

PHYSICS OF SEMICONDUCTOR NANOSTRUCTURES 

(LITERATURE REVIEW)

2.1. INTRODUCTION TO SEMICONDUCTORS

Based on their conductivity, solid state materials are grouped into three classes: 

insulators, semiconductors and conductors. Semiconductors are materials that have 

conductivity values in between those of conductors and insulators; they are neither good 

conductors nor good insulators (shown in Figure 2.1).

insulators semiconductors metals

1  1 1 1 1 1 1 1

io~20 lo"15 10"12 10"8 lo"1 10° 10* 108

'” 8  m S .3 £ £*  |  I  8 s Be.

Conductivity ( ohm- * cm"*- )

Figure 2.1. Conductivities of conducting, semiconducting and insulating materials [1].

The conductivity of a semiconductor is strongly dependent on temperature. For 

example, at very low temperatures, semiconductor behaves as an insulator, while at 

room temperature it has an appreciable electrical conductivity though much lower than a 

conductor. These characteristics make the semiconductor become the most important 

materials for electronic applications. These characteristics can be explained from their 

energy band diagram, shown in Figure 2.2.
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Figure 2.2. Schematic band diagrams for a metal and semiconductor (or insulator) [2].

As shown in Figure 2.2, the energy difference between the vacuum level and the 

highest occupied electronic state in metal is called the metal work function. In 

semiconductors, the band that filled with electrons at T = 0 K  is known as the valence 

band and the first unfilled band above the valence band is known as the conduction 

band. The energy between the vacuum level and the bottom of the conduction band 

gives an electron affinity.

Metals have a very high conductivity because of their partially filled valence 

bands. When an electrical potential (voltage) is applied, a large number of mobile 

charge carriers can be participated to move across the material, so that there is a net 

flow of electric current. In semiconductor, at T = 0 K, The valence band is filled with 

electrons and the conduction band is empty. At room temperature, the majority of 

electrons still occupy the valence band, but a small percentage of electrons are excited
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to the conduction band and created positively charged holes in the valence band; both 

electrons and holes contribute to the conductivity. Therefore at high temperatures, these 

semiconductors are relatively good conductors.

In general, semiconductors are divided into two main classes: the elemental and 

compound semiconductors (as shown in Figure 2.3). The elemental semiconductors are 

usually found in group IV of the periodic table, while the compound semiconductors 

are formed from special combinations of group III and group V elements (called III-V 

semiconductors) or group II and group VI elements (called II-VI semiconductors). 

Majority of inorganic semiconductors are crystalline materials, in which the 

arrangement of the atoms or group of atoms is periodic and symmetric. The elemental 

semiconductors usually have a diamond-type crystal structure, while zinc-blende 

structure is typical for the compound semiconductors.

I l l  I Y  V  V I

II
S i  : j * : ! ; s :

Z n G e  j S e

C d S n  ; T e

H g

Figure 2.3. Elements found in elemental and compound semiconductors: group IV are 

elemental semiconductors; compound semiconductors can be formed by combining

groups III and V or II and VI [3].

In the case of II-VI semiconductors, the compounds form a tetrahedral lattice 

structure where each atom A in a tetrahedral lattice site of AB compound is surrounded

12



symmetrically by four nearest neighbouring B atoms. In order to form this structure, the 

B atoms should occupy the corners of a tetrahedron with the A atom sit at its 

geometrical centre. Two possible structures can be formed by the combination of the 

tetrahedral sites. Figure 2.4 (a) shows the formation when the base triangles of the 

interpenetrating tetrahedrals are parallel and lined up normal to each other, while Figure 

2.4 (b) shows the formation when the base triangles rotated at 60° about the normal to

Figure 2.4. Two possible structures of tetrahedral sites for a compound: bases of 

tetrahedral parallel and in line vertically (a); bases of tetrahedral parallel and 60° out of

line vertically (b) [4].

These two combinations of the tetrahedral lattice sites can form the two crystal 

structures: wurtzite and zinc blende. The first combination, as illustrated in Figure 2.4 

(a), forms wurtzite crystal structure. This structure contains two interpenetrating close- 

packed hexagonal lattices, as shown in Figure 2.5, separated from each other by a 

distance 3/8c along the hexagonal c-axis (refers to the orientation of a3). In ideal

each other.
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wurtzite structure, where | a | = | ai | = | a2 I, the nearest neighbour distance is 3/8c  or 

Vf3/8a, which gives a c/a ratio of V&/3 = 1.632 [2]. CdS, CdSe, ZnS, ZnSe, BeO, ZnO 

and MgTe have all been observed to take this wurtzite structure.

, - 0  C t .,:o

o

Figure 2.5. Wurtzite structure formed from tetrahedral sites [4].

The second combination (as shown in Figure 2.4 (b)) is related to the zinc 

blende structure which is included in cubic crystal class. This structure consists of two 

interpenetrating cubic close-packed lattices and derived from the diamond structure (see 

Figure 2.6), displaced each other by 'A of the body diagonal. The nearest neighbour 

separation of this structure is ^3/4a. The sulphides, selenides and tellurides of 

beryllium, zinc, cadmium and mercury have all been obtained with the zinc blende 

structure.
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Figure 2.6. Crystallographic lattice of zinc blende structure [4].

2.1.1. Electrons in a crystal lattice

The behaviour of electrons in periodic crystalline lattices is different from free 

electron model. The E  versus k diagrams for free electrons and electrons inside one­

dimensional crystal are presented in Figure 2.7. The E versus k  diagram for electrons in 

periodic crystalline lattices is generated from free electron model by using tight binding 

method.

2K
-k k0 IxaP

0

Figure 2.7. The E versus k diagram for: free electrons (a) and electron inside a one­

dimensional crystal (b) [5].



In Figure 2.7 (b), there are discontinuities in the energy at k  = ± mi/a where the 

waves suffer Bragg reflections in the crystal. There are energy gaps at these k values. 

Away from the critical k  values, the behaviour is like that of a free electron, E 

increasing with k as E = (ft k) /2m.

In the region near the centre of the zone, near k  = 0, the expression of E(k) could 

be written as:

IT d EE = —  
dk

k +
1 d 2E
2 dfr

k 2 +
1 d 3E
6 dk

k3 +. (2 .1)

Since the curve is symmetric (E(k) = E(-k)), then equation (2.1) can be simplified as 

1 d 2EE
2 d t

(2.2)

Therefore for small k,

E 1 d 2E
2 dk *

(2.3)

In other words, for small k  the energy of electron in a semiconductor crystal has the 

same quadratic form as that for free electrons.

1 d 2E
2 dk *

k 2 =
n2k
2m

(2.4)

where m* is the effective mass.

The effective mass can be rewritten as:

d 2E ld k:
(2.5)

Since the effective mass m* is affected by the potential in lattices, it will be different 

from the free electron, and would depend on how curved (or steep) the bands are around 

k  =  0, as shown in Figure 2.8.
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2.1.2. Direct and indirect semiconductors

According to the band structure, there are two types of semiconductors having 

direct and indirect band gaps (Figure 2.8). Direct band gap semiconductors have a 

minimum in the conduction band and a maximum in the valence band at the same k 

value (k  = 0) in the (E, k) diagram, where E is the energy of an electron (or hole) and k 

is the wavevector.

As can be seen from Figure 2.8 (a), in a direct band semiconductor such as CdS, 

ZnS and GaAs, an electron in the conduction band can fall to an empty state in the 

valence band, emitting the energy difference Eg as a photon of light, in a process known 

as radiative recombination. The dispersion of photons is given by k = nco/c (where n is 

the refractive index) and hence photons have wavevector which is relatively small in 

comparison to the Brillouin zone width ~ TiJa. Thus, in order to conserve momentum, 

radiative recombination with the emission of photons can only involve transitions with 

Ak & 0. These transitions are vertical on an E vs k band diagram, and are known as direct 

transitions.

C on d u ction  band

v / v r v / \ / >  hv =  E,

H ea v y  h o le

L igh t h o leV a len ce  band

S p lit -o ff

C onduction band

H eavy hole

L ight h o leV alence band

S p lit-o ff

Figure 2.8. Direct electron transition in a direct band semiconductor with accompanied 

photon emission (a). Indirect electron transitions in an indirect semiconductor via defect

level (b) [6].
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On the other hand, indirect band gap semiconductors, such as silicon, 

germanium and GaP, have their valence band maximum at a different value of k  than 

that of the conduction band minimum, shown in Figure 2.8 (b). An electron in the 

conduction band minimum cannot fall directly to the valence band maximum but must 

undergo a momentum change as well as changing its energy. In this case radiative 

recombination cannot occur without the assistance of some ^-conservation mechanism. 

Scattering processes, such as phonon or impurity scattering, may provide such a 

mechanism by allowing radiative recombination to take place via a virtual state (Et) in 

the forbidden gap, close to k — 0. In an indirect transition which involves a change in k, 

the energy is generally released as heat to the lattice rather than as an emitted photon.

2.1.3. Excitons in semiconductors and Bohr radius

Exciton is the term used to a bound state of an electron and a hole. Normally it 

is formed when a photon enters a semiconductor and excite an electron from the valence 

band into the conduction band leaving a hole behind. These electrons and holes attracted 

by the Coulomb force are called excitons. Excitons can move through the crystal and 

transport energy, but they do not transport charge because they are electrically neutral.

The natural physical separation between the electrons and holes varies for each 

material; the average distance is called the Exciton Bohr Radius (as). Because a free 

exciton is an electron-hole (e-h) pair, the natural spatial e-h separation can be easily 

calculated by balancing the centripetal force on the electron to the Coulomb attraction



where m0 is the electron mass, v is the speed of electron, e is the electron charge, and s0 

is the permittivity of free space. By substituting Bohr postulate for angular momentum 

(Z) to equation (2.6):

and e is the dielectric constant of the crystal.

In a large semiconductor crystal, the Exciton Bohr Radius is small as compared 

to the crystal, and the exciton is free to move through the crystal (Figure 2.9) like a 

particle and transport energy, not charge. Then, when the electron and hole recombine, a 

photon is emitted, often at a wavelength different from that of the original photon.

Z = m0vr = nh , (2.7)

where n is the quantum number and h is reduced Planck’s constant,

exciton bohr radius could be defined as:

j -  (MKS) (2.8)

where ji is the reduced effective mass:

(2.9)
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Figure 2.9. Exciton movement in the semiconductor crystal [8].

Based on their size relative to the interatomic or intermolecular distances in the 

material, excitons can be divided into two classes, Mott-Wannier excitons and Frenkel 

excitons [9]. Mott-Wannier excitons are typically observed in covalent semiconductors 

and insulators where the dielectric constant is large. Hence the Coulomb interaction 

between electrons and holes is reduced and electron-hole radius is much larger than the 

crystal lattice parameters. As a result, it is possible to attribute the electron and hole 

with the effective masses, me* and w/,*, which reflect the character of the valence and 

conduction bands within the crystal. Their binding energy is typically in the order of 0.1 

eV.
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In Frenkel excitons, typically seen in molecular or rare-gas crystals, where 

dielectric constant is very small, the Coulomb interaction between electrons and holes 

become very strong and the exciton radius tends to be smaller than the crystal lattice 

distances [6]. The binding energy of this Frenkel exciton, is typically on the order of 

1.0 eV.

The energy levels En>K of excitons created by the absorption of photons of 

appropriate wavelength are given by a simple hydrogenic model [10]:

,4 4- 2  V 2jue* h K 1 
2 h2s 2n2 2(m*e + m*h)K ,k = Es (2-10)

where n is the exciton quantum number, Eg is the bulk energy gap and K = ke-kh.

The second term in Equation (2.10) is associated with the exciton binding 

energy (Eb). Using Bohr’s hydrogenic model, the ground state (n = 1) of the exciton 

binding energy for CdS (s ~ 8.5) can be expressed as:

Eb —— = -^ -x l3 .6 (eK ) (2.11)
2e aB m0e

Then, the general expressions for the exciton Bohr radii could be written as:

= ~ r n2 = 0.529—j — n2 (A)
pe Plm0 p

7.2

8 Eb(n=1)
n \ k )  (2.12)

The third term in Equation (2.10) is the kinetic energy term related to the centre-of-mass 

motion of the exciton, but this term is usually neglected for direct transitions where 

K~0. Therefore equation (2.10) could be written in a simple form as

E (n )* E g - ! ± ,  n = l ,2 ,3 , . . .  (2.13)
n
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2.2. SEMICONDUCTOR NANOSTRUCTURES

Semiconductor nanoparticles, also known as quantum dots or nanocrystals or 

nanoclusters, are a special class of semiconductor materials, which are typically built, 

from periodic groups of II-VI, III-V, or IV-VI materials. Their sizes are ranging from 2 

to 10 nanometers in diameter, larger than individual atoms and molecules but much 

smaller than bulk solids. Hence their behaviours are also intermediate between 

macroscopic solids and that of atomic or molecular systems, obey neither absolute 

quantum chemistry nor laws of solid state classical physics. These different behaviours 

of nano-sized materials is believed due to two major phenomena. First is the high 

dispersity of nanocrystalline systems. As the size of a crystal is reduced to few 

nanometers, the ratio between the number of atoms at the surface and that in the crystal 

is increased. As the result, the physical and chemical properties, which are usually 

determined by the molecular structure of the bulk lattice, become dominated by the 

defect structure of the surface. The second phenomenon, called size quantisation, 

occurs noticeably only in metals and semiconductors. It arises because the size of 

nanoparticles is comparable to the de Broglie wavelength of charge carriers (i.e. 

electrons and holes). Due to the spatial confinement of the charge carriers, the valance 

and conduction bands split into discrete, quantized the electron levels.

2.2.1. High dispersity of nanocrystalline systems

High dispersity of nanocrystalline systems happens when the number of 

atoms at the surface is comparable to the number of atoms in the bulk of the crystalline 

lattice. As the size of a crystal is reduced, a fraction of atoms at the surface increases. 

For example, a cluster with 55 atoms will have 76 % of atoms at the surface; if it is 

constituted of 561 atoms only 45 % of those will be at the surface [7]. The role of 

surface atoms in electronic properties of nanoparticles becomes dominant. If an infinite
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crystal is cleaved, as numerous studies indicate [11], both atomic and electronic 

structures of the solid experience dramatic changes at the surface. The most important 

phenomena are the surface relaxation and surface reconstruction (shown in Figure 2.10 

(a) and (b)) both leading to changes of the atomic structure due to the surface energy 

minimization.

o o o oo o o o
0 o o o
o o o o

o O Oo o o
o O O o o •o
0 O O o o o
O O o o o o

(a) (b)

Figure 2.10. Schematic view of surface relaxation (a), resulting in changes in the lattice 

spacing in z direction, lo> h >  h, and surface reconstruction (b) [11].

Changes in the atomic structure give rise to new features in the electronic 

structure. Usually new electronic states (or bands) appear, which are particularly 

important if they are formed in the semiconductor band gap. These states are spatially 

localized near the surface, so called surface states. The two different phenomena which 

would rise to the appearance of the surface states are breaking up the periodicity and 

changes in the arrangement of atoms at the surface (broken or dangling bonds) as shown 

in Figure 2.11.
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Figure 2.11. Changes in the electron potential V(x) upon surface reconstruction [11].

The other phenomena observed when the crystal shrinks is the decrease in the 

melting temperature. In a wide variety of materials ranging from metals to 

semiconductors to insulators, a decrease in the melting temperature was observed with 

the decreasing particle size. For example, the melting point of CdS was shown to 

decrease from 1200 K for particles of a 4 nm radius to 600 K for particles of a 1.5 run 

radius [7]. This behaviour could be explained by considering the factors that contribute 

to the total energy of a nanocrystal. The smaller the nanocrystal, the larger the 

contribution made by the surface energy to the overall energy of the system and thus the 

more dramatic the melting temperature decrease.

2.2.2. Quantum confinement

Quantum confinement (or size quantization) is a term for the splitting of the 

valance and conduction bands when the particles' size is comparable to the de Broglie 

wavelength. For semiconductors, the critical dimensions below which the quantization 

effects appear depend on the effective mass (m ) of the charge carriers. It can be shown 

that both electrons and holes inside a semiconductor crystal respond to an electric field
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almost as if they were free particles in vacuum, but with a different mass. The effective 

mass is usually stated in units of the mass of free electron in vacuum, me.

Since the quantisation depends on the spatial confinement conditions. Three 

different cases can be defined corresponding to the confinement in one, two, or three 

dimensions. The confinement in one-dimension leads to quantum films, in two- 

dimensions produces quantum wires, and finally, in three-dimensions produces quantum 

particles often called quantum dots.

2.2.2.I. Three-dimensional systems (bulk material)

To calculate the density of carriers in a semiconductor, firstly, the number of 

available states at each energy level should be defined. Since the number of energy 

levels is very large and dependent on the size of the semiconductor, the number of states 

per unit energy and per unit volume would be applied.

Let us consider a three-dimensional solid with the size dx, dy, dz containing N  free 

electrons as shown in Figure 2.12.

dz

x

Figure 2.12. Three-dimensional systems for bulk material.
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The electrons are moving freely with a velocity: v=(vx,v 9vz). Assuming that

the electrons are not localized and not bound to individual atoms, the interaction 

between the electrons, as well as, between the electrons and the crystal potential, can be 

neglected.

The kinetic energy of an individual electron is then defined as:

■Et = ^ ' ” '’2= |m ( v / + v /  + v /)  (2.14)

In solid state physics, the wavevector k  = (kx, ky, kz ) of a particle is more frequently 

used instead of its velocity to describe the particle’s state. Therefore, the linear 

momentum p , which is directly proportional to the velocity v of the electron, could be 

written as:

p  = m v = -^ -k  (2.15)
In

where h is the Planck constant.

An absolute value of k = , e.g. the wavenumber, is related to the electron wavelength

through the de Broglie relation: 

2 nk = (2.16)

From equation (2.14), (2.15) and (2.16), the kinetic energy E related to the 

wavenumber, k, could be written as:

E{k) = ~  (2.17)
2m

The calculation of the energy states for a bulk crystal is based on the assumption of an 

infinite periodic boundary conditions (d -» co) of solid. In this way, all possible electron

states in the k  space are equally distributed and identical. Two electrons (ms = ± V2) can
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occupy each of the states (kx, ky, kz) = (±nx dk, ±ny dk, ±nz dk), with nXiyz is an integer

number as shown in Figure 2.13.

dy

////////

dz

/

Figure 2.13. Distribution of electron states in bulk material.

Therefore, the solution of the stationary Schrodinger equation under such 

boundary conditions can be factorized into the product of three independent functions 

[12]:

y/(x, y, z) = y/(x) y/(y) y/(z)

= A exp(ikxx) exp(ikyy) exp(ik-z) (2.18)

Each function describes a free electron moving along one Cartesian coordinate. The 

solution of each function could be obtained by using "particle in the box" model. The 

Schrodinger equation for one-dimensional box is written as: 

h2 d 2y¥(x)-  —  - p  + V(x) x¥(x)  = E ¥ (* ) (2.19)
2m dx

where ¥  = A e~‘(kx~(0,)

The solutions of the equation (2.19), if V(x) = 0, are

'F = A sin (kxx) + B cos (kxx) (2.20)
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where A and B are to be determined.

The wavefunction must be zero at the infinite barriers of the well. At x = 0 the 

wavefimction must be zero so that only sine functions can be valid solutions and B must 

equal zero. A tx  = L, the wavefunction must also be zero yielding the following possible 

values for the wavenumber, kx.

i nn  1 0 0kx = ——, n=l, 2, 3,..
.Zv

(2.21)

This calculation can now be repeated for y  and z  direction.

Each possible solution corresponds to a cube in &-space with the size nn/L as indicated 

on Figure 2.14.

Figure 2.14. Calculation of the number of states with the wavenumbers less than £ [13].

The total number of electrons with different values for kx, ky and kz and with a 

magnitude of the wavevector less than k is obtained by calculating the volume of one 

eighth of a sphere with the radius k and dividing it by the volume corresponding to a

single solution, {n/L^ , yielding [13]:

N  = 2 x - x  
8

X—7tk3
3

(2.22)
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A factor of two- is added to account for the two possible spins of electron for each 

solution.

The total number of electrons having wavenumbers smaller than kmax is:

k''■max

m m )= \D u {k)dk (2.23)
0

where D3d is the density of states.

Then the density of states could be written as:

= (2-24)
dk

The density of state per unit energy is defined as:

D u ( E ) = ^ m = ^ m ±  (2 .25)
3<A '  dE dk dE K ’

By substituting equation (2.22) to (2.25), the density of states for a three-dimensional 

could be obtained as:

dkD3d(E)= -  nk1^ -  (2.26)
\ n dE

From equation (2.17), E(k) is proportional to A2 and thus k  » 4 e  . Consequently,

dk 1 '—  (2.27)
dE VE

By substituting equation (2.27) to (2.26), the density of states per unit volume and per 

unit energy, g3D(E), is yielded as:

S u m  = 4 ^  = for E > 0 (2.28)
L dE h

The density of states is zero at the bottom of the quantum well. The same analysis also 

applies to electrons in a semiconductor. The minimum energy of the electron is the 

energy at the bottom of the conduction band, Ec, so that the density of states for 

electrons in the conduction band is given by:
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m3/1 J E - E C , for E >Ec (2.29)

The density of states is proportional to the square root of the energy as shown in Figure

2.15.

Energy

Figure 2.15. Density of states D3d for free electrons in 3-dimensional system.

2.2.2.2. Two-dimensional systems

For two-dimensional systems, the solid is fully extended along the x  and y  

directions, but the thickness along z-direction (dz) is only a few nanometers (see Figure 

2.16 (a)). Free electrons can still move freely in the x-y-plane but movement in the z- 

direction is now restricted. The particle in a box model could be used again in this 

system and the solutions can be obtained by solving the one-dimensional Schrodinger 

equation for an electron in a potential V(z), which is zero within the box but infinite at 

the borders. As can be seen in Figure 2.16 (c), the solutions are stationary waves with

energies

2 m &7T2 m 8 m dz2
with nz = 1,2, 3,.. (2.30)

This is similar to states kz = nz dkz with dkz = n /dz. Again, each of these states can be

occupied at maximum by two electrons.
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Figure 2.16. Two-dimensional system (a); Distribution of electronics states (b); 

Dispersion relation E(k)-k (c); Density of states D2d for free electrons (d) [14].

Now, the number of states is proportional to the area of the x- and y- plane. A 

square in x-and y- plane with size nidL is in a ring with the radius h and thickness dk. 

Therefore, the total number of electrons with different values for kx and ky and again, 

with a magnitude of the wavevector less than k is obtained by calculating the area of one 

fourth of a circle with the radius k and dividing it by the area corresponding to a single

state, (ft/L)2, yielding:

(2.31)

Hence, the two-dimensional density of states could be obtained as:

(2.32)



And the density of states per unit volume and per unit energy, g 2D ( E ) , is yielded as:

g 1D{E) = ^ ~  = ̂ - , i o x E > E m,„ (2.33)
L dE h

In two-dimensional materials the energy spectrum is still quasicontinuous, but the 

density of states now is a step function (see Figure 2.16 (d)).

2 .223 . One-dimensional systems (quantum wires)

Let us now consider the case in which the solid also shrinks along the second (y) 

dimension. Now electrons can only move freely in the x-direction, and their motion 

along they- and z axes is restricted by the borders of the solid (see Figure 2.17 (a)). This 

system is called quantum wire or one-dimensional electron system (IDES). The states 

of a one-dimensional solid now can be obtained by methods analogous to those 

described for the three- and two-dimensional materials.

In the x-direction electrons can move freely, and again the concept of periodic 

boundary conditions could be applied. This gives a quasi-continuous distribution of 

states parallel to the fc -̂axis and for the corresponding energy levels. Electrons are 

confined along the remaining directions and their states can be derived from the 

Schrodinger equation for a particle in a box potential.
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Figure 2.17. One-dimensional solid (a); The distribution of states can be visualized as 

lines parallel to the kx axes in the three-dimensional A>space (b); The dispersion 

relations, along the A*-axes the energy band E{kx, ky, kz) is quasi-continuous, but along 

the ky- and A=-axes only certain energies exist (c); The density of states along the kx-axes

is proportional to E' 1/2 (d) [14].

All possible states are in lines parallel to the &r-axis. Now, the number of states 

is proportional to the area of the x- and y- plane. The lines are separated by discrete 

intervals along ky and kz, but within one line the distribution of kx states is quasi 

continuous, as shown in Figure 2.17 (c). The total number of states along the line is 

obtained by measuring the length of the line. The number of states is therefore 

proportional to k = kx.

' L 'N  = 2 x - x  
2 \ 7 T  j

x k (2.34)

Again, this yields discrete ky and kz -states. We can now visualize all possible states as 

lines parallel to the A -̂axis.



Hence, the density of state for a one-dimensional could be obtained as:

A ,(£ )  =
dN(E)

dE

r
\7 l)

dk
dE

(2.35)

And the density of states per unit volume and per unit energy, gio (E), is yielded as 

1 dN l2~mn 1
g,o(E) = , for E > E„ (2.36)

L dE M h1 j E - E ^

In one-dimensional systems, the density of states, as depicted in Figure 2.17 (d), has a

7/7 • • •E  dependence and exhibits singularities near the band edges. Each of the hyperbolas 

contains a continuous distribution of kx states, but only one discrete ky- and kz- state.

2.2.2.4. Zero-dimensional systems (quantum dots)

When charge carriers and excitations are confined in all three dimensions, the 

system is called quantum dot (see Figure 2.18).

a)

c)

z t f
b) K

A
K  K

(k =0 , k =0 . k =0)

d)

♦  E

Figure 2.18. Zero-dimensional solid (a); All states (kx, ky, kz) are discrete points in the 

three-dimensional &-space (b); Only discrete energy levels are allowed (c); Density of 

states Dod(E) contains delta functions (d) [14].

34



In a quantum dot, there are only discrete (kx, ky, &z)-states in the &-space and each 

individual state in &-space can be represented by a point as shown in Figure 2.18 (b). 

The final consequence is that only discrete energy levels are allowed, which can be seen 

as delta-peaks in the distribution Dod(E), shown in Figure 2.18 (d).

2.3. ENERGY LEVELS IN A SEMICONDUCTOR QUANTUM DOT

The energy levels of a quantum dot can be estimated by using the particle-in-a- 

box model. The lowest energy for an electron in a one-dimensional potential well could 

be written as:

EwdOD = - ^ r  (2-37)
8 md

where d  is the width of the well and m is the electron mass.

As mentioned before, the charge carriers in a quantum dot are confined in all 

three dimensions, therefore this system can be described as an infinite 3-dimensional 

potential well. If the three-dimensional potential well is in a shape of a rectangular or a 

cube, then, the Schrodinger-equation can be solved independently for each of the three 

translational degrees of freedom. And the overall zero-point energy is simply the sum of 

the individual zero point energies for each degree of freedom:

3 h2
E well,3 D (cu b e ) = 3 X EweUW = (2.38)

If the three-dimensional potential well is assumed as a sphere of diameter d, then, the 

Schrodinger-equation can be solved by introducing spherical coordinates, and by 

separating the equation in the radial part and in the part that contains the angular 

momentum. The lowest energy level (with the angular momentum = 0) is then

h2
E  w ell,3D  (sphere) ^  Jfld2 (2.39)
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Theoretically, more confined charge carriers lead to a larger separation between the 

individual energy levels, as well as to a greater zero-point energy. Then, the zero-point 

energy for carriers that are confined into a sphere of diameter d, would be higher than 

that confined to a cube (EWeii,2d(sphere) > Eweii,2d(cubej) because a sphere simply has a 

smaller volume (ti/6 d2) than a cube (d2).

In a semiconductor quantum dot, the size dependent energy gap, Eg (QD) 

consists of several terms; the bulk band gap energy, Eĝ bulk), the confinement energy for 

the carriers, Eweu, and the Coulomb energy for electron hole interaction, Ec0ui [10]:

Eg (QD) = Eg(bulk) + Eweu + Ecoul (2.40)

The second term in equation (2.29) could be written as:

Ewell ~ Ewell(e-) EWell(h+) 

or can be written as

T-, //2 . . 1 1 1
Emu = ~— ; with — = —  + —  (2.41)

l / d d  jli mu mh

For large particles (bulk: d - »  oo) Eweu reduces to zero.

An estimate of the Coulomb term yields

ECoui = - 1-8 -  — — (2.42)
Z K £ £q d

This term can be quite significant, because the average distance between an electron and 

a hole in a quantum dot can be small.

Then, by inserting equations (2.41) and (2.42) into (2.40) we get:

Eg{dot) = Eg{bulk) + - 3 L - 1 . 8 - .  e -  (2.43)
2 / i d  2 n s  s0d

Equation (2.43) shows that a quantum dot has energies larger than a bulk 

material. As mentioned before, bulk semiconductor states are quasi-continuous, and 

each point in the energy bands represents an individual state while, in a quantum dot,
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the charges are confined to a small volume. Figure 2.19 illustrates the situation of 

charge carriers confined in an infinite potential well of width d. Here, the width d  of the 

well potential corresponds to the diameter of the quantum dot. The only allowed states 

correspond to standing waves with zero amplitudes at the borders of the well. This leads 

to discrete energy levels. It is also shown that in a quantum dot, the ground state 

electrons have energies larger than that of a bulk material.

bulk semiconductor quantum dot semiconductor
V(r)

k

Figure 2.19. Free charge carriers in a bulk semiconductor and in a quantum dot [14].

2.4. OPTICAL PROPERTIES OF QUANTUM DOTS

The finite size of a quantum dot leads to an increase in the kinetic energy 

of confined quasi-particles and in turn shifts the electron-hole pair ground-state energy 

to higher values. This phenomenon, called blue spectral shift, directly affects the optical 

properties of quantum dots as . compared to the corresponding bulk material. The blue 

spectral shift was observed for the first time in 1981 by Ekimov and Onushchenko when 

studying the optical properties of CuCl microcrystallites dispersed in a silicate glass 

[15]. In 1991, Ekimov reported the blue shift of exciton peaks for CuCl 

microcrystallites as the radius R changes from 310 A to 20 A [16].
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Figure 2.20 shows the absorption and fluorescence of CdSe quantum dots 

having different size (diameter). The smaller quantum dots have their absorption 

spectrum, as well as their luminescence peaks, shifted to shorter wavelengths with 

respect to larger quantum dots and to the bulk material.

Figure 2.20. Absorption (solid lines) and emission (dotted lines) spectra of colloid CdSe 

quantum dots of different size. The absorption peak of 2.3/ 3.8/ 4.0/ 4.6 nm diameter 

nanocrystals are at 507/ 547/ 580/ 605 nm, respectively, corresponding to the 

green/yellow/orange/red colour; the fluorescence peaks are respectively at 528/ 570/

592/ 637 nm [14].

The energy released upon exciton annihilation usually is too large to be 

dissipated by vibrational modes, so it is released in the form of emitted photons, instead 

[17]. The energy of light emitted from a quantum dot is smaller than the excitation 

energy. In other words, the wavelength of fluorescence is longer than that of the 

absorbed light, as shown in Figure 2.21, such red shift between the peak in the 

absorption spectrum and the corresponding emission peak is called Stokes shift.

absorption
em ission

6DD
w avelength  [nm]
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Figure 2.21. Stokes shift [18].

The Stokes shift phenomenon could be explained by examining the exciton 

structure in more detail [19-22]. More complex theoretical models and calculations 

show that the ground state of an exciton in a quantum dot has a total angular momentum 

equal to zero. In the dipole approximation, the creation of an exciton through absorption 

of a photon leads to an exciton state having angular momentum equal to ± 1. This 

excited state relaxes rapidly to the lowest excited state or exciton e-h ground state as 

shown in Figure 2.22, to a state with an angular momentum of ± 2.

Conduction band

A b s o r p t i o n L u m i n e s c e n c e

A l l o w e d  “ d a r k5

Valence band

Figure 2.22. Schematic illustration of a dark exciton in semiconductors [23].
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' In the first order, this state cannot relax to the ground state with zero angular 

momentum by emitting a photon, because only transitions, that change the angular 

momentum by ±1, are allowed. Since no photon can be emitted in the first order, this 

state is called dark  exciton. As a result, the decay time of the fluorescence is long and 

the fluorescence energy is red-shifted with respect to the absorption band edge energy 

(see Figure 2.20 and 2.21).

The dark exciton was first reported by Smotkin [24]. The evidence of this dark 

exciton state is supported by many experimental data, in particular by magnetic field 

dependent lifetime measurements [25] and electric field measurement [26, 27]. The 

position of the absorption spectrum and the luminescence peak are dependent on the 

average quantum dot size, and its width is correlated to the nanocrystals size 

distribution (see Figures 2.20). Consequently, the position of a maximum of the 

absorption and emission peaks, along with its width can be used to estimate the mean 

size and the size distribution of quantum dot.

2.5. THEORETICAL MODELS OF QUANTUM CONFINEMENT EFFECTS

The confinement of excitons in quantum dots is described by different 

theoretical models. There are four main theoretical models of quantum confinement 

which have been listed in [10] and [28]: effective mass approximation (EMA), 

empirical pseudo-potential method (EPM), semi-empirical tight binding (TB) 

approximation, and the effective bond orbital model (EBOM).

2.5.1. The effective-mass approximation (EMA) model

EMA, which was developed by Efros and Efros in 1982 [29], is widely used to 

interpret the variation of the band gap with the particles’ size because of its simplicity. 

In this model, electrons and holes are confined in a spherical quantum dot with infinite
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potential barriers having parabolical shape (E~k?). Efros considered three possible 

situations with respect to the radius of quantum dots, R and Bohr radius, a#.

(a) Weak confinement region where R » cib, R » a e, ah and as = ae+ah

In this regime, the Coulomb term is the dominant energy. The exciton energy as the 

lowest-energy state is then shifted to higher energies due to the confinement, and 

this shift is proportional tol/R  . The energy shift of the ground-state exciton is given 

approximately by:

(2.44)
2 MR2

where M, the mass of the exciton, M  = me* + nth\ with me* and nih being the 

effective masses of the electrons and holes, respectively.

(b) Medium confinement region where R » as and ah < R <  ae

This regime is the common condition for very small microcrystallites. In this case 

the electron is quantized and the hole interacts with it through the Coulomb 

potential. ae and ah are given as:

ae =—rT  (2.45)
mee

h2s  ~
ah = —TY (2.46)mhe

where s  is the dielectric constant of the semiconductor materials and 

fds
« „ = —  (2.47)

lie

The blue shift in the position of the optical absorption maximum is proportional to 

h2/nte R2.

(c) Strong confinement ( R « a s  or R « a h ,a e)

In strong confinement regime, the confinement energy is dominated hence electrons

and holes are quantized separately and should be viewed as individual particles with
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only little spatial correlation between them. The Coulomb energy is relatively small 

and can be ignored or treated as a perturbation. The simple model gives the shift in 

energy as a function of crystallite size as

AE o > ^ - r  (2.48)
2 juR2

where M  is replaced by the reduced exciton mass //, — =
H me mh

The model Hamiltonian used for electrons and holes in the EMA is [10, 28]:

»  = - T - 5 - V ; - ^ - V * + F ( r . )  + F(r*) — - (2.49)
2m e 2 mh £\re- r h \

where me* (mh) is the electron (hole) effective mass, V(re) (V(rh)) is the potential 

experienced by the localized electron or hole, re (rh) is the position coordinates of the 

electron (hole) in the solid, and s  is the dielectric constant.

Efros and Efros gave the solution of the equation for single-particle energies, termed as, 

excitation energy levels Ei>n:

= Es + { - f j  K E* = Es + (2 .50)

where 0 / „ is the nth root of the spherical Bessel function of Ith order, with n = 1, 2, 3, . . 

. , and / = 0, 1, 2, . . .  , being respectively, the principal and orbital quantum numbers, 

and Er is the bulk exciton Rydberg energy or binding energy.

For the lowest Is  excited state, 0o,i = n, and then €>o,i = 3.14, 0 i j  = 4.49 and 02,i =

5.76. Then for the ground state, the equation (2.50) can be rewritten as:

£'." = ^ +! S  ( 2 -5 i )

In later treatments by Brus [30, 31] and Bawendi et al [32], the small attractive 

Coulomb interactions between electrons and holes are taken into account. They
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developed a single-band effective-mass model with infinite confining potentials for 

electrons and holes outside the cluster. The Coulomb interaction can be written as

- e 2V = —j------ r + small terms (polarization) (2.52)
e Y e -rh\

Brus obtained an analytic approximation for the lowest Is  excited state for small R as 

[31]

fi2n 2 1.8 e 2E (R ) = E  H---------- -------------- + small term (2.53)
* 2 n R  s R

The first and the second terms are the same as in equation (2.51), while the third and the 

fourth terms are added for Coulomb interaction and polarisation at the surface, 

respectively.

Using equation (2.53), it is possible to analyse the importance of the various terms as a 

function of R. For large R, the exciton may form and the Coulomb term is more 

important than the kinetic energy. While in the case of small R, the confinement term 

dominates. However, there are significant limitations of this approach, particularly for 

small cluster sizes in the range of about 18 A [10]. One problem is the assumption of a 

constant effective mass.

Kayanuma [33, 34] has extended the treatment of Brus, especially for direct- 

bandgap semiconductors, such as CdS, and obtained quite reasonable agreement with

the experiment for large clusters. For strong confinement the ground-state energy is

derived as [35]

E(R) = E +  - 1,786 g—  0.248 Es (2.54)
v '  8 2fiR2 s R  R

where Er = (13.606 mo/fi£2 ) is the value for the bulk semiconductor.

It was apparent that this model fits well to the experimental data for rather large 

particles, and the deviation from the measured values increased as the size decreased.
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2.5.2. Empirical pseudo-potential method (EPM)

The concept of pseudo-potential was introduced for the first time in 1934 by E. 

Fermi, for high-lying atomic states [36]. This method became well-established in 1960’s 

for calculating the electronic structure of bulk semiconductors [37-39]. Several groups 

have successfully used this method to calculate exciton energies, the band gap, and the 

band structure of II-VI (including CdS) and some III-V semiconductors quantum 

clusters [40, 41].

The method is based on the assumption that the core electrons are tightly bound 

to their nuclei, and the valence and conduction band electrons are influenced only by the 

remaining potential. Since the potential can be Fourier expanded in plane waves, an 

eigenvalue equation for E(k) relationship can be established. Although the Fourier 

coefficients for the potentials are not known, they can be empirically determined for a 

given crystal by fitting the calculated crystal parameters to the experimental data for the 

band gaps at specific high-symmetry points that are derived from optical absorption 

experiments.

The energies of the electronic states in a crystal or clusters are described by the 

Schrodinger equation

HV„,k{r) = En{ky¥„^r) (2.55)

where H  is the Hamiltonian, ¥n>k are the wavefunctions, E„ are the corresponding 

eigenvalues, k is the wavevector quantum numbers of the wavefunctions and n is the 

band index.

Since electrons are interacting with the crystal lattice, an electronic band 

structure calculation is a many body problem, it is impossible to solve the Equation 

(2.55) for large clusters containing thousands of electrons. Several approximations, as a 

consequence, are made to formulate this many body problem into a numerical form. By 

using Philips-Kleinmann theorem, which provides a mean for the energy, the problem
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of many body could be simplified into one electron like problem [38]. For this purpose, 

the crystal field potential experienced by the valence electrons is replaced by the 

pseudo-potential Vp(r) to get the Hamiltonian:

H  = - — 'Vz +Vp(r) 
2m

where

— V2
2m ' (2.56)

Vp(r) = X v j ( r - R - d j )  (2.57)
RJ

where y, is the atomic pseudo-potential of the j th basis atom at a lattice site R, dj is the 

position vector of the j th basis atom relative to R, and the summation is over all lattice 

sites and all the basis atom j  at each lattice site.

The atomic potentials v, may then be expanded as plane waves of the reciprocal 

lattice vector G, Vp(r) can then be written as

vP ^ = 4 ~ Y L vA Gy a^ R' d,) (2.S8)

where G is the reciprocal-lattice vector, N  is the number of lattice sites in the samples, 

and na is the number of basis atoms at each lattice site.

For zinc blende crystal structure, na = 2, vj(G) ^  V2(G), and an extension of the above 

procedure for this structure yields

r,(r) = £  [r* (<%  (G)+ / vA asysA (G)] e‘ar (2.59)
G

where the symmetric (Vs) and antisymmetric(Va) form factors are given by

VS(G) = I[v,(G ) + v2(G )]  and VA(G) = I[» ,(G )-  v2(G)] (2.60)

and the symmetric (Ss) and antisymmteric (Sa) structure factors are given by

Ss(G) = cos(Gij) and Ss(G) = sin(G.r,) (2.61)

with tj= ao (1/8,1/8,1/8), ao is the lattice constant.
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In a hexagonal (wurtzite) crystal, there are four basis atoms and two different 

types at each lattice site. For this case, na = 4, and since atoms 1 and 3, and 2 and 4 are 

identical in the hexagonal lattice, the Equation (2.61) with the structure functions is 

defined as

and uo = 0.375

The form factors are determined by a fitting procedure to experimental optical data, and 

this introduces the empirical character to the calculation. It is possible to calculate the 

energy levels of the valence electrons as a function of k  when Vp(r) is known.

In the case of clusters, the energy levels do not form bands but can be 

represented as a collection of all the discrete quantized levels in the first Brillouin zone. 

For a cubic cluster, the physical dimensions are reduced from all sides to get a cube of 

side L. The wave vectors of the quantized energy levels of this shaped cluster can be 

represented as

where nx, ny> nz are the quantum numbers of a particle in a box with infinite potentials at 

the boundaries.

(2.62a)

(2.62b)

where

_( i i n
t~) I ) _5 /2 V-n/48 ’ 12’ -v/6 J

) (2.63)

In a spherical cluster having radius R , the wave vectors for the quantized energy levels

are given by
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k = n
a / 3 R

(2.64)

It is now possible to calculate the band structure at allowed k states to obtain the energy 

levels of the clusters. These simple models of a cluster give an adequate understanding 

of the effect of quantum confinement on the electronic structure of the clusters.

Figure 2.23 and 2.24 show the results of the band structure calculations for zinc 

blende CdS in a spherical cluster form having R = 15 A and ao = 5.818 A. The 

calculations for a cubic CdS cluster of side L = 30 A show very similar results to that 

given in Figure 2.24. Furthermore, for both models, the top of the valence band and the 

bottom of the conduction band lie at the smallest k given by (nx, ny, nz) =1.

>
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Figure 2.23. Band structure of a zinc blende CdS spherical cluster having R = 15 A near

the top of the valence band [40].
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Figure 2.24. Allowed electron levels of wurtzite CdS spherical cluster with R=15 A

[42].

Figure 2.24 shows the discrete energy levels of a R = 75 A wurtzite CdS cluster, 

modelled as a sphere of radius R. The exciton energies obtained using this calculation 

method are in agreement with the experiment for large clusters. This result differs from 

that of zinc blende CdS, which gives a good agreement with the experimental data for 

both large and small clusters. This indicates that small CdS clusters are more likely to 

have zinc blende structure rather than hexagonal. These results also indicate that the 

exciton energies in small clusters are sensitive to the crystal structure. The shape of the 

clusters has significant effect on the exciton energies. For example for zinc blende CdS 

clusters, the spherical shape gives better agreement with the experiment for all cluster 

sizes [42].

In order to obtain the exciton energies, Ex, the treatments by Brus [31] and 

Kayanuma [34] are used, which is
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1.786e2
e2R

-0 .248E ,'Ry (2.65)

ERv =~2 £,nwhere Egy, Rydberg energy is defined as: 2

The third term in Equation (2.58), which is due to electron-hole correlation, is only 

0.0171 eV and is of minor significance.

The EPM is also used to calculate the exciton energy for both bulk and cluster of 

CdS with hexagonal symmetry and ao = 4.136 A. The band gap of hexagonal CdS 

crystal is found to be 2.52 eV  [43], which is comparable to that of zinc blende CdS of 

2.44 eV  [44] and in good agreement with the experimental value o f 2.5 eV [31, 34].

It is possible to estimate the number N of CdS molecules in the clusters using 

the calculated volumes of the unit cell and the cluster. With the volume of the unit cell 

is ao , the volume of the cluster is 4nR /3 , and there are four CdS molecules in one 

conventional unit cell. Hence,

respectively. It would therefore seem that the empirical pseudo-potentials method gives 

reasonable values for exciton energies, even for clusters containing as few as 13 

molecules. However, this method cannot work well for clusters smaller than 5 A. The 

calculations of the excited states of very small clusters would have to be carried out 

according to the traditional methods of electronic structure theory.

(2 .66)

The values of R = 5; 7.5; 10; 15; and 30 A, give N  = 13; 39; 89; 287; and 2297,
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2.5.3. Semi-empirical tight-binding calculations

In the tight-binding model of electronic structures, single-electron wave 

functions are expanded in terms of atomic orbitals, centered around each atom, where 

Rim and Yim are radial and spherical-harmonics functions in polar coordinates.

where n, I and m are the principal, angular-momentum and magnetic quantum numbers, 

respectively.

Lippens and Lannoo [45, 46] provided the procedure for calculating energy 

levels for wide-bandgap semiconductor clusters such as CdS. In the case of strong 

confinement, R < as, the ground-state energy E(R) is taken as [10]

where Eg (R) is the crystallite bandgap energy and is a dominant term, while Ec(R) is 

the Coulomb energy of the exciton and is a small correction term. The Coulomb energy 

for electron and hole in a spherical well of infinite depth (Voo) is given by

wavefunctions. The average value of Ec(R) can be calculated numerically. Lippens and 

Lannoo [46] have found a useful comparison of the calculated ground-state energies for

^nj,m{r,e,cp) = Rnl{r)Ylm{ei(p) (2.67)

E(R) = Eg(R) + Ec (R) (2.68)

(2.69)

where (R /r) = 1.786, according to Brus [31], is the value averaged over the Is

the exciton of several II-VI semiconductors with zinc blende structures, using tight-

binding and EMA procedures (see Figure 2.25).
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Figure 2.25. Comparison with the experimental data for CdS. The tight-binding model 

results are shown as a solid line, and those of the EM A model by a dash line. The 

experimental data are given as square and triangle points [45].

It can be seen that tight-binding model gives a slight underestimate of the 

exciton energy levels particularly for small crystals (less than 4 nm for CdS) as 

compared to EMA which gives higher values than experiment.

2.5.4. Effective bond order model (EBOM)

The bond-orbital model is basically a tight-binding model which uses bonding 

and antibonding orbitals as the basis: the tight-binding model for the valence bands and 

the EMA for the conduction bands. It is capable of taking into account the full band 

structure effect when a full set of bonding and antibonding orbitals is used, and a 

sufficient range of interactions between bond orbitals is considered. The bond orbital is 

defined at the proper linear combination of two atomic orbitals within a unit cell which 

best describe the valence-band states near the zone center. The interaction between the 

orbitals IR,a) and /R ’,a ’)  for a face-centered-cubic lattice is given by [47]:

(R,a\H\R\a )  = EpSRRSa a. + [e„tI + E J l  -r>)]5„„.} (2-70)
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where Ep is the on-site energy, Exx, Exy, and Ezz are three independent nearest neighbour 

interaction parameters, xa denotes the a component of the twelve nearest neighbour 

position vector.

This method has been used in an attempt to predict confined exciton energy 

levels in quantum dots in the diameter range of 10-80 A [48-51]. The calculated ground 

state energies for excitons in CdS clusters in the strong-confinement regime is shown in 

Figure 2.26.
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Figure 2.26. Ground-state energies for excitons in CdS microcrystallites as a function of 

radius calculated using the EBOM. The confining potentials for the electrons and holes 

assumed to be equal, are shown as: (— ) curve for the Lippens and Lannoo tight-

binding model with V=oo; (........) curve obtained using Kayanuma’s model; (■)

experimental results from Ekimov et al.; (o )  experimental results from Wang and

Herron [48].

This figure shows that, just like EMA, the EBOM model also over-estimates the 

exciton energies, and the complicated procedure may be one of the limitations of this 

method.
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2.6. ELECTRON TRANSPORT IN QUANTUM DOTS

In the current study of electrical properties of multilayered films containing II- 

VI semiconductor nanoparticles, several quantum mechanical effects can be considered. 

First of all, it is electron tunnelling through the potential barrier of different forms. 

Secondly, the phenomenon of resonant or assisted tunnelling should be considered in a 

multilayered film consisting of insulating and semiconducting layers. The following 

paragraphs described the basics of the mentioned above phenomena, as well as the 

description of electrical measurements in the planar and sandwich structures.

2.6.1. Conductivity of thin films

In general, the conductivity of thin films can be studied in two different 

configurations, parallel (in the film plane) and perpendicular (normal to the plane) to the 

substrate surface (as shown in Figure 2.27).

M eta l c o n ta c ts

Film

S u b s tra te

Film

M etal c o n ta c ts

Insulating  su b s tra te

(a) (b)

Figure 2.27. Two configurations of conductivity measurements: planar (a) and

sandwich (b) structure [52].

In both cases, the conductivity is defined as:

<r = —— (2.71)
V A

where /  is the current flowing through the sample, V is voltage applied to sample, / is 

distance between two electrodes, and A is the cross-section area of the sample.
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In planar structures, / is the minimal distance between the electrodes, and A is 

the product of film thickness d  and the electrode width w (= d  x w); while in sandwich 

structures, l=d and A is the area of the electrodes overlap (see in Figure 2.27). From 

equation (2.71), the current could be written as:

I  = ± aV = ^ L aV  
I I

(2.72)

Since, in planar structures, / is much larger and A is much smaller as compared 

to the respective values in sandwich structures. Hence the measured current would be 

much smaller in planar structures while sandwich structures would have much larger 

electric field. In order to increase the measured current, planar interdigitated electrodes 

(shown in Figure 2.28) can be used.

6 mm

Substrate

6 nun i

Metal
electrodes

Film area

\V (2-3 mm)

L (20-100 jiim)

Figure 2.28. The schematic of interdigitated electrodes [52],

In this case, the equation (2.70) can be rewritten as:

(2.73)

where n is the number of fingers (n = 10-15).
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Then, the conductivity is given by: 

/  L<T =
V nWd

(2.74)

2.6.2. Electron tunnelling in thin films

The theory of tunnelling appeared almost simultaneously with quantum 

mechanics. In classical mechanics, when the energy of a particle is less than the 

potential barrier, the particle, e.g. electron, will be reflected, since the electron cannot 

penetrate through the barrier. The quantum mechanics predicts the effect of particles 

penetration through the potential barrier of limited width and height even if the particles' 

total energy is less than the barrier height.

The wave nature of the electron allows the penetration through the barrier, since 

the electron wavefunction decays exponentially with the depth of penetration from the 

electrode-insulator interface.

Thick barrier Thin barrier

(a) (b)

Figure 2.29. Quantum mechanical tunnelling through a: (a) thick barrier; (b) thin barrier

[53].

The wavefunction is equal to zero at the opposite interface for thick barriers 

(macroscopic thickness) as shown in Figure 2.29 (a). This means a zero probability of 

finding an electron on the other side of a barrier. In the case of very thin barriers (less
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than 5 nm), the wavefunction has a nonzero value; therefore there is a finite probability 

that the electron can penetrate through the barrier (Figure 2.29 (b)). This phenomenon is 

referred as a quantum mechanical tunnelling (or tunnelling). Therefore the barrier 

transmission coefficient can be naturally considered as a ratio of the transmitted 

electrons probability flux density to that one of the incident electrons.

The general form of the transmission coefficient for the unidentified shape 

barrier was first used by Wentzel, Kramers and Brillouin [52].

where To is the coefficient close to 1, m is the electron mass, and E  is the electron 

energy.

This technique is known as WKB approximation or quasiclassical 

approximation method. There are three different types of barrier which can be 

considered in studying electron tunnelling, as shown in Figure 2.30.

(2.75)

W*<W

c -

(a) (b) (c)

Figure 2.30. Models of electron tunnelling for different barriers: (a) rectangular; (b)

trapezoidal; (c) triangular [54].



In the case of a rectangular barrier (see Figure 2.30. (a)), where

®(*)=

0, fo r x  < 0 
O0, y b r 0 < x <  W 
0, for  x > W

the transmission coefficient derived from Equation (2.75) is

(2.76)

where &o is the barrier height.

When an external bias is applied, this rectangular barrier transforms to trapezoidal one 

(Figure 2.30 (b)), and the transmission coefficient of such barrier has become [52]

T = T0 exp
3 n eV

(2.77)

where W is the barrier thickness.

At a large applied bias, such barrier transforms to a triangular barrier (Figure 2.30 (c)), 

with the reduced thickness W* [52]

rr ijrW’yflmT = T0 exp
h

3/2

eV
(2.78)

where W = W —  
eV

2.6.3. Resonance tunnelling

Resonant tunnelling refers to the tunnelling in which the electron transmission 

coefficient through a structure is sharply peaked at about certain energies. This 

phenomenon is a combination of two effects: electron tunnelling and size quantization.
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Let us consider the structure of semiconductor quantum dot separated by thin 

insulating barrier and they are sandwiched between two metal electrodes (shown in 

Figure 2.31).

" S T  ^ ■»
i* Hs * *r

•»
K'. 0 * W *

W

Figure 2.31. Schematic diagram of resonance tunnelling [52].

The region between the two semiconductors defines a virtual quantum well. The 

electrons can not penetrate through such complex barrier because the distance between 

metal electrodes (w) is large enough to reduce the probability of direct tunnelling to 

zero. However if electrons have the energy corresponding approximately to the virtual 

resonant energy level in the quantum well, the transmission coefficient is close to unity. 

Then the electron with this resonant energy can cross the barrier. It is illustrated in 

Figure 2.32.

(a) (b) p (c) X

— _ X

X

.d) N (C)
N

\

\ K
K

\ \
K

P

Figure 2.32. Band diagram and current-voltage characteristics of a resonant tunnelling

under different bias conditions [55].
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The band diagram of a virtual quantum well is shifted corresponding to the applied bias. 

When the Fermi level ( E f )  in the source contact matches one of the energy level ( E , )  in 

the quantum dot, resonance tunnelling will take place and reflected as a peak at the I-V 

characteristic. Figure 2.33 shows I-V characteristics with peaks corresponding to the 

energy levels of quantum well E /, E2, and E 3 .

Figure 2.33. I-V characteristic of a resonance tunnelling structure with each peak 

corresponding to the energy matching conditions eV=Et (i= l, 2, 3) [52].
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CHAPTER 3

ELECTROSTATIC SELF-ASSEMBLY DEPOSITION AND OTHER METHODS 

FOR II-VI NANOSTRUCTURES’ FABRICATION 

(LITERATURE REVIEW)

3.1. INTRODUCTION

This chapter presents the literature review of the electrostatic self-assembly 

method and previous works on CdS and ZnS nanoparticles. History of ESA technique 

and their deposition process will be discussed in more detail including the types of 

polyelectrolytes and their adsorption kinetics. Several issues in the deposition process, 

such as dipping time, drying procedure, stability and uniformity of polyelectrolytes 

films, will be discussed. For the sake of comparison, several other techniques for the 

formation of CdS and ZnS nanostructures are presented along with their 

characterisations.

3.2. ELECTROSTATIC SELF-ASSEMBLY METHOD

Electrostatic self-assembly (ESA) method, also known as polyelectrolyte self- 

assembly or electrostatic layer-by-layer deposition is based on the alternating adsorption 

of molecular layers of oppositely charged polymers (anionic and cationic 

polyelectrolytes), where the electrostatic interaction between opposite charges is the 

driving force behind the multilayer build-up. As the result, a very good nanosized 

structures could be produced.

R. K. Iler [1] is the first person who introduced and proposed this process to 

deposited multilayered thin film. In 1966, he demonstrated the method by depositing the 

layers of negatively charged silica colloid and positively charged alumina fibrils. But
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this technique was not in used until 1990s, when Decher and co-workers [2] at 

Gutenberg University in Mainz, Germany, extended the work of Iler to a new method 

of organizing thin films using layer-by-layer adsorption of polyelectrolytes and 

demonstrated optically transparent multilayer films of four different polyelectrolytes.

Since then, electrostatic self-assembly has been used for the deposition of 

ultrathin films containing different types of molecules such as charged polymers 

(polyions) [3-21], dyes [22-24], nanoparticles (metallic, semiconducting, magnetic, 

insulating) and clay nanoplates [25-37], and bio objects (proteins, DNA, virus) [38-47]. 

The composition of each layer can be controlled by the incorporation of appropriately 

chosen molecules [7], and the structure of each layer can be manipulated by adjusting 

the deposition parameters [3, 11, 17, 21]. This makes ESA thin films an excellent 

choice for use in a wide range of applications, such as conductive polymer [48], 

electronics applications (single electron devices, batteries, diodes) [49-51], sensing 

applications [52], magnetic imaging and information storage [53], solar cells [54], 

biologically active membranes [55] and LEDs [56-59].

3.2.1. ESA deposition process

In the standard ESA process, multilayered thin films can be deposited onto an 

electrically charged substrate by sequentially dipping it into solutions of polycations and 

polyanions. This process is shown schematically in Figure 3.1. Starting from a 

negatively charged subsrate, the first layer can be deposited by simply dipping the 

substrate into a polycation solution. At this step, positively charged ionic groups of the 

polymer interact electrostatically with the substrate, resulting in a net positive surface 

charge of the film surface. The next step is rinsing the sample with water to wash out of 

non-bound polyion molecules. The samples are then dipped into polyanion solution to 

restore the negative surface charge followed by rinsing with water. This completes the

65



electrostatic self-assembly deposition cycle of polycation/polyanions sandwich unit 

onto the substrate. Such deposition routine can be repeated as many times as needed.

J5>
©

©
©
v> i. Polyanion
©   —

© 2. Wash
©
©
©
©

3 Polyciilion 
 ►
4. Wash

Figure 3.1. The sequence of layer by layer electrostatic deposition [60].

Polyions, eithers polyanions and polycations, usually exist in the form of salts, 

and can be dissolved in water or other polar solvents. The most common polyions used 

for ESA deposition, such as PSS, PVS, PDDA, and PEI are shown in Table 3.1. Typical 

molecular weight of polyelectrolytes is in the range of 50,000 - 200,000. In the solution 

with pH range from 3 to 9, they dissociate into the polymer chain containing ionized 

groups (either anionic or cationic) and counterions. The typical polyions concentrations 

used are about 1 - 2  mg/ml; the diluted polyions solution may result in a thinner film and 

may also need much longer deposition time. Lvov and Decher in 1994 reported that the 

variation in polyion concentration in the range from 0.1 to 5 mg/ml do not dramatically 

affect the layer thickness although the use of smaller concentrations down to 0 . 0 1  

mg/ml has resulted in thinner films [45]. The thickness of polyanion/polycation layers 

depends on the compounds used and pH. The dependence of the polycation / polyanion
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bilayer thickness on the ionic strength and on the variation of pH (for weak polyions) 

can be explained by partial neutralization of polyion side-groups which results in more 

coily conformation of polymer chains, as was analyzed by Rubner et al [14].

Table 3.1. The most common polyions used for ESA deposition

Polycations (MW = 50,000-70,000) Polyanions (MW = 50,000-70,000)

Poly(allylamine)

hydrochloride

(PAH)

^ n h3+ci-

Poly(styrenesulfonate) 

sodium salt 

(PSS)

VI ' n

¥
S03“ NA+

Poly(ethyleneimine)

(PEI) M l "
Poly(vinylsulphate) 

potassium salt 

(PVS)

f r ) „
O SC V  Na+

Poly(dimethyldiallyl- 

ammonium) chloride 

(PDDA)
n c r  

/  \  
h3c ch3

The multilayered ESA films usually are totally neutral, i.e. a stoichiometry of 

charged groups in neighboring polycation and polyanion layers has to be 1 : 1. It is 

confirmed for many polyelectrolyte combinations, such as PSS / PDDA or PSS / PEI, 

however for PSS / PAH, a deviation from 1 : 1 stoichiometry was found [15]. This is 

probably due to the incomplete dissociation of the polyions. It is difficult to control 

polyion dissociation, because it depends on a concentration and on the presence of 

oppositely charged compounds in solution [61].
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3.2.2. Kinetic of polyions adsorption

In the deposition process, when the substrate is dipped into polyions solution, 

the polyelectrolyte molecules require a certain amount of time to move through the fluid, 

arrange themselves on the substrate and electrostatically bond to the surface. This time- 

dependent adsorption in ESA deposition has been investigated in [12, 19, 42] using 

quartz crystal microbalance (QCM) method.
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Figure 3.2. A typical kinetic profile of QCM measurements for polyions adsorption [60].

Typical kinetics of adsorption of PSS and PAH layers is shown in Figure 3.2. 

The fitting of the above data to exponential law yields the adsorption rates for PSS, x = 

2.5 ± 0.2 minutes and for PAH x = 2.1 ±0.2 minutes. This means that during the first 5 

minutes 87 % of the material is adsorbed onto the charged substrate, and 95 % of full 

coverage is achieved after 8  minutes. In the majority of publications, adsorption times 

of 5 to 20 minutes are used [6 ]. Figure 3.2 also shows the effect of washing between 

subsequent deposition cycles. 1 - 2  minutes intermediate water-washing removes ± 1 0
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% of weakly attached material from a polyion layer [19]. The importance of 

intermediate washing was analyzed in [15, 19].

K. L Cooper [62] studied the dependence of the film thickness of Poly S- 

119/PDDA on the dipping time using ellipsometry and UV/vis spectroscopy. It is shown 

in Figure 3.3 and 3.4 that the longer dipping time results in an increase in the layer 

thickness. At 20 minute dipping time, the increase in thickness is about 20 % higher as 

compared to 1 minute dipping; but the time required per bilayer is 2 0  times longer.

0.4

at
ucfZJ2
h . 0 . 2 -cwn
<

■1 minute 
5 minutes 

■10 minutes 
■20 minutes

350 400 450 500 550 6CC
Wavelength (nm)

Figure 3.3. Optical absorbance comparison of 20 bilayer (PDDA/Poly S-l 19) films 

fabricated using different dipping times [62].
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Figure 3.4. Ellipsometry comparison of (PDDA/Poly S-l 19) films fabricated using

different dipping times [62].

The uniformity of ESA films growth has been investigated in [11]. Wei [63] 

demonstrated that the consecutive adsorption of layers using ESA is a stepwise and 

regular process. Figure 3.5 and 3.6 show the optical absorption spectra of PVP/PMA 

and PDDA/C60 multilayer assemblies for the layer numbers from 0 to 30, with the 

measurements taken for every 5 bilayers. Insets show the dependences of the optical 

density at the main absorption band (194 nm for PVP/PMA and 220 nm for PDDA/C60) 

versus the number of bilayers. The data points obey nearly perfect linear fit. The linear 

nature of the plots suggests that each adsorbed layer contributes an equal amount of 

material to the thin films. There are no shifts in the main absorption bands, which 

indicate that the films are uniform and no molecular aggregation occurred between the 

adjacent layers.

70



C.7 n
 5 bilayers

— — 1C bilayers

 1c bilayers

2G bilayers 

2 c  bilayers 

■3C bilayers

yS=|
o C 4  -
anJQ<

i 10 K  20  2S

N u m b e r  o f  Di layerB

Q.1

220 no 140 4CC

W a v e le n g th  jn m )

Figure 3.5. UV/vis absorption spectra of PVP/PMA multilayer thin films [63].
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Figure 3.6. UV/vis absorption spectra of PDDA/C60 multilayer thin films [63].

It is found that the adsorption of the first 2-3 layers are usually non-linear [12, 

41]. Tsukruk et al [41] explained this as an island-type adsorption of the first polyion 

layer on a weakly charged solid support. After several adsorption cycles, these islands
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spread and cover the entire surface, and further multilayer growth will occur linearly. 

That is why a longer time is recommended for the first few layers deposition.

As a part of deposition conditions study, the effect of periodic drying on the film 

characteristics has been investigated [7, 17, 19, 64]. Decher’s group performed 

experiments on PS S/PAH films using X-ray reflectivity [7]; the results indicated that 

cyclic drying induced a periodic modulation in the film’s electron density and reduced 

the interfacial width between monolayers, but did not affect either the total film 

thickness or individual bilayer thickness.

K. L Cooper [62] found that each bilayer in the dried film is thicker and more 

optically dense than that in the undried film (as shown in Figure 3.7 and 3.8). It was 

suggested that polyelectrolyte molecules in the undried sample were interpenetrated 

each other, and thus more density and the thickness became less than in dried films. 

This concept is illustrated in Figure 3.9.

1800
1600 - •  Cried

A UndriedE 1400 - 
5  1200 -  

5  iooo -

5.5 r m / bil ayer

800 -

600 - 5.2 riTi .* b layer

400 - 
200  -

0 10 20 30
Number of Bilayers

Figure 3.7. Ellipsometry comparison of (Poly R-478/PDDA) films dried in a stream of 

nitrogen after deposition of each monolayer (dried) and dried only for measurement

purposes (nondried) [62].
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Figure 3.8. UV/vis absorbance spectra of 50 bilayer (Poly R-478/PDDA) films dried in 

a stream of nitrogen after deposition of each monolayer (dried) and dried only for 

measurement purposes (nondried) [62].
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Figure 3.9. Effect of drying on the layer interpenetration [62].
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The stability of ESA films was analysed in [6 , 61]. A cooperative electrostatic 

interaction between the polycations and polyanions is strong and prevents the 

dissolution of the multilayers even in high ionic strength solvents. Figure 3.10 shows a 

negligible degradation of the absorbance spectra after 2 1  hours submersion in water.
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Figure 3.10. UV/vis absorbance spectra of 30 bilayer (Poly R-478/PDDA) film before 

and after water submersion for 2 1  hours [62].

In summary, comparing to other methods, ESA techniques have several 

advantages:

• Excellent molecular level uniformity which permits the fabrication of high quality 

films with homogenous properties (i.e. hydrophilicity/hydrophobicity and charge 

distribution).

• Independence from the substrate size or topology makes possible the ESA 

deposition on a variety of substrates of any size and complex shapes including 

implant organs or devices.
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• The films have a good adhesion much higher than that in LB and spun films.

• ESA films are biocompatible.

• A large variety of materials such as polymers, organic macromolecules, proteins, 

inorganic nanoparticles, can be deposited with the ESA method.

• Multilayer thin films can be generated with almost no limit to the number of layers 

that can be generated.

• The process is environment-friendly, based on water solutions. The preparative 

procedure is simple, carried out in the open air and at room temperature, no 

elaborate instruments is required.

• The films are stable due to the minimum system energy obtained through self­

rearrangement of molecules adsorbed on the surface.

• The ESA films have a defectless structure and therefore perfect for insulating and 

masking the surface.

The low speed of the film growth (one bilayer every 5-20 minutes) is a relative 

disadvantage of ESA technique. The other is the electrostatic anchoring of the first 

monolayer to substrate which depends on the surface charge and sometimes requires 

preliminary surface treatment using plasma or chemical modification (thiolation, 

silanization, oxidation, etc.).

3.2.3. Nanoparticles/ poly electrolytes multilayers

As described earlier, inorganic particles of different nature, such as metallic, or 

semiconducting, can be incorporated into ESA films. The only requirement is to have 

polyelectrolytes and nanoparticles of opposite electrical charge. Therefore forces 

between nanoparticles and polyelectrolytes are primarily electrostatic, but they can also 

involve covalent and hydrogen bonding, n-n interactions, van der Waals attractions,

75



hydrophobic and epitaxial or other types of interactions. The schematic diagram of 

nanoparticles/polyelectrolytes multilayer is shown in Figure 3.11.

Charged substraeand Charged ajfcetracs. first Charged substrate first bd aver Charged substrate first
assembly of fi r3r mondayer artf assembly and assembly cf serene" h layer and assembly of

pdyeteetrcfyte monolayer of nanopsrticl© mondayer pdy©ie:trdyt6 mondayer second bi layer

Figure 3.11. Basic ESA schematic for the buildup of multilayer assemblies by 

consecutive adsorption of cationic polyelectrolytes and anionic nanoparticles [62].

Some particles are naturally electrically charged. For example, oxide materials, 

such as SiC>2 , AIO2 , Ti0 2 , and Sn0 2 , are negatively charged because of the hydroxide 

groups (OH') on their surface. The same applies to majority of metals, i.e. Al, Cu, Ti, 

Ag, and Fe; which are usually covered with a thin layer of native oxide. On the other 

hand, the electrical charge of nanoparticles can be formed by chemical modification. A 

typical example is the modification of gold nanoparticles with thiol-containing 

compound, which form short hydrocarbons containing a thiol-group on one end and, for 

example, S0 3 _Na+ on the other end. This will form negatively charged particles, while 

thiol-amine compounds will form positively charged particles.

3.3. PREVIOUS WORK ON CdS AND ZnS NANOPARTICLES

By far, cadmium sulfide (CdS) and zinc sulfide (ZnS) are the most studied 

systems among of II-VI semiconductor materials due to their unique electrical and 

optical properties [murray93]. Various deposition techniques, both physical and 

chemical, such as: molecular beam epitaxy [65-69], ion implantation [70-72],
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magnetron sputtering technique [73-75], electrochemical deposition [76-80], Langmuir- 

Blodgett (LB) films method [81-89], colloid synthesis [90-101], precipitation technique 

[102-105], and the reserve micelle method [106-108], have been used to deposite CdS 

and ZnS nanoparticles. In the next few paragraphs, some of these deposition techniques 

will be discussed in more detail.

Molecular Beam Epitaxy

The use of molecular beam epitaxy to grow single-crystalline layers of CdS and 

ZnS has been reported in the literature [65-68]. The films with thickness in the range of 

2-7 pm were usually grown on top of buffer layers, such as InP (1 0 0), GaAs (1 1 1), 

and Si (1 0 0),. Boieriu and coworker [66] grew CdS on CdTe (111) buffer layer on 

Si(100) or Si(l 11) substrates using MBE. The CdS layers have a wurtzite structure and 

are epitaxial on CdTe, with CdS [ 0110]//CdTe [ 112] and CdS([0001]//CdTe[lll]. 

Auger electron spectroscopy and XPS have been used to determine the amount of S 

incorporated into CdTe at different values of the S pressure. The results indicate the 

formation of a CdTei_xSx layer, with x in the range of 5-8% for the sample studied by 

TEM.

In the case of ZnS, the luminescence peak at about 600 nm was observed from ZnS film 

grown on Si (1 0 0) using MBE and annealing at several temperatures of 190, 500, and 

1000 °C [69].

Ion implantation technique

The average size in the range from 3.5 to 10 nm was recorded for CdS 

nanocrystals prepared by ion implatantion [70]. The study shows that the particles' size 

depended on the ion dose and temperature of annealing post-treatment. As shown in 

Figure 3.12, the spectral shift towards larger wavelength for larger doses and higher
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temperatures. X-ray diffraction (XRD) measurements performed on the samples after 

annealing post-treatment at 900°C identified the hexagonal phase of CdS.

a )  °o o

300 400 500 600 700
W a v e l e n g t h  (nm )

Figure 3.12. The absorption spectra of CdS formed in Si0 2  by ion implantation at 

different implanted dose and bulk CdS [70]. The arrow indicates the increase in the

implantation dose.

The deposition of Mn doped ZnS using ion implantation was study by Ishizumi [71]. X- 

ray diffraction examination indicated that the ZnS nanocrystals are a mixture of 

hexagonal and cubic ZnS crystals. The far-field macro-PL spectra were presented in 

Figure 3.13.
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Figure 3.13. PL, PL excitation, and optical absorption spectra of the low doped sample 

(a) and the high-doped (b) samples at 14 K [71].

Magnetron sputtering technique

S. K. Mandal and coworker [75] are studied ZnS nanocrystals prepared by high 

pressure magnetron sputtering and found that films with different crystallite sizes and 

thickness could be obtained by varying the substrate temperature during deposition 

without sacrificing the blue shift. The films exhibited predominant zinc blende structure 

with intense diffraction rings for (111), (220) and (311) planes.

The other study using planar-magnetron-radio-frequency sputtering was done by 

Shao and co-worker [74]. They reported the fabrication of an 11.6% efficient
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polycrystalline thin-film CdS/CdTe solar cell, deposited at 380 °C on soda-lime float- 

glass substrates coated with Sn02 :F. Much stronger photoluminescence and higher 

electrical conductivity are found in films and cells grown with unbalanced-field 

magnetrons.

Electrochemical technique

G. C. Morris and R.Vanderveen [76] deposited cadmium sulphide 

polycrystalline films on glass/indium tin oxide slides by periodic pulse electrolysis from 

aqueous solutions of cadmium chloride and sodium thiosulphate at 90° C. The 

properties of the films obtained were determined as functions of the deposition variables, 

such as cathodic voltage (Vc), anodic voltage (Va), cathodic on time (tc), anodic on time 

(to), deposition temperature, and solution concentrations of Cd 2+ and S2O32'. X-ray 

diffraction spectra and SEM showed that the hexagonal polycrystals were formed with 

the grain size of about 56 nm.

Zhang et al [79] were produced CdS nano-structures using electrochemical 

deposition on porous silicon (PS) as a substrate. AFM and SEM images show that the 

CdS deposit appeared to be a dense grain-like structure, each grain being of about 100 

nm. These small nanoparticles are passivated with oxides on the surface and are 

responsible for green colour luminescence band centred at 530 nm.

For zinc containing compounds (ZnTe, ZnSe, ZnS), the electrodeposition from 

standard acidic aqueous solutions reveals to be more difficult [80]. It might be caused 

by the fact that the potential of zinc is more negative than that of cadmium by 0.36 V. 

The more negative deposition potential creates new problems due to the hydrogen 

evolution and parallel reactions of further reduction of chalcogenide elements.
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D. Lincot [80] have recently shown that if the solution composition contains with the 

compound that dissolves the excess of elemental Se, for example sulfite ions SO3 it 

was possible to grow stoichiometric ZnSe.

Langmiur-Blodgett method

II-VI semiconductor quantum structures, including CdS, PbS, and ZnS 

nanostructures were also successfully formed within Langmuir-Blodgett (LB) films by 

exposing the LB films of respective metal salts to H2S gas. Several compounds have 

been used as matrix materials, such as PMAO [81, 82], a variety of fatty acids [83-89], 

and calixarenes [86, 87, 89].

The blue shift is observed with respect to the bulk II-VI materials. The average 

size of CdS (less than 5 nm) was obtained and calculated from absorption spectra of the 

films. Direct observation techniques such as AFM, TEM and electron diffraction were 

performed on the CdS/calixarene acid and CdS/strearic acid LB films and confirmed the 

presence of CdS nanoparticles in LB films [89].

Aqueous colloid solutions

Stabilization of dispersed colloidal particles by surface treatments has been 

known for more than a century. There are two types of colloids, electrostatically and 

sterically stabilized [90]. The electrostatic stabilization is illustrated by a classical 

synthesis of 12-nm diameter gold particles. The method involves the reduction of an 

aqueous gold chloride solution by sodium citrate. The gold particles formed are 

stabilized by an electrical double layer (composed of bulky citrate ions, chloride ions, 

and the cations attracted to them) responsible for the Coulombic repulsions. There is a 

weak minimum in the van der Waals energy in the interparticle separation which 

approximately corresponds to the diameter of the stabilized gold nanoparticle. This
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minimum (where the attractive van der Waals forces are overcompensated by the 

repulsive electrostatic interactions) is responsible for the electrostatic stabilization of the 

gold colloids in dispersions.

Steric stabilization is accomplished by adsorbing polymers and/or surfactants 

onto the surfaces of colloidal particles. Intertwining of the adsorbed polymers (and/or 

surfactant) in the interparticle space restricts the conformational motion (entropy effect) 

and increases the local polymer concentration (which has to be compensated by 

solvation osmotic effect) which, in turn, results in the stabilization of the particle.

Coating (capping or derivatization) by using surfactant molecules (capping 

agents), which form chemical bonds with the particles to stabilise and prevent them 

from the aggregation, provides an extremely useful method of nanoparticle stabilization. 

The choice of surfactants varies from case to case: molecules that bind too strongly to 

the surface of quantum dots are not suitable, as they would not allow the nanoparticles 

to grow. On the other hand, weakly coordinating molecules would yield large particles, 

or aggregates.

Some examples of suitable surfactants include alkane thiols (see Figure 3.14). 

Mercapto alcohols, mercaptocarboxylic acids, and thiophenol(s) have been shown to be 

highly suitable capping agents for CdSe, CdS, and ZnS nanoparticles [90, 91].

Figure 3.14. Schematics for the capping of a nanoparticle by alkanethiol molecules [90].
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The colloid synthesis can be divided into two groups, non-aqueous and aqueous 

methods. In nonaqueous method, the capped nanoparticles were separated from the 

dispersing solvent, stored as dried powders (after precipitation), and redispersed on 

demand in a suitable solvent (polar solvent if the capping agent provides a hydrophilic 

surface and nonpolar solvent if the capping agent provides a hydrophobic surface) to 

form the same sized nanoparticles with the same degree of monodispersity. In 1990, 

Herron and coworkers successfully made CdS powder (non-aqueous method) by drying 

CdS solution capping with phenyl group (thiophenol) [92]. They have done chemical 

and NMR investigation along with the XRD and optical absorption to study the 

correlation between the cluster size and phenyl groups concentration. The size effects in 

CdS clusters were observed prominently for the radius 3 nm, which is the Bohr radius 

of exciton for this material.

In aqueous synthesis method, there are two capping agents which are 

mostly used: thiolate [93, 94] and phosphate [95, 96] ligands. Since colloid 

nanoparticles are dispersed in solution, they can be produced in large quantities, and 

then can be transferred to any desired substrate. The size and shape of nanoparticles 

could be controlled by the composition of surfactant molecules and the time of growth 

of reaction [97-99].

Salata et al [100] prepared nanoparticulate CdS films for optoelectronic device 

applications by aqueous colloidal solutions method. The samples were deposited on 

ITO glass substrates utilizing a combination of the spin/dip coating techniques. The 

thickness of the CdS films varied from 50 to 200 nm. A typical diameter of the 

individual CdS nanoparticles was measured by high-resolution electron microscopy and 

it was found to be about 4 nm. Using similar technique, Sajinovic et al [101] also 

formed 50 A CdS quantum dots in a polystyrene matrix. Absorption onset of the CdS- 

Q-dots was blue shifted about 0.2 eV as compared to bulk CdS material. Using the
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effective mass approximation model, the radius of CdS Q-dots was found to be 2.5 nm. 

X-ray diffraction measurements performed on the same sample gave a 4.5 nm diameter 

for CdS nanoparticles.

Precipitation technique

The earliest methods of II-VI quantum dots preparation were dated back to 1984 

when Brus and coworkers [102] prepared uncapped and polymer-capped CdS and ZnS 

[103] nanoparticles (in size range 3-6 nm) by the arrested precipitation technique at 

room temperature involving the slow injection of the metal salt into a solution of 

ammonium or sodium sulfide in a suitable solvent (acetonitrile, methanol, or water). 

The success of the method relies on the ability to stop the crystal growth process 

immediately after the nucleation begins by controlling the equilibrium between the solid 

CdS (ZnS) and solvated metal ions in solution,

Cd(Zn)Scrystai Cd2+(Zn2+) solv. S solv.

This can be achieved by selecting an appropriate reaction temperature or an appropriate 

solvent.

Nanda et al [104] also successfully formed thin films of CdS nanoparticles of 

different crystalline sizes by a precipitation technique using precursors as CdSC>4, 

thiourea and NH4OH. The crystalline sizes in the range from 11 to 13 nm were found 

using AFM. The main absorption spectrum of the sample at room temperature was at 

395 nm, giving an estimation of the band gap as 3.14 eV. The calculation gave the size 

of the particles to be in the range of 4 to 7.5 nm. XRD measurements of bulk CdS 

showed the presence of mixed cubic and hexagonal phases, whereas the nanocrystalline 

sample showed predominantly cubic phase.
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Reverse micelle method

The mechanism of the formation of cadmium sulfide and zinc sulfide ultrafine 

particles in reverse micelles has been studied by Hirai [106], using sodium bis(2- 

ethylhexyl) sulfosuccinate (AOT)/isooctane as a reverse micellar solution. The particle 

formation process was followed by the change in UV-visible absorption spectra as 

shown in Figure 3.15. The absorption spectra were red shifted due to the increase of 

particles' diameter as a result of coagulation.

Figure 3.15. Absorption spectra of CdS and ZnS taken at different times (from 0.02 to

3600 s) after mixing the reactants [106].

In the other work by Yu et al [108] on CdS nanoparticles, TEM measurements 

showed that the particles' size were about 4 nm in diameter with a narrow size 

distribution and had the cubic zinc blend structure while UV-visible absorption spectra 

showed the main absorption at around 400 nm. The fluorescence spectra of the CdS 

nanoparticles exhibited broad emission bands at about 525 nm with the excitation at 417 

nm.
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CHAPTER 4

EXPERIMENTAL METHODS

4.1. INTRODUCTION

This chapter describes the theoretical background, procedures, and details of the 

experimental techniques for sample preparation and investigation. The main deposition 

technique used was the electrostatic self assembly (ESA). Colloid solutions of 

electrically charged CdS and ZnS nanoparticles, which were suitable for ESA, were 

prepared by aqueous synthesis (described in section 4.2.1). The procedure of samples 

preparation along with the multilayer structure obtained were presented in sections 4.2.2 

and 4.2.3. Sections 4.3 and 4.4 present the optical measurements using UV-Vis 

spectrophotometer Cary 50 from Varian and M2000 Ellipsometer from J. A. Woollam. 

Theoretical background, data analysis, and experimental procedures for both 

experimental techniques will be described in more detail including the technique of total 

internal reflection ellipsometry (TIRE). Atomic force microscopy deploying the 

Nanoscope Ilia from Digital Instrument (Veeco), which was used to observe the 

morphology of the films obtained, will be described in section 4.5. And section 4.6 will 

describe the mercury probe technique combined with Keithley 4200 semiconductor 

characterisation instrument and Hewlett Packard 4284 LCR meter to measure I-V and 

C-V. Section 4.7 presents the electroluminescence measurement using a Hamamatsu 

H7421 photon counter.
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4.2. SAMPLES PREPARATION

4.2.1. Preparation of CdS and ZnS colloid nanoparticles

In this work, the aqueous synthesis method was used to prepare electrically 

charged CdS and ZnS colloid nanoparticles, coated with organic shell containing either 

SOi or NHj groups using thiolate ligand as a capping agent. All chemicals used are 

listed below:

-184 mg of Cadmium chloride (CdCl2, MW=183.31)

- 136 mg of Zinc Chloride (ZnCl2, MW=136.28)

- 278 mg of Lead Chloride (PbCl2, MW=278.1)

- 326 mg of Sodium 2-Mercaptoethane Sulphonate (C2H5 N a03 S2, MW=164.18)

- 228 mg of Cysteamine Hydrochloride (C2H7 NS, MW=113.62)

- 78 mg of Sodium sulphate (Na2S, MW=78.04)

All chemicals used were of high purity purchased from Sigma-Aldrich. All compounds 

were weighed and dissolved in 25 ml of Millipore water, having the resistance of no 

less than 18 MQ.

In order to make CdS SO3“ colloid nanoparticles, firstly, the solution of Sodium

2-Mercaptoethane Sulphonate (0.08 M) was mixed with cadmium chloride solution 

(0.04 M). The Cd2+ and C1‘ ions would form complex bonding with sulphonated species.

CdCl2 + C2H5 N a03 S2 — > CdCl2 {C2H5 N a03 S2}

And then when a sodium sulphide solution is added dropwise to the mixture while it is 

stirred (as shown in Figure 4.1), S ' ions can exchange with C1‘ ions.
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CdCI2

Figure 4.1. The route of making colloid nanoparticles solution.

This reaction is an equilibrium and theoretically reversible, however whereas 

CdCl2 is soluble in water, CdS is not, so CdS particles begin to form. As the CdS forms, 

molecules of the thiol acid complex locate themself on the surface of the forming 

particles, thereby preventing further reaction and aggregation, capping the particles and 

stabilising the colloid.

CdCl2 {C2H5 N a03 S2} + Na2S -— > CdS {C2H5 N a03 S2} + 2 NaCl 

After a while a clear yellow colloid solution of CdS SO3~ appeared.

Colloid nanoparticles of CdS N H \ were made following the same routine but 

using cysteamine hydrochloride as a capping agent. The result is a cloudy yellow 

colloid solution of CdS N H I . Applying the similar routine, for ZnCl2, colloid solutions 

of ZnS SO3” and ZnS NH 2+ nanoparticles were made. All processes were performed at 

room temperature.
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4.2.2. Substrate modification procedures

In this study, glass (BDH super premium microscope slide), quartz, silicon and 

indium tin oxide (ITO from Pilkington), were used as solid substrates. To be suitable for 

electrostatic self-assembly deposition, the substrates need treatments to clean the 

surface and also to improve the surface charge. Glass and quartz microscope slides 

were cleaned in sulphuric/chromic acid mixture for 2 hours at room temperature, 

followed by extensive rinsing with ultrapure water. The substrates were then treated in 

1% KOH solution in 60% ethanol, in the ultrasonic bath for 30 minutes, to make them 

negatively charged due to the presence of OH' groups on the surface [1]. After rinsing 

for the second time with ultrapure water, those slides were dried in the stream of 

nitrogen.

The samples cut from silicon wafer and ITO sheets were soaked in a warm 

sulphuric/chromic acid solution for 2 hours and then rinsed extensively with ultrapure 

water, and dried with nitrogen gas.

4.2.3. Multilayer deposition procedures

The films of CdS and ZnS nanoparticles coated with either negatively (SO^ ) or

positively ( N H I)  charged shells were deposited layer-by-layer onto electrically charged 

solid substrates using intermediate layers of either polycations, such as poly-allylamine 

hydrochloride (PAH), or, polyanions such as poly-styrene-sulfonate sodium salt (PSS) 

[2, 3]. Solutions of PAH and PSS were made by dissolving the respective polymers in 

ultrapure water to achieve the concentration of 2 mg/ml. Typical pH value of these 

solutions was 4.5.
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Substrate

Poly electrolyte

WaterWater

Colloid 
Nan op articles

Figure 4.2. Electrostatic self-assembly deposition cycle.

The procedure of electrostatic self-assembly deposition is shown in Figure 4.2. 

Since the hydrophilic substrates are negatively charged, the film deposition began by 

immersing the substrate into the PAH solution at room temperature to adsorb a 

monolayer of polycation molecules, resulting in a positive surface charge of the film 

surface. After rinsing in Millipore water, the substrate was dipped into the solution of 

negatively charged nanoparticles to adsorb a monolayer, and restoring the negative 

surface charge. These operations complete the deposition cycle of polycation 

monolayer/nanoparticles sandwich unit. By repeating such cycles, multilayer films were 

self-assembled, as shown in Figures 4.3 (a) and (b). In the standard ESA process, the 

film surface remains wet through out all dipping steps.
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In this work, the films were deposited on different solid substrates, such as glass, 

quartz, ITO, silicon and gold, depending on the characterisation technique used. The 

details of samples preparation will be discussed in the following sections.

Samples for UV-Vis spectrophotometry measurements were deposited on 

glass and quartz slides. Multilayers of CdS S 0 3 and CdS NH J nanoparticles were

deposited on glass slides, while quartz substrates were used for ZnS S 0 3 and 

ZnS NH* films, which have the main absorption band in the near UV range.

Multilayers of CdS S 0 3 and ZnS S()3 nanoparticles, were deposited by dipping the

substrate consecutively into 1 M PAH solution and then into respective colloid solutions 

for 10 minutes in each, as shown in Figure 4.3 (a).

PAH

c d s  s o ;

PAH
ELRSS 

(a)

PS5

c d s  nh;

P5S 

PAH
51R55

(b)

Figure 4.3. Deposition of colloid nanoparticles CdS-S0 3 ~ (a) and CdS-NH2 + (b).
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While Multilayers of CdS NH^ and ZnS N H \ nanoparticles, were prepared by 

dipping the substrate firstly into 1M solution of PAH for 20 minutes followed by 

consecutive dippings in 1M PSS solution and in respective colloid solutions for 10 

minutes each, as shown in Figure 4.3 (b). All samples were thoroughly rinsed in 

Millipore water after each deposition step. Several combinations of nanoparticles (CdS 

and ZnS) and polyelectrolytes (PAH and PSS) were made as presented in table 4.1.

Table 4.1. Samples combination of nanoparticles (CdS and ZnS) and polyelectrolytes

(PAH and PSS)

No Type of Sample

1 Substrate-P AH- CdS SO;  -PAH- CdS SO; -PAH

2 Substrate-PAH- CdS SO; -PAH-PSS- CdS NH2+ -PSS-PAH- CdS SO; -PAH

3 Substrate-PAH-PSS- CdS N H +2 -PSS- CdS NH2+ -PSS

4 Substrate-P AH-PSS- CdS NH2+ -PSS-PAH- CdS SO; -PAH-PSS-

5 Substrate-PAH- ZnS SO; -PAH- ZnS SO; -PAH

6 Substrate-PAH- ZnS SO; -PAH-PSS- ZnS NH2+ -PSS-PAH- ZnS SO; -PAH

7 Substrate-P AH-PSS- ZnS NH2+ -PSS- ZnS N H +2 -PSS

8 Substrate-P AH-PSS- ZnS NH2+ -PSS-PAH- ZnS SO; -PAH-PSS-

9 Substrate-PAH- CdS SO; -PAH- ZnS SO; -PAH

Samples for ellipsometry measurements were deposited onto two different 

substrates, silicon and chromium-gold coated slide. Chromium-gold coated slides were 

prepared using an Edwards evaporation unit by consecutive thermal evaporation of 3 

nm of chromium (Cr) followed by the evaporation of 25-30 nm thick of gold (Au)
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without breaking the vacuum of 2xl0 '5 Torr [6]. For standard (external reflection) 

ellipsometry, multilayers of CdS and ZnS thin films, like shown in Figure 4.3 (a and b), 

were deposited on pieces of silicon wafer and chromium-gold coated slide. While for 

TIRE measurements, the films were deposited on chromium-gold coated slides. The 

process of TIRE measurements will be described in more detail in section 4.4.4.

Atomic force microscopy measurements require small samples of 

approximately 1 cm by 1 cm in size. Basically, all kind of flat substrates could be used 

for AFM measurement; silicon and chromium-gold coated slides were used in this work. 

The thin film structures were the same as described in Figure 4.3 (a and b).

For electrical properties measurements (DC and AC measurements), two 

types of samples were prepared: (i) purely polyelectrolyte films consisting of different 

numbers (from 1 to 6) of consecutively deposited layers of PAH and PSS onto ITO 

coated glass slides (Figure 4.4 (a)), and (ii) composite layers of

polyelectrolyte/semiconductor nanoparticles/polyelectrolyte deposited onto ITO coated 

glass slides (Figure 4.4 (b-d)). The number of polyelectrolyte layers and the type of CdS 

or ZnS colloids were varied in order to produce the structures l-P-1 (Figure 4.4 b), 2-P- 

2 (Figure 4.4 c), and 3-P-3 (Figure 4.4 d), as well as 2-P-l, and 3-P-l, where the 

numbers 1, 2, and 3 indicate to the number of PAH or PSS layers on either side of the 

layer (P) of II-VI semiconductor nanoparticles (either CdS or ZnS). The dipping time in 

all solutions (PAH, PSS, CdS and ZnS colloid) was 30 minutes followed by thorough 

rinsing with pure Millipore water.
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(a)

(b)

(d)

(c)

cd5 so;

Figure 4.4. Deposition of polyelectrolyte films (a) and polyelectrolyte/nanoparticles 

sandwich structures: 1-/M (b), 2-P-2 (c), 3-P-3 (d).

Samples of electroluminescence measurements, with the structure shown in 

Figure 4.3 (a and b), were deposited on ITO. The films were coated only three quarter 

of the slides, as the remaining other quarter was used as an electric contact.

4.3. ABSORPTION SPECTRA MEASUREMENTS

Ultraviolet and visible (UV-Vis) absorption spectroscopy is based on the 

measurements of the attenuation of a beam of light after it passes through the sample or 

after reflection from the sample surface; this could be performed at a single wavelength 

or over an extended spectral range. The visible region of the spectrum (400-700 nm) has 

photon energies of 1.77 to 3.10 electron volt (eV), and the near ultraviolet region (out to 

200 nm) extends this energy range to 10 eV. This spectral range has enough energy to

CdS so.

P55
Cd5 nh; 

P55
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excite valence electrons to higher energy levels which correspond to higher molecular 

orbitals.

Empty Levels 
(Possible Excited 
States)

Occupied Levels 
(Ground States)

Figure 4.5. Excitation of electrons between molecular orbitals [4].

In Figure 4.5, a molecule in its ground state of electronic energy level can 

absorb a photon of light if the photon energy is equal to AE.

A E = EX- E 0 = hu  (4.1)

where h is Planck’s constant (6.626 x 10'34 Js), u is the frequency of the radiation in Hz, 

and Ei and E0 are the excited and ground states of the molecule, respectively. The 

minimum photon energy required for absorption will be when Eq corresponds to the 

highest occupied molecular orbital (HOMO) and Ei to the lowest unoccupied molecular 

orbital (LUMO).

Theoretically, the transition could occur from various occupied to empty levels, but in 

reality, excitation only occurs between the two lowest energy transitions. Excitation 

from 7i > 71* and rj > 7i* levels are possible when UV-Vis excitation (range of 200-800 

nm) is used [4, 5].

In general, UV-Vis spectra tend to be broaden due to the fact that vibrational and 

rotational levels of the molecular orbitals are superimposed with the electronic levels as
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illustrated in Figure 4.6. This produces a combination of overlapping lines that appear 

as a continuous absorption bands in the UV-Vis spectrum.

Ei

Eo

v* r rotational levels

VI

vo

V2

VI ILL 

VO II

4 4 4 4 I 4 4 4 I 4 4 4 4 I M M I H

IHIIIIIIIIIIIllllitl
4 4 4 4 4 4 4 4 4 4 4 4 4 4 I I I I I H

vibrational levels
V W yV yV vV v^/vV vV vV-A*

electronic 
excited state

\  rotational levels 

1
vibrational levels
W v V V W v W v V v W /V v V

electronic
V yv/yivVV*/vV,iA *W W '1

ground state

Figure 4.6. Vibrational and rotational levels superimposed with the electronic levels [4].

In the case of crystalline materials, such as semiconductors, all electron 

transitions, including band-to-band, excitons, subbands, between impurities, free 

carriers within a band, and also the resonances due to vibrational states of the lattice and 

of the impurities, contribute to the absorption processes and form the spectrum.

The transitions between a neutral donor and the conduction band or between the valence 

band and the neutral acceptor (Figure 4.7 (a) and (b)) can occur by the absorption of low 

energy photons. In this case, the energy of the photon must be at least equal to the 

ionization energy (E,) of the impurity. The transitions between the valence band and an 

ionized donor or between an ionized acceptor and the conduction band occurs at photon 

energies given by hu>  Eg - Eit (Figure 4.7 (c) and (d)) [6].
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(a)

CONDUCIION ft«ND

VALENCE RAND

(b)

■+

(c) (d)

Figure 4.7. Absorption transitions between impurities and bands: (a) donor to 

conduction band; (b) valence band to acceptor; (c) valence band to donor; and (d)

acceptor to conduction band [6].

The fundamental absorption referring to band-to-band or exciton transitions can 

be used to determine the energy gap of the semiconductor. However, the estimation of 

the energy gap from the “absorption edge” is not a straightforward process, since the 

electron transitions obey certain selection rules. The absorption transitions take place 

between two direct valleys where all the momentum-conserving transitions are allowed. 

Every initial state at Et is associated with a final state at E/

Ef = h u - \E i\ (4.2)

In some materials, quantum selection rules forbid direct transitions without a change in 

the momentum. Momentum is conserved via a phonon (a quantum of lattice vibrations) 

interaction. Only phonons with the required momentum change are usable, although a 

broad spectrum of phonons is available.

As mentioned in Chapter 2, the formation of excitons usually appears as narrow 

peaks near the absorption edge of direct-gap semiconductors, or as steps in the
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absorption edge of indirect-gap semiconductors. In direct-gap materials, the free

excitons occur when the photon energy is hv = Eg -  Ex (Ex is the binding energy of 

exciton). Excitons can also be created by higher-energy photons, having excessive 

kinetic energy. In indirect-gap materials, phonon participation is needed to conserve the 

momentum. Therefore, an increase in absorption coefficient is obtained at

where Ep is the phonon energy.

In semiconductors, optical absorption happens for photons with the energies 

smaller than the bandgap and also for photons with energies greater than the bandgap. 

As a result, there is a sharp increase in the absorption at energies close to the bandgap 

that manifests itself as an absorption edge in the UV-Vis spectrum. While the 

absorption edge is indicative of the location of the bandgap, the accurate estimation of 

the bandgap requires the use of the following formula.

For direct bandgap semiconductors [4]:

where a  is the absorption coefficient, hro is the energy of incident photons and Eg is the

hv = Eg -  Ep -  Ex, for the transition with phonon absorption (4.3)

hv = Eg + E -  Ex, for the transition with phonon emission (4.4)

(4.5)

electronic bandgap of the semiconductor. Eg can be found as an intercept of the straight 

line obtained by plotting ( a h  a) vs h a .

While for indirect bandgap semiconductors [4]:

(4.6)

Eg is given by an the intercept of a straight line obtained by plotting Va h a  vs h a.
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4.3.1. Basic principles of UV-Vis spectrophotometry

/ Monochromator

¥
Detector

or
Sample amplifier — readou t

source

Figure 4.8. Basic principle of UV-Vis spectrophotometry [7].

As shown in Figure 4.8, the basic parts of a Ultraviolet-visible spectroscopy are 

a light source, a diffraction grating or monochromator to separate the different 

wavelengths of light, and, typically, a photodiode or CCD array as a detector. The 

instrument operates by passing a beam of light through the sample and measuring the 

attenuation of the intensity after it passes through. The intensity of light passing an 

absorbing material is reduced according to Beer’s law:

where /, is the measured intensity after passing through the material, IQ is the initial 

intensity, a  is the absorption coefficient and / is the thickness of the material (in cm).

If the light reflection is taken into account, Equation (5.1) would be rewritten:

where R is the reflectance. At normal incidence of light and transparent medium, R does 

not usually exceed 1% and thus can be neglected.

The absorbance (A) of the material is related to the logarithm of the /<//, ratio [8, 9]:

where A is absorbance (ABS).

1 = 1  e~al*t 1o e (4.7)

(4.8)
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Hence the absorption coefficient (a) can be obtained from the experimental value of 

absorbance:

2.303,4 _ _i,a  = — -—  [cm ] (4.10)

where the value of 2.303 is the change factor between In and log. Then the extinction 

coefficient (k), which is defined as an imaginary part of the complex refractive index (n* 

= n -  ik) can be obtained as:

k = —  (4.11)
An

where X is the wavelength of the light.

Absorption coefficient (a) and extinction coefficient (k), are characteristic 

optical parameters of the materials. In the case of thin films, they depend on the 

molecular spectra which consist of several spectral lines (bands) corresponding to 

electron transitions between the occupied and unoccupied electron levels of molecules. 

The absorption peak position, intensity and half-width of the band also depend on the 

structure of the molecular crystal. Therefore, UV-Visible spectra provide information 

about chemical contents and the structure of thin film.

4.3.2. UV-Vis spectrophotometer-Varian Cary 50

CARY 50, UV-Vis spectrophotometer, from Varian Australia Pty. Ltd., has a 

unique design as shown in Figure 4.9. A xenon flash lamp is used as a source of UV-Vis 

radiation which offers many advantages over traditional UV-Vis spectrophotometers. 

The xenon lamp flashes with the frequency of 80 Hz and data points are acquired during 

that short pulse of flash [10]. This reduces the exposure of the sample to the entire 

wavelength range and so reduces the degradation of photosensitive samples. As the light 

flashes from the xenon lamp are very intense, the Cary 50 can use a beam splitter
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without the loss in the energy that causing excessive photometric noise. The beam 

splitter allows simultaneous reference beam correction, so peaks will not shift as the 

scan speed changes. This means that the wavelength shift errors associated with 

traditional scanning methods are eliminated.

The flashes also make Cary 50 immune from the room light. This allows the 

measurements of large samples with the lid off without affecting the result.

Figure 4.9. Schematic diagram of Varian Cary 50 UV-Vis spectrophotometer [11].

I
The maximum scan rate of Cary 50 is 24 000 nm per minute, that means, only take less 

than 3 seconds to scan the whole wavelength range of 190-1100 nm. This makes the 

measurements using Cary 50 very fast. It also can measure dense samples of up to 3 in 

Abs, so the liquid sample solutions do not need to be diluted so often. The Cary 50 is 

controlled by the new Cary WinUV software. This Windows based software features a 

modular design which makes it easy to use.

Detector

Sample

Monochromator 
Selects Wavelength

Xu F lash Lamp 
Light Source
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4.3.3. Procedure of UV-Vis spectrophotometry measurements

A Varian CARY 50, UV-vis spectrophotometer was used to determine the 

absorption spectra of CdS (or ZnS) colloid solutions and multilayer films deposited onto 

glass and quartz substrates. Firstly, for the absorption spectra of colloid solutions 

measurements, the wavelength range was set from 200 to 900 nm. Then the absorption 

measurements were carried out for an empty 2 ml quartz cuvette. The results were 

automatically saved by the software as a baseline. Then, CdS and ZnS nanoparticles 

colloid solutions were diluted: 100, 200, 500 and 1000 times. The absorption spectra of 

the solutions were measured by putting the solution into 2 ml quartz cuvette, mounted 

into a sample holder in the spectrophotometer. The results were saved as absorption of 

CdS and ZnS colloid solutions.

Secondly, the wavelength range, for absorption spectra measurement of 

multilayer films on solid substrates, was set to 300-900 nm for CdS SO3- and CdS N H \

nanoparticles, while ZnS SO3- and ZnS NHj films were measured in the 200-800 nm 

range. Cleaned glass and quartz slides were measured as the respective baselines. Then 

the samples containing CdS SO3“ , CdS N H \ , ZnS SO3~ and ZnS NH 2+ nanoparticles,

described in section 4.2.3.1, were measured. The values reported are the average of 

measurements taken at several locations on each sample.

4.4. ELLIPSOMETRY MEASUREMENTS

Ellipsometry is a powerful optical analytical technique for the investigation of 

the dielectric properties (complex refractive index or dielectric function) and thickness 

of thin films. As an optical technique, spectroscopic ellipsometry is non-destructive and 

non-contact.
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4.4.1. Reflectance and Brewster angle

The basic theory of Ellipsometry was developed by Drude [12]. It involves the 

reflection of a plane polarised light from a solid surface (see Figure 4.10). In a simple 

case of one interface, when a plane polarised light is incident to the surface, some of the 

light is reflected and some is transmitted.

Figure 4.10. Schematic of the ellipsometry experiment.

Plane polarized wave can be decomposed into two components: one parallel to 

the plane of incidence defined as p-component, while s-component corresponding to the 

wave perpendicular to the plane of incidence. These two components reflect differently 

from the surface depending on the angle of incidence.

The Fresnel reflection coefficient r is the ratio of the amplitude of the reflected wave to 

the amplitude of the incident wave. The Fresnel reflection coefficients are different for 

p  and s components, and can be obtained from electro-magnetic theory: [13-16]



where nj is the refractive index of the incidence medium, «2 is the refractive index of the

solid substrate, 61 is the angle of incidence on the sample, and 62 is the angle of 

refraction which can be related to 0t using Snell’s law

Generally, at the Brewster angle, the Rp is at a minimum, so the difference between Rp 

and Rs is maximized.

In more complicated case where the system has multiple interfaces (see Figure 

4.11), the light transmitted through the first interface can not be disregarded.

J. A. W oollam Co., Inc.

Figure 4.11. Reflections and transmissions in multiple interfaces samples [17].

The resultant reflected wave is made up of the light reflected directly from the 

first interface plus all of the secondary reflections on the interface between medium 1 

and medium 2. Each successive transmission back into medium 1 is smaller than the 

incidence wave. The result of addition of the infinite series of partial waves has been 

derived by Azzam [15] as:

nx sin#, = n2 sin0 2 (4.14)

(4.15)
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Reflection coefficients for p- and s- components of polarised light are given as:

r ’ + r’ e r t - n f f )
1+ rn\r\ i  Cxp(-l'2/S)

Rs = l k ± I n ^ ± m .  ( 4 . 1 7 )
l + r0>i*2exp(-/2/?)

where rn  is the Fresnel reflection coefficient for the interface between medium 1 and 2. 

While the phase thickness, p , is given by:

( d  \P = 2n —  n,cosOx (4.18)
V ^

where d  is the film thickness.

4.4.2. Delta (A) and Psi OP)

The angles of A and !Pare related to the ratio of the complex values Rp and Rs. W 

represents the ratio of their magnitudes, and delta is the difference in their phase. If Si is 

defined as the phase difference between the perpendicular and parallel components of 

the incident wave, and 82 as the phase difference between the same components for the 

outgoing wave. Then the change in phase difference between parallel and perpendicular 

components of the incident wave that occurs upon reflection, called A, could be defined 

as:

A = 8 , - 8 2  (4.19)

While Psi (P) is defined as:

tan 4* =1—4  (4.20)
\R s \

These definitions lead us to the fundamental equation of ellipsometry: [14-16]

tan^P exp(/A) = —  (4.21)
R s
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The changes on A and W depend on the optical constants of the substrate (ri2, k2), the 

angle of incidence 0, the optical constants of the film («/, kj) and the film thickness d 

(see Figure 4.10). The optical constants of a material represented in the complex form is 

shown as

N  = n - ik

where n is refractive index and k  is extinction coefficient.

(4.22)

While n and k  are defined as [17]:

and

n = < £ '+
■2 <J.s' +

.2  \

2 _24 £ CO
(4.23)

k = £ '+ £ * + -
4£ 2 CO2

(4.24)

where s ’ = rf-k2, oc is conductivity of the material, s is dielectric constant, and m is the 

angular frequency of light (co = 2 n f  f  is frequency ). For conductive samples

«  1, and for dielectrics »  1.
£ CO £G)

4.4.3. J. A. Woollam Variable Angle Spectroscopic Ellipsometry (VASE) - M2000V

There are several types of ellipsometer configurations which have been 

developed and used for decades (Figure 4.12) [17, 18]. The first ellipsometer is called 

null ellipsometer because the measurements were obtained by adjusting the orientation 

of the polarizer, compensator, and analyzer so that the light incident on the detector is 

extinguished or "nulled". This type of ellipsometer is usually adjusted manually. 

Although this configuration is very accurate and has low systematic errors, its operation 

is slow and spectroscopic measurements are very difficult to make.
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Figure 4.12. Ellipsometer configurations. [17]

The second configuration is phase modulation ellipsometer (PME). The main 

advantage of this configuration is a very fast data acquisition rate, (theoretically 10 

milliseconds per point) because it uses a time dependent retarder that can operate at very

high rates of ~50 kHz as a photo elastic modulator. The measurements are performed by

adjusting the amplitude of the modulation at each wavelength at a time. In this case, the 

advantages of such high modulation rate are lost because of the limited mechanical 

speed at which the monochromator can change the wavelengths. These types of 

ellipsometers are also difficult to calibrate due to the temperature sensitivity of the 

modulator.

The modern configurations are rotating polarizer ellisometry (RPE) and rotating 

analizer ellisometry (RAE). The operating characteristics of these configurations are 

very similar. Both of them are not using the retarding element. There are several 

advantages of using only polarizers:

• Polarizers are achromatic over a wide spectral range

• Polarizers are relatively easy to construct.

• Polarizers are relatively easy to align within a system.
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However, there are several disadvantages of a system without a retarder (compensator):

• Sensitivity is lost when delta is near 0 or 180°

• One of the elements must be rotated at a speed that is typically limited from 10 

to 60 Hz. This is usually not a problem because the time required to make one 

measurement with adequate signal to noise ratio is not fundamentally 

determined by the rotation speed unless the light source is very intense.

The latest configuration is rotating compensator ellipsometer (RCE). This configuration 

compensates for most of the disadvantages of the rotating element ellipsometry 

configurations. These advantages include: accurate measurements of the ellipsometric 

A and W parameters over the complete measurement range (i|/=0-90°, A=0-360°), no 

residual input or output polarizations sensitivity and the capability to directly measure 

depolarization effects. However RCE have only recently been constructed due to the 

perceived difficulty of constructing a mechanically rotatable compensator element that 

behaves ideally (retardance about 90°) over a wide spectral range. This special 

construction are used in new instruments from J. A. Woollam such as IR-VASE and the 

M-2000.

In this work, M-2000V, a variable angle spectroscopic ellipsometer (VASE) 

from J.A. Woollam. Inc, operating in the spectral range of 370-1000 nm, was used to 

obtain the dielectric parameters and the thickness of the films. M-2000 is a rotating 

compensator ellipsometer (RCE) with CCD array detection to provide fast and accurate 

ellipsometry measurements over a wide spectral range. As compared to conventional 

ellipsometry, M-2000 series offer several advantages such as flexibility, accuracy and 

fast measurement. The incidence angle could be adjusted at an angle near the Brewster 

angle for each sample, the measured A values are around 90°, where the sensitivity to 

the layer thicknesses and optical constants is the highest. The schematic diagram of M- 

2000V VASE is shown in Figure 4.13.
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Figure 4.13. Schematic of Variable Angle Spectroscopy Ellipsometry.

The light from a 50 W quartz tungsten halogen lamp (the wavelength range from 

350 nm to 2 pm) is coupled to a fiber optic cable and passed through the polarizer to get 

linearly polarised light. A monochromator is placed before the sample to get 

monochromatic and low intensity light. This is important when studying photosensitive 

materials. The light intensity is low enough not to damage the samples. The rotating 

compensator is used to overcome A insensitivity caused by rotating element 

ellipsometer. It gives an accurate measurements of the ellipsometric A and *P 

parameters over the full measurements range, (y/ = 0 - 90°, A = 0 - 360°). The light is 

reflected from the sample. The reflected light, in general, being elliptically polarised, is 

going through the second polarizing element, analyzer. Finally, the light is collected 

with a diode array which is specially designed to register the entire spectrum 

simultaneously.
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4.4.4. Total internal reflection ellipsometry (TIRE)

TIRE appeared as a combination of spectroscopic ellipsometry with the SPR 

Kretschmann geometry of total internal reflection [19]. Total internal reflection is a 

situation in which light is completely reflected at an interface where the refractive index

incidence angle, is greater than the critical angle, 0 c as defined by following 

equation:

where no is the refractive index of the first (incident) medium and n\ is the refractive 

index of second medium.

When a thin layer of a noble metal (e.g. gold) is present at the interface between 

the two media, the oscillations of free electrons, called surface plasmons (SPs), are 

introduced. Surface plasmons propagate along the surface of the metal/dielectric 

interface, as shown in Figure 4.14.

of the incident medium is larger than that of the reflecting medium. It happens when the

(4.25)

Metal film

Waveguide

Incident light Reflected light

Figure 4. 14. Graphical representation of wavevector matching [20].

1 1 8



The frequency range of surface plasmons depend on the complex dielectric 

function of the metal (sm)  and the dielectric function of the adjacent medium (sf), as 

shown by the following equation [21]:

(4-26)

where ksp is the wave vector of the surface plasmon and (co/c) is the wave vector of light 

in vacuum.

As shown by equation (4.26), surface plasmons can not be excited directly by 

light because they have a longer wave vector than the incident light (kught = co/c). 

However, by using a prism or a grating coupler [22] at specific angle, the light wave 

vector could be modified to match the surface plasmons' wave vector. When the wave 

vector is matched, a substantial fraction of light energy is transferred to the plasmons in 

the metal film and causes the plasmons to resonate. As the result of this, the intensity of 

the reflected light is reduced. This phenomenon is called Surface Plasmon Resonance 

(iSPR), and that specific angle of incidence is called the surface plasmon resonance 

angle (6 spr). The surface plasmon resonance angle mainly depends on the properties of 

the metal film, the wavelength of the incident light and the refractive index of the media 

on either side of the metal film [23,24].

SPR technique is performed by scanning the angle of incidence and measuring 

the reflected light intensity. When the light is coupled to the samples, the momentum of 

the photons and plasmons can be described by vector functions having certain 

magnitudes and directions. Altering the angle of incidence would change the component 

of the wavevector parallel to the prism base, therefore only the x-component of wave 

vector parallel to the surface would be contributed to SPR curves. All the light which is 

not /7-polarized will not contribute to the SPR and will increase the background intensity
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of the reflected light. The reflection coefficient for p-polarized incident light is given by 

the formula:

rp = Er /  Et (4.27)

where Er is the electric field component of the light reflected from the interface, and Et 

is the electric field component in the plane of incidence of the light transmitted through 

the interface. The light reflected from the interface can be calculated using the formula: 

Rp = lrp l 2 (4.28)

The typical SPR curve of metal film is shown in Figure 4.15 as a reflectivity 

versus the incidence angle. As the angle increases to a critical angle (0C), the reflectivity 

reaches its maximum level close to 100 %. When the angle of incidence is further 

increased, the reflectivity is reduced and reached the minimum at 6 o due to the SPR 

phenomenon.

1=*
gS

•
-i—>o<u

P4

1

0

Angle o f  incidence, 0

Figure 4.15. A typical SPR curve of metal film showing the critical angle (Qc) and the

angle of incidence minimum ( 6q) [24].
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Both the position of the SPR minimum and the half-width of the SPR curve depend 

on the optical parameters (refractive index, and extinction coefficient) and thickness of 

metal film. The presence of a thin dielectric film on the metal surface would cause a 

shift of the surface plasmon dispersion curve to higher momentum. Consequently, the 

SPR curve will be shifted to higher angles and possibly broadened as shown for 

example in Figure 4.16 for calix-4-resorcinarene monolayers deposited onto gold film 

(A. Hassan and coworker [25]). This means that SPR is a surface sensitive technique 

and can be used for thin films characterization [25-27] and bio/chemical sensing [28-31].
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Figure 4.16. Experimental SPR curves for gold film, and those of LB films of calix-4- 

resorcinarene deposited on it. The number of monolayers is indicated on the 

corresponding curve. The inset presents the dependence of the resonance shift (A O s p r )

on the thickness of the LB films [25].

By combining the advantages of SPR and ellipsometry, total internal reflection 

ellipsometry (or TIRE) offers two experimental parameters in comparison to only one in
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SPR. The F(X) spectra are similar to SPR curves, while the A (X) spectra that represent 

the phase shift between p- and components is a new quantity that does not exist in 

SPR technique. A sharp drop in A near the resonance makes the TIRE method 

extremely sensitive to small changes in the optical parameters of the reflection system 

and even more sensitive than conventional ellipsometry. Arwin and coworkers showed 

that TIRE can lead to a substantial increase in the sensitivity [34]. The work of Nabok 

and coworkers also proved that TIRE have a ten fold higher sensitivity as compared to 

both standard ellipsometry and SPR, and therefore was successfully used in biosensing 

for the registration of low molecular weight toxins [32, 33].

4.4.5. Modelling and data analysis

As mentioned before, spectroscopic ellipsometry does not directly measure the 

film thicknesses or optical constants, instead it measures W and A spectra for a particular 

sample. To extract useful information about the sample, normally, an analysis of 

ellipsometric XF  and A data has to be performed step by step as shown in Figure 4.17.

M easurem ent 
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* Exp. Data

n,k
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i ̂ ComparejI  ̂*
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Uni form ii>
\  •: . . . .  /

Gen. Data

Figure 4.17. Ellipsometry modeling process [17].
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The first step is to build a model for the optical structure of the sample. The 

model should include the substrate, one or more layers on top, and the medium, each 

characterised by optical constants values (n, k) and thicknesses (d). For example, Figure 

4.18 shows a model for 2 layers of thin films on solid substrate. The model should start 

with the simplest one adding the complexity if required. The order of layers is also very 

important.

Medium

2 Layer 2 (n2, k2) Thickness 2

1 Layer 1 (ni, ki) Thickness 1

0 Substrate (no, ko) 1 mm

Figure 4.18. Model of thin films on solid substrate.

The next step, the best guess for n, k and d  values should be entered and data 

must be generated from the model and then compared to the experimental 

data. Choosing the correct guess values is very important. Figure 4.19 shows that the 

error function has several minima in a multi-dimensional space of variable parameters. 

A wrong set of initial parameters may lead the search in a wrong direction resulting in 

finding the wrong minimum which is not adequate to the real system. In other words, if 

the guess values of the unknown parameters are too far off, the regression algorithm 

could give wrong values.
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Figure 4.19. The illustration of choosing guess values as close to the actual values as 

possible so that the algorithm can settle on a best fit instead of a local minima [17].

The quality of the model fitting can be judged from the actual fitting curve and 

also from the mean squared error (MSE) value. WVASE32® uses a mean squared error 

(MSE) to quantify the difference between the experimental and calculated model 

data. The smaller MSE implies a better fit. The MSE is weighted by the error bars on 

each measured data point.

1 -

MSE =    y
2 N  - M

1
I N  -  M

/=i

X

Vp mod _  xp exp

C7
exp +

înod   /\exP

er exp

V, (4.29)

Using an iterative procedure (least-squares minimization), the unknown optical 

constants and/or thickness parameters are varied, and W and A values are calculated 

using Fresnel equations. The calculated lF  and A values, which match the experimental 

data the best, provide the optical constants and thickness parameters of the sample.

Once the fitting is complete, the resulting parameters must be evaluated for the 

sensitivity and possible correlation. To do this, the following steps can be taken:

• Compare the experimental data to the generated data.
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• How low is the MSE? Can it be reduced further by increasing the model 

complexity?

• Are fitting parameters physically feasible?

• Perform fitting several times from different initial conditions.

To determine if the fitting parameters are physically correct, it is important to use some 

intuition with respect to the physics involved. For example:

• there should be no zero or negative thickness values.

• for insulators, generally, k = 0 and n must decrease with the increasing in X.

• k  can not be negative.

4.4.6. The procedure of ellipsometry measurements

4.4.6.I. External reflection ellipsometry

Before the measurements, the instrument was calibrated using a standard silicon 

wafer with the SiC>2 thickness of 1097 ± 3A and refractive index of 1.462 ± 0.002. The 

measurements were carried out in air, and the angle of incidence was set at 70° (near 

Brewster angle of silicon). Firstly, the measurements were carried out on a piece of bare 

silicon, showing typical ellipsometry spectra, y/(X) and A (A). The results were recorded 

as a blank substrate. Next, the same procedure was applied to the same silicon sample 

coated with thin films of polyelectrolytes and nanoparticles and the results were 

recorded. To determine the film thicknesses and optical constants of the films, a model 

layer was constructed for each set of experimental data, and the experimental \j/(X) and 

A(X) spectra were fitted using WVASE32® software provided by J.A. Woollam Co. 

[14].

125



4.4.6.2. Total internal reflection ellipsometry

The TIRE experimental set-up was built on the basis of the J.A. Woollam M- 

2000V rotating analyser spectroscopic instrument; and contains a coupling prism, made 

of glass (BK7, n=1.515); and a 1.5 cm cell [39, 40]. The schematic view of the system 

is presented in Figure 4.20. A beam from the light source (Tungsten lamp) was going 

through a monochromator and polarizer and then was refracted by 68° prism to a 

chromium/gold coated glass slide which was attached to the prism via index matching 

fluid (immersion oil). The choice of the prism depends on the type of medium used: 68° 

prism is recommended for aqueous media, while 45° prism should be used for 

measurements in gaseous media. The reflected beam, after passing through the analyser, 

was collected by photo detector. The cell attached to the gold layer, has inlet and outlet 

tubes allowing the injection of different solutions into the cell using the syringe.

4

/ /
:: « *..............x.............. 0

1. Light source;
2. Polarizer;
3.68° prism;
4. Glass slide with 

Cr-Au coating;
5. The cell;
6. Inlet tube;
7. Outlet tube;
8. Analyzer;
9. Photo detector

Figure 4.20. Total internal reflection ellipsometry set-up.

Both dynamic and static spectroscopic scans were performed. Firstly, pure water 

was carefully injected into the cell. The layer of gold should be soaked with water, 

without producing any bubbles. The measurements have to be taken after 5-10 minutes 

of stabilisation, the results were recorded for a blank substrate to obtain the initial
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thickness of Chromium and gold layers. Afterwards, the cell has to be emptied followed 

by the injection of PAH solution, and the dynamic scan was performed for 30 minutes, 

by measuring a number of y/ and A spectra at a certain time interval. It has to be noted 

that the fitting of dynamic scan data is difficult because of unknown refractive index of 

the solution. The next step is rinsing the cell with ultrapure water, followed by 

measuring the spectra by normal spectroscopy scan. Then the colloidal CdS SO3“ (or

ZnS SO^) solution was injected into the cell for 30 minutes and the dynamic scan was

performed. After rinsing, the spectra were measured again. The measurements of 

dynamic and static spectroscopic scans of multilayer films structure could be performed 

by repeating the procedures above.

4.5. ATOMIC FORCE MICROSCOPY MEASUREMENTS

The surface imaging technique of AFM is used to get information about film's 

morphology, such as, the uniformity, grain distributions or defect formation on the film 

surface. An AFM can image any surface, insulating or conducting without damaging the 

surface. A wide range of materials has been investigated using this technique including 

semiconductors, polymers, thin or/and thick film coatings, synthetic and biological 

membranes, metals and composites.

4.5.1. Basic principles

The first AFM was developed by Gerd Binnig, CF Quate and Christoph Gerber 

in 1985 [34, 35]. They used a cantilever made from a tiny diamond crystal glued onto 

one end of a gold foil strip to examine insulating surfaces. Lateral features as small as 

300 A were imaged. This first AFM used a scanning tunnelling microscope at the end of 

the cantilever to detect the bending of the lever [34, 36].
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Figure 4.21. Schematic of Atomic Force Microscopy [37].

The schematic diagram of modem Atomic Force Microscopy (AFM) exploiting 

optical registration system is shown in Figure 4.21. AFM measures attractive or 

repulsive forces between the tip (probe) and the sample by sensing the atomic force 

interactions between them. The distance of the tip to the surface is controlled within the 

scale of a few angstroms within a range of chemical bonds. A constant force is 

maintained between the sample and the tip, as it follows the contours of the surface. 

There are three basic components of AFM: force transducer, piezoelectric transducer 

and feedback control.

Force Transducer is constructed to measure the force between the probe (tip) 

and the sample surface. The output was converted to the electronic signal and used in a 

feedback control system to maintain the force. In order not to break the probe, the force 

sensor must be able to measure very low force as low as 10 pN (picoNewtons). Several 

transducing techniques were often used, such as the optical beam deflection technique 

[12, 38], optical interferomety [39], laser diode feedback detection [40], and capacitive 

lever displacement [41]. The most popular optical beam deflection technique uses an
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optical lever device which is easy in use and can achieve high resolution [42-44]. The 

optical lever operates by reflecting a laser beam from the back of the cantilever. The 

reflected beam is collected by a position sensitive detector (PSD) consisting of two side- 

by-side photodiodes. Angular displacement of the cantilever causes a twofold angular 

deflection of the laser beam, resulting in one photodiode would collect more light than 

the others. The difference between the photodiode signals, normalized by their sum 

which is proportional to the deflection of the cantilever, is collected by a differential 

amplifier as an output signal.

Figure 4.22. The most widely used form of cantilever deflection detection

Because the cantilever-to-detector distance generally measures thousands of times the 

length of the cantilever, the optical lever greatly magnifies the motion of the tip. 

Because of this approximately 2000-fold magnification, the optical lever detection can 

theoretically achieve a noise level of 10'14 m/Hz1/2 [38].

Piezoelectric transducer is electromechanical device that converts electrical 

potential into mechanical motion and vice versa. It expands and contracts proportionally 

to the applied voltage. The piezoelectric effect is reversible since mechanical 

deformations of the non centrocymetrical crystal cause the appearance of electrical 

charges and thus the electric potential. The magnitude , of the dimensional changes
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depends on the material, the geometry of the device, and the magnitude of the applied 

voltage (Figure 4.23).

OY + Y -V

Eiearoce
No applied voltage Extended Contracted

Figure 4.23. The effect of applied voltage on piezoelectric materials. [34]

In the AFM, piezoelectric material is used to construct the scanner tube. To be 

able manipulate the sample and probe in three dimensions, the scanner is constructed by 

combining independently operated piezo electrodes for X, Y and Z into a single tube. 

Ideally, the piezoelectric ceramics would expand and contract in direct proportion to the 

driving voltage. However, piezoelectric materials have two primary non-ideal 

behaviours: hysteresis and creep.

Hysteresis is caused by the differences in the material properties and dimensions 

of each piezoelectric element which responds differently to an applied voltage as shown 

in Figure 4.24.
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Figure 4.24. Non ideal behaviour of piezo materials: hysteresis (above) and creep

bottom) [44].
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While creep occurs when the piezo material is subjected to a sudden impulse 

such as a voltage step function. When an offset DC voltage is applied, the piezo 

material will move the tip to the offset distance. However, it does not move all at once: 

it initially moves the majority of the offset distance quickly, and then slowly moves 

over the remaining distance (see Figure 4.24). These non-ideal behaviours must be 

corrected or they cause distortions in AFM images.

Feedback control is used to maintain a force between the probe and the surface. 

It operates by measuring the force between the surface and probe, then controlling a 

piezoelectric ceramic that establishes the relative position of the probe and surface. As 

the piezo material expands, the motion sensor measures the position of the probe and 

surface. Output from the motion sensor is used to correct the movement of the piezo.
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Figure 4.25. Block diagram of an x-y closed loop scanner configuration. [44]

The feedback system enables the piezoelectric scanner to maintain the tip 

operating at one of the two modes: constant force (to obtain height information), or 

constant height (to obtain force information). In constant height mode, during the 

scanning, the tip is maintained at a fixed height above the surface sample, hence the 

spatial variation of the cantilever deflection can be used directly to generate the 

topographic data set. In constant-force mode, the deflection of the cantilever,
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responding to the topography, is used as an input to a feedback circuit that moves the 

scanner up and down in z-axis. By doing this, the total force applied by the cantilever to 

the sample is constant.

4.5.2. Imaging and measurements

As mentioned above, AFM operates by measuring attractive or repulsive forces 

between the tip and the sample. Two types of tip-surface interactions depending on the 

separation between the tip and the sample are shown in Figure 4.26. During close 

contact with the sample, the repulsive van der Waals forces would dominate the 

interaction with the tip. While long-range interaction, notably electric or magnetic 

forces, may dominate sample-tip interaction if the tip is far enough from the sample. 

Therefore AFM can operate in three main regimes: contact mode, tapping mode, and 

non-contcict mode.

repu 1st ve force

distance  
(tip-to-sam ple separation)contact

lon-oontact

a ttra c tiv e  fo r c e

Figure 4.26. Potential energy diagram of a probe/sample system [34].

Contact mode is based on repulsive forces between the tip and the sample. In 

this mode, the tip contacts the surface either directly or through the adsorbed fluid layer 

on the sample surface. Electrostatic and/or surface tension forces from the adsorbed
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fluid layer pull the scanning tip toward the surface but the repulsive force is set with a 

piezoelectric positioning element to drive the cantilever away from the sample surface. 

Hence the force between the tip and the sample remains constant. Force constants 

usually less than 1.0 N/m, resulting in forces ranging from nN to pN in an ambient 

atmosphere. The force could be calculated from Hooke's law:

F = - k . x (4.30)

where F is Force, k is spring constant and x is cantilever deflection.

Feedback Loop Maintains 
C onstan l Canfi lever Deflection

P
Controller
Electronics

Laser

Detector
Electronics:

t acl
'1‘Snil

J

Split ’  ' S  
Photodiode 
Detector

X.Y

7

Scanner

C antilever A Tip

Sniriplc

Figure 4.27. Schematic of the contact mode AFM [34].

The topographic data set of the sample surface is obtained from the vertical 

distance of scanner movement at each point (x, y). Advantages of the contact mode are:

• High scan speed

• Contact mode AFM is the only AFM technique which can obtain "atomic resolution"

images.
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• Rough samples with extreme changes in vertical topography can sometimes be 

scanned more easily in contact mode.

And the disadvantages are:

• Lateral (shear) forces can distort features of the image.

• The forces normal to the tip-sample interaction can be high in air due to capillary 

forces from the adsorbed fluid layer on the sample surface.

• The combination of lateral forces and high normal forces can result in the reduced 

spatial resolution and may damage soft samples (i.e., biological samples, polymers, 

organic film) due to scraping between the tip and the sample.

Tapping mode is the next most common mode and a key advance in AFM. In 

this mode, the tip is placed in contact with the surface to provide high resolution and 

then the tip is lifted off the surface to avoid dragging the tip across the surface. The 

piezoelectric crystal oscillates the cantilever at (or near) its resonant frequency (in the 

range of hundreds of kHz) with the amplitude from 20 nm to 100 nm. Then the 

oscillating tip is moved towards the surface until it begins to lightly touch (or tap) the 

surface. During scanning, the vertical oscillating tip alternately contacts the surface and 

lifts off, generally at a frequency of 50 kHz to 500 kHz. During the scanning, the 

feedback loop maintains a constant oscillation amplitude by”maintaining_a_constant 

RMS of the oscillation signal acquired by the split photodiode detector (Figure 4.28). 

By maintaining a constant oscillation amplitude, a constant tip-sample interaction is 

maintained during imaging. The vertical position of the scanner at each (x, y) data point 

in order to maintain a constant setpoint amplitude is stored by the computer to form the 

topographic image of the sample surface.
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Figure 4.28. Schematic of the tapping mode AFM [34].

Advantages:

• Higher lateral resolution on most samples (1 nm to 5 nm).

• Lower forces and less damage to soft samples imaged in air.

• Lateral forces are virtually eliminated, so there is no scraping. 

Disadvantages:

• Slightly slower scan speed than that of the contact mode AFM.

Non-contact mode is another method that may be employed when imaging by 

AFM. This technique is based on attractive forces between the tip and sample. In this 

mode, the tip does not contact the sample surface, but oscillates around 50-150 A above 

the adsorbed fluid layer on the surface [60]. The cantilever is oscillated at a frequency 

which is slightly above the cantilever’s resonance frequency typically with an amplitude 

of a few nanometers (<10nm), in order to obtain an AC signal from the cantilever. The
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cantilever's resonant frequency is decreased by the van der Waals forces and by other 

long range forces which extend above the surface. The decrease in resonant frequency 

causes the amplitude of oscillations to decrease. The feedback loop maintains a constant 

oscillation amplitude or frequency by vertically moving the scanner at each (x, y) data 

point until a "setpoint" amplitude or frequency is reached (Figure 4.29). The distance 

the scanner moves vertically at each (x, y) data point is stored by the computer to form 

the topographic image of the sample surface. This is a very difficult mode to operate in 

ambient condition with the AFM.
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Figure 4.29. Schematic of the non-Contact mode AFM [34].

Advantage:

• No force exerted on the sample surface.
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Disadvantages:

• Lower lateral resolution, limited by the tip-sample separation

• Slower scan speed than tapping or contact mode to avoid contacting the adsorbed fluid

layer which results in the tip getting stuck.

• Non-contact mode usually works on extremely hydrophobic samples, where the 

adsorbed fluid layer is very thin. If the fluid layer is too thick, the tip becomes 

trapped in the adsorbed fluid layer causing unstable feedback and scraping the sample.

4.5.3. Quantitative analysis on AFM images

A great amount of information could be extracted from AFM images through 

visualization of the images which are stored in a computer as a three dimensional array 

of numbers. The array of numbers can be processed, displayed, analyzed and then 

reported by specialized image processing software. There are several ways of displaying 

images to make them more interesting to view by changing the display parameters using 

the software without changing the AFM data. Images could be displayed as either 2- 

dimensional or 3-dimensional projections. The 2-D image is shown in the x and y axis 

and the colour is used to depict the height. While 3-D image is displayed in the x, y and 

z axis as an interpretation of what the surface topography actually looks like. Often the 

scale on the x, y and z axis are not equal, which can make 3-D images misleading.

Line profile is the most common type of analysis made on AFM images. It is a 

two dimensional or cross section extracted from an AFM image. The line profile could 

be .taken horizontally, vertically or at a specific angle. From a line profile, the distances 

between two points, as well as angle, may be calculated.

Surface roughness analysis is generally represented in terms of statistical 

deviation from the average height. The analysis generates a wide variety of statistics for 

surfaces, including classical roughness values, peak and summit (texture) data and
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surface area calculations. Standard equations, which are typically used for these 

calculations, are:

s r = -£ \ z j - z (4.31)
7=1

where S r  is surface roughness, Zy is the height at specific point and Z is the average 

height.

1 n .

z = t I Kn 7:
(4.32)

j=i

Particle Analysis defines particles based on the height of pixel data. By setting 

the height threshold, the cross-section could be analysed. The particles are identified in 

an image by setting a certain height (threshold) as shown in Figure 4.30.

Particle size

A

Tnreshold height

15EC-11C

Figure 4.30. Illustration of the particle size analysis at the selected height [46].

Once the nanoparticles in the AFM image are identified they are automatically 

counted. Measurements on this analysis include: the mean area and standard deviation
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of the particle sizes, the total number of particles, a correlation histogram, a bearing 

ratio curve and a depth histogram. The analyses could be done for a single particle or 

for a number of particles on the surface showing the statistical parameters and the 

distribution of particles as a function of any of the measured variables.

4.5.4. The procedure of AFM measurements

In this work, the CdS and ZnS nanoparticles thin films morphology was studied 

with atomic force microscopy (AFM) using the Digital Instruments Nanoscope Ilia 

instrument, from Veeco Metrology Group Inc.

Figure 4.31. Nanoscope Ilia AFM instrument.

Thin films were deposited on small pieces of silicon, about 1 cm x 1 cm in size, 

and then mounted onto the AFM sample holder. The instrument was set for using E 

head for a small scanning area of maximum 15x15 pm. Tapping mode is chosen as a 

scanning technique due to its suitability for organic/polymer films. VEECO tapping 

mode cantilevers with the tip radius less than 10 nm (typically from 4-7 nm) having the 

oscillation frequency in the range from 300 to 500 kHz were used. Scanning was 

conducted at room temperature and ambient air. Technical parameters were set for 

scanning the area of 5 pm, 1 pm and 200 nm, with the scan rate of about 1 Hz. The
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roughness, particle size, 2D and 3D images of scanning images were analysed using the 

Digital Instruments integrated image processing software, Nanoscope version 5.12 [46].

4.6. ELECTRICAL PROPERTIES STUDY USING MERCURY PROBE

Mercury probe technique has been used for many years to analyse 

semiconductor / insulator systems and to obtain the parameters such as permittivity, 

threshold voltage, interface trap density, impedance, substrate doping, oxide thickness 

and integrity, and low-dose ion implant doping profiles [47-51]. This precision 

technique provides rapid, convenient, and non-destructive measurements of 

semiconductor samples by probing sample with the mercury contact of a well-defined 

area.

In this work, this technique is used to counter the problems in studying electrical 

properties of composite films of metal sulfides (CdS and ZnS) and polyelectrolytes, in 

sandwich structures. The standard metal deposition methods (i.e. evaporation or 

sputtering) may cause the damage and give rise to short-circuits in thin films. While the 

mercury probe technique could be used without evaporating metal contact. However it 

does not always work for organic films. Because of a very high surface tension of about 

485 mN/m at room temperature mercury could damage poorly adhesive organics films. 

Attempts to use a mercury probe for Langmuir-Blodgett and spun organic films were 

not successful; the mercury drop pulls the thin Tilm on its surface and leaves a hole at 

the films underneath. But the same experiment on electrostatically self-assembled 

polyelectrolyte films of PAA/PSS deposited onto silicon wafers was successfully 

carried out by Nabok et. al. [52, 53] to measure I-V and C-V characterisation without 

damaging the films.

The schematic diagram of a mercury probe technique, similar to that used in [52], 

is shown in Figure 4.32. The micro-syringe complete with the stainless steel plunge was
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modified and used here. The capillary tube filled with mercury was fixed to a holder. By 

pressing the stainless steel plunge, the mercury drop would appear at the bottom of the 

capillary tube. Then, the mercury drop was brought into contact with the sample surface 

using an adjustable microscopic stand. A microscope was used to observe the horizontal 

contact line between the mercury drop and sample surface. The diameter of the contact 

was measured using the micrometer scale in the microscope ocular.

Mercury 4  

Thin films _  

Substrate _

Figure 4.32. Mercury probe experimental set-up.

For both I-V and C-V measurement, the samples, as described in section 4.2.3.4, 

were deposited on ITO. The bias voltage was applied between an uncoated part of ITO 

and the mercury electrode.

4.6.1. I-V characterisation

DC current-voltage (I-V) characteristics were measured using Keithley 4200 

Semiconductor Characterization System instrument. Parameters of the DC bias sweep 

were: the sweep range from - 0.5 to 0.5 V, and the step size of 5 mV. Some 

measurements were performed in the bias range from 0 to -0.5 V with the step of 5 mV.
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Measurements were repeated several times on the same spot, as well as at different 

spots on the same sample.

4.6.2. C-V characterisation

C-V characteristic measurements were carried out by using Hewlett Packard 

4284 A Precision LCR meter in a frequency range of 20 Hz- 1 MHz. The instrument 

was interfaced to computer via IEEE GPIB card and controlled by dedicated software. 

Parameters of bias sweep were: the bias range from - 0.5 to 0.5 V, and the step size of 

10 mV. Measurements were repeated several times on the same spot, as well as at 

different spots on the same sample.

4.7. ELECTROLUMINESCENCE MEASUREMENTS

Luminescence is the emission of light by a material, usually a semiconductor, as 

a result of the recombination of electrons and holes. It occurs when an excited electron 

returns to the electronic ground state and releases their energy as a photon.

conduction band conduction band
r

electrons
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valence band

electrons
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Figure 4.33. The energy bandgap diagrams of luminescence for: direct bandgap (a) and

indirect bandgap (b) materials [54].
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Figure 4.33 shows the energy bandgap of direct and indirect bandgap material 

for luminescence processes. In this picture, the excited electrons dwell in the conduction 

band (CB) after absorbing some energy and leave holes in the valence band (VB). Then, 

as the CB-electrons relaxes back into a VB-state and emit photons.

There are two excitation processes related to excite electrons from the ground 

state: optical (photoluminescence) and electrical (electroluminescence).

Photoluminescence occurs when a material absorbs light of a certain frequency and 

emits light at a specific frequency corresponding to the material’s specific structure, 

composition and quality.

The other, electroluminescence is a phenomenon where a material emits light in 

response to an electric current passed through it. There are basically two distinct 

mechanisms of electroluminescence in solids: pure (intrinsic) excitation and charge 

injection [55]. In the intrinsic electroluminescence, thermal activation and the electric 

field liberate electrons from donor levels into the conduction band. Many of these 

conduction electrons are accelerated by the field until they collide with luminescent 

centres, ionizing them (i.e., ejecting electrons from their atoms).

For charge injection electroluminescence, a forward bias voltage is applied to a 

p-n junction semiconductor to provide a flow of electrons or holes, as shown on Figure

4.-34.--------------------------------------------------------------------------------------------------- ------
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Figure 4.34. The principle of the electroluminescence set-up.

In both cases, the electrons lose energy when recombining with centres or positive holes 

accompanied by the emission of light.

Experiment Procedure

Electroluminescence measurements were carried out by using Hamamatsu 

H7421 photon counter. The instrument was interfaced to computer using a Hamamatsu 

M8784 Counting Board PCI card and controlled by Hamamatsu software. The samples, 

as prepared in section 4.2.3.3, were placed in the cell filled with electrolyte solution 

(sodium chloride 1 M) [56]. Then, voltage bias was applied to the samples as shown in 

Figure 4.35.
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Figure 4.35. Electroluminescence experimental set-up.

Measurements were repeated several times on the same sample. All measurements were 

performed in a dark room. A special shielding was used to reduce the effect of weak 

light intensity emitted by electrical instruments or PC screen were used.

Because of a low intensity of electroluminescence in thin II-VI 

semiconductor/polyelectrolyte films, the spectral measurements of the 

electroluminescence were difficult to perform using the existing instrumentation.

145



REFERENCES

1. Nabok A. V., Hassan A. K., and Ray A. K. "Optical and electrical characterisation 
of polyelectrolyte self-assembled thin films." Materials Science and Engineering C 
8-9 (1999): 505-508.

2. Lvov Y., Haas H., Decher G., Mohwald H., and Kalachev A. "Successive 
deposition of alternate layers of polyelectro lytes and a charged virus." Langmuir 10 
(1994): 4232-4236.

3. Fendler J. H. "Self-assembled nanostructured materials." Chemistry o f Materials 8  

(1996): 1616-1624.

4. "UV-Vis Spectroscopy-Basic Theory." The Pennsylvania State University. 15 
August 2007 <http://www.mri.psu.edu/mcl/techniques/uv-vis/basic_theory.asp>.

5. "UV-Vis Absorption Spectroscopy- Theoretical principles." Sheffield Hallam 
University. 15 August 2007
<http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uwisab 1 .htm>.

6 . Pankove J. I. Optical Processes in Semiconductors. New Jersey: Prentice-Hall, Inc., 
1971.

7. UV/Vis Spectrophotometer, 15 August 2007 
<http://www.mecasys.co.kr/kor/file/data/04/02/spectrometer.pdf>.

8 . Henderson, Brian. "Optical spectrometers." Handbook of optics Volume II: Devices, 
measurements, and properties. Ed. Michael Bass. New York: McGraw-Hill Inc., 
1995.

9. Hof, Martin. "Basics of Optical Spectroscopy." Handbook of Spectroscopy. Ed. 
Gunter Gauglitz and Tuan Vo-Dinh. Weinheim: Wiley-VCH Verlag GmbH & Co., 
2003.

10. "Cary 50 UV-Vis spectrophotometer." 15 August 2007 
<http://www.varianinc.com/cgi-
bin/nav?products/spectr/uv/cary5 0/cary5 0&cid=JNMPHHOMF 0>.

11. "Varian Cary 50." 15 August 2007 
<http://faculty.kutztown.edU/betts/html/UV_Vis_Absorbance.htm#Varian>.

12. Schwartz G. C. and Srikrishnan K. V. Handbook o f semiconductor interconnection 
technology. Boca Raton: CRC Press, 2006.

13. Tompkins H.G. A user’s guide to ellipsometry. New York: Academic Press, 1993.

14. Guide to Using WVASE32. J.A. Woollam Co., Inc., 2002.

15. Azzam R. M. A. and Bashara N. M. Ellipsometry and Polarized Light. Elsevier 
Science Pub. Co., 1987.

16. Azzam R. M. A. "Ellipsometry." Handbook of optics Volume II: Devices, 
measurements, and properties. Ed. Michael Bass, New York: McGraw-Hill Inc., 
USA, 1995.

17. "Ellipsometry Tutorial." J.A. Woollam Co. Inc. 15 August 2007 
<http ://www.j awoollam.com/tutorial_l .html>.

18. Woollam J. A., Johs B., Herzinger C. M., Hilfiker J., Synowicki R., and Bungay C. 
L. "Overview of variable angle spectroscopic ellipsometer (VASE), Part I: Basic 
theory and typical applications." Critical reviews of optical science and technology,

146

http://www.mri.psu.edu/mcl/techniques/uv-vis/basic_theory.asp
http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/uwisab%201%20.htm
http://www.mecasys.co.kr/kor/file/data/04/02/spectrometer.pdf
http://www.varianinc.com/cgi-
http://faculty.kutztown.edU/betts/html/UV_Vis_Absorbance.htm%23Varian
http://www.j


Vol. CR72, SPIE Proceedings of conference held 18-19 July 1999, Denver 
Colorado.

19. Arwin H., Poksinski M., and Johansen K. "Total internal reflection ellipsometry: 
Principles and applications." Applied Optics 43 (2004): 3028-3036.

20. de Bruijn H. E., Altenburg B. S. F., Kooyman R. P. H., and Greve J. "Determination 
of thickness and dielectric constant of thin transparent dielectric layers using 
surface plasmon resonance." Optical Communication 82 (1991): 425.

21. Gordon J. G. and Swalen J. D ." The effect of thin organic films on the surface 
plasma resonance on gold." Optics Communications 22 (1977): 374.

22. Kretschmann E. and Raether H. "Radiative decay of non-radiative surface plasmons 
excited by light." Z. Naturforsch. A 23 (1968): 2135-2136.

23. van der Merwe P. A. Surface plasmon resonance. University of Oxford. 15 August 
2007 <http://users.path.ox.ac.uk/~vdmerwe/Intemal/spr.PDF>.

24. "SPR theory." March 2007. 15 August 2007 
<http://www.sprpages.nl/SPRtheory/SprTheoryO 1 .htm>.

25. Hassan A. K., Ray A. K., Nabok A. V., Lucke A., Smith K., Stirling C. J. M., and 
Davis F ." Thin films of calix-4-resorcinarene deposited by spin coating and 
Langmuir-Blodgett techniques: determination of film parameters by surface 
plasmon resonance." Materials Science and Engineering C 8-9 (1999): 251-254.

26. Hassan A. K., Ray A. K., Nabok A. V., and Davis F. "Spun films of novel calix [4] 
resorcinarene derivatives for benzene vapour sensing." Sensors and Actuators B 11 
(2001): 638.

27. Johnston K.S., Karlsen S.R., Jung C. C., and Yee S. “New analytical technique for 
characterization of thin films using surface plasmon resonance.” Materials 
Chemistry and Physics 42 (1995): 242-246.

28. Smith A. and Com R. M. “Surface Plasmon Resonance Imaging as a Tool to 
Monitor Biomolecular Interactions in an Array Based Format.” Focal Point 57 
(2003): 320-332.

29. Mrksich M., Sigal G. B., and Whitesides G. M. “Surface Plasmon Resonance 
Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers 
of Alkanethiolates on Gold.” Langmuir 11 (1995): 4383-4385.

30. Nelson S. G., Johnston K. S., and Yee S. S. “High sensitivity surface plasmon 
resonance sensor based on phase detection.” Sensors and Actuators B: Chemical 35

 (1996)7187-1917------------------------------------------------------------------------------------

31. Homola J. “Present and future of surface plasmon resonance biosensors.” Analytical 
and Bioanalytical Chemistry 377 (2003): 528-539.

32. Nabok A.V., Tsargorodskaya A., Hassan A.K., and Starodub N.F. “Total internal 
reflection ellipsometry and SPR detection of low molecular weight environmental 
toxins.” Applied Surface Science 246 (2005): 381-386.

33. Nabok A. V., Tsargorodskaya A., Holloway A., Starodub N. F., and Gojster O. 
“Registration of T-2 mycotoxin with total internal reflection ellipsometry and QCM 
impedance methods.” Biosensors and Bioelectronics 22 (2006): 885-890.

34. Scanning Probe Microscopy Training Notebook, 2000, Digital Instruments/ Veeco 
Metrology Group Inc., Version 3.

147

http://users.path.ox.ac.uk/~vdmerwe/Intemal/spr.PDF
http://www.sprpages.nl/SPRtheory/SprTheoryO%201%20.htm


35. Giessibl F. “Advances in Atomic Force Microscopy.” Reviews o f Modern Physics 
75 (2003): 949-983.

36. Binnig G., Quate C. F., and Gerber C. “Atomic Force Microscope.” Physical 
Review Letters 56 (1986): 930-933.

37. Atomic force microscope, 15 August 2007 
<http://en.wikipedia.org/wiki/Atomic_force_microscope>.

38. Putman C. A. J., De Grooth B. G., Van Hulst N. F., and Greve J. “A detailed 
analysis of the optical beam deflection technique for use in atomic force 
microscopy.” Journal of Applied Physics 72 (1992): 6-12.

39. Erlandsson R., McClelland G.M., Mate C.M., and Chiang S. “Atomic force 
microscopy using optical interferometry.” Journal of Vacuum Science &
Technology A: Vacuum, Surfaces, and Films 6  (1988): 266.

40. Sarid D., lams D.A., Ingle J.T., Weissenberger V., and Ploetz J. “Performance of a 
scanning force microscope using a laser diode.” Journal of Vacuum Science & 
Technology A: Vacuum, Surfaces, and Films 8  (1990): 378.

41. Goddenhenrich T., Lemke H., Hartmann U., and Heiden C. “Force microscope with 
capacitive displacement detection.” Journal of Vacuum Science 8  (1990): 383.

42. Meyer G. and Amer N. M. “Novel optical approach to atomic force microscopy.” 
Applied Physics Letters 53 (1988): 1045-1047.

43. Alexander S., Hellemans L., Marti O., Schneir J., Elings V., Hansma P. K., 
Longmiro M., and Gurley J. “An atomic-resolution atomic-force microscope 
implemented using an optical lever.” Journal o f Applied Physics 65 (1989): 164- 
167.

44. West P. Introduction to Atomic Force Microscopy: Theory, Practice and 
Applications. 15 August 2007 <http://www.AFMUniversity.org>.

45. Albrecht T.R., Grutter P., Home D., and Rugar D. “Frequency modulation detection 
using high-Q cantilevers for enhanced force microscope sensitivity.” Journal of  
Applied Physics 69 (1991): 668-673.

46. NanoScope Command Reference Manual, 2001, Digital instruments/Veeco 
Metrology Group, Inc., Version 5.12.

47. Tuck B. and Zahari M. D. “Electrical measurements on homogeneous diffused p- 
type InP.” J. Phys. D: Appl. Phys. 10 (1977): 2473-2479.

48. Lederman A. “Vacuum Operated MercuryProbe for CV Plotting and Profiling.”-----
Solid State Technology 24 (1981): 123-126.

49. Paszkiewicz B. “Impedance spectroscopy analysis of AlGaN/GaN HFET 
structures.” Journal of crystal growth 230 (2001): 590-595.

50. Groner M. D., Elam J. W., Fabreguette F. H., and George S. M. “Electrical 
characterisation of thin AI2O3 films grown by atomic layer deposition on silicon and 
various metal substrates.” Thin solidfdms 413 (2002): 186-197.

51. Popov V. M., Klimenko A. S., and Pokanevich A. P. “Investigation of electrically 
active defects in Si-based semiconductor structures.” Materials science and 
engineering B 91-92 (2002): 248-252.

148

http://en.wikipedia.org/wiki/Atomic_force_microscope
http://www.AFMUniversity.org


52. Nabok A. V. and Hassan A. K., Ray A. K., and Toldi G. N. “Electrical study of 
polyelectrolyte self-assembled films using mercury probe.” Materials Science and 
Engineering C 22 (2002): 387-391.

53. Nabok A. V., Massey J., Buttle S., and Ray A. K. “Study of electron tunnelling 
through thin polymer films using a mercury probe technique.” IEE Proceedings: 
Circuits, Devices and Systems 151 (2004): 461-465.

54. Fox A.M., Luminescence. Lecture notes. 15 August 2007 <http://www.mark- 
fox.staff.shef.ac.uk/PHY475/phy375_notes_5 .pdf>.

55. Piper W. W. and Williams F. E. “Theory of Electroluminescence.” Physical Review 
98 (1955): 1809-1813.

56. Tsargorodskaya A., Nabok A.V., and Ray A.K. “Study of electroluminescence in 
porous silicon for sensing applications.” IEE Proc.-Circuits Devices Syst. 150 
(2003): 355-360.

149

http://www.mark-%e2%80%a8fox.staff.shef.ac.uk/PHY475/phy375_notes_5%20.pdf
http://www.mark-%e2%80%a8fox.staff.shef.ac.uk/PHY475/phy375_notes_5%20.pdf


CHAPTER 5 

RESULTS AND DISCUSSION

5.1. INTRODUCTION

This chapter presents all of the experimental data, calculations, and discussions. 

First of all, the data obtained from UV-Vis spectrophotometer and spectroscopic 

ellipsometry are discussed. The optical properties of the films are presented, examined, 

and discussed in section 5.2. The nanoparticles' size is calculated from the absorption 

spectra and compared to the results of ellipsometry fitting. Section 5.3 presents the 

tapping mode AFM images, as films' morphology study. Roughness and particles 

analysis are explored for the investigation of the films' surface and structures. DC and 

AC electrical characteristics are discussed in section 5.4 while electroluminescence 

measurements are presented in section 5.5.

5.2. OPTICAL PROPERTIES OF CdS AND ZnS NANOPARTICLES

5.2.1. Absorption spectra measuements

5.2.1.1. Absorption spectra of the colloid and polyion solutions

The observation of the blue spectral shift of the optical absorption edge for the 

nanoparticles in comparison with the respective bulk values is a typical experimental 

confirmation of nanoparticles’ presence. Figure 5.1 and 5.2 show typical absorption 

spectra of CdS and ZnS colloid nanoparticles solutions. The main absorption band at 

about 410 nm appears for both SO3' and NH2+ groups of CdS colloid nanoparticles as 

shown in Figure 5.1.
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Figure 5.1. Absorption spectra of capping agents, CdS S03' and CdS NH2 + colloid

solutions (diluted 500x).

Both absorption bands are blue shifted as compared to the absorption band of 

bulk CdS at 512 nm. It can be seen that the capping agents, sodium mercapto sulfonate 

and cysteamine hydrochloride, do not contribute to the main absorption of nanoparticles. 

As mentioned before, this spectral shift confirms the presence of CdS nanoparticles. 

Since the absorption edges of both CdS S03' and CdS NH2 + are located relatively at the 

same wavelength, it also means that their particles sizes are relatively the same for both 

colloid solutions.

As shown in Figure 5.2, the absorption peaks for both ZnS SO3 ' and ZnS NH2+ 

colloid solutions are also located at relatively the same wavelength of about 295 nm. 

Both of them are also blue shifted as compared to the absorption band of bulk ZnS at 

335 nm.
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Figure 5.2. Absorption spectra of ZnS SO3 ' and ZnS NH2+ colloid solution (diluted

500x).

The size of CdS and ZnS nanoparticles can be evaluated from the blue shift of 

the absorption bands with respect to the band gap value of bulk CdS as a consequence 

of quantum confinement effect. In this work, the radius of semiconductor clusters is 

calculated using Efros equation for the energy spectrum in nanoparticles of direct band 

gap semiconductors, having parabolic E(k) dispersion. It is assumed that the particles' 

radius is smaller than Bohr exciton radius. Hence, in the case of strong confinement, 

(refer to Chapter 2, Equation 2.50) [1].

(5.1)
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where E g  is the band gap for bulk semiconductors, fj. is the reduced effective mass of

exciton, — = - L +- L , and (j)̂ n 7) are the roots of Bessel functions (for the ground state 
H m\ m\

(̂o,i) = K )•

The values of energy gap and electron (hole) effective mass, for both CdS and ZnS are 

obtained from ref. 2 as presented in Table 5.1.

Table 5.1. Energy gap, electron and hole effective masses for CdS and ZnS [2].

Parameter CdS ZnS

Energy gap (Eg) at 300 K 2.42 eV 3.68 eV

*
Electron effective mass (me ) 0 . 2 1  me 0.25 me

♦
Hole effective mass (me ) 0 . 8  me 0 . 6  me

The values of Enj  can be found from the exact positions of the absorption peaks. To do 

that, the Gaussian fitting of absorption spectra re-plotted in energy coordinates was 

performed similary to ref. [3]. The results are shown in Figure 5.3 (a) and (b). The 

observed energy dispersion may reflect the combination of the size distribution of 

nanoparticles and the presence of higher index energy levels of size quantization, that is 

why only the first maximum (in each spectrum) corresponding to the ground state level 

was chosen for further analysis. The values of Eny =  3.04 e F (for CdS) and 4:19 eV (for 

ZnS) were found for the respective positions of the first absorption bands in Figure 5.3.
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Figure 5.3. Gaussian fitting of the spectra of CCIS-SO3" (a) and ZnS-S0 3 - (b) solutions. 

The experimental data (black line) was fitted using 5 Gaussian peaks (green line) and

the result was shows by the red line.

ChiA2 = 2 .2139E-6
RA2 = 0.99967

y0 0 ±0
xc1 1.87914 ±0.01464
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A1 0.00115 ±0.00008
xc2 3.04473 ±0.00332
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A4 0.53952 ±0.03352
xc5 6.6465 ±0.05234
w5 0.70487 ±0.04104
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Using the data presented in Table 5.1 and the energy gap obtained from the 

Gaussian fitting, the particles’ radius can be calculated using Equation (5.1) and the 

results are presented in Table 5.2.

Table 5.2. Energy gap and the radius of nanoparticles obtained by Gaussian fitting of 

the absorption spectra of CdS and ZnS solution.

Solution of E (eV) AE (eV) Radius (nm)

CdS SOT 3.04 ± 0.0033 0.62 1.91+0.01

CdS NH2+ 2.98 ± 0.0020 0.56 2 . 0 1  ± 0 . 0 1

ZnS SOT 4.19 ±0.0024 0.51 2.05 ± 0.01

ZnS NH2+ 4.22 ± 0.0074 0.54 1.99 ±0.03

Table 5.2 shows that the radius of nanoparticles for both CdS and ZnS colloid solutions 

were relatively the same of about 2 nm, which is smaller than their respective Bohr radii 

of 3 nm for CdS and 2.2 nm for ZnS [1].

As mentioned in Chapter 4, in this work, PAH and PSS are used as polyanion 

and polycation respectively. Therefore, their absorption spectra were also measured and 

shown in Figure 5.4. It is shown that PAH have peaks at 235 nm while PSS at 222 nm 

and 260 nm. The peak at 222 nm most likely corresponds to the absorption by benzene 

rings of PSS [4].
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Figure 5.4. Absorption spectra of PAH and PSS solution (diluted 500x).

5.2.1.2. Absorption spectra of CdS and ZnS nanoparticles embedded in organic 

films

CdS nanoparticles films

As mentioned in Chapter 4, several structures of multilayer films were made and 

measured with UV-Vis spectroscopy. Typical absorption spectra of CdS nanoparticles 

embedded in organic films of PAH (for CdS SO3- ) and PSS (for CdS-NH2 +) are shown 

in Figures 5.5, 5.6 and 5.7. All of them show monotonous increase in the absorption 

intensity, with the increase in the number of layers, which reflects the consistency of 

electrostatic deposition.
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Figure 5.5. UV-vis absorption spectra of PAH/ CdS-S0 3 ~ film. The numbers near 

respective spectra correspond to the number of polyelectrolyte/nanoparticle bilayers.

Figure 5.5 shows the absorption spectra of CdS nanoparticles deposited on glass 

slide, the absorbance increases gradually and shows the absorption edge at about 405 

nm which is blue shifted from the absorption bands of 512 nm for bulk CdS. This is 

believed to be due to the effect of quantum confinement in the nanoparticles since the 

polyions (PAH and PSS) possess no absorption at those wavelengths.

Figure 5.6 and 5.7 show, respectively, the UV-vis absorption spectra of CdS- 

S03'  and CdS-NH2 + films, deposited on quartz slides. The main absorption bands are 

found at 405 nm for both of them. It also clearly shows the presence of the second peaks 

at about 230 nm and 226 nm, respectively. These peaks may correspond to the second 

quantum level (n = 1) in CdS nanoparticles. The adsorption peaks of PAH and PSS may 

also contribute to the absorption in this spectral range.
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Figure 5.7. UV-vis absorption spectra of PAH/ PSS/CdS-NH2 + fdm. The numbers near 

respective spectra correspond to the number of polyelectrolyte/nanoparticle bilayers.
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The comparison with the solution spectra given in Figure 5.1 shows that the 

main absorption bands of CdS colloid solution occur at relatively longer wavelengths 

as compared to the absorption of electrostatically self-assembled fdms of CdS. The 

difference is believed to be due to the effect of the medium e.g. water or polyelectrolyte. 

The interaction of charged nanoparticles with highly polar water molecules is 

presumably larger than that with polyions, so that the absorption bands are slightly more 

red shifted in aqueous solutions.

ZnS nanoparticles films
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Figure 5.8. UV-vis absorption spectra of PAH/ ZnS-SCU film. The numbers near 

respective spectra correspond to the number of polyelectrolyte/nanoparticle bilayers.

Similar feature are observed for ZnS nanoparticles absorption spectra. Figure 5.8 

and 5.9 show the absorption spectra of ZnS nanoparticles, both of SC>3_ and NH2 + 

groups respectively, embedded in organic films. The main absorption bands are

159



recorded at the same wavelength of about 290 nm, both of them are blue shifted from 

the absorption band of 335 nm for bulk ZnS material. They are also slightly different as 

compared to their solutions spectra.
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Figure 5.9. UV-vis absorption spectra of PAH/ ZnS-NH2+ films. The numbers near 

respective spectra correspond to the number of polyelectrolyte/nanoparticle bilayers.

Although the CdS and ZnS nanoparticles were embedded in organic films, the 

thin films could not be assumed as two-dimensional (2D) system of clusters as in the 

case of nanoparticles in LB films. In our case, CdS and ZnS nanoparticles have 

spherical shape and separated individually because of the shell (capping agents). 

Therefore the Efros approximation in Equation (5.1) is used to calculate the radius of 

CdS and ZnS nanoparticles embedded in thin films.

The energy gap (Enj ) of CdS and ZnS nanoparticles embedded in organic films 

were found from the Gaussian fitting performed in Figure 5.10 (a) and (b).
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Using the data in Table 5.1 and energy gap obtained from the Gaussian fitting, 

the calculated values of CdS and ZnS particle size are summarized in Table 5.3.

Table 5.3. Energy gap and the particles' size obtained by Gaussian fitting of the 

absorption spectra of CdS and ZnS films.

Ei (eV) AEi (eV) Ri (nm) E2 (eV) AE2 (eV) R2 (nm)

CdS SOf 3.12 ±0.0048 0.7 1.79 + 0.01 5.37 ± 0.2274 2.95 1.61 ± 0 . 1 2

CdS NH2+ 3.08 ± 0.0020 0 . 6 6 1.85 ±0.01 5.15 ±0.3932 2.73 1.67 ±0.24

ZnS S03‘ 4.34 + 0.0121 0 . 6 6 1.80 ±0.03 - - -

ZnS NH2+ 4.38 ± 0.0074 0.7 1.74 ±0.02 - - -

The radius of nanoparticles yield for both CdS and ZnS films were relatively the same, 

about 1.8 nm. As was suggested earlier, the peak in Figure 5.10 (a) may correspond to 

the second energy level in the CdS quantum dot. The calculation of second peaks using 

Equation (5.1) gives the values of the particles’ radii of 1.61 and 1.67 nm which is 

close to the values obtained from the first peaks within the experimental error. This is a 

good evidence that the second peaks belong to the energy ladder of the size quantisation. 

ZnS containing films having their spectra shifted further in the UV range do not show 

the absorption peak corresponding to the second energy level. More accurate 

determination of the particles' size could be achieved if the contribution of PAH (or PSS) 

layers to the absorption spectra was taken into account.

The combinations of positively and negatively charged nanoparticles

It has to be noted that the role of polyelectrolyte layers is very important for a 

successful deposition. The attempts of alternative deposition of layers of anion and 

cation modified nanoparticles without intermediate polyelectrolyte layers have failed
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due to the peeling of the first layer during the attempted deposition of the second layer

(as shown in Figure 5.11). This was most likely because of a poor adhesion of the first 

layer of nanoparticles to the substrate.
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Figure 5.11. Alternative deposition of positively and negatively charged CdS (a) and

ZnS (b) nanoparticles without intermediate layers of polyelectrolyte.
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Figure 5.11 (a) shows the deposition of positively and negatively charged CdS 

nanoparticles without polyelectrolyte as an alternate layer. The first layer of CdS NH2+ 

was successfully deposited (dark blue line) on the substrate. The first layer (Pink line), 

CdS SO3 ', gave lower absorbance intensity which indicates much thinner film. In other 

words, the first layer was partially peeled off. When the second layer of CdS NH2 + was 

deposited, the intensity was increased again and reduced as the second layer of CdS 

SO3 ' was deposited. The same thing happened when the third layers was deposited. A 

similar phenomenon is observed for the deposition of ZnS nanoparticles (see Figure 

5.11(b)).
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Figure 5.12. Absorption spectra of polyelectrolyte/CdS nanoparticles structures.
1 PAH/CdS S 03‘
2 PAH/CdS S037PAH/PSS/CdS NH2+
3 PAH/CdS S037PAH/PSS/CdS NH2+/PSS/PAH/CdS SO;/
4 PAH/CdS S037PAH/PSS/CdS NH2+/PSS/PAH/CdS S037PAH/PSS/CdS NH2+

In contrast to that if the intermediate polyelectrolyte layers were used, the 

deposition of alternatively charged nanoparticles was successfull as shown in Figure 

5.12 to Figure 5.17. Figure 5.12 shows the absorption spectra of CdS with P-S-P-P-N 

structures, where P is polyions (PAH or PSS), S  is negatively charged nanoparticles

164



(SO3 ' group), and N  is positively charged nanoparticles (NH2+ group). As can be seen, 

the films were well deposited layer by layer. The first layer was PAH and then CdS 

SO3 ' was deposited followed by PAH and PSS layers before CdS NH2+ deposition. The 

third nanoparticles layer, CdS SCV was deposited after PAH and PSS layers and the 

fourth was CdS NH2+ again. This demonstrates the successful deposition of positively 

and negatively charged CdS colloid nanoparticles in the same films.

Figure 5.13 shows the same sequence for first and second layer as in Figure 5.12 

but the third nanoparticles layer was CdS NH2+ and the fourth layer was CdS SO3 " . 

Despite some inconsistency, the absorption intensity is proportional to the number of 

layers which also reflects the successful deposition of positively and negatively charged 

CdS colloid nanoparticles in the same films.
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Figure 5.13. Absorption spectra of polyelectrolyte/CdS nanoparticles structures.
1 PAH/CdS S03'
2 PAH/CdS S037PAH/PSS/CdS NH2+
3 PAH/CdS S037PAH/PSS/CdS NH2+/PSS/CdS NH2+
4 PAH/CdS S037PAH/PSS/CdS NH2 7PSS/CdS NH2+/PSS/PAH/CdS S 03‘
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Figure 5.15. Absorption spectra of polyelectrolyte/CdS nanoparticles structures.
1 PAH/PSS/CdS NH2+
2 PAH/PSS/CdS NH27 PSS/PAH/CdS S03‘
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Figure 5.16. Absorption spectra of polyelectrolyte/CdS nanoparticles structures.
1 PAH/CdS S03‘
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Figure 5.17. Absorption spectra of polyelectrolyte/CdS nanoparticles structures.
1 PAH/PSS/CdS NH2+
2 PAH/PSS/CdS NH2+/ CdS S03‘
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A different deposition sequence, started with positively charged CdS NH2 + 

which was deposited after PAH and PSS, followed by the deposition of PAH and CdS 

SO3 ', shown in Figure 5.14 and 5.15, proved to be successful as well.

The attempt to directly deposite positively and negatively charged nanoparticles 

were also successful (as shown in Figure 5.16 and 5.17) if using polyions between the 

nanoparticles bilayers. Figure 5.16 shows the deposition of positively charged 

nanoparticles directly after negatively charged nanoparticles without an alternating layer 

of polyelectrolytes. The deposition of positively charged nanoparticles followed by 

negatively charged nanoparticles without an alternating layer of polyelectrolytes is 

shown in Figure 5.17. Both results show the increase in absorption intensity which 

reflects the increase in films thicknesses although some inconsistency was observed in 

Figure 5.16.
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Figure 5.18. Absorption spectra of mixed CdS and ZnS structures.
1 PAH/CdS S03‘
2 PAH/CdS S0 3 /PAH/ZnS S03‘
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The alternated CdS and ZnS sandwich structure, (PAH/CdS/PAH/ZnS)N, was 

also successfully deposited, as illustrated by the absorption spectra in Figure 5.18. The 

first layers of CdS S(V was deposited after PAH layer followed by another PAH and 

then ZnS SCV layer. The absorption spectra clearly show two peaks, one at 290 nm 

corresponding to ZnS, and the other at 410 nm corresponding to CdS nanoparticles.

5.2.2. Ellipsometry measurements

The optical properties of polyelectrolyte/nanoparticles films were studied with 

spectroscopic ellipsometry. Two different configurations of ellipsometry measurements 

were used: (i) traditional external reflection ellipsometry and (ii) rather novel method of 

total internal reflection ellipsometry (TIRE).

5.2.2.1. External reflection ellipsometry

The external reflection ellipsometry measurements carried out on a bare silicon 

show typical ellipsometric spectra of y  (X) and A (X) (see in Figure 5.19).
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Figure 5.19. Typical y/(X) and A (X) ellipsometric spectra of a silicon substrate.
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Figure 5.20. Typical A (A) (a) and W (A) (b) ellipsometric spectra of a silicon substrate

(1), and consecutively deposited layers on top: 1st layer of PAH (2), 1st layer of ZnS 

nanoparticles (3), 2nd layer of PAH (4), 2nd layer of ZnS nanoparticles (5).
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The measurements of the same silicon substrate coated with thin films of 

polyelectrolytes and nanoparticles confirmed the consistent film growth as shown in 

Figure 5.20. The series of A (X) spectra show their consecutive shift downwards after 

each layer being deposited, which corresponds to the increase in the film thickness. The 

deposition of polyelectrolyte causes a small shift (curves 1 and 2; 3 and 4) while larger 

shift is caused by nanoparticles deposition (curves 2 and 3; 4 and 5). This indicates that 

nanoparticles layers are much thicker than polyelectrolyte layers. The series of y/ (X) 

spectra show much smaller shift in the opposite direction (upwards) after each 

deposition as compared to A (X) spectra, which corresponds mostly to the increase of the 

film’s refractive index. The larger shifts are caused by nanoparticles deposition which 

have a significant refractive index difference as compared to the polyelectrolyte.

Fitting of the experimental y/ (X) and A (X) ellipsometric spectra using 

WVASE@ J.A. Woollam software allowed the extraction of optical parameters, such as 

the thickness (d), refractive index (n), and extinction coefficient (k) of all consecutively 

deposited layers. A multilayer model used for ellipsometry fitting, shown in Figure 5.21, 

consists of Si substrate, Si02 layer representing a very thin (2-3 nm) film of native 

oxide, polyelectrolyte films of either PAH or PSS represented by the Cauchy model, 

and the layers of either CdS or ZnS nanoparticles.

Medium (air)

3 CdS or ZnS (n2, k2) Thickness 3

2 Cauchy (ni) Thickness 2

1 Si02 Thickness 1

0 Si (substrate) 1 mm

Figure 5.21. Ellipsometry fitting model for silicon/polyelectrolytes/CdS (or ZnS).
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The parameters of all layers were obtained by fitting the spectra for 

consecutively deposited layers and fixing the previously obtained parameters for the 

layers below. Firstly, the substrate was silicon with fixed thickness of 1 mm. Then the 

model layer of SiC>2 was added and the thickness was fitted. When the thickness was 

obtained, the parameters were fixed and the next layer of cauchy was added. Cauchy 

model is deployed for the fitting of the adsorbed organic and bio-material layers, in this 

case polyelectrolyte (PAH or PSS). The dispersion function is described by the 

following equation [6]:

n = A + B/X2 + C/X4 (5.2)

>3(12400(4—-))
k{)I) = a  e A r

where A, B, C are constants, X is the wavelength, a is the extinction coefficient, /? is the 

exponential factor, and y is the band edge. Each of these parameters except for the band 

edge can be defined as fit parameter in the cauchy dialog box. The values An = 1.415, Bn 

= 0.01 and Cn = 0 were fixed during the fitting. This gives the value of the refractive 

index of 1.445 at X = 633 nm, which is typical for polyelectrolytes. For the layers of 

CdS (or ZnS) nanoparticles the model files of respective bulk materials were used, and 

all three parameters d, n, and k were varied during fitting. The default medium (air) was 

used everywhere.

The results of fitting are summarized in Tables 5.4 and 5.5, and the file names of

models chosen from the WVASE32® library are shown near respective layers. 

Although the whole spectra of n and k were obtained, only the values at 633 nm are 

shown.
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Table 5.4. Ellipsometry data fitting for PAH/CdS-SC>3 films

Model Layer d  (nm) n (at 633 nm) k  (at 633 nm)

Si (Si_gel.mat) 3.867 0.02

SiC>2 (Si02.mat) 5.99 ± 0.03 1.46 0

PAH 0CAUCHY.mat) 1.94 ±0.03 1.49 0

1st CdS (CDSO.mat) 4.94 ± 0.04 2.28 0.74

PAH (CAUCHY.mat) 2.12 ± 0.02 1.54 0

2nd CdS (CDSO.mat) 12.84 ±0.02 1.82 0.74

Table 5.5. Ellipsometry data fitting for PAH/ZnS-SC>3 films

Model Layer d  (nm) n (at 633 nm) k  (at 633 nm)

Si (Sijgel.mat) 3.867 0.02

SiC>2 (Si0 2 .mat) 3.53 ±0.05 1.46 0

PAH (iCAUCHY.mat) 1.96 ±0.06 1.49 0

1st ZnS (ZNS. mat) 5.24 ± 0.03 2.29 0.78

PAH (CAUCHY.mat) 2.24 ±0.01 1.49 0

2nd ZnS (ZNS.mat) 5.53 ± 0.06 2.29 0.78

The obtained thicknesses of nanoparticle layers of around 5 nm for both CdS 

and ZnS were yielded from the fitting. These values correspond well to the size of 

particles evaluated from UV-vis spectral data if an additional thickness of the organic 

shell is taken into account. The obtained larger thickness of the 2nd layer of CdS 

nanoparticles (in Table 5.4) is most likely due to the aggregation of nanoparticles.

The obtained values of n for both CdS and ZnS were a little bit smaller then 

respective values of bulk materials (2.475 for CdS and 2.364 for ZnS) possibly due to 

the contribution of the organic shell. These could be seen in Figure 5.22 which 

presented the whole spectra of n and k curves for both CdS and ZnS nanoparticles. As
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compared to the reference materials (provided in the software), the dispersion curve for 

the refractive index of CdS obtained from the fitting has relatively the same shape but 

shifted downward which caused smaller n values for the whole spectra. The obtained k 

(A) spectra of both CdS and ZnS films resemble the respective absorption spectra with 

the characteristic blue shift to the main absorption band as compared to the bulk 

materials. The whole k (A) spectra were shifted upwards and thus gives larger k  values' 

for nanoparticles as compared to bulk materials.

The values of k at 633 nm obtained from the experimental data fitting (see Table 

5.4 and 5.5) are much higher than the respective values for bulk materials (0.0186 for 

CdS and 0.0077 for ZnS). This may be attributed to the substantial increase in the 

oscillator strength due to the effect of quantum confinement [5], The obtained values of 

refractive index for polyelectrolyte layers of 1.49 - 1.54 are quite typical for PAH and 

PSS films, while the thickness of around 2 nm is slightly larger than reported previously

[2], which may be caused by inhomogeneous coating.
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Figure 5.22. n and k curves obtained from the fitting for CdS (a) and ZnS (b).
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5.2.2.2. Total internal reflection ellipsometry

Typical TIRE spectra of y/ (A) and A(A) are shown in Figure 5.23. The y/ (A) 

spectrum resembles SPR curves, which is quite obvious, since both dependencies y/ (A) 

(in TIRE) and R (6) (in SPR) represents the Rp Fresnel’s amplitude. At the same time, 

the A (A) spectra in the TIRE method represent the phase shift between p- and s- 

components, which is a new quantity that does not exist in the SPR method. The phase 

changes sharply from 270 0 down to 90 0 near the plasmon resonance, which makes A (A) 

spectrum extremely sensitive to any small changes in the optical parameters of the 

reflection system.
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Figure 5.23. Typical y/ (A) and A (A) TIRE spectra of a chromium/gold coated glass

substrate.

In TIRE experiments, the ellipsometric angles y/ (A) and A (A) were recorded 

dynamically for a certain period of time (15^10 min). The time dependences of either y/ 

(A) and A(A) were obtained at the wavelength of 721.47 nm (see Figure 5.23) which was
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chosen near the vertical drop in the A(X) spectra. Typical A (t) and \j/ (t) dependencies at 

721.47 nm for the first and second PAH layers are shown in Figure 5.24 (a) and (b).
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Figure 5.24. A (t) and ij/ (t) dependencies at 721.47 nm for the deposition of the 1st PAH

layer (a) and the 2nd PAH layer (b).
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For the first PAH layer, A (A,) shows a quick increase during the first 10 minutes 

and then almost saturated after 35 minutes, as shown in Figure 5.24 (a). The saturation 

of the second PAH layer is reached much faster, in 24 minutes. This means that the 

adsorption of the second layer is much faster then the first layer. As a conclusion, a 

longer time is recommended for the deposition of the first few layers.

The dynamic scan during CdS nanoparticles deposition shows quite complex 

adsorption kinetics. For the first layer of CdS nanoparticles, there was a trend of 

saturation at about 4-5 minutes followed by a further decrease and the final saturation 

after 28 minutes (see Figure 5.25 (a)). This could be explained by a combination of the 

initial 2D adsorption of CdS nanoparticles on the PAH layer followed by the formation 

of 3D aggregates of CdS nanoparticles intercalated with PAH. In contrast, the 

adsorption of the second and third layers of CdS is more straightforward (see Figure 

5.25 (b) and (c)), since it is most likely to occur in 3D PAH intercalated structures. The 

saturation was reached much faster, in 15 and 12 minutes, respectively.

The same condition was observed during the deposition of ZnS nanoparticles as 

shown in Figure 5.26. For the first layer of ZnS nanoparticles, after initial decrease in A, 

the second stage of adsorption was observed at about 10-15 minutes; the final saturation 

was reached after about 30 minutes. The saturation of the second and the third layers of 

ZnS were reached much faster, in 15 and 14 minutes, respectively.
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Figure 5.25. A (t) dependencies at selected wavelengths (shown near respective curves) 

for 1st CdS layer (a) 2nd CdS (b) 3rd CdS (c).
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Typical set of TIRE W (X) and A (X) spectra of consecutive adsorption of PAH 

and CdS (or ZnS) nanoparticles is shown in Figure 5.27 and 5.28. All stages of 

adsorption can be clearly seen, with the spectral shift corresponding to the thickness of
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adsorbed material. Adsorption of CdS and ZnS nanoparticles which have the largest 

shift of lF  (1) and A (X) spectra means the layer of CdS and ZnS were much thicker than 

the polyelectrolyte layer.
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Figure 5.27. A typical set of W (X) (a) and A (A)(b) spectra for consecutive deposition

of PAH /CdS films.
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Figure 5.28. A typical set of W (X) (a) and A (X) (b) spectra for consecutive deposition
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The fitting model for TIRE is different from that in standard ellipsometry 

measurements. The sequences are reversed since the light is incident from the glass 

prism. As shown in Figure 5.29, the model starts with BK7 (glass) acting as the ambient, 

then Chromium/gold layer, polyelectrolyte films of either PAH or PSS represented by 

Cauchy model, the layers of either CdS or ZnS nanoparticles mixed with PAH (EMA 

model) and finally the substrate e.g. water in this case, with the fixed thickness of 10 

mm.

AMBIENT: BK7 (medium)

3 Cr/Au Thickness 1

2 Cauchy (ni) Thickness 2

1 CdS (or ZnS) Thickness 3

0 water (substrate) 10 mm

Figure 5.29. Ellipsometry fitting model for TIRE measurements.

Fitting of the experimental y/ (X) and A (X) spectra was carried out using the 

above model. Firstly, the parameters (thickness d, refractive index n, extinction 

coefficient k) of Cr/Au layer were found by fitting the respective y/ (A) and A (X) data 

for bare Cr/Au coated glass. The optical properties of the first polyelectrolyte layers 

were determined by fitting respective y/ (X) and A (A) spectra using the Cauchy model, 

while parameters for Cr/Au were fixed. For the fitting of following layers, the EMA 

(effective medium approximation) model was used instead of Cauchy model, while the 

parameters for Cr/Au were fixed.

The effective medium approximation (EMA) model was chosen because of the 

assumed aggregation of CdS (or ZnS) nanoparticles by intercalation with PAH and the 

subsequent formation of mixed PAH/semiconductor layers. It allows the calculation of
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optical constants of mixtures of a number of materials (two in our case). In this work, 

we used the Bruggemann EMA to model a wide range of mixed materials. The 

Bruggemann EMA requires the numerical solution of the following equation [6]

f A £A~ £ + f B— — -  + f c £ c ~ £ = 0  (5.3)
£ A + 2  £  £ g +  2 £  £c +  2£

where e is the effective complex dielectric function of the micture, f A, and f c  are the 

volume fractions of each material, and sA, £b, and sc are the complex dielectric functions 

of each material.

The summaries of optical properties for both polyelectrolyte/CdS and 

polyelectrolyte/ZnS are presented in Table 5.6 and 5.7.

Table 5.6. TIRE data fitting for PAH/CdS SO3' films

Model Layer d, nm Ad, nm
*

n k* Comments

AMBIENT: bk7

Cr/Au 32.041 - 0.442 2.961

Cauchy (PAH-1) 1.836 1.836 1.3759 0 A=1.351; B=0.01; C=0

EMA-1 (PAH-1/CdS-1) 9.386 7.550 1.8041 0.1069 PAH: 68.59% 

CdS: 31.41%

EMA-2( +PAH-2) 10.027 0.641 1.7846 0.0810 PAH: 68.59% 

CdS: 31.41%

EMA-3 ( + CdS-2) 17.597 7.57 1.8235 0.1178 PAH: 80.0% 

CdS: 20.0%

EMA-4( +PAH-3) 19.418 1.821 1.8838 0.1618 PAH: 78.74% 

CdS: 21.26%

EMA-5 ( + CdS-3) 26.193 6.775 1.8984 0.1984 PAH: 76.06% 

CdS: 23.94%

Water 10 mm - 1.3369 0
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Table 5.7. TIRE data fitting for PAH/ZnS SO3' films

Model Layer d, nm Ad, nm
*

11 k* Comments

AMBIENT: bk7

Cr/Au 30.984 - 0.3799 3.0753

Cauchy (PAH-1) 1.836 1.836 1.357 0 A=1.351; B=0.01; C=0

EMA-1 (PAH-1/ZnS-1) 11.918 10.082 1.505 0.030 PAH: 81.66% 

CdS: 18.34%

EMA-2( +PAH-2) 12.650 0.732 1.497 0.0280 PAH: 80.65% 

CdS: 19.35%

EMA-3 (+  ZnS-2) 25.411 12.761 1.517 0.0267 PAH: 78.765% 

CdS: 21.235%

EMA-4( + PAH-3) 26.997 1.586 1.513 0.0258 PAH: 77.15% 

CdS: 22.85%

EMA-5 ( + ZnS-3) 39.444 12.447 1.5698 0.0418 PAH: 76.90% 

CdS: 23.10%

Water 10 mm - 1.3369 0

The thickness of CdS and ZnS layers of about 7 nm and 12 nm, respectively, 

were obtained. These values appear to be several times larger than particles’ size 

obtained from the calculation using Efros approximation, and thus confirm the 

suggestion of the formation of three-dimensional aggregates of semiconductor 

nanoparticles intercalated with the polyelectrolyte. As can be seen from Table 5.6 and 

5.7, the values of n in EMA layers (EMA 1, 3, and 5) increase with the number of 

deposited nanoparticles layers and decrease when polyelectrolyte were deposited (EMA 

2 and 4). The values of k  are also tended to increase when nanoparticles were deposited. 

Those trends in n and k changes are, however, not consistent; deviations from the main 

trend were observed most likely due to inhomogeneity of the deposited layers.
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5.3. MORPHOLOGY STUDY USING ATOMIC FORCE MICROSCOPY

In order to examine the morphology of the multilayered films, the AFM study 

was carried out on the same types of films deposited on silicon (refer to Chapter 4, 

section 4.2.3.1). Typical tapping mode AFM images of bare silicon is presented in 

Figure 5.30. The image shows that the silicon surface has the maximum height of about 

2 nm.

Clear Execute Undo

Flatten

Digital Instruments NanoScope 
Scan size 1.000 pr
Scan rate 1.001 H:
Number of samples 512
Image Data Height
Data scale 2.000 nm

bare_si_lm.000

Figure 5.30. Tapping mode AFM images (1pm in size) of silicon.

To obtain the average height of the surface, roughness analysis software was used. The 

results is presented in Figure 5.31. The yielded root means square (RMS) roughness of 

0.15 nm indicates that the silicon surface is quite flat. The chosen area in the image was 

illustrated by square line in the image and the roughness statistic was shown.
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Figure 5.31.Roughness analysis of the AFM images of silicon.
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Figure 5.32. Tapping mode AFM images (1pm in size) of the first PAH layer.
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Figure 5.33. Roughness analysis of tapping mode AFM images (1pm in size) of the first 

PAH layer with different chosen areas: substrate (a) and film (b).
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After the first layer of PAH was deposited, the successful adsorption can be seen 

from the increase of height to a maximum value of 30 nm (see in Figure 5.32). The 

image shows that the PAH layer was deposited in a certain areas and not covering the 

substrate homogeneously.

The roughness analysis of the image, presented in Figure 5.33 (a), clearly shows 

that the small chosen area at the lowest height gives RMS roughness of about 0.14 nm. 

This value is the same as RMS roughness of the silicon (substrate). If the chosen area 

was enlarged to include the PAH layer, the RMS roughness is increased to 2.047 nm 

(see Figure 5.33 (b)).

Typical tapping mode AFM images of consecutively deposited layers of 

polyelectrolytes and colloid nanoparticles are shown in Figures 5.34. All the images are 

scanned in area of 1 pm x 1 pm.

The first PAH layer (see Figure 5.34 (a)) shows a patchy and inhomogeneous 

pattern. The next layer of PSS seems to have adsorbed onto PAH layer and may be 

partly on the substrate and gave much more homogeneous coating. However it can be 

seen that aggregates in grainy pattern have began to form. After the first layer of CdS- 

NH2+ was deposited, the CdS nanoparticles were distributed randomly across the films 

while the maximum thickness suddenly increased to 100 nm and the aggregates became 

bigger. The thickness value did not change for the next two layers but the next 

deposition steps show further aggregation of CdS nanoparticles.
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Figure 5.34. Tapping mode AFM images (1pm in size) of consecutively deposited 

layers of: PAH (a), 1st PSS (b), 1st CdS-NH2+ (c), 2nd PSS (d), 2nd CdS-NH2+ (e), and 3rd

PSS (:f).
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The section analysis reveals aggregates of nanoparticles of up to 50 nm in size as shown 

in Figure 5.35.
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Figure 5.35. Section analysis of tapping mode AFM images (1pm in size) of the first

CdS NH2+ layer.

The particles analysis of the AFM image of the first CdS- NH2+ layer is shown 

in Figure 5.36. The threshold height of about 5 nm has been chosen on the bases of the 

particles size obtained. The diameter of around 28 nm was obtained as an average 

particles size.
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Figure 5.36. Particles analysis of the AFM image of the first CdS-NH2 + layer.
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In the case of PAH/ ZnS-SC>3~ films, a similar aggregation is observed (see 

Figure 5.37). The ZnS-SC^- layer which was deposited after PAH shows much better 

coverage than PAH. The next deposition steps show the formation of bigger aggregates 

increase corresponding to the number of layers deposited. The size of ZnS-SC^ 

aggregates of about 40-50 nm is obtained.

(<•> (<■)

Figure 5.37. Tapping mode AFM images (1pm in size) of consecutively deposited 

layers of: PAH (a), 1st ZnS-S03" (b), 2nd PAH (c), 2nd ZnS-S03~ (d), and 3rd PAH (e).
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From roughness analysis of the AFM images, the data is summarized and 

presented in Table 5.8 and 5.9.

Table 5.8. Summary of roughness parameters of polyelectrolyte/CdS films.

Layer Z range (nm) Image RMS (nm) Image Mean (nm)

Silicon 2.046 0.15 0.112

1st PAH 30.354 2.155 1.533

Is'PSS 6.921 0.693 0.533

1st CdS 32.169 3.865 3.047

2nd PSS 47.685 6.022 4.680

2nd CdS 61.742 8.873 6.923

3rd PSS 49.781 6.929 5.424

Table 5.9. Summary of roughness parameters of polyelectrolyte/ZnS films.

Layer Z range (nm) Image RMS (nm) Image Mean (nm)

Silicon 2.046 0.15 0.112

1st PAH 30.354 2.155 1.533

1st ZnS 19.584 2.141 1.653

2nd PAH 19.768 2.212 1.661

2nd ZnS 27.936 3.721 2.924

3rd PAH 31.852 4.444 3.529

The plot of mean roughness against the number of layers is shown in Figure 5.38. 

It shows that the film roughness in general is increasing for each layer deposition. Some 

inconsistencies which are clearly seen are possibly caused by the formation of the 

aggregation in the films.
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Figure 5.38. Surface roughness of CdS (a ) and ZnS (b) multilayer as a function of

number of layer.
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It is suggested that the aggregation of either positively or negatively charged 

semiconductor nanoparticles, could only happen by intercalation of nanoparticles with 

the layers of polyanions (PSS) or polycations (PAH), respectively, as illustrated 

schematically in Figure 5.39. This leads to the increase in the effective thickness of 

nanoparticle layers, often observed for the 2nd and following layers deposited.

/\aQ^v \/v Ov ^ ^/\nQ^v'fvQ-v\/\A

Figure 5.39. The formation of aggregates of electrically charged nanoparticles by

intercalation with polyelectrolytes.

Theoretically, the aggregation of nanoparticles could be reduced by using a very 

diluted colloid solutions in the deposition process. Therefore monolayer of nanoparticle 

films were deposited from 100 and 500 times diluted colloid solutions. The results were 

presented in Figure 5.40. (a) and (b). Smaller size and separate groups of nanoparticle 

aggregates are clearly visible in both figures.

In the case of 500 times diluted colloid solution, roughness and particle analysis 

were performed. The roughness analysis presented in Figure 5.41. shows the value of 

about 10.698 nm obtained for the maximum height of the film. The chosen area at the 

lowest height shows RMS roughness of the same value as silicon RMS roughness. It 

confirmed the deposition of nanoparticles monolayer on the substrate.
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Figure 5.40. Tapping mode AFM images (1pm in size) of CdS-NH3+ layer deposited 

from diluted colloid solutions: 100 times (a), 500 times (b).
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Figure 5.41. Roughness analysis of tapping mode AFM image (1pm in size) of 500 

times diluted CdS-NH3+ colloid solution monolayer film.
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Figure 5.42. Particle analysis of tapping mode AFM image (1pm in size) of 500 times 

diluted CdS-NH3+ colloid solution monolayer film.
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A particle analysis of the image illustrated in Figure 5.40 (b) reveals the average 

size of the aggregates of about 18 nm (see Figure 5.42). This size corresponds well to a 

single particle considering the finite radius of the AFM tip (see the scheme in Figure 

5.43). If, for example, a single particle with the radius a , is scanned using AFM which 

typically has tip radius R, the AFM tip moves from left to right. Thus the first contact 

with the particle will occur on the edge of the tip which is advanced by the value of R as 

compared to the actual tip position (recorded by the software). The same happened on 

the other side of the particle. As a result, the AFM features will be larger than the actual 

particles' size by a factor of 2R. The maximal effective enlargement could be estimated 

as:

a'=a + 2R (5.4)

where a ’ is the effective particle size, a is the particle radius, and R is the AFM tip 

radius.

A IM  TIP

Figure 5.43. The effect of finite radius of the tip on the observed AFM features.
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5.4. ELECTRICAL STUDY OF CDS AND ZNS NANOPARTICLES 

5.4.1.1-V characteristic of polyelectrolyte films

Typical results of DC I-V characteristics of the first layer of PAH films, 

deposited onto ITO glass, are shown in Figure 5.44. Voltage sweep in the range from -

0.5 to 0.5 volt gave symmetrical I-V curves. The PAH was well adsorbed to the 

substrate, in this case ITO, which reflects by the difference in the measured current as 

compared to the data on the blank ITO (blue straight line). The measured current was 

much lower than the one measured on blank ITO. The measurements at different spots 

on the sample gave a slightly different values, which is believed to be caused by 

inhomogeneous coating of PAH film.
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Figure 5.44. Typical DC I-V characteristics of ITO/(PAH/PSS)N/Hg structure.

For the multilayers of (PAH/PSS)n deposited onto ITO glass, the I-V

characteristic shows the decrease of current corresponding to the increase in the number

of the deposited layers (see Figure 5.45 (a)). Since multilayered electrostatically self-
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assembled films usually perfectly cover the surface (without pinholes) the mechanism 

of electron tunnelling through the insulating PAH/PSS films could be suggested.
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Figure 5.45. Typical DC I-V characteristics of ITO/(PAH/PSS)N/Hg structure (a) and 

the same graph in semi-logarithmic scale (b).
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It has become clearer when I-V curves were replotted in Figure 5.45 (a) in a semi- 

logarithmic scale, the value of current at saturation falls exponentially with the increase 

in the number of layers.

In order to investigate the electron tunnelling phenomenon in the multilayered 

films, the thickness of (PAH/PSS)n films deposited on ITO glass was measured with 

ellipsometry, and the values of thickness obtained by fitting are summarized in Table 

5.10, along with the values of current at 0.5 V.

Table 5.10. Thickness and current values of Polyelectrolyte layers (PAH/PSS)

Number of layer Thickness (nm) Current at V=0.5 V (A)

1 (PAH) 3.31 ±0.02 (2.5 ±1.2) 10"

2 (PSS) 4.22 ±0.04 (1.1 ± 0.4) 10"

3 (PAH) 5.49 ± 0.05 (3.9 ±2.4) 10"4

. 4 (PSS) 6.23 ± 0.03 (7.5 ± 1.2) 10°

5 (PAH) 7.14 ±0.03 (2.4 ± 0.9) 10"

6 (PSS) 8.54 ±0.02 (1.3. ±0.4) 10"

The dependence of the current at 0.5 V on the PAH/PSS films thickness in 

Figure 5.46 (a) fits well with the exponential law, which is a clear indication of the 

tunnelling mechanism of conductivity.

To interpret the above experimental results, the model of electron tunnelling 

through the trapezoidal barrier was used (revert to Chapter 2, Equation 2.77) [7]. The 

dependence of the current on the film thickness can be described by the tunnelling law 

I  = Io exp (- aW )  (5.5)

where a  is the tunnelling coefficient and W  is the film thickness.
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Figure 5.46. The dependence of the current at 0.5 V on the number of polyelectrolyte 

layers in the ITO/(PAH/PSS)N/Hg structure (a) and In I  vs thickness (W) (b).

In order to calculate the tunnelling coefficient the graph was replotted in In I  as a 

function of thickness, as shown in Figure 5.46 (b). The fitting equation of the graph 

yields the value of a  = 1.08 x 109 m '1.
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5.4.2. I-V characteristic of films containing CdS (or ZnS) nanoparticles

The presence of CdS or ZnS nanoparticles in the films causes the decrease in 

current as shown in Figure 5.47 which is believed to be caused by an overall increase in 

the film thickness due to the aggregation of nanoparticles and intercalation with the 

polyelectrolyte.
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Figure 5.47. Typical DC I-V characteristics (the voltage sweep range: - 0.5 to 1 V, step 

size: 5 mV) of PAH film compared to the films containing CdS (or ZnS) nanoparticles.

Typical DC I-V characteristics (the voltage sweep range: - 0.5 to 1 V, step size: 

5 mV) of the films: polyelectrolyte/CdS/polyelectrolyte and

polyelectrolyte/ZnS/polyelectrolyte are shown in Figure 5.48 (a) and (b). It is clearly 

seen that the I-V curves for both CdS and ZnS are not symmetrical but shifted to the 

right of about 0.2 V. It is believed that the shift is caused by the work function 

difference between ITO and Hg electrodes. Indeed, from ref. 8 and 9, the values of ITO 

and Hg work functions are 4.7 and 4.5 eV, respectively, giving the difference of 0.2 V.
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Figure 5.48. Typical DC I-V characteristics (the voltage sweep range: - 0.5 to 1 V, step 

size: 5 mV) of the films: polyelectrolyte/CdS/polyelectrolyte (a), and 

polyelectrolyte/ZnS/polyelectrolyte (b).
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No consistency in the current values was found in Figure 5.48, although each 

film has different polyelectrolyte composition. This is possibly due to the aggregation of 

nanoparticles and intercalation of polyelectrolyte which caused uncertainty in the 

particles-electrode distance. For example, if the electrode is close enough to the 

collection of nanoparticles, the current will easily pass through the films. As a result, the 

current will be much larger than in the other cases as illustrated for (P3-CdS-P3) film in 

Figure 5.48 (a). The (P3-CdS-P3) film has the largest thickness of polyelectrolyte 

(insulator) layer as compared to the other films but Figure 5.58 (a) shows that this film 

has the largest current.

The I-V measurements, performed in the bias range from 0 to -0.5 V, gave a 

different type of I-V curves for the films containing either CdS or ZnS nanoparticles. 

Figure 5.49 (a) shows the step rise in current followed by its sharp increase. Zooming 

the encircled part of I-V curves allows the detailed investigation of the current step (see 

Figure 5.49 (b)), which appeared on every curve but at different positions.

We can only suggest that such behaviour may be related to the resonance 

tunneling in the system ITO/insulator/CdS (or ZnS)/insulator/Hg through the energy 

levels in the semiconductor nanoparticles. The presence of two steps on the I-V curve 

may correspond to two consecutive energy levels. This effect may be accompanied by 

the electrical charging of CdS (or ZnS) nanoparticles, which causes the instability in the 

step position.
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Figure 5.49. Typical DC I-V characteristics of PAH/PSS/ZnS NH2+/PSS/PAH, voltage

sweep from 0 to -0.5 volt, step size 5 mV (a), a section of the graph zoomed in (b). The 

curves 1, 2, 3 and 4 correspond to consecutive measurements.

207



n2 e

Mercury

d

Nanoparticles

ni e d i

+ ITO

Figure 5.50. Schematic diagram of nanoparticles charging.

The mechanism of nanoparticles charging is schematically explained in Figure 

5.50. The tunnelling current, e.g. the number of electrons passing between ITO and 

nanoparticles (nj) and between nanoparticles and mercury ([ri2) may not be equal, for 

example, because of different tunnelling distances dj and d2.

If, for example, dj < d2 and thus nj > ri2, the nanoparticle will be charged 

positively and may retain this charge for some time. On the next DC voltage sweep, a 

larger negative potential will be required to overcome the positive charge on the particle. 

As a result the threshold (step) on I-V curve will shift to the left.

5.4.3. C-V characteristic of films containing CdS (or ZnS) nanoparticles

The AC measurements in sandwich structures as frequency dependencies of the 

capacitance and their AC conductance as a function of frequency represent a traditional 

insulating behaviour for all films studied. Figure 5.51 shows typical results of the C-V 

measurements of sandwich structures (ITO/insulator/CdS /insulator/Hg) as frequency 

dependencies of the capacitance. As can be seen, the capacitances of the films were not
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really correlated to films thicknesses. It might be caused by the random distribution of 

CdS nanoparticles in the films.
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Figure 5.51. C-V characteristic of sandwich structures. 

(ITO/insulator/CdS /insulator/Hg) (a) and (ITO/insulator/ZnS /insulator/Hg) (b).
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If the system is considered as a plane capacitor, then the capacitance is

defined as:

where A is the cross section area of the capacitor, d  is the separate distance, s is the 

dielectric constant, and so is the electric permittivity in vacuum. Typical diameter of 

mercury contact was 0.22 ± 0.03 mm giving an active device area of 0.038 ± 0.001

9 • • •mm . Therefore the calculations of the dielectric constant for the highest capacitance of

0.61 pF from Figure 5.51, with the film thickness of about 5 nm obtained from 

ellipsometry measurements yield the values of about 0.9 for the films containing CdS 

nanoparticles and 0.92 for ZnS films. The obtained values of e are less than one, which 

means that the nanoparticles are conductive so that C-V measurements were affected by 

the films conductivity only.

This result is supported by the measurements of G-V characteristic, as shown in 

Figure 5.52. It shows that the conductance was increased at the voltage of 0.2 volt for 

CdS and at 0.3 volt for ZnS.
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Figure 5.52. G-V characteristic of sandwich structures (ITO/insulator/CdS 

/insulator/Hg) (a) and (ITO/insulator/ZnS /insulator/Hg) (b).
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Figure 5.53 demonstrates the AC conductance as a function of frequency. As 

can be seen, the capacitance of both CdS and ZnS films is practically independent of

9frequency over the range of 10 -10 Hz, which could be another proof of the tunnelling 

behaviour.
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Figure 5.53. C-f characteristic of sandwich structures (ITO/insulator/CdS /insulator/Hg) 

(a) and (ITO/insulator/ZnS /insulator/Hg) (b).
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5.5. ELECTROLUMINESCENCE STUDY

Electroluminescence measurements were carried out using a Hamamatsu H7421 

photon counter in the spectral range from 380 to 890 nm. The schematic diagram of 

experiment measurements is shown in Figure 5.54. A transparent electrolyte solution of 

1 M NaCl is used in this work.

Electrolite solution

PAH

CdS or ZnS Nanoparticles

______________________  PAH

ITO

Glass

Figure 5.54. Schematic diagram of electroluminescence experiment set-up.

All the prepared samples were listed as follows:

P3 = ITO + PAH

P4 = ITO + PAH + PSS

Cl = ITO + PAH + CdS S03' + PAH

C2 = ITO + PAH + CdS S03‘ + PAH

C3 = ITO + Ti02 + PAH + CdS S 03‘ + PAH

C4 = ITO + Ti02 + PAH + (CdS S 03' + PAH)3

C5 = ITO + Ti02 + PAH + (CdS S03‘ + CdS NH2+)2 + PSS

C6 = ITO + PAH + (CdS S 03' + PAH)3

Cl  = ITO + PAH + (CdS SOT + PAH)i0

C8 = ITO + PAH + (CdS S 03' + PAH)20
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Z1 = ITO + PAH + ZnS S 03‘ + PAH 

Z2 = ITO + PAH + ZnS S 03‘ + PAH 

Z3 = ITO + Ti02 + PAH + ZnS S 03' + PAH 

Z4 = ITO + Ti02 + PAH + (ZnS S03‘ + PAH)3 

Z5 -  ITO + PAH + (ZnS S 03' + PAH)3

Firstly, I-V characteristics measurements were performed in order to find the 

threshold voltage of electroluminescence of the samples. Figure 5.55 shows the forward 

bias of I-V measurements of all samples. The threshold voltage were found at about 1.5 

V for CdS and 0.7 V for ZnS.
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Figure 5.55. I-V measurements of the electroluminescence samples.

Before using the photon counter, the level of the ambient light had to be reduced 

to the lowest possible level because of a very sensitive photodetector. The intrument’s 

test certificate from Hamamatsu stated that the dark count level of the instrument 

averaged 22 photons per second (p/s). This could be achieved by turning off the light 

and covering the detector input window, the results is shown in Figure 5.56.
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Figure 5.56. The dark count level of the Hamamatsu instrument of averaged 22 photons

per second.

The electroluminescence of PAH and PSS films were measured as reference 

samples and show no luminescence, as the level of photon per second buried in the 

noise of the instrument. The electroluminescence has been detected on samples of 

[PAH-(CdS-PAH)3] structure, deposited on Ti(>2 coated ITO, with 2.4 volt of applied 

voltage. When the voltage was switched on at t = 8 s, the number of photons per second 

increased from the ambient noise to a peak of 15200 photons per second (p/s) in 4 

seconds (see Figure 5.57) and then decays exponentially to the value of around 150 p/s, 

which is higher than the original noise level but small enough to be considered 

negligible.
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Figure 5.57. The electroluminescence for a sandwich structure of [PAH-(CdS-PAH)s]

on TiC>2.
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The effect of the voltage on/off switch on the intensity of electroluminescence 

was investigated and presented in Figure 5.58. When the voltage was switched off at t = 

53 s, the intensity was decreased to the dark count level. And then went back to the 

value at about 150 p/s when the voltage was switched on at t = 57 s. It seems that the 

sample need time to recover before it could be subjected to another test. It must be 

noted that the intensity in Figure 5.58 is also lower than that in Figure 5.57.

C4, 2.4 V on at t = 12s, off again at t = 53s and on again at t = 57s
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Figure 5.58. The electroluminescence for a sandwich structure of [PAH-(CdS-PAH)3] 

on TiC>2 with the voltage switch on and off.

The recovery time of the sample was investigated by applying AC voltage with 

different frequencies. Figure 5.59 shows the responses of polyelectrolyte/nanoparticles 

films to different frequencies of a 2V RMS signal. From t = 0 to t = 380 s, the frequency 

of about 80 mHz was applied and the periodic peaks were clearly seen. Between 380 

and 420 s, 800 mHz was applied and no peaks were seen. From 420 to 1000 s, the 

frequency of 8 mHz gives the periodic peaks with interval of about 125 s. It can be 

concluded that the best results were achieved at lower frequencies. This could be a 

result of a limited ion supply in the electrolyte cell, which does not allow the response 

to switch faster than 100 mHz.
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Figure 5.59. The electroluminescence for a sandwich structure of [PAH-(CdS-PAH)io]

on ITO with different frequencies signal.
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Figure 5.60. Results of several tests of the electroluminescence for a sandwich structure

of [PAH-(CdS-PAH)3] on T i02.
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As mentioned before, luminescence intensity decrease was observed in a number 

of test. This phenomenon was verified by measuring the luminescence of the same 

sample at a certain interval of time (more than 10 s). The results are summarized in 

Figure 5.60. It shows that the luminescence peak of sample C4 is decreased 

significantly, from 15200 to 1532 p/s and the latter measurement shows that the 

intensity decreases further to 258 p/s. Then the sample gives no luminescence anymore 

which reflects a very short lifetime of the sample.
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Figure 5.61. The effect of step input voltage to EL intensity.

218



The effect of the applied voltage increase from 0 to 3 V with a step of 0.1 V on 

the electroluminescence intensity was investigated, and the results are presented in 

Figure 5.61. The luminescence started at V = 1.4 volt, as predicted from the I-V 

characteristics (1.5 V for CdS). The results mostly show an irregular increase in the 

peak intensity as the voltage increases.

The highest points of each peak were taken and plotted as a function of voltage 

in Figure 5.62. The curve suggests that the behaviour of light emission with the 

threshold voltage at about 1.4 volt.
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Figure 5.62. The electroluminescence intensity as function of the input voltage.

The luminescence was also detected in sandwich structure of [PAH-(CdS-PAH)3] 

samples with the peak of about 56201 p/s (see Figure 5.63).
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Figure 5.63. The photon count for a sandwich structure of [PAH-(CdS-PAH)s] on ITO.

Figure 5.64 and 5.65 present the luminescence of 10 and 201ayers of CdS. The highest 

peaks of 138823 and 266295 p/s were observed, respectively, and then rapidly decayed 

to a constant level of about 2000 p/s.
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Figure 5.64. The photon count for a sandwich structure of 10 layers of CdS.
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Figure 5.65. The photon count for a sandwich structure of 20 layers of CdS.
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From the above results, the increase in the number of CdS layers leads to the 

increase in the intensity of electroluminescence. By plotting the highest point of the 

luminescence peaks as a function of the number of layers, the correlation shows a linear 

dependence in Figure 5.66.
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Figure 5.66. The electroluminescence intensity as function of number of layers.

Unfortunately, no trace of luminescence was observed for films containing ZnS 

nanoparticles. They might emit light in ultra violet region which can not be detected by 

the particular photon counter detector, as the detector is made from GaAs which can 

only detect the light in the spectral range of 380 to 850 nm.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

6.1. CONCLUSIONS

This work demonstrated the feasibility of the electrostatic self-assembly method 

to fabricate multilayered CdS (or ZnS) nanostructures onto different solid substrates 

such as silicon, glass, quartz, chromium/gold coated glass, and ITO. Several 

combinations of CdS (or ZnS) nanostructures assembled from positively and negatively 

charged CdS (or ZnS) nanoparticles alternated with PAH and PSS binding layers have 

been prepared. Mixed films containing both CdS and ZnS nanoparticles were also 

successfully deposited. Optical and electrical properties of the films obtained along with 

the morphology and electroluminescence were studied using a variety of experimental 

techniques including UV-visible spectroscopy, spectroscopic ellipsometry, AFM, DC 

and AC electrical measurements combined with the mercury probe and 

electroluminescence photon counting.

From UV-Vis spectroscopy measurements, the position of the main absorption 

band obtained for CdS and ZnS colloid solutions were 410 nm and 295 nm, respectively, 

while the films containing CdS and ZnS have the values of 405 nm and 290 nm. Both 

of them show a substantial blue shift with respect to the respective bulk materials (512 

nm for CdS, 335 nm for ZnS). The calculations of nanoparticles' radius with Efros 

model yield the same value of about 1.8-1.9 nm for both CdS and ZnS.

The external reflection spectroscopy ellipsometry measuments of the thin films 

containing CdS and ZnS, confirmed the deposition of polyelectrolyte and nanoparticles 

on top of the silicon substrate. The fitting of the ellipsometry data yields the parameters 

d, n, and k  of the films. The thicknesses of nanoparticle layers of around 5 nm were

223



obtained for both CdS and ZnS. These values correspond well to the size of particles 

evaluated from UV-vis spectral data if  an additional thickness of the organic shell is 

taken into account. The obtained values of n (of about 2.28) for both CdS and ZnS were 

slightly smaller than respective values of bulk materials (2.475 for CdS and 2.364 for 

ZnS), but the value of k  (of about 0.76) deviated substantially from the respective values 

of bulk materials (0.0186 for CdS and 0.0077 for ZnS). This may be attributed to the 

substantial increase in the oscillator strength in semiconductor nanoparticles.

The y/ (X) and A(X) spectra in total internal reflection ellipsometry (TIRE) 

measurements clearly show the consecutive deposition of polyelectrolytes and 

nanoparticles by the shift of A(X) spectra to longer wavelength. The fitting of TIRE 

spectra using EMA model for mixed polyelectrolyte/nanoparticles films gave the 

thicknesses of about 7 nm and 12 nm for CdS and ZnS, respectively. This result 

confirms the formation of three-dimensional aggregates of semiconductor nanoparticles 

intercalated with the polyelectrolyte.

The dynamic scan of TIRE was used to monitor in-situ the process of alternating 

deposition of Poly-allylamine Hydrochloride (PAH) and CdS (or ZnS) layers. The 

results suggested 35 and 28 minutes, respectively for the first PAH and the first 

nanoparticles layer to saturate. The dynamic scan also shows that the saturation time for 

the second layer of PAH layer is much faster, of about 24 minutes. The same behaviour 

was also observed for nanoparticles, the saturation time for the second and the third 

layer is much faster than that of the first layer.

AFM tapping mode images show the formation of large aggregates of 

polyelectrolyte and nanoparticles. For the films deposited from undiluted colloid 

solutions, the aggregates were about 40-50 nm in size, while smaller aggregates, of 

about 12-20 nm, were obtained if the colloid solutions were diluted.
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The DC I-V characteristics of sandwich structures of Hg/polyelectrolyte/ITO 

show exponential behaviour typical for electron tunneling. The presence of CdS and 

ZnS nanoparticles in polyelectrolyte films decrease the conductivity value, which is 

believed to be caused by the increase in the film thickness due to the aggregation of 

nanoparticles and intercalation with polyelectrolytes. C-V measurements for both CdS 

and ZnS show very low capacitances which give the value of dielectric constant of e < 1. 

This indicates that CdS and ZnS nanoparticles are conductive which is also supported 

by G-V measurements. The measurement of capacitance as a function of frequency of 

both CdS and ZnS films show that the capacitance is practically independent of 

frequency over the range of 102 -106 Hz which could be another proof of the tunnelling 

behaviour.

The electroluminescence (EL) from the sandwich structure of (PAH/CdS/PAH)N 

was detected using photon counter detector. The luminescence was found to decay 

rapidly and needs about 10 s before the sample could be subjected to the next 

measurement. The study shows that the electroluminescence was started at the input 

voltage of 1.4 V and the intensity was increased by increasing the applied voltage. The 

intensity of electroluminescence was found to be in linear proportion to the number of 

nanoparticle layers. In the case of ZnS films, the luminescence can not be found, 

possibly because the luminescence was out of the range of the photodetector used.

6.2. SUGGESTIONS FOR FUTURE WORK

This section proposes further investigations that will specifically extend the 

work described in this document.

1. The results of the spectroscopic ellipsometry and AFM show large aggregates of 

semiconductor nanoparticles intercalated with polyelectrolyte. We suggested that it
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was caused by the large number of ions (SO3 ' or NH2+) in the organic stabilizing 

shell.

As a result, the polyelectrolytes are attracted, tangled with polyelectrolyte and 

formed large aggregates. Using a mixture of charged and neutral capping agents the 

number of charged ions could be reduced. This idea was attempted but resulted in 

non-stable colloids. Further alteration in the colloid synthesis is required to produce 

more regular structures of polyelectrolyte/nanoparticles.

2. This project was mostly focused on the fabrication and characterisation of 

electrostatically self-assembled films containing CdS (or ZnS) nanoparticles 

prepared by aqueous-phase method. Although the combination of CdS and ZnS was 

successfully deposited and the absorption spectra were measured, the films were not 

fully characterised. It would be very interesting and might be useful, to study in 

more detail II-VI semiconductor layers containing different nanoparticles.

3. AFM measurements could not image the nanoparticles individually. One of the 

reasons, is the limited resolution of AFM due to the finite size of the AFM’s tip. 

However, AFM images of films deposited from diluted solutions showed smaller 

size and separated groups of nanoparticles clusters. Such deposition conditions 

combined with the use of a very flat substrate such as mica may improve the result. 

TEM study would be useful to observe individual nanoparticles.

4. Electroluminescence study showed a very short lifetime of luminescence and the 

samples. More experiments are needed to investigate this matter in more detail and
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to improve the lifetime and the intensity of the luminescence. Different structures of 

nanoparticles doped with other materials could be considered.

5. This work could be expanded towards the use of other metal salts and thus other 

metal sulphide nanoclusters, such as PbS.
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