
Lattice Boltzmann method for Q-tensor nemato-dynamics in liquid crystal display devices.

SPENCER, Timothy J.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20393/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20393/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


ICTIY CAMPUS, r
SH E F F IE

WARDSTHSfi “  nva

REFERENCE



ProQuest Number: 10701039

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701039

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Lattice Boltzmann Method For Q-Tensor 
Nemato-dynamics In 

Liquid Crystal Display Devices

Timothy James Spencer

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University 

for the degree of Doctor of Philosophy

April 2005



Abstract

Nematic liquid crystals are fluids whose anisometric molecules show long range 

orientational order but no positional order. The orientational order gives rise to 

anisotropic properties that have widely been exploited as the basis for liquid crys­

tal display devices. The Ericksen-Leslie director theory has successfully been used 

to describe many dynamic properties of liquid crystals however there are situations 

in which a more complete description may be given in terms of the second rank 

traceless symmetric Q-tensor.

The development of a liquid crystal device solver is described. The solver calcu­

lates the flow, director and order parameter fields in three-dimensions through the 

Q-tensor equations of nemato-dynamics. The solver includes elastic, electric, mag­

netic, thermotropic, flexoelectric, dielectric and surface anchoring effects. Coupled 

lattice Boltzmann algorithms are used with anisotropic forcing terms included in 

order to reproduce the governing equations. A Chapman-Enskog analysis demon­

strates that the algorithm recovers the target macroscopic equations.

The method is successfully validated against analytical results for the effect of tem­

perature, external electric fields, flow alignment and Miesowicz viscosities. Further 

validation is given against numerical solutions of a one-dimensional model of a liq­

uid crystal display device proposed by Davidson.

The switching behaviour of a Zenithal Bistable Display is then investigated. It is 

shown how flexoelectric properties of nematics produce bistability within this de­

vice. Defect creation and annihilation processes are shown during device switching 

for which it is necessary to use a method with variable order parameter. An ap­

proach to determine the flexoelectric coefficients is discussed. Results are presented 

for the preliminary characterisation and operation of this display that may enable 

optimisation for use in the display industry.
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Chapter 1 

Introduction

The topic of liquid crystals (LC’s) is a multidisciplinary field. It has scope to 

accommodate physicists, chemists, biologists, mathematicians and engineers. This 

thesis will be examining LC’s mainly from the view point of the physicist and 

mathematician but it will become evident of the wider scope which the field holds. 

LC’s are an important class of materials, their applications ranging from display 

devices, optoelectronic devices, sensors, biological and structural materials. By 

far the most technologically important of these applications has been the display 

devices and it is towards this which the current study is aimed.

1.1 The Study

This study has been established with a three fold purpose. First to report a lattice 

Boltzmann (LB) simulation method for complex fluids: we will report a method by 

which we may adapt LB methods to simulate macroscopic continuum equation of 

non-Newtonian complex fluids. Secondly to use the method to predict LC dynamics 

of variable director, order and flow fields. In particular we focus on those situations 

where the use of a variable order parameter scheme is expected to be essential 

in order to recover the correct behaviour of a LC system. Lastly we apply these 

methods to situations of experimental relevance, in particularly to situations in 

which flexoelectric properties of LC become important such that they may control 

the behaviour of LC displays (LCD’s) and towards the development of bistable LCD 

technologies.
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1.1.1 Aims and Objectives

The main purpose of this work is to develop and build a generic method by which 

systems of confined LC’s particularly those of LCD’s may be modelled. The method 

is to include hydrodynamic, director and order parameter variations, allowing for ar­

bitrary enclosed geometries and be subjected to external magnetic or electric fields. 

We then wish to apply our method to situations in which flexoelectric properties 

of LC’s are of importance. The notable exclusion from our method is electrohy­

drodynamics: the conduction of ions and impurities within LC samples associated 

with a conductivity anisotropy. However we hope that with improved experimental 

methods in sample purity and using pseudo ac driven methods these effect are small 

enough to be ignored.

In solving the system of equations for LC’s the LB method will be utilised. We 

will address within the LB method how to account for the differences in time scales 

of the fast hydrodynamic variations compared to the slow director evolution. The 

LB solutions will be verified/validated against analytical and numerical solutions to 

the governing equations. We will also discuss the advantages of an order variation 

within simulations.

We will then apply our methods to the study of the complex experimental 

zenithal bistable devices (ZBD); this employs situations of variable geometry and 

defect dynamics. We aim to track the correct creation and annihilation of defects, 

which we believe to be the first time, in the switching process between continu­

ous and defect bistable states. A comparative study of the significance of order 

parameter variations versus director only descriptions will then follow to highlight 

the differences in the methods. Finally we will further examine some switching 

properties in the ZBD.

1.1.2 Organisation of Thesis

For the remainder of Chapter 1 an introduction to LC, LCD properties and a 

discussion of phenomenological simulation techniques is given for those not familiar 

with LC’s. This may be safely omitted by a reader familiar with these subjects and 

its associated notations.

In Chapter 2 we overview the phenomenological continuum theory for the Lan­
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dau deGennes order parameter. The relevant properties, free energies are described 

with the static and dynamic equations that govern the behaviour.

In Chapter 3 the LB method for isotropic fluids is discussed and the algorithm 

is described. A short LB investigation into isotropic laminar flow over a backward 

facing step is reported comparing pressure driven and body forced methods. Results 

are compared to experimental and numerical work [1] in the same geometry and 

agreement is obtained to a satisfactory level of accuracy.

In Chapter 4 the LB methods for Q-tensor nemato-dynamics are discussed. We 

provide a statement of the algorithm used in the work and a Chapman-Enskog 

analysis to justify its form. We report a method for treating the electric field 

within the LB solver. The full solver is tested against simple analytical solutions of 

the governing equations: phase behaviour, shear flow, Miesowicz viscosities and a 

kickback cell.

In Chapter 5 the solver is applied to an idealised bistable device model [2]. We 

recover previous numerical results for this model from a constant order parameter 

method. The additional information the Q-tensor method can yield and to what 

extent a more detailed description than [2] of this device can give is studied.

In Chapter 6 the statics and dynamics of the ZBD are studied. We simplify the 

theory to show the source of the bistable behaviour. Switching between states is 

shown and the dielectric anisotropy versus flexoelectric contributions to the switch­

ing studied.

In Chapter 7 a more complete description of the ZBD is given examining the 

influence of hydrodynamics and electrostatics, the temperature range of the device 

and we study some device properties upon the relaxation dynamics.

In Chapter 8 a summary of the main results of this thesis and the conclusions 

are given. Directions are suggested for future work. A bibliography is included.
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1.2 Liquid Crystal Primer

In general, most substances have a single melting point where a solid possessing a 

positional and orientational order changes upon melting to an isotropic liquid that 

has neither positional nor orientational order. However some materials when melted 

from the solid state change into a cloudy liquid [3] with only orientational order at 

one temperature and upon further heating to an isotropic liquid that has no order. 

For this reason LC’s have been dubbed mesomorphic (meaning intermediate) phases 

that exist above the melting temperature Tm of the crystalline phase and below the 

clearing point Tin  of the liquid (isotropic) phase, see figure 1.1. This type of LC in 

which the mesophase is defined by the temperature between Tm and Tin  is called a 

thermotropic LC. If the mesophase is defined by a solvent concentration it is called 

a lyotropic LC. As thermotropic LC are predominantly used for display applications 

we only consider their behaviour for this thesis (lyotropic systems can give rise to 

different physics from their larger molecular dimensions and properties).

Most LC materials are organic compounds that consist of rod-like or disc-like 

shaped molecules. For display applications LC materials with rod-like shaped 

molecules are the most commonly used. The LC mesophase may be broadly classi-

T <  Tm Tm < T <  Tin T  <  T in

Solid Liquid Crystal Liquid

order

Figure 1.1: Sketch of solid, LC and liquid phases. The solid phase has positional and 
orientational ordering of molecules. The LC phase has orientational order, no positional 
order. The liquid phase has no positional or orientational order, it is isotropic.
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I

Nematic Chiral Nem aticSm ectic A Smectic C

Figure 1.2: Sketch of LC molecular orientations in the LC phases (a) smectic A, (b) 
smectic C, (c) nematic and (d) chiral nematic (cholesteric).

fied into three further types (phase) namely the smectic, nematic and chiral nematic 

(cholesteric) according to their molecular order, see figure 1.2. The smectic phases 

generally have the rod shaped molecules arranged in layers with the molecules ap­

proximately parallel to each other (2-dimensional ordering). There are many differ­

ent smectic phases with smectic A (molecular long axis approximately perpendicular 

to the layers) and smectic C (molecular long axis tilted from the perpendicular of 

the layers) being the most common. In the nematic phase the rod shaped molecules 

long axis are approximately parallel to each other but the individual molecules move 

relatively easily in the direction of their long axis without a layered structure. In 

the chiral nematic phase in addition to the nematic phase properties there exists a 

spatial variation of the long axis of the molecules that leads to a helical structure: 

consider a series of planes through the material perpendicular to the helical axis, 

each contains the order of the nematic phase but the local long axis alignment in 

changing planes is slightly rotated. The same substance may exhibit more than 

one LC mesophase as the temperature is varied in the Tm < T  < Tin  region, for 

example, with increasing temperature a substance may change from a smectic to a 

nematic phase, then finally an isotropic liquid above Ti n • The nematic and chiral 

nematic phases are the most widely used for display applications.

An example of a nematic LC material is 4’-n-pentyl-4-cyanobiphenyl (5CB) [4] 

with a nematic phase in the range 24° C to 35°C [5]. In 5CB, see figure 1.3, the
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biphenyl rings are nearly coplanar and form approximately a rigid rod about 20A  

long by 5A wide. The terminal groups (cyano and pentyl) and conjugated bonds in 

the molecular core are largely responsible for many anisotropic properties of these 

materials. Many thousands of LC materials have been discovered and engineered 

each with their own specific parameters. The LC materials used in current LCD’s 

are typically highly developed mixtures of various compounds that are tailored 

to meet environmental stability of wide operating temperatures, fast response to 

external field influences and high electrical resistivity for addressing purposes.

The rod-like molecules in a nematic LC are characterised well by an ellipsoid, 

see figure 1.3, although they may not necessarily be cylindrically symmetric due to 

their shape or charge distribution. With such shape symmetry the nematic is termed 

uniaxial and may be characterised microscopically by a unit orientational vector u 

along the molecular long axis. The states u and — u are physically indistinguishable 

indicating ’head-tail’ symmetry of the molecule. Averaging u over a collection of 

molecules gives the average orientation of a set of molecules called the director 

n = (u) in which () denotes the average over an ensemble of molecules. The

CN

2nm
(a)

(b)

Figure 1.3: Sketch of a common LC called 5CB. (a) chemical composition, (b) atomistic 
arrangement [6] page 6 figure 1.1, (c) common molecular dynamics simulated LC ellipsoid.
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director is a course grained macroscopic observable, it is physically measurable, ft 

is also a unit vector n • n =  1 with ‘head-tail’ equivalence (u -n )  =  0 , however 

((u • n)2) ^  0 and thus may be used as a measure of ordering i.e. how well aligned 

the molecules are to n. The degree of order is given by the even set of Legendre 

polynomials, of which the second is termed the uniaxial scalar order parameter, 

5  =  |(3  cos2 0 — 1) in which 6 is the angular difference from the director. Typically 

0 < S  < 1 characterises the nematic phase: for perfect alignment of molecules 

S  = 1 , for a random configuration of molecules (isotropic) 5  =  0. It should 

be noted 5  =  — \  is a possibility but is physically hard to imagine given that all 

molecular orientations must be perpendicular to n. In thermotropic LC’s 5  =  S(T) 

where T  stands for the temperature of the system. The transition from the nematic 

to isotropic phase at Tin  is indicated within 5  as it changes discontinuously to zero 

indicating a first order phase transition.

In a well defined LC sample in which the characteristic variation I < 1 fim  of 

ft is much larger than the molecular dimensions a ~  10A we have f  1 and 

5  ~  Sq is constant. A director description of the sample thus surfaces. However 

situations occur such as the influence of external parameters upon the sample in 

which n  may change abruptly but over this range S(x)  changes continuously; it has 

a mesoscopic length scale (one can expect 5  to lower according to its definition if 

molecular alignments vary). Samples of this kind would be better characterised by 

both n and 5. One such continuous parameter that combines both of these is an 

alignment tensor Qap =  Qap{jv,S) with the properties Qaa =  0 and eiapQap == 0. 

Here and throughout this thesis Einstein summation convention is implied over 

repeated Greek indicies and eap7 is the Levi-Civita symbol (£123 permutations =  1, 

£321 permutations =  — 1, and 0 for all other cases). The elements of Qap are real 

and related to ft and 5  through its eigenvectors and eigenvalues.

1.2.1 Physical Properties of Liquid Crystals

The ordered structure of LC molecules give rise to anisotropic properties. That is, 

various physical properties such as dielectric constant e, refractive index n, magnetic 

susceptibility x, conductivity a, viscosity 77, have different values in the directions 

parallel (||) and perpendicular (_L) to the molecular long axis. These anisotropic

7



physical properties in conjunction with the ease of controlling the initial orientations 

(boundary conditions) through surface alignments and the ease of re-orientating the 

molecular axis through applying voltages is the basis for the application of LC’s in 

displays [5].

D ielectric  A n iso tropy

Dielectric anisotropy in LC molecules occurs due to their permanent and induced 

dipoles. The magnitude of the permanent LC molecular dipoles is small and such 

that with no external applied field there is no net polarisation, see figure 1.4a and 

figure 1.4b. With the application of an external electric field, JE, the molecules re­

orientate themselves with respect to the field. The induced dipoles occur when the 

external field produces a force upon the atomic charges displacing like charges to 

opposing ends of the molecule creating a dipole which then re-orientates the entire 

molecule with respect to the field, see figure 1.4c and figure 1.4d.

0  vo lts 1 volts 0  vo lts ■ <J) volts

0  volts

0  volts

0  volts

¥  t
/'i X \

+ E z

+ (j) volts 0  volts +  ()) volts

(a) 0 )
-  § volts -  <j) volts 0 volts -  (|) volts -  <j) volts

i A J i
A

< v
y + - h

\  \ +Ez ■ +& ' \ ;. V

A )
' t

+ <j) volts + (j) volts ! 0 volts 4- <)) volts + volts ,

(c) ( d )

+E

Figure 1.4: For no external electric field molecules are arranged so that no net polarisation 
is present. For permanent dipoles upon application of an electric field the molecules re­
orientate with respect to the field dependent upon (a) Aea > 0, (b) Aea < 0. For induced 
dipoles the charges separate along (c) the long axis of the molecule (Aea > 0) or (d) the 
short axis of the molecule (Aea < 0).



The dielectric anisotropy is expressed as Aefl =  ey — e± where ey and e± are the 

dielectric constants measured parallel and perpendicular to the LC director. LC 

materials that exhibit positive Ae0 (p-type) tend to align themselves, for large fields, 

with their molecular long axis parallel to the applied electric field. LC materials 

that exhibit negative Aea (n-type) tend to align themselves, for large enough fields, 

with their molecular long axis perpendicular to the electric field. Both positive and 

negative applied fields induce the same molecular re-orientations. The magnetic 

susceptibility of a LC behaves in an analogous way to the dielectric effect, with the 

magnetic anisotropy defined A x a = X\\ ~  X jl - Both electric and magnetic fields have 

the effect of stabilising an orientation leading to an increase in the level of ordering 

among molecules, S  (all be it small). Generally the dielectric constant ey decreases 

with increasing frequency [7] due to the relaxation phenomenon, oppositely e± varies 

little over a large frequency range. At a cross over frequency f c, typically in the 

range 100kH z  to 1 MHz ,  where ey =  ex the LC becomes dielectrically isotropic. The 

dielectric constants also change as a function of temperature and thus S  (S = S(T))  

becoming equal e\\ = e± = eiS0 as the temperature approaches Tin-

Refractive Index Anisotropy

Materials displaying birefringence, such as LC’s, have anisotropic refractive indi- 

cies. They have two principle refractive indicies n0 and ne, see figure 1.5. For the 

ordinary refractive index n0, the electric field vector of the light beam oscillates 

perpendicular to the optic axis and for the extraordinary refractive index n e, the

Director, n

Optic axis

Figure 1.5: Sketch of the anisotropy in the refractive indicies for a uniaxial LC.
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electric field vector oscillates parallel to the optic axis. In uniaxial nematic LC’s 

the optic axis is given by the director, so nQ = n± and ne = n\\ with the optical 

anisotropy (birefringence) A na — n\\ — n± = ne — n0. Like the dielectric con­

stants the refractive indicies vary with S(T).  Additionally the refractive indicies 

are wavelength A dependent.

E lastic  A n iso tropy

The orientation of an ensemble of LC molecules is given by its director, n(xj.  In a 

larger pure sample the preferred equilibrium orientation of the director is to seek 

a constant - undistorted alignment (see figure 1.2c). The director orientation may 

be imposed by boundary conditions, if the LC sample is then perturbed from equi­

librium by application or removal of an electric field, a distortion from equilibrium 

occurs. The transition of the director from one direction to the other induces cur­

vature strain in the medium of which there are three principle types; Splay (A n), 

Twist (K 22) and Bend(A33), see figure 1.6, which all vary in strength. The Ka are 

elastic constants proportional to the curvature strain experienced in the sample. A 

sample experiencing curvature strain has variation in molecular alignment and thus

X

SPLAY K11 TWIST K22

SADDLE-

Figure 1.6: Sketch of the different characteristic deformations from equilibrium in the 
molecular arrangement. Splay, twist and bend characteristic of bulk deformations. The 
less well known saddle-splay occurring at the surface for complex structures.
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a destabilising effect upon the local order parameter. As with most LC parameters 

the Ku depend upon temperature, S (T ), becoming ~  zero below Ti n .

Flexoelectric Effect

There are two ways flexoelectricity affects LC’s, both weakly affect the molecular 

orientations through polar induced distortions. Firstly [8] molecules that have an 

asymmetry in their shape may contain small permanent electric dipoles. The prime 

examples being ‘banana’ or ‘pear’ shaped molecules. For undeformed LC samples 

the molecular configurations show no net polar symmetry, the molecular dipoles 

cancel giving a zero bulk dipole, see figure 1.7a or figure 1.7c. If the sample is 

now distorted in shape or through the application of an external field the molecules 

re-orientate in order to better fill the shape volume or to align their dipoles to the 

electric field, see figure 1.7b or figure 1.7d. In doing so it creates a) a distortion 

splay or bend and b) a net polarisation and hence electric field. The effect of flexo­

electricity upon the order parameter is not obvious as it has a distortion property 

(lowering S ) together with a polarisation (increasing S) property. The splay and 

bend distortions are represented by flexoelectric coefficients e\\ and 633 respectively 

that are functions of S(T).  It is important to note that applying a positive or neg­

ative electric field will cause different and opposite distortions, unlike the dielectric 

effect, as discussed earlier.

The second way is for molecules that are symmetric to have quadrupolar sym­

metry [9]. Again an undeformed sample has no net polarisation but upon distortion

P= 0 P*0 P= 0 P^O

(a) (b) (c) (d)

Figure 1.7: Sketch of the dipolar flexoelectric LC effect for molecules in their undistorted 
(a),(c) and distorted states (b),(d).
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P =  0 P^O

P =  0 P^O

(a) (b) (d)

Figure 1.8: Sketch of the quadrupolar flexoelectric LC effect for molecules in their undis­
torted (a),(c) and distorted states (b),(d).

or application of an electric field the quadrupolar charge orientates the molecules 

so as to induce a distortion and a net polarisation which is sign dependent, see fig­

ure 1.8a and 1.8b. Alternatively [10] symmetric molecules could pair off ‘dimerise’ 

through quadrupolar interactions see figure 1.8c and 1.8d. Again upon distortion 

or applied electric field a sign dependent distortion is created with a net polarisa­

tion. Quadrupolar effects are typically described by a single temperature dependent 

flexoelectric coefficient e.

Flow A niso tropy

The viscosity of a fluid is a measure of its resistance to flow. The viscosity of a LC 

sample varies dependent upon the molecular orientations within the sample. This 

can be seen in a LC material in between two parallel plates and measuring the force 

necessary to move one plate past the other at a certain velocity, see figure 1.9. The 

force necessary to move the plate at a certain velocity ux, is different for the three 

fixed molecular alignments. For laminar flows the viscosity is proportional to the 

force applied and from figure 1.9 Fx[b) < Fx(a) < Fx(c) and we have viscosities 

r](c) > r](a) > r](b). There exist five independent viscosity coefficients in the uniaxial 

nematic phase that are strongly temperature dependent, S(T),  in comparison to the 

singular isotropic weakly temperature dependent viscosity above T/Ar-

The magnitude of the viscosities in a nematic LC are all the same order of 

magnitude as that of water which has a singular isotropic viscosity. LC materials can 

therefore flow readily and in doing so the different velocity profiles create forces upon 

the LC molecules tending to re-orientate them, analogous in essence to the concept
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Figure 1.9: Sketch of the three arrangements for the measurement of the Miesowicz vis­
cosities. The force, Fx, required to move the top plate at a constant velocity, ux, is 
different for each director alignment hence a different viscosity is observed for each case.

of logs flowing in a river. This effect of flow effecting molecular reorientations 

is usually coined backflow. Oppositely should the LC molecules rotate due for 

example to an external electric field or imposed boundary conditions, they create 

flows. This leads to a highly complex coupled relationships between the flow fields, 

molecular orientations and ordering in a system undergoing change. In dynamically 

changing LC samples flow increases distortions and one can expect a lowering in 

order, however for a constant n(x) flow aligned sample in a laminar regime we can 

expect a stabilising effect upon the order (all be it small).

E lec tro -O p tic  C h arac te ris tics

When a constant electric field is applied to a LC with an initial director orientation 

(boundary condition achieved via surface alignment techniques) it will change to a 

new director orientation due to the dielectric anisotropy, A ea. This change in direc­

tor is accompanied by a change in optical transmission and reflection characteristics 

due to the birefringence A na. This phenomena forms the basis for LCD’s and is 

known as the electro-optic effect. The application of the field produces an electrical 

free energy, the resultant distortion produces an elastic free energy and flexoelectric 

free energy. The final equilibrium director configuration in the LC sample is given 

by a competition of all these individual terms and represents a minimum of the 

total free energy, T  of the LC, given by the sum of the electric, flexoelectric and 

elastic contributions.

The transition from an undeformed state to a distorted state is known as the 

Fredericksz transition and it occurs at a critical electric field value, E c . Below Ec
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no distortions occur but above Ec  deformation increases with increasing E. The 

value of E c  depends on the LC material parameters Ku, A ea and d (the sample 

thickness).

1.2.2 Liquid Crystal Display Materials and Fabrication

The important orientational behaviour of LC’s makes them useful for display de­

vices. They also contain further attributes including low drive voltages, low power 

consumption, thin form factor (flat panel displays), light weight, full colour, grayscale 

with wide dynamic (even in sunlight) range, full motion video, superior image qual­

ity and high reliability (life span). These reasons make LC’s the preferred approach 

for battery-powered portable applications ranging from the wrist watch to tradi­

tional televisions to laptop computer displays to large screen projections, they have 

even started to replace cathode ray tubes (CRT).

LCD’s are by no means the conclusive display, they are just one technology in 

the quest to find the holy grail in displays - electronic paper. It was said about 

electronic paper [11]:

‘Ink on paper is simply the pinnacle of the display industry. Ink on paper 

is a bistable, bright, high contrast, inexpensive material that consumes 

no power in retaining an image and can easily be viewed from many 

different angles even in sunlight. ;

For the purposes of this work we do not consider other technologies competing 

for the multi-million pound display market but would refer interested parties to 

electronic ink references [12]. LCD technology is still in the early development 

stages to achieve electronic paper. At the time of writing the current developments 

are to improve viewing angles, improve image quality, lower power consumption and 

larger displays. We outline below some of the typical techniques in the manufacture 

of LCD’s [5, 13].

In figure 1.10 is shown a schematic of a general passive matrix addressed LCD. 

In figure 1.11 the general construction process is indicated in a flow chart.
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Upper glass substrate

Data/column electrodes

Lower glass substrate

Scanning /  row 
electrode

Fill hole 
(plug)'

Seal

Interconnect 
“  region

(a)
Alignment layer

Cell gap spacers 
\  LC material

Polariser
Lower glass substrate

Row electrode

■Seal
Column electrode-

^ -----
Polariser

Upper glass substrate
Alignment layerR G B  

color filters Black matrix

(b)

Figure 1.10: Sketch of the typical passive matrix addressed colour LCD adapted from [14]. 
(a) Plan view and (b) cross-section view.

G lass S u b stra te

Glass quality must be chemically compatible with the LC materials, flat defect 

free, and have dimensional stability under the processing temperatures it will be 

submitted too. Typically LCD display gaps are of 1 to 10 /rm highlight the need 

for flatness, whereas surface defects and scratches will lead to poor electrode op­

eration and poor uniform cell spacing. Polished glasses such as borosilicate and 

aluminosilicate are typically used of thickness 0.7 to 1.1 mm.

C olour F ilte rs

Colours are generated through red, green, blue (RGB) filters at each pixel com­

patible with the white back light system. Colour filter thickness is usually 2 fim
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Polariser Attachment

Alignment Layer Processing

Cell Periphery Sealing

Spacer Application

LC Material Filling

Module Assembly

Fill Hole Sealing

Electrode Patterning

Lower Glass Substrate

Electrode Patterning

Testing

Driver Interconnection

Alignment Layer Processing

Colour Filter Fabrication

Upper Glass Substrate

Figure 1.11: A flow chart for the manufacturing and assembly processes involved in a 
typical LCD.

made from dyes or photo resists that are applied using photo lithography. A Black 

matrix material is applied between colour filters to block inter pixel light transmis­

sion. This can be optically finished with a smooth barrier layer of Si02  to attach 

electrodes.

Transparent Electrodes

Typically indium tin oxide (ITO) of 90% In203 and 10% S n02 is used due to its 

good transmission levels. 50 to 300 nm thick layers are deposited via evaporation 

or sputtering techniques with a typical resistivity of the order 10_4fl cm-1.

Alignm ent Techniques

Surface alignment is crucial to the LCD operation. It aligns the LC molecules to 

specific orientations with a specific strength to remain in that orientation. There 

are four main types of alignment. Planar arrangement orientates the LC direction 

anywhere within the plane of the surface. Homogeneous alignment is in the plane of 

the surface but with a preferred direction. Homeotropic alignment is perpendicular 

to the surface and conical alignment describes a director with a fixed polar angle 

from the surface but a free azimuthal angle. Further it is sometimes useful to
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add pre-tilts to device surfaces, these being typically a finite angle from one of 

the above types of anchorings. Inorganic films such as obliquely evaporated SiO 

or organic materials such as rubbed polymide are commonly used to impose the 

required alignments.

Cell Spacing and Sealing

After alignment the cell assembly starts. The cell thickness is controlled by spacers, 

typically plastic fibres or spheres of set size, that are positioned both in active areas 

and peripherals. A compatible epoxy type adhesive then seals the cell with a small 

fill opening left to inject the LC material. The upper and lower surfaces are then 

aligned before curing via heating or UV exposure methods. Seals are typically 1 to 

3 mm wide and 2 to 3 mm from the active area of the display. Sealant must prevent 

moisture and contaminants getting into the cell.

LC M aterial Filling

Small LC cells are usually filled by evacuating the cell in a vacuum chamber, sub­

mersing the cell below the fill hole level into the LC material then increasing the 

chamber pressure. Raising the pressure causes the cell to fill via capillary action. 

When full the fill hole is sealed with compatible epoxy adhesive.

External Com ponents

These include polarisers, reflectors, display drivers and backlights. A reflector is 

applied to the back of a display to reflect the ambient light and does not require 

back lighting though it can be done so. More commonly the transmissive mode 

is used with back light. Polarisers are attached to the front and back of the cell 

with the axis polarisation set dependent on display type operation. Polarisers are 

typically a three layer composite with polarising polyvinyl alcohol (PVA) then two 

outer triacetyl cellulose (TAC) films for protection from environmental damage. 

Polarisers can be 99.9% efficient but only 45% transmissive.

Display row and column integrated circuit (IC) drivers are then attached to the 

row and column pads of the display via tape-automated bonding (TAB) or chip on 

glass (COG) approaches. A fluorescent lamp and diffuser generates a uniform back 

light that can also be used to control image brightness.
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Display Addressing

There are essentially three types of display addressing techniques allowing for the 

different demands of display types: direct (static) addressing, passive matrix (PM) 

addressing and active matrix (AM) addressing. For low information content displays 

segmented electrodes are used with simple direct addressing (voltage drive signals 

are given for each segment/pixel), for example the numeric seven segment display 

in a calculator. This method becomes impractical for high information content 

displays due to the vast number of interconnections required; we now turn to matrix 

addressing.

PM addressing has a matrix of transparent conducting row and column elec­

trodes as in figure 1.10. They are the simplest and least expensive addressing 

systems for LCD manufacturers. For example a colour VGA graphics array of 

pixels 640 (x3 =  1920)H by 480 V has 1920 columns and 480 rows with 2400 

interconnections used to address a 921600 pixelled display.

In PM addressing a voltage, -\-Vr, is applied to each row sequentially, the columns 

of a given row are then driven in parallel during that row time with a voltage, ±VC, 

a pixel is either on or off depending upon the sum of the voltages Vr rt Vc. During 

the frame time t f , for an A  row display the pixels in any one row will receive its full 

voltage on for tr = t f / N  of the time. Whilst the other rows are addressed there will 

be a smaller voltage which, from figure 1.13c, will lead to less contrast hence why 

devices with steeper electro-optic curves were developed (see § 1.2.3). Operation 

can be enhanced (speed and content) by splitting the display in half where the rows 

in each half are scanned simultaneously and synchronously.

AM addressing removes multiplexing (number addressable rows) limitations of 

PM methods by including a non-linear control element into each pixel using a 

stored charge. The AM address is depicted in figure 1.12, it shows the three main 

components required at a pixel: thin film transistor (TFT), pixel electrode (Clc) 

and storage capacitor (Cs: introduced to correct for offsets such as a temperature 

changes). The manufacturing process is complicated and usually done using more 

expensive photo lithographic methods. As with the PM addressing and most matrix 

addressing displays, with line at a time addressing, the rows (gate of the TFT) are 

scanned sequentially with a select gate pulse Vg,Sei during the frame time t f ,  while all
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Data bus

Gate bus

Figure 1.12: Sketch of an active matrix controlled LCD substrate surface. Each pixel 
contains a TFT and pixel electrode and storage capacitor.

the pixels in a row are addressed simultaneously with a data voltage ±Vd during the 

row time, tr{— t f /N ) .  During the row time the select gate voltage switches the TFT 

on to charge the pixel capacitor and storage capacitor to the data voltage. After 

the row time the TFT is switched off via a non select Vg)Tlon- sei which isolates the 

charge from the matrix and maintains the pixel voltage for time t f .  This isolation 

vastly improves contrast and switching time making it the addressing choice for 

high speed video applications. It should be noted the pixels should be driven in an 

ac fashion with +Vd and —Vd on alternate frames. This avoids net dc build up of 

ions in the LC due to anisotropy in the conductivity A aa which causes pixel flicker 

and image sticking effects.

1.2.3 Liquid Crystal Display M odes

Schadt and Helfrich [15] then of Sharp Laboratories were the first to construct LC’s 

for displays but the principles by which LCD’s can operate vary. Many different 

operational types of display exist. We highlight here just some of the common 

operating modes that exist [16].
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Tw isted N em atic (TN ) M ode

The TN [15] arrangement is shown in figure 1.13a. A nematic LC with Aea > 0 

lies in a cell with directors homogeneously aligned 90° from each other on opposing 

surfaces with a small, 3° pre-tilt that will avoid reverse tilt disclinations. The 

rest state of a normally white mode display has uniform director twist throughout 

the cell with crossed polarisers attached with their polarisation axis parallel to 

the director on that substrate. For a pitch of the LC greater than the optical 

wavelength the linearly polarised incident light rotates 90° with the LC optic axis 

and exits the second polariser appearing bright. Applying a voltage aligns molecules 

as figure 1.13b and the optical rotation is lost and the cell appears dark due to the 

polarisers. Typical operating voltages are 2 to 5 Volts with a response time of 10 

ms, the typical response being shown approximately in figure 1.13c from which, 

by varying the voltage we may achieve gray scale control. TN devices are best 

addressed on an active matrix system due to the shallow electro optic response 

limiting multiplexibility.

Polariser

Glass

LC Director

Glass

Polariser

(b)a)

NW NB
100

Vth

Voltage (V)

Figure 1.13: Sketch of a normally white TN device in the (a) ‘off-state’: incoming light 
is linearly polarised which then follows the optic axis (n) allowing it to escape the second 
polariser appearing white, (b) ‘on-state’: the incoming light is linearly polarised but for 
this alignment there is no anisotropy, polarisation remains linear and light is extinguished 
by the second polariser. (c) a typical optical response curve of transmission versus applied 
voltage.
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Super T N  (STN ) M ode

STN [17] where developed to achieve a steep electro-optic curve (steeper than fig­

ure 1.13c), that will allow for high multiplexibility. The STN uses the same setup 

as the TN with large pre-tilt angles and a larger twist angle 180° to 270° between 

upper and lower surfaces (achieved via chiral additants to the LC mixture). Typi­

cal STN response times are of the order of 150 ms with a lower contrast ratio and 

narrower viewing angle than the TN.

Electrically Controlled Birefringence (ECB) M odes

These display modes [18] work by controlling the cell birefringence via electric 

fields. There are many arrangements. The DAP is a homeotropically aligned sam­

ple throughout the cell and has Aea < 0 between crossed polarisers. For no field 

there is no birefringence for incident light. For an increasing field there is increasing 

birefringence creating elliptically polarised light that makes the cell appear bright. 

Oppositely a homogeneously aligned cell may be used of Aea > 0. The HAN (hy­

brid aligned nematic) is another variation in which one surface is homeotropic and 

the other homogeneous. Here both positive and negative Ae0 materials can be 

used and since there is no clear Fredericksz threshold voltage it has a low drive 

voltage. Another arrangement is called in-plane switching (IPS) that has homoge­

neous alignment and interdigitated electrodes on one surface and Aea > 0. Upon 

application of the field the directors rotate in-plane by 90° to align between the 

electrodes.

1.2.4 Bistable Liquid Crystal Display M odes

In the development of LCD’s towards the idealist electronic paper, one of the char­

acteristic requirements is bistability. This is the property that under the influence 

of no externally applied fields the LC has two equally stable configurations. If in 

addition the two stable states are optically distinct in a reflective display cell this 

would lead to a static image being displayed for zero power expenditure. Power is 

then only needed if the image where to be changed (updated), this is in contrast to 

the modes of §1.2.3 were a constant applied field is needed to retain an image. This 

ability has potentially a dramatic influence upon the display market, particularly
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for portable devices. W ith power consumption reduction the operational life time 

of batteries is increased and smaller batteries may be used. The added complication 

to these displays is that switching is preferred to occur electrically with dc-fields 

applied between upper and lower substrates.

As bistable displays have pixels that are bistable they retain their states indef­

initely and there is less ‘cross-talk’ between pixels (less image flicker) which have 

threshold voltages between the two states thus the cheaper passive matrix driving 

technologies may be used with unlimited multiplexing capabilities.

Over the years there has been increased research towards achieving bistable 

LCD’s aimed to reduce operating voltages and widen applications, the following 

will describe such technologies. Cholesteric LCD’s [19] with one state having planar 

twisted reflective state (bright) the other having a focal conic texture absorbing 

(dark) state, the switching between states is done by switching the electric field off 

quickly or slowly. Bistable twisted nematic (BTN) [20] have one state with a 360° 

twist the other homogeneous, the switching between states achieved by different 

threshold voltages. Bend-Splay nematics [21, 22] that have high surface pre-tilt 

angles allowing for a bend state and a splay state, the switching being achieve by 

interdigitated electrodes on one or both surfaces. The post aligned bistable nematic 

(PABN) [23] uses a three dimensional array of micron high planar aligned posts on 

one surface and the other surface homeotropically flat, two hybrid states are found 

in which defects position around the posts and are shifted for each state, switching 

is achieved by the polarity of the applied voltage. The Bistable electrophoretic 

nematic (BEN) display has been developed by the Defence Evaluation and Research 

Agency and involves both surfaces having rounded wells and reflective particles that 

sit in each well, applying an electric field can pull the particle from one surface to 

the other with both being positions being stable.

Another bistable candidate is the surface nano-rubbing device [24] in which one 

surface is rubbed by atomic force microscopy into small checker board segments of 

opposite alignments the other surface being homeotropic, switching has yet to be 

achieved by vertical dc fields. Similarly to the nano-rubbed bistable device methods 

research into chemically nano-patterended surfaces [25, 26] is being studied. We give 

more detail below of some the more developed and commercially promising bistable
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modes that are being developed.

F erroelectric  SmC* LCD

Ferroelectric LCD’s [27] are of the smectic C* phase possessing a chirality perpen­

dicular to the layers. Molecules posses permanent polarisations proportional to 

the amount of tilt and for large enough samples no net polarisation (due to chi­

rality). Placing in a LC cell with planar alignment conditions, the smectic layers 

form perpendicular to the surface in a ‘bookshelf’ geometry, see figure 1.14, so that 

the optic axis is parallel to the surface. For a small enough cell (< 1/rra) there is 

no chirality and a net polarisation occurs perpendicular to the surfaces. Coupling 

the polarisation to an electric field allows the LC to be switched between optically 

distinct locally stable states. These LCD’s give very fast switching times due to the 

coupling to a polarisation and good viewing angle due to small cell size however 

they have a lack of achievable gray levels and are very susceptible to shock; slight 

external pressures destroys the smectic layering and the image is lost.

Upper glass substrate

Smectic layers

Lower glass substrate

Cell gap 2(0. m

00 -0 1■:
:: 40 Ps ■

0 : 0 <■ :
40

• : V " 40? ...J! e ‘■v. . 8 ,, "7
<0*0 0 <0<0

Negative voltage P lan'view  Positive voltage

Figure 1.14: Sketch of the ferroelectric smectic C* display. The upper picture shows the 
‘bookshelf’ geometry within a small micron sized cell. The lower plan view picture shows 
how the polarisation couples to the direction of the applied field causing the selection of 
the two states.
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Surface Controlled Bistable N em atic

Early variants of this device were investigated by Berreman [28], the more recent 

and advanced variants by Dozov et al [29]. This device has a simple construction 

with a chirally doped nematic of pitch Pch = 4d (k / 2  twist within d) placed in a cell 

with homogeneous anchoring on both surfaces with Aea > 0. This creates two stable 

states of a homogeneously aligned cell, figure 1.15a, or a 7r twisted cell, figure 1.15c. 

One surface is weakly anchored so that a large enough voltage breaks the surface 

director to align with the field, figure 1.15b. Upon removal of the field, dependent 

upon its waveform, the cell can then relax to either the homogeneous state or 7r 

twisted states. A slowly decreasing waveform relaxes to the homogeneous state, an 

instantaneous removal of the field causes a large hydrodynamic effect transforming 

the orientation to the 7r twisted state.

o
Planar alignment Waveform 180 twist alignment

Strong —
anchoring ^ J O P r e - t il t

V

Weak
anchoring

J \ t E VA

(a) (b) (c)

Figure 1.15: Sketch of the 180° surface controlled nematic. The equilibrium states (a) 
planar untwisted and (c) twisted. Applying an electric field breaks the lower surface 
anchoring and the waveform decides the switched state.

Zenithally B istable N em atic D evice (ZBD)

The ZBD uses a surface structure to induce bistability of a nematic Aea > 0. Early 

variants of this device were investigated by [30] and more recently and advanced 

variants by [31]. One surface of the cell is flat whilst the other is that of a grating, see 

figure 1.16. Surface alignment induces homeotropic alignment everywhere (normal 

to the surface). Due to the grating morphology two optically distinct states called 

the continuous, figure 1.16a, and defect, figure 1.16b states exist. In the defect state 

the director changes abruptly at the peak and troughs of the grating where as the 

director changes continuously in the continuous state with no defects. Switching
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Figure 1.16: Sketch of the equilibrium states of the ZBD. The defect state (a) has hybrid 
alignment with defects situated around the grating surface. The continuous state (b) has 
an almost continuous vertical director structure the does not contain defects. Switching 
between states is chosen by the sign of the electric field.

between states is achieved via polar pulsed fields and it involves complicated creation 

and annihilation of defects to latch between states.

1.3 P henom enological M ethods for Liquid C rys­
ta ls

In studying the behaviour of liquids and LC’s a full statistical mechanics treatment 

is highly non-trivial when compared to that of rare gases or idealised solids. On one 

hand computers are often used to aid through molecular simulation of such liquids 

but on the other hand molecular simulations of macroscopic properties and systems 

are not within reach yet. For the study of LCD cells a molecular simulation would 

undoubtedly provide accurate detailed information about switching behaviour but 

for typical cell heights 1-10 /im these fall within a macroscopic regime. Very often 

the detailed microscopic description of a system is not even needed to predict its 

macroscopic properties and behaviour. In such cases a phenomenological description 

suffices in which an appropriate macroscopic system can then be followed more 

readily with the aid of the computer simulation and continuum mechanics.

The first accepted phenomenological theories for LC were based on the direc­

tor description of the nematic phase (at constant order parameter). Frank [32]
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constructed an appropriate form for the elastic free energy of a LC which when 

minimised gave correct equilibrium configurations. However the time evolution of 

this minimisation failed to agree with experimental observations. The dynamic sim­

ulations of both the director description and flow behaviour then followed to better 

predict this time evolution. Ericksen [33] and Leslie [34] developed the accepted con­

stitutive theories for flows and directors in what is now termed nemato-dynamics. 

The Ericksen-Leslie (EL) theory couples the flow to the director and the director to 

the flow. The EL method has been experimentally verified in terms of its predictions 

and in comparing calculated optical transmission of switched LCD’s. DeGennes [35] 

developed seminal works in phenomenological theory to extend the aforementioned 

theories to study critical phenomena, LC’s near their transition point Ti n - He in­

cluded the order parameter degree of freedom into the director description via the 

alignment tensor or Q-tensor. This latter approach is followed in the development 

of a solver for LC dynamics in this thesis.

Over the last few decades the static structures of confined LC and LC defects 

cores (discontinuous in the director and molecular orientations) have been stud­

ied thoroughly. Dynamic studies followed next to observe time evolution of such 

systems switching phenomena in LCD’s. Very often the dynamics of LC including 

those of defects are studied via the director description, neglecting hydrodynamic 

flow entirely. While the director description is perfectly adequate for problems not 

involving any defects well into the nematic phase, the neglect of flow is always ques­

tionable. Hence in order to give a proper treatment of defect dynamics one must 

use a tensor method as well as take into account hydrodynamic effects. Using a 

tensor method does not bring any significant complications - it yields richer struc­

tures. Its drawbacks are to introduce wider parameter space and that it introduces 

a microscopic length scale (the order parameter) which sets an upper limit to the 

conceivably macroscopic length scales that can be reached via simulation.
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Chapter 2

Landau deGennes Theory of 
Liquid Crystals

In this chapter we briefly review phenomenological theory for LC hydrostatics and 

hydrodynamics within the Landau deGennes framework.

2.1 Introduction

A phenomenological theory of phase transitions [36] was established by Landau [36]. 

In the simplest cases through the definition of an appropriate order parameter, Q , 

the macroscopic behaviour of a phase may be followed. Typically Q — 0 in the more 

symmetric (less ordered) phases and Q ^  0 in the less symmetric (more ordered) 

phases. For example in a liquid-gas system the order parameter is the difference in 

scalar density between the liquid and the gas phase. However order parameters are 

not just restricted to simple scalar quantities, more complicated formulations may 

be required and derived from the language of group theory. It was seminal works 

by deGennes [35, 37] who first used an appropriate order parameter to describe 

properties of the nematic isotropic phase transition motivated from his studies of 

pre-transitional phenomena of thermotropic nematics.

2.1.1 T he  N em a t ic  Order Param eter

Nematic orientation is characterised by a unit vector with ‘head-tail’ symmetry 

called the director, ha. With the director aligned along the z-axis of a laboratory 

frame of reference we may define a second microscopic co-ordinate frame of refer­

ence at a particular molecule of unsaid symmetry. This reference frame is given, 

from the director, by its three Eulerian angles: (#, </>, -0). This microscopic state
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of alignment can be described by a continuous orientational distribution function 

(ODF) f ( 9 , (j), i p )  describing the probability of finding a collection of molecules ori­

entated within a solid angle, dQ. The fraction of molecules in the sample with this 

solid angle is then given by N(Q) = f ( 9 , </>, that should be normalised such 

that f  f ( 9 , </>, ip)d[l = 1 when integrated over a whole solid angle. In the isotropic 

phase this simply gives /(D ) = 1/87T2.

A nematic may be considered uniaxial due to its rapid molecular tumbling (typ­

ical time scale of 10-16 s [3]) giving an effective cylindrically symmetric molecular 

shape. The molecule long axis orientation, ua, can then be given from its spher­

ical co-ordinates: polar (0) and azimuthal (<p) angles, cos 6  = haua. The ODF 

in this case is /($,</>). Further ha is independent of 0 thus /(D ) =  f(9).  f{9) 

can be expanded in various ways but for LC it is useful to expand in terms of 

Legendre polynomials, Pm(x) where m  is the order. The first few are given as: 

P0 = 1, P\(x) = x , P^ix) =  |( 3 ^ 2 — 1), Pz{x) = \ (5a;3 — 3x). These have the 

useful property that Pm( 1) =  1. Expanding f{&) in these terms:

- 00
(2.1)

771=0

where the polynomials satisfy the orthogonality relations:

r  2b
/  Pn(cos9)Pm(cos9) sm9d9 = -------------------------------- (2.2)

J o  2 m  +  1

and f m are the expansion coefficients determined from:

fn = 2n^ ~  J  f{0)Pn(cos9)sm9d9 (2.3)

and 5ap is the Kronecker delta symbol (5ap =  1 when a = (3 and bap = 0 for

a  7̂  (3 ). Defining the average value of a quantity X(9)  [3] over all molecules in a

macroscopic ensemble as:

/*7T
(X(9)}=  /  X(9)f(9)sin9d9  (2.4)

J o

we get for the expansion coefficients:

fn = 1 (Pn(cos9)) (2.5)

where (Pn(cos9)) is the average Legendre polynomial over all molecules.
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Examining terms in order of decreasing significance in equation 2.1, the zeroth 

order coefficient /o =  1/2  is insensitive to any type of molecular ordering hence we 

seek higher order terms. All P2n-i(cos0) polynomials are odd functions whereas 

P2n(cos 9) polynomials are even and similarly the ODF is even ( f ( 6 ) = f (0  +  7r)) 

due to the nematics ‘head-tail’ symmetry. Thus all odd order coefficients f n are 

identically zero. Looking to the next highest order non-zero coefficient, n = 2, we 

have:
C /■7T C C c

h  = g J  / (0 )1 *2 (cos6 ) sin 6 d6  =  - ( P 2 (cos#)) =  —  (2.6)

in which the ensemble scalar order parameter S  =  ( |(3cos20 — 1)) is defined. S

therefore quantifies the degree of nematic ordering with respect to ha as described 

in § 1.2. Up to the second order the ODF can then be written as:

f ( ° )  =  ( 2 +  f P2(cos6>)) =  i M I  +  f  (3 cos20 - l ) )
=  8^ i1 +  2 (3(^ « a )2 -  !)) =  8^ (i +  T  (3^Ae? -  <W) uaZLp) (2.7)
=  87̂  ^  p

where Qap is defined by:

Q a P  =  (̂ ,3)

and is called the tensor order parameter or uniaxial alignment tensor, also often 

referred to as the quadrupolar moment of the ODF. The alignment tensor contains 

information on both average molecular alignment na and on the degree of order 

S. It has the properties Qaa = 0 (traceless) and sapyQap = 0 (symmetric) and is 

dimensionless. Obviously including higher order terms will lead to a more accurate 

ODF but for most theoretical and experimental works in LC’s, the characteristic 

second moment parameter equation 2.8 is enough to desciribe the molecular order­

ing.

Equivalently [38] nematic ordering can explicitly be described by constructing a 

symmetric and traceless ordering matrix from the assumed rigid rod-like molecular 

orientations:

Qap = \  ( 3 E i / fa" i/3 -  4 * )  (2-9)

because this matrix is symmetric it is always possible to find a frame of reference 

in which it is diagonal where the eigenvalue with the largest absolute value can be 

identified as S  and the corresponding eigenvector as ha.
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For a biaxial nematic, the cylindrical symmetry of f(0)  is broken. In addition to 

the director, two additional characteristic directions appear, rha and la forming an 

orthonormal triad with na. Although there are thermotropic LC’s that are biaxial, 

many are uniaxial which under external constraints such as electric and magnetic 

fields, confinement, sheared flows and elastic distortions, the symmetry of f ( 6 ) is 

broken and the LC exhibits biaxial characteristic. As before an ODF can be used to 

define an alignment tensor though the process is more lengthy. Expansion in terms 

of spherical harmonics [3] and taking the quadratic terms as before results in:

Q a f 3  =  ~2 ( 3 n a f l p  $ a f t )  d ^  (ja ^ (3  1 ^
=  f  (3 h j i p  -  Sap) -  (rharhp -  (n  x  m)a(n x  m)p) J

which introduces the biaxial order parameter Pb = § (sin2 6  cos 20). Diagonalising 

the tensor results in three different eigen values, 5,  — +  P b ) ,  —1( 5 — P b ) -  As 

Qap is symmetric and traceless it has five independent terms reflecting the five 

quantities to determine the ODF at second order: order parameters S  and P b , 

director angles 0  and (j) together with a third to determine the direction of m a.

The level of microscopic ordering in the alignment tensor is reflected in the 

macroscopic quantities such as the dielectric and magnetic susceptibility, refrac­

tive index and conductivity. This leads to an experimentally macroscopic way to 

determine Qap- Consider the diagonalised macroscopic susceptibility tensor, then 

making it traceless:

= X a p - * a r S-
- | ( xii- xj.) , \  (2.11)

— 3(X|| -  X l )
i(xii -  x±) j

normalising the tensor through the maximum anisotropy A x ™ a x  =  (X|| — X ± ) / S  we 

have:

= 2Ax™ax ( * Q/? ^ (2.12)

The use of an order parameter defined in this way is valuable as it makes no assump­

tions about the constituent molecules or their flexibility. Likewise equation 2.12 

shows how changes in macroscopic properties arise from microscopic changes in 

order.
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2.1.2 Nem atic - Isotropic Phase Transition

In general there are two different types of phase transitions at which matter under­

goes a change in its micro-structural symmetry. A phase transition is of first order 

when the order parameter changes discontinuously at the transition. At a contin­

uous phase transition, or critical point, the order parameter changes continuously 

but is discontinuous in a higher derivative. The nematic-isotropic phase transition 

is weakly first order [35]. The Landau-deGennes theory of the nematic-isotropic 

transition starts by assuming that a spatially invariant dimensionless, order param­

eter is small in the nematic phase close to the transition point. The difference in 

free energy density (per unit volume) of the two phases it thus expanded in powers 

of the order parameter. For the order parameter identified in §2.1.1:

F L d G  (P 5 P 5 Q a p )  =  F Q - \ - A a p ^ g Q a p Q ^ Q - \ - B a p ^ g § \ Q a p Q ^ Q Q § \ - { - C a p j Q S X i J , u Q a p Q j d Q s x Q f i u

(2.13)

where F0  is the energy density of the isotropic phase, A, B  and C  are tensor preserv­

ing the symmetry of the phase, constructed in the usual way such that the energy 

density is invariant under rotations and reflections [39]. P , T, are thermodynamic 

variables of which P  is pressure and T  the temperature. The equilibrium state can 

be obtained from the minimum of this free energy with respect to Qap for a fixed 

P  and T. The most general form capturing the uniaxial phase [38] is typically 

truncated at fourth order and is:

P L d G  { P > T j  Q a @ ) =  F 0 T Q f Q cxpQ fia. T P p Q a ^ Q p y Q - y a  4 ” ^ f F Q a p Q p a Q ^ r Q r 'y  (2*14)

where qcf, Pf and qp are the Landau deGennes coefficients. For notational conve­

nience we adopt the equivalent form of equation 2.14 to match the notation given 

in [40] and thus provide a consistency in subsequent chapters of this work:

OCp
Fl/dG (Pj P) QaP) =  Po 4 ’QapQpa Pf QcxpQPyQ'ya T  'yFQapQpaQ^rQrj (2.15)

where op, P f  and qp are again the Landau deGennes coefficients and in qp is 

absorbed the equivalence of terms QapQpaQ'yrQr'y = ^QapQpyQ'ysQsa- The analysis 

of this equation is identical to the usual approaches where it is assumed the first 

Landau deGennes coefficient taking the form, a(T — T*), changing sign at some 

temperature T*, while the variation of the other coefficients with T  is assumed to
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be unimportant and is neglected. Inserting the uniaxial order tensor definition, 

equation 2.8, in equation 2.15 with the above said assumptions results in:

FLdG (P, r ,  Qap) = F0  + a  (T — T*) S 2 -  B S 3 +  C S 4 (2.16)

where a{T — T*) = B  =  C = The first order transition is usefully 

characterised by the following observations:

d F
dS

=  0 , F(S,  T, P) -  F (0, T, P) = 0 ,
d2F  
d S 2

> 0 (2.17)

which from it is deduced:

SlN = &
B 2t i n  = t * + 4aC

rpirk   n~l I B 2
-L ~-*-IN+Z2aC
A E  = 1^ -
0  3B +V n2^ 32aC (T -7yJv)
^ “  8C '

(2.18)

Figure 2.1 illustrates equation 2.16 from where it can be seen for T  Tin  the 

minimum in energy correspond to an isotropic (S  = 0) phase and for T  Tin  the 

minimum in energy corresponds to a nematic phase. In between these temperatures 

the behaviour is more intricate. At T* (lower limit for super cooling of the isotropic
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Figure 2.1: Plot of the free energy dependence upon the order parameter at various 
temperatures over the nematic-isotropic transition range.
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Figure 2.2: The equilibrium order parameter dependence (c.f. equation 2.18) upon tem­
perature for the Landau material parameters appropriate for 5CB as given in [40].

phase) a metastable ordered state occurs in which the isotropic state becomes un­

stable for decreasing T, at T** (upper limit for super heating of the nematic phase) 

the nematic state becomes unstable for increasing T. A E  of equation 2.18 is the 

expected change in entropy indicative of the phase transition.

The temperature behaviour of the order parameter is shown in figure 2.2 as 

predicted in equation 2.18, it gives the equilibrium order parameter value of an 

undistorted nematic for a given set of Landau deGennes coefficients, the disconti­

nuity clearly being visible. It should be noted in this approach that S  is unbounded 

for lower and lower temperatures and from the initial assumptions the expansion 

should really be applied for small S. However from figure 2.2 we see the behaviour 

of the order parameter in the nematic region is not unreasonable. In this thesis we 

will work mainly well into the nematic phase (S ~  0.6) applying this theory without 

reservation. We also point out that expansions in term of Qap are unbounded in 

that there exist an infinite number of orders of Qap but to make practical use of the 

Landau deGennes theory we only keep terms that allow a one to one mapping of 

the current experimentally used parameters which are based upon an ha expansion 

that is bounded due to its unit vector property.

2.1.3 Curvature Elasticity

A nematic prefers to lie in an undistorted state. For a nematic in a confined system 

the effect of walls is to impose an ordering upon the molecules that may vary 

spatially. Considering Qap = Qap{l)i weak distortions represent an increase in
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energy and a measure of this increase can be obtained from the gradients in Qap 

provided the characteristic length scale associated with changes in Qap is longer 

than the molecular dimensions (typically lnm). A linear expansion yields the free 

energy density:

Fp = Fp (d^Qap) = Fq +  Lapyd^Qap H £_QaQ ^ B qQ ^  (2.19)

where Fq is the energy of the undistorted, Lap7  allows for a chiral nematic phase with 

a spontaneous twist as its ground state (Pch = helix pitch) while Kap^^u represents 

the nematic elasticity; notice K  is symmetric in /3j and fit/ and that K ^ e ^ u  =  

KenvaP'y A usual decomposition of the terms to second order in Qap leaves a 

degeneracy in the splay and bend elastic constants contrary to many experimental 

measurements, thus taking a single extra third order term in Qap [41] we get:

Fp = ^ud^Q^rduQ^r
+^^^iQ t>rdvQ-1T ~ ijrf£,i>'iQmQmdvQ'tT

(2.20)

Although there are seven third order terms in Qap we only include one [42] to ensure 

non-equal elastic constants and to prevent having undefined constants. (That is 

undefined constants regarding mapping onto experimentally used Ku  values. We 

may also view higher order terms as small (Qap 1) corrections to the energy.) 

Upon using the uniaxial, constant order parameter tensor, equation 2.8 it is found:

Fp — -g2- (2Li +  L/ 2 +  Z/3 — S 0 L 4 ) (V • n) 
(2Lx -  S0L f  ((fi • V x n f  +  (n • V x n ))

H—g0- (2Li +  L2 +  Z/3 +  25*0^ 4) (n x (V x n ) f  
— g2- (2L\  -f- A3 — V • [fi (V • n) +  n x (V x fi)]

Helpful identities are:

dpfifid^np = (V • n f  — div (n div n  +  n  x curl n ) 
dafipdahp = V n : V n  +  (n • curl n f  +  (n x (curl n ) f

or equivalently a Frank [32] form:

(2 .21)

(2 .22)

Ff = \ [  K n  (V • n f
+ « 2 ! ( ( n - Y x | f  +  i ( i . V x 5 ) )
+ K 3 3  ( | x ( V x  re))2
-  (K 2 2 +  K 2 4 ) V • [n (V • n) -f n  x (V x n)] ]
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Q S 2
Comparing equations.2.21 and 2.23 identifies the elastic constants: K n  = (2Li

+ L 2  +  I/3 — S0L4) , K22 = ( 2 L i  — S0L4) , i f 33 =  ^  (2 L i  +  L2 +  Ls

+2S0L4), i f24 =

Mathematically the saddle-splay (if24) contribution is a divergence term and 

therefore does not influence bulk behaviour, indeed for fixed anchoring (infinite 

strength) it has no affect even at the surface but if anchoring is weak on the surfaces 

the saddle-splay term may contribute to surface ordering and thus change the bulk 

ordering. There exists another divergence term known as splay-bend, i f  13. It is 

obtained by taking the second derivatives of Qap in a linear expansion, the extra 

terms being N^gd^deQap  +  iMap^uXedadpQ^ed^Qxe^ The term was proposed 

by Nehring-Saupe [43] and it is known that its inclusion can lead to difficulties in 

search for stable states in nematics by means of variational calculus [39]. For this 

reason and the lack of experimental data for its value we only consider terms in the 

first derivatives for the remainder of this work.

2.1.4 Flexoelectricity

For an undistorted equilibrium flexoelectric nematic there is no discernible macro­

scopic difference from a conventional uniaxial rod-like nematic. However, if the LC 

is distorted or if an external electric field is applied a polarisation results as orig­

inally discovered by Meyer [8]. He shows the electric polarisation and free energy

density due to polar molecules are given by:

•Fpiexo =  E aP :x =  (2.24)

where tensor eap1 is temperature dependent and dependent upon molecular shape [44] 

(It essentially arises because, a molecular distortion can induce polarisation which 

in turn effects the local electric field; conversely an electric field may induce dis­

tortion and thus polarisation and further electric fields terms.) The tensor eap^ 

can also be connected to quadrupolar properties of molecules [9]. Following [45] 

flexoelectricity theories should really allow for order parameter variations and thus:

Ffuxo = —EgPe = —Ca/3j0d7(Qap)EQ (2.25)

35



the tensor C ^ q is symmetric in a (3 and decomposed in the usual manner (Q ^, 5^  

combinations). It may be expressed

Pq — Cid^Qe^ +  C2Qe1dtiQlli (2.26)

in which C* are ‘weakly’ temperature dependent flexoelectric coefficients. There 

exist three second order terms in Qap. However as before we include only one (the 

C2 term) to enable, as will be seen, independence of polar flexoelectric coefficients 

and to retain a formulism in which experimental parameters can be matched without 

introducing unknown coefficients. Using the uniaxial constant order parameter 

tensor equation 2.8 we find:

„ ( SSoCi , 3S2C2  ̂ „ a . , ( 3SoC\ 3S$C2\  . Q .
Pe = ( — +  2_  J noi ^  \  2-----------4 J n^ Ue (2‘27^

or equivalently in the convention of Meyer:

Pe = en fiedpfip +  e33n7d7n0 (2.28)

comparing equation 2.27 and 2.29 we see en =  +  3Soc'2 ̂ , 633 =  ^

At first order in Qap it is apparent en  =  633 =  and corresponds to the 

quadrupolar case of [9], going to second order allows an en , e33 independence. 

There are no flexoelectric terms arising from second derivatives, due to symmetry

arguments these are identically zero. If upon substitution of equation 2.8 into

equation 2.26, we treat S  as a variable (5 =  S(r )) and neglect n variations we 

may deduce the polarisation contribution from S  alone, known as the order electric 

effect [39] that may be important in situations in which S  changes abruptly and is 

given by
„  ( 3 Ci , 3C2S \  a a , f  . C2S \  a o
Pe — ( " 2”  "*---- 4 "“ ) nenfldflS  +  I — — H— —  j  deS  (2.29)

2.1.5 Electric and M agnetic Fields

External electric and magnetic fields have an ordering effect upon the molecules of 

the nematic. Constructing the usual linear expansions [39] we have the free energy 

density:

FeM ~  —PaFa — 2€<xpEaF/3 — M aHa — - x apHaHp (2.30)
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The tensor Pa was dealt with in §2.1.4 and M a has to be zero otherwise the LC 

is polar. This leaves eap and Xap which can be expanded in terms of appropriate 

contractions of 5 ^ ,  Q Using the definition of Q ap in equation 2.12 we find:

A e0e™01 e0e71E 2 & hqxT x TT n  n  VoX~nH2 , o o i \
■F EM = --------g tiaWotP&P--------g--------------- g ^ a W a P ^ P ---------g-----  {Z.6L)

Examining equation 2.31 we see for a positive anisotropic material ey — e± > 0 (or 

equivalently x\\ ~  X± > 0), the lowest energy state is that in which Q ap is collinear 

with E  and thus a positive dielectric anisotropy aligns the nematic molecules with 

the direction of the field. Conversely for a negative anisotropy ey — e ± < 0  the lowest 

energy state is that in which Q ap is perpendicular with E\ the nematic molecules 

align perpendicular to the applied field. The other terms containing the trace in 

equation 2.30 are independent of the nematic orientation, they may be important 

only where nearing the phase transition.

The presence of an electric field is more complicated than that of a magnetic 

field [46]. Conducting impurities within a LC sample are attracted to the field and 

will form regions of charge. For this reason many experiments use square wave fields 

to prevent ion build ups. Additionally as the dielectric anisotropy of a LC is far 

greater than the diamagnetic anisotropy, a distortion in the ordering of the sample 

will cause an electric field distribution in the sample to vary according to Maxwell’s 

electrostatic equations [47]:

^ a - ^ a  =  & f

Da =  Co tapEp +  Pa 
Ep — —dp(f)
V x E  = 0

where (j> is the electric potential (voltage) and Pa the spontaneous polarisation and 

free charge 07 =  0 for a perfect insulator as we assume in our work. Strictly speak­

ing for accuracy when dealing with magnetic fields Maxwell’s equations {daB a = 

0, V x H_ = 0) should also be solved. These equations amount to the Euler- 

Lagrange constraints for minimising the free energy with respect to Qap (see §2.2).

Despite these added complications electric fields are still the preferred ordering 

effect in LCD devices due to the lower threshold fields for electro-optic phenomena.

(2.32)
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2.1.6 External Anchoring

LC’s that are in contact with a surface are ordered to some greater or lesser extent to 

a preferred direction. We associate with this preferred direction an energy imposing 

a penalty for deviations and characterised by the surface symmetry variables Qap 

and ka - a unit vector indicative of the preferred direction. In general the surface 

energy will depend on both these quantities and can be expressed as [39]:

Fs = Fq -f- 'jikaQapkp “b 72QapQfia T 73kaQapQp^k^ + 74 afikp^ (2.33)

The phenomenological parameters 7* are ‘weakly’ temperature dependent anchoring 

coefficients and can only be determined from microscopic models of the surface 

interaction forces and the inter molecular forces. The 71, 73 and 74 terms impose 

the alignment and the 72 term imposes an order. There exists a lack of data on the 

surface energy coefficients thus an alternative form was proposed [48]

Fs =  f  (Q«* -  Qlpf  (2.34)

in which W  is the sole anchoring coefficient and Q°ap is a preferred alignment tensor 

given by equation 2.10. Assuming the uniaxial constant order limit (equation 2.8) 

in equation 2.33 and 2.34 both reduce to the traditional Rapini-Popular [49] form; 

for equation 2.34 this is:

Fs = ^  (1 - M f )  = - j  (nan°af  (2-35)

where we see W  = -j^r, A, is the Rapini-Papoular anchoring coefficient. The mag­

nitude of the anchoring coefficient determines how strongly a preferred ordering is 

imposed. Another way to view this as suggested by deGennes [46] is in terms of an 

extrapolation length, figure 2.3, Where A  = f-, here A" is a typical elastic constant 

and le is the extrapolation length. The larger A  the smaller the extrapolation length 

and thus A  determines how far from the preferred direction the surface order lies. 

For the case were the anchoring strength —»• 00 we may assume Dirichlet boundary 

conditions by just setting the surface ordering to be any desired value.

2.2 The Equilibrium States

In the previous sections we have given the free energy density that describes LC 

behaviour, F  =  F  (Qap, fyQap)- The total free energy in the LC sample is then
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Figure 2.3: Definition of the extrapolation length K / W  as defined by deGennes [46].

the superposition of all the energy densities integrated over the entire LC volume 

and limiting surfaces:

F  = [  F(Q«p, djQap) dV +  [  Fs (Qap) dS (2.36)
Jv  Js

the search for stable states of the LC is performed from equation 2.36 and according 

to continuum theory the thermodynamical stable states are those characterised by a 

minimum free energy with respect to all variations in Qap. Constructing a variation 

in F, 8T,  for all virtual variations of the alignment:

8JF = 5 f v F  (Qap, d1Qap)dV  +  5 f s Fs {Qap) dS
_  r ( d F x n  ■ . d F  x  ( X  _1_ r (2-37)
= f v  + ai k ; 5 j dV + f s  l g ^ dS

where 8 (d7Qap) = <97 (8Qap)1 that is the variation operator commutes, thus with the 

aid of the identity (obtained from a simple product rule and divergence theorem):

[  da ( fap gp) dV =  f  gpdaf ap dV +  [  f apdagp dV =  [  Oaf apgp dS (2.38) 
Jv Jv  Jv  Js

(va being an outward pointing unit normal vector from the surface.) We may now 

write equation 2.37 as:

d F  „ dF  \  _  f  dF  dFs
8 T  =

9 ldQa/3 d {d7Qap)
8 Q a p  dV +  / ( 0 .

L i 1
+d (d,Qap) dQap

5 Q a p  dS 

(2.39)

This minimisation is constrained to be both symmetric and traceless thus with 

Lagrange multipliers results in the equilibrium conditions:

(2.40)
d F  dF B B

d o T p ~ d lW F F ) + aP+ ^
dF dFs

d (d,Qap) dQap
+   1- A S a p  +  A £ a p j  — 0 (2.41)
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Equations.2.40 and 2.41 are the standard Euler-Lagrange equations, the solutions 

to which yield the equilibrium rest state/s of a LC system. In the infinitely strong 

anchoring limit the boundary condition equation 2.41 can be ignored as the bound­

aries are constant. Including all free energies listed in previous sections requires 

equations.2.40 and 2.41 to be solved numerically due to their complexity. They 

will often show more than one solution corresponding to local minima in the free 

energy, thus for the real solutions the energy must be calculated for all possible 

solutions starting from random configurations and slowly quenching or by starting 

with different initial conditions.

2.3 Defects

For real unconstrained macroscopic LC samples a perfect homogeneous (unde­

formed) director pattern is rare. Typically there exist a number of arbitrarily 

locally orientated domains, the point at which the domains meet giving rise to 

defects. These are readily observed through optical microscopy, the nematic phase 

owes its name to the ‘thread like’ defects (so called Schleiren texture) which are 

seen under the microscope [46]. The defects can be points, lines, or walls around 

which the director is not well defined. Although walls are unstable [46] tending 

to degrade to a number of lines and can be avoided by appropriate treated tilted 

boundary conditions. The characteristic of a defect is for the local director field to 

be distorted accompanied by a significant decrease (melting) of the degree of order 

and by an increase in biaxiality to avoid the high deformation energies. The free 

energy of any defect state is obviously greater than in an unconstrained sample but 

may correspond to the ‘ground state’ depending upon boundary constraints.

The point and line (commonly called disclinations) defects can be approx­

imately analysed considering the surrounding two dimensional plane such that 

na =  h a(x,y) = (cos 6, sin6). Using a coordinate system with origin at the de­

fect core we imagine a closed loop encircling the defect. Moving along this loop, 

the local na rotates, and in one complete circle the continuity of na dictates that 

9{(j) +  27t) =  6((j)) -1- 27rm ((f) is a polar angle position along the circle). Here m  is 

integer or half integer commonly known as the defect strength [46]. Assuming a 

constant order parameter and one elastic constant (Ka =  K)  the bulk free elastic
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energy associated with a director distortion is then F  =  y  f  (d7d70)2dV  which in 

solving the Euler Lagrange equation yields solutions for 9((f)) =  m(j) +  #o where 9o is 

the director angle at the start of the enclosing circle. The director fields for typical

m = -1.0
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Figure 2.4: Director fields (left) and their associated crossed polar plot, sin2(20), (right) 
for common topological defects of different strengths m.
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defects are thus shown in figure 2.4 for this approximate equation. Obviously for a

Defects generally tend to occur in pairs of opposite strength. The creation or 

annihilation process of defects typically occurs between opposite strength defects 

and generally lower m  states are preferred energetically over higher m  states [5] as 

their energy tends as m2.

The half integer defects are not directly recovered with simulation using the 

vector director theories [50] because vectors have direction that cause a miscalcula­

tion of the derivatives where as in a nematic there is a ‘head-tail’ symmetry. Tensor 

representations Qap are thus required to recover defect processes. It is also useful to 

know for the ±1 defects that the director at the core tends to escape into the third 

dimension in order to lower its energy and thus a 3 dimensional tensor is required 

when studying defects.

2.4 Dynamic Evolution

The literature surrounding the governing dynamic evolution equations for the align­

ment tensor is complex and subjective. There exists no unifying, agreed, method­

ology and works have often been poorly acknowledged, a state that is likely to 

remain until further experimental and theoretical enlightenment. Despite the lack 

of a unifying theory, much work has been done and we endeavour to mention the 

literature developments offering references. A complete and thorough comparison 

is not done, but as will be seen is worthy in the near future if only to unify the 

works in this area.

For the complete dynamic evolution equations of LC’s it is necessary to follow 

both the alignment and velocity fields. The first phenomenological continuum the­

ory for nematics adopted the director to describe molecular alignment. It was first 

developed by Ericksen [33] and Leslie [34] (and Parodi [51] to an extent through his 

Onsager relation on the viscosities) and here on dubbed EL theory. It is based upon

full solution one needs to numerically solve the alignment tensor equations allowing 

for variations in S  and Pb .

The defect strength can always be found from the analytical expression [50]:

(2.42)
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conservation laws for energy, linear momentum and moment of momentum. It fully 

couples the complex interplay of flow and orientation assuming that the LC is both 

uniaxial and has constant order parameter S(r) = So (or at least where in

which f  are characteristic lengths of a director and order variation respectively).

The governing equations (as laid down by EL theory) have since been derived 

in many ways. DeGennes [46] put the EL into a nice framework of irreversible 

thermodynamics (along the lines of deGroot [52]), Sonnet [53] used Lagrange’s 

equations and a Rayleigh dissipation function, and Forster [54] used Poisson brack­

ets to consider the conserved and hydrodynamic Goldstone modes. Although the 

derivations are all markedly different they may all be cast in the form of the EL 

theory lending support to the governing equations. The seminal EL theory has 

been widely accepted as ‘the’ theory by experimentalists and the five independent 

viscosity coefficients that it predicts have been calculated and verified, namely the 

Leslie viscosities an. The EL theory when used in conjunction with Jones 2 x 2  

matrix method [55] or the Berreman 4 x 4  matrix method [56] (these are one dimen­

sional; for three dimensional LC optics the finite difference time domain, FDTD, 

methods are required [57]) to calculate the optical transmission through a LCD cell 

has proven to be extremely accurate [58, 59].

Despite the success of the EL theory there exist physical situations in which 

it fails to provide a complete description of nematic orientational order: these are 

mainly associated with defects. Firstly it can introduce discretisation error when 

neighbouring directors are nearly anti parallel, secondly it does not take into ac­

count possible biaxial characteristics and lastly the effects of order parameters are 

not considered. One can employ several tricks to bypass parts of these features. 

We can give the director a tensor symmetry from the dyad hahp [60, 61, 62] to 

ensure the equivalence of ± n a in calculations, this amounts to using the Qap with 

constant eigenvalues. Alternatively we may extend the EL director theory to a vec­

tor theory [63] (sometimes also referred to as the scalar director) where the order 

parameter is built into the size of the vector, though this provides little gain as the 

director symmetry is still lacking. These shortcomings are realised more so when 

considering half integer defects [64] which theoretically requires variable order, bi- 

axiality and symmetry considerations, factors that are all taken into account when

43



using a Qap tensor theory.

DeGennes [35] and Lubensky [41] pioneered the development and use of Qap as 

a macroscopic variable to describe liquid crystals. In [35, 46] is laid the necessary 

framework of irreversible thermodynamics to derive the EL equations in equivalent 

Qap tensor form. Degennes studied pretransitional phenomena thus only considered 

homogeneous terms of zeroth order in Qap. Imura [65] used the methods in [35] to 

find the temperature dependence of the Leslie viscosities to second order in Qap and 

in doing so finds eight ‘weakly’ temperature dependent uniaxial viscosities arise (a 

fact that repeatedly arises in subsequent works). This highlights the fact that when 

using Qap tensor theories the phenomenological linear expansion never converges as 

it does for a linear expansion in terms of ha as the variable (unit vector properties), 

thus the EL theory has a maximum of five viscosities.

Later Hess [66] and Olmsted [67] re-derived these equations explicitly in their 

studies of shear ordering on phase transitions of homogeneous alignments, also 

generalised by [68] to include non-homogeneous variations. These however failed to 

recover the full anisotropy in viscosities predicted in the EL theory (arguably there is 

no need if only considering the phase transition where Qap —»• 0). Further works by 

Hess [69, 70] recovered the complete anisotropy but failed to give fully independent 

coefficients. Qian [40] later stated an expansion retaining the full independence and 

anisotropy of the EL viscosities.

From a different stand using the molecular ODF and the Fokker-Planck equation 

with some closure and microscopic approximations works [71, 72, 73] have described 

the homogeneous evolution in terms of Qap for fixed flows of LC polymers. Tsuji [74] 

allowed for a spatially varying orientation in this setting.

Other settings have been established by Beris [42] using Hamiltonian formulation 

and Poisson brackets or Pleiner [75] or Doi [76] developing methods appropriate for 

Lyotropic low molecular weight LC’s. Sonnet [53] provided a nice framework from 

a Rayleigh dissipation function from within which it is possible to establish many 

of the afore-mentioned formulations.

For works in this thesis simulations are carried out well into the nematic phase 

and we use the Qap tensor equations as first stated in full by Qian [40] allowing 

for the simulation of thermotropic LC’s whilst retaining the five independent EL
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viscosities. This latter point we believe to be important considering the lack of an 

experimentally verified microscopic theory to connect the viscosities and the vast 

array of materials.

2.4.1 Dynam ic Equations

The governing momentum and order evolution equations for isothermal, incom­

pressible (B7u7 = 0) nemato-dynamics in the limit of weak velocities are [40]:

pua = dp ( - P S ap +  crvap +  cr^p +  Vap*) (2.43)

J  Q a p  =  h Bp  + h va p  —  X B S a p  —  s a p 7 X B  (2.44)

Here the local variables are p the liquid crystal density, u the fluid velocity, P  the 

pressure, J  the moment of inertia, X B  and X B  are Lagrange multipliers as introduced 

in § 2.2. <j*p and hBp are called the distortion stress and bulk molecular field 

respectively defined from a system free energy, F,  via perturbation and variational 

calculus methods:
BF

^  = ~  d ( d a Q l l „ ) d l 3 Q , “ ' (2'45)
BF BF

h^  = + d lW F F )  (2'46)
uvap and hvap are the viscous stress tensor and viscous molecular field defined from 

standard irreversible thermodynamic principles, they are:

OaP = PlQapQfiuA^ +  ftj A ap +  PsQoc^A^p +  ft,Q p^A^a . .
+ ^ _ I X l Q a i t N f i g  +  t l l Q g i i N l l a  (  ■ >

K p  = ^  (2-48)

Here ft, pi are equivalent to the EL viscosities with ‘weak’ temperature dependence, 

Nap is the co-rotational derivative: Nap = Qap -  S a ^ ^ Q u p  ~  Sp^nQau-  A ap = 

\  (Baup +  Bpua) and Wap =  \  (Baup — Bpua) are the symmetric and anti-symmetric 

velocity gradient tensors with the vorticity being u 7 = \£iapWap. Terms uvap , hvap 

are the irreversible component forces and terms A ap , Nap conjugate reversible 

component fluxes. This leaves cr™ to be defined as the imposed electrostatic stress 

from externally applied electro-magnetic fields [77]:

=  \  (H a B 0 +  H pB a ) -  1  (E aD 0 +  E pD a) -
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where E  (H) is the electric (magnetic) field strength, D the electric displacement 

vector and B the magnetic flux density.

Equations 2.43-2.49 together with the free energies of § 2.1 describe the dynamic 

behaviour of nematic LC’s. Equation 2.46 can be seen to be similar, minus the 

Lagrange multipliers, to equation 2.40: it is the minimisation of the system free 

energy. Indeed if in equation 2.44 it is set that J  = 0 and ua = 0, (approximations 

not too unjust in some circumstances) equation 2.40 is recovered with a simple time 

derivative on the left hand side. In this approximation the orientation dynamics 

are purely relaxational and form a type of time dependent Euler model [78].

Inserting the uniaxial constant order equation 2.8 into the governing equations 

as done in §2.1 yields after plenty of algebra the EL equations of motion (see ap­

pendix B) from which we identify the Leslie viscosities as:

_  msfi _ 3̂ 2So _  9mis* _  3/i2So , 9/xiSg
4 LX2 4 4 uc3 4 ' 4

a 4 =  /?4- ^ 2 - ^ 2 a5 =  ^4& =  2f 1(/?5 +  /?6 - ^ 2) (2.50)
a 6 =  ^  =  2fa(/35 +  /36 +  ^ )  71 =  ^  72 =  ^

To complete the dynamic equations of any problem boundary conditions are 

required. As standard in fluid dynamics the velocity conditions imposed is the so 

called ‘non slip’ boundary in which the fluid velocity at any stationary boundary is 

zero. For the LC alignment, realising situations of weak anchoring in which the sur­

face alignment can vary significantly a surface evolution equation was suggested [79] 

and has been used by several authors [80, 81] in the EL theory. Extending this 

boundary condition to a Qap tensor theory is straight forward.

fJ's^tQaP = haft ^ Ôif3 S-a/^Ay (2.51)

here h^p =  *s a surface molecular field and the four A5, A  ̂ are

surface Lagrange multipliers ensuring the tensor symmetries, /is = fgi is dubbed 

the surface viscosity commonly defined as the bulk rotational viscosity times a 

characteristic surface length (I), jis = Measured values for 7s  are few but it is 

generally believed [82] I lies in the range 10-8 to 10-6 m. The surface viscosity of 

equation 2.51 is seen to alter the time derivative and thus may be thought of as a 

rate at which the surface will relax to equilibrium.

46



2.4.2 Tim e and Length Scales

In numerical studies it is of up-most importance to take into consideration the cor­

rect time and length scales of the problem at hand in order to calculate correct spa­

tial and temporal variations of the relevant fields. A standard non-dimensionalisation 

of the governing equations of the previous sections yields three key dimensionless 

numbers; the Reynolds, Ericksen and Deborah numbers defined:

Re  =  P M  „  10-7 (2.52)
"Oejf

Er  = ~  1CT2 (2.53)

De = ~  10“7 (2.54)
ocpL

2   _
where r\ef f  = U, L are characteristic velocity and lengths of the situa­

tion. Using typical values of weakly perturbed LCD materials: L  1(T6 m, U ~  

10~6m s_1, iii ~  r)ef f  ~  10-2 kg m_1 s-1, ap ~  105kg m '1 s-2 , L\  ~  10_12kg m s“2, 

p ~  103 kg m-3 , these numbers can be estimated. (Note the length of the flow, di­

rector and order are not necessarily the same.) The Re  number gives the ratio of 

the inertial to viscous forces, the Er  number the ratio of viscous to elastic forces 

and De number the ratio of relaxation to observational times - indicative of the 

materials solidity. From the law of similarity, provided the dimensionless numbers 

of one system match that of another the results can be compared.

Extracting the characteristic time scales for variation in these quantities gives:

fp = pL2 ~  I0~7s (2.55)
Veff

~ P 'L2 i n - 2 Tn =  T ~ 1 0  S (2.56)

f s  = —  ~  10_7s
OLp

(2.57)

Thus we observe that the relaxation rate of the momentum compared to the director 

is much quicker, as is the relaxation rate of the order compared to the director. 

Examination of the characteristic time ratio f p / f n ~  10-5 shows it to be small 

and thus the velocity field is adapted quickly to a given director field and its time 

derivative. This often leads to the non-linear and partial time derivative on the left 

hand side of equation 2.43 being dropped and solving for its steady state value at 

any given time in equation 2.44.
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Examining the characteristic time ratio r s / r n  ~  10 5 also shows to be small so

that the order parameter field is adapted quickly to a given director field and its time 

derivative. This means for simulation of quantitative defect dynamics an explicit

However as the ratio f p / f s  ~  1 both time derivatives of equation 2.58 and equa­

tion 2.43 are seen to be required.

For work in this thesis, as a second approximation (the first being EL theory), 

we omit the time scale involving order variation. The dynamic effects of this ap­

proximation to both equation 2.43 and equation 2.44 is hoped to be pursued in 

future studies. As will be seen in § 4.2.4 the order parameter tends to its equi­

librium value in relatively few algorithmic time steps 0(10) and since the viscous 

forces upon S are 107 times smaller than temperature and elastic forces we can ex­

pect simulations to be dynamically qualitatively correct. To the authors knowledge 

no numerical treatments of the time dependence of the order parameters have been 

covered in the literature. It is though, quite common to study the time dependent 

Euler model in which S  and n  are treated with no separation.

Simulations are generally constrained in size in terms of resolution. This is 

usually determined from the smallest characteristic length in the simulation. In 

LC’s this smallest length can be determined by considering an approximate free 

energy consisting of elastic and temperature energies:

In the uniaxial approximation (equation 2.8) the Euler-Lagrange equation for 5, 

putting Vn to zero is:

Linearising this for small deviations from equilibrium, S(x)  =  Sb +  A S(x)  and 

retaining only lowest order terms gives:

order and director field time scale separation should be done in which equation 2.44 

is split, the order for a given director field being given by its steady state value [40]:

(2.58)

F  — Fq + +  —  { Q a p ) 2 — P p Q a p Q p j Q ' y a  +  7F(Qa/?Q/3a)2 (2.59)

(2.60)



solving the resultant ODE yields the general form A 5(x) =  Ae~ w h e r e  A  is a 

constant set by boundary conditions and £ the characteristic length variation of the 

order given by:

, 2 u Vap~ ̂ FSb + 187f5&2 V " 3/̂  + 187f5'
(2.62)

which provided f  is greater than the molecular dimension the continuum theory 

holds. (Note f  grows as T increases (as does fs)  and for parameters quoted in [40] 

f  ~  lnm.)
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Chapter 3 

Lattice Boltzm ann M ethods 
Background

This chapter aims to introduce the lattice Boltzmann method (LBM), the tech­

nique we will utilise in chapter 4 to solve the equations of motion for liquid crystal 

dynamics seen in chapter 2, and then subsequently apply to situations of current 

interest.

3.1 Introduction to the LBM

In the last fifteen years or so there has been much progress in developing the LBM 

([83, 84, 85, 86]) as an alternative, computational technique for solving complex 

fluid dynamic systems [87, 88]. It was originally developed from the lattice gas 

automata (LGA) methods [89] c.f.§ 3.2.1. Adopting the macroscopic method for 

computational fluid dynamics (CFD), the macroscopic variables of interest, namely 

the velocity u and pressure P , are usually obtained by solving the Navier-Stokes 

(NS) equations [90, 91]. In the LBM approach we solve the kinetic equation for 

the particle distribution function /(# , £, t ) where £ is the particle velocity and x  

the spatial position and t is the time. The macroscopic quantities such as the mass 

density p and momentum pu can then be obtained by evaluating the hydrody­

namic moments of the distribution function / .  This approach was first adopted by 

Frisch [92] with the additional theoretical foundations established in later papers 

by most notably McNamara [83], Higuera [84], Koelman [87], and Qian [86].

The popular kinetic model adopted in the LBM literature is based on the single 

relaxation time (SRT) approximation called the Bhatnagar-Gross-Krook [93] (BGK)
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model:

(3.1)

where / ^  is an equilibrium distribution function, the Maxwell-Boltzmann distri­

bution function, and A is the relaxation time (A <  1) with a corresponding viscosity 

v =  AR T  in which R  is the gas constant and T  the temperature.

In solving equation 3.1 for /  in the LBM we must first discretise the velocity 

space using a set of finite velocities £ without affecting the conservation laws [88, 

94]:

d t f i  +  t i a d a f i  =  - j ( f i - r t e q ) )  (3.2)

Here f i(x,  t) = f ( x , £ , t) is the distribution function associated with the ith velocity 

vector £ and f \ eq̂ is its corresponding equilibrium distribution function. In practice 

the two dimensional nine velocity square lattice model [86] (D2Q9 see figure 3.1) 

has been successfully used for simulation of 2D flows. In this D2Q9 model is used 

to denote the discrete velocity set:

Gir

Cia  (0 , 0) ,

cos ( < * & ) ,  sin 

= V2c  cos +  f )  , sin + f )

Gin    C i — 1 ,2 ,3 ,4

2 =  5 ,6 ,7 ,8
(3.3)

where c = A x / A t, and A x  and A t  are the lattice unit constant space and time

f e  6 2 U 5 f 5

3

8

1

® f  8

Figure 3.1: The 2-D 9-velocity (D2Q9) model. A regular repeating structure with nine 
distributions located at each node.
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steps respectively. The equilibrium distribution function takes the form:

A e q )  j . ( i  , . ( S ' i o t ' U ' a )  'U a U a  |  ( o  A \

f ,  +  —  +  ^ j - - T s r J  M

where for the D2Q9 model U are weighting factors and cs is the speed of sound, 

these given by:
U = 4/9 , z =  0 \
ti =  1/9 , i = 1 ,2 ,3 ,4  I /q r\
U = 1 /36, z =  5 ,6 ,7 ,8  f  1 '
cs =  l/v /3  J

With the discretised velocity space, the density and momentum can be evaluated

as:
pis.<t) =  E?=o/<($>*) \ /36)
pua(n,t) = J2&i=oMn,t)eia J

and the equation of state is that of the ideal gas:

P  = p(x,t)c2s (3.7)

Qian [86] and Luo [94] report many other types of lattices used in simulating

1-D, 2-D and 3-D flows all with / jeq̂ given as in equation 3.4 but with different 

lattice weights (equation 3.5) which are dependent of the lattice velocity vectors.

Some example lattices are given in table 3.1.

Model Unit
cell

to
0

t\
1

t2
x/2

3̂
%/3

U
2

c2 Order of 
Isotropy

D1Q3 line ‘2 I— 
6 0 0 0 1

3 4
D1Q5 line 1

2
I
6 0 0 1

12 1 6

D2Q7 hexagonal i I
12 0 0 0 1

4 4
D2Q9 square A

1 1
36 0 0 1 4

D2Q13 hexagonal l i
Tjo 0 1 0 Tn 6

D3Q15 cubic J2
9 9 0

3J0

72 0 1
3 4

D3Q19 cubic i 1
18

1
36 0 0 1

3 4
D3Q27 cubic 27

2
27

1
54

1
216 0 1

3 4

Table 3.1: LBGK lattice parameters for a selection of commonly used models indi­
cating the lattice shape, velocity directions and equilibrium distribution weights.

Equation 3.2 is known as the discrete velocity model (DVM) first being intro­

duced by Broadwell [95, 96]. Developments of and studies with the DVM can be 

found in [97, 98, 99]. Numerically this model can be solved using a discretised
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form. By applying a first order finite difference scheme in time, the first order 

upwind discretisation for the convective term, equation 3.2 is thus:

fi (x +  e{St, t + 8t) — fi  (:x , t) = ( / ;  (x, t) -  f l eq) (x, t) ĵ (3.8)

with time step A t  and space step efA t (ê  A t /  A x  =  1), x  a point in discretised space 

and where r  =  A/A t. This is the discrete LB equation with BGK approximation, 

and is commonly solved in two stages of ‘collision’ :

fi  fe, t + 6t) = fi {x, t ) ~ ^  ( ft  Cx , t ) -  f l eq) {x, f)) (3.9)

(the ~ denotes a post collision state) and ‘streaming’:

fi (x +  efA t, t +  At)  = fi (x, t +  At)  (3.10)

Splitting the computation in this manner eliminates the need to store both f i (x, t +  5t) 

and fi (x , t) during the calculations: information at one time level is sufficient in 

the computation of non-equilibrium systems.

In order to derive the NS equations from the LBM a Chapman-Enskog expan­

sion [100] is used. This may be viewed as a standard multi-scale expansion [101] in

smallness of the parameters time and space. The purturbative expansion parameter

being the Knudsen number (K n ) which is the ratio between molecular mean free 

path and the shortest scale at which macroscopic variations can be appreciated: 

e =  K n  = 1. The particle distribution function, fi, is expanded as:

oo

/i =  E £,1/ ' n) (3-u )
n=0

where n = 0 denotes local equilibrium and n > 0 represents departures from this 

equilibrium. The space-time expansion is crucial to the multi-scale method. These 

are expanded in a hierarchy of slow-fast scales such that each variable is 0(1) at 

that scale:
t, = rt h  =  e H  1 (312)

X\ =  ex X2 = e x J

Here aq, t\ are linear regimes (sound wave) and a;2, t2 are the longer dissipative 

modes. The corresponding differential operators are:

da = edai +  £2da2
dt =  edtx +  £2dt2 
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An example in using this expansion is shown in chapter 4.

In the incompressible flow limit in which the Mach number, M a = \u\/cs <C 1

the expansion leads to the mass and momentum conservation equations (continuity

The modified viscosity from v =  A(?s in equation 3.1 corrects for the truncation 

error in the discretisation of equation 3.2 and makes the LBGK scheme formally a

The collision step of the LBM, equation 3.9, should be noted as completely local 

and the streaming step, equation 3.10, involves no computation just a streaming of 

particle distributions. The LBM is thus seen to be easy to implement and straight 

forwardly amenable to efficient parallelisation on many computer processors.

The LBM can be viewed as an alternative computational technique to solve 

the NS equations but the method differs from traditional CFD NS techniques in 

many aspects [102]. The NS equations are second order partial differential equa­

tions (PDEs) whereas the DVM, from which the LBM is derived, is a set of first 

order PDEs. This is notable by which the equations are discretised. The CFD 

NS solvers have to treat the nonlinear (updpua) convective term where the LBM 

avoids this convective term because the convection is done via advection (stream­

ing step). The CFD NS solvers need to solve the Poisson equation for the pressure 

field at every given time over the entire system whereas in the LBM the pressure is 

locally obtained by the equation of state. In the LBM the Courant-Friedrichs-Lewy 

(CFL) number [103] is proportional to A t / A x  for which in LBM is a fixed unity 

(A x  = A t  = 1) thus the time dependent LBM is inefficient for solving steady state 

problems. The LBM depends on grid structures but for CFD solvers of NS, which

with the corresponding viscosity in the NS equation 3.15 derived as [86]

(3.14)

(3.15)

i/ =  j  (2r -  1) A t (3.16)

second order method for solving incompressible flows at small Re  number [94]. The 

lattice viscosity is thus changed via r  in which stability requires 0 < 1 /r  <  2 (pos­

itive viscosity). The pressure is obtained from the equation of state equation 3.7.
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may take integral of differential forms, are in vector forms that are independent on 

the coordinates of the grid.

As for all computational problems the boundary condition can be the single most 

important problem especially in complex geometries and complex fluids. For CFD 

NS solvers normal and shear stress components are required to be calculated at 

the normal and tangent of a complex surface which utilise one-sided extrapolations. 

For the LBM solvers boundary issues arise as there is no non-slip counter part to 

the continuum level on the scale /*. As the LBM is a kinetics based approach, 

physics associated with the molecular level of interaction can be incorporated into 

the model, thus LBM is a mesoscale technique. The spatial discretisation of the 

LB equation is governed by the particle velocity discretisation, this coupling of 

velocity space to configuration space gives rise to regularly shaped triangular or 

square grids. This in turn limits the LBM when considering boundary conditions 

of complex arbitrary smooth shapes that in a near field require small grids dealing 

with high Re  flows but in the far field may not necessarily require such a small grid.

These features of the LBM have led to its successful use in simulating fluid 

flows involving complicated boundaries and complex fluids such as flows over struc­

tures with complicated geometry [104], Rayleigh Taylor instability between two 

fluids [105], multicomponent flow through porous media [106], particles suspended 

in fluids [107, 108], chemically reacting flows [109], combustions [110], magnetohy- 

drodynamics [111], crystallisation [112], and others [87].

Efforts to extend the use of the LBM to all the above said flows and others 

are actively being studied. Work to extend the LBM to higher Re  numbers flows 

near the turbulence regime hope to better solver fluid engineering problems. From 

this several coupled issues to the higher Re number flows arise. Recurrent issues 

for all these types of flows arise, namely those of boundaries, grid resolutions and 

numerical stability. We will proceed to briefly review works in these areas.

Boundary Conditions

There are two classes of boundaries in fluid dynamics, open boundaries and solid 

boundaries. Open boundaries are lines or planes of symmetry, periodicity, infinity, 

and inlets/outlets; the closed boundaries are solid walls. For CFD solvers the
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macroscopic velocity and pressure are usually enough to fix fluid flows. Conversely 

in the LBM no boundary condition for the particle distributions f i is known. The fi 

must be suitably constructed based upon macroscopic flow variables. For symmetry 

and periodic boundaries this is not an issue and outlets can usually be given by 

extrapolation given simple enough geometry.

This issue is highlighted in figure 3.2. After a collision step f i (x f ) at node x f , 

on the fluid side is known for all i but the post-collision distribution function

coming from the solid node to the fluid node Xf is not known (here a ~ upon an 

i represents reversed velocity link ej = — e{ ). In order to complete the streaming 

step f i i ^ t )  is needed to give exactly f i ( x f , t  + St) post streaming.

Popularly and efficiently the bounce back scheme [113,114] is used from the LGA 

methods: that is the momentum of an incoming distribution f i(Xf,t)  is bounced 

back in the opposite direction after it hits the wall: /j(a$,t) =  fi{Xf,t)  and if the 

wall is moving an additional momentum should be added:

~ ~ 0 / .  nw p . . n iw
t ) =  f i (x f , t) +  ~l (3.17)

C s

were the superscript w indicates value at the wall. Ladd [115] showed second order 

accuracy for the non-slip boundary condition if the wall is placed in the middle 

of nodes, in other words A =  =  \  and th e waA is a straight line. (BBL

scheme.)

For arbitrary geometries and smooth curved boundaries more accurate treat­

ments are needed to achieve second order accuracy. Bouzidi [116] presented a simple 

and efficient boundary condition based on bounce back of any arbitrary position

boundary
fluid solid or in/out -let

0  ► < 0

Figure 3.2: Known distributions at node Xf and unknown distributions at node x^. The 
Bounce Back boundary condition that gives f i(xb,t) = fi(x.f,t), where denotes post­
collision value.
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(BBC). Using the Lagrange polynomial:

y(x ) =  XIn (x -  Xj) 
1 (xk • Vk (3.18)

he interpolates the appropriate fi. Using the parameters defined in figure 3.3, to 

second order:

/?($/, t) =  A(1 +  2A ) f i (xf , t )+
(1 - 4 A 2)f i (xf -  et5t, t)+
A(2A -  1 )fj(x 0 <  A < i

+ tipwei-uw i <  A < 1

(3.19)

A (2 A + 1 )c2

This reduces nicely to the original bounce back at the node (BBN) and bounce back 

at the link (BBL) schemes for A =  0 and A =  \  respectively. This is often called 

continuous bounce back (BBC). They applied the method to channel flow over an 

array of cylinders reporting second order accuarcy. It should be noted that the 

method treats the boundary differently dependent upon whether A < |  or A > 

For the work in this thesis on LC’s and LCD’s we need only consider enclosed 

systems that have boundaries of periodicity and solid walls, so equation 3.19 is

boundary 
wall i

A 8 x

solid
node,*

Figure 3.3: Layout of a D2Q9 lattice structure around a curved wall.

57



sufficient to close a simulation.

Grid R esolution

The LBM was developed upon a constant grid size in contrast to CFD techniques 

that can allow grid stretching techniques to be used. In simulations often higher 

resolution is desirable in high gradient regions such as flow near a wall at moderate 

to high Re. In the LBM the grid is thus chosen to obey these regions. For regions 

of low gradient or far field calculations where such resolution is redundant the 

calculation becomes inefficient and resources can be wasted. In order to increase 

both the LBM efficiency and its accuracy it is desirable to introduce non-uniform 

grids.

Much work towards grid refinement has been done. He [117] solved the LBM 

on a non-uniform grid in which /*’s were streamed to non-grid points and spatial 

interpolations used for streaming to grid points. Mei [118] solved the DVM in 

curvilinear coordinates with a finite difference formalism. Tolke [119] also solved the 

DVM but using adaptive grid refinements, and more recently adaptive grids for the 

LBGK method. Bouzidi [120] has presented LBM work upon a rectangular lattice 

in order to achieve arbitrary grid aspect ratio’s. Peng [121] used an unstructured 

lattice with a finite volume scheme.

More notably and usefully in the LBM Filippova [122] worked on a local grid 

refinement method. For example a coarse grid with patches of fine grids were placed 

around a solid object (a cylinder in channel flow). Both grids were marched in time 

with the coarse grid acting as a boundary condition for the fine grids. In essence 

the method is based on continuity of variables across different gridded domains: 

viscosity, mass, momentum and stresses.

Yu [123] used the multi-block method in the LBM were each block has an ‘inter­

face’ connection in which a similar rescaling of /*’s is done, as in [122], supplemented 

by interpolations. This method was then tested in a lid driven cavity simulation 

showing particular improvement in the calculation of high pressure regions near the 

driven lid.
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Num erical Stability

For situations of high Re and sharp geometries, such as corners or obstacles, it 

is often found spatial oscillations in the pressure and velocity fields will occur in 

LBGK simulations. These have been termed instabilities and dispersion by Lalle- 

mand [124]. These instabilities can in part be attributed to the fact the LBGK 

method uses a SRT (r). In contrast various multi-relaxation time (MRT) LB meth­

ods have been proposed by d’Humieres [125] and Lallemand [124]. MRT methods 

also share their name with the generalised LB method in which the collision oper­

ator takes matrix form. The basic idea is in the SRT method the bulk and shear 

viscosity have fixed ratio (rj = 3C/2), both determined by the r  parameter. Op­

positely the MRT method can relax different modes at different relaxation times. 

Consequently the bulk and shear viscosities may be adjusted independently.

In simulations it is common to generate small pressure waves due to initial 

conditions or singularities. For an independently increased bulk viscosity, it may 

help to damp out such waves thus increasing numerical stability of the solution 

and its convergence to steady state, particularly for simulations containing high 

gradients.

The MRT has undergone detailed analysis theoretically and numerically by 

Lallemand [124]. Mei [126] compared the SRT and MRT performances for flows 

of Stokes and flow over a cascade, they showed in the short time limit the MRT 

error is much smaller than the SRT but at the long times towards equilibrium there 

is no discernible differences. Further they found the need for high grid resolutions 

is lessened when using a MRT method.

3.2 Background to the LBM

Although the LBM can be derived in variuos ways it is instructive follow its devel­

opment from earlier LG A methods.

3.2.1 Lattice Gas Autom ata

In the model by Broad well [95, 96] the kinetic equation with discrete single particle 

speed was used to simulate flow induced from a shock wave. In the model both
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time and space are continuous as given by equation 3.2. Hardy [89] proposed a fully 

discretised kinetic model on a square lattice by coupling the minimalistic boolean 

cellular automata lattice models introduced by Ulam and vonNeuman [127] with the 

kinetic equation. However due to a lack of isotropy of the lattice this model did not 

recover NS type behaviour. Frish, Hasslacher and Pomeau [92] (FHP) developed 

this 2-D kinetic model upon a hexagonal lattice (FHP model) which enforced the 

isotropy condition yielding for the first time NS behaviour and recovery of the NS 

equations.

In this LGA FHP model a two dimensional regular hexagonal unit cell lattice 

space is used, see figure 3.4. The lattice is then populated at each node and link 

by identical particles of unit mass, moving with the same speeds and at the same 

time. A particle presence is represented by a boolean variable 1 and an absent 

particle is represented by a boolean variable 0 (rii(x,t) £ i = 1 . . .6,  where b is 

the number of possible particle velocities). No two particles may have the same 

identical velocity at a lattice node - an exclusion principle, so at most a lattice node 

can be simultaneously occupied by six particles. Due to the discrete space, time 

and velocity all particles momenta is such that particles hop from node to node in 

each time step. Minimalistic collision rules are then defined for symmetric binary 

and triple collisions that must conserve momentum and particle number (mass) as 

indicated in figure 3.4.

Figure 3.4: Simplified schematic of the FHP LGA model. Dark and light arrows represent 
particles with the velocities corresponding to time t and t + 1 respectively. The thicker 
black line represents a boundary at which particle velocities are reversed.
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The evolution equation of this LGA follows as

rii (x  +  ei51 +  1) -  rii (x, t) = Qi (m (x, t)) (3.20)

where are the particle velocities and Q* a collision operator. It has two steps 

of ‘streaming’ particles to nearest neighbour nodes along its velocity direction % 

(left hand side of equation 3.20), then ‘collision’ where particles arriving at nodes 

collide with each other and change their velocity directions according to collision 

rules. The construction of the collision rules is crucial to the LGA in recovering NS 

behaviour.

To incorporate boundaries to the LGA model and impose the macroscopic non­

slip condition particles of velocity e{ arriving at a wall simply invert their velocity 

e-, where the over bar denotes reversed velocity. The process is also depicted in 

figure 3.4 by the thick line indicating boundary. It keeps the simplistic computa­

tional Boolean collision rules of the main body of lattice sites. This process is called 

bounce back at the node (BBN).

Both advantages and disadvantages of the LGA scheme become plain. The 

evolution of the system is extremely simple. Only Boolean computations are needed. 

Interactions are localised and dictated by look up tables with unconditional stability. 

Dedicated parallelised machines can be designed for such an algorithm. However 

the smooth macroscopic variables need to be obtained by averaging [128] over vast 

numbers of nodes and over long times as the process produces statistical noise. This 

introduces further problems when looking at higher order physical quantities such 

as stress and vorticity that involve the derivatives of the macroscopic variables.

3.2.2 Developm ents of LGA to LBM

In going from the LGA to the LBM the Boolean variables, rii(x, t), in the LGA were 

replaced by continuous floating point variables, /* =  (rii) > where ( ) represents an 

ensemble average and fi the momentum distribution function. In moving to the 

continuous /,■ the collision rules had to be redefined, the discrete evolution equation 

now reading as

f i fe +  &$£, t  +  St) -  f  (x, t) — A tCli (fi (x, t)) (3.21)
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where fi* (fi (x , t)) is now the collision operator representing the rate of change of fi 

due to collisions, A t  is the time step and — A x / A t .  The coordinates of the next 

nearest neighbour points of x are given by x  +  At.  In equation 3.21 the collision 

operator is still localised and is a function of the lattice structure. The macroscopic 

variables of density and momentum are calculated from the moments of the particle 

distribution function, as in kinetic theory, as:

p(x, = fi(x, t ) , pua(x, = f i ( x , t)eia (3.22)
i=0 z=0

where % ranges over all discrete velocity vectors. The collision operator must satisfy 

conservation laws of mass and momentum at each node:

^  tti(x, t) = 0 , ^ 2  =  0 (3.23)
2 = 0  2 = 0

A t  is physically very small, it is the actual time required for a particle move from one 

node to the next along and it is much smaller than the time scale characterising 

the variation of the physical macroscopic variables. A subsequent Taylor series 

expansion in space and time of equation 3.21 yields a continuous form of the kinetic 

equation accurate to second order in At:

A t 2
A t  (dt + ciada) fi('A t ) +  —  (dt +  ciada) fi(x,  t) +  0 (A23) =  A ifi4 (fi(x, <))

(3.24)

Interestingly keeping only first order in A t  terms is the kinetic Boltzmann equation. 

Assuming the particle distribution function is close to its equilibrium value state 

the fi can be expanded as equation 3.11

oo

fi = E  enf i n) =  f i 0)+ £f *(1)+ e2f i 2)+ ° ( £3) (3-25)
n=0

where the equilibrium distribution function, f - eq̂ = f - ° \  and the non-equilibrium 

distribution function f \ neq>> =  f i ^  which f ^  is the leading order pertur­

bation. Substitution of equation 3.25 at 0(e)  into the collision operator &i(fi) in

equation 3.24 and then using a Taylor series expansion at linear order one gets:

= m tq))+ E  g3ng | eg>)/ l 1)+ ° (g2) (3-26)
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By definition a fluid in equilibrium is unaffected by collisions and thus =

0, this is equivalently stated through substituting equations 3.25 and 3.26 in equa­

tion 3.24. This then leads to:

may be defined [128] as cyclic and symmetric; the elements only dependent upon 

the angle between the directions e*Q and e^; the collision must conserve mass and 

momentum so that

all fixed and may be changed to place the scheme in a stable regime that reduces, 

dampens, spurious quantities commonly referred to as ghost modes [129].

If we further assume that the local particle distributions relax to an equilibrium 

state with the same relaxation time A it can be seen:

This historical development of the LBM helps to paint a picture of how it oper-

algorithm implementation.

3.3 Practical Issues in LBM Im plem entation

3.3.1 Stress Calculation

Fluid mechanics often requires the evaluation of stresses in a system. The NS stress 

tensor has pressure and velocity gradient terms:

(3.27)

is the linearised collision matrix of coefficients [84]. A#where A,

(3.28)
i=0

The linear collision matrix elements although obviously constrained are still not

(3.29)

and subsequently the LBGK [93] collision is obtained:

(3.30)

ates with ‘particles’ moving around a lattice and can aid the understanding towards

Va/3 =  -P f ia (3  + p v ( d a U(3 + d(3Ua ) (3.31)
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For CFD solvers this requires the use of one sided numerical gradient calculations 

at boundaries. Conversely in the LBM the local pressure simply has equation of 

state P  = pc2s and the deviatoric stress rap = pv(daup +  dpua) can be evaluated 

from the non-equilibrium part of the distribution function:

Tap = ( l  -  ( f i i& t)  -  /i(e?)fe ^ ))  (tiocZip -  ^ e i7ei76ap̂ j (3.32)

Clearly equation 3.32 is local and thus better than any explicit gradient methods. 

For evaluating the force upon an object embedded in a fluid this is highly desirable 

however equation 3.32 is only valid at the lattice node, thus for complex curved 

objects one sided numerical techniques are still needed.

3.3.2 B ody Forcing Flows

As an alternative to the open boundary pressure and velocity conditions, described 

in section. 3.1. It is very common in isothermal LBM simulations to combat the 

compressibility restrictions by emulating a pressure gradient through a body force. 

A uniform body force or acceleration paa may be used to approximate the principle 

part of a pressure gradient. Such an acceleration arises in the LBM momentum 

evolution equation (equation 3.8) through an additional term Fi to the right hand 

side. The form of Fi can be obtained by considering the time derivative of the 

first moment of the equilibrium distribution function in the incompressible limit: 

S i  eii f t 9̂ = Pa7- This yields the moments:

E i F i  = 0 )
S i  Fid,  = pay > (3.33)
] S i  FiBijGig —  p (llryClfj T  UfjCL'y') J

Though usually the second moment is assumed S i  Fie^eiS — leaving the forcing 

term F{ as:

Fi = Ptieia<*°‘A t  (3 .34)
^S

For any system without unidirectional flow, the pressure gradient cannot be uni­

form. In fact it must solve a Poisson type equation obtained by taking the divergence

of the incompressible NS equation:

dpdp = - d aupdpua +  daaa (3.35)

The solution to which yields an instantaneous pressure for the given velocity distri­

bution.
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3.3.3 Lattice Gradients

The nice feature of the isotropic LB method is that no explicit gradient calculations 

are required, computation is local. Often in simulations it is required to know a 

local gradient or in the case of more complex fluids with structure, gradients in 

order are required. Explicit gradient calculations are now unavoidable and it is 

common to resort to standard numerical techniques and thus loose the purely local 

lattice calculations. Considering a Taylor expansion of a parameter, P(x):

/ \ p
P(x  +  A t) = P(x)  +  eiaA td aP(x)  +  —̂ - e iaeipdad/3 P(x)  +  . . .  (3.36)

Taking the zeroth and first moment of equation 3.36 whilst multiplying throughout 

by t{ and rearranging will yield second order expressions for the gradient:

daP{x) =  Eifee^pfe+aAt)] (3.37)

dadaP(x) =  (3 .38)

3.4 Example LBGK Study: Laminar flow over a 
backward facing step

LB methods have been validated against analytical, experimental and alternative 

numerical predictions of laminar flows. We here provide further validation for 

pressure-driven flows of an isotropic fluid over a backward facing step using two 

different LB methods. The backward facing step is one of the most fundamental 

geometries causing flow separation and has been extensively investigated in both 

laboratory [1, 130, 131] and as a standard bench mark test for numerical simula­

tions [132]. This investigation considers the geometry originally proposed by Den­

ham [1], see figure 3.5, which produces flow separation at the step and subsequent 

reattachment for a ratio of step height to downstream channel width of | .  At this 

step ratio there exist two independent experimental investigations approximating 

two-dimensional flow [1, 131]. Other LB simulations originate with Qian [133] who 

investigated the relationship of the length of the recirculation zone and the step 

ratio with Re. Chen [134] gave a thorough quantitative comparison of LBGK sim­

ulation results with experimental data from Kueny [131]. Here we concentrate on 

a quantitative comparison with data from Denham [1].
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H=3
W=2[-

h=l

■>}Uo

reattachment 
* v point rV

*o

Figure 3.5: Two-dimensional geometry for a backward facing step in channel flow with a 
step ratio of 1/3. Upstream and downstream of the step behave as Poiseuille flow. The 
step region introduces a recirculation zone of length L , the point of reattachment being 
when the x-component of the velocity changes sign.

Denham [1] took detailed velocity measurements in the channel, depicted in fig­

ure 3.5. All measurements were of the stream wise (x-direction) velocity component 

and were in the central plane of the duct to attem pt as near as two-dimensional

results. Velocity profiles were measured using laser Doppler anemometer and also

dye tracer at several transverse sections both upstream and downstream of the step. 

They observe for all their range of Re  a single primary recirculation but state, for 

Re > 229 the flow was found to exhibit temporal variations around the reattach­

ment point.

Our results were obtained for a range of Re numbers using two methods, both 

assuming two-dimensional flow. Our first method used standard LBGK in D2Q9 

with mid-link bounce back (BBL) at solid boundaries, periodic boundaries in the 

direction along the pipe and forcing with a conservative body force to approximate 

the principle part of the pressure field. No pressure gradient is set explicitly. The 

overall pressure field is extracted as described below. Using this method the ‘pres­

sure term ’ (—(?sdap) in the lattice NS equation is regarded as a correction to a 

principle pressure field which we may approximate as a potential function for the 

appropriate body force. The body force in the narrow part of the channel is y  

times that of the wide part of the channel, based upon matching parabolic flow 

rates. The potential function for this conservative body-force field is:

\   f Pin fs^X ’ X <i Xq
{ Pin ~  G (x +  y xo) , X0 < X < L

in which G is the adjustable force constant and x 0 the step length. The pressure 

field of the body-force LBGK is now determined by the expression c^p-I- 3>. Mass is
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strictly conserved and the pressure across the width of the inlet and outlet throats 

was held constant. The length of the lattice was chosen to minimise compressibility 

errors (which may be measured from the velocity divergence in the steady state 

continuity equation
ufdaua = — - d ap (3.40)
P

but are other wise ignored here.)

Our second method uses the exactly incompressible EILBGK model which allows 

pressure and velocity boundary conditions to be applied more accurately at the inlet 

and outlets. The EILBGK is very similar to the LBGK and is detailed in appendix 

A. Again non-slip boundaries are invoked using BBL at solid walls. Flow is now 

induced by setting discharge-matched parabolic velocity profiles at the inlet and 

outlet and by fixing the inlet pressure while allowing the outlet pressure to develop 

to accord with the necessary pressure gradient (itself an observable). Because of the 

direct link between density and pressure, the total mass of this simulation increases 

asymptotically to a steady-state value.

Using the law of similarity we compare body-forced LBGK and EILBGK simu­

lations with experimental results from [1] based on their definition of Re:

Re = —  (3.41)
V

in which U is the average flow velocity upstream of the step, h step height and 

i/ the kinematic viscosity. Comparison of simulated and experimental data was 

made by normalising velocities to the appropriate U, distances to the step height 

h. For all our velocity data we note the body-forced LBGK and EILBGK results 

give very similar results for a given Re, so velocity figures are representative of 

both models used. For all velocity data, flow profiles in the inlet and outlet were in 

good agreement compared with parabolic flow, supporting the assumption of fully

developed flow. All results are analysed in their steady state solutions, found by

measuring the residual:

R{t) = (3.42)
X

For the EILBGK system there is an additional condition on the total mass, which 

must be constant at steady state.
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From stream-function data, the recirculation zone was seen to increase with 

increasing Re. The position of the vortex centre is given by the co-ordinates (xc = 

0.3L r , yc =  0.6/i); this is in agreement with the co-ordinates given by Denham.

We define the recirculation length to be the distance x  from the step at y =  0 

in which a change in the sign of the x-velocity direction occurs. Figure 3.6 displays 

normalised recirculation length against Re  for the step ratio of Note that the 

LBGK data provided in figure 3.6 are more accurate and cover a greater range of 

Re than in previous studies [133].
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Figure 3.6: The recirculation length as a function of Re for the expansion ratio 1/3. 
Data are compared to experimental values obtained via dye trace, laser anemometer 
measurements and also CFD data [1]

Both LBGK and EILBGK data are in good agreement. For the given lattice 

resolution it was observed that the range of accessible Re  for the EILBGK is less 

than those for body-forced LBGK, owing to a more stringent incompressibility 

constraint. The experimental data points, taken from Denham contain a ±2% 

tolerance for measurements of velocity. Including the tolerance limits, experimental 

results lie just below the simulated points, the discrepancy increases as Re  increases. 

But CFD simulations [132] agree with our LBM models.

Velocity profiles obtained at different locations along the simulation are com­

pared with experimental velocity profiles in figure 3.7. Recall that the agreement
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Figure 3.7: Comparison of simulated velocity profiles to experimental profiles obtained 
in [1] in the step region at Re = 73 for various dimensionless distances from the step 
position: (a) -1.3, (b) 0.0, (c) 0.8, (d) 2.0, (e) 4.0, (f) 6.0, (g) 8.0.
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between EILBGK and body-forced LBGK data is good and figure 3.7 shows only 

one set of simulation data, which agrees satisfactorily with experimental results 

at Re =  73. Upstream of the step, discrepancies are probably due to an inade­

quate development length in the experimental inlet [1]. At higher Re, there emerge 

further discrepancies throughout the length of the system probably due to three 

dimensional effects. Later experiments on a backward facing step with a step ratio 

of |  [130] support this conclusion.

Figure 3.8 shows steady state pressure contours at different Re, for body-forced 

LBGK and pressure-driven EILBGK. Recall that it is EILBGK which accommo­

dates pressure boundary conditions with outlet pressure developing freely in com­

parison to the body-forced LBGK in which an approximate pressure potential is 

used as a supplement to the real pressure. Qualitative agreement is good, with the

Channel Length
(a)

Channel Length
(b)

Channel Length
(c)

Channel Length
(d)

Figure 3.8: Pressure contours for (a), (b) Re = 31 and (c), (d) Re = 174 for (a), (c) 
pressure driven EILBGK and (b), (d) body-forced LBGK. Both simulations use identical 
velocity boundary conditions (refer to text) but only in the EILBGK simulation does 
the pressure develop freely. There is qualitative agreement between pressure fields (e.g. 
minimum pressure occurring in the recirculation zone.)
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minimum pressure occurring in the recirculation zone for both simulations. Not 

withstanding this, there are small quantitative differences between these pressure 

fields of the same order as those which routinely appear between CFD solutions 

obtained by different methods. Unfortunately no experimental information on the 

pressure exists. The ‘wiggles’ in the pressure contours of figure 3.8 are in the main 

due to the grid resolution. Further work may be done as mentioned in §3.1 to 

eliminate these through variable LB grids.

As can be seen from figure 3.8, our two methods produce slightly different pres­

sure contours. However, given their very different representations of a pressure field, 

the correspondence between the results is highly reassuring. Body-forced LBGK im­

plementation essentially assumes a uniform gradient of pressure which is perturbed. 

While intuitively valid at most points in the simulation domain, this assumption is 

weak in the step region, where forced LBGK and EILBGK show differences.

3.5 Conclusions

The LB method for simple fluids has been introduced. Some advantages and disad­

vantages of the technique have been looked. An example in using the LB method 

is given for the case of pressure driven flow over a backward facing step in compar­

ison to experimental measurements. For many engineering computations in the LB 

literature, flow is induced by a uniform body forced method for easy algorithmic 

implementation. The results suggest that, if only velocity information is required, 

then this method may be used with confidence and, with appropriate adjustment, 

can produce a good representation of the pressure field.
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Chapter 4 

A Lattice Boltzm ann M ethod For 
N  em at o- dynamics

The aim of this chapter is to present and derive a LBM solver for LC nemato- 

dynamics in a Q tensor form. In contrast to others LB solvers for nemato-dynamics 

the current LBM solves for the full dynamic equations of Qian [40] with separation 

of time scales of the fast (hydrodynamic) and slow (director) variables. In addition, 

details are given on boundary closure and the treatment of externally applied fields. 

Furthermore results are reported of numerical tests of the solver against analytical 

expressions and standard numerical solutions. The LB method provides an effective 

method of solving the equations of nemato-dynamics. As the governing equations 

are complicated, numerical techniques are required if we want to usefully aid LC 

research.

4.1 Introduction

The development of the LB methods for LC’s has been pioneered by two main 

research groups/collaborations. Several works have been produced aimed at re­

covering different macroscopic equations. Care [135, 136] has developed schemes 

aimed to recover constant order (EL) and variable order (QS) methods. Whilst 

Denniston [137, 138] has developed methods to recover the Beris Edwards govern­

ing equations in 2D and 3D geometries. Below we look at these methods in more 

detail.
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4.1.1 Linearised LB Scheme for EL Dynam ics

Care et al [135] proposed a coupled LB scheme aimed at recovering the EL equa­

tions (appendix B) of motion for nematic LC’s in which the scheme is strictly 

two-dimensional (director and flow can not occur out of plane). A linearised LB 

method is followed in which the collision matrix induces anisotropic scattering to 

the momentum evolution equation and a supplementary forcing term (similar to 

the body force form of § 3.3.2) is used to recover part of the EL viscous stress and 

the distortion stress tensor. A second angular distribution function is then defined, 

6i, representing the director (n =  [sin0,cos#]), that advects on the same lattice 

as the momentum distribution function. The angular distribution function is then 

inserted into a LBGK type relaxation scheme resulting in a macroscopic convec­

tion diffusion type equation for the director angle which is then supplemented by a 

forcing term to introduce the anisotropic effects.

With the addition of magnetic field terms to the molecular field the numerical 

accuracy of the method was shown by measuring the Miesowicz viscosity ratio. 

They also test for the viscosity dependent director angle achieved in a shear flow. 

Both tests have analytical solutions and accuracy was achieved below 0.2% error.

The MRT type anisotropic collision serves to place the scheme in a stable regime 

and recover four of the five independent Leslie viscosity coefficients. However the 

non local gradient calculations will hinder parallelisation. This is required because 

the collision matrix is unable to reproduce all the terms in the viscous stress tensor, 

hence the need for the additional forcing terms. The viscous term associated with 

the a\  viscosity was omitted in this work, mainly because to be reproduced from 

the scattering matrix it requires the lattice basis set to be isotropic upto 8th order (a 

complex, intensive lattice structure and even more so in three dimensions). Instead 

a 6th order D2Q13 (3 speed hexagonal) lattice was used. We however point out that 

the a\  term could have been added to their force term explicitly.

Their director evolution scheme is memory unintensive (evolves single 6 instead 

of a vector or tensor) and simply contains the equal elastic constant representation. 

Additional LC properties (for example unequal elastic constants) would have to 

be explicitly added to the forcing term as was done for the magnetic field. The 

SRT parameter is found to directly relate to the LC elastic constant. We note the

73



momentum equilibrium distribution function is unchanged from standard isotropic 

LB schemes. Similarly for the angular scheme the isotropic equilibrium distribution
( e o )function is simply premultiplied by the director angle: 6\ =  ' -  .

Though easily resolved (as two separate schemes are used) the time step chosen 

for the angular scheme was identical to the momentum scheme and thus all time 

dynamic information is invalid, only the steady state value can be used. With 

further advances this method provides a useful EL solver limited in application to 

situations in which biaxial behaviour, order variation, and three dimensional motion 

are unimportant. Further work is required to provide a weak anchoring boundary 

condition, to extend the use to three dimensions and to convert the lattice units in 

to useful SI units.

4.1.2 Lattice Boltzm ann M ethod for Beris Edwards D y­
namics

Denniston et al [137, 138] have developed coupled LB algorithms for the nematody- 

namic equations as laid down by Beris and Edwards [42]. These equations are based 

on an alignment tensor Q  (where this Q is |Q  of the previous chapters) and thus 

allows for variable order parameters and simulation of both isotropic and nematic 

phases. The momentum evolution equation takes the form of an LBGK type relax­

ation scheme with an additional force term (body force like) to reproduce the full 

anisotropy, as in [135]. However the equilibrium distribution function is changed 

from standard isotropic LB to include a term of the form eiaeipEiOLp in which the 

tensor Ei  depends on Q  and its gradients to form part of the viscous stress tensor.

The second (alignment) algorithm governing the evolution of Q  uses a LBGK 

form with standard equilibrium distribution function modified as: = Q a p f ^ ^

again with an additional force term providing the required anisotropy. Note the 

lattice distribution functions are now enhanced to tensor quantities and are therefore 

memory intensive.

The LBGK evolution equation used in both algorithms is of predictor-corrector 

form introduced in order to improve stability of the scheme and eliminate lattice 

viscosity terms.

This LB model of nemato-dynamics has been applied to numerous studies suit­
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able for Lyotropic LC’s [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148]. 

They have reported the shear alignment, defect annihilation, pouseuille flow, 

shear thickening/thinning, backflow in Freedericksz cells with an electric field, 

bistable LCD devices, phase ordering, domain motion in two and three dimensions, 

and poiseuille flow in chiral nematics.

We point out however no mention is made of the separation of fast momentum 

and slow director time scales and it is implied both algorithms run at the same time 

step At.  Conversion of lattice units to SI units requires some what arbitrary choices 

for a length scale, time scale and pressure scale that are then used to calculate the 

SI units of LC coefficients. Further their treatment of the electric field as a constant 

is not strictly correct (see §2.1.5). No surface viscosity expressions are quoted even 

though weak anchoring conditions are used.

The Beris Edwards formalism is based on a microscopic relation of transport 

coefficients to molecular properties such as size and aspect ratio. In the limit of con­

stant order and uniaxial rods, it can be reduced to the exact EL formalism. Within 

this limit it is found that only three viscosity coefficients are independent due to 

the trunctation in the Q  expansion [42]: in contrast the EL theory finds macroscop- 

ically there are five independent viscosity coefficients in the nematic phase. This 

is a common feature of all microscopic dynamic theories for nematics and warrants 

further experimental clarification.

4.1.3 Single Lattice Boltzm ann Equation for QS Dynam ics

Care et al [136] extended their work to include the alignment tensor allowing for 

variable order parameters. Further they managed to compress the momentum and 

order evolution equations into a single two dimensional LB algorithm in contrast to 

the coupled LB schemes of §4.1.1 and §4.1.2. This was deemed to more efficiently 

solve the LC equations of motion. The equations that are recovered are those of 

Qian [40] suitable for themotropic LC’s and retain the five independent EL viscosity 

coefficients.

As with the method in §4.1.2 a tensorial distribution function is used but con­

tained within the tensor the equivalent scalar densities, /*, are held along the trace. 

In order to do this the alignment tensor, Q  , is converted to an ordering matrix of
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unit trace. The LB evolution equation follows a ‘LBGK - type’ relaxation with a 

direction dependent relaxation parameter supplemented by terms to conserve mass, 

momentum and the two force terms to complete the set of anisotropic properties. 

The (3\ viscosity is omitted as an 8th order isotropic lattice basis is required; again 

we point out this could have been inserted to the momentum forcing term. The 

standard isotropic equilibrium distribution function is used: = S a p f t ^  where

Saf3 is the unit trace ordering matrix.

The algorithm was numerically tested in lattice units against analytical results 

for both the director and order at steady state and in a shear and magnetic field. 

The scalar alignment and Miesowicz viscosity ratio were tested, results accurate to 

less than 0.3% error. The algorithm was further extended for a nematic-isotropic 

interface [149]. Using the advantages of the LB technique for multi-component 

fluids they used the segregation technique of Gunstensen [150] and Lishchuk [151].

The drawbacks of this method is that the time step of both momentum and 

order evolution equations are fixed identically. The time evolution properties pre­

dicted can not be used. So the algorithm may only be used for equilibrated systems. 

In this way the method becomes inefficient compared to standard numerical tech­

niques. The method also draws on the 6th order lattice basis of a hexagonal D2Q13. 

Extensions to a three dimensional lattice of the same order are non-trivial.

4.2 A Proposed M ethod for LB Q-tensor Nem ato- 
dynamics

In the previous section we saw some LB methods for nemato-dynamics. It is seen 

that the work of Care [136] to recover the dynamic evolution equations of Qian [40] 

has some drawbacks, being largely limited to two dimensions at steady state and 

some degree of freedom around choice of parameters. Here we will modify, and 

possibly simplify, the method in an attempt to be able to extract correct time 

dynamics and relation to SI units. To tackle the issue of time dynamics in which 

a momentum time step is vastly shorter than that of the LC director we must 

separate the combined scheme in [136] into two coupled schemes as in [135] or [137]. 

Further we will insert all anisotropy into the force terms whilst keeping the isotropic 

equilibrium distribution function.
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4.2.1 Reiteration of the Governing Q-Tensor Equations

The LC evolution equations stated by Qian [40] are given in § 2.4.1. We will first 

rearrange these to present it in a form more suitable for a lattice evolution equation 

consisting of streaming and collision. As is commonly done we assume the angular 

velocity relaxes quickly [40] so the moment of inertia is set to zero ( J  =  0). We 

then substitute equation 2.48 into equation 2.44 to yield:

o =  h % - ^ l - n l N ^ - \ BSa 0 - e a^  (4.1)

Rearranging equation 4.1 for the co-rotational derivative, we may substitute into 

the viscous stress tensor, equation 2.47, to eliminate the time derivatives:

<7q/3 =  P l Q a p Q n v - A n u  T /?4A a p  T AjQa/i-^/i/l +  /?6Q/3/i-4/ia:
, Vibgp _  li2*B6a0 _  M2£q/?7Â  _  nlAa0 _  n  hB (a

”*■ 2/zi 2/xi 2 /ii 4 / i i  'tfa /x 'l/i/S  V • )

Upon substitution of the explicit form of Nap = Qap — eaiû ^Q vp  — spuv^iiQau 

into equation 4.1, we may re-order terms to express the order evolution equation in 

the convenient form:

Q a p  =  —  -  ^  -  e- ^  -  ^  + e a e X w ( Q , p  +  e ^ ' Q c *  (4.3)fii iii iii 2[ii

the left hand of which is appropriate for the streaming step of the LB algorithm.

To identify the form of the Lagrange multipliers XB and \ B we analyse equa­

tion 4.1 for hap and taking its trace shows:

C  = - h i ,  +  3AB (4.4)

explicit substitution of the viscous molecular field (equation 2.48) into the above 

and due to the fact that Qap is symmetric and traceless, shows that:

AB = |  ( C  -  f^ c c )  (4.5)

The term in A acn zero for incompressible fluids, is kept because the LB fluid is 

weakly compressible and this should correct any errors at higher velocities. (Re­

member the condition M  =  ^  <C 1 for incompressible fluids.)

Considering the off diagonal elements in equation 4.1 separately we find, for 

example:
hB   hv _i_ \B }

(4.6)hl2 ~  ^12 "h ^3
hB = -hX, -  A?*21 — 21 /x3
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as hvap is symmetric and traceless equation 4.6 is rearranged to find Af =  |( h f 2 — 

h 2 1 ). Analysing the other elements shows that:

^  (4-7)

For the molecular field as defined in equation 2.46 and phenomenological free 

energies given in §2.1 we get:

ha/3 ~  &FQa(3 4" ^PrQa'yQ'fP ^^FQapQ'frQrj 
4“L\dyd*yQ&P “f" Ij2doLd^Qryp -j- L^O.ydpQ ̂

+~2 (ZQnudndvQap 4" di/QafidnQpi/ 4~ 0 [iv d0,Q^TdpQ'yT')
+ 1 ^  {e„\adxQrf -  ZavydvQ'rp) (4.8)

4- P /i4 { Q 4“ Q p T £ a v 1 d v Q ^ T £ p X a Q p e ^ x Q e / 3  ^ p X a Q e ( 3 ^ x Q p e }

+ |e 0A e™*EaEp +  §/i0A x T xHaHp 
—CidpEa +  C2 (EadvQpv — E^dpQ^a — QpadpEy)

and for the distortion stress tensor defined in equation 2.45 we obtain:

®afi ~  Ai^q-QeX^pQeX IJ2duQevdpQea L$dpQn'yd'yQpa E^Qa^dnQexdpQex
-^■SfiapQfxxdpQpX 4- ^SpapQpeQexdpQpX 

+CiElldpQjia -f- C2 E^QnydpQ^a
(4.9)

We have thus identified our target equations for the free energy given in §2.1. 

The target order evolution equation being equation 4.3 and the target momentum

evolution equation still being equation 2.43 but with equivalent (J=0) viscous stress

tensor given in equation 4.2.

4.2.2 Statem ent of the Algorithm

The simplest LB routines are the SRT LBGK methods, well proven in solving the 

NS equation (see chapter 3). It is this method we choose to adopt here, adding the 

LC anisotropy into an appropriate ‘forcing term ’. The equations given are for three 

dimensional systems, lower dimensional systems are easily studied as a subset of 

this case by setting periodic boundaries. Here we list the core resultant algorithm 

needed for implementation. An analysis follows to justify the choices made (§4.2.3).

The M om entum  Evolution Algorithm

The momentum distribution function is evolved as:

fi (x 4- e*At, t  +  At) =  fi (x, t ) - ^ ~  [fi (x, t) -  f \ eq) (x, t))  +  <& (x, t) (4.10)
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where symbols take there usual meanings, the subscript on the rp emphasising 

the SRT for the momentum scheme and the fa the additive forcing term. The 

macroscopic observables are extracted from:

E  i/i = />($.*)
Ei f i ^ - i a  =  P ^ a  (:£> t )

the isotropic equilibrium distribution function being the usual:

(4.11)

f t Q) = tiP 1 + +  U a U/3 (4.12)
' V 2c*

in which ti and take the same values as in standard LBGK for a set of chosen et. 

The anisotropic forcing term is:

4*i = tiCi\0pF\/3

Fa/3 =  \p~af3 T  ®ol(3 T  PlQafiQiiv-^nu T  /? 5 Q a /t-^ /i /?  +  (3qQpfiA.^
, /£2hocB /^2£q^7A^ D  h \ D  c-

+  2/xi 2/ii Wa/iffy/? +  V a /i^ 7 A7
■ fJ-2QocpAfx/3 i D h _   VzQpn-Afxi 2 q^/t'Tia qf /̂i /̂i Q7/X'y 2

(4.13)

(Note the similarity to equation 3.34 if dpF\p where a constant a*.) We also identify 

pressure and isotropic viscosity as:

P  =  pcs +2 ,

2/zi
pci? (2rp -  1) A t =  p4 j4_

4pi
(4.14)

The Order Evolution Algorithm

The order distribution function is written as a symmetric tensor quantity evolved 

as:

9iap (x +  e* At, t  +  At) =  gia(3 (x, t) -  —  (gia0 (x, t) -  g f e  t))  +  Xiap fe, t)
tq

(4.15)

the subscript on the rg emphasising the SRT parameter for the order scheme and 

Xia/3 the additive force term. The macroscopic observables are extracted from:

^  'j 9ioi/3 —  C ^ a /3 (4.16)

where Sap is the alignment tensor of unit trace being simply related to Qap in three 

dimensions via:
3Sap 5ap

Qa(3 (4.17)
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The parameter f  =  ]Th gi77 has constant value of unity thus may be ignored, however 

it was included in the analysis to provide a consistency with the work in [136]. Its 

origin may be considered analogous to that of p in the momentum algorithm and it 

may be used to investigate if the order algorithm is subject to weak compressibility 

effects. The appropriate isotropic order equilibrium distribution function is defined:

ĉt(36iaUa 
1 H   b UaUp

2 d
(4.18)

in which again ti and take the same values as in the momentum schemes. The 

anisotropic force term is:

hgf)   L \ d \ d \ Q   X SQff
Hi m  Hi /U

2hi ̂  ^oceX^eQ\p T  SpeX^eQaX
(4.19)

We identify the relaxation parameter rQ with the principal elastic constant:

f ( 2r0 - l ) *  =  £ (4.20)

These are two essentially separate algorithms but are highly coupled. Both may 

be run independently, for example if flow effects are to be ignored or only static 

equilibrium configurations are desired running the giap scheme alone would suffice.

4.2.3 Analytical Algorithm Analysis (Chapman-Enskog Pro­
cedure)

Although the processes of the Chapman-Enskog analysis are essentially identical 

we treat the analysis in two stages, one for the momentum scheme and one for the 

order scheme. The analysis serves two purposes: to ensure the governing equations 

are recovered and to identify the relation of the LB SRT parameter to transport 

coefficients and forcing terms.
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M om entum  Analysis

We first define the usual lattice moments and constraints as [152]:

E j / ,
(0)

E  i / i
(n)

1r—H 

1__

Qia =
6ia6if3

1
£ia =

6ia&ip

P 
pua

n a/3 =  +  PUaUp _
0
0 , n > 0

n<nJ

(4.21)

Other useful relations that will be used are the velocity summations calculated from 

an isotropic lattice basis (see [152]) at fourth order:

(4.22)

E , ti = 1
E , = 0
E , tiGia^ip = c2s5ap >
E , tiGiaGipGi-y = 0
E , tiGiaGipGijGi$ =  csA apyQ = cs (SapS7e 4- ^aj^pp 4” Sao^p7) >

Using a Taylor expansion on the left hand side of equation 4.10 we obtain:

(4.23)
A tdtfi 4- ^ f d tdtfi 4- A teiadafi  +  A t2eiadtdafi +  ^ -G iaGipdadpfi

=  - £ ( / < - / / * > ) + *

We suppose the force term fa takes the form & = tiCi\dpF\p. We now use the

multi-scale expansion, to second order, that is:

t\ =  et , t2 — +  £2&t2
xi = ex , x 2 = e2x  , dx = edXl 4- e2dX2

f i  =  f f ‘' +  e f P  +  £ 2i f  >

l(l)

f ( P )  _  j { e q )

m

0{e°)

0 (e l ) - r pA t(d tl + eiaidai)fj;0) +  rptiGiXdpxFXp =  / f } 

0 (e 2) ( \  ~  rp) A t (dtl +  e i a d a j f ^  -  rpA t  (dt2 +  eiada2) t f 0) 

2 ( ^ l  4” t i ^ i X ^ P i F x p  4” Xp t i & i \ d p 2 F \ p  —
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(4.24)

the above expansion yields:

£ (A tdtlfj;0) 4- A teiadajj;0̂  4- e2 ( a t d t j ^  +  A tdtj j ; 0) +  A teiadaJ ^

+ A teiadaJ 0) +  ^ £ d tldtJ 0) 4- A t2eiadaidtir i0) + ^ e iaeipdaidpif ^  (4.25) 

=  “  ( / / 0) +  e/i(1) +  £2f i 2) ~  f l eq))  +  etiCixdpiFxp + £2tiGiXdp2Fxp 

Arranging terms in ascending order of e, we obtain:

(4.26)

(4.27)

(4.28)



in which we have used the 0{e l ) result of equation 4.27 to replace a term of the 

form (dtl +  eiadai)fi°^ in the 0 (e 2) result.

Taking the zeroth moment ($T) °f the anc  ̂ second order equations 4.27,

4.28 whilst respecting equations 4.21 yields:

O i s 1) d h p  +  d a i (p u a ) =  0 ,
0 ( e 2 ) d t2p  +  d a2 ( p u a ) =  ^ d , n d 0 1 F yfJ

which can be recombined (c.f. equation 4.24) to give the continuity equation:

dtp +  da (pua) =  0 (4.30)

2
We note the term of the form - f d x d p F x p  has been omitted from equation 4.30, an 

assumption not unreasonable as F x p  depends on gradients in u and gradients in Q 

thus making it a negligibly small high order term1.

Taking the first moment (JT  e^) of the first and second order equation 4.27 and 

equation 4.28 whilst respecting equations 4.21 yields:

O ) 0*1 (PUP) +  0ai njfo =  d7l F37
0 ( s 2 ) ( l  -  2“ )  d a j t f t a  +  d t 2 ( p u p )  +  d a J L ®  =  j & d ^ F p y  -  ^ d t l d 7 l F ^

(4.31)

To progress, the I I ^  term needs evaluating or more specifically f - 1̂ (in equa­

tion 4.27). Using equation 4.12 to 0(u)  in equation 4.27, taking its zeroth moment 

and back substituting the result (dtlp = —dp1(pup)), followed by taking the first 

moment and another back substitution (dtl(pup) = —c2dplp — Tpcld7lFp7) yields 

the form:

f i 1} = _ Tp ^ td^ P Ua} ^ l̂ E +  TpUeixiTpAt +  1)<97iFA7 (4.32)
C s

in which Hiap is symmetric and defined:

H i a 0  =  U c l  ( ^  -  s j \  (4 .3 3 )

The symmetry of equation 4.33 allowing us to write d x { p u p )  = p A x p  in the incom­

pressible limit.

We now use equation 4.32 to evaluate equation 4.31 more explicitly (substitute 

equation 4.32 into 11^ term and use of equation 4.22); we get in the incompressible

1In a future work the consequences of the Landau expansion terms present in T\7 will be
studied more critically.

82



limit:

0(e°) dtl (pup) +  dpx (pc2s) +  dai (puaup) =  2§d7lT>7 (4.34)

0 (e l ) dt2(pup) +  dp2(pc2s) +  da2(puaup) (4.35)

~  1)^Ftda i (pA pa i) =  ~ ^ d j2F p j  2 * ^ 1 F pj

(4.35)

Recombining equation 4.34 and equation 4.35 gives:

2
Here the term of the form — gdtd^Fpy is, as before, neglected assuming high order

gradients are negligibly small1.

A detailed comparison of the terms in this equation to the target momentum 

equation (equation 4.2 and equation 2.43) gives the identifications made in equa­

tion 4.14. (Note the isotropic terms do not contribute to entropy sources and may

Velocity summations (equation 4.22) still apply here. It is worth pointing out that 

unnecessarily we stick to moment definitions of the unit trace order tensor as this 

work seeks to advance [136]. But as the momentum and order are now in separate 

algorithms we may equivalently define zero trace moment definitions as in [137] in 

which (  is then zero.

Using a Taylor expansion on the left hand side of lattice evolution equation 

(equation 4.15) we obtain:

^kdtQinv 4 2~&tdt9inv +  v T  €’io$$a.9iiiv H 2~&ia£ipdadp9inu

be incorporated into the scalar pressure [46].) Comparison of the remaining stress 

tensor terms reveals the extra stress needed in the LB simulation, that is to say we 

define equation 4.13. This completes the momentum analysis.

Order Analysis

We first define the lattice moments and constraints:

n(°) 1 _  Ĉ a/3
Z-/i 9iot.fi 0 . A/ c? „

(4.37)

(4.38)

1In a future work the consequences of the Landau expansion terms present in F\y will be
studied more critically.
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We suppose the as yet unknown forcing term Xi\iv will be gradient dependent and 

can be expanded in a general form Xinv — £Xi^l +  £2Xi% in addition to the usual:

h  =  £t , t2 = e2t , dt = edtx +  e2dt2 'j
xi  =  ex , x2 = s2x , dx = edXl +  e2dX2 \  (4 .39)

n . -  4 -  4 -  p 2 „ (2 )
9 i  “ r  ^ 9 i f i u  ~ r ”  £  9 i j j , v  )

The above expansion will yield:

e (A tdtlg f^  +  A teiadaig j ^  + e2 ( a tdtlg ^ l  +  A tdh gf$, + A teiadaig ^ l  

+ A  teiada2gl°l +  A pdh dtlg?f£  +  +  ~ - e iaei?dm d ^  gfj^j

= ~  7^ {sfjv +  E9ill +  e2ffi»l — +  £Xt>l +  s2X w
(4.40)

Arranging terms in ascending order of £, we obtain

0(e°) =  9 $  (4-41)

^ (e 1) - 'r QA t(a( l + e ittiaai)£/|“|/ +  r (3x,>i =  ff£!, (4.42)

° ( £2) ( § _ 7 «) ^ ( f t i + e t a ^ Q ^ ^ - r g A t ^ + e j a a a j ) ^  (4.43)

+ r  y(2) =  </2>2 Ai/ii/ 1 'QA.ifiu Jifiu

in which we have used the 0 (e 1) result of equation 4.42 to replace a term of the 

form (dtl +  eiadai)g^l  in the 0 (e 2) result.

Taking the zeroth moment (JT) of the first order (equation 4.42) expansion 

whilst respecting equation 4.37 yields:

y (1)

d t l  (CS , u )  +  d c i  (CtlaS^) =  E  ^  (444)
i

remembering our definition of the unit trace alignment tensor (equation 4.17) we 

have Sap = 2QaP~5af3 and thus the above becomes (remember £ —> constant):

A  (Q ^)  + A ,  =  2^  E  (4-45)
i

Taking the zeroth moment (JT) of the second order (equation 4.43) expansion 

whilst respecting equation 4.37 and again changing £  to Q yields:

(i - 5r) d a ^ l + f 9^ + j 9** (««<w = E - 5 E
(4.46)
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To progress further the term needs evaluating or more specifically g ^ u (in 

equation 4.42). This is a similar process to obtaining f - 1̂ in the momentum scheme. 

We use equation 4.18 to 0(u)  in equation 4.42. Taking the first moment of this 

gives rise to (using the product rule):

° 7}l =  ~ rQ A;t ( A A  (u7) +  u7dtl(cSpv) +  97i (CS ^ c 2s)) + t q  E  ei7X,>t (4-47)
i

Remembering the zeroth moment result, equation 4.44, we may replace the term in

<9(1. ( C A )  a n d  f'nd :  

d j j L  =  - T Q A t  ( c , S l l v d t l ( u 1 )  -  M7 5 a i (C «a V )  +  f t  E i  X iji, +  9 71( C V cs ) )  
+ t q  E i  e i j X i l l

(4.48)

We can further recall an earlier result obtained in text above equation 4.32 to find:

gt =  c A . P  -  Tpd^FfrC2, +  Upd71 (pu7) ^  49^

p

inserting equation 4.49 into equation 4.48 and applying the incompressibility con­

dition gives:

n $ ,  =  - T Q&t _ Uluadai(<;5^ )  +  & E i x l i l  +  c X ( A , ) )

+ 'r« E i £i7 x ,> t
(4.50)

Upon converting 5  to Q equation 4.50 is inserted in the earlier second order 

zeroth moment equation 4.46 giving:

A Q „ „  +  t f U u o f l J  +  I ( l  -  5 ^ )

+ <TpT̂ C‘ dai(&M  +  ^ 3 01( » M , W  -  W ^ E i X g l )  (4-51)
_ 2r(?Atc.c^ ^gn Q ^  +  t<33qi(■£. e.oX«  ) =  - §  £ .  x f l

Both F a p  and X i a p  depend upon gradients of u and Q  thus we omit higher order 

gradient terms1 from our analysis in equation 4.51. Further in the limit M  = M «

1, which holds for low Re LC’s we need only to keep terms of 0(u).

Recombining the 0{e l ) equation 4.45 and 0 (e 2) equation 4.51 expansion we 

obtain:

d t Q ^ + U a d a Q ^  =  ^  (2t q -  l )  A t d a  ( d a Q ^ ) —y  E ^ + ^ E f C  E ^  (4'52)

1In a future work the consequences of the Landau expansion terms present in F\ 7 will be
studied more critically.
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A detailed comparison of the terms in this equation and the target order equation 

(equation 4.3 and equation 4.8) gives the identification made in equation 4.20. We 

now compare remaining terms with the force terms in equation 4.52. We make an 

assumption that as the forcing term is gradient dependent we can add it at 0 (e 2), 

so we choose — 0 and that of equation 4.19. This completes the order

analysis.

4.2.4 Lattice Units and Time Scales

LBM simulations have units of the lattice, length A x  and time A t  and the transport 

coefficients are also in lattice units. In order to extract useful information from the 

lattice simulation we must relate lattice units to the real world (SI) through use of 

the key dimensionless numbers established in §2.4.2. If we denote lattice units by a 

prime (for example V  =  number of lattice sites in a given direction) we may carry 

out a straight forward non-dimensionalisation of the macroscopic lattice evolution 

equations equation 4.36 and equation 4.52. This results in dimensionless numbers:

&  =  (4-53)

& = S h  (4-54)
De' = $  (4.55)

Extracting the characteristic timescales for variation in these quantities gives (for

now we approximate r p =  rQ =  1, L’ = 200 lattice units):

7p =  r f r i b r  ~  io5A t (4.56)

T. ~  (4.57)

t 's = jjjh ~  10xA t  (4.58)

Taking the ratio of characteristic SI to LB times gives the time value of the LB 

discrete time step (one iteration). Using typical values shows that: A t p ~  10- 13s, 

A tn ~  10_8s, A t s ~  10_8s. Thus we see the momentum evolution equation needs 

to be iterated many times to catch up with a single iteration of the order scheme. 

Alternatively noticing for small laminar creeping flows in which the order changes 

slowly (Re 1) the equilibrium flow field will be reached in a smaller number of 

A t p and we may jump forward in time to the next A t n ~  A t s which reduces the
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overall processing time. We also point out that strong forces constrain the order 

parameter (E r /D e ), thus the order parameter takes only a few time steps to reach 

equilibrium and thus as a first approximation no explicit separation of the order 

and director evolution is necessary.

(It should be noted for quantitative dynamics of defects an explicit order and 

director time scale separation should be undertaken i.e. finding the correct order 

for a given director structure, see equation 2.58. The quantitative effects of this are 

ignored in this work but warrants further investigation in future studies.)

To compare the numerical simulation data to experimental data we need to 

obey the law of similarity. In other words our lattice Re', E r1, De' numbers need 

to equal the real R e , E r , De numbers. Observation of equation 4.53 and 4.54 

shows that Er' = Re' which is in marked contrast to E r ^  Re of equation 2.52 and 

equation 2.53. Assuming [c2, tp , tq}1 and [I/]2 to be fixed we are only left with U' to 

be changed to achieve similarity. Also apparent is that U' for the momentum scheme 

and U' for the order scheme must also be different by an amount E r / Re = Tn/fp .  

So in changing the velocity from one scheme to the other the viscous forces are 

changed, it thus being necessary to scale all other forces by this same amount 

accordingly in order to re-balance the equations of motion. Once the forces are 

balanced a simulation may be completed.

To further explain we list the appropriate lattice values denoting a superscript 

p for the momentum scheme and superscript Q for the order scheme, see table 4.1. 

Note So stands for the equilibrium order parameter not simulation evolved order 

parameter. The relations in table 4.1 are obtained from the Chapman-Enskog 

relations equations 4.14 and equation 4.20 and comparisons of the EL and Q tensor 

equations. Additional to table 4.1 are other material and situation specific constants 

such as geometry, in total we typically have a 25 dimensional parameter space 

making for a formidable numerical task.

In table 4.1 for more complex systems the characteristic elastic constant should

be enhanced to the system studied, analogous to the Fredericksz calculations [46].

1These parameters axe fixed by the lattice stencil and it is shown [153] LB schemes are most 
accurate and stable and r  — 1

2The characteristic lattice length L' is constrained to > d/£ where d is the SI simulation length 
and £ ~  10 —100A is the coherence length of the order parameter given by equation 2.62. In other 
words we work at a resolution that is able to resolve variations of the order parameter.
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Table 4.1: LB simulation parameters. All parameters above can be calculated for
a given set of EL coefficients. For more complex systems elastic constants should
be enhanced to characteristic constants of the system. We also choose Ae^ =  Aea,
e Q -  1 eo —

As an example a cell involving twist distortion invloves just the K  = K 2 2  elastic 

constant; for a director confined to just in-plane splay and bend disotrortions the 

appropriate constant would be K  =  (K n  +  AT33) /2.

4.2.5 Boundaries

Whilst it is important to develop accurate methods for the governing equations, it 

is probably even more important to establish accurate boundary conditions. This 

is highlighted when considering an LCD cell whose characteristic width is only a 

few microns and whose entire bulk behaviour is dominated by molecular surface 

interactions.



For simulations in this thesis we will only consider boundaries that are either 

periodic or solid. For the velocity field in a LC it is usual to take the non-slip 

boundary condition of isotropic fluids. We find the straight forward application of 

the BBC [116] to be a robust and simple method (equations given in §3.1).

For the alignment fields the boundary condition must obey equation 2.51 for 

which an equivalent BBC scheme applied to the g^  distribution functions does not 

apply. As a first approximation we assume all boundaries will lie at a lattice node. 

We then combine standard numerical methods with the LB method. The collision 

step on the boundary is then taken as1:

gia, ( x Bt t  +  A f) =  gia0(xB, t) = +  A t ) +  M  (4 .59)

where the ~ denotes value post-collision (pre-streaming) and Qap{z.B,t +  At) is a 

linear evolution of equation 2.51, being:

t  T  At) =  Qapi^-Bt 'O T AQq/3
=  Qap(xBlt) +  ~  (h%p ~  A5£Q/g -  A^£a/37)

Implemented in this way we presume, for flat surfaces we have second order accuracy 

but for smooth curved surfaces only first order in both momentum and alignment. 

We extract surface gradients from second order extrapolations from the bulk. From 

§2.4.1 we get A5, A  ̂ to be:

A5 =  3 hfin j A  ̂ =  \ s 10l( 3 ,

— LiVxdxQafi L/2l'pdxQa\ L^VxdpQa.X L^VxQ fx\d[xQaf3
a Q r f  +

+ C i  E a i>p +  C2Q1ctE1i'i3 — W ( Q ap — Q°ap)

4.3 Treatment of Externally Applied Fields

In § 2.1.5 we noted that for an externally applied field the electric and magnetic

fields experienced depends on the local molecular alignment. This implies that we

must solve yet another Euler equation or equivalently apply Maxwell’s equations

of electromagnetism. In LC’s the diamagnetism is small and it is usual to use

a constant magnetic field strength in calculations. The dielectric parameters are

however larger and we must treat this appropriately for accurate results.

1In a future work the consequences of this boundary update scheme and how it interacts in 
time with the bulk will be studied more critically.

(4.61)
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4.3.1 Electric Field Solver

Maxwell’s equations (equation 2.32) state (ignoring electro-hydrodynamic ion con­

vection):

daDa =  af  (4.62)

Da = eo CapEp +  Pa (4.63)

E/3 — —dp<p (4.64)

Setting the free charge to zero we then insert equation 4.64 into equation 4.63 and 

then subsequently into equation 4.62 giving:

~da (eo^apdp(/)) +  daPa =  0 (4.65)

Making use of equation 2.12 for the dielectric tensor, the product rule and subse­

quent rearrangement for the <97<97</> term:

d q ^  _  - 2e0A e™axQQ(3dg {dp(j))-2eQ/ \e ^ axda{Qap)d^(j))-€Qdp{4>)dp(e11)^W aP a
Cô 77

(4.66)

which is a Poisson equation and in the isotropic fluid limit is Laplace’s equation.

(We have presumed a pure LC and that dte± =  dte\\ = dae± = dae\\ = 0 ) .  To solve

this equation for (j) in our simulation lattice we consider a spatial expansion of the 

potential on our lattice at time t :

(f)(x +  e{ A t,  t) = (j)(x, t) +  A£ej7<97 </>(£, t) +  - — ^ - ^ d adp(l>(x, t) (4.67)

summing upon % throughout and multiplying by the lattice link weight (ti) whilst 

respecting velocity summation equations 4.22 we get:

    (P / \P
ti4>(x +  ez-At, t ) =  <f)(x, t) +  -J—— <97<970(z, t) (4.68)

i

hence:
/ \ p

0 ( a  t) =  U<l>{z +  e* A t, t ) ---- — d^d^(/)(x, t) (4.69)ZI
Equation 4.69 together with equation 4.66 provides an expression for the lattice 

potential:

0 f e * ) =  J l iU H x  + e i A t ^ - ^ ^ l ^ e o A e ^ Q a p d a i d ^ )  1 
- 2e0A e^axda(Qaf3)dp(4>) -  e0^ ((/))^ (e77) +  3daPa] j
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Keeping the relaxation theme of the LB technique we use a standard successive over 

relaxation (SOR) scheme:

<^+1 =  <j>9 -  u  (<l>9 -  0<e9>) (4.71)

in which ^9+1 is a better approximation to the potential <j>g, and is that of 

equation 4.70. This potential must be solved for each time step of the Q-tensor 

scheme.

4.3.2 Dielectric Cylinder in a Uniform Field

It is difficult to test equation 4.70 and equation 4.71 of the electrostatic solver 

against analytical solutions in the anisotropic case. In lieu, we look at the case of 

an isotropic dielectric cylinder (2D (x,z)) in an isotropic uniform field. Bleaney [47] 

derives analytical expressions for the case of an infinite medium and sphere. For a 

cylinder of radius R  in an infinitely uniform electric field, E0 acting in the x-direction 

the potential is given by a solution of Laplace’s equation:

in which the region inside the cylinder has dielectric constant ei, and the region 

outside the cylinder has dielectric constant 62.

Applying the cLB-type Poisson solver’ with Qap — 0 should recover equa­

tion 4.72. However we are restricted to finite size. We thus proceed by setting 

two electrodes at x  ±  y  with boundary conditions in which X , (Y), ((Z )) are 

the number of simulation nodes in the x, (?/), ((z)) directions. Periodic boundaries 

are applied in the y and z directions. The cylinder centre is at x = y = z = 0 

pointing into the y direction.

We consider two cases on a lattice of X  =  100, Y  =  1, Z  = 120 with cylinder 

R  = 10. Case A has ei < e2, case B has e\ > e2. The lines of isopotential of both 

numerical and analytical solutions are shown in figure 4.1.

Agreement between numerical and analytical solution is good. The small differ­

ences arise due to a) finite difference gradient calculations at a boundary and b) the 

finite size of the numerical calculation (which reduces as system size increases) at 

the far field boundaries in comparison with the analytical solution that uses infinite

(4.72)
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(a) (b)

Figure 4.1: Lines of constant isopotential for a cylinder in a uniform electric field. Solid 
lines represent the analytical solution, as equation 4.72, and dashed lines represent the 
numerical solution, (a) ei = 7, e2 =  2 (b) = 2, € 2  = 7.

far field distance. We may now apply with confidence the ‘LB-type Poisson solver’ 

when treating LC external fields.

4.4 Testing the LB LC Solver

In this section we will test the derived LB solver against some analytical and nu­

merical solutions to ensure it is both accurate and applicable. Examination of the 

Miesowicz viscosities will serve to validate the momentum algorithm. Shear flow 

alignment will validate the alignment algorithm. Studying a simple backflow cell 

will emphasise the need for separation of timescales. In all cases we use the DSQ27 

lattice whose details are given in table 3.1.

4.4.1 Equilibrium Phase Behaviour

In §2.1.2 we introduced the Landau deGennes theory for the nematic-isotropic phase 

transition. The equilibrium order parameter for unperturbed systems (no flows, no 

external fields, far from boundaries) with constant director was given by equa­

tion 2.18. By varying T  in a periodic system we get values for the equilibrium order 

parameter. The simulation is initialised with uniform director. We take material 

parameters suitable for 5CB [40] in which a = 65000 J m~3 K_1, B  = 530000 J m-3 , 

C = 980000 J m-3. Figure 4.2 shows numerical results for the order parameter 

against reduced temperature. The upper and lower limits of super cooling are 

clearly seen. The line corresponding to ‘V=0, T increasing’ corresponds identically
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to the analytical curve in figure 2.2. Accuracy is achieved over the entire range to 

< 0.001%. Also in Figure 4.2 is the equilibrium order parameter with an applied 

10 volts and an applied 20 volts with Aea = 10.3. We see this serves to modify the 

transition temperature and in the 20 volt case the transition is continuous.

0.8
V=0, T increasing 

V=0, T decreasing 
V=10, T increasing 

V=10, T decreasing 
_________ V=20 V

0.7

co 0.6
CD

0.5
cd
C L

0.4X—
CD

■2
0.3

0.2

8 6 ■4 2 0 2 4-10
T-Tni (K-1)

Figure 4.2: Graph showing the calculated equilibrium order parameters over a tempera­
ture range and at various applied voltages in an unconstrained nematic.

4.4.2 Shear Flow Alignment

A simple shear is typically introduced to fluids between two rotating concentric 

cylinders (Couette flows). In nematics this is known to have an aligning effect in 

which the director minimises its torque. For a large enough channel width and 

strong enough shear, away from the walls the elastic properties may be ignored, 

alignment solely being determined by the viscous torque. From equation 4.3 we can 

solve for the director angle, in the uniaxial limit the result is dependent upon the 

viscosity ratio:

cos(20) =  (4.73)
M2 72 S 0

6 being the angle relative to the velocity direction and S  is the order parameter 

imposed by the shear and So the equilibrium order parameter. The factor 3 occurs 

in equation 4.73 as we use a three dimensional system (in [136] an explicit 2D system
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gives a factor 4). In the limit S  —> So this reduces to the result obtain from the EL 

theory [46] (cos(20) =  —71/ 72)- The evolved order parameter in equation 4.73 can 

similarly be solved in terms of the shear rate, 7  =  dzux, we find the order typically 

being the largest solution to the sixth order polynomial:

12967^S'6 “  648/?f7f55 +  (432of7f +  81 (52F)S A 
—108of/?f53 +  36(a!- +  /ilAf2)S 2 — I2 n \^2 =  0

(4.74)

in all cases tested for aligning materials (parameters given below) the order in­

creased, all be it small (A S  ~  0.002).

However, Olmsted [67] noted that shear flow is biaxial, thus upon use of equa­

tion 2.10 to solve equation 4.3 a more accurate result can be found:

cos(20) =  — ̂ i ( 3  S  + PB)
1̂2

(4.75)

We test equation 4.75 in the LB solver as a test of the alignment algorithm. 

Figure 4.3 shows both analytical and numerical results. Agreement between cal­

culations is to at least 7 significant figures (< 0.00001% error). The magnitude of 

biaxiality is typically Pb =  0.002. Agreement to equation 4.73 is to < 0.01%. Sim­

ulations where done in a channel width of 1.2/im with 7  ~  104s-1 for a viscosity set

45
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analytical result 
simulated result

5
1 2 3 4 5 6

fi2/(m(3S+PB)) (dimensionless)

Figure 4.3: Bulk director re-orientation angle, 6, as a function of viscosity ratio and order 
parameters. The continuous curve representing the exact solution to equation 4.75 and 
points from the LB solver.

94



(a4 =  —0.011, ot.2 =  —0.102, as = —0.005, a 4 =  0.074, as =  0.084, a 6 =  —0.023) 

kg m_1 s-1 in which a 2 was varied whilst adjusting a 6 to obey the Parodi relation 

(a3+ a 2 =  a 6 — as) at a temperature of T  = T j^  — 4(Tjn — T*), well into the nematic

phase (a, B , C  are as §4.4.1) and tp = tq = 1. At the z  =  0 and z = L  boundaries

we have infinite homeotropic anchoring and flow is entrained via equation 3.19 at 

+(—)ux at the top (bottom) boundary, periodic boundaries are used in the x  and 

y directions.

4.4.3 M iesowicz Viscosity R atio’s

An extension of the simple shear alignment of the previous section is with the ad­

dition of strong electric or magnetic field to impose a fixed director angle whilst 

shearing, see figure 1.9. With the field aligned in one of the three Cartesian di­

rections (with positive anisotropy) pinning the director, the effective viscosity with 

flow in the x  direction is known to be [46]:

rja = > for =  (0, 1, 0) 1
Vb = | ( a 3 +  a 4 +  a 6) , for na =  (1,0,0) > (4.76)
77c =  | ( - a 2 +  a 4 +  a 5) , for na =  (0, 0 , 1) J

These are called the Miesowicz viscosities. Experimental measurement of these 

(together with 71 and 7712) provide a way to determine the Leslie coefficients, a«. 

Solving the Q tensor momentum evolution equation (equation 2.43) in the uniax­

ial limit for an arbitrary fixed director angle we may obtain an expression for an 

effective viscosity, 77*:

V* =  (4-77)Z A a /3

r f  =  f  +  f  S ( 3 n f  -  1 ) -  f  S ( 3 n §  -  1 ) +  f  S ( 3 n j  -  1 ) +
+ f  5(3n? -  1) +  ^ f S 2 n \ n \  +  S 2 n \ n l  -  9- f S 2 n \ n l  (4 .7 8 )
- lf S 2 ( Z n \  -  l)(3n! -  1) +  ^ S 2(3n \  -  l)2 +  f S 2 ( 3 n i  -  l)2

with the corresponding Miesowicz values of:

Va = ^ - ef - §f  forna =  (0,1,0) 'I
% =  f +  +  ¥  +  fornQ =  (1,0,0) I (4.79)
% = f  _ 3j|S + M _ M + for = (o,o,l) J

Biaxial contributions to these equations are straight forward but unnecessary be­

cause the applied field serves to cancel the biaxial contributions from the shear

flow.
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Using simulation parameters of the previous section in addition to an electric 

field (Ae =  10.3, V  = 75 Volts), we apply non-slip stationary boundary conditions 

at the z = 0 and z = L  boundaries. Flow is induced by applying a body force at 

z  =  L/2. For a constant body force (hence stress) we have that: rja'ya = rjb'ib =  ydc  

and hence:

% =  = = (4.80)
Vb % Vc ic Vc ic

By measuring the simulation 7  at z  = L /4 in comparison to the theoretical 

calculations from equation 4.79 gives the values seen in table 4.2 and it can be seen 

that the accuracy achieved is good.

Theory Simulation % error
Va/Vb = 1-446 77 1/ % i = !-446 1.6 x 10"4
V ahc  =  0.227 i a l l i c l = 0-227 1.4 x 10“4
yb/rjc =  0.157 = 0-157 2.8 x l ( r 5

Table 4.2: Table of theoretical (equation 4.79) and simulated ratio’s of the Miesowicz 
viscosities.

We further test the momentum algorithm by noticing the lattice viscosities are 

all a linear function of rp. Plotting 7 -1 as a function of rp for the three director 

orientations should yield straight lines with a gradient to intercept ratio of —2. 

Figure 4.4 shows these results and table 4.3 shows the straight line fit. Accuracy 

is again to < 0.00001%. These calculations serve to confirm accurate and correct 

behaviour of the momentum algorithm.

orientation gradient intercept gradient /  intercept
a 6.096 x 10“5 -3.048 x 10“5 - 2
b 4.215 x 10“5 -2.107 x 10~5 - 2
c 2.688 x 10"4 -1.344 x 10" 4 - 2

Table 4.3: Table of theoretical (equation 4.79) and simulated ratio’s of the Miesow­
icz viscosities. Figures are quoted to 3 s.f. the calculated errors in gradient and 
intercept values are not shown as all are < ± 10-10.

4.4.4 Kickback and Backflow Example

Consider a LC cell with homogeneous boundaries at the z = 0 and z  =  L  and 

periodic boundaries in the x  and y directions, see figure 4.5c. For a nematic of
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Figure 4.4: Effective viscosity in shear flow as a function of algorithmic parameter rp 
showing linear dependence for the three Miesowicz director configurations.

positive dielectric anisotropy, away from the walls, an applied field between the top 

and bottom boundaries serves to align the director normal to the boundaries, see 

figure 4.5a. Switching off the field causes the director to over rotate due to flows, see 

figure 4.5b, (0 > 7t/2  where 6 is with respect to the x  direction) and then gradually 

relax to 0 = 0, figure 4.5c. These are the well known [154] effects of backflow and 

kickback respectively.

Considering this set-up we follow the time evolution of the director, fluid velocity 

and order parameter when the electric field is switched off from 5 volts at a time 

t = 0. Material parameters are as the previous sections with the addition of now

V= 5 Volts
Z=L _ i■

f
I
I
I

(a)

V= 0 Volts V= 0 Volts

.C S ?  Ei
\  U , / .   -------

\  / —

H  =
4

t=0+

(b)

t~5 ms

(c)

Figure 4.5: Homogeneous aligned nematic cell of positive dielectric anisotropy under (a) 
the influence of an electric field, (b) at switch off of the electric field, and (c) cell at rest.
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infinite strength homogeneous alignment (assumed: uniaxial, pre-tilt 1 ° and surface 

order equal to the bulk equilibrium value) and (K u  = 10, K 2 =  7, K 3 3  =  14, K 2a — 

5) x 10- 1 2  m kg s- 2  and L — 1 /xm. Note there is a symmetry of the computation 

around z = L/2.

Figure 4.6 shows the director angle evolution at various positions across the cell. 

Figure 4.6a is a simulation including the time scale separation of the momentum 

and director dynamics as discussed in §4.2.4. Figure 4.6b does not include this 

separation and treats both momentum and order algorithms with the same time 

increment. Figure 4.6c is the case running the alignment algorithm by itself (no 

flow). When flows are included the kickback is observed (6 > 7r / 2 ) in comparison 

to the case with no flow. When flows are included the backflow is observed to 

speed up the director relaxation towards 6 = 0 (cf. figure 4.6c). For the case of 

the time scale separation a larger kickback is observed at smaller times whereas a 

smaller kickback at slightly larger times is observed for no time scale separation. 

The maximum director angle always occurs in the centre of the cell for the time 

scale separated method and the no flow method, this is not true for the method of 

no time scale separation.

Similarly we have figures 4.7a, 4.7b, 4.7c showing the order parameter relaxation 

for a time scale separation, no separation and no flow respectively. For all cases at 

t = 0  the order falls from the value associated with the electric field instantaneously. 

We see associated with the kickback is an increase in order parameter in figure 4.7a 

(all be it small). The minimum in order corresponds to positions nearer the wall. 

For the case of no time scale separation the order parameter fluctuates rapidly. For 

the case of no flow the order never rises above the bulk equilibrium value.

In figure 4.8a and 4.8b we follow the velocity of the time separation method and 

the no time scale separation method respectively. As the symmetry of the calcula­

tion dictates all flows occur in the x  direction. A significantly larger and quicker 

flow is observed in the positive x direction for the case of time scale separation and 

the evolution of velocity is more uniform. Note the maximum velocity occurs at 

z =  L/4. In contrast when no time scale separation is included the flow velocities 

associated with the kickback are an order of magnitude smaller. They are also not 

as uniform with the maximum velocity occurring at the z = 3L/8 position.



The correct profiles both theoretically and physically are those of figures 4.6a, 

4.7a and 4.8a which compare qualitatively with [154] (not quantitatively as [154] 

assumes an infinite field). The spatial evolution of the director, velocity and order 

may be seen more clearly from figures 4.9, 4.10 and 4.11 respectively.

We point out that contained in figures 4.10 are velocity profiles for the time t =  0. 

Although physically they should not be present it is an artifact of the numerical 

gradient calculations and lattice resolution chosen. They arise because numerically 

both y'y — 9aQ\i~\~dctQ22~̂ ~^cxQ33 7̂  d and Tl(%d̂ Tl(x — Ttxd̂ Tlx~\~Tlyd'y' ŷ~\~T̂ ẑ '̂ ĵz 

0. Thus for a non-uniform system in which gradients in Q  are present, there exists 

a residual velocity and is an artifact of all numerical nemato-dynamics calculations 

which can be reduced with increased resolution.

4.5 Conclusions

A LB nemato-dynamics scheme is presented together with a Chapman-Enskog anal­

ysis to justify its origin. It has been validated against a number of test cases and 

shown to be in good agreement with predicted values.
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Figure 4.6: Director relaxation after the turn off of an applied 5 V field at various posi­
tions across a cell. Calculations with (a) correct time scale separation of momentum and 
director, (b) no time scale separation between momentum and director, and (c) no flow 
included.
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Chapter 5 

Idealised M odel Of A Bistable LC 
D evice

In this chapter we apply the developed model of chapter 4 towards a simple model 

of a bistable LC device developed by Davidson [2]. It is pertinent in examining the 

effects of fiexoelectricity in devices and how it can induce device bistability. We will 

compare calculations made from our developed Q  method with calculations from 

Davidson [2], who uses the EL theory, as way of both numerical validation and to 

identify what additional information may be drawn from our method that is not 

accessible in the EL limit.

5.1 T he M odel

The work by Davidson [2] is aimed at constructing a simple one-dimensional model 

of the ZBD device introduced in §1.2.4. The ZBD has two stable director configu­

rations that are the result of introducing a surface relief grating. One configuration 

has continuous vertical director alignment the other has a hybrid alignment and 

contains defects. In [2] the lower grating surface is cut off and replaced by a flat 

surface, see figure 5.1 and the upper surface is aligned homeotropically with infi­

nite strength. The replaced flat surface is then given a suitable potential so as to 

mimic the complicated grating structure and it is hoped this does not significantly 

alter the bulk behaviour of the cell. The models advantages are that the problem 

reduces to one-dimension (all parameters P — P(z) only), the governing equations 

are simplified, computation is speeded up and defects can be ignored.

The two stable director configurations are now simply a vertically aligned ne­

matic (VAN) and a hybrid aligned nematic (HAN) as indicated in figure 5.2 and 6
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F ig u re  5.1: Sketch of th e  ZBD device (a) showing th a t  th e  effect of th e  com plex g ra tin g  
an d  defects m ay be replaced by a  flat surface (b) th a t  is given a  su itab le  p o ten tia l to  
m im ic th e  b istab ility  and  now contains varia tion  only in th e  vertical d irection.

is to be defined from the x-axis. A surface anchoring energy was chosen as:

Fs = Wsin2(2es ) (5.1)

where W  is the anchoring strength and 6s the director angle at the bistable surface. 

This follows the convenient form presented by Kedney [155] for creating a simple 

theoretical bistable surface but instead this form has minima when =  0 and 

0S =  tt/2.

For electrodes positioned at z  =  0 and z — d the model may be switched using 

a dual frequency in which the nematics dielectric anisotropy changes sign at some 

frequency, f c. Alternatively as in the ZBD the device can be switched using dc 

electric fields of opposite sign in the vertical direction. Davidson [2] shows in this

homeotropic surface
<j>=v

0 =71/2
A n

VAN HAN ^ f e
I ;

;
•_______ 2 0 =71/2 or 0 =0

(j) =0
bistable surface

F ig u re  5.2: R epresen ta tion  of th e  m odel co-ord inate  fram e and  b istab le  s ta te s . T h e  lower 
surface has s tab le  d irec to r s ta te s  for 6{z) — 7t/2 and  6(z)  =  0, th e  u p p er m onostab le  
surface has a  single s tab le  s ta te  a t 6{z) =  7 r/2.
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case switching is then driven by the combination of the flexoelectric effect and the 

surface viscosity.

In the EL limit, one elastic constant and constant electric field, Davidson [2] 

shows the free energy contributions are as:

T  =  Jjf 5 /(T ( | f )2 -  t0l\eaE 2 sin2 0 -  (en  +  e33) E ~  sin(20) dz +  W  sin2(20s ) 

= lo 3  K  ( I ) "  -  £oAeaE 2 sin2 fl] dz -  & i ± ^ £ e c o s ( 2 9s ) + W  sin2(20s )
(5.2)

Equation 5.2 shows in the limit that the electric field is considered to be constant 

the flexoelectric free energy can be integrated to yield a surface contribution. In 

figure 5.3 we plot these surface energy terms. It shows, for a positive flexoelectric 

coefficient, that when the applied electric field is positive the flexoelectric contri­

bution destabilises alignment at 6 = tt/2  (homeotropic) and stabilises alignment 

at 0 = 0 (homogeneous) and oppositely if the applied electric field is negative the 

flexoelectric contribution destabilises alignment at 0 =  0 and stabilises alignment at 

6 = 7t/2. This shows that flexoelectricity can lead to a driving mechanism to select 

the lower surface alignment and a bistable model. In addition to flexoelectricity, 

key to reproducing dynamic bistability is to include the surface viscosity term as 

will be seen.

Reducing the EL director equations (see appendix B) Davidson gets for the bulk 

and surface director evolutions:

7 i f  =  i r 0  +  2 f ^ 2sin(20)
7s ^ t  = K§t  ~  2Wsin(40s ) -  E 13E  sin(20s )

(5.3)

in which Eis =  [(en +  e33)/2] and the upper surface is fixed (infinite anchoring) at 

Q(d) = 7t/2. Equation 5.3 proves difficult to solve analytically but for the steady 

state zero field case in which the simple solution is:

« < * > - ( » * - ! ) ( > - 3 ) + f  <5-4>

where 6s is given from:
4sin(4fts) K
7r — 28s W d ( ' ’

We plot equation 5.5 in figure 5.4. This shows indeed the two stable solutions of 

VAN (6(z) = 7t/2) and the HAN for which there is a minimum anchoring strength 

at which the device is bistable.
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Davidson [2] also notes that in the governing equation 5.3 there is a symmetry 

regarding the sign of the flexoelectric coefficient, Ei%. For parameters chosen such 

that E n  > 0 and E  < 0, they give the same response as parameters £13 < 0 

and E  > 0. Thus for purposes of calculations it is sufficient to consider the case 

Eis > 0 as from symmetry the Eis < 0 case may be deduced. This fact is important 

to note especially as current literature disagrees over the sign of the flexoelectric 

coefficients. Even though it produces opposite distortions it is found to be experi­

mentally difficult to measure.

Davidson [2] then goes on to solve numerically equation 5.3 for the equilibrium 

and dynamic profiles. Davidson’s calculations do not include the hydrodynamic cou­

pling in the EL equations. In the next section we compare the numerical solutions 

of Davidson with those produced from the general solver developed in chapter 4.

5.2 Statics

To compare our numerical results to those of Davidson [2] we first need to construct 

a tensor version of equation 5.1 to provide the bistable surface energy. The most 

simplest form of which is:

FS = J  (Qap ~  Q i?)2 (Qjt ~  Q \r)2 (5-6)

where A  is the temperature independent anchoring coefficient and Q^  rep­

resent alignment tensors set as equation 2.8 with So = Ssuik and =  (0, 0 , 1) 

and fia = (1,0,0). This produces two minima for a director aligned either paral­

lel or perpendicular to the surface. We may recover the governing equation 5.3 of 

Davidson [2] from the tensor version equation 4.3 using equation 2.8 and table 4.1 

provided A = 64IF7(81So).

Figure 5.5 shows the director profiles across the cell for the case of a positive 

and negative dielectric anisotropy as calculated by Davidson [2] at various field 

strengths. It shows that opposing signed electric fields select opposing orientations 

at the bistable boundary. The actual parameter set used in [2] is misprinted and 

should read as {Aea =  ±5.7, K  =  1.63 x 10~n  kg m s-2 , W  = 1.63 x 10-5 kgs-2 , 

E 13 =  4 x 10-11 A s m-1}. Using this set of parameters (with the additional Landau 

coefficients as used in §4.4.2 and a top surface anchoring coefficient set strong:
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Figure 5.6: Equilibrium director profiles obtained from our solver for (a) Aea < 0 (b) 
Aea > 0 using Q-tensor theory at various applied voltages.

W top =  4 x  10-3 kg s-2) we plot the director profiles obtained from our method in 

figure 5.6. 250 lattice sites were used to reproduce the 1/im cell height on a D3Q27 

lattice and periodic boundary conditions in the x and y directions. Calculations 

performed with double the number of lattice points make no visible differences to 

the profiles. Agreement between Davidson’s calculations and our calculations is 

very good.

The good agreement serves to highlight that for situations in which the length 

scale over which director variations take place is much larger than the length scale 

over which order parameter variations occur there is no need to use the more con­

suming Q  calculations. However in its use there is extra data available to view in
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the form of S(z)  and Pb (z) which we show in figures 5.7 and figure 5.8 respectively.

For no applied field there is no variation in S  or Pb for the VAN state, and 

in the HAN state S  (Pb ) only decreases (increases) at the weak anchored bistable 

boundary over a length ~  lOnra. For applied fields there is increased variations 

in both S  and Pb - Generally we see for both bulk and surface values the material 

of Aea > 0 have higher values of S  than the A ea < 0 materials and the Pb value 

has lower values for the Aea > 0 material. The increased variation in order is due 

to two effects. First for the larger fields (for example — 5V /rm-1 in figure 5.7a) 

there are higher director gradients towards the cell boundaries that causes S  to
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Figure 5.7: Equilibrium uniaxial order parameter profiles for (a) Aea < 0 (b) Aea > 0 
at various applied voltages. Inset are magnified regions of the upper and lower surfaces.
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decrease due to elastic deformation. Secondly at the surfaces we see flexoelectric 

and order electric polarisation in a boundary layer of length ~  10 — 15nm which 

increases for the larger field strengths. It is interesting to see at the lower bistable 

boundary S  increases for both ±  fields whereas on the upper monostable boundary 

S  increases for positive fields and decreases for negative fields. This can be explained 

with use of equation 5.2 and figure 5.3. The bistable surface anchoring energy is 

proportional to sin2 (26s) having equilibrium points at both 9 s = 0 and 9s =  7t/2 

where as the monostable surface energy is proportional to sin2 (9s — f )  that has 

an equilibrium value at 9s — f  only. Adding the flexoelectric contribution to
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this, which is proportional to —Ecos(26s), we see for both positive and negative 

fields the flexoelectric minimum coincides with a bistable minimum and thus has a 

stabilising effect (increased order) however for the monostable surface the anchoring 

is destabilised (decreased order) for a negative field and stabilised (increased order) 

for a positive field.

In the HAN state equation 5.4 predicts a straight line with the bistable surface 

director given from equation 5.5. For the parameter set chosen the theoretical Os = 

0.19043 (rad). The simulation Os = 0.19242(rad). This shows the surface algorithm 

is behaving correctly. The 1% difference between analytical and simulation result 

is expected because the analytic calculation assumes a constant S  value but in the 

simulation S  decreases slightly at the boundary (see figure 5.7) and in our Q  model 

the anchoring strength W  oc S 4  and thus small decreases in S  leads to a decrease 

in effective anchoring strength that leads to the larger Os.

In figure 5.9 we plot the director profiles obtained from two dimensional calcula­

tions with a real grating surface, the calculation of which is described in chapter 6. 

The director profiles are plotted at several positions along the grating direction and 

show that provided the lower half of the cell is ignored the director variation is 

approximately one dimensional.

We now extend the Davidson model [2] to calculate a more accurate representa­

tion of the cell equilibrium profiles. We will also restrict our interest to the material 

of Aea < 0 to narrow the parameter space and because it has more varied structures 

in the negative applied field cases. In figure 5.10 we have added unequal elastic con­

stants {{K \i =  14.2, K 2 2  = 6.55, AT33 =  18.4, K 2 4  =  2.0) x 10- 12k g m s-2} and 

plotted the new and old (one elastic constant) director profiles. Note the K 2 4  pa­

rameter is expected to make little if any contribution to calculations as in the limit 

of constant order and one-dimensional variation this term is identically zero. In 

general a reduced splay elastic constant increases splayed deformation regions and 

a larger bend elastic constant decreases bend deformation regions thus we see in 

figure 5.10 larger splay regions except for the E  — — 2 V  /zm-1 case in which the 

field is such that mainly bend distortion is present.

We next let the electric field term vary to take into account the dielectric 

anisotropy, the solutions being given as detailed in § 4.3.1. In this case equations 5.2
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Figure 5.9: Director profiles plotted every 15 lattice sites along the grating for a real 
ZBD device calculated as described in chapter 6. They serve to show the upper half of 
the cell may be described well by a one dimensional profile.

are no longer correct and there are bulk contributions from flexoelectricity. The 

new director profiles are shown in figure 5.11 together with the old (unequal elastic 

constant) director profiles. There is a marked differences between the calculations 

suggesting this contribution cannot be neglected when modelling quantitative or 

qualitative properties in liquid crystal cells. The corresponding uniaxial and bi­

axial profiles for the variable electric field case are shown in figures 5.12 and 5.13 

respectively, here changes are only quantitative.

The voltage and electric field profiles corresponding to figures 5.11 - 5.13 are 

shown in figure 5.14. The electric field varying by as much as A ea/d  in the fully 

aligned (larger field) cases. For the HAN state in which no external field is applied
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Figure 5.11: Comparison of equilibrium director profiles with unequal elastic constants 
with those calulated using the electrostatic solver to take into account the dielectric and 
flexoelectric polarisation terms at various applied voltages.

the flexoeletric effect generates an internal field (see figure 5.14a) giving rise to the 

characteristic ‘S-shape’ profile of the director in figure 5.11. In the VAN state there 

are no gradients in director or order and thus no internal field. In the applied field 

case the gradient of the electric field at the surfaces has opposite directions for 

opposing applied voltages.

The polarisation due to flexoeletricity is shown in figure 5.15. The polarisation
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Figure 5.12: Equilibrium uniaxial order parameter profiles for unequal elastic constants 
and dielectric effect at various applied voltages. Inset are magnified regions of the upper 
and lower surfaces.
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Figure 5.13: Equilibrium biaxial order parameter profiles for unequal elastic constants 
and dielectric effect at various applied voltages. Inset are magnified regions of the upper 
and lower surfaces.

is evenly distributed in the HAN state but for the applied field cases the larger 

polarisation regions are moved to the region of most distortion. The highest polar­

isations occur at the surfaces coinciding with the variation of the order parameters 

at the surfaces. The surface polarisation vectors point upwards (downwards) for 

the positive (negative) applied field cases even though the bulk polarisation may 

be pointing in the opposite direction. The surface polarisation as defined by Bli-
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Figure 5.14: Plots showing the equilibrium voltage and electric field profiles across the 
cell at various applied voltages: (a) OF (HAN), (b) OF (VAN), (c) — 2F, (d) — 5F, (e) 
+2F, (f) +5F.

nov [156] is PSUrf — Pbuikl where I is the surface length over which such a polarisation 

occurs. Taking I =  15 nm (from figure 5.12) we get Psurf  = 7.5 x 10~13 C m-1 for 

the field off case and typically Psurf  — 3.8 x 10-12 C m-1 for the field on cases. 

These figures are in good agreement with the values reported in [156] that mea­

sure the polarisation via a pyroelectric technique getting values, in a hybrid cell, of 

Psurf =  2 x 10-12 C m-1. The main contribution to the surface polarisation is from
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Figure 5.15: Flexoelectric polarisation vectors at various applied voltages at equilib­
rium. Data plotted every 10 lattice points, the distance between which corresponds to a 
polarisation of 8 x 10-5 C m-2.

the order parameter. This is highlighted if we consider the applied field + 5U  gm_1 

case. Here the director alignment over the lower half of the cell is uniformly planar 

(obtained from figure 5.11) and thus no gradients in the n appear. Using an EL 

type model would result in zero surface polarisation yet at the lower surface we see 

a larger polarisation vector as indicated in figure 5.15.

5.3 D ynam ics

In this section we will investigate the dynamic behaviour of this one dimensional 

model with the full LB solver. It is instructive to first consider figure 5.6a. Ap­

plication of the positive electric field selects the homogeneous surface alignment 

at the bistable surface due to the flexoelectric effect. The dielectric effect further 

aligns the bulk orientation towards homogeneous so upon release of the electric 

field the device is likely to relax to the HAN state. On application of the neg­

ative electric field the bistable surface prefers the homeotropic alignment due to 

the flexoelectric effect. The dielectric effect, as before, aligns the bulk orientation 

towards homogeneous alignment. Now when the electric field is turned off there are
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two possible outcomes: a) The bistable surface remains homeotropically aligned 

causing the bulk to become homeotropic and reach the VAN state, b) The homoge­

neous bulk alignment has high elastic deformation that may cause the homeotropic 

surface alignment to become homogeneous and reach the HAN state. Which final 

state that is selected depends upon the rate of relaxation of the bulk and surface 

directors that are governed by 71 and 7s  respectively.

The simulation parameters for this section are as the previous section (with 

unequal elastic constants) with the addition of the viscosity parameters {aq =  

—0.011, 0:2 =  —0.1 0 2 , o 3 =  —0.005,04 =  0.074, o 5 =  0.084, o 6 =  — 0.023}kg m- 1s_1. 

This viscosity set fixes the bulk 71 (= 03 — 02), the surface viscosity (7S =  71I) will 

be quoted in each section through the surface length I. The surface viscosity is the 

unknown value in this model because the lower bistable surface of the real ZBD de­

vice was cut off and approximated with a surface free energy instead. Also existing 

experimental data on surface viscosity values ranges from I =  10“ 8 — 10~6 m [82].

Further for all dynamic simulations in this chapter we have set explicitly uz(z) = 

0. This is because with the weak anchoring and non-standard bistable anchoring free 

energy used it created non-negligible velocity spikes of the order uz ~  10-3 m s -1 at 

the bistable surface between 0 and 4 lattice sites in that have the effect of disrupting 

the bistable properties. Through considering the incompressible continuity equation 

and the symmetry of the model we can infer uz(z) = 0 to combat this error.

5.3.1 Pre-tilts

Before the dynamics of this model are shown we discuss the importance of intro­

ducing a pre-tilt into the surface alignments. Pre-tilts are typically introduced to 

LCD’s in order to either stabilise an alignment, avoid switching frustration, avoid 

reverse director rotations or to speed up switching times. The pre-tilt is defined 

by the angle the anchoring imposes on the director away from the homeotropic or 

homogeneous orientation. To illustrate why a pre-tilt is required in this model we 

show simulations of the bistable model starting in the VAN state and applying an 

external positive electric field at time t =  0. The results are shown in figure 5.16 

for various pre-tilt values.

In figure 5.16a the pre-tilt =  0°. Due to the initial vertical director alignment
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Figure 5.16: Plots of the director field in time across the cell when swithcing on —51̂  
from the initial VAN state, (a) zero pre-tilt causes director to rotate out of plane and 
a reverse tilt final state, (b) 5° pre-tilt has no out of plane rotation but flow induces a 
frustrated region, (c) 9° pre-tilt has no frustration and a fast response time. Note the 
time scale plot in (a) is four times longer than in plots (b) and (c).

the director feels no torque from the applied electric field. After a period of time 

(0.5ms) a build up in numerical noise occurs giving the directors a finite angle. This 

then interacts with the applied field to cause the system to realign. In doing so it 

creates a flow field that rotates the directors in opposing directions in the upper 

and lower halves of the cell. A frustrated region arises in which the free energy is 

minimised by rotating the director out of plane and then back into plane to reach 

equilibrium. This out of plane rotation takes a long time.
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In figure 5.16b the pre-tilt =  5°. This value is enough to prevent the director 

from rotating out of plane and reduces the amount of frustration caused by the flow 

and speeds up the overall time to reach equilibrium. In figure 5.16c the pre-tilt 

=  9°. This value is such that no rotating out of plane occurs, no frustration is 

caused from the flow field and the response time to equilibrium is further decreased 

up.

5.3.2 Switching

All of the following switching dynamics have been calculated using a pre-tilt of 6° 

at top and bottom surfaces to avoid director rotating out of plane. We examine 

switching for a range of surface viscosity values. The order parameters evolution 

are not shown, they respond instantaneously to the applied field on and off times 

to the profiles shown in the static figures of the previous section.
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VAN to HAN: 1 =  2 X 10"8

Starting in the VAN state — 2V are applied to the cell. When equilibrium is reached 

the voltage is turned off. The switch on dynamics of the director and flow fields 

are shown in figures 5.17a and 5.17b and the switch off dynamics in figures 5.17c 

and 5.17d. The backflow effects upon the director are clearly visible in the switch 

on dynamics where the initial positive flow direction causes the director to initially 

rotate against the preferred direction imposed by the electric field. The flow field 

then reverses direction and dampens out quickly. In the switch off dynamics the 

flow is unidirectional and relaxes quickly compared to the director which relaxes to 

the HAN state as expected.

LL (mm

time (ms)

LL (mm

time (ms)

Figure 5.17: VAN to HAN switching. —2V applied to equilibrium and then turned off. 
I = 2 x 10-8 m. (a) director on, (b) flow on, (c) director off, (d) flow off.

HAN to  VAN: I =  2 x 10"8

Starting in the HAN state +2V are applied to the cell. The switch on dynamics of 

the director and flow fields are shown in figures 5.18a and 5.18b and the switch off
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dynamics in figures 5.18c and 5.18d. The bistable surface director responds quickly 

to the field causing the initial positive velocity at the lower surface. As the director 

reaches equilibrium the flow field is damped out. In the switch off dynamics the 

bulk elastic distortion imposed by the field initially reduces the bistable surface 

director angle but then then director relaxes to the VAN state with only a small 

initial flow field.
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Figure 5.18: HAN to VAN switching. +2V applied to equilibrium and then turned off. 
I — 2 x 10~8 m. (a) director on, (b) flow on, (c) director off, (d) flow off.

VAN to  H A N : 1 =  2 X 1 0 "8

Starting in the VAN state the larger —5V are applied to the cell. The switch on 

dynamics of the director and flow fields are shown in figures 5.19a and 5.19b and 

the switch off dynamics in figures 5.19c and 5.19d. A much larger back flow effect 

is felt due to the larger applied voltage. The hollow in figure 5.19a is because of the 

±  n equivalence. The flow field is much larger for the larger voltage and the time 

to reach equilibrium is reduced. The switch off also produces a larger flow field,
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is unidirectional relaxing quickly as the director tends to the HAN state. There is 

no significant alteration in the overall relaxation time between the +2V  and +5V 

cases.

9 (rad)

(a)

(c) (d)

Figure 5.19: VAN to HAN switching. —5V applied to equilibrium and then turned off. 
/ = 2 x 10~8 m. (a) director on, (b) flow on, (c) director off, (d) flow off.

H A N  to  H A N : I =  2 X 10“ 8

Starting in the HAN state the larger +5V are applied to the cell. The switch on 

dynamics of the director and flow fields are shown in figures 5.20a and 5.20b and the 

switch off dynamics in figures 5.20c and 5.20d. The bistable surface director aligns 

quickly to the field selecting the homeotropic alignment. The flow field created is 

larger than the — 2V case. In the switch off dynamics the large bulk elastic distortion 

now causes the bistable surface director to align with the bulk and the cell relaxes 

back to the HAN state. This shows we may achieve bistable switching with just 

a monopolar pulse: +2V giving HAN to VAN and +5V giving VAN to HAN. For 

the larger dipolar applied voltages (± 5V) the model is not bistable but this may
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be recovered with an increased surface viscosity value.

(c) (d)

Figure 5.20: HAN to HAN switching. +5V applied to equilibrium and then turned off. 
I = 2 x 10-8 m. (a) director on, (b) flow on, (c) director off, (d) flow off.

H A N  to  VAN: l =  4 x  10“ 7

Starting in the HAN state +5V are applied to the cell. The switch on dynamics of 

the director and flow fields are shown in figures 5.21a and 5.21b and the switch off 

dynamics in figures 5.21c and 5.21d. With the higher surface viscosity we see the 

bistable surface director takes longer to reach the homeotropic surface. With this a 

small positive velocity is seen near the bistable surface. The equilibrium position is 

the same as the previous simulation at the lower surface viscosity. In the switch off 

dynamics the large bulk elastic distortion causes the bistable surface director angle 

to reduce but due to the slower surface relaxation time the bulk elastic energy has 

time to reduce and the VAN state is reached. So with the larger surface viscosity 

bistability is recovered with ±5V  signals but the bistability with monopolar voltage 

pulses is lost.
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(c) (d)

Figure 5.21: HAN to VAN switching. +5V applied to equilibrium and then turned off. 
I — 4 x 10~7 m. (a) director on, (b) flow on, (c) director off, (d) flow off.

Flow effected b istab ility : I =  3 X 10 7

Simulations over the range of surface viscosity values, I = 10-8 — 1CT6 m, have 

been carried out comparing simulations with and without flow effects in order to 

establish if the hydrodynamics effects the bistability. Apart from the small region 

of 2.5 x 10-7 < I < 3.0 x 10~7 m simulations with and without flow effects show 

little differences. However in this region it is possible to see that flow can cause 

a different bistable state to be selected when it is not considered in calculations. 

Figure 5.22 shows the relaxation from turning off an equilibrated applied +5V to 

the cell. In figure 5.22a the calculation is without hydrodynamics (u =  0) and in 

figure 5.22b the calculation is with hydrodynamics, the associated flow being shown 

in figure 5.22c. The positive velocity gradient generated near the bistable surface 

serves to speed up director rotation switching into the HAN state whereas without 

the flow the switched state is the VAN state. More detailed evolution of the director 

and flow fields is plotted in figures 5.23.
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(a) (b)

(c)

Figure 5.22: Flow effected VAN to HAN switching. +5V applied to equilibrium and then
turned off. I = 3 x 10~8 m. (a) director off without hydrodynamics reahes the VAN state,
(b) director off with hydrodynamics reaches the HAN state, (c) flow field off associated 
with (b).

More accurate surface representation

A more accurate surface condition for this one-dimensional model was recently 

proposed by Parry-Jones et al [157]. They noted that the bistable states differ in 

free energy. This can be observed from equation 5.2, the HAN state free energy 

being:

F  = ^ ( ^ - e s y  + w sm2 (26s )(5.7)

and the VAN state free energy being:

F  = 0 (5.8)

For an ideal bistable device one can expect both states to have equal free energy 

so Parry-Jones et al add an extra term to equation 5.1 in order to impose a free 

energy in the VAN state:

Fs = Wosin2(20g) +  sin2(Ss) (5.9)

128



time (ms)t=0 —i— t=0.031 x t-0.080 -•«•••• t=0.161 —a— t=0.259 ---- - t=0.812 -- -- - t=1.627 t=4.881

**„hb ,*/
 f-K;wM _-0W X

SQ Q B-Q£j-H-B-0 &-Q-Q (3'B B°5. /  tima/(msl
t=0y03 1 - - 1=3.080 0.161 t=0.259 --—- t=0.812 -  t=1.627 t=3.254 t=4.881

time (a s)t-0 t=1.627 -> t-4.881 -•* t=9.761 —t t=21.149 ■t=40.671 —-t t=65.073

lU*f K X 
"'■..s.*'

time (a s)t=81.342 t=146.415 -  t-195.220 -  t=292.830 — t=406.709 — t=976.101 -  t=4880.503

A" — X-i- K-K-̂K .m * *•»*■*•* *■**■*■** ■**flfia—bob

(c )
z ( n m )

(d)
z(nm)

Figure 5.23: More detailed plot of the flow effected VAN to HAN switching. +5V applied 
to equilibrium and then turned off. I = 3 x  10-8 m. (a) director off with hydrodynamics 
reaches the HAN state, (b) director off without hydrodynamics reahes the VAN state, (c) 
initial flow field off, (d) flow field off continued.

The stable, no applied field, states are still given from equation 5.4 but with Os now 

obtained from:
W\ .

V g _ 0 s) =2sin(4 fcj +  j g g i n ^ )
W(

The free energy of the VAN state is now

K  /7T \  2

F = Wi

(5.10)

F = - ( | - 0 S) +  Wo sin2 (20 s) +  Wi sin2(#s) (5.11)

and the free energy of the VAN state:

(5.12)

Through equating the free energy of the bistable states and simultaneously solving 

with equation 5.10 Parry-Jones et al obtain expression for W i /W q and K/W od  in 

terms of 0s. Choosing a 0s value with an constants K  and d then allows us to
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determine Wo and W\\

w i _  2(sin2(20s )+sin(46>s)(f-6»5))
W0 -  2(sin2(05)-l)+ sin (205 ) ( f - 0 s )

K  Wi sin(20g)+2sin(4flg)
W0d ~  W0 ( f  - 9 S)

Following Parry-Jones et al we select Os — 0.604 which corresponds to Wo = 2.070 x 

10~6 kgs-2 and W\ — 1.392 x 10-5 kgs~2. The equivalent Q-tensor surface free 

energy is given as:

Cs =  y  (Qcff -  Q£ ,) ’ {Q,r -  Q l ) 2 +  y  (<?«* -  Q h ) 2 (5.14)

The effect of such a change to the surface potential, as pointed out by Parry- 

Jones et al, is to firstly give the bistable states equal free energy and secondly with 

increasing 6s the energy barrier between states is reduced.

Carrying out simulations with this new surface potential does not alter the 

overall behaviour of the models switching properties. The switching still depends 

upon the value of the surface viscosity. In figures 5.24 we show the switching from 

VAN to HAN and HAN back to VAN states with the modified surface potential. The 

parameter set used is as before but with the modified W0 and W\ values calculated 

above and I — 10-6 m. The switching off times are much longer due to the large 

surface viscosity and the smaller energy between bistable states.

5.4 Sum m ary and C onclusions

In this chapter we have examined the Q-tensor equivalent to Davidson’s [2] one 

dimensional model on the ZBD. It is seen how the flexoelectric effect produces a 

large surface effect which in the presence of weak anchoring may alter the surface 

alignment.

A comparison of Davidson’s static director profiles and our director profiles is 

good. We further add unequal elastic constants and the dielectric effect through the 

electrostatic solver. It is found that the electrostatic solver makes large differences 

to the director profiles.

The bulk order parameter variations are small (1%) but surface order parameter 

variation is up to 7% and it is shown this variation contributes largely to the surface 

polarisation.

(5.13)
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Figure 5.24: VAN to HAN (—5V) and HAN to VAN switching (+5V). Voltage applied 
to equilibrium and then turned off. I = 1 x 10-6 m. (a) director on VAN to HAN, (b) 
director off VAN to HAN, (c) director on HAN to VAN, (d) director off HAN to VAN.

We add hydrodynamic effects to the calculations and find a pre-tilt is required 

in order to prevent the director rotating out of plane and reverse director tilts. Flow 

effects are seen to make little difference to the switching dynamics.

The value of the surface viscosity is critical to the device operation: At small 

surface viscosity the model may be switched with a single polarity voltage pulse. 

At large surface viscosity the model may be switched with bipolar voltage pulses to 

select opposite states. In a small but critical range of surface viscosity values the 

switched states differ when calculating with momentum dynamics and when not.

The modified surface potential proposed by Parry-Jones et al [157] leads to 

higher surface tilt angles and slower dynamics as the free energy difference between 

bistable states is much smaller than in [2]. However similar operational character­

istics are seen.

The model’s advantage is in its speed but it does little to aid the understanding
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of the real underlying bistable surface of the grating. The practical use of such a 

model for modelling the real ZBD becomes cumbersome. For a particular material 

and grating shape the models surface potential and anchoring energies together with 

the surface viscosity are required to be tuned. Subsequent changes to a material or 

a surface shape then require these parameters to be re-tuned.
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Chapter 6 

M odelling of the Zenithal Bistable  
D evice

In chapter 5 we saw how flexoelectricity produces a large surface effect to switch 

between VAN and HAN states (and vice-versa) on a flat surface. In practice a 

flat wall can only have monostable anchoring conditions. One method to recover 

bistable behaviour is to vary the shape of the wall as done in the ZBD. This chapter 

sets out to study in more detail the ZBD device introduced in §1.2.4. We will 

show through simplifying the numerical complexity of the problem how surface 

flexoelectricity properties of LC’s can be responsible for device bistability and how 

simple comparison to experimental behaviour allows the sign of the flexoelectric 

coefficients to be determined. We also examine the necessity of using the Q tensor 

methods this work has adopted in comparison to a constant order EL type method.

6.1 O verview  of Current ZBD  O peration

Here we will consider the developments of the ZBD through a) experimental, and 

b) simulation, investigations.

6.1.1 E xp erim en ta l S tud ies

The ZBD as introduced by Bryan-Brown et al [158] consists of a LC cell with one 

surface flat and the opposite surface shaped like a grating. Treating all surfaces 

for homeotropic alignment gives two stable director configurations, see figure 1.16. 

One director configuration has continuous vertical alignment of the director from 

top to bottom surfaces, the other has a hybrid type alignment from top to bottom 

in which one defect sits at the grating peaks (m =  —1/2) and one at the troughs
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(m =  +1/2). The two director configurations (hereafter C for continuous and V  for 

defect) represent minima in the LC free energy and are separated by a free energy 

barrier. The free energy of the two states and their existence depends, among other 

factors, upon grating groove depth to pitch ratio. The shallower grating tending to 

prefer only the C state.

The switching between bistable states is achieved via the application of an elec­

tric field, the sign of which determines the final state. Due to this polar behaviour 

it is believed the flexoelectric properties of nematics are responsible for switching 

between states but how this is so is still unresolved. Placed between crossed po- 

larisers the C state appears dark whereas the V  state appears white thus the device 

is optically bistable.

Experimentally it is found there exists a voltage threshold in which switching 

between states occurs (not necessarily the same threshold for V  to C and C to 

V ), the threshold being dependent upon time, temperature and cell/surface shape. 

It is also found that V  to C switching is fast (e.g ~  0.2ms) and that C to V  

switching is slow (e.g ~  40ms). Grey scales are achievable via each pixel domain 

having varying grating uniformities and thus different switching thresholds. Colour 

is achieved through standard RGB filters. The device is found to have extremely 

high mechanical shock resistance: it retains its image for large screen deformations.

More recent work [159] has moved towards a device with the flat surface homo­

geneously aligned imposing a 90° twist when in the V  state. This leads to wider 

viewing angles in a display with out effecting operation. They also report the use of 

bipolar pulses to switch between states. This extends the life time of a display by 

preventing ionic build up on the surfaces that lead to changes in switching thresh­

olds. The sign dependence of the switched state is retained from the trailing edge 

of the bipolar pulse.

6.1.2 Theoretical and Simulation Studies

Previous efforts to calculate the switching between states have all ignored essential 

parts of the problem or only investigated static configurations. Works by Bryan- 

Brown [158] and Jones [159] report calculations for the static director fields using 

constant order parameter theory for both voltage on and off states. They also cal­
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culate the relative energy of the C and V  states as a function of grating groove 

depth to pitch ratio. Brown et al [160] calculates the effects of anchoring strength 

on static director states in a bi-grating cell (both top and bottom surfaces have a 

grating of the same type). Good [161] studies a similar bi-grating and examines 

director and flow dynamics when switching without flexoelectricity (driven by or­

thogonal magnetic fields). Newton [162] has used a lattice Monte-Carlo technique 

to calculate equilibrium states of the director.

There are also some studies that allow for variable order parameters and there­

fore a more accurate description of the defects in the system. M ottram [163] uses a 

commercial finite difference package allowing for multi-grids to calculate the equilib­

rium states on a triangular shaped grating. Denniston [146] used flat surfaces with 

one surface set so the directors preferred orientation varies spatially, they further 

show switching behaviour (creation/annihilation of defects) between states by using 

a quadrupolar flexoelectric surface term, constant 15 value and setting Ae™ax = 0. 

Parry-Jones [164] carries out calculations on a symmetric sinusoidal grating with 

infinite anchoring strength. As with [146] they set Ae™ax =  0 and aim to show the 

effect of nematic distortion on the electrical potential lines and their effect upon the 

creation/annihilation of defects. The switching behaviour in [164] is questionable 

because they use Landau coefficients an order of magnitude smaller than real val­

ues, this leads to a large unnatural length scale of defects and to order parameters 

S  > 1. Ignoring the Ae™ax contributions is also unrealistic for the large fields ap­

plied since the dielectric contribution varies as E'2 in contrast to flexoelectric that 

varies as E_. W ith the exception of [161] and [146] all the aforementioned studies 

ignored flow effects in their calculations.

6 . 2  T h e  E q u i l i b r i u m  S t a t e s

In this section we will use the method developed in chapter 4 to investigate the 

static equilibrium configurations of this device both with and without an externally 

applied field.
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6.2.1 G eom etry  and P aram eter Set

Before we calculate the stable states and the dynamics of this device we need to 

establish both the geometry and parameter set. The starting point for our geometry 

is based on the work in [158] and [160]. Brown [160] proposes an analytical function 

for the profile of the grating:

where symbols are defined in figure 6.1. The h and w parameters controlling the

metry). The advantage of including a blaze is similar to the reason for including 

the pre-tilt in §5.3.1, it will make sure the directors rotate the same way when 

switching. The blaze of equation 6.1 is limited to A  < 0.5, above this value and an 

unnatural inflection occurs in the g(x). The advantage of the analytical expression

by [158] for this grating profile to measure the relative free energy of the two C and 

V  states using a Frank free energy only method (constant uniaxial order elasticity). 

They found for a grating depth to pitch ratio of 0.6 the energy of the two states are 

approximately even. The curves in figure 6.2 are not smooth, possibly due to the 

lack of order parameter, flexoelectric and surface contributions to the free energy. 

We further assume the electrodes apply their potential at the top surface and at

Figure 6.1: Schematic of the two dimensional ZBD geometry over two grating pitches, 
w. Homeotropic boundary conditions serve to cause bistability. Electrodes positioned at 
z = 0  (earth 0  = 0 ) and z — d.

(6.1)

height and pitch of the grating and the parameter A  the amount of blaze (asym-

means we may specify exact boundary conditions. From figure 6.2 we see work done

electrode
h om eotrop ic surface

1

z

A=0.45 
d=0.75[im 
w=0.27\i m

d

w

electrode
hom eotrop ic  surface
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the lowest point of the grating as indicated in figure 6.1. Electrodes following the 

grating surface would induce transverse electric field components favouring the V  

state.

For the material parameters we choose, in addition to those specified in §4.4, 

W  =  7 x 1(T4 kgs”2, 7 5  =  9.7 x 10~9 kgs’ 1, Aea -  10.3, e™m =  30, e ^at = 19, 

Eis = (en +  ess)/2 = 2.35 x 10-11 A s m_1, 7 1  =  0.097 kg m - 1  s_1. Unfortunately 

there does not exist a complete set of measurements made for one material, we 

have thus constructed a best approximation from various materials such as 5C B  

and M B B A .  This is in fact not too unrealistic as in practise commercial displays 

often consist of a hybrid mixture. Points to note from the parameter set are the 

positive dielectric anisotropy, uniaxial phase Landau coefficients at temperature of 

T  =  Tin  — 4(T/jv~T*) giving an equilibrium order parameter So = 0.591, a medium 

to strong anchoring coefficient and quadrupolar flexoelectric coefficient (C2 =  0 and 

eii =  6 3 3 ) the magnitude of which matches values from [4] (note there exists some 

ambiguity over the sign of this coefficient and to some extent its magnitude). Points 

to note from figure 6.1 are that the problem is two dimensional; thus we use periodic 

boundaries in the y direction and periodic boundaries in the x direction to include 

one grating pitch. We also use device dimension two times smaller than in currently 

manufactured cells, this is to ease the computational burden of the problem. Results 

can be expected to linearly scale up in terms of the switching voltages and times.

As we advance the application of the model to a two dimensional geometry with
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complex surface grating structure it will serve to, at first, reduce the scope of the 

problem, it will also aid to identify the influential parts of the theory in the device 

operation. We thus proceed by first ignoring flow contributions and secondly to 

assume that it is the electric field (not the displacement field) that is constant.

6 .2.2 Calculated Profiles

The search for equilibrium states with no external field is done by initialising the 

system with standard configurations such as homeotropic, planar, twisted and hy­

brid alignments with opposite director rotation and completely random isotropic 

states that are slowly cooled to the nematic phase from the isotropic phase. Three 

equilibrium states are found and depicted in figures 6.3 to 6.5. In these figures the 

grating substrate is modelled as isotropic and we choose to plot its colour as that 

of the equilibrium order parameter as a reference to changes.

The first state, figure 6.3, represents the C state, it has mainly vertical director 

alignment apart from the grating region in which the director bends/splays to meet 

the boundary conditions. The order parameter is constant in the bulk and falls 

slightly towards the boundaries (8%) due to increased distortion. Similarly the 

biaxial order parameter is zero in the bulk but increases slightly at the boundaries.

The second state, figure 6.4, is the V  state, it has a vertical director at the top 

and continuous anticlockwise rotation as you go down through the cell. It is further 

characterised by two defects, a m  =  —1/2 at the grating peak and m  =  + 1 /2  at 

the grating trough. The defect core is a few nanometres wide at which the order 

parameters melts and the biaxiality rises strongly. It may appear the m  = + 1 /2  

defect is stronger because it has a lower order parameter but this is not so, the 

m  =  —1/2 defect is more tightly pressed against the surface due to interactions 

from the bulk of the device.

The third state, figure 6.5, is the V I  state, it has a vertical director at the top 

and continuous clockwise rotation of the director as you go down through the cell. 

Again a pair of m  = —1/2 and m =  +1/2 defects reside at the peaks and troughs of 

the grating respectively. The effective alignment just above the grating alignment 

is more tilted than in the V  state and the m  =  —1/2 defect is slightly shifted to 

the left.
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Figure 6.3: Plots of the equilibrium C state in the ZBD for (a) the entire simulation cell 
and (b) a close up of the order and director at the grating surface (data plotted every 
other lattice point).
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Figure 6.4: Plots of the equilibrium V  state in the ZBD for (a) the entire simulation cell 
and (b) a close up of the order and director at the grating surface (data plotted every 
other lattice point).
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Figure 6.5: Plots of the equilibrium VI  state in the ZBD for (a) the entire simulation 
cell and (b) a close up of the order and director at the grating surface (data plotted every 
other lattice point).
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Although we find more than two local minima in the free energy of this device 

we note the V I  state is a higher energy and weaker minima in contrast to the C and

V  states. Further as we will see in §6.3 as a consequence of the way in which the 

device switches the V I  state will never practically be seen which is consistent with 

light transmission data [158]. We also note that for the cases where the system is 

initialised in the isotropic phase and then slowly cooled to the nematic phase the

V  state is always found. The surfaces also induce nematic wetting and drive the 

transition to a nematic phase from the isotropic phase.

Figure 6.6 shows what happens to the ZBD cell if we apply a potential difference 

between the electrodes (<;f)(z =  0) =  0V, (f)(z = d) = +  or —15V) with Eis = 0. 

In other words when no flexoelectricity effects are considered both positive and 

negative applied fields have the same effect (dielectric effect oc E 2). In figure 6.6

0.3 ■£
0.06

0.04

0.02

0

0.3 -E

V\ \ \\

(b)

Figure 6.6: Plots of the equilibrium states with either an applied + or — 15 V  in the 
ZBD for E 13 = 0 (no flexoelectric properties) in (a) the entire simulation cell and (b) a 
close up of the order and director at the grating surface (data plotted every other lattice 
point).
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the director is even more vertical throughout the cell than the C state, the slight
1distortion is limited to a boundary region of length K Upon turn off\E\ Y e0Aea

of this potential difference it is easiest for the system to relax to the C state and 

this is indeed what happens. So when there is no flexoelectricity modelled the 

device is monostable (for vertical electric fields). This emphasises that extra polar 

molecular characteristics need to be included in the calculations in order to recover 

the observed behaviour of the device.

6.2.3 W hy Flexoelectricity can cause B istability

To examine why flexoelectric properties can cause bistability we examine the signif­

icantly simplified situation depicted in figure 6.7. Here is shown a one dimensional 

liquid crystal cell with infinite aspect into the x  and y directions. We further as­

sume the lower surface can take any arbitrary orientation. Ignoring variation from 

this surface angle in the x  and y direction we examine the flexoelectric free energy 

density as defined in equation 2.25 and equation 2.26:

EFiexo — —E 0 P0 = — CiEed^Qe'y — C2 EoQe1 dflQllJ, (6-2)

Examining the flexoelectric free energy at the lower surface in the limit of quadrupo- 

lar flexoelectricity (C2 =  0) and uniaxial behaviour (equation 2.8) gives:

—3SqCi E z
F iFlexo (sin (20) vx +  cos (20) 0 Z) (6.3)

z—0 4

in which 0 is the polar director angle defined from the z  axis. A minimisation of 

equation 6.3 with respect to 0 shows how the director prefers to lie at the surface

e>

I Z j i

surfacei

nematic

I
z=d

surface

v=(0,0,-l)
(a)

i
V =(-0.36,0,-0.8)

(b)

Figure 6.7: Schematic of a simple one-dimensional liquid crystal cell, (a) for the usual 
horizontal boundaries, (b) allowing the lower boundary to take some orientation.
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Figure 6.8: Graph showing the z=0 (lower) preferred surface director angles due to both 
flexoelectric polarisation and surface orientation. For different directions of the applied 
field the preferred directors are different. Both surface and director angle have been 
defined with respect to the positive z axis. C\ > 0

due to contributions from flexoelectricity. For now, we assume the flexoelectric 

coefficient C\ — [(en +  C33)/35o] is positive and plot these preferred director angles 

for various surface orientations in figures 6.8 and 6.9 for both positive and negative 

field strengths. This shows opposite field strengths cause opposite distortions. The 

director points up-wards from the surface for negative fields and the director points 

down-wards from the surface for positive fields.

We can further usefully approximate the device behaviour by assuming a) the 

surface is completely dominated by flexoelectric contributions and b) the bulk is 

dominated by dielectric contributions and aligns with the field direction (z axis). 

This behaviour is sketched in figure 6.10 where the equilibrium directors of figure 6.9 

have been rearranged into an approximate region of the grating. The negative

surface

surface

Figure 6.9: Pictorial representation of the preferred director orientation due to flexoelec­
tric polarisation and surface orientation at opposite electric field directions. Ci > 0
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Figure 6.10: Pictorial representation of grating region assuming surfaces are dominated 
by flexoelectric polarisation and the bulk is dominated by dielectric contributions. For 
a positive field direction the director field is continuous in the vertical direction. For a 
negative field direction the director field is discontinuous: defect like regions occur at the 
grating surface. C\ > 0

applied field case gives rise to a continuous director structure from the surface to the 

bulk. Conversely the positive applied field gives a discontinuity of directors in going 

from surface to bulk. Further, the top corner of the grating, for the positive field 

case, has similar symmetry equivalent to a m  =  —1/2 defect defined in figure 2.4 

and the bottom grating corner has similar symmetry equivalent to a m  — +1/2  

defect also defined in figure 2.4. Still further, upon release of the electric field in 

figure 6.10b there will be a essentially two driving forces: that of elasticity rotating 

the directors clockwise to-wards the C state and that of homeotropic anchoring 

which will rotate the director anti-clockwise serving to stabilise the formation of 

two defects.

In the next section we put this simplified mathematical picture to the test by 

solving the complete system states for applied fields.

6.2.4 Effects of Opposite Field Strength

It is well reported [158] that the ZBD has switching thresholds in switching between 

states C and V. Jones et al [165] in their investigation of grey scales, investigate 

switching thresholds for different sized cells and find the voltage decreases approx­

imately linearly with d, the device height. For the dimensions quoted in figure 6.1 

we may expect a switching threshold from <j> > +9V. Investigation of the effect 

of applying a voltage above this threshold is shown in figures 6.11 and 6.12. The
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Figure 6.11: Plots of the equilibrium states with an applied +15 V in the ZBD for E 13 =
2.35 x 1011 A s m-1 for (a) the entire simulation cell and (b) a close up of the order and 
director at the grating surface (data plotted every other lattice point).
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Figure 6.12: Plots of the equilibrium states with an applied —15 V in the ZBD for E±s =
2.35 x 1011 A s m-1 for (a) the entire simulation cell and (b) a close up of the order and 
director at the grating surface (data plotted every other lattice point).
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electrode conditions are such 4>{d) = V  and (f)(0) = 0.

For the negative electric field the director for the most part is vertical, the 

distortion around the grating surface is as predicted in §6.2.3 due to flexoelectric 

polarisation together with an increase in the order parameter (decrease at the upper 

surface) due to order electric polarisation. For the positive electric field again the 

director is vertical for most of the cell but the distortion around the grating surface 

is opposite to the negative field case. As predicted in §6.2.3 a ‘frustrated’ region 

on the grating forms due to the opposite polarisations where the beginnings of 

m  = +1/2  and m  = —1/2 defect regions occur. Note the surface order parameter 

decreases (increases at the upper surface).

Upon release of the electric field it is the positive electric field case that is likely 

to form defects for strong enough anchoring conditions. For the negative electric 

field it will always relax to the C state.

In the simplified mathematical conjecture applied in §6.2.3 for the flexoelectric 

free energy at the surface, equation 6.3 assumed a uniaxial constant order parameter 

form (EL limit). This poses the question: can we achieve the frustrated surface 

states and switching in the much simpler EL framework? In doing this comparison it 

will help to identify the differences in using an EL form from the Q tensor approach 

for the study of defects and their dynamics.

Figures 6.13 show the C and V  states as calculated in the EL limit. Comparison 

of directors with figure 6.3 show little difference for the C state. Comparison of 

directors with figure 6.4 shows differences only at the defect sites as expected with 

the larger length scales imposed by the EL limit.

To impose the EL limit through our LB method, at every time step we calculate 

ha and then reconstruct Qap so it obeys equation 2.8 with the order parameter set to 

its equilibrium value. Further the parameters op =  (3b  =  7 f  =  0, whilst everything 

else remains unchanged. A simpler normalisation method, Qap = Qap /S  [61] wifi 

not work as the tensor can still take biaxial forms. Imposing the EL limit this 

way ensures ± n Q equivalence allowing for the m  =  ± 1 /2  defects to have correct 

symmetry.

Figures 6.14 show the equilibrium states calculated in the EL limit for applied 

voltages. In figure 6.14a, +15V has been applied and reproduces the states of
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figure 6.11 well. In figure 6.14b —35V, has been applied in order to reproduce the 

surface ‘frustrated’ state of figure 6.12. The fact that for opposite voltages in the 

EL limit we still form continuous and defect structures suggest switching between 

states may be achieved via the simpler theory. However the route to formation and 

annihilation of the defects may be different.

(a)

- - 0.55

- - 0.5

- - 0.45

(b)

Figure 6.13: Plots of the equilibrium director in the EL limit of (a) C, (b) V  states in 
the ZBD at the grating surface (data plotted every other lattice point).
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Figure 6.14: Plots of the equilibrium director in the EL limit for an applied (a) 4-15 V, 
(b) —35 V at the grating surface (data plotted every other lattice point).
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6 . 3  S w i t c h i n g  B e h a v i o u r  I n  T h e  Z B D

In the previous section we saw that when a flexoelectric nematic is used it pro­

duces opposite surface distortions for opposing field directions. The negative field 

favouring a more continuous alignment and for the positive field regions in which 

defects appear. This section will study the dynamics of the device switching. We 

will also contrast the dynamic differences of the Q tensor and EL methods during 

the switching.

6.3.1 V to C State Switching

Starting from the calculated V  states we apply a (j) = +15 volts (negative E) until 

the system reaches steady state and then turn it off 0 =  0 volts. The resulting 

process for the Q tensor and EL calculations are shown in figures 6.15 to 6.18. 

(Only the grating region is shown for clarity, above this region behaves simply.)

For the Q tensor method we see the bulk directors rotate quickly to align to the 

applied field. Next there is an increase in the order parameter at the surface due to 

flexoelectric and order electric polarisation. As defects generally follow downward 

gradients in S, the defects are projected off the surfaces due to the polarisation, 

figure 6.15d. A band of slightly decreased S  forms in which a larger bend-splay 

distortion occurs through which the defects travel to annihilate. After which the 

system reaches the steady state that was predicted. After the field is removed the 

surface polarisation reduces and the system relaxes to the C state. Relaxation into 

the C state happens relatively quickly.

For the EL limit method again bulk directors align quickly to the applied field. 

The defects are not projected off the surface but remain there. This causes a large 

bend-splay region distortion in which to lower the free energy the director structure 

breaks leaving behind a pair of opposite strength defects at the grating peaks and 

troughs. Even though the defects have opposite strength it is found they do not 

annihilate even at stronger applied electric fields. This seems to be an artifact 

of the constant order parameter method in which it distinguishes between surface 

defects and bulk defects: only surface-surface defects and bulk-bulk-defects may 

annihilate/create. Upon release of the field the surface defects remain in place 

and the the m  = —1/2 defect rises out of the trough to annihilate with the bulk
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Figure 6.16: Switching from the V  to C state through application of +15 V at t =  0 
to t = 34.92/zs. Left (right) indicate calculations from the Q tensor (EL limit), (a) 
t = 13.968/is, (b) t =  17.46/xs, (c) t = 20.952/zs, (d) t — 38.412/rs. (Data plotted every 
other lattice point.)
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to t = 34.92/is. Left (right) indicate calculations from the Q tensor (EL limit), (a) 
t = 48.888//S, (b) t =  83.808^s, (c) t = 153.648/xs, (d) t = 223.48/is. (Data plotted every 
other lattice point.)
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Figure 6.18: Switching from the V  to C state through application of +15 V at t =  0 
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m  — ± 1 /2  defect. So the system has returned to the initial V  state.

This switching process is summarised in figure 6.19 where the average director 

angle is plotted in time. Figure 6.19a corresponds to the previous figures in which 

the final states for the two calculations are opposite. Figure 6.19b shows that it is 

possible to switch from the V  to C in the EL limit if we apply a voltage for a much 

larger period of time.

At higher applied voltages in the Q tensor method the defect motions are altered. 

The original defects are still projected off the surfaces but in addition two m  — ±1/2  

defects are created at around h/ 2 in the high distortion region of figure 6.15c. The 

m  = ±1/2  defect then moves upwards to meet the m  = —1/2 defect from the 

grating peak. The m  = —1/2 defect moves downwards to meet the m  — ±1/2  

defect from the grating trough.

Q tensor
EL lim it

0.6 0.8 1 1.2 
Time, t (ms)

(a)

Q tensor EL limil
0.6 0.8 1 

Time, t (ms)
1.2 1.4 1.i

0 )

Figure 6.19: Graphs showing the cell average director angle during the switching V  to 
C (a) voltage applied for t = 34.92 âs ,(b) voltage applied for t — 698.4/is. Inset graphs 
zoom in on the t = 0 region to identify the initial state. Note average cell director is 
measured with respect to the x-axis.

6.3.2 C to V State Switching

Starting from the calculated C states we apply 4> = —15 volts (positive E_) until the 

system reaches steady state and then turn it off 0 =  0 volts. The switching process 

is depicted in figures 6.20 to 6.23.

For the Q tensor method the bulk directors align quickly with the field. The 

opposite polarisation now occurs at the surface causing the order parameter to lower. 

The surface directors then rotate to form the ‘frustrated’ state of the beginning of
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Figure 6.20: Switching from the C to V  state through application of —15 V at t =  0 to 
t = 349.2/zs. Left (right) indicate calculations from the Q tensor (EL limit), (a) t = Os, 
(b) t — 3.492/zs, (c) t — 17.46/is, (d) t — 34.92/xs. (Data plotted every other lattice point.)
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Figure 6.21: Switching from the V  to C state through application of —15 V at t =  0 
to t — 349.2/is. Left (right) indicate calculations from the Q tensor (EL limit), (a) 
t =  41.904/is, (b) t — 52.38/zs, (c) t = 69.84/xs, (d) t — 87.3^s. (Data plotted every other 
lattice point.)
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Figure 6.22: Switching from the V  to C state through application of —15 V at t = 0 
to t = 349.2/is. Left (right) indicate calculations from the Q tensor (EL limit), (a) 
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Figure 6.23: Switching from the V to C state through application of —15 V at £ 
to £ =  349.2/xs. Left (right) indicate calculations from the Q tensor (EL limit). 
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m  = ± 1 /2  defects and the system reaches a steady state (6.22b). Turning off the 

field reduces the surface polarisation. The homeotropic anchoring then aids the 

formation of the defects. When established the defects move to their minimum free 

energy positions at the grating peaks and troughs. This process is slow and in doing 

so it rotates the bulk directors to the more tilted state.

For the EL limit method the directors, as usual, align quickly to the field. The 

directors at the steeper grating edge then rotate clockwise. This causes a conflict 

with the bulk alignment and two defects are formed just away from the surface. 

These defects separate slightly and then remain as the steady state is reached. 

Upon turning off the field the two bulk defects annihilate. The system then relaxes 

back to the initial C state.

This switching process is summarised in figure 6.24 where the average director 

angle is plotted in time. Figure 6.24a corresponds to the previous figures where 

opposite outcome states occur. Figure 6.24b shows through application of a much 

larger voltage it is possible to switch between C and V  states in the EL limit.

Even though the above simulations (Q tensor and EL limit) have used the same 

resolutions we may observe the associated correlation lengths of the two methods. 

Figure 6.25 is a grey level plot of the director angle during the formation of the 

defects in switching C to V. At the defect locations next to the wall, the thichkness 

of the black band is an indication of the differences in correlation length. The Q 

tensor method having length £ ~  y/Li/oip  and the EL limit having a larger length
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Figure 6.24: Graphs showing the cell average director angle during the switching C to V, 
voltages applied for t =  349.2/is (a) V  = —15V ,(b) V = —35V. Inset graphs zoom in on 
the t = 0 region to identify the initial state. Note average cell director is measured with 
respect to the z-axis.
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Figure 6.25: Grey levels plot of the director during switching from C to V  for both Q 
tensor and EL theories. Black (white) levels are directors at ±45°, (0° and 90°). The Q 
tensor method captures better the defects core and its length indicated by the narrower 
black region at the steeper grating surface in comparison to the EL method.

at £ ~  ( l / |£ |) v 'I i A o A e r l -

We have shown the switching between both bistable states. The switching was 

driven by a surface flexoelectric term only. The Q tensor and EL calculations 

shows marked differences when considering the dynamic evolution of defects. The 

EL simulations also make a distinction between surface and bulk defects. The Q 

tensor simulations can avoid the formation of multiple defects through the lowering 

(raising) of the order parameters. As the Q tensor method is the more complete 

theory it is expected the dynamics are more reliable than the EL calculations and 

we may conclude the EL limit cannot be used for simulations of defect dynamics but 

may be used as a slightly quicker qualitative only estimate of equilibrium structures.

6.3.3 Comparison of Simulation to Experimental Work

Jones [31] examines the switching characteristics of the real ZBD and finds that to 

switch from the V  to C states a negative field directed into the grating surface is 

required. To switch from the C to V  states a positive electric field directed out of 

the grating surface is required. Jones [29] also states this sign dependence holds for 

all materials tested in their devices.
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Throughout this chapter our calculations have assumed a positive value for the 

quadrupolar flexoelectric coefficient. In doing this we calculated switching from the 

V  to C states requires a negative electric field directed into the grating surface. To 

switch from the C to V  states requires a positive electric field directed out of the 

grating.

The simulated behaviour agrees with what is seen experimentally: the correct 

sign dependence of switching is recovered. This implies that the E i3 value for 

nematics is positive. Using a negative value of E i3 in the simulations would lead 

to the identical dynamics of the previous sections but with the opposite voltages. 

We can thus conclude in the limit of surface flexoelectric switching the quadrupolar 

coeffiecient is positive.

6 . 4  T h e  E f f e c t  o f  F l e x o e l e c t r i c  a n d  D i e l e c t r i c  C o n ­

t r i b u t i o n s  u p o n  S w i t c h i n g .

Here we investigate the effect of some material properties upon the dynamic switch­

ing of the V  to C state. It is reported [158] that increased flexoelectric coefficients 

would increase the switching speeds and in [31] they report increased switching 

speeds for materials of larger Aea and larger voltages.

The following calculations have been carried out with a positive E \3. In fig­

ure 6.26 we start calculations in the V  state and apply +15 volts. The resultant 

defect trajectories are shown in the grating region of the device at various values 

of Eis that are proposed in the literature [4]. For E \3 =  0 (i.e. no flexoelectricity) 

the defects move along the surface and annihilate. As E \3 is increased we increase 

the surface polarisation and order parameter which pushes the defects further out 

into the bulk to annihilate. The inset graph plots the time taken for the defects to 

annihilate (an indication of the time at which the voltage may be turned off). It 

is found increasing E \3 does increase the switching speed but tends to saturate at 

E \3 > 5 x 10~n  A s m-1.

It is also worth pointing out that a comparison of this annihilation time to 

experimental data on the time dependence of light transmission would provide a 

route to determine not only the sign but also the magnitude of the flexoelectric 

coefficient. This is because one can expect a ‘ripple’ in the orders of transmission
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Figure 6.26: Defect trajectories during the V  to C switching for various £ 1 3  values. Points 
indicate location of the annihilation. The inset figure indicates the time at which defects 
annihilate from the turn on of the voltage.

as the defects annihilate (see appendix C for further details).

Alternatively we keep £ 1 3  constant and vary the dielectric anisotropy, Aea, see 

figure 6.27. For decreasing Aea this effectively increases flexoelectric contributions
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Figure 6.27: Defect trajectories during the V  to C switching for various Aea values. 
Points indicate location of the annihilation. The inset figure indicates the time at which 
defects annihilate from the turn on of the voltage.
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Figure 6.28: Defect trajectories during the V  to C switching for various (f) values. Points 
indicate location of the annihilation. The inset figure indicates the time at which defects 
annihilate from the turn on of the voltage.

(remember the electrical free energy: F  — — |e 0A eaEaQapEp — C iEad7 Qa i) to 

the nematic, this increases the surface polarisation that pushes the defects further 

into the bulk of the device. Increasing Aea effectively reduces the flexoelectric 

contributions to switching and the defects do not travel as far into the bulk. Also 

increasing Aea tends to decrease the switching time.

For increasing applied voltage whilst keeping Aea and Eis constant contributes 

to both flexoelectric and dielectric terms. The defect trajectories are shown in 

figure 6.28. There is no significant alteration to the trajectories but as expected for 

most LCD devices the increased voltage speeds up the device switching time.

6.5 C onclusions.

We have applied the LB solver to a real LC device of current and important interest. 

It has been shown that flexoelectric properties are able to control the way in which 

the ZBD device switches between bistable states. We have shown creation and 

annihilation of defects on a grating surface which appears more correct than previous 

studies [146, 164, 161]. EL type theories can reproduce qualitatively defects at
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equilibrium but cannot capture the correct dynamics of the defects. We show 

how the speed and defect trajectories vary for a range of changing Aea, # 1 3  and 

(f>. We find through comparison to experimental switching behaviour a method 

to determine the sign of the flexoelectric coefficient E 1 3  which is positive in the 

limit that quadrupolar (C2 =  0) flexoelectricity is used. Some comparisons to 

experimental data may provide a route to determine the magnitude of this value.
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Chapter 7 

Further M odelling of the Zenithal 
Bistable Device

This chapter reports further investigation of the ZBD device. In chapter 6 we 

reduced the detail of the calculations to identify what can cause the device to 

be bistable. In this chapter we examine device switching with a more complete 

description that includes hydrodynamics and electrostatics solutions. Some grating 

surface properties are briefly examined and the effect of a temperature change also 

considered.

7.1 T he H ydrodynam ic Effects

The dynamics of ZBD device switching reported in chapter 6 were purely rotational, 

ignoring the hydrodynamic effect. However in some bistable LCD’s [29] the hydro­

dynamics act as a selction mechanism between bistable states and as such must 

be included in calculations to reproduce what happens. In the ZBD the effect of 

hydrodynamics is less clear. It is found [158] that the device has an extremely high 

mechanical shock threshold and cells can undergo large deformations yet still retain 

their image. This suggests the hydrodynamic influences do not play an important 

part in the bistable states. However during the switching process in which large 

voltages are used, we may expect large hydrodynamic forces, particular in the V  to 

C switching case; this may give rise to different dynamics than that considered in 

the previous chapter. We now include the hydrodynamics through the LB solver 

to see its effect upon switching. Material and device parameters are the same as in 

the previous chapter, hence enabling direct comparisons. Additionally the an are 

the same as in chapter 5.
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7.1.1 V to  C State Switching

Starting in the V  state (see figure 6.4) we apply a (f) =  +15 volts until the system 

reaches steady state and then turn it off (</> =  0 volts). The resulting director 

and flow fields are shown in figures 7.1 to 7.4. In these figures we display several 

pieces of information. The left hand figures display vectors indicating the velocity 

vectors of the flow field, the colour representing the order parameter to indicate the 

defect locations. The right hand figures display the director structure, the colour 

representing the magnitude of the velocity.

Initially a large flow field in the negative ^-direction occurs in the bulk of the 

device (figure 7.1a). This serves to aid vertical director alignment in the upper 

half of the cell and hinder alignment in the bottom half. The grating region flow 

field remains small due to the large surface area in which non-slip viscous boundary 

conditions are applied. The bulk flow then reverses to the positive ^-direction 

initiating some recirculation (figure 7.1b and 7.1c). This positive flow field then 

aids director alignment in the lower half of the cell. The alignment of the director 

in figure 7. Id has a high viscosity and dampens out bulk flows quickly.

The defects that are projected off the surfaces due to polarisations then start to 

induce flow. The flow associated with the m  =  + 1/2  defect being twice as large as 

those of the m =  —1/2 defect. This feature being typical of m =  ± 1 / 2  annihilation 

process [64,145]. Comparing figures 7.2d with figure 6.16a it can be seen the flow has 

served to accelerate the path of the m — + 1 / 2  defect. Consequently the annihilation 

time is decreased by ~  3/is compared to the case without hydrodynamics.

After the system reaches steady state the electric field is released (figure 7.4a) 

causing only minor flows as the director does not have far to relax to the C state.

Figure 7.5 compares the average director angle in the cell during the switching 

process for the case with and without hydrodynamics. It is seen there are only 

minor differences between the corresponding calculations.
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Figure 7.1: Switching from the V  to C state through application of +15 V at t — 0 to 
t — 87.3//S. Left (right) indicate order parameter and flow fields (director and flow fields), 
(a) t = 1.746/is, (b) t — 3.492/is, (c) t = 5.238/zs, (d) t = 6.984^s. (Data plotted every 
other lattice point, velocity scale = 60/im s_1 between plotted points.)
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for flow and no-flow calculations. Inset graphs zoom in on the t  =  0 region to identify the 
initial state. Note average cell director is measured with respect to the a;-axis.

7.1.2 C to V State Switching

Starting in the C state (see figure 6.3) we apply a (j) =  —15 volts until the system 

reaches steady state and then turn it off 0 =  0 volts. The resulting director and 

flow fields are shown in figures 7.6 to 7.9.

Turning on the electric field (figure 7.6a) does not generate large flow fields as 

the C state director is already mostly vertically aligned. Small currents are induced 

from the immediate grating surface as the directors rotate (figures 7.6c to 7.7d) to 

form the ‘frustrated’ states in which the defects start to form.

Upon turning off the electric field (figure 7.8c) the homeotropic anchoring drives 

the initial flow causing a negative ^-direction flow. This flow profile is plotted 

at various cross-sections of the device in figure 7.11 and persists, with decreasing 

magnitude through to the final V  state. The negative velocity gradient region aids 

director rotation towards the V  state in the lower half of the cell but the positive 

velocity gradient region hinders director rotation to the V  state in the upper half 

of the cell.

Figure 7.10 compares the average director angle in the cell during the switching 

process for the case with and without hydrodynamics. It is seen the calculation
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Figure 7.9: Switching from the V  to C state through application of —15 V at t — 0 to 
t = 209.52/is. Left (right) indicate order parameter and flow fields (director and flow 
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with flow does initially speed up the relaxation to the V  state but at t ~  0.4ms, the 

calculation with flow slows down the switching process. This being attributed to 

the region of positive velocity gradient as seen in figure 7.11. The overall outcome
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Figure 7.11: Graph shows the flow profile at various cross-sections in the cell at a time 
t = 357.93/zs. The profile remains but reduces in magnitude as the cell relaxes to the V 
state.
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again showing not much difference between the calculations in terms of the time 

taken between states.

Comparing the two directions of switching we see the maximum velocity induced 

for the V t o C  switch is twice as large as that of the C to V  switch. The grating region 

has a large surface area imposing the non-slip boundary condition and because both 

switching cases are determined by the annihilation or creation of defects within this 

region, the hydrodynamics does not play an important part in device switching. 

What determines the switched state is the formation and annihilation of the defects. 

This shows that we may model the ZBD device to a very good approximation using 

just rotational dynamics.

In both cases of switching, the calculated flow profiles should be treated as a first 

qualitative estimate. This is firstly because the grating profile has been modelled on 

discrete lattice sites and as such has stair-case boundaries (square lattice). Secondly 

due to the large gradients in Q that occur at the surfaces (c.f. §4.2.3 and §4.4.4). 

Future improvements to the calculation of the flow dynamics would be in the use 

of finer grid resolutions through multi-grid methods and to model the boundary as 

a continuous surface.

7.2 The Electrostatic Effects

The electric field in the switching dynamics of chapter 6  was treated as a constant. 

In this case the flexoelectric effect arises from gradients in Q  alone and as such 

is mainly a surface contribution. As a consequence of the dielectric propeties of 

LC’s the electric field varies with the director alignment. Here we include the 

correct treatment of the electric field, allowing it to vary in order to investigate 

how it effects the calculated switching dynamics. Now, the flexoelectric effect is a 

combination of gradients in Q  and E  (see equation 4.8). In this work we modify 

the device geometry so as to place the electrodes in a more realistic position away 

from the liquid crystal region allowing for the alignment and structure layers [57], 

this is shown in figure 7.12. We consequently now apply (f> =  ±18 V in order to 

switch between states, this is chosen to keep the cell electric field strength the same 

(E =  —V/d, with d being the distance between electrodes). All other device and 

material parameters remain the same. We also choose to omit the hydrodynamic
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Figure 7.12: Schematic of the two dimensional ZBD geometry over two grating pitches, 
w. Homeotropic boundary conditions serve to cause bistability. Electrodes now positioned 
at z = 0 (earth 0 = 0) and z = 0.9/un.

effects in the calculations as evidence from the preceding section shows these to be 

of little importance to the switching process.

We point out that even for no externally applied potentials there will be an 

internal electric field generated from the flexoelectric polarisation that occurs in the 

distortion region of the grating. For this reason we recalculate the main equilibrium 

V  and C states of the device. These states are shown in figures 7.13a and 7.16a 

respectively. In both cases the presence of the internal electric field contributes to 

the electric free energy and consequently we see in both the V  and C states the cell 

averaged director is more vertically aligned.

Upon applying an external field to this device similar, but not identical, steady 

state director configurations are obtained as in §6.2.4. The main difference being 

in the 0 =  positive case. The ‘frustrated’ region forming on the surface is reduced: 

contributions due to the dielectric free energy serve to align the director more 

vertically, the directors at the steeper surface are now parallel to it. Upon turning 

off the applied field the system relaxes to the C state and we have lost the ability 

to recover a bistable device. This may be overcome by increasing the flexoelectric 

coefficient to values of > 5 x 10~10 A s m_1 but this is at least an order of magnitude 

higher than values reported in the literature and leads to extraneous values of the 

order parameter in the surface region. It is better overcome by moving away from
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using the quadrupolar picture as the main source of flexoelectricity and towards 

LC molecules that can contain both longitudinal and lateral dipoles (now C2 ^ 0 ). 

Hence, we recover bistable switching easily through an appropriate choice of en and 

6 3 3 . We find values of en =  1.35 x 10-n  A s m- 1  and e3 3 =  —2.35 x 10- 1 1  A s m- 1  

(Ei3 =  — 5 x 1 0 ~ 1 2  A s m-1) recover very easily the bistability of the device.

7.2.1 V to C State Switching

Starting in the V  state we apply (j> =  +18 volts until the system reaches steady state 

and then turn it off 0 =  0 volts. The resulting dynamics are shown in figures 7.13 

and 7.14.

Upon turning on the applied field the bulk directors align quickly to the main 

field direction. The original defects do not leave the surfaces despite the surface 

polarisation raising the surface order parameter. A large distortion region just 

to the right of the grating peak causes the creation of two defects m  =  ± 1 / 2  

(figure 7.13d). The m =  + 1 / 2  defect annihilates with the m =  —1 / 2  defect at the 

peak (figure 7.13e), the m =  —1/2 defect annihilates with the m  =  + 1/2  defect at 

the grating trough. The overall time to steady state applied field is no different to 

the case without the electrostatic solver (figure 7.14a). Turning off the applied field 

relaxes the system to the C state (figure 7.14c-h).

The switching process is summarised in figure 7.15 where the averaged director 

angle over the cell is plotted in time. Both the case with and without the elec­

trostatic solver is shown. It is seen that with the more accurate electric field, the 

director is generally more vertically aligned throughout the switching process and 

more so in the C state. The relaxation to the final state also appears to occur more 

quickly for case with the more accurate electric field.
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Figure 7.13: Switching from the V  to C state through application of +18 V at t = 0
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(Data plotted every other
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7.2.2 C to V State Switching

Starting in the C state we apply 0 =  —18 volts until the system reaches steady state 

and then turn it off 0 =  0 volts. The resulting dynamics are shown in figures 7.16 

and 7.17.

Upon turning on the applied field the bulk directors align quickly to the main 

field direction. The opposite polarisation lowers the order parameter at the grating 

surface in which the directors can rotate round to form the ‘frustrated’ state as 

with the case without the electrostatic solver. The system reaches its steady state 

(figure 7.16h). This figure can be contrasted with figure 6.22b for the steady state 

director profiles without the electrostatic solver. The region between the defect 

areas with the electrostatic solver on is more homeotropic than in the case without. 

This is because we have made the dipole across the short axis of the molecule (|e3 3 1) 

larger than that of the long axis of the molecule ( | e n | ) .  Upon turning off the applied 

field the defects slowly move the short distance to the grating peaks and troughs. 

The director in the grating region slowly rotates round to form the higher tilted 

defect state.

The switching process is summarised in figure 7.18 where the averaged director
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Figure 7.16: Switching from the C to V  state through application of —18 V at t — 0
to t — 349.2/is. (a) t = 0/is, (b) t 
t = 27.936/zs, (f) t = 41.904/xs, (g) 
other lattice point.)

= 5.238/zs, (c) t = 10.476/zs, (d) t = 17.46/zs, (e) 
=  52.38/zs, (h) t =  174.6/is. (Data plotted every
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Figure 7.17: Switching from the C to V  state through application of —18 V at t — 0 to 
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angle over the cell is plotted in time. Both the case with and without the electro­

static solver is shown. It is seen that with the electrostatic solver on the director is 

generally more vertically aligned throughout the switching process than without it. 

The relaxation to the steady state voltage-on case happens slightly quicker with the 

more accurate elctric field. The relaxation into the V  state also appears to occur 

slightly more quickly for case with the more accurate electric field.
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Figure 7.18: Graph showing the cell average director angle during the switching C to 
for calculations with and without electrostatics. Note average cell director is measured 
with respect to the z-axis.

In figures 7.19 we show the lines of constant iso-potential throughout the cell for 

both applied voltage on and off cases at steady state. These show why it is important 

to calculate the correct electric field distribution across the cell {Ep(x) =  —dp(/)(x)) 

particularly for flexoelectric materials. It also shows that there is an internal electric 

field distribution in the C and V  states causing them to be more vertical due to 

dielectric contributions. For both the C and V  states the maximum potential occurs 

at the grating peaks and troughs corresponding to the larger director and order 

distortions and hence flexoelectric and order electric polarisation, further distortion 

is caused by the dielectric permittivity differences between surface and nematic 

regions. For the voltage on cases the uniform lines indicate the electric field is both 

vertical and constant in the upper centre portion of the cell but towards the grating 

surface the lines are a little distorted and hence the electric field varies due to the
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Figure 7.19: Distortion of the lines of constant iso-potential across the device due to 
dielectric and flexoelectric effects, (a) C state, (b) V  state, (c) applying (j) =  +18V, (d) 
applying <j> = —18V.

polar flexoelectric effect and dielectric mismatch of bulk and grating permittivities.

With the inclusion of the correct calculations of the electric field we found it was 

required to choose more suitable flexoelectric coefficients to achieve device switching.

188



This implies that the electrostatic calculations must be used in simulating this type 

of device. The m =  ± 1 /2  defects do not get projected off the surface but remain 

at the grating surface during the V  to C switching. The director structures of the 

equilibrium states are also more tilted towards vertical alignment. The inclusion 

of a larger 6 3 3  flexoelectric coefficient (that is 6 3 3  > — en) helped the formation 

of the defects. Further work into investigating the switched states for varying en 

and 6 3 3  independently would aid the selection of appropriate nematic materials for 

use in the ZBD devices and will be done in future work, however this will require 

develpment of experimental techniques in the measurement of these values and in 

the manufacturing of appropriate materials.

7.3 A First Step to Quantifying Device Operation

We have seen that the switching time for the V  to C switching are relatively quick 

and that the C to V  switching times are relatively slow. It is also required to 

apply comparatively large voltages (that is comparative to handheld devices such 

as phones) in order to break the free energy barrier that exists between the bistable 

states. A decrease in both time and switching thresholds would make these devices 

more commercially attractive within the display markets.

Through computer simulations we have a route to systematically characterise 

both the display and the material properties of this device. For the 25 or so dimen­

sional parameter space and countless grating shapes that may be considered this 

is a very time-consuming process and as such will not be considered in this work. 

We do however make some initial qualitative tests upon device operation. As it is 

the C to V  switching relaxation time that takes the longest we concentrate on how 

properties can effect this particular process.

The simulation parameters are as in the previous section unless otherwise stated; 

the electrostatic solver is included in simulations but the hydrodynamic part is 

not. All simulations have started with a uniform configuration, 9 =  ir/2, then we 

apply a negative voltage until steady state and the subsequent relaxation process 

is monitored. The relaxation is monitored by following the cell averaged director 

angle in time. A high value (7r/2 ) corresponds to continuous states and a lower 

value to defect states.
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Figures 7.20 show how a change in the grating asymmetry factor, A, effects 

the relaxation of the device. First we observe the switched V  state has different 

equilibrium position. The more symmetric the grating the higher the tilt at the 

lower surface. Changes in the grating asymmetry do not significantly effect the 

speed of relaxation for the modelled profile dimensions. For symmetric gratings 

(A =  0) it was not possible to form the V  state for the range of voltages tested.

We can also say from comparing figures 7.20 that the voltage required to switch 

to the V  state is larger the more symmetric the grating. As a larger asymmetry 

corresponds to steeper surface features we may postulate that steeper surface fea­

tures can reduce the voltage requirements upon switching. From figures 7.21 we 

plot the time taken at constant A and varying the applied voltage. In figure 7.21a, 

the more symmetric grating, we require larger voltages to switch (only (j> =  — 18V 

swithced to the V  state). In figure 7.21b, the most asymmetric grating, we require 

lower voltages to switch (both 0 =  —18V and </> =  —14V switched to the V  state). 

Changing the applied voltage does not effect the relaxation time.

In figure 7.22 the surface homeotropic anchoring energy is varied. The fig­

ure shows there is a complex relationship between the anchoring strength and 

flexoelectric distortion as to which state is selected during switching. At W  =  

0.5 x 10~ 4  kg s - 2  and W  =  5.0 x 10- 4  kg s~ 2 the V  state is achieved. It is the larger 

of these two values that has the faster relaxation time. At W  =  1.0 x 10~ 4  kg s~ 2  

and W  =  10.0 x 10- 4  kg s- 2  the C state is achieved. The larger of these two is such 

that the flexoelectric polarisation has little effect upon the surface. On account of 

changes in temperature shown in the following section we may prefer the lower of 

these two values despite the larger relaxation time.

In figure 7.23 we vary the h parameter of the grating shape corresponding to 

the height of the grating features. At small values (h =  0.3w) the device is not 

bistable, the C state is the only state. Increasing h reduces the relaxation times 

quite significantly into the V  state. Also the smaller the value of h the more 

vertically aligned the system.

Figure 7.24 shows the change that occurs for different values of the elastic con­

stants whilst keeping the characteristic elastic constant, (Kn  +  JV3 3 ) / 2  constant. A 

larger difference between K n  and K 3 3  increases, slightly, the relaxation time in to
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Figure 7.20: Graphs showing the cell average director angle during relaxation from apply­
ing a negative potential for various blaze factors A and with voltages: (a) —10V, (b) —14V 
and (c) — 18V. Note average cell director is measured with respect to the x-axis.
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Figure 7.21: Graph showing the cell average director angle during relaxation from ap­
plying various negative potentials for calculations with blaze factors (a) A =  0.1 and (b) 
A =  0.5. Note average cell director is measured with respect to the rc-axis.
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A =  0.45. Note average cell director is measured with respect to the a;-axis.
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Figure 7.23: Graph showing the cell average director angle during the relaxation from 
applying a </> = —14V potential for calculations with varying grating height, h, and 
A =  0.45. Note average cell director is measured with respect to the z-axis.

the V  state. A larger difference also gives a more vertically aligned director. 

These investigations are by no means exhaustive. They provide an initial look as 

to how some parameters effect the device and as to what may need to be considered 

for a future quantitative parameterisation of the device.
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i ^ 3 3  in which { K n  +  K s s ) / 2  =  1 2  x 10- 1 2  kg ms - 2  and A =  0.45. Note average cell 
director is measured with respect to the a>axis.

7.4 A Temperature Variation

When searching for the equilibrium states of this device we found upon cooling 

into the nematic phase from the isotropic phase the V  state is always found. This 

suggests that near Tin the V  state has a lower free energy state. In this section 

we show the reverse behaviour by starting in the nematic phase and increasing the 

temperature.

Starting in the calculated equilibrium V  state of §7.2 it is found the device 

remains in this state whilst increasing the temperature through to the isotropic 

phase. Starting in the calculated equilibrium C state of §7.2 we find as the tem­

perature increases the device jumps into the V  state when the temperature reaches 

T* < T < T/jv- For these calculation we have not included the hydrodynamic part 

of the solver and no external electric or magnetic fields are applied. Figures 7.25 

to 7.27 show such a process.

For these figures we have started in the C state at T  =  Tin — 4{Tin — T*) (K) 

and we increase the temperature to T =  Tin — 4{Tin — T*) +  4.403 (K) at time 

t =  0. The boundary condition remains as with the previous sections: uniaxial, 

homeotropic and with the preferred order parameter =  0.591.

Almost immediately the order parameter drops to a value appropriate to the new
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Figure 7.27: Temperature induced switching from an initial C state at T  =  Ti n  —  4(T/a/- — 
T*) (K) increased to T  = Tin  —  4{Tin  — T*) +  4.403 (K) at t — 0 (No external fields), (a) 
t = 460.944/is, (b) t = 600.624/is, (c) t = 782.208/zs, (d) t =  879.984/rs, (e) t =  977.76/is,
(f) t = 1131.408/zs, 
lattice point.)

(g) t ~  2039.328/is, (h) t = 3142.8/is. (Data plotted every other

197



temperature of the system (figure 7.25a). As the elastic constants of the nematic are 

oc S2 there is a decrease in the elastic energy of the system. The strong homeotropic 

anchoring now induces a large melted region within the grating trough in which two 

m =  ± 1 /2  defects emerge (figure 7.25f). The m =  + 1 / 2  defect is formed below 

the m =  —1 / 2  defect. Once established the m =  —1/2 defect is pushed out of the 

grating trough by the homeotropic anchoring and moves to the minimum energy 

position in the cell which corresponds to the V  state (figure 7.27h).

For the surface modelled in this section, towards the transition temperature 

the LC cell is now monostable. For a device this means any written image/data 

would be lost. In the competitive display market products typically have stringent 

operational requirements of — 20°C < T < 65°C for which the upper end of this 

range corresponds to Tin for commonly used display materials. This identifies a 

significant feature to consider in the design of a grating surface for the ZBD displays.

For the surface chosen here it has a limited temperature operational range and we 

must modify the surface or device properties in order to maximise the device bista­

bility temperature range. These changes may include weaker anchoring strengths, 

larger pitch (w ) of the grating pattern, larger grating trough angle such that it is 

> 90° or new nematic material selection. The effect of making any such changes on 

the overall operating features of this device, as seen in §7.3, are less clear.

7.5 Conclusions

Further theoretical modelling of the ZBD device has shown hydrodynamic forces 

do not play an important part in order to achieve dynamic switching of the device. 

A switched state is determined solely by the time at which defects have annihilated 

or created. The inclusion of an electrostatic solver makes significant changes to 

time dynamics, equilibrium states and path of defects and thus must be included in 

any simulation. Switching is better achieved through the selection of more suitable 

flexoelectric coefficients in which 6 3 3  ^  e\\. The energy of the two equilibrium 

states are not equal over a wide temperature range: the V  state being the only 

stable state at temperatures near Tin for the surface modelled here. The grating 

shape and dimension have many effects upon device operation and as such require 

further systematic investigation.
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Chapter 8 

Discussion, Conclusions and 
Further Work

8.1 D iscussion

In this thesis we have described the development of a lattice Boltzmann based solver 

for liquid crystals and liquid crystal displays. The method recovers the hydrody­

namic, director and order variations of liquid crystals in a confined geometry and 

subject to external magnetic or electric fields. The flexoelectric properties of ne­

matic liquid crystal display devices was also investigated. The solver may be of 

particular interest to device engineers.

After introducing liquid crystal properties and liquid crystal display technology 

in chapter 1 we reviewed the Q-tensor theory for liquid crystals in chapter 2. The 

free energy appropriate for thermotropic nematic and chiral nematics is identified 

including unequal elastic constants, chirality, flexoelectric, electric, magnetic and 

surface anchoring effects. The nemato-dynamic equations presented by Qian [40] are 

identified as the target macroscopic equations to be recovered by our solver as they 

retain the independence of material coefficients and thus allow all the experimentally 

known material values to be used.

In chapter 3 we cover the lattice Boltzmann method for isotropic fluid dynamics 

that recovers the Navier-Stokes equations. A brief study of isotropic pressure-driven 

laminar flows over a backward facing step is undertaken using two methods: a uni­

form body forced lattice Bhatnagar Gross Krook method and a pressure evolved 

exactly incompressible lattice Bhatnagar Gross Krook method. Measurements of 

the steady state velocity profiles and reattachment length have been undertaken for
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a range of Reynolds numbers. The results are directly compared to experimental 

measurements made by Denham [76] with a good level of agreement. For many 

engineering computational flows in the lattice Boltzmann literature flow is induced 

via a uniform body forced method. Our results suggest that if only velocity informa­

tion is required this method can be used with confidence and, with an appropriate 

adjustment, can be made to produce a qualitative representation of the pressure 

field.

The proposed lattice Boltzmann solver for Q-tensor nemato-dynamics is pre­

sented in chapter 4. The solver is validated against a number of test cases including 

temperature behaviour, electric field, flow alignment, Miesowicz viscosities and a 

‘kick-back’ cell. Comparison of results to simple analytical calculations show ex­

cellent agreement; however these analytical results are for uniformly bulk aligned 

systems.

In chapter 5 we investigate a one-dimensional model of a bistable liquid crystal 

display cell developed by Davidson [2]. Numerical solutions from the lattice Boltz­

mann solver for the statics of this model compare well to Davidson’s calculations 

using an Ericksen-Leslie model which lends further support to the solver. We then 

use the lattice Boltzmann solver to investigate more completely the statics of the 

device adding unequal elastic constants and the electrostatic solver for the electric 

field. Marked differences are found when including the electrostatic solver that im­

ply such omissions of this effect should not be made for quantitative dynamics of a 

cell. The addition of our variable order method allows us to better evaluate flexo­

electric and, in particular, order electric polarisation which is found to contribute 

significantly to the electric polarisation at the limiting surfaces of the cell.

The dynamic behaviour of the model, as found by Davidson [2], is completely 

dependent upon the value of the surface viscosity. Tuning the surface viscosity for 

a particular cell could allow time evolution of the model to match experiment but 

does not allow any further quantitative features of a bistable cell to be seen.

It is found in the modelling of such a model that a pre-tilt is required to avoid 

reverse tilts and out of plane director rotation. A pre-tilt of >  5° can avoid out of 

plane rotation and a pre-tilt of >  9° will optimise switching times. The effect of hy­

drodynamic flow upon the device is negligible for small and large surface viscosities
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but it is possible to choose a value at which the flow becomes important in order 

to calculate the final bistable state selected.

Chapter 6  investigates the zenithal bistable display device. We show how flex­

oelectric properties of nematics provide a source of bistability in this cell. The 

switching behaviour can be qualitatively reproduced using simpler equations that 

ignore the hydrodynamic and electrostatic effects. The defect creation and annihi­

lation processes are shown and these appear to be more correct than in previous 

studies. It is shown through comparison to Ericksen-Leslie type simulations that 

a variable order parameter scheme is essential in calculations that deal with defect 

dynamics. It is also shown that if the quadrupolar model of flexoelectricity is used 

then the sign of the flexoelectric coefficient is positive. Increasing values of this 

coefficient will decrease switching times and cause the defects to annihilate further 

away from the device surfaces. A method for calculating the magnitude of the 

flexoelectric coefficient is proposed.

In chapter 7 further qualitative features are added to the simulations of the 

zenithal bistable display. The hydrodynamics during switching are shown. It is 

found that in the region where the defects exist the grating surface serves to reduce 

the hydrodynamic flows and thus they do not play an important role in device 

bistability.

The addition of the electrostatic solver required that we choose more suitable 

flexoelectric coefficients in order to reproduce switching behaviour. Values that 

obey en > 0 and 6 3 3  < —e\\ recover bistable properties well. The main effect of the 

electrostatics was to show a large residual potential exists within the device near the 

distorted grating regions. This in turn generates higher director tilts throughout 

the cell due to the dielectric effect. During the switching process it is found its effect 

is to confine the ± 1 /2  defects to the grating surfaces. The potential calculated in 

the device is limited by the omission of ion concentrations and the smaller device 

dimensions used.

Further simulations of the slow continuous to defect state relaxation switching 

suggest:

• A steeper surface feature can reduce the switching voltage.

•  A stronger anchoring coefficient can decrease switching times.
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• There are windows of anchoring strengths that can achieve bistable switching.

• A larger grating depth also reduces switching times.

• Larger differences in the splay-bend elastic constants tend to increase the 

switching times to the defect state.

• At higher temperatures near Tin the strong surface anchoring properties make 

the defect state the only stable state; the device is no longer bistable.

Individually these simulations all provide a useful insight into the zenithal bisat- 

ble display operation however further systematic investigation is required because 

the optimisation of one parameter may hinder the operation in other areas of the 

display. For the large parameter space and including the surface shape variations of 

these displays an optimisation process will be a very time consuming. It should also 

be highlighted that real zenithal bistable display device dimensions are twice those 

used in this study. This obviously has an effect on the quantitative applicability of 

the calculations but qualitatively no changes are expected.

8.2 Conclusions

We have undertaken the development of a full device solver for liquid crystals and 

liquid crystal displays. The lattice Boltzmann method is chosen as the numerical 

tool to solve the governing Q-tensor equations of nemato-dynamics. A Chapman- 

Enskog analysis demonstrates that the algorithm recovers the target macroscopic 

equations. Simple test simulations validate the method for the evolving momentum, 

director and order parameter fields. The Q-tensor method yields a fuller description 

of boundaries in terms of flexoelectric polarisation properties and in the simulation 

of defect dynamics.

The succesful use of the lattice Boltzmann method in the simulation of a non- 

Newtonian liquid crystalline fluids suggests that these methods can readily be 

adapted and used in the simulation of other types of complex fluids. In doing 

so we may exploit the advantages of lattice Boltzmann methods such as the ease of 

use, particle suspensions, multi-component flows and for complex boundaries.
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Simulations of the zenithal bistable display have been undertaken. It is shown 

that flexoelectric properties of nematics can provide a route to recover the bistability 

of the device. The defect creation and annihilation process has been shown. A 

method to determine the sign and magnitude of the flexoelectric coefficients is 

proposed. The operational performance of the zenithal bistable display has been 

examined for varying material and surface properties and preliminary results are 

shown for device optimisation. A complete optimisation would involve a lengthy 

series of simulations to investigate fully the parameter space, a task which is possible 

through the presently developed device solver.

8.3 Further Work

There are a number of areas of further work that stem from this study. Firstly 

there are a number of improvements to the lattice Boltzmann solver that would 

be worthwhile. A modified forcing term to eliminate the non-negligible Landau 

terms of the molecular field should provide more accurate calculation and stability 

of parameters near to surfaces and defects. Simulations suggest their effect is felt 

in the velocity profiles near to wall regions when a weak anchoring condition is 

used. The introduction of a lattice Boltzmann boundary condition for the order 

tensor may also increase the accuracy of simulations. A parallelisation of the solver 

would increase the productivity of simulations (lattice Boltzmann codes report good 

linear scaling with the number of processors) and allow for real device dimensions 

and make real device optimisation a feasible undertaking. The development of an 

electro-dynamics theory for ion convection within the Q-tensor frame may provide 

further quantitative applicability of the solver.

In order to investigate bounding surfaces and defect structures more accurately 

in liquid crystal devices a hybrid scheme could be developed that combines our 

lattice Boltzmann method with molecular dynamics simulation methods. Through 

molecular dynamics a more accurate representation of boundary and defects can be 

expected with the shorter time and length scales that are accesible. Constructing 

a suitable interface with information exchange rules from the different regions may 

capture fully the correct dynamics of complex situations.

We have shown the solver to be usefully applied to the zenithal bistable display
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device. A further systematic investigation of this device over its entire parame­

ter space could help optimise these types of display and perhaps enable further 

commercialisation in the liquid crystal display market.

It is was proposed through comparison of simulations and experimental data 

a method to determine the flexoelectric coefficients. These coefficients are hard 

to determine experimentally particularly in one-dimensional devices. Through the 

simulations of the zenithal bistable display and sufficient experimental data (e.g. 

see appendix C) it should be possible to determine these coefficients. Current data 

for a full set of material coefficients is sparse, particularly there is a lack of Landau 

coefficient data available. Measurement of the complete set of parameters for a 

range of materials would enable wider applicability of the solver.

Taking advantage of particle methods in the lattice Boltzmann method it should 

be possible to introduce colloidal particles into simulations as an area of futher 

study. In particular there is experimental interest into the effects of adding spherical 

particles to liquid crystal mixtures. More recently experiments have inserted carbon 

nano tubes into liquid crystal mixtures in order to align the nano tubes. Through 

simulations we will be able explore further the use of such nano tubes.
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A ppendix A 

EILBGK M odel

The compressibility error of the LBGK method (§ 3.1) may be overcome. The 

Exactly Incompressible EILBGK model of Zou [166] and Lin [167] makes a slight 

change to the interpretation of the distribution function / f in order to make the 

macroscopic dynamics much more incompressible, but at the expense of the accu­

racy of its time variation. Applications of the EILBGK are therefore restricted to 

steady state solutions and to flows with slow variation. However, EILBGK allows 

for a more accurate treatment of pressure boundary conditions. What changes is 

the equilibrium distribution function and the definition of velocity; for the D2Q9 

lattice these being:

/« -4 + ^ + y ? £ - |A )  (A.i)
s  s

with

9  1 4 1 1
Cs =  -  , to =  g , h  = t 2 = t 3 = U =  -  , t5 =  t6 = t 7 =  t 8 = — (A.2)

and the density and velocity are then defined:

E i  f t g) = p
E  i f t q)eia = ua > (A.3)

Using the Chapman-Enskog analysis one can obtain the following dynamics:

(A.4)dctUa — 0 
dp(uaUf3) = -C 2sdap +  vdpdpuc

which are the exact steady state incompressible NS equations with constant density 

Po. In this model the effective pressure and viscosity are given by:



Note the continuity and NS equations are exactly incompressible, while the form 

of the diffusive term is preserved at the cost of the time derivative. In general 

EILBGK schemes are not able to achieve the Re numbers of the LBGK simulations 

due to the stricter incompressibility constraints.

' k i t ' k ' k ' k ' k ' k ' k ' k - k ' k ' k i z ' k ' k i c i c
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A ppendix B 

Ericksen-Leslie EL Theory

The EL equations governing uniaxial, constant order parameter dynamics of incom­

pressible isothermal nematics are [46, 40]:

daua =  0 (B.l)

pua =  dp ( - P 6*p  +  a tp  +  +  a lp )  (B.2)

/n Q =  ha +  -  Aha (B.3)

where symbols are defined as:

<> -  -  ( s m )  8»"’ <B4)

+  (B.5)
\ d ( d ahp)

( J T  T  -f- a ^ n p h ^ A ^  gv

+a 2naN /3 +  CC3 npNa

K  = - 7 2 -  7 l-W<a (B.7)

Aq fl'cv ^a/?7^/3^7 (B.8 )

7l =  — ^2  72 =  0:3 +  O2 =  06  — 05  (B.9)

— 2  +  HpBa) ----------^-^a/3 +  2  (EaDp +  EpDa) ---------------

In the limit of equation 2.8 the Q tensor governing equations seen in §2.4.1 re­

duces exactly to those seen above. The form of the director free energy is given in 

chapter 2 .

• k i t ' k ' k ' k ' k ' k i c i c i c i z i z i c ' k ' k ' k ' k
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Appendix C 

M easurement of the Flexoelectric  
Coefficients.

Comparison of the sign depenence of switching in the ZBD device in chapter 6 

showed that the flexoelectric coefficient Ei% was positive. Here we show evidence 

that may determine the magnitude of this coefficent. Figure C .l is taken from Ed­

wards [168] recent work to measure light transmission levels through a ZBD during 

switching. The figure shows the voltage (‘driver’) pulse waveform used and the two

0 ro
1
Q
o
>
0)
CD3
o
>  -4.00E-04 -2.00E-04 0.00^+00 2.00E-04 4.00E-04 6.00E-04 8.00E-04 1.00E-03
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...................................
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......  - .. __--s. r -----------
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time (s)

*—•— dridriver ■-1st order 1st order

Figure C.l: Figure 7.5a page 118 of [168] showing the diffracted transmission orders 
during V  to C state switching and the voltage applied to the cell.

±  l s< order diffracted transmission light levels. A ripple occurs in both orders at 

around the ~  30//s time. Comparing this time to the annihilation time in figure 6.26 

we may read of a value for the flexoelectric coefficient, which from figure 6.26 we 

get E i3 ~  8 x 10 12 C m  1 (note the simulation and material parameters are not
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identical). This is a typical magnitude to those currently reported in the literature 

and through matching simulation to experimental parameters may improve this 

measurement.

' k ' k ' k i ^ ' k ' k ' k i c ' k ' k ' k ' k ' k ' k ' k ' k ' k
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We review the analysis of single and iV-component lattice Boltzmann methods for 
fluid flow simulation. Results are presented for the emergent pressure field of a sin­
gle phase incompressible liquid flowing over a backward-facing step, at moderate 
Reynolds Number, which is compared with the experimental data  of Denham & 
Patrick (1974 Trans. IChE  52, 361-367). We then access the potential of the N -  
component method for transport of high volume fraction suspensions of deformable 
particles in pressure-driven flow. The latter are modelled as incompressible, closely 
packed liquid drops. We demonstrate the technique by investigating the particles’ 
transverse migration in a uniform shear (‘lift’), and profile blunting and chaining.

K e y w o r d s :  la t t ic e  B o ltz m a n n ;  IV -co m p o n en t flow ; b lu n tin g ;  p r e s su r e -d r iv e n  flow

1. Introduction

The expanding literature on the lattice Boltzmann method (hereafter LBM) may be 
classified into general model development (use) in simple (complex) geometry, turbu­
lence, thermohydrodynamics and complex, iV-component fluids. Simple geometries 
are used for quantitative comparisons or qualitative tests of new schemes. Typical of 
the latter, Hou et al. (1995) and Hou (1995) compare LBM and computational fluid 
dynamics (hereafter CFD) results for lid-driven cavity flow for a range of Reynolds 
numbers 10 ^  Re ^  105. Other geometries include backward-facing steps and arrays 
of cylinders (Qian et al. 1996; He & Luo 1997a; Chen et al. 1997), for both creep­
ing and vortex shedding. Several informative reviews can be found (see, for example, 
Wagner 1994; Higuera & Luo 1989; Mei et al. 2000). Relative ease of boundary imple­
mentation makes LBM well suited for complex geometries. Typical of this application 
is work by He & Doolen (1997a, b), who also use an irregular lattice and an interpola­
tion system. In porous media, the LBM’s application to the problem of the emergence 
of macroscopic transport coefficients from microscopic dynamics has demonstrated 
its mesoscale credentials. Darcy’s law has been confirmed in LBM schemes by Succi 
et al. (1989), Cali et al. (1992) and Ferreol &; Rothman (1995). Fundamental LBM 
development is now a large area of research encompassing boundary models, numer­
ical stability (Reider & Sterling 1995), non-uniform grids (He & Doolen 1997a, 6; 
Filippova & Hanel 1998; Tolke et al. 1998) and spurious dynamics (Qian & Zhou

One contribution of 12 to a Theme ‘Discrete-element modelling: methods and applications in the environ­
mental sciences’.
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1998). Several turbulence models are currently available (Martinez et al. 1994; Succi 
et al. 1991; Hou et al. 1996) and these may be coupled with thermohydrodynamic 
models (see below). Further afield, LBM models for the Schrodinger equation are 
under development (Succi 2002; Boghosian & Taylor 1997).

LBMs for fluids with an energy mode were initially developed by Alexander et 
al. (1993), to model monotonic gases. Subsequent improvements (Chen et al. 1994) 
have produced a model which agrees well with analytical results for Couette and 
Poiseuille flows. However, these thermohydrodynamic LBM models only allow small 
tem perature variations, due to their limited stability arising from the lack of an 
H-theorem.

Simulating complex fluids is a strength of the LBM. Colloids have been considered 
with algorithmic generalizations to represent suspended particles (Ladd 1994), and 
other LBM models include magnetohydrodynamics (Chen et al. 1991), bubble growth 
(Yang et al. 2001) and granular flows (Luo et al. 1997). Most importantly for this 
work, two-phase fluids with spontaneous interface formation have been developed to 
model immiscible fluids (Swift et al. 1995; Gunstensen et al. 1991; Shan & Chen 
1994; Halliday et al. 1998; Lishchuk et al. 2003), and, for N  immiscible components 
(N  2) by Dupin et al. (2003). It is on this area that we shall now concentrate.

Currently, LBM models fluid mixtures using two strategies, broadly termed ‘bot­
tom up’ and ‘top down’. On one hand, top-down strategies are adopted when appro­
priate behaviour may be postulated for the model: the system considered (often 
mesoscale) has an interface with a known equilibrium state. Free-energy LBM inter­
face models (Swift et al. 1995) capture the kinematics and hydrodynamics of phase 
separation, for example. On the other hand, bottom-up strategies are adopted where 
hydrodynamics alone defines a continuum problem (as in the present work), or where, 
for very complicated systems, an equilibrium state of the interface is not known. In 
the latter case simpler LBM interface algorithms are equally valid (Do-Quang et 
al. 2000) and desirable from several points of view: computational efficiency (Dupin 
et al. 2003), their ability to embed additional physics directly and their ability to 
produce a sharp fluid-fluid interface which impacts minimally on the continuum 
length-scales of the application. A range of techniques has been developed to model 
such fluid interfaces with, perhaps, the Shan & Chen (1994) approach being the most 
popular. More details can be found in reviews by Benzi et al. (1992) and Chen & 
Doolen (1998).

In continuum hydrodynamics, the boundary between immiscible fluids should have 
no structure. However, surface tension in the (mesoscale) LBM is activated by meth­
ods which are microscopic and as a consequence, the emergent LBM interface has 
artefacts: small but spurious velocities or micro-currents and a finite thickness. It 
should be noted that another scheme for imposing surface tension by Lishchuk et 
al. (2003) has a greatly reduced micro-current activity. Here we aim to illustrate 
the potential of the two-dimensional A-component LBM applied to the transport of 
high-volume-fraction suspensions of deformable particles in internal pressure-driven 
flow. We model the latter particles as mutually immiscible, relatively viscous drops 
of incompressible liquid.

The paper is essentially divided into three further parts. We firstly review the core 
LBM method (§2). Secondly, we present an appropriate generalization, inserting 
practical immiscibility between a large number of drop species, in § 3. Finally, in § 4, 
we validate pressure-driven single-component flow with experimental evidence and
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proceed to consider A-component problems such as transverse migration on single, 
deformable drops in a linear shear and the transport of dense suspensions. For the 
experienced reader, all new results/analysis are to be found there.

2. T he L attice B oltzm ann equation for single-com ponent fluids

There are several approaches to the modelling of fluid systems. Microscopic 
approaches (<10~9 m) include molecular dynamics (MD) and non-equilibrium molec­
ular dynamics (NEMD), mesoscale approaches (<10-6 m) include lattice gas cellular 
automaton (LGCA) and lattice Boltzmann and macroscopic approaches (>10-9 m) 
include the broad family of traditional CFD. This section proposes briefly to set 
the LBM into context and length-scale. For more detail the reader is directed to 
excellent, comprehensive reviews by Succi (2001), Chen & Doolen (1998) and Luo 
(2000).

(a) Practical context of the lattice Boltzmann simulation

At the microscopic scale, MD and NEMD (Goodfellow 1991; Allen & Tildesley 
1997) solve numerically the Newtonian equations of motion for a set of explicitly 
modelled molecules. Both of these techniques show great potential but are impractical 
for continuum systems: current computer ability limits simulations to only ~105 
molecules, far  short of continuum scales. To bridge the gap, mesoscale methods like 
dissipative particle dynamics (DPD), Stokesian and Brownian dynamics and LGCA 
and LBM have evolved.

DPD simulation (Groot Sz Warren 1997; Espanol 2002) was originally developed by 
Hoogerbrugge & Koelman (1992) to avoid the lattice artefacts of LGCA (§ 2 e), while 
accessing hydrodynamic time- and space-scales. In DPD, point-like ‘particles’ move 
and interact with each other through prescribed conservative, repulsive, dissipative 
and stochastic forces whose amplitudes are governed by a fluctuation-dissipation 
theorem. These particles represent a population of molecules moving coherently. 
DPD is effectively a coarse graining of MD to a hydrodynamic mesoscale which 
can accommodate additional microphysics (possibly in the form of potentials) in 
the interest of multi-phase flows, colloids, and polymers. However, like MD, DPD 
is computationally expensive. Moreover, problems remain regarding its equation of 
state, diffusion coefficients and length-scale separations.

The LBM (Chen & Doolen 1998; Succi 2001) uses a discretized Boltzmann equation 
(§ 2g) with fully discretized space, time and therefore velocity. Distributed groups of 
particles (hereafter densities) with the same discrete velocity move along links of a 
lattice and are redistributed at nodes, according to local collision rules. This locality 
brings decisive advantages to LBM: it is massively parallelizable, complex geometries 
are made trivial, and additional physics can be included.

In fact the LBM can be used, as in this paper, at continuum scales. However, 
by far the most popular single-component continuum-scale method remains CFD 
(Anderson 1995; Conner & Brebbia 1976).

(6) Hydrodynamics of the lattice Boltzmann method

We shall see th a t the macroscopic dynamics describing a standard LBM is a weakly 
compressible form of the Navier-Stokes (Landau & Lifshitz 1995) and continuity
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equations
dt {p) +  dp(pup) =  0 , (2 .1 )

9t (pua) +  dp(puaup) =  - d aP  +  dp(2 upSap) +  paa , (2 .2 )

where aa is a uniform acceleration acting on the lattice fluid, v  its kinematic viscosity, 
P  the lattice fluid pressure, p the lattice fluid’s density, Sap =  \ {dpu a +  daup) the 
rate of strain tensor and u  the lattice fluid’s velocity (see equation (2 .2 0 ) for the 
definition of p and u).  The LBM has an ideal gas equation of state,

P  =  c2sp, (2.3)

where c9 is the speed of sound squared. Equations (2.1) and 2.2 have solutions 
parametrized by a single dimensionless number, based on a characteristic lattice
velocity Uo, lattice dimension L q and the LBM’s kinematic viscosity v: the lattice
Reynolds number

=  (2.4)
V

which quantity may be directly compared with the Reynolds number of the flow 
under study. Note that, for LBM, the speed of sound cs is only 0(1), which induces 
some problems for high-Re applications of the standard LBM.

(c) Theoretical foundations of the lattice Boltzmann method

The earliest example of LBM (ca. 1988) was essentially an attempt to address 
statistical noise inherent in LGCA (Succi 2001). Subsequently, the essential theoret­
ical basis of the LBM has been shown to derive from non-equilibrium statistical 
mechanics (Succi 2001, 2 0 0 2 ) so its theoretical analysis has two distinct routes. One, 
heuristic, follows LBM’s advent from LGCA’s, the other a formal discretization of 
the exact Boltzmann transport equation (He & Luo 19976; Abe 1966). We detail the 
former here.

Boltzmann made stringent assumptions (LibofF et al. 2003) to close the description 
of dilute systems obtained from kinetic theory. For dilute systems the macroscopic 
observables of interest only depend on one- or two-body distributions, so the 6N  
variables were reduced to just M  =  1,2. The Boltzmann equation

dtf  +  v  • dxf  +  a  • dvf  =  C2{ f 2}  (2.5)

then follows, where /  =  f i ( x , v , t )  is the one-body distribution representing the 
probability density of finding a particle at position x , with particle velocity v  at 
time t. f 2 is a two-body distribution (see below) and C2 is the two-body-collision 
operator. It should be noted that, for dense systems, the validity of this reduction 
is less clear and, at the time of writing, there are attempts to formulate lattice 
BBGKY equations (after Bogolyubov, Born, Green, Kirkwood and Yvon), which 
may be better adapted to the simulation of denser fluids. The left-hand side of 
equation (2.5) represents the free steaming of particles in phase space; the collision 
operator, C2{ f 2}, henceforth denoted C(f ,  / ) ,  on the right, represents the effects of 
collisions. In the dilute-gas limit (where binary collisions alone are significant) the 
gas is considered to be subjected to molecular chaos (molecules entering a binary 
collision have uncorrelated motion):

f 2 ( x i , v 1, x 2, v 2,t) =  f ( x 1, v i , t ) f ( x 2, v 2,t). (2 .6 )
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This allowed Boltzmann to write down an integral expression for the C2 { f 2 } (Liboff 
et al. 2003). In fact He & Luo (1997a) have shown that one particular LBE algorithm 
may be obtained by a systematic discretization of equation (2.5).

(d) Solving the Boltzmann equation: Chapman-Ensk0g analysis

The Chapman-Enskpg procedure is used to solve the Boltzmann equation (2.5) 
by means of recursive perturbation techniques (Chapman Sz Cowling 1970). A vari­
ant of this method might be better known as ‘successive approximation’, ‘multi-scale 
expansion’ or ‘Hilbert expansion’. It is used to obtain the behaviour of hydrodynamic 
modes in the LBM, although crucially, it may miss other, kinetic, modes. The expan­
sion is parametrized by a small dimensionless Knudsen number, Kn,  introduced into 
the collision term of the Boltzmann equation (2.5) without the forcing term (Liboff 
et al. 2003):

9 t f  +  vadaf  =  - C ( f ,  f ) ,  £ =  Kn =  y .  (2.7)
£ L

The distribution function f ( x , v , t ) and time derivative are then expanded in terms 
of e as

n = 0 n=0

with the constraints that ‘moments’ of the equilibrium distribution f ( ° \

f ( 0 )  _  y(eq) _
(:2itRT ) D / 2

alone determine the hydrodynamic quantities

exp
(v  — u): 

2 R T

(2 .8)

(2.9)

//»>

y  e(”)

1 T '
V d v  =  p u

J ( u - u ) 2_ e
>

1

V dv =  0 , n > 0,
>

(2 .10)

where e is the energy and u  is the macroscopic fluid velocity. Importantly, higher- 
order non-equilibrium parts (f^n\  n >  0 ) do not contribute to the hydrodynamic 
observable. Note, the space/time variation of f ^  is purely implicit, through, for 
example, f ^  =  f ^ ( p , u , T ) .  The collision term is also expanded in terms of e,

OO

<?(/./) = E £"c'(")’ c '<n)= £  c ( f (k)’/ (,))> (2-u )
n = 0 k+l= n

and solutions to the Boltzmann equation may now be obtained by equating powers 
of £ in the expanded equation, obtained from equations (2.7)-(2.11), then solving 
each order of this recursion hierarchically:

0(e-1) : C(/(o>,/<°)) = 0,
O(e0) :  +  vadaf m =  2C(/<°>,/<1>) ) (2.12)
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By solving to 0 (£ -1 ), the equilibrium distribution is found to be the Maxwell- 
Boltzmann distribution (Chapman & Cowling 1970). Given this, the O(e0) equation 
can, in principle, yield f  ̂ , and so on through increasing orders of e.

Hydrodynamic equations are extracted by evaluating moments of the Boltzmann 
equation with normal solutions (Liboff et al. 2003):

/ {dt f  +  vadaf  -  C{f ,  / ) )  dv
L2

=  0 . (2.13)

The above equations will give the Euler equation (Landau & Lifshitz 1995) for 
f  =  f ( ° )  and the Navier-Stokes equations (2.2) for /  =  (Liboff et al.
2003).

The Chapman-Enskpg procedure is, unsurprisingly, key to extracting the hydro- 
dynamic equations of the LBM and will be used in detail in §2 h. An important 
approximation of the Bhatnagar-Gross-Krook (BGK) collision operator (Bhatnagar 
et al. 1954) greatly simplifies solution. The BGK Boltzmann equation is

d t f  +  Va d a f  =  - ( / -  / (0>), (2.14)r
and now the first-order solution f ^ ’ is easily obtained, from equation (2 .1 2 ), as

/ (1) =  - T ( d t f (0) +  v a d a f W ) .  (2.15)

(e) Lattice gas cellular automata

It is instructive to look at the construction of lattice gas cellular automata (LGCA) 
models, as these are parents to the LBM and operate in a similar vein.

Cellular automata (CA) (von Neumann 1966) and MD for gases (Broadwell 1964) 
were merged to gave rise to the first LGCA. Mono-energetic molecules are confined 
to move/interact on a lattice and updated by CA rules. Space, velocity and time 
are all discretized. The first LGCA model (the HPP model) with deterministic rules 
that reproduce fluid dynamic-like features was introduced by Hardy, de Pazzis and 
Pomeau (Hardy et al. 1973,1976). This was superseded by the FHP model (proposed 
by Frisch, Hasslacher and Pomeau (Frisch et al. 1986; Wolfram 1986)), which was 
the first LGCA model shown to map onto the Navier-Stokes equations (2 .2 ). It has 
discrete velocity and position space and discrete collision rules (Frisch et al. 1986), 
represented in essence in figure 1 , which shows two sequential lattice states.

Notwithstanding, evolution of the LGCA models is very simple and consists of two 
main repeated steps: collision and streaming (see figure 1 ), the time-order of which 
is irrelevant. Collisions are very simple but must conserve particle number, momenta 
and energy (only). Evolution is represented by a lattice-species Boltzmann equation

ni(x +  Ci,t +  1 ) - n i ( x , t )  =  Ci(ni,n2, . . . ) ,  (2.16)

where ni{x , t) is the number € {0 , 1 } of particles with particle velocity Cj, n* € {0 , 1 }; 
the subscripts i and j  denote discrete velocities i , j  € {1, 2, . . . ,  b}, b is the size of the 
lattice velocity basis and c* is a ‘Boolean’ function of the n* values which expresses 
the possible collisions.
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Figure 1. Lattice structure and evolution of the FHP-I LG A model. Solid (hollow) arrows repre­
sent particles with the velocities corresponding to time t  (t+). Hollow arrows therefore represent 
post collision, post propagation evolution.

The LGCA may be viewed as a maximally discretized MD model. Variants with 
increased stability on more complicated lattices have been developed: essentially, all 
give the same general hydrodynamic equations but with different values for, e.g., the 
speed of sound squared c% and lattice fluid viscosities v  and 77. -The key advantages 
of LGCAs are their unconditional stability, optimal use of computer memory, and 
localization, allowing for massive parallelization and dedicated computers. In fact 
it has been shown that isothermal LGCA models admit both a local and global 
H-theorem (Frisch et al. 1986), confirming the unconditional stability—a decisive 
advantage in the computation of turbulence. Further information on LGCA and 
its applications may be found in Succi (2001), Wolfram (1986), He et al. (1997a), 
McNamara & Zanetti (1988), D’Humieres et al. (1989), Rothmann & Zaleski (1994) 
and Benzi et al. (1992).

LGCA simulation has now been largely superseded by the LBM, for the above 
advantages are accompanied by a number of limitations. Certainly, early models 
were limited to relatively low Reynolds numbers (see equation (2.4)) due to high 
momentum diffusivity (viscosity v) and the LGCA’s lack of Galilean invariance.

(/) Lattice Boltzmann models
4 .

McNamara & Zanetti (1988) realized that equation (2.16) can be re-expressed as 
a Boltzmann equation for LGCA ensemble averages. Defining

f i (x , t )  =  (ni(x,t)),  0 ^ fi ^ 1, i =  1, — , 6 , (2.17)

where f i (x , t )  are real continuous functions representing the probability distribu­
tion of finding particles with discrete velocities and space. Their evolution may be 
expressed after equation (2.16) as

f i { x  +  Ci , t  +  l )  - f i ( x , t )  =  A i (f0J 1J 2, . . . ) ,  (2.18)

the collision term A{(f i ) being essentially the Ci of the LGCA but with the ensemble 
averages fi replacing the n* (Frisch et al. 1986). In fact, there are several variants of 
the lattice Boltzmann method (e.g. Succi 2002); we shall focus on the simplest.
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2 31

8

7 6 5
Figure 2. The D2Q9 model lattice structure showing a regular repeating structure 

with nine distributions located at each lattice node.

(g) Lattice BGK  (LBGK) models

It was Qian et al. (1992) and Chen et al. (1992) who realized that Ai  in (2.17) 
could be further simplified by assuming a singe relaxation time r:

f i {x  +  5ci, t  +  5) =  f i ( x , t ) - - ( f i ( x , t ) - f ^ eq)) + F i ,  0 ^ i < 2 ,  (2.19)
T T

in which we have added a ‘forcing term’, Fi, to which we shall return, taking Fi =  0 
for the moment. Note that equation (2.19) has a relaxation form.

Equation (2.19) and its appropriate equilibrium distribution function (see below) 
together comprise the so-called LBGK model. Setting r =  1 in equation (2.19), the 
momentum densities, fi,  relax immediately to local equilibrium /} eq\  on the scale of 
the propagation length 5cia , which is determined by the time-of-flight parameter 5. 
With C{a =  0(1) it is natural to associate the duration 5 with the mean free path, or 
Knudsen number. In other words, we take 5 =  £ (see equation (2.7)) for the purposes 
of extracting the model’s dynamics.

When LBM is used for two-dimensional fluid dynamics simulations, the LBGK 
model is the one most commonly used and, in particular, the one with nine veloc­
ities in two dimensions (D2Q9). Section 2  h details an analysis for extracting its 
hydrodynamics. The shortcomings of the LBGK models include spurious invariant 
quantities when 1 / r  reaches its limits, and round-off errors which can cause instabil­
ity, due to floating point algebra. At present no local or global H-theorem for LBM 
models has been found (Succi 2002). However, it is anticipated that this will change 
in the near future. This will allow the stability boundaries for these methods to be 
determined.

(h) Hydrodynamics of the LBGK method

Our method of manipulating the macroscopic dynamics differs from that of others 
(e.g. Hou et al. 1995) in that, for adaptability, it treats the role of the lattice in a 
general way. However, we focus on the slow, hydrodynamic modes in the usual way, by 
using a Chapman-Enskog analysis to develop the LBGK evolution equation, (2.19). 
The requirements on f>n are as discussed previously, but we have an additional
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requirement that the second moment of relates directly to the viscous stress

E/i(eq)

E/i(n)

1 p{x, t)
Cia = pua{x, t) 5

CiotCiPm .n aJ(x >*).

1 0

?

Cia = 0 , n >  0 .
CiaCip_

'sT'o.l j

(2 .20)

In fact LBGK equilibrium /}eq̂  approximates a uniformly translating Maxwell- 
Boltzmann distribution in the peculiar velocity (C{a — ua):

{Cict Ua)y (eq) _

ti =  exp

(:2ttR T ) d / 2

iabia I
~ W  j

exp< -
2RT

=  pti exp /  ̂ aCio
\ “rt" exp u \

w t  y

(:2ttR T ) d / 2 ’

by making a Taylor expansion to 0 ( u 2) in equation (2.21):
(2 .21)

/ i eq)= p t i i i+ CiaUa CiaCipUaUp U2 \
2R TJR T  ' 2 (RT)2

For isothermal flows R  and T  are constant and we therefore may simplify f ^ :

f i &q) =  U(A +  Bciaua +  CciaCipuaup +  D u2), (2.22)
in which t{, A , B, C  and D  are taken as constants yet to be determined (not all of 
which are independent). This form of the equilibrium distribution is less general than 
that of Hou et al. (1995), because it is predicated, from the outset, on a uniformly 
translating Maxwell-Boltzmann. However, any attempt to depart significantly from 
that form (i.e. that of equation (2.22)) quickly leads to instabilities. In the limit of 
small Re, an increased freedom of choice around the coefficients in equation (2 .2 2 ) is 
a means of embedding different physical effects. Our discrete velocity set c* is that of 
the most popular in the literature, classified D2Q9 (two dimensions and nine discrete 
velocities; see figure 2 ). Here we derive parameters for D2Q9, though it is trivial to 
adapt this derivation to fit any of the models listed at the end of this section.

To close the equilibrium distribution f ^  of our D2Q9 model (and effectively 
determine the whole of the model’s dynamics) we Taylor expand the left-hand side 
of the LBGK evolution equation (2.19) to second order in S =  e as

s[dt +  ciada]fi +  §£2 [d* +  ciada]2fi +  0 (e3) =  - i ( / «  -  / - eq)). (2.23)

The terms of 0(e) already correspond to the Boltzmann transport equation (2.14). 
We now substitute the Knudsen number e-expansions of equations (2.8) (for fi about 
equilibrium / | eq̂  and for the time derivative dt about dto) into equation (2.23) and 
retain terms to 0 (e 2). Separating orders of e, we have, at 0(e),

(dto +  ciada) t f0) =  ~ ~ f i 1]> (2.24)
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and, at 0 (e 2), using the result at 0(e)  in equation (2.24),

StJ 0> +  (3tc +  ciada) ( l  -  L ) f W  =  - l / f ) .  (2.25)

We proceed to tune the discrete moments of equations (2.24) and (2.25) onto hydro- 
dynamic behaviour. Summing equation (2.20) on link index i:

a .E /r + * .£ < w * m = ~ £ r f I).
i i i

from which it is evident that the model’s macroscopic dynamics are described by the 
continuity equation on its shortest time scales to'-

dt0p +  dapua =  0 . (2.26)

The first moment of equation (2.24) is obtained by multiplying it by q q prior to 
summing on i :

dto Ci« f i 0) +  dP ci<*cipf i0) =
i i i

Hence, we obtain an Euler equation for the momentum,

dtopua +  ds n W = 0 ,  (2.27)

where is that defined in equation (2.20). To extract the longer-time dissipa- 
tive modes it is necessary to proceed to longer times. Take moments in the 0 ( e 2) 
equation (2.25) and use the identities given by equation (2.20). The zeroth moment 
immediately yields

dt lp =  0 , (2.28)

and, using equations (2 .2 0 ), its first moment (with CjQ) yields

( l  -  i . )  fytfW  +  9ti pua =  0. (2.29)

The Chapman-Enskpg expansions need to be recombined, in the case of equa­
tions (2.27), (2.29) to give the Navier-Stokes equation. To obtain the desired result 
from this the process we clearly need to control the form 77^ and 77^. This is best 
achieved by expressing the latter directly in terms of the parameters U, A, B , C  and 
D  of / f eq\  resulting in expressions which contain ‘tensors’ such as tiCiaCip, for it 
is possible to show that 77^ and 77^ take appropriate form when such tensors are 
isotropic.

After Wolfram (1986) and C. M. Care (2003, personal communication), we seek

(i) a set of isotropic tensors E n with order 0(n)  of the discrete velocity basis (cfa , 
figure 2 ),

(ii) the appropriate weight of link i , U.
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The latter tensors appear in the expressions for 77^ and 77^. We define and evaluate 
the following tensors:

t{ =  to -\- 4*i +  4*2,
i

tiCia = 0?
i

^  ] t jC jgCjp  =  ( 2 1\ + M>2)8a p ,  ,

i

y  =  ^  > t j C i g C i p C j y  =  0 ,  

i

^a/3y5 = ^  ; tjCjaCipCî CiQ = (2*i 8t2')8CcpyQ 4*2(̂ a/3̂ 70 "F 8ay8pQ + 8a08py),

(2.30)
as may be checked by direct computation, using the D2Q9 basis. Note that odd-order 
tensors E^2n+1  ̂ are zero. Only fourth-order tensors are necessary for hydrodynamics. 
Wolfram shows that the E£„. will be isotropic if

E 2n.+1 =  0, E 2n.. =  T 2nA 2an.„ (2.31)

where tensor is defined as (Wolfram 1986)

A  = 1 , A ap =  8ap, A apyQ =  8apSyg -f- 5aySpQ +  8 a0 8 py. (2.32)

Comparing equations (2.32) and definitions (2.30), we obtain

T° =  * 0  +  4ti +  4*2, T 2 =  2 *i +  4*2, T4  =  4*2, * 2 =  |*i- (2.33)
With equations (2.33), we return to the task of manipulating the emerging macro­
scopic equations into an appropriate form. We evaluate the requisite moments of the 
equilibrium distribution (equation (2 .2 0 )) by inserting the form of / / eq̂  (2 .2 2 ) and 
using equations (2.33). For example, the moment =  P gives

P “I- A  *j -f* BUq ^  ̂t^Cia  “t" C U a U p  *iCiaCip  -I- D U a U a  *j — 0, (2.34)
i i i i

which, on substituting for the tensors from equation (2 .2 2 ), yields

- p  +  A T 0 +  C u2T 2 +  D u2T° =  0 (2.35)

after a little algebra. Similarly, the first moment

Y ^ f i 0)Ciy =  PUy
i

and the ‘momentum flux’ moment

^  ^ fi CiyCiQ =  P8y0 -j- pUyUff,  
i

give, respectively,

—puy +  B uyT2 =  0 ,

 PSyQ   pUyUQ -f- A T 28yQ +  T^CV^SyQ -f- 2T^CUyUQ -}- DU2T 2 8yQ =  0.
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Noting that the equations (2.34)-(2.36) must be true for all p , ua, we obtain the 
following six equations:

- p  +  AT° =  0, C T 2 +  DT° =  0, - p  +  B T 2 =  0,1
> (2 37)

- P  +  AT2 =  0, 2 CT4  -  p =  0, CT4  +  .DT2 =  0,J
and, recalling that A — p, we have a closed system of simultaneous equations with a 
non-trivial solution:

(2.38)

We may identify the |  in the equation of state as the speed of sound squared (c2), 
in terms of which the equilibrium is often written

* ( e q )  j. ( ,  ciaua , ciaCipUaUp U2 ^  /r> Qn^

- pH 2 i J -  <2-39>
Finally, we demonstrate an appropriate form for ‘viscous stress’ moment 77^. We 
need an expression for obtained by rearranging equation (2.24) as

i

= - t  ̂  Ci^Cie(dto + Cixdx)fieq)
i

=  - T [ - c 2uydep -  clued^p -  dxpu^ueux +  dxpuyc2SXe +  dxpuec25^x], >
(2.40)

where identity [dtopu^ue =  —c2u7dep — c2uedyp — dxpu7uqux] and the continuity 
equation have been used.

We recombine the four Chapman-Enskpg moment expansions. First the 0 ( s 1) and 
0 ( e 2) continuity equations (2.26), (2.28):

(edt0 + e2dtl )p + sdapua = 0 => dtp + dapua =  0. (2-41)
Combining the ‘cia moment’ 0(£*) and 0 (e2) (equations (2.27) and (2.29)) gives

dtpua +  dppuaup =  —dac2p +  £ ^ c 2( 2 t  -  l)dp2pSap -  ( r  -  l)dpd^puaupu7,

where Sap =  \ { d aup +  dpua) is the rate of strain. Defining the viscosity as

i /=  ±£c2 ( 2 t - 1 ) ,  (2.42)

we note an ideal-gas equation of state, with c2 only of the order of 1. Retaining terms 
to 0 ( u 2),

dtpua +  dppuaup =  - d aP  +  dp(2upsap). (2.43)

Equations (2.41) and (2.43) are a weakly compressible form of the Navier-Stokes and 
continuity equations. The procedure by which they have been derived may be applied
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Table 1. L B G K  lattice param eters fo r  a selection o f com m only used m odels indicating the 
la ttice shape, velocity  directions and equilibrium d istribu tion  weights

unit to 11 t2 t3 u order of
model cell 0 1 V 2 V3 2 Cs2 isotropy

D1Q3 line 2
3

1
6 0 0 0 1

3 4

D1Q5 line 1
2

1
6 0 0 i

12 1 6

D2Q7 hexagonal 1
2

1
12 0 0 0 1

4 4

D2Q9 square 4
9

1
9

1
36 0 0 1

3 4

D2Q13 hexagonal 11
25

9
100 0 1

300 0 3
10 6

D3Q15 cubic 2
9

1
9 0 l

72 0 1
3 4

D3Q19 cubic 1
3

1
18

1
36 0 0 1

3 4

D3Q27 cubic 8
27

2
27

1
54

1
216 0 1

3 4

D4Q25 FCHC 1
3 0 1

36 0 0 0 4

to the other lattices summarized in terms of their velocity basis and corresponding 
weights (table 1). It differs from other derivations (Hou et al. 1996) simply in that 
the isotropy of lattice basis tensors is programmed-in explicitly, which is a procedural 
advantage when inserting additional microphysics. In considering table 1, it should 
be noted that the analysis of three speed models produces a sufficient number of 
constraints to solve the coefficients of the equilibrium distribution. However, our 
method is not the only path to the LBGK equilibrium. He & Luo (19976) give an a 
prior i  derivation applicable to any lattice structure. Luo integrates the Boltzmann 
transport equation, via the method of characteristics, to derive the LBGK evolution 
equation. A Taylor expanded Maxwell-Boltzmann equilibrium distribution has its 
weights (U) and lattice calculated by a numerical integration, the number of velocities 
reflecting the order and choice of the polynomial used in the quadrature. Following 
this route leads to a number of enhanced models with flexible lattice structures (Luo 
1998; Mei et al. 2000; He et al. 1997a), and it allows one to add physics directly 
from kinetic theory and the Boltzmann equation.

(i) Boundaries in lattice models

The Navier-Stokes equation is an elliptic equation: it requires the boundary veloc­
ity field to be closed to have any solution. This velocity information can be set in 
equivalent terms, especially at open boundaries, using, for example, pressure and 
flux conditions. One problem with LBM lattice closure is that the velocity distribu­
tion gives D  conditions which are not necessarily sufficient to determine appropriate 
values for all the f i  at a boundary.

Consider first the no-slip zero velocity boundary condition. The velocity of the 
fluid matches that assumed for the boundary, often zero. Wolfram (1986) showed the 
simplest operation to reproduce a zero in velocity is the bounce-back condition, f i  
which stream onto a wall site have their velocities inverted for the next streaming 
step. This robust process clearly inserts friction into the fluid and conserves mass 
but it is only first-order accurate (Kadanoff et al. 1989).
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Figure 3. Simplified mid-link bounce-back method on a hexagonal lattice. The heavier line 
represents the wall position, note it is positioned exactly halfway between lattice nodes. Solid 
(hollow) arrows represent particle distribution functions at time t (t +  1). In one time-step the 
distribution function effectively travels half a link then bounces back in the reverse direction so 
as to introduce non-slip boundaries. Both mass and momentum are conserved. To interact with 
the wall, particles moving in direction i, at the end of time step t, propagate, to re-appear at 
the same position, moving in direction i © Q (addition modulo Q) at time t + 1.

The mid-link bounce-back boundary condition retains simplicity of implementa­
tion, providing a balance between robustness and accuracy (see figure 3). The zero 
velocity is located a distance of exactly half a link from the lattice node on which 
it obtains. It is shown (He et al. 19976; Maier et al. 1996; Skordos 1993) to be 
second-order accurate in space but first-order accurate in time, i.e. not necessarily 
instantaneously accurate. Note that bounce-back methods are not applicable to open 
boundaries or moving boundaries.

Halliday et al. (2 0 0 2 ) proposed strategies for instantaneously accurate lattice clo­
sure, for plane boundaries with any known distribution of velocity. Several other 
sophisticated methods have been developed to overcome the closure problem, all 
involving velocity gradients (Skordos 1993; Noble et al. 1995). All the results pre­
sented here use mid-link bounce-back.

For internal pressure-driven flow, pressure and flux conditions often apply at open 
boundaries. LBM’s inherent compressibility error (recall the 0(1 ) speed of sound) 
allows one to impose internal pressure gradients as gradients in density. This strategy 
is valid even a t modest Re (i.e. when the pressure gradient is large). In isothermal 
LBM, a simple method of combating compressibility and imposing pressure boundary 
conditions is to approximate the pressure field to a uniform gradient, which is then 
represented as a body force (Halliday et al. 2001).

More precisely, a uniform body force or acceleration paa may be used to approx­
imate the principal part of a pressure gradient. Such an acceleration can arise in 
the LBM’s momentum equation (§2 6 ) from the term Fi in the lattice evolution 
equation (2.19). For a uniform body force in an isothermal LBGK (Halliday et al. 
2001),

Fi = 0, ^  FiCia = paa , (2.44)
i i
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and we have, for body force density (acceleration) aa ,
ptiCiaaa 

■Fi = ---- -̂---. (2.45)

While the above is consistent with Luo’s (1998) general derivation of uniform accel­
erations from the Boltzmann equation, we note that equation (2.45) is strictly valid 
only if aa is constant throughout the flow domain. In any system without unidirec­
tional flow, the pressure gradient cannot be uniform. In fact, it must solve a Poisson- 
type equation obtained by taking the divergence of the incompressible Navier-Stokes 
equations

=  davpdpva. (2.46)

The solution of (2.46) yields the instantaneous pressure for the given velocity dis­
tribution (Succi 2001). Spencer et al. (2004) designed a ‘two-part’ fictitious body 
force. The first, conservative, part is designed to correct the pressure field after 
equation (2.46) (see §4). The second, non-conservative, part is designed, after the 
method of Halliday et al. (2001), to reduce compressibility effects. For applications 
like those we shall consider, this conservative component closely corresponds to a 
uniform body force, as the results we present in § 4 will show.

(j) The exactly incompressible LBGK (EILBGK) model in D2Q9

For slowly varying flows, the problem of compressibility error may be overcome. 
The EILBGK model of Zou et al. (1995) and Lin et al. (1996) makes a slight change 
to the interpretation of the distribution function f i  in order to make the macro­
scopic dynamics much more incompressible, but at the expense of the accuracy of its 
time variation. Applications of the EILBGK are therefore restricted to steady-state 
solutions and to flows with slow variation (low Strouhal number). However, EIL­
BGK allows for a more accurate treatm ent of pressure boundary conditions. W hat 
changes is the equilibrium distribution function and the definition of velocity (other 
hydrodynamic moments remain unchanged):

c.2 =  13 ’

(eq)

c2s
+  —

2 *

ii l
9 ’

1 p(x
C-ia 

p i o t T i f i  _

— ua (a
7j(°)/

u
2c!

3 6  *>

(2.47)

(2.48)

Using the Chapman-Enskpg analysis as in § 2 h, one can obtain the following dynam­
ics:

dot̂ a — 0) 1
2 \  (2‘49)dpUfxUp — dacsp T  vdpdpUai J

which are the exact steady-state incompressible Navier-Stokes equations with con­
stant density pq. In this model the pressure and viscosity are given by

P  2
—  =  c sP >  Po

* / = f ( 2 r - l ) , (2.50)
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in which p/po is the effective pressure. Note that both the continuity equation and 
the advective term in the Navier-Stokes equations are exactly incompressible, while 
the form of the diffusive term is preserved at the cost of the time derivative. In 
general, EILBGK schemes are not able to achieve the Reynolds numbers of LBGK 
simulations, due to the stricter incompressibility constraints.

3. L attice B oltzm ann equation for N  > 2 im m iscible fluids

Here we consider how to insert an appropriate interface between immiscible lattice 
fluids which are otherwise represented by the D2Q9 model already described. We 
describe our generalization, to N  2  fluids, of an existing model for binary fluids 
essentially after Gunstensen et al. (1991). Our model provides the means to deal, 
in the hydrodynamic regime, with a very large number of physically different, non­
coalescing fluids.

For definiteness, we shall consider the velocity profile of system of stabilized, sus­
pended drops in pressure-driven internal flow (although, of course, our algorithm 
can be applied more widely). Accordingly, individual drop masses need each to be 
conserved. In 9.0 x 105 lattice updates of our interface algorithm, the mass of a drop 
is conserved to better than 2.0 x 10~3%. For simplicity we choose to prevent all 
suspended/advected drops from wetting the solid boundaries.

Our generalization to N  immiscible components assigns each fluid a ‘colour’ super­
script, r  =  0 ,1 ,2 , 3 . . . ,  (N  — 1). Fluids with different values of r  can have collision 
parameters Tp and, therefore, different viscosity up- Now, for N  different species, 
the iV-component LBM quickly demands impractical amounts of computer storage, 
as N  increases. But for relatively small, non-evaporating ‘sharp’ drops, the storage 
(arrays) for N  primary quantities f f ( r , t ) will be very sparse. Moreover, a natural 
question arises around the value of attem pting to represent, on lattice nodes with Q 
links (velocities), more than Q different colours or species.

To address storage, we record only N q < Q -C N  dominant species a t any node. 
Essentially, we deal with colour difference, as opposed to absolute colour—which 
generates considerable reduction in the requisite storage. The sharp interfaces from 
our Gunstensen-type interface method mean minimal mixing and a reduction in the 
number of different colours found on a node. In practice we take N q  =  5. This value 
is found to be adequate for even the most intimate mono-disperse iV-component 
flows. Note, however, that this choice reflects the geometry and number of compo­
nents (colours/drops) in our particular application. Also note th a t the particular 
N q dominating colours, or immiscible components, vary between nodes and in time. 
We assign each colour distribution a superscript a , identifying their fluid belonging 
within the fluids (T) of the node.

To guide species segregation, a lattice map of absolute colour, label I, is needed. 
However, for such a map, sufficient information can be stored in a five-dimensional 
integer array with subscript set { x , y , i , a }  to identify, for lattice position { x , y }  
direction i, the n  (< N q ) colours present by the value of integer superscript, a.  We 
have the following limits for the /  and the associated colour label I values:

0  <  / ( £ ,  y , i , a ) ,  0  <  l(x, y,  i, a )  <  N,

where, for a system of size L  x W,

0 < x  < L,  0 < y < W,  0 < i  < Q ,  0 < ct < N q .
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By recording only a maximum of N q species at each node, for a total of N  drops (or 
immiscible components), the dominant (type real) storage requirements ( / “ (r, t ) )  are 
reduced by a factor N q / N , to levels comparable with the diphasic model (Gunstensen 
et al. 1991).

In our TV-phase model, collision is, as in the diphasic model, performed in three 
steps: mixed fluid collision, perturbation and numerical colour reallocation.

The collision step acts on the mixed fluid’s distribution function /*,
N q -  1

f i ( r , t ) =  ^ 2  t3-1)
a = 0

exactly after Zou et al. (1995), except with an effective relaxation parameter defined 
to give a mixed-fluid mean viscosity

N q - 1

= Pa(M K ,P(r,t) ^

where ua defines the chosen kinematic viscosity of component a  of the node at r, 
which relates to a particular v r  through the colour map l ( r , i , a ), and

N q - 1  Q - 1

P(r .*) =  ^ 2  Pa (r, t) ,  pa { r , t ) = J 2 f ? ( r >*)•
q = 0  i= 0

Preventing coalescence amounts to dealing consistently with all possible mixed-node 
colour states using generalized perturbing and recolouring processes that eliminate 
mixing between all pairs of species, which may be stated as a need to maximize 
the work done by a generalized colour flux against a generalized colour gradient. 
Accordingly, the diphasic Gunstensen colour gradient is generalized for the interface 
between fluid a  and fluid /?, by what we assume to be its local normal (Dupin et al. 
2003):

l a p i r )  =  Y ^ (P a (r  +  c*) “  P^(r +  c i ) ) c i- (3-2)
i

This colour gradient is used to perturb the mixed fluids’ distribution (equation (3.1)), 
with a surface tension inducing fluctuation. For the interface between two compo­
nents a  and (3 we use a generalized perturbation,

A / “^(r, t ) =  a ap C ap (r ,  t ) cos(2(0/(r) -  0*)), (3.3)

in which there is no summation on repeated subscripts, a ap is a surface-tension 
parameter for the a(3 interface and

pa ( r , t )  -  pp ( r , t )
C ap ( r , t ) =  1 -

pa ( r , t )  +  p p ( r , t )
(3A)

is the generalized concentration fac to r  for the a, /3 fluid pair which limits the action of 
surface tension to multi-coloured nodes (Thompson et al. 1999). For a D2Q9 lattice 
(see figure 2), crap is modulated by the factor Ao, so that a ap becomes

i _  j Xo(TaP i eVen’
a<xl3 [ v a p  i  odd,
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It has been found that Ao ~  2.12 provides the best angular isotropy of the drop 
(Dupin et al. 2003). This maximization of the drop’s isotropy ensures that radial 
interfacial tension is uniform, but has other beneficial effects: the micro-current 
flow is minimized. To confirm the value 2.12, the qualitative features of the micro­
current flow field of an enclosed drop may be predicted: by considering the (angular) 
directions in which the perturbation (3.3) produces the minimum flow in the near­
interfacial region, the factor Ao =  3 /\/2  is given (as shown in Dupin et al. (2003)).

We now define an ‘average’ colour gradient which points towards component a  
and away from the total of all other components present at the node at position r  :

f a ( r ) =  ^  /? ( r  +  Ci) -  f j ( r  +  c i)

f a (r ) =  '^Z\2Pa(r  + Ci) “ P(r  + (3‘5)
i

The same calculation is repeated for each pair of fluid components a(3 present at the 
node, position r, the appropriate colour gradient f a ( r ) (equation (3.5)) being used 
to ‘re-colour’ (see below) for component a  within each node, essentially in the same 
way as for a binary fluid but with the order in which components a  are treated begin 
significant (see below). Accordingly, the total perturbation applied to the mixed fluid 
at the node at position r is

A f i ( r , t )  =  ^ 2  A f i ,0{ r , t ) ,  (3.6)

in which the summation is taken on all possible pairs a ,  (3 and A / “’̂ (r, t ) is defined in 
equation (3.3). Note that calculation of the colour gradient (3.5) requires knowledge 
of the absolute colour, not just the relative amounts of the different colours present 
in a local environment. The sum on a  of these individual fields is a measure of the 
local gradient in the total fluid density and is therefore zero only in a uniform fluid.

The perturbation process produces surface-tension effects in the hydrodynamics 
but it does not segregate the mixed fluids. To achieve segregation, a process of ‘re­
colouring’ is used. The (conserved) masses of the individual colours present at any 
mixed fluid site are numerically re-allocated to the post-perturbed f i ,  so as to return 
as much of species a  as possible up the gradient f a , defined in equation (3.5).

In order to achieve optimal colour separation, the order of the reallocation of 
more than two colours to receptacle f i  is significant. Different ordering in the re­
colouring process can clearly result in small differences in the post-collision, post­
segregated state. Careful observation shows that these differences are small but not 
without consequence. In order to produce optimum segregation (sharp interface), 
the minority species at a node is given prior ity  allocation to its favoured direction. 
Failure to adopt this scheme results in a relatively large loss of information about 
the location of minority species, resulting in small but undesirable adhesion between 
drops in contact.

Target flow applications are, by intention, heavily interface dominated. For the 
effectively mono-disperse systems we shall consider here, a maximum of five drops 
and ambient fluid in immediate proximity was allowed (again, simple packing con­
siderations mean this value will increase with increasing poly-dispersity). Resolving
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Figure 4. Geometry for a backward-facing step in channel flow with a step to channel width 
ratio of | .  Both upstream and downstream of the step, flow behaves as standard Poiseuille flow. 
The step region introduces a recirculation zone of length L, the point of reattachment being 
when the x-component of the velocity changes sign. In two dimensions, the ^-direction (into the 
plane of the paper) is infinite and so does not influence the flow.

five immiscible drops or de-mixing fluids leads to a maximum of 2 -P5 — 1 0  possible 
local interfaces. Having selected a resolution, however, it is crucial to note that we 
have shown th a t execution-time and memory requirements scale only weakly with 
iV, the number of components or drops (Dupin et al. 2003).

In high-volume-fraction flows, drops can come close to the simulation boundary 
and to each other. As an initial step, to avoid the need to postulate sub-lattice 
lubrication forces, we encourage an explicit layer of ambient liquid always to remain 
between drops and the boundary. We therefore need to ensure preferential wetting 
of the boundary and suspended drops by the ambient fluid. This was achieved for 
the simulations described here (Dupin et al. 2004). But the role of lubrication forces 
is quite possibly im portant in high-volume-fraction suspensions of deformable par­
ticles, for intimate contact is inevitable. As we shall discuss below, the applications 
considered in the results of figures 8-15 are designed to assist in determining this 
validity of this assumption.

4. R esults: single and iV-com ponent pressure-driven flows

We first investigate laminar pressure-driven flow properties of a single-component 
fluid over a backward-facing step using two different LBM methods. Steady-state 
results from EILBGK simulation and from body-forced LBGK are compared with 
experimental data (Denham & Patrick 1974). We proceed to simulate iV-component 
pressure-driven flow in similar internal geometries, concentrating on issues which 
relate to the transport of deformable particles, such as lift in a uniform shear and 
shear banding of a suspension.

(a) Laminar flow over a backward-facing step

The backward-facing step geometry (figure 4) produces flow separation at the step 
and subsequent re-attachment, which is recognized as im portant within industrial 
situations.

We consider a ratio of step height to downstream channel width of | ,  for 
which there exist two independent experimental investigations approximating two- 
dimensional flow (Denham & Patrick 1974; Kueny & Binder 1984). Other LBM
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simulations originate with Qian et al. (1996), who investigate the relationship of the 
length of the recirculation zone and Re. Chen et al. (1997) give a thorough quantita­
tive comparison of simulation results with experimental data from Kueny h  Binder 
(1984). Here we concentrate on a quantitative comparison with data  from Denham 
& Patrick (1974).

Results were obtained for a range of Reynolds numbers using two methods, both 
assuming two-dimensional flow. Our first method uses standard LBGK in D2Q9 with 
second-order accurate mid-link bounce-back ‘solid’ boundaries (figure 4), periodic 
boundaries in the direction along the pipe and forcing with a conservative body- 
force to approximate the principal part of the pressure field. No pressure gradient is 
set explicitly. The overall pressure field is extracted as described below. Using this 
method the ‘pressure term ’ (—c^dap), in the lattice Navier-Stokes equation (2 .2 ), is 
regarded as a correction to a principal pressure field which is the potential function 
for the appropriate body force. The body force in the narrow part of the channel is 
Y  times that of the wide part of the channel, based upon matching parabolic flow 
rates. The potential function for this conservative body-force field is

x <  xo,

t4 -1)- G ( x  + y x o), L > x > x  o,

in which G is the adjustable force constant and xq the step length. The pressure field 
of the body-forced LBGK (below) is now determined by the expression c^p -f <&. Mass 
is strictly conserved, and pressure across the width of the inlet and outlet throats was 
held constant. The length of the lattice was chosen to minimize compressibility errors 
(which may be measured from the velocity divergence in the steady-state continuity 
equation

n u a O
C'a'U'a — Oa p 

P
but are otherwise ignored here).

Our second method uses the exactly incompressible EILBGK model, which allows 
pressure and velocity boundary conditions to be applied more accurately at the inlet 
and outlet throats. Again non-slip boundaries are invoked using mid-link bounce 
back. Flow is now induced by setting discharge-matched parabolic velocity profiles 
at inlet and outlet and by fixing the outlet pressure while allowing the inlet pressure 
to develop to accord with the necessary pressure gradient (itself an observable). 
Because of direct link between lattice density and pressure, the total mass of this 
simulation increases asymptotically to a steady-state value.

Using the law of similarity, we compare body-forced LBGK and EILBGK simula­
tions with experimental results from Denham & Patrick (1974), based on Denham’s 
definition of Re:

Re =  — , (4.2)
v

in which U is the average flow velocity upstream of the step, h step height and u the 
kinematic viscosity. Comparison of simulated and experimental data was made by 
normalizing velocities to the appropriate U , distances to the step height h. For all 
our velocity data we note that both the body-forced LBGK and EILBGK results give 
very similar results for given Re, so velocity figures are representative of both models

Phil. Trans. R. Soc. Lond. A  (2004)



Many-component LB equation for transport of deformable particles 1905

.5
00

---------------------- r ....................  i ■ ' " ~

i  simulated LBGK data 
* simulated EILBGK data ............. jl...
* exp< 
□ exp<

jrimental laser 
irimental dye-

anemometer data 
trace data 5

I
□H

►ftiK
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Figure 5. The recirculation length as a function of Re for the expansion ratio Data are 
compared with experimental values obtained via dye trace and laser anemometer measurements 
in Denham &; Patrick (1974).

used. For all velocity data, flow profiles in the inlet and outlet were in good agreement 
compared with parabolic flow, supporting the assumption of fully developed flow. All 
results are analysed in their steady-state solutions, found by measuring the residual

R(*) = 2^lu(x’t)l- (4-3)
X

For the EILBGK system there is an additional condition on the total mass, which 
must be constant at steady state.

From stream-function data, the recirculation zone was seen to increase with 
increasing Be. The position of the vortex centre is given by the coordinates (x c =  
0.3L n , y c =  0.6/i); this is in agreement with the coordinates given by Denham Sz 
Patrick (1974).

We define the recirculation length to be the distance x  from the step at y  =  0 
in which a change in the rr-velocity direction occurs. Figure 5 displays normalized 
recirculation length against Re  for the step ratio of | .  Note that the LBGK data 
provided in figure 5 are more accurate and cover a greater range of Re  than in 
previous studies (Qian et al. 1996).

Both LBGK and EILBGK data are in good agreement. For given lattice resolu­
tion it was observed that the range of accessible Re  for EILBGK is less than those 
for body-forced LBGK, owing to a more stringent incompressibility constraint. The 
experimental data points, taken from Denham & Patrick (1974), contain a ±2% 
tolerance for measurements of velocity. Including the tolerance limits, experimental 
results lie just below the simulated points, the discrepancy increasing as Re  increases. 
But CFD simulations agree with our LBM models.

Velocity profiles obtained at different locations along the simulation are compared 
with experimental velocity profiles in figure 6. Recall that the agreement between
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Figure 6. Comparison of simulated velocity profiles with experimental profiles obtained in Den­
ham & Patrick (1974) in the step region at Re =  73 for various dimensionless distances from 
the step position: (a) —1.3, (b) 0.0, (c) 0.8, (d) 2.0, (e) 4.0, ( /)  6.0 and (g ) 8.0.

EILBGK and body-forced LBGK data is good and figure 6 shows only one set of 
simulation data, which agrees satisfactorily with experimental results at Re =  73. 
Upstream of the step, discrepancies are probably due to an inadequate development 
length in the experimental inlet (Denham & Patrick 1974). At higher Re, there 
emerge further discrepancies throughout the length of the system, probably due to
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Figure 7. Pressure contours for (o), (b) R e =  31 and (c), (d) R e =  174 for (b), (d) body-forced 
LBGK and (a), (b) pressure-driven EILBGK. Both simulations used identical velocity boundary 
conditions (refer to text) but only in the EILBGK simulation does inlet pressure develop freely. 
There is qualitative agreement between the pressure fields (e.g. minimum pressure occurring in 
the recirculation zone for both simulations).

three-dimensional effects (Denham & Patrick 1974). More recent experiments on 
a backward-facing step with a step ratio of |  (Armely et al. 1983) support this 
conclusion.

Figure 7 shows steady-state pressure contours (with constant increment, in arbi­
trary units) for different Re, for body-forced LBGK and pressure-driven EILBGK. 
The step height is one-third of the width of the channel. The lattice size is 60 x 600. 
Recall that it is EILBGK which accommodates pressure boundary conditions, with 
inlet pressure developing freely. Qualitative agreement is good, with the minimum 
pressure occurring in the recirculation zone for both simulations. Notwithstanding 
this, there are small quantitative differences between these pressure fields of the same 
order as those which routinely appear between CFD solutions obtained by different 
methods. Unfortunately, no experimental information on the pressure exists.

As can be seen from figure 7, our two methods produce slightly different pressure 
contours. However, given their very different representations of a pressure field, the 
correspondence between the results is highly reassuring. Body-forced LBGK imple­
mentation essentially assumes a uniform gradient of pressure which is perturbed. 
While intuitively valid at most points in the simulation domain, this assumption is 
weak in the step region, where forced LBGK and EILBGK show differences.

(b) Suspensions of deformable particles

We proceed to consider pressure-driven flow of deformable particles, modelled as 
incompressible liquid drops, of varying volume fraction. The solid properties of our
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Figure 8. The increased blunting of a dense, monodisperse suspension’s velocity profile with 
increased volume fraction <fr, with fixed drop deformability. The latter is quantified by surface 
tension (parameter a  =  0.01) and viscosity ratio A  =  30 and fixed flow rate (pressure gradient). 
4> varies over the range 0.1-0.6. The latter value is determined by packing and lubrication 
considerations.

particles are controlled through their interfacial tension and viscosity relative to 
that of the ambient fluid, A. The latter is parametrized by A  ^  50 and controlled 
as discussed in the last section. Figures 8-12 demonstrate our TV-phase algorithm 
applied to pressure-driven duct flow of a dense suspension of neutrally buoyant drops. 
On inspection, our blunted profiles have noticeable departure from parabolic. We 
assess averaged departure, at normalized cross-duct distances y  =  0.25 and y  =  0.75 
by defining a blunting (3:

=  v ( y  =  0-25) +  v ( y  =  0.75)
P 2 x 0.75 ’ 1 ‘ '

in which 0.75 is the height of a normalized parabola. With this definition, a flat 
velocity profile is characterized by (3 =  1.33 and a parabolic velocity profile by 
j3 =  1.00.

A lattice of size 100 x 250 containing drops of initial radii 4 lattice units was 
used. Data were extracted from steady-state configuration (typically 1.0 x 105 simu­
lation time-steps). The upper and lower dot-dashed lines in figures 8 and 9 illustrate 
the value of (3 corresponding to a flat and a parabolic velocity profile, respectively. 
The dashed line represents a second-order interpolation to the data. Details of each 
simulation are to be found in the appropriate caption.

For rigid suspended particles it is known that the velocity profile is determined 
solely by the suspension concentration and the relative particle size (Caro e t al. 1998). 
By setting A  =  50 (large) and increasing the volume fraction of suspended material 
we can obtain the expected increase in (3 (figure 8). We note that no significant

-f- data
 second-order fit
  flat profile
 parabolic profile

+  /

y +✓

± ~ ' + ' +
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Figure 9. The decrease of blunting with increasing pressure gradient A P  with non-constant 
deformability. Fixed surface tension (parameter cr =  0.005) and viscosity ratio A  =  1.

changes in fi were observed for constant volume fraction, on increasing pressure 
difference, as expected.

For immiscible liquid drops (i.e. flexible particle suspensions, A =  1), on the other 
hand, we observe the expected dependence of the velocity profile upon the flow 
rate (applied pressure gradient), with the degree of blunting decreasing as flow rate 
increases (Caro et al. 1998) (figure 9).

In both figures 8 and 9 the expected qualitative features tend to vindicate the 
method we have used to circumvent lubrication forces (see the last section). The 
qualitatively correct nature of the variation in the macroscopic suspension flow pro­
files emerges from the microscopic rules implemented. In particular our device of 
enforcing an explicit layer of ambient fluid at drop and boundary surfaces seems to 
be valid, at volume fraction <f) =  0.6 at least.

Recent experimental data confirm the shear-induced positional ordering of dense, 
intimate suspensions of particles and drops (Frank et al. 2003). Figure 10 shows the 
time-development of the cross-duct location of all the drop centres in an initially 
randomly placed suspension.

Clearly, starting from a random configuration (figure 11), and after an initial phase 
of transverse migration, our dense mono-disperse suspension of drops tends to flow 
in well-defined horizontal layers (figure 12), with occasional ‘hopping’, giving rise to 
an effective transverse diffusion of suspended drops.

(c) Lift of deformable particles with linear shear

Liquid drops deform and certainly do not transmit stresses instantaneously. To 
compare the properties of liquid and solid drops as components in a microscopic 
model of transport we consider particle lift. Particles of radius R  confined in channels

. t

-K

- j-  data
 second-order fit
  flat profile
  parabolic profile
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Figure 10. Trajectories of drop centres in time. Drop surface-tension parameter a  =  0.005 and 
viscosity ratio A =  1. The suspended drop volume fraction was 0.6: the lattice size was 250 x 100 
and the drop radius was 4.
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Figure 11. Random initial arrangement of the droplets.

and subject to flow (here a linear shear 7 ) tend to migrate away from the wall, 
eventually to advect at some distance from the wall characteristic of the particle 
Reynolds number:

7  R 2
Re p =  1 — . (4.5)
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Figure 12. Steady state of the suspension of rigid droplets showing banding and ordering.
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Figure 13. Steady-state elevation of a single droplet in straight channel 
normalized to its diameter with the particle Reynolds number.

Figure 13 shows the lift (normalized cross-duct displacement) of a neutrally buoyant 
deformable drop, A =  10, for reference, and a solid cylindrical particle of the same 
size, for a range of Rep.

The latter was simulated by the LBM using the algorithm of Ladd (1994). Sim­
ulation param etrization for both solid and deformable drops is as specified in the 
figure caption. The geometry of both simulations was identical. As expected, there
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is a some difference between the two objects—a relatively low viscosity drop has an 
internal flow structure and a different drag. However, within the bounds of simula­
tion error, both solid and deformable drop data show qualitative similarities in the 
overall shape of the graphs. Note also that the range of accessible R ep is appreciable.

5. Conclusion

In § 2 of this paper we have derived governing hydrodynamical equations for single­
component LBMs and in §3 we detailed the most recent TV-component extension, 
predicated on continuum length-scale applications to large numbers of explicitly 
modelled deformable bodies.

The lattice Boltzmann technique appears to present a numerical scheme for the 
simulation of complex, TV-component hydrodynamics. In particular it holds out the 
prospect of realistic simulations, at the continuum length-scale, of high-volume- 
fraction suspensions of deformable drops, currently modelled as drops of relatively 
viscous, incompressible fluids.

We present results for pressure-driven flow in internal geometry, demonstrating and 
validating an efficient single-component implementation (the backward-facing step) 
and an TV-component extension (chaining, lift). For many engineering computations 
in the lattice Boltzmann literature, flow is induced by a uniform body forced method 
for easier algorithmic implementation. Our single-component results suggest that, if 
only velocity information is required, then this method may be used with confidence 
and, with appropriate adjustment, can produce a good representation of the pres­
sure field. Our multi-component results, we suggest, point to TV-component lattice 
Boltzmann simulation as a very useful tool for the explicit modelling of transport in 
dense suspensions.

For the future, our model should be improved by the inclusion of lubrication 
forces, which assume increasing importance as the suspended material volume frac­
tion increases. At low volume fraction, suspended particles will, broadly, advect with 
the flow, embedded in the local fluid. Accordingly, the properties of the interface with 
low tangential and normal stresses, especially in respect of the micro-current activity 
assume greater significance. For micro-fluidic applications, to which all the methods 
reported here apply, this micro-current is, again, of considerable importance. It is 
our opinion that the most significant challenge to application of the TV-component 
lattice Boltzmann computation is accurate representation of the interface.
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