Sheffield
Hallam
University

A human-machine interaction tool set for Smalltalk 80.

SPALL, Roger P.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20389/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20389/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

TELEPEN

02649358 7

T

1337

Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10701035

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10701035

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

A HUMAN-MACHINE INTERACTION TOOL SET FOR SMALLTALK 80,

by

Roger Paul Spall, BSc.

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic Awards
for the degree of Doctor of Philosophy

Sponsored by Sheffield City Polytechnic, in collaboration with MRC/SERC
Social and Applied Psychology Unit, University of Sheffield.

May 1990

LT PONTEC,

e Al ECHE o

Y T s

N ~ 5

e "W; . TR
a0s- w5

‘\ SPw .

N e - 4
4

/

S T <
e fORD STREET A

Contents.

Contents.cccoceuvureureucreneucennenen et e bbb e e bbb bbbt a s et sen i
LiSt Of FIGUIES. ...ttt st s besscssssssesssssassssssssssssssssasans vi
ACKNOWIedZEmMENES. ...ttt tss e eaesesesenesenes vii
ADSITACL. ..ottt ettt s ettt b bt s s e sasane viii
Chapter One.

Introduction and Thesis OUlINe. ...ttt ssseerenens 1
1.1, INPOAUCHON. ettt sttt setstssssssssessesessssssasassasesenes 1
1.2, TRESIS OUINE.cuneeeeeieeeeeeeriteceneteecteeeesseeenesessessaseessssnsessssesssssesessssssessssssesssssens 3

Chapter Two.

Software Related Influences Affecting User Acceptance of Computer

Software ApPPHCAtIONS. ...ttt sesessasasaressssssesesssssesesesssssssasss 6
2.1, INEFOAUCHON. wueteereitctcenrctctet st s st sa s se s s bnens 6
2.2, SIMPLICIHEY . ettt s e e s n st s 6
2.3. CONSISEEIICY . coveeririrnereriririetererenee sttt et e ssssesesessebesnasnessssssansasasans 7
2.4, INtEGTAHON. toieeeeeeeesesestststntst sttt st sttt se s e sesasnsnsnen b sn e ns 9

24.1. MOAES. «.uvurririrrrerererenensseneseseneseseseesesesesesesesesesesesesesesesssssssesssesesssssssssssssssasens 11
2.5, MEtAPNOT. ...ttt et n e e s e b 13
2.6. INteraction StYleS. ...ttt e sr e ans 15
2.6.1. Command and Natural Language.ccceceeeemernreereeeneenerenereieresnnennns 15
2.6.2. MENUS....ovtrteniritenriteteeeresense e es et sssbes s s sss e e ss s ssbsanebe st e b s sebananas 17
2.6.3. Direct Manipulation.......ceeeeeennensrctsstene e 18
2.6.4. ComDINALIONS. ...coveririerercritiitiicneincere et sa s sn e e s s erensenes 19
2.6.5. Dialogue Control and Specification........ccceoeueueieererreeeieceeeieeiennenae 20
2.6.6. Style GUIAES....cucuirreiererenretereiectercre ettt sre s enssssene e se s st snsssensbssssanas 20
2.7. Error HanAUNEcceuevereereeieieieseticctctnesteese et ssss s ses e enes s ssssnsse s sssssseseas 21
2.8. Documentation and Tutorials........cceveeerereienreerenieteee e 25
2.9. Interface Separation. ... ens 28
2.10. Interface ErgONOIMICS. cuucuermeerecemmeeerevecessensscrsessecsssesssssscsscsssessecsesscssessssasssssosases 29
2.11. SUMMATY. ceeeeeeeeerreesetssstatetsietssesetesetstesesetatesstssasasssssasasasatasasasssssassasasasassossssssasases 32

Chapter Three.

The Application of Artificial Intelligence to User Interface Design...........cceuce.... 34
3.1, INTOAUCHON. c.etteieitrtetetrienenee e snssssaerssess s seae st ssssss s s sesas s s bbb sasassasenns 34
3.2. Additional Intelligent Interface Modules............... vererereressn b ne e e s esensnsnsnenans 34

3.2.1. Intelligent Help SyStems. ...ttt enenesesesenacs 34
3.2.2. MOGEIS. cuuurirrcrtereretenetinineierereeseense e see s e e e e e se e e sesesesesesssnasasassssassssases 38
3.2.2.1. USer MOdEL ...ucuuuiuirienirrnrnrnnrisieseseessiesesesesisesissesessessssesessssssssanes 39

3.2.2.2. Application Model.couemeeeririsinrienteteneeeeietnnne e sesesnssenss 45

3.2.2.3. Real World Model. ...ccoeoueeiveniiiiieecnnnenae SS—— 46

3.2.2.4. Summary.cccoeuvuerenene retstst et e ettt st st sa e b e b b s bR aR bbb s 46

3.2.3. Adaptive Interfaces........cocovurreernerererersreranenenens reeserereeesassasaenenes verenennn 48
3.2.4. Planning AIdS.ccocveivinierniernenenieneseinssssssesssesessssssssssesesessessenssssseses ceeenns 51
3.2.5. General Architecture for an Intelligent Interface.coceuevueuerererennces 53
3.3. Interface ClassifiCatiON. ...cccecicvecrrresrcrercensesuesessiossesscssessessesssnsncessossssssssssssssersenses 56
3.4. Approaches to Interface DeSighi......ccusuvesersrsnsessensussussssrusinsssrsescnsasessasesssssssiaes 58
3.4.1. Requirements For Good Interface Design.ccceceerueuecnee. verresnenensaees 60
3.4.2. Graphics Environment Manager.cccoevevevererercenenne reeseseenineanasrsenans 63

e

3.4.3. The Model View Controller Mechanism used in Smalltalk

B0.uneniuireiirerene et bbb RS e st e aa R R bt sa st s s bt n b s 65
3.5, SUINIMATY . oottt ca st ss s sssasssssssssssnsansasasasssssssssasas 67
Chapter Four.
Experience With Other Influences which Affect User Acceptance of
COMPULET SYSTEIMS. c.curerrrierirenriteietsee et s rcss st esessesesaesssssssssssssssssassnnens 69
4.1, INtrOAUCHON. cuvereerrtttetectetttc ettt ststse e s sn s sa e s varens 69
4.2. The Working Library SYStem.cccviiirirsieiicnsescneeaeresssssessssssssnns 70
4.2.]. OVEIVIEW. ettt st st cs e s s ss et st esssesassasssasasass 70
4.2.2. Library System Description.........ceceeeeeietcieictctteeeesensenencesescecsnnns 71
4.2.2.1. Database StIUCLUTE.cviirrercveeiictricsiiicsesescsesenesescsesentacsenessnens 71
4.2.2.2. User INterface.ceeciciiciitnttcrssesisseesssscesesns 72
4.2.3. Library Investigation Results.cccuuiiininniiiiiieccecicicicncnnens 73
4.2.3.1. Initial Notebook Investigation.........cccevemereerrevenvenenreeerecrniennnnns 73
4.2.3.2. Initial INTEIVIEWS.....coevietitiiirtiiicicicrcitnrctte e 74
4.2.3.3. Further Interviews......coeeeerevevenereinienninnnnsenanns ferveetereenereannnens 75
4.2.4. SUIMINATY . coereerirersssreinssiessssssessssssisssasasassssssssssssssssssssssssssssassssnsasssssssssssses 79
4.3. The Influence of Systems Analysis and Design upon User
Acceptance of Computer SYStEmMS.....cccueiiirintienineninistnt st seeeseeneseneees 81
4.3.]. SUIMIMATY . ceeerereeererenseeessstsisiseerssassssssacs 87
Chapter Five.
An Investigation into the Quantitative User Modelling of User
Interactions for the purpose of Predicting User EXpertise......c.coevevenenineninirnnincnnnce. 89
5.1, INEFOAUCHON. wuvvriirrttitetetctctctttcttctettesee et en s s b snes s s sssnesenesenensnsnananes 89
5.2. Overview of the Proposed Quantitative User Model.coecuvrrrevnerreecnennns 92
5.3. Structure of the Proposed Quantitative User Model.........cceccueuerrrenerinnnnne. 93
5.4. Functioning of the Proposed Quantitative User Model..........ceceuveeeniennnne. 96
5.5. Evaluation and CONCIUSIONS.coeiiirinirerienitninteeteteretesstssesesesesssssessssnesnes 100
5.6. SUIMIMATY. .uciriiniiereritiineteesessstesesesessss s s e ss s en st s s e s ss s s sns st snsssssessasasesssanes 102
Chapter Six.
An Object Oriented User Interface Management System, and Integrated
Interface Design TOOI-Set. ...cceuiiriieeiiietiiesiintsc ittt st s essessnsenes 103
6.1. INtTOAUCHOM. oottt neres s s s s ss s s sbensnansnasanes 103
6.2. Overview of Object Oriented Programming........oceeeieenesesesesecenineneneennenee 103
6.3. The Smalltalk 80 Programming Language and Environment................... 106
6.4. The User Interface Management System and Software
ATCRIEECHUTE. v cueetrecctrncriiesnitit sttt s sa st s s er e aassessnssasans 107
6.4.1. The Pluggable View Controller Mechanism.ccoeeeveerneeencennncnnnas 108
6.4.2. Communication Between Objects and Pluggable View
CONUTOIIETS....cviviririicriiiteineieintee et as s ae e se e e se s e sssussaesnsnssnsansnen 110
6.4.3. Defining a Direct Manipulation Interface for an Object........ccecoeuunce 115
6.4.4. Part Pluggable View Controllers..........cccoceununeee eererasssnerenasssssassrsnsessntass 116
6.4.5. Interaction Pluggable View Controllers.........oouemeeenininnreescceneecunannnn 117
6.4.5.1. Internal Interaction Pluggable View Controller
SETUCHUTE...c.vevnemcrirnririrennissiaetiseseesenisnsess s sesssssenssssesssssassssssnsssssaasanssssssssens 119
6.4.5.2. External Interaction Pluggable View Controller
DESCIIPHON. . vtrteeieterrsssssessss sttt stssessasssss s sasasasseseasasseos 123
6.4.6. Communication Between Interaction Pluggable View
CONUTOIIETS .o cmeereciisesisesesetetsesnrssssssssssss b as s s s s stssssssssssssssssasssssnsusssasssasassens 127

6.4.7. Interaction Pluggable View Controller Cursors.........ccececveececseruenennee 129
6.4.8. Interaction Pluggable View Controller Multiple Linkage

SLOTS.c.viierirririnnnsresstnis ettt e s e st s st s s a st st st e sessa s e sasenaas 130
6.4.9. Default Part Pluggable View Controllers.........ccceeerverereencnerreessensenens 132
6.4.10. Part Pluggable View Controllers and Part Hierarchies..........cccevee... 133
6.4.11. Special Part Pluggable View CONtrollers..........c.cccoeueeueurersueeemevecnsennnn. 137
6.4.12. Interactive Creation of Smalltalk Objects.......ccccceeerurrrerrurerrrenerrrrernunns 138
6.4.13. Construction and Interaction Menus.........cccoeeeecveeuverererreivsrnerernuenennns 139
6.4.14. Extended Lean Cuisine Hierarchic Menus......c.ccccecvereernenerensrererereenee. 139
6.5. The Part Pluggable View Controller TOOI-Set.ccceceuvercmrerererecrerennranennn. 141
6.6. SUINIINIATY. c.cueueueirrnrerissrsisietststststeesete ettt et et e e s bbb sssssasasserersn b esessassesenns 142

Chapter Seven.
The Support of Part Hierarchy Mechanisms in an Object Oriented

LaNUAGE. ceeveueerreirriterereterenssisseeestssetsretesststs e s snsssssssssssatessssssssssssssssssasessssssassssasssssssesssns 144
7.1 INTOAUCHON. ottt e sensnenenes 144
7.2. What is a Part Hierarchy, and Why is it Needed ?......cccevuvveveereernrennnne. 144
7.3. Difficulties with Object Oriented Languages and Part Hierarchies. 146
7.4. Solving the Problemu.... ettt 147
7.5. A Solution Implemented in Smalltalk 80........cocovvuriennnrereneiereesennnen 150
7.6. An IMProved SOIUION. ..c.ocecieeririeetntetsrssesse ettt ssse s sssssssssssnsns 152
7.7. SUIMINQATY. ccooveriiriristereesinsssitesesssesesssssessssssssesssssesessssssssesesssssssssssssssssssssasassssssssssans 152

Chapter Eight.

Critical Evaluation and Assessment of the Proposed User Interface

Management System and Smalltalk 80......cceerieeeeeeceienincetntneeeee e 154
8.1, INtTOAUCHOMN. vttt sereben et s se st b s s e 154
8.2. Evaluation of the Underlying User Interface Management System
SOftware ATChIECLUTE. ...ttt sssssres s ssesssssas s s nsassns 154

8.2.1. Advantages of Interface Separation.........cccueereererereieisseiseneisnssensenens 155
8.2.2. Software Requirements for Interface Separation..........ccceeveueieecnnncse. 156
8.2.2.1. The Number of Components required.ceveevererererssenaunas 157
8.2.2.2. Application Function Set and its Preconditions.ccccevenuuee 159
8.2.2.3. Application and Interface States.cooeeuemreeerninnernrnrensesnnnas 161
8.2.2.4. Component Communication Requirements.cccevurueueucucns 164
8.2.2.5. Separation CONtroller.......oiimeemieeecieieerereeteneteeesnessteenenes 166
8.2.2.6. Interface Defaults........coceuviereeireteennininsieneeneetesssssnsesssssnsssens 167
8.2.3. Interface Separation Design Constraints........oceeeevevecneeneecnenencenccns 167
8.2.3.1. Application Independence..........ccoeeveeuererensrerererensnensuecscscnenns 167
8.2.3.2. General Application Design Constraints.cccececeeeeerercecccnccnc. 168
8.2.3.3. General Interface Design Constraints.cceceeueuerereusescscncncecs 168
8.2.3.4. Constraints imposed by the Separate Application on
the User INEEIfACe.cccuiviiirireritinieeeeesentessereserenssss s ssssss e sssssssasacnss 169
8.2.3.5. User Interface Constraints imposed on the
APPHCALION. ceitrrtstseetsteetstsestes sttt es st s ees 169
8.2.3.6. SUIMIMNATY. c.cerurtrreresrrrsrereressesssesssssssassssssssssssssssssssssessssssssscassmsmssasens 169
8.2.4. CONCIUSIONS. c.cucurerrerrrinirisisisisiiseisisrssissssissessassesssssessssssssssssssssssssssnsasasssoes 170
8.3. Evaluation of the Object Oriented Paradigm and Smalltalk 80
Programming LangUAage.ccceveureremserennusiscustscsensisisissustsissmsinsusissasssessnssssssssssssases 171

iii

Chapter Nine. :
Suggested FUIther WOTK. e sesesasasins 176

9.1, INTOAUCHON. ceeeteeee st sessesesensasaessssacsenescssnsnssenas 176
9.2. Extensions to existing User Interface Management System
IMPleMEentation. ettt esesss e ss e e s senasas 176
9.2.1. The User Interface Management System Architecture and
TOOL-S L vttt er st ettt as s sn 176
9.2.2. Quantitative User MOdel ...ttt ceeeeeeeeeeees e sseesseens 179
9.2.3. Part HIerarchies.ococeuueeeeiucucrciiiniiiscnctceeeencnceessessssesssssessssssssssesns 180
9.3. Further User Interface Management System Implementation. 180
9.4. Smalltalk 80 Programming Language EXtensions.c.ccececevevcveeuiercrccncs 181
9.5. Further Systems Analysis and Design Work........ccincincicninccninnnee 182

Chapter Ten.

Final CONCIUSIONS. ccouiriiuiniiieniiiiniisiii st ssssessssssssresssse s s snsasssssssssans 184

Bibliography ...ccccoeeererreeeeeetnreinieeesssensne e esssscssanenssimassnssasesnatssessnsasuenensesaesssuases 187

Appendix A.

Library Notebook Statements..........c.cveeeeeeeieiieierncnisnisssssssssisssssssssssesessssssssssasens 230
ALT. SUDJECE TWO. curereirereerrenitetetetesetetssense s tess st s st s s s sssssasssassssssssnsassssssnssssasasns 230
A.2. SUDJECE FOUL. ottt ettt as e st ss e sescscnns 231
A3, SUDJECE FIVE. .ottt ettt ssstes s s sas s st sssss s e s sasese e s senscaes 232

Appendix B.

An Overview of the Smalltalk 80 Programming Language and

ENVIFONIMENL. ottt sssssessssesessssssssessssssssasaessssessesssnssssssansass 234

Appendix C.

Object Oriented Quantitative User Model Source Code.....oovuerninecenisenecenncuccace 239

Appendix D.

Smalltalk 80 Example Object COde.ccururrrrnerrreninrnrnintstesssssssisiessss s s sssssssssssscscnes 250

Appendix E.

Extended Backus Naur FOImMats........ccoevuieerieineererirercsneeiereiessiesie s sssssssssssssesens 267
E.1. General SYNAX.....cccoerirerrusuriereesssssrsrstssessssssssssssssssssssssssssssasssssssssssssssssssssssssssesces 267
E.2. External PVC Slot DeScription. c..cuvueeeueieeieeeeeneiinestsssnssnesssesssesssnsssesesccnsan 267
E.2. Part PVC DeSCIiption.....cceeieieienenieieenerestsisisisnsseniresesssssissssnsssnesessassncsssssssnsasases 268
E.2. Extended Lean Cuisine DesCcIiption.....cccceerereeeininienniensnienesesissssescenessonsnes 269

Appendix F.

Interaction Pluggable View Controller Library.......cecoeecvemnneceriseseescnccncnsisincaens 271

Appendix G.

Class Hierarchy for Object Oriented User Interface Management System

860205334 =301 -1 103 | VU P TP 287

Appendix H. :

Example Interfaces and Associated Code Generated by the User Interface

Management SYSEEIM.ourrerrerressssssstusessetsissessenssssetsesseasenssssessssssssssassssssssssssassassssess 291

Appendix I.

User Interface Management System Tool-Set Documentation.ccceeeveunneee 345
L1. Creating New Part Pluggable View Controllers........cceeureecuererncerensnserennne 345
1.2. Default CONnStruction MenUS............uccoeuereecmeenseneniesssnnsesecsssersssecsesseesssnsssseesenns 346
1.3. Adding Interaction Pluggable View Controllers...........coceeeveeeeeeeemreevsercsenenns 348
L4. Adding Further Part Pluggable View Controllers.c.cocceueeereeemeerensrnsnne. 350
L5. Aligning Pluggable View CONIOIIETS.ccovuumrrererrrnrenerecascneseesensensensensssennes 350
L6. Linking Interaction Pluggable View Controllers to one another................ 351
1.7. Modifying Pluggable View Controller Size........ccocoeumrerruerrerrerceceseeneneseesennn. 351
1.8. Closing Pluggable View CONLIOIIETS.coceeeruernsuererrnsensersessensesssssesessenssnesnnes 351
L1.9. Modifying and Reviewing Pluggable View Controller Linkage Slots
using the INSpector WINAOW. ...t ssssssnnes 352
1.10. Code GeNETAtioN.ceuueeecuiuisinecssncnstecneaesensisssnssssssssssesssasssssssssssssssscnssnsens 352
L11. Setting Default Part Pluggable View Controller.........co.ccoueereuerererveererensennees 352
1.12. Changing Part Pluggable View CONtrollers.........cccceuerererrmreesrererersesssersserene 353
1.13. Spawning Part Pluggable View Controllers.oeceeueeueerereerinssrerseresserennas 353
1.14. Building Extended Lean Cuisine Hierarchic Menus..........cceceeeeveeerrrerecnnes 353

List Of Figures

Figure 2.6.2 - Hierarchic Menus.ccccecoeureresernennneenneeesecsseeeessessessssssssesssesses 17
Figure 2.7 - Error Classification Methodology........ccceuemeumruemrnernerenseeseeernermsenssesseennes 23
Figure 3.2.1. Traditional Application Configurationeeeeeeeereemreerrseerresresranss 35
Figure 3.2.2.1a - User ClassifiCation.ccceeueromreerunmieesreeenecsseseneesesessesssessessossssenes 40
Figure 3.2.2.1b - Two General User MOdels.cceeueruerremrereneeneineeeeeseressessessesses s 42
Figure 3.2.2.1c - Example Transition Diagram for MacWrite.ceooevvereevrn.... 43
Figure 3.2.3 - Adaptive Intelligent Dialogues Architecture.coocoevevcevrerren.... 49
Figure 3.2.5 - Complete UIMS ArchiteCture.ccocoeeeumeemrreniverrecnncesisecneceseesssasseennns 54
Figure 3.3 - Classification of INterfaces.........cceeeeesemrurrersseesrnssneneeneseesecseeecessses s 58
Figure 3.4.2 - GEM ATCRItECIUTE. c...ucveeteeicettccrcencenenneetssss s sees st sasaseees 64
Figure 3.4.3 MVC CONCEPL. c...uurreeneirctiniieaeincesenencssesssnsssesssses e ssessesssssssssssssssnssssenns 67
Figure 4.3 - Design Role ANAIOZYcuiuviuiueecurecemeesnuensensssasensnsensesessessesesssssssssssssens 87
Figure 5.3 - Quantitative User Model Structure.coeceeveeevversrersesrreesrsseressensennn. 93
Figure 5.4a - Usage Relationship Between Different Conceptual Levels............. 98
Figure 5.4b - User Learning CUIVe.........ccocvuiuiurircurucneeeseismensessissnsesssssssesessssssssesseses 99
Figure 6.2 - Object Class Definition and INStances.........c.coceeueeeecereseserssrererssessesennes 105
Figure 6.4.1 - Pluggable View Controller MechaniSm.........cceetveeereueverersvereensererenens 109
Figure 6.4.2a - Pluggable View Controller Communication..........ceeveeueveerrerennecn. 111
Figure 6.4.2b - Application / User Interface Communication........ccceeeeereverrernenens 112
Figure 6.4.4 - Part Pluggable View Controller Architecture..........ccceceeeverererereennns 116
Figure 6.4.5 - Interaction Pluggable View Controllers Model, and

connection to a Part Pluggable View CONtrollers........c.ccceevveruvereeeererenrsesresssesnnns 118
Figure 6.4.5.1 - Interaction Pluggable View Controller, Part Pluggable

View Controller, and screen Co-ordinate SyStems........ccceeceevereererererreeessirreresserennnns 122
Figure 6.4.5.2 - Example Interaction Pluggable View Controllers..........ccceeruenne.. 125
Figure 6.4.10 - Combining Part Pluggable View Controllers.........cccceceveverereerrrennne. 136
Figure 7.2 - An example Part Hierarchy.coccececceuuececncnemsenscrsersssesssssssssssssessonsens 145
Figure 8.2.2.1 - Two Approaches to Interface Separation...........ceceeeererersrernersuenen. 157
Figure 8.2.2.3 - Comparison of Switch Interaction Pluggable View

CONLTOLIETS. ettt tsense e ascssesssesst s sstss s s stasassassssassesessesassaranns 162
Figure 8.2.3.6 - Component Stability Within Separable Architecture.................. 170
Figure 9.2.1 - Further Separation Within a PVC......cccccoovcmnenninevnsnrcsrennesnsesnnenns 177
Figure B1 - Example Smalltalk Class.........cccceuveururiviireniuecnnunceesencnnenerersessssesesseesanes 235

vi

Acknowledgements,

This project was funded under grant number 8631820X by the Science and
Engineering Research Council.

I would like to thank my supervisor Bob Steele, and Director of studies
Professor F. Poole for their help, and advice during the period leading up to
this report. :

I would like to thank my wife Elaine, for all of her moral support and
encouragement during the project.

I would like to thank the MRC/SERC Social and Applied Psychology Unit at
Sheffield University, the Human Factors Laboratory at ICL, Bracknell, and
British Telecom Research Laboratories for their assistance with specific
components of the research.

I would also like to thank Ian Morrey, and Dr Jawed Siddigi who have also
given their help and advice regarding the contents of this thesis.

vii

Abstract.

This research represents an investigation into user acceptance of computer
systems. It starts with the premise that existing systems do not fully meet
user requirements, and are therefore rejected as 'difficult to use'. Various
problems and influences affecting user acceptance are identified, and
improvements are suggested. Although a broad range of factors affecting
user acceptance are discussed, emphasis is given to the impact of actual
computer software.

Initially, both general and specific user interface software influences are
examined, and it is shown how these needs can be met using new software
technology. A new Intelligent Interface architecture model is presented, and
comparisons are made to existing interface design approaches.

Secondly, the role of empirical work within the field of Human Computer
Interaction is highlighted. An investigation into the usability and user
acceptance of a large working library database system is described, and the
results discussed. The role of Systems Analysis and Design and its effect
upon user acceptance is also explored. It is argued that despite

improvements in interface technology and related software engineering
techniques, a software application is also a product of the Systems Analysis
and Design process. Traditional Systems Design approaches are examined,
and suitable improvements suggested based upon experience with emerging
separable software architectures.

Thirdly, the research proceeds to examine the potential of Quantitative User
Modelling, and describes the implementation of an example object oriented
Quantitative User Model. This is then evaluated in order to determine new
knowledge, concerning the major issues surrounding the potential
application of user modelling to interface design.

Finally, attention is given to the concept of interface and application
separation. An object oriented User Interface Management System is
presented, and its implementation in the Smalltalk 80 programming
language discussed. The proposed User Interface Management System
utilises a new software architecture which provides explicit user interface
separation, using the concept of a Pluggable View Controller. It also
incorporates an integrated design Tool-set for Direct Manipulation
interfaces. The proposed User Interface Management System and software
architecture represents the major contribution of this project to the growing
body of Human Computer Interaction research. In particular, the
importance of explicit interface separation is established, and the proposed
software architecture is critically evaluated to determine new knowledge
concerning the requirements, constraints, and potential of proper user
interface separation. The implementation of an object oriented Part
Hierarchy mechanism is also presented. This mechanism is related to the
proposed User Interface Management System, and is critically evaluated in
order to add to the body of knowledge concerning object oriented systems.

viii

Chapter One,
Introduction and Thesis Qutline,

1.1. Introduction.

Due to its reduced cost and improved power, computer technology is
becoming more widely used by people from a large range of backgrounds,
and with different experience. As this varied user population expands, so do
their requirements and expectations of new computer systems. Historically,
computer systems only needed to work properly and efficiently in order to
be acceptable. It was not unusual to employ and train specialist computer
staff to use complicated computer systems. However, today's computer
systems require a greater emphasis upon ease of use of the final system By
both experienced, and inexperienced users. Many factors influence a systems
'usability’, and research into these factors falls under the title of Human
Computer Interaction. ‘

Human Computer Interaction deals with the problems and issues affecting
the actual interaction of a user with a computer system [Rasmussen, J:1987].
Its primary goal is to improve the acceptance of new computer systems by
the user. Research in this area encompasses a vast number of topics, ranging
from the effect of social and organisational factors [Dray, S.M:1987], [Grudin,
J:1987] through to the effects of different software [Gould, J.D:1987] and
hardware components [Hulme, C:1986].

A software system is a product of both Systems Analysis and Systems Design
[Yau, S.5:1987], and its usage should always be viewed in the context of the
personal motivations and work environment of the user [Whiteside, J:1986].
Problems with software systems which are rejected as unacceptable by the
user, can often be traced to insufficient Systems Analysis, poor design and
implementation, or the work environment of the user. These influences are
closely related, and are often confused. Insufficient Systems Analysis will
result in a system design which does not match the expectations or
requirements of the user. Similarly, poor design and implementation will
result in a system which does not match the system specification. Systems
Analysis and design are related in many ways, and are dependant upon each
other. The availability of specific design and implementation tools and
techniques affects the type of analysis tasks performed, the decisions which
are made during the analysis process, and the information which is

-1-

gathered. The accuracy and detail of the system specification generated by the
Systems Analysis process also affects the precision of the final system design
and implementation. Other influences related to the work environment
and personal motivations of the user affect the final acceptance of software
systems. These influences include physical stress, workload, organisational
and managerial factors, and the personal prejudices and partiality of a user.

Certain factors affecting the acceptance of software systems are easier to
control and improve than others. Due to their theoretical basis,
enhancements to Systems Analysis and Design methods are possible, and
therefore attract a growing research interest. Several major areas for
improvement can be readily identified [Balzert, H:1987]. These include better
software design features, advanced software architectures and design tools,
and modified Systems Analysis and Design methods, which place emphasis
upon designing systems for the user.

Some features of software systems generally affect all users in the same way,
for example, consistency and integration. However, due to the variety of
computer users, in the majority of cases it is only possible to identify
software features which are 'user friendly" for specific types of user.
Similarly, features can be identified which may be 'user unfriendly' for
other user types. Unfortunately, the terms 'user friendly' and 'user
unfriendly" are incorrectly used as a means of classifying individual
computer systems. These terms are meaningless unless used in the context
of individual software features, individual user requirements, the Systems
Analysis and Design method employed, and the environment in which the
software system is being used.

To facilitate the design of 'usable’ software by software engineers, it is
proposed that software systems should be divided into two separate
components, the application and the user interface. The application
represents the functionality of the software system. The user interface is
defined as the software through which information flows between the user
and the application. Information flows in two directions, with users
specifying their information requirements and also viewing the application
results. These two components affect the 'usability’ of software in different
ways. The use of separation should therefore enable effort to be concentrated
in addressing these different affects. Other advantages also arise from the use
of separation, including the facilitation of multiple user interfaces for a
single application. Computer hardware also affects the working of a user

-2-

interface - for example, different keyboard layouts, the use of mouse or
tracker ball pointing devices, high resolution colour graphics terminals,
voice recognition and generation hardware [Burrough:1983], [Hagelbergef,
D.W:1983]. However, while acknowledging the effects of hardware, this
research concentrates specifically upon the influences of software upon user
acceptance of computer systems.

The discipline of Software Engineering traditionally emphasises the
importance of designing software systems which are reliable, portable, easy
to maintain, reasonably priced, delivered on time and perform well [Bell,
D:1987]. The software architecture model underlying traditional
implementation languages and systems, is also specifically aimed at meeting
these criteria. The significance of designing software which is 'easy to use' is
often ignored, and therefore remains unsupported within the underlying
software architecture. The need for new software architectures is necessary if
improvements to the 'usability' of future software systems are to be made.
In particular, attention must be given to the role of Artificial Intelligence as
a mechanism for automatically matching user interface software features to
individual users. New User Interface Management Systems must also
support the concept of explicit interface separation, and provide integrated
tools to enable the designer to implement 'usable’ user interfaces.

Empirical work plays a major role in the field of Human Computer
Interaction research [Galer, M:1987]. Interaction with a computer system is
an observable phenomenon, which can only be properly analysed using
practical experimentation. Theoretical Human Computer Interaction
research must therefore be based upon, or proven, using controlled
experiments enabling the evaluation of users actually using real computer
systems. This type of evaluation may be included as part of the regular
Systems Analysis and Design processes, or may be restricted to the 'Human
Factors' research laboratory.

1.2. Thesis Outline.

The research described begins with the premise that many existing computer
systems do not meet user requirements or expectations, and are therefore
unacceptable to the user. Chapter two identifies the major causes for the
rejection of computer systems, and suggests possible solutions. Emphasis is
given to the effect of software elements, and an extensive list of influential

software factors is presented. Where appropriate, improvements to existing
software technology, and in particular the user interface, are also described.

The research maintains that the potential of software improvements is often
dependent upon individual user preferences, and Artificial Intelligence is
presented as a mechanism for matching interface features to individual
users. Chapter three describes the application of Artificial Intelligence to the
user interface. Specific interface design requirements are identified, an
outline design for a new Intelligent Interface is given, and its individual
modules described. This chapter also highlights the need for improved
approaches to interface design, and discusses alternative methods, and their
associated tools. '

Chapter four relates the background work discussed in chapters two and
three to the results of a detailed investigation into a large library database
computer system, and its users. This chapter identifies the wider influences
affecting user acceptance of computer systems, and stresses the importance of
good Systems Analysis and Design methods.

Chapters five, six, and seven describe the Smalltalk 80 implementation work
which was completed as part of this project. These chapters represent the
original element of this research. Chapter five examines the application of
Quantitative User Modelling, and details an example object oriented
Quantitative User Model, which is then evaluated. Chapter six presents the
design of a new User Interface Management System and its underlying
software architecture. An integrated interface design Tool-set is also
described. Chapter seven presents the design of an object oriented Part
Hierarchy mechanism which is related to the work presented in chapter six.
This is again evaluated, and alternative approaches discussed.

The issue of explicit interface separation is discussed in chapter eight, which
critically evaluates the User Interface Management System, and software
architecture proposed in chapter six. This chapter examines in detail how
separation can be achieved, its potential, and its constraints.

Chapter nine describes further investigations and enhancements which may
be the subject of future research, and finally, chapter ten presents a summary
of the project's conclusions. This identifies the major research contributions
to the existing body of knowledge concerning Human Computer Interaction,
and object oriented systems.

Appendix A contains a list of statements collected during the Library System
investigation. Appendix B provides a detailed overview of the salient
Smalltalk 80 language features which are relevant to the proposed User
Interface Management System implementation. Appendix C contains the
Smalltalk 80 source code for the proposed Quantitative User Model
implementation. Appendix D contains the Smalltalk 80 code for the object
oriented examples used throughout the thesis. Appendix E presents the
relevant Extended Backus Naur Form syntax for the work described in
Chapter six. Appendix F describes the library of Interaction Pluggable View
Controllers implemented to demonstrate the potential of the proposed User
Interface Management System. Appendix G contains the Class hierarchy for
the proposed User Interface Management System implementation.
Appendix H contains example direct manipulation interfaces generated by
the interface design Tool-set, and the Smalltalk 80 code generated by the
proposed User Interface Management System. Finally, appendix I contains
the documentation for the Tool-set presented in chapter six.

Chapter Two.

Software Related Influences Affecting User Acceptance of Computer
Software Application

2.1. Introduction.

This chapter examines how various software related influences can affect
user acceptance of computer systems. It identifies the major influences, and
suggests methods for improving the quality of existing software. A
distinction is made between the functionality of the application, and the
user interface through which it is used. Inevitably, user acceptance of a
complete software application depends equally upon both a functionally
correct application, and a well designed interface. Certain software
applications make this separation more explicit than others, and this chapter
develops the argument in favour of explicit user interface separation.

2.2. Simplicity.

Current software is often complex and technically biased, tending towards as
many features as possible, allowing the user to do more things with greater
power. However, this trend is usually followed at the cost of simplicity, with
most software being difficult to use and understand [Dean, M:1983].

The increasing power of computer technology will undoubtedly be utilised
to provide more complex applications. However, the way in which this
complexity is presented to the user needs careful consideration [Kornwachs,
K:1987]. Novice users using an application for the first time are typically
concerned with learning basic functions and tasks. Only as they become
more familiar with the application, will they move onto more complex
functions. Simplicity in this respect does not refer to the extent of
application functionality, but rather to the way in which this functionality is
presented to the user [Clark, 1.A:1987]. Whenever possible, functional
complexity should be hidden.

Progression by the user with a particular system is often hampered by errors
made with commands or concepts they discover accidentally. They may
become confused by the error and accordingly assume that the rest of the
system is also difficult to use. Such errors and misconceptions at an early
stage quickly reduce the confidence of a user in that system [Carroll,

-6-

J.M:1988]. Also, users are typically discouraged by both the sheer functional
'size’ of an application, and having to 'navigate' this functional set in order
to perform what are often trivial tasks. This seems to suggest the need for
organising, and classifying application functions according to their
complexity, which would enable function sub-sets to be automatically
created by the interface according to the level of expertise needed to use
them. The complete functionality of an application could therefore be
hidden from a novice user [Spall, R.P:1987]. Function sub-sets may also
prevent novice users 'getting lost' within a software system, and from
accidently using irreversible tasks, such as deletion. Whether expert
functions are completely hidden, or shown to the user (who is prevented
from using them) is an issue which lies outside of the scope of this research.
An application should at least enable a novice user to use the basic function
set immediately, with relative ease [Karat, J:1987]. It may in fact be the case
that the extra facilities associated with expert functions encourage a novice
user to become more expert. Simplicity also applies to other software
influences including for example, length and content of error messages,
advice, prompts, and screen layout.

2.3. Consistency:.

A consistent application uses operation and object formats and structures
that do not contradict one other, but support and cross reference each other.
Consistency affects the relationship between the expectations of a user of the
application, and the actual application itself [Kellog, W.A:1987]. For example,
system errors always appearing in red at the bottom of the screen, which
leads users to expect all error messages to appear there, and anything that
appears there to be an error message. Any inconsistencies will cause
problems, with the user having to make adjustments to the way they view
the system. Another example is a <delete> command, which may apply in
many different parts of the system. In each case it should have an identical
format; e.g. DELETE <object name>, it should not be called ERASE in one
part, or have a different format elsewhere.

Some further examples of consistency include :-

- naming conventions, e.g. all word processor text file names
have a file extension of type .WS .

- screen layouts, where titles always appear in a certain place and
format '

- icons should have identical meaning and representation
between systems, or parts of systems.

Typically, one particular user may prefer, or use, different naming
conventions, and styles to another. Consistency does not address this
problem of individuality. However, individual user preferences must be
used consistently throughout an entire software system.

Inconsistency may occur within both the user interface and application
functionality. However, it may be possible for a separated user interface to
present inconsistent application functions in a consistent form to the user.
For example, a separated interface may provide a set of consistent user
interactions which, unbeknown to the user, are mapped onto inconsistent
application functions.

Consistency can be improved by the use of formal Systems Analysis and
Design methods, and by the use of consistent design and implementation
tools [Sharrat, B.D:1987]. Such methods and tools are particularly important
where large numbers of people are working on the same application.
Effectively, they force individual designers to follow certain agreed
standards. Consistency applies equally to other areas of concern such as the
user interface, documentation, and error messages.

The use of explicit software guide-lines provides a useful aid to consistency
[NTIS:1987]. Such guide-lines specify standards which apply to the entire
application, and usually take the form of internal printed documents.
However, if these guide-lines are described in a computer readable form, a
User Interface Management System could automatically interpret them and
generate the appropriate user interface. Individual user preferences could
then be handled by simple modification and re-compiling.

Consistency is difficult to achieve, and the consistency seen on the surface is
often affected by deep structural consistency within software. Generally
speaking there are two major goals for system developers :-

- consistency within software
- consistency between different software applications.

Consistency should enhance the confidence of a user in a system, as it
responds in a predictable way. The opposite is also true, as an inconsistent

-8-

system may cause mistrust. Consistency is a vital component of any interface
which is to be accepted and easily used. A minimum requirement therefore,
is consistency within a software package. Consistency across different
software packages is more difficult to attain, and a trade-off must often be
made between consistency and 'software enrichment', using specialised
application features or functions.

Consistency between software houses is an issue affected by many influences
including :-

- copyright laws/controls and intellectual property rights
- fine tuning of software to hardware ‘
- competition.

However, if consistency between products were attained, users could move
from one application to another, taking with them more of their previous
knowledge and experience, e.g. similar command names, icon shapes, and
menu/screen layouts. If one company manufactures many software
packages then there should be no problem in maintaining consistency across
all of these packages. As regards consistency between software houses, the
problem is more deeply rooted in business objectives. It is often in the
interest of a company for its products to be inconsistent with another
companies. This is more difficult to solve, and is beyond the scope of this
research.

2.4. Integration.

Integration is the combination of simple tasks in order to complete a larger
more complex task, and implies a high degree of functionality within these
simple tasks. In our everyday life integration is taken for granted [Chang,
D:1983]. However, many computer users pose intricate and complex tasks
that defy easy computerisation. Given the benefits of complete software
integration, these tasks become simple to solve by combining the use of
several software applications. For example, the integration of a Word
Processor, and Graphics system to provide a Desk Top Publishing system.

Integrated software must satisfy both human and machine requirements
[Brown, M.]J. 1983]. The human requirement is that information will pass
effortlessly from one application program to another within the context of

user tasks. The machine requirement, or 'performance view' is that user
information will be stored, shared and retrieved efficiently.

The crux of the problem is that individual applications often require unique
data structures to work at maximum efficiency. But unfortunately, the more
unique the data structures, the harder it is to exchange data. This is
analogous to the problems of people with different abilities who must work
together. For example, a group of programmers, engineers, accountants and
product managers, who specialise in each of their respective areas and
collaborate to achieve company goals. The problem occurs when a project
requires the interaction of two or more of these groups. Although each
person is competent in a given field, some proficiency in the other fields is
needed for a successful project. If we substitute the unique abilities of a_
worker for the unique data structures of our program, we can see that the
problem of information flow exists in both areas.

Components within a system should be fully integrated, e.g. spell checking,
reformatting, searching, and replacing within a Word Processor [Paul,
D.W:1987]. Systems should also be integrated with other systems. For
example, Word Processors should be able to take input from other systems
such as Accounting packages and Spread-sheets. They should also be able to
generate useful output for other systems such as Mailing systems. This
integration poses two major problems. These are, firstly, the technical
problem of swapping information between two different software packages,
and secondly, the conceptual problem of representing this integration to the
user [Dirlich, G:1987].

Integration is assisted by a distinct separation between information, and the
tasks which can use the information. The information can be moved
between applications, and viewed or used differently in each. For example, a
picture may appear as an icon to a file handling system, a certain size box to a
word processor, or an actual detailed drawing to a graphics editor. Similarly,
a user may create an initial picture using a painting package, move to a
specialised drawing package to add certain features, and finally move to a
word processor, where the picture is placed between certain text items.

Ideally software integration should model the way in which humans

integrate knowledge and applications so as to aid ease of use [Vandor,
S:1983]. The three most useful forms of integration are outlined below.

-10-

These are placed in order of 'naturalness’, that is, how well they match
human methods of integration.

Note Pad.
This method incorporates a Global Notebook to which
information can be written to or read from at any time. The
source of this information is the current screen or task. The
destination of any information read from the notebook is also
the current screen or task. The contents of this notebook are
maintained between sessions, and can be edited, using cut, copy
and paste functions.

Buffering Techniques. _
This method allows users to mark a block of text on the current
screen, and then make a copy of this block. The copy can then
be inserted anywhere on future screens. Only one block can be
copied at a time, and this overwrites the previously stored
copy. This method is similar to the note pad, but has no
intermediary store for information, just a simple linear buffer.

Interfaced files.
This method allows users to create an intermediary file full of
information, which can then be processed by another
application. This method is useful when a large amount of
information has to be exchanged between two applications.

Integration and consistency are closely linked, with consistent systems being
easier to integrate. As with consistency, integration between systems from
the same software house should be attainable (although technically
challenging), while integration with products from other software houses is
again more difficult.

2.4.1. Modes.

The concept of modes is considered by many an antithesis to integration
[Tesler, L:1981]. It is suggested that modes cause both novice and expert users
considerable problems [Sneeringer, J:1978]. The idea of a mode has
developed from the hierarchical structure of computer systems; that is,
systems comprised of sub-systems made up of smaller sub-systems, and so
on. Associated with each sub-system is a set of commands or operations,

-11-

which can be applied to a second set of objects. Although these sets often
overlap, there is the problem of remembering which operations and objects
apply to each sub-system or mode. This problem is also compounded by the
user having to remember which mode they are in, and how they reached
that point [Swinehart, D.C:1974]. There is also the potential problem of
identical operations having different effects in different modes. A final
problem is the freedom to transfer information easily from one mode to
another.

The counter argument is that modes are both 'natural' and beneficial when
using software systems [Canter, D:1985]. In examining the real world there
are many instances of behavioural modes. For example, dining at an
expensive restaurant as opposed to eating at a snack bar. Situations and
environments often dictate certain types of behaviour from individuals
placed in that environment, and these conditions provide security by
establishing boundaries of behaviour agreed by society. At the application
level, modes are unavoidable, with different applications for Word
Processing, Databases, Graphics Editors, Desk Top Publishing, and other
specialised software. However, the undesirable effects of modes described
above need addressing, and may be reduced by the use of other techniques.
Modes can be used to provide contexts in which a user can work. By making
clear which operations and objects are applicable in each context and what
their meanings are, the user can have the security of knowing whereabouts
they are in a system, and what they can do [Carter, J.A:1987].

Provided the modes, operations, and objects associated with each application
are explicitly defined, an interface can give mode sensitive advice to users.
This alleviates the need to memorise sets of operations. An interface could
also provide information concerning the current position of a user within a
system. That is, which mode they are in and how they got there. This
information could be presented using graphics or a simple text description,
and should alleviate the problem of 'getting lost' within the functionality of
a system. The problem of identical operations having different effects in
different modes, is due to inconsistency between sub-systems.

Finally, an application and its interface could allow users to open, or use,
more than one mode at a time. They could then copy information from one
mode into another. Obvious constraints involve graphical and text
information, where conversion is difficult. One tried and tested solution is
to use windows, coupled with the "‘What You See Is What You Get'

-12 -

(WYSIWYG) concept [Shneiderman, B:1987]. Each window represents a
separate application or mode, with its own set of operations and objects.
Although user interaction may only occur in one window at a time, many
windows may be active and multi-tasking supported. The integration
techniques described earlier can then be used to enable information transfer
between different windows.

2.5. Metaphor.

Essentially, a Metaphor provides a link between real world concepts and
ideas, and equivalent computer concepts and ideas. It enables users, both
novice and expert, to learn quickly and adjust to new computer applications,
thus making them easier to use. One example is that of the Desk Top, used
with several operating systems, including Apple Macintosh and the
Graphics Environment Manager (GEM) developed by Digital Research. Here,
graphical icons are used to represent various computer hardware and
software components - disks are represented using a Filing Cabinet icon, and
directories using a Folder icon. Individual files each have an icon
representing their purpose, while files and directories are deleted by
dragging an icon and putting it in a Waste Paper Basket represented by
another icon.

A Metaphor is an important feature of user interfaces [Drake, K:1985]. Often,
the virtue of an interface does not lie in the efficiency of its Metaphors, but
in their familiarity [Edwards, 5:1983]. For example, the hand calculator
Metaphor where a picture of a calculator appears on the screen. If available, a
hand held calculator is much faster to use, but the Metaphor is familiar to
most users.

The icon is one of the most common Metaphors used in new interfaces. An
icon is simply a small picture used to convey an idea, or other information,
within an interface. Underlying this is the assumption that we live in a
strongly visual and spatially organised environment [Rogers, Y:1989]. Icons
provide a pictorial representation for various aspects of a Metaphor. There
are many different types of icons, and their usefulness is the subject of
current research [Benest, 1.D:1987], [Card, S.K:1987], [Glinert, E.P:1987].

A Metaphor potentially offers many advantages to the interface designer,
and in many respects is both natural and unavoidable within the computer
interface. A Metaphor can portray complicated universal ideas, using simple

-13-

pictures, and concepts, avoiding the need for lengthy verbose descriptions.
However, this powerful tool must be used carefully, as various problems
exist. These are now discussed.

The understanding of a Metaphor is often related to cultural background, as
different countries have their own languages, protocols, and concepts. A
Metaphor must be chosen to avoid these differences, using commonly
understood ideas such as filing cabinets, and folders. A Metaphor must also
be obvious and easy to grasp. If users have to look up meanings of particular
Metaphors, then their use is pointless.

Metaphors, and particularly icons, can be context sensitive, which may cause
certain inconsistencies. For example, a magnifying glass may be used to
represent a button for selecting a more detailed view of a picture. However,
the same magnifying glass may be used to represent a function for
examining the text within a file which sits in a particular directory.

In an effort to imitate the familiar object, one may also imitate the
limitations of an object [Houston, T:1983]. A Word Processor patterned after
a typewriter so slavishly that you see a graphical image of the type ball swing
“up each time you type a character may be comfortably familiar, however it
can also become a distraction.

The interpretation of a Metaphor depends upon the knowledge associations,
and previous experience of the user [Abrams, K.H:1987]. For example, an
icon which has a picture of a specialised surgical tool, will probably only be
understood by medical people. When using Metaphors, the interface
designer must therefore carefully consider the background, and expertise of
the user group before deciding which ideas to represent within the interface.

Medical and Psychological theory suggests that the use of Metaphors allows
people to make use of more of the thought centres of the brain [Benzon,
B:1985], [Pope, A:1983]. This is an improvement over conventional
interfaces, which are thought to only stimulate the logical, analytical, and
calculatory centres. However, it is improbable that this is a major
motivation in development of new Direct Manipulation interface
technology which is predominantly rich in Metaphors.

Finally, Metaphors should be part of the interface, separate from the
application, and made as explicit as possible. Following these guide-lines, it

-14 -

should be possible to effectively modify the Metaphors of an interface
according to the characteristics of different user groups.

2.6. Interaction Styles.

Interaction Style governs the overall method of interaction with a computer
system, and affects what the final interface looks like. There are three main
divisions with many hybrids, and these are described in the following sub-
sections. Each of these interaction styles has its own advantages,
disadvantages and its own dedicated group of supporters in the field of
Human Computer Interaction. Certain styles are more suited to certain
applications, and are preferred by certain types of users, who will often
change style as their expertise increases.

The interaction style preferred by a user is very much a subjective choice,
and it is therefore difficult to design algorithms which accurately match
different styles to individual users. It is more important that an interface
offers a choice of interaction styles to the user. It may also be useful to allow
users to see their interaction with one particular style interpreted and
executed in another style. For example, the selection of a menu item which
not only selects the relevant function, but also displays the equivalent
command in another part of the interface. This may encourage users to
move between different styles, and select an appropriate one for their task. It
again requires that the application and interface be clearly separated, and
should result in an applicatioﬁ functionality which is style independent,
whilst the user interface itself can support different styles.

2.6.1. Command and Natural Language.

This style of interaction involves presenting the user with a prompt (e.g. a
flashing cursor), and expecting them to express their requirements in
Command or Natural Language. Users have to translate from their
perception of intent to a grammatical syntax which the computer
understands. Command language is a sub-set of Natural Language, designed
for computer efficiency and processing speed [Benbasat, 1:1984]. In many
situations Natural Language is the best form of input, as the user can specify
their requirements in English (or other natural language) without having to
learn the system dictated command structure. However, because of the great
complexity of language, Natural Language interfaces are difficult to design
[Grace,].E:1987].

-15-

Several problems arise with Command Languages. Users may not know
what commands are available, and therefore find it difficult to remember
syntax and names [Minor, 5:1987]. Users moving from one system to
another may also have problems with different names for similar functions,
e.g. DIR in IBM DOS and LS in UNIX, which both list directory contents.
Command abbreviations may be useful, but the type of abbreviation may be
difficult to choose [Jones, J:1988]. Generally the problem areas arise from
having to memorise command names, syntax, and their associated
functions. However, one advantage of Command Language is the possible
speed and expressive power when used frequently by expert users.

Natural Language is potentially better than Command Language, being far
more flexible and adaptable. Users do not have to remember difficult names
and syntax, as Natural Language interfaces should be able to recognise
alternative names and syntax [Abrams, K.H:1987]. Novice users should find
learning to use Natural Language interfaces easier and quicker. Also, as they
become more expert, they can derive their own Command Language sub-set
which suits them individually. However, the naturalness of such interfaces
is questioned [Dillon, A:1988], [Ogden, C:1987]. It is natural to speak, and
hear, language, but is it really so natural to type in this dialogue at a
computer keyboard ? Natural Language may be better suited to multi-media
input/output, where voice recognition and generation hardware is available
[Multiworks:1989], [MultiPoint:1989], [SOMIW:1989].

One comment relating to both Command and Natural Language systems
concerns the dialogue structure. The user is expected to type in a command,
the computer then processes this command and returns a suitable response.
When the user makes a mistake, this dialogue could become difficult to use
in error correction and advice consultation. It may also become tedious, and
there is the problem of waiting for system responses. The computer does not
always show what it is doing, and users can be left waiting (sometimes
anxiously) when they press the return key at the end of a command.

Natural Language processing is a wide field of interest to both the Artificial
Intelligence and Human Computer Interaction research community. Many
more questions, problems, and solutions exist which are outside the scope of
this research. These concerns are addressed within the relevant research
disciplines [Barlow, J:1989], [Bench-Capon, T.J.M:1989], [McKoy, K.F:1988],
[Meyer, B:1985], [Schroder, M:1988].

-16 -

2.6.2. Menus.

A Menu driven system, presents the user with a list of options from which
they can choose. One option may lead to another menu being displayed, and
options from there may do likewise. As figure 2.6.2 shows, the result is an
inverted tree, with nodes within the tree (that is nodes to which downward
branches are attached) being menus, and end nodes being the final result of
an interaction.

Plain

Bold

UnderLined 9 Point
Italic 10 Point
Shadowed 12 Point
Outlined 14 Point

18 Point

Font p———9> | Font Style
- 24 Point

Lines Font Size

Boxes Font Type
Chicago

v Shapes \ Font Other
halaleb N Courier

:‘ BQMpIS, UPPERCASE Geneva
lowercase Helvetica
Title Case Times
- Left Align
' Right Align
Centre Align

Figure 2.6.2 - Hierarchic Menus.

The main advantage of this style is that all the available system functions
are displayed. The user does not have to remember complicated syntax, and
only needs to know how to interpret the menus and make their selection.
Such a style is therefore useful for novice users.

However, when the number of menus is great and the depth of the tree (i.e.
number of connected menus) is large, problems arise [Brown, J.W:1982]. One
such problem is selection speed. When a user has to navigate through
numerous connected menus, it takes a considerable length of time, which is
unacceptable to regular expert users. The interaction process: read list and

-17 -

select choice - can again become tedious. Also, correct functionality often
depends upon well structured and well worded menus.

Another problem with menus is that of weak associations between choice
descriptions, and final selections [Snowberry, K:1985]. In a system where
there are many connected menus, the user may have to pass through a large
number of menus before arriving at their required function. At each of these
menus the user may get lost, and go down the wrong branch of the tree by
making the wrong choice. The choice descriptions must be carefully chosen
so that they correctly describe the sub-menus which follow from that choice.
The more sub-menus, the weaker the association between a choice
description and the final function. Therefore, it is more difficult for a user to
select the required function, and there is a greater possibility of 'getting lost'.

Menus serve two main purposes, chiefly selecting functions, and
representing a particular state from a list of possible states [Erklundh,
K.S:1987]. For example, a selected font from an available list of fonts. In
either case the menu structure can be separated from how the menu is
actually presented and how it is used. In some systems, menus are invoked
by pressing a certain mouse button while pointing to a particular window,
and in others by moving a cursor over a particular word representing the
title of the menu. In some systems hierarchical menus are also used,
whereby menu items may lead to other menus. In other systems, certain
groups of items are separated using lines or boxes. The actual menu
structure can be described using a formal syntax which is separate from how
the menu is actually presented, and used. The presentation and usage of a
menu ultimately depends upon the interface style, whereas the underlying
menu description remains constant. One well defined formal menu
description grammar is known as 'Lean Cuisine' [Apperley, M.D:1989]. The
potential for this form of separation is discussed in section 6.4.14, where an
extended 'Lean Cuisine' implementation is presented.

2.6.3. Direct Manipulation.

This is the latest advance in Human Computer Interaction, and is heralded
by many as the interaction style for the future [Shneiderman, B:1983]. Direct
Manipulation systems involve a considerable amount of user interaction

and Metaphors, with users moving objects (represented as pictures or icons)
around the screen, selecting tasks and objects to be worked on. Such systems

-18 -

include the Apple Macintosh family of software, and the Graphical
Environment Management (GEM) developed by Digital Research.

Direct Manipulation is based on the principle of "What You See Is What
You Get" [Warfield, R.W:1983]. Users are expected to, and usually do, grasp
basic conceptual ideas. These ideas relate to the selection and manipulation
of objects and tasks, and what happens as a result of their selection and
manipulation.

There are many examples of successful Direct Manipulation systems
[Lesniewski, A:1987], [Quint, V:1987], and experiment has shown them to be
readily accepted by novice and expert users [Shneiderman, B:1987]. Novice
users usually find learning and knowledge retention easy, and quickly grasp
the basic concepts of such systems. Meanwhile, expert users find complex
problems quick and easy to express. However there are some problems,
mainly due to inconsistencies, and the use of poor Metaphors.

The problems with Direct Manipulation stem directly from the very features
which provide its strength. Direct Manipulation is based upon a small but
powerful set of interactions which are rich with Metaphor - for example
dragging and selecting icons using mouse movement and button presses.
These interactions are easily remembered by users, who expect similar effects
for the same interactions in different applications. When the effects are
inconsistent, cognitive problems result from having to temporarily unlearn
previously well understood concepts. Similar problems occur when
particular Metaphors are misrepresented, or misunderstood.

2.6.4. Combinations.

Many interfaces combine the above styles to form hybrids. Direct
Manipulation and Menu interaction are often combined, as they use similar
Metaphors and user interactions. However, Command and Natural
Language styles are rarely combined with Menus or Direct Manipulation
because of the differences between them.

One hybrid is Form Filling [Frohlich, D.M:1985], where the user is presented
with a screen full of questions to answer in order to complete a certain task.
The form may be displayed as a result of typing in a command, or selecting a
function from a menu. The response to these questions may be typed, or

-19-

selected from menu lists. The complete form then provides the basis for
executing a particular task, or sequence of tasks.

2.6.5. Dialogue Control and Specification.

Underlying all interface styles is a specific dialogue control mechanism. This
describes the permissible user interactions, and the resulting effects upon the
interface and application functionality. As dialogue control is unavoidable,
it is preferable to make dialogue control mechanisms explicit within the
interface. This may take many forms and could serve several purposes.
Current descriptions include Task Action Grammar [Payne, S.J:1986],
Command Language Grammar [Moran, T.P:1981], and 'Goals Operations
Methods and Selections' (GOMS) [Card, S.K:1983].

Explicit dialogue descriptions should be executable, which would enable
novel styles to be easily tested, and encourage interface designers to explore
new interaction techniques [Alexander, H:1987], [Jeremaes, P:1987]. Libraries
of dialogue styles can also be accumulated and easily modified. Finally,
interface consistency should be improved by automatic style analysis and
cross referencing.

The use of executable dialogue descriptions again requires separation
between the interface and application functionality. Styles can then be ported
between different applications, which should improve the consistency
between them.

2.6.6. Style Guides.

Interface style is implementation independent, as it is possible to define
various interface styles, and implement them using different tools or
languages. Interface styles should therefore take the written form of style
guides. These guides can then be used as reference works by interface
designers, to implement consistent interfaces for disparate applications. In
addition, executable style descriptions may also be attached to these style
guides, for use within an interface design Tool-set.

These style guides may be marketed commercially, and distributed to
different software houses. This should encourage interface standards, and
several style guides are already available including Motif [Oldenburg, H:1989]
and 'Touch and Feel' [Kluger, L:1989]. However, the written style guide

-20-

approach may also lead to profiteering by the combined enforcement of
standards, and use of copyright controls.

2.7. Error Handling.

Software should be designed to deal with the mistakes which users
inevitably make. The prime objective of error handling must always be to
assist learning, and correct misunderstanding. Most applications merely
detect those user actions which would cause system problems, generate an
error message, and display it. This is useful, especially when the application
is simple and the error messages are easy to understand. However, new
applications must provide better facilities. As described below, error
classification is application independent and the same classification method
can be used for different applications. It is therefore contended that the
responsibility for error handling should lie within the user interface, which
must at least include advice giving components which can suggest the
reasons for an error, and provide relevant advice/documentation. This
approach leads the design of generic Intelligent Help System and Error
Handling modules incorporated as part of the user interface (see section
3.2.1).

Every application has a functional structure, which formally defines correct
and incorrect usage. Application structure may be explicitly defined using
various Systems Analysis and Design tools, or may exist only in the head of
the designer. Application functional structure is presented through a user
interface, therefore the Application Model is a product of both application
functionality, and user interface presentation. Similarly, a user has a
particular model or understanding of how they expect an application to
work - that is how to instantiate tasks, what response to expect, and the
understanding of Metaphorical meaning. Errors occur as a result of
mismatches between these two separate models. Although the Application
Model is usually fixed, the User Model is often incomplete, unstable, and
confused [Norman, D.A:1983]. This inconsistency must be dealt with by
suitable error handling mechanisms.

The type of mismatch can be classified according to various frameworks.
One such classification is Evaluative Classification Methodology [Booth,
P:1987]. The following definitions are used, and figure 2.7 shows the
classification system.

-21-

Objects.
An object is, in essence a thing to which something is done, or
about which something acts or operates. For example a data file
in an application, a figure, or a character. An object mismatch
can take the form of one of three possible types; an object-
concept mismatch, an object-symbol mismatch, or an object-
context mismatch. An object mismatch might be said to have
occurred where an object is unfamiliar to a user or has
unexpected and unwanted properties (concept mismatch), an
object is misrepresented (symbol mismatch) or an object may
appear in the wrong mode or situation as far as the user is
concerned (context mismatch).

Operations.
An operation is an action which is performed upon an object
or objects within the application - for example, saving a file,
deleting a character, changing a shape in a graphics package.
Again, there are three types of operation mismatch. An
operation-concept mismatch is where the application cannot
perform the operation in the way that the user intends. An
operational-symbol mismatch is where an operation is
misnamed as far as the user is concerned, and an operation-
context mismatch is where an operation cannot be performed
in the way that a user would like, in a particular situation or
mode.

Concept.
A concept may be either an object or operation whether
represented mentally (in the user) or in lines of code (the
computer). A concept mismatch is a fundamental difference in
the understanding and representation of application objects or
operations.

Symbol.
This is taken to mean a word, character, sign, figure, shape, or
icon employed by either the user or the application to represent
an object or operation within the application. A symbol
mismatch is not one of fundamental understanding, but occurs
where the application and the user adopt different terms to
represent the same concept.

-22-

Context.
This is the arrangement of, and the relations between, the
objects within an application at any point in time. An object-
context mismatch is then, where an object is in the wrong
situation or position as far as the user is concerned. An
operation-context mismatch is where an operation that can be
performed in other circumstances either cannot be performed
in the way the user intends, or cannot be performed at all.

Object Operation
Object-Concept Operation-Concept
Concept Mismatch Mismatch
Object-Symbol Operation-Symbol
Symbol Mismatch Mismatch
+ Object-Concept Operation-Concept
n . .
o Concept Context Mismatch Context Mismatch
Es
S Svmbol Object-Symbol Operation-Symbol
o 4 Context Mismatch Context Mismatch

Figure 2.7 - Error Classification Methodol

The majority of errors can be fitted into this classification framework, apart
from inefficiency errors [Elkerton, J:1987]. In the latter case, the user
understands an application and how it works, but does not realise that the
application provides a more efficient mechanism for achieving a certain
goal. For instance, consider an example which is concerned with deleting
multiple files - a user may use individual delete commands for each file,
while being unaware of a multiple delete command, which takes a list of
files to delete as an argument. Such inefficiencies waste time, and should be
prevented whenever possible.

Having established an Error Classification Methodology, a means of
recognising or detecting errors is required. Most errors cause a failure in the
dialogue between the user and the interface - for example, incorrect
commands, or trying to select invalid or inoperative functions from a

menu. Such errors are easily detected, as the application or interface is
designed to expect only certain types of response. The inefficient use of
application functions is more difficult to detect. Artificial Intelligence is
needed to monitor the interactions performed by a user, predict the intended

-23-

goal, and suggest an alternative sequence of interactions which achieves the
same goal more efficiently. Knowledge is therefore required concerning
application functionality and permissible user interactions.

Different interaction styles present, and restrict, certain types of errors.
Command and Natural Language styles allow a greater range of errors to be
made, and provide a mechanism for detecting the different types. Because
user interaction takes the form of worded command sequences, these can be
analysed to see whether particular types of mismatch occur [Smith, J.J:1985].
Direct Manipulation and Menu interaction styles present different problems.
Typically, the user is prevented from performing incorrect tasks. Users are
also prevented from using invalid symbols and operations as they are only
allowed to choose from the symbols and operations presented to them.
Some examples are listed :-

- the use of Menus which only list valid tasks, or operations

- invalid or inoperative tasks in a menu list are usually
presented in a different type-face

- pointer movement is often restricted, depending upon what
task is being performed, or which mode an application is in.

Because of the restricted interaction, mismatches are more difficult to detect,
and this can be misleading. It is wrong to imply that because a user is
prevented from performing certain operations, or using certain objects, that
they understand why this is so, as a user may wish to invoke an invalid
operation or incorrectly use an object. This type of error could provide an
interface with useful information concerning certain mismatches between
the User Model and Application Model. Questions arise as to whether these
restricions should be removed. Instead, errors could be detected and
corrected using Intelligent Help and Error Handling systems. Such concerns
are outside the bounds of this research.

Another pertinent issue is that of error description and advice giving. Most
applications usually display a simple error message, with the option of a
more detailed description. This is insufficient for complex applications,
where more assistance is required to help identify the cause of an error, and
to offer advice on how to avoid it in the future. Current research shows that
Expert System technology is necessary to meet these requirements [Carroll,
J-M:1987].

-24-

Errors can have different effects on different users, ranging from sheer panic
to disregard. It is therefore important that an interface provides a 'forgiving'
environment, reassuring the user that their mistakes are not critical, and
that any abnormal effects can be easily undone.

All errors must be resolved at their occurrence before the system proceeds. It
is important that the user is informed as rapidly as possible when an error is
detected, and suitable attention attraction mechanisms should be used, e.g.
Bell, Flashing Red Colour. However, this mechanism must not be so
intrusive as to inform non-users near the system of the mistakes made by
another user [Thimbleby, H:1986]. When an error is detected, users should be
returned to a system state which existed before the last command was issued
which caused the error. This provides a 'forgiving environment' and
encourages users to explore the system.

Error messages should be positive. For example, the message 'Deletion not
allowed BECAUSE you do not have sufficient security access' is less
provocative than 'access not allowed'. An error message should not deter
the user from exploring the application. It should reassure the user that no
unpredictable side-effects have resulted from the error. The user may then
continue confidently, knowing that the system is in a predictable state.

The issues being addressed within the field of error handling and advice
giving are complex, needing expertise from both Artificial Intelligence and
Expert System technology. Chapter three examines the role of Intelligent
Help Systems as a means of providing better error handling and advice
giving facilities. This chapter also presents an overview of current research
within this field.

2.8. Documentation and Tutorials.

The success or failure of a software application can often be influenced by the
quality of the accompanying documentation. The process of producing
documentation can sometimes be a difficult and lengthy task. Listed below
are some basic guide-lines which draw attention to the various concerns
within this field.

Documentation may take one of two media forms: the printed page, and on-
line documentation. The printed page is most common, with various
formats ranging from single page command summaries to extensive, fully

-25-

indexed, detailed manuals. Alternatively, on-line documentation uses
computer media, where the text and pictures are stored in a form which can
be read and presented to the user through an interface.

Documentation should use consistent terms, e.g. when using the term
'screen layout' it should not suddenly change to 'display format' at a later
date. It should also have consistent structure across different software
applications, e.g. Introduction, Index, Chapters, Command and Feature
summary, and Appendices.

Documentation should be simple to understand and clearly laid out, using
as many examples as are feasible. It should cater for both novice and expert
users, including special sections for expert users and concise, readable
command and function summaries.

Documentation should not assume that users have expert computer
knowledge, and any expectations should be clearly laid out, i.e. previous
experience, or manuals previously read [Wendel, R:1987]. There may also be
a need for manuals, tutorials, and help facilities on the subject of computer
skills, e.g. using disks, keyboard, mouse, printer, files, and directories.

Documentation should encourage users to get hands on experience as soon
as possible. Most users are keen to sit at terminals and start using the system
as soon as possible [Carroll,].M:1983]. Long tedious documentation has a
dysfunctional effect on people, and inhibits the learning process. The result
of this is counter-productive, as users typically try and use the system out of
desperation with no understanding or guidance. This inevitably results in
frustration and causes discouraging system errors.

Good programs do not need extensive comments, as the program code itself
should be clear and easily understood. Similarly, applications should not
require lengthy documentation to explain how to use them, as the
functional model should also be clear and easily understood. On-line
documentation for a particular system enables users to quickly access
information to assist them with their problem. This documentation could
also be linked to error messages. The only drawback with this facility is the
possible loss of software protection. With present software, lengthy manuals
are often required to use the software. Although the software can often be
easily illegally copied, documentation is more difficult and costly to
duplicate, thus restricting improper use of the software.

-26-

When on-line documentation is provided, context can also be used to
improve its accessibility [Moll, T:1987]. This can assist the user in finding the
relevant help or documentation. The interface effectively provides
assistance based upon where the user is in the system, what the user is
doing, and what the user has recently done. Ultimately this facility also
provides a type of 'panic button', to cope with the situation when the user is
completely lost, or 'functionally disoriented'.

Interactive tutorials may also provide a useful teaching tool. These could
take the form of real examples or problems with worked solutions, which
are seen running within the application. Along the way, a tutorial shows the
commands that must be entered and what they do within the framework of
the specific example. Effectively, the user can watch the interface simulate a
user using a particular application to solve a specific problem. One
manifestation of this is the 'rolling demonstration’, often used in sales
presentations.

It should always be made clear to the user how help can be obtained,
[Herbach, M: 1983]. The selection action should also be simple, e.g. pressing
the F1 key. Essential help which is often required by novice (and sometimes
expert) users is orientation and familiarisation. That is, what keys do what,
and what part of the screen holds what information. This basic information
should always be made clear to novice users at an early stage, as this aids the
learning process.

One useful addition to conventional on-line help techniques would be to
allow users to add their own comments to an existing documentation
knowledge base. Having requested, and received the appropriate help, users
could then have the option of adding their own comments to the help
displayed.

On-line documentation and interactive tutorials are closely related to error
handling. Again, Artificial Intelligence and Expert System technologies have
a great deal to contribute to this field. Errors often mark the start of a
tutorial or advice giving session, therefore knowledge needs to be shared
between the error handling and advice giving components of an interface.

-27-

2.9. Interface Separation.

Interface separation is a growing concern. If user interfaces were completely
inseparable from their application, there would be no such thing as an
alternative, customisable, or adaptive interface. Some degree of separation is
already possible, because various interface Tool-sets are currently available
to the interface designer, for example Open Dialogue [Patel, H:1989],
HyperNews [Pearce, D:1989], and XWindows [Sun:1990]. As a result, the
following questions arise :-

- what is the scope and definition of the application ?

- what is the scope and definition of the user interface ?

- where can the separation line be drawn, and how ?

- what are the advantages of separation ?

- what are the effects and limitation of separation ? Especially :-

- what constraints does the application put on the separable user
interface ?

- what constraints does the user interface put on the separable
application ?

Using terminology suggested by Cockton [Cockton, G:1987], it is proposed
that a software application can be divided into a Non-Interactive Core of
application functions and a separate user interface, which can communicate
with each other. The Non-Interactive Core of application functions does not
specify any User Interaction dialogue control. Effectively, it cannot directly
request user input, or generate any screen output. These tasks remain within
the user interface, which conversely does not implement any application
functions. Messages are sent to the application to instantiate functions, and
inquire on states. Similarly, results are returned by the application to the
user interface using arguments, or tokens. This link between application
functions and user interface should be formally defined.

The potential advantages of complete user interface separation are
numerous :-

- consistent user interfaces should result from the re-use of
separate interface components within different interfaces

- the same application may have many different interfaces
which can be easily tailored and adapted to individual users or
organisations

-28 -

- an interface can easily change over a period of time to meet the
changing needs of individual users

- new Human Computer Interaction technology can be utilised
when it becomes available, and the interface updated
accordingly without affecting the application functions

- prototyping of interfaces can be performed separate from the
development and implementation of the application functions

- cost and time savings arise from many features, incduding
prototyping, customisation for individuals, and interface
maintainability

- application can be designed without Input / Output or Human
Computer Interaction considerations.

These advantages however, depend upon the extent of separation supported
within the software architecture.

A truly generic interface is impossible to achieve. This is theoretically
defined as a user interface which can be used for many functionally different
applications, and implies that a Word Processor style interface can be used to
interact with a Database, or Graphics application. This would cause the user
many cognitive problems, as the underlying interface metaphor would be
difficult to match to application functions. Application functions therefore
do affect and constrain the user interface. Likewise, the interface constrains
the application functions. These constraints are not necessarily adverse, and
require further investigation.

This research focuses upon interface separation. A new interface software
architecture is proposed and implemented using an object oriented
language. This architecture uses separation, and is later evaluated in order to
derive the benefits and constraints that result from separation, and answer
the questions posed above.

2.10. Interface Ergonomics.

The primary objective of Ergonomics is the matching of a job to a particular
worker, with the aim of reducing the workload upon them [Matilla, M:1987].
It is a well founded research area with many applications in the industrial
and commercial sectors. Interface Ergonomics has a primary objective to
match a software application to a particular user, again with the aim of
reducing the workload upon them. In the case of Interface Ergonomics this

-29.

workload takes a mental form and is typically cognitive in nature, as
opposed to Ergonomics where the workload is usually physical.

Interface Ergonomics addresses many questions which relate to user
interface software [Balzert, H:1987]. These include :-

Use of highlighted and flashing text.

Screen layout.
That is where particular text and graphic items such as error
messages and help information should be positioned.

Metaphor.
That is what ideas to represent and what metaphor to use.

Dialogue style.
This should be matched to individual users, and the type of
task that they are trying to perform.

Undoing.
Actions should be discrete and their effects reversible. Users
should be offered an 'Undo' function, and the extent of this,
i.e. the number of sequential commands which can be undone,
should be adjustable [Waldor, K:1987].

Over-typing.
Consideration should be given to over-typing. The effect of
over-typing can be accomplished by combination of delete and
insert actions. By preventing over-typing, users need not worry
about whether they are in insert or over-type mode.

Auto Repeat keys.
Work by Thimbleby [Thimbleby, H. 1986] suggests that auto
repeat keys should be avoided (that is keys repeating
themselves when held down,). He suggests that a separate
repeat key should be provided, and not allowed when using
'dangerous’ keys. Another alternative is to provide key clicks
which provide a positive response to the user that a key was
pressed.

-30-

Response Time
The response time of an interface is important. People are used
to dealing with real world response times in the order of
several seconds at the longest, e.g. turning a steering wheel,
changing channel on a T.V. set. Although in certain conditions
people accept response times in the order of several seconds,
e.g. phoning, there is an intermediary response, i.e. a dialling
tone. This intermediary response reassures the person that
their request is currently being dealt with and that they must
wait. It also gives them the choice of cancelling an action they
know is currently being processed, returning the system to its
original state before the action was initiated. Other
circumstances where large response times are acceptable .
include starting or initialising a new system, and switching off
or closing down a system, e.g. turning on a T.V. set. Long
response delays reduce confidence in the system and disrupt
work flow.

User interfaces should be aware of this, so that any delay
between successive application states never exceed a maximum
value for example, a maximum response time of 2 seconds
[Thimbleby, H:1986]. Where this is not possible, intermediary
visual responses should be generated. If a user decides that they
wish to cancel a task during this intermediéry display, the
system should then be returned to the previous state before the
task was initiated.

Type Ahead.
Typing ahead is a useful feature for expert users, however, it
can be frustrating for novices. Type ahead buffers should be
variable in sizes and optional. Where typing ahead is allowed,
the resulting intermediary displays should not be displayed,
unless the response time again exceeds a pre-defined
maximum value [Thimbleby, H:1986].

This area falls under the responsibility of Cognitive Psychologists whose
skills lie in understanding how humans function cognitively [Dillon,
A:1987]. Primary concerns involve the matching of various interface
features and styles with appropriate human qualities [Rasmussen, J:1987].

-31-

The result of this type of work is the production of interface guide-lines.
These can then be used to help the interface designer design better interfaces.
For example, matching memory loads for the user by restricting the amount
of information displayed on the screen.

Results from this field are usually accompanied by theoretical and empirical
cognitive proofs. Although specific interface features can be identified, the
correct setting for these features may be either a unique value or one of a
finite set of values. For example, response time must always be less than a
maximum of 2 seconds, whilst the colour of an error message could be
either red, orange, or yellow. This encompasses the individuality of different
users.

Most of the issues discussed in the previous sections are addressed by
research within this field. It is the responsibility of the interface designer to
take notice of Cognitive Psychology research results, and incorporate them
into new interfaces. This should again be facilitated by the use of interface
separation, and suitable interface design tools.

2.11. Summary.

This chapter has discussed the many software related influences which affect
user acceptance of computer systems. The various affects of these influences
were discussed, and improvements to existing technology suggested.

Several criteria were developed. When applied, these should assist the
design and implementation of usable interfaces. The criteria are listed as
follows :-

separation between the interface and applicétion

- explicit descriptions of interface components whenever
possible

- the use of formal design methods

- development of new interface architectures and tools.

A need for new approaches to software design which incorporate these
criteria was identified. These must focus attention upon designing software
systems for the user, and also require suitable support tools and software
architectures. It is contended that separation between interface and
application functionality is paramount to any new design approach, and

-32-

must therefore be the basis for new software architectures and interface
design tools.

Finally, the issues presented in this chapter are fundamental to any software
application. They must therefore be correctly addressed before Artificial
Intelligence is used to improve the interface. Experience has shown that
failure to do so usually results in a powerful Intelligent Interface, which is
even more difficult to use than its Non-Intelligent counterpart.

- 33 -

Chapter Three,

The Application of Artificial Intelligcen r Interface Desi
3.1. Introduction.

An Intelligent Interface is one which uses techniques drawn from the field
of Artificial Intelligence to improve the user interface [Abrams, K.H:1987],
[Carroll, J.M:1987], [Rivers, R:1989], [Self,]:1988]. This is achieved by adding
extra modules which enable the interface to match certain user
characteristics. Intelligent Interfaces also provide the facility to personalize
an interface to suit an individual user. Knowledge is required about the
individual user and their characteristics, and also about the variable
interface features. Using this, an Intelligent Interface selects the correct
feature values for a user, and consistently applies them across the entire
interface.

Chapter two identified the main areas where software can be improved in
respect to usability, while this chapter shows how some of these areas may
be enhanced using Artificial Intelligence. Attention is given to interface
architectures, and a modular Intelligent Interface design is proposed.

This chapter reviews current research into Intelligent Interfaces, and
completes the background work for this thesis. Section 3.2 examines the
major applications of Artificial Intelligence to the user interface. Section 3.3
presents a simple classification for interface architectures and design
approaches. Section 3.4 examines the major design approaches, and lists the
requirements which they must meet. This section also describes and
evaluates several existing interface design approaches.

3.2. Additional Intelligent Interface Modules.

3.2.1. Intelligent Help Systems.

As discussed in chapter two and summarised in figure 3.2.1, traditional
approaches to help systems are based upon separate application
documentation, tutorial support, and training. Although documentation
may be in a computerised on-line format, the initiative for satisfying
application queries and for solving specific problems still remains with the
user. The effectiveness of written or on-line documentation as a learning

-34-

tool is dependent upon the quality and clarity of the literature provided.
Different styles of documentation are also necessary to assist the user as they
progress from novice to expert. Unfortunately, documentation style is fixed
and is usually aimed at the 'average' user. As a result, it can not take into
consideration the different abilities and backgrounds of individual users
who will use it.

Application :-

User
Interface

Task
Performance

Supplemental Material :-

Support in

Written Introductory Material
Task Performance

Written User Manuals/Guides
Reference Manuals
Interactive Tutorial Guides
On-Line Manual

On-Line Help

Computer Aided Instruction
Training Courses

Figure 3.2.1, Traditional Application nfi_ ration

As systems become more complex, training courses are also becoming a
popular means of learning. Training courses are better suited to matching
the learning abilities of different individuals, as professional tutors can
tailor teaching material to personal competence. However, these courses
tend to be expensive, and knowledge is easily forgotten over a period of
time.

Another solution to user support is that of Computer Aided Instruction
[Erlandsen, J:1987]. This typically entails a suite of programs which
interactively teaches the user the salient features of the application.
Computer Aided Instruction packages use the functionality of an application
to provide a tutorial style approach to learning. The Computer Aided
Instruction package effectively imitates a user, and illustrates on a step by
step basis how to accomplish specific tasks, using the available application
functions. However, Computer Aided Instruction packages have major
shortcomings in that they are often introductory in nature. Again, these

-35-

packages usually assume an 'average' user, and therefore cannot be tailored
to individual user abilities.

An alternate approach to user support is that of Intelligent Help Systems
[Lutze, R:1987]. An Intelligent Help System provides on-line user support
which is tailored to individual user requirements. These systems act as
'mechanised teachers' which monitor the progress of a user, and provide
assistance which is adapted to suit their individual capability. For example,
novice users are given verbose introductory help, while expert users are
given shorter concise descriptions. An Intelligent Help System may also
allow users to add their own comments to the existing documentation.

Intelligent Help Systems also need to incorporate Intelligent Error Handling
techniques. Whenever a user makes an error, the Help System can leave the
user to determine its cause and therefore correct it, or the system may assess
the current capabilities of the user and intervene to offer a possible
explanation for the error. Ultimately, it may also implement solutions upon
behalf of the user.

An Intelligent Help System may be directly invoked by the user whenever
assistance is required. It may also monitor the user, and when deemed
necessary interrupt the user to offer what it determines as useful advice. For
example, whenever a user is using the system inefficiently, or appears to be
'lost".

Adbvice, or help sessions may take several forms, the simplest of which is a
context sensitive description of relevant application features [Carter,
J.A:1987]. Other styles include interactive tutorial demonstrations, and
question and answer sessions. An interactive tutorial session provides the
user with worked examples which demonstrate how a particular application
function works. These examples may also be made more realistic by
constructing them from examples taken from dialogue which has already
taken place between the user and the application [Carroll, J.M:1987]. A
question and answer session allows the user to interrogate interactively the
help system in order to solve a particular problem [Hartley,].R:1988]. The
dialogue which occurs may also be used as feedback, to adjust intelligently
the help system for future help sessions. In all cases, assistance is
personalized to the individual capabilities of a user.

-36-

The main goal of an Intelligent Help System is therefore to support the
construction of a correct and sufficient conceptual model about the
application, by means of a behaviour similar to that of a human teacher
[Miller, J.R:1987]. In doing so, account must be taken of the background,
abilities, and previous interactions of the user. A balance must also be
maintained concerning the initiative for providing assistance. A user may
take the initiative to request help at any time. However, an Intelligent Help
System may take the initiative itself at certain times, and interrupt user
interaction to offer suitable advice. Unfortunately this may be dysfunctional,
as it is also possible for these interruptions to disrupt user interaction, and
therefore impede the progression of a user.

An Intelligent Help System can be clearly separated from the application. It
requires knowledge concerning the application and its proper use, but this
should be defined separate to the application itself. In order to work well,
Intelligent Help Systems also require detailed knowledge concerning the
available user interface dialogues and mechanisms, different teaching and
explanation strategies, Natural Language, and user characteristics and traits.
As described later in section 3.2.2.1, this knowledge is often implemented as
computerised User Models, Application Models, and Real World Models.
Generic Intelligent Help Systems can therefore be developed, and adapted to
individual applications or users by changing the appropriate model. Various
techniques are already available for representing these models in
computerised format, and for determining their knowledge [Carroll,
J-M:1988], [Sandberg,J:1988].

The major issues surrounding Intelligent Help Systems are related to the
design and implementation of suitable computerised models [Murray,
D.M:1987], the design of suitable intelligent inferencing mechanisms which
monitor user interaction and modify the appropriate model knowledge
[Kemke, C:1987], the selection and implementation of useful help session
dialogue styles [Dix, A:1987], and the representation of human learning
processes [Carroll,].M:1987]. As a result, current work into Intelligent Help
Systems benefits from research results derived within the disciplines of
Artifidial Intelligence, and Behavioural Psychology [Self,]:1988].

-37-

3.2.2. Models.

Models serve many purposes, and provide a powerful tool for the scientist
[Williges, R:1987]. Essentially a model can be defined as any abstract
representation of a real world phenomenon. This phenomenon may be
physical or conceptual, and the nature of a model will depend upon its
intrinsic aims. For the scientific community, models primarily enable
knowledge concerning difficult real world problem domains to be
represented in a clear, and understandable format. An example is Short
Term Memory and Long Term Memory [Thomson, N:1986]. These two
terms refer to an established Cognitive Psychology model which represents
the way in which human memory functions. Scientific models can also be
used as the basis for predictive reasoning in order to forecast events or
situations which may occur in the future of the domain being represented.
Finally, they may also be used as a basis for developing and testing new
hypothesis, and in generating solutions to problems which arise from the
domain of definition, and operation of the model.

A model is an abstraction and representation of some real world object or
situation. Physical modelling is probably the most common form of
modelling, and examples include sculptures, and pictures. Although useful,
it is difficult to physically model metaphysical or conceptual ideas, for
example the concept of how the human mind functions, or an individual's
political motivations [Spall, R.P:1986]. In such cases, models are built around
related facts, or hypotheses concerning the problem domain. These facts can
be organised to form the basis of the knowledge contained in a model, and
may appear as Natural Language statements, diagrams, mathematical
values, or logic expressions.

The use of mathematics and logic as a modelling tool facilitates the
generation of computable models. These models can be stored within a
computer, and used as the basis for computerised inferencing or prediction.
An Expert System is an example of a computable model and is comprised of
separate knowledge (either mathematical values, or logic expressions) and
heuristics which act on this knowledge in order to predict, or infer further
knowledge [Kidd, A:1986]. The knowledge contained in a model can
therefore be extended or modified manually by the Expert System user, or
automatically by intelligent heuristic inferencing mechanisms.

-38’-

Models are not necessarily true representations, and may be hypothetical.
They may also be difficult to prove or disprove, especially where models of
human qualities are concerned. Models form a natural part of life, and
provide a useful means of organising knowledge. Often, people do not
realise that they are using implicit models to solve or understand problems.
Every computer application and its interface assumes some form of model
concerning the user and the real world.

As far as Human Computer Interaction is concerned, models serve two
purposes. Firstly, models may be used as design tools to assist the interface
designer in generating usable interfaces [Whitefield, A:1987]. Secondly, a
model may be used by an actual interface in order to infer certain values, or
characteristics, about a user, application, or the real world [Murray, .
D.M:1987]. The issues being addressed by Human Computer Interaction User
Modelling research are related to the explicit definition of model structure,
the application of models within the user interface, and the elicitation of
knowledge which is contained within a model [Corbett, M:1987]. There are
three types -of model which are of particular interest to the Human
Computer Interaction designer :-

- User Model
- Application Model
- Real World Model.

3.2.2.1. User Model.

To capture the difference between computer users, we need a classification
framework to describe their individual characteristics. Users can be classified
along two scales which are illustrated in figure 3.2.2.1a. One is their
knowledge and understanding about the application domain, and the
second is their knowledge and understanding about the computer and user
interface domain. Both of these scales range from novice to expert, with the
centre representing intermediate knowledge. A novice has no, or little
knowledge or understanding, while an Expert has full knowledge and
understanding. The position of a user on the scales varies relative to other
users, and will also change with time, as they learn or forget knowledge.

;39-

- Expert

User
Progression

Computer Experience
Novice Inter ate Expert

L Novice
Application Experience

Figg_ re 3.2.2.1a - User Classification.

These classification scales are useful, but problems arise with more complex
applications. It is difficult to determine the range values, because a relative
scale is required based on a definition of 'full knowledge' or understanding,
and 'no knowledge' or lack of understanding. It is also difficult to define the
granularity of the scaling, i.e. how many ideas and skills need to be learnt
and understood before a novice progresses to become an expert user. Users
also have other characteristics, such as previous experience with other
applications, and cultural differences, which this does not represent. A
richer classification, known as a User Model, is required.

A User Model, in respect to Human Computer Interaction, is a description of
how users interact with software interfaces [Clowes, I:1985]. This model
serves to describe the different activities which take place during the
interaction between a user and a computer application. These activities
include psychological, or mental thought processes, and physical actions
such as key presses and mouse movement.

There are two broad types of User Model, namely: conceptual and
quantitative models [Williges, R.C:1987]. Conceptual models are primarily
concerned with representing cognitive processes, while quantitative models
deal with the numerical representation of user performance.

Figure 3.2.2.1b shows two general models of human information processing.
These originate from Norman [Norman, D.A:1986], and Wickens [Wickens,

-40 -

C.D:1984]. Conceptual Models serve to identify cognitive processes, cognitive
structure, and cognitive strategy. Cognitive processes deal primarily with the
procedural knowledge used by an individual while performing given tasks.

Work by Norman [Norman, D.A:1986] summarises the cognitive strategy of
a user, using 7 stages:-

(1) Establishing Goal

(2) Forming an Intention

(3) Specifying the Action Sequence

(4) Executing the Action

(5) Perceiving the System State

(6) Interpreting the State

(7) Evaluating the system state with respect to goals and
intentions.

Conceptual Models presented as tree diagrams, or networks, are often used
to analyse the cognitive structure of knowledge used in a task. Kieras and
Polson [Kieras, D:1985] make a distinction between two components of
knowledge in operating a computer based system. First, there is the
representation of tasks performed by the user, which can be stated as a
hierarchical goal structure based on a production system composed of a
collection of production rules. Secondly, there is the representation of the
application which can be modelled by using transition networks consisting
of a series of nodes connected by labelled arcs. As illustrated in figure 3.2.2.1c,
these transition networks show the possible user actions and the possible
resultant application states.

-41-

Application Application

Input Interaction Semantics Functions.
Devices Techniques
Interpreter
Dialogue
State

Attention
Resources

Short-term
sensory
store

3
=t P Decision and Response 2
g p| Perception |—@» response —pt egution S
g >—> selection 8
‘ (a2

Voo "“"“""tj‘";

) Working |

N l memory | |

\]

: Long-term l N

\]

\ | memory Memory

-— e

Norman - A General Mode]l Of Human Information
- Processing
Figg_ re 3.2.2.1b - Two General User Models.

Adoo

(emr0p =)
Koy aoedsyoeq ssaid

Josind %31 uonisod

‘guins

Josind 1x9) uonisod

ased

Sus

surejuod preogdi)
*PA1o9jag Sung

surejuod preogdip)
"P2109]2S SuryioN

-f1dws preogdi)

<

(erpp =)
K2y 9oedsyoeq ssaxd

KAidws preogdip)

"paroafag Surng

19008

10s1nd 1% uonisod

(erp0p =)

10938 Koy 9oedsyoeq ssaxd

"PA103]9S SunpoN

JOSImd
1x9) uomisod

re 3.2.2.1c - Example Transition Diagram for MacWrite.

Fi

In addition to representing procedural and structural knowledge, an analysis
of cognitive strategies is useful in understanding how people control

various pieces of knowledge. The most prevalent cognitive science view of

human information processing is that the user is goal driven, and that task

performance is directly related to specific goals. Several Conceptual Models

are based on this, especially 'Goals Operations Methods and Selections'
(GOMS) [Card, S.K:1983].

Rather than provide a Conceptual Model of the user, an alternative set of
design tools is concerned with developing a quantitative representation of
the performance of a user at the interface. Various types of Quantitative
Models are proposed which can be classified as either performance,
ergonomic, or computer simulation based. Performance Models attempt to
describe human performance as it relates to human information processing
capabilities and limitations. For example, the Key-stroke Model developed as
part of GOMS [Card, 5.K:1983]. Ergonomic Models are concerned with
anthropometric and biomechanical data relating to the user. Typically, these
describe the physical characteristics of the user. Finally, Computer '
Simulation Models specify a mathematical, or logical model of Human
Computer Interaction. Most Computer Simulation Models are Task-
network Models, which structure the interface around the task, sub-tasks,
inter-connection of sub-tasks, rules for connecting sub-tasks, and the time
taken to complete sub-tasks, for example, HOS [Lane, N.E: 1981] and SAINT
[Chubb, G.P:1981]. Chapter five presents an example object oriented
Quantitative User Model implemented in Smalltalk 80. This model
attempts to quantify system usage in order to assist error handling and
advice giving.

In essence, User Models play an important role in designing interfaces
which 'fit' the user. The current research issues centre upon :-

- identifying relevant user knowledge associated with the
Human Computer Interaction

- developing formal model specification methods [Hoppe,
H.U:1985], ,

- developing models which capture user differences

- developing interface design methods which capture and use
this knowledge

- development of Intelligent Interfaces which can directly
interpret these User Models, infer changes which occur in the
user, and update the models accordingly.

In the near future, it is probable that stereotypic User Models will be used to
adjust the interaction style and dialogue of interfaces. In the more distant
future, individual users may have their own computerised User Model

-44 -

which describes their individual characteristics and preferences. This model
can then be used by different Intelligent Interfaces as they move between
different systems. Each Intelligent Interface will be capable of interpreting
and updating this model accordingly, as the particular application is used.

3.2.2.2. Application Model.

These models serve to describe the functionality of an application [Adhami,
E:1987]. Such models are necessary for the development of separable
Intelligent Interface architectures. In order for the interface to communicate
with the application in a defined way, the application must describe its
structure. This structure can then be linked to user interactions at a higher
level, from which the user interface is built. The Application Model
comprises of this description. Indeed, the Application Model must at least
describe the functions, functional contexts, sub-function structures,
functional side-effects, and reversibility of functions. Further requirements
for Intelligent Help and Planning modules include function documentation,
and goal and task strategies which link functions to tasks and eventually to
user goals.

An application which was developed using a formal methodology should
already have some form of explicit Application Model defined, for example
Data Flow Diagrams [Weinberg, V:1979]. Applications which were not
specified using these formal methods, will require some form of task
analysis to generate this model [Samurcay, R:1987].

Several formal grammars are already proposed as a means to describe
Application Models. Command Language Grammar (CLG) [Moran, T.P:1981]
provides a framework for describing applications. This framework is
essentially an ordered set of descriptions, each description being at a different
level of abstraction. The same basic notation is used at each level. The four
levels used by Moran cover the tasks which the user brings to the
application (Task Level), the objects and procedures manipulated by these
tasks (Semantic Level), the Command Language available (Syntactic Level),
and the dialogue involved when using the application (Interaction Level).
The levels are then connected by means of mappings across adjacent levels,
e.g. the task level descriptions are linked to objects and procedures at the
semantic level. This, and further formal grammars are discussed by Clowes
[Clowes, 1:1985], Fountain [Fountain, A.J:1985], Green [Green, T.R.G:1988],
Hoppe [Hoppe, H.U:1985], and Hufit [HUFIT:Overview].

-45-

To conclude, Application Models potentially assist the design of interfaces in
many ways [Totterdell, P.A:1986b]:-

- consistency checking

- effidency checking

- integration cross referencing
- orthogonality checking

- Intelligent Help

- interface separation.

3.2.2.3. Real World Model.

Certain other knowledge, beside that which is application or user depehdent,
is required by an Intelligent Interface [Totterdell, P.A:1987]. This includes
knowledge concerning technical definitions, conversion formulae, and the
inter-relationships between similar applications especially functional, or
command equivalence (e.g. DIR and LS commands provide directory lists in
MSDOS and UNIX accordingly). This knowledge must also be made
available in a computer usable format, and is necessary for Intelligent Help
and Advice Giving modules.

3.2.2.4. Summary.

Although various types of modelling technique are now beginning to
influence the improvement of interface usability, many issues still remain
unresolved [Pratt, J.M:1987]. Current models tend to be too general to be
applicable to specific interface designs. The level of detail in the models
must be increased, and methods of analysis for defining these detailed
models must be improved. Further work is also required on model
validation. The accuracy and validity of models must be determined, and
the limits of their representation specified. Theoretical and empirical
research is needed to uncover the behavioural correlates of various
knowledge representations. Similarly, comparisons are needed so that the
correct models can be matched to different design processes and Intelligent
Interface types.

Further empirical work is required to test the usefulness of modelling
techniques as a means for improving the user interface. Before modelling

- 46 -

techniques become established as a tool for the interface designer, research is
needed to examine their potential and limitations within real applications.

The models discussed here can be difficult to define, and even more difficult
to implement in a formal computerised form. Unless models completely
describe their problem domain, they cannot accurately predict knowledge or
events in their real counterpart. User Models are particularly problematical
[Sutcliffe, A.G:1987]. User characteristics and needs are complex, and it is
often impossible to generalise from specific experiences. Individual users
can also be unpredictable, constantly changing, motivated in different ways,
and affected by a wide range of factors. However, work aimed at defining and
implementing computerised models should not be dismissed. Such research
offers insight into the diverse Human Computer Interaction influences. At
the other extreme, models are not the complete solution to improving.
interface usability, and there are many other influences which need to be
addressed. |

New interface architectures are required which can maximise the potential
of explicit modelling representations [Browne, D.P:1987]. Complete interface
design methodologies are also needed, rather than isolated, independent,
and often fragmented methods. New interface design methods must attempt
to formalise the interface specification to fit these new interface
architectures. They must focus attention upon the users, and their
individuality. Such methods must also be integrated with existing (or
possibly new) Systems Analysis and Design methods, enabling complete
applications and interfaces to be developed in unison.

Modelling draws upon techniques from both Artificial Intelligence and
Cognitive Science [Gilbert, G.N:1987]. Artificial Intelligence provides insight
into knowledge representation - e.g. expert systems; and inferences based
upon this knowledge. It also provides solutions to goal recognition and
discourse modelling. Cognitive Science provides a user centred approach to
modelling, and helps determine precisely what should be modelled. It
provides techniques for understanding how a user learns and retains
knowledge concerning computer applications and their associated domain.
It also provides an insight into how a person models the real world. The
closer a system parallels the way a person models the world, the more
chance it has of being predictable to the user.

-47-

3.2.3. Adaptive Interfaces.

One way of dealing with the problem of multiple users and their changing
requirements is to provide adaptive interfaces. Currently there are many
adaptable interfaces which can be customised for individual users [Minor,
5:1987], [Trigg, R H:1987]. Adaptive systems serve to automate this
customisation, which can therefore take place continuously as the
application is being used [Adhami, E:1987], [Fowler, C.J.H:1987]. This
adaptive function must have an overall objective [Cooper, M:1988]. Some
possibilities are listed :-

- adaption to improve accuracy

- adaption to increase interaction speed

- adaption to reduce errors

- adaption to increase a users understanding of an application.

The prime objective must always be to improve the usability of an interface,
and reduce the mismatch between User and Application Model. Adaptive
systems must know what can be adapted, and how and when to adapt.
Finally, they require a model of individual users in order to maintain
adaptions for different users across interaction sessions.

Adaption should apply strictly to the interface. Adapting the functionality of
an application would not only be extremely difficult, but may also violate
any Systems Analysis and Design methods which were used to generate it.
Modification of functionality could also endanger consistency and integrity.
Application functionality must remain constant between different users, as
it serves as the structure onto which an interface is built. This functionality
may be incorrect, which points to a failed or misused Systems Analysis and
Design process, but this failure needs to be addressed by application re-
design.

It is no use adapting to features which remain constant throughout the user
population. Deciding what can be adapted is therefore a question of
identifying what variations exist between the interaction requirements of
different users. How and when to adapt are difficult questions to address. For
each specific adaptive feature, an Intelligent Interface needs to know the
range of possible values, and the relationships to other adaptive features. A
set of adaption heuristics must also be maintained which match the
respective feature values to different users. This is a problem which may

-48 -

best be tackled within the scope Artificial Intelligence and Cognitive
Psychology, and assumes that user differences can be identified and defined
using knowledge bases, heuristics, and logic. Several adaptive systems
already exist [Croft, W.B:1984], [Greenberg, S5:1985]. A major adaptive system
development which has provided an insight into this difficult area is the
Adaptive Intelligent Dialogues (AID) project sponsored by the Alvey
Directorate in Man Machine Interaction [Hockley, A:1986].

The AID project set itself the objective of developing an adaptive front-end
user interface to the British Telecom Gold electronic mailing system. The
final system adapted along a number of selective adaption dimensions: level
of guidance, context switching, recognition of analogous mail systems, and
user tailoring. A generalised adaptive architecture based upon a dialogue
controller, User Model, and application expert was formulated, and this is
shown in figure 3.2.3 [Totterdell, P.A:1986].

AID Architecture:
DIALOGUE CONTROLLER APPLICATION EXPERT
Dialogue > Application
E
Monitoring | Control xpert
Translation
and
Response
Analysis
Triggers| Adaptor I
Modem
Model of User Driver ‘
USER MODEL COMMUNICATION
t Telecom Gold
Application
Processes
i 2.3 - Adaptive Intelligent Dial Archi

During its lifetime, the AID project demonstrated the great difficulty
involved with adaptive interfaces. It identified problems concerning which
interface components to adapt, and concerning the elicitation and use of
knowledge about the user, which is required in order to control adaption.

-49 -

The project discovered that adaption could be used to achieve many
different objectives. However, adaption to fulfil one objective often
conflicted with adaption to achieve another. For example, adaption to
improve accuracy conflicted with adaption to improve efficiency. The need
for separable interface technology was also recognised, but not addressed.
New user centred design methodologies were developed, a classification
system for adaptive interfaces proposed, and an extensive insight provided
into the requirements and potential of adaptive software.

The project failed to improve the 'usability’ of the Telecom Gold system,
and in actual fact made it more difficult to use [Durham, T:1988]. This raises
an important issue relating to the application of Intelligent Interface
technology. The initial Telecom Gold system was difficult to use and could
have probably benefitted from the application of Non-Intelligent Interface
technology. This includes improving interface consistency, support of
multiple interface styles, better command names, and on-line help. Instead,
Intelligent Interface concepts were applied without due consideration to
Non-Intelligent aspects. The result was an Intelligent Interface which was
more difficult to use than the original Non-Intelligent counterpart. This
experience illustrates the fact that Intelligent Interface technology must be
used carefully.

Beside implementation difficulties, many ethical and psychological
problems also arise from the use of adaptive interfaces. With legislation on
database protection now in force, User Models will need to be registered
under database protection laws. Therefore, users must be allowed to access
these models in order to correct any misrepresentations. This requires that
the User Model is explicitly defined, separated, and is itself customisable.
Effectively, adaptive systems may become customisable systems, where
customisation is automated and confirmed by the user. Each time an
adaptive system decides to transform itself, it may therefore have to confer
with the user. This places an interaction overhead upon the user, novice
and expert alike, and assumes that they understand the adaption and
confirmation process. If adaption confirmation is not used, then it is possible
that an interface may adapt incorrectly and cause an incorrect internal User
Model.

Traditionally, people adapt and machines either remain constant or can be
manually adjusted. That is, control remains in the hands of the user. If a
user tries to adapt to an interface which is itself trying to adapt to the user, a

-50-

complex recursive situation may occur, and the user's model of the system
will become unstable. Assuming that the interface and user can agree upon
who, or in the case of the interface, what, is going to adapt, several other
issues arise due to human nature [Bullinger, H.J:1987], [Nebeker, D.M:1987] :-

- the possibility of monitoring and reporting upon user
efficiency may cause mistrust

- the question of correct adaption and its assurance

- adaption reversibility when things go wrong.

Unless the User Model provides a perfectly complete and accurate
representation of the user, adaptive systems can never function correctly.
An apparent model mismatch for one user may be a short-cut for another.
Therefore, adaption is in itself subject to individual user characteristics, and
ultimately to higher levels of adaption. In certain situations involving
expert users, it may also be possible for a conflict to occur whereby the user
tries to 'out manoeuvre' an adaptive interface.

Although many problems need to be addressed, simple restricted adaptive
interfaces may be of great benefit to the user, especially where adaptation is
applied to the field of advice giving and error handling [Carroll, J.M:1987].
Adaptive interface research also provides an insight into Human Computer
Interaction, which is useful for non-adaptive user interfaces.

3.2.4. Planning Aids.

Human planning is essentially an activity concerned with the ability to
identify an objective, or goal, and construct a sequence of actions with which
to accomplish it. The sequence of actions is known as a plan, and may itself
contain smaller objectives which have their own associated plan. Humans
typically already know many plans for accomplishing various goals, and
therefore planning is both a 'top down' and 'bottom up' process, with
existing plans being re-used and new ones learnt.

When using a computer system, users also have specific tasks that they wish
to accomplish, for example adding a new customer to a database, or printing
out the salary cheques. To satisfy the task in hand, a user must execute a
sequence of application functions. In doing so, users construct a plan based
on their knowledge of the application, and previous experience with other
computer systems. The plan is then executed through the user interface, and

-51-

the relevant task is completed. This planning process is most prevalent
when using computer applications which are themselves designed to
support human planning activities, for example Project Planning and
Management Support Systems [Wiest, J.D:1977], and Military Tactical
Planning Systems [Noah, W.W:1986].

Computer systems have many levels of abstraction and different degrees of
functionality. To accomplish a certain task users must 'navigate' their way
through a system to a certain level, and then perform a particular sequence
of operations in a pre-defined order [Andriole, 5.J:1986]. Two issues arise
from the effect of planning upon the use of computer systems. Firstly, the
ability of a user to remember where they are in a sequence of actions, what
they have already done, and what is left to complete. Secondly, the ability of
a user to look forward to an objective, and plan the subsequent actions
required to arrive at that goal. Included in this second concern is also the
ability to remember past plans, which can then be applied repetitively.

It follows that an awareness and support of human planning activities
should improve an Intelligent Interface, making it easier to use [Hecking,
M:1987]. Simple facilities to show the user where they are in a particular
system, and how that position was achieved are essential, especially where
large applications are concerned. Intelligent Interfaces should also enable
users to return to a previous position, and undo any intermediate effects.
These extra facilities may make use of graphics, and require that an
Application Model be available.

Intelligent Interfaces may also provide more complex planning facilities
[Hagendorf, H:1987]. An interface should be able to remember, or record,
particular sequences of actions which constitute a specific plan, and 'replay"
them to users at their request. A library of known user plans can then be
maintained. Interfaces should also be capable of recognising inefficiencies in
a particular plan, and able to suggest an alternative improved sequence of

actions.

Modelling of user plans and goals should also be of benefit to Intelligent
Help, and User Modelling modules of an Intelligent Interface
[Carberry,S:1988]. If an interface can pfédict the goals of a user from the
current interaction, then it may be possible to specifically tailor the available
help facilities. It may also be possible to adapt the interface automatically for

-52-

a user, and cornp'lete the task in hand by automatically performing the
remaining plan actions.

Plan and goal recognition is closely related to Intelligent Help, User
Modelling and adaptive interface research [Desmarais, M.C:1987]. It also
draws from expertise and research from within the Artificial Intelligence
and Behavioural Psychology disciplines. Current research is mainly
concerned with inferencing mechanisms which can elicit knowledge
concerning the goals and planning processes of a user, based upon their
current and previous user interactions [Pollack, M:1986]. Research is also
being undertaken to develop new methods of representing this knowledge
within the user interface.

3.2.5. General Architecture for an Intelligent Interface.

Figure 3.2.5 illustrates a general architecture for an Intelligent Interface,
which draws together the different applications of Artificial Intelligence
discussed above. It shows the various modules of an Intelligent Interface,
and their knowledge requirements. Different Intelligent Interfaces may
implement these modules in various ways; this diagram does not attempt to
suggest the best implementation.

-53-

o3pajmouy]
9MPON SIIN
P CH. |
m 9[MpO SIN u
suonduosa(g sojf15 wadxg
pue sjuouodwo) [@—P>| uONLIUISAIJ pue
Q0B [EULIO] UOTIORIAU] Q08I

sau[-apng nordxg

QUI[-apIN.) [EIUID)

wadxyg
—(,

UOREAISSELD) | o ; wadxyg
Joug Sunpuey .ﬁome
SONSLINGH UONAL0D)

pue uonIugoay] Jouyg

wadxyg
SuI[[opoIA J9s}

SIOPOIN 39S}
[enpiatpu[

!

¢

JOmFZOO

-
\.

wadxg :osmo:&<

{

suonduosa(jeuonounyg

uonedsjddy jewog

Jasn

Q0BJIANU] 13S()
aeudorddy

wasAg djoH
Eomﬁoﬁ:

SONSUNQY pue
sojf1g djop/feIoIN,

e 3.2.5 - Complete UIMS Architecture.

Fi

The various modules and their functions are summarised :-

Intelligent Help System

This handles automatic, context sensitive, user tailored on-line

help and tutorial support for different applications. It requires

-54-

knowledge on tutorial and help styles, and application
structure.

Error Handling Expert
This handles all errors. It requires knowledge concerning error
recognition, error classification, error correction, application
structure, and documentation.

Application Expert
This module describes the application structure and handles
enquiries from other modules. It requires knowledge
concerning the formal structure of an application.

User Modelling Expert
This deals with personalized knowledge for individual users. It
maintains knowledge concerning their individual preferences
and characteristics.

General Guide-lines Expert _
This module maintains knowledge concerning general guide-
lines such as keyboard repeat rates, and minimum response
speed. It allows such knowledge to be modified and queried.

Interface Interaction and Presentation Expert
This formally describes the interface components, and how
they can be combined to create the final interface, for example,
windows, buttons, switches, and valid interactions. The same
components can then be combined in different ways to
generate other interfaces. The formal interface description can
then be executed in order to generate the actual application
interface.

Control
This lies at the centre of the architecture, and brings the
different modules together. It provides communication
between modules, and presents the final interface to the user.

In order to enable the knowledge contained in individual modules to be
~ manipulated and viewed in various ways, it is necessary to develop
spedialised interface design tools. The task of interface'design is now centred

/

-55- -

upon determining the knowledge required by each module, and the Tool-set
can then be used to specify this knowledge. As this knowledge is modified,
so new or variant interfaces are generated.

Fundamental to this architecture is the need for interface separation and
formal module descriptions. This research is primarily concerned with
software requirements for separation, and how these requirements can be
met with new software architectures.

3.3. Interface Classification.

From the preceding investigation it is possible to propose a broad
classification of interfaces according to their adaptability and design method.
Figure 3.3 illustrates the relationship between different interface design |
methods and the types of interface which they may be used to generate. The
terminology is defined :-

Fixed.
A Fixed interface is one which is designed with a particular
user, or group of users in mind. Once implemented, its
structure and features remains constant (unless future
versions are released). This class of interface is presently the
most common.

Adaptable.
Adaptable interfaces can be configured to a particular user, or
user sub-group [Trigg, R.H:1987]. This configuration can take
place at any time during the use of the interface. The
configuration must be performed by the user, or a trained
person who has an understanding of the individual
characteristics and preferences of the user. The granularity, and
scope of this configuration niay vary, and some interfaces may
need re-compiling after modifications are made.

Adaptive.
This type of interface behaves like an intelligent observer
which automatically adapts the interface to the habits and
expertise of a user, without being too obtrusive [Totterdell,
P.A:1987]. Again the granularity and scope of this automatic

- 56 -

adaptation varies, and ultimately interfaces will allow the
adaptive mechanisms to adapt.

Generic Interface Design.
As opposed to Application Specific Interface Design, this
approach re-uses existing interface components and interaction
dialogues within interfaces for different applications [Kraak,
J:1987]. The actual interface structure may differ between
applications, but the same interface features and components
are re-used. This term is best applied to the design Tool-set,
rather than the final interface that results.

Interface Framework design. _
This type of generic interface design (and its associated Tool-
set) packages the code that implements most of the user
interface into a reusable, and extensible skeleton [Coutaz,
J:1987]. The designer's task consists in filling the blanks of the
skeletons, adding new functions, or overriding parts that do
not fit the application domain.

User Interface Management Systems Design.
With this generic approach, the interface designer describes the
interface in a pre-defined language. This description is then
used by a User Interface Management Systems (UIMS) to
automatically generate an executable interface for the user
[Alty,].L:1987]. Modifying and prototyping new interfaces is
simply a case of changing the description and re-compiling the
new interface.

-57-

Design Method / Tool Set
Application Generic
Specific Framework UIMS

i

g Fixed

B4

0

9| Adaptable

“

I

0

A

5 Adaptive x x J

Figure 3.3 - Classification of Interfaces.

The UIMS design approach is potentially more powerful than the Interface
Framework approach, which in turn is more powerful than the Application
Specific design approach. However, the power of these approaches lies in
how well they are used. A well designed Application Specific interface may
out perform a poorly designed UIMS interface, in terms of 'usability'.
Similarly, a well designed Fixed interface may be more usable than a poorly
designed Adaptive one.

As figure 3.3 illustrates, certain types of interface require certain design
approaches. Each approach has an associated Tool-set for use by the interface
designer. In the case of Application Specific interface design, this Tool-set is
normally part of, or an extension to, the application implementation
language. With the case of Generic interface design (UIMS, and
Frameworks), this Tool-set is usually separated to some extent from the
application, resulting in a more distinct interface. Examples of Frameworks
include the Graphics Environment Manager system, where extensions to
the implementation language are provided. UIMS provide the most distinct
form of application and interface separation, where the interface design
Tool-set is normally completely separate from the application language,

3.4. Approaches to Interface Design.

From the viewpoint of the designer, inseparable Application Specific user

interface design is probably the simplest approach. Although some degree of
separation may exist, this approach does not distinguish between application
functions and the user interface. The application functions define their own

-58-

interface requirements. These are implemented using the application
implementation language, or an extension of the language. Little attention
is usually given to the user interface, which is simply mapped onto the
input / output requirements of the application functions. This approach
may be suitable for simple bespoke applications, but is insufficient for more
complex ones.

An alternative is the use of Generic design methods. With this approach the
interface is separated to some extent from the application functions and
implemented using special languages or tools which can be distinguished
from the language and tools used to implement the application function set.
One Generic approach is the framework approach, where a language or
system provides the framework for the final interface. The designer's task is
to select the necessary interface components, and fit them into the
framework provided. The designer is constrained to this framework, and
must design accordingly. Because of the constraints imposed by frameworks,
the application functions may often have to be designed to fit the interface
requirements. This will have the effect of binding application functions to
specific interface components, thus making interface and application re-
design more difficult.

A UIMS is potentially the most powerful generic design method. It is similar
to the framework approach, but the interface constraints are more relaxed.
This is because a UIMS specification language is more flexible and expressive
than a framework. The granularity and restriction imposed by a particular
UIMS specification language ultimately determines the potential of a UIMS.
This specification language effectively maps low level user interactions,
such as key strokes and mouse movements, onto high level concepts such as
goal and task modelling. As the UIMS language becomes more constrained,
so a UIMS moves towards a framework approach. This results in a grey area
between UIMS and framework approaches, which is difficult to classify.

Applications are based upon information and tasks. Tasks can be applied to
information in order to enquire upon, modify existing, or create new
information. Similarly, certain types of information can only be acted upon,
or used by certain tasks. A computer application models some physical or
conceptual real world system, or sub-system. Meanwhile the interface
presents these applications to the user. To use a software engineering term,
the interface is adhered to the application function set. If this adhesion is too
strong, then only certain interface components can be attached to certain

-59-

types of application functions. Thus the interface has a strong effect on
application functionality, which must be designed accordingly.

If the adhesion is too weak, then any type of interface can be built for any
application. The resulting interface may misrepresent the application
functionality, and therefore present an incorrect Application Model to the
user. For example using a Bar Chart to display textual rather than numeric
values. Assuming that this is possible, designers would have to constrain
themselves so that the final interface correctly represents the application
functions to the user.

The correct adhesion, or separation, lies somewhere between these two
extremes. A preferred intermediary is where the application constrains,
interface design so that it cannot be misrepresented to the user. At the same
time it must allow a certain amount of freedom for different interface
components to be used to represent the same application functionality.

3.4.1. Requirements For Good Interface Design.

There are two primary goals to be met by interface software design methods
and related Tool-set :-

- ease of use of the final user interface
- ease of use by the interface designer.

Fortunately, these goals reinforce one another and parallels can be drawn
between the two. Although easy to use design methods cannot guarantee an
easy to use interface, it stands to reason that they can improve and dlarify the
design process. Subsequent user interfaces should then reflect the quality of
such design methods. The major objectives, problems, and solutions
concerned with improving the usability of computer software identified so
far can be summarised :- '

Separation

An essential feature which ultimately determines the potential
of Intelligent Interfaces.

-60 -

Formal Descriptions
Required by different Intelligent Interface modules, and in
different formats.

Expert System Modules
The division of an Intelligent Interface into smaller
communicating Expert System modules. This provides focal
points for research, and aids Intelligent Interface
maintainability.

These criteria provide many advantages. Separation frees the interface
designer to concentrate on the interface alone. Various types of interface
may also be easily prototyped, and experimentation encouraged.

Formal descriptions should provide a formal 'backbone’ to interface design.
New interfaces are effectively generated by altering existing, or creating new
formal descriptions. The interface designer can observe the effects of these
changes, learn by experience, and repeatedly apply the same changes within
other formal interface descriptions. The use of formal descriptions should
also enhance interface consistency and integration [Bez, H.E:1987].

The use of distinct Intelligent Interface modules should assist the interface
designer by providing a framework within which to build the interface. The
- interface designer can then focus attention on various interface modules,
and observe the effects of any modifications. Ultimately, interface designers
may specialise in different interface module areas.

Further requirements for the interface designer include :-

- code re-use

- immediate feedback from changes to formal descriptions

- support of different interface design levels

- interactive Tool-set (i.e. Designing Systems by Example
[Dearnley, P.A:1983)).

Code re-use is a well understood software engineering term [Bell, D:1987]
and can be applied to Intelligent Interface design approaches and support
tools. For Intelligent Interface design, code re-use necessitates formal
interface descriptions within different modules. Particular interface styles,
features, and knowledge, could then be easily re-used within other

-61-

interfaces. A library of generic interface components can then be maintained.
These components may employ default values which can be customised for
individual interfaces.

The effects of changes to the formal description of an interface should be
seen immediately. As response time affects user acceptance of an interface
[Thimbleby, H:1986], so the Tool-set response time affects the acceptance of
the Tool-set by an interface designer. A fast Tool-set response time should
encourage experimentation with different interface styles. This should
enable the interface designer to be more creative, and hopefully design better
interfaces.

The design method and Tool-set should support different conceptual design
levels [Kraak, J:1987]. For example, a key-stroke level which maps user
interactions onto individual interface component tasks, and a presentation
level which maps the interface component output onto a virtual grapf{ics
window. An interface designer can then construct a complete interface from
the various interface components. In doing so, the designer does not need to
consider the key-stroke or presentation levels. This is coupled with
component re-use, whereby individual interface components can be selected
from a library with default key-stroke and presentation levels. Effectively, an
interface designer may interact with the Tool-set at different levels according
to their expertise and objectives.

The interface design Tool-set should provide an interactive Tool-set which
automatically maps onto the underlying formal interface description. The
interface designer may then implement an interface using either an
interactive Tool-set, or by directly specifying the formal description. The
Tool-set should support a 'Design by Example’ approach. The interface
designer would implement the final interface by interactively placing the
interface components on the screen, as they are to appear in the final
interface. Interactive tools should also be provided for modifying lower
component levels, and for other Intelligent Interface modules. The Tool-set
is in effect an extension of the UIMS, which produces the final Intelligent
Interface from the formal description. It serves two purposes; allowing
interfaces to be interactively implemented, and also generating the
appropriate interface formal description upon request. An interactive Tool-
set may also be self describing. Its own interface may itself be generated from
a similar UIMS Tool-set. Effectively, the same usability features which will

-62-

eventually be embodied into the final application user interface can be
incorporated into itself.

3.4.2. Graphics Environment Manager.

The Graphics Environment Manager (GEM) system was developed by
Digital Research for the IBM PC range of microcomputers [Bright, P:1988]. Its
purpose was to provide a user friendly operating system and graphics
software routine library. The operating system offers a window and mouse
based iconic graphic interface as an alternative to the traditional command
driven system. The graphics library provides a set of machine independent
routines to support standardised 'user friendly' interface features such as
windows, mouse pointer movement, icons, and drop down menus. These
routines can then be used within application programs, and are accessed
using function or procedure calls. Various implementation languages are
supported, and suitable binding files are available for purchase. The
complete GEM system is easily re-configured to support different hardware
devices, and this does not affect the execution of application software using
particular library routines. Several Desk Top publishing applications are also
supplied as part of the GEM system. Figure 3.4.2 illustrates the basic GEM
software architecture, and shows how an application uses individual library
routines.

The GEM system is a useful Tool-set for the interface designer, and provides
a set of standard re-usable interface components from which to build a
complete interface. GEM distinguishes between the interface and
application. However, this separation is based upon two components; the
interface and the application. Dialogue control is maintained within an
application program, which replaces its usual input / output statements
with calls to the interface routine library. Effectively, the interface
components are 'strung' together with the thread of dialogue control
remaining within the application. In order to modify an interface, the
application program code must be modified and re-compiled. This restricts
the flexibility of the approach, as interface knowledge is contained within
the application. Similarly, it is difficult to implement multiple interfaces for
the same application without duplicating the application, and varying the
interface library routine calls in each copy.

-63-

User Interface

lication Soff -
Application
Language Binding
Programmer Interface
System Software;-
Menu Buffer
Application
Environment Desk Accessory Buffer
Subroutine .
Library Dispatcher
Screen Manager
VDI/Raster Functions | "
Graphics Device Driver

Hardware Interface

Hardware

Interface Components

(9N

Interface Components

Interface Components

Applicatio
Y /

Dialogue
Control

Ficure 3.4.2 - GEM Architecture.

—

-64 -

A third separation component is needed if this problem is to be overcome.
As discussed later, this extra component contains knowledge which links
the interface and application. This knowledge can then be easily changed in
order to modify an existing interface. It also allows separate interface
components to be re-used within many interfaces.

3.4.3. The Model View Controller Mechanism used in Smalltalk 80.

Smalltalk provides a built-in interface concept, namely the Model View
Controller mechanism (MVC) [Smalltalk80:ReferenceGuide]. This is
illustrated in figure 3.4.3, and the three components are now described.

Model. .
This is the application itself described in Smalltalk code using
Classes, inheritance, polymorphism, and other object oriented
techniques. This is defined and tested first.

View.
This is the output interface which is seen by the user. Examples
of views are all graphical windows which are displayed on the
screen. These windows may contain graphics such as text,
boxes, and circles. Smalltalk provides many existing Classes
which cover all of the basic graphical functions, such as
drawing various shapes, rotating, translating and scaling
graphical pictures, and much more. These features facilitate the
description of complex views.

Controller.
This is the input interface. It effectively maps the input
functions onto application functions. Smalltalk input
functions are received either from the keyboard (i.e. pressing
various keys) or from the mouse (i.e. moving the mouse and
associated screen pointer, and pressing the various mouse
buttons).

Specific Smalltalk Classes are implemented to support the MVC
mechanism. Several different MVC mechanisms can be defined for the
same application, giving the user a choice of interface styles. Theoretically,
new interfaces can also take advantage of existing MVC component
implementations. This is achieved by code re-use and inheritance, which is

|

supported within most object oriented languages [FHorn, C:1987]. In practice,
this is difficult to achieve due to the two component separation model on
which the mechanism is based. The mechanism distinguishes between
interface and application functions, and dialogue control is correctly
maintained within the user interface (i.e. combined View and Interaction
Controller). However, the interface contains knowledge concerning
application functions. This takes the form of embedded Model, or
application function calls. If an existing MVC mechanism is to be re-used for
a different interface, these embedded calls must be changed. This often
requires considerable modification to the MVC Classes, and must be done by
an experienced Smalltalk programmer. Again, the need for a third
separation component can be identified which contains information which
links the application and the user interface.

Problems also exist with defining the boundaries of the separate MVC
components. That is, what functions should be included in the different
components. For example, it is easy to include dialogue control as part of the
View, rather than the Interaction Controller. Similarly, the View and
Interaction Controller may easily contain application functions. The choice
is ultimately left to the programmer, and may differ between various MVC
implementations. Finally, no MVC Tool-set exists apart from the standard
Smalltalk Class Browser. As a result, considerable programming expertise is
required to implement interfaces using the MVC concept.

-66-

Single MVC: MODEL

VIEW |« » CONTROLLER

Multiple MVC:

CONTROLLER

CONTROLLER
[MODEL I ‘
VIEW

VIEW |@————{ CONTROLLER

Embedded Application|
Function Calls

Embedded Application
Function Calls

Interface

Embedded Application
Function Calls

Control

3.5. Summary.

Chapter two discussed the principle software influences which affect the
user interface. This chapter has examined how Artificial Intelligence can be
used to utilise these influences in favour of the user. The major areas of
Artificial Intelligence application were identified as Intelligent Help and

-67-

Tutoring, Modelling, including User and Application Modelling, Intelligent
Planning Aids, and Adaptive Interfaces. An Intelligent Interface was
proposed based upon these areas, and this was summarised in figure 3.2.5.

This chapter has also examined the different approaches to interface design,
and their associated Tool-sets. The requirements which must be met by an
interface design approach were listed, and discussed in relation to several
existing design approaches. In order for the user interface to be improved
there must be a move towards Intelligent Interfaces, generated using
integrated UIMS. These UIMS require distinct interface separation and
should enable formal interface descriptions to be both generated and
executed. Finally, they must also provide specialist tools which support
interface designers in their task of designing consistent, personalized, and
usable user interfaces to a wide range of software applications.

The application of Artificial Intelligence to interface design must be viewed
in relation to the total impact which software factors have on the user
interface. First and foremost, attention must be given to the Non-Intelligent
factors listed in chapter two. The Adaptive Intelligent Dialogues project
demonstrated that unless these factors are correctly addressed, an Intelligent
Interface will probably make a poorly designed interface worse.

The effect of software design and Artificial Intelligence on the interface must
also be considered in context of other factors which affect user acceptance of
complete computer systems. These factors include Systems Analysis and
Design methods, political and organisational effects, and social influences.
The next chapter discusses these other effects in more detail.

-68 -

apter Four

Experience With Other Influences which Affect User Acceptance of
Computer Systems.

4.1. Introduction.

User acceptance of computer systems depends upon many factors. These
may be political, ethical, sodial and organisational as well as the
characteristics of the interface itself. Having so far examined the various
software factors which affect user acceptance, it is necessary to consider other
influences.

As part of this research, an investigation was undertaken to determine the
software factors which affect the 'user friendliness', and user acceptance of
real computer systems. An exemplary working library database computer
system was therefore selected. This investigation was intended to provide an
objective understanding of the problems associated with using computer
software systems, and a practical insight into the potential improvement of
computer software. The investigation revealed that many other factors also
affect user acceptance, and that it is often difficult to isolate specific software
effects.

Knowledge gained during the early stages of the library investigation
demonstrated the need for new software architectures and interface design
tools. As a result, effort was directed towards the development of a suitable
software architecture and Tool-set to support the design of computer
systems, which reflect the actual interaction requirements of individual
users. The results of this investigation are presented in section 4.2.

The experience gained during the library system investigation also provided
a valuable insight into the wide range of factors affecting user acceptance of
computer systems. In particular, the influence of Systems Analysis and
Design became apparent. General issues and observations arising from the
empirical library system investigation are presented in section 4.3. This
section also discusses the possible effects of separable User Interface
Management Systems (UIMS) upon traditional Systems Analysis and
Design.

-69-

4.2. The Working Library System.

A large library database system and its user group were selected as the subject
of a detailed investigation into user acceptance of computer systems. The
main selection criteria were :-

- large user group

- recent system design and implementation
- easy access to system and user group

- full support from management and union.

During the initial planning stages links were established with Sheffield
University Applied Psychology Unit (SAPU). This collaboration provided
expertise within the fields of experimental control and evaluation, and
cognitive psychology.

4.2.1. Overview.

The main role of the library system investigation was to provide an insight
into the software factors which affect user acceptance of computer systems,
and in particular the user interface. These factors could then be addressed by
improved software technology. The library system user group was also to
serve a secondary role as a specialised computer user group on which to test
new interface software. The selected system had a user group of over 35
users from varied backgrounds, with different levels of expertise in both the
application (i.e. library databases) and computer domains.

With assistance from Sheffield University Applied Psychology Unit, the
following plan was constructed :-

(1) Questionnaires to entire user population.

(2) Notebooks left with experimental group to note everyday
problems, and ideas.

(3) Initial interviews with experimental group to determine user
profile including information concerning their background,
job status and content, and general attitudes.

(4) Further detailed interviews concerning their use of, and
problems with the computer system.

(5) Video recording and analysis of the experimental group

' performing set tasks with the computer system.

-70-

(6) Follow up to stage (5) with further interviews.

To assist the control of the investigation, the user group was divided into 7
experimental groups each containing 5 subjects. All interviews were to be
recorded with audio tape, and any sessions using the computer were to be
recorded with video cameras. It was intended that the resulting data be
carefully analysed in conjunction with Sheffield University, using well
established experimental analysis techniques. Stages (2) - (6) were then to be
repeated again with further experimental groups. This was to help eliminate
individual bias which may be present within a user group.

In fact, the investigation only reached stage (4) with the first experimental
group, when it became apparent from the data gathered that the
investigation of new software architectures and interface design tools was
vital, in order to eliminate most of the problems encountered.

4.2.2. Library System Description.

The library computer system consisted of a mini-computer, with 20
terminals attached. These terminals supported text, and had no graphic
capabilities. Several terminals also had a printer attached, which could
handle screen dumps when required. The database software supported
multiple users, and was specifically tailored to the libraries information
requirements.

4.2.2.1. Database structure.

The database was hierarchical in structure, composed of a large, single file,
with approximately 40 fields. Some fields were grouped together into
repeating groups according to their function. Duplicate records were allowed
in this file, but the application software prevented identical records and
repeating groups from being entered.

The range of values of many of the database fields were restricted to pre-
defined sets. For example, Site Name can only be 1 of 5 values, i.e. Site 1, Site
2 ... Site 5. However, this information was not available through the user
interface, and users had to learn them. As a result, many incorrect or mis-
spelt entries occurred.

The main database tool was the Pointer File. This was a file which users
could create themselves, and contained a list of pointers to records within
the main database. Pointer Files could be created by various methods, e.g. the
results of a book search by title, or a selection on a certain author name. Once
created, each Pointer File was given a name and a creation date. Many
Pointer Files could exist at any one time, and were always owned by
individual users. These Files enabled users to manipulate sub-sets of the
main library data file. For example, Pointer Files could represent a group of
books by one author, or books containing the word 'byte’ in their title, or
books by certain publishers.

Once created, records could not be directly added to Pointer Files, although it
was possible to merge two existing Pointer Files to create a new one. Records
could be deleted from Pointer Files, which had the effect of deleting the
actual record from the main file. Finally, when the Pointer File itself was
deleted, none of the records in the Pointer File were physically deleted from
the main file.

4.2.2.2. User Interface.

The user interface was basic, and was primarily command driven. After
logging on with their user codes, users were presented with a single menu
containing six items, and prompted to type in a selection. The system
responded with a single one line message describing what part of the system
the user was in, and prompted them to enter a command. Once a correct
command, or abbreviation was typed, the user was prompted for further
information, using a single line question and answer interaction style.
Incorrect commands resulted in a basic 'no such command' error response.
When necessary, an example database record format was shown on the
screen. This comprised of field titles, and field values. Pressing the cursor
keys moved the cursor between field values, and pressing the return key
accepted the screen in its current state. By typing in different information in
the appropriate fields, specific records were selected for use by the current
task. After the last prompt the system initiated the command, and either
returned to the command line prompt, or displayed the required database
information. Users could quit to the previous level, i.e. command or main
menu at any time, using the quit command. They could also leave the
system by making the relevant main menu selection.

-72 =

Help was basic and only available at the command line prompt. It consisted
of lists of possible commands, or lists of possible field names.

4.2.3. Library Investigation Results.

This sub-section presents the results collected during the completion of
stages (2) - (4) of the investigation, for the first experimental group. It is
recognised that these experimental results came from a small subject group,
and may not be typical of all computer users, however they should not be
ignored.

4.2.3.1. Initial Notebook Investigation.

According to the plan detailed in section 4.2.1, stage two of the investigation
entailed the distribution of blank booklets to each subject. Subjects were
asked to describe points of interest regarding the library database system, and
any other comments they felt were relevant.

The response to this was varied. Three subjects were helpful, describing in
great detail many problems with the system. The remaining two expressed
problems because of lack of time, and a preference for verbal descriptions.
Appendix A contains a list of statements collected during this initial
investigation by the three participating subjects.

The main user interaction problem areas identified by the participating
subjects were as follows :-

- unforgiving environment

- inconsistencies between field names, and meaning

- insufficient, and non-context sensitive help

- slow response time

- insufficient, and unforgiving help messages

- no apparent logical ordering of records

- inconsistencies between command syntax within similar tasks

- unable to switch context and perform another task while
maintaining current state of system

- lack of continuity of tasks. Previous tasks cannot always have
an effect which is desirable for a later task to use

- cognitive problems understanding the applicability of actual
information in the computer

-73-

- problems transferring knowledge between different systems.

Although there were other problems mentioned relating to the areas of
organisational structure and office environment, these are only
acknowledged as they were not studied in any depth.

4.2.3.2. Initial Interviews.

Stage three of this investigation involved a detailed background interview
with each participant. This was aimed at gathering background information
about each person regarding previous experience with computers and library
information systems, job description and daily tasks, amount of work done
using computer systems, attitude towards computers, and initial comments
on the library system. The main objective was the specification of individual
user profiles. These could then be used to help understand their various
comments throughout the remaining investigation.

Because of the change in direction made after the completion of these
interviews, the original recorded transcripts are not included. However,
several interesting issues arose.

Experienced computer users appeared to have fewer problems with the
system. They were more able to deal with inconsistencies, and were
apparenﬂy used to interacting with difficult to use computer systems.
Inexperienced users were less tenacious, and quicker to blame themselves
for any difficulties rather than the computer system. Unfortunately this
created a difficult situation, whereby inexperienced users found it difficult to
progress because of their inexperience.

Stereotyping was a problem; One member of the group was very experienced
and was branded a 'computer boffin'. Other group members did not want to
‘end up like him' and only used the computer system when it was essential.
Several users also felt threatened by the introduction of new computer

technology.

Users found it difficult to distinguish between problems caused by poor
interface and application functional design. They simply saw a complete
computer system and could not classify the difficulties encountered with the

system.

-74-

One subject who disliked the system and found it difficult to use, expressed
the opinion that they knew how the system was chosen, and implemented.
This selection and implementation process was, in their eyes, inferior, and
the computer system was forced upon them. In their opinion the resulting
system was a second rate product of this inferior design process, and
therefore was not acceptable.

Most subjects saw the potential capabilities of computers in the future, and
some looked forward with great enthusiasm to new applications of
computer technology. Others were more cynical, and saw computers as a
'necessary evil'.

4.2.3.3. Further Interviews.

After further interviews with members of the library subject group, the
following issues were discovered and discussed.

Most users of the library system (not only the subject group) had conceptual
problems with the manipulation of Pointer Files. Users were prevented
from directly deleting records from the main file, and understood the
reasons for such protection. Pointer File deletion was, however, allowed.
Also, when the Pointer File itself was deleted, none of the records in the
Pointer File were physically deleted from the main file. This was
conceptually different from deleting individual Pointer File records.
Similarly, they could not understand why additions were allowed with the
main file but not with Pointer Files. The Pointer File appeared as a sub-set of
the main file, yet the same tasks could not be done against it. These
problems with Pointer Files were due to inconsistencies within the
application, rather than the interface.

On-line help for the system was minimal, and only available at the
command level. A help option was available from the main menu, but gave
the response that help was not yet available. This suggested to some users
that it never would be. Expert users found the help useful, but novices
found it insufficient.

The documentation for the system was difficult to read or understand, and
was obviously aimed at technical experts. As a result, user training was on a
person to person basis and most problems were sorted out by asking a more
experienced user.

-75-

Abbreviations in the system were inconsistent at different levels, with one
letter meaning one command at one level and a different command in a
another part of the system. Also, in certain parts of the system abbreviations
were not allowed. This problem was due to inconsistencies within the
interface itself.

The system allowed users to make only three consecutive errors when
answering the prompts for data that a command required. It then returned
the user back to the command prompt. Users often used negative responses
to interrogate the system. For example, searching for non-existent books
resulting in a 'record not found' message. After several consecutive 'not
found' searches, which the system treated as actual errors, the user was
returned to the command prompt. As a result, they had to traverse back to
the same database search screen before continuing with further queries.

There were still some obvious bugs in the system. These bugs were well
known to the users, who knew how to avoid them. However, they affected
their confidence in the system.

The type ahead buffer caused problems, especially with novice users. The
system displayed all intermediate states of the system, but when it was slow
in responding users often press return repeatedly, or re-entered a command
without realising that the system employed a buffer. As a result, tasks were
often repeated and users accidentally selected incorrect functions.

The system rarely gave positive responses after completing a task, informing
the user that it was completed. Instead, it returned the screen to the state it
was in before the task was instantiated, i.e. the command prompt.

Sometimes, pressing the return key meant 'Yes' at a prompt, but at other
times it meant 'No'. This inconsistency often caused serious problems if
users were not aware of it.

With only three levels, the system functional structure was broad and
simple. Users said that they did not have problems getting lost in this
structure, however they wanted the facility to move sideways between the
three levels. They would also have liked to use the results of one action
elsewhere in the system, without having to maintain temporary Pointer
Files.

-76 -

From the main menu there were four options, and selecting one moved the
user to the relevant part of the system. Once there, a line of information
confirmed which sub-system they were in, and they were then presented
with a command line. Because some of the options supported similar
commands, users were sometimes confused about what part of the system
they were in, and had to enter a specific query command to find out.

The system did not prevent users from performing actions which could
damage the database, e.g. deletion. As a result, users were frightened to
explore the system. Instead, they used the system in the way that they were
rote taught by their supervisors.

There were some problems which were due to insufficient specialised
cataloguing skills. The cataloguing sub-system expected the use of
standardised punctuation, and abbreviation. Because of its power, some
non-cataloguing staff were using this sub-system and were having problems
remembering and using its specialised syntax.

Problems with integrity rules occurred when a full screen of information
was displayed to the user (consisting of field names, and boxes for data
entry), to enable them to enquire, add, delete or modify database
information. Certain field values had integrity constraints such as
alphabetic, and numeric restrictions. Some fields were also interrelated, so
that the value entered in one field affected the integrity rules placed on
further fields. These integrity rules had to be learnt by users, as the system
gave no guidance to the rules which applied to each field. When integrity
errors occurred, the system simply highlighted the rogue fields, and reported
that an input error had occurred.

Users requested a facility to terminate functions once they were instantiated.
They also requested some positive system response while it was performing'
lengthy tasks. Whenever the system failed to respond for a long period of
time, users thought that either the computer had not understood what they
wanted, or they had made a mistake. As a result they typed in other
commands, or pressed the return key repeatedly, forgetting the type ahead
buffer. This again caused problems when the system finally returned, only to
process the extra erroneous commands.

Users said that concentration time was a problem, and that after a period of
constant use, typically four hours, they lost concentration and often failed to
notice errors in the information that they had typed. Management were
trying to resolve this problem by changing working practices, and thereby
reducing the stress placed upon the users.

Whenever a user made an error, the system not only informed them of the
error, but usually returned them to some previous system state. This often
resulted in information being lost, necessitating re-typing of the relevant
data.

At the command line, the only correction key that worked was <backspace>.
Although the cursor arrow keys actually moved the cursor backwards and
forwards, any corrections made using these keys were not accepted by the
system. However, the cursor keys functioned properly when specifying a
range of database records using the example record screen. This interface
inconsistency again caused some problems, which expert users eventually
learned to avoid.

Another inconsistency was caused by capital letters. In one part of the system
the computer distinguished between upper and lower case characters,
generating an error if the user typed uppercase characters in a command.
However in another part of the system, the user was required to type in
uppercase characters. This caused confusion, especially when the shift lock
key was utilised, and users forgot to take the lock off.

Some users expressed the desire to change the format of the field layout on
data screens. These included :-

- re-ordering of fields so that they made more sense in terms of
ordering or topic

- re-ordering of fields so that data input was easier, i.e. entering
single columns of data in identical format, rather than using
two columns

- reducing the amount of information on one screen

- dividing the screen into sections containing information that
c