
Interactions at the clay/polymer/water interface.

SHEWRING, Nigel Ivor Edward.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20358/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20358/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


LEARNING CENTRE
crrv  c a m p u s , p o n d  s t r e e t ;

SHEFFIELD, S1 1W&
TELEPEN

100364211  X

r e fe r e n c e

Fines are charged at 50p per hour



ProQuest Number: 10701004

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701004

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Interactions at the Clay/Polymer/Water Interface

Nigel Ivor Edward Shewring

A thesis submitted in partial fulfilment o f the 
requirements of Sheffield Hallam University for the 

degree of Doctor o f Philosophy

December 1998

Colaborating Organisation:

Schlumberger Cambridge Research 
High Cross 
Madingley Road 
Cambridge CB3 OEL





DECLARATION

The work carried out in this thesis was carried out by me in the Chemistry Department 

in the University of Durham, in the Materials Research Institute in Sheffield Hallam 

University and at Sclumberger Cambridge Research, Cambridge, between October 

1992 and December 1998.1 declare that this work has not been accepted in substance 

for any other degree, and is not being concurrently submitted for candidature for any 

other degree. The work is original except where indicated by reference.

Signed__________________________

Date



ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor, Professor Jack Yarwood, for his help, 

encouragement and patience. Without any of these three key ingredients this finished 

manuscript would have remained unfinished.

I am grateful to Schlumberger Cambridge Research for their funding and sponsorship. 

I would like to thank Dr Tim Jones, Dr Paul Reid and Professor Geoff Maitland for 

their time and effort discussing the intricacies of the water based drilling muds.

I would also like to thank the staff and my colleagues, the fellas and the players at 

both the University of Durham and Sheffield Hallam University, for their support and 

friendship.

Finally, special thanks for pushing me that final furlong to my parents and to Gail.



ABSTRACT

The thesis investigates the behaviour of aqueous montmorillonite suspensions and 

also the interactions between montmorillonite as a free standing film and in highly 

dispersed aqueous suspension with water soluble polymers used as additives in water 

based drilling fluids.

FTIR microscopy and FTIR ATR spectroscopy have been employed to study in-situ 

dehydration o f fully dispersed aqueous montmorillonite suspensions. The IR spectrum 

of the dispersed bentonite shows significant differences from that of a dry bentonite 

powder, which have been attributed to the hydration of the exchangeable cation. 

Drying, or concentrated salt solution causes the differences to disappear and this is 

attributed to the exchangeable cation settling back to its ditrigonal cavity in the 

silicate sheet of the mineral under these conditions.

The adsorption o f various molecular weights of neutral polyacrylamide (PAM) onto 

montmorillonite has been studied using FTIR transmission, ATR spectroscopy and 

XRD. Shifts seen in the NH2  stretching and bending bands have been interpreted as 

being due to H-bonding with the outer co-ordination sphere of exchangeable cations. 

KC1 has shown to have some influence on this system.

Another neutral polymer used extensively in water based drilling fluids is 

polyalkylglycol (PAG). The adsorption of two molecular weights of this polymer 

from aqueous solutions of various concentrations have been monitored both in the 

presence and absence of KC1. The physical form of the montmorillonite (either as a 

free standing film or as a dispersed suspension), the concentration of the polymer 

solution, the polymer molecular weight and the presence of KC1 all have significant 

effects on the adsorption of polymer.



The stabilisation of montmorillonite films by PAG and PAG/KC1 solutions has been 

monitored by ATR spectroscopy, and the dehydration of these films by polymer has 

been monitored using FTIR spectroscopy and XRD. The interaction of PAG is 

thought to be via hydrogen bonding with the innermost co-ordination sphere of the 

exchangeable cations which thus presents a hydrophobic surface to solvent molecules, 

preventing the film from collapse.

Since all water based drilling fluids are multi-component systems, techniques 

previously used have been employed to study the competitive adsorption of the 

polyalkylglycol and polyacrylamide components. Preferential adsorption of the PAG 

is seen in these systems either due to the mass transport effects (PAG is considerably 

smaller than PAM) or due to PAG removing all but the inner cation hydration sphere, 

and presenting a hydrophobic surface for the PAM, and therefore preventing its 

adsorption.
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1. OIL WELL DRILLING FLUIDS

1.1. Introduction

The overall aim of the research described in this thesis was to undertake a study 

into the interactions occurring between water soluble polymers and clay mineral 

surfaces in aqueous media. This is particularly relevant to water based drilling 

fluids where polymers interact both with the clay mineral component of the 

fluid in suspension and also with the drilled formation which can often be shales 

which comprise a significant proportion of clay mineral.

The purpose of the research explained throughout the course of this study is to 

understand the interactions between the various components within the drilling 

fluids and also with the drilled surface of the well bore. Features such as the 

nature of the interaction between clay and polymer in aqueous drilling fluid; the 

conformation adopted by a polymer, either freely interacting with solvent or 

adsorbed to the clay component o f the fluid and where a polymer interacts with 

the clay mineral, can have significant bearing on the properties of the fluid, in 

particular its rheological behaviour and help to establish the depletion of 

polymer in the fluid.

In addition, the adsorption behaviour of polymer from the fluid solution onto the 

surface of aggregated, clay mineral platelets can be established and so 

evaluation of wellbore stabilisation / destabilisation by drilling fluids can be 

demonstrated. Studies of this nature can also ascertain the functions performed 

by individual components or groups of components in the multicomponent 

drilling fluid system.
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There has been significant research in this particular field [1, 2, 3, 4]. However, 

without first explaining the underlying principles and the problems which have 

elevated the importance of this particular research into water based oil well 

drilling fluids, it would be impossible to rationalise the methodology, 

techniques and particular materials used.

Hence, a considerable portion of the introduction is devoted to the industrial 

importance o f oil well drilling fluids; their properties, uses and formulations. 

This is accompanied by a discussion of the structure and properties of clay 

minerals, a principal constituent of both drilling fluid and drilled formation. The 

remainder of the introduction is concerned with a relevant discussion of the 

literature regarding the adsorption from aqueous solution of water soluble 

polymers and in particular their adsorption onto a clay mineral adsorbate.

The particular techniques used to provide information on molecular interactions 

in these polymer-mineral systems yields results which will help to correlate the 

behaviour o f water based oil well drilling fluids with the behaviour o f some of 

their individual components or mixtures of components.

1.2 The Nature of Oil Well Drilling Fluids

Oil well drilling fluids or 'muds' are used extensively in the drilling of wells for 

oil. There are many different formulations and the optimum formulation for a 

particular borehole is chosen for its ability to aid production under a given set of 

circumstances.

2



1.2.1. Functions of oil well drilling fluids

The improvement in production afforded by the drilling fluid depends on the 

ability of the mixture to fulfil five typical criteria [5]

1. The removal and suspension of drilled solids.

It is essential that cuttings produced during drilling are immediately removed to 

prevent their inhibition of further drilling by settling on the cutting surface. A 

circulating fluid must have the ability to suspend such cuttings and bring them 

back to the surface whilst minimising disintegration of the solids.

2. Cool and lubricate the drill bit and string

Damage to the drill bit due to friction produced between itself and the wellbore 

can be reduced by the presence of a circulating drilling fluid which will help to 

dissipate heat produced. In addition, drag between the drill string and the 

wellbore will also be reduced by the lubricating drilling fluids.

3. Confine underground fluid deposits to their respective penetrated 

formations

Underground formation fluids can often be highly pressurised and these high 

formation pressures must be controlled to prevent the inflow of fluids into the 

wellbore. This is generally achieved by the density control of the fluid itself, i.e. 

by controlling the weighting agents [5] and polymer molecular weight.

4. Stabilise the wellbore

Drilled wellbores are quite naturally unstable. However stabilisation o f the 

wellbore can be enhanced by the formation of a thin, low permeability filter 

cake, from drilling fluid solids, which seals pores in permeable penetrated rock. 

Chemically unstable formations such as shales which are unstable in water due
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to their clay mineral constituents readily hydrating and dispersing may be 

stabilised by polymers in the drilling fluid. This is a point discussed in greater 

detail later in this thesis.

5. Assist in formation evaluation

Since a drilled well is intended for the commercial production of oil it is 

important that the drilling fluid used does not interfere with information 

obtained regarding the underground deposits and prevent commercial recovery.

Oil well drilling fluids or 'muds' are used extensively in the drilling of wells for 

oil. There are many different formulations and the optimum formulation for a 

particular borehole is chosen for its ability to aid production under a given set of 

circumstances.

1.2.2. Properties of oil well drilling fluids

The formulation of an oil well drilling fluid will provide it with the properties 

necessary to achieve the previously mentioned functions. These properties are:

1. Density

The density o f a drilling fluid obviously has a large bearing on the pressure it 

exerts down a borehole. Hence, the density is critical in confining fluids to the 

pores in their formation, it also helps to enhance borehole stability by virtue of 

its pressure. The density of a mud also enables it to suspend and transport 

cuttings to the surface

2. Rheology

The flow properties of a mud are extremely important, particularly in the

transport of cuttings from the drilled face. The very nature of a drilling fluid
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(being a solid-in-liquid suspension) means it will exhibit non-Newtonian 

behaviour. This means that the fluid will exhibit shear thinning and a tendency 

to develop a gel structure at low shear rates all factors which must be accounted 

for when formulating the mud.

3. Filtration

The formation of a filter cake which prevents the continuous loss of mud to the 

formation is dependent upon the mud containing some particles of a size just 

smaller than that of the pores.

1.3. Composition of oil well drilling fluids

There are two common, distinct types of drilling mud [5, 6]; either water-based 

or oil-based, each depending on the nature of the continuous liquid phase.

1.3.1. Oil-based drilling fluids

The most commonly used type of oil-based mud is that o f the invert emulsion 

[6]. These muds have oil as the continuous phase in ratios between 95:5 and 

50:50 with an internal calcium chloride brine phase. In addition to the two 

phases, water emulsifying surfactants, weighting and filtration control agents are 

added in varying proportions to change the properties.

There are many advantages in using an invert emulsion oil-based drilling fluid

• They are extremely adept at inhibiting shale hydration since the continuous 

phase is not water and so will help to maintain borehole stability.

• Their non-polar nature offers good protection against drill bit corrosion.

• They have a very low lubricity coefficient which helps to reduce torque and 

drag.
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Although oil based drilling fluids are preferred by the industry [7], principally 

due to their formation stabilisation, they are expensive to formulate and their 

environmental impact can be quite detrimental. As a result, extensive research 

has been undertaken to improve the performance of water-based drilling fluids

1.3.2. Water-based drilling fluids

Historically, water itself was the first drilling fluid to be used [5] but the 

properties, discussed earlier, which are currently demanded of commonly used 

water based muds are now provided by the presence of dispersed solids 

(principally barite and drilled cuttings of which the clay mineral bentonite is the 

chief constituent) dissolved salts (including sodium, potassium and calcium 

chlorides) and water soluble polymers, oligomers and surfactants (such as 

polyacrylamides and polysaccharides).

Whilst being relatively inexpensive and easy to use these muds are able to easily 

hydrate and disperse clay mineral containing shales and will as a result reduce 

borehole stability. They are also particularly sensitive to salt contamination by 

drilling through underground deposits of soluble salts. Since increases in ionic 

strength will cause flocculation of the clay mineral constituent there will be a 

corresponding deterioration in the fluid loss control and flow properties of the 

mud. However these muds are considerably more environmentally acceptable 

than the toxic oils used in oil based muds and as a result significant research has 

been undertaken to improve water based mud formulations. Attempts have been 

made [4, 7, 8, 9] to reduce their destabilisation of the borehole by shale 

inhibition and minimising formation damage, to improve their fluid loss control 

and to have high viscosities at low shear rate. Thus, attempts have been made to 

provide a water based drilling fluid with the properties of an oil based drilling 

fluid and hence reduce the detrimental environmental impact.
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Consequently the research described in this thesis will examine the interaction 

of the clay mineral bentonite either as a free standing film or as a fully dispersed 

aqueous suspension with aqueous polymer and oligomer additives commonly 

found in water based drilling fluids. It is essential that the two separate bentonite 

systems are considered since the first enables simulation of adsorption on the 

wellbore whilst the latter enables simulation of adsorption on suspended solids 

within the mud.
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2. CLAY MINERALS

It is often found in clay mineralogy, that there are some terms which are defined 

differently by researchers in different fields. To avoid confusion and as a guide 

to the nomenclature within this thesis, I shall define the term 'clay' as a natural 

mineral, very fine grained (<2 jam) and comprised almost entirely of 

aluminosilicate materials.

Clay minerals are abundantly distributed being composed of three of the earth's 

most common elements; silicon, aluminium and oxygen. They exist as small 

crystals which are created by the weathering of igneous rock and are carried to 

sedimentary basins by weathering processes [10]. They are commonly 

encountered whilst drilling for oil in sedimentary formations and as such 

become cuttings and are readily distributed throughout the drilling fluid.

Clay minerals have great chemical importance and numerous properties and as 

such find numerous industrial applications. In addition to being widely found in 

oil well drilling fluids, clay minerals are one of the most commonly used natural 

materials being found in applications as diverse as industrial fillers [11], water 

treatment [12] and the manufacture of ceramic products [12].

It is instructive to consider some of the more important properties of clay 

minerals with reference to their chemical composition and structure since an 

understanding of these gives an insight into their behaviour, particularly in 

aqueous solution which is of relevance in this thesis.



2.1. Structure of aluminosilicate clay minerals

Layered clay minerals are essentially constructed from two types of sheet-like 

structures which are known as their basic building units.

2.1.1. The tetrahedral sheet

The fundamental building block for this sheet is a silicon oxide tetrahedral unit 

in which four oxygen atoms (or hydroxyl groups to balance the structure) are 

arranged at the four comers of a regular tetrahedron and at the centre sits a 

silicon atom. These tetrahedra have a chemical composition S iO ^ - (figure 

2.1.1a) and are able to undergo polymerisation by linking the oxygen atoms to 

form an hexagonal network of chemical composition Si4 0 6 (0 H)4  (figure 

2.1.1c). The tetrahedra are arranged such that the apices all point in the same 

direction and each of the three remaining basal oxygen atoms of the tetrahedron 

are shared with three adjacent silica tetrahedra. All tetrahedron bases lie in the 

same plane and consequently a flat, infinitely repeating, two dimensional sheet 

is produced (figure 2.1.1b).

In actuality, the ideal hexagonal silicate sheet is slightly distorted in most clay 

minerals to a di-trigonal surface symmetry [12]. This is due to the misfit o f a 

large tetrahedral sheet with a smaller octahedral layer.

2.1.2. The octahedral sheet

The second unit which is found in the structure of clay minerals is an octahedral 

sheet (figure 2.1.2b). The fundamental building unit of which consists of either 

aluminium, magnesium or iron ions located at the centre of an octahedral 

arrangement of oxygen atoms or hydroxyls (figure 2.1.2a).
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Figure 2.1.1 The tetrahedral layer silicate sheet and its various components.

a) structural model o f a single silica tetrahedron.

b) structural model o f the silica tetrahedral sheet.

c) plan view (down the c dimension) o f the silica tetrahedral sheet showing the 

hexagonal network.

Oxygen 

•  Silicon
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These octahedral units are polymerised into a two dimensional sheet in which 

oxygen atoms are shared between neighbouring octahedra giving an 

arrangement in which the metal ions are surrounded by two parallel planes of 

closely packed oxygen atoms or hydroxyls. When the metal ions are aluminium, 

the chemical structure is Al2 (OH)g and only two thirds of the available sites in 

the structure are filled with metal ions. When magnesium is the metal ion 

present, however, its structure is Mg3 (OH)6  and all three sites are filled with 

metal ions. The hydroxyl species is formed in the sheet when a proton binds to 

an oxygen atom to satisfy valence requirements.

2.1.3. Layer silicates

Since the octahedral and tetrahedral sheets have very similar dimensions and 

analogous symmetry, it is possible for oxygen atoms to be shared between the 

two distinct sheets. As a result the oxygen atom apices which protrude from the 

tetrahedral sheet are shared with metal ions in the octahedral sheet (figure 2.1.3) 

to produce the clay platelet.

The clay layers which are produced by the superimposition of octahedral and 

tetrahedral sheets are mostly stacked parallel to each other, van der Waals forces 

of attraction exist between silicate layers in adjacent clay platelets and hold the 

structure together. These bonds are easily cleaved by mechanical shear and will 

readily allow polar molecules to enter between the layers.

The combination between tetrahedral and octahedral layers forms the basis on 

which clay platelets are formed. Indeed the ratio o f tetrahedral and octahedral 

layers and the type of interlayer cation (see later) govern the classification o f 

clay minerals.
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Figure 2.1.2 The octahedral layer alumina sheet and its various

components.

a) structural

b) structural

Figure 2.1.3 Structural model of the combined tetrahedral and octahedral 

sheets in a 2:1 layer silicate.

model o f the alumina octahedral sheet.

model o f a single alumina octahedron.

OH
Oxygen Hydroxyl

Silicon •  Aluminium, Magnesium, Iron



Most clay minerals fall into one of two clay types depending upon the stacking 

arrangements of the component sheets. For example, when one tetrahedral sheet 

is superimposed upon one octahedral sheet, a 1:1 clay is formed such as the 

kaolin group of minerals. It is also possible for the two tetrahedral sheets to 

sandwich either side of one octahedral sheet to form a 2:1 clay mineral as is 

observed in the smectite or mica groups of minerals.

A detailed structural classification of the various clay minerals will not appear 

in this thesis and as such the reader is referred to several excellent descriptions 

by Grim [12, 13] and van Olphen [14].

It will, however, be important to discuss the structure and properties o f the clay 

mineral used exclusively in the studies presented throughout this thesis; that 

particular mineral being montmorillonite, a member of the 2:1 smectite group of 

minerals.

2.2. Structure of montmorillonite minerals

The structure of montmorillonite has been the subject of intense investigation 

but these have not fully explained its reactivity. The most popular, commonly 

accepted structure is that proposed by Hofmann et al [15] and modified by 

Magdefrau and Hofmann [16] and Hendricks [17] (figure 2.2a). This structure is 

the one described previously for a 2:1 layer silicate mineral in which two silica 

tetrahedral sheets sandwich an alumina octahedral sheet. This is the structure 

widely accepted as being the structure of pyrophyllite, a non-swelling 2:1 

smectite clay mineral [13].

This proposal, however, did not fully explain the observed properties of 

montmorillonite. In particular, it failed to explain the linear swelling behaviour
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and high ionic exchange capacity of montmorillonites. As a result Edelman and 

Faverjee [18] proposed an alternative, less commonly accepted structure (figure 

2.2b) in which some apical oxygen atoms at the tetrahedral silicate layer surface 

were replaced with hydroxyl groups so that some hydroxyl groups exist at the 

layer surface. The structure is balanced by inverting 20% of the silica tetrahedra. 

This structure has been used recently by Plee et al [19] to explain pillaring. This 

model contains no isomorphous substitution and as such the cation exchange 

capacity relies upon the dissociation o f hydroxyl groups. This is found, 

experimentally, not to be the case and it must be noted that layer surface 

hydroxyl groups are very rare.

2.2.1. Cheto and Wyoming types of montmorillonite

Two broad groups of montmorillonite the so called Cheto-type and Wyoming- 

type were identified by Grim and Kulbicki [20]. This conclusion was based on 

the results which showed that various samples of montmorillonite did not yield 

the same crystalline phases upon heating. Guven [21] also subdivided these 

groups by virtue of their chemical composition and thermal behaviour. Other 

differences between these two groups include properties such as optical 

refraction [22] and X-ray diffraction intensities of glycol complexes [23]. 

However Solomon and Hawthorne [24] considered there to be only slight 

structural differences between the two types of montmorillonite. Bukka et al 

[25] have shown that it was possible to distinguish between the Cheto and 

Wyoming types of montmorillonite using FTIR spectroscopy of partially 

deuterated samples of the two types. They used the Hofmann model to explain 

how the ratios of two -OD structural stretching bands is related to the Mg/Al 

weight ratio for the two types of clay mineral and hence allows for their 

classification.
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Figure 2.2 The structural models proposed for montmorillonite.

o  o  o  o o o  u u u
Exchangeable cations

o

OH

Oxygen

Silicon

Hydroxyl

Aluminium, Iron, 
Magnesium

a) Structural model for montmorillonite proposed by Hofmann et al [15].

o

OH

Exchangeable cations nH20

OH

OH OHOH

I OH OHOH OH OHOH OH

OH OH

o Oxygen

• Silicon

OH Hydroxyl

• Aluminium

b) Structural model for montmorillonite proposed by Edelman and Faverjee [18].
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Due to some of the flaws in the Edelmann and Faverjee model and the general 

acceptance of the Hofmann model it will be the latter which will be used for 

discussion in this thesis.

2.3. Chemical composition

Calculations o f chemical composition [14] have shown that montmorillonites 

have the typical formula

(Al2-xMgxFez)VI(Si4-yAly)IV o10(OH)2 M+x+yn H20

The exchangeable cation is represented by M+ and the octahedral layer in which 

the isomorphous replacement predominates is represented by VI and the 

tetrahedral layer by IV. There are traces of Fe in the octahedral layer.

2.4 Properties of montmorillonite minerals.

Several properties of montmorillonite clay minerals have been alluded to 

previously in this chapter. It is instructive to briefly describe some of these 

properties and the underlying principles behind them.

2.4.1. Surface Area

Montmorillonite has a very large surface area, it has been calculated using the 

glycerol adsorption method, to be of the order 750 m^g"! [26]. This is due not 

only to it having an external surface area determined by its geometrical shape, 

but also having a large 'internal' surface area as a result o f its plate-like 

arrangement.
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2.4.2. Charges on clays

The high reactivity of clay minerals is predominantly due to the presence of 

electrical charge on their surfaces. There are two types of charge on clay 

mineral which arise by slightly altering the overall electrical neutrality o f what 

is essentially a balanced ionic structure.

2.4.2.1. Edge charges

These arise from the fracture of clay crystal platelets, often by the shear energy 

in a circulating aqueous dispersion. Obviously, breaking the crystal causes a 

charge imbalance at the broken edge creating positive charge on the alumina 

layer and negative charge on the silica layer. This is due to the tendency for 

aluminium to donate electrons and silicon to accept electrons.

The nature of this charge is therefore pH dependent. Hence, in acid conditions 

the protons in solution will neutralise the negative charge on the silica layer 

leaving a predominantly positive charge on the clay edge. Conversely, in 

alkaline conditions hydroxide ions will neutralise the positive charge on the 

alumina layer leaving an overall negative charge on the silica layer. At a pH of 

approximately 6.3 there is a roughly equal concentration of positive and 

negative charges.

2.4.2.2. Isomorphous substitution

Modification of the overall neutrality of the clay structure can be achieved by 

replacing one metal ion within the clay sheet by another of similar size and of 

the same co-ordination but of lower charge. Hence for montmorillonite, within 

the octahedral sheet it is possible to replace A p + by Mg^+or to a lesser extent,
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Fe2+, whilst in the tetrahedral sheet it is possible (but less common) to 

substitute Al3+ for Si^+. Since metal ions of lower charge are introduced to the 

clay platelet, there is an excess of electrons and an overall negative charge 

produced. These charges are not affected by changes in pH but the position and 

extent of substitution within the layers will affect the properties o f the clay 

mineral.

2.4.3. Exchangeable cations (counter cations).

Since the isomorphous substitution is predominantly in the octahedral sheet of 

the clay particles it is here that the excess negative charge exists. In order to 

retain overall neutrality, metal ions reside at the surface of the clay mineral 

platelets. They are unable to approach the negatively charged sites closely 

enough to lose their ionic character or to significantly affect the mineral surface.

2.4.4. Cation exchange and Cation Exchange Capacity (CEC).

In aqueous solution it is possible for the exchange of one particular type of 

exchangeable cation for another. Hence if  a clay is placed in an aqueous 

electrolyte solution an equilibrium ion exchange occurs between the metal ions 

on the clay surface and the dissociated metal ions of the electrolyte of the type: 

Clay-X+ + Y+ <=> Clay-Y+ + X+

The extent of exchange of cation Y+ for cation X+ depends on the relative 

concentrations of X+ and Y+ cations, the nature of the clay and since some 

cations are adsorbed more strongly than others, the nature of the cations. The 

preference of these cations to adsorb to the surface follows the lyotropic series, 

i.e.:H+ > Al3+ > Ba2+ > Sr2+ > Ca2+ > Mg2+ > NH4+ > K+ > Na+ > Li+

Side reactions are also important, as with any equilibrium process, and may 

allow the equilibrium to be driven predominantly to one side.
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The mineral used extensively in the work published within this thesis is 

Wyoming bentonite which occurs naturally with small amounts o f potassium 

and calcium counter cations but predominantly sodium. It is an important 

feature of clays that they are able to exchange cations and be prepared in a 

homoionic exchanged form

The cation exchange capacity (CEC) is a measure of the quantity of 

exchangeable cations and is generally expressed in milliequivelents of each 

cation per lOOg of clay. Montmorillonite has the largest cation exchange 

capacity of all the clay minerals having a CEC between 80 and 150 meq/lOOg 

[13, 14].

Grim explained [13] that in montmorillonite :

• 80% of CEC is due to isomorphous substitution (pH independent).

• 15-20% of CEC is due to broken edge charge (pH dependent).

• In addition, there may be a small remaining percentage of the cec which 

may be attributed to the ionisation of surface hydroxyls as described in the 

model of Faverjee and Edelman, but this is somewhat unlikely. This is also 

pH dependent.

A range of values for the cation exchange capacity must be stated because the 

exchangeable cations, and hence the CEC, are sensitive to both pH (as indicated 

above) and the valency of the exchangeable cation. This is because divalent 

cations have a higher affinity for edge charges than monovalent cations [27] 

which will effect the CEC capacity.

There are many methods for evaluating the cation exchange capacity but one of 

the most commonly used techniques is the methylene blue adsorption test [28].
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2.5. Hydration of clay minerals.

Due to its highly hydrophilic nature and the ease of cleavage of adjacent clay 

platelets (platelets are bound only by van der Waals forces), water is readily 

adsorbed to the clay mineral. In this we are concerned only with water that is 

relatively strongly held by the clay and which would be lost by heating to 

between 100 and 150°C. This must be distinguished from structural water which 

is released by the decomposition of the octahedral lattice OH sites at much 

higher temperatures (up to 800°C). It is the low temperature water which is 

important since it is this which provides a clay with its important properties.

2.5.1. Clay surface hydration

As explained previously, the cations which are present at the surface of the clay 

mineral to neutralise the negative charge (present in the layer due to 

isomorphous substitution) are physically unable to get close enough to the clay 

platelet surface to fully satisfy the negative charge and as a result polar water 

molecules are able to access the surface and weakly hydrogen bond to form an 

oriented layer. There is only weak H-bonding attraction between the surface and 

the adsorbing water because, in montmorillonite, the negative charge generated 

due to isomorphous substitution in the octahedral layer is delocalised (smeared 

out) between the surface oxygen atoms resulting in a low layer charge (in 

montmorillonite this has been shown to be between 0.5 and 1 charge units per 

unit cell [12, 13]). A second oriented layer will also form but due to thermal 

fluctuations, as more layers are added they will be less oriented and will 

approach the orientation adopted by bulk water.
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2.5.2. Cation hydration.

When salts are dissolved in water they dissociate to give positively and 

negatively charged ions. Their charge attracts polarised water molecules and in 

the case of cations the water molecules orient themselves such that the 

electronegative oxygen atom points towards the positively charged ion and as a 

result a hydration sphere forms around the interlayer cation. Usually another, 

outer hydration sphere of water will form commonly known as the second 

solvation shell. Hence in an anhydrous mineral, the exchangeable cation will 

exist in the interlayer region between clay platelets neutralising the layer charge. 

However, as the clay becomes hydrated and the interlayer cation is solvated it 

will form inner and outer hydration spheres.

The two most important factors governing the quantity of water adsorbed into 

the interlamellar space of the clay mineral are:

1. The surface area of the clay (montmorillonite has an accessible 

external and internal surface area)

2. The size and charge on the exchangeable cation

Table 2.5 Size and charge of typical exchangeable cations.

ion dehydrated 

radius (A)

charge density 

(charge/A^)

hydrated radius

(A)

Na+ 0.98 0.088 5.6

K+ 1.33 0.045 3.8

Ca2+ 1.06 0.176 9.6

21



Although Ca2+ is able to hydrate easily (it has a high charge density), it is a 

divalent ion and is able to bind two clay sheets together by forming bridges 

between areas of negative charge and so satisfying its valency. As a result, these 

clays do not swell easily.

The K+ ion does not hydrate very well (as can be seen from its values of charge 

density and hydrated radius in table 2.5. Consequently, its dimensions, which 

allow it to fit into the di-trigonal cavities in the tetrahedral silicate layer, allow it 

to neutralise the negative layer charge more effectively and allow the platelets to 

approach each other more closely. Hence, a more stable arrangement is obtained 

which reduces the hydration and swelling of the clay.

The Na+ (and Li+) ions are able to hydrate quite easily (Li+ in particular has a 

high charge density) and being monovalent are only associated with one 

interlayer sheet. Thus the clay platelets are able to hydrate and swell quite 

easily.

2.6. Structure of water near the clay surface

The behaviour of water and the accompanying swelling of montmorillonite has 

received much experimental and theoretical study [29]. The two commonly used 

treatments for the description of water adsorbed at the clay-water interface are 

the spectroscopic and thermodynamic approaches.

2.6.1. The spectroscopic treatment

Sposito and Prost [29] review the literature describing the structure of water at 

the clay-water interface in terms of the information which can be obtained from
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the experiments used to probe the water. These experiments are split into two 

sections in which one of two structures is obtained.

1. The vibrationally averaged structure (V structure)-The spatial 

arrangement of the water molecules is established by their vibrational motions. 

This can be probed by, amongst others, infrared spectroscopy, neutron 

scattering and nuclear magnetic resonance spectroscopy.

2. The diffusionally averaged structure (D structure)-The water structure 

obtained comprises the vibrational, rotational and translational molecular 

motions of the water molecules and as a result is more ordered since it observes 

only the most probable configurations of the water molecules. These structures 

are obtained by X-ray and neutron diffraction techniques.

Infrared spectroscopy and X-ray diffraction techniques are the two principal 

techniques which have been used to obtain the results, on montmorillonite 

hydration and polymer adsorption on montmorillonite, described in this thesis 

and as such a detailed description of their theory and their operation will be 

found in chapter 4.

2.6.1.1. Infrared spectroscopy

It has, for a long time, been established by infrared spectroscopy that there are 

two distinct environments of water in the interlamellar regions of 

montmorillonite. Prost [30] and Sposito and Prost [29] established these two 

environments as:

1. Water molecules which are directly co-ordinated to the exchangeable 

cations (i.e. the first, strongly bound, inner hydration sphere of the 

cations). This water is extremely difficult to remove.

2. physisorbed water which is easily removed (at temperatures below 105°C 

and corresponds to water molecules which exist in external regions, for
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example occupying interstitial micropores, interlamellar spaces between 

cations or polar sites on external surfaces.

Prost [30] suggested that the first stage of water adsorption is the solvation of 

the exchangeable cations by water molecules. The successive hydration 

corresponds to c-axis spacings which correspond to either one or two layers of 

adsorbed water. The second stage of hydration is suggested to depend on the 

ability of the cations to solvate themselves and so involves the formation of 

successive solvation spheres of water molecules. After the cations are fully 

solvated any further water adsorbed by the montmorillonite will condense in the 

micropores and in the interstitial regions.

Sposito and Prost [29] highlighted the hydration of Li-montmorillonite. In this 

particular structure the surface charge originates almost entirely from the 

isomorphous substitutions in the octahedral sheet and as a result it is delocalised 

around the oxygen atoms which compose the di-trigonal cavity. Consequently, 

there is a preferred orientation of the water molecules in which the lone pair of 

the oxygen of water points towards the Li+ cation and one of the protons of 

water points towards the structural OH group at the base of the di-trigonal 

cavity (figure 2.6.1.1). This is the preferred conformation since the proton will 

sit at the centre of the lone pairs of surface oxygen atoms which surround the di- 

trigonal cavity. If the surface charge had originated in the tetrahedral layer of 

the mineral then it would not be delocalised but localised on surface oxygen 

atoms so that conventional hydrogen bonding between water molecule and 

surface would occur. Small angle neutron scattering reported by Sposito and 

Prost [29] indicate that swelling of Li montmorillonite goes to the limit of 

separation, i.e. to individual platelets.

Farmer [31] discussed the restricted environments of water molecules co

ordinated to metal cations relative to that in bulk water. This was additional
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evidence to support work by Russell and Farmer [32] in which they established 

that the OH stretching and bending bands o f montmorillonite decreased in 

frequency on dehydration.

Johnston et al [33] observed the correlation between the water content of thin 

bentonite films having various exchangeable cations and the wavenumber 

position of the H-O-H bending mode of water in transmission. They also 

discovered that on lowering the water content of the clay the bending vibration 

is shifted to lower wavenumber values accompanied by a significant increase in 

the molar absorptivity. They assume that, at low water contents, the spectra are 

dominated by water molecules in the inner hydration sphere o f the exchangeable 

cation and hence the polarisation of this cation.

Figure 2.6.1.1. The structure of montmorillonite showing the interaction of 

the metal cation with water and the interaction between the water 

molecules and the structural OH group.

H AH

d-spacing

unit cell

b-axis
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Bishop et al [34] also note this shift and also attributed it to the hydration 

energies of the cations and hence their polarising power. Poisignon et al [35] 

discovered that the molar absorptivities of the OH stretch and H-O-H bending 

modes of water in montmorillonite are strongly dependent on the hydration 

energies of the counter cation, the water content and the surface charge density 

o f the mineral.

Bishop et al [34] used mid and near infrared techniques to assign the complex 

appearance of water in the infrared spectra of various homoionic 

montmorillonites. They assigned the bands observed at 3610, 3550, 3450 and 

between 3400 and 3350 cm~l using previously determined band positions for 

bulk water [36] and alkali halide saturated water [37].

Eisenberg and Kauzmann [36] assigned band positions for bulk water at 3439 

and 3600 cm"l to the symmetric ( y )  and anti-symmetric ( y 2) stretching

modes of bulk water respectively. Similarly, Shulz [37] assigned band positions 

for alkali saturated water at 3460 and 3612 cm"l to the y  and y2 vibrations

respectively. Hence, Bishop suggested that the 3610 cm 'l band of water is 

assigned to the anti-symmetric v(OH) vibration of water bound in the inner 

hydration sphere o f the cation in accordance with the band found between 3610 

and 3630 cm"l in montmorillonite by Farmer and Russell [38]. Bands observed 

by Bishop at 3550 cm"l and between 3400 and 3350 cm 'l were seen to be 

strongly dependent on the polarising power of the exchange cation and the 

moisture content of the clay. Cations with high polarising power cause the 

vibrations of the water molecules to be restricted and so they have reduced 

energy vibrations and are found at lower wavenumber positions. At low water 

contents, only the band at 3550 cm"l was seen, whereas at high water contents 

both bands are seen, in keeping with the results of Prost [30] on hectorite. The 

implication is that the bands are due to symmetric stretching modes (due to their 

direction of movement, the symmetric stretch will be more sensitive than the
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anti-symmetric stretching mode to the cation) of inner sphere hydrated cations 

and bulk hydrogen bonded water. Although Low [39] predicted that water 

molecules bound to the clay mineral surface would have higher energy O-H 

stretching vibrations than bulk water, Sposito and Prost [30] have suggested that 

the surface bonded water molecules do not have a higher O-H stretching 

vibration than any other H-bonded interlayer water molecules.

It was previously found Eisenberg and Kauzman and Shulz [36, 37] that there 

exists at -3230 cm~l an overtone of the water bending vibration at -1630 c m 'l  

So the remaining band at 3450 cm 'l which is observed at high water contents 

was assigned to the anti symmetric vibrations o f outer sphere water molecules.

Sposito et al [40] have used the infrared technique to probe the hydration and 

detachment of Na+ from homoionic bentonite at low water contents to 

determine the extent of cation dissociation from the clay surface. The increase 

in intensity of M-OH structural bending modes (in the region 950-750 cm"l) on 

deuteration was attributed to the movement of solvated Na+ out of di-trigonal 

cavities in the silicate surface. This is assumed to be caused by the removal a 

Na+ ion from the cavity and so, the removal of the suppressing repulsive force 

on the vibration of the M-OH bond in the bottom of the cavity which allows its 

infrared absorbance to increase.

Infrared hydration studies of montmorillonite by Shewring et al [41] (discussed 

in further detail in this thesis) have shown that there is a shift in the Si-0 

stretching vibration at 1086 cm~l, seen in dilute montmorillonite suspensions, 

to low wavenumber on dehydration and increasing the electrolyte concentration. 

This was attributed to the settling of the Na+ exchangeable cation into the di- 

trigonal cavities on its desolvation. Migration of exchange cations into the 

hexagonal holes in the silicate layer surface has also been used to describe the
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dehydration o f water (from the cation hydration atmosphere) from 

montmorillonite clay at 200°C [42].

Other studies of the silicate stretching frequency by Lerot and Low [43] 

attempted to study the shifts in frequency which might correspond to changes in 

crystal symmetry during hydration. No shifts in frequency were observed but an 

increase in band intensity of the with increasing water content was interpreted 

as disorientation of the layers as the clay swells. Gan and Low [44] also 

attempted to study the v(Si-O) band at 1040 cm~l seen in the transmission 

spectra of various cation exchanged homoionic montmorillonites, but noted no 

shift in frequency on increasing electrolyte concentration. More recently, studies 

by Yan et al [45] have revealed a dependence of the frequency of Si-0 

stretching modes of montmorillonite and the H-O-H bending mode of water on 

the water content (Mw/Mc) in aqueous gels. They tentatively attribute this to 

the water in the interlayer region adopting a structure like that of bulk water 

with increasing Mw/Mc; A structure it cannot adopt in the confined space 

between clay platelets. They suggest that shifts in v(Si-O) are coupled to the v 

(H-O-H) and since the silica tetrahedra are exposed to water, that shifts in both 

will occur as the platelet separation changes. These results could quite easily be 

explained in terms of hydration of the exchange cation and the change in v(Si-

0 )  as the silicate lattice relaxes when the cation migrates away from the di- 

trigonal cavity. Additionally, shifts to higher wavenumber of v(H-O-H) with 

increasing Mw/Mc could easily be due to increases in the amount of ‘adsorbed’ 

water around the exchange cation, as defined by Bishop et al [34].

2.6.1.2. X-ray diffraction

The coherent scattering of X-rays by hydrated montmorillonites has received 

much attention [46]. It should be noted that it is the aluminosilicate layers which
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act as diffracting planes and not the atoms which comprise water molecules (as 

in neutron scattering). However, the interlayer spacing (or basal spacing or the 

(001) d-spacing) helps to determine the structure o f water molecules in the 

interlayer region.

Pons et al [47] described the structure of water on Na-montmorillonite as an 

adsorbed oriented monolayer strongly bound to the surface oxygen atoms with 

essentially bulk liquid water subject to the constraints imposed by the surface. 

Bradley et al [48] first established that water molecules adsorb onto 

montmorillonite in steps o f one, two, three and four layers of water 

corresponding to step-wise increases in the basal spacing as a function of water 

content. Only d-spacings which correspond to integral layers of water molecules 

between platelets were observed by Mooney et al [49]. These d-spacings 

correlated with the shape of desorption isotherms and heats of desorption, 

further evidence that discrete layers of water exist between the layers. Any 

differences were explained in terms of ionic hydration effects. Glaeser and 

Mering [50] have also shown that the interlayer spacing of Na-montmorillonite 

increases in a step-wise manner on increasing the relative humidity o f the 

equilibrating atmosphere. The K+ ion was seen to behave in a similar way to the 

Na+ exchangeable cation with increasing water content showing spacings at 

~9.5, 12.5 and 15.5A. However, the basal spacing of Ca^+ exchanged clay are 

more stable due to the hexa co-ordinated octahedral hydrated Ca^+ cation. 

Ormerod and Newman [51] measured the basal spacing and water sorption on 

Ca-montmorillonite concurrently. At low water contents single water sheets 

develop but at vapour pressures between 0.35 and 0.95, basal spacings between 

15.7 and 19A and water contents of 12-16 molecules o f water per cation 

indicate that there is a strongly bound inner layer of water and at least the same 

amount again of weakly bound water.
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Sposito and Prost [29] reviewed small angle X-ray scattering studies of 

montmorillonite gel systems at ambient temperatures. These revealed that K- 

montmorillonite exists as parallel plates with and without water interspersed; 

Cs-montmorillonite exists as thick aggregates with either none or a monolayer 

of water between the layers and Ca-montmorillonite exists as quasi-crystals 

consisting of 4-5 platelets with three monolayers of water molecules between 

adjacent crystals. Other work by Ben-Rhaiem et al [52] has discussed the 

formation of quasi-crystals (not to be confused with tactoids) on dehydration of 

Ca-montmorillonite as described by Quirk and Aylemore [53].

Norrish [54] showed the effect o f electrolyte on the interlayer spacings of 

montmorillonite. On reduction o f electrolyte concentration he too observed a 

step-wise increase in the interlayer spacing up to 20A as expected. However, 

below a certain value of ionic strength, c, the basal spacing jumped to 40A and 

increased steadily, varying as l /V c . The value of interlayer spacings quoted by 

Norrish are actually the probability of a particular interlayer separation, since 

the spaces are represented by a statistical distribution.

The type of exchangeable cation is important to the swelling mechanism.

Studies on mixed K+/Na+ ion exchanged clays [55] revealed that the swelling is 

strongly inhibited in clays with 44% or less Na+ exchange fractions. Hence Na- 

montmorillonites may or may not undergo complete dissociation. However, Li- 

montmorillonite does undergo unlimited swelling. Swelling to infinite 

separation is not seen for divalent cations. Ca-montmorillonite, for example, 

does not fully disperse probably due to the bridging properties of cations such 

as Ca^+ between two adjacent platelets [46].

MacEwen et al [46] explained that the swelling of montmorillonites relies upon 

surface charge density and the surface charge delocalisation in addition to the
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nature of the counter cation. Indeed, Slade et al [56] precisely controlled the 

swelling between 15.5 and 18.5A by varying the concentration of equilibrium 

salt and found that various Na montmorillonites with relatively lower layer 

charge and whose layer charge predominately originates from the octahedral 

layer swell relatively easily. By comparison, Na montmorillonites with high 

surface charge density and whose charge predominantly originates from the 

tetrahedral layer do not exhibit extensive swelling. However, if  the counter 

cation was Li+, the montmorillonites would swell regardless o f the size and 

origin of their layer charge. Na Wyoming montmorillonite used in these studies 

have low layer charge which is delocalised over the di-trigonal cavities of the 

silicate surface due to isomorphous substitution in the octahedral layer and can 

be seen to swell easily. Slade and Quirk [57] followed the swelling of Mg-, Ca- 

and La-montmorillonites over a range o f salt concentrations depending upon the 

magnitude and origin of the layer charge, the higher the layer charge, the lower 

salt concentration at which the clay swelled.

The expansion of Na-montmorillonite in decreasing concentrations of 

electrolyte solution is not a reversible process having different isotherms during 

desorption and adsorption [46]. Laird et al [58] explained this hysterisis in terms 

of intrinsic processes during swelling due to the rigidity o f the clay-water 

system and extrinsic processes due to the formation of rigid quasi-crystals. It is 

seen that work must be done to overcome the rigidity in the system.

The X-ray analysis of the swelling of Na-montmorillonite has also revealed that 

the b-dimension increases continuously as it swells [59]. In fact, studies [59] 

have shown a linear dependence between the swelling of montmorillonite and 

the b-dimension of montmorillonite at low water contents. Odom and Low [60] 

have suggested that, "epitaxy exists between water and montmorillonite ... the 

b-dimension affects the structure of water ...all properties depend on it [the b-
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dimension]". This is evidence which supports the thermodynamic approach to 

swelling, explained in section 2.6.2. o f which P. F. Low is a strong advocate.

The spectroscopic approach to swelling relies on the DLVO theory of double 

layer formation as established by Langmuir [61], Derjaguin [62] and Verwey 

and Overbeek [63]. The generally accepted view of swelling is that it occurs in 

two distinguishable stages:

1. Intracrystalline swelling.

This is caused by the hydration o f exchangeable cations in the interlayers of 

montmorillonite which can be seen spectroscopically since on the infrared time 

scale the exchangeable cations are translationally stationary. This occurs at less 

than three monolayers o f water adsorbed.

2. Osmotic swelling.

Osmotic swelling is the second stage of swelling and results from the large 

differences between ion concentrations close to the clay surface and in the pore 

water. Two important features of the swelling are the large spacings observed 

between individual layers and also that the forces between the layers are 

osmotic and result from the balance of electrostatic forces, van der Waals forces 

and the osmotic pressure exerted by the interlayer cations.

2.6.2. Thermodynamic approach to clay hydration

This particular treatment of the swelling of clay minerals was first muted in 

1956 by Hemwall and Low [64] and involves a macroscopic description o f the 

clay water system in which all observed changes with respect to bulk water are
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attributed to the water phase and not the clay phase which is considered 

separately.

Later, Low and Margheim [65] and Low [66] described how conventional 

DLVO double layer theory [61, 62, 63] does not adequately describe the 

swelling of montmorillonites. In their theory they discuss how that the cations 

in the Stem layer, closely associated to the silicate surface of the platelet, are 

hardly dissociated from this position on hydration (the details of the Stem layer 

are discussed later in this chapter). This prevents the formation of significant 

double layers which implies that the interaction between repulsive double layers 

on adjacent platelets could not be the mechanism for swelling. Miller and Low 

[67] showed that there exists around a platelet of montmorillonite a very well 

developed Stem layer in which most of the exchangeable cations reside. The 

electrostatic potential at the boundary of this layer(the outer Helmholz plane) is 

not affected by electrolyte, pH or the clay itself and it is postulated that there is 

a critical value of the potential which depends on the exchangeable cations, and 

above which cations cannot leave the layer. Adjustments are made by the layer 

to maintain the critical value.

It is possible to define the swelling pressure for a clay mineral as the net 

repulsive force per unit area at a particular separation [65] and is determined by 

measuring the externally applied force which is required to maintain a constant 

separation of the platelets on hydration. An empirical formula was developed 

[65] which related the swelling pressure n ,  to the ratio of the mass of water to 

mass of clay, mw/m c > in the system.

Where a  is a parameter which is characteristic of the clay and (m c /m w ! is the 

value of (mc/mw) when U = 0.
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Viani et al [68] determined that the swelling pressure between adjacent sodium 

montmorillonite platelets is related, empirically, to the inverse of the interlayer 

separation, X, by:

weak to account for the observed swelling pressures.

Mulla and Low [69] refer to several papers, of which Low was author or co

author, in which studies have been made the thermodynamic and hydrodynamic 

properties of water in the montmorillonite-water system including, amongst 

others, the specific volume, specific heat capacity, heat o f compression, specific 

expansibility, and viscosity compared with that of bulk water and also the 

frequency of O-D stretching vibration. He established that all of these properties 

obeyed the general equation

where j ,  is the magnitude o f any property i, of the system

J°i is the magnitude of the same property for bulk water

mc/m w is the mass ratio of montmorillonite to water

P i is a constant which is characteristic of the property and the

montmorillonite.

He claimed that since the O-D stretching vibration is dependent on 

intermolecular bonding of water molecules then all properties J, must depend 

on the arrangement and interaction of the interlayer water molecules which in 

turn is influenced by the particle surfaces. This relates to the theory [65, 66] that 

differences between interlayer water and bulk water are related to the 

differences in intermolecular bonding which are influenced by the 

montmorillonite surface. Low [70] suggests that water bonds in the interlayer

eqn 2.6.2b

Where Z° is the separation between surfaces when n  = 0 . At the separations 

studied (between 20-100A) they predict that double layer forces would be too

eqn 2.6.2c
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are "more extensible and compressible but less breakable or bendable than those 

in bulk water" but is unable to suggest what the detailed nature of the bonds and 

their arrangement might be.

Sun et al [71] describe the non-specific nature of the interaction between water 

and clay mineral surfaces (i.e. that it does not depend on characteristics such as 

surface area, surface charge density, cation exchange capacity and b dimension 

of the unit cell). This led to several postulates, the two most credible of which 

are:

i) that there is insufficient space in the interlayer region for the water to attain a 

structure characteristic of bulk water, or that,

ii) the solid silicate surface affects the vibrational, rotational and translational 

motion of the water molecules thus allowing intermolecular interactions at 

significant distances.

This agrees well with the assumption [71] that long range interactions between 

water and the clay mineral surface influence the structure and physical 

properties o f interlayer water.

Several papers [67, 72, 73] have discussed the assumptions used in DLVO 

theory with respect to clay minerals and the convenient nature with which this 

theory has been applied by researchers. In particular, they highlight the absence 

of any term to allow for hydration of the platelet surfaces and the assumption 

that no hydration forces exist.

It must be noted that P. F. Low is not alone in his belief that the swelling of clay 

minerals is due to the hydration of the mineral and the subsequent arrangement 

and bonding of water molecules in the interlamellar region. For example,
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Israelichvelli and Adams [74] observed an extra short-range repulsive force 

between smooth mica sheets in aqueous electrolyte solution and ascribed it to 

hydration effects. Similarly, Pashley [75] attributed short range repulsive forces 

between mica sheets in electrolyte solution to hydration of the counter ions. 

Israelichvelli and Pashley [76] found periodicity in the hydration force on 

bringing mica sheets together and attributed it to the layer by layer displacement 

o f a co-ordinated water structure. At high concentrations of electrolyte, Pashley 

and Quirk [77] concluded that the forces of repulsion between mica surfaces 

could not be explained by DLVO theory and that the extra repulsive force must 

be due to hydration o f the cations. Although there is agreement with the ideas o f 

P. F. Low, much of this work does not disregard the double layer contribution to 

the swelling mechanism (which is particularly relevant at large separations 

where the influence of the layer surface on water structure will be limited) and 

state that it is the counter ions that hydrate and not the surfaces.

The thermodynamic data showed that water in clay-water systems varies 

significantly from bulk water and gave very different results from those 

obtained by infrared spectroscopic methods. This is not an unlikely result, since 

infrared radiation will probe the vibrational motion of the interlayer water 

whereas the thermodynamic properties will measure the time-averaged 

behaviour of water (including the vibrational, rotational and translational 

molecular motions). This being the case, thermodynamic data would be 

expected to show few differences from data obtained by X-ray diffraction. 

However, differences exist between the thermodynamic data and X-ray 

diffraction data which may be evidence [29] that thermodynamic properties are 

more sensitive to structural changes in the liquid phase than diffraction patterns. 

This may then support the theory o f Low [70] that H-bonding of adsorbed water 

in sodium montmorillonite is more wide ranging than in bulk water, even at 

high water content.
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2.6.3 Computer simulations.

Monte Carlo and molecular dynamic simulations of the clay-water systems have 

not reduced the confusion surrounding which approach to clay hydration and 

swelling should be used.

Skipper et al [78] revealed that model Na smectite adsorbed water which forms 

inner and outer sphere complexes with the Na+ cation. The interlayer water was 

not organised around the cation but, due to competing hydrogen bonding with 

itself and to the surface it exhibits lower self diffusion coefficient than bulk 

water. Skipper et al [79] used the model Na Wyoming type montmorillonite and 

found that Na+ cations associated with tetrahedral substitution sites formed 

inner sphere surface complexes and that the Na+ associated with octahedral 

substitution sites were found at two sites:

i) Outer sphere complexes bound to di-trigonal cavities

ii) Highly solvated species in the diffuse layer.

Between the platelets, interlayer water exists whose structure becomes less 

organised on increasing hydration, but still remains more organised than in bulk 

water. Recent studies [80] of increasing layer hydrates of K montmorillonite 

have shown that the water and cation mobilities are lower than in bulk water. 

This was attributed to the restricted geometry.

In contrast to these findings, Delville [81] reported that stepwise increases in the 

interlayer spacing revealed an oscillatory distribution of the local density of 

water molecules in the interlayer region. This was attributed to solvent structure 

and the transition between successive water layers. Delville concluded that there 

is a link between water organisation and the distribution of Na counter cations 

and that this accounted for the swelling mechanism. The DLVO theory of 

swelling was rejected because, at some interlayer separations, there was a zero
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density of Na+ in the interlayer region and so swelling pressure must have been 

due to factors other than hydrated Na+ cations in the diffuse layer. Delville was 

unable to find any significant periodicity in the water content of the pore; the 

swelling energy; or the solvation forces, as would be expected if there was 

strong organisation of water molecules at the clay surface and subsequent 

layering. This was attributed to the ability of water to overlap and fill available 

space which is not possible in hard sphere models. Similar stepwise increases in 

interlayer spacing have been reported elsewhere [82]. These, however, have 

been attributed to the formation of hydrogen bonds between water protons and 

the oxygens on the silicate surface and the adsorption of water in the hexagonal 

cavity of the clay surface.

Since the experiments and results presented in this thesis have been obtained by 

spectroscopic techniques, then DLVO theory will be used to interpret them.

This does not imply that the theories of Low and his co-workers are in any way 

flawed, it is mainly a reflection on the relative ease o f interpreting results by the 

two theories.

2.7. Interactions between clay particles in aqueous suspension.

Clay minerals exist in aqueous suspensions as fundamental crystallographic 

units of individual platelets. Brownian motion causes these platelets to approach 

each other and depending on the nature of the dominant force between them, the 

platelets will either repel each other and continue to exist as individual units, or 

they will attract and form floes, and the system will be flocculated.
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2.7.1. Attractive van der Waals forces

Short range van der Waals forces arise from the instantaneous alignment of 

electric dipoles on neighbouring atoms. Since clays have very large numbers of 

neighbouring atoms these forces are additive and can become quite important. 

Although they are relatively short range compared to the range of the electrical 

double layer (the cumulative force decays as l /d 3 where d is the distance of 

separation [83]) if  the platelets come close enough to each other the force will 

be strong enough to cause aggregation. Figure 2.7.1 shows the typical form of 

the potential energy curve.

Figure 2.7.1. Typical potential energy curve for van der Waals attractive 

forces
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2.7.2 Repulsive electrical double layer forces

Figure 2.7.2a shows a typical representation of the ion distribution next to the 

clay surface. This representation is based on the Stern model which describes 

the electric potential which must be overcome for two like charged surfaces to 

come together. This electric potential (figure 2.7.2b) is not just the charge itself, 

but is derived from the assembly of the charged surface and the exchangeable
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cations. Within this model the solid surface has a fixed charge (which for 

montmorillonite is negative due to isomorphous substitution as explained 

previously). In the solution, next to the solid surface, is a strongly adsorbed 

monolayer o f exchangeable cations this layer is called the Stem layer and the 

potential drops across the Stem layer from its original value to a value known as 

the Stem Potential. The outer limit of the stem layer is defined by a plane 

commonly known as the Outer Helmholz plane. Due to the adsorption of water 

to the tightly bound Stem layer of cations there also exists a plane of shear 

which defines the surface o f the envelope o f water surrounding the Stem layer. 

The electrical potential at this point is known as the zeta potential. It is the zeta 

potential which determines the stability of the clay suspension (it is in turn 

dependent upon the Stem potential).

Figure 2.7.2a Diagrammatic representation of the electrical double layer
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Beyond the plane of shear, a diffuse layer of mobile exchangeable cations is 

formed whose concentration decays exponentially away from the surface until it 

reaches a concentration which corresponds to that of the bulk solution. The 

potential similarly drops across this region.

Figure 2.7.2b The electrical potential surrounding the clay platelet
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2.7.3. Flocculation of montmorillonite by electrolyte

In order for flocculation to occur, the attractive van der Waals forces must be 

greater than the repulsive forces due to the electrical double layer. However, the 

diffuse layer can be contracted by increasing the electrolyte concentration 

(number of cations) until it is the same in the bulk as it is at the surface of the 

clay platelet (figure 2.7.3a).
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Figure 2.7.3a The effect of increasing electrolyte concentration on the

electrical potential surrounding the clay platelet.
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The diffuse layer will contract and will enable platelets to approach each other 

more closely. Since attractive van der Waals forces are unaffected by salt 

concentration and predominate at short ranges, it is possible that they will cause 

the plates to attract and to flocculate (figure 2.7.3b-d).

Figure 2.7.3. The effect of increasing electrolyte on the overall interaction 

energy (thick line)

Energy

Repulsive

+tive

Distance of 
separation (d)

Attractive

-tive

b) No electrolyte, overall interaction energy is repulsive
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c) Low electrolyte concentration (-0.002%), limited flocculation
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d) High electrolyte concentration (2%), extensive flocculation

The valency of cations in addition to a high concentration of counter cations in 

solution, is also important in causing flocculation and flocculation follows the 

order:

Ca2+ > K+ > Na+ > Li+

Hence, monovalent cations are less likely to cause flocculation. However, 

divalent cations are able to cause flocculation by a bridging mechanism in 

which its valency of two is satisfied by negative charge on two sheets causing 

the layers to stay closer together, a feature not available to monovalent cations.
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2.7.4. Mechanisms of flocculation

Three possible particle-particle associations are possible for montmorillonite 

platelets and are shown schematically in figure 2.7.4.

1. Edge-Face (EF) in which positively charged edges are attracted to 

negative surface charges.

2. Edge-Edge (EE) in which the positive and negatively charged edges 

are attracted to each other.

3. Face-Face (FF) in which two faces are attracted. This flocculation 

gives the largest association in terms of area of contact.

All three mechanisms are possible but the FF mechanism will predominate 

since the negative basal surfaces of the clay govern flocculation. This leads to 

dense floes forming which will have the most stable orientation possible and 

will easily sediment out of solution.

Figure 2.7.4. The three possible particle-particle associations

F ace-to-Face Face-to-Edge Edge-to-Edge
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2.7.5. Aggregation-Dispersion

Van Olphen [14] distinguishes between flocculation, as obtained by EF and EE 

flocculation mechanisms, and aggregation which is due to the parallel 

aggregation of thicker particles by the FF flocculation mechanism.

The term dispersion is then applied to the reversal of the aggregation 

mechanism, for example, by mechanical shear or chemical forces (such as 

hydration) which breaks down a dense stack of platelets into smaller particles. It 

is possible therefore for dispersed or aggregated suspensions to be also 

flocculated or deflocculated.

2.7.6. Flocculation-Deflocculation

Deflocculation is the reverse procedure of the EF and EE flocculation 

mechanisms. The most commonly used mechanism for deflocculation involves 

the reversal of edge charge since this is easily achieved by increasing pH to give 

the edges an overall negative charge. It is also possible by peptisation as 

outlined by Van Olphen [14] which is the adsorption o f excess polyanions such 

as silicate and phosphate at the clay edges leaving an overall negative charge.

It is, however, also possible to reverse the charge on the clay surface by the 

adsorption of organic cations such as long chain quaternary cations. 

Deflocculants are commonly found in drilling fluids in order to reduce particle- 

particle interactions, i.e. in order to reduce the drilling fluid viscosity.

Commonly found deflocculants, or thinners, as they are known in drilling fluids, 

are polyacrylic acid and ferrochrome lignosulphate [6] whose adsorption by the 

clay mineral increases the repulsion between platelets by increasing the overall 

negative charge on them.
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2.7.7. Polymer stabilisation of colloidal dispersions.

There is another common cause of flocculation used in colloid chemistry and is 

often encountered in clay chemistry and that is polymer flocculation. Napper 

[84] discusses the theory of the effects that polymers have on colloidal 

dispersions and describes them roughly in terms of the concentration of polymer 

in solution (figure 2.7.7. after Napper [84]).

Figure 2.7.7 Effect on dispersion stability on addition of increasing polymer 

concentrations
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2.7.7.1. Bridging Flocculation.

At relatively low concentrations, polymer segments on one particular chain are 

adsorbed to the surface of more than one colloidal particle. This links the 

particles and forms rapidly sedimenting floes or aggregates.

Bridging is possible because there is incomplete surface coverage at such low 

concentrations which allows a polymer chain attached to one particle to adsorb 

to another during Brownian collisions.

The best bridging flocculants are high molecular weight polyelectrolytes 

because the spatial extension of a polymer increases with molecular weight and 

charge (chapter 3). The flocculation mechanism requires that the spatial 

extension of the adsorbed polymer loops or chains must be greater than the 

electrostatic double layer which extends from the colloid surface so as to 

overcome colloid repulsion. Addition of electrolyte improves the effect o f lower 

charge, lower molecular weight flocculants by collapsing the electrostatic 

double layer and making flocculation easier.

The commonest modes o f interaction are electrostatic or hydrogen bonding. 

However in clays, it is possible for a negatively charged polymer to flocculate 

the negatively charged platelet. This is by a mechanism which involves the 

bridging effect of Ca^+ which binds to both the clay surface and the negatively 

charged polymer (a bridge within a bridge).

2.1.12. Steric stabilisation

As the polymer solution concentration increases more polymer is able to adsorb 

to the particles and saturation surface coverage can be obtained.
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The best steric stabilisers are copolymers in which the anchor component is 

insoluble in the solvent but adsorbs strongly to the particle and a chain 

component which is soluble and extends in solution. Bridging flocculation is 

prevented by having complete surface coverage and by the repulsive interaction 

between stabilising chain components on each particle. Sterically stabilised 

particles may flocculate if  the anchoring is not adequate, if  the surface coverage 

is incomplete or if  the thickness of the adsorbed layers is so thin that the van der 

Waals attractive forces can act between the particles. Bridging 

heteroflocculation is possible by the addition of a low concentration of a second 

adsorbing polymer to a sterically stabilised dispersion.

2.7.7.3. Depletion flocculation

At higher polymer concentrations, polymer molecules exist both adsorbed to 

particles and as free polymer in solution. In such circumstances, if  the colloidal 

particles become closer together than the polymer diameter then the polymer 

will be excluded leaving pure solvent in the interparticle region. If the polymer 

has a high affinity for the solvent and the particles approach each other more 

closely solvent will be forced from the interparticle region bringing the particles 

closer together and enhancing flocculation.

2.1.1 A. Depletion stabilisation

If the polymer concentration is increased further, depletion stabilisation will 

immediately follow depletion flocculation, this is because work must be done to 

de-mix polymer and solvent which have a high affinity for each other and to 

leave pure solvent in the interlayer region. This manifests itself as a repulsive 

force and acts to thermodynamically stabilise the dispersion, thus preventing 

further flocculation.
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2.7.7.5. Charge Neutralisation

The adsorption of positively charged polymer onto a negatively charged colloid 

particle (for example when highly charged cationic polymers are mixed in a clay 

suspension) bridging flocculation may occur but also simple charge 

neutralisation is observed. It has been suggested [83] that if  the adsorption of 

polymers in these circumstances have no chains and loops, i.e. lie flat to the 

surface, there exists patches of positive and negative charge on particle surfaces. 

A patch of positive charge on one particle may then interact with a patch of 

negative charge on another particle during Brownian collisions causing 

flocculation.
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3. ADSORPTION OF WATER SOLUBLE POLYMERS FROM

AQUEOUS SOLUTION ONTO CLAY MINERAL SURFACES

Before it is possible to discuss the behaviour of water soluble polymers at the 

clay-water interface it is imperative to understand the general behaviour o f such 

polymers in solution since this will govern, to a certain extent, the adsorption 

behaviour. Indeed, Burchill et al [85] explained the differences between the 

adsorption of PVA and PEO (similar molecular weights) on smectite surfaces. 

In solution, both polymers exist as random coils but PVA, being more 

hydrophilic, is more expanded than PEO. Consequently the more expanded 

PVA polymer makes contact and covers a wider surface, trying to collapse onto 

the surface in the lowest energy conformation possible. Adsorption sites will 

still remain but are inhibited by previously adsorbed molecules and so the 

ensuing polymer molecules will adopt various conformations to adsorb at 

unoccupied sites. In contrast, the less expanded PEO molecule will adsorb and 

make as many contacts with the surface as possible, but will uncoil and spread 

over the surface less. Thus, fewer adsorption sites will remain in the proximity 

of the adsorbed molecule but larger areas of surface will remain unoccupied.

3.1 Behaviour of polymers in solution

It is possible to dissolve linear or branched amorphous polymers in a suitable 

solvent such that the polymer too behaves like a liquid. It should be noted that 

cross-linked polymers swell in suitable solvents but are not able to solubilise. A 

suitable solvent is one which is defined as thermodynamically 'good', i.e. one 

with which the polymer is highly compatible and in which the polymer-solvent 

interactions govern the extent to which the polymer chain is expanded. 

Expansion occurs because solvent allows remote segments of the polymer chain 

to come into close proximity, since two segments cannot occupy the same space
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they experience a repulsive force between them, causing the chains to extend. 

The polymer is said to have an 'excluded volume' into which segments cannot 

move.

In solution, the polymer adopts a configuration in which segments are located 

from the centre of the molecule in a Gaussian distribution of arrangements 

which corresponds to a random coil configuration. Hence, the typical shape of a 

polymer in solution (provided there is relative ease of rotation about main chain 

bonds) is a random coil with a large number of conformations. Hindered 

rotation by bulky substituents and chemical groups will reduce the number of 

conformations a polymer may adopt and thus it may not adopt a random coil 

until higher temperatures.

It should be noted that 'like dissolves like'. Consequently, polar polymers and 

polyelectrolytes such as those used in these studies (e.g. polyethylene glycol, 

polyacrylamide and partially hydrolysed polyacrylamide) dissolve easily in 

polar solvents, particularly water

A solvent which is defined as thermodynamically 'poor', is one which is not 

suitable for dissolving the polymer. Very few solvent-polymer interactions exist 

and as a result coil expansion is restricted. In fact, the coil is compressed and 

often precipitates out of solution. The quality of a solvent is dependent upon 

temperature and an ideal solvent (or 0 solvent) is one in which the polymer is 

neither compressed nor extended, i.e. in which equal numbers of compatible and 

non compatible interactions exist. This phenomenon occurs at the 0 temperature.
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3.1.1. Thermodynamics of polymer solutions

In dilute solution, due to its large size and inter-connectivity, polymer molecules 

are able to explore all possible configurations and as a result exists as random 

coils. Hence, there exists a Gaussian distribution o f polymer configurations 

which has a most probable value such that if  a molecule expands or contracts on 

interaction with solvent, it will adopt a less probable configuration (reduce 

entropy). Consequently, the dissolution of a polymer molecule in solution has a 

significantly lower entropy of mixing compared with the dissolution of much 

smaller, conventional solutes.

3.1.1.1. Flory-Huggins theory

The change in entropy involved, the enthalpy of solvation (hydration) and 

hence, the free energy of mixing of polymer and solvent have received 

considerable theoretical and experimental consideration [86]. Probably the most 

widely used theory to calculate the free energy of mixing of pure amorphous 

polymer with pure solvent is that of Flory-Huggins [87]. They consider the 

process to occur in two stages:

1. Initially, isolated polymer molecules are fixed in a rigid conformation in the 

solid state.

2. Finally, the polymer exists as a relatively flexible chain rapidly changing 

conformation subject to the constraints imposed by its own flexibility and 

solvent interactions.

As a result, the mixing process can be broken down into the transfer of solid 

from a perfectly ordered solid to a disordered flexible state (entropy change)
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with conformational freedom, and the mixing of flexible polymer chains with 

solvent molecules (enthalpy change).

Using Flory-Huggins theory, the entropy of mixing can be separately calculated 

by modelling the solvent as a randomly occupied lattice. Each segment o f the 

polymer is placed on any one lattice site and connected to the next segment. It is 

possible to model the number of ways in which a polymer molecule can be 

arranged on the partly filled lattice. The number of arrangements is then related 

to the entropy of mixing.

The enthalpy of mixing is also calculated separately, by determining the 

formation of polymer-solvent interactions which replace solvent-solvent and 

polymer-polymer interactions on dissolution. The probability of solvent 

polymer interaction is determined from the lattice model and an interaction

parameter per molecule of solvent, %  , is introduced.

If %  >0 solvent-polymer interactions are not favoured (poor solvent) 

If z 2 <0 solvent-polymer interactions are favoured (good solvent) 

3.1.1.2. Flory-Krigbaum theory

Flory-Huggins theory is not perfect and many experimental observations have 

indicated that it has limitations and is not a good model of real polymer 

solutions, particularly at low concentrations. Flory and Krigbaum [88] devised a 

more realistic model based on regions of pure solvent interspersed with 

concentrated areas o f solvated polymer.
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3.1.2. Effects of physical properties on the behaviour of polymers in solution

3.1.2.1. Effect of molecular weight

The molecular weight of a polymer significantly affects the extent o f polymer 

solvent interactions such that in a particular solvent at a particular temperature, 

the solubility will decrease as molecular weight increases. This is a purely 

thermodynamic phenomenon explained in terms of AH, AS and AG. However, 

the rate of polymer dissolution also decreases with increasing molecular weight. 

This is governed by the polymer diffusion, a purely kinetic phenomenon.

3.1.2.2. Effect of solvent

Obviously, the thermodynamic quality of the solvent is extremely important. 

However, a polymer such as polyethylene glycol (PEG) in good quality solvent 

such as water can experience many other physical effects. It is possible for PEG 

to self associate by forming intramolecular and intermolecular H-bonds between 

hydroxyl end groups and ether oxygen atoms in the main chain. The presence of 

an electron acceptor in the mixture for example H^+ in water can allow 

solvation complexes to occur between water and the ether or hydroxyl oxygen 

atoms. The intra and intermolecular H-bonding of PEG in a dilute solution of 

carbon tetrachloride was investigated by Philippova et al [89] using IR 

spectroscopy. Figure 3.1.2.3 shows possible arrangements of PEG.

The effect of water as a solvent for PEG has received quite some attention.

Some NMR studies have shown [90] that at high water contents, one molecule 

of water binds per repeat PEG unit. Other studies however [91], have shown that 

between 2 and 4 water molecules bind per repeat unit. Indeed, Liu and Parsons 

[91] observed linear increases in chemical shift o f both OH and internal
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ethylene protons on dilution up to 50% volume water, then very gradual 

increases on further increases in water content. They relate this to the formation 

of a stoichiometric hydrate with 3 water molecules. Infrared studies showed that 

PEG behaves the same in the melt as in benzene solution. However, on 

hydration, increases in band intensity of the ethylene rocking vibration (at 886 

cm 'l)  were interpreted as enhanced PEG order in aqueous solution. PEG is 

thought to adopt the TGT conformation for the COCCOC sequence.

Figure 3.1.2.3 The possible inter and intramolecular interactions of PEG in 

aqueous solution.
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The behaviour of polyethylene oxide (PEO) in water is a balance between 

hydrophobic and hydrophilic interactions and has been studied extensively [92]. 

Water forms highly ordered cage structures around PEO molecule, which is an 

entropically unfavourable process. As temperature is increased, and provided 

the cage structure remains intact, the entropy becomes less favourable and the 

system will phase separate. Hence, polymers o f this nature are said to exhibit 

cloud point behaviour [92] such that as the temperature is raised, the solubility 

o f the polymer is reduced and the polymer 'clouds out'. The cloud point 

behaviour depends on the molecular weight and composition of glycol and the 

presence of electrolyte [93]. Small angle neutron scattering experiments [94] 

have shown that polymer self assembly is important in the phase separation in 

aqueous solution with inorganic salts. Polyacrylamide does not exhibit cloud 

point behaviour because the water does not form highly ordered structures 

around the polymer molecule.

It is important to note that in solutions containing PEO and polyacrylamide 

(PAM) there is no interaction between the two polymers [95]. Indeed, Maltesh 

et al [96] showed that, although H-bonding interactions between polyacrylic 

acid (PAA) (essentially 100% hydrolysed PAM) and PEO are known, partially 

hydrolysed polyacrylamide (HPAM), between 8% and 42.8% hydrolysis, 

showed no interactions with PEO. This may be due to the weak NH proton 

donating ability of PAM or to the random distribution of carboxylate groups 

which ensures that only a few, widely spaced interactions between ether oxygen 

and carboxylic acid will be formed; thus rendering the complex unstable. 

Although the fluorescence technique used by Maltesh et al [96] was able to 

identify interactions between HP AM and polyvinylpyrrolidone, it may not be 

able to detect the very weak interactions between hydrolysed polyacrylamide 

and PEO.
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3.1.2.3. Effect o f temperature

Temperature significantly affects the quality of the solvent, hence, above the 0 

temperature, the solvent will be thermodynamically 'good' and the polymer will 

expand and exist as random coils. As the temperature is lowered to the 0 

temperature, the solvent will behave ideally and the polymer will neither expand 

nor compress. However, subsequent lowering of the temperature will change the 

solvent quality to 'poor' and the polymer chains will contract and adopt a more 

compact configuration.

3.1.2.4. Effect of electrolyte

As mentioned previously, addition of electrolyte will significantly reduce the

phase separation temperature of PEO-water systems. The cloud point being
-1

reduced by 40°C in a 2 molkg KC1 solution [93]. Otherwise, the behaviour of 

glycol polymers in the presence of dissociated metal cations in solution can be 

considered to be similar to that o f multidentate ligands such as crown ethers and 

cryptands. These molecules are known to co-ordinate around metal cations in 

solution which suggests that the complexation is due to ion-dipole interaction. 

Poly ethers such as glycols are double action oxygen donor ligands [97], which 

are able to stabilise the cation and anion at the same time. Glycols with 

molecular weights between 150 and 300 gm oH  have been seen to undergo 

complexation with Na+ and K+ cations [97]. The complexation of Li+ has been 

studied by Cobranchi et al [98] using infrared spectroscopy. Terminal OH 

groups interact with the cation but replacing these with methyl groups does not 

alter the kinetics of complexation. The terminal functional groups of larger 

molecules do not co-ordinate to metal cations probably due to being involved in 

intramolecular bonding. PEO molecules interact with group 1 and 2 metal ions 

and have been found to exist in a helical state [97]. Within the helix, each turn is
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composed of approximately 7 units and the donor oxygen atoms occupy similar 

positions as in a crown ether.

Bauer and Rogers [99] have used Cl" as the counter ion and found that the solid 

state structure of complexes between group 1 and 2 metal cations and small 

PEG molecules, reveal two PEG ligands co-ordinate to the metal cation, 

displacing all the anions and water molecules. For longer PEG chains, only one 

ligand co-ordinates, the remaining co-ordination sites being filled with water. 

No directly co-ordinated Cl" is observed.

3.2. Behaviour of anionic polyelectrolytes in aqueous solution

In aqueous solution, polyelectrolytes are dissociated. The effect o f electrostatic 

repulsion between charged groups on the chain preventing the polymer from 

adopting a coiled configuration, causing it to expand and exist in a stretched 

configuration which renders their solutions highly viscous.

3.2.1. Effect of physical properties on the behaviour of anionic 

polyelectrolytes in solution

The effect of molecular weight and temperature on the dissolution of 

polyelectrolytes in solution are very similar to their effect on neutral polymers 

as outlined above. However, due to their charged nature, the presence of salt or 

acid can change their behaviour considerably.

3.2.1.1 Electrolyte concentration

Around an area o f charge on the polyelectrolyte a diffuse double layer develops 

in the same way as it does around a clay mineral surface. This causes the
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electrostatic repulsion between different segments on the polymer and results in 

a stretched configuration. Consequently, increasing the ionic strength of the 

solution will cause the double layer to collapse and allow charged areas on the 

chain to approach each other more closely. The polyelectrolyte will then behave 

more like an uncharged polymer and as a result it may adopt a coiled 

configuration, reducing the solution viscosity.

3.2.1.2 Effect of pH

The presence of protons in solution forces the dissociation equilibrium towards 

the undissociated form of an acid species. This will make the polyelectrolyte 

behave more like a neutral polymer with polar segments and as result adopt a 

random coil configuration in solution.

3.3. Adsorption of polymers at the solid-liquid interface

The adsorption of polymers from solution at the water-solid interface has 

received considerable attention [100, 101]. Some similarities exist with the 

adsorption of smaller, simpler organic molecules at the same interface 

particularly with respect to the nature of the interactions and the orientation of 

the adsorbed polymer. Consequently, the adsorption behaviour of polymers can 

often be predicted by the behaviour of smaller molecules which have the same 

functional groups and adopt similar orientations. However, a simple molecule 

can not behave in exactly the same way, the main differences between polymer 

adsorption and the adsorption of smaller molecules are [102]:

1 A polymer molecule is able to adopt a very large number of configurations 

in the bulk solution and also adsorbed at the interface. The number of these 

configurations will increase as the molecular weight increases (i.e. as the
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number of segments increase). It is improbable that the adsorbing polymer 

will adopt a minimum energy configuration and is likely to adsorb in a 

metastable conformation.

2 A very large number of surface contacts (interactions with the surface) are 

possible and give rise to a large net energy of adsorption compared to smaller 

molecules. This multi-point attachment of polymer on the solid surface 

renders the adsorption process irreversible. Although the adsorption o f each 

individual segment is considered to be reversible it is highly unlikely that all 

points of attachment will be severed simultaneously and allow the polymer to 

be totally desorbed from the surface.

3 Polymer adsorption is a much slower process than adsorption o f smaller 

organic molecules. The kinetic factors affecting polymer adsorption are 

outlined by Elaissari et al [103] but in general the rate controlling step is 

governed by the slower rate of diffusion of larger molecules to the interface 

relative to smaller molecules (due to mass transport effects). Hence, 

equilibration adsorption times for polymers will be much longer than for 

smaller molecules. This is particularly important for poly disperse polymers 

where smaller molecules will be adsorbed first, only to be replaced by the 

preferentially adsorbed larger molecules. Surface coverage is also important 

since reducing the accessible surface area will force adsorbed polymers to 

change configuration to accommodate further adsorption. This is obviously 

a more difficult process and therefore takes a longer time and continues until 

maximum adsorption is obtained. The maximum adsorption is considered to 

be the equilibrium position or plateau on the adsorption isotherm.

Due to the complex nature of the adsorption process a classical picture of 

polymer adsorption has been devised [104] (figure 3.3) in which segments o f 

polymer chain are able to behave in one o f three ways:
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1. A series of consecutive polymer segments can all be in contact with the 

surface, known as TRAINS

2. A series of segments which are only in contact with the solution and 

are bound at each end by a train are known as LOOPS. Loops are the bridges 

which separate trains.

3. TAILS are the free end of the polymer chain which extend into the 

solution and which are bound at one end to a train.

Figure 3.3. Classical picture of polymer adsorption at the solid-liquid 

interface.
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3.3.1. Statistical mechanical approach

It is impossible to describe each individual configuration of adsorbed polymer 

and consequently statistical methods are employed to define the adsorption. An 

equilibrium adsorption configuration is defined which describes the average or 

most probable configuration. This is an energetic balance between the net 

energy change on adsorption; the decrease in entropy on constraining the 

flexible chain and the increase in entropy on release of solvent either associated 

with the surface or the polymer in solution.
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3.3.2. Experimental parameters

Three important experimental parameters are used to describe polymer 

adsorption [104]:

1. The amount of polymer adsorbed per unit area of surface, T.

Adsorption isotherms may be calculated by determining the adsorbed amount,

1.e. the difference in polymer concentration in solution before and after 

equilibration with a solid surface of known surface area. Adsorption isotherms 

for polymers are generally sharp with the amount adsorbed rising steeply at low 

polymer concentrations then reaching a plateau of maximum adsorption at 

higher concentrations.

2. The fraction of bound polymer

It is extremely important to know the nature of the interaction between polymer 

and solid surface, and the number of segments in contact with the surface. This 

is obtained directly using infra red spectroscopy (by measuring the absorption 

band shift for a species adsorbed from solution). Microcalorimetry techniques 

can also be used to obtain the number of segments in contact with the surface 

[105].

3. Adsorbed layer thickness

Small angle neutron scattering [106] gives information on the distribution of 

segments near the interface which enables the determination of the 

conformation of adsorbed polymer at the solid interface. In addition, Tadros 

[104] discusses the estimation of hydrodynamic thickness using hydrodynamic 

methods and their usefulness in predicting the adsorbed layer thickness and 

hence the conformation of polymer at the interface.
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3.3.3. Effect of physical properties on the adsorption of polymers from 

solution.

3.3.3.1. Effect of temperature

The adsorption of polymers at the solid-liquid interface is affected very little by 

changes in temperature [100]. However, the change in solvent quality on 

changing the temperature will have an affect on the adsorption behaviour as 

outlined below.

3.3.3.2. Effect of solvent

It has been shown that the amount of polymer adsorbed from solution increases 

as the quality of the solvent decreases. Fleer and Lyklema [100] discuss the gain 

in free energy on adsorption of polymer segments which leads the surface to act 

as a nucleus to promote phase separation of polymer from solution. Since phase 

separation is promoted in poor quality solvents, then adsorption of polymer at 

the solid interface will be enhanced in a poor quality solvent.

3.3.3.3. Effect of molecular weight

The amount of polymer adsorbed increases with chain length, i.e. as molecular 

weight increases. This is particularly noticeable in poor quality solvents. There 

is considerable experimental and theoretical evidence reviewed by Fleer and 

Lyklema [100] that longer molecules adsorb in preference to shorter molecules. 

This is particularly important in polydisperse systems which must be treated as a 

mixture. Usually the smaller molecules will diffuse to the surface more quickly 

and adsorb first. These are then replaced by the preferentially adsorbed longer

63



chain molecules and at equilibrium there exists a solution enriched with short 

chain molecules.

3.3.3.4. Effect of particle size

The adsorption of polymers onto small particles does not correspond to the 

theoretical description of polymer adsorption onto an infinitely flat surface 

[107]. Cosgrove et al [108] studied the adsorption of PEO onto colloidal silica 

and noted the importance of particle concentration in reducing the gap between 

particles. Hence, at high particle to polymer number ratios and when polymer 

molecules were larger than the silica particles bridging flocculation occurred. 

Furusawa et al [109] observed an increase in polyacrylamide adsorption with 

decreasing hematite particle radius. They also point out the influence of particle 

concentration

3.4 Adsorption of anionic polyelectrolytes at the solid-liquid interface

This is a very special case of polymer adsorption which is made more 

complicated due to the electrostatic interactions which are possible. 

Polyelectrolytes may be adsorbed on opposite or similarly charged surfaces but 

adsorption on like charged surfaces becomes impossible when the electrostatic 

repulsion becomes too large.

Due to the behaviour of polyelectrolytes in solution, at high ionic strength and 

low pH, or at low polymer charge density, the adsorption behaviour resembles 

that of non-ionic polymer adsorption, having very similar adsorption isotherms. 

In this respect the adsorption of polyelectrolytes is 'irreversible', i.e., multi-point 

attachment to the surface described by the classical train, loop, tail model.
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However, the desorption of polyelectrolyte can easily be achieved by 

significantly changing the electrolyte concentration or pH [110].

3.4.1 Effect of physical properties on the adsorption of anionic 

polyelectrolytes at the solid/liquid interface.

3.4.1.1. Effect of poly electrolyte charge density

In general, the adsorption of polyelectrolyte decreases as the charge density of 

the chain increases. This is due to the potential which is created at the surface 

which prevents further adsorption. If an anionic polyelectrolyte is adsorbed on a 

positively charged surface however, it is found that adsorption increases with 

increasing charge density.

3.4.1.2 Effect of electrolyte and pH

At high salt concentrations or low pH, the charge density o f the polyelectrolyte 

is reduced and so the amount adsorbed increases. Under these conditions, the 

polyelectrolyte exists as a random coil and will adsorb as such. This allows 

more surface area for further adsorption which would not be available if 

adsorption occurred in the extended conformations adopted by polyelectrolyte in 

high pH and low ionic strength solutions. Somasundaran and co-workers [111] 

have discussed the effect of pH on the adsorption o f polyacrylic acid on 

alumina. At low pH the polymer exists as a random coil in solution and will 

adsorb as coils, subsequent raising of the pH partially expands the adsorbed 

coiled chains. At high pH the polymer exists as a stretched chain and will 

strongly adsorb in this extended conformation, lowering of the pH will have no 

effect on the chain conformation.
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3.5 Adsorption of polymers and poly electrolytes on clay minerals

The adsorption of polymers onto mineral surfaces is of great technological 

importance. In particular, the ability o f polymer to both flocculate and stabilise 

colloidal particles (as outlined in previous chapter) has been used extensively in 

processes such as selective separation of mineral ores from impurities [112], in 

the manufacture of paper [113] and in oil well drilling fluid technology [5].

Due to the quantity and diversity of published literature in this area, only the 

most relevant work has been reviewed. This includes, the adsorption onto clay 

minerals (in particular montmorillonite) o f neutral polymers such as polyalkyl 

glycol, polyethylene oxide, polyacrylamide and smaller analogous units such as 

ethylene glycol and acetamide; and the adsorption of anionic polymers such as 

partially hydrolysed polyacrylamide.

3.5.1 Bonding mechanisms between clays and organic species.

Mortland [114] and MacEwan and Wilson [46] expanded on the ideas identified 

by Parfitt and Rochester [115] (that the general bonding mechanisms between a 

surface and adsorbed species were Chemical adsorption; Hydrogen bonding; 

Hydrophobic bonding and van der Waals bonding) when specifically identifying 

the characteristics of clay-organic interactions. Mortland describes the 

dependence of the interaction on the properties of the organic molecule, the 

water content of the system, the nature of the exchangeable counter cation and 

the properties of the clay mineral.
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3.6 Adsorption of cationic polymers on clay minerals

Positively charged organic molecules adsorb via electrostatic interaction 

between themselves and a negatively charged clay mineral surface. Mortland 

[114] identified the possible mechanisms as ion exchange of inorganic 

exchangeable cations by organic cations and protonation of adsorbed organic 

species.

3.7 Adsorption of neutral polymers on clay minerals

3.7.1. Ion-dipole interactions

Originally, the adsorption of polar, neutral organic molecules was attributed to a 

hydrogen bonding mechanism between molecule functional groups and the 

silicate surface. However, it has since been shown that the interaction of 

molecules with the silicate surface are weaker than ion-dipole interactions and 

that the nature of the exchangeable cation and its associated water molecules are 

extremely important to the adsorption process [114].

3.7.2 Entropy

The adsorption of linear, flexible, non-ionic polymers onto clay minerals is 

generally entropy driven [85, 116, 117, 118]. Although the adsorption of such 

polymers would be expected to reduce the entropy of the system, by confining a 

polymer to the clay surface, the adsorption is accompanied by the desorption of 

water molecules which are associated with the clay surface (figure 3.7.1). It is 

the increase in the translational degrees of freedom of these water molecules 

which provides the driving force (positive entropy contribution) for the 

adsorption.

67



Figure 3.7.1. Schematic showing the desorption of water molecules from

clav mineral surface on adsorption of uncharged polymer. Also note the 

change from a random coil in solution to an extended chain conformation 

(After Theng [1161).
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3.7.3. Hydrogen bonding interactions

The most common type of hydrogen bonding seen in clay-polymer interactions 

is the formation of the water bridge. This involves the linking of a polar 

molecule to an exchangeable cation through a hydrogen bond with a water 

molecule in the primary hydration shell.

3.7.4. Clay mineral oxygen and hydroxyls

A hydrogen bonding mechanism of interaction between clay minerals and 

molecules capable of hydrogen bonding is probable [119]. There is however, 

little experimental evidence supporting this theory and as such the most 

important mechanisms of bonding in such circumstances are that o f ion-dipole 

or water bridge formation.

3.7.5. Effect of electrolyte/exchangeable cations

In dilute Na montmorillonite suspension, where the mineral surface is not 

restricted, the amount of polymer adsorbed increases with molecular weight as 

expected. The subsequent arrangement of clay platelets and the change in d-

Polym er in solution

O O o  O O o  O O,  
O0O O0O O0O

o o  o  o o  O  ^  (

E x c h a n g e  c a tio n

- W ater m olecules 
at the  su rface

Silicate layer

68



spacing on cation exchange or increasing ionic strength, can significantly affect 

the adsorption of polymer. In fact, polymer adsorption decreases with increasing 

molecular weight in such circumstances [116]. This is significant when the 

dimension of the interlamellar space becomes so small that accessibility for 

large polymer molecules is reduced. Hence, increasing the solid loading in 

suspension or replacing the exchange cation with one which restricts swelling 

(i.e. Ca2+/Cs+) reduces the amount of adsorbed polymer. Theng [119] identifies 

surface accessibility as one of the most important effects to be considered in the 

adsorption of neutral polymers by montmorillonite. This has important 

implications in a practical sense when one must consider not only the type of 

exchangeable ion and electrolyte concentration chosen but also the order in 

which electrolyte and polymer are added (figure 3.7.5.).

Figure 3.7.5. Order of polvmer/electrolvte addition; Effect on clav-polvmer 

complexation.
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3.8. Glycolic molecules

The study of glycol adsorption has received considerable attention. Indeed, 

Brindley [120] reviewed the literature published upto 1966 and commented that 

the formation of complexes between ethylene glycol and smectites had 'received 

more attention than any other group of organo-silicate complexes'.

Other literature reviews by Grim [13], Theng [121] and MacEwan and Wilson 

[46] have also covered this widely researched area. It is instructive however, in 

the wider context of the adsorption of polyglycols on clay minerals, to consider 

the main features of ethylene glycol adsorption.

The first studies in this area were by Bradley [122] and MacEwan [123]. 

Interlamellar water was expelled on adsorption of glycols, polyglycols and 

polyglycol ethers [122] and a C-H—0(mineral surface) bond suggested, with 

which MacEwan [123] agreed. It was concluded [123] that the molecules enter 

the interlayer region of montmorillonite and arrange themselves in parallel 

layers lying as flat as possible. Dowdy and Mortland [124] however, found no 

evidence to support the hypothesis that C-H—0(silicate surface) bonds were 

important to the adsorption process. This finding was supported by Tettenhorst 

et al [125]. The possibility of hydrogen bonding between the glycolic hydroxyls 

and the silicate surface was not excluded although it was concluded that this was 

an additional mechanism which occurred after all the co-ordination sites on the 

exchangeable cations are filled, or when a cation of low solvation energy was 

present in the interlayer space.

The formation of multiple layer sheets between the mineral platelets was 

ascribed [122, 123] to the adsorption of glycol on each basal face such that 

between two platelets, two layers may form. The thickness and therefore 

number of the organic layers could be calculated from the d-spacing obtained.
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Thus basal spacings o f 17.0±0.1 A (representing an organic layer thickness of 

1.6k) and 13.7±0.2 A (representing an organic layer thickness o f 4.3A) 

correspond to double and single layers respectively.

Mackenzie [126] showed that the basal spacing of Ca-montmorillonite remained 

constant (17.1 A) over a wide range of glycol-water ratios thus emphasising that 

such a spacing was no guarantee that there was full glycol solvation. Studies by 

Reynolds [127] suggested that ethylene glycol forms staggered two layered 

complexes with montmorillonite in which water and exchangeable cations are 

situated between the two ethylene glycol layers just above and below a plane 

which separates the glycol layers. The glycol molecules lie with their zigzag 

plane normal to the silicate surface (figure 3.8.1). This points to the keying of 

methylene groups into the di-trigonal cavities in the silicate layer of the clay 

platelet surface.

Figure 3.8.1. Orientation of ethylene glycol in montmorillonite interlayer 

space according to Reynolds F1271.
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The basal spacing of montmorillonite-glycol complexes are not affected by their 

initial water content [125] in fact the minimum amounts of water and glycol 

required to maintain the 17.1 A were interdependent. Brindley [120] noted that 

total removal o f water eliminates the opportunity of expansion and commented 

that water, even in trace amounts, plays an important function in the formation
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of clay-organo complexes. Tettenhorst et al [125] stated that water molecules 

were an "essential component of montmorillonite-polyalcohol complexes". 

Tettenhorst et al [125] described the difficulty ethylene glycol may have in 

replacing water molecules which are associated with exchange cations. 

However, other authors [124, 128] have described the relative competition 

between water and ethylene glycol for co-ordination sites around the cations.

The desorption of ethylene glycol has been shown to be diffusion controlled 

[124] depending on the nature of the interlayer cation. If interlayer water cannot 

diffuse from the system, then glycol adsorption and retention will be reduced. 

Glycol retention on homoionic montmorillonites has been shown to depend 

upon the nature of the interlayer cation [129], following the order 

Ca > Al > Na > K

This data confirmed the conclusions [120,130] that complexation between 

glycol and interlayer cation (ion-dipole interaction) was extremely important in 

ethylene glycol retention and disproved the theory that hydrogen bonding 

between surface and glycol was responsible for glycol adsorption.

Dowdy and Mortland [124] found infrared OH stretching bands at 2750 and 

2650 cm"l in Cu-montmorillonite-glycol complexes. These were assigned to 

glycol directly bound to Cu^+ cations through the oxygen atom and general 

inter and intramolecular hydrogen bonding, respectively. They also claim that 

IR data indicates that complete dehydration of the clay is obtained when 

equilibrated with glycol at a vapour pressure o f 35 torr. It is difficult to tell from 

the spectra but this may not be the case and, as a result, the adsorption may be 

due to hydrogen bonding between glycol and the inner solvation shell o f the 

exchangeable cation (a water bridge). This too would be a function of the 

solvation energy of the exchangeable cation.
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Jonas and Thomas [131] have shown that the uptake of ethylene glycol 

molecules is affected by the proportion of K+ cations. Indeed, at a given 

proportion, ethylene glycol is more effective than water at causing swelling. It 

has been shown, however, [132] that high charge montmorillonites are unable to 

swell to their full extent if  they have been previously been K+ exchanged. 

However, Hsieh [128] noted that the relative humidity had a significant and 

rapid effect on the basal expansion of Mg-smectites previously treated with low 

ethylene glycol vapour pressure, i.e. partially solvated samples. It has also been 

found [128] that the basal spacings of pure Mg-smectites vary with relative 

humidity between 13.6 and 16.0A. Saturated ethylene glycol solvation of Mg- 

smectites have been found to give basal spacings of 17.1 A, corresponding to 

complete monolayer coverage of interlayer surfaces (a two layer complex) 

regardless of relative humidity. Basal spacings of 17.1 and 14.0A were obtained 

at high and low relative humidities, respectively. At relative humidities between 

0.4 and 0.7, random, interstratified one/two-layer complexes are formed, having 

d-spacings of 14.0 and 17.1 A. This is attributed to the adsorption o f water 

molecules, present at high humidity, providing energy for a fast and reversible 

rearrangement to a two layer ethylene glycol configuration. This explains why a 

minimum amount of ethylene glycol 20-30 mg/g is required to form the two 

layer complex.

A change in b-dimension has been observed for glycolated Na and K-bentonites 

compared to homoionic bentonites at 60°C [133] but not Ca-bentonites. This has 

been interpreted as a rotation of the silica tetrahedra in the silicate layer when 

K+, which is partially occluded by the di-trigonal cavity at low water contents 

[40], is solvated (glycolated) and moves into the interlayer space. For this 

reason, Ca^+ which exists near the silicate surface or in the interlayer space 

(being too large to fit in the di-trigonal cavities) does not exhibit a change in b- 

dimension.
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The stability of homoionic montmorillonite-short chain poly glycol (upto 1, 5 

pentanediol) complexes has received much attention by Tettonhorst, Brunton 

and Beck [125, 134]. One layer complexes had d-spacings of 13.6-13.7A if  it 

had terminal OH groups and 13.9-14.0A if internal OH groups were present, a 

difference attributed to steric effect of interior OH groups. Two layer complexes 

had d-spacings o f 17.0A. The temperatures at which optimum formation of a 

single layer, from a heated double layer complex occurred, generally followed 

the cation series:

Mg > Ca > Ba >Li > Na > K 

This does not directly follow the recognised patterns for ionic size or field 

strength, but may be function of both. The mean temperature of single layer 

collapse has been shown [134] to be proportional to the valence of the interlayer 

cation and inversely proportional to the ionic radii.

Eltantaway and Arnold [135] concluded that the amount of ethylene glycol 

adsorbed by the low pressure solvation technique of Ca-montmorillonite, is 

controlled by the nature of the cation, not the surface and gives incomplete 

surface coverage. However, saturated solvation techniques give unimolecular 

surface coverage of the interlayer sheets (2 layers between adjacent sheets) 

which is independent of the interlayer cation. Consequently, ethylene glycol is 

commonly used to estimate the surface area of swelling clays [136] another 

analogous molecule, ethylene glycol monoethyl ether (EGME) is also used for 

the same purpose. In work that provided the basis for their studies on ethylene 

glycol [135], Eltantaway and Arnold [137] suggested that incomplete EGME 

unimolecular surface coverage of Ca-montmorillonite was governed by the 

interaction between Ca and EGME and not the extent of the clay surface. NMR 

studies [138] have also shown that the interaction of poly(ethylene glycol) 

monoalkyl ethers with low charge synthetic saponites in aqueous suspensions is 

via the exchange cation.
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Nguyen et al [139] used DRIFT and ATR FTIR techniques to show that the 

orientation of EGME in the interlayer region allows both surfaces to share a 

common, single layer of EGME and that the interaction between EGME and 

Ca2+ is thought to be the adsorption mechanism. However, it is impossible to 

interpret EGME hydroxyl band shifts due to OH interaction with Ca2+ in the 

presence of a clay containing significant quantities of water. Hence, these results 

are difficult to believe, particularly in the light of results obtained for ethylene 

glycol.

Parfitt and Greenland [117, 118] noted that a series o f polyethylene glycols 

adsorbed strongly from aqueous solution onto clay minerals via water bridges 

(i.e., hydrogen bond formation between water molecules in the primary 

hydration shell of the exchange cation and the oxygen atom in the poly ether). 

This is supported by the evidence that increasing adsorption of PEG followed 

the order [117]:

Al3+ < C a 2 + < N a+

And that direct ion-dipole interaction was not the adsorption mechanism.

The enthalpy of adsorption was found to be negative for the smaller molecules 

and became more favourable as the polarisation of the cation increased. The 

entropy of adsorption was positive due to the desorption o f water from the clay 

surface and, like AG, became more negative as the molecular weight increased.

The shape of the adsorption isotherms were correlated with the different 

conformations of PEG, Mw<400 (linear conformation) and PEG, >400 (random 

coil) in solution. And the equilibrium adsorbed amount of polymer on Ca- 

montmorillonite was found to increase with the molecular weight of polymer.
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Washing a sample of Ca-montmorillonite complexed with PEG (Mw 300) with 

distilled water, removed more than 80% of the polymer but PEG (Mw 20,000) 

could not be removed from a similar complex [117] in the same way. This was 

attributed to the irreversible nature of adsorption of large polymers which form 

multi-point attachments which cannot all be simultaneously removed.

It was assumed that a regular organised structure is not obtained on PEG 

adsorption since no differences in PEG vibrations were seen between the 

infrared spectra of liquid PEG and PEG adsorbed on montmorillonite [118]. 

Infrared data indicates that subsequent adsorption of water to a montmorillonite- 

PEG complex occurs initially on the exchange cations. This is supported by 

XRD data which showed that adsorbed polymer does not prevent clays swelling 

and confirmed the influence of cations on this process. As with non complexed 

montmorillonites, Ca^+ limits the swelling whereas extensive swelling is 

observed with Na+ counter cations.

Complexes formed between PEG, molecular weight 300 and 20,000 and Na- 

montmorillonite had d-spacings of 13.3 and 17.4A, respectively [118]. This was 

interpreted as the formation of one polymer layer between the clay platelets of 

thickness 3.1 A or two polymer layers of total thickness 7.8 A. Theng [119] 

explains that these thicknesses are less than are predicted by the van der Waals 

radii o f the molecules and thus indicate a certain amount of'keying' or recession 

into the di-trigonal cavity of the silicate surface [140].

Zhao et al [141] have studied the adsorption rates and capacities o f a range of 

PEG molecules on montmorillonites. The amount of PEG adsorbed, increased 

with increasing molecular weight up to Mw 2000 (corresponding to 100 mg g~l 

of clay adsorbed) above which, increases in molecular weight gave no 

significant increases in the amount adsorbed. Burchill et al [85] also noted the
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increase in adsorbed amount on increasing molecular weight. However, they 

observed no maximum in the amount adsorbed of PEG (Mw> 2000) on Na- 

montmorillonite. In fact, the maximum adsorption of 1500 and 4000 molecular 

weight samples was reported as 154 (51 % surface coverage) and 202 mg g“l of 

clay (61% surface coverage) respectively.

It was shown [141] pH has very little effect on the adsorbed amount o f PEG. 

However, interlayer cations have a significant effect on the adsorption capacities 

of montmorillonites, the adsorption capacity of PEG on Ca montmorillonite 

being greater than on Na montmorillonite. A significant amount of research has 

been performed using microcalorimetry to calculate the number of bound 

polymer segments and thus determine the conformation of adsorbed PEG on 

mineral surfaces. Burchill et al [85] established that the PEG molecules adopt 

fully extended conformations on the surface of Na-montmorillonite and that for 

low molecular weight polymers, their size prevents significant loop 

development. Calorimetric measurements have also been performed on other 

surfaces. Killmann [105] determined the adsorption of PEG on aerosil from 

non-aqueous solutions and found that the adsorption is slightly exothermic due 

to the contribution of end groups to the thermodynamics of polymer in solution. 

This is not the case for high molecular weight PEO where microcalorimetry 

measurements have shown that PEG adsorption on dolomite and silica [153] is 

an endothermic process, the driving force being the increase in entropy. The 

release of three water molecules associated with each ether oxygen of PEO 

provides the increase in entropy required to overcome the unfavourable enthalpy 

term. Moudgil et al [142] have shown that increasing temperature displaces 

more water from the PEO molecule and allows more contacts with the surface 

thus increasing the enthalpy of adsorption. Trens and Denoyl [143] have used 

this technique to study PEG (Mw between 400 and 400,000) adsorption at the 

silica/water interface. Terminal hydroxyl groups are found to be only effective
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at high concentrations. However, they have a higher affinity for the silica 

surface than the ethoxy oxygen and it is suggested that they are fixed at both 

ends (no tails) for dihydroxyl polymers and partly standing up (long tail) for the 

monohydroxyl polymer. Low surface coverage allows the molecules to adsorb 

in flat conformation giving a high fraction o f bound segments. However, as 

surface coverage increases the polymer molecules stand up, so the number of 

bound segments decreases. The increase in polymer adsorption with increasing 

molecular weight is hence accompanied by increasing lengths of loops and tails.

Burchill et al [85] discussed the adsorption of PEG polymers from aqueous 

solution in terms of water bridges, suggesting that although direct co-ordination 

to the cations is possible, it is unlikely in water. The possibility of crown ether 

type structure formation between PEG and the hydrated cations was muted. It 

has been shown [144] that crown ethers and cryptands intercalate in the 

interlayer space o f clay minerals, maintaining the layered structure. Casal et al 

[145] have proposed models for interlayer complex arrangements based on 

interlayer spacings and adsorbed amounts. This reveals one and two layer 

complexes with platelet separations of 4.2±0.3 and 8.1 ±0.1 A respectively.

These values are governed by the charge and size of the exchangeable cation, 

the cavity size of the macrocycle and the steric hindrance o f the ligands.

Intercalation complexes between PEO and montmorillonite has received some 

attention [146, 147] as a result o f the ionic conductivity they have displayed. 

Ruiz-Hitzky and Aranda [146] found that the complexes formed by adsorption 

of PEO from acetonitrile onto Li-montmorillonite have d-spacings o f 17.2A and 

are stable in solvents such as acetonitrile, water and methanol, and are stable up 

to 500-600K (above which polymer is progressively eliminated giving a 

collapsed structure). They compare the polymer thickness of 9.5A favourably 

with the diameter of helical crystalline [P(EO)n]X" (~8A). Thus they describe
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the adsorbed polymer conformation as a helical chain whose axis is parallel to 

the silicate surface. They mention a splitting of the 1350 cm"l (C-H 

deformation) into two bands in the infrared spectrum of adsorbed PEO but do 

not show the relevant spectra. This splitting is assigned to the ion-dipole 

interaction between ether oxygen atoms and interlayer cations, as in PEO/salt 

complexes. They do, however, mention the possibility of PEO interaction with 

silicate surface oxygen atoms. Wu and Lemer [147] disagree that PEO adopts a 

helical conformation in Na-montmorillonite-PEO complexes [146], believing 

instead that the polymer resembles an adsorbed layer. Two interlayer spacings 

13.6 and 17.7A are obtained corresponding to polymer layer thicknesses of 4.0 

and 8.1 A respectively and polymer-clay stoichiometries of 0.15 and 0.30 g g"l 

respectively.

Rubio and Kitchener [148] determined H-bonding of silanol and siloxane 

groups and hydrophobic interactions with methylated sites on the silica surface 

to be the adsorption mechanisms of lower molecular weight PEO onto silica 

surfaces. Behl and Moudgil [149] also mention the possibilities o f electrostatic 

interactions between slightly anionic PEO and positively charged particles or 

the complexation of PEO with cations adsorbed on the solid surface as 

adsorption mechanisms. The adsorption of high molecular weight PEO on 

dolomite and apatite [149] revealed the principle adsorption sites to be isolated 

OH groups and physisorbed water on the mineral surface.

Recent studies [1,8 150, 151] have been concerned with the adsorption of a 

range of polyalkylglycols from aqueous solution onto clay minerals in order to 

understand their mechanism of shale inhibition as a component of water based 

oil well drilling fluids. It had been proposed [151] that the cloud point behaviour 

of PEG was a feature of their shale inhibition mechanism by plugging clay 

pores with insoluble droplets of pure glycol. Indeed, clay particle retention has
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been observed to increase above the cloud point of aqueous suspensions with 

PEO as a retention aid [93]. This was attributed to the phase separation and the 

fact that one of the resulting phases was rich in PEO. However, this argument 

was dismissed [1, 8 , 150] as it did not address the stability of shales treated with 

glycol which did not exhibit cloud point behaviour. A more acceptable theory of 

shale stabilisation is that polyglycol molecules compete with water molecules 

for adsorption sites on the clay and thus interfere with the hydrogen bonding 

network [8 , 150]. This might then prevent the adsorption of water molecules or 

hold clay platelets together and hence impart stability by restricting their 

swelling and dispersion.

Aston et al [150] showed shale recovery increased from zero in freshwater to 

80% in a KCl/partially hydrolysed polyacrylamide/polyglycol solution. This 

solution also produced much harder shales which was thought to be due to 

direct interaction between the glycol and clay. They describe the displacement 

of water by glycol indicating the stronger affinity of clay for glycol than water. 

In particular, Aston et al [150] explained the increased performance of polyols 

in the presence of salt was not due to variations in adsorbed amount (these were 

approximately identical) but the cation type, determining an order of 

effectiveness:

KC1 ~ CsCl > CaCl2  > NaCI > no salt > LiCl 

The interactions between cation and polyol are extremely important, and it is 

suggested the that hydration sphere around the cation is replaced (at least to 

some extent) by the glycol. Cliffe et al [1] performed quantitative IR and XRD 

measurements on the strong adsorption of polyols from KC1 solutions onto 

montmorillonite. The adsorption was thought to be due to the specific 

interaction between non terminal portions o f the polyol molecule and potassium 

cations and not general salinity effects. Therefore it is controlled by the 

concentration of polymer in solution and the presence of K+ cations. In the
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presence of K+, stable complexes with an interlayer spacing of 14A 

corresponding to one flat polyol layer were obtained whilst in the absence of 

K+, less stable complexes containing two flat lying polyol layers were formed. 

A shift to lower wavenumber of the infrared band at ~ 1380 cm~l attributed to a 

OC2 H4  wagging vibration on adsorption of PAG from 0.2% PAG solution 

compared to that of 6 % PAG/water solution was detected [1]. The shift 

increases as the polymer concentration in solution increases (as the amount of 

polymer on the clay increases) and approaches the value obtained for a pure 

polyol solution. This is attributed to the increasing significance of weak polyol- 

polyol interactions as they concentrate and orientate in the clay interlayer.

Rawson [3] determined the adsorption o f the polyalkylglycol DCP101 on Mn- 

montmorillonite. These NMR results have shown that the polyol does not 

displace the exchangeable cation and, contrary to the findings of Cliffe et al [1] 

and Aston et al [150], indicated that the polyol does not cause a significant 

quantity of the Mn^+ hydration shell to be disturbed.

3.9. Amide molecules
O

For amide molecules of the type R C NH2 5 both the oxygen and nitrogen 

atoms may act as suitable sites for interaction with the interlayer cation of the 

clay mineral [114, 140]. These can be distinguished using infrared spectroscopy 

since, if binding is via the oxygen atom, then the C =0 stretching frequency will 

decrease and the C-N stretching frequency will increase. Conversely, if  the 

nitrogen atom binds then the C=0 stretching frequency will increase and C-N 

stretching frequency will decrease.

Most amide molecules have been found to co-ordinate through the carbonyl 

group [114]. However, Mortland [152] used infrared spectroscopy to show that
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the adsorption o f urea on montmorillonite was due to ion-dipole interactions and 

that the type of amide interaction depended upon the nature of the exchangeable 

cation. Hence, adsorption onto montmorillonite exchanged with alkali and 

alkaline earth metal cations caused the stretching frequency of the C =0 band to 

increase, implying interaction between nitrogen atom and cation. However, 

adsorption onto montmorillonite exchanged with transition metal cations caused 

the C =0 stretching band to shift to lower frequency and the band due to C-N 

vibration, to shift to higher frequency, thus indicating interaction between 

carbonyl and exchange cation. It should be noted that the author did point out 

the difficulty in interpreting the results without uncertainty.

Amide molecules do not normally adsorb from aqueous solution [114] onto clay 

minerals. However, if  the amount of water is reduced, then amide molecules are 

able to compete with water for co-ordination sites around the cation; first by 

water bridges and then by direct co-ordination.

Stutzmann and Siffert [153] showed that adsorption of acetamide onto 

montmorillonite is irreversible and constant in solvent medium, however, on 

drying several orders of fixation are revealed:

• Weakly retained excess acetamide, removed by washing the complex twice.

• Reversible physisorbed acetamide; a partial fixation which has an unstable 

adsorption equilibrium of 18 mg g“l clay. This is removed by heating to 

60°C.

• Irreversible chemisorbed acetamide; an intense fixation having a maximum 

adsorption equilibrium of 3 mg g-1 clay. This is revealed on removal of the 

physisorbed acetamide.

The adsorbed amount increased as the polarising power o f the monovalent

interlayer cation increases.

i.e. Li+ > Na+ > Cs+
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However, Espinasse and Siffert [154] showed that the amount of acetamide 

adsorbed on montmorillonite increased as the polarisation o f di- and tri- valent 

exchangeable cation decreases:

This was attributed to the partial flocculation of di- and trivalent cation 

exchanged montmorillonite and a subsequent decrease in accessible surface. 

Evidence that adsorption on Na-montmorillonite was much greater than 

adsorption on Na-montmorillonite in the presence of NaCI which causes 

flocculation supports this theory.

Two adsorption mechanisms for the adsorption of acetamide on Na 

montmorillonite were postulated by Stutzmann and Siffert [153] who used 

infrared spectroscopy to analyse acetamide-Na montmorillonite complexes.

1. Chemisorption mechanism

The appearance of two new bands at 1720 and 1345 cm"l in the infrared 

spectrum of the complex were attributed to C=N stretching and O-H 

deformation modes respectively. These are assumed to be due to protonation of 

the acetamide (a) by polarised water molecules around the exchange cation,

The protonated acetamide is then thought to form an ionic interaction 

(chemisorption) between cationic acetamide and the negatively charged mineral 

surface.

Na+ > C a2 + > Al3+

OH
/

i.e. (a)

2. Physisorption mechanism

Stutzmann and Siffert [153] observed large shifts (135 and 225 cm 'l)  to high 

frequency of the antisymmetric and symmetric NH2  stretching bands,



respectively. Implausibly, this was attributed to the formation of acetamide- 

acetamide (b) and acetamide-water (c) intermolecular hydrogen bridges. The 

corresponding decrease in the C=0 stretching frequency and increase in the C-N 

stretching frequency observed was used to support this postulation.

This hydrogen bonding network was thought to aid adsorption but was found to 

break on heating, resulting in elimination of acetamide from the mineral 

(chemisorbed acetamide did remain however). Hence, an additional hydrogen 

bonding (physisorption) mechanism, weaker than the chemisorption 

mechanism, was thought to exist between acetamide molecules only, or 

acetamide and water molecules (which exist on the clay surface or in the 

hydration sphere of the exchange cation).

In addition, X-ray diffraction data reveals d-spacing of 12.7A at normal water 

contents [153], indicating that acetamide does not adsorb in the interlayer space 

but is irreversibly adsorbed on the external surfaces of montmorillonite.

Isobutyramide (IBA) has also been used to represent the monomeric unit o f 

polyacrylamide and it has been shown to adsorb in 3 stages [155]:

Stage 1. adsorption of IBA on the more energetic edge surfaces,

Stage 2. adsorption on external faces,

Stage 3. IBA intercalation in the interlayer space (accompanied by an increase 

in d-spacing form 12.8 to 14.9A). At this saturation adsorption (0.235 mg g"l 

clay) one IBA molecule occupies two di-trigonal silicate cavities on two

H

H H
(c)(b)

84



different sheets. It should be noted that IBA adsorption does not increase the 

tactoid sizes nor their number.

Schamp and Huylebroeck [156] found that polyacrylamide adsorption was 

completely irreversible since none could be desorbed from the clay mineral. The 

effect of molecular weight on adsorption depended on the exchange cation and 

the arrangement o f clay particles in suspension. Hence, adsorption increased 

with increasing molecular weight for a Na-montmorillonite (deflocculated clay) 

but decreased with increasing molecular weight for a flocculated clay such as H- 

montmorillonite. Hence, two types of adsorption site were identified:

1. External surface adsorption-fast adsorption, increasing with increasing 

molecular weight found for deflocculated clays where all the flat surfaces 

are accessible.

2. Pore adsorption-slow adsorption, decreasing with increasing molecular 

weight, found for flocculated clay where polymer has difficulty entering 

between the plates but can adsorb in pores which have similar dimensions to 

the polymer coil.

Bailey et al [2] have shown that increasing the K-montmorillonite loading in

solution or increasing the ionic strength of the solution decreased the amount of

polyacrylamide adsorbed to a plateau value of 300 mg g“l clay. This was

attributed to the collapse of the layers, reducing the interlamellar spacing and

thus reducing the polymer adsorption. Further work by Argillier et al [157] has
-3

shown that increasing the KC1 concentration to 20 gdm and thus reducing the

specific surface area reduced the adsorption of polyacrylamide on K
-1

montmorillonite from 550 to 125 mg g . Further increases in the KC1 

concentration had no effect on the adsorbed amount.
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Similarly, increasing the solid/liquid ratio has been shown to reduce the 

adsorbed amount [157, 158]. This was attributed to aggregation of the clay 

particles induced by polymer adsorption and the subsequent decrease in 

accessible surface.

Unlike isobutyramide, Bottero et al [155] showed that increasing the amount or 

molecular weight of polyacrylamide adsorbed, increases the number and size of 

Na-montmorillonite tactoids by destruction of the regular stacking arrangement 

of clay platelets. l^C-NM R data indicated that at an adsorbed amount of 0 .2  g 

g~l clay, the polymer adopted a flat conformation. However, increasing the 

adsorbed amount or increasing molecular weight created more loops and tails, 

the polymer behaving less like a constrained molecule and more like it would in 

solution. Calorimetric and X-ray diffraction data confirmed this finding [155], 

showing that increasing molecular weight reduced the number of bound 

segments and increased d-spacings respectively.

Recently, considerable attention has been paid to the adsorption of 

hydrophobically associating waterborne polyacrylamides on K montmorillonite 

clays [157, 158]. The adsorption of such polymers does not follow that of 

unmodified polyacrylamide as they are able to form multilayers by hydrophobic 

polymer interactions.

A significant amount of research has been performed on polyacrylamide 

adsorption on the clay mineral kaolinite. Kaolinite is a 1:1 clay mineral [13] and 

as such exhibits significantly different properties to montmorillonite; in 

particular it has exposed SiO and AlOH faces and only a very low cation 

exchange capacity.
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Lee et al [159] revealed that the adsorption of PAM on Na-kaolinite was 

independent o f ionic strength and pH (3< pH <9) although they did report 

decreased adsorption at higher solid/liquid ratios due to a reduction in the 

number of accessible faces. It was shown that adsorption occurred at two sites:

1. High density adsorption on the edge surfaces due to hydrogen bonding 

interactions between C =0 and Al-OH.

2. Low density adsorption on aluminium hydroxide basal surfaces due to non

specific dipole interactions or the entropic release of water. Adsorption onto 

the silica surface is not expected in keeping with the results o f Griot and 

Kitchener [160] who failed to find evidence of polyacrylamide adsorbed on 

aged (hydrated) silica.

Although Pefferkom et al [161] also indicated that the adsorption of 

polyacrylamide on Na-kaolinite is controlled by hydrogen bonding interactions 

between carbonyl and the hydroxyl on the edge faces, they were in contradiction 

with Lee et al [159] reporting that the two different basal surfaces were non

adsorbing. Pefferkom et al [161] did show that pH controls the adsorption of 

polyacrylamide. Hence at pH <5, edge charges are protonated to give Al-OH 

and hence increase adsorption. Conversely, adsorption decreases at pH >10 due 

to the reduction of isolated Al-OH adsorption sites.

Atesok et al [162] also showed that adsorption of polyacrylamide on Na- 

kaolinite at natural pH is governed by hydrogen bonding interactions and 

solvent interactions. Atesok et al [163] noted that the flocculation o f kaolinite 

was enhanced by a PAM/Ca^+ system compared to PAM alone. They explained 

that Ca^+ had no effect on polymer adsorption and suggested that calcium 

increased flocculation by bridging between particles. Lee et al [164] however 

contradict these findings revealing that the adsorption of polyacrylamide on
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siliceous material is increased in the presence of Ca^+ due to a specific 

interaction between calcium and the polymer.

Lee and Somasundaran [165] studied the adsorption of PAM on various oxide 

minerals and also concluded that adsorption was due to favourable hydrogen 

bonding between the carbonyl group and proton donating surface hydroxyl 

groups (M-OH and M-OH2 +) on the mineral surface.

The adsorption of polyacrylamide on SiC and sand was independent of ionic 

strength [166]. Page et al [167] confirmed this finding for polyacrylamide 

adsorption onto kaolinite sand and SiC at 30 or 90°C. They showed however, 

that adsorption was reduced at the higher temperature due to the rupture of 

hydrogen bonding networks.

Broseta and Medjahed [168] discovered that the adsorption of polyacrylamide 

increased as the hydrophobicity of the surface increased. Adsorption was lower 

on sand (400 mgm"2) than on the same substrate rendered hydrophobic by 

treatment with short chain (C-6 ) silane (470mgm"2) or long chain (C-18) silane 

(720mgm"2). This was attributed to the decreased affinity for the surface of 

hydrophilic molecules such as water and the short range interactions of non

ionic PAM with the hydrophobic C-18 apolar backbone. However, adsorption o f 

PEG onto the hydrophobic surface almost totally prevented PAM adsorption 

[168]. This is not what would be expected for PEG which has moderately 

balanced hydrophilic/hydrophobic behaviour. The competition between solvent 

molecules and polymer segments for surface sites does not explain this 

'protective' effect of PEG. This effect is explained [168] in terms of the 

distribution o f ether oxygen atoms along the main chain and the low overall 

dipole moment a PEG molecule will have. This will significantly reduce the 

ability of PEG to form strong dipole interactions.
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3.10. Adsorption of anionic polymers on clay minerals

Anionic polymers tend to be repelled from the negatively charged clay surface 

[114, 116] and unlike nonionic and cationic polymers tend not to enter the 

interlayer region of expanding minerals. However, at high electrolyte 

concentration or low pH, when the polyelectrolyte behaves considerably more 

like an uncharged polymer, adsorption may take place between the platelets. 

Polyvalent cations also promote the adsorption of anionic polymers by a 

bridging mechanism between negatively charged groups on polymer and clay 

surface [169]. In addition, at low pH, negatively charged polymers are able to 

adsorb onto the edges of the clay particles since, under such conditions, the clay 

edges adopt a positive charge.

The adsorption o f partially hydrolysed polyacrylamide (HPAM) has received 

considerable attention, particularly with respect to its use in oil well drilling 

fluids [2, 170]. The driving forces for adsorption such as van der Waals 

(dispersion) interactions, H-bonding and entropy, compete with electrostatic 

repulsion between the negatively charged polymer and mineral surface during 

the process of HP AM adsorption [170]. The reduction of interlayer space and 

the subsequent reduction in available internal surfaces is also a factor which will 

reduce the polymer adsorption density.

HP AM does not adsorb at low ionic strength or high pH due to strong 

electrostatic repulsions between negatively charged polymer and mineral 

surface. Adsorption occurs at high ionic strength although reduced adsorption is 

obtained in KC1 since it is more flocculating than NaCI. At high ionic strength, 

adsorption is independent of ionic strength [2 , 170] reaching a plateau value of 

200-300mg g"l clay this was the same plateau value obtained by Bailey et al [2] 

for neutral and cationic polyacrylamide adsorption at high ionic strength. These
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results indicate that under such conditions, adsorption is due to van der Waals 

(dispersion) interactions.

Lee et al [159] noted increased adsorption of HP AM on edge and basal surfaces 

o f kaolinite at high ionic strength and low pH and that it occurred in a stepwise 

manner; Firstly, the screening of electrostatic repulsions between polymer and 

mineral surface ans secondly, neutralisation of polymer (and possibly mineral) 

charge by cation condensation. As a result, adsorption densities comparable to 

neutral polyacrylamide are obtained. Page et al [165] also revealed that 

adsorption of hydrolysed polyacrylamide is increased in increasing ionic 

strength solution. However, it was shown that the adsorption of polymer is 

reduced on increasing the temperature by interfering with both the electrostatic 

and non-electrostatic interactions.

Diffraction measurements [170] show that mineral-polymer interactions are also 

enhanced at low pH. At 0% relative humidity a d-spacing of 17A is obtained at 

pH 4 whilst at pH 12.3, a d-spacing of 11.6A is obtained. This clearly indicates 

the interlayer adsorption and disruption of platelet stacking at lower pH. The pH 

dependence of HP AM adsorption on kaolinite has also been considered by Lee 

et al [159] and in keeping with the findings o f Lecourtier et al [166] on other 

siliceous material found that adsorption decreased as pH increased. The authors 

describe two distinct processes which are pH dependent:

4< pH <7 the acid groups on the polymer become fully dissociated which 

increases the electrostatic repulsion between polymer and mineral thus reducing 

HP AM adsorption.

pH >10 there is a reduction in the number of isolated Al-OH adsorption sites 

and an increase in the number of Al-O" groups obviously leading to greater 

electrostatic repulsion between polymer and mineral.
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The presence of Ca^+ allowed adsorption of HP AM onto montmorillonite [170] 

even at low ionic strength. This was attributed to both charge screening by the 

cation and also the possibility that Ce?+ on the surface may act a bridge, 

inducing adsorption. Bocquenet and Siffert [171] showed that HP AM uptake 

increased for Ca-kaolinite and Ca-illite compared to Na-kaolinite and Na-illite 

respectively. They too explain that Ca?+ may act either as an adsorption site on 

Ca-clay or that it may affect the dimensions o f polymer in solution. Both 

mechanisms are thought to work at the same time although it is difficult to 

determine which mechanism predominates. Chaveteau et al [172] also attribute 

the increased adsorption of HP AM on sand and SiC in the presence of Ca^+ to 

the fixation of Ca^+on dissociated surface silanol groups, and thus the creation 

of a new adsorption site and also the decrease in HP AM solubility on interaction 

with Ca^+. Lee et al [164] explained that the increased adsorption of HP AM on 

sand, SiC and kaolinite in the presence of Ca^+ was threefold:

• reduction of electrostatic repulsion by charge screening.

• specific interaction with polymer in solution reducing its affinity for the 

solvent

• fixation on negative surface, reducing mineral charge and creating new 

adsorption site where it might act as a bridge.

An increase in ionic strength (monovalent Na+) was found to reduce the 

effectiveness of the Ca^+ cation [164] by decreasing the electrostatic 

interactions possible between Ca?+ and polymer or mineral surface.

Espinasse and Siffert [154] discovered that the adsorption of HP AM on 

homoionic montmorillonites increases with increasing polarising power of the 

exchange cation [153]. This is attributed to the higher polarising power of the 

polyvalent cations and hence their ability to protonate the amide group. This is 

the reverse of the result obtained for acetamide where the polyvalent cations 

were blamed for reducing the adsorption by flocculating the clay. It was
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postulated [154] that, in contrast to acetamide, flocculation of the clay by 

polymer bridging between particles reduces the flocculating effect of exchange 

cations which cause flocculation.

Increasing molecular weight was found to have little effect on adsorption of 

HP AM from solution onto montmorillonite, in fact, the effect of ionic strength 

proved to be the most important parameter considered by Espinasse and Siffert 

[154]. Increasing the ionic strength of the solution increased the adsorption by a 

factor of between 2 and 5. This was explained in terms of a reduction in the 

molecule size by charge screening of the carboxylate groups and hence the 

greater accessibility of the polymer to the mineral surface.

Stutzmann and Siffert [153] have revealed that adsorption increases with 

increasing degree of hydrolysis. They reasoned that since HP AM bonds to 

several platelets causing aggregation it is thus the size of the gap between the 

platelets which controls the adsorption of more polymer in the interlayer space. 

Hence, increasing the degree o f hydrolysis extends the chain length and thus in 

turn increasing the volume between flocculated platelets. This allows the 

amount of polymer adsorbed to increase with increasing hydrolysis. Espinasse 

and Siffert [154] also showed that increasing the degree of hydrolysis of the 

anionic polyacrylamide, increases the amount adsorbed from NaCl solution. 

These authors postulate that the effect o f salt on the COO":COOH ratio will be 

greater for the polymers with higher degrees of hydrolysis. Consequently, these 

polymers will form lower dimension coils which will adsorb preferentially. 

These seem rather unlikely explanations and it has been shown [173] that 

HP AM uptake onto Na-kaolinite is inversely proportional to polymer 

hydrolysis. Increasing the polymer hydrolysis extends the chain and, hence, 

reduces the adsorption of polymer. The decrease in polymer size in saline 

solution accounts for the observed increases in adsorption in the presence of
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NaCl. In addition, increasing HP AM ionicity (increased hydrolysis) reduces the 

adsorption density on SiC, sand and kaolinite [164, 172]. However, in the 

presence of Ca^+ above 30% hydrolysis, the adsorption increases as the Ca2+ 

interactions with the polymer decrease its solubility and enhance its adsorption.

The adsorption of hydrolysed polyacrylamide onto kaolinite is limited solely by 

the number of available adsorption sites and not competition with 

intramolecular bonding as is the case for sodium polyacrylate [174] Three 

possible adsorption mechanisms were postulated:

1. Anionic exchange between surface OH and carboxylate ions on the polymer.

2. Establishment of bridges involving divalent cations.

3. H-bonding between surface oxygen atoms ad unionised carbonyl and amide 

groups on the polymer.

In addition to these mechanisms Stutzmann and Siffert [153] also suggest that 

the polarisation of water co-ordinated to the exchange cation can protonate the 

amide group which can then be held to the mineral surface by a chemisorption 

process (i.e. an ionic bond). This is the mechanism previously suggested in the 

same paper for acetamide in which the polarising power of the cation is the most 

significant factor in the adsorption.

Broseta and Medjahed [168] studied the adsorption of hydrolysed 

polyacrylamide on sand and silane (C-18) treated sand. At high ionic strength 

and low pH the adsorption resembled neutral polyacrylamide adsorption, 

increasing with increasing hydrophobicity o f the surface. However, when 

significant electrostatic interactions were present, the reverse is true. Indeed, the 

adsorption of HP AM on C-18 treated sand is less than on sand itself. The 

authors attribute this to the increased electrostatic repulsion between the anionic 

polymer and effective negative charge carried by hydrophobic surfaces due to 

the preferential solubility of anions close to the hydrophobic substrate.
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4. TECHNIQUES

The two principal techniques used for the quantitative and qualitative 

determination of water soluble polymer adsorption on montmorillonite clays, as 

presented in this thesis, were Fourier transform infrared (FTIR) spectroscopy 

and X-ray diffraction (XRD). A brief outline of the theory and principles 

underpinning these techniques and their relevance to this project are outlined 

below. In addition, a brief description of the other techniques used will also 

appear.

4.1 Infrared spectroscopy

Infra-red radiation occurs in the region o f the electromagnetic spectrum with 

wavelength between approximately 10"3 and 10"6 m. Any polyatomic molecule 

will absorb particular frequencies of infrared radiation and will be excited from 

a low energy to a higher energy stationary state, i.e. will undergo a vibrational 

(or rotational) excitation. Many detailed explanations of this theory can be 

found [175, 176, 177, 178], but a brief description of the absorption of infrared 

radiation by a molecule which gives rise to the characteristic infrared spectra 

will be given.

4.1.1. The harmonic oscillator (semi-classical approach)

constant, k, (figure 4.1.1.) and which obeys Hookes law, the system will 

oscillate with frequency, v, given by:

m m
For a diatomic molecule of reduced mass, p

V m + m , and spring

eqn 4.1.1a
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Figure 4.1.1. model of a diatomic molecule at equilibrium and under

extension

> >
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Quantum mechanics has shown [179] that the harmonic oscillator can only take 

discrete, quantised energy values which are characteristic of a particular 

molecule, given by:

where v is the vibrational quantum number which may take all positive integer 

values and h is the Planck constant.

The frequency of the radiation must be exactly equal to the frequency of 

molecular vibration, which produces the oscillating dipole moment, in order for 

a quantum of radiation to be absorbed. Since radiation with frequencies which 

are not exactly equal to the frequency of molecular vibration are not absorbed, 

then a collection of normal modes with particular frequencies will give rise to a 

characteristic absorption spectrum. This forms the basis of identification by 

infrared spectroscopy.

For the harmonic oscillator, quantum mechanics has shown that for a transition 

between lower and upper vibrational states v" and v', with vibrational 

wavefiinctions, \|/^ and \p v respectively, the transition moment is given by

eqn 4.1.1b

t  *  I t

eqn 4.1.1c
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Where, x is the intemuclear separation (r-re) and p, is the oscillating dipole 

moment.

It is found that if:

R v =0 then the transition is forbidden 

R v ^ 0  then the transition is allowed

If v' and v" differ by integer values other than 1, then the transition moment will 

be zero and transition will be forbidden. This gives the selection rule Av=±l

The potential energy for a harmonic oscillator is a parabolic function (figure 

4.1.2a.) on which evenly separated vibrational energy levels (hv apart) exist, as 

dictated by quantum mechanics.

4.1.2. Anharmonicity

Unfortunately the harmonic model suggests that the molecule will never be able 

to escape the potential well and dissociate. This is not the case for real 

molecules and hence an anharmonic potential is used (figure 4.1.2b) to account 

for the restoring force in real molecules becoming weaker as the displacement 

increases. Consequently, when the amplitude of vibration becomes sufficiently 

large the molecule may dissociate. The potential energy is no longer a parabola 

but is usually modelled by a Morse potential:

V(x) = De D-ex p{- tf ( r e - r )}]2 eqn 4 .1 .2a

Where De is the dissociation constant (the energy a molecule requires to extend 

from the equilibrium separation to infinite separation) and a is a constant.

At low potential energies, the anharmonic oscillator behaves similarly to the 

harmonic oscillator and consequently its potential follows the a parabolic 

function. However, as the atoms which compose the molecule become more and 

more separated, so the potential energy tends towards the energy o f dissociation.
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The vibrational energy levels are approximated by:

For the transition y' <— y" the energy difference is hv (1 -  2 v x e)> hence, the

difference in energy between successive energy levels becomes less as the 

vibrational quantum number, v, increases.

The selection rule for the anharmonic oscillator becomes Av =±1, ±2, ±3...

The probability of an overtone transition such as Av =2, is however, much lower 

than the fundamental transition, Av =1. Consequently, the overtone transitions 

are usually much weaker than the fundamental transitions.

Figure 4.1.2 Potential energy curves for the a) harmonic and b) 

anharmonic oscillators
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4.1.3. Intensity o f infrared transitions

The intensity o f a vibrational transition is governed by three factors:
2 • •1. The infrared intensity is proportional to Rv , the square of the transition

moment obtained from equation 4.1 .lc

* .■  - "v W y  & Vy  dX eqn 4.1.3a

For a simple harmonic oscillator, it has been seen previously that Rv is non

zero when Av=±l. Hence for a SHO, only one term is obtained from equation

f d  V
4.1.3a, and the infrared intensity is shown to be proportional to —

V ) x=0

For an anharmonic oscillator, however, Rv is non-zero when Av=±n (where n is

an integer). Hence, non-linear solutions to equation 4.1.3a are obtained. These

are overtone bands and their intensity is obtained from terms such as —
<5x

Although the intensity of these bands is usually small, they are often observed in 

the infrared spectrum of clay minerals.

2. The population of initial states

Transitions allowed by selection rules, i.e. Av=±l, may be observed. However, 

the absorption probability of transitions other than l< -0  are very low and at

thermal equilibrium are predicted by:
N\ g, f  A£—L = —  e x p -------
No g 0 \  kT

eqn 4.1.3b

where N j and N q are the numbers of molecules in, and gj and go the

degeneracies of, the upper and lower energy states, respectively. The Boltzmann
(  AftA

distribution is given by e x p  , where AE is the energy difference between
\  kT)

the upper and lower energy levels.
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At room temperature, —  «1 for most vibrational states, so the most likely
No

transition is the 1<—0, fundamental transition.

3. The number of molecules present

The Beer-Lambert law states that for a single component of concentration, c, in 

a cell of path length, 1, the transmittance (intensity ratio of transmitted radiation, 

I, to incident radi iven by:

It should be noted that for multiple components, A = l^ ic i + ^2C2--*)-

4.2. Fourier transform infrared (FTIR) spectroscopy

FTIR spectroscopy is very similar to dispersive infrared techniques but there 

exist some fundamental differences. The spectrometers are similar: both have an 

infrared source which emits infrared radiation over a broad range of frequencies, 

(a globar heated by an electric current); both have a detector which measures the 

intensity o f radiation from the source which has passed through the spectrometer 

(a mercury cadmium telluride (MCT) detector); and both use the 'delay 

principle' to separate the frequencies or infrared radiation from one another. In a 

dispersive instrument a prism or grating is used to resolve the radiation into 

separate components by an amount which varies with wavelength. In a Fourier 

transform instrument however, a Michelson interferometer arranges the 

wavelengths and intensities as a function of mirror path difference and a Fourier 

transform is used [181, 181] to separate the Fourier components of the radiation.

eqn 4.1.3c

where 8 is the extinction coefficient.

Then absorbance, A = log eqn 4.1.3d
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4.2.1. Michelson Interferometer

In the interferometer (figure 4.2.1a) the source emits light which is collimated 

onto a KBr beamsplitter. One part of the radiation is reflected onto a mirror 

(m i) which is moved parallel to the beam at constant rate. The other part of the 

light is transmitted onto a stationary mirror (m2 ). Both mirrors reflect the 

radiation so that each part recombines to cause constructive and/or destructive 

interference.

Figure 4.2.1a Schematic of the Michelson interferometer
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The interference is caused by the difference in path-length each part o f the beam 

has travelled on recombination. Obviously this changes as mirror (m i) is 

moved. The recombined radiation is passed through the sample and so only 

frequencies of radiation that are not selectively absorbed reach the detector and 

are displayed as an interferogram.

The interferogram has a very distinctive shape (figure 4.2.1b) due to the 

interference of many different frequencies and amplitudes of infrared radiation.
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When the path difference (x) is zero, all frequencies are in-phase and 

constructive interference occurs (all the infrared energy from the source is 

detected, except of course for that absorbed or lost in reflections). However, at 

all other values of difference in path length there are as many frequencies that 

destructively interfere as constructively interfere and the interferogram dies 

away.

Figure 4.2.1b A typical interferogram

1.0.

0.5.

o  ° - ° -  

s -0.5-

-1 .0 .

-1.5.

4400 4300 4200 4100 4000 3900 3800 3700 3600

Data Points

4.2.2 The Fourier transform

The intensity of infrared radiation must be measured as a function of frequency 

in order to obtain an infrared spectrum. The Fourier transform is a mathematical 

process for 'sorting' the component frequencies of a polychromatic source and 

enables the intensity to be recorded as a function of wavenumber. The 

interferogram can be resolved into the sum of many cosine waves of different 

frequency [181]:
oo

l(x )=  js(v) cos(2^vx)dv eqn 4.2.2a
- o o

However, the spectral intensity, S(v), (the intensity of the source at a given 

wavenumber as modified by the instrument and sample) is required and is 

obtained by computing the cosine Fourier transform of I(x) over all x
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S (v)=  Jl(x) cos(2;rvx)dx eqn 4.2.2b
—co

This is an even function, hence,
00

S(v) = 2 J l t o  cos(2;rvx)dx eqn 4.2.2c
0

4.2.3. Instrumental parameters

There are several instrumental operation parameters which have a profound 

effect on the infrared spectrum obtained. The most important, and their effect on 

the spectrum are:

1. Resolution. The ability of FT instruments to achieve "higher resolution and 

undistorted spectra" compared with dispersive instruments [182] are some o f the 

principal advantages of this method of infrared mineral analysis.

For the purposes of this thesis, the Rayleigh criterion for resolution is used 

[180], in which two adjacent spectral bands with sinc^ lineshapes are said to be 

resolved when the centre of one band is at the same frequency as the first zero 

value o f the other.

In an FT instrument, resolution, Av, is controlled by the maximum path length

difference, xmax ? ° f  the interferometer by the relationship:
1 1Av oc  oc ------- eqn 4.2.3a

x max 2 d max

The mirror travel distance, dmax controls the maximum path difference and 

hence the resolution.

2. Apodisation. Mathematically the Fourier integral requires integration between 

zero and infinite path difference. This is obviously impossible, being 

constrained by the maximum mirror travel distance. Effectively the 

interferogram is truncated by multiplying by a boxcar function (multiplies the
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interferogram by 1 for x < xmax, and by 0 for x > xmax). The Fourier transform 

of the interferogram truncated by a box-car function however, leads to distortion 

o f the frequency spectrum (side-lobes on bands). In order to reduce this 

problem, a suitable apodisation function is employed. A common apodisation 

function, used exclusively in these studies, is the triangular apodisation function 

(multiplies the interferogram by l-x/xmax for x < xmax and by 0 for x > xmax) 

which produces less distortion in the spectral band. Unfortunately, spectral 

truncation of this kind degrades the resolution.

3. The sampling interval Ax. A laser is used to discretely sample the 

interferogram giving a summation of discrete digitised points. For accurate 

digitisation the sampling interval Ax < i/L min. Any wavelengths smaller than

2 Ax will not be digitised correctly, which leads to spectral distortion, a 

phenomenon known as aliasing.

4. The number of points transformed. Using more points in the Fourier 

transform will increase the definition of bands in the frequency spectrum. Often 

the number of points transformed is artificially increased by zero filling; a 

method of enhancing spectral definition by increasing the number of points to 

be transformed, without reducing the signaknoise ratio. Zero filling results in 

much smoother frequency spectra.
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4.2.4. Resolution enhancement and curve fitting

In many of the infrared spectra presented within this thesis, the features of many 

bands are obscured, the causes of this are:

1. The occurrence of infrared bands at frequencies very close to each other such 

that they will partially overlap, making the analysis of band parameters very 

difficult.

2. Band broadening due to vibrational motions of chemical groups in a 

distribution of environments (inhomogeneous broadening) enhances the overlap 

of adjacent bands, compounding the first problem.

In order to extract quantitative information regarding the number of peaks; the 

peak positions and the relative peak intensities, Fourier self deconvolution 

(FSD) and second derivative (SD) spectroscopy are used to artificially narrow 

spectral linewidths and have been used to help interpret the results presented in 

this thesis. It must be noted, that the term resolution enhancement is a misnomer 

since the two methods used to distinguish the features of overlapping absorption 

bands, do not improve instrument resolution, in fact, they actually reduce it 

[183].

4.2.4.1. Second derivative spectroscopy (SD)

Quite simply, this method involves determination of the second derivative,
2 / - \

— 2 , of an infrared absorption band. It is extremely useful in determining 
d(v)

the wavenumber position of the band since the bands are narrowed to 40% of 

the original band width [180], revealing the turning points (band maxima).
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Figure 4.2.4.1. Second derivative of an infrared absorption band

Lorentzian profile First derivative Second

derivative

One of the major problems with calculating derivative spectra is the 

amplification of noise. To reduce this problem, the original spectrum (in the 

spectral domain) is smoothed by truncating the interferogram (in the Fourier 

domain) by multiplication by a boxcar function. Care must be taken to ensure 

the spectrum is not distorted by the smoothing process but this can be checked 

by comparing the spectral features of the smoothed and original data.

4.2A.2. Fourier self deconvolution (FSD)

FSD is based on the principle that for an infrared absorption band with 

Lorentzian profile, the greater its full with at half maximum, (FWHM), the more 

rapidly the interferogram decays. Hence, the inverse Fourier transform of an 

infinitely narrow band (Dirac delta function), is a cosine wave [183] (figure

4.2.4.2.a). As the band becomes broader, so the rate o f decay of the 

interferogram increases (figure 4.2.4.2.b and c). Consequently, the method of 

narrowing a wide band in the spectral domain involves reducing the rate at 

which its interferogram decays in the Fourier domain. Mathematically, this is 

achieved by multiplying the interferogram by an exponentially increasing 

function. This enhances all spatial frequency components including noise, so an
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apodisation function is employed to allow the interferogram to decay, but at a 

much slower rate than for the original band (figure 4.2.4.2.d)

Figure 4.2.4.2 The effect of band width on rate of interferogram decay

>

a) Infinitely narrow function

>

b) Narrow Lorentzian band

c) Broader Lorentzian band
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Figure 4.2.4.2d. Band narrowing using Fourier self deconvolution

F S(v)

I(x)

I(x).exp(i2ry x).D(x)

A I'(x)

From equation 4.2.2c, the original spectral density is given by
oo

S(v) = 2Jl(x) exp(/2^vx)dx — F (l(x)} eqn 4.2.4.2a
o

And, from equation 4.2.2a, the original interferogram by

l(x) = J S(v)exp(/2^ioc)d v = F'1 (s(v)} eqn 4.2.4.2b
—oo

Now, the new interferogram is given by,

I'(x) = l(x)exp(z‘2 ^ ) D ( x )  4.2.4.2c

Where, £>(x) is the apodisation function and exp(/2^c) is the exponentially 

increasing function which depends on y, the HWHM.

Therefore, the new spectral density, S '(v), is obtained by 

S'(i7) = F {l'(x)} 4.2.4.2d
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The FSD depends critically upon three carefully chosen parameters:

1. The apodisation function D (x ). This function determines the shape of the 

deconvoluted band, S(v). The apodisation functions used in FSD are the same 

as in general interferogram truncation in FTIR spectroscopy and as such must 

place emphasis on the centreburst region of the interferogram and decay to zero 

with increasing path difference. The choice of apodisation function is a 

compromise between S/N and the output lineshape [184]. However, the Bessel 

function is generally regarded as a good choice [185]; triangular, cos and sinc^ 

are other acceptable functions.

2. Enhancement factor, k . This value is related to the ratio of original spectral 

linewidth, y, to the narrow spectral linewidth, y' [184]:

K = / ’

Kauppinen et al [185] state that the S/N ratio of the deconvoluted spectrum is 

highly dependent upon k , and note that the maximum practical k  value is given 

by:

K’ = 1°gio { % )

At high k  values, the final S/N is also dependent upon the apodisation function.

3. The band width of the original band, y. This must be chosen very carefully 

since underestimating y prevents complete band separation due to poor 

linewidth narrowing, whereas, overestimation gives side lobes which may mask 

other, real bands [186].

Artefacts such as the spurious side lobes (due to over deconvoluting) or 

uncontrolled increases in noise, may be minimised using the interactive 

procedure outlined by Smeller et al [187] for extracting information from
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Fourier self deconvolution. Some of the problems regarding noise and its 

distribution in absorbance profiles; water vapour; and flattened spectral maxima 

due to inhomogeneous sample preparation and ways of overcoming them have 

been discussed by Mantsch and Moffatt [184].

From Fourier self deconvolution, the spectroscopist is able to gain information 

regarding the number of component bands, the band positions and the relative 

integrated intensities (Mantsch and Moffatt [184] describe the preservation of 

integrated intensities. However in practice this is not achieved) in a poorly 

resolved infrared spectrum. It must be noted however, that information 

regarding linewidth cannot be derived since the band widths are not retained in 

the FSD calculation.

4.2.4.3. Curve fitting

On its own, curve fitting provides unreliable information on spectral features. 

However, when performed with the hindsight of information gained from 

second derivative spectroscopy and Fourier self deconvolution [188], it is 

possible to fit real bands to a real spectrum with some degree of certainty to 

provide quantitative information.

One of the major problems with most curve fitting procedures is that most 

infrared bands have Lorentzian or predominantly Lorentzian profiles [189]. 

Unfortunately, infinite baselines are required to fit Lorentzian band profiles, but 

theses are not found in most infrared spectra due to the presence o f other 

absorption bands. As a result, less collapsed Gaussian bands often appear to fit 

the spectral lineshapes better than Lorentzian bands. Although the curve fitting 

procedure is able to fit bands with Gaussian or part Gaussian profiles, it is 

impossible to determine whether the band actually contains some Gaussian

109



component or whether it is an artefact of the spectrum. Consequently, in order to 

extract quantitative information, all fitted bands presented in this thesis will 

have Lorentzian profiles.

In the advanced FIRST curve fitting package, which is part of the Mattson 

FIRST software used to obtain and manipulate the spectra presented in this

[Ni-ntfthesis, the fit criterion % = z- , is used to compare the parameters
' m

(peak position, peak height and FWHM) of a set of fitted bands nj, with the 

parameters of the experimental band Nj, in an iterative process. The fit criterion 

is optimised when it reaches a minimum value (by default the value o f %̂ =0, i.e. 

when Nj=nj) or the number of iterations is complete. The peak position, peak 

height, FWHM and integrated intensity may then be determined. It must be 

noted that the fitting of synthetic bands to a real spectrum is never perfect and is 

always a non-unique solution.

4.2.5. Advantages o f using FTIR spectroscopy

FTIR spectroscopy is a very powerful tool and has many advantages compared 

to dispersive infrared techniques, the most important perhaps being:

• Multiplex (Fellgett) advantage-All spectral elements are observed 

simultaneously, not individually as in a dispersive instrument, which enables 

many spectra to be obtained at rapid speeds. These spectra may be co-added to 

improve the signal:noise ratio of a spectrum in the time taken to record a single 

dispersive spectrum.

• Throughput (Jacquinot) advantage-At a given resolution, the energy 

throughput is much greater in an interferometer than in a dispersive instrument 

since there are no slits to restrict throughput. Consequently, the amount of signal
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reaching the detector is much greater. This is particularly important in the far 

infrared analysis (> 700 cm"l) of minerals where significant information may be 

obtained, but where infrared energies are very low.

• Connes Advantage-Absolute control of the spectral wavelength is

achieved by sampling with a laser whose wavelength is fixed. This ensures that 

no frequency drift is observed which is particularly important in subtracting the 

individual spectrum of a particular phase to remove unwanted absorptions due 

to this phase. This is particularly important for clay minerals where some 

infrared absorption bands (particularly the silicate stretching modes) are 

extremely intense and may mask other important features of the spectrum due to 

impurities, or adsorbed species. It is also important in the interactive spectral 

subtraction of unwanted water vapour from sample spectra.

The Fourier transform spectrometer does have disadvantages however, 

particularly if the source is noisy. In such cases, the detector will observe all the 

noise all the time as it integrates over all frequencies thus reducing the 

signal:noise ratio. In addition, unlike dispersive instruments which acquire dual 

beam spectra (sample and reference spectra at the same time) and immediately 

eliminate unwanted water vapour absorption bands, FT spectra are obtained as 

single beam experiments. As a result, it is necessary to ratio the sample 

spectrum against a reference spectrum taken previously to obtain the actual 

absorption spectrum. Due to variations in humidity, the water vapour spectrum 

will differ slightly between the reference and sample spectra and consequently 

the absorption spectrum will contain unwanted absorption bands due to water 

vapour. These can be eliminated by purging with a dry infrared inactive gas 

such as nitrogen or interactive spectral subtraction of the individually acquired 

water vapour spectrum.
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4.2.6. Experimental

Infrared spectroscopy is used extensively in clay mineralogy particularly in the 

characterisation of mineral structure, composition and reactions. One of the 

principle advantages of infrared spectroscopy particularly compared to X-ray 

diffraction, is its sensitivity. Because each layer absorbs infrared radiation 

independently, it is possible to recognise structures without depending upon the 

packets of layers which are required to give coherent X-ray diffraction. Farmer 

[182] and Russell and Farmer [190] have extensively studied layer silicates 

using transmission infrared spectroscopy. Sample preparation is extremely 

important, the two most popular methods o f analysis being:

1. Pressed pellet or disk

The commonest disks prepared are those using high purity potassium bromide, 

KBr, which has a wide infrared window (down to -450 cm~l) and forms an 

amorphous matrix at high pressures. Generally, two concentrations of pressed 

pellet are prepared [26] (-3 mg in 170 mg of KBr and -0.5 mg in 170 mg of 

KBr) to enable studies to be made of the weaker (OH stretching and bending 

modes) and strongest (Si-0 bands) spectral features, respectively. Mineral 

particles are randomly oriented within the KBr matrix and thus no orientation 

dependency of the bands is observed. It must be remembered that some 

interactions may occur between the exchangeable counter cation in the clay and 

the potassium ion in the matrix at room temperature. Polyethylene is used in the 

preparation of pressed disks to enable analysis o f the far infrared spectra of 

minerals. Particle size is extremely important in the preparation of minerals for 

infrared spectroscopic examination [26, 191]. Conventionally, the <2pm 

fraction o f the mineral is obtained by centrifugation or sedimentation. It is 

important, however, that all samples (particularly those of mineral-polymer 

complexes) are ground using a mortar and pestle to ensure that the particle size
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is <2pm. This helps to reduce the distortion and broadening of infrared bands 

[182, 190] and minimise scattering of infrared radiation which leads to a 

sloping baseline. KBr crystals commonly used in disk preparation enhance the 

grinding of mineral-polymer particles to <2 pm particle size.

2. Sedimented films

An aqueous mineral dispersion can be sedimented onto an infrared transparent 

window such as CaF2 , Si, or ZnSe to give a uniform deposit on evaporation of 

water. Due to the strong cohesion of plates, deposition may be made onto a 

plastic sheet and, after drying the deposit, it may be peeled to give a self- 

supporting mineral film. Brown and Brindley [192] have commented that films 

produced by this method have a preferred orientation in which the c-axis o f the 

mineral lies normal to the surface. It has been stated that preparations of layer 

silicates of this nature behave like quasi-two-dimensional crystals [190].

A Mattson Polaris FTIR spectrometer using FIRST software has been used to 

record the infrared spectra of clay-polymer complexes prepared from aqueous 

solution by two methods:

1. The adsorption of polymer from solution onto dispersed montmorillonite was 

studied by mixing clay suspension and polymer solution. The solids were 

centrifuged and dried, then prepared into a pressed KBr pellet. This is then 

clamped in a transmission cell in the sample compartment of the infrared 

spectrometer, with the infrared beam perpendicular to the face o f the pellet.

2. Free standing montmorillonite films may be dipped into polymer solution, 

removed after the desired equilibration time, then clamped in a transmission cell 

and dried, perpendicular to the direction of the infrared radiation, in the nitrogen 

purge of the infrared spectrometer.
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4.2.7. Transmission spectroscopy in clay mineralogy

As mentioned in the previous chapters, infrared spectroscopy is used extensively 

in determining the behaviour of water and other polar molecules in the 

interlayer of montmorillonite.

Infrared spectroscopy has also been used to determine the composition o f the 

natural clay to aid in classification. Bukka et al [25] were able to differentiate 

between Cheto and Wyoming montmorillonites using FTIR spectroscopy. Some 

studies have shown that the structural OH stretching and bending modes of 

montmorillonite are sensitive only to the nature o f the metal ion in the 

octahedral lattice [193, 194,195] and the nature of the exchangeable cation [25, 

40] not vibrations o f the silicate lattice.

The orientation of particular bonds in the smectite structure have also been 

studied. Wyoming bentonite 'paper' shows very little angular dependence o f the 

structural OH stretching mode [196], i.e. tilting the film at 45° to the incident 

infrared radiation did not change the intensity of the band assigned to structural 

OH stretching. However, Farmer and Russell [197] have shown that Wyoming 

montmorillonite has four Si-0 stretching bands at 1120, 1080, 1048 and 1025 

cm-1 o f which the band at 1080 cm~l was found to show some angular 

dependence. This band has been assigned [43] to the vibration, perpendicular to 

the clay surface, of apical oxygen atoms that are shared between the tetrahedral 

and octahedral layers, i.e. parallel to the incident radiation. The other well- 

defined bands are assigned to in-plane Si-0 stretching modes [197]. It has been 

suggested [197] that the position and appearance of the silicate stretching bands 

are dependent on the degree of order (regularity) of the structure.
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4.3. Infrared Microscopy

A full description o f the details of infrared microscopy and its application in 

polymer and mineral analysis can be found by Roush [198] and Messerschmidt 

and Harthcock [199]. However, it is important to discuss some of the most 

important features of the Nic-plan infrared microscope used in the studies 

presented in chapter 5 o f this thesis.

The microscope is a basic conventional microscope fitted with 32x and 15x 

Cassegrain objective lens which may be used either in transmission or 

reflectance mode and is attached to a Nicolet 800 infrared spectrometer fitted 

with an MCT detector. A cover which encloses the sample stage enables the 

whole system to be purged with dry air which helps to remove water vapour and 

carbon dioxide from the infrared spectra.

Two apertures are fitted above and below the sample in order to select the 

appropriate area around a particle for analysis. These are also used to align the 

microscope in the optical mode (alignment of the optical and infrared images is 

imperative to ensure the correct area is sampled) and ensure that stray light from 

other sources is minimised.

The minimum sample size suitable for infrared microspectroscopic analysis is 

between 10 and 2 0  pm, this being controlled by the wavelength of the infrared 

radiation. Samples of size less than the wavelength of the radiation (~10 pm) 

can cause spectral distortions. This is due to the diffraction of the radiation 

which causes the beam to spread out and allows light to fall outside the 

predetermined sample area, a source of stray light which causes spectral 

distortion. In addition, aberrations in the optics or the sample (particularly the
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sample thickness) are corrected using a refocussing lens located below the 

sample.

4.3.1. Experimental

Pressed KBr pellets containing bentonite were prepared (as explained 

previously) and dehydrating aqueous bentonite suspensions were studied using 

the Nic-plan infrared microscope mentioned previously. In each case a suitable 

area, usually ~ 50x50 or 100x100 pm (depending upon the size o f the feature) is 

located and studied in the transmission mode. The infrared spectrum of a 

dehydrating montmorillonite suspension was commonly taken close to the edge 

of the droplet. This is done to ensure that the sample path length was 

sufficiently thin to enable the very intense Si-0 stretching vibrations (between 

1200 and 950 cm 'l) to be recorded without completely absorbing and causing 

cut-off.

4.4. Attenuated total reflection (ATR) spectroscopy

Multiple internal reflection spectroscopy was first reported by Harrick [200] and 

he and co-workers expanded the theory and experimental possibilities. Since 

then with the increasing usage of the technique many review articles [2 0 1 , 2 0 2 ]] 

have been published which outline the various areas in which ATR, or internal 

reflection spectroscopy (IRS) as it is often referred, is used.

4.4.1. ATR theory

Total internal reflection (the theoretical basis for IRS) occurs when the angle of 

incidence #inc , of radiation propagating through a medium, having a high

refractive index, n j, exceeds the critical angle, 0 C , at the direct interface with
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an optically less dense medium, having lower refractive index n2  (figure 4.4.1a). 

The critical angle is related to the refractive indices of the two media by: 

sin#c = — = n21 eqn 4.4.1a
ni

The interference between incident and reflected radiation in the optically more 

dense medium, causes a standing wave perpendicular to the totally reflecting 

interface to develop. The electric field amplitude of the standing wave is non 

zero at the interface and consequently there is an instantaneous non-zero energy 

flow into the rarer medium (the energy flow is zero time averaged to ensure no 

loss of energy and total internal reflection). In the rarer medium, the electric 

field component o f the standing wave decays exponentially, and is known as the 

evanescent wave (figure 4.4.1b)

Figure 4.4.1

a) Total internal reflection b) Electromagnetic field near a

totally reflecting interface

normal normal

Reflected
rayIncident ray

>inc/

Refracted ray
ref

Standing wave

-z/dp
Evanescent wave

4.4.2. The evanescent field

The evanescent field is a non-transverse wave with components in all directions

(x, y, z). It is confined to the surface region and decays exponentially with

distance normal to the surface, into the less dense medium, represented by:

E = E„ exp(- eqn 4.4.2a
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Where E0  is the electric field amplitude at the surface and E is the electric field

amplitude at distance z from the interface. The depth of penetration dp is 

defined as the distance from the interface where the electric field amplitude

Where, X,, is the wavelength of the radiation in the denser medium.

It must be remembered that dp is not the actual depth measurement since the 

electric field amplitude at dp is only 37% of its value at the surface. The actual 

depth sampled ds is approximately 3dp.

Another parameter, the effective thickness, de, which is defined as the thickness 

of sample which gives the same absorbance as a transmission spectrum at 

normal incidence, allows direct comparison between spectra obtained in 

transmission or by ATR.

From eqn 4.4.2b, one can see that it is relatively easy to change the depth of 

penetration simply by changing the angle of incidence or the reflection element. 

In addition, it can be seen that the depth of penetration increases with increasing 

wavelength hence a sample spectrum obtained by the ATR method will be more 

intense at higher wavenumber than absorption bands in a normal transmission 

spectrum of the same sample. When comparing ATR with transmission spectra 

it must also be noted that ATR spectroscopy is a surface sensitive technique. It 

is not surface selective in the way that some other surface analytical techniques 

are, however, in terms of infrared spectroscopy a sample thickness of the order 

of microns is very thin. Transmission spectroscopy is, in contrast, a bulk 

analysis technique.

decays to j /  o f its value of the interface and is calculated from:

dp = -------------—-------------  eqn 4.4.2b
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4.4.3. Approximations in ATR

The ATR theory outlined above represents an idealised model of the real 

situation. Several assumptions are made to keep the model simple including 

approximating the absorbing medium to be homogeneous (i.e. that its refractive 

index does not change with distance from the reflecting interface); that there are 

no diffraction effects; and that beams are narrow and well collimated so that the 

time average of the evanescent field is zero.

One of the most confusing assumptions on which ATR theory relies is that the 

absorption coefficient of the rarer medium being zero, i.e. it is non-absorbing. 

This is not the case and as a result, the decay of the evanescent field is 

controlled by both its natural exponential decay and absorbance. However, it has 

been shown [203] that the evanescent field is significantly modified only by 

very strong absorbers and so the equations used for a non-absorber are usually 

valid. Since radiation penetrates to a total depth, of the order, o f a few microns, 

energy will be lost in the excitation of molecules. Consequently the electric field 

intensity of the reflected radiation is lower than the electric field intensity o f the 

incident radiation and the reflection will be attenuated. The attenuated radiation 

contains important vibrational information regarding the adsorbing medium.

4.4.4. Experimental

In the research reported in this thesis zinc selenide (ZnSe) and silicon (Si) 

multiple internal reflection elements (IRE), commonly referred to as the ATR 

prism, have been used exclusively due to their high refractive index, wide 

infrared transmission window, chemical inertness, and the ability to obtain 

precise dimensions and angles. The advantage of using a multiple reflection
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crystal is its multiple sampling of the rarer medium (the sample) which 

improves the sensitivity.

Two ATR accessories have been used to perform these experiments. A Spectra 

Tech horizontal cell fitted with a 70° ZnSe prism was used to study the 

dehydration of clay mineral films but more commonly used was the Specac 

Squarecol cell (figure 4.4.4), particularly to investigate the orientation of clay 

platelets in dehydrated films or the adsorption of polymer onto such clay films.

The Squarecol ATR prism (ZnSe or Si), is square in cross-section and has 

dimensions similar to those of the infrared radiation, is sealed into a stainless 

steel trough by means of two viton O-rings which are each compressed and 

secured by a stainless steel plate to ensure the arrangement is liquid-tight. The 

cell is oriented in the sample compartment of the spectrometer such that the 

angle of incidence is 45°. The trough of the Squarecol cell can readily be filled 

with aqueous solution and indeed, experiments on aqueous bentonite 

suspensions were performed by adding the pre-prepared dispersion in this way.

Studies to determine the adsorption of polymer from aqueous solution in-situ 

however, require thin layers o f bentonite to be deposited on the internal 

reflection element (IRE) by sedimentation and evaporation of aqueous bentonite 

suspensions prior to inclusion in the cell as outlined by Billingham et al [204, 

205]. This is a very similar procedure to the preparation of thin self supporting 

bentonite films for analysis by transmission spectroscopy. A common 

disadvantage of ATR spectroscopy is the difficulty in obtaining good optical 

contact between a solid sample and the reflection element. This is not 

considered to be a problem in these experiments since thin sedimented bentonite 

films deposit directly onto the surface. The trough can then be filled with

120



solutions containing polymer and ionic salts and the adsorption/diffusion 

process observed.

Figure 4.4.4. Schematic of the Squarecol ATR unit
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It is extremely difficult to determine the actual thickness of the bentonite layer 

on the crystal surface. Attempts using surface profile measurements have 

destroyed the film, and reflected laser measurements have been impossible due 

to the limited reflectivity of bentonite. As a result, quantitative ATR analysis is 

extremely difficult.

4.4.5. ATR spectroscopy in clay mineralogy

Other than the method used in this study (outlined by Billingham et al [204, 

205]), many workers have used FTIR-ATR spectroscopy to study the adsorption 

of organic species on mineral surfaces. This has been predominantly to study the 

behaviour of collector molecules (the organic species used in the separation and 

purification of natural rocks).Three, in-situ, methods have been highlighted in 

the literature [206]:

1. Pressing of dried mineral-organic complex or particulate suspension

against an inert internal reflection element.
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The settling of mineral-organic complex from aqueous suspension has been 

used by Mielczarski [207] and Mielczarski et al [208], and Hunter and Bertsch 

[209] studied the degradation of tetraphenylboron in aqueous clay pastes in this 

way. The pressing of dry clay-organic complexes against an ATR prism has 

been used predominantly to study the behaviour o f clay minerals in the presence 

of organic species [139, 210, 211]. Although orientation information was 

elucidated from the spectra [139, 210], Guzonas et al [211] identified one of the 

major problems regarding this method, that being poor optical contact between 

prism and clay mineral. Guzonas et al [211] were unable to obtain good optical 

contact between thin mica sheets and the IRE and in addition were unable to 

attain uniform thickness o f large mica sheets over the entire ATR prism. The 

micro-ATR unit which is available at SHU [212] and which uses much smaller 

ATR crystals (~1 cm^ sampling surface area, compared with ~ 6  cm^ of a 

conventional parallelepiped prism available from Graseby Specac Ltd) was used 

in the hope of covering the IRE with one small, thin mica sheet. Unfortunately, 

however, experiments performed both at Schlumberger Cambridge Research 

and SHU were unable to achieve this.

2. IRE coated with a vacuum deposited layer o f inorganic material.

Kuys and Roberts [213] identified the reaction products, determined the kinetics 

and postulated the mechanism of styrene phosphonic acid on cassiterite (SnC>2 

which was vacuum deposited on a Ge IRE) in-situ. Other studies have 

determined the adsorption characteristics of sodium dodecyl sulphate [214] and 

sodium laurate [215] on ATR optics sputter coated with alumina. This method 

has obvious advantages compared to method 1, since intimate contact between 

the IRE and mineral is achieved and reproducible film thicknesses may be 

obtained. Similar work [216, 217] has used the oxidised surface of a Si ATR 

prism to study the adsorption behaviour onto SiC>2 o f amines and silanes 

respectively.
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3. Reactive IRE

It is possible to fabricate single mineral crystals such as fluorite (CaF2 ) and 

Sapphire (AI2 O3 ) into an internal reflection element such that it may internally 

reflect infrared radiation and act as the substrate for adsorption of organic 

material [206]. As a result, it is possible to study, in-situ, the direct adsorption 

of organic material at the mineral solvent interface without the complications of 

an additional component. Consequently, there has been significant research into 

the adsorption of sodium dodecyl sulphate onto an alumina IRE [112, 206, 218] 

and adsorption of sodium oleate onto a fluorite IRE [112, 206]. In addition to 

these studies, Yalamanchili et al [219] have grown and machined KC1 crystals 

into ATR prisms and studied the adsorption of collector molecules on these 

soluble salt crystals. This is probably the easiest method of obtaining ATR 

spectra of mineral-organic interactions as there are no problems with optical 

contact. However, it is limited by the infrared window of the particular mineral 

and the ability to fabricate an ATR crystal from the mineral. This is obviously 

impossible for montmorillonite which exists as small plates and mica where 

reflection and refraction at each platelet boundary in the mica sheet would 

interfere with the attenuated signal from the clay-organic interface.

4.4.6. Quantitative information

In principle, a significant amount of quantitative information can be obtained 

from IRS, including:

• Adsorption state. The nature of interaction may be determined by measuring 

the wavenumber shift of characteristic vibrational modes of the organic or 

mineral material.

• Adsorption density. Sperline et al [220] derived a relationship for the Gibbs 

surface excess which enables the adsorption density to be calculated.
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Consequently, using rapid scan FTIR spectroscopy, adsorption kinetics at the 

reflecting element can be studied in-situ in real time.

• Sample Orientation. The angle at which the adsorbed molecule is oriented to 

the surface may be calculated by establishing the two limiting cases o f molecule 

orientation (either perpendicular or parallel to the surface) and determining the 

proportion of each using polarised radiation. This is known as the method of 

dichroic ratios [221] (section 4.5.2).

4.5. Polarisation measurements

Polyatomic molecules contain oscillating dipole moments which are positioned 

in a particular way on a set of Cartesian co-ordinates (x, y, z). Consequently, 

polarised light is extremely useful for the determination of molecular 

orientation, since only radiation polarised in a particular plane will interact with 

the components of the electric dipole in that plane. Indeed, the probability o f an 

infrared transition is proportional to the square of the cosine of the angle 

between the dipole moment and the direction of the field [175].

Several clay mineralogists [43, 197] have commented upon the absorbance band 

at 1086 cm"l in the infrared spectrum of montmorillonite and attributed it to a 

Si-0 vibration perpendicular to the surface of the clay platelet. Consequently, 

polarised measurements have been used in this thesis to determine the 

orientation of the clay platelet in the dehydration of an aqueous montmorillonite 

suspension.

4.5.1. Polarised radiation

For unpolarised light, the electric field vector oscillates in all directions. In 

transmission however, radiation may be polarised, by means o f a wire grid
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polariser, either perpendicular to (TE), or parallel to (TM) the plane of incidence 

of the radiation (figure 4.5.1). In such circumstances, the electric vectors are 

restricted to one angle (either perpendicular or parallel to the direction of 

propagation).

Figure 4.5.1. Plane polarisation of propagating radiation

Similarly, in ATR, when the radiation is unpolarised, the evanescent field has 

components in all directions (x, y, z) and may interact with all dipole moments 

(figure 4.4.1b).

It should be noted that in ATR, the plane of incidence is defined as the plane 

perpendicular to the interface between the dense and rarer media (the xz 

plane).The radiation may be polarised:

1. Perpendicular (TE) to the plane of incidence. Only the Ey electric field vector 

is associated with the evanescent field. Ey is perpendicular to the plane of 

incidence, but parallel to the surface.

2. Parallel (TM) to the plane of incidence. Both the Ex and Ez electric vectors 

are associated with the evanescent field. Ex and Ez are parallel to the plane of 

incidence, but Ex is parallel to the surface and Ez is perpendicular to the surface.
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4.5.2. Dichroic ratio

It is possible to define the ratio of absorbance with TE polarised light to the 

absorbance with TM polarised light as the dichroic ratio
rpp

Dichroic ratio = — 1 eqn 4.5.2a
A tm

where A jg  and At m  are the integrated areas of a particular absorbance band in 

TE and TM polarised radiation respectively.

Since absorbance, A oc E2, the square of the electric field [175] then,

Ate -  eqn 4.5.2b
A tm E x + E l

The effective thickness in TM polarised light is known to be greater than in TE 

polarised light [202]. Consequently, absorbance bands obtained in TM 

polarisation will be more intense than those obtained in TE polarisation and 

only relative intensities are comparable.

4.6. X-ray diffraction

X-ray radiation occurs in the region of the electromagnetic spectrum with 

wavelength between approximately 10"9 and 1(H 1 m. Many detailed 

explanations of the production of X-rays and X-ray diffraction theory can be 

found [192, 222, 223], but a brief description of the fundamental principles 

which gives rise to the characteristic X-ray spectrum and diffraction trace will 

be given here.

4.6.1. Production of X-rays

X-rays are produced when a beam of electrons, accelerated by a high voltage, 

are rapidly decelerated by striking a metal target due to collisions with the metal
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atoms. The resultant spectrum of radiation is known as continuous or white 

radiation (figure 4.6.1a). If  the electron is stopped in one impact (i.e. all the 

energy is converted into an X-ray) then a minimum wavelength of X-ray is 

attainable which depends upon the accelerating voltage. The intensity of X-rays 

in the continuous spectrum is defined as the rate of flow of energy through unit 

area, perpendicular to the direction of motion of the wave and is dependent on 

the accelerating voltage and current of the electrons and the atomic number of 

the target. Although X-ray intensity has S.I. units (joules m"2 s"l), X-ray 

intensity measurements are made on a relative basis in arbitrary units.

When the energy of the electron striking the metal target exceeds a critical value 

(characteristic of that particular metal target), sharp intensity maxima appear 

superimposed on the white radiation at certain wavelengths (figure 4.6.1a). The 

target atoms are ionised by the accelerated electron beam and as a result, one of 

the electrons in a higher energy orbital reduces its energy to fill the vacancy 

created, and emits the energy difference as an X-ray photon. The energy o f the 

photon depends on the energy difference between the two energy states and will 

be characteristic of the target metal. The intensity of the characteristic lines 

above the continuous spectrum is dependent on both the tube current and the 

difference between the tube voltage and critical excitation voltage.

The characteristic lines in the X-ray spectrum are referred to as K, L and M 

corresponding to transitions from higher energy levels to the K, L and M shells 

which have quantum numbers 1, 2 and 3 respectively (figure 4.6.1b). The line in 

the spectrum also has a subscript depending upon whether the orbitals are 

adjacent, a , or separated by another orbital, p. It is only the K lines which are 

useful in X-ray diffraction, the longer wavelength radiation being too easily 

absorbed.

127



Figure 4.6.1

a) Characteristic X-rav spectrum b) Electron transitions 

between orbitals

K a
Intensity

co n tin u o u s
•spec trum

Xmin w av e len g th

M 5 -
M4~

M1

v \ / \A/ .....

4.6.2. Absorption of X-rays

When an X-ray passes through a sample its intensity is attenuated which is 

dependent upon the thickness and density of the sample and the nature of the 

radiation [222]. Two types of absorption occur:

1. Scattering in all directions such that the X-rays do not reach the detector and 

so are apparently adsorbed.

2. Absorption of X-ray photons to facilitate electronic transitions in the atom. 

This phenomenon is utilised in techniques such as X-ray Photoelectron 

Spectroscopy (XPS) and X-ray Fluorescence Spectroscopy (XRF).

4.6.3. Diffraction

It is the scattered radiation which is of importance in X-ray diffraction. Each 

atom acts as a scattering centre for the X-rays and scattering may be in:

1. Most directions which do not satisfy the Bragg equation, i.e. no scattering 

because all rays destructively interfere and cancel

2. A few directions which satisfy the Bragg equation. Scattering is found to be 

strong because rays constructively interfere to give a diffraction pattern.
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4.6.3.1. The Bragg equation

If the X-radiation falls on a plane of atoms in a sample (each atom acts as a 

scattering centre) a distance d apart, at an angle 0 , then diffraction occurs if  the 

Bragg equation is satisfied:

nX = 2dsm6  eqn 4.6 .3.1

Where X is the wavelength of the radiation and n is an integer representing the 

order of diffraction. Hence, diffraction is produced when the path lengths of 

diffracted rays differ by an exact multiple of the wavelength and the scattered 

radiation is all in-phase and constructively interferes.

4.6.4. Diffractometer components

Important features of the Phillips 1050 diffractometer used to obtain the 

diffraction traces presented in this thesis, are:

• Source of radiation-Co Ka  was used for most analyses since it has a longer 

wavelength than Cu Ka . This is very useful in clay mineral analysis as it shifts 

low angle peaks (those o f most interest) to slightly higher 2 0  positions, aiding 

their identification. However, Cu Ka  was used in some experiments. The 

accelerating voltage and current used in each experiment was 40 kV and 20 mA 

respectively.

• Filters and monochromators-The methods of X-ray analysis require 

monochromatic radiation. The high intensity, high energy Ka  energy is used for 

X-ray diffraction and as a result it is important to remove all other radiation (i.e. 

Kp and the continuous spectrum). This is performed by using the absorption 

characteristics of a filter (commonly Ni) which removes all unwanted 

wavelengths.

• Detector-A diffractometer counter converts the X-ray into an electric current 

which can be interpreted simply.
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• Angular Scanning rate-The detector and sample were rotated by means of a 

goniometer within an angle range between 4 and 20° and with an angular 

increment of 0.05° every 2 seconds.

4.6.5. Experimental methods

Two commonly encountered preparative techniques [192, 223] and used 

exclusively in the diffraction traces recorded and presented in this thesis are:

1. Deposited film

In exactly the same way that thin oriented films may be prepared for 

transmission and ATR infrared analysis, they can be prepared for X-ray 

diffraction determination. In these experiments, the clay or clay-organic 

complex is deposited on a glass slide and the film allowed to dry at 60°C. The 

d-spacing in clay minerals may be calculated from the wavelength and incident 

angle o f X-radiation in the diffraction experiment. Orienting the sample in this 

way significantly affects the relative intensities of the basal and non-basal 

reflections. In fact, the diffraction pattern may only show the 001 basal 

reflections, with very little evidence o f any hkl reflections. The basal spacing 

obtained for montmorillonite comprises the thickness of the clay platelet 

(calculated to be 9.6A, depending on the interlayer cation [14]) and the 

interlayer separation which varies depending upon the adsorption of polar 

molecules between the platelets (figure 2.6.1.1). Consequently, for quantitative 

work, only the peak positions can be used with any degree of accuracy.

2. Powder diffraction

The clay or clay-organic complex was dried at 60°C and finely ground using a 

mortar and pestle (care must be taken to prevent deformation of the layer silicate 

structure). The solid is than packed into an aluminium sample holder and 

compacted using a roughened glass slide. Extreme care must be taken with
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plate-like minerals whilst pressing or smoothing the solid into the cavity of the 

sample holder to ensure orientation is not imparted to the platelets. Samples 

which have random orientation do not have any preferential reflections and 

consequently the relative intensities of diffraction peaks are preserved and can 

be used with peak positions in quantitative analysis.

4.6.6. X-ray diffraction in clay mineralogy

1. X-ray identification of clay minerals

Every clay mineral has a particular characteristic layer structure which is 

determined from the basal reflections. The basal reflections of montmorillonite 

vary with the level of hydration, as discussed previously in chapter 2. In 

addition, MacEwen [224] described the adsorption of glycerol onto 

montmorillonite to give a sharp, intense basal spacing of 17.7 A as a suitable 

method for the identification of montmorillonite minerals.

2. Determination of adsorbed species

The use of X-ray diffraction to determine whether polymer adsorbs in the 

interlayer space or if  it adsorbs on the external clay surface has been mentioned 

previously in chapter 3. X-ray diffraction data provides information regarding 

the orientation and packing density of organic molecules (polymers) in the 

interlayer space and give a measure of the van der Waals dimensions o f the 

adsorbed molecule. It must be noted, however, that this method may not be 

entirely accurate since the basal planes are not flat on a molecular scale and 

because the organic molecule is capable of keying into the di-trigonal cavity of 

the silicate tetrahedral sheet of the clay platelet [140].
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4.7. Kjeldahl total nitrogen analysis

To determine the amount o f nitrogen containing polymer (polyacrylamide) 

adsorbed onto the clay mineral in an aqueous dispersion, the Kjeldahl technique 

for total nitrogen analysis was employed. The clay-polymer complex was mixed 

and centrifuged (the exact details can be found in the relevant experimental 

section) and allowed to dry at 60°C then finely ground using a mortar and 

pestle. Weighed quantities of the clay-polymer complex were prepared for 

digestion by mixing with 25 ml conc. H2 SO4  (low nitrogen content) and two 

catalyst tablets, which contain 94% K2 SO4 , 5.5% Q 1SO4 .5H2 O and 0.5% Se, 

in a digestion tube. The Cu and Se act as catalysts for the digestion whilst the 

K2 SO4  aids digestion by raising the boiling point of the conc. sulphuric acid. 

The digestion mixtures containing the samples are then heated to 380°C for four 

hours which converts the nitrogen containing compounds into (NH4 )2 S0 4 ,

H2 O and CO2 .

After digestion, the digestion tubes are cooled and the contents analysed in the 

Kjeldahl Autoanalyser. The digestion solution is made basic by adding 30 ml of 

40% NaOH which converts NH4 + to NH3 which is then steam distilled and 

adsorbed into 4% boric acid solution. The ammonia complexes with the boric 

acid to form a strong base which is titrated with 0.1 mol dm~3 HC1 to determine 

the percentage nitrogen by weight in the sample.

4.8. X-ray Fluorescence (XRF)

XRF spectrometry utilises the absorption of X-rays by a sample as mentioned 

previously. The bombardment of the elements in the sample with X-rays 

produces characteristic X-ray fluorescence radiation at a number of specific 

wavelengths in the same way that X-rays are produced by electron 

bombardment of a metal target. In the spectrometer, individual wavelengths of

132



fluorescence radiation may be diffracted (separated) and detected individually. 

The intensity of any wavelength of the characteristic radiation is proportional to 

the concentration of the element in the sample which produces that radiation. 

Thus, chemical analysis on the clay samples may be performed.

A Phillips PW2400 spectrometer was used to determine the elemental 

composition of natural and homoionic Na and K exchanged SWy-1 

montmorillonite. Each sample of clay mineral was finely ground and dried at 

120°C. In order to reduce particle size and mineralogical effects [225], 1 g of 

sample was evenly mixed with 1 Og of powdered lithium tetraborate and this 

mixture was heated at 1250°C until the powders fused and formed a melt. The 

melt was then cooled to form a fused bead which may then be placed in the 

XRF spectrometer to quantitatively determine its chemical composition.

4.9. Chemicals

4.9.1. Clay minerals

The experiments described within this thesis were performed using, SWy-1 

Wyoming bentonite, supplied by Schlumberger Cambridge Research. The chief 

component being the clay mineral, montmorillonite and impurities such as 

quartz and mica. Hence, before being used in any experimental procedure, the 

raw bentonite was purified by centrifugation sedimentation procedures [223].

The bentonite was evenly dispersed in a 5% w/w aqueous suspension and 

allowed to settle under the influence of gravity or the increased influence of 

gravity in a centrifuge. The <2pm fraction of bentonite was obtained by 

sedimentation for the times outlined by Moore and Reynolds [223] since this 

fraction is left in suspension and larger fractions settle out, as predicted by
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Stokes law. The purified bentonite was then dried and used without further 

treatment, referred to as natural bentonite. In addition, Na and K exchanged 

bentonite were prepared by treating an aqueous solution of the natural clay, 

which contained mostly Na+ and Ca^+ counter cations (table 4.7.1), with 1M 

solution of the chloride salt o f the univalent cation. This was allowed to 

equilibrate for ~4 hours then the suspension was centrifuged, the supernatant 

discarded, and the solids re-suspended in fresh metal chloride solution. This 

process was repeated 3 times to saturate the clay with the desired cation. The 

bentonite was then resuspended in deionised water and centrifuged, a process 

repeated several times in order to wash away excess ions which might be 

trapped between the platelets.

As described previously, chemical analysis of the bentonite was performed by 

XRF spectrometry The results of which are shown in Table 4.7.1. The values in 

table 4.9.1 compare very favourably with the chemical composition of SWy-1 

Wyoming montmorillonite presented by van Olphen and Fripiat [26].

Table 4.9.1. Chemical analysis of bentonite by XRF spectrometry.

percentage weight of oxide
Clay Na2 0 MgO AI2 O3 S i0 2 k 2o CaO T i0 2 Fe2 C>3

Natural 1.48 2.54 19.22 62.86 0.55 1.73 0.11 3.85
K+ 0.15 2.27 20.61 68.28 3.39 0.75 0.14 4.27

Na+ 3.06 2.46 20.84 68.75 0.36 0.05 0.13 4.23

4.9.2. Polymer additives 

Polyalkyl glycol (PAG)

The two polyalkyl glycols used in the studies presented within this thesis were 

supplied by Schlumberger Cambridge Research and had the trade names
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DCP101 and BREOX 50 A 140. These were assumed to be random co

polymers (unknown sequencing) of ethylene and propylene oxide (figure 4.9.2a) 

in a 50:50 ratio, DCP101 having a molecular weight of ~ 600 gmol"! and 

BREOX 50 A 140, a molecular weight 1700 gmol'1.

Figure 4.9.2a Structural units of PAG

HO —l~CH2— CH, — O t —  HO —tCH(CH3)— CH2 — o  3 ^ -

Polyethylene oxide Polypropylene oxide

Polyacrylamide (PAM)

Polyacrylamide samples were supplied by Allied Colloids with a range of 

molecular weights between lx l 0  ̂ and 15x10^ gmol"l. The structure o f PAM is 

shown in figure 4.9.2b.

Figure 4.9.2b Structural units of PAM and HP AM (PAM and PAA)

- t C H , — C H -J— -+ C H ,— CH-^—z | n z | n

/\* 0A,„
Polyacrylamide Polyacrylic acid

Partially hydrolysed polyacrylamide (HPAM)

This too, was supplied by Allied Colloids with a molecular weight of lx l  0 ^ 

gmol"! and an anionic content o f 10.64 m m olg'l. The structural components of 

HP AM are shown in figure 4.9.2c, the degree o f hydrolysis being determined by 

the proportion of polyacrylic acid in the polymer molecule.
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5. BENTONITE HYDRATION PROCESSES

5.1. Introduction

One of the principal aims of this PhD project was the in-situ determination of 

polymer adsorption from aqueous solution onto montmorillonite, using the 

FTIR-ATR spectroscopic technique. As a result, it was necessary to deposit thin 

layers of bentonite onto the sampling surface o f an ATR prism, i.e. onto silicon 

and zinc selenide substrates, by the evaporation of water from an aqueous 

mineral suspension. These clay mineral dehydration processes have been 

monitored using several infrared techniques.

5.2. Experimental

5.2.1. Materials

SWy-1 bentonite was purified by sedimentation to obtain the <2pm fraction and 

used in its natural state, i.e. without cation exchange. Aqueous bentonite 

suspensions were prepared by dispersing the bentonite in deionised water and 

allowing to 'age' by stirring for 12 hours.

In addition, homoionic Li-, Na-, K- and Ca-Greenbond bentonites were used in 

the preparation of aqueous homoionic bentonite suspensions. Deuterated 

bentonite was prepared by dispersing 3g of SWy-1 bentonite in 50 cm^ o f D2 O 

(Aldrich Chemical Co., 99.9% purity) and stirring under a sealed atmosphere of 

dry nitrogen for 7 days.
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5.2.2. Spectroscopy

5.2.2.1. Transmission-KBr disks

KBr pellets containing bentonite were prepared as outlined in chapter 4.2.6 and 

their infrared spectra obtained in one of two ways:

1. In a normal transmission experiment, clamped in a 13 mm transmission cell 

holder and placed in a Mattson Polaris FTIR spectrometer.

2. Using an infrared microscope, by locating a mineral aggregate in a suitable 

area (50x50 pm) using a 16x or 32x microscope objective lens and obtaining 

transmission spectra on a Nicolet 800 FTIR spectrometer.

KBr disks containing montmorillonite were heated in a Graseby Specac heated 

transmission cell. The cell was allowed to reach thermal equilibrium at the 

appropriate temperature for 15 minutes prior to spectral acquisition on a 

Mattson Polaris FTIR spectrometer.

5.2.2.2. Transmission-dehydrating films

Bentonite films were deposited by pipetting a small drop of 20 gdm"3 SWy-1 

aqueous bentonite suspension on the substrate (either Si or ZnSe) and allowing 

it to dry naturally in the dry air purge of the spectrometer. Film dehydration was 

monitored using an infrared microscope, by locating a suitable area (10 0x 100  

pm) using a 16x microscope objective lens. Transmission spectra were then 

obtained on a Nicolet 800 FTIR spectrometer at 5 minute intervals.
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5.2.2.3. ATR spectroscopy

ATR spectra were obtained in one of two accessories:

1. Using a Spectra Tech horizontal ATR accessory fitted with a 70° zinc 

selenide ATR crystal. A 60 gdm"3 SWy-1 aqueous bentonite suspension was 

deposited on the ATR crystal then spectra collected, every 7.2 minutes, on a 

Nicolet 800 FTIR spectrometer.

2. ATR spectra of a dehydrating 20 gdm"3 bentonite suspension were obtained 

using the Graseby Specac Squarecol cell fitted with the 45° zinc selenide ATR 

prism as described in chapter 4.3.4. Spectra were collected every 5 minutes on a 

Mattson Polaris FTIR spectrometer.

TE and TM polarised ATR spectra were obtained by means of placing a Spectra 

tech wire grid polariser in front of the Graseby Specac Squarecol cell fitted with 

the zinc selenide ATR prism. The unpolarised spectrum was obtained first then 

the TM and TE spectra obtained successively. Each individual spectrum 

required 256 scans so, took 130 seconds to acquire. Hence, the TM polarised 

spectrum was acquired 140 seconds after the unpolarised spectrum and the TE 

polarised spectrum was acquired 300 seconds after the unpolarised spectrum 

(allowing for insertion of the polariser). To ensure significant water loss was not 

incurred during acquisition of the spectra the cell was fitted with the lid 

provided.

5.2.2.4 Instrumentation

Table 5.2.2.4a lists the instrumental parameters used for recording the spectra in 

transmission and ATR on the Mattson Polaris infrared spectrometer. 

Approximately the same parameters were set for recording the transmission
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spectra or the ATR spectra on the Mattson Polaris and Nicolet 800 

spectrometers. Where a different parameter was used on the Nicolet 800 this 

appears in brackets in table 5.2.2.4a.

Table 5.2.2.4a Instrumental parameters

Parameters Transmission ATR

Resolution 4 cm"l 4 cm"l

Number of scans 100(126) 256 or 512

Apodisation triangular triangular

Detector MCT MCT

Beamsplitter KBr KBr

5.3. Results and Discussion

5.3.1. Transmission spectra of dried bentonite powder

Figure 5.3.1a shows a typical spectrum of dry powdered bentonite dispersed in a 

thin potassium bromide disk, obtained in a normal (macroscopic) transmission 

experiment, and ratioed against an air background.

Table 5.3.1 gives the band assignments of the principal bands in the infrared 

spectrum, based on the assignments by Farmer [182], Farmer and Russell [197], 

Bukka et al [25] and van Olphen and Fripiat [26].
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Figure 5.3.1a Transmission spectrum of dry bentonite powder in KBr disk
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Table 5.3.1. Band assignments for bentonite powder

Band position (cm 'l) Assignment

3634 structural O-H stretch

3433 H-bonded O-H stretch

3250 overtone o f H-O-H bending mode

1635 H-O-H bending mode

1 1 2 2 Si-0 stretch

1048 Si-0 stretch

918 OH deformation (linked to 2 A P +)

889 OH deformation (linked to A p +, Fe?+)

853 OH deformation (linked to A P +, Mg^+)

795 OH deformation (linked to Mg^+, Fe^+)



In addition, small bands are noticeable at 1987 and 1861 cm“l. These bands 

may be due to quartz impurities in the clay mineral sample, since 

overtone/combination bands of silicate minerals such as quartz are commonly 

observed in this region [226]. However, these two bands are also particularly 

well developed in the diffuse reflectance spectra of montmorillonite [226] and 

hence may be attributed to overtone/combination bands of the main silicate 

stretching band.

The intensity o f the O-H stretching bands in three transmission spectra obtained 

from a single KBr disk by infrared microscopy show little variation. Indeed, the 

absorbance ratio A(3630)/A(3436) varies between only between 1.56 and 1.47. 

Commonly, the bentonite powder was dispersed in the KBr disk as small 

aggregates, ranging in size between 150x200 pm and 10x15 pm. Generally, the 

aggregates appeared as flattened features on the surface of the disk and 

consequently could be focused easily. However, by focusing on the surface of 

the pellet above an aggregate which was completely enveloped in the KBr 

matrix, then raising the sample stage towards the objective lens, it was possible 

to examine aggregates dispersed inside the volume o f the disk. No difference 

was observed in the infrared spectrum of the surface and bulk bentonite 

aggregates dispersed in the KBr disks (figure 5.3.1b).

In contrast, however, there are large variations (between 1.8 and 0.84) in the 

absorbance ratio A(3630)/A(3436) in three normal (macroscopic) infrared 

transmission spectra obtained from three different KBr disks containing varying 

concentrations o f bentonite powder (figure 5.3.1c). This suggests some variation 

in either the bentonite water content o f different KBr disks prepared from the 

same stock powder, or variations in the water content o f the dried KBr powder 

used to prepare the disks.
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Figure 5.3.1b Comparison of transmission (microscopic) spectra of dry

bentonite aggregates of varying size dispersed in the same KBr disk.
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Figure 5.3.1c Comparison of transmission (macroscopic) spectra of dry 

bentonite powder dispersed in three KBr disks of varying concentrations.
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5.3.2. Transmission spectra of heated bentonite powder

Figure 5.3.2a shows the infrared spectrum of dry bentonite powder dispersed in 

a KBr disk in the region between 1300 and 850 cm 'l (the Si-0 stretching 

region) at room temperature.

Figure 5.3.2a Transmission spectrum of dry bentonite powder in KBr disk 

at room temperature.
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There are several overlapping absorption bands in the silicate stretching v(Si-O) 

region between 1400 and 850 cm~l [43, 45, 197]. These may be resolved into 

their individual lineshapes in order to determine individual peak positions, 

bandwidths and integrated intensities.

Fourier self deconvolution of the spectrum of bentonite powder in the region 

between 1400 and 850 cm"l (figure 5.3.2a) was performed using the parameters 

outlined in table 5.3.2a. The results of the Fourier self deconvolution are shown
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in figure 5.3.2b. In addition, the second derivative spectrum of bentonite powder 

in figure 5.3.2a is shown in figure 5.3.2c.

Table 5.3.2a Parameters used for Fourier self deconvolution of figure 5.3.2a

Spectrum Enhancement 

factor, k

Linewidth, 

y (cm- 1)

Apodisation 

function D(x)

Figure 5.3.2a 1.76 40 Bessel

With the information from Fourier self deconvolution and second derivative 

spectroscopy it is possible to fit curves to this region of the spectrum to give a 

synthetic spectrum (figure 5.3.2d).

Figure 5.3.2b Fourier self deconvoluted spectrum of dry bentonite powder 

in KBr disk in the region 1400-850 cm~l, at room temperature.
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Figure 5.3.2c Second derivative spectrum of dry bentonite powder in KBr

disk, at room temperature.
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Figure 5.3.2d Synthetic spectrum and component bands of dry bentonite 

powder in KBr, at room temperature.
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Table 5.3.2b summarises the main Si-0 band positions in the spectrum of 

bentonite at room temperature, observed by Fourier self deconvolution, second 

derivative spectroscopy and curve fitting procedures
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Table 5.3.2b Summary of the main Si-O band positions in the spectrum of

bentonite at room temperature.

Main Si-0 band positions (cm~l)

Figure 5.3.2b (FSD) 1121 1080 1048 1020

Figure 5.3.2c (SD) 1120 1078* 1050 1017*

Figure 5.3.2d (CF) 1122 1079 1047 1011

These bands are very broad and heavily masked by noise in the second 

derivative spectrum, consequently, their position my not be entirely accurate.

Figure 5.3.2d and table 5.3.2b display all the component Si-0 stretching bands 

of the broad, intense band (in the region between 1400 and 850 cm~l) in the 

infrared spectrum of montmorillonite at room temperature. The position o f these 

bands is in good agreement with the peak positions observed in oriented films 

by Farmer and Russell [197] and Lerot and Low [43]. They are also in good 

agreement with the band positions observed by Yan et al [45] over a range of 

water contents of montmorillonite gels, who described them in order o f 

increasing wavenumber position as Peak I, Peak II, Peak III and Peak IV.

The remaining bands at 914 and 884 cm“l are OH deformation bands and are 

incorporated to complete the curve fit. In addition, fitted bands at 1235 and 

1168 cm"l can be clearly seen in the Fourier self deconvoluted spectrum and are 

necessary to satisfy the fit criterion. However, their origin is unknown since no 

reference to such bands in this region has been made in the published literature. 

A further unassigned band at -960 cm~l can be observed in the FSD and SD 

spectra of montmorillonite in this region but does not improve the fit criterion, 

so was not included in the fitted spectrum. This may account for the discrepancy 

between the position of the curve fitted band at 101 0  cm"l and the position o f
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the band as determined by Fourier self deconvolution and second derivative 

spectroscopy.

Figure 5.3.2e shows the infrared spectrum of dry bentonite powder dispersed in 

a KBr disk in the region between 1400 and 850 cm"l (the S i-0 stretching 

region) at 200°C.

Figure 5.3.2e Transmission spectrum of dry bentonite powder in KBr disk 

at 200°C.
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Fourier self deconvolution (performed using the same parameters outlined in 

table 5.3.2a) and second derivative spectra of figure 5.3.2e are shown in figures 

5.3.2f and 5.3.2g respectively. With the information from Fourier self 

deconvolution and second derivative spectroscopy it is possible to fit curves to 

this region of the spectrum to give a synthetic spectrum (figure 5.3.2h).
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Figure 5.3.2f Fourier self deconvoluted spectrum of dry bentonite powder

in KBr disk, at 200°C.

0.6 1043.43

•1021.25

0.5
1070.43

0.4
1112.86

0.3

0.2

0.1

0.0
1100 1000 900120013001400

Wavenumbers

Figure 5.3.2g Second derivative spectrum of dry bentonite powder in KBr 

disk, at 200°C.
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Figure 5.3.2h Synthetic spectrum and component bands of dry bentonite

powder in KBr disk, at 200°C.
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Table 5.3.2c summarises the main Si-0 band positions in the spectrum of 

bentonite at 200°C, observed by Fourier self deconvolution, second derivative 

spectroscopy and curve fitting procedures

Table 5.3.2c Summary of the main Si-O band positions in the spectrum of 

bentonite at 200 °C, observed by Fourier self deconvolution, second 

derivative spectroscopy and curve fitting procedures.

Main Si-0 band positions (cm"l)

Figure 5.3.2f (FSD) 1112 1070 1043 1021

Figure 5.3.2g (SD) 1118 1082* 1044 1014*

Figure 5.3.2h (CF) 1115 1070 1038 1004

These bands are very broad and heavily masked by noise in the second 

derivative spectrum, consequently, their position my not be entirely accurate. 

Again, the bands at 1235, 1167, 913 and 882 cm~l minimise the fit criterion, but 

the band visible at 960 cm~l does not and hence is not incorporated in the curve
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fit. The omission of this band from the curve fit may account for the discrepancy 

between the peak positions of the fitted peaks and those extracted by FSD and 

SD.

The effect of heat on the main intense band in the silicate stretching region is 

shown in figure 5.3.2i. It can be seen that the peak o f the main band appears to 

shift to lower frequency. Evidently, many of the bands in this region experience 

a shift in wavenumber position; this has been quantitatively established using 

the results of second derivative spectroscopy, Fourier self deconvolution and 

curve fitting. This is in good agreement with the findings o f Yan et al [45] who 

observed a shift to low frequency of v(Si-O) on decreasing the water content 

(Mw/Mc) of montmorillonite gels.

Figure 5.3.2i Transmission spectra of bentonite powder with increasing 

temperature. Spectra are offset to zero and overlaid.
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The most significant band shift observed is the 11 cm"l shift o f the band at 1081 

cm"l at room temperature, to 1070 cm"l at 200°C. This is clearly shown in
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Graph 5.3.2a where a constant gradual shift to lower frequency is observed with 

10°C increases in temperature.

In addition, the Si-0 stretching bands at 1047 cm“l and 1011 cm"l, in the 

spectrum of bentonite at room temperature, are both observed to shift (by ~ 6  or 

7 cm"l) to lower frequency in the spectrum of bentonite heated to 200°C. Like 

the band shift from 1081 cm"l to 1070 cm"l, the shift from 1047 and 1011 cm"* 

to lower frequency is constant and gradual. However, it should be noted that the 

absorbance ratio A(1047)/A(1011) remains at an approximately constant value 

o f 1.20 (±0.1) over the entire temperature range (Graph 5.3.2b).

Graph 5.3.2a Wavenumber position variation of Si-O stretching band at 

1080 cm~l. with increasing temperature.
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Graph 5.3.2b Variation of the absorbance ratio A(1047VA(1011) with

increasing temperature.
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In contrast however, the absorbance ratio A(1047)/A(1080) decreases from 2.00 

to 1.34 over the temperature range (Graph 5.3.2c).

Graph 5.3.2c Variation of the absorbance ratio A(1047)/A(1080) with 

increasing temperature.
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The major variation in the absorbance ratio A(1047)/A(1080) is at low 

temperature (below 100°C). This may then be related to the removal of 

physisorbed water from the clay mineral (and from the hygroscopic KBr). The 

1080 cm“l band which has been found to shift to lower wavenumber with 

increasing temperature has been attributed to a vibration perpendicular to the 

platelet surface.

Variations in the relative intensity o f this band have been attributed to changes 

in the clay platelet orientation, relative to the infrared radiation [43, 227]. In the 

experiment presented here however, the bentonite platelets within the KBr disk 

exist as randomly oriented aggregates. As a result, it seems highly unlikely that 

the reduction in intensity o f the band at 1080 cm"l relative to the bands at 1047 

and 1011 cm- 1 is due to a change in orientation o f the clay platelets; a more 

plausible explanation would be the removal o f physisorbed water from the 

montmorillonite as it is heated.

Obviously, the heating of dry bentonite samples to high temperatures in this 

way will remove water which exists on external faces and in the interlayer 

region of the montmorillonite platelets. Evidence o f water removal is apparent 

in figure 5.3.2j, in which the spectrum of bentonite in the region between 4000 

and 2800 cm‘ l is shown at room temperature, 50°C, 100°C, 150°C and 200°C.

153



Figure 5.3.21 Transmission spectra of bentonite powder with increasing

temperature.
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Clearly, there is a reduction in the intensity o f the bands at 3434 and 3250 cm“l, 

signifying a reduction in the H-bonded water with increasing temperature. It 

should be noted though, that not all the water associated with the 

montmorillonite is removed.

In addition, the band at 3634 cm"l (assigned to structural OH) also appears to 

decrease in intensity as temperature increases. Partial decomposition o f the 

structural OH group is highly unlikely since this should not occur until the 

temperature approaches 800°C. More plausible explanations are:

1. The interaction of structural OH groups with species in the di-trigonal cavity, 

namely the exchangeable cations. As physisorbed and chemisorbed water is 

removed from the interlayer so the cations become less solvated and the 

platelets are able to approach each other more closely. As a result, interlayer 

cations of the correct dimensions are able to settle into the di-trigonal cavities o f
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the silicate layer o f the clay platelet surface [40, 133]. The electric field of the 

exchange cation would then exert a repulsive force on the proton o f the M-OH 

bond at the base o f the di-trigonal cavity (figure 2.6.1.1). Consequently, the 

infrared intensity at 3630 cm~l (attributed to the structural OH stretching mode) 

might be reduced when the exchange cation sits in the di-trigonal cavity. Our 

result is consistent with those o f Sposito et al [40] who noted the increase in the 

intensity o f the bands due to M-OH bending modes (at 916 and 883 cm“l), on 

increasing water content. This was attributed to the solvation of the exchange 

cation, and hence, its removal from the di-trigonal cavity into the interlayer 

space, thus removing the repulsive force on the proton of the structural M-OH at 

the base of the di-trigonal cavity. Indeed, decreases in the band intensity at 916 

and 883 cm“l (due to A1A1- and AlFe-OH vibrations respectively) relative to the 

main, intense Si-0 band have been observed on heating to 200°C in these 

experiments. This is also consistent with the findings o f Malek et al [42] who 

showed that the dehydration o f exchange cations in montmorillonite terminates 

at 200°C. It was determined that at this temperature, exchange cations migrate 

into hexagonal holes in the silicate layer surface and the clay collapses, denoted 

by the reduction in the basal spacing.

2. The reduction in intensity o f the band at 3634 cm~l may also be an artefact in 

the spectrum. This could arise from the intensity reduction o f the bands 

associated with various H-bonded water species [34] which also contributed to 

the intensity of the band at 3630 cm"l. Unfortunately, due to the highly complex 

pattern of absorption bands in this region (reflecting the highly complex 

arrangement of water molecules in the interlayer space) it is impossible to 

perform accurate Fourier self deconvolution, second derivative spectroscopy 

and curve fitting. Hence, it is impossible to extract quantitative information 

from this region and interpret changes of intensity with any degree of accuracy.
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5.3.3. Transmission spectra o f deposited bentonite films

Figure 5.3.3a shows the spectral region between 1400 and 850 cm- * (in the 

region o f the silicate stretching bands) during the evaporation of water from a 2 0  

gdm"3 aqueous bentonite suspension, to form a thin bentonite film on a silicon 

wafer.

Figure 5.3.3a Evolution of transmission spectra of bentonite film formation 

on a silicon substrate, bv the evaporation of water.
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The initial spectra, acquired between t=0 min and t=50 mins, exhibit very large 

values o f absorbance due to the high water content which raises the local 

baseline below 1000 cm~l. The main silicate stretching band, centred at 1050 

cm“l in diy bentonite (figure 5.3.2a), is obscured in figure 5.3.3a due to the high 

absorbance o f the band (> 2  absorbance units) and its subsequent cut off which 

gives the appearance that it is split into two bands. The band at —1115 cm“l is 

observed in all o f the spectra and is not shifted during the evaporation process
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although it has been seen to shift very slightly (~ 2  cm“l) to lower frequency 

when bentonite is heated to 200°C. This band is considered to be a characteristic 

of the spectrum of bentonite both in aqueous suspension and in dry powder.

As the bentonite suspension is slowly dehydrated in the dry air purge o f the 

spectrometer, the OH deformation band at 919 cm"l becomes visible after 50 

mins. By t=60 mins, as the water content of the film is further reduced, the OH 

deformation band at 853 cm~l also becomes visible. In addition, between t=50 

and t=60 mins, as the overall intensity o f the main silicate band is reduced by 

water evaporation, a transient band at 1086 cm"* becomes visible.

By t=55 mins this band has reduced in intensity and shifted to 1080 cm"* where, 

by t=60 mins it has merged with the main, intense silicate stretching band. The 

final position of the band at 1080 cm 'l corresponds to the band at 1081 cm“l 

which may be observed by means of Fourier self deconvolution, second 

derivative spectroscopy and curve fitting in the transmission spectrum of dry 

bentonite powder dispersed in a KBr disk at room temperature. This band has 

been seen to shift to much lower frequency (1070 cm“l)  as the montmorillonite 

is heated to 200°C to remove further water o f hydration.

The observed reduction in intensity of the transient band relative to the main Si- 

O peak may be due to the removal of physisorbed water, as postulated 

previously for a similar change in relative intensity in the transmission spectrum 

of a heated KBr disk containing montmorillonite. However, in this case, 

orientation effects cannot be discounted and the reduction in intensity o f the 

band at 1080 cm 'l relative to the main Si-0 peak may be due to the formation 

of an oriented film.
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Figure 5.3.3b shows the evolution o f silicate stretching bands (in the region 

between 1250 and 850 cm"l) for the dehydration of a bentonite suspension to 

form a mineral film on a zinc selenide substrate.

Figure 5.3.3b Evolution of transmission spectra of bentonite film formation 

on a zinc selenide substrate, by the evaporation of water.
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These spectra are almost identical to those seen previously for bentonite film 

formation on a silicon substrate. They clearly show the transient band at 1086 

cm“l and its subsequent reduction in intensity and shift to lower frequency on 

reducing the water content of the film. The only difference being, that the film 

thickness which produced spectrum 5.3.3b was less than that which produced 

figure 5.3.3a. Consequently, the main silicate band in figure 5.3.3b is not cut off 

as it is in figure 5.3.3a. The difference in film thickness also accounts for the 

more rapid disappearance o f the band at 1086 cm"l in the dehydrating aqueous 

suspension on the ZnSe substrate. The thicker film (on the Si substrate) required

158



longer to fully dehydrate. This effect is expected due to the arbitrary positioning 

o f the microscope objective lens.

Figure 5.3.3c shows the evolution o f the broad OH band (in the spectral region 

between 4000 and 2600 cm"*) during the drying o f the montmorillonite film on a 

silicon substrate. The early time spectra show the very large absorbance o f the 

bulk water, although the intensity o f the band decreases rapidly during the 

drying. The spectrum after t=60 minutes shows the first appearance o f the non

bonded OH band at 3634 cm"*. This corresponds to the time at which the 

transient band at 1080 cm"! has disappeared into the main, intense silicate band. 

Further drying o f the film reduces the water content until the absorbance ratio 

A(3634)/A(3434) becomes 1.49, the value obtained for dry bentonite powder.

Figure 5.3.3c Evolution of transmission spectra of bentonite film formation 

on a silicon substrate, bv the evaporation of water.
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5.3.4. ATR spectra o f bentonite suspensions

The ATR spectrum of a bentonite suspension in the silicate stretching region is 

shown in figure 5.3.4a with the spectrum of water subtracted. In this spectrum, 

the band which was seen previously at 1086 cm'^ in the early time transmission 

spectra of a dehydrating montmorillonite film is clearly visible. Consequently, 

the small band at 1086 cnT^ appears to be characteristic o f bentonite dispersed 

in water when the water/bentonite ratio is above a certain value. In addition 

small bands at 1202 and 1150 cm_l can be observed. These may well 

correspond to the bands at 1234 and 1168 cm"l observed in the curve fitted 

spectrum of dry bentonite dispersed in a KBr disk (figure 5.3.2d) and whose 

origin is unknown.

Figure 5.3.4a The ATR spectrum of aqueous bentonite with the spectrum of 

water subtracted.
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Although Jones et al [228] have discussed the ATR spectrum of bentonite 

suspensions, the subtle differences between the dry powdered bentonite and
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bentonite dispersed in excess water were not observed. Jones et al [228] did, 

however, discover a time dependence of the intensity o f the main Si-0 

stretching band of a circulating bentonite suspension. The increase in intensity 

of the band at 1040 cm"l was tentatively ascribed to a decrease in the effective 

particle size of the bentonite particles caused by the hydration and dispersion 

forces.

5.3.5. ATR spectra of deposited bentonite films

In the same way that the formation of a deposited montmorillonite film on Si or 

ZnSe by evaporation of water can be monitored using FTIR microscopy, film 

formation from an identical suspension can be monitored using FTIR ATR 

spectroscopy. The advantage of this method is the very small pathlength of 

sample as determined by the depth o f penetration o f the evanescent wave. 

Consequently, the ATR spectrum of an evaporating film shows no cut-off o f the 

Si-0 band since only a small amount is sampled in the region o f the evanescent 

field close to the crystal. The intensities of all the bentonite absorption bands 

increase during the dehydration as bentonite deposits onto the zinc selenide 

prism within the characteristic penetration depth o f the evanescent field.

The depth of penetration of the evanescent field into a bentonite layer of 

refractive index 1.5, deposited on a 70° zinc selenide horizontal ATR prism with 

refractive index 2.43, at 1040 cm"l, has been calculated using equation 4.4.2b to 

be 0.90 pm. The total depth sampled is hence, ~2.7 pm. In contrast, the depth of 

penetration o f the field into a bentonite layer formed adjacent to a ZnSe ATR 

prism with 45° optics (ZnSe Squarecol prism), at the same wavelength, has been 

calculated to be 1.87 pm, a total depth sampled o f -5 .6  pm.
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bentonite increase in intensity whilst the bands due to water disappear as the 

water content o f the film decreases, thus revealing the bands at 916 and 889 

cm"* due to M-OH deformation modes.

Figure 5.3.5a Evolution of ATR spectra of bentonite film formation. Early 

time spectra.
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The first significant change in the structure o f the silicate bands, is a small shift in 

the band at 1086 cm"* to lower frequency after 2.26 hours. Over a period o f -35  

minutes, the band at 1086 cnT* shifts to 1080 cmf ̂  accompanied by a decrease 

in intensity. This band completely disappears by t=3.82 hours. It should be noted 

here that small apparent frequency shifts might result from changes o f relative 

intensity. Concurrently, the band at 1018 cm'* becomes more pronounced and 

surpasses the intensity o f the main Si-0 peak at 1044 cm- *. The band at 1044 

cm~l in turn becomes a shoulder band to the band at 1018 cm'^. This change in 

relative intensity o f the bands at 1044 and 1018 cm~l is very difficult to explain 

especially since this band ratio in the transmission spectrum of a KBr disk
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containing randomly oriented montmorillonite, remained constant when heated 

from room temperature to 200°C. This may be indicative o f the formation o f an 

oriented film or may be an artefact in the spectrum due to detachment o f the film 

from the ATR crystal.

Figure 5.3.5b shows the later stages o f film formation. Above 3.93 hours, the 

intensity o f all absorption bands can be seen to decrease with time, presumably 

due to poor contact between the film and ATR crystal as the film becomes 

detached.

Figure 5.3.5b Evolution of ATR spectra of bentonite film formation. Later 

time spectra.
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The detachment o f the bentonite film from the ATR prism above 3.93 hours can 

also be observed in figure 5.3.5c which shows the corresponding evolution o f the 

OH band in the spectral region 4000 to 2600 cm- * during the formation o f the 

bentonite film. The film detachment appears to be somewhat more abrupt in this 

region than in the silicate stretching region, perhaps because the depth of
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penetration at 3630 cm- * is only one third its value at 1040 cm~l. As a result, a 

detached film may still be sampled to some extent in the lower frequency range 

but not in the higher frequency range. The presence o f an air gap between the 

prism and the film may account for many artefacts seen in the ATR spectra o f 

bentonite dried for t>3.93 hours.

It is noteworthy that the appearance o f the band at 3634 cnT* due to free 

hydroxyl groups in figure 5.3.5c, is gradual, however the appearance o f a distinct 

peak after t=3.92 hours corresponds approximately to the disappearance o f the 

transient silicate band at 1086 cm"*. This may indicate that the band at 1086 

cm~l is attributed to the reduction o f the water/clay ratio below a critical value.

Fieure 5.3.5c Evolution of ATR spectra of bentonite film formation. Later 

time spectra.
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5.3.6. Polarised ATR measurements o f dehydrating bentonite

The results presented in sections 5.3.3 and 5.3.5 were obtained for aqueous 

montmorillonite suspensions, dehydrated to form dried films on horizontal
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5.3.6. Polarised ATR measurements of dehydrating bentonite

The results presented in sections 5.3.3 and 5.3.5 were obtained for aqueous 

montmorillonite suspensions, dehydrated to form dried films on horizontal 

substrates. The reduction in water content of the bentonite suspension is 

accompanied by a gravitational sedimentation o f the platelets onto the substrate. 

It has been explained previously, that this sedimentation method is known to 

produce highly ordered films [192].

The band shift from 1086 cm~l to 1080 cm"l, on dehydration o f an aqueous 

bentonite suspension ties in well with the observed band shift from 1081 cm"l 

to 1070 cm- * on heating (further dehydrating) a randomly oriented sample of 

dry powdered bentonite. However, it is necessary to perform polarised ATR 

measurements to ensure that the disappearance o f the transient band at 1086 

cm”l is associated with the reduction of the water/bentonite ratio o f the 

suspension below a critical value and not the formation o f an oriented bentonite 

film from a disordered suspension. These experiments were performed in the 

Graseby Specac Squarecol cell in which the sample face is vertical and the 

suspension will deposit in the trough of the cell.

Figure 5.3.6a shows the comparison between unpolarised, TE and TM polarised 

ATR spectra of an aqueous bentonite suspension in the region between 1400 

and 850 cm "l. In figure 5.3.6a, the silicate bands in TM polarised light appear 

more intense than those in TE polarised light. This result is not unexpected since 

the depth sampled by TM polarised radiation is greater than that sampled in TE 

polarisation [202]. As one would expect, the bentonite platelets are randomly 

oriented in the suspension and so the absorbance ratio A(1044)/A(1086) is 

approximately the same in the unpolarised and TE and TM polarised spectra 

(graph 5.3.6a).
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Figure 5.3.6a Unpolarised, TE and TM polarised ATR spectra of a

bentonite suspension. Spectrum of water not subtracted.
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As the bentonite suspension is dehydrated, then the band at 1086 cm"!, visible in 

both the TE and TM polarised spectra and the unpolarised spectrum observed in 

figure 5.3.6a, is shifted to 1080 cm"l (figure 5.3.6b). The band shift to lower 

wavenumber is observed in all three spectra (unpolarised and TE and TM 

polarised). Hence, it can be inferred that the shift is independent of orientation 

and is due to the change in the w ate^entonite ratio on dehydration. Figure 

5.3.6b shows the unpolarised and TE and TM polarised ATR spectra o f the dry 

bentonite film.

The position of the band at 1086 cm“l appears to be controlled only by the 

clay/water ratio since this is unaltered by the polarisation of the radiation 

regardless of the orientation of the platelet. Despite earlier findings that heating 

(dehydrating) bentonite randomly oriented in a KBr disk caused the absorbance 

ratio A(1047)/A(1080) to decrease, there is also evidence that the intensity of 

this transient band is dependent upon the polarisation of the infrared radiation.
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Hence, the intensity o f the band appears to be determined by the orientation of 

bentonite platelets.

It should also be noted that the band at 1047 cm ^ will also show some 

orientation dependence since it has been assigned, by Farmer and Russell [197], 

to an in-plane Si-0 stretching mode, i.e. a vibration parallel to the platelet 

surface (at right angles to the perpendicular stretching mode).

Figure 5.3.6b Unpolarised, TE and TM polarised ATR spectra of a dried 

bentonite suspension.
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Graph 5.3.6a shows the variation in the absorbance ratio A(1047)/(1086) with 

drying time.
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Graph 5.3.6a Variation of the absorbance ratio A(1047VA(1080) for

unpolariscd and TE and TM polarised light with drying time.
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One would intuitively expect that, as the suspension dries, the platelets would 

deposit to form an oriented film in the trough of the Squarecol cell. The platelets 

which comprise the dried film would be expected to be oriented such that their 

c-axis was perpendicular to the bottom of the trough, and parallel to the vertical 

sampling face o f the ATR prism. If this were the case, then the Si-0 vibration at 

1086 cm"l, assigned to a stretching mode perpendicular to the platelet surface 

would be in the same plane as the c-axis. A schematic of this system is shown in 

figure 5.3.6c.

Assuming that this is the orientation o f the platelets, then the Si-0 vibration 

perpendicular to the platelet surface would be expected to interact with the Ey 

electric field component o f the evanescent field.

Absorbance ratio A(1040)/A(1086)
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Figure 5.3.6c. Expected orientation of clay platelet in deposited film
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Similarly, if  the platelets deposited in the orientation outlined above and shown 

in figure 5.3.6c, the Si-0 vibration at 1047 cm"l, parallel to the platelet surface, 

would be directed parallel to the bottom of the trough, and perpendicular to the 

sampling face of the ATR prism. If this were the case then the S i-0 vibration 

parallel to the platelet surface would be expected to interact with both the Ex 

and Ez electric field components of the evanescent field.

Hence, in TE polarised radiation (contains only the Ey electric field vector), the 

intensity of the band at 1086 cm 'l would be expected to increase relative to the 

band at 1047 cm~l. Conversely, in TM radiation (contains both the Ex and Ez 

electric field vectors), the intensity o f the band at 1047 cm“l would be expected 

to increase relative to the band at 1086 cm 'l.

Consequently, if the platelets deposited to form an ordered film with their c-axis 

parallel to the surface o f the ATR prism and perpendicular to the bottom of the 

trough, in TE polarised light the absorbance ratio A(1040)/A(1080) would be 

expected to be small, and in TM polarised light the ratio o f the same bands 

would be expected to be large.
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However, graph 5.3.6a shows that the reverse is in fact the case: in TE radiation 

the absorbance ratio A(1040)/A(1080) is large, and in TM polarised light the 

ratio of the same bands is small.

Clearly, this result is unexpected and implies that in the region close to the 

vertical ATR prism (within the depth sampled by the evanescent field), the 

bentonite platelets are oriented with their c-axis perpendicular to the sampling 

face of the ATR prism (parallel to the bottom of the trough) rather than their 

expected orientation. In these circumstances the S i-0  stretching mode 

perpendicular to the clay surface interacts with the Ex and Ez components of the 

evanescent field and the Si-0 stretching mode parallel to the clay surface 

interacts with the Ey component of the electric field (figure 5.3.6d).

Figure 5.3.6c. Actual orientation of clay platelets close to the ATR prism in 

a bentonite film deposited by gravitational sedimentation
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It can be concluded that the orientation of bentonite platelets may be influenced 

by the vertical sample surface of the ATR prism as they sediment under the 

influence o f gravity. This effect would be particularly important for the larger 

size fractions o f the clay mineral (~ 2  pm) which are sampled by the evanescent 

field which has been calculated to sample to a total depth o f ~5.6 pm. This has
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clear implications for the formation of a filter cake deposit o f bentonite from the 

oil well drilling fluid on the borehole wall, and the likely way in which this 

filter cake is constructed.

Although gravitational sedimentation has been described by Brown and 

Brindley [192] as a suitable technique for oriented montmorillonite film 

preparation for X-ray diffraction analysis, it is unlikely that the film deposited in 

the trough o f the Squarecol cell will be perfectly ordered. Firstly, due to the 

influence of the vertical prism face on platelet orientation and secondly, due to 

the high concentration (2 % suspension) and short evaporation time (~ 8  hours) 

allowed for film formation. Indeed, Marguiles et al [227] produced very highly 

oriented montmorillonite films from extremely dilute (0 .0 1 %) aqueous 

suspensions which were allowed to evaporate very slowly (for 48 hours) in air.

It was shown [227] that a much less oriented film was obtained if a 0.1% 

aqueous suspension was evaporated rapidly at 60°C.

The disordered nature o f the films produced does not seem too unlikely when 

one considers the various faults including voids, edge to face stacking, regions 

o f gross folding, ordered domains and regions o f disordered stacking which 

typically exist in a clay-water system [229].

5.3.7. ATR spectra o f bentonite in D2 O

The modification of the silicate absorption band in dilute aqueous suspension 

suggests an interaction between the SiC>4 tetrahedra and water, such as 

hydrogen bonding. If there is a specific interaction between bentonite and water, 

then dispersing in D2 O should modify the structure of the silicate absorption 

bands relative to that in the spectrum of an aqueous suspension.
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The transmission spectrum o f the deuterated bentonite in the region between 

4000 and 2000 cm“l is shown in figure 5.3.7a.

5.3.7a Transmission spectrum of bentonite exchanged with deuterium for 

one week.
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In figure 5.3.7a, characteristic bentonite OH stretching bands can be clearly 

observed at 3630, 3440 and 3250 cm~l indicating that complete D<-»H exchange 

does not occur in the exchange process. However, some D<-»H exchange can be 

observed at lower frequency where the deuterium analogues o f these 

characteristic bands can be seen, displaced by a factor o f ~V2 (Table 5.3.7a).

Full D<-»H exchange may not have occurred for several reasons, the most likely 

being that the deuterium exchange procedure was not sufficiently 'energetic' 

when compared to the method outlined by Bukka et al [25]. In addition, some 

re-exchange o f H for D may occur in the preparation and analysis o f the 

deuterated clay, reducing the amount o f the deuterium exchanged product.
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Table 5.3.7 Deuterium analogues of characteristic OH band positions.

OH band position 

(cm-1)

Deuterium analogue 

(cm"l)

Ratio o f H/D 

wavenumber position

3634 2677 1.36

3434 2515 1.37

3250 2390 1.36

1635 1204 1.36

The ATR spectra in the region between 1400 and 850 cm"* o f bentonite 

dispersed in H2 O and in D2 O are shown in figure 5.3.7b.

Figure 5.3.7b Comparison of ATR spectrum of bentonite dispersed in H>>0 

and in D7 O. The solvent spectrum is subtracted in each case.
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The two spectra are almost identical and show that there is no effect on the 

shape or position o f the silicate stretching vibrations on replacing H2 O with 

D2 O. In particular, the band found at 1086 cnT* associated with the spectrum of 

highly dispersed bentonite is clearly visible in the bentonite-D2 0  spectrum. The 

bands at 1 2 0 2  and 1156 cm 'l which have been observed previously in the 

transmission spectrum o f dry bentonite (figure 5.3.2d) and the transmission and 

ATR spectra o f  aqueous bentonite suspensions and have as yet been unassigned, 

are also clearly visible.

Figure 5.3.7c shows the evolution o f ATR spectra (in the region between 1400 

and 850 cm"*) o f a dehydrating bentonite-D2 0  suspension to form a bentonite 

film on a zinc selenide substrate at early times.

Figure 5.3.7c Evolution of the silicate stretching bands of a dehydrating 

bentonite-D^O suspension.
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The evolution o f the silicate bands during the evaporation of D2 O is broadly 

similar to that observed during the evaporation o f water from an aqueous 

bentonite suspension. At t=3.46 hours the band at 1086 cm"* begins to shift to 

lower frequency and it reaches 1080 cm"*, by t=4.06 hours. Concurrently the 

shoulder at 1018 cm"* becomes more pronounced and by t=4.30 hours has 

surpassed the intensity o f the band at 1042 cm"*. The band which has shifted to 

1080 cm"l has disappeared by t=4.90 mins, by which time the band at 1042 cm"^ 

becomes a shoulder to the band at 1018 cm"*.

Figure 5.3.7d shows the evolution o f the OD and OH bands in the spectral 

region between 4000 and 2000 cm"* during drying. The decrease in intensity o f 

the OD peak at 2485 cnT* is accompanied by an increase in OH band intensity at 

3628 and 3420 cm"1.

Figure 5.3.7d Evolution of the OD and OH bands during drying of a 

bentonite-D7 Q suspension.
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A small shoulder band at 2680 cm"* (the deuterium analogue of the 

characteristic band at 3628 cm~l) appears at t=5.14 hours. At t=5.26 hours, a 

shoulder band is visible at 2390 cm'^ (the deuterium equivalent of the shoulder 

band at 3250 cm- * in the spectrum of bentonite). As with the spectra of film 

formation on an ATR prism by evaporation of H2 O from a bentonite-H2 0  

suspension, at long dehydrating times (figures 5.3.5b and 5.3.5c), the intensity 

o f all Si-O, OH and OD stretching bands are reduced, probably due to film 

detachment from the IRE.

5.3.8. ATR spectra of various homoionic bentonites

Clearly, the results o f section 5.3.7 indicate that changing the solvent from H2 O 

to D2 O has very little effect on the ATR spectra o f bentonite and bentonite 

films. In order to determine which clay and/or solvent properties determine the 

differences between the powder and suspension spectra of bentonite, a selection 

o f homoionic bentonites were investigated. Figure 5.3.8a shows the ATR 

spectra o f aqueous homoionic Li-, Na-, K- and Ca-bentonites suspensions.

The wavenumber position of the transient band at 1086 cm"* shows small 

variations between the three alkali metal-exchanged clays; Li+ at 1087 cm"*, 

Na+ at 1084 cmf ̂  and K+ at 1086 c m 'l  The relative intensity o f the band at 

1018 cmfl also appears to be dependent upon the nature o f the exchange alkali 

metal cation. The shoulder is more pronounced in the lithium form and is 

progressively less pronounced in the sodium and potassium bentonites. The 

position of the main Si-0 band at 1044 cm"* is not affected by the nature o f the 

alkali metal cation.
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Figure 5.3.8a Comparison of the ATR spectra of homoionic Li-, Na- K- and 

Ca-bentonites suspended in water.
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The ATR spectrum of homoionic calcium bentonite is quite different from the 

spectra obtained for the homoionic alkali metal bentonites. The band at about 

1086 cm"* has been replaced by a weak shoulder at 1077 cm"* which is similar 

to the band seen previously at 1080 cm"* in dehydrating bentonite suspensions. 

In addition, the main Si-0 band has been shifted to a higher frequency value o f 

1047 cm"* and the shoulder band at 1018 cm"* is less well developed than the 

corresponding bands in the alkali metal homoionic clays.

Further work at SCR [41], has established the effect o f increasing the NaCl 

concentration on the ATR spectrum o f an aqueous bentonite suspension. As the 

electrolyte concentration is increased to 0.01 M, a small shoulder at 1080 cm"* 

grows and, with increasing concentration, replaces the band at 1086 cm"*. This 

is similar to the shift from 1086 to 1080 cm"* observed on drying a bentonite 

suspension. In addition, the main Si-0 stretching band is shifted to higher
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frequency with increasing electrolyte concentration, until its spectrum resembles 

that of Ca-bentonite.

Variations in the Si-0 band intensity at -1040 cm~l in the transmission spectra 

of Li-, Na- and K- exchanged homoionic aqueous bentonite suspensions have 

been observed by Gan and Low [44]. However, they made no reference to the 

clearly observable band at 1086 cm“l or any shift in its position on increasing 

the electrolyte concentration. It was found [44] that the intensity o f the band at 

1040 cm 'l was in the order Li > Na > K for suspensions of equal clay content 

and that the intensity o f the band gradually decreased with increasing electrolyte 

concentration in the range 0.0001 to 0.01 M; the absorbance did not depend 

upon the nature o f the halide anion (Cl~, Br", I"). The band intensity decreased 

more rapidly with increasing electrolyte concentration for concentrations above

0.01 M, particularly for the potassium clay. The authors were unable to offer an 

explanation for this observation. More recently, Yan et al [45] have discussed 

the shift to higher frequency in the position o f all Si-0 stretching modes with 

increasing water content (Mw/Mc) but concentrated on the two more prominent 

Si-0 absorption bands (Peaks II and III). Similar shifts to high frequency o f the 

H-O-H bending mode of water were also seen under similar conditions. The 

authors attributed this to the change in the structure of water (becomes more like 

bulk water) with increasing Mw/Mc. They tentatively ascribed this to coupling 

between the Si-0 stretching vibrations o f the silicate layer surface and the H-O- 

H bending mode of water at various water contents.

Generally, the absorption bands at 1086 and 1018 cm"l do not normally feature 

in the published infrared spectra of bentonite nor in their band assignments. 

Several reasons exist for these bands to be so infrequently commented upon. 

Firstly, and perhaps most importantly, is that the silicate bands in clay minerals 

are extremely intense and consequently only a small amount of material may be
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analysed. Commonly, experiments are performed on clay minerals in the form 

of a free standing film [33, 40] which contain very large quantities o f clay 

mineral. The second most important reason is that these spectral features appear 

to require high values o f the water/clay ratio which makes sample preparation 

very difficult. The bentonite films used by Johnston et al [33] would have had a 

maximum water content which corresponds to an aqueous suspension of 100 0  

gdm"3. Another reason for the bands at 1086 and 1018 cm"l being so poorly 

documented is their poor definition in the infrared spectrum. The band at -1020 

cm"l can just be observed as a shoulder in some published infrared spectra of 

bentonite.

In the experiments presented here, the absorption band at 1086 cm"l, observed 

in the spectrum of an aqueous bentonite dispersion, has been found to shift to 

1080 cm“l and disappear into the main silicate stretching band on drying or 

increasing the electrolyte concentration. In addition, the band at -1080 cm~l has 

been found, using Fourier self deconvolution, second derivative spectroscopy 

and curve fitting techniques, to shift to lower wavenumber (1070 cm~l) on 

heating to 200°C. The nature o f the solvent (D2 O replacing H2 O) has been 

shown to have no effect on the spectrum of solvated bentonite. However, the 

nature o f the exchangeable cation has been shown to have some influence on the 

spectrum of the hydrated mineral.

A band at -1086 cm"l has been reported previously by several authors [43, 45, 

191, 197, 230]. Farmer and Russell [197] observed a band at -1080 cm~l which 

they attributed to an Si-0 stretching mode, perpendicular to the plane of the clay 

platelets. This band is thought to be due to the vibration between silicon and the 

oxygen atom shared between the tetrahedral and octahedral layers o f the clay 

platelet. The authors point out that the frequency o f this band is not, as one 

would expect, influenced by partial isomorphous substitution in the octahedral

179



layer. Farmer [230] observed a band o f variable intensity at 1086 cm 'l in the 

transmission spectrum of bentonite and also attributed it to an Si-0 stretching 

mode perpendicular to the surface o f the clay surface.

In addition, Lerot and Low [43] observed a band at ~1086 cm~l in a Bell 

Fourche montmorillonite film and attributed it to a vibration perpendicular to 

the clay surface (parallel to the incident radiation). This band increased in 

intensity as the angle o f the film to the incident radiation increased. Lerot and 

Low also noted an increase in intensity o f the 1086 cm"l band as the water/Bell 

Fourche montmorillonite ratio was increased from that in an air dried film 

(where the 1086 cm"l band is invisible). It was suggested that the increase in 

water content in the film causes the platelets to separate and disorder, this 

enables more of the perpendicular vibrations to intercept the infrared beam. 

These findings indicate that the intensity o f the band due to the Si-0 vibration 

perpendicular to the platelet surface may be orientation dependent.

The polarised ATR measurements presented in this thesis indicate that despite 

the platelets being deposited in an oriented arrangement (albeit not the expected 

orientation) by gravitational sedimentation, the band position changes only with 

water content, not ,with the polarisation of the radiation. However, the band 

intensity has been shown to be determined by the orientation of the clay platelet 

in a dehydrating suspension and hence the polarisation o f the radiation. Since 

Lerot and Low [43] observed only changes in band intensity, not shifts in band 

position, their findings do not address the shifts in band position observed in the 

ATR and transmission experiments presented in this thesis.

Farmer and Russell [197] stated that the physical state of the mineral can 

significantly affect the position and sharpness o f silicate stretching bands in the 

infrared spectrum of a clay mineral. They report small shifts in frequency,
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sharpening and increasing intensity of the band due to the Si-0 vibration 

perpendicular to the clay surface as particle size decreases. This may well 

explain the observations presented in the previous section since the 1086 cm"l 

band is most intense when the bentonite is fully dispersed, and decreases in 

intensity when flocculation occurs and aggregates form, either on drying or 

increasing the electrolyte concentration. In addition, the ability o f a Ca^+ 

exchangeable cation to cause flocculation of a clay suspension is much greater 

than that o f alkali metal cations such as Na+ or Li+. This is in good agreement 

with the observations of the homoionic clay mineral suspensions, in which the 

position o f the transient band is at high frequency and well defined in the 

spectrum of Li+, Na+, and K+ montmorillonite, but is shifted to much lower 

frequency, and less well-defined in the spectrum of Ca^+ montmorillonite.

Although, the increase in particle size does explain some of the observed data, it 

does not explain the band shift from 1080 to 1070 cm~l on heating a randomly 

oriented bentonite powder dispersed in a KBr disk to 200°C.

Closely associated with increasing particle size, the decrease in interlayer 

separation on drying or addition of electrolyte may be another explanation for 

the observed shift in band position presented in previous sections. It is possible 

that as the two mineral platelets approach one another, vibrational coupling 

between them may occur. Farmer and Russell [191] established however, that 

the infrared spectrum of a 2:1 layer silicate such as bentonite does not depend 

upon the interlayer spacing. Only very small frequency shifts, attributed to the 

polarising effect o f the interlayer cation, were observed even at a d-spacing of 

9.5A [191]. This implies that there is very little coupling between the adjacent 

clay mineral platelets regardless of whether the dipoles are oriented parallel or 

perpendicular to the platelet surface.
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Whilst coupling between the Si-0 stretching vibrations and H-O-H bending 

vibrations [45], may be a plausible explanation for modification o f the structure 

of the Si-0 absorption bands on hydration, the most likely explanation is the 

dissociation of the exchange cation from the surface o f the tetrahedral silicate 

sheet. It would be expected that highly solvated cations such as Na+ and Li+ 

would exist in the interlayer space and less solvated cation such as Ca^+ would 

exist much closer to the silicate surface of the clay platelet.

In the case of homoionic sodium bentonite in water or dilute sodium chloride 

solutions, the dissociation of the exchange cation gives rise to the formation of 

an electrical double layer and electrostatic repulsion between the platelets [13]. 

In the homoionic calcium bentonite however, the calcium ion does not fully 

dissociate and extended electrical double layer formation does not take place. 

The relative changes between the spectra of dry and hydrated bentonite should 

follow the lyotropic series (Li+ > Na+ > K+ > Rb+ > Cs+). The low hydration 

energy of the cesium ion, for example, should result in little hydration of 

homoionic caesium bentonite and thus little difference between the spectra o f 

dry and wet bentonite would be expected.

The ATR spectra of bentonite suspensions are sensitive to the ionic strength, c, 

o f the suspending solution (at least down to c=0 .01  molar) and the clay/water 

ratio above the value at which the band at 1086 cm'^ begins to shift to lower 

frequency. The similarity of the changes in the ATR spectra during drying and 

an increase in ionic strength is not surprising. Both drying and increasing ionic 

strength have the effect o f reducing the spacing between the clay platelets. 

Norrish [54] has shown that below a certain value o f ionic strength of about 0.3 

molar, the mean interlayer spacing of bentonite in a suspension varied linearly 

with l /V c , while Glaser and Mering [50] have shown step-like increases in the
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interlayer spacing of bentonite as the relative humidity o f the equilibrating 

atmosphere (and thus water content o f the clay) was increased.

The presence of a well-developed band at 1086 cm"l appears to be indicative o f 

electrical double layer formation and the osmotic swelling o f bentonite. The 

shifting o f this band to 1080 cm"l appears to be associated with the 

compression of the electrical double layer and the onset of crystalline swelling 

or hydration of bentonite. The crystalline swelling o f bentonite is observed in 

sodium bentonites at high ionic strength (up to c=5 molar) and calcium 

bentonites in water. Further decrease in the interlayer spacing and the complete 

disappearance of the band at 1080 cm"l is achieved only by drying. The 

disappearance o f the band at 1080 cm~l indicates that the bentonite is no longer 

solvated.

It is possible that the shift o f the band at 1086 cm 'l to 1080 cm“l and its 

subsequent shift to 1070 cm“l on heating to 200°C is related to a fully solvated 

counter ion which, on drying or increasing salt concentration, reduces its 

hydration sphere until a dried film is obtained in which the counter cation settles 

into a di-trigonal cavity in the silicate sheet in much the same way as explained 

by Sposito et al [40]. Further heating o f the clay to 200°C causes removal of 

more interlayer water and allows the exchangeable cation to settle further into 

the di-trigonal cavity [42].

The observed frequency shift o f the band associated with the Si-0 vibration 

perpendicular to the clay platelet on dehydration is probably due to the change 

in the b-dimension (rotation of the Si0 4  tetrahedra) observed by Ravina and 

Low [59] and Odom and Low [60]. This contradicts the findings of Lerot and 

Low [43] who concluded that in the range of water contents studied (between 2 

and 22 g g 'l  Bell Fourche montmorillonite), no shift in the wavenumber
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position of the band at 1086 cm~l was observed and explained that swelling 

produced no change in b-dimension.

In these present observations, the band at 1086 cm“l in aqueous bentonite 

suspensions with water contents of 50 and 16 g g"l o f SWy-1 bentonite, is seen 

to shift to lower frequency as the water content o f the suspension is reduced.

These findings are corroborated by the findings o f Volzone et al [133], who 

observed changes in b-dimension for glycolated Na and K-bentonites (relative 

to the dry homoionic bentonite) but observed no such change for Ca-bentonite. 

They explain that the Na+ and K+ cations are partially occluded by the di- 

trigonal cavity of the silicate layer but became glycolated into the interlayer 

space. This causes a rotation of the silica tetrahedra. However, Ca^+ is a much 

larger cation so does not settle into the di-trigonal cavity. It also does not form 

an extended double layer in the interlayer space. Hence, Ca^+ does not cause a 

relaxation o f the silicate lattice on glycolation (solvation) but, in addition, does 

not move significantly away from the layer platelet surface.

It should be noted that the b-dimension increases from the natural water content 

up to a water content o f 3.0 g g"^ clay [59] at which point it remains constant. 

This fits in well with the finding that the 1086 cm~l band is associated with a 

suspension in which the water/bentonite content is above a certain value. It is 

not known however, if  the b-dimension diminishes further when air-dried 

bentonite with a natural water content is heated to 200°C to remove more water.

The applicability of this theory has not been tested fully for two main reasons:

1. The equilibrium water content at which the band shifts from 1086 cm- l to 

1080 cm"l is not known in the studies presented here. It must be remembered, 

o f course, that the formation o f bentonite films by evaporating water in a stream
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of dry air (the purge of the FTIR spectrometer) was not a well-controlled 

process and the water content o f the film was not known and was not constant 

during spectral collection. An improved method of film formation, enabling 

ATR or transmission spectra to be collected under conditions of known 

equilibrium water content, will be required to further interpret the evolution of 

the spectra. One possibility would be to monitor the compaction o f a bentonite 

suspension in a high temperature/high pressure ATR cell developed at 

Schlumberger Cambridge Research for monitoring cement hydration [229]. It 

has been found that hydrostatic pressure has no influence on the ATR spectrum 

of an aqueous bentonite suspension [232]. However, rather than simply 

pressurising an aqueous montmorillonite suspension, by using a porous frit, it 

might be possible to filter (squeeze water from) the suspension in a controlled 

manner in order to evaluate the rate o f band shift with applied pressure.

2. In the studies presented here it was impossible to perform concurrent FTIR 

and XRD measurements in order to correlate the band shift in infrared with 

changes in the 001  reflection (d-spacing) and the 060 reflection (b-dimension). 

Correlation between the FTIR and XRD experiments performed independently 

is also difficult due to the differing drying rates imposed by the two different 

techniques.

5.4. Conclusions

Differences between the infrared spectrum of an aqueous bentonite suspension, 

dry bentonite powder and a heated bentonite powder, have been monitored 

using transmission, microscopy, and ATR FTIR spectroscopy.

A band at 1086 cm 'l in the infrared spectrum of'wet' bentonite has been 

observed to shift to lower wavenumber and disappear on drying to a bentonite 

film o f natural water content. This band can be picked out using second
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derivative, Fourier self deconvolution and curve fitting techniques and has been 

observed to shift further to lower wavenumber on heating.

The band at 1086 cm 'l appears to be a characteristic o f interlayer cation 

hydration and the formation of an extended double layer in the interlayer space. 

It is much more developed in the spectrum of bentonite exchanged with easily 

hydrated cations (e.g. Na+). The band is much less well developed in the 

spectrum of bentonite exchanged with cations which are less easily hydrated 

(e.g. Ca^+) and in which extended double layer formation does not occur. On 

dehydration, the exchange cations lose their hydration shells, and move closer to 

the surface bentonite platelets. The smaller cations, e.g. Na+ and K+, are able to 

settle into the di-trigonal cavity of the silicate layer surface, however, the larger 

cations, e.g. Ca^+, are unable to settle into the cavity and exist close to the 

platelet surface. The settling o f the smaller cations into the di-trigonal cavity 

causes a rotation of the silica tetrahedra thus changing the b-dimension, and 

reducing the Si-0 frequency o f vibration.

In addition, increasing the electrolyte concentration causes the band at 1086 

cm~l to shift to lower frequency and diminish in intensity. This is due to 

collapse o f the electrical double layer on increasing the ionic strength and the 

subsequent close approach of clay platelets, thus enabling the exchange cations 

to approach and enter the di-trigonal cavity and cause rotation of the silica 

tetrahedra.

No evidence o f hydrogen bonding o f water to the bentonite Si-0 surface was 

observed using D2 O as solvent, although some D<->H exchange was observed.

Unexpectedly, the dehydration of an aqueous bentonite suspension appears to 

cause some o f the bentonite platelets to deposit on the wall which constrains the
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suspension. These platelets are oriented such that their c-axis is directed 

perpendicular to the plane of the vertical constraining wall, a direction 

perpendicular to that expected o f a clay platelet deposited to form an oriented 

film by gravitational deposition from aqueous suspension. This is thought to be 

important an important mechanism in the formation o f a filter cake on the wall 

of the borehole by deposition of clay mineral from a circulating oil well drilling 

fluid.
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6. ADSORPTION OF POLYACRYLAMIDE ON BENTONITE

6.1. Introduction

It was pointed out in chapter 1 that certain polymers are commonly added to 

water based oil well drilling fluids in order to prevent degradation of the 

wellbore wall and to minimise degradation o f cuttings, aiding their removal 

from the borehole to the surface. Polyacrylamide (figure 4.9.2b) is one such 

polymer commonly used for this purpose.

In order to fully understand and explain the behaviour o f polyacrylamide in the 

drilling fluid it is necessary to fully understand its interaction with clay mineral 

both dispersed in aqueous suspension (as in the drilling fluid) and clay mineral 

in the form of a free standing film, which represents the major portion of 

underground shale deposits.

6.2. Experimental

Two methods have been employed to investigate the behaviour of 

polyacrylamide in the two physical forms as outlined above. Firstly, bentonite 

films both free standing (self supporting) films and films supported on an 

internal reflection element were allowed to soak in aqueous polyacrylamide 

solution or aqueous polyacrylamide/KCl solution. Secondly, fully dispersed 

bentonite in aqueous suspension was contacted with aqueous polyacrylamide or 

aqueous polyacrylamide/KCl solution.

188



6.2.1. Materials

SWy-1 bentonite was purified by sedimentation to obtain the <2pm fraction and 

used in its natural state, i.e. without cation exchange (containing predominantly 

Na+, and small amounts of Ca^+ and K+ exchange cations, as outlined in table 

4.9.1). Aqueous bentonite suspensions were prepared by dispersing the 

bentonite in deionised water and allowing to 'age' by stirring for 12 hours. 

Polyacrylamide (PAM) of zero or negligible ionic content and molecular weight 

100k, 500k and 7000k were used as obtained from Allied Colloids. Hydrolysed 

polyacrylamide (HPAM) containing 30% anionic (COO-) functionality and 

molecular weight 7000k was also used as obtained from Allied Colloids. In all 

experiments in which polyacrylamide was contacted with bentonite, the polymer 

was dissolved in aqueous solution overnight using a rotary sample mixer 

operating at 300 rpm prior to mixing. In all experiments deionised water was 

used whose pH was 7 and whose conductivity was <20 pScm *.

6.2.2. Spectroscopy

6.2.2.1. Transmission - Free standing films

Free standing films were prepared by thinly smearing highly concentrated
-3

bentonite paste (-2000 gdm ) across a clean polyethylene sheet. This was 

covered with a polyethylene bag and allowed to dry for 16 hours at ambient 

temperature. The free standing film could then be easily peeled from the 

polyethylene sheet and stored in polyethylene sample bags at ambient 

temperature. The bentonite film thicknesses were measured using an electronic 

micrometer gauge and were found to vary between 7 and 20 pm.
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In each experiment, a small square (greater than the 13 mm diameter aperture of

the transmission cell holder) weighing between 5 and 7 mg, was immersed in
-3 -3

aqueous polyacrylamide solutions with concentration of 5 gdm , 3.3 gdm and 
-3

1 gdm for the required time. This obviously represents a very small amount of 

clay in a large excess of polymer solution. The bentonite-polyacrylamide films 

could then be placed on the transmission cell holder and dried in the dry 

nitrogen purge of the Mattson Polaris FTIR spectrometer. These experiments 

were repeated dissolving KC1 in the aqueous polyacrylamide solution prior to 

soaking of the bentonite film in order to obtain a final KC1 concentration of 100 

g d m 3.

6.2.2.2. Transmission - Aqueous dispersions

SWy-1 Bentonite-polyacrylamide dispersions were prepared by adding aqueous
-3

solution of polyacrylamide (Mw 100k, 500k and 7000k) to 20 gdm bentonite

suspension in order to obtain polyacrylamide concentrations in mixed
-3 -3 -3

suspension o f 5 gdm , 3.3 gdm and 1 gdm .

These clay-polymer dispersions were mixed overnight at room temperature, 

using a rotary sample mixer operating at 300 rpm, to allow equilibration. The 

dispersions were centrifuged at 20000 rpm and dried overnight at 40°C. The 

dried solids were dispersed in KBr disks and their transmission infrared 

spectrum acquired on a Mattson Polaris FTIR spectrometer with 4 cm“l 

resolution, a triangular apodisation function and 100 co-added scans. These 

experiments were repeated dissolving KC1 in the aqueous polyacrylamide 

solution prior to mixing with the bentonite dispersion, in order to obtain a final
-3

KC1 concentration of 100 gdm . This enables the bentonite to be fully 

dispersed on polyacrylamide addition.
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6 2 .2.2. ATR spectroscopy - bentonite film

Bentonite films were prepared on the sampling faces of the silicon Squarecol 

ATR prism as outlined in section 4.4.4. The cell was then sealed containing the 

bentonite coated ATR prism and the infrared spectrum of the supported air dried 

bentonite film acquired at room temperature. Each spectrum was acquired with 

a resolution of 4 cm“l, a triangular apodisation function and a total of 512 co

added scans on a Mattson Polaris FTIR spectrometer fitted with a dry nitrogen 

purge. Without removing or repositioning the Squarecol cell from its original 

position in the sample compartment of the infrared spectrometer, the trough 

(maximum capacity 2  cm^) was filled with 2  cm^ of aqueous polyacrylamide

solution of molecular weight 100k, 500k and 7000k and concentrations
-3 -3 -3

5 gdm ,3.3 gdm and 1 gdm . Infrared spectra o f the bentonite film (in

contact with polyacrylamide solution) were obtained at 10 minute intervals on a

Mattson Polaris FTIR spectrometer. These spectra were also acquired at room

temperature and under a dry nitrogen purge; the same instrumental parameters

were employed as were employed for spectral acquisition of the bentonite film

alone. These experiments were repeated dissolving KC1 in the aqueous

polyacrylamide solution prior to addition to the Squarecol cell in order to obtain
-3

a final KC1 concentration of 100 gdm .

6.2.2.3. ATR spectroscopy - polyacrylamide film

Polyacrylamide films were prepared by separately depositing 1 cm^ aqueous
-3 -3 -3

polyacrylamide solution o f concentration 5 gdm , 3.3 gdm , and 1 gdm , onto

one sampling face of the ZnSe Squarecol ATR prism and drying flat for two

hours at 65 °C. The cell was sealed containing polymer coated ATR optics and

the infrared spectrum obtained at room temperature, under a dry nitrogen

atmosphere, on a Mattson Polaris FTIR spectrometer. The instrumental
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parameters being the same as outlined for spectral acquisition of bentonite 

coated ATR optics above.

6.22.4. X-ray Diffraction

All basal spacings were measured between 4 and 20° 20 using a Phillips 1050 

diffractometer operating at 40 kV and 40 mA with Co Ka  radiation.

The d-spacing of SWy-1 bentonite free standing films and free standing films 

immersed in aqueous polyacrylamide or polyacrylamide/KCl solution were 

obtained by placing the dried film from the infrared spectrometer on a glass 

slide and placing in the diffractometer.

The d-spacing of mixed dispersions of aqueous SWy-1 bentonite suspension and 

aqueous polyacrylamide or polyacrylamide/KCl (Mw 100k and 500k) solution 

were obtained by removing the moist centrifuged solids and then thinly 

deposited on a glass slide. The film was then dried at 40°C overnight and stored 

under ambient conditions before being placed in the diffractometer. Mixed 

dispersions of aqueous SWy-1 bentonite suspension and aqueous 

polyacrylamide or polyacrylamide/KCl (Mw 7000k) solution formed extremely 

viscous gel structures which could not be thinly deposited to form a film on a 

glass slide. As a result, these mixed complexes were dried at 40°C for several 

days before being finely ground using a mortar and pestle. The powder was then 

packed into a holder and placed in the diffractometer.

6.2.2.5. Kjeldahl total nitrogen analysis

The total nitrogen content of mixed dispersions of aqueous SWy-1 bentonite 

suspension and aqueous polyacrylamide or polyacrylamide/KCl solution were
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obtained by drying the centrifuged solids at 40°C overnight. A weighed amount 

was added to a digestion tube for nitrogen analysis as outlined in section 4.7. 

This was process was repeated in order to assess the reproducibility of the 

technique.

6.3. Results and Discussion

6.3.1. Adsorption isotherms

In order to characterise the adsorption behaviour of polyacrylamide from 

aqueous solution onto dispersed bentonite it is extremely important to establish 

the amount of polymer adsorbed (section 3.3.2). Although adsorption isotherms 

provide little information regarding the state of the adsorbed layer, they can 

provide essential information regarding the adsorption process, particularly the 

adsorption mechanism (from the isotherm profile).

6.3.1.1 Without electrolyte (zero KC1 loading)

Figure 6.3.1.1a shows the adsorption isotherms for the addition o f aqueous 

polyacrylamide solution to an aqueous SWy-1 bentonite suspension at zero KC1 

loading. The amount of nitrogen present naturally on the bentonite (not 

associated with the polyacrylamide) was determined to be 0.016%. Hence, by 

subtracting the amount of nitrogen present naturally on the clay, the quantity of 

adsorbed polyacrylamide may then be calculated.
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Figure 6.3.1.1a Adsorption isotherms for polyacrylamide onto SWv-1

bentonite in aqueous suspension (zero KC1 loading).
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Polyacrylamide is commonly added to drilling muds at a concentration of 4 
-3

gdm , although the effective dose plateau for the polymer has been found to be
-3 -3

approximately 1 gdm . The polymer is added in excess (~4 gdm ) to prevent

shale deposits, which contain clay material, stripping polyacrylamide from the

mud so quickly that polymer would have to be replaced continually rather than

periodically.

Consequently, the concentration range of polyacrylamide in solution o f interest
-3

is between 1 and 5 gdm and so it is in this range that the adsorption isotherms

have been calculated. In fact, the adsorption isotherms have been calculated at
-3

only three polyacrylamide concentrations (namely 1.0, 3.3, and 5.0 gdm ) in 

order to determine the amount of adsorbed polymer when it is present in excess, 

when there is a deficiency and at an intermediate concentration in the oil well 

drilling fluid.
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Although very few points have been calculated to define the adsorption

isotherms, the amount of adsorbed polyacrylamide (Mw 100k and 7000k)

appears to increase with increasing concentration at low solution concentrations.

As the solution concentration of polyacrylamide increases, then the amount

adsorbed reaches a maximum value and remains approximately constant with

increasing polyacrylamide concentration. This ‘plateau’ corresponds to an

adsorbed quantity of 42 mg PAM(100k) g~l clay. The adsorption of

polyacrylamide (7000k) does not appear to have reached its plateau value by a
-3

polymer solution concentration of 5 gdm , although it does appear to be 

approaching its maximum adsorbed quantity (96 mg g~l).

The adsorption o f polyacrylamide of molecular weight 100k and 7000k visible 

in figure 6.3.1.1a, appears to be almost an order of magnitude lower than the 

maximum adsorbed amounts quoted by Bottero et al [155] and Schamp and 

Huylebroeck [156]. In fact, Bottero et al [155] quote maximum adsorption 

values of 250 mg g"l clay and 680 mg g"l clay for the adsorption of 

polyacrylamide, molecular weight 120k and 3000k respectively, on sodium 

montmorillonite.

Although our result appears to be very low, many explanations may exist for 

this large disparity. The most significant contribution to the discrepancy in 

adsorbed quantities is likely to be due the clay loading of the aqueous 

dispersion, or more accurately, the solid to liquid ratio (S/L), defined by Bailey 

et al [2] as the ratio of clay to total liquid volume. The effect o f increasing the 

solid/liquid ratio on the adsorbed quantity here seems quite plausible, since 

increasing the solid loading will increase the flocculation of the bentonite 

platelets in the dispersion [157]. This flocculation will reduce the available 

surface area, restricting polyacrylamide access to the interlayer region. Bottero 

et al [155] obtained adsorbed quantities of an order of magnitude greater than
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-3
those found here at a solid to liquid ratio o f about 2 x 1 0  . Interestingly, this is

an order o f magnitude less than the S/L ratio used to obtain the result presented

here (20 gdm aqueous bentonite suspension represents a S/L ratio of 2x10"2).

In addition, Bailey et al [2] showed that the adsorbed amount of neutral

polyacrylamide, molecular weight —10^, decreased with increasing S/L ratio 
. -3

from 10"4  and 10 . Extrapolation of adsorbed quantities back to a S/L ratio of 

zero, revealed an adsorption maximum of 650 mg g_l clay [2]. Similarly, 

Schamp and Huylebroeck [156] observed maximum adsorbed quantities of 

polyacrylamide (Mw 250k) of 757 and 787 mg g"l clay at Na montmorillonite 

suspension concentrations of 0.05 and 0.025% w/v. These clay concentrations 

correspond to S/L ratios of 5 x 10"4 and 2.5 x 10"4 which are two orders of 

magnitude lower than those used in the studies presented here. Significantly, 

Stutzmann and Siffert [153] and Espinasse and Siffert [154] observed maximum 

adsorbed quantities for hydrolysed polyacrylamide (molecular weight o f the 

order 10^) on sodium montmorillonite between 3 and 15 mg g"l clay. These 

low adsorption values are not unsurprising considering 1 g of clay was 

contacted with 20 ml of aqueous amide solution which represents a S/L ratio of 

0.05 (greater than that used in our findings).

In addition to the S/L ratio, there are several other factors which might 

contribute to reduced polyacrylamide adsorption. The first, and most relevant 

factor to the results presented by Stutzmann and Siffert [153] and Espinasse and 

Siffert [154] is the anionicity of the polyacrylamide molecule. Polyacrylamide 

adsorption has been shown to be sensitive to the anionic content o f the 

polyacrylamide, being significantly reduced at a 10% anionic content in low 

salinity conditions [2]. This is due to electrostatic repulsion between the 

negatively charged polymer segments and negatively charged mineral surface. 

This effect is probably small here since the polyacrylamide used is less than 3% 

anionic.
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Another important feature which will restrict polyacrylamide adsorption on 

bentonite is the nature of the exchange cations in the interlayer region. The 

presence of exchange cations other than Na+; for example K+ and Ca^+, in the 

interlayer will significantly reduce the ability of the bentonite platelets to 

disperse, reducing the accessible surface area and preventing polyacrylamide 

from penetrating between the platelets. Indeed, reduced polyacrylamide 

adsorption on H+/A1^+ [156] and K+ [2, 157] exchanged montmorillonite has

been attributed to the reduced dispersion of the clay platelets in aqueous 

suspension.

Factors such as ionic strength and pH are also known to have a significant 

bearing on the adsorption of polyacrylamide onto bentonite [2]. However, at the 

pH and ionic strength used in these experiments, 7 and <20 pScm \

respectively, no impact on the adsorbed quantity is expected. The effect of 
-3

electrolyte (100 gdm KC1) can be observed in section 6.3.1.2.

Although significantly lower than the findings presented by other workers in 

this field, the findings presented in figure 6.3.1.1a for polyacrylamide, of 

molecular weight 100k and 7000k, tie in with the theory of polymer adsorption 

[10 0 ] that increased polymer adsorption is observed on increasing polymer 

molecular weight. Indeed, in the results presented here, the adsorption plateau 

increases from 42 mg g~l clay to 96 mg g~l clay on increasing the 

polyacrylamide molecular weight from 100k and 7000k. This follows a similar 

pattern to that observed by Bottero et al [155] and Schamp and Huylebroeck 

[156] (albeit at lower adsorbed amounts) who observed increased adsorption 

with increased molecular weight.

In contrast, however, the adsorption isotherm obtained for polyacrylamide (Mw 

500k) on bentonite differs significantly from those obtained for polyacrylamide
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of molecular weight 100k and 7000k shown in figure 6.3.1.1a. For

polyacrylamide (Mw 500k), the amount adsorbed does not increase significantly
-3

at low polymer concentrations, in fact, at a polymer concentration of 1 gdm ,

the adsorbed quantity is only 2.9 mg g"l clay compared with 27.4 mg g"l clay

for polyacrylamide (Mw 100k) at the same concentration. In addition, a plateau

region of maximum adsorbed polyacrylamide (Mw 500k) is not observed and

the adsorbed quantity simply increases as the polymer solution concentration
-3

increases. Thus for 1 gdm solutions, the order of polyacrylamide adsorption

follows the series Mw 500k < Mw 100k < Mw 7000k. It is only at a
-3

concentration of 5 gdm polyacrylamide (Mw 500k) in solution that the 

adsorbed quantity becomes comparable with, and actually increases above, the 

maximum adsorbed amount observed for polyacrylamide (Mw 100k).

The reason for the anomalous behaviour of the polyacrylamide (500k) is not 

fully understood. The three polyacrylamide samples were all supplied by Allied 

Colloids and differed only in their molecular weight. Obviously, more data 

points at intermediate concentrations would enable better determination of the 

isotherm profiles. However, the adsorbed quantities are reproducible and as a 

result it seems that the adsorption mechanism of polyacrylamide, of molecular 

weight 500k, differs from that of the lower (Mw 100K) and higher (Mw 7000k) 

molecular weight polyacrylamide.

One factor which might critically affect the adsorbed quantity of polyacrylamide 

(Mw 500k) is the intercalation of the polymer between the platelets. Schamp 

and Huylebroeck [156] suggested two mechanisms of polyacrylamide 

adsorption; surface adsorption in the interlayer region between bentonite 

platelets and adsorption in the pores created between stacks of platelets. 

However, this does not appear to explain the anomalous behaviour of 

polyacrylamide (Mw 500k) for several reasons. Firstly, polyacrylamide
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adsorption should increase with molecular weight and it clearly does not for 

polyacrylamide of molecular weight 500k. Secondly, the clay platelets are 

dispersed in aqueous suspension and the polymer molecules would be expected 

to penetrate between them. Although penetration of polyacrylamide between the 

bentonite platelets has been shown to be reduced by the high S/L ratio used in 

these experiments, on drying, the polyacrylamide molecules would be trapped 

between bentonite platelets in the aqueous suspension to allow polymer 

intercalation. Finally, X-ray diffraction data presented later in this chapter 

(section 6.3.2) indicates that all molecular weights of polyacrylamide are 

adsorbed between the clay platelets and that increasing the solution 

concentration and molecular weight of polyacrylamide increases the interlayer 

spacing. Consequently, a transition from intercalated to non-intercalated 

bentonite-polyacrylamide complexes showing a molecular weight dependence 

does not appear to offer an explanation for the findings presented here.

A more plausible explanation is that the conformation of adsorbed polymer

which is trapped between the platelets, or, of polymer in solution prior to

adsorption between the platelets, is critical to the adsorption mechanism and

subsequently to the quantity of adsorbed polymer. Schamp and Huylebroeck

[156] observed a minimum in the adsorbed amount of polyacrylamide (Mw

250k) on Na montmorillonite. Similar minima were observed in the adsorption

isotherms of polyacrylamide (Mw 140k) on H kaolinite and H illite (flocculated

clays) and it was concluded that the observed minimum for a particular

molecular weight is independent of the type and concentration of clay. The

position of the minimum for adsorption of polyacrylamide (Mw 250k) on Na

montmorillonite occurred at an initial polymer concentration between 0.5 and 
-3

1.0 gdm [156]. It was postulated [156] that this polymer concentration 

corresponds to a phase transition of polyacrylamide in solution at which 

separate polyacrylamide molecules in solution interact. As a result, at this

199



concentration the polymer requires a larger surface area than is available and, 

accordingly, the adsorption decreases. The reduced adsorption of 

polyacrylamide (Mw 500k) in these studies, is most noticeable at a
-3

polyacrylamide concentration of 1 gdm . This invites the question, what is the 

conformation of polyacrylamide both in solution and adsorbed between the 

platelets at these concentrations?

Bottero et al [155] did not report any similar reduction in the adsorption of

polyacrylamide of molecular weight between 44k and 3000k onto sodium

montmorillonite. However, this may be because these workers did not use
_2

equilibrium concentrations above 2  gdm or that the large error (±50 mg g 'l

clay) in the adsorbed amount o f polyacrylamide (Mw 44k) from solutions of
-3

concentration between 1 and 2 gdm was not considered significant. This error 

may be associated with a reduction in the adsorbed amount at a characteristic 

solution concentration due to a particular conformation of polyacrylamide in 

solution prior to adsorption.

Although the X-ray diffraction and infrared experiments presented in sections

6.3.2 and 6.3.3 can provide no information regarding the conformation of 

polyacrylamide in solution, they can provide information regarding the 

interactions and conformation of the adsorbed polymer layer.

6.3.1.2 Effect of electrolyte (100 gdm 3 KC1 loading)

The presence of electrolyte in solution can have a profound effect on the

adsorption of polyacrylamide onto bentonite dispersed in aqueous suspension.

Figure 6.3.1.2a displays the adsorption isotherms for the addition of
-3

polyacrylamide to SWy-1 bentonite in solution containing 100 gdm KC1
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Figure 6.3.1.2a Adsorption isotherms for the adsorption of polyacrylamide

to SWv-1 bentonite in aqueous suspension containing 100 gdm KC1.
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The effect of KC1 on polyacrylamide adsorption can be most clearly observed 

for the adsorption of polyacrylamide (Mw 7000k) in figure 6.3.1.2a. As with 

adsorption of polyacrylamide (7000k) without the presence o f KC1, the adsorbed 

amount increases at low polymer concentrations in solution. However, the 

adsorption isotherm in the presence of electrolyte, appears to reach a plateau 

corresponding to a maximum adsorption of 52.9 mg g"l of clay. The quantity of 

adsorbed polyacrylamide in KC1 solution is reduced by 50% of the maximum 

adsorbed amount of polyacrylamide (7000k) when KC1 is not present.

The reasons for reduced adsorption in the presence of KC1 have been discussed

extensively by Bailey et al [2, 157, 170]. The adsorption of polyacrylamide

(Mw -10?) has been shown to decrease significantly from a maximum

adsorption of 650 mg g“l clay to between 200 and 300 mg g 'l  clay in the
-3

presence of 0.15 mole dm KC1 [2, 170]. This has been attributed to the 

collapse o f the electrical double layer on increasing electrolyte concentration, 

causing flocculation and a reduction in adsorption.
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The adsorption isotherm obtained for the adsorption of polyacrylamide (Mw

100k) from solution on aqueous bentonite suspension in the presence of 100  

-3
gdm KC1 also follows a similar adsorption isotherm profile as the 

corresponding adsorption process in the absence o f KC1 (figure 6.3.1.1a). The 

plateau value observed for polyacrylamide (Mw 100k) in KC1 solution is still 

lower than that obtained for polyacrylamide (Mw 7000k) in KC1 solution, 

however, the reduction in the maximum adsorbed amount is considerably less 

(only reduced by 10%). The reduction in polyacrylamide (Mw 100k) adsorption 

is less in KC1 solution than the reduction of polyacrylamide (Mw 7000k) in 

similar solution. Although the electrical double layer of the clay platelet will be 

collapsed to the same extent in both cases, the smaller molecule (lower 

molecular weight) will not be inhibited from penetrating between the platelets 

as at the higher molecular weight

The anomalous adsorption of polyacrylamide (Mw 500k) from solution not
-3

containing KC1 is also observed in 100 gdm KC1 solution. Indeed, the

adsorption isotherm follows an almost identical profile to that seen in the

absence of KC1 (figure 6.3.1.1a), having low adsorption at low polymer solution

concentration, which increases with increasing polymer concentration without

reaching a plateau value of maximum polymer adsorption. The adsorbed

quantity of polyacrylamide (Mw 500k) is significantly reduced in the presence

of KC1, indeed the adsorbed quantities at polymer solution concentrations o f 3.3 
-3

and 5.0 gdm are reduced by 60%.

It appears that access of polyacrylamide, of molecular weight 500k, to the 

interlayer region of the clay platelets is also reduced in the presence of 

electrolyte as it is for polyacrylamide of higher and lower molecular weight. 

However, the adsorption mechanism which determines such low adsorption 

quantities of polyacrylamide (Mw 500k) does not appear to be affected by the
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presence of electrolyte in solution. In fact, it is notable that the reduction in the 

maximum adsorbed amount is greater for polyacrylamide of molecular weight 

500k (-60%), than for the larger polyacrylamide of molecular weight 7000k 

(-50%). This finding supports the postulation that the adsorption of 

polyacrylamide (Mw 500k) is reduced due to the formation of large 

intermolecular polyacrylamide complexes at a critical concentration in solution. 

These large complexes would have a much larger surface area requirement and 

so adsorption decreases.

6.3.2. X-ray diffraction

It is extremely important, with clay material, to understand where the polymer, 

in this case polyacrylamide, adsorbs. At the various molecular weights and 

concentrations in solution, polyacrylamide may adsorb exclusively on the 

external surfaces of the clay mineral or it may penetrate between the bentonite 

platelets and adsorb in the interlayer space. X-ray diffraction was performed on 

the dried centrifuged solids from the mixed dispersion in order to determine the 

change in clay d-spacing (if any) on addition of polyacrylamide.

The d-spacing of natural SWy-1 bentonite (without cation exchange) was 

determined to be 1 2 .6A, this corresponds to an interlayer separation of 3.0A, 

due solely to the presence of water which surrounds the exchange cations in the 

interlayer space.

6.3.2.1 Without electrolyte (zero KC1 loading)

The diffraction traces of the dried solid complex of mixed dispersions of 

aqueous polyacrylamide, molecular weight 10 0 k, solution and aqueous 

bentonite suspension can be observed in figure 6.3.2.1a.
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Figure 6.3.2.1a Diffraction traces of dried bentonite polyacrylamide (100k)

complexes at various polyacrylamide solution concentrations.
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The intensity o f the 001 diffracted X-ray is measured as a function of 20. 

Consequently, it should be remembered from the Bragg equation (eqn. 4.6.3.1) 

that for the first order reflection, at a given wavelength, the angle 0  is inversely 

proportional to the distance separating the diffracting planes, d. Hence, in figure 

6.3.2.1a, 20 is observed to decrease with increasing polyacrylamide 

concentration which implies that the basal spacing increases with increasing 

concentration of polyacrylamide in solution.

Similarly, the X ray diffraction traces obtained from the dried solids of mixed 

dispersions of aqueous polyacrylamide, molecular weight 500k and 7000k, 

solutions and aqueous bentonite suspensions are shown in figures 6.3.2.1b and 

6.3.2.1c, respectively.

204



Figure 6.3.2.1b Diffraction traces of dried bentonite polyacrylamide (500k)

complexes at various polyacrylamide solution concentrations.
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Figure 6.3.2.1c Diffraction traces of dried bentonite polyacrylamide (7000k) 

complexes at various polyacrylamide solution concentrations.
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In figure 6.3.2.1b, the value of 20 at which the intensity of the diffracted X-rays 

reach a maximum decreases with increasing concentration of polyacrylamide 

(Mw 500k) in solution. This corresponds to an increase in the basal spacing (the 

interlayer separation) with increasing polyacrylamide (Mw 500k) concentration. 

Similarly, in figure 6.3.2.1c, the d-spacing increases (value of 20 corresponding 

to maximum intensity decreases) with increasing polyacrylamide (Mw 7000k) 

concentration.

Graph 6.3.2.1a shows the overall effect of polyacrylamide concentration on the 

d-spacing of dried complexes prepared by mixing aqueous bentonite suspension 

with polyacrylamide (molecular weight 100k, 500k and 7000k) in aqueous 

solution

Graph 6.3.2.1a Effect of polyacrylamide concentration on the d-spacing of 

dried, mixed bentonite-polyacrylamide complexes.

17
d-spacing (A)

16

15

14

13

12

0 1 2 3 4 5
polymer concentration (gl-1)

100KPAM 500K PAM 7000K PAM

Increasing d-spacing with increased solution concentration o f polyacrylamide 

have been observed previously by Bottero et al [155]. The observed d-spacings
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for complexes prepared from 2 gdm polyacrylamide (Mw 44k and Mw 3000k) 

solution ranged between 17A and 2 0 A, respectively. The d-spacings observed 

here are much lower than those observed by Bottero et al [155]. This is not 

unlikely when one considers that the adsorbed quantities in our findings are also 

significantly lower than those observed by Bottero et al [155].

Whilst highlighting the increase in d-spacing on increasing concentration of 

polyacrylamide in solution, graph 6.3.2.1a also highlights another important 

feature; that the d-spacing also increases with increasing polyacrylamide 

molecular weight. Clearly, the d-spacing of the bentonite-polyacrylamide 

prepared at each polymer solution concentration follows the series, Mw 7000k > 

Mw 500k > Mw 100k.

It should be noted that the diffraction profiles observed in figures 6.3.2.1a and

6.3.2.1b for the adsorption of polyacrylamide of molecular weight 100k and

500k respectively are extremely broad and of low intensity. This is indicative of

the diffraction trace of the complex having several maxima, relating to several

001 reflections. Individually, each maximum has quite a narrow profile but they

are in such close proximity that they superimpose upon each other to give a

broad peak. Several 001 reflections corresponds to several interlayer

separations. Two maxima at 16.5 and 13.9 A are clearly visible (figure 6.3.2.1c

and graph 6.3.2.1a) in the diffraction trace of complexes prepared at the two
-3 -3

higher polyacrylamide (Mw 7000k) concentrations, (3.3 gdm and 5.0 gdm ). 

The presence of two interlayer spacings indicates that within the complex there 

are packets of platelets which have one spacing and which diffract radiation at a 

certain angle and other packets of platelets at another spacing.

The broad nature of the diffraction profiles makes it extremely difficult to 

determine the exact d-spacing of polyacrylamide complexes. However, it seems
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likely that the interlayer separation corresponding to polyacrylamide 

intercalation corresponds to a d-spacing somewhere between 14.2 and 15.0A. 

between the layers.

It is possible to calculate the expected interlayer separation by knowing the van 

der Waals radius of the polyacrylamide molecules. Although no reference to the 

van der Waals radius of the polyacrylamide molecule could be found, the van 

der Waals radius of isobutyramide (a monomer similar to polyacrylamide) is 

known to be 2.8A [155]. Consequently, the theoretical d-spacing o f the 

polyacrylamide complex may be calculated by adding the thickness o f a 

bentonite platelet to the van der Waals diameter of the isobutyramide molecule. 

This implies that the d-spacing of a polyacrylamide-bentonite complex should 

be (9.6A + 2 x2 .8A)= 15.2A when the polyacrylamide is adsorbed in a flat 

conformation [155]. This theoretical d-spacing is slightly greater than the upper 

end of the d-spacing range expected which may be due to approximating the van 

der Waals radius of polyacrylamide to that of isobutyramide in the d-spacing 

calculation. More likely however, is that the polyacrylamide molecule may key 

into di-trigonal cavities in the silicate surface of the clay platelet, reducing the d- 

spacing slightly.

It should be noted that lower d-spacings are observed at low adsorbed amounts

which corresponds to polyacrylamide adsorbed in a flat conformation [155].

However, much larger d-spacings (>15.2A) are observed in complexes prepared
-3

by the adsorption of polyacrylamide (500k and 7000k) from 3.3 and 5.0 gdm 

solutions. This agrees with the findings o f Bottero et al [155] who observed an 

increase in the loop size of adsorbed polyacrylamide chains on bentonite as the 

adsorbed amount of high molecular weight polymer increased.
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It should be noted that the d-spacing of complexes prepared using

polyacrylamide, of molecular weight 500k, do not show the same anomalous

behaviour shown by adsorption isotherms of these particular complexes. In fact,
-3

the bentonite-polyacrylamide (Mw 500k) complex prepared from a 1 gdm 

solution has an intercalated d-spacing in the region between 14.0 and 15.2A. 

This corresponds to a low adsorbed amount in which the polyacrylamide is 

adsorbed in a flat conformation. This would be expected as the amount of 

polyacrylamide is significantly reduced, we believe, by the intermolecular 

interaction between polyacrylamide molecules at a critical solution 

concentration. It is possible that the very small amount of polyacrylamide 

adsorbed between the platelets has actually been trapped between the bentonite 

platelets as the complex is dried. Consequently, some differences may exist in 

the conformation of polyacrylamide (Mw 500k) which can not be detected using 

X-ray diffraction but have been detected using infrared spectroscopy.

These tentative interpretations assume one important factor; that the d (001) 

spacing obtained from the X-ray diffraction trace are due solely to 

polyacrylamide in the interlayer space. It does not allow for partial expansion of 

the platelets due to water in the interlayer region. In order to determine the 

extent to which water contributes to the interlayer separation, it would be 

extremely advantageous to perform heated experiments in order to drive water 

out of the interlayer space. Diffraction maxima from such an experiment would 

correspond to the platelet separation caused by polymer alone. As a result, it can 

not be unequivocally stated that the d-spacings observed are due solely to 

polyacrylamide in the interlayer space. Further experimentation to establish the 

influence of water on the behaviour of polyacrylamide in the interlayer space is 

still necessary to prove or disprove these postulations.
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6.3.2.2 Effect of electrolyte (100 gdm 3 KC1 loading)

The diffraction trace obtained from glass slides coated with the centrifuged

solids from mixed bentonite-polyacrylamide complexes prepared in the 
-3

presence of 100 gdm KC1 showed negligible or very broad maxima in the 

region between 4 and 20 20. Figure 6.3.2.2a shows typical diffraction traces, in 

this case for the dried centrifuged solids obtained from mixed aqueous 

polyacrylamide (100k) and aqueous bentonite suspension

Figure 6.3.4.3.3a Diffraction traces for the dried bentonite- polyacrylamide
-3

(100k) complexes prepared in 100 gdm KC1 solutions.
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The maxima observed in the diffraction trace of a 1 gdm polyacrylamide 

(100k) complex corresponds to a d-spacing of 12.7 A, i.e. bentonite without 

adsorbed polyacrylamide. Although a maximum can be observed in the 

diffraction trace, its intensity is very low, between 100  and 2 0 0  counts s'* 

compared to between 2 0 0 0  and 10 000  counts s~l in the complexes prepared in 

the absence o f KC1. This is attributed to insufficient numbers of platelets
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stacking together in packets with the same d-spacing, to provide coherent basal 

(001) diffraction. Several reasons for this exist, the most important, being the 

sample preparation. If these samples had not been prepared as films on glass 

slides but instead, finely ground and studied, as a randomly oriented powder, 

then more coherent scattering might have been observed.

6.3.3. Infrared studies

6.3.3.1. Transmission spectra of polyacrylamide

Figure 6.3.3.1a shows a typical transmission spectrum of negligible ionic 

strength polyacrylamide (Mw 7000k) dispersed in a thin potassium bromide 

disk and ratioed against an air background.

Table 6.3.3.1a gives the band assignments o f the principal bands in the infrared 

spectrum, based on the assignments by Kulicke et al [233].

Figure 6.3.3.1a Infrared spectrum of polyacrylamide
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Table 6.3.3.1. Band assignments for polyacrylamide

Band position (cm"l) Assignment

3440 H-bonded v(OH) (water)

3330 antisymmetric v(NH2 )

3190 symmetric v( NH2 )

2960 antisymmetric v(CH3 )

2930 antisymmetric v(CH2 )

2870 symmetric v(CH2 )

1660 v(C=0) (amide I)

1615 5(NH2) (amide II)

1450 5(CH2)

1410 v(C-N)

1351 w(CH2)

It is important to note that polyacrylamide has only one infrared absorption band 

(at 1120 cm"l) in the spectral region between 1250 and 850 cm 'l. This is 

extremely useful since no absorption bands overlap with the Si-0 stretching 

bands which occur between 1100 and 1000 cm"l. Consequently, adsorption of 

polyacrylamide onto the silicate surface of a bentonite clay platelet may be 

observed spectroscopically.

The absorption at 2960 cm"l has been assigned to the antisymmetric v(CH3 ) 

vibration (due to terminal methyl groups). This band is lower in intensity than 

the bands attributed to CH2  antisymmetric and symmetric stretching modes (at 

2930 and 2870 cm"l, respectively) since, there are relatively fewer terminal 

methyl groups on the polyacrylamide (Mw 7000k). However, the intensity of 

the band at 2960 cm_l relative to the bands at 2930 and 2870 cm~l
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(approximately half that of the band at 2930 cm“l) does not reflect the relative 

numbers of main chain CH2  and CH3 groups. This may be indicative o f a 

polydisperse sample, in which there are significant numbers of polyacrylamide 

molecules with molecular weight less than 7000k. This would increase the 

number of terminal groups (CH3 ) relative to the number o f main chain CH2  

groups in a particular sample.

Figure 6.3.1b shows a comparison of the infrared spectrum of nonionic 

(negligible ionic) and 30% anionic polyacrylamide, evenly dispersed in a KBr 

disk, in the region between 4000 and 2600 cm 'l (both spectra have been ratioed 

against an air background).

Figure 6.3.3.1b Comparison of infrared spectrum of nonionic and 30% 

anionic polyacrylamide.
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The most intense band in this region is the band at 3440 cm~l. This band is 

attributed to an OH stretching mode which indicates that a significant amount of 

hydrogen bonded water is present in both the solid polyacrylamide and solid
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hydrolysed polyacrylamide samples. The broad nature of both spectra in this 

region may also be indicative of a significant amount of hydrogen bonded water.

It must, o f course, be borne in mind that the nominally neutral polyacrylamide 

used in these experiments, contains a small, albeit less than 3%, anionic 

functionality and that the hydrolysed polyacrylamide sample contains 

approximately 30% (COO“) functionality. Both are therefore likely to contain 

small amounts of hydrogen bonded -COOH acid, which further complicates the 

spectral region between 4000 and 2600 cm 'l.

It seems likely then, that the broad nature of the infrared absorption bands in 

this region may also indicate that the bands are subject to inhomogeneous 

broadening due to each molecule (or functionality which gives rise to an 

absorption band in this region) existing in a heterogeneous environment.

Bellamy [234] states that amide molecules strongly self associate unless they 

are in dilute solutions in polar solvents. As a result it can be inferred that in the 

solid, polymer molecules are involved in a large number of inter and 

intramolecular hydrogen bonds between units on separate polyacrylamide 

molecules and also between separate units on the same polymer chain. Indeed, 

the band visible at 3190 cm" 1, due to the symmetric NH2  stretching mode, 

provides further evidence of H-bonding, since the position of this band 

corresponds to hydrogen bonded NH2  [235]; the band due to a hydrogen bonded 

antisymmetric stretching mode would be visible at 3330 cm"l if  the intense 

band attributed to OH stretching mode were not present. It should be noted that 

infrared absorption bands due to non hydrogen bonded antisymmetric and 

symmetric NH2  modes of a primary amide would be found at higher frequency, 

near 3520 and 3410 cm"l respectively [235].
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It should also be noted that the shoulder band at 3190 cm~l (NH2  symmetric 

stretching mode) appears to be more intense relative to the band at 2927 cm~l 

(antisymmetric C-H stretch) in the spectrum of neutral polyacrylamide 

compared to that of anionic polyacrylamide. This is likely to be due to the 

hydrolysis of some NH2  functional groups on the anionic polymer, reducing the 

NH2  band intensity in the spectrum of the hydrolysed polymer. Further 

evidence of this should be found at lower frequency, i.e. in the amide I and II 

stretching regions (figure 6.3.3.1c).

Figure 6.3.3.1c Comparison of infrared spectrum of nonionic and 30% 

anionic polyacrylamide.
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The bands observed at lower frequency in the spectra of polyacrylamide and 

hydrolysed polyacrylamide (figure 6.3.3.1c) are also very broad (as they are at 

higher frequency, between 4000 and 2600 cm~l). The broad nature o f the bands 

makes it extremely difficult to determine band positions and relative intensities 

with any certainty. Unfortunately, quantitative determination of the band 

positions and relative intensities using FSD, SD and CF is impossible due to the
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presence of water vapour, spectral noise and high local baselines. However, the 

infrared absorption at 1660 cm"l may be attributed to the amide I band (C=0 

stretching mode) since it agrees with the value stated by Kulicke [233] and is 

close to 1650 cm" 1, the wavenumber position predicted for the amide I band in 

solid primary amides by Bellamy [235]. This band would be expected to be 

shifted to higher frequency in solution where the polyacrylamide molecules are 

involved in less hydrogen bonding interactions than in the pure solid.

The position of the amide II band however, is somewhat more difficult to 

determine. In the solid neutral polymer, it appears to be situated at 1615 cm"l 

which agrees with the wavenumber position cited in the literature [235]. 

However, an extra band, between 1700 and 1600 cm 'l, due to an H-O-H 

bending mode (of water) would also be expected in both spectra shown in figure 

6.3.1c, since both polymers showed intense bands due to OH stretching modes 

in the region between 4000 and 2600 cm~l. The H-O-H bending band would 

distort the spectra shown in figure 6.3.1c causing band positions and relative 

intensities to appear shifted and altered. As a result, it is extremely difficult to 

determine the exact position of the amide II band, particularly in the spectrum of 

hydrolysed polyacrylamide. This makes it impossible to determine the 

absorbance ratio A(amide I)/A(amide II) and hence the effect on the ratio of 

increasing the anionic content of the polymer from zero to 30%.

Again, the broad nature o f the bands in the spectral region between 2000 and 

1100 cm"l may be indicative of inhomogeneous broadening. This has been 

attributed to the heterogeneous environment of polymer functional groups (C=0 

and NH2 ), i.e. the large number of intra and intermolecular hydrogen bonds in 

the solid polymer.
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As with any infrared analysis, sample preparation appears to make a significant 

contribution to the infrared spectrum obtained. Indeed, differences have been 

observed between the transmission infrared spectrum of polyacrylamide evenly 

dispersed in a KBr disk as shown in figure 6.3.3.1a and the infrared ATR 

spectrum of polyacrylamide deposited onto the sampling face o f the ZnSe 

Squarecol ATR prism (figure 6.3.3.Id).

Figure 6.3.3.1d Comparison of the transmission and ATR infrared spectra 

of solid neutral polyacrylamide.
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The first point to note is that the ATR spectrum of neutral polyacrylamide is 

significantly narrower in the spectral region between 4000 and 2600 cm"l than 

in the transmission spectrum, probably due to the removal of water on drying 

the film at 65°C. Consequently, the OH stretching band at 3440 cm“l now 

appears as a high frequency shoulder to the bands at 3330 and 3190 cm~l (NH2  

antisymmetric and symmetric stretching bands). Additionally, it is interesting to 

note that the wavenumber position of the bands at 3330 and 3190 cm"l are 

unchanged from their position in the transmission spectrum of neutral 

polyacrylamide. This indicates that despite containing considerably less water, 

NH2  groups on the polyacrylamide molecules in the solid film are still involved
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in extensive hydrogen bonding (probably intra and intermolecular hydrogen 

bonds)

6.3.3.2. Adsorption of polyacrylamide onto free standing bentonite films 

The infrared spectrum of an SWy-1 bentonite film is shown in figure 6.3.2a. 

Figure 6.3.3.2a Infrared spectrum of a free standing SWv-1 bentonite film.
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In the region between 4000 and 1100 cm fl, the film has an identical spectrum to 

that of pure bentonite dispersed in a KBr disk as shown in figure 5.3.1a. 

However, due to the thickness of the film, the intense Si-0 stretching bands 

(between 1100 and 950 cm 'l) cause the spectrum to appear 'cut off. Below 950 

cm"l the OH deformation bands become observable.

None of the free standing bentonite films remained intact when immersed in 

aqueous polyacrylamide solution, regardless of the concentration or the 

molecular weight of polyacrylamide present. Not even the presence o f
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100 gdm KC1 in solution (KC1 is a flocculating agent expected to inhibit 

bentonite dispersion) could prevent the dispersion of the bentonite films. After 

immersion in solution, the films degraded and broke apart and the bentonite 

could be seen to form a flocculated gel. This could not be removed and analysed 

as a free standing film since it had essentially become a bentonite- 

polyacrylamide dispersion with a very low clay loading (between 5 and 7 mg in 

solution).

This result seems to indicate that polyacrylamide is not, by itself, a polymer 

which may rigidly stabilise clay containing shale in the wellbore. However, 

large excesses of polyacrylamide may help to form flocculated gel structures 

with dispersed bentonite which limit full bentonite dispersion. Consequently, 

polyacrylamide would be expected to contribute to the stabilisation of both the 

borehole and drilled cuttings dispersed in the drilling fluid.

6.3.3.3. Adsorption of polyacrylamide onto bentonite films supported on an 

ATR prism

Figure 6.3.3.3a shows the infrared spectrum of the silicon Squarecol ATR prism 

coated on each sampling face with an air dried bentonite film and ratioed against 

the ATR prism with clean sampling faces. The spectrum appears to be very 

similar to the infrared spectrum of the free standing bentonite film in figure 

6.3.3.2a and, hence, has the typical features and assignments of the bentonite 

infrared spectrum described in table 5.3.1. However, this spectrum has a very 

strange absorption band profile below 1500 cm~l due to intense Si-0 vibrations 

of the silicon ATR prism. Figure 6.3.3.3b shows the spectrum of the clean 

silicon ATR prism ratioed against an air background which clearly shows 'cut 

off due to the intense Si-0 absorption bands of the silicon crystal below 1500 

c m 'l
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Figure 6.3.3.3a Infrared spectrum of the silicon Squarecol ATR prism

coated with an air dried bentonite film.
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Figure 6.3.3.3b The infrared spectrum of a clean silicon ATR prism
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The intense Si-0 vibrations of the ATR prism ensure that any sample vibrations 

below 1500 cm~l (bentonite or polyacrylamide) cannot be studied using Si-ATR 

spectroscopy. This does not present a significant problem since the region 

between 1100 and 950 cm“l could not be studied anyway due to cut off by the 

intense Si-0 vibrations o f the film.

-3
The addition of 1 gdm aqueous polyacrylamide (7000k) solution to the trough

of the Squarecol cell containing bentonite coated optics has a profound effect on

the infrared spectrum of the supported bentonite film. Figure 6.3.3.3c shows the

evolution of the infrared spectra o f the supported bentonite film in the region
_2

between 4000 and 2600 cm"l on addition of 1 gdm aqueous polyacrylamide 

(7000k) solution to the trough of the Squarecol cell.

Figure 6.3.3.3c The evolution of infrared spectra after addition of 1 gdm 3 

aqueous polyacrylamide (7000k) solution to bentonite coated Si IRE. 
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The spectrum of pure water has been dynamically subtracted from the spectra 

presented in figure 6.3.3.3c to allow the polyacrylamide bands in this region to 

be analysed. The spectra contain a considerable amount of water vapour and, at 

the low absorbance levels encountered (<0.1 absorbance units), noise also 

makes a significant contribution to the spectra causing the bands to appear 

distorted. Consequently, the spectra have been stacked for clarity.

From figure 6.3.3.3c, it can be seen that the characteristic bentonite band at

3630 cm"l, which has an intensity of 0.08 absorbance units in the spectrum of

the supported bentonite film, has completely disappeared (or been reduced in

intensity to less than 0 .0 2  absorbance units where it will be masked by water

vapour) just 5 mins (the time taken to acquire the first spectrum) after addition 
-3

of the 1 gdm polyacrylamide solution.

There is no evidence of any absorption band in the 3200 cm 'l region of the 

spectrum after acquisition of the first spectrum (5 mins) following addition of 

polyacrylamide solution. However, after only a further 20 mins, a band appears 

at -3225 cm~l which is still present after 300 mins which has been assigned to 

the characteristic symmetric NH2  stretch of polyacrylamide in aqueous solution 

[235]. This band is later seen to shift to lower frequency, being found at 3203 

cm"l after 400 mins and 3190 cm~l after 500 mins. The position of this band is 

indicative of solid polyacrylamide and it may be concluded that after 500 mins 

the polyacrylamide molecules in the aqueous solution in the region close to the 

sampling face of the ATR prism are involved in extensive intra and 

intermolecular H-bonding. This seems to indicate that as the experiment 

progresses, polyacrylamide molecules assemble at the solid-liquid interface (in 

the region close to the prism sampled by the exponentially decaying evanescent 

field)
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Figure 6.3.3.3d shows the region of the infrared spectrum between 2000 and 

1500 cm"l after addition of 1 gdm aqueous polyacrylamide (7000k) solution 

to the trough of the Squarecol cell containing bentonite coated optics.

Figure 6.3.3.3d The evolution of infrared spectra after addition of 1 gdm 3 

aqueous polyacrylamide (7000k) solution to bentonite coated Si IRE.
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Again the spectra are distorted by water vapour and noise, however after 400 

mins the first evidence o f polyacrylamide can be observed by the appearance of 

the amide I and amide II bands at 1664 cm 'l and 1611 cm 'l respectively. The 

position of the amide I band is very close to its value in solid polyacrylamide 

and is indicative of polyacrylamide involved in extensive intra and inter 

molecular hydrogen bonding. These bands increase further in intensity as time 

progresses and as more polyacrylamide diffuses closer to the ATR prism and 

into the depth sampled by the evanescent field. This supports the earlier finding 

that the polyacrylamide concentration is increasing in the region sampled by the 

evanescent field, due to polymer assembly at the solid-liquid interface.
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In addition, when the cell is dismantled at the termination of the experiment 

(after 500 mins), the bentonite film is not intact on the surface o f the ATR prism 

but exists as a flocculated slurry in the trough of the Squarecol cell.

It seems likely that the evanescent field is unable to sample the interaction 

between bentonite and polyacrylamide because the bentonite platelets which 

comprise the film, are hydrated and dispersed before the polymer can interact 

with them. Consequently, bands observed in the infrared spectrum are likely to 

be due predominantly to polyacrylamide in solution and in particular 

polyacrylamide assembly at the water/Si ATR prism interface.

These findings are hardly surprising since they mirror the results obtained from 

experiments on self supporting bentonite films. The supported bentonite films in 

these experiments appear not to be rigidly stabilised by the presence of excess 

aqueous polyacrylamide solution. The water is likely to disperse the bentonite, 

indicated by the almost immediate disappearance of characteristic bentonite 

bands, before the polyacrylamide is able to interact with the bentonite. The 

polyacrylamide bands observed are likely to be due to diffusion of 

polyacrylamide into the region near the ATR prism sampled by the evanescent 

field or even adsorption of polyacrylamide at the solid-liquid interface. The 

diffusion or adsorption of polyacrylamide may be inhibited by adsorption onto 

dispersed bentonite in the solution or even adsorption of polyacrylamide onto 

the small amount of bentonite which may still reside on the ATR surface.

As in the analogous experiment using an unsupported bentonite film, it may be 

concluded that, although polyacrylamide does not rigidly stabilise the bentonite 

film, it does form flocculated gel structures with dispersed bentonite. These 

flocculated gel structures will aid the stabilisation of bentonite which comprises
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a significant proportion of the shale in the borehole and in drilled cuttings 

contained in the oil well drilling fluid.

6 .3.3.4. Adsorption of polyacrylamide onto dispersed bentonite

Although the measurement of adsorption isotherms provides information 

regarding the amount of adsorbed polyacrylamide and the adsorption 

mechanism, it does not provide information regarding the state o f the adsorbed 

layer. Consequently, infrared spectroscopy has been used in order to understand 

the interaction between polyacrylamide and bentonite in aqueous dispersion and 

the conformation of adsorbed polymer. Figure 6.3.3.4.a shows the spectral 

region between 4000 and 2600 cm"l of the infrared spectrum of the dried 

centrifuged solids from a mixed dispersion of aqueous bentonite suspension and
-3

polyacrylamide (Mw 100k) solution of concentrations 5, 3.3, and 1 gdm .

Figure 6.3.3.4a The infrared transmission spectra of dried bentonite- 

polvacrvlamide (Mw 10010 complexes at various polymer concentrations.
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The spectra of the dried solids from aqueous bentonite suspensions mixed with

aqueous polyacrylamide solutions of various molecular weight in this region is

more complicated than that of pure bentonite between 4000 and 2600 cm 'l

(figure 5.3.1b). The characteristic bentonite band at 3634 c m 'l, assigned to a

structural OH stretching vibration can be clearly observed but, in addition,

bands can also be observed at 3475 and 3393 c m 'l  These bands are most
-3prominent in the spectrum of bentonite mixed with 5 gdm polyacrylamide

solution but they may also be observed as shoulders in the spectra of dried
-3

complexes o f bentonite mixed with 1 and 3.3 gdm aqueous polyacrylamide 

solution. A shoulder can also be observed at -3250 cm 'l which has been 

attributed to the overtone of the H-O-H bending band of bentonite at 1640 cm 'l 

[34]. This band may also be observed in the spectrum of pure bentonite in the 

region between 4000 and 2600 cm 'l (figure 5.3.1b).

The bands at 3475 and 3393 cm 'l are superimposed upon spectral bands due to 

hydrogen bonded water in pure bentonite and have been attributed to the NH2  

antisymmetric and symmetric stretching modes, respectively. Their 

wavenumber position however, has been shifted considerably to higher 

frequency (the antisymmetric NH2  stretching band by 145 cm 'l and the 

symmetric stretching band by 203 cm 'l). This observation supports the findings 

o f other workers [153, 236] who observed similar shifts to higher frequency of 

the NH2  antisymmetric and symmetric stretching bands (by approximately 135 

and 225 cm 'l respectively) of acetamide adsorption on montmorillonite. 

Stutzmann and Siffert [153] attributed these large shifts to the formation of 

intermolecular hydrogen bonds and concluded that one o f the adsorption 

mechanisms of acetamide on montmorillonite was the formation o f acetamide- 

acetamide and acetamide-water hydrogen bonds.
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The conclusions o f Stutzmann and Siffert [153] seem only partially correct. The 

positions of the NH2  stretching bands, in solid polyacrylamide, are shifted to 

low frequency (3330 and 3190 cm"l) due to considerable intra and 

intermolecular hydrogen bonding as outlined in section 6.3.3.1. Bellamy [235] 

and Silverstein et al [237] both state that the NH2  antisymmetric and symmetric 

stretching bands are shifted to higher frequency as the degree of hydrogen 

bonding is reduced, i.e. in progressively more dilute solution. Indeed, Bellamy 

[235], quotes 3520 and 3410 cm"l as the wavenumber positions o f ‘free’ NH2  

stretching bands for primary amides.

The wavenumber position of the NH2  antisymmetric and symmetric stretching 

bands observed in the bentonite-polyacrylamide complex of 3475 and 3393 cm" 

1 are very close to the positions quoted for ‘free’ antisymmetric and symmetric 

NH2  stretching. Hence, although evidence of hydrogen bonding is present in the 

polyacrylamide-bentonite complex, it appears that the hydrogen bonding is not 

that which is observed in the pure solid polyacrylamide. It can therefore be 

concluded that polyacrylamide adsorption is predominantly controlled by 

hydrogen bonding between polyacrylamide and water in the interlayer space, 

and that intramolecular interactions within polyacrylamide molecules and 

intermolecular interactions between separate polyacrylamide molecules are 

significantly reduced on adsorption onto bentonite.

Figures 6.3.3.4b and 6.3.3.4c show the corresponding spectral region, between 

4000 and 2600 cm 'l, for the adsorption of polyacrylamide of molecular weight 

500k and 7000k respectively.
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Figure 6.3.3.4b The infrared transmission spectra of dried bentonite-

polvacrvlamide (Mw 500k) complexes at various polymer concentrations.

3633.84. 1478.29

,3389.74 5 gl-1 PAM (500k) 

3.3 gl-1 PAM (500k)b 0 .6.

1 gl-1 PAM (500k)

0 .2.

2935.04

0.0.

- 0 .2.

4000 3800 3600 3400 3200 3000 2800

Wavenumbers

Figure 6.3.3.4c The infrared transmission spectra of dried bentonite- 

polvacrvlamide (Mw 7000k) complexes at various polymer concentrations.
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Comparison of figures 6.3.3.4a, 6.3.3.4b and 6.3.3.4c reveals strong similarities 

between the spectra obtained for complexes prepared from polyacrylamide o f
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different molecular weight. Indeed, the shift to higher frequency of the bands 

due to NH2  antisymmetric and symmetric stretching modes shows no molecular 

weight dependence, the NH2  band shifts to higher frequency being 

approximately the same for all molecular weights (145 ± 4 cm 'l, for the higher 

frequency band, and 203 ± 2 cm 'l for the lower frequency band).

Although the spectra presented in figures 6.3.2.1a, 6.3.2.1b and 6.3.2.1c appear

very similar, one small, but significant, shift in the wavenumber position o f the

band attributed to the antisymmetric CH2  stretching mode can be observed in

the infrared spectrum (in the C-H stretching region between 3000 and 2800

cm"l) of the dried complex prepared from aqueous dispersed bentonite and 
-3

1 gdm polyacrylamide (Mw 500k) solution. This may provide evidence to 

support the anomalous adsorption behaviour of polyacrylamide (Mw 500k) onto 

bentonite.

One must first consider the adsorption of polyacrylamide (Mw 100k) onto
-3

bentonite from a 1 gdm solution. This reveals a band due to the antisymmetric

C-H stretching mode at 2936 cm"l (figure 6.3.3.4d). Indeed, the adsorption of
-3

polyacrylamide from 3.3 and 5.0 gdm polyacrylamide (Mw 100k) solutions 

also reveals bands at the same wavenumber position. Similarly, the adsorption 

of polyacrylamide (Mw 7000k) from solutions o f all concentrations also reveals 

bands due to the antisymmetric C-H stretching at 2936 cm 'l (figure 6.3.3.4e).

It should be noted that figures 6.3.3.4d and 6.3.3.4e are merely expansions of 

figures 6.3.3.4a and 6.3.3.4c, respectively.
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Figure 6.3.3.4d The infrared transmission spectra of dried bentonite-

polvacrvlamide (Mw 100k) complexes at various polymer concentrations.
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Figure 6.3.3.4e The infrared transmission spectra of dried bentonite- 

polvacrvlamide (Mw 7000k) complexes at various polymer concentrations.
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The wavenumber position of the band due to the CH2  antisymmetric stretching 

mode at 2936 cm 'l, seen in the spectra of polyacrylamide (Mw 100k and 

7000k) adsorbed on bentonite, is shifted to high frequency compared to its 

position at -2927 cm 'l in solid polyacrylamide. This may be attributed to a 

change in polyacrylamide conformation on adsorption in the interlayer space 

corresponding to a conformation in which inter and intramolecular hydrogen 

bonding is reduced.

Figure 6.3.3.4 f (an expansion of figure 6.3.3.4b) however, shows the C-H 

stretching region, between 3000 and 2700 cm 'l for dried bentonite- 

polyacrylamide (Mw 500k) complexes prepared in aqueous dispersion.

Figure 6.3.3.4f The infrared transmission spectra of dried bentonite- 

polvacrylamide (Mw 500k) complexes at various polymer concentrations.
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From figure 6.3.3.4f, it can be clearly seen that at polyacrylamide solution
-3

concentrations of 3.3 and 5.0 gdm , the band attributed to the C-H 

antisymmetric stretching mode is located at 2935 cm 'l as ^  is in the complexes
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prepared using polyacrylamide (Mw 100k and 7000k) and presumably adopts a

similar conformation. Ho wever, the position of this band in the bentonite-
-3

polyacrylamide complex, prepared from 1 gdm polyacrylamide (Mw 500k)

solution, is found at lower frequency, at 2925 cm" 1. This may be indicative of
-3

polyacrylamide (Mw 500k) adsorbed from 1 gdm solution, adopting a slightly 

different conformation on adsorption than polyacrylamide in any of the other 

complexes. The wavenumber position of this band is close to its observed 

position in solid polyacrylamide and consequently, may be related to a 

polyacrylamide conformation in which polymer chains interact. This subtle 

change in C-H stretching frequency may be indicative o f subtle differences in 

adsorbed (or trapped) polymer conformation which reflect extensive
-3

polyacrylamide-polyacrylamide intramolecular hydrogen bonding in a 1 gdm 

solution concentration, as mentioned previously.

It should be noted however, that other evidence to support this theory is difficult

to find. Indeed, X-ray diffraction traces have shown that adsorbed
-3

polyacrylamide (Mw 500k) from 1 gdm solution probably adopts a flat 

conformation (d-spacing corresponds to that of a flat polyacrylamide molecule) 

on adsorption, in the same way that polyacrylamide adsorbed at low levels in 

other bentonite-polyacrylamide complexes adopts a flat conformation. In 

addition, the position of the CH2  bending mode is shifted by 12 cm"l from its 

wavenumber position (1450 cm~l) in the spectrum of pure solid 

polyacrylamide, to 1461 cm"l on adsorption of polyacrylamide onto bentonite 

(figures 6.3.3.4g, 6.3.3.4h and 6.3.3.4i). This is indicative o f a change in 

conformation of the polymer on adsorption between the clay platelets 

corresponding to a conformation in which the number of inter and 

intramolecular hydrogen bonds is reduced. The position o f this band, it must be 

noted however, is unaffected by the concentration of polymer or polymer 

molecular weight.
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In addition, the intensity of the band at 2960 cm"l (assigned to the 

antisymmetric stretch of terminal methyl groups) appears to be strong, 

particularly compared to the intensity of bands assigned to main chain 

methylene stretching modes. This may indicate that a significant proportion of 

adsorbed polymer is composed of the low molecular weight impurities (from the 

polydisperse polyacrylamide sample). Although low molecular weight 

molecules are commonly observed to adsorb preferentially in the early stages of 

any adsorption process (due to kinetic effects such as mass transport), they are 

often displaced by higher molecular weight molecules at longer equilibration 

times, due to thermodynamic effects [100]. It appears in these experiments that, 

even at long equilibration times, the adsorption of low molecular weight 

impurities (due to polydispersity) between the bentonite platelets is significant 

for two reasons. Firstly, the adsorption of polyacrylamide has been found to be 

irreversible, and as a result, it is very difficult to displace the adsorbed low 

molecular weight fraction of the polydisperse polyacrylamide sample. Secondly, 

following the adsorption of low molecular weight polyacrylamide, the 

adsorption of subsequent larger molecules may be inhibited by flocculation; 

caused by adsorbed polymer, by the high S/L ratio and the presence of 

flocculating exchange cations.

Thus, the infrared spectra, and the adsorption isotherms may show adsorption of

low molecular weight polyacrylamide impurities. As a result, the low adsorbed
-3

amount of polyacrylamide (Mw 500k) from 1 gdm solution, may be that of 

impurities of low molecular weight polyacrylamide. Similarly, the shift in the 

position of the band assigned to the antisymmetric CH2  stretching mode may be 

attributed to the adsorption of low molecular weight material from a 

polydisperse sample. The molecular weight distribution o f these polyacrylamide 

samples have not been determined, consequently, without this knowledge, it is 

only possible to speculate as to the reasons behind these observed effects.
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Other interesting features may also be observed at lower frequency in all 

polyacrylamide-bentonite complexes, in particular in the amide I and II 

stretching region.

Figure 6.3.3.4g shows the infrared spectrum in the region between 2000 and 

1300 cm"l for the adsorption of polyacrylamide of molecular weight 1 0 0k from 

aqueous solution onto dispersed bentonite.

Figure 6.3.3.4g The infrared transmission spectra of dried bentonite- 

polvacrvlamide (Mw 100k) complexes at various polymer concentrations.
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Figures 6.3.3.4h and 6.3.3.4i shows the infrared spectrum in the region between 

2 0 0 0  and 1300 cm“l for the adsorption of polyacrylamide of molecular weights 

500k and 7000k respectively from aqueous solution onto dispersed bentonite.
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Figure 6.3.3.4h The infrared transmission spectra of dried bentonite-

polvacrvlamide (Mw 500k) complexes at various polymer concentrations.
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Figure 6.3.3.4i The infrared transmission spectra of dried bentonite- 

polyacrvlamide (Mw 7000k) complexes at various polymer concentrations.
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The first point to note from figure 6.3.3.4g is that the bands attributed to 

polyacrylamide in this spectral region are less broad and much better defined 

than they are in the spectrum of the pure solid polyacrylamide in figure 6.3.3.1c. 

The narrowing of the characteristic polyacrylamide bands in this spectral region 

is indicative o f polyacrylamide molecules existing in a more homogeneous 

environment. This implies a reduction in the inter and intramolecular hydrogen 

bonding between molecules which is observed in the solid polyacrylamide. It is 

possible to conclude that polyacrylamide is separated from itself and other 

polyacrylamide molecules in the interlayer space. This is probably due to 

adsorbed polyacrylamide adopting an uncoiled (flat) conformation on 

adsorption [11, 155]. There is no suggestion that hydrogen bonding does not 

occur in the interlayer region, however, it is likely that the predominant 

hydrogen bonding interactions would be with water molecules which exist in 

this region.

In addition, the amide I band at 1660 cm 'l in the spectrum of pure solid

polyacrylamide is shifted to 1664 cm 'l in the spectrum of complex prepared
_2

from polyacrylamide solution 1 gdm then to 1672 cm 'l in the spectra of
-3

complexes prepared from 3.3 and 5.0 gdm aqueous polyacrylamide (Mw 

100k) solution. Bellamy [235] has stated that the position of the amide I band is 

'subject to alteration when a change of state occurs in which H-bonding is 

broken [and]... variations in solution depending upon the polarity of the solvent'. 

Indeed, the position of this band has been observed at 1655 cm 'l jn sohd 

hexoamide but shifts to 1668 cm 'l 153 0  cm 'l jn concentrated and dilute 

chloroform solution, respectively, and has been observed at 1672 cm 'l jn 

methanol solution [235]. Evidently, the degree of intra and intermolecular 

hydrogen bonding in the solid is reduced on dilution in non-polar medium. 

However, the extent of the wavenumber shift o f the C =0 stretching band in a 

polar solvent (methanol) indicates the extent o f polyacrylamide-solvent
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hydrogen bonding interactions as it does in the results presented in this thesis. 

Consequently, the shift to high frequency of the carbonyl band indicates that the 

C =0 functionality is involved in fewer intra and intermolecular hydrogen 

bonding interactions within the same molecule and with other polyacrylamide 

molecules in the complex than it is in solid polyacrylamide. It can therefore be 

assumed that the polyacrylamide molecule is involved in hydrogen bonding 

interactions in the interlayer of the clay platelet but that these interactions are 

predominantly of the polyacrylamide-water type and not of polyacrylamide- 

polyacrylamide.

This is contrary to the findings of Stutzmann and Siffert [153] (acetamide 

adsorption on montmorillonite) who observed a shift to lower frequency o f the 

amide I band of acetamide (from 1670 to 1660 cm 'l) which would indicate 

increased hydrogen bonding of the acetamide in the bentonite complex than in 

the pure solid acetamide. The interpretation of the band shifts by Stutzmann and 

Siffert [153] is made more complicated by the anomalous high frequency 

position adopted by the amide I band in solid acetamide which implies few 

intramolecular interactions despite X-ray evidence to indicate it is associated 

[235].

These authors [153] also observed a shift o f the C-N stretching band from 1380

in pure acetamide to 1400 cm 'l in the acetamide-montmorillonite complex.

Although no discernible shift o f the C-N stretching band to higher frequency

can be observed in the spectrum of polyacrylamide of molecular weight 1 0 0k 
-3

adsorbed from 1 gdm aqueous solution onto dispersed bentonite (figure

6.3.3.4g), a small shift, to high frequency, in the position (~9 cm 'l)  0f  the C-N

stretching band has been observed in the spectrum of polyacrylamide of
-3 -3

molecular weight 100k adsorbed from 5 gdm and 3 gdm (figure 6.3.3.4g). A 

similar, small shift in the C-N stretching band is observed at larger adsorbed
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amounts of polyacrylamide (Mw 500k). The shift is somewhat more significant 

(-13 cm“l) for the adsorption of polyacrylamide (Mw 7000k) from all solution 

concentrations onto bentonite (figure 6.3.3.4i).

Stutzmann and Siffert [153] concluded that shifts of the carbonyl absorption 

band to lower frequency and of the C-N absorption band to higher frequency, 

coupled with the large shifts o f the NH2  stretching bands (mentioned 

previously) indicate that considerable hydrogen bonding interaction occurs 

between acetamide and itself and acetamide and water. In the results presented 

in this thesis, it appears that hydrogen bonding is the mechanism o f adsorption 

o f polyacrylamide but that the polyacrylamide-polyacrylamide interactions are 

significantly reduced from those observed in the solid polymer and that the 

predominant source o f hydrogen bonding is via polyacrylamide-water 

interactions.

Using infrared spectroscopy, Mortland and Tahoun [236] concluded that in 

acidic montmorillonite systems, protonation of amides occurs predominantly on 

the oxygen atom. The water molecules which surround the Al^+ exchange 

cations are polarised to such an extent that the protons on the water molecules 

become acidic. Mortland [114] has discussed the interaction of amides with clay 

and shown that protonation of the carbonyl functionality causes a decrease in 

the v(C=0) absorption frequency. This is not the case in the Na+, K+, Ca?+ 

mixed montmorillonite system presented here, as it is unlikely that the water 

molecules are sufficiently polarised to make them acidic [121]. Consequently, 

hydrogen bonding interactions are likely to both oxygen and nitrogen atoms of 

the amide functionality of polyacrylamide.

From figure 6.3.3.4h and 6.3.3.4i it can be seen that, for higher molecular 

weight polyacrylamide, the position of the carbonyl absorption follows exactly
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the same pattern as that observed for polyacrylamide (Mw 500k), increasing to a 

higher wavenumber position as the concentration of polyacrylamide in solution 

(the adsorbed amount of polyacrylamide on the clay) increases.

Evidence of hydrogen bonding of the NH2  functionality has been observed at 

higher frequency (shifts o f 135 and 225 cm"l o f the NH2  antisymmetric and 

symmetric stretching bands respectively are not those observed for ‘free’ NH2  

groups) and similarly, hydrogen bonding interactions may be observed due to 

shifts in band position o f the amide II band. The position of the amide II band is 

known to be highly dependent upon the physical state and concentration of the 

amide molecule [234]. Indeed, Bellamy [235] discusses the downwards shift in 

frequency of this band on dilution due to breaking of hydrogen bonds. This shift 

is in the opposite direction to that o f the NH stretching band on increasing 

hydrogen bonding. This is due to the bond becoming longer and easier to stretch 

as it forms hydrogen bonds causing the orbitals to adopt more p character which 

makes the bond more directional and harder to bend [236].

Unfortunately, it is very difficult to determine band shifts of the amide II band 

of polyacrylamide on adsorption onto bentonite, since its position in the pure 

solid polyacrylamide is so difficult to determine. In addition, the assessment of 

band shifts and changes in relative intensity becomes more confused when one 

considers that in addition to the amide I and II bands in this region, a band due 

to an H-O-H bending mode is also expected between 1650 and 1550 cm"l. 

Consequently, changes to the amide II band can not be interpreted with any 

degree of accuracy. Hence, no explanation can be given to describe the various 

observable spectral changes (band shifts and relative intensity) in this region.

The final region of interest in the adsorption of polyacrylamide from solution 

onto dispersed bentonite, is the silicate stretching region (between 1450 and 850
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cm 'l). As mentioned previously, this may be able to give some insight into the 

interaction between the polyacrylamide and the silicate lattice.

Figure 6.3.3.4j shows the infrared spectrum between 1450 and 850 cm“l of the
-3

complex prepared from bentonite suspension and 5 gdm polyacrylamide (Mw 

7000k). Also observable in figure 6.3.3.4j are the synthetic spectrum and fitted 

bands which were obtained by curve fitting. The curve fitting was performed 

using the information provided by second derivative spectroscopy and Fourier 

self deconvolution (performed using k =1.66, y =35 cm"l and a Bessel 

apodisation function). The result o f FSD and SD are shown in figures 6.3.3.4k 

and 6.3.3.41 respectively.

Figure 6.3.3.4i Transmission spectrum, synthetic spectrum and component

curve fitted bands of dried bentonite-polvacrvlamide (7000k) complex
-3

prepared from 5 gdm polyacrylamide solution.
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Figure 6.3.3.4k Fourier self deconvoluted spectrum of dry bentonite-
-3

polyacrylamide (7000k) complex prepared from 5 gdm polymer solution.
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Figure 6.3.3.41 Second derivative spectrum of dry bentonite-polvacrylamide
-3

complex prepared from 5 gdm polyacrylamide (7000k).

0.004.

1:002.

ff.ooo.

-0.002.

1 1 2 1 .5 4  -0 .0 0 2 . .1015.46 -o.oo:
-0 .004. 1 0 7 7 .1 8 -0 .0 0 1

.1049.21 -0 .0 0 4

1400 12001300 1100 1000 900

Wavenumbers

241



The positions of the main Si-0 peaks have been determined in this way for all 

the polyacrylamide-bentonite complexes. A summary of the main band 

positions of all bentonite-polyacrylamide complexes, observed by curve fitting 

procedures is shown in table 6.3.3.4a.

Table 6.3.3.4a Summary of the main Si-O band positions of all bentonite- 

polyacrylamide complexes.

Mw

(gmol l)

Cone, 

(gdm 3)

Main Si-0 band position (cm"l)

100k 1.0 1123 1078 1045 1012

3.3 1121 1078 1046 1009

5.0 1122 1077 1046 101 2

500k 1.0 1124 1078 1048 1011

3.3 1124 1076 1047 101 0

5.0 1124 1078 1047 1009

7000k 1.0 1122 1078 1048 1013

3.3 1124 1077 1048 101 0

5.0 1123 1078 1047 101 0

By comparison of the values shown in table 6.3.3.4a above with the values 

obtained for pure bentonite at room temperature (table 5.3.2b) it is clear that the 

position of all Si-0 bands are essentially unchanged in the spectra of bentonite- 

polyacrylamide complexes from that observed in pure bentonite at room 

temperature

It has been suggested that the strong binding of polyacrylamide onto 

montmorillonite exchanged with divalent cations is due to co-ordination
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complex formation between the cations and amide groups of the polymer [236]. 

This contradicts the findings of Stutzmann and Siffert [153] who describe a 

chemisorption mechanism for acetamide on montmorillonite which requires 

protonation of the amide group by polarised water in the first hydration shell of 

the exchange cation. As mentioned previously, this mechanism is unlikely in the 

natural SWy-1 bentonite used in these experiments as the water molecules in the 

first hydration shell o f Na+, K+ and Ca^+ exchange cations are unlikely to be 

sufficiently polarised to protonate the NH2  group.

It is likely that polyacrylamide, if  not directly adsorbed onto the exchange 

cation would form a water bridge (hydrogen bonding to the water of hydration 

which surrounds the interlayer cation) thus preventing the exchange cations 

from settling into the di-trigonal cavity of the silicate surface on heating to 

200°C. This may be determined by analysing the effect of heating the complex 

on the position of the transient Si-0 vibration. If the exchange cation is 

surrounded only by water, this will be removed at high temperatures 

manifesting itself as a shift to low frequency of the transient band as the cation 

settles into the di-trigonal cavity of the silicate sheet. If the polyacrylamide is 

directly bound to the cation (or bound via water bridges) then movement o f the 

cation will be restricted and the transient Si-0 band will not be shifted from its 

value quoted in table 6.3.3.4a.

Figure 6.3.3.4m shows the transmission infrared spectrum between 1450 and
-3

850 cm"l of the complex prepared from bentonite suspension and 5 gdm 

polyacrylamide (Mw 100k) at 200°C.
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Figure 6.3.3.4m Infrared transmission spectrum of dried bentonite-

polyacrylamide (100k) complex prepared from 5 gdm polyacrylamide 

solution at 200°C.
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Fourier self deconvolution (using k  = 1.70, y = 35 cm~l and a Bessel 

apodisation function) and second derivative spectroscopy was performed on the 

spectra of bentonite-polyacrylamide complexes in this region and from the 

information received from these source, curves were fitted to the spectral 

lineshape.

The positions of the main Si-0 peaks were determined in this way for all the 

polyacrylamide-bentonite complexes at 200°C and were found not to be 

changed (by more than ±1 cm~l) from the band positions in the spectrum of 

their corresponding bentonite-polyacrylamide complex at room temperature 

(table 6.3.3.4a). Large shifts to low frequency of the transient band (~ 8  cm"l) 

would be expected if  heating had caused a significant change to the complex, as 

is observed in the spectrum of pure bentonite heated to 200°C (table 5.3.2c).
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These findings support the idea that polyacrylamide adsorption is dependent 

upon the cation (either by direct co-ordination or by water bridge) which 

therefore prevents the cation settling into the di-trigonal cavity on dehydration, 

i.e. when heating to 200°C.

Figure 6.3.3.4q shows the spectral region between 4000 and 2600 cm"* of the

transmission infrared spectrum of the complex prepared from bentonite 
-3

suspension and 5 gdm polyacrylamide (100k) at 200°C.

Figure 6.3.3.4q Infrared transmission spectrum of dried bentonite-
-3

polyacrylamide (7000k) complex prepared from 5 gdm polyacrylamide 

solution at 200°C.
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Evidently, some water is removed from the complex prepared from 5 gdm 

polyacrylamide (7000k) solution at 200°C (figure 6.3.3.4q) compared to the 

spectrum of the same complex at room temperature (figure 6.3.3.4c). Removal 

o f water from this region reveals, more clearly, the NH2  antisymmetric and
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symmetric bands shifted to 3480 and 3390 cm 'l, respectively. The band at 

-3250 cm"l which may be attributable to the overtone of the H-O-H bending 

mode, still remains. Thus, partial removal of water has very little effect on the 

spectrum other than reducing the intensity o f the hydrogen bonded OH 

stretching band. This is indicative o f a strongly hydrogen bonded, highly stable 

complex.

It should be noted that in every detail the spectra of complexes prepared from
-3

polyacrylamide adsorption on bentonite in the presence of 100 gdm KC1 

solution were identical to those observed in the absence of KC1. The reasons for 

this are not wholly clear. However, it seems likely that despite reducing the 

adsorbed amount by flocculation, the partial cation exchange of K+, for Na+ 

and Ca?+ cations in the interlayer space is not significant enough to affect the 

adsorption behaviour.

6.4. Conclusions

Aqueous solutions containing polyacrylamide of various molecular weight, in 

the concentration range of interest to water based oil well drilling fluids, have 

been shown to destabilise both self supporting and supported bentonite films. 

The presence of a flocculating agent (KC1) does not improve the durability of 

the film. Consequently, the applicability of polyacrylamide as an additive to 

help stabilise the wellbore and drilled cuttings suspended in solution (both 

comprising shale whose major constituent is bentonite) is doubtful. FTIR-ATR 

spectroscopy has shown that the bentonite film is dispersed by the aqueous 

solution before polyacrylamide is able to interact with the bentonite. Although it 

does not stabilise the bentonite film, it is able to form flocculated gel structures 

with the dispersed platelets which may offer partial or enhanced stability in the 

presence of other polymer additives.
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The adsorption of polyacrylamide onto bentonite dispersed in aqueous solution 

has been studied using Kjeldahl nitrogen analysis, X-ray diffraction and 

transmission infrared spectroscopy.

The amount of polyacrylamide adsorbed on bentonite is determined by several 

factors, the most important of which, in low salinity solution, is the solid liquid 

ratio of the clay suspension since this determines the flocculation of the clay and 

therefore surface accessibility for polyacrylamide adsorption. O f lesser 

importance is the nature of the exchange cation on the clay since this also 

determines the state of bentonite dispersion. The true influence o f the nature of 

the cation has not fully emerged from these results because the clay used was 

not homoionic and adsorption in electrolyte solution (which would be expected 

to ion exchange) showed no spectral differences.

In the presence of electrolyte (KC1), adsorption is significantly reduced due to 

collapse of the electrical double layer and subsequent platelet flocculation.

Under such conditions, larger polyacrylamide molecules are inhibited from 

adsorption to a greater extent then smaller molecules.

The adsorption of polyacrylamide onto bentonite appears to increase with

molecular weight. However, the adsorption of polyacrylamide of molecular

weight 500k shows anomalous behaviour; in particular its adsorption from 
-3

1 gdm solution appears to be severely inhibited. This has been attributed to a 

critical solution concentration in which polyacrylamide molecules form 

extensive intermolecular hydrogen bonding networks. The surface requirement 

for such a network cannot be fulfilled by the clay and consequently adsorption is 

low. Significantly, the CH2  antisymmetric stretching band is shifted to lower 

frequency in the infrared spectrum of the complex prepared from this particular
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polyacrylamide solution which may reflect the unique polyacrylamide 

conformation in solution.

Polyacrylamide adsorbs onto bentonite in aqueous solution and intercalates in 

the interlayer region. The range of adsorbed amounts (increasing with increasing 

molecular weight when solution concentrations do not influence other 

adsorption processes) has given an insight into the conformation of adsorbed 

polyacrylamide between the platelets. At low adsorbed amounts, d-spacings 

predict adsorption in a flat (stretched) conformation, whereas as the adsorbed 

amount increases, then the d-spacing increases above that which corresponds to 

flat conformation and it is assumed that the number and size of loops and tails in 

the polymer chain increases. This is probably due to entrained polymer being 

trapped between the platelets when the complex is dried. A flat adsorbed layer 

of polyacrylamide has a d-spacing slightly less than that calculated from the van 

der Waals radius of an analogous molecule. This seems to suggest that 

polyacrylamide keys into the di-trigonal cavity of the silicate layer surface, 

although no other evidence has been found to support this theory.

Additional infrared analysis has shown that inter and intramolecular 

(polyacrylamide-polyacrylamide) hydrogen bonding is significantly reduced in 

bentonite-polyacrylamide complexes compared to that in pure solid 

polyacrylamide. However, amide functionalities are susceptible to hydrogen 

bonding and evidence of hydrogen bonding, likely to be o f the polyacrylamide- 

water type rather then polyacrylamide-polyacrylamide has been observed in the 

spectra of all bentonite-polyacrylamide. The narrowing of the infrared bands on 

adsorption compared to those observed in the spectrum of solid polyacrylamide 

is indicative of a reduction in the inter and intramolecular hydrogen bonding. In 

addition, shifts o f the NH2  stretching bands to higher frequency, o f the amide I 

band to higher frequency and of the C-N stretching band to higher frequency
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relative to their positions in the spectrum of solid polyacrylamide are all 

indicative of reduced polyacrylamide-polyacrylamide hydrogen bonding and 

therefore must represent polyacrylamide-water interactions.

No evidence of hydrogen bonding of polyacrylamide to the silicate surface has 

been observed. It is therefore highly likely that the polyacrylamide adsorbs via 

hydrogen bonding, the most likely of which is via a water bridge to the 

exchange cation. The reduced mobility of the exchange cation is evidenced in its 

inability to settle into the di-trigonal cavity of the silicate surface on heating. 

Indeed, the polyacrylamide-bentonite complexes formed by adsorption of 

polyacrylamide from aqueous solution onto dispersed bentonite have been 

shown to be stable up to 200°C, releasing only water from the clay at such 

elevated temperatures. This is indicative of a strongly bound complex in which 

the polymer is attached by multipoint hydrogen bonding (water bridges).
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7. ADSORPTION OF POLYALKYL GLYCOL ON BENTONITE

7.1. Introduction

Another polymer that is commonly used as an additive to water based oil well 

drilling fluids is polyalkyl glycol (PAG), the structure of which can be seen in 

figure 4.9.2a. These polymers have been added to drilling muds in concentrations 

up to 100  gdm"3 and have been found, in conjunction with other additives such as 

ionic salts (particularly KC1), to significantly inhibit degradation of shales which 

comprise the wellbore wall and drilled cuttings [1, 8 , 150, 151].

In chapter 3, the possible mechanisms by which polyalkyl glycols inhibit shale 

degradation were outlined [1, 8 , 150, 151]. Nevertheless, the interaction of 

polyalkyl glycol with clay minerals is not fully understood and the behaviour of 

polyalkyl glycol in the drilling fluid is not clear. As a result, the interactions 

between polyalkyl glycol and bentonite have been studied by immersing clay 

mineral in the form of a free standing film (since this is considered representative 

of the bentonite which forms part of underground shale deposits [1]) in aqueous 

polyalkyl glycol and aqueous polyalkyl glycol/electrolyte solutions. Some work 

has been undertaken to study the adsorption of polyalkyl glycol onto bentonite 

dispersed in aqueous suspension (as in the drilling fluid) but much o f this work has 

been covered by Rawson [3].

7.2. Experimental

7.2.1. Materials

SWy-1 bentonite was purified by sedimentation to obtain the <2pm fraction. 

Homoionic Na+, and K+ SWy-1 bentonite were prepared by the method outlined
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in section 4.9.1 and used along with purified SWy-1 bentonite in its natural state 

(without cation exchange, containing predominantly Na+, and small amounts of 

Ca2+ and K+ exchange cations, as outlined in table 4.9.1). Aqueous bentonite 

suspensions were prepared by dispersing the bentonite in deionised water and 

allowing to 'age' by stirring for 12 hours.

Polyalkyl glycol with molecular weights 600 gm oH  (tradename DCP 101), 1200 

gm oH  (tradename BREOX 50 A 50) and 1700 gm oH  (tradename BREOX 50 A 

140) were used as supplied by Schlumberger Cambridge Research. Liquid 

polyalkyl glycol was either used without dilution (pure) or diluted in water prior to 

contact with free standing bentonite films. In all experiments deionised water (pH 

7 and conductivity <20 pScm 'l).

7.2.2. Spectroscopy

7.2.2.1. Transmission - Free standing films

Free standing films were prepared by the method outlined in section 6.2.2.1. In 

each experiment, a small square (>13 mm^) weighing between 5 and 7 mg, was 

immersed in 50 cm^ of aqueous polyalkyl glycol solutions with concentrations 

100, 50, 5, 2.5 and 1 gdm"3 for the required time. The films were then dried in the 

nitrogen purge of the Mattson Polaris FTIR spectrometer. FTIR transmission 

spectra were then obtained with 4 cm"! resolution, a triangular apodisation 

function, and 100 co-added scans. These experiments were repeated dissolving 

ionic salts (NaCl and KC1) in the aqueous polyalkyl glycol solution prior to 

immersion of the bentonite film in order to obtain a final salt concentration o f 100  

gdm"3.
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1.2.22. Transmission - Aqueous dispersions

Homoionic SWy-1 bentonite-polyalkyl glycol dispersions were prepared by 

adding aqueous solutions of PAG(600) to bentonite suspension in order to obtain 

50 cm3 of mixed suspension containing, polyalkyl glycol concentrations of 50,

5.0, 2.5 and 1 gdm"3 and bentonite concentrations of 20 g d m '3 .

These dispersions were equilibrated overnight at room temperature using a rotary 

sample mixer operating at 300 rpm. The dispersions were centrifuged at 20000 

rpm and dried overnight at 40°C. The dried solids were dispersed in KBr disks and 

their transmission infrared spectrum acquired using the same conditions as 

described above.

7.2.2.3. ATR spectroscopy - Bentonite film

Bentonite films were prepared on the surface of the ZnSe Squarecol ATR prism as 

outlined in section 4.4.4. The cell was then sealed containing the bentonite coated 

ATR prism and the infrared spectrum of the supported air dried bentonite film 

acquired at room temperature. Each spectrum was acquired on a purged Mattson 

Polaris FTIR spectrometer with a resolution of 4 cm"l, a triangular apodisation 

function and 512 co-added scans.

Without removing or repositioning the Squarecol cell from the sample 

compartment of the infrared spectrometer, the trough was filled with 2  cm^ 

undiluted (pure) polyalkyl glycol (molecular weight 600 gmol"l) or polyalkyl 

glycol, (molecular weight 600 gmol“l) diluted in aqueous solution. Infrared 

spectra of the bentonite film (in contact with polyalkyl glycol solution) were 

obtained at 5 minute intervals on a Mattson Polaris FTIR spectrometer, using the 

same parameters as before.
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12.2A. ATR spectroscopy - Polyalkyl glycol

The infrared spectrum of pure (undiluted) polyalkyl glycol was obtained using 

Graseby Specac variable angle liquid ATR accessory, fitted with a 45° ZnSe ATR 

prism and a 12 pm spacer. The polymer was injected into the cell and the infrared 

spectrum acquired under ambient conditions using 256 scans at 4 cm“l resolution. 

The infrared spectra o f polyalkyl glycol diluted both with deionised water and with 

100 gdm"3 aqueous KC1 solution, were also acquired.

7.2.2.5 X-ray Diffraction

All basal spacings were measured between 4 and 20° 20 using a Phillips 1050 

diffractometer operating at 40 kV and 40 mA with Co Ka  radiation. The d-spacing 

of SWy-1 bentonite free standing films and free standing films immersed in 

aqueous polyalkyl glycol or polyalkyl glycol/KCl solution were obtained from the 

dried film on a glass slide.

7.3. Results and Discussion

7.3.1 Infrared spectroscopy of polyalkyl glycol and dilutions of polyalkyl

glycol.

Polyalkyl glycol is an EO/PO polymer, having ethylene oxide and propylene oxide 

monomeric units randomly distributed along the chain. Figure 7.3.1a shows the 

ATR infrared spectrum of pure polyalkyl glycol ratioed against a clean ZnSe IRE. 

The absorbance bands have been tentatively ascribed using the literature 

assignments (table 7.3.1a) for ethylene glycol [238] and ethylene glycol mono 

ether [150].
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Figure 7.3.1a the infrared spectrum of pure polvalkvl glycol.
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Table 7.3.1a Band assignments for polyethylene glycol.

Band position (cm"l) Assignment

3475 H-bonded v(OH)

2967 antisymmetric v(CH3 )

2932 antisymmetric v(CH2 )

2868 symmetric v(CH3 ) and v(CH2 )

1459 5(CH2), antisymmetric 5 (CH3 )

1374 w(OC2 H4)

1351 symmetric 5 (CH3 ), w(CH2 )

1324 w(CH2)

1109 v(C-O-C)

1001 various v(C-O)

957 various v(C-O)
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There is no band attributed to an OH deform ation m ode (1640-1650 cm “l ) in the 

spectrum  o f  pure polyalkyl glycol indicating that there is no water im purity present 

in the pure sample.

A lthough polyalkyl glycol has been used pure (undiluted) in som e experim ents it 

has been m ore com m only m ixed in aqueous solution and perhaps m ore 

im portantly w ith 100 gdm - -3 KC1 solution. M olecules o f  the polyalkyl glycol type 

are know n to change conform ation in the presence o f  w ater and dissolved cations 

[99]. Consequently, the infrared spectrum  o f  polyalkyl glycol on dilution in w ater 

and aqueous KC1 solution is extrem ely im portant. Figure 7.3.1b shows the infrared 

spectrum  o f  polyalkyl glycol diluted to 50% by w eight in w ater and aqueous 100 

gdm - -3 KC1 solution.

Figure 7.3.1b Infrared spectrum  of nolvalkvl glycol diluted to 50%  by weight 

in w ater and aqueous 100 gdm-^ KC1 solution.
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The spectra obviously show characteristic high intensity bands due to water. 

However, the band at 1374 cm -  ̂ (figure 7.3.1c), attributed to an v(O C) stretching 

mode o f  O C 2 H4  in pure polyalkyl glycol, is progressively shifted to higher 

frequency by ~ 8  cm - ' on increasing dilution.
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Figure 7.3.1c Frequency shift of the v(OC) band on increasing dilution.
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Graph 7.3.1c shows the shift in wavenumber position of the v(OC) band with 

increasing dilution in water. This corroborates the findings of Cliffe et al [1] who 

also noted this band shift to 1382 cm 'l on 6  % wt dilution of polyalkyl glycol in 

distilled water.

Graph 7.3.1c Shift in wavenumber position of the v(OC) band maximum with 

increasing dilution in water
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The same band shift is observed on dilution of polyalkyl glycol in the presence of 

100 gdm"3 KC1 solution. Hence, K+ ions appear to have no influence on this band 

shift. This may instead be attributed to the interaction of water with the main chain 

ether oxygen atoms.

Another significant difference between the spectrum of pure polyalkyl glycol and 

its aqueous solution can be seen between 1250 and 1000 cm"l (figure 7.3.Id). In 

this spectral region, the band attributed to C-O-C stretching in pure polyalkyl 

glycol appears to shift to low frequency on increasing dilution.

Figure 7.3.1d Infrared spectrum of the v(C-O-C) band on increasing dilution.
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Graph 7.3. Id shows the shift in wavenumber position of the v(C-O-C) band 

maximum with increasing dilution. Clearly, the 1098 cm"l band of pure polyalkyl 

glycol is shifted to lower frequency (1082 cm"l for dilution at <40% by weight).

257



Graph 7.3.1d Shift in wavenumber position of the v(C-O-C) band maximum

with increasing dilution in water

1100

1098

1096

1094

1092

1090

1088

1086

1084

1082

1080

C-O-C band position (cm-1)

0 20 40 60 80 100

PAG concentration (% wt)

The observed band shift was not affected by KC1 dissolved in solution. This effect 

is therefore associated with the hydration of the polyalkyl glycol molecule, in 

particular, the arrangement of water molecules around the ether oxygen atom. 

Indeed, the shape of graph 7.3. Id appears to be indicative o f the molecule reaching 

a maximum hydrated state between 40 and 50% by weight o f polyalkyl glycol. 

This finding is consistent with the findings of Liu and Parsons [91] who observed 

a linear increase in the chemical shift o f internal ethylene protons up to 50% by 

volume polyethylene glycol dilution in water. This was attributed to the change in 

segmental environment of the polyethylene glycol which does not change above a 

certain concentration of water. This was due to the formation of a stoichiometric 

hydrate containing three water molecules per ethylene oxide segment.

It should be noted, that the band centred at 1098 cm"l (figure 7.3.Id) in the 

spectrum of pure polyalkyl glycol contains several components. It appears to have
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a shoulder at high frequency and the half width of the band ( - 1 0 0  cm"l) seems too 

large to be that of a single absorption. The apparent shift in the wavenumber 

position of the v(COC) band may therefore be due to changes in relative intensity 

o f the bands in this region. Detailed analysis of this spectral feature using Fourier 

self deconvolution was difficult as no prior knowledge of the number of 

component bands and their half widths existed. Additionally, the second derivative 

of this spectral feature was too noisy to be of value. Consequently, curve fitting to 

allow an understanding of the nature of band shifts and/or changes in relative 

intensity was not possible.

Both the 1073 and 1098 cm~l bands in pure polyalkyl glycol appear to be 

diagnostic bands for the state of hydration o f polyalkyl glycol in aqueous solution. 

Unfortunately, the band at 1098 cm"l occurs in the same region as the strong v(Si- 

O) absorptions (between 1150 and 950 cm"l) of bentonite. Indeed, this v(COC) 

band shifts to 1082 cm~l on full polymer hydration and consequently directly 

coincides with the v(Si-O) band in pure bentonite. This will obviously 

significantly hinder the analysis of the Si-0 region of the bentonite spectrum (as 

was performed for polyacrylamide in chapter 6 ) in order to determine interactions 

of the polymer with the silicate lattice or with the exchange cations between the 

clay platelets.

7.3.2. Adsorption Isotherms

Although adsorption isotherms provide information regarding the mechanism of 

polymer adsorption on clay mineral they have not been measured for the 

adsorption of polyalkyl glycol on bentonite in this study. However, the adsorption 

isotherms for the adsorption of polyalkyl glycol (Mw 600) have been studied 

previously [1,3].
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Cliffe et al [1] measured adsorption isotherms for polyol adsorbed on to bentonite 

dispersed in aqueous solution and onto bentonite pre formed into an air-dried free 

standing film. Polyol was concluded to have a high affinity for bentonite in both 

distilled water and KC1 solution. In distilled water, comparable amounts adsorbed 

onto dispersed bentonite and bentonite films. However, adsorption was greater 

onto bentonite dispersed from aqueous KC1 solution than onto free standing 

bentonite films from polyol/KCl solution, due probably to the accessibility of the 

interlayer surface of the bentonite platelets. Rawson [3], meanwhile, concluded 

that the maximum adsorbed amount of polyalkyl glycol (Mw 600) on homoionic 

Westone-L bentonite, increased as the swelling capacity of the exchange cation 

increased, i.e. in the order Mn^^> Na~*~ >K"*" > Cs+

The adsorbed amounts quoted by Rawson [3] (~90 mg g~l clay on Na bentonite 

and 70 mg g"l clay on K bentonite) are significantly lower than those observed by 

Cliffe et al [1] (200-300 mg g"l clay from 20-30 gdm"3 polymer solution, but 

increasing linearly above this). This was attributed to washing the clay-polymer 

complexes in deionised water which would remove entrained polymer.

7.3.3. X-ray diffraction

The d-spacing of homoionic Na and K bentonite free standing films have been 

determined by X-ray diffraction. Figure 7.3.3a shows the X-ray diffraction trace 

recorded for Na and K bentonite free standing films under ambient conditions. 

Table 7.3.3a displays the corresponding d-spacings
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Figure 7.3.3a Diffraction traces recorded for Na and K bentonite free

standing films under ambient conditions
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Table 7.3.3a d-spacing of Na+ and K+ SWv-1 bentonite free standing films.

M+ SWy-1 bentonite d-spacing (A)

Na+ 12.5±0.3

K+ 11.9±0.3

The d-spacing of the K bentonite film is lower than that o f the Na bentonite film, 

due to its low hydration energy (inability to form extended hydration spheres) and 

therefore its inability to swell [6 ]. Additionally, the maximum in the diffraction 

trace for K bentonite is broad and low, indicating that the platelets were not 

perfectly aligned to produce coherent diffraction.
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7.3.3.1 Adsorption of polyalkyl glycol from solution onto Na bentonite free 

standing films

In agreement with the findings presented in chapter 6  for the adsorption of 

polyacrylamide from aqueous solution onto free standing natural bentonite films, 

immersion of films prepared from Na+ SWy-1 bentonite in aqueous polyalkyl 

glycol (Mw 600 at <5 gdm"3) caused the films to collapse. Consequently, they 

could not be retained and analysed using X-ray diffraction. Cliffe et al [1] also 

found that, for a 0.05% polyol loading in solution, the clay films disintegrated.

At higher PAG(600) loadings (50 gdm"3 or 100 gdm ~3), however, the Na 

bentonite films did not disintegrate. Films could be retrieved from these solutions 

and handled easily. This contrasts with the findings for polyacrylamide on SWy-1 

bentonite free standing films where all films disintegrated.

Cliffe et al [1] studied the adsorption of polyalkyl glycol on both free standing 

films and dispersed bentonite, whereas Rawson [3], studied only the interaction of 

polyol with Na bentonite dispersed in aqueous solution. Both, however, discuss the 

dependence of interlayer spacing on the adsorbed amount of polyol, which in turn 

is critically dependent on the polymer solution concentration. Their observed d- 

spacings around 18.1 A and 14.2A are attributed to the formation of ordered bi

layers and monolayers of polyalkyl glycol in the Na bentonite-polymer complex. 

This conclusion was based on the findings of other authors who have interpreted 

changes in d-spacings for clay-ethylene glycol [122, 123, 126] and clay- 

polyethylene glycol [117, 118, 121] complexes in the same way. Figure 7.3.3.1a 

shows the diffraction trace of the Na bentonite film after being placed in 100 and 

50 gdm-3 polyalkyl glycol (Mw 600) and table 7.3.3.1a displays the d-spacings 

obtained from each diffraction trace.
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Figure 7.3.3.1a Diffraction trace of stable Na bentonite films, immersion in

100 and 50 gdm"3 polvalkvl glycol (Mw 600) solution.
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Table 7.3.3.1a d-spacing of Na bentonite films, intact, after being placed in 

100 and 50 gdm~3 polvalkvl glycol (Mw 600) solution.

PAG(600) concentration (gdm~3) d-spacing (A)

100 .0 18.1 ±0.2

50.0 18.2±0.2

It is interesting to note that these diffraction traces contain two higher order 

reflections and smooth intense maxima. This is indicative of highly ordered clay 

samples in which the c-axis (the axis of the basal spacing) are all oriented in the 

same direction.
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A d-spacing o f -18  A corresponds to the formation of two layers o f PAG(600) 

between the bentonite platelets. A basal spacing of 17.6A in the X-ray diffraction 

trace of an air dried stable natural bentonite film immersed in 5% PAG(600) has 

been reported [1], which is slightly lower than reported here. It is noticeable, 

however, that further drying of the films by placing the film over P2 O5 [1], caused 

a slight decrease of the basal spacing to 17.5 A. Consequently, it might be assumed 

that although the films used in this study have been dried in a nitrogen purge, they 

were stored under ambient conditions and placed in a diffractometer whose 

humidity level was not controlled. They may therefore have adsorbed water. 

Changes in relative humidity are known to affect the basal spacings of EG treated 

clay samples [128] so slight variations in humidity may account for the range of d- 

spacing observed for a 2  layer organic complex.

Clearly, in the absence of any other components in solution (see later), the 

formation of an organic bi-layer is imperative to the stabilisation of Na bentonite 

films in aqueous solutions of polyalkyl glycol. The formation of an organic bi

layer is related to the number of moles of polyalkyl glycol per unit volume of 

solution and to the concentration of bentonite (defined by the film weight).

In order to establish the effect of polyalkyl glycol concentration, the stabilisation 

o f Na bentonite films has also been evaluated in aqueous polyalkyl glycol 

solutions o f higher molecular weight, i.e. PAG(1200) and PAG(1700). Since at the 

same weight concentration, the number of moles per unit volume o f higher 

molecular weight material offered to the clay film will be lower.

Figure 7.3.3.1b displays the diffraction trace of the only stable film prepared in 

polyalkyl glycol of higher molecular weight, that being at a solution concentration 

o f 100 gdm- 3 PAG(1200).
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Figure 7.3.3.1b Diffraction trace of the stable Na bentonite film, after

immersion in 100 gdm"3 polvalkvl glycol (Mw 1200) solution.
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Again the bentonite platelets were well ordered and separated by ~ 8.0A (d- 

spacing 17.9A). This is again due to the formation o f a polymer bi-layer between 

the platelets.

Na bentonite free standing film could not be stabilised in solutions containing 

PAG(1700), even at concentrations of 100 gdm"3 by weight. This confirms the 

conclusions of Cliffe et al [1] that Na bentonite film stabilisation is related to the 

number o f moles of polyalkyl glycol per unit volume of solution. Table 7.3.3.1b 

shows the number of moles of polyalkyl glycol per unit volume at each 

concentration of each molecular weight.

265



Table 7.3.3.1b Number of moles of polvalkvl glycol per unit volume at each

concentration of each molecular weight.

Concentration 

PAG (gdm"3)

No o f moles o f PAG per unit volume present by 

molecular weight (moldm"3)

Mw 600 Mw 1200 Mw 1700

100 .0 1 .6x 10-!* 8.3xl0-2* 5.9x10-2

50.0 8.3xl0-2* 4.2x10-2 2.9x10-2

5.0 8.3xl0 -3 4.2x10-3 2.9x10-3

2.5 4.2x10-3 2.1x10-3 1.5x10-3

1.0 1.7x10-3 8.3xl0 -4 5.9xl0 -4

* Indicates Na bentonite film stability

Allowances must be made for slight variations in film weight for different 

experiments but it appears that there is a critical minimum number of moles o f 

polyalkyl glycol per unit volume of solution which is required to stabilise 5-7 mg 

Na bentonite films. This concentration is approximately 0.08 moldm"^

There are many factors which might explain this observation. One plausible 

explanation is the role played by the functional groups (either the number of OH 

end groups or OCH2 CH(CH3 ) main chain ether oxygen atoms) on the polyalkyl 

glycol chain. It should be noted that 0.08 m oldnr^of PAG(600) will have the same 

number of OH end groups as 0.08 moldm"^ of PAG(1200) or 0.08 

moldm'3 of PAG(1700). This might indicate a critical number of OH end groups 

required to facilitate film stabilisation. However, an almost identical species, 

polyethylene glycol (Mw 600 gmol"l) with OH end groups but OCH2 CH2  main 

chain ether oxygen atoms instead does not stabilise the bentonite film in similar 

immersion experiments [1]. Additionally, other polyols without OH end groups
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have also shown similar shale inhibitive action [1]. It therefore seems likely that 

the OH end groups are not important in the adsorption process.

The number of ether main chain oxygen atoms would not appear to explain this 

minimum critical number of moles of polymer per unit volume in solution since 

0.08 moldin'^ o f PAG(600) will have the same number of OH end groups as 0.08 

moldin'^ of PAG(1200) but only half as many OCH2 CH(CH3 ) ether main chain 

oxygen atoms. Hence, the most likely explanation is that, in the absence o f other 

components in solution, the critical polymer concentration is related to the number 

o f moles of polyol per unit volume of solution which are required to form a bi

layer between the platelets which will stabilise the film. These polymer layers may 

then restrict water molecules from forming extended hydration shells around the 

exchange cation thus preventing dispersion.

Although the influence of polymer concentration (moles per unit volume) in 

solution seems beyond doubt, many other factors may also influence the stability 

o f bentonite free standing films. One such factor could be the relative rates of 

polymer adsorption. Large organic molecules may have lower diffusion rates in 

solution, consequently, the rate of adsorption will depend upon the molecular 

weight and the concentration of polymer species in solution. Hence, the larger 

molecules may require more time to adsorb which allows the bentonite platelets, 

which comprise the free standing film, to be hydrated and disperse, thus 

facilitating film rupture.

7.3.3.2 Adsorption of polyalkyl glycol from dilute solution onto K bentonite free 

standing films

The nature of the exchange cation is also extremely important to the stabilisation 

of the free standing films by polyalkyl glycol in solution. Evidence o f this can be
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found in a small contradiction between the results of Cliffe et al [1] and the results 

presented here. In these findings, films immersed in 5 gdm~3 (corresponds to 0.5% 

by weight) PAG(600) disintegrated. However, Cliffe et al [1] using the same 

polymer found films immersed at the same concentration to be stable. It is possible 

that the clay films used by Cliffe et al [1] contained significantly less clay solids 

than those used in this study and consequently, the PAG(600):clay loading ratio 

increased above the critical level which is required to stabilise the Na bentonite 

film. However, the size of films and hence mass of clay used in immersion tests 

[1] were not dissimilar to those used in these studies. A likely explanation for the 

contradiction is that their experiments [1] were performed on natural bentonite 

(without cation exchange, containing predominantly Na+ but also lower amounts 

of Ca2+ and K+ cations). The experiments presented here however, were 

performed on homoionic Na+ exchanged SWy-1 bentonite. The presence of small 

amounts of K+ and Ca^+ cations may critically affect the stabilisation mechanism. 

Indeed it was shown [1] that adsorption of PAG(600) onto K+ exchanged clay 

produced stable films in PAG(600) solutions at concentration as low as 1% by 

weight.

These experiments have been repeated and, indeed, K+ homoionic bentonite films 

are stable in PAG(600) solution at concentrations of 50, 5 and 1 gdm"3 (5, 0.5 and 

0.1 % by weight). The diffraction traces of K bentonite films immersed in 50, 5 

and 1 gdm“3 PAG(600) solutions are shown in figure 7.3.3.2a. Table 7.3.3.2a 

displays the d-spacings obtained from each diffraction trace.
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Figure 7.3.3.2a Diffraction trace of stable K bentonite films, immersion in

PAG(600) solutions.
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Table 7.3.3.2a The d-spacing of stable K bentonite films, after being placed in 

PAG(600) solutions.

PAG(600) concentration (gdm"3) d-spacing (A)

50.0 17.510.3

5.0 17.110.5

1.0 16.611.0

The stability of homoionic K+ exchanged bentonite films in the presence of 

PAG(600), far exceeds that of homoionic Na+ exchanged bentonite films for the 

same solution, being stable in PAG(600) solution at concentrations >1 gdnrA
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In each film the interlayer has been swollen by adsorption of the polyol resulting 

in d-spacings corresponding to the formation of an organic double layer in the 

interlayer spacing at the two higher concentrations. These d-spacings for the 

double organic layer are slightly lower than those observed for polyol adsorbed in 

the interlayer o f Na bentonite films (~18A). This is probably due the lower 

hydration energy of the K+ ion and therefore its inability to hydrate easily, thus 

preventing water adsorbing between and swelling the layers as it might in the Na 

bentonite. At the lowest concentration however, there is probably both single and 

double layer complexes formed. This results in a broad maxima whose position 

has a large error associated with it, existing between that corresponding to a purely 

single or purely double polymer layer complex. It is unlikely to be due to either a 

hydrated single layer complex (K+ would probably not hydrate sufficiently), or a 

coiled polymer conformation (flexible, linear, nonionic polymers tend to uncoil on 

adsorption [11], adsorbing as flat layers). Figure 7.3.3.2a also shows that the 

platelets are disordered compared with the corresponding Na bentonite films. This 

may be related to the inability of the K bentonite to swell sufficiently to allow easy 

access for the adsorbing polymer. Broad diffraction traces for complexes between 

PAG(600) and various homoionic bentonites have revealed two basal spacings at 

approximately 18.0 and 14.2 A on heating [3]. This corresponds to mixed 

complexes containing organic mono- and bi-layers between the platelets. It 

appears that the stabilisation of the K bentonite film does not require the polymer 

to form two organic layers between the platelets (as appears to be necessary in 

homoionic Na bentonite).

Cliffe et al [1] also identified the importance of K+ exchangeable cations in the 

stabilisation of K+ homoionic bentonite films by adsorption of PAG(600) from 

distilled water. The values of d-spacing quoted by Cliffe et al [1] were lower than 

those presented here, increasing from 13.8, to 15.2 A, as the adsorbed amount 

increased from 17 to 28% by weight (corresponding to solution concentrations of
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<5 gdm"3 and >40 gdm"3). The most likely explanation is that in this study, mixed 

mono- and bi-layer complexes are formed (the influence of rehydration in the 

natural humid atmosphere is not likely to cause such large discrepancies). Cliffe et 

al [1] determined that the stability of the K bentonite-PAG(600) complex 

corresponds to the formation of a monolayer between the clay platelets, denoted by 

the diffraction peak at approximately 14.5A and that K+ inhibited the formation of 

two layer complexes. Indeed, the complex formed comprising a polymer bi-layer 

was not observed [1]. This contradicts the findings presented here where at all 

concentrations of PAG(600), evidence of mixed mono- and bi-layer complexes in 

the K bentonite film could be observed. The reason for this is not entirely clear but 

may be due to incomplete K+ cation exchange in the bentonite used in this study. 

The presence of small amounts of Na+ might allow the clay platelets to swell 

slightly more than if only K+ cations were present, and hence will allow slightly 

more polymer to be adsorbed. The K bentonite used it should be noted however, 

had only a negligible K+ content (table 4.9.1).

The effect of the exchange cation is nowhere more noticeable than in the 

adsorption of poly alkyl glycol of higher molecular weight onto K bentonite films. 

Na+ homoionic bentonite films disintegrated when immersed in solutions of 

PAG(1700) at concentrations between 1 and 100 g d m 'A  However, when K+ 

homoionic films are contacted with PAG(1700) in a comparable concentration 

range, all remain in tact. The diffraction traces of K bentonite films immersed in 

PAG(1700) solutions of concentrations between 1 and 50 gdm"3 are shown in 

figure 7.3.3.2b. Table 7.3.3.2b displays the d-spacings obtained from each 

diffraction trace.
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Figure 7.3.3.2b Diffraction trace of stable K bentonite films, after immersion

in PAG(1700) solutions.
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Table 7.3.3.2b d-spacing of stable K bentonite films, after immersion in 

PAG(170(n.

PAG(1700) concentration (g d m '3 ) d-spacing (A)

50.0 18.110.2

5.0 17.510.2

2.5 18.010.2

1.0 18.110.2

These d-spacings all correspond to the formation of two polymer layers in the 

space between the K bentonite platelets, again in contradiction of the influence on 

d-spacing of K+ as stated by Cliffe et al [1]. The traces observed in figure 7.3.3.2b 

are comparable to the traces obtained for the adsorption of PAG(600) onto Na

Intens ty (counts s-1)
50 gl-1 PAG(1700)/K film

_^rz.5 gl-1 PAG(1700)/K film 

1 gl-1 PAG(1700)/K film

1 5 gl-1 PAG(1700)/K film
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bentonite films (figure 7.3.3.1a) which are much more smooth, narrow and intense, 

than those obtained from the adsorption of PAG(600) onto K bentonite films 

(figure 7.3.3.2a) due to the orientation of platelets.

The shape o f the diffraction traces may be indicative of a particular mechanism of 

adsorption. The ability of the bentonite platelets to stack directly on top of each 

other may be a function of the rate or ease of polymer adsorption. This depends on 

both the molecular weight of the polymer (faster for the lower molecular weight 

polymer than the higher molecular weight polymer) and the nature of the 

exchangeable cations (less impedance to adsorption when Na+ are present than K+ 

ions are present due to their relative swelling abilities).

Firstly, consider the K+ exchanged bentonite; the K+ ion can not easily hydrate 

and form extended hydration shells so adsorption between the platelets is more 

difficult than for the Na+ exchanged bentonite as the clay will swell less. 

Consequently, the lower molecular weight polymer will diffuse quickly to the clay 

and adsorb quickly before dispersion is possible hence the mixed mono- and bi

layer complexes. However, the higher molecular weight polymer will diffuse more 

slowly to the clay allowing the bentonite more time to hydrate and disperse 

allowing easy access to the polymer resulting in bi-layer complexes only.

Now consider the Na+ exchanged clay; Na+ ions hydrate easily so only at high 

concentrations of low molecular weight polymer will adsorption occur quickly 

enough to prevent full dispersion of the platelets and hence, stabilise the film. 

Indeed, when the higher molecular weight polymer is used (even at high 

concentrations) the rate of diffusion to the clay is too slow to prevent dispersion 

and film rupture.
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7.3.3.3 Adsorption of polyalkyl glycol from dilute solution onto Na bentonite 

free standing films in the presence of electrolyte.

The presence of electrolyte in solution also affects polyalkyl glycol adsorption. 

Cliffe et al [1] proved in the presence of 7% KC1 that the nature of the 

exchangeable counter cation is important in the stabilisation of bentonite films. 

Identical results were observed to those they had witnessed for the adsorption of 

PAG(600) from distilled water onto homoionic K bentonite films. Similar 

experimentation presented here (using 10% by weight KC1), showed general 

agreement with the results reported by Cliffe et al [1]. Figure 7.3.3.3a shows the 

diffraction traces o f Na bentonite films immersed in PAG(600) solutions of 

concentrations between 1 and 50 gdm"3 containing 10% KC1. Table 7.3.3.3a 

displays the d-spacings obtained from each diffraction trace.

Figure 7.3.3.3a Diffraction trace of stable Na bentonite films, after immersion 

in PAG(600V10% KC1 solutions.
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Table 7.3.3.3a d-spacing of stable Na bentonite films, after immersion in

PA G (600yi0%  KC1 solutions.

PAG(600) concentration (gdm"3) d-spacing (A)

50.0 17.7±0.3

5.0 14.3+0.3

2.5 14.1±0.3

1.0 13.8+0.5

All Na bentonite films contacted with >1 gdm"3 PAG(600)/10% KC1 solutions, 

remained intact. At concentrations >50 gdm"3 PAG(600) adsorbs into the 

interlayer region of the Na bentonite and forms a bi-layer complex which stabilises 

the clay film which was not observed by Cliffe et al [1]. However, at solution 

concentrations <5 gdm "3, PAG(600) adsorbs and forms a mono-layer complex 

which stabilises the Na bentonite film. This in contrast to the previous findings 

where, in the absence of KC1, all Na bentonite free standing films were only 

stabilised by forming two layer complexes at concentrations >50 gdm"3 

PAG(600).

It is not surprising that the adsorption of PAG(600) onto Na bentonite in the 

presence of KC1 exhibits behaviour similar to that o f PAG(600) adsorption onto K 

bentonite films. Rawson [3] concluded that K+ ions in solution will exchange for 

those on the clay and that the presence of PAG(600) enhances the exchange of K+ 

for Cs+ ions on the clay. Hence, in these results, it seems likely to assume that, in 

the presence of KC1, exchange of K+ for Na+ will occur and consequently the Na 

bentonite film will adopt many of the characteristics of a K+ exchanged film. 

Indeed, the diffraction traces are not very intense with ill defined maxima, similar 

to those of adsorption of PAG(600) onto K+ exchanged bentonite films (figure
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7.3.3.2a). However, the d-spacings observed for the adsorption onto Na bentonite 

from PAG(600)/KC1 solution (except at a solution concentration of 50 gdm "3) are 

slightly lower than those observed for the adsorption of PAG(600) onto K+ 

exchanged bentonite films (table 7.3.3.2a). This is indicative of the formation of 

only single layer polyol complexes in the interlayer region whereas mixed mono- 

and bi-layer complexes were observed in the adsorption directly onto homoionic 

K+ exchanged bentonite films. This may be due to an enhanced flocculating effect 

on the clay of excess of KC1 in solution. This limits clay swelling so there is 

limited adsorption although the film is still stabilised. The formation of a bi-layer 

organic complex on a Na bentonite film from a 50 gdm_3 PAG(600)/10% KC1 

solution is less easy to explain but it may be an indication of the relative abilities 

of the lower molecular weight polyol, at this high concentration, and K+ to enter 

the interlayer space. It would seem likely that at such high concentrations the 

PAG(600) is able to quickly adsorb and hence form the two layer complex, before 

the system has been able to cation exchange significantly.

The adsorption of PAG(1700) onto Na bentonite films from KC1 solution was 

studied to determine the effect of molecular weight on the adsorption 

characteristics in the presence of electrolyte. Figure 7.3.3.3b shows the diffraction 

traces of Na bentonite films immersed in PAG(1700) solutions of concentrations 

between 1 and 100 g d m “3. Table 7.3.3.3b shows the d-spacings from each trace.
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Figure 7.3.3.3b Diffraction trace of stable Na bentonite films, after immersion 

in PAG(1700yi0% KC1 solution.
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Table 7.3.3.3b The d-spacing of stable Na bentonite films, after immersion in 

PAGQ70Qyi0% KC1 solution.

PAG(1700) concentration (gdm "3) d-spacing (A)

50.0 15.8+0.5

5.0 15.5+0.5

2.5 15.2±0.6

1.0 13.8+1.0

Again, this result is unique, since in the absence of KC1, Na bentonite films were 

not stable in solutions of PAG(1700) at concentrations <100 gdm "A  The position 

of the maxima and shape of the traces are quite unlike those observed in figure 

7.3.3.2b for the adsorption of PAG(1700) onto K bentonite films, being more like

Intensity (counts s-1)
1 gl-1 PAG(1700)/KCl/Na film

2.5 gl-1 PAG(1700)/KCl/Na film

50 gl-1 PAG(1700)/KCl/Na film 

^ 5 gl-1 PAG(1700)/KCl/Na film

pure Na bentonite film
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those observed for the adsorption of PAG(600) onto K bentonite films (figure 

7.3.3.2a).

In order to explain the results, firstly, consider the d-spacing of 13.8A seen in the 

trace of the Na bentonite film immersed in 1 gdm"3 PAG(1700)/KC1. The position 

of the maximum appears to be quite normal, corresponding to the formation of a 

single layer organic complex in the interlayer region. However, it appears to have 

quite a significant shoulder which is likely to correspond to the d-spacing of the 

natural unswelled clay. This indicates that a significant proportion of interlayer 

regions do not contain adsorbed polymer and therefore that complete formation of 

a single polyol layer between all the clay platelets in the film is not required for the 

film to remain robust and intact.

Secondly, consider the d-spacing observed between 15.2 and 15.8A in the traces of 

films contacted with PAG(1700) solution at concentrations, >2.5 gdnrA  These 

traces are broad, indicative of disoriented platelets and hence the difficulty of 

obtaining uniform adsorption in the presence of a highly flocculating environment. 

The d-spacings observed are not indicative of a dehydrated two layer complexes 

(which would be expected to have larger interlayer spacings around 17.0-17.5A). 

Nor are they due to the formation of a coiled polymer layer between the platelets, 

since polymers of this type (flexible, linear, nonionic) are known to uncoil and 

adsorb in a flat conformation [11]. The more likely explanation is that each 

maximum corresponds to mixed one and two layer organic complexes. If  these 

samples were to be heated as per Rawson et al [3], a d-spacing of approximately 

14.4A, corresponding to a single layer organic complex, might be observed as the 

second layer, considered to be more weakly bound [3], is removed. This work has 

not been performed here but the results would be interesting since the second layer 

in the complex formed in aqueous suspension can easily just sit between platelets.
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In the case of adsorption onto bentonite films however, the polymer has to actively 

invade the interlayer region and therefore might be more strongly bound.

The shape and position of the traces (figure 7.3.3.3b) reflect the rate o f PAG(1700) 

adsorption, K+ cation exchange and the flocculating effect of the electrolyte 

solution. It appears that, using the higher molecular weight polymer in the 

presence of KC1 does not degrade the film stability over the range of 

concentrations studied although it does seem to diminish its ability to adsorb. This 

is might due to both its slower rate of diffusion and the restriction to its adsorption 

in the confined space between the platelets in the presence o f highly flocculating 

K+ ions.

Although the influence of the K+ ion is beyond doubt it is unclear whether the 

cation exchange of K+ for Na+ ions is the sole contributory factor in this 

stabilisation process or whether the presence of an excess of electrolyte in solution 

was also influential on the adsorption and stabilisation mechanism. Cliffe et al [1] 

believed that it was the specific interaction between K+ and the polyol and not any 

salinity effects which enhanced the film stabilisation. Hence, the effect of 

electrolyte on the adsorption process was determined by using 10% NaCl as the 

flocculating electrolyte. Figure 7.3.3.3c displays the diffraction traces and table 

7.3.3.3c lists the d-spacings obtained for the adsorption o f PAG(600) onto Na 

bentonite films from solutions containing 10% by weight NaCl.
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Figure 7.3.3.3c Diffraction trace of stable Na bentonite films, after immersion

in PAG(600yi0% NaCl.
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Table 7.3.3.3c d-spacing of stable Na bentonite films, after immersion in 

PAG(600V10% NaCl.

PAG(600) concentration (g d m '3 ) d-spacing (A)

50.0 17.4±0.2

5.0 17.6±0.2

2.5 17.4±0.2

1.0 17.8+0.2

Clearly, NaCl has a profound effect on the stability o f the Na bentonite films. In 

the absence of it (and other flocculents), bentonite films were only stable at 

concentrations >50 gdm'A However, in its presence, films were stable in solutions 

>1 gd m _3 PAG(600). Clearly, the presence of a flocculating electrolyte in solution,
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regardless of its type, significantly increases the stability of Na bentonite films 

contacted with PAG(600). The d-spacings observed (17.4-17.8A) are in good 

agreement with those observed by Cliffe et al [1] in the presence of 1 molar NaCl 

and correspond to adsorption of the polyol and formation of a two layer complex 

between the platelets.

These results, however, differ from those obtained for the adsorption o f PAG(600) 

onto Na bentonite films in the presence of KC1 (figure 7.3.3.3a). The d-spacings 

are larger and the traces are smooth and intense and show higher orders of 

reflection, all indicative of the relative ease of adsorption. It is known that Na+ 

ions are more easily hydrated than as K+ ions and consequently the extent to 

which the clay platelets can separate in the presence of Na+ ions will be that much 

greater so film stability will be compromised. This seems more likely when one 

considers that the shape of diffraction traces obtained in the presence of Na+ ions 

alone are smooth and highly intense whilst the shape of diffraction traces obtained 

in the presence of K+ ions are broad and weak. This is indicative o f the inability of 

the K+ ions to allow swelling and hence hinder adsorption to give poorly oriented 

films and the ability of Na+ ions to swell, allow adsorption and give well oriented 

films. It is noticeable that only one set of diffraction data for complex formation in 

the presence of K+ ions showed intense smooth traces (figure 7.3.3.2b). These 

traces were for the adsorption of PAG(1700) onto K+ exchanged bentonite without 

electrolyte solution. The ability of this system to swell may be due to the slower 

adsorption of the higher molecular weight polyol.

The stabilisation and resultant structure of the stable film is related to the polyol, 

the exchange cation and the presence of electrolyte. Consequently, given the key 

parameters of a system such as nature of exchange cation, nature and concentration 

of electrolyte and the nature, concentration and molecular weight o f polyol, 

stabilisation may be predicted.
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7.3.3.4 Kinetics of adsorption of polyalkyl glycol from dilute solution onto 

homoionic Na bentonite in the presence of electrolyte.

The adsorption of polyalkyl glycol onto free standing bentonite films has been 

studied by constraining several variables (such as molecular weight and nature of 

exchangeable cation) but keeping the time of immersion in the polyalkyl glycol 

solution to 12 hours (described as an overnight experiment). These experiments 

provide valuable information regarding the long term stability of the clay films 

under various conditions, however, little mechanistic information can be obtained. 

This information may be obtained by immersing individual Na+ exchanged 

bentonite films in 50 gdm"3 polyalkyl glycol (with 10% wt KC1) solutions for 

various times.

The high and low molecular weight polyols are studied separately as the kinetics 

for the two are likely to be slightly different. Firstly, consider the kinetics of 

adsorption of PAG(600) from solution onto Na bentonite free standing films.

Figures 7.3.3.4a and 7.3.3.4b show the diffraction traces for Na bentonite films 

after immersion in 50 gdm"3 polyalkyl glycol (Mw 600)/10% KC1 solution for 

times <30 minutes, and >60 minutes, respectively. Table 7.3.3.4b lists the 

corresponding d-spacings for Na bentonite films after immersion in the solution.
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Figure 7.3.3.4a Diffraction trace of Na bentonite films, intact, after immersion

in 50 gdm"3 polyalkvl glycol (Mw 600)710% KC1 for short times.
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Figure 7.3.3.4b Diffraction trace of Na bentonite films, intact, after immersion 

in 50 gdm"3 polyalkvl glycol (Mw 6001710% KC1 for long times.
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Table 7.3.3.4b The d-spacing of Na bentonite films, intact after immersion in

50 gdm~3 polyalkvl glycol (Mw 600V10% KC1 for all times.

Time of contact (hrs) d-spacing (A)

0.03 14.1±0.6

0.08 14.0±0.6

0.25 14.4±0.5

0.5 14.9±0.5

1.0 15.9+0.4

2 .0 16.0±0.4

12.0 17.5±0.4

As time progresses, the interlayer separation of the Na bentonite film increases 

indicative of an increase in the amount of adsorbed polyalkyl glycol in the 

interplatelet region. All the diffraction traces are broad and weak, symptomatic o f 

the PAG(600)/K+ system and is attributed to the inability of the K+ to form 

extended hydration spheres (its inability to swell the clay) and the effect o f a 

strongly flocculating electrolyte which inhibits the adsorption process.

After only two minutes immersion of the film in the PAG(600)/10% KC1 solution, 

the diffraction maximum can be found at 14.1 A indicating formation of the single 

layer organic complex within two minutes of immersion. The speed at which this 

occurs is not surprising since if the adsorption process took any longer it would 

probably enable the Na bentonite to swell and disperse causing the film to 

disintegrate. In the diffraction trace of Na bentonite film immersed in 

PAG(600)/10% KC1 for 2 minutes however, that there is a noticeable shoulder, the 

exact position of which can not be elucidated however, there are several 

explanations for its existence. One is that it corresponds to the unswelled Na
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bentonite and therefore that the complex formed is a mixed zero and single organic 

layer system. Stable, mixed zero and single layer complexes have been observed 

previously in the adsorption of PAG(600) onto a K bentonite film from a very low 

concentration polymer solution (section 1332) .  Other explanations such as the 

shoulder corresponding to the d-spacing of dehydrated Na bentonite (<1 2 .5 A) or to 

the d-spacing of cation exchanged bentonite (K+ for Na+) in the interlayer 

( ~ 1 1.9A) are however no less plausible. The thermodynamic driving force for 

adsorption is by the desorption of water molecules from the clay [11] and cation 

exchange is a process is thought to occur, and indeed be enhanced, in the presence 

o f PAG(600) [3].

Interestingly, after 2 minutes immersion the d-spacing does not increase 

dramatically although the shoulder does seem to disappear. In fact, up to 15 

minutes immersion time, the d-spacing only increased to 14.4A. This probably 

indicates a consolidation of the one layer complex as the polyol offered to the clay 

co-ordinates to available sites on the clay by continued displacement of adsorbed 

water.

Beyond immersion times of 15 minutes there is a slow increase in the d-spacing as 

the second layer adsorbs between the clay platelets. This second layer intercalates 

much more slowly than the first indicating that this process is controlled only by 

the rate of diffusion of the polymer throughout the system whereas the formation 

of the initial layer is much faster and has a much stronger driving force (entropy). 

This may account for the findings of Rawson [3] that the second layer is much 

more weakly bound than the first. It should be remembered that the stability of the 

second layer in complexes formed between PAG(600) and pre-formed Na 

bentonite films is not known but might be expected to be more stable than 

observed in complexes formed in aqueous suspension as the polymer has to 

physically adsorb between the platelets rather than just be trapped there by drying.
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There appears to be no real thermodynamic driving force for the adsorption of a 

second layer o f polyalkyl glycol between the platelets of the film. This probably 

explains the unwillingness o f systems containing K+ to form bi-layer complexes 

as easily as they are formed when the system contains only Na+ ions. The Na+ 

ions will swell easily so that when sufficient polymer is offered to the clay it is 

able to intercalate easily. K+ however, does not swell the clay as easily as Na+ and 

hence after adsorption of the first organic layer it becomes difficult to fully adsorb 

a second. Hence, many mixed mono- and bi-layer complexes are observed when 

polyalkyl glycol is adsorbed to bentonites in the presence of K+.

This is extremely useful mechanistic information, however, as the molecular 

weight of the polyalkyl glycol used is low the adsorption process is too fast to be 

observed by these crude experiments and the key adsorption mechanism of the first 

layer can not be observed. As a result, by using PAG(1700) it is possible to slow 

the adsorption process down sufficiently to observe the formation o f the first 

organic layer and therefore elucidate the adsorption mechanism. This assumes that 

the adsorption mechanism in each case is the same (which is not unlikely).

Figures 7.3.3.4c and 7.3.3.4d display the diffraction traces obtained from Na 

bentonite films after contacting with 50 gdm"3 polyalkyl glycol (Mw 1700) 

solution containing 10% KC1 for times up to 30 minutes and over 60 minutes, 

respectively. Table 7.3.3.4d shows the change in d-spacing with time for this 

system
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Figure 7.3.3.4c Diffraction trace of Na bentonite films, intact, after immersion

in 50 gdm"3 polyalkvl glycol (Mw 1700) 710% KC1 (short times).
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Figure 7.3.3.4d Diffraction trace of Na bentonite films, intact after immersion

in 50 gdm"3 polyalkvl glycol (Mw 1700) /10% KC1 (long times).
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Table 7.3.3.4d The d-spacing of Na bentonite films, intact after immersion in

50 gdm"3 polyalkvl glycol (Mw 1700) 710% KC1 for all times.

Time of contact (hrs) d-spacing (A)

0.08 1 1 .6±0 .6

0.25 11.9, 14.4±1.0

0.5 12.0, 14.7±0.8

0.75 11.8, 14.8+0.6

1.0 12.2, 15.6±0.6

2 .0 12.2, 16.1±0.5

12.0 16.1±0.3

These 'time of immersion' results show some similarities with those in figures 

7.3.3.4a and 7.3.3.4b for the adsorption of low molecular weight PAG under 

similar conditions. As immersion time increases, the interlayer separation 

increases from 12.5A in pure Na bentonite to 16.1 A (most likely due to a mixed 

single and double layer complex) after immersion of the Na bentonite film for 12 

hours. The diffraction traces are broad and of low intensity, a trait, it appears, of 

adsorption of polyalkyl glycol in the presence of KC1.

There are, however, several differences from those results observed in figures 

7.3.3.4a and 7.3.3.4b. Firstly, the Na bentonite film immersed for 2 minutes in the 

PAG(1700)/10% KC1 solution was not stabilised and consequently disintegrated 

when attempts were made to retrieve it. This, it would seem, is indicative o f the 

slower diffusion rate o f the higher molecular weight polymer in solution compared 

to the lower molecular weight polymer and therefore its inability to stabilise the 

film quickly enough to prevent disintegration. The lower molecular weight 

polymer, stabilised the film within 2  minutes.
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The second major difference from the results seen for the lower molecular weight 

system, is that no immediate jump to higher d-spacing, indicative o f polymer 

adsorption between the platelets is observed in the diffraction traces. In fact, quite 

the opposite occurs and a drop in d-spacing to 1 1 .6A is observed. This value is 

lower than that observed in homoionic Na bentonite and may be attributed to the 

dehydration of the outer hydration shells o f the Na+ exchange cations in the 

interplatelet region by the polyalkyl glycol molecule and the subsequent collapse 

of the platelet spacings. This is not unsurprising since as explained in the literature 

[117, 118, 121], the driving force for adsorption of glycols to clay minerals is the 

removal of water from the interlayer region between the clay platelets. It might 

also be due to cation exchange of K+ for Na+ in the interlayer region since a d- 

spacing of 11.6A is quite similar to that observed for homoionic K bentonite 

(direct exchange of one cation for the other would result in a drop in the d- 

spacing). It should be noted that whilst the observed diffraction maxima are 

attributed to the 11.6A spacing, there is some PAG(1700) adsorption indicated by 

the long wing to the diffraction trace at low 2 0  values.

This dehydration or cation exchange process is probably almost instantaneous 

(occurs inside 2  minutes) however, subsequent adsorption of the polymer will 

depend upon the molecular weight. The low molecular weight polymer had clearly 

adsorbed after 2 minutes however, even after 15 minutes immersion in PAG(1700) 

the d-spacing is only 11.9A, again attributable to dehydration of hydrated Na+ 

cations or cation exchange of K+ for Na+ in the interlayer space. After 15 minutes, 

a clear shoulder can be observed which corresponds to a d-spacing between 

approximately 14 and 15A and is attributable to the formation of the first organic 

layer between the platelets. As the time of immersion increases then a diffraction 

maximum corresponding to a d-spacing of 14.7A can be observed (after 30 

minutes). This is the d-spacing of the one layer complex and becomes more 

prominent as the amount of polymer adsorbed between the clay platelets increases
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with time. The position of this maximum then shifts to correspond to larger d- 

spacings as the time of immersion increases up to a maximum d-spacing of 16.1 A 

after 12 hours immersion. It is not clear whether this is a shift in band position or a 

change in the relative intensity o f the maxima as the shoulder at 1 2 .0A reduces in 

intensity. Either way, it indicates that polymer adsorbs between all the platelets in 

the film when sufficient time is allowed for adsorption to occur. The position of 

the observed d-spacing after 12 hours immersion of Na bentonite films in 

PAG(1700)/10% KC1 solution has previously been attributed to the formation o f a 

mixed single and double layer organic complex in the interplatelet region.

It is interesting to note that the shoulder attributed to either dehydrated Na 

bentonite or K+ exchanged Na bentonite can still be seen in the diffraction trace of 

a Na bentonite film immersed for 2 hours in PAG(1700)/10% KC1 solution 

although it can not be seen in the diffraction trace of the film immersed for 12 

hours. It appears that the clay immediately dehydrates or exchanges cations in 

readiness for the adsorption of polyalkyl glycol and if the delay before adsorption 

is too long the system will be able to rehydrate and the film will be unstable.

These experiments do not fully explain the adsorption mechanism, however, the 

reduction in the interlayer spacing, either by loss of water or cation exchange (K+ 

for Na+) on contact with polyalkyl glycol is beyond doubt. Further 

experimentation using various combinations of polyalkyl glycol, exchange cation 

and electrolyte would give a deeper insight to the actual adsorption mechanism.
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7.3.4. Transmission infrared spectroscopy

X-ray diffraction provides a useful insight into the adsorption behaviour of 

polyalkyl glycol under a variety of conditions. FTIR spectroscopy may be used to 

complement this to give information regarding actual interactions and adsorption 

mechanism.

7.3.4.1 Homoionic Na+ and K bentonite free standing films

The infrared transmission spectrum of homoionic bentonite free standing films 

(Na+ and K+) are shown in figure 7.3.4.1a. They are very similar to the spectrum 

of natural bentonite (without cation exchange) free standing film shown in figure 

6.3.3.2a.

Figure 7.3.4.1a Infrared transmission spectra of free standing films of Na+ 

and K+ exchanged bentonite.
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It should be noted, that each film used will have different thicknesses and 

consequently will have differing intensities (reflecting the amount of clay material 

placed in the spectrometer beam). In order to compare the infrared spectra obtained
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from different films, it is important to normalise the relative intensities of 

particular spectral features against a spectral feature which is a characteristic of the 

clay and not expected to change from film to film or experiment to experiment.

The feature used in this study against which bands are normalised is the band at 

3630 cm"l attributed to the structural OH stretching modes, since the intensity of 

this band should be indicative of the amount of bentonite present. Possible 

problems with using this band have been raised. In chapter 5, the dehydration of 

bentonite by heating to 200°C, reduced the intensity o f the band at 3630 cm’l  

This was attributed to the removal of water and subsequent settling of the 

exchange cation into the di-trigonal cavity of the silicate layer surface. However, 

this effect is not expected to be significant in these experiments since the 

adsorption of glycol (see later) and the dehydration mechanism are thought to 

involve the exchange cation, which, as a result, will remain in the interlayer space, 

and be prevented from settling into the di-trigonal cavity (chapter 5). As a 

consequence, negligible reduction in the intensity of the band attributed to 

structural OH (at 3630 cm"l) should be observed. Table 7.3.4.1a shows the 

variation in absorbance ratios A(3630)/A(3440) and A(3630)/A(1640) of the bands 

in Na+ and K+ exchanged bentonite.

Table 7.3,4.1a Absorbance ratios A(3630VAf3440) and A(3630VA(1640) of the 

bands in Na+ and K+ exchanged bentonite.

absorbance ratio Na+ SWy-1 

bentonite

K+ SWy-1 bentonite

3630/3440* 1.5 3.1

3630/1640* 2.4 3.6
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The wavenumber position of the bands attributed to the hydrogen bonded OH 

stretching modes and the H-O-H bending mode are quite complicated. The band 

maximum centred around 3440 cm"l is composed of several bands due to the 

antisymmetric and symmetric OH stretching vibrations o f interlayer water [34] and 

is found at 3406 cm'^ in Na+ SWy-1 bentonite and at 3431 cm"^ in K+ SWy-1 

bentonite. Similarly the position of the band at -1640 cm"! varies depending upon 

the degree of bound and adsorbed water [34] (bound water resides in the inner 

hydration sphere) and is found at 1636 cm"^ and 1638 cm“  ̂ in Na+ SWy-1 and K+ 

SWy-1 respectively. Table 7.3.3b displays these assignments following Bishop et 

al [34].

Table 7.3.4.1b Band assignments for molecular water in the infrared 

spectrum of bentonite after Bishop et al 1341.

Band position (cm 'l) Assignment

-3620 V3 antisymmetric stretch (bound)

3550-3520 v\  symmetric stretch (bound)

-3450 V3 antisymmetric stretch (adsorbed)

3400-3350 V] symmetric stretch (adsorbed)

-3250 2 v2  H-O-H bending overtone

-1650 V2  H-O-H bending (adsorbed)

1617-1630 V2  H-O-H bending (bound)

Both the v\  and V2  bands are highly dependent on the nature of the cation [34]; v j 

shifting to lower frequency and V2  shifting to higher frequency with increasing 

polarising strength of exchange cation. Consequently, the wavenumber positions 

of both spectral features is a complex balance between the amount of adsorbed 

water and the nature o f the exchange cation. It is with this complexity in mind that
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infrared spectroscopy has been used to help determ ine the nature o f  the 

interactions occurring betw een polyalkyl glycol and hom oionic N a and K 

bentonite free standing films.

7.3.4.2 A dsorption o f  polyalkyl glycol from  dilute solution onto N a bentonite 

free standing films

Free standing N a bentonite film s form  two layer organic com plexes w hen 

stabilised by PA G (600) at solution concentrations >50 gdm~3 (table 7.3.3.1b). 

Figures 7.3.4.2a and b show  the transm ission infrared spectra o f  stable N a 

bentonite free standing film s follow ing im m ersion in 100 and 50 gdm '3  PA G  (M w  

600) solutions.

Figure 7.3.4.2a Infrared  spectra of stable Na bentonite films, after immersion 

in 100 and 50 gdm~3 polyalkyl glycol (Mw 600) solution.
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Figure 7.3.4.2b Infrared spectra of stable Na bentonite films, after immersion

in 100 and 50 gdm~3 polyalkvl glycol (Mw 600) solution.
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Comparison of the spectra obtained from a homoionic Na bentonite free standing 

film before and after immersion in PAG(600), shows that the immersed films have 

been significantly dehydrated. Theng [11] explained the entropic gain associated 

with the displacement of water from the clay mineral surface on adsorption of 

neutral polymers. The entropic gain incurred from the displacement of water 

associated with the polymer (section 7.3.1) should also not be forgotten as a 

possible driving force for adsorption. Table 7.3.4.2b displays the absorbance ratios 

A(3630)/A(3440) and A(3630)/A(1640) from the infrared spectra of Na+ 

exchanged bentonite films, intact after being immersed in 100 gdm"3 and 50 gdm" 

3 PAG(600) solution.
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Table 7.3.4.2b Absorbance ratios from FTIR spectra of stable Na bentonite

films after immersion in 100 and 50 gdm~3 PAG(600) solution.

absorbance ratio 100  gdm“3

PAG(600)

50 gdm"3 

PAG(600)

3630/3440* 3.0 3.1

3630/1640* 6 .0 5.7

3630/2932 0.5 1.0

*The actual positions of the spectral maxima around 3440 and 1640 cm 'l are 

related to the extent o f hydration and consequently, the bands are shifted from their 

positions in Na bentonite at 3406 cm"l and 1636 cm"l, respectively.

Both absorbance ratios A(3630)/A(3440) and A(3630)/A(1640) are significantly 

increased from their values in a Na bentonite film prior to immersion (1.53 and 

2.38 respectively). This increase in the absorbance ratios A(3630)/A(3440) and 

A(3630)/A(1640) may be attributed solely to the removal of adsorbed water.

The removal of water from the clay by adsorption of polyalkyl glycol has been 

reported previously in this thesis and also by Cliffe et al [1] in the infrared spectra 

o f polyol treated clay films and by Rawson [3] in the NMR study of clay-polyol 

suspensions. The dehydration of clay minerals by ethylene glycol [122, 123, 125] 

and polyethylene glycol [117, 118, 121] has been observed by many workers. 

However, experiments presented later in this chapter will give strong indications 

as to possible mechanisms and rates of water removal when contacted with 

polyalkyl glycol solutions at various concentrations.

It is interesting to initially study the effect of PAG(600) adsorption on the Na 

bentonite films alone. Previously, it was observed (figure 7.3.3.1a and table 

7.3.3.1a) that PAG(600) adsorbed onto Na bentonite films from aqueous solution
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stabilised the film, only at concentrations >50 gdm'A The complex formed in this 

adsorption process had a d-spacing o f -18.1 A corresponding to two organic layers 

adsorbed between the platelets.

As mentioned, the positions of the spectral maxima associated with OH stretching 

modes and H-O-H bending modes are related to the extent o f hydration. In the 

spectrum of the Na bentonite film immersed in 100 gdm~3 PAG(600) solution, the 

spectral maximum in the OH stretching region appears to be shifted, being found 

at -3464 cm "l. This particular region of the spectrum is too complex to determine 

the exact position of individual spectral bands. As a result, band shifts may occur 

but they are likely to be apparent shifts due to changes in the relative intensity of 

all the bands in this region as water is removed in the dehydration process.

One explanation for this apparent band shift is that dehydration, by the desorption 

of adsorbed water [34], on adsorption of the polyalkyl glycol molecule, causes the 

band maximum to be predominantly influenced by the antisymmetric and 

symmetric stretching vibrations of bound water [34], at 3620 and between 3550 

and 3520 cm"l. Consequently, changes in relative intensities cause an apparent 

shift to high frequency. It should be noted however, that in the presence of 

PAG(600), which itself has OH end groups and therefore a band, associated with 

the OH stretching mode, at 3475 c m '1, the position of the spectral maximum may 

be shifted to higher frequency. The position of this band would not be expected to 

change from that in pure polyalkyl glycol as no evidence exists [1] that OH end 

groups are involved in the interaction of polyalkyl glycol onto bentonite. This v 

(OH) band associated with the polyol would make a more significant contribution 

to the spectral intensity as the influence of molecular water is reduced by 

dehydration of the clay) and consequently, shifts to high frequency o f this spectral 

maximum may be observed.
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As the Na bentonite films immersed in 50 and 100 g d m '3  PAG(600) solution both 

formed organic bi-layer complexes, it might be expected that their infrared spectra 

would be similar. However, the position of the spectral maximum associated with 

OH stretching modes is observed at lower frequency in the spectrum of the Na 

bentonite film immersed in 50 gdm"3 PAG(600) solution, being found at 3372 cm" 

1 compared to 3406 cm“l in the spectrum of the Na bentonite film prior to 

immersion.

These observed effects are likely to be related to the amount o f adsorbed polyalkyl 

glycol as indicated by the absorbance ratio, A(3630)/A(2932) shown in table 

7.3.4.2b. For 100 gdm"3 PAG(600) a much lower absorbance ratio 

A(3630)/A(2932) is observed than for 50 gdm"3 PAG(600). This is indicative, as 

expected, of increased PAG(600) adsorption onto the Na bentonite film from the 

solution of higher polymer concentration. Despite both systems forming two layer 

organic complexes, the complex prepared from the lower concentration, 50 gdm"3, 

PAG(600), solution contains less adsorbed polymer and more adsorbed water than 

that prepared from the 100 gdm"3 PAG(600) solution. It appears that when 

insufficient polymer is available to fully co-ordinate to sites around exchange 

cations in the interlayer space, the remaining co-ordination sites are filled by re- 

adsorbing water. The idea of re-hydrated organic double layers was established in 

section 7.3.3.1 where lower than expected d-spacings were attributed to low 

humidity and drying.

Stabilisation did not occur on immersion of Na bentonite films in < 5 gdm"3 

PAG(600) solutions. This is due to the low solution concentration o f polymer 

which restricts the amount of adsorbed polymer, thus enabling water to re-hydrate 

the system to such an extent it caused film degradation.
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Additionally, at lower frequency (figure 7.3.4.2b) there is a shift of the band 

associated with the H-O-H bending mode, from 1636 cm~l in Na bentonite 

spectrum prior to immersion, to 1658 cm"l in the spectra of the films stabilised in 

50 and 100 gdm"3 PAG(600). This is not due to bands associated with PAG(600) 

(the spectrum of PAG(600) does not have bands in this region), hence it must be 

due entirely to environmental changes of the water in the interlayer. In homoionic 

Na bentonite the band attributed to the H-O-H bending mode has an absorption 

band associated with it at -1650 cm~l (due to adsorbed water [34]) and an 

absorption band between 1617-1630 cm"* (associated bound water [34]). 

Consequently, a shift to low frequency would be expected on dehydration. Indeed, 

dehydration o f clay by heating does cause a shift to lower frequency of this 

particular maximum [34]. However, hydrogen bonding interactions between 

PAG(600) and water in the interlayer causes a stiffening of the bending mode thus 

causing the band shift to high frequency. As explained earlier, bound water can 

still be observed in the infrared spectra of Na bentonite films immersed in 

PAG(600). This would appear to indicate that the adsorbed polyalkyl glycol 

interacts directly with the water bound to the exchange cation via a water bridge as 

postulated by Cliffe et al [1]. Other water observed in the infrared spectra of 

PAG(600) treated Na bentonite films is likely to be predominantly that of re

adsorbed water, filling co-ordination sites which have not been occupied by 

adsorbed polymer.

This adsorption mechanism gives a significant indication towards the mechanism 

of film (and therefore wellbore stability). At high PAG(600) concentration in 

solution ( - 1 0 0  gdm"3) there is sufficient adsorbed polymer to fill most or all the 

co-ordination sites around the cation (these sites being bound water molecules) to 

prevent re-hydration of the cations and dispersion of the platelets. At lower 

PAG(600) concentrations in solution (-50 gdm"3) there is sufficient polymer 

adsorption to fill enough co-ordination sites to prevent extensive cation hydration
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(although rehydration is observed). Again the Na bentonite film is not dispersed 

and is stable. However, in <5 gdm"3 PAG(600) concentration solution there is 

insufficient polymer adsorption to fill the co-ordination sites around the exchange 

cation (inner sphere bound water) which will not prevent extensive cation 

hydration. As a result, the bentonite platelets become dispersed and the film is 

unstable.

Further evidence o f the extent of re-hydration o f the interplatelet region following 

PAG(600) being adsorbed in the interlayer can be observed in the spectral region 

between 1420 and 1300 cm~l. Figure 7.3.4.2c shows the infrared spectrum of Na 

bentonite films intact after contact with 100 and 50 gdm~3 PAG(600) solution, in 

this region.

Figure 7.3.4.2c Infrared spectra of stable of Na bentonite films after 

immersion in 100 and 50 gdm"3 polyalkvl glycol (Mw 600) solution.
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When both films are removed from solution (wet) and placed in the spectrometer, 

the wavenumber position of the band attributed to the v(OC) band of polyalkyl 

glycol is at 1381 cm"l. This is the position it would be expected to be seen in a
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10% by weight dilution of PAG(600) in deionised water. When the films are dry 

the position of the band is shifted to lower frequency, depending upon the 

concentration of PAG(600) in solution, being found at 1377 and 1375 cm~l in the 

spectra of Na bentonite films contacted with 50 gdm"3 and 100 

gdm"3 PAG(600) solutions, respectively. It was shown previously (section 7.3.1) 

that the v(OC) band shifted to higher frequency on increasing dilution of polyalkyl 

glycol in deionised water and 100 gdm"3 KC1 solution. Hence, as the films dry, 

loosely adsorbed water is displaced, and the polyalkyl glycol molecule experiences 

fewer PAG-water interactions and more PAG-PAG interactions. Despite both 

systems having two organic layer between the platelets, the Na bentonite film 

contacted with 100 gdm“3 PAG(600) shows more PAG-PAG interactions than in 

the Na bentonite film contacted with 50 gdm"3 PAG(600) (which conversely 

shows more PAG-water interactions). This indicates that when less polymer is 

offered to the clay, less adsorbs, consequently, water is then able to re-hydrate the 

system and swell the clay.

Cliffe et al [1] used this band shift to show that interactions between PAG(600) 

chains in the interlayer become significant as they adsorb and become oriented and 

concentrated between the platelets. These weak interactions were partially 

attributed to the stabilisation observed, as PEG(600) did not exhibit similar results 

and does not exhibit the same stabilisation traits.

In the absence of other components, the stabilisation of Na bentonite films by 

higher molecular weight polyalkyl glycol was only previously observed (figure 

7.3.3.1b) using 100 gdm"3 PAG(1200). The infrared spectra obtained were very 

similar to those observed in the infrared spectrum of a Na bentonite film immersed 

in a 50 gdm'3 solution of PAG(600). This is attributed to the number of moles of 

polyalkyl glycol per unit volume in each solution being the same (both solutions 

contain 0.08 moldm"3, table 7.3.3.1b). It is possible that this particular number of
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moles per unit volume is approximately the minimum number required in solution 

to stabilise the film against rehydration. Re-adsorption of water does occur but not 

sufficiently to disperse the Na+ platelets and destabilise the film. In the presence 

of PAG(1700) it would appear that insufficient moles of polymer were present per 

unit volume of solution to adsorb and stabilise the film.

7.3.4.3 Adsorption of polyalkyl glycol from dilute solution onto homoionic K 

bentonite free standing films

Homoionic K bentonite films have been shown to be stabilised by PAG(600) 

solutions (section 7.3.4.2) over the whole range of polymer concentrations (>1 

gdm"3). The infrared spectra of these stable films are shown in figures 7.3.4.3a and 

7.3.4.3b. Table 7.3.4.4b shows the variation of the absorbance ratios

A(3630)/A(3440), A(3630)/A(1640) and A(3630)/A(2932) in these spectra.

Figure 7.3.4.3a Infrared spectra of K bentonite films, intact after being 

placed in polvalkvl glycol (Mw 600) solution.
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Figure 7.3.4.3b Infrared spectra of stabilised K bentonite films after being

placed in polvalkvl glycol (Mw 600) solution.
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Table 7.3.4.3b Absorbance ratios from the infrared spectra of bands in stable 

K bentonite films, after immersion in PAG(600) solution.

absorbance ratio 50 gdm"3 

PAG(600)

5 gdm"3 

PAG(600)

1 gdm“3

PAG(600)

3630/3420 12.9 7.5 5.0

3630/1640 9.6 8.4 6 .6

3630/2932 1.5 1.8 3.3

*The actual position of these bands is dependent upon the extent of dehydration.

As the solution concentration of PAG(600) increases, so the adsorbed amount 

increases, as determined by the decrease in the absorbance ratio A(3630)/A(2932). 

The d-spacings observed for these systems (figure 7.3.3.2a) also increased with 

increasing polymer solution concentration from a 16.6A (mixed single and double 

layer complex), up to 17.5A (double layer complex) at the highest solution 

concentration. Similarly, as the adsorbed amount increases, the extent of
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dehydration of the clay increases, as determined by the increasing absorbance 

ratios A(3630)/A(3440) and A(3630)/A(1640).

The position of the spectral maximum attributed to hydrogen bonded OH (figure 

7.3.4.3a) is found at higher wavenumber (3471 cm 'l) in the spectrum of the K 

bentonite film contacted with the highest concentration (50 g d m '3 ) of PAG(600) 

solution, compared to 3431 cm"l in the spectrum of K bentonite prior to 

immersion. This is very similar to the spectrum of Na bentonite immersed in 100 

gdm"3 PAG(600) in figure 7.3.4.2a and can therefore be attributed to the removal 

o f adsorbed water enabling the spectral maximum to be dominated by the presence 

o f bound water at higher wavenumber.

The position of this band however, is found at lower wavenumber (3420 cm"l) in 

the spectrum of K bentonite films contacted with 5 and 1 gdm"3 PAG(600) 

solution. This band position is lower in frequency than observed in the spectrum of 

K bentonite prior to immersion and is similar to that observed for the Na bentonite 

film stabilised in 50 gdm"3 PAG(600). Again this is likely to be due to slight 

rehydration of the clay after polymer adsorption (but not to the same extent as was 

observed previously) despite forming only mixed one and two organic layers 

between the platelets.

Unfortunately, the exact adsorbed amounts in each case have not been calculated 

but it appears that the stability of the K bentonite to re-hydration is not dependent 

on the formation of two organic layers between the platelets [1] and that even at 

low PAG(600) solution concentrations (1 gdm"3) re-hydration is possible without 

destabilising the bentonite film. This is clearly due to the inability of the K+ 

exchange cation to form extended hydration shells and hence, its reduced ability to 

cause interplatelet swelling compared to Na+ cations.

304



Band shifts are also observed at lower frequency. In the spectrum  o f  the K 

bentonite film  im m ersed in 50 gdm"3 solution o f  PA G (600), the position o f  the 

band attributed to the H -O -H  bending m ode is found at higher w avenum ber (1667 

cm “l)  than in a hom oionic K  bentonite film  prior to im m ersion (attributed to the 

hydrogen bonding o f  the polyalkyl glycol m olecule to the prim ary hydration 

sphere surrounding the exchange cation). As the concentration o f the solution into 

w hich the K bentonite film  is im m ersed is reduced, then the position o f  the band is 

found shifted less from  its position in the hom oionic K  bentonite. This is attributed 

to re-adsorbed w ater occupying unfilled co-ordination sites and dom inating this 

spectral region. The extent o f  rehydration o f  the interlayer region, can also be 

follow ed by studying the position o f  the v(O C) band betw een 1420 and 1300 c m 'l  

(figure 7.3.4.3c).

Figure 7.3.4.3c Infrared  spectra of stabilised K bentonite films after 

immersion in polvalkyl glycol (Mw 600) solution.
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In figure 7.3.4.3c, (the spectra o f  N a bentonite film s contacted with polyalkyl 

glycol o f  m olecular weight 600), as the concentration o f  PA G(600) in solution 

increases, then the v(OC) band shifts to lower frequency in the spectrum  o f  the
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stabilised film. Again, this indicates an increase in the number of PAG-PAG 

interactions (and consequent decrease in the number of PAG-H2 O interactions) as 

the polymer concentrates between the clay platelets, i.e. as the amount adsorbed 

(solution concentration) increases and as the extent of re-hydration is inhibited.

The influence of molecular weight may be analysed and the infrared spectra of K 

bentonite films stabilised in PAG(1700) solutions are shown in figures 7.3.4.3d 

and 7.3.4.3e. In the spectra of the K bentonite films immersed in the PAG (1700) 

the polymer dehydrates the clay as can be clearly seen in the absorbance ratios 

A(3630)/A(3440) and A(3630)/A(1640) in table 7.3.4.3e.

Figure 7,3.4.3d Infrared spectra of stabilised K bentonite films after being 

placed in polvalkvl glycol (Mw 1700) solution.
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Figure 7.3.4.3e Infrared spectra of K bentonite films, intact after being

placed in polvalkvl glycol (Mw 1700) solution.
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Table 7.3.4.3e Absorbance ratios from the spectra of stabilised K bentonite 

films after immersion in polvalkvl glycol (Mw 1700) solutions.

absorbance ratio 50 gdm"3 

PAG(1700)

5 gdm"3 

PAG(1700)

2.5 gdm“3 

PAG(1700)

1 gdm"3 

PAG(1700)

3630/3440* 10.0 9.5 5.5 3.44

3630/1640* 12.7 9.5 8.2 4.5

3630/2932 1.1 1.0 1.6 1.7

*The actual position of these bands is dependent upon the extent o f dehydration.

As expected, the absorbance ratio A(3630)/A(2932) decreases with increasing 

solution concentration of PAG(1700), i.e. as the amount o f polymer adsorbed on 

the clay increases and concurrently, the extent of dehydration increases.

In the infrared spectrum of the K+ exchanged bentonite film immersed in the 

highest concentration (50 gdm"3) PAG(1700) solution, the position of the spectral
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maximum in the hydrogen bonded OH stretching region is at 3397 cm"l. This is 

much lower in frequency than observed for a K bentonite film prior to immersion 

or a K bentonite film immersed in PAG(600). It is actually closer to the value 

observed (3373 cm"l) in figure 7.3.4.2a for aN a bentonite stabilised in 50 gdm"3 

PAG(600) solution. This is due to significant rehydration of the complex. 

However, in the presence o f K+ interlayer cations, the film is less able to disperse 

and destabilise than it is when Na+ counter cations are present, consequently, the 

clay film is stable, despite the presence of a considerable amount o f re-adsorbed 

water. Similarly, in the spectrum of a K bentonite film immersed in lower 

concentration solutions (1 gdm~3) of PAG(1700) the band maximum is located at 

3356 cm"l, again attributable to re-adsorbed water. This is even lower than 

observed in the spectrum of Na bentonite film immersed in 50 gdm~3 PAG(600) 

and is probably due to the slower rate of adsorption of the higher molecular weight 

polyol which does not inhibit re-adsorption as effectively as the lower molecular 

weight polyol. It should be noted that despite the presence of a significant amount 

of re-adsorbed water, the film remains stable which, as before, is attributable to the 

low swelling capacity o f the K+ exchangeable cation.

In figure 7.3.4.3e, the absorption band attributed to the H-O-H bending mode has 

been significantly reduced in intensity and is very broad, containing both bound 

and adsorbed water corroborating the findings of the higher frequency region. The 

position of the maximum (although quite difficult to pinpoint exactly) appears to 

have been shifted to slightly higher wavenumber (1649 cm“l) in all cases. This is 

indicative of a stiffening of the H-O-H bending mode due to the interaction of 

PAG(1700) with bound water surrounding the exchange cation.
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7.3.4.4 Adsorption of polyalkyl glycol from dilute solution onto Na bentonite 

free standing films in the presence of electrolyte.

Electrolyte in solution, and in particular the nature of the electrolyte in solution, 

has a significant influence on the adsorption process (section 7.3.3.3 and [1]). 

Immersed Na bentonite films in all PAG(600) solutions were stabilised in the 

presence of 10% KC1. Obviously, the presence of 10% KC1 solution whether by 

virtue of its strongly flocculating effect and/or by cation exchange with Na+ on the 

clay appears to have a profound effect on the adsorption of PAG(600) forming a 

two layer organic complex with a Na bentonite film at a 50 gdm~3 solution 

concentration and a single layer complex at lower solution concentrations, <5 

gdm "3. The infrared spectra of these complexes are shown in figures 7.3.4.4a and 

7.3.4.4b. Table 7.3.4.4b clearly shows both the increase in adsorbed amount 

(decrease in A(3630)/(2932)) and the increase in the dehydration o f the clay 

(increases in A(3630)/A(3440) and A(3630)/A(1640)) with increased solution 

concentration.

Figure 7.3.4.4a Infrared spectra of stabilised Na bentonite films after 

immersion in polvalkvl glycol (Mw 600V10% KC1.
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Figure 7.3.4.4b Infrared spectra of stabilised Na bentonite films after

immersion in polvalkvl glycol (Mw 600)710% KC1.
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Table 7.3.4.4b Absorbance ratios from the infrared spectra of stable Na 

bentonite films, after immersion in PAG(600V10% KC1 solution.

absorbance ratio 50 gdm-3 

PAG(600)

5 gdm~3 

PAG(600)

2.5 gdm"3 

PAG(600)

1 gdm~3 

PAG(600)

3630/3440* 9.8 8.4 5.9 6 .0

3630/1640* 26.1 14.6 12.7 1 1 .2 .0

3630/2932 1.9 2.9 3.0 3.4

*The actual position of these bands is dependent upon the extent o f dehydration.

From figure 7.3.4.4a, it is clear that the shift in the band maximum associated with 

the various hydrogen bonded OH stretching modes in Na bentonite following 

immersion in PAG(600)/10% KCl solutions is approximately the same (3448 cm"l 

±3 cm"l), regardless of the polymer concentration. This is not at nearly so high a 

frequency (3463 cm“l) as observed for Na bentonite immersed in 100 gdm_3 

PAG(600) but at a much higher frequency than observed for Na bentonite
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immersed in 50 gdm'3 PAG(600) (3372 cm 'l) as seen in figure 7.3.4.2a.

Evidently, KC1 helps stabilise the film even at low PAG(1700) solution 

concentrations. The resultant spectra appear to exhibit features more like those 

observed for Na bentonite immersed in 100 gdm"3 PAG(600) in which re

hydration by water adsorbing onto unfilled co-ordination sites is very limited. 

However, this is not at quite as high a frequency as observed in the infrared 

spectrum of K bentonite films immersed in 50 gdm~3 PAG(600) (figure 7.3.4.3a) 

where the observed value was 3471 cm 'l, but at much higher frequency than 

observed in 1 gdm'^ PAG(600) (figure 7.3.4.3a) where the observed value was 

3420 cm 'l. Clearly, the influence of K+ cations is again in evidence but this result 

also shows the effect o f having a large excess o f flocculating electrolyte in solution 

which collapses the electrical double layer and impedes clay swelling.

The position of this band reflects the dehydration of the bentonite followed by 

adsorption of a single polyalkyl glycol layer via a water bridge to the first 

hydration sphere surrounding the exchange cations. The stability o f this complex 

will then depend upon the subsequent inhibition to re-hydration o f the interlayer 

region, whether by virtue o f the formation of a second organic layer between the 

clay platelets, by partial cation exchange of Na+ by K+ or by a flocculating 

electrolyte.

Additionally, in figure 7.3.4.4b, the spectrum of a Na bentonite film immersed in 

50 gdm~3 PAG(600) solution shows the spectral maximum associated with the H- 

O-H bending mode located at higher frequency (1649 cm 'l)  than in homoionic Na 

bentonite prior to immersion. This band has been observed shifted to 1649 cm 'l 

previously for the adsorption of PAG(600) and PAG(1700) onto Na+ and K 

bentonite and attributed to the stiffening of the H-O-H bending mode of water in 

the inner co-ordination sphere around the exchange cation as the polyalkyl glycol 

hydrogen bonds to it.
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At lower concentrations (<5 gdm"3) of PAG(600) the position of the spectral 

maximum attributed to the H-O-H bending mode of water does not appear to be 

shifted significantly from that of 1640 cm 'l in homoionic Na bentonite, being 

found at 1639 cm 'l ±4 cm 'l. The absence of a band shift may be indicative of a 

low absorbed amount (these systems formed only one layer complexes). Indeed, 

the absorbance ratio A(3630)/A(2932) is much higher (3.2 ±0.3) for solution 

concentrations <5 gdm'3 of PAG(600) than for solution concentration >50 

gdm"3 (A(3630)/A(2932) is 1.9). This is due to hindered polyalkyl glycol 

adsorption in KC1 solution as the electrolyte will both collapse the electrical 

double layer causing flocculation and allow cation exchange of K+ for Na+ ions in 

the interlayer which inhibits swelling. As a result, re-adsorption o f water is not 

suppressed and the amount of adsorbed water on the clay is sufficiently large to 

mask the expected shift.

Clearly, complexes formed between Na bentonite and PAG(600) in the presence of 

10% KC1 are significantly re-hydrated. Indeed, the v(OC) band is located at 1378 

cm 'l in the spectra o f Na bentonite films immersed in <5 gdm"3 

PAG(600)/10%KC1 solutions. This indicates a high degree of hydration o f the 

polymer in the interlayer region in these particular films. At the highest 

concentration (50 gdm'3) of PAG(600), the v(OC) band is located at slightly lower 

frequency (1376 cm 'l) which corresponds to a slightly less hydrated complex.

This is not unexpected since it does exist as a two layer complex and the 

absorbance ratios A(3630)/A(3440) and A(3630)/A(1640) are higher for this 

system than those observed for the other complexes.

Stabilised Na bentonite films in PAG(1700)/10% KC1 solution formed mixed layer 

complexes (zero/one layer at 1 gdm'3 PAG(1700), one/two layer at >2.5 gdm"3 

PAG(1700)). The FTIR spectra of these films are shown in figures 7.3.4.4c and 

7.3.4.4d.
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Figure 7.3.4.4c Infrared spectra of stable Na bentonite films after immersion

in PAG(1700yi0% KC1 solutions.
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Figure 7.3.4.4d Infrared spectra of stable Na bentonite films after immersion 

in PAG(1700yi0% KC1 solutions.
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Again the clay can clearly be seen to be dehydrated, a feature which increases with 

increasing solution concentration. The relevant absorbance ratios, 

A(3630)/A(3440), A(3630)/A(1640) and A(3630)/A(2932) are shown in table 

7.3.4.4d.
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Table 7.3.4.4d Absorbance ratios from the infrared spectra of stable Na

bentonite films after immersion in PAG(1700V10% KC1.

absorbance ratio 50 gdm"3 

PAG(1700)

5 gdm"3 

PAG(1700)

2.5 gdm'3 

PAG(1700)

1 gdm"3 

PAG(1700)

3630/3440* 4.2 4.5 4.4 4.3

3630/1640* 9.0 8.3 5.8 6.3

3630/2932 1.8 1.7 2.7 4.9

*The actual position of these bands is dependent upon the extent of dehydration.

Clearly, as the polymer solution concentration increases, the adsorbed amount 

increases (decreasing A(3630)/A(2932) with increasing polymer solution 

concentration). The dehydration of the clay can be seen in the decrease in the 

absorbance ratio, A(3630)/A(1640) with increasing adsorbed amount. The 

dehydration of the clay is not so easily observable however with increasing 

adsorbed amount in the absorbance ratio A(3630)/A(3440) (probably due to the 

presence o f re-adsorbed water in the complex).

The position of the spectral maximum associated with hydrogen bonded OH 

stretching modes (located at 3444 cm~l ±4 cm~l in all spectra) may also be 

attributed to re-adsorbed water in the complex. This behaviour is very similar to 

that observed in the spectra of Na bentonite films immersed in PAG(600) in the 

presence of 10% KC1 at solution concentrations <5 gdm"3.

Re-adsorbed water also appears to influence the infrared spectra at lower 

frequency (figure 7.3.4.4d). The band attributed to the H-O-H bending mode can 

be observed at 1638 cm"l ± 4 cm"l, regardless of the polymer solution 

concentration. This, again, is similar behaviour to that observed in the adsorption
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of PAG(600) onto Na bentonite from <5 gdm~3 polymer solution containing 10% 

KC1 (figure 7.3.4.4b).

The extent of water re-adsorption can be correlated to the position of the v(OC) 

band in figure 7.3.4.4e.

Figure 7.3.4.4e Infrared spectra of stable Na bentonite films after immersion 

in PAG(1700V10% KC1 solution.
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The v(OC) band is located at 1377 cm~l in the spectra of all dried Na bentonite 

films following immersion in PAG (1700)/10% KC1 solutions. This is indicative 

of a relatively high degree of hydration, which supports the theory that the 

presence of the flocculating cation is able to suppress Na bentonite dispersion to 

such an extent that a highly hydrated complex may form and stabilise the film

It should be noted that apart from the v(OC) band at -1380 cm~l the position of 

absorption bands attributed to adsorbed polyol are unchanged from their positions 

in the spectrum of the dilute solutions (figure 7.3.1b). The change in position of 

the v(OC) band is due to hydration of the polymer chain. The implication is that 

despite the number of organic layers, the nature of the exchange cation and the
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presence of electrolyte, the conformation of the adsorbed polymer is always the 

same and, in keeping with the theory [11] of adsorption of linear flexible nonionic 

polymers, is flat.

In order to establish the relative influences, on the stabilisation of Na bentonite 

films by adsorption of polyalkyl glycol, o f the flocculating effect o f electrolyte in 

solution and of the nature of the exchange cation, Na bentonite films were 

stabilised (forming two layer complexes at all concentrations (figure 7.3.3.3c)) in 

PAG(600) solutions.

Figure 7.3.4.4f and 7.3.4.4g show the infrared spectra of these complexes and table 

7.3.4.4g, the absorbance ratios A(3630)/A(3440), A(3630)/A(1640) and 

A(3630)/A(2932).

Figure 7.3.4.4f Infrared spectra of stable Na bentonite films after immersion 

in PAG(600yi0% NaCI solutions.
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Figure 7.3.4.4g Infrared spectra of stable Na bentonite films after immersion

in PAG(600yi0% NaCl solutions.
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Table 7.3.4.4g Absorbance ratios from the infrared spectra of stable Na 

bentonite film after immersion in PAG(600V10% NaCl solution.

absorbance ratio 50 gdm“3 

PAG(600)

5 gdm"3 

PAG(600)

2.5 gdm"3 

PAG(600)

1 gdm"3 

PAG(600)

3630/3440* 10.7 11.0 10.5 9.8

3630/1640* 23.1 22.7 19.4 19.1

3630/2932 2 .2 2.3 2.4 2.4

*The actual position of these bands is dependent upon the extent o f dehydration.

As the solution concentration increases, then the adsorbed amount, as determined 

by the absorbance ratio A(3630)/A(2932), appears to slightly increase.

Again, as was observed previously for the adsorption of PAG(1700) onto Na 

bentonite in the presence of 10% KC1, the dehydration of the clay can be seen in 

the decrease in the absorbance ratio A(3630)/A(1640) with increasing adsorbed 

amount. The dehydration of the clay is less easily observable with increasing
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adsorbed amount in the absorbance ratio A(3630)/(3440) which appears to stay 

reasonably unchanged regardless of adsorbed amount.

The behaviour of this system is similar to the stabilisation of Na bentonite films in 

the presence of 100 gdm"3 PAG(600) only. Indeed, the position of the spectral 

maximum attributed to the hydrogen bonded OH stretching mode is shifted to high 

frequency being found at 3465 cm“l ± 4 cm~l. This apparent shift (or change in 

relative intensity) has previously been attributed to the dehydration of the clay on 

polymer adsorption causing the intensity of the bands due to adsorbed water to be 

reduced and hence the spectral maximum in this region being influenced more 

significantly by the bands associated with inner hydration sphere water (bound 

water). The extent o f the band shift is determined by the extent of dehydration, 

adsorption and then re-hydration

Further evidence of this can be seen in the infrared spectra in figure 7.3.4.4g. The 

position of the band attributed to H-O-H bending mode may be observed at 1649 

cm~l ±3 cm"l. This shift from its position (1636 cm~l) in aN a bentonite film prior 

to immersion is attributed to the stiffening of the H-O-H bending mode of bound 

water in the inner hydration sphere of the cation due to hydrogen bonding of 

polyalkyl glycol to it. This band shift is not always observable because it is 

sometimes masked by the re-adsorption o f water into the interlayer space. In this 

case however, in the presence of Na+ cations the clay is able to swell sufficiently 

to enable the polyalkyl glycol to adsorb and form the two layer organic complex 

which inhibits re-adsorption of water.

318



7.3.4.5 Kinetics of adsorption of polyalkyl glycol from dilute solution onto 

homoionic Na bentonite in the presence of electrolyte.

The effect on the infrared spectra of varying the time of immersion o f the bentonite 

film in polyol solution has also been studied. Firstly consider the smaller polyalkyl 

glycol molecule. Figure 7.3.4.5a and 7.3.4.5b show the infrared spectra o f Na 

bentonite films immersed for various times in 50 gdm~3 PAG(600)/10% KC1 

solution. The absorbance ratios A(3630)/A(3440), A(3630)/A(1640) and 

A(3630)/A(2932) and the corresponding d-spacings (from figure 7.3.3.4b) are 

shown in table 7.3.4.5b.

Figure 7.3.4.5a Infrared spectra of stable Na bentonite films after immersion 

in a 50 gdm"3 PAG(600V10% KC1 solution for various times.
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Figure 7.3.4.5b Infrared spectra of stable Na bentonite films after immersion

in a 50 gdm"3 PAG(600V10% KC1 solution for various times.
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Table 7.3.4.5b Absorbance ratios from the FTIR spectra of stable Na 

bentonite films after immersion in 50 gdm"3 PAG(600V10% KC1 solution for 

various times.

Time of soak (hours)

0.03 0.08 0.25 0.5 1.0 2 .0 12 .0

d-spacing (A) 14.1 14.0 14.4 14.9 15.9 16.0 17.5

absorbance

ratios

3630/3440* 5.0 6.1 6.1 6 .0 6 .0 7.5 9.8

3630/1640* 10.5 11.9 11.8 11.4 12.3 13.7 16.1

3630/2932 3.0 2 .6 2.5 2.3 2.3 2.1 1.9

*The actual position of these bands is dependent upon the extent o f dehydration.

Clearly, the absorbance ratios A(3630)/A(3440) and A(3630)/A(1640) increase 

with increasing immersion time in the solution, indicative o f dehydration o f the 

bentonite film. After only two minutes the ratios A(3630)/A(3440) and
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A(3630)/A(1640) have increased to 5.0 and 10.1 respectively, compared to their 

values of 1.5 and 2.4 in the spectrum of the film prior to immersion. These ratios 

then increase slowly with increasing immersion time as the first adsorbed layer 

consolidates and the clay slowly dehydrates, i.e. with the slow increase in adsorbed 

polymer (diffusion controlled) between the platelets (denoted by the decrease in 

the absorbance ratio A(3630)/A(2932) with immersion time).

Additionally, from figures 7.3.4.5a and 7.3.4.5b it is possible to observe the 

change in the position of spectral maxima attributed to water in the interlayer with 

increasing immersion time. After only 2 minutes the position of the spectral 

maximum associated with hydrogen bonded OH stretching modes (figure 7.3.4.5a) 

is shifted (3461 cm"l) from its position in Na bentonite prior to immersion (3406 

cm"l). Thereafter, this band (attributed to removal of adsorbed water and the 

subsequent domination of this spectral region by water directly bound to the 

exchange cation) is located at 3461 cm"l ±3 cm~l in the infrared spectra o f Na 

bentonite films immersed in 50 gdm"3 PAG(600)/10% KC1 solution for increasing 

lengths o f time up to 12 hours. This implies that the important adsorption process 

for stabilisation (formation of a water bridge between the polyalkyl glycol and 

inner hydration sphere water around the cation) has occurred after only two 

minutes.

Additionally, the position of the spectral maxima associated with the H-O-H 

bending modes appears to be shifted to 1637 cm"l after two minutes immersion in 

50 gdm"3 PAG(600)/10% KC1 for various times (figure 7.3.4.5b). This shift has 

been observed previously for the adsorption of polyalkyl glycol onto Na and K 

bentonite films and is attributed to the stiffening of the H-O-H bending mode of 

water in the inner co-ordination sphere around the exchange cation as the polyalkyl 

glycol hydrogen bonds to it.
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The extent of hydration o f the complexes formed can be seen in the position of the 

v(OC) band as shown in figure 7.3.4.5c.

Figure 7.3.4.5c Infrared spectra of stable Na bentonite films after immersion 

in 50 gdm~3 PAGf600V10% KC1 solution for various times.
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The position of the band attributed to v(OC) is located at 1377 cm"l in the spectra 

o f Na bentonite film immersed in PAG(600)/10% KC1 for two minutes, and times 

up to 2 hours and at 1377 cm"l after immersion of the film in solution for 12 

hours. This is indicative of the formation of a relatively hydrated, stable film after 

only two minutes and perhaps a slight increase in the number o f PAG-PAG 

interactions as polyalkyl glycol concentrates between the platelets (formation of 

the second layer) and dehydrates the clay further with increased immersion time.

In the presence of PAG(1700) however, XRD evidence suggests the initial 

formation of a dehydrated or cation exchanged system followed by the adsorption 

of polyol between the platelets. Figures 7.3.4.5c and 7.3.4.5d show the infrared 

spectra of Na bentonite films immersed for various times in a 50 gdm"3 

PAG(1700)/10% KC1 solution. Table 7.3.4.5d shows the absorbance ratios
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A(3630)/A(3440) A(3630)/A(1640) and A(3630)/A(2932) from these spectra and 

the d-spacings from table 7.3.3.4d.

Figure 7.3.4.5c Infrared spectra of stable Na bentonite films after immersion 

in PAG(1700yi0% KC1 solution for various times.
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Figure 7.3.4.5d Infrared spectra of stable Na bentonite films after immersion 

in PAG(1700yi0% KCI solution for various times.
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Table 7.3.4.5d Absorbance ratios from the infrared spectra of stable Na

bentonite films after immersion in a 50 gd irr^  PAG(1700V10% KC1 solution 

for various times.

Time of soak (hours)

0.08 0.25 0.5 0.75 1.0 2 .0 12.0

d-spacing (A) 11.6 11.9 14.7

1 2 .0 sh

14.8

1 1 .8 sh

15.6

12 .2 sh

16.1

1 2 .2 sh

16.1

absorbance ratio

3630/3440* 3.0 2.7 2 .6 3.1 2 .6 3.4 4.3

3630/1640* 3.1 2 .8 3.7 3.4 6.3 4.0 6.3

3630/2932 14.5 13.8 13.5 8.9 6.7 5.1 4.9

*The actual position of these bands is dependent upon the extent of dehydration.

The absorbance ratio A(3630)/(2932) decreases as the time of immersion o f the Na 

bentonite film in the 50 gdm~3 PAG(1700) /10% KC1 solution increases, indicative 

of an increase in the amount of polyalkyl glycol adsorbed.

The initial dehydration o f the clay can be clearly seen after 5 minutes as the 

absorbance ratios A(3630)/(3440) and A(3630)/(1640) both increase to 3.0 and 

3.1, respectively, compared to 1.5 and 2.4 in the homoionic Na bentonite film. The 

subsequent dehydration of the clay is very slow with the absorbance ratios 

A(3630)/(3440) and A(3630)/(1640) increasing gradually as the time of immersion 

increases. This is not unexpected, as the d-spacings suggest that the clay initially 

dehydrates or undergoes cation exchange. As polymer adsorbs between the 

platelets, the d-spacing increases and at the same time, the interlayer regions which 

do not have adsorbed polymer re-hydrate (indicated by the shoulder at 12 .2 A) and 

so the stable complex exists with mixed zero and one layer of PAG(1700) between
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the platelets. As time progresses, more polymer adsorbs between the platelets and 

the d-spacing gradually increases corresponding to the formation of a mixed 1 and 

2  layer complex.

The position of the spectral maxima associated with hydrogen bonded OH 

stretching modes (figure 7.3.4.5c) corroborates these findings. After 5 minutes the 

band is found at 3433 cm"l shifted from its position of 3406 cm~l in Na bentonite 

prior to immersion. This shift is due to the dehydration of the clay and hence the 

spectral maximum being dominated by the bands associated with bound water. 

Previously, however, (in sections 7.3.4.2 and 7.3.4.3 for example) this feature has 

been observed shifted to >3450 cm"!. The explanation for this could be that the 

position of this spectral maximum is almost identical to that observed in 

homoionic K bentonite (at 3431 cm“l) and that these films have undergone 

significant cation exchange of K+ for Na+. This would explain the observed d- 

spacing of 11.6  and 1 1 .9A after immersion of the film in the 50 

gdm"3 PAG(1700) /10% KC1 solution for 5 and 15 minutes, respectively. This is 

not unlikely as Rawson [3] indicated that K+ exchange for Cs+ was enhanced by 

the presence of polyalkyl glycol of molecular weight < 1 0 0 0  gmol"l.

This initial dehydration and/or cation exchange process cannot be seen in the X- 

ray diffraction or infrared results when the complex is formed between Na 

bentonite film and the low molecular weight polyalkyl glycol in the presence of 

KC1 because the polymer adsorbs too quickly for the intermediate (cation 

exchanged/dehydrated) system to be observed. The adsorption of the higher 

molecular weight polyalkyl glycol (Mw 1700) however, is slower so the 

intermediate can be observed. The clay is prevented from dispersing 

(destabilisation) by the presence of the strongly flocculating electrolyte in solution. 

After 30 minutes immersion, the position o f the spectral maxima associated with 

hydrogen bonded OH stretching modes in the infrared spectra of the film has
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shifted to 3446 cm"l where it may be observed (± 3 cm"l) in the spectra o f films 

immersed for all times up to 12 hours.

In addition, the spectral maxima associated with the H-O-H bending modes after 

immersion of Na bentonite films in 50 gdm"3 PAG(1700)/10% KC1 for all times 

(figure 7.3.4.5d) is located at 1640 cm"l ±3 cm"l. This position is very similar to 

that observed in homoionic Na and K bentonite prior to immersion and is due to 

the relative extents of cation exchange and dehydration.

Further evidence regarding the degree of hydration of the complex can be found in 

figure 7.3.4.5e (in the spectral region between 1420 and 1300 cm 'l). The position 

of the v(OC) band is found at 1374 cm"l in the spectrum of Na bentonite film 

immersed in PAG(1700)/10% KC1 for 5 minutes. This band then shifts to slightly 

higher frequency, being found at 1377 cm~l for times >30 minutes immersion of 

the Na bentonite film in 50 gdm“3 PAG (1700)/10% KC1 solution up to 12 hours.

Figure 7.3.4.5e Infrared spectra of stable Na bentonite films after immersion 

in 50 gdm~3 PAG(1700yi0% KC1 solution for various times.
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This would appear to indicate that on initial adsorption, the number o f PAG-H2 O 

interactions in the interlayer is extremely small (after 5 and 15 minutes
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immersion). However, as more polymer adsorbs, there is competition for 

adsorption sites between the polymer and water which is able to re-hydrate the 

system. Consequently, the number o f PAG-H2 O interactions increases. This extent 

of re-adsorption depends on the ability of both the polymer and exchange cation to 

become hydrated. Clearly, the PAG(1700) molecule is not as effective as 

PAG(600) at preventing re-hydration.

X-ray diffraction evidence suggests that after 12 hours immersion, the system 

exists as a mixed 1/2 layer complex and that hydration is possible because not all 

the inner co-ordination sphere water around the exchange cation is used for 

hydrogen bonding to the polymer. In the presence of KC1 solution, cation 

exchange and collapse of the electrical double layer restricts swelling. However in 

the absence of K+ ions (in solution or on the clay) it is likely that the Na bentonite- 

PAG(1700) complex re-hydrates as the exchange cations are able to form extended 

hydration spheres and therefore disperse the platelets, thus de-stabilising the film.

7.3.4.6 Adsorption of polyalkyl glycol from dilute solution onto Na bentonite 

dispersed in aqueous suspension.

X-ray diffraction traces obtained by Rawson [3] from the dried centrifuged solids 

of Na bentonite suspension mixed with PAG(600) showed the formation o f one 

and two layer complexes depending on the solution concentration of PAG(600)

[3]; at concentrations >5 gdm"3 PAG(600) the two layer complex is formed, at 

concentrations <2.5 gdm“3 PAG(600), the single layer complex is formed. Figure 

7.3.4.6a shows the infrared spectra of complexes formed between Na bentonite and 

polyalkyl glycol (Mw 600) in aqueous suspension.

327



Figure 7.3.4..6a Infrared spectra of complexes formed between Na bentonite

and polvalkvl glvcoi (Mw 600) in aqueous suspension.
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The position o f the spectral maximum attributed to the hydrogen bonded OH 

stretching frequency is located at 3440 cnW ±3 cm 'l for all the spectra of 

complexes formed between PAG(600) and Na bentonite in aqueous suspension. 

This is very close to its value in homoionic Na bentonite prior to contact with the 

polyol. Indeed, the relative intensities of the spectral features (shown by 

A(3630)/A(3440) in table 7.3.4.6a) seems to indicate that the systems are not 

dehydrated.

Table 7.3.4.6a Absorbance ratios from the infrared spectra of complexes 

prepared from Na bentonite and PAG(600) in aqueous suspension.

absorbance ratio 50 gdm'3 

PAG(600)

5 gdm"3 

PAG(600)

2.5 gdm"3 

PAG(600)

1 gdm"3 

PAG(600)

3630/3440 1.4 1.0 0.9 1.0

3630/2932 1.7 3.7 8.6 13.3
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The decrease in the absorbance ratio A(3630)/A(2932) with increasing polymer 

solution concentration indicates increased adsorbed amount. It should be 

remembered however, that for Na bentonite the absorbance ratio A(3630)/A(3440) 

is -1.5. It therefore appears that the complexes formed between Na bentonite and 

PAG(600) are more hydrated than homoionic Na bentonite alone. This could be 

due to the method of adsorption, since in aqueous suspension the platelets are 

widely dispersed and polymer may pass easily between them. On drying polymer 

may be trapped between the platelets without actually being physically adsorbed. 

Consequently, the exchange cations and polymer may have any amount o f water 

associated with them, as the complex can be highly hydrated since it does not have 

to exhibit stability. As a result, the adsorption of polymer is controlled only by the 

ease of hydration of the cation (ability to swell the clay) and the polymer solution 

concentration.

Further evidence of the highly hydrated nature of the complex can be found by 

analysis of the v(OC) band a in figure 7.3.4.6b.

Figure 7.3.4.6b Infrared spectra of complexes formed between Na bentonite 

and polvalkvl glycol (Mw 600) in aqueous suspension.
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The bands in this region are extremely weak, in fact they are impossible to observe 

in the spectrum of the complex prepared from Na bentonite and 1 gdm"3 

PAG(600) in aqueous suspension. The band can, however, be seen in the spectrum 

of the complex prepared from Na bentonite and 50 gdm“3 PAG(600) in aqueous 

suspension, located at 1380 cm 'l. This corresponds to the position of the band in 

the spectrum of a highly dilute solution of polyalkyl glycol in water (2 0 % by 

weight), i.e. many PAG-H2 O interactions.

7.3.5. ATR infrared spectroscopy

FTIR transmission spectroscopy and X-ray diffraction have been used (here and 

[1]) to study the stabilisation of free standing bentonite films by adsorption of 

polyalkyl glycol. However, ATR FTIR has been used to study the stabilisation of 

bentonite films supported on the surface of a ZnSe IRE in-situ. This method has 

previously been used to study the adsorption of water soluble polymers [204] and 

pyridine [205] onto homoionic bentonite clay films.

7.3.5.1 Adsorption onto Na bentonite films (supported on a ZnSe ATR crystal) of 

polyalkyl glycol from the pure liquid polymer.

Figure 7.3.5.1a shows the infrared spectrum of the ZnSe Squarecol ATR prism 

coated on each sampling face with an air dried bentonite film and ratioed against 

the ATR prism with clean sampling faces.
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Figure 7.3.5.1a The infrared spectrum of the ZnSe Sauarecol ATR prism

coated on each sampling face with an air dried bentonite film
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This spectrum is very similar to the infrared spectrum of the free standing Na 

bentonite film in figure 7.3.4.1a and the infrared spectrum of the Na bentonite film 

supported on the Si Squarecol ATR prism in figure 6.3.3.3a. As a result it will 

have the same features and assignments of the bentonite infrared spectrum 

described in table 5.3.1. The infrared spectrum of the Na bentonite film supported 

on a ZnSe prism does not exhibit the strange absorption band profile below 1500 

cm"l observed in the spectrum of bentonite film supported on the Si prism because 

the infrared window of ZnSe is much wider than that of silicon. The spectrum only 

shows 'cut off below approximately 1200 cm"l due to the intense Si-0 vibrations 

of the bentonite film.

The addition of pure polyalkyl glycol (Mw 600) to the trough of the Squarecol cell 

containing bentonite coated optics has a profound effect on the infrared spectrum. 

Figure 7.3.5.1b shows the evolution of the infrared spectra with time.
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Figure 7.3.5.1b The evolution of infrared spectra after addition of pure

PAG(600) to Na bentonite coated ZnSe ATR prism.

la bentonite 3405.24, 0.73

1 .0.

I00 mins:PAG(600) 3407.69, 0.55A
b
s 0.8.
o
r
b 0.6.
a
n
c 0.4. 
e

.120 mlns:PAG(600) 3410.13,0.49

mins:PAG(600) 3424.82,0.39

0 .2.

0 .0.

36004000 3800 3400 3200 3000 2800 2600

Wavenumbers

The band attributed to the structural OH stretching mode at 3630 cm"l appears to 

be largely unaffected by the presence o f PAG(600). This is in contrast to the 

experiments where the introduction of 1 gdm“3 aqueous polyacrylamide (Mw 

7000k) to the cell immediately caused the height o f the band at 3630 cm"l to 

reduce to zero, consistent with dispersion and destabilisation of the film (section 

6.3.3.3). Consequently, it can be assumed that in the presence of pure polyalkyl 

glycol (Mw 600) the Na bentonite is not dispersed and the film therefore, is 

stabilised.

More interestingly, 5 minutes after the introduction of the pure polyalkyl glycol to 

the cell the spectral maximum associated with hydrogen bonded OH stretching 

modes has decreased in intensity compared to its value in the Na bentonite film. 

However, as the contact time of the polymer with the Na bentonite film increases, 

the intensity of this spectral maximum appears to increase. This behaviour can also 

be observed in the intensity of the band attributed to the H-O-H bending mode of 

water in figure 7.3.5.1c.
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Figure 7.3.5.1c The evolution of infrared spectra after addition of pure

PAG(600) to Na bentonite coated ZnSe ATR prism.
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Table 7.3.5.1c shows the change in the absorption ratios A(3630)/A(3440), 

A(3630)/A(2932) and A(3630)/A(2932) as the contact time of the polymer with 

the supported Na bentonite film increases.

Table 7.3.5.1c Absorbance ratios from the infrared spectra of a supported Na 

bentonite, at various times after contact with PAG(600f.

Absorbance

ratio

Time of contact (hours)

0 0.08 1.0 2 .0 3.0 4.0 5.0

3630/3440 1.2 2.3 2 .0 1.8 1.7 1.7 1.6

3630/1640 1.2 2 .0 1.9 1.9 1.8 1.8 1.7

3630/2932 oo 9.8 6 .2 6 .2 5.9 5.2 4.6

Clearly, as the contact time increases then the amount of PAG(600) sampled by 

the evanescent field appears to increase, as indicated by the decrease in the

333



absorbance ratio A(3630)/A(2932). As the bentonite film remains in tact then the 

only plausible explanation is that PAG(600) is diffusing or adsorbing into the Na 

bentonite film.

Following the initial detection of PAG(600) in the infrared spectrum, after only 5 

minutes contact time of the polyalkyl glycol with the Na bentonite film, there is an 

initial dehydration of the clay (which provides the entropic driving force for 

adsorption). This denoted by the increase in the absorbance ratios 

A(3630)/A(3440) and A(3630)/A(1640) from that of the Na bentonite film prior to 

contact (at time zero). Following the initial dehydration, the clay appears to re

hydrate and the absorbance ratios A(3630)/A(3440) an A(3630)/A(1640) tend back 

to their observed values in Na bentonite. No water is associated with the polyol 

molecule prior to adsorption, hence desorbed water from the clay must re-adsorb 

into the interlayer region either around exchange cations or around the polymer. 

Evidence that the polymer does not become significantly hydrated can be observed 

in the position of the v(OC) band in figure 7.3.5.Id.

Figure 7.3.5.1d Evolution of infrared spectra after the addition of pure 

PAGf600) to Na bentonite coated ZnSe ATR prism.
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The spectrum is completely dominated by the presence of highly intense 

absorption bands due to water. Billingham et al [204] subtracted the background 

spectra of clay or of clay/polymer/solvent. However it is extremely difficult to 

subtract the background spectrum of water with sufficient accuracy in order to 

reveal the subtle shifts in spectral maxima due to environmental changes to the 

water in the interlayer. However, between 1400 and 850 cm_l, the bands attributed 

to silicate stretching modes may be observed (figure 7.3.5.2b).

Figure 7.3.5.2b FTIR-ATR spectrum 5 minutes after addition of 50 gdm~3 

PAG(600) to Na bentonite coated ZnSe IRE. /
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The shape of the infrared spectrum of the Na bentonite film contacted with 50 

gdm"3 PAG(600) in the region between 1400 and 850 cm 'l is almost identical to 

that observed in figure 5.3.4a of the ATR spectrum of an aqueous bentonite 

suspension. However, two small differences exist between the two spectra. Firstly, 

the spectrum of water has not been subtracted from the spectrum shown in figure 

7.3.5.2b and secondly, the presence of bands at 1381 and 1350 cm~l attributed to 

the v(OC) and v(CH2 ) wagging modes of PAG(600) can be detected in figure 

7.3.5.2b due to the presence of PAG(600) in the system.
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The intensity of the main Si-0 absorption band maxima seen in figure 7.3.5.2b is 

much lower than observed in the supported film prior to addition o f polymer 

solution (figure 7.3.5.1a). It may be assumed therefore, that the film has become 

detached from the surface of the ATR prism where it is sampled by the evanescent 

field. Evidently, water has been able to fully hydrate the Na bentonite film so that 

the solution comprises 50 gdm"3 PAG(600) and fully dispersed Na bentonite. 

Although a solution concentration of 50 gdm"3 PAG(600) was previously 

observed to stabilise a free standing film of Na bentonite, this does not take into 

account the experimental differences in this ATR study where the volume of 

solution is much less (in the 2 cm^ volume of solution used only 0.00017 moles of 

PAG exist) and the mass of bentonite much greater than used in the studies using 

bentonite free standing films. The stability of the Na bentonite film/PAG(600) 

system has been proved to be controlled by the critical number of polymer moles 

per unit volume in solution:clay loading ratio. Clearly, the number of moles of 

PAG in solution is insufficient to stabilise the film. For this reason, and because 

polyethylene glycol does not stabilise clay mineral films [1] the findings of 

Billingham et al [204] seem hard to believe.

7.3.5.3 Adsorption onto Na bentonite films supported on a ZnSe ATR prism of 

polyalkyl glycol from a dilute aqueous electrolytic solution.

Despite the inability of the 50 gdm"3 PAG(600) solution to stabilise the Na 

bentonite films supported on the ZnSe IRE, stabilisation was observed in-situ in 

the presence of a 50 gdm"3 PAG(600)/KC1 solution by the ATR method. This is 

not surprising as the stability of Na bentonite free standing films is not controlled 

by the polymer concentration in solution alone and that the presence of KC1 

inhibits film destabilisation. Figure 7.3.5.3a shows the infrared spectra 5 minutes 

and 2 hours after addition of 50 gdm"3 PAG(600)/10% KC1 solution to Na 

bentonite films coated ZnSe ATR optics in the Si-0 stretching region.
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Figure 7.3.5.3a infrared spectra 5 minutes and 2 hours after addition of 50 

gdm~3 PAG(600yi0% KC1 solution to Na bentonite coated ZnSe IRE.
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The extent to which water dominates the spectra is considerably reduced in the 

presence of KC1. Indeed, the bands at 918 cm"l (due to structural OH deformation) 

and 887 cm”l (attributed also to structural OH deformation) could not be located 

in figure 7.3.5.2b but are quite clear in figure 7.3.5.3a. Additionally, the intensity 

o f the absorbance bands associated with Si-0 stretching modes are extremely high 

even after 120 minutes contact. This clearly indicates that the Na bentonite film 

remains predominantly intact at the surface of the ATR prism. Although the small 

reduction in intensity of the main maxima between 5 and 120 minutes does seem 

to indicate a small reduction in the amount of bentonite at the surface over the 

course o f the experiment.

Despite the film being stabilised at the surface of the ATR crystal however, the 

shape of the Si-0 spectral region is unusual, exhibiting a shoulder at -1076 

cm_l. This band may be due to the absorption band attributed to the C-O-C 

stretching mode of polyalkyl glycol (found at 1082 cm‘ l in the spectrum of 

PAG(600) diluted to 40% by weight) as PAG(600) adsorbs between the clay 

platelets nearer to the surface of the IRE, to be sampled by the evanescent field.
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Indeed, evidence of PAG(600) can be seen by the presence of the bands at 1380 

and 1349 cm"l attributed to v(OC) and v(CH2 ) wagging modes, respectively. It 

may also be due to perturbations o f the silicate lattice by the exchange cation 

having adsorbed on it polyalkyl glycol. The position of the shoulder at 1076 

cm 'l in the spectra after both 5 minutes and 120 minutes contact of the Na 

bentonite film with the PAG(600)/ 10% KC1 solution is very similar to that seen in 

figure 5.3.8a of homoionic Ca^+ bentonite suspended in water. The position of 

this band for the Ca^+ bentonite was explained in terms of the Ca^+ ion existing 

close to the surface of the clay mineral in aqueous suspension. Na+ and K+ show 

bands at even higher frequency as they are able to hydrate more easily than Ca^+ 

and be fully removed from the clay surface. When aqueous bentonite suspensions 

dry or are flocculated by electrolyte then this band shifts to low frequency (chapter 

5). Consequently, the observed position of this band in figure 7.3.5.3a, may be due 

to flocculating electrolyte on a partially dispersed Na bentonite film, or even due 

to the Na+ or K+ cations being held close to the silicate surface, but not able to sit 

in the di-trigonal cavity, due to adsorption of polyol around them.

7.4. Conclusions

Information has been obtained which helps to explain the nature of the interaction 

of polyalkyl glycol with Na and K bentonite films and the mechanism of bentonite 

film stabilisation. Polyalkyl glycol has a high affinity for Na and K SWy-1 

bentonite and the interaction appears to be via a water bridge between the polymer 

and exchange cation on the clay mineral; i.e. between the polyalkyl glycol and the 

first hydration shell of water surrounding the cation. The mechanism involves the 

dehydration of loosely bound water in the interlayer region from the clay surface 

and the outer hydration shells around the cation, thus providing the 

thermodynamic (entropic) driving force for adsorption. The subsequent
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stabilisation of the film depends on the ability of the components in the system to 

prevent rehydration. This depends on the nature, molecular weight and number of 

moles per unit volume of the polyalkyl glycol, the clay loading, the nature o f the 

exchange cation on the clay and the nature and presence of electrolyte in solution.

In the absence of other components in solution, X-ray diffraction has shown that 

polyalkyl glycol will stabilise Na bentonite films which are immersed within it by 

forming two organic layers in the space between the clay platelets. The formation 

of a PAG double layer (and hence stability) depends critically on the ratio of the 

concentration of polymer (number o f moles per unit volume) in solutionxlay 

loading (in the form of the film). In this work it was found that a minimum critical 

polyalkyl glycol solution concentration of 0.08 moldm"3 was required to stabilise 

Na bentonite clay films, weighing between 5 and 7 mg. Attention must therefore 

be paid to the molecular weight of the polymer used since at identical w/w 

loadings, a higher molecular weight polymer may be unable to stabilise the film as 

fewer moles of polymer would be present per unit volume. Consequently, 

PAG(600) was able to stabilise the clay film at solution concentrations o f 50 and 

100 gdm~3, PAG(1200) was able to stabilise the film at a solution concentration of 

100 gdm"3 and PAG(1700) was not observed to stabilise the films.

Kinetic measurements (using FTIR and X-ray diffraction) have also indicated that 

the relative rates of adsorption of large and small PAG molecules, is also 

important to the stabilisation mechanism. Larger molecules take a little longer to 

diffuse and adsorb to the surface of the clay and so at very short times the film 

may not be stable.

In-situ measurements using FTIR-ATR support the theory that, in the absence of 

other components in solution, the number of moles of polymer per unit volume is 

critical to film stability. Indeed, supported Na bentonite films could not be
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stabilised by 50 gdm~3 polyalkyl glycol solution alone as it introduces only

0.00017 moles of PAG(600) in the 2 cm^ trough of the Squarecol cell, which is 

insufficient to facilitate stabilisation. In fact, the infrared spectra showed that the 

bentonite which comprises the film became hydrated and existed as an aqueous 

suspension of dispersed bentonite (losing contact with the surface of the ATR 

crystal).

In such systems, the ability of polyalkyl glycol to stabilise the film is related to the 

amount adsorbed and the ability of the clay-polymer complex to resist rehydration 

of the exchange cation. Since if the cation is able to hydrate, then the clay will 

swell and disperse.

It is also possible to inhibit swelling of the clay by introducing an electrolyte into 

the polymer solution. This causes the electrical double layer to collapse and causes 

flocculation of the clay. Infrared and X-ray diffraction data of Na bentonite films 

immersed in polyol solutions in the presence o f KC1 clearly show the effect of the 

electrolyte. The ratio o f the number of moles of PAG per unit volume:clay loading 

is not the limiting factor controlling Na bentonite film stabilisation as they are 

observed to be stable at solution concentrations as low as 0.0017 m oldnr^, i.e. at 

all concentrations (between 1.0 and 50 gdm"3) o f all the molecular weights 

(between 600 and 1700 gm oH ) polyalkyl glycol samples studied. Similar, 

enhanced stabilisation of such clay films has also been observed in PAG(600) 

solution concentrations as low as 0.0017 moldm“3, when the strongly flocculating 

electrolyte is NaCl.

FTIR-ATR evidence is consistent with these findings. Indeed, the intensity o f the 

main v(Si-O) stretching bands remained relatively unchanged over the timescale o f 

the experiment (2 hours) when 50 gdm~3 PAG(600)/ 10% KC1 solution was 

introduced to the 2cm^ trough of the Squarecol cell.
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The formation of the clay polymer complexes has been shown using X-ray 

diffraction and infrared spectroscopy to occur in distinct phases.

1. The mechanism of stabilisation is believed to be via dehydration of the 

clay (this provides the thermodynamic driving force for adsorption), by removal of 

outer sphere water of hydration around the exchange cations. The infrared spectra 

clearly show that water has been removed from the clay on contact with the 

polymer and in the FTIR-ATR study of adsorption o f pure polyalkyl glycol onto 

the clay film water desorption was observed in-situ

2. Following the desorption of water there is an almost instantaneous 

adsorption of polymer. Infrared evidence indicates that the polyalkyl glycol 

molecules adsorb to the clay and the X-ray diffraction evidence indicates that the 

adsorption occurs between the clay platelets. The interaction is thought to be via 

hydrogen bonding (water bridges) to the inner sphere water of hydration around 

the cations (denoted by an increase in the d-spacing). The position of the H-O-H 

bending mode of water in the spectra of clay films contacted with polyalkyl glycol 

has been observed shifted to high frequency compared to its position in the 

spectrum of the untreated clay. This has been attributed to the stiffening of the H- 

O-H bending mode of water in the inner hydration sphere surrounding the 

exchange cation as it hydrogen bonds to the polyalkyl glycol.

3. Subsequently, there is a slow diffusion controlled process which involves 

the consolidation of the first organic layer on vacant sites around the cation and 

then, if  the clay is able to swell sufficiently (i.e. in the presence of Na+ ions), the 

formation of the second layer. The second layer has been observed to be weakly 

bound in adsorption studies on dispersed montmorillonite clays [3] and would be 

expected to be easily removed by heating or repeated washing. The ease of 

removal in such experiments may be related to the ease o f intercalation (direct
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adsorption may not be necessary for the polymer to reside between the clay 

platelets). In these studies however, the second layer is not expected to be so easily 

removed as a driving force (possibly enthalpic) must exist for the polymer to 

adsorb into the confined geometry of the interlayer.

The process o f adsorption of the second polymer layer is in competition with the 

process of exchange cation rehydration by desorbed water and other water present 

in solution. The readsorption of water in the interlayer has been observed in-situ to 

be almost exclusively at the exchange cation using FTIR ATR spectroscopy. The 

position of the hydrogen bonded OH stretching mode in the spectra o f free 

standing bentonite films immersed in PAG solution is shifted form its position in 

untreated bentonite. The extent of the shift generally depends on the amount of 

polymer adsorbed and consequently, the extent to which the polymer restricts re 

hydration of the interlayer.

The extent o f hydration in the interlayer can also be established from the position 

of the v(OC) band of the PAG molecule. The position of this band has been 

observed to be progressively shifted to high frequency in the spectra o f dilutions of 

polyalkyl glycol in water and aqueous KC1 solutions (down to 40% weight 

dilutions). This has been attributed to the interaction o f water with the ether 

oxygen atoms of the polyalkyl glycol molecule.

Consequently, when PAG concentrates between the clay platelets, the band will 

shift from its position in the spectrum of the diluted PAG to reflect the increased 

number o f PAG-PAG interactions. Hence, when PAG adsorbs onto clay films the 

position of the v(OC) band reflects the restriction of water to the (found between 

1374 and 1377 cm~l). However, when PAG adsorbs onto fully hydrated and 

dispersed bentonite, water and polymer may exist together between the platelets
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(the system does not need to be stabilised like a clay film) and the position of the 

band (at -1380 cm"l) reflects the relative number of PAG- H2 O interactions.

In the presence of K+ in solution, the respective shape and nature o f the diffraction 

profiles appears to indicate an additional further stabilisation mechanism. Kinetic 

measurements have revealed that in addition to dehydration of the system, cation 

exchange of K+ for Na+ may also occur initially in these systems. The enhanced 

stabilising effect o f the K+ cation has also been observed in the stabilisation of K+ 

bentonite films over the whole range of concentrations studied.
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8. COMPETITIVE ADSORPTION OF POLYALKYL GLYCOL

AND POLYACRYLAMIDE ON BENTONITE

8.1. Introduction

Thus far, the adsorption of individual polymer components such as 

polyacrylamide (chapter 6 ) and polyalkyl glycol (chapter 7) onto bentonite has 

been studied in some detail. One of the interesting features of the adsorption 

behaviour of both polymers has been the influence o f other components in 

solution. Indeed, the effect of dissolved electrolyte in solution has been found to 

significantly affect the amount of polymer adsorbed and the stability of free 

standing films contacted with aqueous polymer solutions.

The effect o f multiple components in solution on the adsorption behaviour of 

any other single component is extremely important, as water based oil well 

drilling fluids are multicomponent systems containing various polymer 

additives, minerals and dissolved salts. Consequently, it is imperative to 

determine the adsorption behaviour of any single polymer component from a 

solution containing several components [1, 4, 5, 9].

As a result, a preliminary study into the adsorption of polymer onto pre-formed 

free standing bentonite films from aqueous solution containing both 

polyacrylamide and polyalkyl glycol has been undertaken in order to establish 

the shale inhibition properties of such polymer systems. It should be noted that 

the effect of electrolyte on such stabilisation mechanisms has not been evaluated 

here, but could form the basis of any future work.

Infrared spectroscopy and X-ray diffraction have been used to determine the 

adsorption properties of one polymer in the presence of another. This is
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extremely important in determining the mechanisms by which these fluids 

might stabilise the reactive shales which comprise the wellbore.

6.2. Experimental

8.2.1 Materials

Homoionic Na+ SWy-1 bentonite was used as outlined in section 7. 2.1. 

Sections 6.2.1 and 7.2.1 outline the use of polyacrylamide and polyalkyl glycol 

respectively.

8.2.2. Spectroscopy

8.2.2.1 Transmission - Free standing films

Free standing films were prepared and used by the method outlined in sections

6.2.2.1 and 7.2.2.1. Here, however, films were immersed in mixed aqueous 

polyalkyl glycol (molecular weight 600 and 1700 gmol"l) and polyacrylamide 

(molecular weight 7000k gmol- !) solutions overnight (for a minimum of 12 

hours). The solutions contained polyacrylamide at concentrations 5.0, 3.3 and

1.0 gdm"3 and polyalkyl glycol at concentrations 50, 5.0, 2.5 and 1.0 gdm"3. 

The infrared transmission spectra were acquired as outlined in sections 6.2.2.1 

and 7.2.2.1.

8.2.2.2 ATR spectroscopy - Bentonite film

Na bentonite films were prepared on the surface of the ZnSe Squarecol ATR 

prism as outlined in section 4.4.4. The cell was assembled and infrared spectra 

acquired after filling the trough with 2  cm^ mixed solution containing 50 gdm"3
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polyalkyl glycol (Mw 600 gm oH ) and 5.0 g d m '3  polyacrylamide (Mw 7000k). 

The spectra were acquired at 5 minute intervals as outlined in section 7.2.2.3.

8 .2.2.3. X-ray diffraction

Basal spacings of Na bentonite films after immersion in solution of aqueous 

polyalkyl glycol/polyacrylamide were measured as outlined in sections 6.2.2.4 

and 1.22.5.

8.3 Results and Discussion

8.3.1 X-ray diffraction.

As previously, X-ray diffraction was used to analyse the clay-polymer 

complexes prepared from Na+ SWy-1 montmorillonite free standing films and 

polymer adsorbed from aqueous solutions containing both polyacrylamide and 

polyalkyl glycol. These experiments provide information regarding the nature of 

the adsorbed species and the site of adsorption, i.e. whether the polymer 

adsorption occurs between clay platelets.

It is important to consider the effects of the high and low molecular weight 

polyalkyl glycol separately as they have been shown, in chapter 7, to exhibit 

slightly different stabilisation characteristics.

It was shown previously, in the absence of electrolyte, that Na bentonite films 

were stabilised only by polyalkyl glycol (Mw 600) solutions at PAG(600) 

concentrations >50 gdm"3 (section 7.3.3.1). Similarly, in the absence of 

electrolyte Na bentonite films were stabilised only by mixed polyalkyl 

glycol/polyacrylamide polymer solution which contained PAG(600) at a
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concentration of 50 gdm“3. The concentration of polyacrylamide appears not to 

affect the stabilisation process.

Figure 8.3.1a shows the X-ray diffraction traces of Na bentonite films which 

remained intact following immersion in solutions containing 50 gdm"3 

polyalkyl glycol (Mw 600) and 5.0, 3.3 and 1.0 gdm"3 polyacrylamide (Mw 

7000k). Table 8.3.1a shows the d-spacings corresponding to the diffraction 

maxima in these traces.

Figure 8.3.1a Diffraction traces of Na+ SWv-1 bentonite films, intact 

following immersion in PAGf600VPAM(7000k) solutions at various 

concentrations.
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Intensity (counts s-1)

50 gl-1 PAG(600V5 gl-1 PAM(7000k)/Na film1600

1200
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800 30 gl-1 PAG(600)/1.0 gl-1 PAM(7000k)/Nfa film
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Table 8.3.1a d-spacings from diffraction maxima in figure 8.3.1.1a.

50 gdm-3 PAG(600)/ 

xPAM(7000k) concentration

d-spacing

x= 5.0 17.2

x= 3.3 17.4

x= 1.0 17.4

Many of the features of the diffraction traces such as their shape their 

smoothness, the presence of higher orders o f reflection and the position of the 

maxima (the d-spacings) are very similar to those observed in section 7.3.3.1 for 

PAG(600) adsorption onto Na bentonite films in the absence of any other 

additives. This would tend to suggest that the principle component in the 

solution which facilitates stabilisation of the free standing bentonite film is the 

polyalkyl glycol.

In this mixed polymer study, the diffraction profiles have maxima which 

correspond to d-spacings o f -17.3 A which has been identified as two flat lying 

polyalkyl glycol layers between the platelets. Additionally, the concentrations of 

polymer required to stabilise the film (>50 gdm"3 polyalkyl glycol) appears to 

be independent of polyacrylamide (Mw 7000k) concentration which would 

indicate that the polyacrylamide has no involvement in the stabilisation process. 

This does not seem unlikely when one considers the relative abilities of each 

molecule to stabilise the clay films on their own. Polyacrylamide (Mw 7000k) 

alone in solution at concentrations <5 gdm~3 cannot stabilise free standing films 

of bentonite, whereas >50 gdm‘3 polyalkyl glycol (Mw 600) can (chapters 6 and 

7). The relative sizes of the molecules and the relative numbers of moles per 

unit volume of solution must also be considered. The polyacrylamide (Mw

349



7000k) molecule is several orders of magnitude larger than the polyalkyl glycol 

(Mw 600) molecule so as a result will be able to adsorb much more quickly than 

the amide polymer. This ties up adsorption sites on the clay mineral which 

polyacrylamide might adsorb to (both polymers adsorb via water bridges to 

water directly bound to the exchange cation in the interlayer space) which 

would inhibit adsorption. The adsorbed polyalkyl glycol might then present a 

hydrophobic surface to the polyacrylamide molecules in solution further 

inhibiting adsorption of PAM [168]. Additionally, it should be noted that there 

are significantly more moles of poly alkyl glycol (Mw 600) in solution (2 x 10~3 

moldm"3 at its maximum concentration) compared to only 7x 10"7 moldm"^ of 

PAM (7000k) at its highest solution concentration (5 gdm'3).

The stabilisation of Na+ SWy-1 bentonite films by solutions containing 

PAG(1700) and PAM(7000k) however, does not follow the behaviour observed 

in the presence of polyalkyl glycol (molecular weight 1700 gmol‘1) alone.

Previously, in section 7.3.3.1, it was shown that Na bentonite films were not 

stabilised in the presence of PAG(1700) alone. All films immersed in such 

solutions (at concentrations < 1 0 0  gdm"3) collapsed and could not be retained for 

analysis. Indeed, in general, most films immersed in mixed solutions containing 

both PAG(1700) and PAM (7000k) collapsed. However, Na+ SWy-1 bentonite 

films were stabilised in solutions containing concentrations 50 gdm~3 

PAG(1700) and <3.3 gdm~3 PAM(7000k). Figure 8.3.1b shows the diffraction 

traces of Na bentonite films which remained intact following immersion in 

solutions containing 50 gdm_3 polyalkyl glycol (Mw 1700) and 3.3 and 1.0 

gdm"3 polyacrylamide (Mw 7000k). Table 8.3.1b shows the d-spacings 

corresponding to the diffraction maxima.
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Figure 8.3.1b Diffraction traces of Na+ SWy-1 bentonite films intact

following immersion in PAG(1700yPAM(7000k) solutions at various 

concentrations.
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Table 8.3.1b d-spacings from diffraction maxima in figure 8.3.1.1b.

50 gdm"3 PAG(600)/ x gdm"3 

PAM(7000k) concentration

d-spacing (A)

x= 3.3 17.1

x= 1.0 17.2

This result is quite unexpected and clearly indicates that the presence of 

polyacrylamide (7000k) at relatively low solution concentration, provides 

additional stability to the Na bentonite film, which PAG(1700) is unable to offer 

alone. This would seem to indicate that the polyacrylamide molecule must be 

involved in the adsorption process. This tends to agree with the findings o f other
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workers [1, 4, 9] who have indicated that glycol in the presence of PHPA has a 

greater propensity for stabilising reactive shales which comprise the borehole 

than glycol alone.

It is unclear however, from these findings, what the involvement of 

polyacrylamide is, and in fact, what the exact nature of the adsorbed species is. 

The smooth, sharp traces, evidence of higher orders of reflection and the 

position o f the diffraction maxima tend to suggest that the adsorbed species is 

more likely to be polyalkyl glycol. In such circumstances the interlayer spacing 

corresponds to the formation of a two layer organic complex in the region 

between the clay platelets. However, PAG (1700) does not stabilise Na 

bentonite films on its own in solution and the observed d-spacings are only 

slightly higher than those observed for PAM(7000k) adsorbed onto dispersed 

Na bentonite (section 6.3.2.1) of-16.6A .

Clearly, solutions containing polyacrylamide (Mw 7000k) at concentrations 

<3.3gdm"3 appears to enhance the stabilisation of Na bentonite films in the 

presence of 50 gdm~3 polyalkyl glycol (Mw 1700). Similar improved 

stabilisation is not observed when the polyacrylamide is added to solutions 

containing polyalkyl glycol (Mw 600). This is not to say that it does not exhibit 

its stabilising mechanism in such solutions it may be that its magnitude is small 

compared to the magnitude of stabilisation provided by PAG(600). No direct 

conclusions may be made form these results however, infrared analysis of these 

bentonite film-polyacrylamide complexes (section 8.3.2) provides further 

evidence of the nature of the adsorbed species and the nature of their interaction 

with the clay platelets
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8.3.2 Transmission infrared spectroscopy.

In order to establish the mechanism of enhanced stabilisation by PAM(7000k) 

the infrared spectra of films stabilised in solutions containing PAG(600) and 

PAG(1700) have been acquired. Again, it is instructive to consider the two 

molecular weights of glycol molecule separately as they exhibit slightly 

differing stabilisation characteristics.

Firstly, consider the stabilisation of Na bentonite films by PAG(600) in the 

presence of PAM(7000k). From section 7.3.4.2 it is clear that an aqueous 

solution containing 50 gdm"3 PAG(600) alone stabilises Na bentonite films by 

dehydrating the clay and the subsequent formation of two polymer layers 

between the clay platelets. It seems likely that in aqueous solutions containing 

50 gdm"3 PAG(600) and PAM (7000k) at concentrations between 1.0 and 5.0 

gdm"3 (section 8.3.1) stabilisation is by the same mechanism.

The infrared evidence would tend to suggest this. Comparison of figures 

7.3.4.2a and figure 7.3.4.2b (the infrared spectra between 4000 and 2600 cm"l 

and 2000 and 1300 cm"l respectively, of Na bentonite films stabilised by 50 

g d m ‘3 PAG(600) solution) with figures 8.3.2a and 8.3.2b the analogous spectra 

for the Na bentonite films stabilised by 50 gdm~3 PAG(600) solution containing 

between 1.0 and 5.0 gd m '3  PAM(7000k) shows this quite clearly.
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Figure 8.3.2a Infrared spectra of Na bentonite films, intact, after

immersion in 50 gdm"3 PAG(600) and PAM(7000k) solutions at various 

concentrations.
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Figure 8.3.2b Infrared spectra of Na bentonite films, intact, after being 

placed in 50 gdm"3 PAG(600) and PAM(70001Q solutions at various 

concentrations.
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As in figures 7.3.4.2a and 7.3.4.2b, the films immersed in mixed PAG(600) 

PAM(7000k) solution exhibit absorbance ratios A(3630)/A(3440) and 

A(3630)/A(1640) significantly higher than observed in a homoionic Na 

bentonite film before immersion. Table 8.3.2a displays the absorbance ratios
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A(3630)/A(3440) A(3630)/A(1640) and A(3630)/A(2932) from the infrared 

spectra shown in 8.3.2a and 8.3.2b.

Table 8.3.2a Absorbance ratios from the spectra in figures 8.3.2a and 

8.3.2b.

absorbance 5.0 gdm'3 3.3 gdm~3 1.0 gdm“3

ratio PAM(7000k) PAM(7000k) PAM(7000k)

3630/3440* 2.5 7.8 12.0

3630/1640* 4.8 7.8 12.0

3630/2932 1.5 1.6 1.7

* The actual position of these bands is dependent upon the extent of 

dehydration.

Clearly, the Na bentonite films become dehydrated (the ratios A(3630)/A(3440) 

and A(3630)/A(1640) in a homoionic Na bentonite film are 1.53 and 2.38, 

respectively) for the same reasons as explained in chapter 7. However, it would 

appear that the extent of dehydration is controlled by the concentration of 

PAM(7000k) in solution. As the concentration PAM(7000k) in solution 

becomes less so the amount of polymer adsorbed becomes slightly lower 

(indicated by the increase in the absorbance ratio A(3630)/A(2932)). This might 

indicate a slight reduction in the amount of adsorbed polyacrylamide or in the 

amount o f adsorbed polyalkyl glycol. Concurrently, the extent of dehydration 

increases and as a result, the likelihood of film stabilisation increases. This is 

not surprising as dehydration was identified as the driving force and first key 

stage of polyalkyl glycol adsorption and hence film stabilisation by reducing the 

capability of the cations to rehydrate (chapter 7).
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It seems likely that there is an additional mechanism which aids stabilisation of 

the film whether it be by inhibiting clay dispersion, by aiding dehydration or by 

enhancing polyalkyl glycol adsorption which appears to depend critically on an 

optimum amount of polyacrylamide in solution.

At low concentrations of polyacrylamide in solution, dehydration appears to be 

enhanced compared to when polyacrylamide is absent (table 7.3.4.2b).

However, as the concentration of polyacrylamide in solution becomes higher, 

the film is able to become more hydrated and may not be stabilised as 

effectively. At higher concentrations of polyacrylamide in solution, the film 

becomes completely destabilised and disintegrates.

In section 6.3.3.4, evidence of polyacrylamide adsorption onto aqueous 

dispersions of mixed cation bentonite was observed in all spectral regions. 

Between 4000 and 2600 cm"l, relatively strong bands attributed to the 

antisymmetric and symmetric stretching modes of NH2  interacting with the 

water of hydration surrounding the exchange cations were observed at 

approximately 3475 and 3390 cm"l, respectively. Similarly, between 2000 and 

1300 cm-1, the amide I band (attributed to the C =0 stretching mode) is 

observed at around 1670 cm 'l, again due to hydrogen bonding interactions with 

water surrounding the exchange cation. However, in both figures 8.3.2a and 

8.3.2b, there is no evidence of the direct interaction of polyacrylamide with the 

clay, indeed there is no evidence of polyacrylamide at all.

It may be possible that direct adsorption between the polyacrylamide and the Na 

bentonite does occur but that the complexity of the spectra masks identifying 

spectral features. The spectra contain bands attributable to bentonite and an 

organic component which could be polyacrylamide or polyalkyl glycol (or both) 

and consequently, the identifying polyacrylamide bands may not be observed.
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This is however, hard to believe as some evidence of the relatively intense NH2  

antisymmetric and symmetric bands and the Amide I band would be expected in 

the spectra particularly after the clay is dehydrated, and the intensity of bands 

attributed to bentonite in the spectrum are significantly diminished. Hence, it is 

more likely that direct interaction between the polyacrylamide and the water of 

hydration around the exchange cations does not occur. This does not seem 

unlikely when one considers the relative sizes and concentrations o f each 

polymer. The very small polyalkyl glycol molecules are competing with much 

larger polyacrylamide molecules for the same adsorption sites in a restricted 

geometry. Consequently, the ability of the polyacrylamide to access the 

adsorption sites will be significantly less compared to that of the polyalkyl 

glycol molecules. Additionally, the number o f moles of polyalkyl glycol per 

unit volume of solution is significantly higher than that of polyacrylamide 

which will influence the adsorption behaviour as mentioned previously. Then 

once the polyalkyl glycol molecules have adsorbed the entropic driving force to 

replace the glycol polymer by the amide polymer will be much smaller than the 

driving force to replace water molecules by polyacrylamide molecules and the 

adsorption process is unlikely to proceed. Additionally, adsorbed polyalkyl 

glycol will present a hydrophobic surface to the polyacrylamide molecules 

which may well inhibit polyacrylamide adsorption [168].

Whilst the enhanced stabilising effect of PAM(7000k) can be seen when it is 

added to 50 gdm"3 PAG(600) solution, the effect is most notable in solutions 

containing PAG(1700). Figures 8.3.2c and 8.3.2d show the infrared spectra 

obtained between 4000 and 2600 cm"l and 2000 and 1300 cm 'l respectively, of 

Na bentonite films stabilised by 50 gdm"3 PAG(1700) solutions containing 

PAM(7000k) at solution concentrations of 1.0 and 3.3 gdm"3. As mentioned 

previously a solution containing 50 gdm~3 PAG(1700) and 5.0 gdm"3 

PAM(7000k) did not stabilise the Na bentonite film.
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Figure 8.3.2c FTIR spectra of Na bentonite films, intact, after immersion in

50 gdm~3 PAG(1700yPAM(70001Q solutions at various concentrations.
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Figure 8.3.2d FTIR spectra of Na bentonite films, intact after immersion in 

50 gdm~3 PAG(1700VPAM(7000k) solutions at various concentrations.
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The pattern here is almost identical to that observed previously in 50 gdm"3 

PAG(600) solution. However, it would seem that the ability of the film to 

become hydrated when the concentration of PAM(7000k) in solution is 5.0 

gdm"3 is sufficient to cause it to become destabilised. Otherwise, when the 

concentration of PAM(7000k) in solution is 3.3 or 1.0 gdm"3 the Na bentonite
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films are dehydrated compared to that observed in homoionic bentonite prior to 

immersion (table 8.3.2c).

Table 8.3.2a Absorbance ratios from spectra in figures 8.3.2c and 8.3.2d.

absorbance 3.3 gdm"3 1.0 gdm"3

ratio PAM(7000k) PAM(7000k)

3630/3440* 3.2 5.8

3630/1640* 3.2 5.8

3630/2932 1.8 2.4

* The actual position of these bands is dependent upon the extent of 

dehydration.

Again, as the concentration of polyacrylamide in solution decreases, so the 

extent of dehydration increases. In the absence of PAM(7000k) however, the 

films cannot be stabilised (section 6 .3.3.2). This is further evidence to suggest 

that a critical polyacrylamide concentration in solution exists, above and below 

which, the film is able to become hydrated and disintegrate.

It is likely that, at high solution concentrations, the polyacrylamide is able to 

compete with the polyalkyl glycol more effectively for adsorption sites on the 

clay and will thus inhibit the stabilisation mechanism of polyalkyl glycol. This 

may be by flocculating the clay to such an extent that it prevents polyol ingress 

between the platelets or maybe by virtue o f the viscosity it imparts to solution 

preventing polyalkyl glycol access to the clay. However, when the flocculating 

effect of the polyacrylamide in solution is not present (i.e. at zero 

polyacrylamide loading) the PAG(1700) is not able to prevent the clay platelets 

from becoming dispersed, and the film will become unstable.
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As before, there is no evidence of polyacrylamide adsorption (direct interaction) 

on the clay. The spectra shown in figures 8.3.2c and 8.3.2d are very similar to 

those observed in figures 8.3.2a and 8.3.2b respectively. This would again tend 

to imply that the polyacrylamide does not directly interact with the clay and that 

the stabilisation it provides is purely by virtue of its concentration preventing 

the clay platelets from becoming highly dispersed (up to a critical concentration 

value above which it hinders the stabilisation mechanism).

8.3.3. ATR infrared spectroscopy

Competitive adsorption of polyethylene glycol (PEG), polyacrylic acid (PAA) 

and polycation (FL15) on supported Na bentonite clay films has been studied 

previously, using FTIR-ATR [204]. In section 7.3.5.2, the adsorption of 

polyalkyl glycol from aqueous solution onto supported Na bentonite films were 

studied in-situ using FTIR-ATR spectroscopy. After only 5 minutes, the 

addition of a 50 gdm~3 solution of PAG(600) to the Squarecol cell containing 

Na bentonite coated optics caused the bentonite to become fully hydrated and to 

no longer exist as a robust film (figure 7.3.5.2b). It was not until the experiment 

was performed adding 10% KC1 to the polyalkyl glycol solution that the film 

was induced to retain its integrity.

The experiment was repeated but PAM(7000k) solution was added to provide a 

concentration of 5.0 gdm"3 of polyacrylamide in the polyalkyl glycol solution as 

a replacement for KC1. Figure 8.3.3a shows the infrared spectra 5 minutes and 2 

hours after addition of the 50 gdm“3 PAG(600)/5.0 gdm‘3 PAM(7000k) 

solution to the Na bentonite coated on ZnSe ATR optics in the region between 

1400 and 850 cm"l.
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Figure 8.3.3a ATR spectra of bentonite film contacted with 50 gdm"3

PAG(600y5.0 gdm"3 PAM(7000k) solution at various times.
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Clearly, after 5 minutes the bentonite has not become widely dispersed and the 

film appears to be stable. This is a marked improvement on the situation 

observed in the presence of PAG(600) only (figure 7.3.5.2b). However, after 2 

hours the spectrum resembles that of hydrated bentonite (section 5.3.4) 

indicating that it has become dispersed and the film has lost its integrity. This 

seems to imply that polyacrylamide is not as efficient at enhancing stability as 

10% KC1 and supports previous findings in which 10% KC1 enabled Na 

bentonite films to be stabilised even at very low (1.0 gdm"3) solution 

concentrations of polyalkyl glycol. Polyacrylamide made an observable impact 

only in 50 gdm"3 poly alkyl glycol solutions.

Obviously, the concentration of polyacrylamide used has not been optimised to 

provide optimum stability and this test is quite subjective since the relative 

amounts of bentonite on the surface of the IRE in each case has not been 

quantified. However, it does seem that the film is stabilised for longer in the 

presence of polyalkyl glycol and polyacrylamide solution than it is in the 

presence of polyalkyl glycol solution alone.
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8.4. Conclusions

Polyacrylamide (Mw 7000k) in solution has been shown to aid the stabilisation 

of Na bentonite films immersed in polyalkyl glycol solutions. The effect is 

smaller than the enhanced stabilisation provided by electrolyte in such solutions 

and has only been physically observable in solutions containing polyalkyl 

glycol (Mw 1700). Infrared evidence however, suggests that the effect also 

manifests itself in solutions containing polyalkyl glycol (Mw 600) but its effect 

is too small compared to the effect of the low molecular weight glycol and is not 

observed.

The effectiveness of polyacrylamide (Mw 7000k) depends as critically on its 

concentration in solution. At low concentration, it appears highly effective at 

enhancing the stabilisation of the film by polyalkyl glycol. However, as the 

concentration increases then its ability to aid film stabilisation diminishes and it 

begins to cause the film to destabilise.

The presence o f polyacrylamide has not been observed in the infrared spectra of 

films stabilised by solutions containing polyacrylamide and polyalkyl glycol. 

This indicates that there is no specific interaction between the clay and 

polyacrylamide when used at low concentrations. Indeed, the shape and the 

position of maxima in the X-ray diffraction traces appear to indicate that Na 

bentonite films were stabilised only by the adsorption of polyalkyl glycol 

between the platelets. This is not surprising considering the both the smaller size 

o f the polyalkyl glycol molecule which is able to diffuse quickly to adsorption 

sites and access the constricted geometry between the platelets and its much 

higher solution concentration (number o f moles per unit volume). This would 

tend to indicate that polyacrylamide is not directly involved in the adsorption. In 

fact, it is likely that the polyalkyl glycol adsorbs via hydrogen bonding to water
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directly bound to adsorption sites around the exchange cation which leaves the 

polyacrylamide very few sites on which it might adsorb. It would also imply 

that the polyalkyl glycol presents a hydrophobic surface within the interlayer 

which inhibits both water rehydration and polyacrylamide adsorption.

It would appear that at low concentrations, polyacrylamide prevents the clay 

platelets from dispersing sufficiently on contact with the aqueous solution to 

inhibit destabilisation of the film. This might be by virtue of its ability to 

slightly flocculate the clay (prevent them dispersing prior to polyalkyl glycol 

adsorption) or the viscosity it imparts to the solution. It thus allows the clay to 

be dehydrated by adsorption of polyalkyl glycol and the film to be stabilised. 

Polyacrylamide appears not to hinder polyalkyl glycol adsorption at such low 

concentrations, however, as its concentration increases it may prevent 

adsorption by a number of mechanisms:

i) Increased flocculation o f the Na bentonite, preventing polyalkyl glycol access 

to the confined geometry of the interlayer space.

ii) Slowing the rate of polyalkyl glycol adsorption which might decrease the rate 

of adsorption and therefore increase the time to stabilise the film. The clay 

platelets would then have more time to disperse and therefore rupture the film.

iii) Competing for the same adsorption sites (inner hydration sphere water 

surrounding exchange cations in the interlayer) therefore reducing the ability of 

polyalkyl glycol to adsorb, and allowing the platelets to disperse, destabilising 

the film.

Evidently, in water based drilling muds considerable attention must paid to the 

effectiveness of one polymer to stabilise the wellbore wall in the presence of 

another and how this changes as the concentrations o f various components 

change as they are slowly depleted from the drilling fluid.
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8. COMPETITIVE ADSORPTION OF POLYALKYL GLYCOL

AND POLYACRYLAMIDE ON BENTONITE

8.1. Introduction

Thus far, the adsorption o f individual polymer components such as 

polyacrylamide (chapter 6 ) and polyalkyl glycol (chapter 7) onto bentonite has 

been studied in some detail. One of the interesting features of the adsorption 

behaviour o f both polymers has been the influence of other components in 

solution. Indeed, the effect of dissolved electrolyte in solution has been found to 

significantly affect the amount of polymer adsorbed and the stability of free 

standing films contacted with aqueous polymer solutions.

The effect of multiple components in solution on the adsorption behaviour of 

any other single component is extremely important, as water based oil well 

drilling fluids are multicomponent systems containing various polymer 

additives, minerals and dissolved salts. Consequently, it is imperative to 

determine the adsorption behaviour of any single polymer component from a 

solution containing several components [1, 4, 5, 9].

As a result, a preliminary study into the adsorption of polymer onto pre-formed 

free standing bentonite films from aqueous solution containing both 

polyacrylamide and polyalkyl glycol has been undertaken in order to establish 

the shale inhibition properties of such polymer systems. It should be noted that 

the effect of electrolyte on such stabilisation mechanisms has not been evaluated 

here, but could form the basis of any future work.

Infrared spectroscopy and X-ray diffraction have been used to determine the 

adsorption properties of one polymer in the presence of another. This is
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extremely important in determining the mechanisms by which these fluids 

might stabilise the reactive shales which comprise the wellbore.

6.2. Experimental

8.2.1 Materials

Homoionic Na+ SWy-1 bentonite was used as outlined in section 7. 2.1.

Sections 6.2.1 and 7.2.1 outline the use of polyacrylamide and polyalkyl glycol 

respectively.

8.2.2. Spectroscopy

8.2.2.1 Transmission- Free standing films

Free standing films were prepared and used by the method outlined in sections

6.2.2.1 and 7.2.2.1. Here, however, films were immersed in mixed aqueous 

polyalkyl glycol (molecular weight 600 and 1700 gmol"l) and polyacrylamide 

(molecular weight 7000k gm oH ) solutions overnight (for a minimum of 12 

hours). The solutions contained polyacrylamide at concentrations 5.0, 3.3 and

1.0 gdm~3 and polyalkyl glycol at concentrations 50, 5.0, 2.5 and 1.0 gdm"3. 

The infrared transmission spectra were acquired as outlined in sections 6.2.2.1 

and 7.2.2.1.

8 .2.2.2 ATR spectroscopy - Bentonite film

Na bentonite films were prepared on the surface of the ZnSe Squarecol ATR 

prism as outlined in section 4.4.4. The cell was assembled and infrared spectra 

acquired after filling the trough with 2  cm^ mixed solution containing 50 gdm"3
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polyalkyl glycol (Mw 600 gm oH ) and 5.0 gdm~3 polyacrylamide (Mw 7000k). 

The spectra were acquired at 5 minute intervals as outlined in section 7.2.2.3.

8 .2.2.3. X-ray diffraction

Basal spacings o f Na bentonite films after immersion in solution of aqueous 

polyalkyl glycol/polyacrylamide were measured as outlined in sections 6.2.2.4 

and 7.2.2.5.

8.3 Results and Discussion

8.3.1 X-ray diffraction.

As previously, X-ray diffraction was used to analyse the clay-polymer 

complexes prepared from Na+ SWy-1 montmorillonite free standing films and 

polymer adsorbed from aqueous solutions containing both polyacrylamide and 

polyalkyl glycol. These experiments provide information regarding the nature of 

the adsorbed species and the site of adsorption, i.e. whether the polymer 

adsorption occurs between clay platelets.

It is important to consider the effects of the high and low molecular weight 

polyalkyl glycol separately as they have been shown, in chapter 7, to exhibit 

slightly different stabilisation characteristics.

It was shown previously, in the absence of electrolyte, that Na bentonite films 

were stabilised only by polyalkyl glycol (Mw 600) solutions at PAG(600) 

concentrations >50 gdm"3 (section 7.3.3.1). Similarly, in the absence of 

electrolyte Na bentonite films were stabilised only by mixed polyalkyl 

glycol/polyacrylamide polymer solution which contained PAG(600) at a
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concentration of 50 gdm"3. The concentration of polyacrylamide appears not to 

affect the stabilisation process.

Figure 8.3.1a shows the X-ray diffraction traces of Na bentonite films which 

remained intact following immersion in solutions containing 50 gdm~3 

polyalkyl glycol (Mw 600) and 5.0, 3.3 and 1.0 gdm"3 polyacrylamide (Mw 

7000k). Table 8.3.1a shows the d-spacings corresponding to the diffraction 

maxima in these traces.

Figure 8.3.1a Diffraction traces of Na+ SWv-1 bentonite films, intact 

following immersion in PAG(600)/PAM(7000k) solutions at various 

concentrations.
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Table 8.3.1a d-spacings from diffraction maxima in figure 8.3.1.1a.

50 gdm"3 PAG(600)/ 

xPAM(7000k) concentration

d-spacing

x= 5.0 17.2

x= 3.3 17.4

x= 1.0 17.4

Many of the features of the diffraction traces such as their shape their 

smoothness, the presence of higher orders of reflection and the position of the 

maxima (the d-spacings) are very similar to those observed in section 7.3.3.1 for 

PAG(600) adsorption onto Na bentonite films in the absence of any other 

additives. This would tend to suggest that the principle component in the 

solution which facilitates stabilisation of the free standing bentonite film is the 

polyalkyl glycol.

In this mixed polymer study, the diffraction profiles have maxima which 

correspond to d-spacings of -17.3 A which has been identified as two flat lying 

polyalkyl glycol layers between the platelets. Additionally, the concentrations of 

polymer required to stabilise the film (>50 gdm"3 polyalkyl glycol) appears to 

be independent of polyacrylamide (Mw 7000k) concentration which would 

indicate that the polyacrylamide has no involvement in the stabilisation process. 

This does not seem unlikely when one considers the relative abilities of each 

molecule to stabilise the clay films on their own. Polyacrylamide (Mw 7000k) 

alone in solution at concentrations <5 gdm"3 cannot stabilise free standing films 

of bentonite, whereas >50 gdm~3 polyalkyl glycol (Mw 600) can (chapters 6  and 

7). The relative sizes of the molecules and the relative numbers of moles per 

unit volume of solution must also be considered. The polyacrylamide (Mw
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7000k) molecule is several orders of magnitude larger than the polyalkyl glycol 

(Mw 600) molecule so as a result will be able to adsorb much more quickly than 

the amide polymer. This ties up adsorption sites on the clay mineral which 

polyacrylamide might adsorb to (both polymers adsorb via water bridges to 

water directly bound to the exchange cation in the interlayer space) which 

would inhibit adsorption. The adsorbed polyalkyl glycol might then present a 

hydrophobic surface to the polyacrylamide molecules in solution further 

inhibiting adsorption of PAM [168]. Additionally, it should be noted that there 

are significantly more moles of polyalkyl glycol (Mw 600) in solution (2x10"3 

moldm"3 at its maximum concentration) compared to only 7x10“7 moldm'3 of 

PAM (7000k) at its highest solution concentration (5 gdm"3).

The stabilisation o f Na+ SWy-1 bentonite films by solutions containing 

PAG(1700) and PAM(7000k) however, does not follow the behaviour observed 

in the presence of polyalkyl glycol (molecular weight 1700 gm ol'l) alone.

Previously, in section 7.3.3.1, it was shown that Na bentonite films were not 

stabilised in the presence of PAG(1700) alone. All films immersed in such 

solutions (at concentrations < 1 0 0  gdm"3) collapsed and could not be retained for 

analysis. Indeed, in general, most films immersed in mixed solutions containing 

both PAG(1700) and PAM (7000k) collapsed. However, Na+ SWy-1 bentonite 

films were stabilised in solutions containing concentrations 50 gdm"3 

PAG(1700) and <3.3 gdm~3 PAM(7000k). Figure 8.3.1b shows the diffraction 

traces of Na bentonite films which remained intact following immersion in 

solutions containing 50 gdm'3 polyalkyl glycol (Mw 1700) and 3.3 and 1.0 

gdm"3 polyacrylamide (Mw 7000k). Table 8.3.1b shows the d-spacings 

corresponding to the diffraction maxima.
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Figure 8.3.1b Diffraction traces of Na+ SWv-1 bentonite films intact

following immersion in PAG(1700yPAM(7000k) solutions at various 

concentrations.
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Table 8.3.1b d-spacings from diffraction maxima in figure 8.3.1.1b.

50 gdm"3 PAG(600)/ x gdm"3 

PAM(7000k) concentration

d-spacing (A)

x= 3.3 17.1

x= 1.0 17.2

This result is quite unexpected and clearly indicates that the presence of 

polyacrylamide (7000k) at relatively low solution concentration, provides 

additional stability to the Na bentonite film, which PAG(1700) is unable to offer 

alone. This would seem to indicate that the polyacrylamide molecule must be 

involved in the adsorption process. This tends to agree with the findings of other
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workers [1, 4, 9] who have indicated that glycol in the presence of PHPA has a 

greater propensity for stabilising reactive shales which comprise the borehole 

than glycol alone.

It is unclear however, from these findings, what the involvement of 

polyacrylamide is, and in fact, what the exact nature of the adsorbed species is. 

The smooth, sharp traces, evidence of higher orders of reflection and the 

position of the diffraction maxima tend to suggest that the adsorbed species is 

more likely to be poly alkyl glycol. In such circumstances the interlayer spacing 

corresponds to the formation of a two layer organic complex in the region 

between the clay platelets. However, PAG (1700) does not stabilise Na 

bentonite films on its own in solution and the observed d-spacings are only 

slightly higher than those observed for PAM(7000k) adsorbed onto dispersed 

Na bentonite (section 6.3.2.1) of-16.6A .

Clearly, solutions containing polyacrylamide (Mw 7000k) at concentrations 

<3.3gdm"3 appears to enhance the stabilisation of Na bentonite films in the 

presence of 50 gdm"3 polyalkyl glycol (Mw 1700). Similar improved 

stabilisation is not observed when the polyacrylamide is added to solutions 

containing polyalkyl glycol (Mw 600). This is not to say that it does not exhibit 

its stabilising mechanism in such solutions it may be that its magnitude is small 

compared to the magnitude of stabilisation provided by PAG(600). No direct 

conclusions may be made form these results however, infrared analysis o f these 

bentonite film-polyacrylamide complexes (section 8.3.2) provides further 

evidence of the nature of the adsorbed species and the nature o f their interaction 

with the clay platelets
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8.3.2 Transmission infrared spectroscopy.

In order to establish the mechanism of enhanced stabilisation by PAM(7000k) 

the infrared spectra of films stabilised in solutions containing PAG(600) and 

PAG(1700) have been acquired. Again, it is instructive to consider the two 

molecular weights of glycol molecule separately as they exhibit slightly 

differing stabilisation characteristics.

Firstly, consider the stabilisation of Na bentonite films by PAG(600) in the 

presence of PAM(7000k). From section 7.3.4.2 it is clear that an aqueous 

solution containing 50 gdm"3 PAG(600) alone stabilises Na bentonite films by 

dehydrating the clay and the subsequent formation of two polymer layers 

between the clay platelets. It seems likely that in aqueous solutions containing 

50 gdm~3 PAG(600) and PAM (7000k) at concentrations between 1.0 and 5.0 

gdm"3 (section 8.3.1) stabilisation is by the same mechanism.

The infrared evidence would tend to suggest this. Comparison of figures 

7.3.4.2a and figure 7.3.4.2b (the infrared spectra between 4000 and 2600 cm“l 

and 2000 and 1300 cm"l respectively, of Na bentonite films stabilised by 50 

gdm"3 PAG(600) solution) with figures 8.3.2a and 8.3.2b the analogous spectra 

for the Na bentonite films stabilised by 50 gdm"3 PAG(600) solution containing 

between 1.0 and 5.0 gdm"3 PAM(7000k) shows this quite clearly.
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Figure 8.3.2a Infrared spectra of Na bentonite films, intact, after

immersion in 50 gdm~3 PAG(600) and PAM(7000k) solutions at various 

concentrations.
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Figure 8.3.2b Infrared spectra of Na bentonite films, intact, after being 

placed in 50 gdm"3 PAG(600) and PAM(70001Q solutions at various 

concentrations.
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As in figures 7.3.4.2a and 7.3.4.2b, the films immersed in mixed PAG(600) 

PAM(7000k) solution exhibit absorbance ratios A(3630)/A(3440) and 

A(3630)/A(1640) significantly higher than observed in a homoionic Na 

bentonite film before immersion. Table 8.3.2a displays the absorbance ratios
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A(3630)/A(3440) A(3630)/A(1640) and A(3630)/A(2932) from the infrared 

spectra shown in 8.3.2a and 8.3.2b.

Table 8.3.2a Absorbance ratios from the spectra in figures 8.3.2a and 

8.3.2b.

absorbance 5.0 gdm"3 3.3 gdm~3 1.0  gdm"3

ratio PAM(7000k) PAM(7000k) PAM(7000k)

3630/3440* 2.5 7.8 12.0

3630/1640* 4.8 7.8 12.0

3630/2932 1.5 1.6 1.7

* The actual position of these bands is dependent upon the extent of 

dehydration.

Clearly, the Na bentonite films become dehydrated (the ratios A(3630)/A(3440) 

and A(3630)/A(1640) in a homoionic Na bentonite film are 1.53 and 2.38, 

respectively) for the same reasons as explained in chapter 7. However, it would 

appear that the extent of dehydration is controlled by the concentration of 

PAM(7000k) in solution. As the concentration PAM(7000k) in solution 

becomes less so the amount of polymer adsorbed becomes slightly lower 

(indicated by the increase in the absorbance ratio A(3630)/A(2932)). This might 

indicate a slight reduction in the amount of adsorbed polyacrylamide or in the 

amount of adsorbed polyalkyl glycol. Concurrently, the extent of dehydration 

increases and as a result, the likelihood of film stabilisation increases. This is 

not surprising as dehydration was identified as the driving force and first key 

stage of polyalkyl glycol adsorption and hence film stabilisation by reducing the 

capability of the cations to rehydrate (chapter 7).
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It seems likely that there is an additional mechanism which aids stabilisation of 

the film whether it be by inhibiting clay dispersion, by aiding dehydration or by 

enhancing polyalkyl glycol adsorption which appears to depend critically on an 

optimum amount of polyacrylamide in solution.

At low concentrations of polyacrylamide in solution, dehydration appears to be 

enhanced compared to when polyacrylamide is absent (table 7.3.4.2b).

However, as the concentration of polyacrylamide in solution becomes higher, 

the film is able to become more hydrated and may not be stabilised as 

effectively. At higher concentrations of polyacrylamide in solution, the film 

becomes completely destabilised and disintegrates.

In section 6.3.3.4, evidence of polyacrylamide adsorption onto aqueous 

dispersions of mixed cation bentonite was observed in all spectral regions. 

Between 4000 and 2600 cm"l, relatively strong bands attributed to the 

antisymmetric and symmetric stretching modes of NH2  interacting with the 

water of hydration surrounding the exchange cations were observed at 

approximately 3475 and 3390 cm"l, respectively. Similarly, between 2000 and 

1300 cm"l, the amide I band (attributed to the C =0 stretching mode) is 

observed at around 1670 cm~l, again due to hydrogen bonding interactions with 

water surrounding the exchange cation. However, in both figures 8.3.2a and 

8.3.2b, there is no evidence of the direct interaction of polyacrylamide with the 

clay, indeed there is no evidence of polyacrylamide at all.

It may be possible that direct adsorption between the polyacrylamide and the Na 

bentonite does occur but that the complexity o f the spectra masks identifying 

spectral features. The spectra contain bands attributable to bentonite and an 

organic component which could be polyacrylamide or polyalkyl glycol (or both) 

and consequently, the identifying polyacrylamide bands may not be observed.
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This is however, hard to believe as some evidence of the relatively intense NH2  

antisymmetric and symmetric bands and the Amide I band would be expected in 

the spectra particularly after the clay is dehydrated, and the intensity o f bands 

attributed to bentonite in the spectrum are significantly diminished. Hence, it is 

more likely that direct interaction between the polyacrylamide and the water of 

hydration around the exchange cations does not occur. This does not seem 

unlikely when one considers the relative sizes and concentrations o f each 

polymer. The very small polyalkyl glycol molecules are competing with much 

larger polyacrylamide molecules for the same adsorption sites in a restricted 

geometry. Consequently, the ability of the polyacrylamide to access the 

adsorption sites will be significantly less compared to that of the polyalkyl 

glycol molecules. Additionally, the number o f moles of polyalkyl glycol per 

unit volume of solution is significantly higher than that of polyacrylamide 

which will influence the adsorption behaviour as mentioned previously. Then 

once the polyalkyl glycol molecules have adsorbed the entropic driving force to 

replace the glycol polymer by the amide polymer will be much smaller than the 

driving force to replace water molecules by polyacrylamide molecules and the 

adsorption process is unlikely to proceed. Additionally, adsorbed polyalkyl 

glycol will present a hydrophobic surface to the polyacrylamide molecules 

which may well inhibit polyacrylamide adsorption [168].

Whilst the enhanced stabilising effect of PAM(7000k) can be seen when it is 

added to 50 gdm"3 PAG(600) solution, the effect is most notable in solutions 

containing PAG(1700). Figures 8.3.2c and 8.3.2d show the infrared spectra 

obtained between 4000 and 2600 cm"* and 2000 and 1300 cm‘ l respectively, of 

Na bentonite films stabilised by 50 gdm"3 PAG(1700) solutions containing 

PAM(7000k) at solution concentrations of 1.0 and 3.3 gdm"3. As mentioned 

previously a solution containing 50 gd m '3  PAG(1700) and 5.0 gdm"3 

PAM(7000k) did not stabilise the Na bentonite film.
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Figure 8.3.2c FTIR spectra of Na bentonite films, intact after immersion in

50 gdm~3 PAG(1700yPAM(7000k) solutions at various concentrations.
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Figure 8.3.2d FTIR spectra of Na bentonite films, intact, after immersion in 

50 gdm"3 PAG(1700yPAM(7000k) solutions at various concentrations.
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The pattern here is almost identical to that observed previously in 50 gdm"3 

PAG(600) solution. However, it would seem that the ability of the film to 

become hydrated when the concentration o f PAM(7000k) in solution is 5.0 

gdm_3 is sufficient to cause it to become destabilised. Otherwise, when the 

concentration of PAM(7000k) in solution is 3.3 or 1.0 gdm"3 the Na bentonite
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films are dehydrated compared to that observed in homoionic bentonite prior to 

immersion (table 8.3.2c).

Table 8.3.2a Absorbance ratios from spectra in figures 8.3.2c and 8.3.2d.

absorbance 3.3 gdm"3 1.0 gdm~3

ratio PAM(7000k) PAM(7000k)

3630/3440* 3.2 5.8

3630/1640* 3.2 5.8

3630/2932 1.8 2.4

* The actual position of these bands is dependent upon the extent of 

dehydration.

Again, as the concentration of polyacrylamide in solution decreases, so the 

extent of dehydration increases. In the absence o f PAM(7000k) however, the 

films cannot be stabilised (section 6.3.3.2). This is further evidence to suggest 

that a critical polyacrylamide concentration in solution exists, above and below 

which, the film is able to become hydrated and disintegrate.

It is likely that, at high solution concentrations, the polyacrylamide is able to 

compete with the polyalkyl glycol more effectively for adsorption sites on the 

clay and will thus inhibit the stabilisation mechanism of polyalkyl glycol. This 

may be by flocculating the clay to such an extent that it prevents polyol ingress 

between the platelets or maybe by virtue o f the viscosity it imparts to solution 

preventing polyalkyl glycol access to the clay. However, when the flocculating 

effect o f the polyacrylamide in solution is not present (i.e. at zero 

polyacrylamide loading) the PAG(1700) is not able to prevent the clay platelets 

from becoming dispersed, and the film will become unstable.
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As before, there is no evidence of polyacrylamide adsorption (direct interaction) 

on the clay. The spectra shown in figures 8.3.2c and 8.3.2d are very similar to 

those observed in figures 8.3.2a and 8.3.2b respectively. This would again tend 

to imply that the polyacrylamide does not directly interact with the clay and that 

the stabilisation it provides is purely by virtue of its concentration preventing 

the clay platelets from becoming highly dispersed (up to a critical concentration 

value above which it hinders the stabilisation mechanism).

8.3.3. ATR infrared spectroscopy

Competitive adsorption of polyethylene glycol (PEG), polyacrylic acid (PAA) 

and poly cation (FL15) on supported Na bentonite clay films has been studied 

previously, using FTIR-ATR [204]. In section 7.3.5.2, the adsorption o f 

polyalkyl glycol from aqueous solution onto supported Na bentonite films were 

studied in-situ using FTIR-ATR spectroscopy. After only 5 minutes, the 

addition of a 50 gdm“3 solution o f PAG(600) to the Squarecol cell containing 

Na bentonite coated optics caused the bentonite to become fully hydrated and to 

no longer exist as a robust film (figure 7.3.5.2b). It was not until the experiment 

was performed adding 10% KC1 to the polyalkyl glycol solution that the film 

was induced to retain its integrity.

The experiment was repeated but PAM(7000k) solution was added to provide a 

concentration of 5.0 gdm"3 of polyacrylamide in the polyalkyl glycol solution as 

a replacement for KC1. Figure 8.3.3a shows the infrared spectra 5 minutes and 2 

hours after addition of the 50 gdm"3 PAG(600)/5.0 gdm"3 PAM(7000k) 

solution to the Na bentonite coated on ZnSe ATR optics in the region between 

1400 and 850 cm"l.

360



Figure 8.3.3a ATR spectra of bentonite film contacted with 50 gdm~3

PAG(600V5.0 gdm"3 PAM(7000kf solution at various times.
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Clearly, after 5 minutes the bentonite has not become widely dispersed and the 

film appears to be stable. This is a marked improvement on the situation 

observed in the presence of PAG(600) only (figure 7.3.5.2b). However, after 2 

hours the spectrum resembles that o f hydrated bentonite (section 5.3.4) 

indicating that it has become dispersed and the film has lost its integrity. This 

seems to imply that polyacrylamide is not as efficient at enhancing stability as 

10% KC1 and supports previous findings in which 10% KC1 enabled Na 

bentonite films to be stabilised even at very low (1.0  gdm~3) solution 

concentrations o f poly alkyl glycol. Polyacrylamide made an observable impact 

only in 50 gdm'3 polyalkyl glycol solutions.

Obviously, the concentration o f polyacrylamide used has not been optimised to 

provide optimum stability and this test is quite subjective since the relative 

amounts of bentonite on the surface of the IRE in each case has not been 

quantified. However, it does seem that the film is stabilised for longer in the 

presence o f polyalkyl glycol and polyacrylamide solution than it is in the 

presence of polyalkyl glycol solution alone.
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8.4. Conclusions

Polyacrylamide (Mw 7000k) in solution has been shown to aid the stabilisation 

of Na bentonite films immersed in polyalkyl glycol solutions. The effect is 

smaller than the enhanced stabilisation provided by electrolyte in such solutions 

and has only been physically observable in solutions containing polyalkyl 

glycol (Mw 1700). Infrared evidence however, suggests that the effect also 

manifests itself in solutions containing polyalkyl glycol (Mw 600) but its effect 

is too small compared to the effect of the low molecular weight glycol and is not 

observed.

The effectiveness of polyacrylamide (Mw 7000k) depends as critically on its 

concentration in solution. At low concentration, it appears highly effective at 

enhancing the stabilisation of the film by polyalkyl glycol. However, as the 

concentration increases then its ability to aid film stabilisation diminishes and it 

begins to cause the film to destabilise.

The presence of polyacrylamide has not been observed in the infrared spectra of 

films stabilised by solutions containing polyacrylamide and polyalkyl glycol. 

This indicates that there is no specific interaction between the clay and 

polyacrylamide when used at low concentrations. Indeed, the shape and the 

position of maxima in the X-ray diffraction traces appear to indicate that Na 

bentonite films were stabilised only by the adsorption of polyalkyl glycol 

between the platelets. This is not surprising considering the both the smaller size 

o f the polyalkyl glycol molecule which is able to diffuse quickly to adsorption 

sites and access the constricted geometry between the platelets and its much 

higher solution concentration (number o f moles per unit volume). This would 

tend to indicate that polyacrylamide is not directly involved in the adsorption. In 

fact, it is likely that the polyalkyl glycol adsorbs via hydrogen bonding to water
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directly bound to adsorption sites around the exchange cation which leaves the 

polyacrylamide very few sites on which it might adsorb. It would also imply 

that the polyalkyl glycol presents a hydrophobic surface within the interlayer 

which inhibits both water rehydration and polyacrylamide adsorption.

It would appear that at low concentrations, polyacrylamide prevents the clay 

platelets from dispersing sufficiently on contact with the aqueous solution to 

inhibit destabilisation of the film. This might be by virtue o f its ability to 

slightly flocculate the clay (prevent them dispersing prior to polyalkyl glycol 

adsorption) or the viscosity it imparts to the solution. It thus allows the clay to 

be dehydrated by adsorption of polyalkyl glycol and the film to be stabilised. 

Polyacrylamide appears not to hinder polyalkyl glycol adsorption at such low 

concentrations, however, as its concentration increases it may prevent 

adsorption by a number of mechanisms:

i) Increased flocculation of the Na bentonite, preventing polyalkyl glycol access 

to the confined geometry of the interlayer space.

ii) Slowing the rate of polyalkyl glycol adsorption which might decrease the rate 

o f adsorption and therefore increase the time to stabilise the film. The clay 

platelets would then have more time to disperse and therefore rupture the film.

iii) Competing for the same adsorption sites (inner hydration sphere water 

surrounding exchange cations in the interlayer) therefore reducing the ability of 

polyalkyl glycol to adsorb, and allowing the platelets to disperse, destabilising 

the film.

Evidently, in water based drilling muds considerable attention must paid to the 

effectiveness of one polymer to stabilise the wellbore wall in the presence of 

another and how this changes as the concentrations of various components 

change as they are slowly depleted from the drilling fluid.
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9. INTERACTIONS OCCURRING AT THE BENTONITE/

WATER/ POLYMER INTERFACE.

9.1. Conclusions

Oil based muds have many advantages over their water based counterparts (as 

outlined in chapter 1), the most important being that they are extremely adept at 

inhibiting shale hydration thus maintaining borehole stability. Whilst the 

drilling industry prefers to use oil based muds, water based drilling muds have 

been used extensively. This is mainly because water based drilling muds are 

relatively inexpensive and much more environmentally acceptable since they 

use less toxic components in their formulation. The obvious drawback to using 

water based muds is that they are able to easily hydrate, swell and disperse the 

shales which comprise the borehole causing it to become unstable.

The swelling of clay minerals by the hydration of exchangeable cations which 

reside in the interlayer is well known and in this study, perturbations in the 

structure of the silicate lattice have been observed using FTIR transmission, 

microscopy and ATR-FTIR spectroscopy. A band at -1086 cm"l in the infrared 

spectrum of fully hydrated bentonite attributed to the silicate stretching mode, 

perpendicular to the plane of the silicate lattice, is perturbed due to the 

proximity of the exchange cation to the silicate lattice. Consequently, since the 

nature of the exchange cation, the effect of flocculating electrolyte and the 

extent of hydration/dehydration of the clay has an enormous influence on the 

position of the cation between the platelets they also influence perturbations of 

the silicate lattice, and hence the position of the band.

Obviously, the nature of the exchange cation has an influence on the 

perturbations felt by the silicate lattice. The band was indeed more developed in
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the spectrum of aqueous homoionic bentonite suspensions exchanged with 

cations (such as Na+) which are more easily hydrated than in the spectrum of 

bentonite exchanged with cations which are less easily hydrated (Ca^+). The 

Na+ cations form extended double layers and has very little influence on the 

silicate lattice. The Ca^+ cation however, is unable to form extended double 

layers and therefore resides close to the silicate layer. Consequently, the position 

of the v(Si-O) band in the spectrum of aqueous Ca bentonite is at lower 

frequency than in the spectrum of aqueous Na bentonite, indicating increased 

perturbation of the silicate lattice.

Dehydration of such aqueous homoionic bentonite suspensions also has an 

influence on the silicate lattice. As the exchange cations lose their hydration 

shells they will move closer to the surface of the bentonite platelets. Cations 

which are small (such as Na+ and K+) are able to settle into the di-trigonal 

cavity of the silicate surface and cause perturbation of the silicate lattice 

(observed as a shift of the v(Si-O) to low frequency). Larger cations such as 

Ca?+ are unable to settle into the cavity and exist close to the platelet surface 

and consequently exert less influence on the silicate lattice.

Not surprisingly, flocculating electrolyte also causes the exchange cation to 

perturb the silicate lattice structure since increasing the ionic strength of an 

aqueous homoionic bentonite suspension will cause the double layer 

surrounding the exchange cation to collapse. This will cause the cation to 

approach the silicate surface and in the case of sufficiently small cations enter 

and settle in the di-trigonal cavity. This process has been observed by following 

the change in frequency of the silicate stretching mode perpendicular to the clay 

surface.
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Clearly, the hydration and swelling of clay minerals which comprise 

underground shale deposits is a problem when a drilling fluid is used whose 

continuous phase is water. The swelling of the clay is related to the extent of 

hydration, nature of the exchange cations present in its interlayer and the 

presence of flocculating electrolyte (the performance of water based drilling 

fluids is highly dependent on the nature of underground salt deposit through 

which it drills). Hence, it is possible to inhibit swelling slightly by adding 

dissolved salts such as KC1 and CaCl2  which flocculate the clay by cation 

exchange (replacing cations which hydrate easily with cations which hydrate 

and swell the clay less easily) and also by collapsing the electrical double layer.

The effect of electrolyte is not sufficient to maintain borehole stability and, as a 

result, many polymeric additives such as polyacrylamide and polyalkyl glycols 

are added to the system. Knowledge of the mechanism and nature o f the 

interaction between the polymer (which comprises the drilling fluid) and the 

clay mineral (which comprises the borehole and drilled cuttings) is therefore 

extremely useful in determining the effectiveness of a particular system at 

stabilising the wellbore.

In this study, polyacrylamide in aqueous solution has been shown to be wholly 

ineffective at stabilising thin films of bentonite, whether they be free standing 

(unsupported) or supported by a rigid structure. Indeed, measurements imply 

that in the presence of aqueous polyacrylamide solution, the bentonite film 

disperses before the polyacrylamide is able to interact. The presence of 

flocculating electrolyte in solution (10% wt KC1) made no improvement in the 

stabilisation. Evidently, polyacrylamide is not an additive which, when added to 

the water based drilling fluid, is considered likely to exhibit shale inhibition 

properties to any great extent.
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Polyacrylamide does, however, appear to form highly flocculated gel structures 

with clay mineral material (chapter 6 ) which has been hydrated and dispersed 

from the clay mineral film. Consequently, polyacrylamide may help to enhance 

stabilisation of the wellbore (particularly in the presence o f other polymers 

which stabilise the wellbore) and also to flocculate drilled cuttings.

In the absence of electrolyte, the ratio of solid clay:liquid in the suspension is 

critical to the adsorption behaviour since it controls the surface accessibility for 

polymer adsorption. The influence of exchange cation on this process has not 

fully emerged from this study but is expected to play an important role, as it will 

control the state o f bentonite dispersion.

In the presence of electrolyte (10% wt KC1), adsorption of polyacrylamide is 

significantly reduced due to flocculation of the clay mineral by collapse o f the 

double layer, the effect not surprisingly, being more noticeable for 

polyacrylamide of higher molecular weight. The effect of cation exchange 

(replacing cations which swell easily by K+ which hydrates less therefore swells 

less) is also be important in such systems.

Polyacrylamide is easily able to intercalate between dispersed bentonite platelets 

in aqueous suspension and consequently increases the platelet separation (d- 

spacing) with increasing adsorbed amount. The mechanism of such adsorption 

has been shown in chapter 6  to be by polyacrylamide-water hydrogen bonding 

and that the polymer adopts a flat conformation (as is expected of a linear, 

flexible, nonionic polymer). Few polyacrylamide-polyacrylamide interactions 

are observed, particularly when the amount adsorbed is low (at low solution 

concentrations). The actual interaction is thought to be not by hydrogen bonding 

via water attached to the silicate layer of the clay mineral but via a water bridge 

between the polyacrylamide and the first hydration shell surrounding the
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exchange cation in the interlayer space. At higher concentrations o f polymer in 

solution the adsorption o f polyacrylamide becomes more complicated with the 

polymer adsorbing in more coiled conformation. This is probably attributable to 

vast amounts o f entrained polymer between the platelets which becomes lodged 

between the platelets and which is not actually adsorbed.

Clearly, polyacrylamide is a useful additive to use in a water based drilling fluid 

as it will enhance stabilisation of the wellbore and it will also flocculate 

dispersed cuttings, aiding their removal from the wellbore. Polyacrylamide is 

not, however, a very interesting additive. Polyalkyl glycols are much more 

interesting and they have been used quite extensively in the industry due to their 

ability to stabilise shale deposits effectively.

In chapter 7 the stabilisation o f clay mineral films and hence underground shale 

deposits by polyalkyl glycol has been found to depend upon a wide range of 

variables in the system such as nature o f the exchange cation, presence and 

nature of electrolyte ratio of concentration of polymer to clay loading in 

suspension. Whilst the actual mechanism of interaction has been established, 

changes in the variables can make quite important differences to the 

stabilisation.

The exact nature of the interaction appears to be via a water bridge between the 

main chain ether oxygen atoms on the polyol and the first hydration shell o f 

water surrounding the exchange cation. The mechanism involves the 

dehydration of loosely bound water in the interlayer region from the clay 

surface and the outer hydration shells around the cation thus providing the 

thermodynamic (entropic) driving force for adsorption. The subsequent 

stabilisation of the film then depends on the ability of the components in the 

system to prevent rehydration.
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In the absence of any other components, the stabilisation of a Na bentonite film 

is wholly dependent upon the ratio of concentration of polymer (number of 

moles per unit volume) to clay loading in suspension. In such circumstances the 

stabilisation of the film requires the formation of a double organic layer between 

the clay platelets. The formation of such a complex occurs from solutions 

containing at least 0.08 moldm"^ in two distinct stages. Firstly, the almost 

instantaneous formation of the first polyol layer surrounding the cation by 

desorption of adsorbed water molecules, which is an entropy driven process.

The second layer forms much more slowly and appears to be diffusion 

controlled. This layer is thought to be quite weakly bound and would be 

expected to be easily removed. The ability for this system to stabilise the film is 

related to the rate o f formation of the complex, the flocculating effect of high 

concentrations of polyol and the ability o f the polymer to resist rehydration of 

the exchange cations.

Film stabilisation is enhanced by the presence of K+ cations. Indeed, homoionic 

K bentonite films, may be stabilised by as little as 0.0017 moldm"^ polyalkyl 

glycol. The stabilisation of such systems is attributed to both the flocculating 

effect of the polymer and also the ease with which the exchange cation may 

hydrate (Na+ >K+) causing the platelets to swell and disperse the clay film. 

Hence the relative abilities of the Na+ and K+ cations to hydrate is extremely 

important to the stabilisation process.

The ability of the exchange cation to stabilise the film may also be enhanced by 

the presence of a highly flocculating electrolyte. In the presence of KC1, a Na+ 

exchanged film may be stabilised at polymer concentrations as low as 0.0017 

moldm"3. In these systems, the mechanism of adsorption again appears to be by 

dehydration of the exchange cation. However, there may also be some influence 

from the exchange of K+ ions in solution for Na+ cations in the interlayer. The

369



effect o f the highly flocculating medium also enhances stabilisation by 

collapsing the electrical double layer and preventing the platelets from 

dispersing. Similarly, in the presence of NaCl, Na bentonite films may be 

stabilised by the dehydration of the film and subsequent adsorption of the 

polymer to resist rehydration of the exchange cations at solution concentrations 

as low as 0.0017 moldm~3. This is made possible by the enhanced effect o f the 

flocculating electrolyte.

The rate at which the polymer adsorbs is also a major factor in the stabilisation 

of the film. Once the bentonite has been dehydrated, sufficient polymer must 

adsorb onto the clay to inhibit significant rehydration and subsequent dispersion 

of the platelets. As a result, the ability for a lower molecular weight polyol to 

stabilise the film will be greater than that of the higher molecular weight 

polymer because it is able to adsorb more quickly.

It is important to remember that water based drilling fluids are not single 

component systems and that the ability of a single component to enhance 

borehole stability may be enhanced by the presence of another [1, 4, 5, 9]. 

Indeed, as the effectiveness of polyalkyl glycol in stabilising the wellbore has 

been seen to be vastly improved in the presence o f KC1, so its effectiveness in 

the presence of polyacrylamide is slightly improved.

The stabilising effect of polyacrylamide is not noticeable in the presence of 

polyalkyl glycol o f low molecular weight as the polyol is able (in the 

concentration ranges studied here) to stabilise the film and hence the wellbore 

quite easily. Higher molecular weight polyols do not stabilise the wellbore quite 

so well and consequently, in their presence, polyacrylamide is able to enhance 

the stabilisation mechanism.
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Polyacrylamide does not actually adsorb to the clay mineral surface in the 

presence of polyalkyl glycol. Several reasons for this exist. Firstly, the disparity 

of molecular weights allows the smaller polyol molecule to adsorb into the 

restricted geometry between the platelets in the clay film. The rate of this 

adsorption is much faster for such a small molecule (as observed in the absence 

of polyacrylamide). Secondly, once the polyol molecule has adsorbed it inhibits 

polyacrylamide adsorption both by occupying suitable adsorption sites on the 

clay and by presenting a hydrophobic surface to the polyacrylamide.

The ability for polyacrylamide to enhance stabilisation of clay mineral films 

(and hence wellbores) is critically controlled by its concentration in solution. At 

low concentrations it is either able to weakly flocculate the clay or its viscosity 

is able to inhibit the clay platelets from becoming dispersed. This allows 

polyalkyl glycol to adsorb and fully stabilise the clay film structure. At higher 

concentrations in solution it inhibits polyol adsorption by restricting its access to 

the clay interlayer. This might be by increasing the flocculation, slowing the rate 

of polyol adsorption or by competing more strongly for adsorption sites.

Evidently the effectiveness of the drilling fluid to stabilise the wellbore in such 

circumstances will be critically controlled by the concentration of 

polyacrylamide in solution. Clearly this is not a preferred situation, as the 

concentration of polyacrylamide in solution will constantly be changing as 

polymer is depleted from the fluid by adsorption to drilled cuttings. As a result, 

this particular system would not be employed alone as a drilling fluid. More 

likely would be that the low molecular weight polyalkyl glycol would be used 

along with the polyacrylamide as a system to more effectively stabilise the 

borehole [1,4].
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9.2. Future Work

Clearly, X-ray diffraction and infrared spectroscopy are techniques which are 

extremely useful in characterising the 'where' and the 'how' of polymer 

adsorption onto clay minerals. Evidently then, the vast range of drilling fluid 

components and variety o f underground formations leaves the scope for this 

work almost indefinable. Whilst the nature and composition of underground 

deposits will change from drilling site to drilling site, the options for changes to 

the polymer components is enormous. The advantages of using these techniques 

is that they may be applied to both simple and complex mixtures of polymers 

and by elucidating the adsorption characteristics of each individually, the 

effectiveness of one polymer in the presence o f others (or other components in 

solution) may be established. These methods may then be used to evaluate the 

effect on the shale inhibition properties of slight changes to the polymer 

structure, beyond merely molecular weight differences as described in this work 

(it is known that PAG(600) exhibits much greater shale inhibition properties 

than PEG(600) [1]) or changes to other components such as electrolyte.

Evidently, the use of bentonite free standing films in this study has provided a 

good approximation to the wellbore in as much that it provides a measure o f the 

ease with which a compacted clay may be dispersed. O f further interest would 

be to characterise this film and compare it to actual shale deposits or indeed to 

use very thin (microtombed) layers of shale deposits to mimic as closely as 

possible the actual wellbore conditions.

In addition to these techniques, it has been shown that FTIR-ATR is a powerful 

tool which may be applied to the study of stabilisation of the drilled wellbores. 

Consequently, for polymeric solutions (simple muds) which stabilise the 

wellbore and inhibit clay/shale dispersion (and hence a bentonite film supported
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on the surface of an ATR prism) in the way that polyalkyl glycol has been 

shown to, the use of bentonite coated optics provides great scope for a wide 

range of in-situ studies.

Another of the principle advantages of using the Squarecol cell containing a 

bentonite coated ZnSe IRE, is that this particular cell is able to firstly, be heated, 

and secondly to have solution flowed through it. Such conditions would 

approximate much more closely to the physical action of the water based 

drilling fluid on the wellbore than the static case considered in this work.
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