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Abstract

Highlighting Dissimilarity in Medical Images Using 
Hierarchical Clustering Based Segmentation (HCS)

Tissue abnormality in a medical image is usually related to a dissimilar part of an 
otherwise homogeneous image. The dissimilarity may be subtle or strong depending on 
the medical modality and the type of abnormal tissue. Dissimilarity within an otherwise 
homogeneous area of an image may not always be due to tissue abnormality. It might be 
due to image noise or due to variability within the same tissue type. Given this situation it 
is almost impossible to design and implement a generic segmentation process that will 
consistently give a single appropriate solution under all conditions. Hence a dissimilarity 
highlighting process that yields a hierarchy of segmentation results is more useful. This 
would benefit from high level human interaction to select the appropriate image 
segmentation for a particular application, because one of the capabilities of the human 
vision process when visualising images is its ability to visualise them at different levels of 
details.

The purpose of this thesis is to design and implement a segmentation procedure to 
resemble the capability of the human vision system's ability to generate multiple solutions 
of varying resolutions. To this end, the main objectives for this study were :

(i) to design a segmentation process that would be unsupervised and completely data 
driven.

(ii) to design a segmentation process that would automatically and consistently 
generate a hierarchy of segmentation results.

In order to achieve these objectives a hierarchical clustering based segmentation (HCS) 
process was designed and implemented. The developed HCS process partitioned the 
images into their constituent regions at hierarchical levels of allowable dissimilarity 
between the different spatially adjacent or disjoint regions. At any particular level in the 
hierarchy the segmentation process clustered together all the pixels and/or regions that 
had dissimilarity among them which was less than or equal to the dissimilarity allowed 
for that level. The clustering process was designed in such a way that the merging of the 
clusters did not depend on the order in which the clusters were evaluated.

The HCS process developed was used to process images of different medical modalities 
and the results obtained are summarised below :

(i) It was successfully used to highlight hard to visualise stroke affected areas in T2 
weighted MR images confirmed by the diffusion weighted scans of the same areas 
of the brain.

(ii) It was used to highlight dissimilarities in the MRI, CT and ultrasound images and 
the results were validated by the radiobgists.

It processed medical image data and consistently produced a hierarchy of segmentation 
results but did not give a diagnosis. This was left for the experts to make use of the results 
and incorporate these with their own knowledge to arrive upon a diagnosis. Thus the 
process acts as an effective computer aided detection (CAD) tool.

The unique features of the designed and implemented HCS process are :
(i) The segmentation process is unsupervised, completely data driven and can be 

applied to any medical modality, with equal success, without any prior 
information about the image data.

(ii) The merging routines can evaluate and merge spatially adjacent and disjoint 
similar regions and consistently give a hierarchy of segmentation results.

(iii) The designed merging process can yield crisp border delineation between the 
regions.
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Chapter 1 

Introduction and Objectives for this Study

1.1 Introduction

The field of medical imaging has experienced an explosive growth in recent years due to 

the availability of several imaging modalities, such as X-Ray, Computed Tomography 

(CT), Magnetic Resonance (MR) imaging, Positron Emission Tomography (PET), 

Single Positron Emission Computer Tomography (SPECT) and Ultrasound. The digital 

revolution and the increased processing power in computers in combination with these 

imaging modalities has improved the understanding of the complex human anatomy 

and its behaviour to a great extent [Suri et a l , 2002].

Image segmentation, defined as the separation of an image into regions, is one of the 

first steps leading to image analysis and interpretation [Sonka and Fitzpatrick, 2000]. 

Image segmentation is essentially a process of pixel classification, wherein similar 

pixels are segmented into a common set [Suri et a l, 2002].

The goal of medical image segmentation is to separate the image into regions that are 

meaningful for a specific task. This task may, for instance, involve the detection of 

specific section of organs such as the heart, the liver, or the lungs using MR or CT 

images. Other applications may require the quantification of white and Grey matter 

volumes in MR brain images, the labelling of deep brain structures such as the thalamus 

or hippocampus, or quantitative measurements made from ultrasound images [Sonka 

and Fitzpatrick, 2000],

1.2 Medical Image Segmentation an Illustration

Medical image segmentation is a difficult task because of issues such as spatial 

resolution, poor contrast, ill-defined boundaries, noise, or acquisition artefacts [Sonka 

and Fitzpatrick, 2000]. The medical images in the Figures 1.1 and 1.2 illustrate the 

difficulty faced even by an expert to accurately delineate the boundaries of the different 

regions.
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Figure 1.1 shows a CT image of a section of the brain. The image area within the region 

of interest (rectangular area outlined in black) is made up of three different types of 

regions viz. Grey matter, White matter and the stroke affected area. The stroke affected 

area has been outlined in white by an expert.

Figure 1.2 shows the segmentation result obtained by Hierarchical Segmentation 

(HSEG) [Tilton, 2003]. HSEG is chosen as an illustration since it is one of the very few 

studies with an approach that is similar to the one developed in the current study.

Figure 1.2 illustrates the difficulties faced by segmentation processes to segment 

medical images. Although the image pixels within the region of interest (ROI), have 

been segmented into three classes colour coded as red (the diseased area), green (white 

matter) and blue (grey matter) it has misclassified some of the pixels not belonging to 

the diseased area as being diseased as well. This can be seen by the presence of red 

coloured pixels at the other end of the ROI i.e. outside the area outlined by the expert.

CT-Bmp image S uspec ted  Area Marked

Figure 1.1 - CT image showing the 
suspected area outlined in white by a 

neuroradiologist.

Figure 1.2 - Segmentation of the Grey 
matter, White matter and Stroke affected 
regions and their boundaries by HSEG
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Figure 1.3 shows the segmentation result based on the new segmentation process viz. 

Hierarchical Clustering based Segmentation (HCS) process developed in this study. In 

this case the process has successfully delineated the three different types of regions viz. 

Grey matter, White matter and the stroke affected area indeed. The HCS process 

delineation of the stroke affected area is much more precise than that of visual 

inspection by an expert. This is evident from Figure 1.3, from where it could be seen 

that the expert's outline of the diseased area (white outline) is only very approximate, 

which includes substantial part of the healthy part of the image.

Comparing the segmentation results of Figures 1.2 and 1.3 it can be seen that the HSEG 

process segmentation is suboptimal. In subsequent chapters (See Chapter 6 Section 6.5) 

it will be explained in detail how the HCS process developed in this study is able to 

achieve such a smooth segmentation shown in Figure 1.3.

Figure 1.3 - Segmentation of the Grey 
matter, White matter and Stroke affected 

regions and their boundaries by HCS.
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1.3 Objectives for the Current Study

The problem of segmentation is an important research field and many segmentation 

methods have been proposed in the literature. Over the years the different segmentation 

processes developed have been surveyed and evaluated [Haralick and Shapiro, 1985], 

[Pal and Pal, 1993], [Freixenet et al, 2002]. The common factor amongst all the 

segmentation processes developed so far is that they each yield a single segmentation 

result.

Segmentation processes which give a one-off solution force the user into a take-it-or- 

leave-it situation. It will be much more appropriate if the user is given an option to 

choose the segmentation result depending upon a quantifiable measure chosen by the 

user. This allows the user to select the result best suited for a given situation. Since the 

human vision system has the ability to generate multiple solutions of varying 

resolutions. For example, given the anatomical image of the cross-section of a skull, at a 

low resolution a radiologist can classify the image as regions belonging to soft tissues 

and the skull bone. At a fine resolution different types of soft tissues are also identified. 

At a finer resolution still, the radiologist will also be able to distinguish the dissimilar 

regions within the same tissue type.

Again tissue abnormality in medical images is related to the part of the image being 

dissimilar from an otherwise homogeneous area representing the healthy part of the 

same tissue type. The dissimilarity may be subtle or strong depending on the medical 

modality and the type of tissue abnormality. But dissimilarity, within an otherwise 

homogeneous area of the image may not always be due to tissue abnormality. It might 

be due to image noise or due to variability within the same tissue type. For example 

MRI images contain various noise artefacts, such as intra-tissue noise, inter-tissue 

intensity contrast reduction, partial-volume effects and others [Macovski, 1996]. The 

intra variability of the intensity feature within a tissue is mainly due to artefacts of the 

imaging process. Hence a human expert is needed to decide what is significant.

Given the above situation, it is almost impossible to design and implement a generic 

segmentation process which will always give a single appropriate solution under all 

conditions. There have been very few earlier segmentation methods which are designed 

to yield a hierarchy of segmentation results [Beaulieu and Goldberg, 1989] [Tilton, 

2003].
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The purpose of this study is to design and implement a segmentation procedure to 

mimic the capability of the human vision system ability to generate multiple solutions 

of varying resolutions. To this end, the original contributions and the main objectives of 

this thesis are as follows :

•  To design a segmentation process which will be unsupervised and be completely 

data driven.

This objective ensures that the segmentation process can be applied to any 

medical image modality without any prior information or training with equal 

success.

•  To design a segmentation process which will automatically generate a hierarchy 

of segmentation results.

Satisfying this objective will ensure that at any particular level in the hierarchy, 

the designed segmentation process will automatically cluster together all the 

pixels and/or regions that have dissimilarity among them less are equal to the 

dissimilarity allowed for that level. And the end result will be a hierarchy of 

segmentation results

•  The merging (i.e. Iterative clustering) of the most similar regions should not 

depend on the order in which the regions are evaluated for merging.

This objective will ensure that the segmentation process will consistently yield 

the same set of regions for any particular level in the hierarchy.

•  To implement a merging process that will be independent of the type of 

similarity measure used to compare the different regions in the image.

This objective will ensure that the segmentation procedure is modular and can be 

used to segment any type of images whether textural or tonal just by using the 

most appropriate similarity measure.

•  To design and implement a graphical user interface (GUI) based on good human 

computer interface principles, to display the hierarchy of segmentation results. 

The GUI will display the segmentation results based on the merge tree generated 

by the HCS process.

The GUI, will aid the user to inspect how the merging process evolves and 

associate the unique regions at any level with the different types of patterns 

present in the image.
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In addition to the above listed, main objectives, the following two objectives should also 

be achieved. The following objectives are crucial if the HCS process is to be used for 

the segmentation and analysis of medical images.

•  To design a merging process that can evaluate and merge spatially disjoint 

similar regions.

This objective is important for medical images because in medical images 

regions having similar properties can be spatially disjoint.

•  To design a merging process which will yield crisp border delineation between 

the regions.

This objective is crucial for segmenting medical images since the separate 

regions in medical images can be very small, hardly couple of pixels wide.

The most crucial objectives are the first two, of the main objectives, viz. Unsupervised 

segmentation and Hierarchical clustering based segmentation yielding a hierarchy of 

segmentation results. The last two, additional objectives, are critical if the application 

domain is a medical image segmentation.

1.4 Thesis Outline

The different chapters and their purpose are as follows :

•  Chapter 2 discusses previous related studies and discusses some of the earlier 

studies which have satisfied at the least one of the two crucial objective.

•  Chapter 3 discusses the theoretical background of the study and discusses the 

theoretical details of different types of segmentation and the Hierarchical 

Clustering based Segmentation (HCS) method developed in this study.

•  Chapter 4 discusses the methodology adopted by this study and gives the design 

details of the HCS method developed in this study.

•  Chapter 5 discusses the implementation details of the HCS.

•  Chapter 6 discusses the performance of the HCS process.

•  Chapter 7 discusses the application of the HCS process. In this chapter the 

performance of the HCS process in segmenting medical images is discussed in 

detail.

•  Chapter 8 discusses how the HCS process could be improved upon and where it 

could be further applied.
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Chapter 2
Previous Studies

2.1 Introduction

The main objectives for the current study is to design a segmentation process to achieve 

the following four crucial objectives :

•  unsupervised segmentation.

•  hierarchical clustering based segmentation yielding a hierarchy of segmentation 

results.

•  merging process which can evaluate and merge spatially disjoint similar regions.

•  merging process which will yield a crisp border delineation between the regions.

In this chapter some of the previous related image segmentation studies will be 

described. The discussion in this chapter will highlight the need and necessity to design 

a segmentation process to achieve all the objectives listed in chapter 1 (See Section 1.3).

2.2 Related Studies

There is no reported single previous study which satisfies all of the main objectives 

listed in section 1.3, but a number of them have incorporated some of the objectives. In 

this section five such studies will be highlighted.

2.2.1 Unsupervised Texture Segmentation Using Local and Global 
Spatial Statistics

Kervrann and Heitz [1995] designed an unsupervised segmentation method for textured 

images that had the following prominent features :

•  it was unsupervised.

•  it performed region segmentation.

•  it used feature distribution to compare the similarity between different regions.

•  it iterated by splitting mixed regions into smaller regions and merging smaller 

regions that had similar properties into one homogeneous region.

The relevant areas which this study did not satisfy are :

•  The method started with one region encompassing the whole image and as it 

iterated it subdivided the region into smaller regions.
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•  Until the whole iterative process of splitting and merging was complete the 

resulting segmentation could not be taken as an intermediate result.

•  Thus the method gave a one-off solution of segmentation that was suitable for 

applications where one needs to segment blotches having similar properties.

2.2.2 Multi-scale Image Segmentation

Tabb and Ahuja [1997] designed an unsupervised method to segment tonal images at 

different scales.

The salient features of the method were :

•  The method was unsupervised.

•  Instead of representing the whole image at different scales, the method identified 

homogeneous structures within the image at different scales.

•  The method incorporated both region properties (using grey level similarity) and 

edge information to detect homogeneous regions at different scales.

The major areas in which this study did not satisfy were :

•  The study detected boundaries rather than regions. Hence it was not suitable in 

applications where one needs to segment regions of similarity rather than 

boundaries of homogeneous regions.

•  The scaling measures adopted were spatial as well as the homogeneity of the 

regions. Spatial scaling is not suitable in applications where similar 

homogeneous regions might occur across the image with differing shapes and 

sizes.

Since the study detected boundaries rather than marking regions of similarity, 

the spatial scaling was not an issue for it. Because regions of smaller size were 

merged with bigger regions enclosing the smaller regions and the boundary of 

the bigger region was demarcated.

2.2.3 Texture Segmentation Returning Multiple Solutions

Nickels and Hutchinson [1997] used an approach which gave a range of possible 

partitions of the image with an associated probability distribution with each 

partitioning. Almost all the current approaches discussed in the literature arrive at a 

single partition of an image at the end of a segmentation process. This study for the first
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time departed from the traditional approaches; but since their approach was a supervised 

technique it did not satisfy the main objective.

2.2.4 Unsupervised Texture Segmentation Using Feature Segmentation

Ojala and Pietikainen [1999] designed an unsupervised texture segmentation method 

which used distributions of texture features to measure similarity of regions in the 

image.

The major steps involved in their method were :

•  The input image was divided into square blocks of equal size (say 64x64).

•  Each square block was further subdivided into smaller square blocks if the larger 

square block was found to be not homogeneous. The procedure was repeated 

recursively on each sub-block until a predetermined minimum block size 

(16x16) was reached. This step was referred by the authors as hierarchical 

splitting.

•  Once the image had been roughly splat into blocks of roughly uniform texture, 

adjacent regions of similar homogeneity were merged until a stopping criteria 

was satisfied.

•  To further improve the localisation of the boundaries, the pixels found on the 

boundary of different regions were further reclassified by comparing the 

similarity of a small circular region (of radius 10) around the pixel with that of 

the regions bordering the pixel.

The major areas in which this study did not satisfy were :

•  This study measured the similarity of adjacent image regions hence it could not 

be used in a situation where similar regions were found across the image and not 

bordering one another.

•  By the very nature of the approach by which segmentation was done, the 

smallest region delineated in the image could never be smaller than 16x16 

square block.

•  The results published in their paper could not be entirely reproduced. This could 

be explained as follows :

The first step in their procedure was to splat the original image into 

homogeneous square blocks. In one of their reported sample images, it so 

happened that the border of the square blocks correlated with the actual border
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between the various texture patches. If the initial square blocks, into which the 

original image was splat, straddled the different texture patches border, there 

would be many misclassification.

2.2.5 NASA’s Hierarchical Segmentation Algorithm and its Recursive 
Formulation

NASA's hierarchical segmentation algorithm (referred to as HSEG) and its recursive 

formulation (referred to as RHSEG) [Tilton, 2003] is the closest to our study.

Its salient features are :

•  a hierarchical set of segmentation results.

•  a GUI to display the segmentation results.

The method however has a major limitation. In order to avoid the combinatorial 

problem of having to compare all possible combinations of the regions, which are 

currently in the image, the method, firstly compares and merge spatially adjacent 

regions. And then only subsequently non-spatially adjacent regions are compared and 

merged if found similar [Tilton, 2003].

2.3 Summary

In this chapter studies which are closely related to this study were discussed. Of all the 

studies discussed, NASA's hierarchical segmentation algorithm is the only one that 

satisfies the major objectives of this study. However the current work provides a better 

performance and this will be identified by exhaustive comparison with the NASA 

HSEG technique.

10



Chapter 3
Theoretical Background

3.1 Introduction

Image segmentation is the process of partitioning an image into regions where the 

elements that comprise the regions are more similar to each other when compared to 

those of other regions. Segmentation is based on producing a higher intra-region 

similarity than inter-region similarity. The segmentation process associates a region with 

a unique label to differentiate it from the other regions. Depending upon the level of 

homogeneity within the constituent regions, the level of segmentation might be termed 

as fine or coarse. If the constituent regions are made up of highly homogeneous 

elements, with minimal variation of properties, then the image is finely segmented, i.e. 

the segmentation is very fine. If there are large variations in the intra-region 

homogeneity then the segmentation is coarse. Depending upon the application domain 

and the type of image data the user might prefer fine or coarse segmentation. 

Segmentation of digital images is the first step towards evolving a higher level image 

processing such as object recognition and classification.

3.2 Segmentation Process

Segmentation methods can be divided into three groups according to the dominant 

processes used. The three most common are global knowledge (e.g. using histogram of 

image features like gray-level), edge information and region information [Sonka, 1993]. 

Most image segmentation approaches therefore can be placed in one of three categories 

namely, characteristic feature thresholding or clustering, boundary detection and region 

growing [Fu, 1981].

Gray level thresholding is the simplest segmentation process. In many applications of 

image processing, the gray levels of pixels belonging to the object are substantially 

different from the gray levels of the pixels belonging to the background. Thresholding 

then becomes a simple but effective tool to separate objects from the background. 

Thresholding is computationally inexpensive and fast and can easily be done in real 

time using specialized hardware. Sankur and Sezgin (2004) have categorized the 

thresholding methods in six groups according to the information they are exploiting.
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Characteristic feature thresholding or clustering does not exploit spatial information, 

and thus ignores information that could be used to enhance the segmentation results 

[Tilton, 2003].

Edge-based segmentation represents a large group of methods based on information 

about edges in the image. Edge-based segmentations rely on edges found in an image by 

edge detecting operators, these edges mark image locations of discontinuities in gray 

level, colour, texture, etc. [Sonka, 1993]. While boundary detection does exploit spatial 

information by examining local edges found throughout the image data, however it does 

not necessarily produce closed connected region boundaries. For simple noise-free data, 

detection of edges usually results in straightforward region boundary delineation. 

However, edge detection on noisy, complex image data often produces missing edges 

and extra edges that result in detected boundaries not always forming a set of close 

connected curves that surround connected regions [Tilton, 2003].

While edge-based segmentation locates the borders between regions, region-based 

segmentation directly constructs regions. Homogeneity of regions is used as the main 

segmentation criterion in region growing. The criteria for homogeneity could be gray 

level, colour, texture, shape, model etc. Region growing techniques are generally better 

in noisy images where edges are extremely difficult to detect [Sonka, 1993]. Although 

regions can be constructed from the borders and borders can be estimated from regions, 

segmentations resulting from edge-based methods and region growing methods are not 

usually exactly the same [Sonka, 1993]. With the aim of improving the segmentation 

process, a large number of new algorithms, which integrate region and boundary 

information, have been proposed over the last few years [Freixenet, 2002], Region 

growing approaches are preferred because they exploit spatial information and 

guarantees the formation of closed, connected regions [Tilton, 2003]. The type of spatial 

information exploited for region merging is detailed in the methodology chapter (See 

Section 4.3.4.1 Factors considered for region merging).
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3.3 Region Based Segm entation

Tilton [2003] [NASA Case No. GSC 14,328] outlines the various approaches which can 

be used for region based segmentation as follows :

(i) A classic definition of image segmentation

(ii) Hierarchical Stepwise Optimization (HSWO)

(iii)Hierarchical image segmentation (HSEG)

(iv) An ideal definition of image segmentation

3.3.1 Classic Definition Of Image Segmentation

As discussed by Tilton [2003], the most commonly used approach to image 

segmentation by region growing is based on a general definition of image segmentation 

using four conditions that can be summarized [Zucker, 1976] as follows: (i) Every 

picture element (pixel) must be in a region, (ii) each region must be connected, (i.e. 

composed of contiguous image pixels), (iii) all image pixels in a region must satisfy a 

specified property to be considered similar enough to be in the same region (e.g., a 

vector norm between each pixel and the region mean must be less than a specified 

threshold), and (iv) in the final segmentation result, further merging of any adjacent 

regions cannot be done without violating the third condition.

The classic definition of image segmentation can be expressed using symbolic notation 

as follows [Horowitz et al., 1974] :

Let X be a two-dimensional array representing an image. A segmentation of X can be 

defined as a partition of X into disjoint subsets Xj, X2, ..., X n , such that 

N
( i)  u  X , = x  

/'=1
(ii) X, , i = 1,2,..., N  is connected.

(iii) P( Xi )  = TRUE for i = 1, 2,..., A and

(iv) P ( X ,UXj ) = FALSE for / V y  , where Xj  and X j  are adjacent.

P( Xj )  is a logical predicate which assigns the value TRUE or FALSE to Xj,

depending on the image data values in Xt. The logical predicate could be for example the 

condition that the vector norm between each pixel and the region mean must be less 

than a specified threshold. The logical predicate used for this study is detailed in the 

methodology chapter (See Section 4.3.4.1 Factors considered for region merging).
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The first condition requires that every picture element (pixel) to be in a unique region. 

The second condition requires that each region to be connected, i.e. composed of 

contiguous image pixels. The third condition determines what kind of properties each 

region must satisfy, i.e. what properties the image pixels must satisfy to be considered 

similar enough to be in the same region. The fourth condition specifies that, in the final 

segmentation result, any merging of any adjacent regions would violate the third 

condition [Tilton, 2003].

A problem with this classic definition of image segmentation is that the segmentation so 

defined is not unique. The number, (TV), and shape of the partitions, (Xi, X2, XN,) 

depend on the order in which the image pixels are processed and in addition, it does not 

contain any concept of optimality. Thus all partitions that satisfy the conditions 

represent equally good or valid segmentations of the image [Tilton, 2003].

3.3.2 Hierarchical Stepwise Optimization (HSWO)

A less commonly used approach is the Hierarchical Stepwise Optimization (HSWO) 

algorithm of Beaulieu and Goldberg [1989]. HSWO is best described iteratively: Start 

with an image and a segmentation of that image into N regions in which (i) every 

picture element (pixel) is in a unique region, (ii) and each region is connected, {i.e. 

composed of contiguous image pixels). Then compare all spatially adjacent regions with 

each other {e.g., compute a vector norm between the region means of the spatially 

adjacent regions). Merge the most similar pair of spatially adjacent regions. Continue to 

compare spatially adjacent regions and merge the most similar pair of spatially adjacent 

regions until either a specified number of regions are reached or the dissimilarity 

between the most similar pair of spatially adjacent regions reaches a given threshold. 

The initial partition may assign each image pixel to a separate region. Alternatively an 

over-segmented result from region growing based on the classic definition given above 

{i.e., classic region growing segmentation with a low threshold value) could be used 

[Tilton, 2003].
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3.3.3 H ie ra rc h ic a l Im age Segm entation (H S E G )

HSEG normally begins by assuming every pixel in the hyperspectral data cube is a 

separate region. Then, a dissimilarity criteria is computed between spectra in 

neighbouring regions, the minimum dissimilarity criterion is found over all pairs of 

neighbouring region, and all pairs of neighbouring regions with this minimum 

dissimilarity criterion value are merged. Optionally, this spatial clustering step is 

followed by a spectral clustering step in which a dissimilarity criterion is computed 

between spectra of all spatially non-adjacent regions and all pairs of such regions with 

dissimilarity less than or equal to the minimum dissimilarity value found in the spatial 

clustering step are merged [Tilton, 2003]. A high-level description of the HSEG 

algorithm is shown in Figure 3.1.

Tilton's [2003] hierarchical image segmentation (HSEG) algorithm is identical to that 

employed by Beaulieu and Goldberg's [1989] HSWO algorithm except that HSEG 

optionally alternates spectral clustering iterations with region growing iterations. In the 

spectral clustering iterations, non-adjacent regions are merged [Tilton, 2003]. The 

spectral clustering step is either skipped or not, based on the value of the flag 

spclust_wght (spectral clustering weight). The segmentation iteration is continued until 

the number of regions in the image are more than the pre-set value chkjiregions ( i.e. 

chkjiregions is the threshold number of regions).

'HSEG is a high quality but computationally intensive image segmentation approach. 

HSEG cannot be performed in a reasonable amount of time (less than a day) on 

moderately sized data sets, even with the most powerful (single processor) computer 

currently available. For example, for a 6-spectral band Landsat TM image, a 128x128 

pixel section takes about 25 minutes to process on a 1.2 Ghz single processor computer. 

A 256x256 pixel section of the same image takes over 7.5 hours to process on the same 

computer. By extrapolation, a 512x512 pixel section of the same image would easily 

take several days.' [Tiltton, 1999].
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(i)Give each data point a regional label and set the global 
criterion value, critval, equal to zero. If a pre-segmentation 
is provided, label each data point according to the pre- 
segmentation. Otherwise, label each data point as a separate 
region.

(ii)Calculate the dissimilarity criterion value, dissim_val 

(dissimilarity value), between each spatially adjacent region.
(iii)Find the smallest dissim_val and set thresh_val (threshold 

value) equal to it. Then merge all pairs of spatially adjacent 
regions with dissim_val thresh_val.

(iv)If spclust_wght = 0.0, go to step 6. Otherwise, calculate the 
dissim_val between all pairs of non-spatially adjacent regions.

(v)Merge all pairs of non-spatially adjacent regions with 
dissim_val spclust_wght x thresh_val.

(vi)If the number of regions remaining is less than the pre-set 
value chk_nregions, go to step 7. Otherwise, go to step 2.

(vii)Store the current global criterion value as previous critical 
value, i.e. let prevcritval = critval. Calculate the current 
global criterion value and set critval equal to this value. If 
prevcritval = zero, go to step 2. Otherwise calculate cvratio 

= critval /prevcritval. If cvratio is greater than the pre-set 
threshold convfact, save the region label map from the previous 
iteration as a "raw" segmentation result. Also, store the 
region number of pixels list, region mean vector list and 
region criterion value list for this previous iteration. (Note: 
The region criterion value is the portion of the global 
criterion value contributed by the data points covered by the 
region.) If the number of regions remaining is two or less, 
save the region information from the current iteration as the 
coarsest instance of the final hierarchical segmentation result 
and stop. Otherwise, go to step 2.

Figure 3.1 - A high-level description of the HSEG algorithm [Tilton, 2003].
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3.3.4 Idea l D e fin itio n  O f  Im age Segm entation

An ideal definition of image segmentation would be as follows [Tilton NASA Case No. 

GSC 14,328]:

Let A be a two-dimensional array representing an image. A segmentation of A into N  

regions can be defined as a partition of A into disjoint subsets A/, A?, ..., XN, such that

N
(i) U x = x  

i = 1
(ii) X, , i = 1,2,..., A is connected.

N
(iii) A G ( X j) = MINIMUM over ap partitions into N regions and 

/ =  1

(iv) G(XyUXy)>G(X,) + G(Xy) for /Ay , where X, and X y are 

adjacent.

G(X,) is a function that assigns a cost to partition Xu depending on the image data 

values in A  .The cost function could be, for example, the condition that the vector norm 

between each pixel and the region mean must be less than a specified threshold. The 

cost function used for this study is detailed in the methodology chapter (See Section 

4.3.4.1 Factors considered for region merging).

The above conditions can be summarised as follows: The first condition requires that 

every picture element (pixel) must be in one of A regions. The second condition requires 

that each region must be connected, i.e. composed of contiguous image pixels. The third 

condition states that the partition must produce a minimum cost (dissimilarity say) 

aggregated over all A regions. The fourth condition specifies that, in the final 

segmentation result, any merging of adjacent regions increases the minimum cost 

obtained in the third condition [Tilton NASA Case No. GSC 14,328].

Using the above method, the order dependence problem of the classic definition of 

image segmentation is eliminated because it ensures that a global minimum solution is 

found and this solution is the optimal solution.

In practice, this ideal image segmentation is difficult, if not impossible, to achieve. This 

is because the third condition implies that all possible image partitions consisting of A
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regions must be searched to find the minimum cost. Further, the question of the proper 

value for N  is left undetermined [Tilton NASA Case No. GSC 14,328].

3.4 Hierarchical Clustering Based Segmentation (HCS)

The segmentation algorithm developed in this thesis is region based. The algorithm is 

named as Hierarchical Clustering based Segmentation (HCS). HCS combines the best 

features of the HSEG process and the ideal segmentation process described above.

Following is a high-level description of the HCS process implemented in this study (See 

Figure 4.4 for a flow chart representation) :

(i) Give each pixel in the image a region label as follows.

If an initial segmentation of the image is available label each pixel according to 

this pre-segmentation. The initial segmentation can be obtained by prior class 

information (for e.g. based on Hounsfield value in the case of CT images). The 

initial segmentation can also be obtained by clustering the most similar 

neighbouring pixels (Refer Section 4.3.3.2)

If no initial segmentation is available label each pixel as a separate region.

Set the current dissimilarity allowed between regions equal to zero.

(ii) Calculate the dissimilarity value between all pairs of regions in the image.

Set threshold value equal to the smallest dissimilarity value.

(iii)If the threshold value found, in step 2, is less or equal to the current allowable 

dissimilarity value, then merge all regions having dissimilarity value, between 

them, less or equal to the threshold value.

Otherwise go to step 6.

(iv)If the number of regions merged in step 3 is greater than 0, then reclassify the 

pixels on the border of the merged regions with the rest of the regions until no 

more reclassification is possible. After all the possible border pixels are 

reclassified, among the merged regions, store the region information for this 

iteration as an intermediate segmentation and go to step 2.

Otherwise, if the number of regions merged in step 3 is equal to 0 then, go to 

step 5.

(v) If the current number of regions in the image is less than a pre-set value, say 1, 

then go to step 7. Otherwise, go to step 6.

(vi)If the current value of allowable dissimilarity, between regions, is less than the
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maximum possible value then increase it by an incremental value and go to step 

2 .

Otherwise go to step 7.

(vii)Save the region information from the current iteration as the coarsest instance of 

the final hierarchical segmentation result and stop.

The above steps ensures that the segmentation of the image into its constituent regions 

is always unique irrespective of the order in which the image pixels are processed. But 

the computational cost of the HCS is very high. To illustrate the computational cost of 

the HCS process, for example, to process a 140x140 pixel section HCS takes about a 

month on a 1.6 GHz dual processor computer having a 16 Gigabyte of main memory.

3.4.1 Comparison of HCS with HSEG

The HCS process designed in this study is very similar to that of Tilton's [2003] 

hierarchical image segmentation (HSEG) algorithm with the following exceptions.

(i) In the HCS process, to merge the image regions, which are most similar with 

one another, all the current regions in the image are compared.

But the HSEG process optionally alternates between spectral clustering 

iterations and region growing iterations. In the spectral clustering iterations, a 

dissimilarity criterion is computed between spectra of all spatially non-adjacent 

regions and all pairs of such regions with dissimilarity less than or equal to the 

minimum dissimilarity value found in the spatial clustering step are merged 

while in the region growing iterations, only spatially adjacent regions are 

compared for merging [Tilton, 2003].

(ii) In the HCS process after every merging of the most similar regions, the pixels on 

the border of the merged regions are reclassified with any of the other regions if 

found suitable. This border pixel reclassification operation attempts to evaluate 

all possible image partitions consisting of the current number of regions to find 

the partition which consist of regions having the most similar pixels within them. 

The HSEG process does not have this operation viz. border pixel 

reclassification. The necessity of border pixel classification operation, for 

medical image segmentation, is demonstrated in Section 6.4.3.
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3.4.2 C om parison  o f H C S w ith  Id e a l D e fin it io n  o f Segm entation

The HCS segmentation corresponds with the ideal definition of image segmentation 

process with the following exceptions :

(i) In the HCS process, to merge the image regions, which are most similar with 

one another, all the current regions in the image are compared and those regions 

which are most similar are merged. This operation may result in regions 

composed of pixels that are not contiguous.

But in the ideal definition of the segmentation process each region must be 

connected, i.e. composed of contiguous image pixels.

(ii) In the HCS process after every merging of the most similar regions, the border 

pixels of the merged regions are reclassified with any of the other regions if 

found suitable. This border pixel reclassification operation results in evaluating a 

subset of all possible image partitions consisting of the current number of 

regions in order to find the best possible partition of the image.

In the ideal definition of the segmentation process all possible image partitions 

consisting of N  regions must be searched to find the best partition that has the 

smallest cost.

3.5 Hierarchical Clustering Based Segmentation Process Components

The implementation of the HCS process developed in this study has the following major 

logical components :

•  Feature measurement

•  Similarity measurement

•  Clustering and region merging

The design details, and its implications, of the major logical components of the HCS 

process are discussed in the following Sections 3.5.1 to 3.5.3.

3.5.1 Feature Measurement

The distinguishing properties of an area surrounding a pixel, in an image, are obtained 

by feature measurement. The size of this area is application dependent. Feature measure 

is the most crucial and important part of any segmentation process. The success or 

failure of any subsequent clustering and/or merging process depends on the way the
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properties of the smallest part of the image are evaluated and extracted. Since the 

designed segmentation procedure aims for multiple solutions, the feature extraction 

process involves the calculation of the distribution of the properties within a region 

(surrounding a pixel) rather than finding a single value of the property for that region. 

So, by comparing the distribution of the properties of two regions, the probabilistic 

value of similarity or dissimilarity between the two regions can be evaluated. Any 

suitable feature extraction method which gives a similarity measure may be used for this 

purpose.

Many medical image analysis studies that used Computed-Tomography (CT) and 

Magnetic-Resonance-Imaging (MRI) have treated the images as purely tonal and only 

pixel values were used for their analysis [Brandt et al., 1994]. More recent studies have 

also captured the textural property of such images as well [Mir, 1995] [Chabat et al, 

2003]

Gray-tone (Pixel value) distribution is a unique feature which has been exclusively 

designed for the current work. Gray-tone-distribution uses the actual distribution of the 

pixel values in a region surrounding a pixel. This technique may be considered to work 

in a way similar to the human visual system where features for texture (region) 

segmentation are not consciously computed [Bhattacharya, 1997]. The results indicate 

that the gray-tone distribution feature is well suited for the segmentation of images 

which are primarily tonal rather than textural. Since the technique compares the 

distribution of the pixel values, rather than just comparing two pixel values, it is 

possible to capture the micro-textural property of the image.

Medical images like CT and MRI are primarily tonal and have minimal textural content 

(Micro-Texture). Thus they can be successfully segmented using this method. It will be 

shown that in medical images like CT and MRI, the gray-tone distribution feature has 

been successfully used for delineating dissimilar regions barely two pixels wide. The 

details of the gray-tone distribution feature extraction method is explained in detail in 

section 4.3.1 of this report.

It should be noted that gray-tone distribution feature measure is not suitable for 

segmenting images which are primarily textural. To segment images which are textural a 

texture feature measure such as Local-Binary-Pattem and Contrast (Appendix 2) needs 

to be used.
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3.5.2 Similarity Measurement

Pixel pair similarity measurement involves calculation of the similarity between two 

small areas surrounding two individual pixels in the image. This is achieved by finding 

the similarity between the feature distributions around each pixel being compared. For 

the gray-tone distribution feature, this is the distribution of the gray tone values within 

the small region around the pixel.

To find the feature distribution around a pixel, it is a usual practice to consider a small 

region around the pixel of fixed window size with the pixel at the very centre of the 

window. This practice works well for segmenting large sections of different types of 

regions found within an image. Because in the cases of images having large areas of 

similarity, misclassification along the border of the different regions could be tolerated 

for a couple of pixels depth. But in situations where the image regions are only a few 

pixels wide, for example in some medical images, such misclassification is 

unacceptable.

Figure 3.2 - Finding the feature
distribution within a 3x3 
neighbourhood of a pixel.
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In the HCS process, developed in this study, boundary pixels are localised providing a 

more accurate boundary delineation. This is achieved by finding the feature distributions 

around a pixel with the pixel at different locations within the window and then 

comparing the different distributions to get the best possible comparison. Figure 3.2 

illustrates how the feature distribution within a region in the neighbourhood of a pixel 

could be found either by positioning a 3x3 size window centred around the pixel (red 

and blue masks) or with the pixel at different locations within the 3x3 size window 

(green mask).

From Figure 3.2 it can be seen why the feature distribution, within a 3x3 neighbourhood 

of a pixel, needs to be found by positioning the 3x3 windows differently depending on 

the location of the pixel. For example the red and blue masks are positioned with the 

pixel at the centre, and the green mask is positioned with the pixel at the bottom left 

comer of the mask. If the pixel is an interior pixel, which is the case in the blue mask, 

locating the pixel at the centre of the mask is acceptable. But if the pixel is at the border 

of two different regions, as it is the case of the red and green masks, locating the mask 

with the pixel at the centre is not acceptable. This is because, if the feature distribution 

is found by positioning the mask with the pixel at the centre of the mask, the feature 

distribution will include pixel values from the other region as well (red mask in Figure 

3.2). But by positioning the mask similar to the green mask with the pixel on the border, 

the feature distribution will include only the pixel values from the region to which the 

pixel belongs.

In actual practice since it is unknown as to whether a pixel is a border pixel or an 

interior pixel, feature distributions for all possible orientations are found. Figure 4.6 

shows the nine possible orientations of a 3x3 mask.

The images shown in Figures 3.3 - 3.5 illustrate the effect of positioning the window to 

find the feature distribution, in the neighbourhood of a pixel, in the border pixel 

classification of a real image. The image in Figure 3.3 is a tonal image comprising of a 

light background with two squares of the same darker tone embedded within it. Figures 

3.4 and 3.5 show the segmentation results after initial clustering of the most similar 

neighbouring pixels (see Section 4.3.3 for details).
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The image in Figure 3.4 shows the border pixels classification using a 3><3 mask 

centred around the pixel and the single feature distribution for each pixel being 

compared to each other. This shows that the pixels on the boundary of the small darker 

regions were marked as regions belonging neither to the background nor to the small 

squares (The different regions are pseudo coloured).

The image in Figure 3.5 shows the crisp border pixel classification when using the 3x3 

window with the pixel at different locations within the window rather than centred only 

around the pixel.

Figure 3.5 shows that the gray background of the original image, shown in Figure 3.3, 

has been segmented as one region (pseudo coloured as cyan) and the two darker squares 

were segmented as two different regions (pseudo coloured as green and red). The two 

darker regions were segmented as two different regions, because during initial clustering 

only the most similar neighbouring pixels were compared for possible clustering (see 

Section 4.3.3 for details). Since the pixels belonging to the two darker regions were not 

neighbours, they were not compared and hence were not clustered together even though 

they were similar. But on the subsequent region merging stage, the two regions would 

be merged as one region, because during the region merging stage all pairs of regions 

(spatially adjacent or disjoint) currently in the image were compared and merged if 

found similar (see Section 4.3.4 for details).

3.5.3 Clustering And Region Merging

Clustering based merging of regions is achieved by comparing their properties in the 

image and merging together similar regions. The region merging process adopts an 

agglomerative type of hierarchical clustering procedure [Legendre and Legendre, 2003]. 

In this procedure, pairs of regions are compared and the most similar pairs of regions 

are marked. If the dissimilarity between the most similar pairs of regions is less than the 

currently allowed dissimilarity then the regions are merged into a single region. The 

most similar regions, for the current allowable dissimilarity, may be found either by 

comparing only those regions adjacent to each other, or by comparing all the regions 

currently in the image.
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Figure 3.3 - A tonal image

Figure 3.4 - Image segmentation result 
when single mask orientation was used 
for comparing different locations. The 
pixels bordering the regions were not 

classified properly

Figure 3.5 - Image segmentation result 
when multiple mask orientations were 
used for comparing different locations. 
The pixels bordering the regions were 

properly classified. The image 
segmentation shows crisp border 

delineation.

3.5.3.1 Agglomerative Clustering Algorithms

There are many different agglomerative algorithms for producing hierarchical 

clustering. They differ in the way the dissimilarity between the clusters is evaluated. The 

Lance-Williams recurrence formula [Webb, 2002] expresses the dissimilarity d,i + j  , k

between a cluster k and the cluster formed by joining clusters i and j  as

d l+ J .k =  a < d * + a i  d i" W -7+  C l [3.1]
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where at ,b and c are parameters that, if chosen appropriately, will give a specific 

agglomerative algorithm method as indicated in Table 3.1.

Table 3.1
Values of the parameters for different agglomerative methods

Agglomerative method at b c

Single link 0.5 0 -0.5

Complete link 0.5 0 0.5

Group average link ni
ni+nj 0 0

The single-link method seeks isolated clusters and is useful in circumstances if the 

clusters are not homogeneous. The complete-link method and group average-link 

methodology tend to concentrate on internal cohesion, producing homogeneous, 

compact groups.

3.5.3.1.1 Single-Link Method

In the single-link method at each stage of the agglomerative algorithm the closest 

groups are fused to form a new group, where the distance, dm , between two groups, 

A and B, is the distance between their closest members, i.e.,

d m = min du r3 21
i e A . j e B  1 J

The single-link method is alternatively known as nearest-neighbour method. The 

drawback of the single link method is that the grouping can become elongated, with 

some distant points, having little in common, being grouped together because there is a 

chain of intermediate objects [Webb, 2002].
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3.5.3.1.2 Complete-Link Method

In this method, at each stage of the agglomerative algorithm the closest groups are fused 

to form a new group, where the distance, dm , between two groups, A and B, is the 

distance between their farthest members, i.e.,

d m = max d„ r3 31
i e A . j e B  1 ' J

Complete-link method is alternatively known as furthest-neighbour method [Webb, 

2002].

3.5.3.1.3 Group Average Link Method

In this method, at each stage of the agglomerative algorithm the closest groups are fused 

to form a new group, where the distance, dm 9 between two groups, A and B, is 

defined to be the average of the dissimilarities between all pairs of individuals, one from 

each group [Webb, 2002]., i.e.,

d*s=-fr I  dn [3-4]
n i n j  i e A ,  j e B

3.5.3.2 Agglomerative Clustering Difficulties

Agglomerative hierarchical clustering is also known as the bottom-up method. The 

bottom-up method described in the literature usually suffers from a distorting 

phenomena, in which the cluster structures depend on the order in which the regions are 

considered for merging. This is because the most similar pairs of regions are found by 

comparing only those regions adjacent to one another. The same problem occurs in the 

classic definition of image segmentation, i.e. the number and the shape of the merged 

regions obtained depend on the order in which the image pixels are processed.

Nadler and Smith [1993] illustrate how the merged regions are different when the order 

of the merging process is changed (Figures 3.6 - 3.8) [Nadler and Smith, 1993]. Figure 

3.6 shows the pixel values of an 8x8 image.
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33 30 30 29 28 27 25 22
32 30 29 28 26 25 23 21
31 29 28 27 27 24 22 20
30 28 27 26 25 23 20 19
30 27 25 24 24 22 18 15
27 25 21 23 22 20 16 13
25 23 22 21 20 19 17 12
24 23 22 20 19 17 15 11

Figure 3.6 - Pixel values of a 8x8 image 
[Nadler and Smith, 1993]

32.5

20.426.85

24.23
16.33

18.86

30.75

26.71

21.96

Figure 3.7 - Merged regions and their average pixel values when merging is initiated 
from the comer locations A and C of the image shown in Figure 3.5 [Nadler and Smith,

1993].

Figure 3.7 shows the average pixel values of the merged regions when merging was 

performed starting from the comer location A and C of the image. Figure 3.8 shows the 

average pixel values of the merged regions when merging is done starting from the 

comer locations B and D of the image. It can be seen from the Figures 3.7 and 3.8 that 

the merged results obtained are quite different for different starting points of the 

merging process.

It will be shown in Chapter 4 (Section 4.4.1) that the clustering and region merging 

methods designed in this study consistently yields the same results irrespective of the 

order of merging.
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Figure 3.8 - Merged regions and their average pixel values when merging is initiated 
from comer locations B and D of the image shown in Figure 3.5 [Nadler and Smith,

1993],

3.6 Summary

In this chapter the theoretical background behind the design and implementation of the 

hierarchical clustering based segmentation (HCS) process, developed in this study, has 

been discussed in detail.

First the following different types of region based segmentation were discussed :

•  Classic definition of image segmentation

•  Hierarchical stepwise optimisation (HSWO)

• Hierarchical image segmentation (HSEG)

•  Ideal definition of image segmentation

Second the design of the HCS process, developed in this study, was discussed in detail:

•  The steps involved in the HCS algorithm were discussed

•  The HCS process algorithm was compared and contrasted with the two other 

region based segmentation methods viz. HSEG and the ideal definition of image 

segmentation.

Third the major logical components of the HCS process were discussed :

•  The design details of the major logical components.

•  The implications of the design of the major logical components.
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Chapter 4
Methodology

4.1 Introduction

Any segmentation method involves two primary steps: feature extraction and 

clustering/merging of pixels and regions having similar properties or features. Feature 

extraction is the operation to extract various image features for identifying or 

interpreting meaningful physical objects from images. Features are classified into three 

types viz. Spectral features, Geometric features and Textural features. Colour and Tone 

are examples of Spectral features, edges and linements are examples of Geometric 

features, pattern and homogeneity are examples of Textural features.

To ensure that the method developed was modular, the feature extraction part and the 

clustering/merging parts were made independent of each other. Thus initially, depending 

upon the type of the image under investigation, the properties of a part of the image was 

found using tonal measurements or textural measurements. Subsequent merging of 

pixels/regions having similar properties could follow the same procedural steps. The 

procedural steps adopted to combine similar pixels or merge similar regions are not 

dependent on the way the similarity is measured. The current study attaches far more 

importance in determining the optimum way to combine similar pixels or merge similar 

regions. Ways of justifying the best features to measure the property of a part of the 

image could vary from one type of image to another. However the success of using 

those properties to subsequently classify the image into different regions is largely 

dependent upon the efficiency of the classification/merging process.

The success of any classification process is evaluated by comparing the results with 

those of a human classifier. The classification process designed by the current study 

tries to mimic the human vision process in classifying an input image. One of the 

capabilities of the human vision process is the ability to classify an image and 

establishing multiple solutions of varying resolutions. For example given the anatomical 

image of the cross-section of a skull, at a coarser level a radiologist can classify the 

image as regions belonging to soft tissue and the skull bone. At a finer level the 

radiologists can also classify the different types of the soft tissue. At still a finer level, 

the radiologist can also distinguish the dissimilar regions within the same tissue type.
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The major unique contribution of the current study is that it designed a procedural 

method that generates a range of segmentation solutions, for the user to select from. The 

images shown in Figures 4.1 - 4.3 illustrate this unique feature of the current study. The 

Computed Tomography (CT) image, shown in Figure 4.1, of the skull is initially 

segmented into many varied regions and subsequently consolidated into a few major 

regions. The image shown in Figure 4.2 shows the segmentation at a fine level. The 

image shown in Figure 4.3 shows the different regions in the segmented image at a 

coarse level of segmentation. The segmentation shown in Figure 4.3 is obtained by 

merging the different regions in the finer level of segmentation, shown in Figure 4.2, by 

allowing higher threshold of dissimilarity between the different regions. The regions in 

the image are displayed by giving unique colours for the different regions in the image.

Figure 4.1 - Computer Tomography (CT) 
image slice

Figure 4.2 - Segmentation at a finer level Figure 4.3 - Segmentation at a coarser
level
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4.2 Overview of the Hierarchical Clustering based Segmentation 
(HCS) Process

The hierarchical clustering based segmentation (HCS) process, implemented in this 

study, partitioned an image into its constituent regions at hierarchical levels of allowable 

dissimilarity between the different regions. At any particular level, in the hierarchy, the 

segmentation process clustered together all the pixels and/or regions that had 

dissimilarity among them less than or equal to the dissimilarity allowed for that level. 

The clustering process was designed in such a way that the merging of the clusters did 

not depend on the order in which the clusters were evaluated for merging. This ensured 

that the clustering process consistently yielded the same set of regions for any particular 

level in the hierarchy. Figure 4.4 illustrates the overall operation of the HCS process 

developed and implemented in this study.

Input Image

Compute feature 
m easu re  around 
pixels

Compute similarity 
b e tw een  pairs of 
pixels

Cluster m os t  similar 
neighbouring pixels

Initialise dissimilarity 
allowed b e tw een  
regions

Store initial 
se g m e n te d  
image

Number of 
regions >  1

No

Reclassify pixels 
bordering m erg ed  
regions if poss ib le

Store
in te rm edia te !  
se g m e n te d  

/  image

Merge
similar
regions

^  Store  final 
^  s e g m e n te d  image

Yes

XNumber 
^  of regions

m e rg e d  >  0

( Stop

No

D iss im i la r i ty ^ ^  
allowed b e tw een  
reg ions  is less  
than maximum 
poss ib le  value

Increment dissimilarity 
allowed b e tw een  
regions______________

Yes f

Figure 4.4 - Flow chart illustrating the different operations of the HCS process 
developed and implemented in this study.

During the segmentation process each constituent region was labelled with a unique 

number. The HCS process yielded a merge tree. Based on the merge tree, a graphical 

user interface (GUI) displayed the hierarchy of merges. Making use of the GUI, the user 

can inspect how the merging process evolves and associates the unique regions at any 

level with the different types of patterns present in the image. It should be noted that the 

time consuming aspect was in the production of the merge tree. Once the merge tree 

was got, the hierarchy of segmentations could be displayed by the GUI instantaneously.
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4.3 D eta iled descrip tion  o f  H C S

The HCS process, developed in this study, delineated the regions in the input image at a 

hierarchical levels of dissimilarity. The five major modules of the HCS process are 

outlined below (also see the flow chart given in Figure 4.4):

(i) Feature measurement:

This involved the calculation and extraction of the distinguishing properties within 

a neighbourhood of the individual pixels in the image. In the flow chart (Figure 

4.4) this corresponds to the processing step “Compute feature measure around 

pixels”.

(ii)Pixel pair similarity measurement:

This involved the calculation of the similarity between the feature measurement 

found within the neighbourhood surrounding two pixel locations. In the flow chart 

(Figure 4.4) this corresponds to the processing step “Compute similarity between 

pairs of pixels”.

(iii)Initial clustering of the most similar neighbouring pixels :

Initial clustering was performed by comparing the feature distribution around each 

pixel in the image and the most similar neighbouring pixels were clustered to form 

the initial set of regions. In the flow chart (Figure 4.4) this corresponds to the 

processing step “Cluster most similar neighbouring pixels”.

(iv)Regions merging :

Region merging was performed by comparing the properties of the different 

regions in the image and regions having similar properties within the allowed 

dissimilarity threshold at that stage were merged. In the flow chart (Figure 4.4) 

this corresponds to the processing step “Merge similar regions”.

(v)Border pixels reclassification :

After the merging of similar regions, the pixels bordering the regions that were 

merged (with other similar regions) and their bordering regions, were re-evaluated 

to determine exactly which region they (the bordering pixels) actually belonged. 

In the flow chart (Figure 4.4) this corresponds to the processing step “Reclassify 

pixels bordering merged regions if possible”.

The methodologies adopted to implement these major modules of the HCS process are 

discussed in detail in Sections 4.3.1 to 4.3.5.



4.3.1 Feature Measurement

Since feature measurement is a critical part of any segmentation process, many studies 

were conducted to design the best feature measurement method. A study by Randen and 

Husoy [1999] gives an excellent comparative study of different feature measurements 

used for texture classification. A more recent study by Zhang and Tan [2002] evaluates 

texture analysis approaches whose performances are not affected by translation, 

rotation, affine, and perspective transform.

For the current study, the subsequent merging and clustering steps required a similarity 

measure between two locations in an image. So any suitable feature extraction method 

which gives a similarity measure could have been used to extract the property of part of 

the image. For the subsequent classification, since the aim was to obtain multiple 

solutions, the feature measurement process should calculate the distribution of the 

properties within the neighbourhood of a pixel rather than finding a single value. Thus 

by comparing the distribution of the properties of two locations the probabilistic value 

of similarity or dissimilarity between the two locations can be evaluated.

Texture refers to spatial/statistical distribution of the tones, so it is fundamentally 

different from tone, which is defined at one location (pixel) while texture occurs over 

some finite area and hence requires some finite number of pixels to represent it. It is 

generally believed that one of the main visual cues is texture and differences in textural 

properties between regions. Textural features contain information about the spatial 

variation of gray tones in a neighbourhood where the neighbourhood is small compared 

to the region.

Gray-tone (Pixel value) distribution is a unique feature which has been exclusively 

designed for the current study. Gray-tone-distribution uses the actual distribution of the 

pixel values in a region surrounding a pixel. This technique may be a considered to 

work in a way similar to the human visual system where features for texture 

segmentation are not consciously computed [Bhattacharya, 1997].

The feature extraction method used in this study was based on gray-tone distribution. 

The gray-tone distribution feature was found as follows. A small mask of fixed size is 

placed around the pixel of interest. The gray-tone values within the mask, moving from
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the top left comer of the mask to the bottom right comer of the mask, were taken as the 

distribution of the gray tone feature for the pixel. Figure 4.5 illustrates the method. 

Given the observations of gray-tone values from two different locations in the image 

and a certain level of significance, the aim was to determine whether they belonged to 

the same distribution. The commonly used test for difference between binned 

distributions is the Chi-Squared test [Press et ai, 2002].

4.3.2 Pixel Pair Similarity Measurement

The similarity between a pair of pixels, were found by comparing the gray-tone 

distribution around each pixel. To ensure precise border delineation, the mask was 

placed at different orientations around the pixel, as illustrated in Figure 4.6. All possible 

combinations of feature distributions between the two pixels were compared to find the 

best possible similarity value.

The comparison of the feature distribution for all possible mask orientations is highly 

process intensive. This is because, as the mask size increases, the number of 

comparisons increases exponentially. However to accurately localise the border between 

two dissimilar regions the exhaustive comparisons of feature distributions, for all 

possible mask orientations, becomes an absolute necessity.

Section 3.5.2 describes in detail why the feature distribution, within a neighbourhood of 

a pixel, needs to be found by positioning the mask differently depending on the location 

of the pixel (on the border or interior). In actual practice since one does not know 

whether a pixel is a border pixel or an interior pixel, feature distributions for all possible 

orientations are found.

In segmenting medical images, the current study employs a mask size of 3><3 pixels for 

finding the feature distribution around pixels. There will be nine possible orientations 

for a 3x3 mask size as illustrated in Figure 4.6. This corresponds to nine different 

feature distributions. Each feature distribution found for the pair of pixels is compared 

with the others and the largest similarity value is then taken as the similarity measure 

between the two pixels. For a 3x 3 mask size and nine different mask orientations there 

will be eighty one combinations. Their evaluation was found to be computationally 

feasible.
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Figure 4.5 - Gray-tone distribution feature representation

4.3.3 Initial Clustering Of The Most Similar Neighbouring Pixels

Initial clustering of the most similar neighbouring pixels was necessary to form the 

initial set of regions in the image. If the image consists of homogeneous regions, then 

the initial clustering will give a proper segmentation and will need only a single merging 

of similar regions (not bordering each other) at the subsequent region merging stage.

Initial clustering was achieved by comparing the feature distribution around each of the 

pixels in the image and the most similar neighbouring pixels were clustered together to 

form the initial set of regions. In the current method, the initial segmentation will 

always be the same given a chosen threshold and it will result in the best possible 

solution since all possible comparisons of the pixels in the neighbourhood were 

considered and the best possible combination determined. This is achieved by the 

process described below.
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Figure 4.6 - Nine different orientations o f a 3x3 mask window around a pixel

The initial clustering involved the following two steps. :

(i) Compare the feature measures of all the pixels in the image to find the most 

similar neighbouring pixel and/or pixels.

(ii) Cluster the most similar neighbouring pixels in the image to form the initial 

regions.

These two steps are now explained in detail in Sections 4.3.3.1 and 4.3.3.2.
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4.3.3.1 Finding the most similar neighbouring pixel or pixels

For each pixel in the image the similarity measure between the pixel and each of its 

neighbours was found. The number of neighbours for each pixel will depend on the 

allowable distance up to which the pixels were considered as neighbours. For example, 

if the distance allowed was one then the number of neighbours compared with each of 

the pixel would be eight.

A neighbouring pixel was considered similar to the pixel under consideration if the 

similarity measure between the pixels was above the given threshold value. A list of the 

most similar neighbouring pixels to the current pixel was formed. This list could be 

either all the similar neighbouring pixels found above the given threshold value or only 

those similar neighbouring pixels which had the largest similarity measure above the 

given threshold value. The value of the similarity threshold chosen could be high if one 

wants a very fine initial segmentation or small if the initial segmentation need to be 

coarse.

Forming a list of the most similar neighbouring pixels, which had the largest similarity 

measure above the given threshold value, gives a consistent and best possible initial 

merging solution. This is because all possible combinations of pixels, in the 

neighbourhood, have been considered and only the best possible pixel pairs chosen.

Figure 4.7 illustrates the process of finding the list of the most similar neighbouring 

pixels. Note that a pixel could have a number of most similar neighbours.

4.3.3.2 Clustering The Most Similar Neighbouring Pixel or Pixels

The set of the most similar neighbouring pixels (found as described in Section 4.3.3.1) 

were clustered together to form the initial set of homogeneous regions in the image. The 

clustering could be done in either of the two ways outlined below :

•  A pair of neighbouring pixels were clustered together even if only one in the pair 

is found to be the most similar to the other. The other pixel in the pair may be 

similar to another neighbour of it rather than this pixel.

•  Only neighbouring pixels which were most similar to each other were clustered 

together.
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Figure 4.7 - Finding the most similar neighbouring pixels

These two different ways of initial clustering, are illustrated in Figure 4.8 (each of the 

different regions found is given a unique colour). Here it can be seen that the regions 

formed were homogeneous and were compact (smaller and unique) when only 

neighbouring pixels which were most similar to each other were clustered together.

To ensure that the initial segmentation will always be the same for a given threshold and 

also to get the best possible consistent initial segmentation, the following conditions 

were applied :

•  When finding the most similar neighbouring pixels, the lists of the most similar 

neighbouring pixels were formed, by listing those neighbours which had the 

largest similarity measure above the pre-specified threshold value.

•  When clustering the most similar neighbouring pixels in the image, to form the 

initial regions, only pixels which were the most similar to each other were 

clustered together.

•  Note that the initial segmentation may produce regions of a single pixel.
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For a practical illustration of the above scheme, which aims to achieve a consistent best 

possible initial segmentation, refer to Section 4.4.1 HCS Region Merging Consistency 

Validation.
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Figure 4.8 - An illustration of the two different ways of initial pixels clustering.

4.3.4 Region Merging

Region merging was accomplished using the agglomerative type of hierarchical 

clustering process also known as the bottom-up method. A hierarchy of segmentation 

results was obtained by adopting a dynamic threshold for the allowable dissimilarity 

measure between merging regions. The merging was carried forward until no more 

merging was possible for the current allowable dissimilarity between regions.
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For possible merging of two regions, both regions should be closest to each other among 

all other possible regions which were candidates for merging. In addition, the 

dissimilarity measure between the two regions should be the lowest below the current 

allowable dissimilarity measure.

The distorting problem associated with the bottom-up method [Nadler and Smith, 1993] 

was avoided by comparing all pairs of regions currently in the image to find the most 

similar regions for merging. This ensured that the designed process always yielded the 

same segmentation for any given dissimilarity threshold. For a practical example, refer 

to Section 4.4.1.

Comparing all the possible combinations of regions, in an image, is CPU process 

intensive. However this was necessary in the medical image domain since similar tissue 

types could occur across the image interspersed by different tissue types.

4.3.4.1 Factors Considered For Region Merging

For a human observer, two regions in an image look similar if their components are 

similar. In a digital image, the components which constitute a region are the individual

pixels. Hence it is hypothesised that the overall similarity between the individual

components of the two regions could be measured, then that measure will represent the 

similarity of the two regions itself.

Thus to find the similarity between two regions the following factors were taken into 

account:

•  Similarity between individual pixels of the two regions.

•  Similarity between the pixels bordering the two regions.

•  Similarity between the combined feature property of all the pixels in the two 

regions.

Intuitively the above three factors are appropriate considering the fact that a human 

observer considers the same three measures while visualising the different regions in an 

image. The above hypothesis will also be experimentally validated by showing how the 

accuracy of the segmentation improves by taking into account all the above factors (See 

Chapter 6 Section 6.3.2).
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4.3.4.1.1 Individual Pixels Similarity Measurement

One of the tasks involved in evaluating the similarity between two regions is to 

determine the similarity between the individual pixels within the regions. A human 

observer could very easily assert the similarity of the set of pixels which comprise two 

regions. To mimic the human observer, we hypothesise that one needs to find the 

similarity between all the possible pairings of pixels within the two regions. The list of 

similarities thus obtained will be used to evaluate the distance (similarity) between the 

two regions using an agglomerative method, i.e. single-link, complete-link and group 

average-link.

Thus to measure the similarity of individual pixels between two clusters, the following 

expression was evaluated :

Pixel_Similarity_Measure — Pixel_Maximum_Similarity +  Pixel Minimum Similarity +

PixelAverageSimilarity [4.1]

Where :

•  Pixel_Maximum_Similarity is the maximum similarity obtained by finding the 

similarity between each and every pixel of one region with each of the pixels 

of the other regions. This is in fact the complete-link agglomerative algorithm

defined by the expression (3.3) AB~

•  Pixel_Minimum_Similarity is the minimum similarity obtained by finding the 

similarity between each and every pixel of one region with each of the pixels 

of the other regions. This is in fact the single-link agglomerative algorithm

defined by the expression (3.2) AB~

•  Pixel_Average_Similarity is the average similarity obtained by finding the 

similarity between each and every pixel of one region with each of the pixels 

of the other regions. This is in fact the group average-link agglomerative

algorithm defined by the expression (3.4) ^
n i n j  i e A . j e B
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4.3.4.1.2 Border Pixels Similarity Measurement

A human observer takes into account the similarity between the regions' borders in an 

image for its segmentation. To be consistent in the way the similarity was measured, the 

similarity of pixels bordering the two clusters was evaluated using the following 

expression :

Border Pixel Similarity Measure -  Border Pixel MaximumSimilarity +

Border Pixel_Minimum Similarity +

B order_Pixel_Average_Similarity [4.2]

Where :

•  Border_Pixel_Maximum_Similarity was the maximum similarity obtained by 

finding the similarity between each and every border pixel of one region with 

each of the border pixels of the other regions.

•  Border_Pixel_Minimum_Similarity was the minimum similarity obtained by 

finding the similarity between each and every border pixel of one region with 

each of the border pixels of the other regions.

•  Border_Pixel_Average_Similarity was the average similarity obtained by 

finding the similarity between each and every border pixel of one region with 

each of the border pixels of the other regions.

4.3.4.1.3 Combined Feature Similarity Measurement

A human observer not only compares the individual pixels and the border pixels of a 

pair of regions for evaluating similarity, but also considers the combined effect of all 

pixels in each of the regions. This combined similarity measure feature between a pair 

of clusters was obtained as follows :

•  First, a combined feature vector distribution for each region was obtained by 

constructing a normalised histogram of the feature values considering the feature 

vectors of all individual pixels in the region.

•  Then the similarity between the combined feature vector of the two regions was 

found using Bhattacharya measure [Aheme et a/., 1997].

The Bhattacharya measure was used to compare the combined feature vector of two 

regions because it may be a sparse histogram and the method gives a more robust 

measure of similarity than either Chi-Square statistic or the G statistic [Aheme et al., 

1997].
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The Bhattacharya measure was found as follows :

If Ai is the frequency coded quantity in bin i (frequency coded in the sense that

2  A - 1 i.e. Normalised histogram), for the first region's feature histogram and B, a 

similar quantity for the second region's histogram. Then A, and B,can be assumed to be

Poisson distributed random variable. The Bhattacharaya measure 2  V A V ^  js
/

proposed as a measure of similarity between the two histograms. For the case of 

identical histograms, S  1 indicates a perfect match.

4.3.5 Border Pixels Reclassification

After the merging of similar regions, the border pixels of the regions that had merged 

and their bordering regions were further evaluated to allocate them to the most suitable 

region.

Border pixel reclassification is necessary because the merging process starts with 

individual pixels and the pixels are merged to form regions and subsequently regions are 

merged to form bigger regions and so on. During the initial merging o f neighbouring 

pixels and neighbouring small regions, pixels belonging to different regions might get 

merged. This could happen, for example when comparing pixels over a small 

neighbourhood, where the dissimilarity between pixels belonging to different regions 

might be smaller than the dissimilarity between pixels belonging to the same region 

because of the local in-homogeneity (arising due to inadequate scaling factor in 

measuring the repetitive pattern constituting the texture). However as the regions grow 

those pixels which have been merged as a result of comparison with neighbouring pixels 

might subsequently be reclassified by properly comparing them with the rest o f the 

pixels from a larger neighbourhood.

In a textured image a larger region might be able to properly capture the repetitive 

texture pattern because of the larger region size. This hypothesis was investigated by 

improving the misclassification error while segmenting medical images [See Chapter 6, 

Section 6.4.3].
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Border pixel reclassification was considered only for those pixels on the boundary of the 

clusters which had been merged with other clusters. These boundary pixels were 

removed one at a time from their original clusters. The pixel removed was considered as 

a region of its own and the similarity between the one pixel region and the regions 

bordering it (which included the original cluster to which it belonged ) were found and 

the single pixel region was merged with the most similar bordering region. During this 

process the pixel could possibly be re-classified to one of the neighbouring regions 

rather than the region to which it originally belonged.

4.4 Hierarchical Clustering based Segmentation process Validation

The performance and the usefulness of the designed HCS process will be discussed in 

detail in Chapters 6 and 7. In this section it is demonstrated how HCS is not affected by 

the order dependence problem and how it is able to solve a typical problem which most 

other clustering algorithms find difficult to solve.

4.4.1 HCS region merging consistency validation

In the region merging process, it should be ensured that the merging result arrived upon 

does not depend upon the order in which the merging of the regions are considered. As 

discussed in Section 3.5.3.2, the region merging method described in the literature 

usually suffers from the distorting phenomena resulting from the order dependence of 

selecting regions for merging.

In the HCS method developed in this study, this problem was avoided by evaluating all 

possible combinations of clustering and merging only those regions which were found 

most similar. This merging consistency by the HCS method is demonstrated by the 

following clustering example processed using HCS.
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Figure 4.10a - Average pixel 
values within the thirty eight 
regions after initial clustering

Figure 4.9 shows the pixel value of an 8><8 image. This image is the same as that, shown 

in Figure 3.6, and referred to in Section 3.5.3.2. Initial clustering of the most similar 

neighbouring pixels were done as described in Section 4.3.3.2. Figure 4.10a shows the 

average pixel value of the thirty eight clusters after the initial clustering.

Each of the thirty eight initial clusters was tagged with a unique index. Figures 4.10b 

and 4.10c show the thirty eight clusters locations, when they were given the indices 

sequentially (left to right top to bottom) and randomly respectively.
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Figure 4.10b - Region indices 
when the initial regions were 

tagged sequentially.
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Figure 4.10c - Region indices 
when the initial regions were 

tagged randomly.
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regions were merged. regions were merged.

The initial set of thirty eight clusters were merged using the HCS process developed in 

this study. Figure 4.1 la  shows the average pixel values of the nine clusters present in the 

image during an intermediate clustering stage.

Figure 4.11b shows the nine cluster indices when the HCS merging was done using the 

sequentially assigned initial cluster indices o f Figure 4.10b and Figure 4.11c shows the 

nine cluster indices when the HCS merging was done using the randomly assigned 

initial cluster indices of Figure 4.10c.

From Figure 4.11b and Figure 4.11c it can be seen that whatever the order o f merging 

(sequentially or randomly), the HCS algorithm arrives at the same set of clusters. Hence 

the HCS method consistently gives the only possible best solution. This consistency in 

segmentation is illustrated by the segmentation example illustrated in Figures 4.9 -4.11.
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Figure 4.12 - Two clusters of points. Figure 4.13 - Initial clustering by the HCS
process.

Figure 4.14 - Intermediate clustering Figure 4.15 - Final clustering by the
during HCS process. HCS process.

4.4.2 HCS Clustering Validation

The clustering performance of the HCS merging process could be validated further by 

trying to merge the points in the image, shown in the Figure 4.12, into two different 

clusters. For a human observer it is very easy to identity the two clusters of points (inner 

and outer circles). But many clustering methods given in the literature fail to come up 

with the solution identical to that arrived upon by the human observer [Gokcay and 

Principe, 2002].
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When the HCS process is applied to this problem the solution obtained is shown in 

Figures 4.13-4.15. The feature measure used was the spatial distance between points 

Figure 4.13 shows the initial clustering of similar points. Figure 4.14 shows the 

intermediate clustering result during the merging process and Figure 4.15 shows the 

final merging with two clustered region of points.

The HCS process succeeds because, to evaluate the similarity between clusters, the 

similarity between the individual members of the clusters were taken into account. This 

is same as the Single-link method discussed in section 3.5.3.1.1.

4.5 Summary

In this chapter the details of the methodology adopted to implement the HCS process, 

developed in this study, was described.

First the logical flow chart of the of the HCS process was discussed.

Second the detailed description of the methodology adopted to implement the following 

five modules of the HCS process were discussed :

•  Feature measurement

•  Pixel pair similarity measurement

•  Initial clustering of the most similar neighbouring pixels

•  Regions merging

•  Border pixels reclassification

Finally the validity of the regions found by the HCS process was demonstrated.
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Chapter 5
Implementation

5.1 Introduction

The hierarchical clustering based segmentation (HCS), developed in this study, performs 

exhaustive search to merge regions having the least dissimilarity between them. The 

process, is a combinatorial problem and it is both CPU processing and memory 

intensive and hence time consuming. The challenge of efficiently implementing the 

process has led to the development of novel ways to optimise performance. This chapter 

will discuss in detail the different optimising techniques used for the search process and 

hence reduce the time to arrive upon the hierarchy of segmentation results.

The output of the HCS process is a hierarchy of segmentation results corresponding to a 

set of dissimilarity values. The nature of the HCS procedure is such that a large amount 

of visual information is produced. A graphical user interface (GUI) was designed to 

present the segmentation output in an informative way for the user to interpret. This 

chapter will also discuss in detail the functionality of the GUI.

5.2 Optimisation Techniques

As discussed in chapter 4 (Section 4.3.4), to find regions that are similar to each other, 

the HCS process not only compares regions bordering one another but also regions 

which are spatially apart. Such a task can easily overwhelm the computing power 

currently available and a number of optimisation methods were devised as part of 

implementing the HCS process.

One of these was to reduce the combinatorial problem itself. This was achieved by 

reducing the number of regions that needed to be compared. This was achieved with 

prior knowledge about the input data. If the different classes of regions contained in the 

image are known, the program only needs to compare those within the different classes. 

This largely reduces the combinatorial problem.

If no prior information is available then, through experience the user can specify an 

region of interest (ROI) defining the limit of the segmentation process borders.

Other optimisation techniques implemented and used were as follows :
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•  Since the calculations of the dissimilarity between the regions are independent 

of each other they can be performed in parallel.

•  If adequate memory is available the information which does not change can be 

estimated once and can be stored for subsequent use.

The different methods of optimisation will be discussed in more detail in Sections 5.2.1 

-5.2.5.

5.2.1 Class Information for Computed Tomography (CT) Images

Figure 5.1 shows a CT image consisting of 256x256 pixels. If one needs to segment the 

image using the HCS process the number of start up clusters will be equal to 65,536. 

The number of combinations, to compare each of the 65,536 clusters with the rest, can 

be obtained by the following expression :

[ A x ( A - l ) ] + 2  [5.1]

Where N is the number of clusters to be compared.

Hence for 65,536 clusters the number of combinations is given by 

[6 5 5 3 6 x ( 6 5 5 3 6— 1 )]+ 2  =2,1 47,45  0,8 8 0 .

In a CT image the digital value ascribed to each pixel is called the Hounsfield value 

(HU). HU lies on a scale where pure water has a value 0, bone has a value of the order 

of +1000 and air has a value of -1000 [Albertyn and Brown, 1996]. To reduce the 

number of combinations, for CT images, Hounsfield values can be used as class 

information to achieve an initial classification. The HCS process can be provided the 

prior information about the different tissue types present in the image based on the 

Hounsfield unit (HU) values (Refer to Table 5.1). Figure 5.1 shows a CT image of a 

skull and Figure 5.2 shows the pseudo coloured image showing the nine different 

classes in the image based on the HU values from Table 5.1.
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Table 5.1
The Hounsfield values for the different tissue types

Classes Hounsfield Number of Percentage of

(Colour codes) values range pixels total volume

Air (Black) -1117 To-201 41907 63.95

Fat (Magenta) -200 To -65 752 1.15

Water (Aqua) -64 To +5 1549 2.36

Cerebral Spinal Fluid ( ) +6 To+15 463 0.71

White matter (Green) +16 To+30 1423 2.17

Grey matter (Blue) +31 To+50 7356 11.22

Blood (Red) +51 To+89 7508 11.46

Calcification (Silver) +90 To +120 392 0.60

Bone (White) +121 To+2248 4186 6.39

Total 65536 100

Figure 5.1 - A CT image Figure 5.2 - The colour coded image
showing the nine different classes in the 
CT image based on the HU values and 

colour codes listed in Table 5.1.

If the HCS process is restricted to perform the clustering of regions within a tissue type, 

the combinatorial problem can be avoided. Discarding the pixels corresponding to class 

Air, the largest tissue classes are Blood and Grey matter. Hence the largest combination 

of clusters that needs to be evaluated substantially reduces to 

[ 7 508 X( 750 8 —1 )]+2 =2 ,8  1 8,1 27 .
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5.2.2 Class In fo rm a tio n  F o r M R I Images

A major drawback of Magnetic Resonance Imaging (MRI) is the lack of a standard and 

quantifiable interpretation of image intensities. Unlike X-ray and Computerised 

Tomography (CT), MRI images taken for the same patient using the same scanner at 

different times may appear different from each other due to a variety of scanner- 

dependent variations and, therefore, the absolute intensity values do not have a fixed 

meaning [Laszlo et al., 2000]. Hence it is not possible to get an initial segmentation of 

the different classes in an MRI image based on the specific pixel value range alone.

Proton density (PD) and transverse relaxation time (T2) are two of the pulse sequences 

used to generate MRI images. When reviewing an MR image, the easiest way to 

determine which pulse sequence was used, or the "weighting" of the image, is to look at 

the Cerebro-Spinal Fluid (CSF). If the CSF is bright (high signal), then it must be a T2- 

weighted imaged. If the CSF is dark, it is a PD-weighted image. [Suri et al., 2002], 

Refer Appendix 1 for further details.

Figure 5.3 -  PD Image slice 10000659 Figure 5.4 -  T2 Image slice 10000660

The images shown in Figures 5.3 - 5.6 show four sample image slices labelled as 

10000659,10000660,10000661 and 100006662. They are the 30th and the 31st anatomical 

slice out of 60 slices of a single patient. From the four slices it could be inferred that all 

odd numbered slices are of the same anatomical region with PD weighted and all the 

even numbered slices are of the same anatomical region with T2 weighted.
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Figure 5.5 -  PD Image slice 10000661 Figure 5.6 -  T2 Image slice 10000662

5.2.2.1 Fuzzy C-Means Clustering Based Multi-Spectral Segmentation

The T2 weighted MRI image gives a high contrast between Cerebral Spinal Fluid (CSF) 

and brain parenchyma. On the other hand Multiple sclerosis (MS) lesions appear bright 

on the proton density-weighted images while CSF (Cerebral Spinal Fluid) appears 

somewhat isointense with the rest of the brain parenchyma (see Appendix 1). Multi- 

spectral segmentation techniques based on multiple image sets (T2, PD) exploit the 

above powerful multi-parametric nature of MRI. The Multi-spectral segmentation 

technique is generally more robust since it combines information from multiple image 

sets with different contrasts for tissue classification [Suri et al., 2002].

In MRI images, the initial classification, can be estimated by using a clustering 

technique such as the Fuzzy-C-Means (FCM). This technique has been previously used 

to estimate the CSF, White and Grey matter volumes in MRI images [Brandt et al., 

1994],

The main idea behind fuzzy logic classification (FLC) is that an object can belong 

simultaneously to more than a single group and does so to a varying degree. In “hard” 

classification procedures (such as the C-means clustering algorithm), each entity must 

belong exclusively to only one group and does not admit varying degrees of 

membership. In the case of MRI images, gray scale pixel values in an image can arise 

from more than one tissue type, such as a combination of gray and white matter. This
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volume averaging of tissue poses problems for hard classification of image volume 

elements (voxels). The FCM is one of many “soft” classification procedures that allow 

sub-classification of individual MR image voxels into two or more groups. For example, 

a given voxel in an image could be classified as 0.4 (40%) Grey matter and 0.6 (60%) 

White matter. The FCM algorithm is a fuzzy generalisation of the traditional C-means 

“hard” clustering algorithm. Both the FCM algorithm and the C-means algorithm are 

unsupervised classification procedures: they are not dependent on the use of training 

regimens for cluster separation [Brandt et al., 1994].

The procedure basically consists of three computations, distance, cluster membership, 

and cluster centroid location. The algorithm operates in an iterative fashion eventually 

ending at a solution in the least mean squares sense. Clustering is performed using a, 

multi-spectral, 2-D pixel-value feature space with the dimensions representing the pixel- 

value intensity values of the PD and T2 weighted images (respectively) for a given slice. 

Thus each non-zero pixel image location consists of two pixel-value values one from the 

PD-weighted image and one from the T2-weighted image of the same slice. Each 

location's two pixel-value sets make up a “pixel vector” [Brandt et al, 1994].

To start the clustering operation, an initial estimate of the pixel-value sets representing 

the prototypical centroid for each cluster needs to be provided for each of the PD and T2 

weighted images. The final solution is independent of the choice of initial cluster 

centroids. If the initially chosen centroid values are far (in PD, T2 Euclidian space) from 

the final solution values, then more iterations will be required. To identify the centroids 

of the different classes in the image following strategy was used : the distributions of the 

pixel values of the PD and T2 weighted images were plotted (Figures 5.7 and 5.8). From 

the plots, four different ranges of pixel values were identified corresponding with the 

four classes in the image i.e.. Air, White Matter, Grey matter and CSF. The midpoint of 

each of these four ranges for each of PD and T2 weighted images was then chosen to 

represent the initial pixel-value estimate for the cluster centroid values. The clustering 

procedure is then executed with the steps expanded below. The process described below 

was successfully used by Brandt et al. to estimate CSF, White and Grey matter in MR 

images [Brandt et al., 1994] and hence it has been adopted without any further 

modifications in our study.
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FCM clustering procedural steps [Brandt et al., 1994] :

(i) Initialise the number of clusters and their centroid locations.

(ii)For each image pixel vector, the squared Euclidean distance to each cluster 

centroid vector was computed as :

|| Xa — V/1|2 [5.2]

where x* refers to each of the n pixel vectors in the slice, and v, refers to each of 

the Nc cluster centroid vectors.

Thus

k value ranges from 1 to n, where n is the number of pixels in the image. 

i value ranges from 1 to Nc. where Nc is the number clusters.

(iii)Using the inverse squared distances calculated from equation 5.1, a fractional 

membership value between 0 and 1 was computed for each image pixel vector and 

for each cluster:

1
( „ ,|2)(m- i)

I K - y , l l _________
^'■k /v ifori = l,2 ,  [5.3]

Z  ( „ |,2) ^y = 1 Wx.-VjW

where m is the fuzziness parameter that determines the amount of overlap between 

clusters.

The value chosen for m is mathematically arbitrary within the range 

1.0</77<oo . Therefore, the choice of this parameter is determined empirically 

based on the actual problem domain. Note that use of m= 1 reduces the 

algorithm to the classical C-means hard clustering procedure in which objects are 

assigned 100% membership to the nearest cluster centroid.

Brandt et al. [1994] had experimentally found that a value of 1.3 for m yielded 

consistent results across different images and subjects. Hence in this study the 

value of m was chosen to be 1.3.

The membership values, ni:k are such that they satisfy the following three 

conditions:

0<fji k <'\ for all/,/:

N c
I ,̂ k=1 foralU

i =  1 

and
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n
0 <  £  tJ i , k < n  for all i. 

k =  1
(iv)New cluster centroid vectors were recalculated based on pixel vector membership 

values as :

vt=(-z-l  ) z
" ,  k=  1 f o r / = 1 , 2 , ......., Nc [5.4]

k —\

Where Vj is the clusters' centroid value and m is the fuzziness parameter as in 

expression 5.3.

(v)The absolute difference (Euclidean distance) between cluster centroid values 

computed in the previous iteration and those in the current iteration were 

computed. Repeat procedure from step 2 above i f :

max(\vi .« - vi.«-il)>£ f o r / = 1 , 2 , ......., Nc [5.5]

where Vj o( is the location of cluster centroid i computed during iteration a 

Otherwise, convergence in the least mean squares sense has been achieved.

Brandt et al. [1994] had chosen the value of e as 0.1 which was retained in this 

study as well.

5.2.2.2 Extracting Class Information For MRI Images Using Fuzzy C- 
Means Based Clustering

The original pixel values of the PD weighted (Figure 5.3) and the T2 weighted (Figure 

5.4) images were plotted as shown in Figures 5.7 and 5.8. These plots will be used to 

estimate the number of possible clusters in the image and their initial centroid locations. 

The method of doing this is hereby discussed.

The original pixel values of the image section 10000659 (PD weighted) (Figure 5.3) 

ranged from a minimum value of 0 to a maximum value of 1094. The distribution of the 

original image pixel data is shown in Figure 5.7. Even though the maximum pixel value 

is 1094, the count of pixel values larger than 830 are all single digit and many of them 

have a count zero. Hence the plot was curtailed to pixel values up to 830 only.
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Figure 5.7 - The distribution of the pixel values of the MRI image slice 10000659 (PD
weighted)
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Figure 5.8 - The distribution of the pixel values of the MRI image slice 10000660 (T2
weighted)
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The original pixel values of the image section 10000660 (T2 weighted) (Figure 5.4) 

range from a minimum value of 0 to a maximum value of 881. The distribution of the 

original image pixel data is shown in Figure 5.8.

Healthy brain tissue can generally be classified into three broad tissue types on the basis 

of an MR image. These are Grey matter (GM), White matter (WM) and Cerebral Spinal 

Fluid (CSF) [Frackowiak et a l 2003]

From the plots in Figures 5.7 and 5.8 it could be visualised that there are four distinct 

parts of range of pixel values. For the plot in Figure 5.7 the four parts could be roughly 

estimated as 0 tolOO, 100 to 350, 350 to 650 and 650 to 830. From the plot in Figure 5.8 

the four parts could be roughly estimated as 0 to 50, 50 to 175, 175 to 450 and 450 to 

880.

Table 5.2
Initial estimate of the distribution of the pixel count for the four classes, for the PD 

weighted MRI image slice of Figure 5.3.

Classes Pixel value range Number of pixels Percentage of total 
volume

Air 0 to 100 33,775 51.54

CSF 100 to 350 5,147 7.85

White matter 350 to 650 23,816 36.34

Grey matter 650 to 830 2,798 4.27

Total 65,536 100.00

Table 5.3
Initial estimate of the distribution of the pixel count for the four classes, for the T2 

weighted MRI image slice of Figure 5.4.

Classes Pixel value range Number of pixels Percentage of total 
volume

Air 0 to 50 33,302 50.81

CSF 50 to 175 5,869 8.96

White matter 175 to 450 23,498 35.86

Grey matter 450 to 880 2,867 4.37

Total 65,536 100.00
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From the four different range of pixel values, it was estimated that there are four distinct 

classes in the images. Based on the pixel values and their spatial location in the images 

the four different classes were taken as Air, Cerebral Spinal Fluid (CSF), White matter 

and Grey matter. Tables 5.2 and 5.3 show the initial estimate of the distribution of the 

pixel count for the four classes for the PD (Figure 5.3) and T2 (Figure 5.4) weighted 

MRI image slices respectively.

To begin the clustering procedure, an initial estimate of the gray scale values 

representing the prototypical centroid for each cluster must be provided for each of the 

two images. The final solution has been observed in repeated tests to be independent of 

the choice of initial cluster centroids. If the initially chosen centroid values are far (in 

PD, T2 Euclidean space) from the final solution values, then more iterations will be 

required to arrive at a solution. The following arbitrary strategy was used: the range of 

gray scale values in each image histogram was divided into three parts (for the three 

clusters of White matter, Grey matter, and CSF). The midpoint of each of these three 

parts for each image was then chosen to represent the initial gray scale estimate for the 

cluster centroid values' [Brandt, et al. 1994].

In this study the midpoint of each of the four parts, for each of PD and T2 weighted 

images, was chosen from the pixel value plots. These four pixel value pairs are 

considered as the initial estimate representing the prototypical centroid for the four 

classes of air, White matter, Grey matter and CSF and were used to initiate the FCM 

based clustering.

Tables 5.4 and 5.5 give the details of the initial estimate of the cluster centroid values, 

for each of the four classes, for the image sections PD weighted 10000659 (Figure 5.3) 

and T2 weighted 10000660 (Figure 5.4) respectively.

Table 5.4
Details of the initial estimate of the four classes' centroids for the PD weighted image

slice 10000659
Air CSF White matter Grey matter

Pixel Value 61 320 496 730

Pixel Location 225,220 211, 100 168, 138 191, 106
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Table 5.5
Details of the initial estimate of the four classes' centroids for the T2 weighted image

slice I0Q0Q66Q
Air CSF White matter Grey matter

Pixel Value 17 127 258 689

Pixel Location 225,220 207, 106 168, 138 129, 167

In Figures 5.9 and 5.10, one of the locations which has the same pixel value as that of 

the initial cluster centroid pixel value, for the four classes, i.e. Air (Red), CSF (Green), 

White matter (Blue) and Grey matter (Magenta), are marked in colour for the image 

sections that are PD weighted (image slice 10000659) and T2 weighted (image slice 

10000660) respectively.

Figure 5.9 - Start-up class centroid Figure 5.10 - Start-up class centroid
locations marked PD weighted image slice locations marked T2 weighted image slice 

10000659 10000660

Using the FCM based clustering method, the images were segmented into four different 

regions (Air, CSF, White Matter and Gray Matter). To have a robust segmentation, the 

original pixel values of both the PD weighted (image slice 10000659) and T2 weighted 

(image slice 10000660) images were used as a “pixel vector”.

The fuzzy clustering iterates through Steps 2 to 6 (Outlined in Section 5.2.2.1). At the 

end of each iteration the the absolute difference (Euclidean distance) between cluster 

centroid values computed in the previous iteration and those in the current iteration were

61



computed. The maximum absolute difference between the four cluster centroid values 

computed in the previous iteration and those in the current iteration was evaluated as 

given by the expression 5.5. The iteration was continued until the value given by the 

expression 5.5 was greater than 0.1, otherwise, it was assumed that the convergence in 

the least mean squares sense had been achieved.
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Figure 5.11- Plot showing the maximum value of the absolute difference 
(Euclidean distance) between cluster centroid values computed in the 

previous iteration and those in the current iteration (expression 5.5), for the
different iterations.

The plot in Figure 5.11 shows the value, for the expression 5.5, for different iterations. 

For the iterations one and two the values, which are not shown in the plot, were 888.325 

and 36.5311 respectively. From the plot in figure 5.11 it can be seen that it took twenty 

three iterations for the process to attain a value o f 0.0907436 for the expression 5.5.

Table 5.6 lists the final estimate of the centroid values for the four different classes in 

the two image slices PD weighted 10000659 and T2 weighted 10000660. Figures 5.12 

and 5.13 show how the centroid values for the four different classes converge from the 

initial values (Table 5.4 and Table 5.5) to the final set o f values (Table 5.6) for the two 

image slices PD weighted 10000659 and T2 weighted 10000660.
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Table 5.6
Details of the final estimate of the four classes' centroids for the image slices PD 

weighted 10000659 and T2 weighted 10000660

Air CSF White matter Grey matter

PD 10000659 33.5298 377.073 534.085 675.328

T2 10000660 27.7616 193.59 318.39 511.429

From the plots in Figures 5.12 and 5.13 it can be seen that the values of the centroids, 

for the four classes in the two images, had converged almost to their respective final 

values after the eleventh iteration. This is also evident from the plot in Figure 5.11 

where the value given by the expression 5.5 has fallen below 1.0 after the eleventh 

iteration.

The FCM clustering process segmented the MRI image sections, shown in Figure 5.9 

and 5.10, into four different regions. The segmentation result is shown in Figure 5.14. In 

the Figure 5.14 each of the four different regions is given a unique pseudo colour.
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Figure 5.12 - Plot showing the cluster centroid values of the four classes in 
the PD weighted image slice 10000659, for different iterations.
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Figure 5.13 - Plot showing the cluster centroid values of the four classes in 
the T2 weighted image slice 10000660, for different iterations.

Figure 5.14 - FCM segmentation into four 
classes viz. Air (Red), CSF (Green), White 
Matter (Blue), and Grey Matter (Magenta)
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Figure 5.15 - After FCM based segmentation. Distribution of the pixel values of Air 
(Red), CSF (Green), White matter (Blue) and Grey matter (Magenta) for the PD

weighted image slice 10000659.
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Figure 5.16- After FCM based segmentation. Distribution of the pixel values of Air 
(Red), CSF (Green), White Matter (Blue) and Grey Matter (Magenta) for the T2

weighted image slice 10000660.
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Figures 5.15 and 5.16 show the distribution of the pixel values within the four different 

regions i.e. Air (Red), CSF (Green), White Matter (Blue) and GrayM atter (Magenta), 

after the FCM based segmentation of the image section 10000659 (PD weighted) and 

10000660 (T2 weighted), superimposed on the original values pixel distribution. The 

overlap seen between the different distributions is due to the fact that information from 

both the PD and T2 weighted images were used in the FCM based segmentation.

5.2.2.3 Segmentation of MRI Images Using Fuzzy C-Means Based 
Clustering Class Information

The MRI image section shown in Figure 5.4 (T2 weighted) has an original size of 

256x256 pixels. To segment the image using the HCS process requires 65,536 initial 

clusters. The number of combinations to compare each of the 65,536 clusters with the 

rest is obtained using expression 5.1 as follows :

[ 6553 6 x ( 6 553 6—1 )]-=-2 = 2 , 1 4 7 , 4 5 0 , 8  80

To reduce the above value, for MRI images, FCM based clustering can be used to 

identify the pixels belonging to different classes in the image. This class information 

can be used to achieve an initial classification. The HCS process can be given this prior 

information about the different tissue types present in the image based on the FCM 

based clustering.

Table 5.7 lists the pixel distribution values within the four different classes, i.e. Air, CSF, 

White matter and Grey matter, obtained from the FCM based clustering of the MRI 

image section of Figure 5.4.

Passing the above class information to the HCS process restricts segmentation to within 

the classes. That is, only intra-class segmentation is performed. The final resulting 

segmentation, when maximum dissimilarity is allowed between the pixels, will be the 

same as the the, FCM segmented, class image.
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Table 5.7
Distribution of the pixel count for the four classes, i.e. Air, CSF, White matter and Grey 

matter, for the T2 weighted MRI Image slice of Figure 5.4 after FCM based
segmentation.

Classes Number of pixels Percentage of total volume

Air 35402 54.02

Cerebral Spinal Fluid (CSF) 10647 16.25

White matter 15063 22.98

Grey matter 4424 6.75

Total 65536 100

As the first step of HCS process, initial clustering of the most similar neighbouring 

pixels was performed for each of the four classes. As detailed in Section 4.3.3 initial 

clustering was done by comparing the Gray-Tone distribution (GTD) (Section 4.3.1) 

around each of the pixels within each of the four classes and the most similar 

neighbouring pixels were clustered together to form the initial set of regions. If the part 

of the image within a class is homogeneous, with minimal variability, then the GTD 

around the pixels within the class will be similar and the initial clustering of the most 

similar neighbouring pixels will result in minimum number of cluster of regions.

The clusters distribution within the four different classes are listed in the Table 5.8. 

From the values of the number of clusters for the different classes it can be inferred that 

Air is the most homogeneous class with very little variability and CSF has the highest 

variability within itself.

Table 5.8
Distribution of the clusters for the four classes, viz. Air, CSF, White matter and Grey 

matter, for the MRI Image slice of Figure 5.4 after clustering most similar neighbouring
pixels.

Classes Number of Clusters Percentage of total

Air 97 3.22

Cerebral Spinal Fluid (CSF) 1356 45.08

White matter 800 26.6

Grey matter 755 25.1

Total 3008 100
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If the HCS process is restricted to perform the clustering of regions within the tissue 

type the largest combination of clusters that needs to be evaluated reduces to :

[1 3 5 6X(1 3 5 6 — 1 )H 2  =9 1 8 ,6 9 0

As detailed in Section 4.3.4 the region merging, of the regions within each of the four 

classes, was carried out using the agglomerative type of hierarchical clustering process. 

The dissimilarity between the regions are found based on the dissimilarity between 

individual pixels of the regions, dissimilarity between the pixels bordering the regions 

and the dissimilarity between the combined feature property of all the pixels within the 

regions (Section 4.3.4.1)

A hierarchy of segmentation results was obtained by adopting a dynamic threshold for 

the allowable dissimilarity measure between merging regions. Figure 5.17 shows the 

regions present within each of the four classes when the allowable maximum 

dissimilarity between the regions is 25% of the maximum possible dissimilarity value. 

Figure 5.18 shows the regions present within each of the four classes when the 

allowable maximum dissimilarity between the regions is 100% of the maximum 

possible dissimilarity value.

Figure 5.17- Details of the regions when Figure 5.18- Details of the regions when
the dissimilarity between the regions was the dissimilarity between the regions was

25% 100%
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When the allowable dissimilarity value between regions is 100% of the maximum 

possible dissimilarity value all the regions within each of the classes will be combined. 

Since the HCS process is restricted to perform the clustering of regions only within each 

of the four classes, the segmentation of the image for 100% dissimilarity (Figure 5.18) 

could be found to be the same as the initial class image (Figure 5.14) found using FCM 

clustering.

5.2.2.4 Difficulties in Using FCM Based Clustering Class Information

In using the initial clustering given by the FCM process, the HCS process assumes that 

within each of the clusters all pixels belong to the same tissue type. FCM's success in 

clustering the pixels belonging to different tissue types into different clusters depends on 

the MR signal variability between the different tissue types. But disease affects this 

variability. For example, previous studies have often found it difficult to distinguish 

between normal Grey matter and abnormal White matter due to their similar appearance 

in MRI [Warfield et a l , 1999].

To demonstrate the difficulties faced by FCM to segment MR images affected by 

disease, in this study FCM clustering based segmentation was applied on MR images 

affected by Parkinson's disease. The PD and T2 weighted MR images are shown in 

Figures 5.19 and 5.20 respectively.

Figure 5.19 - PD weighted Image slice 
10000421

Figure 5.20 - T2 weighted Image slice 
10000422
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The pixel values ranged from 0 to 879 for the PD weighted MR image and 0 to 898 for 

the T2 weighted MR image. The plots in the Figures 5.21 and 5.22 show the pixel 

values distributions of the PD (Figure 5.19) and T2 (Figure 5.20) weighted MR images 

respectively. Comparing the plots, shown in Figures 5.21 and 5.22, with those of the 

healthy MR image sections, (Figures 5.7 and 5.8), the shapes and the range of the four 

discernible parts are almost the same. This is also evident by comparing the initial 

estimate of the distribution of the pixel count for the four classes given in Tables 5.9 and 

5.10 with those of the healthy MR image sections given in Tables 5.2 and 5.3.

Table 5.9
Initial estimate of the distribution of the pixel count for the four classes, for the PD 

weighted MRI image slice of Figure 5.19.

Classes Pixel value range Number of pixels Percentage of total 
volume

Air 0 to 100 33,706 51.43

CSF 100 to 350 5,733 8.75

White matter 350 to 650 23,491 35.84

Grey matter 650 to 830 2,606 3.98

Total 65,536 100.00

Table 5.10
Initial estimate of the distribution of the pixel count for the four classes, for the T2 

weighted MRI image slice of Figure 5.20.

Classes Pixel value range Number of pixels Percentage of total 
volume

Air 0 to 50 32,526 49.63

CSF 50 to 175 6,704 10.23

White matter 175 to 450 21,844 33.33

Grey matter 450 to 880 4,462 6.81

Total 65,536 100.00
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Figure 5.21 - The distribution of the pixel values of the MRI image slice 10000421
(Figure 5.19) (PD weighted)
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Figure 5.22 - The distribution of the pixel values of the MRI image slice 10000422
(Figure 5.20) (T2 weighted)
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Table 5.11
Details of the initial estimate of the four classes' centroids for the PD weighted image

slice 10000421 (Figure 5.19)

Air CSF White matter Grey matter

Pixel Value 15 382 568 674

Pixel Location 23,25 132, 62 134,101 110,138

Table 5.12
Details of the initial estimate of the four classes' centroids for the T2 weighted image

slice 10000422 (Figure 5.20)

Air CSF White matter Grey matter

Pixel Value 45 205 270 682

Pixel Location 23,25 132,62 134, 101 110,138

Tables 5.11 and 5.12 give the details of the initial estimate of the cluster centroid values, 

for each of the four classes, for the image sections 10000421 (Figure 5.19) and 

10000422 (Figure 5.20) respectively.

In Figures 5.23 and 5.24, each of the locations which has the same pixel value as that of 

the initial cluster centroid pixel value, for the four classes, is marked in colour for the 

image sections PD weighted (image slice 10000421 Figure 5.19) and T2 weighted 

(image slice 10000422 Figure 5.20) respectively.

Using the FCM based clustering method, the images were segmented into four different 

regions (Air, CSF, White matter and Grey matter).

The plot in Figure 5.25 shows the value, for the expression 5.5, for different numbers of 

iterations. The first iteration value (not shown) was 883.372. It can be seen that it took 

sixty three iterations for the process to attain a final value of 0.0933016. Comparing this 

plot with that for the healthy section (Figure 5.11) it can be observed that the latter is 

smooth and monotonically decreasing but for the former between iterations five and 

thirty, the value changes very little oscillating between two and three. From iteration 

thirty one onwards the value starts decreasing again.

Table 5.13 lists the final estimate of the centroid values for the four different classes in 

the two image slices 10000421 (Figure 5.19) and 10000422 (Figure 5.20).

7 2



Figure 5.23 - Start-up class centroid Figure 5.24 - Start-up class centroid
locations marked PD weighted image slice locations marked T2 weighted image slice 
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Figure 5.25 - Plot showing the maximum value of the absolute difference 
(Euclidean distance) between cluster centroid values computed in the 

previous iteration and those in the current iteration (expression 5.5), for the
different iterations.
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Table 5.13
Details of the final estimate of the four classes' centroids for the image slices 10000421 

(Figure 5.19) and 10000422 (Figure 5.20).

Air CSF White matter Grey matter

10000421 35.944 306.773 504.712 642.266

10000422 29.6752.......... 151.157 297.363 524.518

Figures 5.26 and 5.27 show the distribution of the the pixel values within the four 

different regions, after the FCM based segmentation of the image section 10000421 

(Figure 5.19) (PD weighted) and 10000422 (Figure 5.20) (T2 weighted) were 

superimposed on the original values pixel distribution.
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Figure 5.26 - After FCM based segmentation. Distribution of the pixel values of Air 
(Red), CSF (Green), White matter (Blue) and Grey matter (Magenta) for the PD 

weighted image slice 10000421 (Figure 5.19).

The FCM clustered four different regions are shown in Figure 5.28. where region types 

are pseudo coloured. Comparing this segmentation with that obtained for the healthy 

section (Figure 5.14) it can be seen that CSF (Green) class within the skull is almost 

non-existent in the segmented diseased section (Figure 5.28).

7 4



4000

3500

3000

2500

2000

1500

1000

500

0

1 1 i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

I ----- 10000422 Pixel values histogram
----  Air Pixel values histogram

C SF Pixel values histogram
----- White Matter Pixel values histogram
----  Gray Matter Pixel values histosram

1 1

... j ..........

-

-

-

n

-I—

-

i : i '-VvVv A■—1 1 - - | 1 4 - - ' i v - tv - . ------ — - k - — 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Pixel values

Figure 5.27 - After FCM based segmentation. Distribution of the pixel values of Air 
(Red), CSF (Green), White Matter (Blue) and Grey matter (Magenta) for the T2 

weighted image slice 10000422 (Figure 5.20).

Figure 5.28 - FCM segmentation into four 
classes viz. Air (Red), CSF (Green), White 
Matter (Blue), and Grey matter (Magenta)
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Table 5.14 lists the pixel distribution values within the four different classes, obtained 

from the FCM based clustering of the MRI image section of Figure 5.20. Comparing 

these values with that obtained for the healthy image slice, listed in Table 5.5, following 

observations could be made :

•  The volume of the air is almost the same for both the sections.

•  CSF volume has almost halved for the diseased section.

•  There is a slight increase in the White matter for the diseased section.

•  The Grey matter for the diseased section has increased by almost one third.

Table 5.14
Distribution of the pixel count for the four classes, viz Air, CSF, White Matter and 
Grey matter, for the T2 weighted MRI Image slice of Figure 5.20 after FCM based

segmentation.

Classes Number of pixels Percentage of total volume

Air 35252 53.7903

Cerebro-Spinal Fluid (CSF) 5700 8.69751

W hiteM atter 18192 27.7588

Grey matter 6392 9.75342

Total 65536 100

From this segmentation of the diseased MR image, it was found that the FCM clustering 

process clusters pixels belonging to different classes into the same cluster. This 

misclassification will affect the performance of the HCS process if intra cluster 

segmentation was done by the HCS. To avoid this, if it is known which classes have 

been misclassifled by the FCM clustering process, then during the HCS process inter 

class clustering between those classes can be allowed. This will increase the number of 

combinations that need to be evaluated but will avoid the error due to misclassification 

by the FCM segmentation.

Thus it was found that FCM based initial clustering is not always the best solution to 

solve the combinatorial problem. In this study FCM was not used after this initial 

investigation. To avoid the combinatorial problem the region of interest based 

information was used. This is explained in detail in the next section 5.2.3.
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5.2.3 Region O f In te re s t In fo rm a tio n

Another way to reduce the combinatorial problem is to restrict the processing of the 

image to within a region of interest (ROI). The ROI location and size is chosen by an 

expert based on the information gained from other imaging sources. For example 

Diffusion weighted MR imaging (DWI) detects alterations in the normal pattern of 

movement of cellular water due to stroke. DWI is highly sensitive and specific for 

detecting severely ischemic lesions in the brain [Bihan et al, 2001]. Abnormalities on 

T2 weighted images do not typically appear until at least 6 hours after symptom 

onset. [Miller, 2004].

Figure 5.29 shows a Diffusion weighted image where the stroke affected area is clearly 

visible as white. Figure 5.30 is a T2 weighted image of 512x512 pixels size. To isolate 

the stroke affected region in the T2 weighted image a ROI is chosen to process only a 

part of the image. The size and the location of the ROI, in the T2 image, is chosen based 

on the location of the stroke affected area visible in the Diffusion weighted image.

Figure 5.29 - Diffusion weighted image 
with the stroke affected area visible as 

white (marked by the arrow head).

Figure 5.30 - T2 weighted image with the 
ROI located based on the stroke affected 
area location in the Diffusion weighted 

image.
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5.2.4 P a ra lle l C a lcu la tion

Computer hardware and operating systems have been capable of multitasking for years. 

Their ability to schedule different tasks (typically called processes) really pays off when 

separate tasks can actually execute simultaneously on separate CPUs in a 

multiprocessor system. Although real used applications can be adapted to take 

advantage of a computer's ability to do more than one thing at once, a lot of operating 

system code must execute to make it possible. With the advent of threads we've reached 

an ideal state — the ability to perform multiple tasks simultaneously with as little 

operating system overhead as possible [Nichols et al., 1996].

Pthreads is a standardized model for dividing a program into subtasks whose execution 

can be interleaved or run in parallel. The “P” in Pthreads comes from POSIX (Portable 

Operating System Interface), the family of IEEE operating system interface standards in 

which Pthreads is defined. Programmers experience Pthreads as a defined set of C 

language programming types and calls with a set of implied semantics. Vendors usually 

supply Pthreads implementation in the form of a header file, which you include in your 

program, and a library to which you link your program [Nichols et al., 1996].

During the HCS process a major operation is to find the dissimilarity between the 

existing regions in the image (Section 4.3.4 Region Merging) . Since the estimation of 

the dissimilarity between different regions is an independent operation, it can be 

performed in parallel. The part of the program which finds the dissimilarity between the 

existing regions in the image was parallelised, using Pthreads library, such that the 

calculation could be done in parallel.

In a dual processor machine, having a pair of Intel™ Pentium-Ill 500 MHz processors, 

to process the 64x64 size texture image shown in Figure 6.11, in parallel using two 

threads, the time taken was 12.25 hours. In the same machine, to process the same 

image sequentially the corresponding time taken was 16.5 hours. The gain in time, from 

the sequential operation, when using two threads is only 25 percent. The reason behind 

this is, only the region merging (Section 4.3.4 Region Merging) part of the HCS process 

is parallelised. Border pixels reclassification (Section 4.3.5 Border Pixels 

Reclassification), the other major operation of the HCS process, is not parallelised. 

Border pixels reclassification is not parallelised because reclassifying border pixels is 

not an independent operation and hence can be processed only sequentially.
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5.2.5 S to ring  Versus R eca lcu la tion  o f In fo rm a tio n

The two important pieces of information needed for the HCS process are the similarity 

between the pixels and the dissimilarity between the different regions. While the 

similarity between the different pixels is never going to change during the entire 

operation, the dissimilarity between the different regions will change as the different 

regions merge. The dissimilarity between the regions that have changed and the 

remaining regions need to be recalculated.

But, due to the combinatorial nature of the process, the amount of the information that 

needs to be stored is substantial. For this reason, storing preference is given to 

information which takes more processing time, like the dissimilarity between regions. 

Information such as the similarity measurement between pixels is stored only as and 

when memory becomes available otherwise they are recalculated when required.

The CPU processing time gain between the storing of similarity measurement between 

pixels versus recalculating the information as and when required was almost 40% for a 

3x3 mask size.

For storing, both the similarity measurement between pixels and the dissimilarity 

between regions, the total memory requirement for a 100x100 ROI during the early 

stage of the HCS process is around eight gigabytes. In the beginning of the study, the 

available system memory was limited to only one or two gigabytes of memory. During 

that period of time the region of interest that could be processed was limited to 100x50 

and the similarity between pixel locations were recalculated as and when needed instead 

of being stored. But later on a system with eight gigabyte of main memory was used 

which was subsequently upgraded to sixteen gigabyte of memory. This current system 

could process a ROI of size up to 140x140 with the similarity between the regions as 

well as between pixel locations being stored.

It should be noted that as and when the regions merge the number of regions in the 

image is reduced and hence the number of combinations is reduced as well. Moreover 

there will be no need to store the similarity measurements between pixels which are 

within the same region, since that information is never going to be needed for the HCS 

process.
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5.2.5.1 N e tw o rked  C lusters

Cluster is a widely-used term meaning independent computers combined into a unified 

system through software and networking. At the most fundamental level, when two or 

more computers are used together to solve a problem, it is considered a cluster. Clusters 

are typically used for High Availability (HA) for greater reliability or High Performance 

Computing (HPC) to provide greater computational power than a single computer can 

provide.

One does not always consider using a cluster to speed-up the computation. One can also 

use a cluster of computers to enable a job to be done at all. For example when the 

available system memory was limited to only one or two gigabytes of memory the 

region of interest that could be processed, using HCS, is limited to 100x50 using a 

single computer. And if one need to process a larger ROI, since the amount of memory 

available in a single motherboard is limited, a cluster of machines can be used to 

augment the total memory.

Latency, which is the delay between the instant a CPU requests a piece of information 

and the time the information starts to become available, is 40-80 nano second to fetch 

data from a local memory when opposed to 5-50 micro second across the network 

[Brown, 2004]. Hence the transfer rate of information between a network of computers 

is significantly lower than that achieved on a single computer's motherboard. Since 

larger capacity memory modules are now available, there is no further advantage of 

using a computer cluster for memory intensive computing. Using a system memory of 

16 gigabyte, an ROI of size up to 140x140 was processed successfully.

5.3 Graphical User Interface

The graphical user interface developed as part of this study served two main purposes :

•  To optimally display 12-bit medical image data.

•  To display the hierarchy of segmentation results produced by the HCS process.
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5.3.1 GUI Facility For Displaying Medical Image Data

The availability of digital medical imaging sources like Computed Tomography (CT), 

Magnetic Resonance Imaging (MRI) and Ultrasound (US) and the use of computers to 

process the images led the American College of Radiology (ACR) and the National 

Electrical Manufacturers Association (NEMA) to form a joint committee to create a 

standard method for storage and transmission of medical image information. The 

committee created a standard called Digital Imaging and Communications in Medicine 

(DICOM) to simplify the distribution and viewing of medical images, such as CT scans, 

MRI images, and ultrasound images. The GUI designed for this study reads in medical 

image data written in DICOM format. The medical image data generated by CT and 

MRI is normally 12-bit data stored in two bytes. This produces a gray-scale range of 0 

to 4095, but in graphical displays where the primary colours, Red, Green and Blue are 

represented in 8 bits, only 256 levels of gray-scale can be displayed at any one time. 

Hence a suitable method needs to be designed to map the 4096 different values to the 

available 256 levels for displaying purpose.

5.3.1.1 GUI Facility For Displaying CT Medical Image Data

Computed Tomography (CT) imaging is based on X-ray attenuation of various tissues. 

The digital value assigned to each pixel is called the Hounsfield value (HU) which lies 

on a scale where pure water has a value 0, air has a value of (-)1000, bone has a value of 

the order of (+)1000 [Albertyn and Brown, 1996]. Thus a CT image can potentially have 

up to 2000 different Hounsfield values stored as 16 bit data. But a computer monitor can 

display only 256 different shades of gray, at any one time. The technique of windowing 

is an electronic manipulation of the data to enable these 256 shades of gray to be used to 

represent a limited range, or window, of Hounsfield values.

Traditionally due to the cost involved in producing hard copies (film based), standard 

window settings were used to map the 2000 possible Hounsfield values to 256 gray 

values. Previous studies have evaluated the appropriate window setting for producing 

hard copies pertaining to specific clinical applications [Brink, 1999], [Mayo-Smith et 

a l, 1999].
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Until the last half-decade interpreting CT images was based solely on hard copies of the 

images. With the recent availability of powerful graphical workstations soft copy 

(electronic) evaluation of the images is replacing the role of hard copy interpretation 

[Johnson, 2003]. The possibility of directly interacting with the original 16 bit data 

gives the radiologists the freedom to set the window settings interactively. Studies have 

assessed the clinical significance of using variable window settings in soft copy 

interpretation [Lev, 1999].

The graphical user interface (GUI) designed in this study augments the diagnostic value 

of the CT image data by optimally mapping the range of data values to the available 256 

gray level values. In the medical imaging community the windowing parameters are 

referred to as 'window centre' (C) and the 'window width' (W) of an image. Narrowing 

the window or compressing the gray scale increases contrast for the purpose of visual 

perception [Albertyn and Brown, 1996]. Conversely, widening the window will increase 

the range of Hounsfield numbers displayed in a single shade of gray.

Computed tomography (CT) produces images with a very wide dynamic range. As such, 

linear intensity window setting techniques must be used to view CT images to provide 

adequate contrast and detail within specific imaged tissues [Barnes, 1992], [Gomori and 

Steiner, 1987]. In the case of a CT scan of the chest, CT images are viewed three times, 

with window settings specific for bone, soft-tissue, and lung detail. The process of 

selecting window settings and interpreting resultant windowed CT images is time- 

consuming, even with the advent of digital imaging and display, which allow window 

settings to be varied rather quickly at an interactive console [Fayad et al. 2002],

The images shown in Figures 5.31 and 5.32, illustrate the effect of changing the window 

settings with linear mapping. Figure 5.31 is a display with a narrow window setting 

(width 66 HU units, centred at 38 HU unit). This image shows the intracranial tissues 

quite clearly but the subdural haematoma, shown in white, is indistinguishable from the 

cranial bone. Figure 5.32 is a display with a wide window setting (width 2126 HU units, 

centred at 552 HU unit). The image clearly distinguishes the subdural haematoma 

(marked by the arrow head), but with a complete loss of contrast among intra cranial 

tissues.
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Linear window mapping is useful if one knows what to look for. However to obtain an 

overall view of the CT image data before choosing a specific range of Hounsfield 

values, it is necessary to display a wide range of the values optimally using the limited 

range of available 256 gray scale values.

Figure 5.31 - Linear mapping of the 
Hounsfield values for a window setting 

width 66 Hu units, centred at 38 Hu 
unit.

Figure 5.32 - Linear mapping of the 
Hounsfield values for a window setting 
width 2126 Hu units, centred at 552 Hu 

unit.

There has been a previous study to design an appropriate non-linear mapping function 

to optimally display different tissue types using the same window settings [Jin et al, 

2002].

To fit a wide range of Hounsfield values into 256 shades of gray, the GUI designed in 

this study uses a technique known as equal-probability quantizing [Haralick, 1973]. 

Equal-probability quantising is an alternative technique that is particularly attractive for 

distributing the Hounsfield values. The equal-probability quantising technique consists 

of computing the frequency of occurrence of all allowed Hounsfield values (within a 

window). If Hounsfield values in a certain range occur frequently, while others occur 

rarely, the quantisation levels are finely spaced in frequently occurring range and 

coarsely spaced outside it. In some literature equal-probability quantising method is 

sometimes referred as tapered quantisation [Gonsalez, 1992],
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Figure 5.33 illustrates the advantage of using equal-probability quantisation method for 

mapping the range of Hounsfield values onto the display values. The image is displayed 

with a wide window setting (width 2126 Hu units, centred at 552 Hu unit). Unlike in the 

case of linear mapping, Figure 5.32 the image in Figure 5.33 clearly distinguishes the 

subdural haematoma as well as the intra cranial tissues.

Figure 5.33 - Equal-probability quantizing 
based mapping of the HU values for a 
window settings width 2126 HU units, 

centred at 552 HU unit

The GUI, designed and implemented in this study, provides the facility for the user to 

interactively choose the window settings. It also provides the facility for linear as well 

as non-linear mapping of the image data to the chosen window settings.

Most CT machines have a region of interest (ROI) capability allowing the user to define 

a small area of interest on the screen. The CT machine then displays the average 

Hounsfield value of all the pixels contained within the ROI box [Albertyn and Brown, 

1996]. To provide a similar facility the GUI also provides the user with a region of 

interest (ROI) facility. Within a given ROI, the GUI calculates the maximum, minimum 

and average pixel values and displays the information for the user (Figures 5.34 and 

5.35). Further details of ROI facility are described in Section 5.3.1.2.
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5.3.1.2 D eta ils  o f the G U I F a c ility  F o r D isp lay ing  M e d ica l Im age D ata

The image viewing and quantisation GUI facility designed and implemented in this 

study has the following facilities :

•  Side by side image display

This facility allows the user to have the same image quantised using different 

window settings displayed side by side for comparison. The user could also 

display, side by side, images of different modality where in one of the image the 

diseased area is clearly visible (Figure 5.34).

•  Dual interactive cursor

Dual cursors are useful for comparing relative pixel values of the same image 

quantised for different window settings.

Dual cursors are also useful in situations where a diseased area clearly visible in 

one modality image need to be marked onto another modality image (Figure 

5.34). By displaying the images side by side and making use of the dual cursor, 

one for each image, the user could outline the suspected area on the image where 

it is not very obvious guided by the location of the suspected area clearly visible 

on the other image.

•  Slider facility to interactively set the image quantising window width and centre. 

The slider gives a visual control to interactively set the quantising window width 

and centre parameters and view the original image under varied quantised 

settings and scrutinise the image for diseased areas which might get accentuated.

•  Using region of interest (ROI) marking facility, the user could annotate a part of 

the image by outlining a ROI enclosing the area (Figure 5.34)

•  Image statistics, within the Region of interest (ROI), viewing facility. Using the 

ROI facility the user could find the image data statistics within a specific area of 

the image (Figure 5.35). The image data statistics within a ROI might help the 

user to set the quantising window parameters values to enhance that part of the 

image within the ROI.

•  Image saving facility. The user could save the quantised and/or ROI marked 

images for future reference.

Figure 5.34 shows a screen shot of the GUI. Two images of different types of MRI 

images are displayed side by side. The image on the left screen is the Diffusion 

weighted MRI image and the one on the right is the T2-weighted MRI image. In the
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Diffusion weighted image (image on the left screen), the stroke affected area is clearly 

visible in white, (indicated by the black arrow head).

>1 HnunsfieM Value

Grey Scale linage DICOM linage Re Quantised From 200 Hu To 100 Hu

Slider to adjust 
the Quantising 
pixel value range

Controls to mark 
ROI and to Save 
Quantised Image
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Figure 5.34 - Graphical user interface facility to compare images of different 
modalities and to accentuate disease affected area using equal-probability quantising

method.
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MinmValue MaxmVaJue AvgVaJue

Figure 5.35 - Statistics of the image data values within the ROI marked by the user.

Making use of the dual cursor facility, the user is able to draw a ROI (outlined in red) 

around the corresponding area in the T2 weighted image as shown in Figure 5.34. 

Using the ROI facility the user can find the image data values statistics within the 

marked ROI as shown in Figure 5.35.
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Using the ROI facility to find the image data statistics within a area of the image has an 

important role in setting the window width and centre parameters for quantising MRI 

images. This is because for CT images the window parameters could be set using the 

Hounsfield standard values for different tissue type (see Section 5.3.1.1). However for 

MRI images no such standard exists and hence the window parameters, for quantising 

MR images, need to be decided corresponding to each image.

From the statistics of the image data values (Figure 5.35), within the ROI marked the 

quantising window parameters, of window width 200 centred at 300, were chosen. 

Using the slider facility (Figure 5.34) to adjust the quantising window parameters the T2 

weighted MR image was quantised using equal-probability quantising method.

The area affected by stroke was accentuated in the T2 weighted MR image (outlined in 

red in Figure 5.34). The locational correspondence of the accentuated area with the 

stroke affected area visible in white in the diffusion weighted MR image could be 

confirmed using the dual cursor facility.

Images in Figures 5.36 to 5.38 demonstrate the advantage of using the equal-probability 

quantisation method and the usage of correct window settings, obtained from the 

statistics of the image data, to accentuate the diseased area in MR images (Refer Section 

6.3.1.1 also).

Figure 5.36 shows the T2 weighted MR image quantised using linear quantisation for a 

wide window setting of width of 1340 centred at 670. The diseased affected area, 

indicated by the green arrow head, could hardly be visualised.

Figure 5.37 shows the same T2 weighted MR image, quantised using equal-probability 

quantisation for the same wide window setting of 1340 centred at 670. The diseased 

affected area, indicated by the green arrow head, could be visualised better than in 

Figure 5.36.

Figure 5.38 shows the same T2 weighted MR image, quantised using equal-probability 

quantisation for a narrower window setting of width 200 centred at 300. The diseased 

affected area, outlined in red, is well accentuated and could be visualised better than in 

Figure 5.37 and far better than in Figure 5.36. This is further confirmed in Figure 5.39 

where the infarct affected area had been isolated using the HCS process.
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Figure 5.36 - T2 weighted MR image 
quantised using linear quantisation 
method for a wide window settings.

Figure 5.37 - T2 weighted MR image 
quantised using equal-probability 

quantisation method for the same wide 
window settings as in Figure 5.36.

This example clearly demonstrates the advantage of the choice of equal-probability 

method and the importance of choosing the correct windowing parameters for

Figure 5.38 - T2 weighted MR image 
quantised using equal-probability 

quantisation method for a narrow window 
setting.

Figure 5.39 - Pixels belonging to the 
infarct isolated by the HCS process.
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quantisation. From this discussion it could be inferred that the equal-probability method 

along with the GUI will facilitate detection of hard to visualise infarct condition. Hence 

it could be concluded that equal-probability based quantising method along with the 

GUI, could be used by the neuroradiologists for scrutinising MRI and CT scans.

5.3.2 GUI Facility For Displaying Hierarchy of Segmentation Results

The Hierarchical Clustering based Segmentation (HCS) designed and implemented in 

this study generates a hierarchy of segmentation results. The hierarchy of segmentation 

results associated with the dissimilarity values is generated and stored at the end of the 

HCS processing.

Once the segmentation is performed, the GUI can be used to reproduce the resulting 

segmentation images associated with a dissimilarity value instantaneously. Making use 

of the GUI, the user can inspect how the merging process evolves and associates the 

unique regions at any level with the different types of patterns present in the image. The 

users can interactively choose the dissimilarity level at which they want to view the 

segmentation results. When choosing a low value of dissimilarity, the image will show 

many varied regions similar to the original image. When choosing a high value of 

dissimilarity the image will only show regions that are significantly different.

The original image may be displayed alongside the processed image showing regions of 

dissimilarity. A dual cursor facility provided by the GUI allows the user to correlate the 

segmentation results with the original image data. This enables the clinicians to improve 

their ability to identify regions that have subtle differences or dissimilarities.

The GUI also helps the user to differentiate dissimilarities in the image down to a single 

pixel level by providing the clinicians the facility to highlight pixels belonging to the 

same region which might occur across the image.

The GUI is designed in such a way as to make it easy for the user to view all the 

different solutions and select the most suitable. This is achieved by the GUI by having 

the following facilities :

•  The different segmentation results can be viewed by using a scroll bar. The 

divisions in the scroll bar are the percentage of the maximum possible allowable 

dissimilarity measure between the different regions in the image.
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•  Individual region properties like the number of pixels, the lowest, highest and 

average pixel value and the distribution of the pixel values within the region can 

be scrutinised.

•  The original image or another segmented image at different level of dissimilarity 

can be compared with the segmented image by displaying them alongside each 

other and a dual cursor moves simultaneously on both images.

•  In order to allow the users to quickly display segmented image the GUI provides 

a gallery of the set of segmented images. The user can click on any one of the 

thumb nail images to have it displayed on the main window. Figure 5.40 shows a 

gallery of thumb nail images. These images display the different regions found 

by the HCS process for a set of allowed dissimilarity measure between the 

regions in the image.

Figure 5.40 - A gallery of thumb nail size segmented images.

Figure 5.40 shows a gallery of segmentation results for a set of allowed dissimilarity 

measure between the regions in the image. Using the gallery of segmentation results, the 

user has an overall view of the results available at a glance. Figure 5.41 is a snap shot of 

the GUI, showing the user controls provided.
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Figure 5.41 - Annotated screen shot of the GUI, to look at the HCS output.

Figure 5.41 shows the different controls of the GUI. It shows an original image along 

with the segmentation results beside it. The major controls provided by the GUI are :

•  The pair of sliders provided for adjusting the windowing parameters can be used 

to adjust the range of the original pixel values that will be displayed (making use 

of the 256 display levels).

•  To map the original pixel levels to the available 256 display levels, either linear 

or equal probability quantising method, can be used by pressing the appropriate 

buttons.

•  The slider for adjusting the dissimilarity level can be used to display the 

segmentation result corresponding to the dissimilarity level at the slider location.

•  The segmentation results can be seen as regions or as boundaries of the regions 

drawn on the original image, by choosing either of the radio button.

•  At the bottom of the images, there are display boxes where the actual pixel 

values of the image and the region index, at the cursor location, are displayed.
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5.4 S um m ary

In this chapter following implementation details of the HCS process were discussed :

•  Optimisation techniques

•  GUI to display quantised medical image data and the HCS process results.

Under the optimisation techniques the following ways of reducing processing time were 

discussed :

•  Performing an initial clustering, making use of the information specific to a class 

of images for example using the Hounsfield Unit values for the CT images.

•  Performing an initial clustering, making use of the segmentation techniques like 

FCM clustering.

•  Identifying a region of interest and have the HCS process applied only within the 

ROI.

•  Parallelising those parts of the process which could be evaluated in concurrent.

•  Depending upon the available memory, storing relevant information which is not 

going to change, instead of recalculating them.

In the current implementation of the HCS process, all the above optimization techniques 

were implemented and tested for their performance. It was found that FCM clustering 

was suboptimal in segmenting MR images affected by physlogical conditions like 

Parkinson's disease.

The functionalities provided by the developed GUI for quantising medical image data 

and to view the HCS process segmentation results were discussed in detail.
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Chapter 6
Performance Analysis of Hierarchical Clustering Based 

Segmentation

6.1 Introduction

The Hierarchical Clustering Based Segmentation (HCS) process, developed in this 

study, is a modular process consisting of the following major operations (for details 

refer Section 4.3):

•  Feature measurement

•  Pixel pair similarity measurement

•  Initial clustering of the most similar neighbouring pixels

•  Regions merging

•  Border pixels reclassification

The modular framework, of the HCS process, makes it possible to make use of the most 

appropriate implementation of the different modules to suit the problem that needs to be 

solved. In this chapter, with the help of suitable test cases, the performance of the 

different implementation of the modules, in achieving the objectives of the study, will be 

evaluated.

6.2 Feature Measurement Performance

The success of any subsequent clustering or merging process is affected by the method 

by which the property of the individual pixels is found. The feature measure, which 

quantifies the property of the individual pixels, should yield regions such that the 

dissimilarity among the pixels within the regions is low and the dissimilarity among the 

pixels between the regions is high.

In the following section it will be shown that the performance of the Gray Tone 

Distribution (GTD) feature measure, which is one of the novel aspect of this study, is 

well suited for segmentation of tonal and micro-texture images.
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6.2.1 G ra y  Tone D is tr ib u tio n  (G T D ) Feature P erfo rm ance

In this section, making use of sample test images, the following capabilities, of the GTD 

feature will be demonstrated :

•  Capability to precisely identify the boundary between the different regions in an 

image.

•  Capability to highlight the constituent regions within a textured area.

EEftR 
AR 5  

9 .0  
.CONTOUR 
CONTRAST

Figure 6 .1 - A tonal image Figure 6.2 - Segmentation output of the
tonal image

Table 6.1
Statistics of pixel values for the tonal image of Figure 6.1

Minimum Maximum Average Standard deviation

0 255 125 72.26

6.2.1.1 Tonal Image Segmentation

Figure 6.1 shows a predominantly tonal image of size 127x142 pixels. As shown in 

Table 6.1 and Figure 6.3, within the image there is quite a wide variation of the tonal 

values. But since there is no repetitive pattern in the image, it is tonal rather than 

textured.
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Figure 6.3 - The pixel values distribution for the tonal image of Figure 6.1.

The segmentation results of Figure 6.2 demonstrates the following capabilities of the 

Gray Tone Distribution (GTD) feature :

•  Accurate delineation of regions which are of size just few pixels.

•  Highlighting subtle difference in tonal distribution.

The GTD feature is an important attribute because it allows border pixels to be 

accurately delineated from the different regions in an image. This is clearly 

demonstrated in the process o f segmenting the tonal image shown in Figure 6.1. From 

the segmentation result shown in Figure 6.2, it can be seen that all the characters are 

merged as belonging to the same region (pseudo coloured as white).

From the above results it is confirmed that the GTD feature is well suited to accurately 

delineate regions which are hardly a couple of pixels wide. For this reason the GTD 

feature was used by the current study in the segmentation of medical images. Where 

accurate border pixel delineation is very crucial in segmenting images where the regions 

may be a few pixels wide. The effectiveness of the feature will be again demonstrated 

by delineating regions in the CT image of the brain (Refer Section 6.4.1).

95



In segmenting the image in Figure 6.1, the result shown in Figure 6.2 may not be what a 

human observer prefers. The image contains five lines of words in lighter shade against 

a black background. A human observer would segment the lightly shaded words 

belonging to the same region and the dark background as a separate region. From the 

segmentation result shown in Figure 6.2, it can be seen that the HCS process had 

segmented almost all of the characters as belonging to one region, and pseudo coloured 

as white. But the letter N in the word CONTOUR had been partly segmented as 

background. This might seem as a discrepancy but it might be the case that, that part of 

the image differs subtly from the rest of the lightly shaded characters and HCS might be 

highlighting this subtle difference. Hence this demonstrates another capability of the 

GTD feature, i.e. to highlight the subtle difference in tonal distribution.

The subtle difference in gray tone distribution, referred to above is not observable by the 

human eye. This property of the GTD feature is very useful in picking up small regions 

of in-homogeneity in an otherwise homogeneous regions of medical images. Thus 

regions of abnormality otherwise missed by the human observer could be picked up by 

the feature and highlighted. This is further demonstrated in delineating brain area 

affected by stroke in the MRI image of the brain (refer Section 7.3.2). Also by 

delineating the diseased area in a medical ultrasound image, the HCS process could 

highlight the subtle difference within the diseased area to give an indication the 

probable location of the core of the the disease (refer Section 7.6).

6.2.1.2 Brodatz Texture Image Segmentation

Figure 6.4 shows an image, of size 64x64 pixels made up of two Brodatz [Brodatz, 

1999] texture patches named D68 (lighter shade) and D93 (darker shade) in the Brodatz 

texture album. The repetitive pattern, which demonstrates that the image is a textured 

image rather than a tonal image, can be seen. Table 6.2 gives the gray scale values 

statistics of the two texture patches. Since both patches are textured images, the high 

values of standard deviations show that there is a quite a variation of the gray scale 

values within the textured patches.

Figure 6.5 shows the histogram plot of the gray scale distribution of the two textured 

patches. There is an overlap, albeit minimal, of the gray scale values of the two textured 

patches. Hence pure gray scale value based segmentation will not be suitable. The
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image was segmented using GTD feature. Figures 6 .6-6.8 illustrate the initial, 

intermediate and the final segmentation results respectively of the HCS process.

Figure 6.4 - A textured image made up of 
D68 , D93 Brodatz texture patches

Table 6.2
Statistics of the Gray scale values within the two textured patches in the image shown in

Figure 6.4

Brodatz 

texture patch

Minimum Maximum Average Standard

Deviation

D68 94 255 175 48

D93 10 129 54 28

The HCS process designed for this study did not have a stopping criteria while merging 

the regions (Refer section 4.2). As the allowable dissimilarity between the regions is 

increased more and more regions merge together (Refer section 4.2). Consequently at 

the final stage even the two regions (Figure 6 .8), which represent the two discernible 

texture patches (Figure 6.4) will be merged as a single region. This is in line with how a 

human observer discerns the different components of the image. At the coarsest 

resolution one considers the whole image as one entity. But at finer resolutions one is 

able to visualise the dissimilarity within the individual patches of the texture. The 

success of the HCS process will be evaluated for its ability to duplicate the above 

described human visualising process.
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The intermediate segmentation result (Figure 6.7) demonstrates the following capability 

of the GTD feature. The two texture patch image shown in Figure 6.4 was segmented 

using the GTD feature. Figure 6.6 shows the different regions at the start of the merging 

process. Figure 6.7 shows the different regions at an intermediate stage of merging. The 

regions at the intermediate stage of merging correlates with the repetitive textured 

patterns visually visible. Figure 6.7 illustrates how the GTD feature could accurately 

delineate the borders of the repetitive patterns occurring across the image and tag them 

as similar regions within the textured patches.

8
  D68 Gray-scale value distribution

D93 Gray-scale value distribution
7
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Figure 6.5 - Gray scale values distribution within the texture patches of Figure 6.4
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Figure 6.6 - Initial segmentation of Image Figure 6.7 - Intermediate segmentation of 
in Figure 6.4 Figure 6.4

Figure 6.8 - Final segmentation of the 
two texture patches of the image in 

Figure 6.4

As the merging is iterated, with higher levels of allowable dissimilarity between the 

regions, the original image is finally segmented into its two constituent regions as 

shown in Figure 6 .8 . Figure 6.8 illustrates how the GTD feature could accurately 

delineate the border of the two different texture patches in the image.

The usefulness of the GTD feature, to accurately delineate regions of dissimilarity 

within an otherwise homogeneous region, will be further demonstrated by delineating 

part of an ultrasound medical image affected by disease within a healthy tissue (Refer 

Section 7.6).
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6.3 Region M e rg in g  P erfo rm ance

As detailed in section 4.3.4 in the HCS process region merging was performed by the 

agglomerative type of hierarchical clustering process, also known as bottom-up method. 

In order to find the similarity between two regions, the following factors were taken into 

account:

•  similarity between individual pixels of the two regions.

•  similarity between the pixels bordering the two regions.

•  similarity between the combined feature property of all the pixels in the two 

regions.

Intuitively the above factors are appropriate considering the fact that a human observer 

considers all three measures while visualising the different regions in an image. In this 

section the above hypothesis will be experimentally demonstrated by showing how the 

accuracy of the segmentation improves by taking into account the above factors. The 

demonstration will be achieved by using HCS to segment an image made up of two 

texture patches. The image made up of texture patches was used for the following 

reasons :

•  the ground truth is precisely known since the patched image is created.

•  to demonstrate that feature measure plays a crucial role in segmentation.

Figure 6.9 - Brodatz texture Cork of size 
256x256. The 32x 64 patch is outlined in 

red.

Figure 6.10 - Brodatz texture Grass, of 
size 256x256 The 32x64 patch is outlined 

in red.
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Figures 6.9 and 6.10 show two Brodatz [Brodatz, 1999] textures i.e. Cork and Grass 

respectively. Figure 6.11 shows a 64x64 size image made up of the two Brodatz patches 

Cork (left patch of size 32x64) and Grass (right patch of size 32x64). The patches are 

barely distinguishable to even a human observer. Table 6.3 gives the grey scale values 

statistics of the two texture patches. Figure 6.12 shows the plot of the grey scale 

distribution of the two texture patches. From the plot shown in Figure 6.12, it could be 

seen that the gray level distribution of the two textures are almost the same. This is a 

very typical case, of textured images, where the images are differentiated by the 

arrangement of the gray levels, i.e. their spatial distribution, rather than its frequency 

distribution. Since there is very little difference between the gray level distributions of 

the two textured patches, GTD features will not be able to successfully differentiate 

between the two textured regions.

Figure 6.11 - A 64x64 size texture image 
made up of 32x64 Cork and 32x64 Grass 

Brodatz texture patches

Table 6.3
Statistics for the Gray scale values within the two texture patches in the image shown

in Figure 6 .11

Brodatz

texture

Minimum Maximum Average Standard

deviation

Cork 24 196 110 48

Grass 20 188 104 28
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Figure 6.12 - Gray scale values distribution within the Cork and Grass Brodatz 
texture patches in the texture image of Figure 6.11

GTD feature's inability to properly segment the texture image patches, of Figure 6.11, 

could be seen in the misclassified image shown in Figure 6.13. The image in Figure 

6.13 shows the segmentation output when there are two regions (pseudo coloured as 

black and blue). The misclassification could be seen since the two different regions in 

the image found by the HCS process, using GTD feature, are not the same as the two 

different textured patches in the actual image in Figure 6.11. Figure 6.14 shows the 

borders of the two regions outlined on the original image. From Figure 6.14 it can be 

seen that the GTD feature has segmented the image into regions based on tonal 

characteristics, the darker part of the image segmented as one region and the lighter part 

of the image segmented as the other region.

Since HCS is a modular process, the feature measurement part of the process alone 

could be changed, depending on the type of image, keeping the rest of the processing 

steps the same. The HCS process used Local-Binary-Pattem and Contrast (LBP-C) 

feature (See Appendix 2) to segment the texture patches shown in Figure 6.11. LBP-C 

performed better than GTD to segment such subtle texture patches. The LBP-C feature 

final segmentation result is shown in the Figure 6.17.
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Figure 6.13 - Segmentation of the Cork, Figure 6.14 - Border of the two regions
Grass Brodatz texture patches, of Figure found by the HCS process, using GTD

6 .11, by the HCS process using GTD feature,
feature.

Figure 6.15 - Intermediate segmentation 
of the Cork, Grass Brodatz texture 

patches, of Figure 6 .11, by the HCS 
process using LBP-C feature.

Figure 6.16 - Border of the three regions 
found by the HCS process, using LBP-C 

feature, outlined on the original Cork, 
Grass Brodatz texture patches image of 

Figure 6.11.
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Figure 6.17 - Final segmentation of the Figure 6.18 - Border of the two regions
Cork, Grass Brodatz texture patches, of found by the HCS process? using LBP-C
Figure 6 .11, by the HCS process using feature, outlined on the original Cork,

LBP-C feature. Grass Brodatz texture patches image of
Figure 6.11.

6.3.1 Unsuitability Of LBP-C Feature For Medical Image 
Segmentation

Even though the LBP-C feature is well suited for segmenting texture patches like the 

one shown in Figure 6.11; the major disadvantage of the LBP-C feature is that unlike 

the GTD feature, it could not localise the border pixels of the constituent regions. This 

could be seen in the intermediate segmentation result, where there were three regions, as 

shown in Figure 6.15. The three regions' border are outlined in Figure 6.16, it could be 

seen that the segmented regions borders do not overlap the texture patches border.

The reason for LBP-C feature not being able to localise the border is because the feature 

is calculated within a 21 x21 pixel size mask centred at the pixel under consideration 

(See Appendix 2). For the pixels bordering the two textured patches the feature value is 

calculated using information from both the textures and hence cannot be specific for any 

one of the textures. In the case of GTD, this situation is avoided by positioning the mask 

at different orientations with the pixel under consideration at different locations within 

the mask (See Sections 3.5.2 and 4.3.2 for details). This ensures that the property of a 

pixel at the border is found using only the information from the texture to which it 

actually belongs. Therefore the reason for using GTD is that one can delineate regions 

with precise border localisation. Precise border pixel localisation is very crucial in 

medical image segmentation (See Section 8 .2.2.2). Hence LBP-C feature is not suitable
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for segmenting medical images where the constituent regions are barely a few pixels 

wide.

6.3.2 Effect Of Region Merging Factors In Segmentation Performance

Even if an ideal feature measure is chosen, which is suitable for the type of image being 

processed, how it is used affects the success of the segmentation process. In this section 

it will be discussed how the different region merging factors of HCS process (See 

Section 4.3.4.1 for details) affect the performance of the LBP-C feature.

The LBP-C feature distribution was calculated by moving a 3><3 window within a 21x21 

size mask. Rejecting the pixels on the border of width 11 all around the 64x64 size 

image (Figure 6.11), the total number of pixels that were classified in the image were 

1764 (42x42). i.e. 882 pixels in each of the texture patch viz. Cork and Grass.

The HCS performance shown in the graph in Figure 6.19 is achieved by the HCS 

process when all the three factors, i.e. similarity between individual pixels, similarity 

between pixels bordering the regions and the similarity between the combined feature 

property of all the pixels in the regions, (Section 4.3.4.1 for details) were considered for 

the region merging. The percentage of misclassification when the merge was complete, 

i.e. there were only two regions yet to be merged, is as follows :

•  The misclassification for the Cork texture was 4.54% (i.e. 40 of 882).

•  The misclassification for the Grass texture was 1.81% (i.e. 16 of 882).

•  The overall misclassification considering both Cork and Grass was 3.175% (i.e. 

56 of 1764).

Normally to find the similarity between regions, only the similarity between the 

combined feature property of all the pixels within the regions are considered [Ojala and 

Pietikainen, 1999]. Using the same LBP-C feature distribution, the textured patches in 

the image in Figure 6.11 was segmented using only the similarity between the combined 

feature property of all the pixels within the regions. The resulting segmentation 

performance is shown in Figure 6.20. From the graph it could be seen that when the 

merge is fully complete, the overall misclassification considering both Cork texture and 

Grass texture together was 49.2% (i.e. 868 of 1764).
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Figure 6.19 - Misclassification versus merge percentage for the segmentation of the 
Cork, Grass Brodatz texture patches, of Figure 6.9, by the HCS process using LBP-C 
feature, when all the factors were taken into account and when all the regions in the

image were compared for merging.
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Cork and Grass segmentation

[2 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102
Merge percentage

Figure 6.20 - Misclassification versus merge percentage for the segmentation of the 
Cork, Grass Brodatz texture patches, of Figure 6.9, by the HCS process using LBP-C 

feature, when only combined feature measure was used to measure the similarity
between regions.
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The other factors which play an important role in obtaining the best segmentation 

performance (shown in Figures 6.17-6.18) are :

•  Comparing all the regions in the image to find the most similar regions.

•  Reclassifying border pixels after every merge of similar regions.

Comparing all the regions in an image to merge the most similar regions is a practical 

necessity in medical image segmentation where similar regions might occur across the 

image and may not be spatially adjacent to one another. In segmenting textured images, 

comparing all the regions in an image to merge the most similar regions improves the 

segmentation results. The reason for this is that the repetitive pattern which forms the 

texture may not be spatially adjacent to one another. The performance of the LBP-C 

feature based segmentation using the HCS process when only spatially adjacent regions 

are merged is shown in the graph of Figure 6.21. From the graph shown in Figure 6.21 it 

can be seen that when the merge is fully complete, the overall misclassification 

considering both Cork and Grass was 31.3% (i.e. 552 of 1764).

Cork segmentation 
Grass segmentation 
Cork and Grass segmentation

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102
Merge percentage

Figure 6.21 - Misclassification versus merge percentage for the segmentation of the 
Cork, Grass Brodatz texture patches, of Figure 6.9, by the HCS process using LBP-C 

feature, when only spatially adjacent regions are compared for merging.
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As explained in section 4.3.5 (Methodology chapter), after every merge of similar 

regions, the pixels on the borders were evaluated to find out whether they actually 

belonged to the regions they were currently in or whether they needed to be reclassified 

to any other regions to which they might be more similar. Border pixel reclassification 

does improve performance. When all the factors for merging of regions are taken 

account and all the regions in the image were compared to find the most similar regions, 

but the border pixels were not reclassified then merging performance degrades as shown 

in in the graph of Figure 6.22. This shows that when the merge is fully complete, the 

overall misclassification considering both the Cork texture and Grass texture was 

12.02% (i.e. 212 of 1764).

  Cork segmenation
  Grass segmenation
  Cork and Grass segmenation

gP 16

Figure 6.22 - Misclassification versus merge percentage for the segmentation of the 
Cork, Grass Brodatz texture patches, of Figure 6.9, by the HCS process using LBP-C 

feature, when border pixels are not reclassified after every region merging.

From the above discussion it can be concluded that all the factors, i.e. similarity 

between individual pixels, similarity between pixels bordering the regions and the 

similarity between the combined feature property of all the pixels in the regions, need to 

be used to get the best possible results (shown in Figures 6.17-6.18). Also factors like 

merging regions which are spatially disjoint and reclassifying pixels bordering the
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merged regions after every merge further improve performance. The above conclusions

were further validated by using the HCS process on some real world medical images

(See Sections 6.4.2 and 6.4.3).

6.4 Medical Image Segmentation Example

Medical images have the following typical features:

•  Regions having similar properties may not be adjacent.

•  Regions may be as small as few pixels.

•  Regions which are anatomically and/or clinically very different may have very 

subtle difference in image properties.

To successfully segment medical images, the segmentation process should be able to 

handle the unique features of the medical images. In this section the performance of the 

HCS process, in this context, will be discussed.

The major features which make HCS unique are :

•  Comparison of feature distribution for all possible mask orientations (see 

Sections 3.5.2 and 4.3.2).

•  Evaluating all the possible combinations of the regions, currently in the image, 

to find and merge the most similar regions (see Sections 4.3.4 and 4.4.1).

•  Reclassifying the pixels bordering the regions which have merged (see Section 

4.3.5).

These unique features play an important role in addressing the issues typical to medical 

images of finding the possible regions and highlighting dissimilar parts. This will be 

demonstrated in Section 6.4.1 by an example where HCS was successfully used to 

highlight the diseased area in a CT image.

6.4.1 Precise Border Pixels Delineation

Figure 6.23 shows the CT image of a section of the brain. Figure 6.24 shows the 

suspected area in the brain outlined in white by a neuroradiologist. A Region of Interest 

(ROI) (shown by a rectangle) was selected enclosing the suspected area and the 

processing was carried out within the ROI. The processing was done within the ROI to 

significantly reduce the amount of processing time. Processing within the ROI is one of 

the optimisation techniques adopted in this study (See Section 5.2 for details).
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Figure 6.23 - A CT image section

Figure 6.24 - Image showing the 
suspected area, outlined in white and the 

ROI rectangle drawn in black.

Figure 6.25 - Intermediate segmentation Figure 6.26 - Intermediate segmentation 
regions, within the ROI., when all the regions boundary outlined,

regions within the ROI, are compared and 
merged.
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The result of segmenting the regions within the ROI, when there were four regions, is 

shown in Figure 6.25. Figure 6.26 shows the boundaries of the four intermediate 

regions. From Figures 6.25 and 6.26 it could be seen that the major classes in the 

original image, viz. White Matter (Green), Gray Matter (Blue) and infarct (Red), had 

been segmented. The fourth region is a single pixel size region (Yellow) within the 

infarct. Figure 6.26 shows how the region boundaries, separating the Grey matter, White 

matter and the Infarct, are very precise. This illustrates how the unique way the major 

operations, like the pixel feature comparison (Sections 3.5.2 and 4.3.2), similar regions 

merging (Sections 4.3.4 and 4.4.1) and reclassifying border pixels (Section 4.3.5), of 

the HCS process were implemented have contributed towards an acceptable 

segmentation result.

CT-Bmp im age S u s p e c te d  A rea Marked

Figure 6.27 - HCS process delineated 
border superimposed on top of the expert's 

outline of the diseased area.

Precise border delineation plays a crucial role in medical image segmentation especially 

in disease management. For example to evaluate the drug response one might want to 

measure the area of the image affected by the disease over a period of time to establish 

whether the disease is under remission or not. For this purpose computer aided image 

segmentation like HCS process will be able to give a consistent and precise border 

delineation. This is evident from Figure 6.27 where the border of the diseased area is 

superimposed on the expert marked area of the disease. The HCS process made use of
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the expert's initial estimation of the diseased area location to place the ROI and 

processed only within that ROI. This will be the case in a disease management scenario 

where the initial location is available either from prior observation or through 

subsequent evaluation. But the precise delineation is what is crucial, say to evaluate a 

drug response.

In Figure 6.27, it could be seen that while the expert's outline of the diseased area is 

only very approximate, which includes substantial part of the healthy part of the image, 

the HCS process delineation is much more precise. This precise delineation ability of 

the HCS process, is a major contribution of this study.

The precise border pixel delineation could be achieved by HCS only through the unique 

way the following major operations, of the HCS process, were implemented :

•  Similar regions merging (Sections 4.3.4 and 4.4.1).

•  Reclassifying border pixels (Section 4.3.5).

This will be further validated by giving counter examples (See Sections 6.4.2 and 6.4.3) 

how the results degrade substantially if the above operations were implemented 

differently.

6.4.2 Necessity For Comparing Spatially Disjoint Regions

A unique feature of the HCS process is the evaluation of all the possible combinations 

of the regions, currently in the image, to find and merge the most similar regions 

(Sections 4.3.4 and 4.4.1). This operation of the HCS process is highly computer 

processing intensive due to the combinatorial nature of the operation. But the method of 

evaluating spatially disjoint regions is essential in the case of the medical image 

segmentation. The contention above is validated by giving a counter example where 

when spatially disjoint regions are not compared the segmentation result shown in 

Figure 6.28 is unacceptable.

Figures 6.28 and 6.29 show the intermediate segmentation results of the HCS process, 

when only spatially adjacent regions were compared and merged. In Figure 6.28 there 

are 101 clusters and in Figure 6.29 there are 40 clusters. The larger clusters belonging to 

the major classes are coloured as Yellow and Green (White Matter), Blue (Gray Matter) 

and Red (infarct). Other smaller clusters are coloured with other distinct colours.
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Comparing the segmentation result shown in Figure 6.28 with that of Figure 6.25, in 

Figure 6.28 similar regions (White matter) are tagged as separate clusters (Yellow and 

Green coloured clusters) because they are spatially disjoint. And on subsequent merging 

the White matter and Grey matter regions are merged together (Figure 6.29 Green 

coloured cluster) instead of the White matter merging with the White matter on the other 

part of the image (Yellow coloured cluster in Figure 6.29). This misclassification 

occurred because spatially adjacent regions were only considered for merging. This 

example demonstrates that in medical image segmentation it is necessary to compare all 

the regions to find the best possible combination of regions for merging.

Figure 6.28 - Intermediate segmentation Figure 6.29 - Intermediate segmentation 
when only spatially adjacent clusters are where spatially adjacent Grey matter and 

compared. White Matter regions were merged.

6.4.3 Necessity For Border Pixels Reclassification

Border pixels reclassification is carried out immediately after each merging of similar 

regions. During the border pixels reclassification, the pixels bordering the regions that 

had merged (with other similar regions) and their bordering regions, were further 

evaluated to determine the most suitable region they (the bordering pixels) belong to 

(see Section 4.3.5 for details). Border pixel reclassification is one of the most time 

consuming operation during the HCS process. But without it the segmentation results 

were found to be suboptimal.
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During the early stages of the HCS process, the dissimilarity allowed between regions 

for merging is small. This will result in the HCS process collating pixels into regions 

which capture the local inhomogeneity within an otherwise homogeneous regions. As 

the merging is advanced more and more pixels will join to form regions which capture 

the overall homogeneity of the regions with pixels having minor inhomogeneity 

accommodated within the region. During the process of merging, the pixels which have 

been merged with other regions were allowed to merge back to the regions to which 

they actually belong, through border pixels reclassification.

CT-Bmp irnsge Suspected Area Marked

Figure 6.30 - Intermediate segmentation, 
with border pixels reclassification, where 

misclassification had occurred.

Figure 6.31 - Image highlighting the 
pixels belonging to the misclassified 

cluster.

If border pixels reclassification is not carried out those pixels which do not belong to the 

regions to which they merged during the early stage of merging, will not have a chance 

to merge back to the regions they actually belong. This will distort the segmentation and 

result in errors. This is illustrated in this section by segmenting the CT image shown in 

Figure 6.24.
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Figure 6.30 shows the intermediate segmentation results of the HCS process, done with 

border pixels reclassification. In Figure 6.30 there are 10 clusters. The larger clusters 

belonging to the major classes are coloured as Red and Yellow (infarct), Green (White 

Matter) and Blue (Gray Matter). Other smaller clusters are coloured with other distinct 

colours. Figure 6.31 shows only the pixels of the larger cluster belonging to the major 

class infarct (coloured as Red and Yellow). From Figures 6.30 and 6.31 it could be seen 

that the cluster belonging to the major class infarct has misclassified pixels on the other 

part of the image.

Figure 6.32 shows the clusters in the segmented image on subsequent merging where 

most of the pixels which were misclassified as belonging to the diseased region had 

been reclassified correctly through border pixel reclassification. Figure 7.33 shows the 

rectified segmentation showing the pixels belonging to the diseased region alone. The 

minor misclassification, seen in Figure 6.33, may be due to the diseased area in the 

white matter having the same signal signature as the pixels belonging to the Ventricle.

Figure 6.32 - Clusters in the image after 
subsequent merging where part of the 
misclassification had been rectified.

Figure 6.33 - Image showing the rectified 
cluster pixels alone.
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Figure 6.34 shows the intermediate segmentation results of the HCS process, performed 

without border pixels reclassification. In Figure 6.34 the pixels belonging to the larger 

clusters of the major classes White Matter and the infarct are coloured as Green and 

Red. Pixels clustered as belonging to the Grey matter class are not coloured. From 

Figure 6.34 it could be seen that the cluster belonging to the major class infarct has 

misclassified pixels on the other part of the image. The misclassification seen in Figure 

6.34 is very similar to misclassification shown in Figure 6.30.

Figure 6.35 shows the clusters in the segmented image on subsequent merging where 

the misclassification had worsened. Figure 6.35 illustrates how the earlier misclassified 

pixels, not able to disassociate with their wrongly classified region (since no border 

pixel reclassification is done), influences subsequent merging to wrongly merge the 

diseased area with the rest of the white matter.

Figure 6.34 - Intermediate segmentation, Figure 6.35 - Clusters in the image after 
without border pixels reclassification, subsequent merging where
where misclassification had occurred. misclassification had worsened.
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6.5 C om parison  o f  H C S w ith  N A S A ’s H S E G

A comparative study of the developed HCS system with Hierarchical image 

segmentation (HSEG) developed by NASA [Tilton NASA Case No. GSC 14,328] 

[Tilton, 2003] has been carried out in this study.

HCS was compared with HSEG for the following reasons :

•  HSEG (See Section 3.3.3) is one of the segmentation methods which is similar 

to HCS (Section 3.4.1).

•  An application domain of HSEG is to segment medical images and it has been 

licensed to Barton Medical Imaging to be used in its medical image analysis 

software product MED-SEG™ [Barton Medical Imaging].

6.5.1 HSEG Performance

An evaluation version 1.0 of the HSEG software was requested and received from 

NASA. The version 1.0 was not able to segment the diseased area in the CT image data 

shown in Figure 6.24. The developer of the software was contacted and on his request 

the segmentation results attained through HCS process (Figure 6.25) was sent. The 

developer acknowledged that version 1.0 of HSEG software was not able to segment the 

diseased area. As a result HSEG software was debugged, updated and version 1.1 was 

released, by the developer (See Appendix 3).

Version 1.1 of the HSEG software was used to segment the CT image of Figure 6.23 

within the ROI shown in Figure 6.24. The results of the HSEG segmentation process are 

shown in Figures 6.36-6.38.

6.5.2 Comparison of HSEG Performance with HCS

The result of HSEG within the ROI, when there were three clusters, is shown in Figure 

6.36. Figure 6.37 shows the boundaries of the three intermediate clusters. From Figures 

6.36 and 6.37 it could be seen that the major classes in the original image, viz. White 

Matter (Green), Gray Matter (Blue) and infarct (Red), had been segmented into 

separate clusters. But there is some misclassification where the pixels belonging to the 

White Matter on the other part of the image had been clustered as belonging to the 

infarct.
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Figure 6.36 - HSEG intermediate 
segmentation output where the suspected 

area has been segmented with some 
misclassified pixels.

Figure 6.37 - Borders of the segmented 
clusters during the intermediate 

segmentation using HSEG.

Figure 6.38 - HSEG subsequent clustering 
output, where the region highlighting the 

suspected area in the earlier stage has 
combined with the white matter.

Figure 6.39 - Borders of the regions on 
subsequent clustering, by HSEG, showing 

the boundaries of the misclassified 
clusters.
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Figures 6.38 and 6.39 show the result of subsequent merging. From Figures 6.38 and 

6.39 it could be seen that the White Matter and the infarct had merged together to form 

one single cluster (Red).

Comparing the results of the HSEG (Figures 6.36 and 6.38) with that of the results 

obtained by HCS without border pixel reclassification (Figures 6.34 and 6.35), it can be 

seen that the results are almost the same. This confirms that HCS border pixel 

reclassification is the main differing step with that of the HSEG. It is also demonstrated 

that HCS process with its border pixel reclassification step gives a far better 

segmentation result (Figures 6.25 and 6.26) as compared with HSEG. Therefore this 

comparison illustrates that border pixel reclassification has an obvious advantage over 

HSEG which does not have such a similar step.

These results illustrate the fact that HSEG does merging of regions that are not spatially 

adjacent like what HCS does. But HSEG does not do border pixel reclassification 

(which HCS does).

The major advantage of HSEG over HCS is the time it takes to process. In a similar 

configured machine, while HSEG takes only a few minutes HCS with its border pixel 

reclassification takes couple of days to converge. However with rapidly increasing 

computer processing power, this processing time would be reduced.

Figure 6.40 - Linear mapping of the 
Hounsfield values for a window setting 

width 66 Hu units, centred at 38 Hu unit

Figure 6.41 - Segmented CT image 
highlighting dissimilarity within the 

cranial bone (outlined in white)
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6.6 Usefulness o f the G U I fo r  H ig h lig h tin g  A b n o rm a lit ie s

While viewing the CT image data critical CT scan findings could be obscured by 

inappropriate window settings (Figure 6.40). With an infinite possibility of display 

choices an unsuitable compromise for a particular clinical situation may be selected [Jin 

et al., 2002]. This limitation of display of CT image data using the windowing technique 

is alleviated using the GUI dissimilarity highlighting facility. The segmented image in 

Figure 6.41 clearly highlights the dissimilarity within the cranial bone region. This 

dissimilarity display may prompt the physician to set the correct window to scrutinise 

the region highlighted by the dissimilarity within an otherwise homogeneous region (in 

this case the lower cranial bone region) shown in Figure 6.41.

The dissimilarity-highlighting feature was also successfully used for highlighting infarct 

in MRI T2-weighted images that are hard to visualise. Figures 6.42 and 6.43 are the 

Diffusion weighted and T2 weighted MR images of a stroke patient, respectively. The 

Diffusion-weighted image clearly shows the area in the brain, affected by the stroke, in 

white (pointed by black arrow).

Figure 6.42 - Diffusion weighted MRI Figure 6.43 - T2 weighted MRI

The GUI was evaluated to find whether it could highlight the diseased area in the T2- 

weighted image. Figure 6.44 displays the different dissimilar regions in the T2 weighted 

image, for a specific dissimilarity level. The GUI has got a facility, named region 

tagging, using which the user could highlight the pixels belonging to a specific region.
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Figure 6.45 shows a region, that was dissimilar from the rest of the image, which was 

isolated and highlighted using the GUI region tagging facility. The isolated dissimilar 

region corresponds to the stroke affected area that is clearly visible in the diffusion- 

weighted MRI image (Shown in Figure 6.42).

The radiologist’s assessment was that the GUI was able to highlight the abnormal area 

correctly on the T2 weighted scan (confirmed by the Diffusion weighted scans). He also 

observed that most physicians and possibility neuroradiologists could miss the signal 

changes on the T2 weighted scan (See Appendix 4 for the neuroradiologists 

assessment). For this reason the GUI will be useful in highlighting and visualising 

subtle changes in medical images.

X

Vrmim- # <

/  i

Figure 6.44 - Different dissimilar regions Figure 6.45 - One of the dissimilar regions 
for a specific dissimilarity level. for a specific dissimilarity level.
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6.7 S um m ary

In this chapter the performance of the HCS process was analysed. The suitability of the 

Gray-Tone distribution (GTD) feature, developed for this study, to segment tonal and 

micro-textural images was demonstrated. The micro-textural nature of the medical 

images was confirmed by comparing the performance of the GTD feature based versus 

Gray-Tone based, segmentation of simulated MRI images.

To find the similarity between the regions in a image the necessity of the following three 

factors was demonstrated:

•  Similarity between individual pixels of the two regions.

•  Similarity between the pixels bordering the two regions.

•  Similarity between the combined feature property of all the pixels in the two 

regions.

The suitability of the HCS process to segment medical images was demonstrated by 

evaluating the following capabilities of the HCS process :

•  Precise border pixels delineation.

•  Comparing and merging spatially disjoint regions.

•  Border pixels reclassification.

The HCS process developed was compared with NASA's HSEG process. It was 

confirmed that HCS border pixel reclassification was the main differing step with that of 

the HSEG. It was also demonstrated that HCS process with its border pixel 

reclassification step gave improved segmentation result than HSEG.

Finally the GUI ability to isolate and highlight areas of dissimilarity in medical images, 

based on the HCS output was evaluated by a neuroradiologist.
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Chapter 7
Highlighting Dissimilarity in Medical Images Using HCS

7.1 Introduction

Tissue abnormalities in medical images are indicated by part of the image being 

dissimilar from other homogeneous areas representing healthy parts. The dissimilarity 

may be subtle or strong depending on the medical modality and the type of tissue 

abnormality. For example in CT images, which are based on X-ray attenuation 

pathological lesions will be detected when there is alteration of water content of the 

lesion and surrounding tissues together with presence of calcification, haemorrhage etc. 

[Culebras, 1997]. The pathological lesion will be either hypo, or iso or hyperdense to 

normal tissues -  that is either low or similar or high attenuation to normal tissues. Gray 

scale imaging is excellent for detection of gross alteration in attenuation in pathological 

lesion, but subtle alteration in lesions with almost similar attenuation to normal tissue 

may be missed.

Dissimilarity may not always be due to tissue abnormality. It might be due to image 

noise or due to variability within the same tissue type. Hence any dissimilarity 

highlighting process would benefit from high level human interaction with a 

segmentation hierarchy to select the appropriate image segmentation for a particular 

application. This is because one of the capabilities of the human vision process is the 

ability to visualise them at different levels of details.

The HCS process designed and implemented in this study automatically generates a 

hierarchy of segmented images. The hierarchy represents the continuous merging of 

similar, spatially adjacent or disjoint regions, as the threshold of dissimilarity between 

regions is gradually increased. The usefulness of the HCS process in highlighting the 

dissimilarity in medical images will be demonstrated in this chapter.
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7.2 Processing o f the M e d ica l Images o f D iffe re n t M o da lities

One of the main objectives of the current study is to design a segmentation process 

which will be unsupervised and be completely data driven. This objective ensures that 

the segmentation process can be applied to any medical image modality, with equal 

success, without any prior information about the image data and without any need to 

train the segmentation process with the relevant image data (See Section 1.3). To ensure 

that this objective is achieved, images of the different modalities (viz. MRI, CT and US) 

were processed with the same set of parameters and with the same set of procedural 

steps listed below.

The Hierarchical Clustering Based Segmentation (HCS) process, designed and 

implemented in this study, is a modular process consisting of the following major 

operations (for details refer Section 4.3):

•  Feature measurement.

•  Pixel pair similarity measurement.

•  Initial clustering of the most similar neighbouring pixels.

•  Regions merging.

•  Border pixels reclassification.

The implementation of the above to process the different images is as detailed in 

Sections 7.2.1 to 7.2.5.

7.2.1 Feature Measurement

The feature extraction method used to process the images of different modalities (viz. 

MRI, CT and Ultrasound) was based on gray-tone distribution (GTD) (See Section 

4.3.1). The GTD feature was chosen for following reasons (See Section 6.2.1)

•  Accurate delineation of regions just a couple of pixels in size.

•  Highlighting subtle differences in tonal distribution.

7.2.2 Pixel Pair Similarity Measurement

To find the similarity between a pair of pixels, of the images of different modalities (viz. 

MRI, CT and Ultrasound) the gray-tone distribution around each pixel was compared. 

To ensure precise border delineation, the mask was placed at different orientations
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around the target pixel. All possible combinations of feature distributions between the 

two pixels were compared to find the best possible similarity value (See Section 4.3.2).

7.2.3 Initial Clustering of the Most Similar Neighbouring Pixels

Initial clustering of the most similar neighbouring pixels (See Section 4.3.3) was not 

performed on any of the images. At the initial starting of the region merge loop (See 

Flow chart Figure 4.4) each pixel in the image was tagged as a unique region.

7.2.4 Regions Merging

To generate a hierarchy of segmented images, the region merging was carried out using 

the agglomerative type of hierarchical clustering process, also known as bottom-up 

method (See Section 4.3.4). To find the similarity between regions, found in the images 

of different modalities, the following factors were taken into account :(See Section 

4.3.4)

•  Similarity between individual pixels of the two regions.

•  Similarity between the pixels bordering the two regions.

•  Similarity between the combined feature property of all pixels in the two

regions.

In order to ensure that the merging result arrived upon did not depend upon the merging 

regions, all possible combinations of the regions, currently in the image were evaluated 

(See Sections 4.3.4 and 4.4.1)

7.2.5 Border Pixels Reclassification

After the merging of similar regions, the border pixels of the regions that had merged 

with other similar regions and their bordering regions were further evaluated to allocate 

them to the most suitable region (See Section 4.3.5).

7.3 Highlighting Dissimilarity in MRI Images

Cerebral ischemic stroke is one of the most fatal diseases despite current advances in 

medical science. Patients presenting with suspected stroke require rapid diagnosis and 

treatment.
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Nearly 60% of CT scans performed within the first few hours after cerebral infarction 

are normal [Laughlin, 1998]. This is because CT may be adequate to detect intracranial 

hemorrhage, but in the case of nonhemorrhagic stroke, the CT scan may be negative for 

the first 24 to 36 hours [Parizel et al., 2001],

Conventional (spin-echo) MRI (T1 and T2 weighted) depends on an increase in tissue 

water content within the ischemic brain parenchyma to visualize the infarct. Since 

oedema takes time to develop, images obtained with spin-echo sequences can be normal 

in the first 6 to 8 hours after an acute stroke [Laughlin, 1998].

7.3.1 Diffusion Weighted Magnetic Resonance Imaging

Diffusion-weighted MRI (DW-MRI), is a technique used for relating image intensities 

to the relative mobility of endogenous tissue water molecules. Two equal and opposite 

large magnetic field gradients are applied before the data is acquired. In the absence of 

any motion of the water molecules, the magnetic spins will be de-phased by the first 

gradient, and then completely re-phased by the second gradient. However, because the 

actual motion of the water molecules is that of a random walk, the second gradient will 

not completely re-phase the spins. The signal intensity will therefore be exponentially 

attenuated proportional to the mean diffusion length. Areas with relatively high mean 

diffusion length will appear dark on the DW-MRI images relative to areas with low 

mean diffusion length.

Potential clinical applications of water diffusion MRI were suggested very early [Le 

Bihan et al., 1986] The most successful application of diffusion MRI since the early 

1990s has been brain ischemia [Warach et al., 1992], following the discovery in cat 

brain by Moseley et al. [1990] that water diffusion drops at a very early stage of the 

ischemic event.

Newer diffusion-weighted pulse sequences depend on free movement of water 

molecules for contrast. With cerebral ischemia, diffusion is impeded within minutes, 

although the exact mechanisms responsible for this are not yet completely understood. 

Thus, diffusion-weighted imaging sequences can detect areas of acute ischemia earlier, 

when conventional MRI and CT may be normal [Sorensen et al., 1996] [Warach et a l, 

1995] [Laughlin, 1998].
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Conventional CT and MR imaging are not sufficiently sensitive to evaluate stroke in the 

hyper acute stage. Conventional MR scans can detect acute stroke by 6 to 12 hours. The 

ultimate goal for imaging is to define the area of brain infarction and perfusion deficit, 

and to identify any ischemic tissue that can be salvaged by medical or surgical therapy 

[Makkart et al, 2003]. Diffusion MRI provides some patients with the opportunity to 

receive suitable treatment at a stage when brain tissue might still be salvageable [Le 

Bihan et al., 2001],

Diffusion weighted image in Figure 7.1 shows the stroke affected area in white marked 

by a black arrow head.

Figure 7.1 - Diffusion weighted MR 
image with stroke affected area visible as 

white.

Although over the last 20 years diffusion MRI has become an established technique 

with a great impact on health care and neurosciences, like any other MRI technique it 

remains subject to artifacts and pitfalls. In addition to common MRI artifacts, there are 

specific problems that one may encounter when using MRI scanner gradient hardware 

for diffusion MRI, especially in terms of eddy currents and sensitivity to motion [Le 

Bihan et al, 2006].

Figure 7.2 - ROI marked T2 weighted MR 
image
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The most important difficulty was motion sensitivity, which can cause severe ghosting 

artifacts or complete signal loss. As molecular displacement must be observed on the 

order of micrometers, it is no surprise that any motion-even unavoidable involuntary 

head motion or physiological, blood pressure-related pulsations of the brain tissue- 

would interfere with these measurements. The problem is even more serious when scans 

must be obtained in disoriented and confused stroke victims, whose head movements 

are excessive.

The development of faster sequences that are more robust to bulk motion was largely 

inspired by the need to cope with motion sensitivity. The simplest method of avoiding 

motion artefacts is to use a motion insensitive method such as echo planar imaging 

(EPI) [Turner et al., 1990]. The sequence most frequently used for DWI (diffusion 

weighted imaging) is single shot EPI. It has attained a pre-eminent position in this field, 

due to its speed, insensitivity to motion and high sensitivity. The disadvantages of 

single-shot EPI are a limited spatial resolution and the distortions caused by 

susceptibility gradients.

The poor spatial resolution of the DWI, shown in Figure 7.1, could be seen when 

compared to the T2 weighted image, shown in Figure 7.2, of the same part of the brain 

of the same patient.

7.3.2 Identifying Stroke Affected Area in T2 Weighted Magnetic 
Resonance Imaging

Since the T2 weighted image has better spatial resolution, giving better anatomical 

details of the area of the brain affected by stroke, it is desirable to identify the stroke 

affected area in the T2 weighted image at the very early stage of the stroke. So it was 

decided to find out whether the HCS process could discern the subtle signal changes, 

that could have been caused at the early stage of the stroke, in the T2 weighted image.

There have been many reports on studies highlighting the advantage of DWI in the early 

detection of the stoke affected area. All of them state that abnormalities on T2 weighted 

images do not typically appear until at least 6 hours after symptom onset [Miller, 2004].

But it should be noted that although conventional MRI sequences most often do not
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show evidence of stroke in the acute phase, conventional MRI may show signs of 

intravascular thrombus such as absence of flow void on T2-WI. Also a few hours after 

stroke onset, a loss of arterial void signal is sometimes observed (30-40% of patients); it 

is best observed on T2-WI.

Taking into account the above possibilities that there may be some signal change in the 

T2-WI, albeit very slight, during the hyperacute stage (less than 24hrs) the objective of 

the current study was to find out whether HCS could highlight the subtle changes 

correlating with the DWI image highlighted area.

Figure 7.3 - Dissimilar regions highlighted Figure 7.4 - Pixels belonging to one of the
by HCS at an intermediate stage. dissimilar regions highlighted by HCS

The current study is the only study, to the author's knowledge, that has attempted to 

evaluate the possibility of identifying the stroke affected area in a T2 weighted image 

during the hyperacute stage (less than 24hrs) which is correlated with a DWI result.

Figure 7.3 shows forty two different clusters segmented in the image by HCS during an 

intermediate stage of the segmentation. In Figure 7.3 the larger size clusters are shown 

coloured in Blue, Yellow, Green and White. Other smaller size clusters are given other 

unique colours. The cluster which has got pixels around the probable location of the
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infarct (as seen in the diffusion weighted image shown in Figure 7.1), is coloured in 

Red. Using the cluster tagging facility of the GUI the cluster of pixels around the 

probable location of the infarct was isolated. Figure 7.4 shows the pixels belonging to 

the isolated regions segmented during an intermediate stage of the segmentation. 

Comparing the isolated region in Figure 7.4 with the DWI in Figure 7.1 it can be seen 

that the pixels belonging to the isolated region correlates with the stroke affected area 

visible as white in the DWI image.

The results shown in Figures 7.3 and 7.4 were presented to a neuroradiologist for 

evaluation. His written opinion (see also Appendix 4) regarding the usefulness of the 

developed method is reproduced below :

“I have been going through all the processed images. My preliminary assessment is that 

the programme is able to pick up the abnormal area correctly on the T2 weighted scan 

(confirmed by the diffusion weighted scans). I  would also like to mention that the signal 

changes seen on the T2 weighted scan, would be missed by most physicians and 

possibly neuroradiologists.

My concerns at this stage are

(i) Is the programme consistent. To answer this you could analyse the same area 

again

(ii) Is the programme picking up noise and by chance is it in the same location as 

the lesion. This could be checked by running the programme on other examples 

o f similar lesions and by increasing the size o f the area evaluated. ”

The first concern, regarding the program consistency, is answered by the fact that the 

program is designed to always give the same segmentation results. The program has 

been amply tested as described in Section 4.4.1 of the Methodology chapter. Hence 

running the program any number of times would always result in the same 

segmentation. The second concern has been addressed by processing a cross-sectional 

image adjacent to this.
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Figure 7.6 - Adjacent slice ROI marked 
T2 weighted MR image

Figure 7.5 - Adjacent slice DW MR image 
with stroke affected area visible as white.

The MRI image slices in Figures 7.5 and 7.6 are of the same stroke patient but of the 

adjacent cross-section. The modalities are DWI, shown in Figure 7.5, and T2-Weighted 

shown in Figure 7.6, of the adjacent cross-section. The DWI image, shown in Figure 

7.5, shows the area in the brain which is affected by the stroke in white, marked by an 

arrow.

Figure 7.7 shows forty different regions segmented in the image by HCS during an 

intermediate stage of the segmentation. In Figure 7.7 the larger size clusters are shown 

coloured in Blue, Yellow and Green. Other smaller size clusters are given other unique 

colours. The cluster which has got pixels around the probable location of the infarct (as 

seen in the diffusion weighted image shown in Figure 7.5), is coloured in Red and 

White. Using the cluster tagging facility of the GUI the two clusters of pixels around the 

probable location of the infarct were isolated. Figure 7.8 shows the pixels belonging to 

the isolated regions segmented during an intermediate stage of the segmentation.

Comparing these regions with the DWI shown in Figure 7.5, it can be seen that the 

pixels belonging to the isolated regions correlate reasonably well with the stroke 

affected area visible as white in the DWI image.
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Figure 7.7 - Dissimilar regions highlighted 
by HCS at an intermediate stage.

Figure 7.8 - Pixels belonging to two of the 
dissimilar regions highlighted by HCS at 

an intermediate stage.

7.4 Identifying Stroke Affected Area in CT Images During Hyperacute 
Stage

Given the results obtained by processing the MRI images, the neuroradiologist was 

encouraged to try HCS program on CT images generated during hyperacute stage. His 

observation and suggestions are reproduced below :

“CT is the primary imaging modality for the imaging o f hyperacute stroke. CT scans in 

the hyperacute stage (less than three hours) are mostly normal or show very subtle 

changes. The treatment for strokes needs to be started in the hyperacute stage and 

therefore any process that can help identify a lesion would be very useful.

Going by the results so far on the T2, I  would suggest running the programme on an 

example o f CT scan o f a hyperacute stroke. The examples I  have sent show no 

detectable abnormality. ”

Since HCS produce a hierarchy of results it was presumed that HCS would most likely 

pick up the subtle changes in the signal during hyperacutes stage. Hence it was decided 

to apply HCS on CT images attained during hyperacute stage.
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7.4.1 C T  P erfus ion  S tudy

While MRIs are considered the reference standard for post stroke analysis, they are 

rarely performed and generally impractical because they take around 30 minutes to 

perform, they require a stroke patient to be still to capture clean images (the patient may 

be moving or thrashing), they require doctors to check for metallic objects in the 

patients body (which may be impossible if no family members are present) and the MRI 

units themselves are often not adequately staffed or not located near the emergency 

room.

CT perfusion offers distinct advantages because most hospital emergency rooms use 

them frequently for other purposes, they take one to two minutes to scan (versus 30 

minutes for MRI), and provide clear images even if a patient cannot lie perfectly still. 

Most hospitals need only to buy software (at a relatively inexpensive cost) to upgrade 

their systems and institute training programs.

Under the National Instituted of Health (NIH) stroke guidelines, hospitals typically 

administer Recombinant Tissue Plasminogen Activator (rtPA) (a clot-busting drug) to 

patients within a three-hour window of stroke onset. After six hours, it's generally 

considered too risky to administer even interarterial clot busting medicines, due to the 

risk of a potentially deadly haemorrhage.

CT perfusion allows radiologists to determine which portions of a stroke patient's brain 

are dead, and which portions are dying but capable of being salvaged. Once a ratio of 

dead to dying brain is calculated, doctors can determine the best course of treatment. 

Only those patients whose brains are damaged but still alive will benefit from that 

treatment of acute revascularization of a blocked blood vessel [Kaste, 2004].

7.4.2 Image Data

The images were CT Perfusion images. The images were considered to be noisy. The 

images were of four cross-sectional slices having stroke lesion or infarct. For each of the 

four cross-sectional slices 43 images were taken, at regular time interval (maybe 5 

Seconds interval) after a contrast had been injected. So in total there were 4x43 = 172 

images. In each of the 4 sets of 43 Images the first few images (say 1 to 6 of the 43)
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would not have any contrast effect the last set of images (say 37 to 43 of the 43) would 

have maximum contrast effect. The effect of the stroke would be highlighted in those 

images where the contrast would have taken effect.

Figure 7.9 shows one of the first few images, before the contrast had taken effect, of one 

of the four cross-sectional image. Figure 7.10 shows one of the last few images, after 

the contrast had taken effect, of the same cross-sectional slice. In Figure 7.10 the arrow 

head points at the suspected area. Figure 7.11 shows the colour coded image after the 

contrast had taken effect.

Figure 7.9 - One of the cross-sectional 
slices before contrast

A

Figure 7.10 - Same cross-sectional slice 
after contrast

7.4.3 Objective

The objective of the study was for each of the 4 sets of the 43 images decide the size 

and location of the ROI by looking at the last images (say 37 to 43 of the 43) where the 

infarct is clearly visible. Then process the first few images (say 1 to 6 of the 43) within 

the ROI and find out whether HCS is able to highlight the infarct correlating with the 

location of infarct seen on the images where contrast had taken effect.
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Referring to the images shown in Figures 7.9-7.10 the image shown in Figure 7.9 should 

be processed within the ROI to find out whether the HCS could highlight the suspected 

area correlating with the location of the suspected area in Figure 7.10 (pointed by the 

arrow head).

Figure 7.11 - Colour coded Perfusion 
Image

7.4.4 Highlighting Stroke Affected Area in CT Images During 
Hyperacute Stage

All image data, before being processed by the time consuming HCS process, was 

inspected using equal-probability quantizing [Haralick, 1973] (see Section 5.3.1.1 for 

details) process to find out whether there was enough discernible information for HCS 

to work. There had been an earlier study where the authors had shown that in

nonenhanced CT of the head, detection of ischemic brain parenchyma is facilitated by

soft-copy review with variable window width and centre level settings to accentuate the

contrast between normal and oedematous tissue [Lev, 1999].

The visual inspection of the image data using equal-probability quantizing was done 

using a custom built GUI. The GUI, shown in Figure 5.34, was developed to quantise
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and view images for different window settings (see Section 5.3.1.2 for details). For 

example Figure 5.36 shows the T2 weighted MRI image data seen normally and Figure 

5.37 shows the same image displayed after being quantised using equal-probability 

quantizing process. In Figure 5.37 one can visualise the suspected area (pointed by 

green arrow head) much more clearly when compared to Figure 5.36. Thus on 

inspecting Figure 5.37 one can come to the conclusion that there is enough discerning 

information for HCS to highlight the suspected area. This came true at the end of HCS 

processing since it successfully highlighted the suspected area as shown in Figure 5.39.

By analysing the image shown in Figure 7.9, using equal-probability quantising process 

GUI it was found that there was not enough discerning information for HCS to highlight 

the suspected area.

The reason for the standard CT image not being able to show any change in the 

hyperacute stage could be explained as follows. Conventional CT and MRI (T1 and T2 

weighted) images are focussed on capturing the structural changes in the brain. For 

example conventional (spin-echo) MRI (T1 and T2 weighted) depends on an increase in 

tissue water content within the ischemic brain parenchyma to visualize the infarct while 

MRI diffusion and CT perfusion studies evaluate the physiological change to tissues 

related to metabolism. Using CT perfusion study one can obtain information about 

tissue level parenchymal brain perfusion. Since physiological changes occur at relatively 

long time before structural changes take into effect, conventional CT images may not 

show any difference during hyperaccute stage.

The appeal of MRI methods over CT is due to the following reason. Standard CT 

examination of acute ischemic stroke will typically appear normal in the first hours after 

stroke onset. The methods of magnetic resonance angiography, perfusion weighted 

imaging (PWI), and diffusion weighted imaging (DWI) provide information on arterial 

patency, tissue blood flow, and parenchymal injury from the earliest times after onset of 

ischemic symptoms in a brief, non-invasive examination. DWI detects tissue injury 

within minutes of ischemia, has high sensitivity and specificity for the diagnosis of 

ischemic stroke, and permits measurement of lesion volumes that correlate with clinical 

severity and prognosis. If untreated, the lesion seen with DWI typically enlarges over 

hours to days and will progress to infarction. PWI depicts focal cerebral ischemia. The 

volume of ischemic tissue seen with PWI, in the majority of cases, is greater than the
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region of parenchymal injury evident on DWI, and this diffusion-perfiision mismatch is 

considered to be a marker of the ischemic penumbra, the tissue at greatest risk for 

infarct progression [Warach, 2001]. This discussion confirms that CT images, before 

contrast taking into effect, at hyperacute stage do not have any signal change.

HCS can highlight the dissimilarity precisely even if it is subtle. But in the absence of 

any change in the signal there will be no basis for HCS to differentiate the diseased area 

from the healthy part of the brain. Therefore the study has concluded that HCS cannot 

be used to highlight stroke affected area in a CT image, captured during hyperacute 

stage.

CT-Bmp im age S u s p e c te d  A rea  Marked

Figure 7.12 - A CT image section

Figure 7.13 - Image showing the 
suspected area, outlined in white and the 

ROI rectangle drawn in black.

7.5 Highlighting Infarcts in CT Images

Figure 7.12 shows the CT image data of a patient affected by stroke. Figure 7.13 shows 

the suspected area in the image outlined by the expert in white. A ROI was chosen to 

enclose the suspected area as shown in Figure 7.13. The image was processed by the 

HCS process within the ROI.
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Figure 7.14 - Intermediate segmentation Figure 7.15 - Intermediate segmentation 
regions, within the ROI during HCS regions' boundary outlined,

process.

Figure 7.14 shows the regions found by the HCS process during the intermediate stage. 

Figure 7.15 shows the boundaries between the regions found during the intermediate 

stage. From Figures 7.14 and 7.15 it could be seen that the major classes in the original 

image, viz. White Matter (Green), Gray Matter (Blue) and infarct (Red), had been 

segmented. The area affected by the disease had been clearly demarcated from the rest 

of the healthy tissue, by the HCS process.

7.5.1 Expert Opinion

When the expert was presented with the results shown in Figures 7.14 and 7.15, he 

marked the part of the image which had been misclassified as infarct by the HCS 

process. Figures 7.16 and 7.17 show the misclassification (top of the left ventricle horn) 

circled in white by the expert.

Although the misclassification was quantitatively minor and had occurred at an area 

which is anatomically quite different from the part affected by the disease, it was 

decided to find out whether the misclassification could be rectified.
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Figure 7.16 - Intermediate segmentation 
regions, with the misclassified part 

outlined in white by the expert.

Figure 7.17 - Intermediate segmentation 
regions' boundary, with the misclassified 

part circled in white by the expert.

7.5.2 Subsequent Processing

It was hypothesised that if more of the ventricle part was included within the ROI, HCS 

might be able to rectify the misclassification. Hence the CT image shown in Figure 7.12 

was processed with a slightly bigger ROI which included larger part of the top tip of the 

left ventricle horn as shown in Figure 7.18.

The HCS result is shown in Figures 7.19 and 7.20. Figure 7.19 shows the regions found 

by the HCS process during the intermediate stage. Figure 7.20 shows the boundaries 

between the regions found during the intermediate stage. From Figures 7.19 and 7.20 it 

could be seen that the major classes in the original image had been segmented.

These figures also shows that the HCS process had classified part of the Ventricle as part 

of the infarct (coloured in Red). When presented with such a result, it is left for the 

human expert to reject those pixels that are not consistent with his expert knowledge.
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Figure 7.18 - The CT image section with 
a slightly larger ROI marked on it.

Figure 7.19 - Intermediate segmentation Figure 7.20 - Intermediate segmentation 
regions, for a slightly bigger ROI regions' boundary, for a slightly bigger

including a bit of the top of the Ventricle. ROI including a bit of the top of the
Ventricle.
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7.5.3 F u r th e r  C T  Im age Processing

Three more CT image sections of the brain of three different patients were processed. 

The ROI, within which the processing was performed, was chosen based on the 

markings by the expert. In the following sections 7.5.3.1 -7.5.3.3, the results obtained 

in processing the three different CT sections are discussed.

Figure 7.21 - CT image of a section of the 
brain showing the infarct affected area 

marked in white by the expert.

Figure 7.22 - The location and the size of 
the ROI enclosing the infarct affected 

area.

7.5.3.1 Infarcts in the Right Side of the Pons

Figure 7.21 shows the infarct affected area of the brain outlined in white by the expert. 

The image was processed within a ROI which enclosed the part of the image affected by 

the stroke. Figure 7.22 shows the location and size of the ROI chosen.

Figure 7.23 shows the four major clusters segmented within the ROI by the HCS 

process during an intermediate stage. Figure 7.24 shows the borders of the clusters. The 

cluster which includes the pixels from the area outlined by the expert is coloured red 

and the rest of the clusters are given other unique colours.
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It can be seen from Figures 7.23 and 7.24 the red coloured cluster includes other pixels 

which were not within the expert outlined area. From the boundary outlined image 

shown in Figure 7.24 it could be seen that the area of the image within the red boundary 

has got visually very similar pixels.

Figure 7.23 - The regions during an Figure 7.24 - Borders of the regions
intermediate stage of the HCS process. during an intermediate stage of the HCS

process.

7.5.3.1.1 Expert Opinion and Discussion

When the segmentation, shown in the Figures 7.23 and 7.24, was given to the expert for 

their evaluation. He responded that the segmentation had misclassified areas not 

belonging to infarct as belonging to infarct. This is indicated in Figure 7.25 where the 

expert has marked the true area of the infarct. Figure 7.26 shows the boundaries of the 

regions segmented by the HCS process superimposed on the image subsequently 

marked by the expert. The boundary of the cluster, which includes the pixels from the 

area outlined by the expert, is coloured red ant the rest of the clusters boundaries are 

given other unique colours.
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Figure 7.25 - Infarct outlined by the expert Figure 7.26 - Borders of the regions 
after evaluating the HCS process results. during an intermediate stage of the HCS

process superimposed on the expert 
outlined image.

On inspecting Figure 7.26, the following two observations were made :

•  HCS process did aid the expert in delineating the boundary of the infarct much 

more precisely. This could be inferred when one compares the earlier outline of 

the infarct by the expert, shown in Figure 7.21, with the one (see Figure 7.25) 

outlined by the expert after inspecting the HCS process segmented regions.

•  When one compares the actual pixel values of some of the pixel locations within 

the infarct and the one outside the infarct, but identified as belonging to the 

infarct by the HCS process, it could be seen that they have exactly the same 

values.

Table 7.1 lists the some of the pixel locations and their values. In Figure 7.27 the 

pixel locations listed in Table 7.1 are marked where correctly classified pixel 

locations are in Green and misclassified pixel locations are in Yellow.
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Table 7.1
Coordinates of three of the pixels located inside and outside the infarct and their values.

(See Figure 7.30)

Pixel Location Pixel Coordinates Pixel value

Within the infarct 

(Marked in Green)

250, 284 1033

249, 278 1036

251,278 1038

Outside the infarct 

(Marked in Yellow)

296, 297 1033

289,313 1036

283,268 1038

Figure 7.27 - Three of the pixel locations which were correctly classified, by the HCS 
process (marked in green) and three of the pixel locations which were misclassified 

(marked in yellow). Refer Table 7.1 for details.

7.5.3.2 Sub Acute Infarcts of Lentiform Nucleus

Figure 7.28 shows the locations of the infarcts on two different locations in the cross- 

section. Figure 7.29 shows the ROI chosen to enclose the two areas affected by the 

infarcts.

One of the main features of the HCS process is the evaluation of all the possible 

combinations of the regions, currently in the image, to find and merge the most similar 

regions (see Sections 4.3.4 and 4.4.1). Comparing all the possible combinations of 

regions, in an image, is CPU process intensive. However this was necessary in the 

medical image domain since similar tissue types could occur across the image 

interspersed by different tissue types. The image shown in Figure 7.28 demonstrates the 

need for comparing spatially disjoint regions since the diseased area had occurred in 

two different locations which were spatially disjoint.
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Figure 7.28 - CT image of a section of the 
brain showing the infarct affected areas 

marked in white by the expert.

Figure 7.29 - The location and the size of 
the ROI enclosing the infarct affected 

areas.

Figure 7.30 - Regions identified by the 
HCS process during an intermediate stage

Figure 7.31 - The boundaries of the 
regions identified by the HCS.
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Figure 7.30 shows four clusters segmented within the ROI by the HCS process during 

an intermediate stage. Figure 7.31 shows the borders of the four clusters superimposed 

on top of the infarct border outlined by the expert. From these it can be concluded that 

the areas affected by the infarct had been isolated by the HCS process into separate 

clusters and the two spatially disjoint areas, affected by the infarct were clustered as 

belonging to the same cluster.

7.5.3.3 Sub Acute Infarct in the Left Internal Capsule

Figure 7.32 shows the infarct affected area of the brain outlined in white by the expert. 

The image was processed within a ROI which enclosed the part of the image affected by 

the stroke. Figure 7.33 shows the location and size of the ROI chosen for the HCS 

processing.

Figure 7.32 - CT image of a section of the 
brain showing the infarct affected areas 

marked in white by the expert.

Figure 7.33 - The location and the size of 
the ROI enclosing the infarct.

Figure 7.34 shows the clusters segmented within the ROI by the HCS process during an 

intermediate stage. Figure 7.35 shows the borders of the five large clusters found. The 

cluster which includes pixels from the infarct affected area is coloured in Red; the rest 

of the clusters are given other unique colours. Figures 7.34 and 7.35 show that the 

infarct affected area had been segmented into a separate region by the HCS process.
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There could be some misclassification but it would be rejected by the experts given the 

anatomical location of the misclassification. Since the expert had given only a rough 

estimate of the boundary of the infarct no exact validation of the segmentation process 

could possibly be done.

Figure 7.34 - Regions identified by the Figure 7.35 - The boundaries of the
HCS process during an intermediate stage. regions identified by the HCS.

7.5.4 Conclusion about the HCS Processing of CT Images

Because of issues such as spatial resolution, poor contrast, ill-defined boundaries, noise, 

or acquisition artefacts, segmentation is a difficult task and it is illusory to believe that it 

can be achieved by using gray-level information alone. A priori knowledge has to be 

used in the process, and so-called low-level processing algorithms have to be 

incorporated with higher level techniques such as deformable active models or atlas- 

based methods [Sonka and Fitzpatrick, 2000],

Given an image data, the HCS process will give consistently a set of segmentation 

results. HCS does not give a diagnosis. It is left for the human expert to make use of the 

segmentation results attained through HCS and incorporating his own expert knowledge 

to arrive upon a diagnosis. Thus the developed HCS process acts as a Computer Aided 

Detection tool.
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Figure 7.36 - An Ultrasound image 
section.

Figure 7.37 - Diseased area outlined in 
white and the ROI marked in black.

7.6 Highlighting Diseased Area in Ultrasound Images

Figure 7.36 shows the an Ultrasound image section of the Uterus. And image 7.37 

shows the diseased area outlined in white by the sonologist. As shown in Figure 7.37 a 

ROI was marked to enclose the diseased area and the HCS was done within the ROI.

Figure 7.38 shows the clusters identified by the HCS process during an intermediate 

stage. There are three clusters coloured as Green, Blue and Yellow as shown in Figure 

7.38. The cluster coloured as Blue contains the pixels from the area outlined as diseased 

by the sonologist. Figure 7.39 shows the boundaries of the three clusters and the 

diseased area outline coloured in Red.
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Figure 7.38 - Regions identified by the Figure 7.39 -  Boundaries of the regions 
HCS process during an intermediate stage. segmented by the HCS process during an

intermediate stage.

7.6.1 Expert Opinion and Discussion

The segmentation results, shown in Figures 7.38 and 7.39 were sent to the Sonologist 

for critical comments, this is reproduced below :

•  Looking at the original image only an expert sonologist would be able to pick up 

this abnormality.

•  The program had delineated the diseased area very clearly as a separate region 

coloured Blue. As for the pixels outside the diseased area coloured Blue it could 

be differentiated by the physician as non diseased area as they were in the border 

of the Uterus. Therefore the program will be useful to differentiate diseased area 

in the case of border line pathology, where the sonologist will not be very sure of 

the diseased area.

•  The region marked as Yellow within the diseased area gave the additional 

information that that area has got the core of the disease, and it was spreading 

out from that location.
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The image data processed by the HCS programme was eight bit data. The original data 

captured by the Ultrasound machine was twelve bit data. The machine had the optional 

facility to store the original twelve bit data in DICOM format. But since that facility was 

optional the institute which provided the Ultrasound data did not have it in their 

machine. If the HCS process was provided with the original twelve bit data it might 

have segmented the diseased area much more precisely.

7.7 Summary

In this chapter the suitability of the HCS process to highlight dissimilar regions in 

medical images was investigated. The medical image data that was processed were of 

MRI, CT and Ultrasound modalities. To demonstrate the unsupervised capability of the 

HCS process the images of the different modalities were processed with the same set of 

parameters and with the same set of procedural steps (see Section 7.2 for details).

Summarising the results :

•  HCS was successful in highlighting subtle changes in MRI T2 weighted images 

caused by stroke. The location of the abnormality highlighted by the HCS was 

confirmed by the diffusion weighted MRI scans (see Section 7.3 for details).

•  The current study came to the conclusion that CT images, before contrast taking 

into effect, at hyperacute stage do not have any signal change to enable the HCS 

process to be able to isolate the stroke affected area from the healthy area (see 

Section 7.4 for details).

•  The HCS ability to highlight infarcts in CT images was found to be mixed. If the 

infarct was well defined, the HCS was able to highlight it with precise border 

delineation. If the infarct was diffused, then HCS segmentation labeled some 

part of the image outside the infarct affected area as diseased (see Section 7.5 for 

details).

•  The HCS ability to highlight diseased area in the Ultrasound images was quite 

good, even though it processed only eight bit data instead of the original twelve 

bit data.
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Chapter 8
Overall Discussion, Conclusion and Further Work

8.1 Challenges and Objectives

Tissue characterization is a signal processing operation of extracting and presenting 

diagnostic information obtained from medical image data. Tissue characterization is 

essentially an inverse problem, where investigators ask what can be learned about a 

patient's state of health by analysing the relevant image data [Sonka and Fitzpatrick, 

2000].

Even after years of research, tissue characterization methods are still not part of clinical 

practice. There are many reasons for this, but the primary ones are [Sonka and 

Fitzpatrick, 2000] :

•  Tissue classifiers must be designed for specific diagnosis. This requires a 

multidisciplinary development team. Often, the initiative for this research is led 

by engineers and physicists who do not have the resources to discover and 

compensate for the sources of normal biological variability that can reduce 

diagnostic performance.

•  Lack of accurate models of image signals.

To address the above issues the objectives of the current study were to :

•  design a segmentation process which will be unsupervised and be completely 

data driven.

This objective ensures that the developed process can be applied to any medical 

image modality without any prior information or training with equal success.

•  design a segmentation process which will automatically generate a hierarchy of 

segmentation results.

Satisfying this objective will ensure that the user is provided with a hierarchy of 

results to choose from. In situations where a one-off solution may not be 

successful, the user is given the option to choose the best possible solution from 

the hierarchy of results.
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To address the problems outlined above the current study took the following approach :

•  to develop methods which although they do not provide a diagnosis will 

augment the diagnostic present. This is achieved through highlighting the 

dissimilarity within an otherwise homogeneous part of the image. Dissimilarity, 

within an otherwise homogeneous part of the image, is usually related to the 

tissue abnormality in a medical image.

•  to develop methods which do not use any prior information or model to detect 

the dissimilar regions within an image. Rather the dissimilar regions within an 

image are detected based on the information extracted from the current image 

data.

To develop the above methods and to provide a hierarchy of results, the current study 

implemented a agglomerative type of hierarchical clustering process [Legendre and 

Legendre, 2003]. Agglomerative hierarchical clustering is also known as the bottom-up 

method. The bottom-up method described in the literature usually suffers from a 

distorting phenomena, in which the cluster structures depend on the order in which the 

regions are considered for merging. This is because the most similar pairs of regions are 

found by comparing only those regions adjacent to one another. The process developed 

in this study avoided this problem by comparing all pairs of regions currently in the 

image to find the most similar regions for merging. This ensured that the designed 

process always yielded the same segmentation for any given dissimilarity threshold. A 

hierarchy of segmentation results was obtained by adopting a dynamic threshold for the 

allowable dissimilarity measure between merging regions. Comparing all the possible 

combinations of regions, in an image, is CPU process intensive. However, this 

comparison was necessary since similar tissue types could occur across the medical 

images interspersed by different tissue types.

Comparing all the regions, within an image, is a combinatorial problem which can 

easily overwhelm the computing power currently available. In this study a number of 

methods were devised to optimise this process. One of the main optimisation techniques 

implemented was to use concurrent programming techniques. Since the calculation of 

the dissimilarity between the regions are independent of each other it may be done in 

parallel.
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8.2 Main Findings and Contributions of this Thesis

The main outcomes of the work are :

•  Design of a segmentation process which is unsupervised and is completely data 

driven.

This ensures that the segmentation process can be applied to any medical image 

modality, with equal success, without any prior information about the image data 

and without any need to train the segmentation process with the relevant image 

data (See Section 1.3). This was verified by the successful processing of images 

of different modalities with the same set of parameters and with the same set of 

procedural steps.

•  Design of a segmentation process which can automatically generate a hierarchy 

of segmentation results.

•  Development of a process by which the merging (i.e. clustering) of the most 

similar regions does not depend on the order in which the regions are evaluated 

for merging.

•  Implementation of a merging process which is independent of the type of 

similarity measure used to compare the different regions in the image.

•  Evaluation of the merging process to demonstrate the merging of spatially 

adjacent or disjoint similar regions.

•  Development of a merging process which yields crisp border delineation 

between the regions.

•  Implementation of a graphical user interface (GUI) to display the hierarchy of 

segmentation results based on the merge tree produced by the hierarchical 

clustering based segmentation.

8.3 Discussion of the Results

The results obtained by the Hierarchical Clustering based Segmentation (HCS) system, 

developed in this study, were compared with the results obtained by the Hierarchical 

image segmentation (HSEG) developed by NASA [Tilton NASA Case No. GSC 14,328] 

[Tilton, 2003].

1 5 3



HCS was compared with HSEG for the following reasons :

•  HSEG (see Section 3.3.3) is one of the segmentation methods which is similar to 

HCS (see Section 3.4.1)

•  One of the application domain of HSEG is to segment medical images and it has 

been licensed to Barton Medical Imaging to be used in its medical image 

analysis software product MED-SEG™ [Barton Medical Imaging],

Comparing the results of the HSEG with that of the results obtained by HCS (see 

Section 6.5 for details) it was found that the border pixel reclassification step 

implemented by the HCS process was the main differing step with that of the HSEG. It 

was also found that the HCS process with its border pixel reclassification step gave far 

better segmentation result when compared with HSEG.

8.4 Main Contributions of the Study

Dissimilarities in medical image data, within the same tissue type, might be due to 

pathological conditions. To highlight the gross or subtle dissimilarities and thus enhance 

the diagnostic power of the images, the following methods and processes were 

implemented in this study :

•  Equal-probability quantizing [Haralick et al., 1973] method to optimally display 

the wide range of medical image data values using only the 256 shades of gray 

available for display.

•  Hierarchical clustering segmentation (HCS) process, developed in this study, 

that would automatically and consistently generate a hierarchy of segmentation 

results.

8.5 Assessment of the Performance of HCS in a Clinical Application

This current study is the only study, to the author's knowledge, that has been attempted 

to evaluate the possibility of identifying the stroke affected area in a T2 weighted MR 

image during the hyperacute stage (less than 24hrs) correlated with a Diffusion 

weighted MR image finding (see Section 7.3.2 for details).

The radiologist's assessment was that the HCS process was able to highlight the 

abnormal area correctly on the T2 weighted MR scan (confirmed by the Diffusion
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weighted MR scans). He also observed that most physicians and possibility 

neuroradiologists could miss the signal changes on the T2 weighted scan (See Appendix 

4 for the neuroradiologists assessment).

8.6 Possible application domain

The two main contributions of this study were a hierarchical clustering based 

segmentation process to highlight dissimilarities in medical images and the 

implementation of a GUI to optimally display medical images using equal-probability 

quantizing method.

8.6.1 Probable Usage of the HCS Process

The equal-probability method along with the GUI designed and implemented makes the 

hard to visualise diseased area more conspicuous. But to precisely outline the boundary 

of the diseased area the process which will be much more useful is the hierarchical 

clustering based segmentation (HCS) process developed. Precise estimation of regions 

of dissimilarity plays a crucial role in disease management for example in the treatment 

of stroke.

In their landmark study, Wintermark and co-workers were able to show that perfusion 

CT could with reasonable accuracy predict the final cerebral infarct size in acute stroke 

patients at the time of emergency evaluation [Kaste, 2004],

Roccatagliata et a l [2003] carried out a study to find if a quick, visual, freehand 

estimate of the size of ischemic lesions on CT cerebral blood volume (CBV) and 

cerebral blood flow (CBF) maps (in CT perfusion images) is sufficient to obviate the 

need for a more careful, thresholding approach to delineating abnormal regions. 

Specifically, they compared inter-observer variability in the detection of hypo-perfused 

CBF and CBV lesion areas, between using a "quick and dirty" approach, versus a more 

careful, methodical approach. They concluded that segmentation of ischemic regions on 

CBF maps by gross visual inspection is significantly more reliable than segmentation of 

CBV maps. Because CBV maps have inherently worse signal-to-noise ratio and infarct 

conspicuity than CBF maps, estimating the size of the "infarct core" may be facilitated 

by a more methodical thresholding approach to segmentation [Roccatagliata et al., 

2003].
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It will be useful to evaluate the HCS process under clinical condition in segmenting and 

estimating the penumbra size and infarct size to evaluate potential recuperation ratio 

which may revolutionize the way stroke is treated [Kaste, 2004].

8.6.2 Probable Usage of the GUI to Optimally Display Medical Images

Lev et al. [1999] conducted a study to evaluate the advantage of viewing electronic 

copies of the CT image using variable window settings. They arrived upon the 

conclusion that in non-enhanced CT of the head, detection of ischemic brain 

parenchyma is facilitated by soft-copy (electronic copy) review with variable window 

width and centre level settings to accentuate the contrast between normal and edematous 

tissue.

The equal-probability method, along with the GUI, implemented in this study (see 

Section 5.3.1.2 for details), will facilitate detection of hard to visualise infarct condition. 

If this facility is tested in a clinical environment it could equal, if not better, that the 

study by Lev et al. [1999] observed in, i.e. a significant improvement in the diagnostic 

accuracy.

8.7 Further Work

Two methods have been implemented in this study viz. equal-probability quantising 

method, to optimally display 12 bit medical image data and the hierarchical clustering 

based segmentation process to highlight dissimilar regions in the medical images. Of 

these two methods the equal-probability quantising method, performs in real-time in the 

currently available hardware environment. But the HCS process took almost a month to 

produce a hierarchy of clusters for a region of interest size 14 0x1 40  . The current 

hardware configuration, which can handle a maximum ROI size of 14 0x1 40  , has 

a dual processor of each 1.6 MHz. clock speed and has 16 Gigabyte of main memory. 

Methods which yields a hierarchy of segmentation results are processing intensive. For 

example the software product MED-SEG™ [Barton Medical Imaging], which is based 

on NASA's RHSEG, uses a 60 node cluster to process images within a reasonable 

amount of time. Still RHSEG is suboptimal when compared to HCS developed in this 

study (see Section 6.5 for details).
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The massive processing power required by HCS will be very soon available on a 

desktop environment. During September 2006 Intel announced that it has produced its 

first teraflop-on-a-chip. It is a eighty-core processor and each core, in Intel's prototype, 

clocks at 3.16GHz and communicates with each other through SRAM chips. Intel 

claims that this technology will be available within 5 years. To put this into perspective, 

the fastest public supercomputer in 1996 was the ASCI Red which featured over 4,500 

compute nodes using 200MHz Pentium Pro processors and was the first computer to 

break the 1 teraflops barrier.

The current implementation of the HCS process was designed to run on a generic multi­

processor environment. To utilise hardware specific facilities, like multi-core central 

processing unit, (CPU) the program need to be optimised to run on specific hardware 

environment.

Medical image data like CT and MRI inherently contain three dimensional information. 

The underlying three dimensional details of the anatomy can be easily recreated by 

stacking the two dimensional slices. One of the major challenges faced by the human 

interpretor of the medical images is the difficulty they face to visualise conditions which 

spans between slices. HCS can be very easily extended to process data in a three 

dimensional cube. This way HCS can fully utilise all the information currently available 

in the medical image data.
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A ppe nd ix  1

Hydrogen exists in many molecules in the body. Water (consisting of two hydrogen 

atoms and one oxygen) comprises up to 70% of body weight. Hydrogen is also present 

in fat and most other tissues in the body. The varying molecular structures and the 

amount of hydrogen in various tissues effect how the protons behave in the external 

field. As an example, because of the total amount of hydrogen in water, it has one of the 

strongest net magnetization vectors relative to other tissues. Other structures and tissues 

within the body have less hydrogen concentration and become magnetized to a lesser 

extent. In other words, their net magnetization is less intense. The amount of mobile 

hydrogen protons that a given tissue possesses, relative to water (specifically CSF), is 

referred to as its spin density (proton density). This is the basis with which we begin to 

produce images using Magnetic Resonance. The hydrogen nucleus contains one proton 

and possesses a significant magnetic moment. In addition, hydrogen is very abundant in 

the human body. By placing the patient in a large external magnetic field, we magnetize 

the tissue (hydrogen), preparing it for the MR imaging process. [Faulkner]

The MRI system's most prominent component is a large magnet, and along with it are 

two sets of coils, the so-called gradient coils and radio frequency (RF) coils. An MRI 

image is a map of RF intensities emitted by tissues. This can be briefly explained as 

follows: the gradient coil is used to inject an out-of-phase pulse to perturb the aligned 

atoms away from the main magnetic field. As the atoms realign with the main field, they 

transmit energy back, which is detected by the RF coils which in turn generates an MRI 

image. [Suri et a l, 2002]

T1 is the longitudinal relaxation time. It indicates the time required for a substance to 

become magnetized after first being placed in a magnetic field or, alternatively, the time 

required to regain longitudinal magnetization following an RF pulse. T 1 is determined 

by thermal interactions between the resonating protons and other protons and other 

magnetic nuclei in the magnetic environment or "lattice". These interactions allow the 

energy absorbed by the protons during resonance to be dispersed to other nuclei in the 

lattice.

All molecules have natural motions due to vibration, rotation, and translation. Smaller 

molecules like water generally move more rapidly, thus they have higher natural
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frequencies. Larger molecules like proteins move more slowly. When water is held in 

hydration layers around a protein by hydrophilic side groups, its rapid motion slows 

considerably.

The T1 relaxation time reflects the relationship between the frequency of these 

molecular motions and the resonance (Larmor) frequency -  which depends on the main 

magnetic field of the MR scanner. When the two are similar, T1 is short and recovery of 

magnetization is rapid; when they are different, T1 is long. The water molecule is small 

and moves too rapidly for efficient T1 relaxation, whereas large proteins move too 

slowly. Both have natural frequencies significantly different from the Larmor frequency 

and thus have long T1 relaxation times. Cholesterol, a medium-sized molecule, has 

natural frequencies close to those used for MR imaging and has a short T1 when it is in 

the liquid state. Thus the liquid cholesterol in craniopharyngiomas appears bright on Tl- 

weighted images.

Water in the bulk phase (for example, CSF) has a long T1 relaxation time because the 

frequency of its natural motions is much higher than the range of Larmor frequencies 

used clinically. However, when this same CSF is forced out into the periventricular 

white matter (as interstitial edema due to ventricular obstruction) its T1 relaxation time 

is much shorter. The T 1-shortening reflects the fact that water is now in hydration layers 

around the myelin protein rather than in the bulk phase. Proteinaceous solutions (such as 

abscesses and necrotic tumors) have a higher percentage of water in the hydration layer 

environment and thus have a shorter T1 when compared to "pure" aqueous solutions like 

CSF.

Subacute hemorrhage has a shorter T1 than brain tissue. This reflects the paramagnetic 

characteristics of the iron in methemoglobin. T1-shortening is produced by a dipole- 

dipole interaction between unpaired electrons on the paramagnetic iron and water 

protons in the solution. The short T1 allows subacute hemorrhage to recover 

longitudinal magnetization very quickly relative to brain. Thus, subacute hemorrhage 

will generally appear brighter than brain. The same dipole-dipole mechanism accounts 

for T1-shortening that is seen with the MRI contrast agent, gadolinium.

T2 is the "transverse" relaxation time. It is a measure of how long transverse 

magnetization would last in a perfectly uniform external magnetic field. Alternatively, it
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is a measure of how long the resonating protons remain coherent or precess (rotate) "in 

phase" following a 90° RF pulse. T2 decay is due to magnetic interactions that occur 

between spinning protons. Unlike T1 interactions, T2 interactions do not involve a 

transfer of energy but only a change in phase, which leads to a loss of coherence.

T2 relaxation depends on the presence of static internal fields in the substance. These 

are generally due to protons on larger molecules. These stationary or slowly fluctuating 

magnetic fields create local regions of increased or decreased magnetic fields, 

depending on whether the protons align with or against the main magnetic field (as 

discussed in Fundamentals of MRI -  Part I). Local field non-uniformities cause the 

protons to precess (rotate) at slightly different frequencies. Thus following the 90° 

pulse, the protons lose coherence and transverse magnetization is lost. This results in 

both T2* and T2 relaxation.

When paramagnetic substances are compartmentalized, they cause rapid loss of 

coherence and have a short T2* and T2. For example the magnetization induced inside a 

deoxygenated red blood cell is greater than in the plasma outside the red cell because 

the intracellular deoxyhemoglobin is paramagnetic. This compartmentalization of 

substances with different degrees of induced magnetization leads to magnetic non­

uniformity with shortened T2*, causing the free induction decay (FID) to decay more 

rapidly. Since gradient echo images are essentially rephased FID images, this also leads 

to signal loss on gradient echo images. Thus acute and early subacute hemorrhage 

(containing deoxy and intracellular methemoglobin, respectively) appear dark on T2- 

weighted gradient echo images. The different magnetic field inside and outside red cells 

results in rapid dephasing of water protons diffusing across the red cell membrane in an 

acute hematoma with secondary T2-shortening and loss of signal.

As the natural motional frequency of the protons increases, T2 relaxation becomes less 

and less efficient and T2 prolongs. Rapidly fluctuating motions (such as in liquids) 

average out so there are no significant internal fields and there is a more uniform 

internal magnetic environment. The hydration-layer water in brain edema has a shorter 

T1 than bulk phase water like CSF, yet the motion of the protons in brain edema is not 

so slow that T2 relaxation is efficient, so T2 remains long. This accounts for the intense 

appearance of the vasogenic edema associated with brain tumors on T2-weighted MR 

images.
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Spin Echo:

An MR pulsing sequence involves acquisition of multiple spin echo signals. For a 256 x 

192 image (pixels in the frequency direction x pixels in the phase direction) with two 

excitations, 384 separate spin echoes are acquired. During the time between 

acquisitions, the longitudinal magnetization recovers or "relaxes" along the z-axis. 

Longitudinal recovery is identical to the process of initial magnetization when the body 

was first placed in the magnet. When the body is in the magnet, the "equilibrium state" 

is that of full magnetization. Therefore, longitudinal relaxation represents the recovery 

of magnetization along the z-axis, which occurs between spin echo acquisitions.

In the first step of a spin echo pulsing sequence, a 90° RF pulse flips the existing 

longitudinal magnetization from the z-axis 90° into the transverse xy-plane. Whenever 

transverse magnetization is present, it rotates at the Larmor frequency and induces an 

oscillating MR signal in a receiver coil (as discussed in Fundamentals of MRI -  Part I). 

The magnitude of the transverse magnetization after the 90° pulse is essentially equal to 

the magnitude of the longitudinal magnetization which had recovered during the interval

between 90° pulses. This interval is called the "repetition time" (TR) and is one of the 

programmable sequence parameters.

In the process of flipping the longitudinal magnetization 90° into the transverse 

orientation, the longitudinal component of magnetization is totally lost and must be 

allowed to recover before another signal can be generated. The amount of longitudinal 

magnetization that is recovered depends on the rate of recovery (Tl) and the time 

allowed for recovery to occur, which is the TR.

The magnitude of the signal detected depends not only on longitudinal recovery 

between repetitions but also on how well the signal persists, or alternatively, on how 

slowly the transverse magnetization decays from its initial maximum value. This decay 

depends on the T2 of the substance. The amount of time allowed for decay to occur (the 

time between the initial 90° RF pulse and the detection of the spin echo) is called the 

echo delay time (TE) and is another programmable sequence parameter.

Mathematically the intensity (I) of the spin echo signal can be approximated:

I = N(H)f(v)( 1 - e-TR/T1)e-TE/T2
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where N(H) is the NMR-visible, mobile proton density and f(v) is an unspecified 

function of flow. This equation indicates that the intensity of the MR signal increases as 

hydrogen density and T2 increase and as T1 decreases. It should also be noted that T1 

and T2 influences are both subject to TR and TE, the programmable sequence 

parameters. Thus, the effect of the T1 and T2 relaxation times of the substance on signal 

intensity is subject to the specific values of TR and TE selected before the image is 

acquired. Only mobile protons, that is, those associated with liquids, return an NMR 

signal. Solids have very short T2s and thus have no significant NMR signal.

When considered in the most simplistic terms, the spin echo is a two-step process. The 

first step (longitudinal recovery) determines the starting intensity for the second step 

(transverse decay). The starting intensity reflects the relationship between T1 and TR 

and is ultimately limited by the proton density. The subsequent decay from this starting 

intensity reflects the relationship between T2 and TE. Consider the differentiation of 

brain tissue and CSF shown in. At TR = 0.5 seconds, the CSF signal starts to decay from 

a markedly decreased initial value. Despite the longer T2 of CSF, the intensity remains 

less than that of brain over the range of echo delay times shown. If the repetition time 

TR is lengthened to 2.0 seconds, the CSF signal starts to decay from a greater initial 

intensity and still decays more slowly than the signal from brain. Thus the two signals 

will become isointense at a TE of approximately 50 msec. With a longer TE, the CSF is 

more intense than brain.

The difference in T1 values between brain parenchyma (shorter Tl) and CSF (longer 

Tl) can be used to enhance contrast between the two. This is important when seeking 

abnormalities at the brain-CSF interface. A short TR time allows a shorter Tl substance 

(such as brain) to recover signal between repetitions to a much greater extent than a 

longer Tl substance (such as CSF). The contrast in short TR/short TE sequences is 

based primarily on differences in Tl and are called "Tl-weighted" images. Note that 

substances with low values of Tl have the highest signal intensity on Tl-weighted 

images.

As the TR is prolonged, all substances eventually recover full longitudinal 

magnetization between repetitions and the pixel intensity becomes dependent only upon 

proton density and is independent of Tl. With short TE’s, the effect of T2 decay is 

minimized and one is left with an image that depends primarily on differences in proton 

density, that is, a "proton density-weighted" image.
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Substances with longer T2 times will generate stronger signals than substances with 

shorter T2 times, if both are acquired at the same TE and if proton density and Tl are 

comparable. When multiple spin echoes are acquired, the signal strength generally 

decreases as TE is lengthened due to increasing T2 decay. Increasing the echo delay 

time (TE) increases the differences in the T2 decay curves between substances, 

increasing the T2-weighting. Images obtained with a sufficiently long TR and TE such 

that the CSF is more intense than brain tissue are regarded as T2-weighted images.

A typical edematous or cystic lesion has a longer Tl and longer T2 than brain. On Tl- 

weighted images, these lesions will appear dark (i.e. will have negative contrast). On 

T2-weighted images they appear bright and will thus have positive contrast. If a short 

TR/long TE sequence is inadvertently chosen, the tendencies towards positive and 

negative lesion contrast will cancel and the lesion may not be detected. In general, the 

strongest signal is detected from those substances with the highest proton densities 

(high water content), shortest Tl times (rapid recovery) and longest T2 times (slowest 

decay). The high signal from short Tl substances, such as liquid cholesterol, fat, 

subacute hemorrhage, and gadolinium enhanced brain tumor is enhanced on short 

TR/short TE images. The high signal from long T2 substances such as mucus, late 

subacute hemorrhage, and CSF is enhanced on long TR/long TE spin echo images. The 

weakest MR signals come from tissues with low proton density, long Tl values (slow 

recovery), short T2 values (rapid decay), and rapidly flowing blood. Air, dense 

calcification, and cortical bone have low mobile hydrogen density. Short T2 substances 

such as acute hemorrhage and early subacute hemorrhage have low signal on long 

TR/long TE images.

To summarize: the spin echo MR signal is greatest when the Tl is short and the T2 and 

proton density are high; it is decreased if the Tl is long and the T2 and proton density 

are low. The differentiation of lesions from normal tissues can be enhanced if one is 

aware of the differences in the relaxation times and selects the TR and TE times 

accordingly [Bradley].

1 6 3



A ppend ix  2

Local-Binary-Pattern-and-Contrast Distribution Feature (LBP-C)

LBP-C Distribution feature had been successfully used to segment textural images by 

Ojala and Pietikainen [1999] The authors had compared the LBP-C Distribution feature 

with other texture measuring features like Grey-Level difference method and Law's 

Texture [Laws, 1980] method and have found that the LBP-C Distribution performs 

comparatively well in discriminating different types of textures [Ojala and Pietikainen, 

1999]. According to the authors, the major advantage of the LBP-C feature is that LBP 

and C are complementary features (derived from the same 3><3 neighbourhood area of a 

image) and using the pair of features, a two-dimensional distribution of the feature 

could be constructed for a given mask size (moving the 3x3 window within the mask). 

To compare two regions in an image, the two dimensional distributions from each 

region are compared with one another. According to Ojala and Pietikainen [1999] a 

single texture measure cannot provide enough information about the amount and spatial 

structure of local feature. Better discrimination of textures should be obtained by 

considering joint occurrences of two or more features. Since one is comparing a two- 

dimensional distribution the measure is more discriminatory.

The LBP feature is found as follows (Figure A2.1) [Ojala and Pietikainen, 1999]:

For a 3x3 neighbourhood in a image, the original pixel values are thresholded with the 

value of the centre pixel. Each of the pixels in the 3x3 neighbourhood is given a 

binomial weight whose value ranges from 1 to 128. The values of the pixels in the 

thresholded neighbourhood are multiplied by the weights given to the corresponding 

pixels resulting in a set of eight values ranging from 1 to 128. Finally, the eight values 

are summed up to obtain the LBP, for the 3x3 neighbourhood. The LBP value ranges 

from 0 to 256.

The Contrast feature is found as follows (Figure A2.1) [Ojala and Pietikainen, 1999]:

In the thresholded neighbourhood, the Contrast feature is found by computing the 

difference of the average grey level of those pixels which are larger or equal to the 

centre pixel value, and those which are less than the centre pixel value. The Contrast 

value could range from a negative of (Maximum Pixel Value in the Image - 1) to 

Maximum Pixel Value in the Image.

1 6 4



1 0 0

1 X 0

1 0 1

0
2 = 1

1
2 = 2 22= <

23= 8 X 24=16

2=32 62 =64 2=12 E

1 0 0

8 No

32 0 128

Image pixel values Thresholded values Weight Matrix Thresholded values 
convolved by the 
weight matrix

LBP = 1 -I- 8 4- 32 -I- 128 = 169 C = [(6 4- 7 4- 9 4- 7)/4 -(5  4- 2 4- 1 4- 3)/4] = 4.5
(Sum of the convolved values) (Difference between average pixel values

higher and lower than the center pixel value)

Figure A2.1
Local-Binary-Pattem and Contrast feature value calculation details for a sample 3><3

neighbourhood in a image.

To find the LBP-C Distribution the 3x3 neighbourhood is moved around a mask of 

given size (say 5x5) and for each overlapping position of the 3x3 neighbourhood the 

LBP-C pair is found and thus a LBP-C distribution is computed for the given mask size. 

The LBP/C distribution is approximated by a discrete two-dimensional histogram of 

size 256xb, where b is the number of bins for Contrast (C) [Ojala and Pietikainen, 

1999]. In their original paper Ojala and Pietikainen [1999] had observed that choosing b 

is a trade-off between the discriminative power and the stability of the texture transform. 

If b is too small, the histogram will lack resolution and feature C will add very little 

discriminative information to the process. However, since the image region contains a 

finite number of pixels, it does not make sense to go to the other extreme, for then the 

histogram becomes sparse and unstable [Ojala and Pietikainen, 1999]. The authors 

chose 8 bins for Contrast.

In this study, for the HCS based segmentation, the number of bins chosen were the 

actual number of possible Contrast values in the image as the value of b, (where b is the 

number of bins for Contrast) and this gives better results. And to compare the LBP/C 

distribution between two locations, in this study, the HCS process made use of the 

Bhattacharya measure [Aheme et al, 1997]. The Bhattacharya measure [Aheme et al, 

1997] does not suffer from the problem of sparse histograms, unlike for Ojala and 

Pietikainen [1999] who used the G-statistic [Sokal and Rohlf, 1987] for comparing the 

LBP/C distribution in their original work [Ojala and Pietikainen, 1999].
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A ppend ix  3

Correspondence from HSEG developer

From: James C. Tilton [tilton@backserv.gsfc.nasa.gov]

Sent: Mon 6/27/2005 3:51 PM

To: A.N.Selvan@shu.ac.uk

Subject: Follow-up on your questions

Dear Mr. Selvan,

I plan to release a new version of RHSEG by the end of this week, and would like to be 

sure your issues are addressed in the new version.

Would it be possible send me your experimental data, including ground truth? That way 

I can quickly determine the suitability of RHSEG for your application.

Thank you for your interest in RHSEG.

J. C. Tilton

From: James C. Tilton [tilton@backserv.gsfc.nasa.gov]

Sent: Wed 7/13/2005 10:51 PM

To: Selvan, Arul N

Subject: Re: Segmentation resuls regarding..

Attachments: NOTES.txt(lKB) ShefField University.tar.gz(lMB)

Dear Mr. Selvan,

Version 1.10 of my software will be released soon. I had promised to send you my 

results of processing your data as soon as Version 1.10 is released. I'm jumping the gun 

here by a couple days, but attached you will find my results.

You can probably view the results (after a fashion) with with your current version of 

HSEG Vi ewer - but your current version of RHSEG will definitely NOT reproduce the 

results.

These results were produced using Version 1.10 of RHSEG and HSEG Viewer, dated 

July 15, 2005.

I think you will see some very satisfactory segmentation results.

J. C. Tilton
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A ppe nd ix  4

Neuroradiologist's evaluation

I  have been going through all the processed images. My preliminary assessment is that 

the programme is able to pick up the abnormal area correctly on the T2 weighted scan 

(confirmed by the diffusion weighted scans). I  would also like to mention that the signal 

changes seen on the T2 weighted scan, would be missed by most physicians and 

possibly neuroradiologists.

My concerns at this stage are

1. Is the programme consistent. To answer this you could analysing the same area 

again

2. Is the programme picking up noise and by chance it is in the same location as 

the lesion. This could be checked by running the programme on other examples 

o f similar lesions and by increasing the size o f the area evaluated.

CT is the primary imaging modality for the imaging o f hyperacute stroke. CT scans in 

the hyperacute stage (less than three hours) are mostly normal or show very subtle 

changes. The treatment for strokes needs to be started in the hyperacute stage and 

therefore any process that can help identify a lesion would be very useful.

Going by the results so far on the T2, I would suggest running the programme on an 

example o f CT scan o f a hyperacute stroke. The example I have sent show no detectable 

abnormality.
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