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ABSTRACT

This Project involved the development of a simulation of a rectangular array of
Processing Elements (PE's), with a dedicated frame based knowledge representation
language. The main objective of the Project was to analyse and quantify the gain in
speed of execution in a parallel environment, as compared with serial processing.

The computational model of the language consisted of two main components: the
knowledge base, and the replicated/distributed inference engine. The knowledge base
was assumed to represent real world knowledge, in that it consisted of a large volume
of information, which was divided into domains and hierarchies. |

When a query is made, appropriate portions of the knowledge base are mapped to the
array of PEs on a one-to-one basis (one frame/PE), where each PE is capable of
performing any relevant operations itself.

The execution of a query is based on the propagation of messages across the array of
PEs, where each message is contained in a data packet. Each packet holds the query-
frame, created by interacting with the user, together with other relevant information
used for knowledge manipulation.

The main inference mechanism in the system is based on the parallel inheritance of
properties, where each data packet carries inherited data from higher level to lower
level frames, within the appropriate hierarchies. As each packet arrives at a PE
which contains a relevant frame, a series of matching, and consequently, inheritance
operations are performed.

An algorithm, superimposed at the highest level of the system, computes time delays
in relation to the overall architecture of the machine. There are two main operations
for which time penalties are calculated : frame-processing and communication. The
frame processing involves matching and inheritance operations, and the
communication operation involves message passing and data packet traversal.

During each execution cycle, the time penalties for both processing and communication
are computed and stored in a file. These files are then used by a graphics package
which transforms the numerical data into a set of graphs. These graphs are utilised in
the analysis of the behaviour of the simulation. The analysis of the test-runs, and of
their associated graphs, has yielded positive and encouraging results, demonstrating
that there can be an average of a 35 fold gain in the speed of execution.
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1.0 CHAPTER ONE : INTRODUCTION

1.1 INTRODUCTION

We have come a long way in the history of mankind in terms of achievement in
technological, sociological, political and many other aspects of life. These
achievements are a result of man's endeavour from the ancient to the present time, and
due to his innovation and creativity. In the East, people used the abacus as a mechanical
calculator for their commercial applications (Metropolis 1980), whereas in the
West, it was only after the introduction of the Arabic numeral system that the
medieval European was able to perform complicated calculations. It was around the
16th century that, instead of using empirical knowledge, mariners used
mathematically based charts to find their destinations (Pratt 1987). After the
renaissance and the establishment of modern science, the idea that thinking might be
provided by a machine, was born. This idea was later put in practice -albeit in a
limited form- by people including Leibniz's calculator and the Analytical Engine
created by Babbage (Hyman 1991). Zuse in Berlin in 1936, Atanasoff in Ohio in
1937, and the Bell Telephone laboratories in New York (Schutzer 1987), and many
other individuals and organisations, were theorising on, and in some cases, developing,
new calculating machines. During the second world war, and the dire necessities
associated with it, machines, mostly electromechanically based, were developed for
tasks including deciphering radio traffic, and the calculation of firing tables for
artillery. This led to the development of machines such as ENIAC in USA and ENIGMA in
Britain (Metropolis 1980). Associated with the rapid development of machines in this
century, was “electricity". The crucial role that electricity played was to replace the
heavy mechanical components (eg metal rods and cogs etc.) with cables and switches
(Andriole 1985) and thus, a substantial increase in the speed of processing was
gained.

Although the automation of the mind has long been an ambition for man, all the efforts
up to the beginning of this century were 'only' leading to automation of calculation ie,
the development of machines for faster mathematical computation, namely addition,
subtraction, division and multiplication. It was only later, with the tremendous
advancements in mathematics, electrical and electronic engineering, psychology and
philosophy that the concept of automation of thought was perceived, by pioneers like
Alan Turing, Emil Post and Alonzo Church, to be a possibility (Cohen 1981). Turing's
idea was to build, not an automated reasoner, nor a machine capable of understanding
the universal language of algebra, but a machine that would have powers coextensive
with that of human brain. This idea was shared by many pioneers involved with
automated computational theories, including John von Neumann, but his perspective
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was influenced by the technological limitations imposed on developing such machines.
He took charge of the next development of a new machine based on ENIAC, called EDVAC.
In this machine, a new concept of fundamental importance was developed1, that of the
"stored program" (Albus 1981).

The development of digital computers continued, and along with it, the desire to imitate
human thinking grew. In this development, the mathematicians had the most important
role, and their main interest was to develop a machine which was able to make a
contribution to mathematics. Another group: engineers, were interested in modern
computers and, at a practical level, understood them well. The concept of automatic
data-handling was an attractive idea for people in commerce, and those who were
interested in non-mathematical applications in computing. There were others, who had
the intention of utilising computers for intellectual purposes. At the beginning of the
twentieth century, a certain amount of research was done on the nervous system in the
context of psychology; in particular, behaviourism. This field of research became
known as "cybernetics".

The members of the cybernetics group were from different backgrounds and
disciplines, including mathematicians and engineers, whose programs were drawn
together under the inspiration of Weiner in 1940s. The main research projects in
cybernetics, then, was concerened with the application of control engineering concepts
to the understanding of physiological and neurophysiological processes. This work
involved people like Weiner, Rosenblueth, McCulloch, Pitts and others (Pratt 1987).
With the observations made by Cajal, through his work involving anatomy of the
nervous system (Rumelhart 1987), the cybernetics group were able to theorise on
the concepts and properties that he produced. As a result of Cajal's work, it was
possible to work on systems made up of a number of neurons, and use their
interconnections and the properties they offered. The interconnections of neurons and
specified properties attributed to each neuron were seen as nerve-nets (or neural net
of today), and a substantial amount of work was done by people like McCulloch and
Pitts, which greatly contributed to today's understanding of neural nets (Aleksander
1990).

In Dartmouth college, in 1956, a conference was organised by a young mathematician,
John McCarthy and his colleague Marvin Minsky from MIT. In this conference
McCarthy proposed a study of Artificial Intelligence which would describe the creation
of a machine that will simulate human's intelligence (Charniak 1987). Since 1956,
the term “Artificial Intelligence” ("Al") has been used for every aspect of developing

1 Note that there is a controversy about the origin of this idea of " stored
program”. For further details see (Pratt 1987), ppl67.
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systems that had something to do with human thought processing. Visual perception and
pattern recognition, natural language understanding, problem solving and game
playing, are some of the fields which were rapidly developing under Al's umbrella. It
has been claimed that modern perspectives in psychology, embodied in congnitive
psychology, owes its existence and reputation to Al (Winston 1977). Newell and Simon
(Newell 1972, Newell 1976) were two of the pioneers that brought this new
perspective to psychology, and exerted a strong influence both in this field and in other

subfields of Al.

After developing machines with stored programs however, there were opportunities
for people working in the Al community, to implement different applications. But
while the complexities of these applications increased, their requirements remained
the same; that is, an embodied program, a large amount of memory, and high speed.

Since 1950, in the succeeding decades, the complexity and consequéntly the widening of
applications in Al, made it apparent that the serial machines, or von Neumann
machines, could not meet their requirements. The main characteristic of these
applications is the amount of knowledge that they require. Given the time constraints,
it would be impossible to explore the information, which is a pre-requisite to any
consequent inferences and conclusions. The realisation of this concept was the main
encouragement for a big international push, that started in 1981. At this time, large
computing research and development projects had been started by almost two dozen
industrial nations. EEC's ESPRIT (European Strategy Research Program in
Information Technology), UK's ALVEY, Japan's ICOT (Institute for New Generation
Computer Technology), MCC (Computer Technology Corporation) and DARPA (Defence
Advance Research Project Agency) in the USA and national programs in Soviet Union
and other Eastern Bloc Nations, geared up to pursue advanced computing technology
and developing machines for diverse Al applications (A datamation Staff Report 1985,
Delgado-Frias 1987). Despite the substantial decrease in financial support for the
continuation of this research and development, all these initiatives pushed the state of
the art forward in many directions, covering a wide range of branches in Al and in
computer science generally. Some of these applications are :

a) Knowledge representation paradigm,

b) Knowledge based systems,

c) Natural language understanding and speech procéssing,
d) Robotics2,

e) Theorem proving,

2 This is not a common view. This field involves Al, electrical, mechanical
and optical engineering.
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f) Automatic programming,
g) Perception.

The first two application areas of Al, knowledge representation and knowledge based
systems (eg, expert systems), are undoubtedly the most important areas that have
influenced computers, their architectures and languages. In many automated problem
solving systems (eg expert systems), there are three main sections : the knowledge
base, that is the representation of empirical human knowledge in a specific domain;
the inference engine, employed to deduce facts or induce hypotheses in the given
domain; and the interface between the outside world and the system.

In order to automate any problem solving, there are two main principles that have to
be considered; searching, and knowledge representation. The representation of
knowledge involves specific formatting of the information retrieved from the
application domain and their relevant expert(s), which should be represented
correctly. Representation should be simple and easy to understand, so that it can be
modified and updated. A bad representation will always produce difficulties in its
manipulation (eg, Roman numbering systems).

The methods of searching or exploring the knowledge representing the application
domain, are also extremely important. A method should, given a number of options,
indicate which is to be selected in order to reach the goal. The problem of search is to
find the next appropriate move (like chess). In a search space which encapsulates the
problem domain, we start from a node (see figure 1.1) and try to get to the goal state.

starting

node goal

(@)

~l ~l

Figure 1.1, a graphical representation of a search space.

In the process of searching, each time that a move is taken, there is a new series of
options available for selection. This causes a problem, in particular in a complex
search space, in that the number of options become so great that they cannot all, within
a given time constraint, be exhaustively investigated. This is called the combinatorial
explosion. In Al, many attempts have been made to find the most economical way of
arriving at the goal state (Kanal 1988). It must be noted that in a complex problem,
because of the great number of options available, even finding the most relatively
economical option is still a challenge. As an example, in order to find the shortest route
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between two towns in an 'n' town map, there are (n - 1)! possibilities to explore (say
10 towns has 9! which is 362880 possibilities).

It is apparent therefore, that a von Neumann machine by performing serial operations
will run out of time while it is exhaustively exploring all the possibilities given in a
large search space. One way to tackle this problem is to reduce the size of the
application domain, and consequently the search space, by which the system will be
applied to a relatively small area. As mentioned above, in order to reduce the possible
occurrence of combinatorial explosion, further guidance can be added to the searching
algorithm based on heuristics, and trial and error. This concept has been widely
utilised in today's expert systems. There is another option which is the essence of this
thesis; that is, parallelism. In an ideal parallel environment, the whole volume of the
relevant knowledge is explored in parallel without exceeding the limitation imposed by
the time constraint.

The other principle to be considered in constructing a system to solve problems, is
knowledge. We spend most of our lives solving problems; crossing the road, playing
games, even talking to each other, can be regarded as problem solving. But knowledge
is of utmost importance in the process of solving problems. We need to have knowledge
as the background to the problem, knowledge on how to solve the problem, knowledge
on making relevant conclusions, and knowledge and the ability for, if necessary, adding
to the existing knowledge, which constitutes learning.

Knowledge can be divided into three groups: ordinary knowledge, expertise knowledge,
and common sense knowledge (Alty 1990). To solve problems associated with ordinary
knowledge, there are many traditional computer languages that have already been
developed (ie 4GL's etc). Expertise knowledge can be used in a small domain for solving
problems (expert systems). The problems related to common sense knowledge are
extremely difficult to solve. This is due to the volume of the knowledge which has been
acquired through the lifetime of an individual under different conditions and situations.
Consequently, the sheer size of common sense knowledge disables today's serial
machines to explore it within an appropriate time.

It is a general consensus that in many Al applications, such as speech recognition,
vision or some higher level tasks like medical diagnosis and problem solving in
general, the need for much faster machines is apparent. This is directly due to the
amount of information that has to be processed. Operations such as retrieval,
exploration and manipulation of knowledge, and consequent inferences for example,
necessitate a great deal of computational power, that conventional von Neumann
machines have been proven to offer inadequately. In reducing the processing time
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taken by operations that are required in the frame work of today's Al applications, a
fundamental departure from the traditional computer systems has occurred. This goes
hand in hand with the rapid advancement in hardware technology.

The pace of technological advancement in computer science and its related fields has
been so fast that 50 years history of this field can be equivalent to centuries of
development in other fields. In the very near future, cathode ray tubes are going to be
replaced with large liquid crystal screens (Foremski 1990). It has been claimed that
the holographic memory systems are providing enormous potential for data storage and
retrieval, much faster than any existing media (Bains 1990). At the same time there
is substantial development in disk technology, with access speeds ranging from 300Kb
to 6Mb per second (Classe 1990). The micro chip industry is continuously providing
new and faster chips, to the extent that Intel has set up a goal that by the year 2000, it
will produce a chip running at 250MHz (Hayward 1991). In the early days of
electronics, circuits were constructed from large individual components such as
capacitors, resistors, inductors and valves, which were mounted on some kind of metal
chassis and hand wired (Metropolis 1980). Today, there are as many as one million
transistors on a semiconductor material and it has been estimated that the number of
transistors on a single chip will be increased to 100 million (Robbins 1990).

It is neither the function of this report, nor is it possible here, to list the
advancements of technology in computer science, but a comparison between today's
supercomputers and that of the first valve-based computers reveals an astonishing
advancement. The operations involved with the calculation of supersonic airflow would
take the latest Cray supercomputer little more than half an hour; whereas in contrast,
it has been estimated that it would have taken ENIAC around 27 years to perform the
same calculation (Roche 1990). In other words, today's computers are nearly a
quarter of million times faster that of the earliest models, built less than 50 years

ago.

Along with this advancement in hardware technology, the software technology has been
improved extensively. This development inevitably lags behind hardware design,
nevertheless, any computer requires a variety of programs to make it useful. In the
beginning, there was machine language, which involved programming in binary
operations. Assembly language was the first step towards a better and friendlier
environment for the users. This development continued and as the result, better and
much friendlier languages were developed. At present, attempts have been made to
develop new languages that will provide facilities for both novice and experienced
users. The hope is to completely hide the complexities of these languages/environments
from users who have no, or very little, understanding of computers. These systems,
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will therefore, have to provide environments which are intelligent and can make
decisions upon the interaction with the user, and their queries. Intelligent knowledge
based systems is a general term used for systems that have attempted to incorporate
such an environment.

To provide an intelligent environment which can deal with problems such as those
mentioned above, or those that are based on common sense, we need a large volume of
data and a fast machine to explore it within a given time-band. Note that, the concept of
fast machines is not merely computers with micro processors having high speed
clocks, but those machines that can-explore a network or group of trees of information
in a given time-band. In spite of an extremely fast processing speed, von Neumann
machines will have to search these search spaces serially. The sheer size of the
knowledge to be explored causes a bottle-neck, in particular bearing in mind the
concept of combinatorial explosion.

In knowledge base systems, one of the major problems with serial execution, is the
validity of the system. That is, since all the paths available cannot be taken, how can
we be sure that one of the unidentified paths, if taken, will not return an unexpected
result ? This concept in a parallel environment should not exist where all the paths
will be explored in parallel.

An ideal Al machine must be able to explore large multi-domain knowledge bases in
parallel, and rapidly make appropriate inferences. This, in turn, should exhibit
intelligence or perform intelligent behaviour. Thus in a parallel machine, there are
two main principles to consider; the method of representing knowledge and the topology
of the Processing Elements ("PEs"), that constitute the parallel machine.

In the following chapters the issues discussed above are addressed in more detail. This
involves different methods for knowledge representation, different paralliel
architectures, methods of exploring the knowledge bases and their parallel executions.

In chapter 2, the three major models of representing knowledge; semantic networks,
frame-based networks and production systems, are discussed. In chapter 3, a brief
review of various parallel architectures is made. Later in this chapter, the taxonomy
of Al machines, mainly knowledge based machines, followed by the architectural
structure of the Sheffield Machine ("SM") are discussed. The chapter ends with a
review and comparisons of various parallel architectures, which have certain
characteristics relevant to the SM. In chapter 4, the SM's knowledge representation
language, which includes the knowledge base and its control mechanism are discussed.
The discussion includes the frames (and their structures) in the SM's knowledge base,
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the queries available in the system, parallel propagation, parallel inheritance and
inferences, in the SM. The main emphasis in this chapter is on the
distributed/replicated control mechanism that includes methods employed for
interrogating the knowledge base, where parallel propagation and parallel inheritance
are involved. In chapter 5, the simulation of the SM its objectives and operations, its
components with their operations and, the program components and data structures
developed for creating the simulation program are discussed. The operations of the
simulation include querying the system, which in turn involves the benchmark
knowledge base and Application Development Tool ("ADT"). Later in the chapter, disk-
unit, hashing, retrieval and mapping operations and the rectangular array of PEs are
examined. In chapter 6, benchmarking and their evaluation are presented. This
involves a discussion on the algorithm and criteria for calculating the time delay of
communication and processing operations, the test-runs, their verification and
analysis by the graphics package, and concluding remarks. Chapter 7 contains the
conclusion and discusses areas for future work. There are 4 appendices; appendix A
contains some of the programming code for the simulation, appendix B contains the
benchmark knowledge base, appendix C contains some of the test-runs of the
simulation, and finally, appendix D contains some of the graphical representations of
the test-runs.

1.2 PROJECT OBJECTIVES

At Sheffield City Polytechnic there already exists a computer simulation of a parallel
machine; the SM, consisting of a rectangular array of a large number of PEs, written
in Pascal. The overall aim of this project was to modify this simulation so that a
suitable knowledge representation language could be developed and adopted. Further,
by exhaustive testing of the simulation, recommendations will be made as to the
optimum scale and technology of the machine, and to predict the likely performance
and comparison with alternative serial operations.

Therefore, the detailed objectives in chronological order, are as follows :

i) To perform a literature survey, so that, one or more methods of storing and
querying knowledge in the given architecture can be identified as being
appropriate.

ii) To evaluate the superficial advantages and disadvantages of each method.

iii) To modify the given simulation to represent a subset of these methods, chosen
as superficially successful in the previous stage.

iv) To test and validate the simulations and so develop accurate representations of
the real systems.
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vi)

To produce test results to enable quantitative performance comparisons to be
made between the various methods studied, and to provide a measure of
performance of one or more of these methods, in the context of a typical

expert system application.

In parallel with the five objectives just described, keep abreast of research
developments elsewhere in parallel architectures and knowledge representation
languages, so that continuous comparisons can be made with the SM.
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2.0 CHAPTER TWO : THE KNOWLEDGE REPRESENTATION PARADIGM

2.1 INTRODUCTION

Every programming language contains knowledge about the problem that it is solving.
Solving differential equations or updating the company's monthly pay-role for
example, require knowledge about the appropriate problem domain and the methods of
solving them. In conventional programming languages, this knowledge is integrated
with the control mechanism and is represented within the program. An attempt to
modify, expand or manipulate this information, will involve a considerable amount of
complexity. In most Al related applications, a popular apprbach is to represent the
problem domain as a separate entity, called a knowledge base. The knowledge base can
be modified and expanded without disturbing the overall structure of the system and
the control mechanism. A dedicated machine can, by exploring and manipulating the
knowledge base, reach new conclusions.

As mentioned in chapter 1, a system that contains a knowledge base separate from its
control unit and inferencing components is called a "knowledge based system". The
knowledge base contains facts, rules, heuristics and procedures.

It is the accepted view of the Al community that knowledge, in large quantities and
arranged into usable structures, is an essential ingredient of intelligent behaviour.
The knowledge required by a system to discover molecular structures! (Gaschnig
1982), or for diagnosing a disease by a medical diagnostic system (Shortliffe 1976),
is of utmost importance to that system.

In the late 60's, knowledge and the methods for its representation emerged as a
separate area of study. Several different approaches for representing knowledge were
developed and have resulted in diverse formalisms that are extensively utilised today.

The prominent approaches to knowledge representation are semantic networks (Attardi
1982, Bic 1984), frame-based representation and object oriented representation
(Minsky 1974, Goldberg 1984), scripts (Schank 1977), procedural representation
(Jackson 1990), production systems (Davis 1980), logical representation, i.e. first
order logic (Wellsch 1984), logic programming (Clocksin 1984, Bratko 1990) and
knowledge representation languages (Brachman 1985b). It should be noted that these
formalisms and their methodologies are not mutually exclusive as they often impinge

1 Given information about the constituents of the compound and mass
spectra.
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on one other, but nevertheless, they do form a convenient division for particular
applications.

For most Al applications, the choice of representation is difficult, since there is a
variety of options, and the selection criteria are not clear. Nevertheless, it is essential
to employ an appropriate representation so that a good result can be obtained (Woods
1983). Mathematically based representations, such as predicate calculus are, without
a doubt, popular formalisms in the Al community, and provide formal precision and
interpretability. At the start of this project however, a decision was made to
investigate only the more heuristic representations2, eg semantic networks, frame-
based networks and production systems as being the most appropriate for the
architecture of the Sheffield Machine ("SM"). In this chapter therefore, a discussion
on three major models of representing knowledge; semantic networks, frame-based
networks and production systems, is presented.

NETL (Fahlman 1979), and neural networks are to be discussed in chapter 3. This is
because of the integrated nature of parallel architecture and knowledge representation
in both systems.

2.2 SEMANTIC NETWORKS

In the brief history of Artificial Intelligence ("Al"), many attempts have been made to
mimic the structure and the organisation of perceived human memory. One of the
approaches was the development of semantic networks. A semantic network is a
hierarchical structure which represents a set of objects classified and sub-classified.
Properties which are true of the whole class of objects may be specified once at the
higher levels of the hierarchy and inherited at lower levels of the hierarchy by
default. It is possible however, that the general attributes may not be true for all sub
classes, so that an individual concept can have its own default properties.

The basic building blocks of the network are nodes and arcs. Each arc connects exactly
two nodes and has a label. The fact that individual arcs are differently labelled allows
extremely complex logical propositions to be expressed by the network (Schubert
1976). Precise restrictions on what an arc may represent directly vary between
examples of the semantic network representation (Brachman, 1983b).

2 Mathematically based representation was adopted in another project (Jelly -
1990).
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However, all network schemes are based on the idea of knowledge represented in graph
structures, with nodes representing concepts connected by links representing
semantic relationships between these concepts.

Hendrix's partitioned networks are one type of semantic network. He claimed that the
central idea of partitioning is to allow groups of nodes and arcs to be bundled together
into units of spaces (Hendrix 1975).

A form of partitioning which has been adopted in this project will be discussed in detail
in chapters 4 and 5. Fahiman developed a novel parallel network and knowledge
representation language called NETL which was based on the notion of semantic nets
(Fahiman 1979). Winston's Structured Descriptions, is another example of semantic
networks (Winston 1975). He developed this system while working in the field of
machine learning and he was concerned with the notion; "learning from example". An
example of representing an arch, using Structured Descriptions, is shown in figure
2.1.

Quillian and Winston based their knowledge representations on psychological models of
memory. There are other semantic network-based representations that employ

linguistics models. Case Grammar and Conceptual Dependencies are two examples that
are based on linguistic models (Filmore 1966) and (Schank 1972).

One-part-is

Supported-by

A-kind-of 4

Figure 2.1, Structured Description of an Arch.

It is widely acknowledged that Ross M Quillian proposed the first computational
associative network model of semantic memory in his Ph.D thesis in 1966 (Quillian
1968). His network represented a taxonomical hierarchy, in which the basic
relationship between objects at two levels consists of a subclass and its superclass, and
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contains a description of properties for each class. This gave rise to the possibility of
further division of these pairs into sub-properties.

Quillian regarded his network as being capable of inference due to the associative links
between any two concepts, and of the inheritance of attributes. The inference technique
that he used involved the propagation of activation signals through out the network, to
find any intersection between the planes of the two given words. If an intersection was
found, then the path from the two given nodes (words) to the point of intersection was
seen as the only possible relationship between the two words (Collins 1975, Charniak
1980).

Quillian's work was later developed further by Carbonell, who introduced the notion of
instantiation in his SCHOLAR program (Brachman 1978a). In subsequent years, the
notion of the semantic network evolved in parallel in different sub-fields of Al, so
that, under the name of semantic networks, many different approaches were introduced
but no proper formalism was developed. An attempt to rectify this situation, and to
encourage the development of a standard formalism for semantic networks, was made
by Woods who emphasised several common misinterpretations and misuse in semantic
networks representation (Woods 1985). Later KL-ONE, which is a frame-based
knowledge representation language, was introduced with a strong emphasis on complex
relationships between concepts. The formalism within KL-ONE was based on the SI-
nets formalism (Structural Inheritance Networks) developed by Brachman
(Brachman 1977a, Brachman 1978a). The endeavour to provide a sound formalism
for semantic nets is continuing with some effective results (1986 Touretzky).

Because of the associative links and consequent relationships and paths that are
provided within a semantic network, this method of knowledge representation emerges
as the primary candidate for a parallel architecture (Feldman 1985, Dixit 1984).
There are a number of additional advantages in using this formalism for a parallel
architecture. Firstly, the mechanism of inheritance where properties from higher
level objects can be inherited by lower level objects in a hierarchy, leads to an
economy of implementation. Secondly, the representation of concepts (or objects) and
their relationships in a single formalism is an important advantage over formalisms
like predicate calculus, where an index is required to define the relationship between
any two statements. Thirdly, the property of locality is more pronounced in a semantic
net than in any other formalism. Here, locality means the utilisation of the proximate
relationship between any two entities. In other words, a cluster of related concepts
(objects) can represent the application domain which, will consequently reduce the
search space and thus increase the speed of interrogation.
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The main inference mechanism in semantic networks is based on the inheritance of
properties (Fox 1986). At higher levels of the hierarchy, generic concepts contain
general properties that can be inherited at lower levels of the hierarchy. It is through
this transition that inference can be made. In Figure 2.2 for example, Human has two
- legs would imply that Jane as a typical human will have two legs.

Jane

Figure 2.2, showing an example of semantic net.
It is important to notice that, although the general properties and their values can be
inherited at lower levels of the hierarchy, an individual concept may have its own
values which will override the inherited values. The consideration of exceptions is an
important issue in real world knowledge representation. For example, if Sue has lost
one of her legs in an accident, the default value for number of legs, which is in this
case two, will be overridden by one.

2.3 FRAMES

The concept of Frames originates from Minsky's work on the recognition of objects in
vision (Minsky 1974). It did not take long to gain widespread popularity as a basis for
knowledge representation. The reason for this popularity is based on the fact that the
knowledge represented by frames has a consistent structure, in particular for
representing large volumes of data.

Many of today's Al tools and commercial knowledge based systems like KEE (IntelliCorp
1986), Keats (Motta 1986), KL-ONE (Brachman 1978b), Socerat (Socrates 1987),
LOOPS (Bobrow 1983), SmallTalk (Goldberg 1984), KRL (Bobrow and Winograd
1985), FRL (Roberts and Goldstein 1977), ART (Laurent 1988) and many others,
have utilised frames and their characteristics as the basis of a knowledge
representation scheme.

A frame is basically a data structure for holding various types of knowledge.
Conceptually, a frame represents an item i.e., a physical object or a concept i.e., an
idea. The contents of a frame then describe that item by its characteristics, its
properties or its behaviours.

The internal structure of a frame consists of a set of individually named slots in which
the knowledge associated with that frame is stored. Values or facts that are related to
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the frame are the main information stored in slots. There are many ways of storing
these data; some values are stored as numbers while others might be stored as
symbols, character strings, graphical or pictorial data. The content of a slot may be a
single value or a set of values.

Frame-name Slot name Value .
Marital status :  Married
Number of children: None
J W Smithy | Marrled—to - . Silvia
Skill ! Teaching
Age C45

Figure 2.3, an example of a frame.

In Figure 2.3, an example of a frame is given. In this example, J W Smithy is the
name of the frame. The frame contains five slots each with a single value. If J W
Smithy had more than one skill, the Skill slot would have been multivalued.

In order to provide consistency and to facilitate better reasoning and inheritance, some
restrictions may be applied to slots contents. There may be a restriction on the form of
representation i.e., that the value of Age slot above, has to be an integer. There may be
restriction on the values of a slot i.e., 0 < age < 150, or restrictions that are
independent of specific values i.e., maximum number of values for Married-to slot is
only one or the value that can be chosen for Marital status is either Married or
Unmarried. These restrictions are used to ensure that the values have proper form of
representation and are interpreted correctly.

Restrictions can be imposed on the way that properties are inherited from higher level
frames to the lower frames. These restrictions varies from one implementation to
another. In KEE for example, there are twelve constraints on how slots and their
values can be inherited (IntelliCorp 1986). These types of restrictions may be
embedded in the frame structure or can be inherited from higher levels of the
hierarchy. Inheritance restrictions may include union, intersection and override of
the inheriting slots/values.

In figure 2.3, a frame is used to represent certain characteristics of J W Smithy.
These characteristics were shown by several slots. In order to implement various
restrictions on these slots, and their values and inheritance within the J W Smithy
frame, a structure called a facet is introduced. A facet is a mechanism which contains
all the information relevant to a slot. A variety of facets may be attached to a slot, each
providing a different type of control parameter or characteristic. To perform any
particular type of action in connection with a siot value, the contents of the
appropriate facet are checked. These actions may include fetch, store, display or query.
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Unlike semantic networks, procedural knowledge, in addition to declarative knowledge,
may be attached to frame slots. Such procedures may be invoked when a certain
condition is met. In J W Smithy frame, a procedure can be added to the frame such that,
when the Married-to slot is filled with the value J W Smithy's wife name, it will be
invoked and its effect may be to instantiate another frame representing the wife.

Brachman suggested that there are two main types of procedural attachment :

1) Meta-descriptions.
2) Interpretive intervention (Brachman 1977a).

The first type is expressed as knowledge within the knowledge base (probably as an
individual concept). The second type consists of instructions to the knowledge base
interpreter in the same form as the interpreter itself (written in the same language in
which the interpreter is implemented). Winograd in his paper, explains how and when
procedures may be attached to a frame (Winograd 1985).

It was mentioned that, there are three types of knowledge that can be stored in a slot;
basic facts or values, constraints on slot values and inheritance, and procedural
knowledge. However, additional types of information can be placed in a slot. For
example, another frame or a pointer to another frame, or rules or an entire rule set,
might be placed in a slot, permitting rule based knowledge as well as declarative and
procedural knowledge to be structured in the hierarchy.

Despite their diversity, the concepts represented by frames often do bear some
relationship to each other. This is part of the power of the frame-based representation
which is the ability to capture such relationships in the knowledge base.

In a frame-based network, as with the nodes in a semantic network, frames can be
used to represent either generic or individual concepts. A generic concept represents
both general attributes and default properties. Individual concepts can inherit those
geheral properties. As with a semantic network, the inheritance of properties is
subject to exceptions which are imposed by inheritance constraints.

Another notion suggested by Winston, was to embody in the frames system, what he
called "view changing" (Winston 1975). This has been interpreted as defining the
knowledge base within different contexts. In other words, the interpretation of the
knowledge can be different under different circumstances. In KEE and ART, "world" and
"viewpoints”" are examples of Winston's suggestion (Laurent 1988).
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2.31 FRAME-BASED INFERENCE

The knowledge stored in slots of a frame can be available to inference mechanisms. For
example, a rule can reason about the characteristics of a frame by referring to its slot
values. In J W Smithy frame, there is an Age slot which has a value of 45. A rule such
as the following may be embedded in the knowledge base :

Rulen: If Age=> 65
Then "Frame-name” is to retire.
If the age of J W Smithy is more than or equal to 65, he should be retired.

As mentioned above, in a frame-based network, knowledge is organised within each
hierarchy with generic frames at higher levels and individual frames at lower levels.
This provides the system with further reasoning ability: hierarchical reasoning. It can
be inferred for example, that J W Smithy with all his characteristics, is a Male, is a
Human and is a Mammal.

Frost has suggested five different types of reasoning method that can be implemented in
a frame-based system (Frost 1986) inferred existence, inferred generic properties,
default properties, recognition of abnormal situation and inference by analogy.

By inferred existence, the inference mechanism can deduce the existence of a given
entity in the knowledge base. In the second method inferred generic properties, the
system can infer that the entity in question has all the generic properties. The third
method is value inheritance by default for a particular slot of a given entity. In the
fourth method, the absence of a value for a slot of a given concept can be interpreted as
an unusual situation. This may cause contradiction since in various cases the query
frame may have incomplete information. In the fifth method of inference, analogy is
made between the entity in question and a frame in the knowledge base, and as a result
of this analogy the missing part of the given query frame can be completed.

2.4 KNOWLEDGE REPRESENTATION LANGUAGES

During the second half of the 1970's, knowledge representation languages emerged as a
separate vehicle for representing knowledge. Several different languages developed,
such as KL-ONE (Brachman 1977a), KRL (Bobrow and Winograd 1985), FRL
(Roberts and Goldstein 1977). More recently, powerful hybrid toolkits for building
commercial knowledge based systems were developed including KEE (intelliCorp
1986), ART (Laurent 1988) and LOOPS (Bobrow 1983). These systems embody
hybrid programming environments which combine procedures, frames and object-
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orientation and rule-based paradigms in one language. In the following subsections,
detailed discussions on KL-ONE and KEE are presented.

2.41 KL-ONE

KL-ONE is a well known frame based knowledge representation language and is based on
Si-Nets (Structured Inheritance Networks) which were introduced by Brachman
(Brachman 1977a, 1977b, 1978a, 1978b). In Sl-nets, the emphasis is on
epistemological issues (the internal relationships that a concept has with its
properties and their constraints). Since it was introduced (Brachman 1985b), KL-
ONE has been used in a number of applications, ranging from natural language
understanding, to question answering systems, to the modelling of office automation.
KL-ONE is more than just a representation language, as it includes facilities for the
building, storing and interrogation of the network. It has been evolving and updated
with new ideas since its creation. There are many offshoots from KL-ONE that have
been developed under its strong influence. NIKL (New implementation of KL-ONE) by
Kaczmarek (_Kaczmarek 1986) and KRYPTON (Brachman 1983a) are new
implementations of KL-ONE.

KL-ONE contains three general types of objects:

1) Concepts.
2) Roles.
3) Structural-descriptions (SDs).

Concepts are regarded as the basic elements of KL-ONE and are defined as formal
objects employed to represent objects, attributes and relationships of a particular
domain. There are three types of concepts; generic, individual and parametric
individual (paraindividual). A generic concept represents a class of individuals
(description of the template-like member of the class). An individual concept
represents a specific object, relation, etc which matches the generic concept's
description (what Brachman calls "individuation" of a generic concept). The third type
of concept, the paraindividual concept (PIC), defines relationships between two or
more of the concept's roles. Role/filler descriptions and structured descriptions
(SD's) in KL-ONE, were developed to address both the internal structure of a concept
and the relationships with other concepts. Roles represent the conceptual sub-
structures of an entity, such as its attributes or its parts. An example of the use of a
part sub-structure would be the fingers on a hand, whilst an example of an attribute
sub-structure could be the colour of an object or the arguments of a function, such as
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the multiplier and multiplicand in the multiplication operation. There are two types of
roles:

1) Generic roles of a generic concept (called RoleD) describing generalised
attributes of that concept.

2) Instance roles, representing the relationship of a particular individual concept
with either a generic role (called RoleF), or an individual concept. Unlike
concept names, roles may have the same names even if they are part of the same
concept.

A generic role's attribute description is provided by the role's facets, which are as
follows :

1) the V/R (value restriction) facet specifies a generic concept, which is a
description that any filler must satisfy.

2) the Number facet indicates the number of fillers of the particular role to be
expected. It may be a pair of numbers specifying the range.

3) The modality facet controls the action of individuation and specifying the
importance of the attribute to the concept.

In general, roles represent properties of a concept and a collection of roles is regarded
as a formal entity that relates the functional role, the content in which that role is
played, and a set of fillers of the role. In other words, roles are not only used to specify
numbers of fillers but also to specify how those fillers may be used within the
conceptual structure.

While a role indicates that for any instance of the concept there will be appropriate
numbers of fillers for the given functional role, an SD (Structural Description)
indicates that any instance of the concept will represent relationships specified in that
SD.

A set of SDs are used in the concept to specify certain constraints on how the concept's
role fillers may interact with each other, to partly define the concept itself. Each SD is
a set of relationships between two or more concept roles, these relationships being
expressed by paraindividual concepts (PIC).
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Modality : Obligatory

Number : 1

Role Name : Lintel
Number : 1

Role Name : Yertical Clesrance

Y/ X ¢ UPRIGHT
(3 Y« UPRIGHT
7 TOUCH (X,Y))

YC « DISTANCE
(LINTEL, GROUND)

Figure 2.4, a KL-ONE concept for a simple arch.

Y X ¢ UPRIGHT
SUPPORT(X, LINTEL)

In figure 2.4, a simple concept representing an Arch with all its internal
substructures is shown. There are three roles R1, R2 and R3, accompanied by three
structural descriptions (SDs). R1 is linked to concept Arch by Role-D link and
specifies that this particular Arch has one 'LINTEL' which must be a WEDGE-BRICK.
R1 has four facets:

1) the link name modality which specifies the level of importance of the attribute
to the concept.

2) V/R (value restriction) link specifies the role filler.

3) the role name link, specifies the name of the relationship between the filler and
the concept.

4) the Number link specifies the number of fillers in the role.

R2 specifies that the concept Arch has two UPRIGHTS of type BRICK. R3 specifies the
VERTICAL CLEARANCE. The three SDs, are used to specify the relationships between the
roles facets. S1 for example, indicates that how every UPRIGHT supports a LINTEL.

2.411 INHERITANCE IN KL-ONE
Inheritance in KL-ONE is confined by the relation that connects two formal objects of
the same type, concept to concept, role to role and SD to SD.

As mentioned above, the relationship between two concepts is called individuation, so
that there is always a concept that is being individuated. The individuator must satisfy
all sub-descriptions of the individuatee. This implies that, not only is there a relation
between concept and sub- concept but there is also a set of sub-relations between the
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concept roles. In other words there is a set of sub-relations between the generalised
attributes of that concept and the values of those attributes in the individuator.

The notion of inheritance in KL-ONE may be illustrated by saying that sub-concepts
themselves may be generic and can be formed by restricting the inherited
characteristics from the concepts.

The structure of a taxonomic hierarchy is merely based on the formation of more and
more specific descriptions. In such structures, there has been, in general, a single
link, for example an IS-A link, to specify inheritance along the hierarchical chains.
The assumption is that everything relevant to the higher classes is relevant to the
lower classes as well.

In KL-ONE, the roles and SD's of a parent concept will each contribute to the
inheritance process between the lower level concepts and the parent concept.
Brachman regards the inheritance link as a cable carrying down roles, and SD's as a
group, since their descriptions are entirely dependent on the parent concept. These
inherited properties must be controlled under strict conditions by controlling their
modification according to specifications held in the lower level concepts. These
modifications for each role and SD are specified and monitored by inter role or inter
SD link, between the original role and the new one.

There are currently three types of role modification in KL-ONE; the first, satisfaction
which is the process of filling; the second, differentiation which is creation of sub-
roles; and the third, the restriction of the role itself.

2.412 PROCEDURAL ATTACHMENT IN KL-ONE
There are two types of procedural attachment (Brachman 1978b) :

1) meta-description, which is meta-knowledge about the actual knowledge, and
has the same form as the knowledge structure.

2) interpretive-intervention which expresses direct instructions to the
interpreter in the language that implements the interpreter itself.

In the case of meta-description, the interpreter is being instructed to make a type or
level jump when processing a concept. In KL-ONE meta-information is information
about a formal entity, which can be a concept or a role or an SD, and is directly (ie.
explicitly) linked to an appropriate node. This link is called a metahook, and can be
attached to a concept, a role or an SD. There is another type of link in KL-ONE called
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interpretive-hook (I-hook), which is used for attaching interpreter code directly to a
concept role or SD. An I-hook points to an entity in which direct instructions to the
interpreter are expressed in the same language as that in which the interpreter is
implemented.

FRL was one of the first frame-based knowledge representation languages that was
developed (Roberts 1977). KRL was introduced around the same time. KRL is also one
of the first Frame-based knowledge representation languages, and attempts to integrate
procedural knowledge with declarative knowledge (Winograd 1985, Bobrow 1985).
In KRL (Knowledge Representation Language) the formalism for declarative knowledge
is based on "structured conceptual objects" with associated descriptions. These objects
form a network of memory units with several different types of links, each having
well specified implementations for retrieval process. Procedures can be associated
with the internal structure of a conceptual object, to allow the steps for a particular
operation to be determined by the characteristics of the specific entities involved.

The above frame-based knowledge representation languages were developed in late
70's, and their influence on recently developed knowledge representation languages are
apparent. KEE, LOOPS and ART for example are hybrid environments that facilitated
the development of frame based applications in addition to utilising rules and
procedural representation.

242 KEE

KEE (Knowledge Engineering Environment) is one of the most powerful knowledge
based systems available. This system was introduced to the commercial market in
1983 (IntelliCorp 1985, Laurent 1988), and at present is available on most of the
lisp-machines, Dec-Vax workstations and Sun workstations. The KEE system is a
hybrid system consisting of Frames, certain aspects of Object-Oriented Programming
techniques, rules; and has the ability to access the implementation language, Lisp. It
provides a well designed representation language based on 'units', a data structure
similar to frames. These units represent prototype descriptions of objects. Each
description in KEE consists of five components :

1) Units - which represent objects

2) Slots - define attributes of units

3) Slot Values - are the values of attributes
4) Facets - describe slots

5) Facet Values.
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Facets are used to attach several typeé of information to a slot in addition to its values.
This information can be a procedural attachment, inheritance specification and/or
meta-knowledge.

2.421 GENERAL FORMAT OF UNITS IN KEE

Each unit is defined by its unit name and a set of properties represented by slots. There
are two types of slots; owner-slots and member-slots. Member slots are used to
describe class members' properties and may be inherited by instances of the class
unit. Owner slots are merely there to define the unit it contains. Slots have a number
of facets in addition to the value facet; these facets are inheritance roles, the value
class, maximum and minimum cardinality, and comments.

The inheritance role facet specifies how a slot will inherit attributes from its
ancestor's slots. The facet Value class specifies types of values. The cardinality-
maximum-and-minimum facet defines a range in which the number of values are
specified and the last facet of a slot is a set of values belonging to that particular slot.
Some slots have comment facets which may be used for interaction with the outside
world. ‘

The value class specification, and the limitation imposed by cardinality, are
particularly important since they grant the frame language the ability to represent
quantified assertions and to make appropriate inferences. It may be reasonable to
define the type of hierarchy used in KEE as a hierarchy of descriptions, ie. a system

based on classification (see figure 2.5).

Member Slot : Hull
Member Slot : Rudder

Ships

Member Slot : Mast

Commercial Sailing Member Slot : Sail
Ships . Member Slot : Crew
,/ \ A , Own Slot ; Fastest Vessel
. - /1 R N S ;
: \ b PN~
Squared ~°~<
Rigged Ships .
Owned By : Mr x
g::? Price : £60k
Age : 120 Yrs

Figure 2.5, Shows a classified hierarchy.

Each frame represents a class of objects and a link (not specified but it could be IS-A
link) connects a class to its super class.
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In Figure 2.5, a classified hierarchy is shown. Ships is the superclass object, and its
immediate children represent the class objects in the hierarchy. Square Rigged Ships
is an example of class instance, and Cutty Sark is an individual object. Note that in this
example, the object Square Rigged Ships has two parents. In KEE, the concept of
multiparentage has been considered whereas in LOOPS, all the hierarchies are trees
and there is no multiparentage (Bobrow 1983).

2.422 INHERITANCE IN KEE

The mechanism of inheritance in KEE is provided by passing down relevant information
from one level of hierarchy to its lower level, and it is controlled by various
restrictions specified in the facets of each slot. These restrictions include inheritance
role, value restrictions, and relevant procedural restrictions (if any).

KEE supports multiparentage, ie a child unit inherits properties from more than one
parent unit. In figure 2.5 for example, Square Rigged Ships may inherit properties
from both the units Commercial Ships and Sailing Ships. There are 12 possible
inheritance roles within the KEE system, as follows : |

1) Override values : this is a default value, so that if no particular inheritance
role has been specified, then the inheritance from the parents is overridden by
the child's value, if the child has any explicit values.

2) Union : this inheritance role takes the union of the values which are inherited
from the parent's nodes and the actual unit itself. Thus, it combines the values
of the child's slots with the values of the corresponding slots of any parents,
without producing duplicates.

3) Runion : this is the reverse of union.

4) Save-values : inheritance of this form requires that each parent value list be
equal to the child's explicit value list.

5) Unique-values : unique inheritance blocks inheritance of slot values altogether.
The explicit values of the slot are retained as the derived values.

6) Variable-values : Variable-values inheritance is even stronger than unique
values. It not only blocks all inheritance, but also suppresses the KEE system's
usual policy of noticing when a slot has been modified.

7) Maximum : inheritance of this form chooses the maximum of the local values
and parent values.

8) Minimum : inheritance of this form chooses the minimum of the local values
and the parents values.
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9) Method : inheritance of this form works by decomposing each explicit value into
main code, before code, after code, and wrapper code parts (methods are
described in later stages).

10) Vcsimplify : inheritance of this form enables value classes to combine and
simplify inherited specification.

11) Union-Each-Value : inheritance of this form expects the individual values in
the slot to be lists and then it performs a union on the corresponding positions
in each slot's lists of values.

12) Runion-Each-Value : this is Union-Each-Value in reverse.

Value class is another facet of a slot. It provides partial or full specification of values
that a slot can have. Value class can be specified in different ways. Not-one-of, for
example, indicates an explicit set of values which are not allowed. Thus, value class is
another type of constraint on the inheritance mechanism.

Another facility3 offered by the KEE system is called KEE worlds. This is an
environment with more than one context. That is, a slot in a frame is described as
containing sets of values, each set pertaining to a different universe, or, to the same
universe at different points in time. Under real-time conditions, there are many types
of problems that require knowledge represented in different context. For example,
consider the effect of weather on a journey taken by an aeroplane, using the same
route, in one year.

Multiple context is one of the important facilities that most of todays Hybrid knowledge
based systems offer. The developers of ART call it "viewpoint" (Chung 1988), where
as KnowledgeCraft relies on a truth maintenance mechanism embedded in its OPS5
forward-chaining mechanism (Laurent 1988).

Reasoning in the KEE system is based on rules, which are represented as units, like
any other KEE object, and can be used in either forward or backward chaining. In KEE a
reasoning process is usually initialised by a call to the knowledge-base Assert and
Query Language, supplied in the package. This language, called TellAndAsk, provides
three different functions:

1) assert; to create a fact,
2) retract; to remove the fact,
3) query; to extract knowledge from the knowledge-base.

3 This facility has been developed under the influence of Winston's idea
about "view changing" (Winston 1975).
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2.423 PROCEDURAL ATTACHMENT IN KEE

In the KEE system a knowledge base may be a combination of descriptive knowledge and
behavioural knowledge. The behavioural knowledge (or procedural knowledge) is
represented by methods (functions or procedures) . Each method is a program, and
whenever it is called or triggered, the program is run and the appropriate task is
performed. Methods can be inherited through the hierarchical levels of the knowledge
base. Further, methods can be activated indirectly, as a result of the consequences of
another method or an active value. An active value provides the facility to monitor
what is happening to a particular slot; it represents the data directed programming
aspect of the KEE system. Active values are represented in the knowledge base as units
and can be attached to slots in units, so that they fire when a triggering event happens.
It seems that active values represent the notion of meta-description and, methods
represent interpretive-intervention, as described in KL-ONE.

There are other hybrid knowledge representation languages available in the market;
LOOPS (Bobrow 1983), KEATS from Open University (Motta 1986), ART (Automatic
Reasoning Tools) from Inference Corporation (Laurent 1988) and KC (Knowledge
Craft) from Carnegie group (Chung 1988). All these tools use frames as their basic
block for knowledge representation, and inheritance of properties and rules are used
as the main inference mechanism.

2.5 PRODUCTION SYSTEMS

The Production System is one of the oldest and most commonly used models for
knowledge representation and its associated application4. The production system model
has been used successfully to solve a wide variety of problems, such as medical
diagnoses (Shortliffe 1976), and automatic configuration of computers (McDermott
1982). Production systems were originally developed by cognitive scientists to model
human memory and problem solving (Simon 1965, Newell 1972, Newell 1976, Davis
1980).

Many of the application systems created with the production system model are of a
class known as "expert systems". In Al, the term expert system is used to refer to a
computer program that is able to perform within a specific domain at the level of a
human expert in that domain.

4 It started with Post using production systems in symbolic logic (Post 1943),
with the Markov algorithm in mathematics (Markov 1954), rewrite rules in
linguistics (Chomsky 1957). Simon and Newell used the production system in
their Knowledge Based System for chess analysis (Simon 1965) and later for
human problem solving (Newell 1972).

Page 26



Note that, while production systems are often referred to as rule based systems, the
term "rule based" actually has a slightly broader definition. For example, logic
programming is also a type of rule based programming (Brownston 1985).

However, the computations in production systems are different in style from
computations performed by procedural languages (such as Fortran), functional
languages (such as pure-Lisp or Hope), or object oriented languages (such as
SmaliTalk). One of the main differences is the production system's use of "data
sensitive" unordered rules, rather than sequenced instructions as the basic unit of
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Figure 2.6, Computational model of production system.

Figure 2.6 shows the basic architecture of a production system computational model. A
production system contains a set of conditional statements known as productions
(production rules, or simply, rules), a collection of given or derived facts known as
the database (data memory or working memory), and an inference engine which
implements the invocation of the rules as a sequence of "modus ponens" actions
(Hayes-Roth 1982).

The inference engine operates in cycles where each cycle consists of three phases;
match-rules, select-rules and execute-rules. In the first phase, match-rules, the
inference engine finds all the rules that are satisfied by the current contents of the
database according to the matching algorithm. The match may involve the condition
part, the action part, or both parts of the rule. All the matched rules (also called
conflict set) are potential candidates for execution. The same rule can appear in the
conflict set several times if it is satisfied by different sets of data items. In the second
phase, select-rules, the inference engine applies a control strategy (conflict
resolution) to select the appropriate rule which is to be executed in the third phase;
execute-rule. Executing rules is also referred to as "firing" rules, by analogy with the
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firing of neurons. In the next cycle, the same process will start over again. This
repeated action is referred to as the "recognise/act cycle". The part of inference
engine that fires the rules by interpreting the conditions and actions of the rules is
called the "rule interpreter". Note that, the term interpreter is often used to refer to
the entire inference engine.

2.51 DATABASE IN PRODUCTION SYSTEMS

In the simplest production system, the database is simply the collection of symbols
intended to reflect the "state of the world". For those systems intended to explore the
symbol processing aspects of human cognition (Anderson 1978), the database is
interpreted as modelling the contents of a certain memory mechanism (ie. short term
memory). For systems intended to be used for consulting or advising experts, the
database contains "facts and assertions" about the world (Forsyth 1985).

Most databases are global stores; they hold knowledge that is accessible to the entire
system. The items in the database are referred to as elements, and the representation
of elements varies from strings to complex structured objects. In KEE for example,
frames are used to represent objects (IntelliCorp 1986); in ROSIE, data and
assertions are stored in a relational database of n-ary relations (Schank 1972); and
in OPS5, elements in the database are in the attribute-value format (Brownston
1985).

In addition to the problem solving strategy embodied in the inference engine, the state
of the database is another control over the execution of the production system
program. It is the contents of the database that determine which portion of the
production system program is available for execution. That is, at any particular time,
only those rules that match the data in the database are executable, and the inference
engine determines which rule is actually to be fired. ‘

The database provides another control over the execution, by being the only means of
communication between rules. That is, there is no mechanism for passing data from
one rule to another directly, as one would do with a parameter in a procedure call. The
elements in the database may be created, modified, or removed.

2.52 RULES

The left hand side of the rule is the condition part, also termed the antecedent or
situation. The right hand side is the actions part of the rule, also termed the
consequent. The left hand side of a rule is usually a Boolean combination of clauses. The
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type of Boolean operators vary with the production system language. Many languages
allow only the operators AND and NOT. A clause (sometimes referred to as a predicate)
specifies a restriction on the value of some particular property or attribute of some
object that can be represented in the database. The right hand side, or action part of the
rule, is generally a list of modifications to be made to database when the rule fires.
These actions usually add, modify, or delete elements in the database, but they may also
perform external communications with the outside world.

Interaction between rules is very limited; they can communicate with one another only
by way of data in the database. However, it is possible to provide interaction by having
a very large short term memory (STM), and a complex message passing algorithm
(Davis 1985).

2.53 INFERENCE ENGINE _

The inference engine is the source of much of the variation found amongst different
systems, but it may be generally defined as a "select/execute” loop (see figure 2.6). In
each loop, a selection mechanism is repeatedly applied in order to choose a rule
applicable to the current state of the database, and then that rule is executed.
Sometimes the action of inference engine results in a modified database, and the select
phase begins again.

Rules in a production system can be applied in either direction which corresponds to
the type of reasoning strategy employed by the inference engine. The inference engine
looks in the database to see which rules have their situation parts satisfied, selects one
of them and fires it by performing the corresponding action. The rules that get fired
are thus chosen by information in the database; such systems are called "forward
chained" (or data-driven). The generalised rule "S => a" can be interpreted as : " if
condition S holds, a is a consequence", but the same rule is subject to a slightly
different interpretation : " if a is to be established, try to establish S".

Looking at rules in this second way suggests an alternative execution strategy. At each
cycle those rules whose right-hand sides were relevant to one or more of the current
goals would be located. If the situation of such a rule was satisfied by the database then
using that rule would be a step towards satisfying the goals; if not, the next cycle
begins with a new set of goals.

This alternative procedure clearly uses the same information, but the selection of the
rules to be fired is determined now not so much by what is in the database, but rather
by what is expected or hoped to be found. This method is referred to as "backward
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chaining" or a goal-driven strategy. Both methods have their respective advantages and
disadvantages. Often, the major factor in making a selection arises from the particular
domain in which the knowledge is applicable (Jackson 1990). Strategies which
combine the merits of both approaches have been suggested (Jonson 1988).

2.531 MATCHING RULES AGAINST DATA
There are many types of matching algorithm that must be accommodated in a
production system (Sell 1983) :

a) A simple identity known as "literal match".
b) A matching based on patterns.
¢) A matching based on unification, which supports variables on both sides.

For example, suppose two of the rules are :
If it is raining, then the ground is wet
if height of X > height of Y, then X is taller than Y
where X and Y are variables, and the database contains the following items:

It is raining

The ground is dry
Height of Jon = 6
Height of lan = 5
Jon is taller than Y

A literal match will satisfy the first rule since "it is raining" in the database matches
exactly the condition part of the first rule. Pattern matching can satisfy the second
rule by letting X take the value Jon and Y the value lan. The last item in the database
would allow the system to fulfil the condition of the second rule by unification, letting
X take the value Jon. (The meaning of the last item is that Jon is taller than anyone else
in the database).

The simplest action to be performed when the left hand side of a rule is satisfied, is
that of replacement, where an old item in the database is replaced with the new one. In
the example above "the ground is dry" would be replaced by "the ground is wet".

The next level up is addition, which aggregates items in the database. This is in fact the
most frequently used action. In the example above, the system could add "Jon is taller
than lan" to the database, and if it used unification, it could add "height of Jon > height
of Y".

Page 30



2.532 UNCERTAINTIES

Irrespective of whether the inferencing procedure works backwards or forwards, it
will usually have to deal with "uncertain data". Real-life .problem-solving is usually
so complex, and the available facts so incomplete, that uncertainty must be accounted
for in order to produce useful answers. Uncertainty can be dealt with by a number of

different methods :

a) Fuzzy logic: this allows the representation of partial truth within Boolean
logic. A "1" is taken to represent truth and "0" to represent falsity; the real
numbers between these values then indicate all possible shades of partial truth
(Zadeh 1974).

b) Bayesian logic: this scheme is based on probability theory. Bayes' rule provides
computation of relative likelihoods between competing hypotheses on the
strength of the evidence (Duda 1981).

c) Certainty factors: Shortliffe (Shortliffe 1976) devised a scheme based on
what he called certainty factors for measuring the confidence that could be
placed in any given conclusion as a result of the evidence so far. As new
evidence is established, confidence estimates can be revised.

Many other schemes dealing with uncertainty do exist. However, the methods
mentioned above have been used in a large number of expert systems, and do appear to
work satisfactorily (Michie 1984).

2.533 CONFLICT RESOLUTION

The performance of the inference engine and the production system as a whole, depends
on the conflict resolution strategy for both sensitivity and stability (McDermott
1984). Sensitivity is the system's quickness of response to the dynamically changing
demands of its environment; while stability is the system's continuity of behaviour.

In the matching phase, more than one rule can be triggered (selected or instantiated).
The way in which a rule is selected from a set of triggered rules is called the "conflict
resolution strategy". There are various methods of implementing such strategy :

a) Refraction : In this method it is required that rules fire not more than once on
the same data. This is intended to prevent a form of infinitive looping that could
occur if a rule did not change the contents of working memory.

b) Data ordering : This is a powerful way of adding sensitivity to a conflict
resolution strategy. In this method, the data is ordered by recency or
activation. A recency or activation ordering gives preferences to rules that
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have matched elements to database most recently, or that are strongly related
to recently added data.

c) Specificity ordering : Specificity favours rules that are special cases of other
rules, or are more specific according to some measure.

d) Rule ordering : This strategy provides a static ordering of the rule set
independently of the way the rule is instantiated by data. Using static ordering
tends to be less sensitive, since priorities are independent of the instantiation
of the rules.

Note that none of the principles described above guarantees that only a single triggered
(instantiated) rule will remain in the conflict set. If a single firing is required on each
cycle, an arbitrary decision can be made so that a single rule can be selected. The
alternative to arbitrary selection is the firing of all the triggered rules (Rosenbloom
1984).

2.54 PRODUCTION SYSTEMS CHARACTERISTICS

A production system offers several important characteristics which yield certain
advantages and disadvantages; knowledge is separated from the control mechanism, it
has a restricted format, and there is a limited interaction between rules.

A consequence of the separation of knowledge and control is that production systems can
cope with unanticipated situations. In other words, unplanned interactions result from
applying knowledge when it is appropriated rather than calling on it in predetermined
sequences (reactivity). Because knowledge is stored in separate units, rules can be
modified with very few side effects (modifiability) and rules are relatively easy to
explain (explainability).

As a consequence of the restricted format all facts are stored in a similar form and only
a simple inference engine is needed (simplicity of control). Restricted format leads to
machine readability; rules are machine readable, and a limited amount of automated
modification and explanation, consistency checking and learning, is made possible.

As a result of the limited interaction between rules and the inference engine, rules
tend to be modular (modularity). This facilitates reactivity in the system and the
explanation and modification of rules. Rules easily express basic symbol processing
acts (expressibility).

There are also some disadvantages with production systems. Even for a simple task, the
stepwise behaviour of a production system is rather unclear to the user. Reevaluation
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of the database, and scanning the entire rule set, in any cycle, contributes to this lack
of clarity (opacity). Because the matchers in production systems have to reevaluate
the whole situation to find applicable rules on each cycle, most production systems run
much slower than procedural programs.

2.55 THE EFFICIENCY OF PRODUCTION SYSTEMS

Efficiency is an important consideration in production systems, since expert systems
or any other application of production systems, may be expected to exhibit high
performance in interactive real time domains. Thus, for a production system to be
efficient, all aspects of the system should be considered. Although correctness,
readability of code, clarity of representation and good documentation are equally
important issues, only the execution of a production system is considered here.

As discussed above, the execution of the production system operates in cycles. Each
cycle consists of three phases; matching, conflict resolution and action. In the
matching phase, the productions are examined by the interpreter to see which are
appropriate and could fire. If more than one is found to be appropriate (triggered), a
strategy will be applied to choose one or more rules from conflict set. Finally, in the
third phase the selected production(s) will be fired.

However, it has been suggested that the matching phase takes up 90% of the
computational resources and time (Stalfo 1985), and as production systems have
become larger and more complex, the point of efficiency has necessitated the
construction of a more complex data structure in both the rule base and database. Some
production systems with a large rule base, for example, have employed partitioning or
indexing mechanisms, rather than scanning through all the rules.

In the following subsections, these issues may be better illustrated by brief
descriptions of two familiar mechanisms used in production systems; the Rete
algorithm, and the blackboard mechanism.

2,56 THE RETE ALGORITHM

The Rete algorithm is one example of the many different techniques used to reduce the
time spent on the matching phase (Forgy 1982). This algorithm is employed in the
OPS5 production system language, which employs complex pattern matching
(Brownstone 1985). A Rete network is constructed from the left hand sides of
productions, to represent a network consisting of nodes (Gupta 1985). Each node
represents an abstract operation to be performed during the match phase, and is
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interpreted by the inference engine at run time. In the matching phase, the objects
that are passed between nodes in the network are called tokens. Each token consists of a
pointer to a list of elements in the database, that matches the condition elements of the
left hand side of a production.

The Rete algorithm takes into account the fact that only a small portion of the database
is changed at each cycle, and exploits the stored results of previous match cycles, eg.
where there are similarities between condition elements (RHS) of productions.

It is important to notice that the Rete network does not reduce the modularity of rules,
but adds a certain type of locality by partitioning the rules into relevant groups.

2.57 BLACKBOARD DATA STRUCTURE

Production systems have improved in efficiency, and now have the capability to
represent more complex situations. The Hearsay system exemplifies such an
improvement (Barr 1981, Nii 1986). Hearsay is a speech understanding system,
which is regarded as an important development in Al with respect to its functionality
and construction. The area of application was the understanding of spoken requests for
literature in a computer science database (Erman 1980).

The structure of Hearsay is based on the assumption that the knowledge of several
experts are represented by knowledge sources. To solve a given problem, each
independent knowledge source writes a suggestion on a global blackboard data structure
where every other experts can see it. This is the way that experts (knowledge sources)
communicate with each other. The entry on the blackboard triggers the other experts
on which they will take the analysis further. This process continues until the system
arrives at a conclusion.

The Hearsay system consists of a number of knowledge sources, and a backboard
containing different levels of knowledge. The knowledge sources operate in between and
in different levels of the blackboard. The blackboard is a global database in which the
hypotheses and the supporting criteria can be stored. During the evolution of the
Hearsay system, the number of knowledge sources was increased from three to twelve.
In Hearsay-2, the latest version, there are twelve knowledge sources, each of which is
devised to deal with certain levels of the hierarchical segmentation of speech.

The knowledge sources in Hearsay are rule-based, and the reasoning mechanism
utilises both forward and backward chaining. The Hearsay control mechanism can
switch between these two reasoning mechanisms by checking the direction of the given
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credibility rate of each competing hypotheses. The knowledge sources that start from
lower levels to higher levels, are data driven (or forward chained) and those
knowledge sources that take the direction from higher levels to the lower levels, are
goal driven or backward chained.

The construction of the Hearsay system is important, due to its modular architecture
of knowledge sources. There are no direct relationships between the knowledge sources.
The only means of communication between knowledge sources, is the blackboard. This
provided great flexibility during the evolution of the system, when different
combinations of knowledge sources and control strategies were tried (Nii 1986). Many
applications have used this blackboard architecture including HASP/SIAP, CRYSALIS,
TRICERO and ACAP (Alty 1988).

2.6 CONCLUDING REMARKS -

One of the aims of the project was to select an appropriate model of knowledge
representation, that could be used as the basis for developing a parallel language,
suitable for the architecture of the SM. The SM is the name given to a simulation of a
parallel architecture, which was developed prior to the start of this project (Loh 82a,
82b). It consists of a rectangular array of Processing Elements ("PEs"), where each
PE is connected to its nearest neighbour (see chapter 3). Although the architecture has
been modified, it has nevertheless, imposed certain constraints on the selection of an
appropriate knowledge representation model.

This architectural constraint, and the primary decision of not employing
mathematically based representations, has reduced the range of possible options. From
these options, only associative networks; semantic and frame-based networks and,
production systems seem to be the most suitable choices.

Neural nets share the concept of associativity with semantic and frame-based
networks, but the major difference that they have with these nets is with their
hardware characteristics. In neural nets, unlike the SM, only simple PEs with rich
inter-connections are employed. Knowledge is then represented as patterns which are
produced by those inter-connections (Beale 1990). In chapter 3, neural nets are
discussed in more detail.

Semantic networks and frame-based networks share the important characteristic of an
association between every two objects of a particular domain. This association not only
represents the relationship between the two objects, but also provides a direct path
from one object (or concept) to its most relevant associate. These paths can later be
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utilised as directions for propagation, network traversal and communication between
relevant objects in the network.

In production systems there are no direct relations between rules. In each cycle to find
the next appropriate rule, the system has to scan through all the rules. There are
indexing or partitioning algorithms that can be added to the system to reduce the search
space, like the Rete algorithm. Nevertheless, these mechanisms can not provide the
desired explicit relationships, that are freely embedded in associative networks. The
local distribution of knowledge reduces the search space and the amount of
communication. Further, accessing and utilising a separate component (ie index
table), will reduce the amount of parallelism and increase the communication
overheads (Krishnamurthy 1989).

In the SM, with a distributed parallel architecture, one to one mapping of each node of
the associative networks to a PE and the utilisation of embedded relationships amongst
the nodes, is far more feasible than the implementation of a production system.

Another important feature of associative networks is the inheritance of properties. In
this mechanism, the general or most abstract properties of generic concepts can be
inherited by their descendants at lower levels of the hierarchy. Therefore,
"inheritance of properties" provides a distinguishable data economy within the system.

Production systems, however, offer robustness, consistency and modularity. In
addition, production systems have been used extensively in industry, and consequently,
there is a vast amount of empirical knowledge that may be useful in the construction of
Al systems.

Implementing a parallel production system may seem feasible particularly with the
modular characteristics of rules that it offers. But in a comparison of existing
parallel production systems with associative networks, eg semantic/frame-based
systems, one can see that it is very difficult to provide hard evidence of one having
overall superiority. With the Connection Machine (Hillis 1985) and DADO2 (Stalfo
1987) for example, utilising semantic networks and production systems,
respectively, as the knowledge representation formalism, there is no proven
performance test which shows superiority of one formalism over the other.

The implementation of frame-based networks as the knowledge representation
formalism, is probably the best choice in the SM. This is firstly because of the SM's
distributed architecture which is well suited to the distributed knowledge in a frame-
based system. Secondly, a frame-based network offers associativity, locality,
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inheritance of properties, procedural attachments. Thirdly, each frame in the network
can represent a complex concept with all its internal/external relationships. The
study of today's Al tools (Laurent 1988, Chung 1988) highlights the flexibility of
frame-based systems, where each frame can encapsulate different types of information
and is regarded as a hybrid representation scheme. Such systems can embody different
types of representation schemes including production systems, Object Oriented
systems and procedural languages.
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3.0 CHAPTER THREE : PARALLEL ARCHITECTURES FOR Al

3.1 INTRODUCTION

The computer industry has experienced four generations of development, which result
from advancements in technology; from relays and vacuum tubes to VLSI (very large
scale integration). A Cray computer for example, can now perform in the order of 100
million double precision multiplications per second (Hayward 1991). Today's complex
applications require such high performance computers. Some of these applications
include : modeling global weather patterns, analysis of the aerodynamic properties of a
wing, The simulation of sub-atomic world of quantum theory (Tabak 1990).

Artificial Intelligence ("Al") applications also require high performance machines. An
ideal Al machine must be able to explore large multi-domain knowledge bases, and
make appropriate inferences to exhibit intelligence, or perform intelligent behaviour.
A serial exploration of large volume of data will always be limited by the various time
constraints imposed on the system, either externally or internally.

Basic theory in automata shows that, given enough time, a serial machine can, in
principle, compute anything that a parallel machine can do (Nelson 1968, Shields
1987). As long as there is no time constraint for instance, it is certainly possible to
ensure that the travelling sales man will arrive at his destination by checking all
possible paths. Most computations involve searching to find the next appropriate move
(eg in the game of chess), until the ideal situation is reached. In other words, in a
search space that represents the problem, the purpose is to start from a node and try
to get to the goal state. Each time that a move is taken, there would be a new series of
options available to the searching mechanism. Gradually, the number of options become
so great that it is almost impossible to investigate all of them (combinatorial
explosion).

As a result of research in Al (Rich 1983, Schutzer 1987), cognitive science (Simon
1965, Uhr 1980), and other areas (Searle 1984, Appalaraju 1984), it seems that
parallelism may be an alternative to increase the speed and the power of computation.
In spite of optimised hardware/software, such as the development of fast Processing
Elements ("PEs") (Classe 1990), or improved algorithms (Hillis 1986, Markov
1954), the problem's complexity and its sheer size necessitate parallel exploration
of its search space. In order to achieve the ideal speed, it may be essential to exploit
today's technology in a parallel environment. In particular, with recent developments
in VLSI, WSI (wafer Scale integration) and other areas of computer science (Fox
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1986), the possibility of direct implementation of parallel models into the hardware
has greatly increased.

In the Al community, the theory of parallel computation is widely accepted; and one of
the most influential elements in the development of parallel machines has been the
human brain as a model for parallel processing (Albus 1981, Rumelhart 1987).
Researchers like Fahlman (Fahlman 1981), Hillis (Hillis 1985), and the whole
community involved with neural nets (Reilly 1984), for example, have been directly
affected by their understanding of the brain's structure. There are other people whose
understanding of the structure of the brain was based on the more cognitive,
psychological aspects of the brain. Parallel production machines like DADO2 (Stolfo
1985, 1987), or machines whose structure is based on associative nets like semantic
nets (Collins 1975, Bic 1984), are the results of such research.

In the human brain, with its large capacity and large number of relatively slow
neurons (relative to today's circuit's speed), the speed in which knowledge can be
retrieved is very fast (Feldman 1985). This may reflect the fact that knowledge is
highly organised in the brain and is processed in a parallel environment. One
interpretation is that the organisation of knowledge in our brain is based on semantic
coding, which is the encoding of knowledge according to its meaning. In this way of
encoding, knowledge has both explicit and implicit interpretations, and can be
retrieved by traversing through patterns of activity, rather than just returning the
output of a certain location in the conventional computer memory (Beal 1990).

The human brain is believed to have a structure that is in part parallel, and in part
serial, and to contain in excess of 1012 neurons, each being connected to 1000-
10,000 other neurons? (Uhr 1980). A neuron is the basic building block of the
human brain, and propagates an electrical signal along its length and to other cells.
Because of its size and structure, a neuron can sustain only a relatively slow rate of
data transmission, but the sheer number of neurons and their richness of connectivity,
compensates for the lack of speed. Indeed, it is the parallel behaviour of the neurons
that makes the human brain a massively parallel system, and has become a focal point
of Al research (McClelland 1987).

Attempts have been made to replace von Neumann's machine, with its passive memory,
with a variety of architectures, which are perceived by their makers, to imitate the
behaviour of the human brain. One development is the creation of associative memory,
which is a combination of a large number of PEs that interact simultaneously. The

1 It has been suggested that the amount of connectivity in brain, in
comparison to the number of neurons, is very low (Fogelman-Soulie 1990).
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contents of the memory are changed either by forming new hardware connections (eg,
NETL : Fahlman 1979), or by changing the strength of existing connections (see
section 3.41 for more information on neural nets).

Although the computational models vary from one machine to another, they all have to
explore knowledge from a particular domain, perform certain manipulations and
modifications, and finally reach certain conclusions. The structure of knowledge can be
based on a particular mathematical formalism, e.g. Predicate calculus, or can use a
more heuristic approach, such as semantic networks or frame-based networks (see

chapter 2).

In the following sections a brief review of the classification of parallel architectures
is given. After this, there is a discussion of the taxonomy of Al machines, which have
certain characteristics relevant to the Sheffield Machine ("SM"). This is followed by
a discussion of the architectural structure of the SM. The chapter ends with a review of
some of the existing parallel architectures, setting out any comparisons to the SM.

3.2 TAXONOMY OF PARALLEL ARCHITECTURE MACHINES
Machines with parallel architectures can be classified according to the following
criteria :

a) physical structures (Delgado-Frias 1987b).
b) Flynn's taxonomy (Flynn 1972).
c¢) Computational models (Hwang 1987).

In the first classification, there are different types of parallelism that may broadly be
grouped into four categories; pipelined, bus oriented, switched network and
array/tree based machines.

The pipelined system works on the basis of partitioning the tasks into several
independent sections, which are executed one after another for a single task. A number
of tasks may then be executed in parallel, each one requiring successively different
sections of the same pipeline. There are, therefore, a number of PEs employed to
provide such simultaneous execution of programs. A working example of the pipelined
system is the Manchester Data Flow machine (Harrison 1986). Bus oriented and
switched networks, often share the property of having a common memory, which may
be accessed by each PE. Alice (Darlington 1983) at Imperial College is an example.
The fourth type of parallel architectures is the array/tree based machine. The SM can
be classified as a member of this family. In this type of architecture, the number of
PEs and their physical interconnections vary from one machine to another. Thus, any
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member of the family of array/tree based machines, can be associated with one of the
following classes of architectures (these classifications are made with respect to the
number of PEs 'n' employed in the system) :

a) fine-grained architectures; with a large number of simple PEs, eg NETL
(Fahlman 1979), Connection Machine (Hillis 1985), Boltzmann Machine
(Fahlman 1985) with the number of PEs > 10,000.

b) medium-grained architectures; average number of PEs are used, eg SM
(described in detail in the following sub-section), Zmob (Bane 1981) with
100 < n < 10,000.

c) coarse-grained architectures; small number of fairly powerful PEs are used
(n < 100), eg Alice using five Transputers in each PE.

Flynn's taxonomy was based on machines using single or multiple streams of data and
instructions. SISD (Single Instruction, Single Data stream) is for conventional von
Neumann architecture. MISD (Multiple Instruction, Single Data stream) machines
- have not yet been built. In a SIMD machine (Single Instruction, Multiple Data
stream), many processors simultaneously execute the same instructions but on
different data, whereas, in a MIMD machine (Multiple Instruction, Multiple Data
stream) there are several independent PEs, where each PE executes its own individual
data.

In contrast to the above classifications, which were made in accordance with hardware

specifications, the taxonomy of Al machines is made with respect to their
computational models (Treleaven 1986, Hwang 1987). There are three major classes

of Al machines :

1) language based machines; which are themselves subdivided into three groups :
a) Lisp machines (or list processing machines),eg Symbolics 3600 series
(Moon 1985).
b) Prolog machines, eg PIE (Fuchi 1983).
c) Functional programming machines, eg Alice (Darlington 1983).

2) knowledge based machines. This class of Al machines are subdivided into three
groups as the following :

a) Associative Networks/neural networks, eg NETL (Fahlman 1979),
Connection Machine (Hillis 1985), SNAP (Moldovan 1985), Apriary
(Hewitt 1980), Boltzmann Machines (Hinton 1984) and other neural nets
(Aleksander 1990).

b) Rule based, eg DADO (Stolfo 1987), NO-VAN (Boyle 1983).
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c) Object based, eg SOAR (Hwang 1987), FAIM (Davis 1985).

3) Intelligent Interface Machines. In this class, machines are used in Speech
Recognition, eg HEARSAY-Il (Erman 1980), Pattern Recognition/ Image
Processing, eg ZMOB (Minker 1983) and Computer Vision, eg Butterfly
(Harrison 1986).

With this type of classification of Al machines, the SM, would fall into the second
category; Knowledge based machines, and it would relate to the associative networks
sub-division.In the following subsections, this category will be examined, with some
examples.

3.3 KNOWLEDGE BASED MACHINES

The central objective of knowledge oriented machines is to efficiently explore and
manipulate the powerful models employed for knowledge representation. Examples of
these models are; semantic networks, frame-based networks, rule-based systems,
neural networks and object-oriented systems (see chapter 2).

Object-oriented systems, such as SOAR (Hwang 1987) and FAME (Davis 1985), are
characterised by the encapsulation of data together with all the procedures that
manipulate it, into a uniform type; the object. Objects can only interact with one
another by sending messages. Object-oriented‘ systems have strong inner-
relationships, as do frame-based systems. But in a pure object-oriented approach,
data from a frame (eg, slot definition and values) must be kept within the object itself,
and is not accessible from outside. Only the functions and procedures operating within
the object have free access to the data. In practice however, the object-oriented
approach utilises certain characteristics of both frame-based systems (i.e.,
representing objects by frames and performing inheritance operations), and of rule-
based systems (i.e., using rules for inference).

In the remainder of this section, some of the associative network-based architectures;
the SM, NETL system, Connection Machine ("CM") and Boltzmann machine together
with a brief review of rule-based machines; DADO and NO-VAN systems are described.

3.4 ASSOCIATIVE NETWORKS MODELS

In a network of hardware units (Processing Elements, "PE"), there are several ways
to implement associative networks (semantic networks, frame-based networks and
neural networks are regarded as associative networks). These approaches are directly
related to the granularity of objects and the PEs containing them, the objects being
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linked to each other according to their relationships. Here, granularity is used to refer
to the size of objects and PEs that are representing them.

One approach is to represent each node of a network by a simple PE, and use hardware
links to represent the network's connections (eg, NETL). This approach is analogous to
the addressing mechanism used in current digital computers. An address (a pointer) is
used to link a data structure to another data structure. Fahlman (Fahiman 1879,
1981) and Minsky (Minsky 1980) suggested the replacement of addresses by real
hardware connections. This removes the need for an addressing mechanism. Fahiman
proposes a switching net which he hopes will overcome the connectivity problem
(Fahlman 1987).

A second possibility is to employ large patterns of activities (a set of simple PEs with
their physical links), to represent concepts, and data structures to be stored by
modifying the interactions between these patterns (Feldman 1985). In the third
approach, more complex PEs are employed to represent concepts and the relationships
between them can be predefined or configured dynamically (eg, SM and SNAP).

These approaches treat objects in two different ways. In a frame-based system for
example, objects or concepts are represented in symbolic form, whereas in neural
networks a concept is represented as a pattern of activity (Feldman 1985). In symbol
processing systems (eg production systems), the internal structure of the symbol is
thought to be irrelevant to the way it interacts with other symbols, that is, the symbol
has an identity, such as a unique character string. It is then compared to other symbols
to determine whether it is the same or not, and the meaning of the symbol is
determined by certain rules or programs that contain it, rather than by its own
internal structure. In neural networks on the other hand, symbols have internal
structures and interactions between symbols are determined by their internal
structures. This property of neural representation provides distributed control and a
better environment for parallelism which avoids the overheads of an external
controller and internal communications. This concept is highlighted in chapter 6
where the test results show the effect of overheads caused by communications.

3.41 A BRIEF DISCUSSION ON NEURAL NETS

Neural networks refer to a certain class of massively parallel fine-grained
architectures (Feldman 1985, Rumelhart 1987). They use a large number of PEs,
each connected to a number of other PEs. The PEs are very simple and have litile
information stored internally, and are regarded as a kind of short-term working
memory. The long-term storage is accomplished by altering the pattern of
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interconnections among the PEs, or by modifying a quantity called weight, associated
with each connection. This method of connection, as the principal means of storing the
information, has led to it being labelled, by some researchers, as connectionism
(Feldman 85).

In neural computing, the approach is to implement those principles that are perceived
to be the same as in our brains. There is no doubt that the human brain and its
complicated structure is poorly understood. Nevertheless, there is a basic
understanding, at a low level, of how a brain works. There are approximately, as
mentioned above, 1012 neurons in human brains where each neuron has connections,
between 103 to 104, with other neurons (Beale 1990). The neuron is the basic PE in
the brain and form two main types; local processing "interneuron” cells and "output
cells". The interneuron cells have their input and output connections over 100
microns, whilst the output cells connect different regions of the brain to each other,
connect the brain to muscle, or connect from sensory organs into the brain (Feldman
85). Although the basic operation of neurons is clear, on a microscopic level its
operation is complicated and not fully understood (McClelland 87). In figure 3.1, a
representation of the basic features of a neuron is shown.
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Figure 3.1, basic features of a biological neuron.

Note that the diagram shown in figure 3.1, is basic and simple; for a more detailed
definition refer to the following : Beale 1990, Aleksander 1990, Rumelhart 1987,
McClellend 1987 and Feldman 1985. The overall definition of neuron's operation is
given below, which has been adopted from the references given above.

The neuron receives many inputs which are added up in certain ways. The neuron will
fire if the sum of inputs has met the required condition, otherwise the neuron will
stay inactive. Dendrites act as the links through which all the inputs arrive and, are
attached to the soma. The soma is the cell body. In addition to dendrites, there is
another type of link (or nerve process) attached to the soma, called an axon, and this
serves as the output link of the neuron. The axon is electrically active and is a non-
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linear threshold device that produces a pulse (1 Milisec duration). The axon is
attached to a dendrite of another neuron by a synapse. The junction between an axon and
a dendrite is not directly linked. At this junction, a synapse releases a certain chemical
when its potential is raised sufficiently by the pulse it has received from its connected
axon. The chemical released provides a temporary link with the dendrite, and from this
link electrically charged ions flow towards the next cell through its dendrite. On each
dendrite there are many synapses, some of which may be active at a particular time,
and, If the amount of electrical pulses have reached a certain threshold, the neuron
will fire. Note that axons are often absent from interneurons, which have both inputs
and outputs on dendrites.

The most important aspect of artificial neural nets is their learning capability, which
is based on the behaviour of biological neurons. Learning is thought to occur when
changes are made to the connections between cells at synaptic junctions. These
modifications will either reinforce the connection or reduce the coupling effect. One
method of providing this kind of adjustment in artificial neural nets, is the
introduction of weighting, which varies within a certain boundary. The weight at the
higher level of the range represents a stronger connection, in contrast to its lower
level values.

The basic operation of an artificial neuron is to add up its inputs and to produce an
output, if this sum is greater than some value called the threshold value. The neuron
receives inputs via dendrites, which are connected to the outputs from other neurons
by synaptic junctions. At these junctions, the effectiveness of the signals are adjusted
according to the strength of the coupling. The cell body receives all these inputs and
fires if their total is greater than the threshold value.

Inputo
Input1 Ve'i&h‘to
Input2 Vel.ghy
" Yeight2 @
Weightn
Inputn

Figure 3.2, McCulloch-Pitts neuron.

The operation in a basic model of an artificial neuron involves adding up the sum of
inputs and comparing it with the internal threshold level. If this level is exceeded, the
neuron will turn on, otherwise it will stay off. This is roughly the definition of the
model neuron that was proposed by McCulloch and Pitts in 1943. Rosenblatt, in
1962, called these neurons "perceptrons" and pioneered an appropriate method of
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simulating them on digital computers (Rumelhart 1987). Figure 3.2 shows a model
neuron proposed by McCulloch-Pitts.

A learning approach adopted for the type of neuron shown in figure 3.2, is to set up the
neuron with random weights on its input lines. This can be regarded as the starting
state, where the neuron knows "nothing". The object can then be presented to the
neuron (eg; letter A). After adding the inputs and comparing it to the threshold value,
if the result exceeds the threshold, the output will be 1, otherwise 0. It is only in the
case of output being 0 that certain adjustment should be done. The adjustment here,
would be to increase the weights so that when shown a letter A, the sum of all the
weights will exceed the threshold and the neuron will output 1.

The perceptrons were introduced as a single layer neural nets. That is, it has only one
node between any overall input and overall output. There are many different topologies
for the shape of neural nets; feed-forward (associative) nets that includes both
single-layer and multi-layer nets; and feedback nets (Alekssander 1930).

3.42 THE NETL SYSTEM

In 1979, Fahlman developed the NETL knowledge based system, with an architecture
that is classified as a massively parallel fine-grained architecture (Fahlman 1979).
In the NETL system, the semantic network is implemented in hardware and there is no
clear division between the knowledge representation model and its architecture.
However, in this subsection, an attempt has been made to examine the whole system
with the emphasis on the architecture of the NETL system. The architecture is
basically an active semantic network memory; nodes represent concepts, and links
represent relationships between these concepts.

Each element (PE) contains only a few bits of memory. Fahiman suggests that, by
propagating markers through the system, a variety of simple searches, set
intersections, and the inheritance of properties throughout the hierarchy, may be
performed. The NETL system is controlled by an external serial machine of the
conventional type. The knowledge in NETL system is stored not in passive memory
cells, but in the pattern of active interconnections among the PEs.

Fahlman has suggested the development of a one million elements system, where there
are six million link-wires to a possible one million destinations (Fahlman 1985b).
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3.421 THE PARALLEL NETWORK SYSTEM

Fahiman based his knowledge representation scheme on type hierarchies and
inheritance of properties. There are two types of nodes to represent concepts;
individual nodes (INDV-Node) for individual entities, and Type-Nodes for class
descriptions, from which any number of individual copies can be made. Each type node
is associated with ‘a particular set, which itself is represented by an individual node,
known as a Set-Node.

COMMON BUS
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TYPE NODE

B-WIRE

IS-A
LINK

A-YIRE

[susssasssssaasunss:}
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NODE

Figure 3.3, the basic hardware components in NETL.

The basic components of the NETL system are shown in figure 3.3. Concepts are
represented by simple PEs called nodes, and relations among these concepts are
represented by additional PEs called links. The nodes and links are all attached via a
common bus to an external serial computer that plays the role of controller to the
whole system. Serial numbers or unique names are used to represent nodes and links
in the system. The controller can broadcast simple commands to all the nodes and links
or to an individual node or a link by issuing their relevant serial numbers. In return
each individual node or link can communicate with the controller by sending its serial
number. There is a queuing mechanism used which can be employed when more than
one PE is trying to contact the controller, at any time (Fahlman 1985).

Each node contains its serial number, an optional name, information about the type of
concept that it is representing, and a small number of flip-flops which can be used to
mark the node. The number of marker bits was suggested to be 16 (Fahlman 1979),
but elsewhere Fahiman has increased this number to 18 (Fahiman 1985b).

The element representing each link is a simple PE as well. It contains a few bits of type
information that specify the link type, and a variable number of wires that can be
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connected to various node terminals (currently there are 6 wires). In figure 3.3 an
IS-A link is shown; it has type bits indicating that it is of an IS-A type, and two wires
that are connected to nodes in the network; wires A and B are connected to an individual
node and a type node respectively, which can then be read as "individual node" IS-A of
the type "type node."

3.422 CREATING DESCRIPTIONS

A knowledge pattern may be regarded as a description which defines a concept and its
associated properties. This consists of a base-node (an individual node or a type node)
representing the concept, and a set of role-nodes, connected to the base-node by

various links.

To create a simple description, four types of nodes may be employed; a type-node to
define the class, an individual node or role node, and a map node which can be used to
transfer all the definitions of the class to a lower level individual node. An individual
node may be created by finding a physical-individual-node to represent the concept of
that particular Ind-Node, and another node representing the context. Obviously, all the
nodes that define an individual concept are connected to the higher levels of the
hierarchy.

To create a type description, a Type-Node in conjunction with a Set-Node are created.
The Set-Node is created first. This is done by the controller, finding an unused Indv-
Node and then connecting it to the Set-Type-Node. An unused element (a Type-Node)
should be found to create a Type-Node, then connected fo its parent node and the Set-
Node. Fahiman uses statements (for links) to define relationships between concepts and
the information related to them. Some statements are represented as link statements,
others are represented as individual-statement-descriptions which describe an IST-
node (Individual-STatement-node). The statement itself is represented by the handle-
node of the link element or IST-node. As with any other elements used in the system, a
statement can be treated as an object with properties and class-membership of its
own. A statement can have a default value which can be overridden, or have a specific
value which cannot be overridden. All these constraints are attached to the handle node
or IST-node. The functions of a handle node is similar to that of facets in frames (see
chapter 2).
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REAL UNIVERSE CLYDE (INDIVIDUAL NODE)

Figure 3.4, a description for an individual concept; Clyde.

Figure 3.4 shows a description for the famous American elephant Clyde. To create a
description for Clyde, an unused individual node is selected to represent the concept
Clyde. A link element is chosen to represent the link between Clyde and its type-node;
Elephant. Fahiman uses a VC link (Virtual Copy link) to connect an individual node to a
type node which can later be used to inherit the description from the type node
(Fahlman 79). By assuming the concept Clyde exists in the real universe (real-u in
NETL), an existence wire (another link element) is used to connect Clyde to the Real-
universe node.

3.423 INHERITANCE AND MARKER BIT PROPAGATION

Each element has about 15 marker-bits, which are generally used for inference. The
virtual copy (VC) link is one of the link wires which Fahlman uses for connecting two
concepts and the consequent inheritance of properties, from one concept to the other. In
general, VC links may perform two tasks. A VC link copies all the description from the
Type-Node to the lower Type-Node or an Indv-Node. It also connects the indv-
node/type-node to the set associated to the original concept. In other words, the Set-
Node connected to the original type-node would be inherited to the lower type-node or
Indv-Node. Further, properties inherited through the VC link are the role-nodes
connected to the original Type-Node. When any particular information, that is specific
only to the newly created Indv-Node, is added to the system, a map-node is employed,
which represents the new information and the inherited properties (usually map-
nodes are used to transfer the general attributes from higher levels to the individual
node).

Fahiman introduced VC links to connect a child-node to its parent-node and also to
provide a path for the child to inherit description from its parent(Fahlman 79). In a
recent publication he calls such links "IS-A" links (Fahlman 1985b) and defines an
IS-A hierarchy.
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Figure 3.5, an example of marker propagation.

These complex structuring rules allow specific queries to be easily implemented by
marker propagation. For example, when a query "what colour is Clyde " is made, the
controller tells Clyde node to set marker bit M1. In the next broadcast, all the IS-A
links that contain marker M1 on their A wire nodes are instructed to place marker M1
on their B wire nodes (see figure 3.5). In this cycle (or operation), all the nodes that
are one level above Clyde, are now marked. This process is repeated until all the
relevant nodes to Clyde, in the IS-A hierarchy, are marked. The controller then
broadcasts to all the colour-of links with marker M1 on their A wire, to set marker
M2 in their B wire nodes. Finally the controller instructs all the nodes with marker
M2, to report to it via the common bus. If the knowledge has been entered properly
and Clyde has just one colour, then this will apply to just one node, which will report
in.

Set intersection is another method of inference employed in Fahiman's NETL system,
which is similar to Quillian's marker propagation (Quillian 1968). Two markers are
sent down from two different hierarchies to mark the relationship specified in the
query. The controller will then issue a command which asks any relationship
statement, that has marker M1 on one side and marker M2 on the other side, to report
in.

Fahlman uses a very complex knowledge representation formalism, which has a small
granularity in comparison with that of Frames. That is, a single processor represents
a much smaller piece of the overall knowledge. He claims that his formalism may be
used in serial machines, but in a knowledge base of any significant size, propagation
time with such a small granularity might be expected to make access time very low.
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3.43 THE CONNECTION MACHINE

Although Hillis's Connection Machine (CM) was initially designed for Al applications,
its latest version; CM-2, is now available for large scientific and commercial
applications. CM-2 comprises 4K-64K PEs, where the size of memory of each PE 8K-
128K bytes (see figure 3.6).

There are 16 PEs mounted on a single chip, together with a router unit. The router
unit is the basic component in the packet unit communication network, providing
communication between the chips themselves, between the chips and the host (main
controller) via the bus, and between the PEs and the control unit mounted on a single
chip.

There are three levels of control mechanism in CM :
a) the host (a serial machine).
b) microcontrollers, one per chip of 16 PEs.

c) the PEs.
HOST 65538 CELLS
MEMORY BUS 32 MBYTES
MEMORY
CONNECTION
_% MACHINE
7
MICRO
CONTROLLER
INPUT /OUTPUT
500 M BITS/SEC

Figure 3.6, the architecture of the Connection Machine.

All PEs execute instructions from a single stream in the SIMD manner generated by the
micro controller of every chip under the direction of the host. Further, the PEs can
retrieve data from the external memory to perform manipulations, and transmit the
results back to the main memory.

The communications among PEs on a chip are provided by routers (which can also
contact the other routers on other chips). There are three parts to each router :

1) The injection, which transmits new messages into the network.
2) The heart, which propagates messages among chips.
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3) The ejector, which receives and transmits messages to the appropriate PE.
There are also local communications within each chip without involving routers, by
which each PE is linked to its, north, south, east, and west neighbours.

Within the three layers of the CM, there are various types of instructions. Host
instructions, executed by the host, in turn produce macroinstructions, that are
interpreted by the microcontroller to produce microinstructions. Subsequently,
microinstructions are executed by the microcontroller to produce nanoinstructions, to
be executed by the individual PEs.

The initial design of the CM was aimed at a hardware implementation of the semantic
network (Delgado-Frias 1987a). It has turned out now that the resulting architecture
is more general purpose than it was designed for. The CM is mostly used for
commercial and scientific applications such as high speed document retrieval from a
large data base and it has been used for memory based reasoning and natural language
processing (Stanfill 1986, Durham 1987).

With reference to the above executional hierarchies, it seems that the layers are
introduced as a trade-off between the simplicity of each PE's structure on the one
hand, and the communication overheads that have resulted from having a number of
PEs mounted on a single chip on the other hand. Hillis emphasises the high granularity
of the CM. The CM has 4K-64K PEs, with each PE being so simple that it cannot on its
own perform any meaningful computations. Consequently, there are in place a large
number of physical connections, and layers of control mechanisms, which can be
regarded as an extra burden on the overall, and local, control systems.

3.44 THE BOLTZMANN MACHINES

This type of machine consists of massively parallel networks of simple PEs, called
"units" (Fahlman 1985b, Trleaven 1986). These units are logically simple computing
elements, connected to each other with bidirectional links (see figure 3.7).

STORAGE STORAGE

UNIT () LINK | UNIT ()
‘-

Figure 3.7, the basic physical units in Boltzmann machine.

Each link has a weight associated with it, emphasising the strength of the interrelation
that it represents. The links themselves represent a so called "weak" pairwise
constraint between the hypotheses. A positive value weight for a link indicates that the
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two hypotheses support each other, whereas a negative weight suggests that both
hypotheses should not be accepted.

In a Boltzmann machine each unit is either on or off. The resulting structure of all the
units with their on/off states is a machine in a certain state at any time. This state can
be given a value, which is the sum of the weights of all the "on" units in the system,
plus a threshold. This value is termed the "energy" of the system at that particular
state. Thus, by giving the system a set of hypotheses, some units will form particular
states representing these hypotheses. In other words, the system is given a certain
energy. Once the system has gained energy, after certain manipulations and
interpretation of the hypotheses, these hypotheses can become knowledge themselves.

At Carnegie-Mellon University, the initial version of the Boltzmann Machine was
known as Thistile (Fahlman 1985b). In the Thistile system, value-passing and
marker-passing are combined as a single method of communication. Fahiman has
suggested a method of classifying massively parallel machines, by distinguishing the
type of signal that is passed among PEs, as follows :

a) Message passing systems, eg SM.

b) Marker passing systems, eg NETL .

c) Value passing systems, eg traditional analog computers, passing continuous
quantities of numbers.

However, the Boltzmann machine is a special type of neural net and it has some
similarities to the McCulloch and Pits model discussed above. In the network, each
neuron has two states : the output is '0' and the neuron will not fire, or the output is
'1' and the neuron will fire, where the inputs to each node (neuron) are from other
neurons in the net.

3.45 SNAP

At the University of Southern California, SNAP (Semantic Network Array Processor)
was developed to map and manipulate semantic networks (Dixit 1984, Moldovan
1985). The SNAP architecture consists of a 2-D array of homogeneous PEs connected
to each other locally and globally (see figure 3.8). The local communication is based on
nearest neighbour connection and global communication is provided by columns of
buses. Message passing is used for communication, where messages are propagated
through the array using both local and global communication paths (buses). A semantic
network is mapped onto the system with nodes in PEs, and links between nodes stored
in the pointer memory of each PE. SNAP is operated by a front-end controller, which
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also interfaces the system to a host computer. Each PE has a unique address comprising
a pair (row and column), and contains three main parts :

1) Content Addressable Memory (CAM).
2) Processing Unit (PU).

3) Communication Unit (CU).
HOST COMPUTER

4 1
ARRAY
CONTROLLER
¢ 1
N
CELL 11~——__1
Loc
L 12 / AL BUS
\\—‘
5LOBAL BUS ——

Figure 3.8, the architecture of SNAP.

The CAM consists of two parts: cell memory which is the local memory; and pointer
memory, that contains relation names and their addresses. The PU, controls both CAM
and CU. The PU has a set of reduced set of instructions namely AND, OR, SET, etc. The
function of the CU is to perform data transfers between PEs. This is done in two phases:

1) Process-phase, pops the top packet of its FIFO (First In First Out) queue and
places it in the packet register.

2) Send-phase, compares the address to the PE's name and sends the packet to the
destination node.

3.5 RULE-BASED MODELS

In this section, rule-based oriented machines such as the DADO and NO-VAN are
briefly examined. The algorithm for rule-based production systems has been reviewed
in detail in chapter 2. The basic algorithm for the execution of production systems goes
through a three-phase cycle.

First, the condition clauses of all rules are "matched" against the working memory,
which represents the state of the world. One of the successfully matched rules is then
"selected” according to some control strategy. Finally, in the "act" phase, the selected
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rule is fired or executed, and the working memory is updated. Generally, this is done
in serial fashion and is inherently very slow (Gupta 1985). DADO and NO-VAN are
special architectures designed to speed up the execution of rule-based systems.

3.51 DADO Machine
DADO is a parallel, tree structured machine designed at Colombia University (Stolfo
1987).

UPPER TREE
PRODUCTION MEMORY

WORKING
MEMORY

Figure 3.9, the architecture of DADO Machine.

The configuration of the DADO machine is based on a binary tree (see figure 3.9), and
each node is a primitive PE comprising a processor, small local memory (20k bytes in
DADO2 prototype), and an I/O (Input/output) switch. The DADO2 system consists of
1023 PEs, and it is hoped that a full-scale version would comprise a large number (in
the order of thousands) of PEs. The PEs are interconnected in a complete binary tree.

Under the control of run-time software, each PE is capable of operating in two distinct
modes. In the first mode, called SIMD (single instruction stream, multiple data
stream), the PE executes instructions broadcast by some ancestor PE within the tree.
In the second mode, MIMD (multiple instruction stream, multiple data stream), each
PE executes instructions stored in its own RAM, independently of the other PEs. A
single conventional host processor adjacent to the root of the DADO tree, controls the
general operations of all the PEs. The study of DADO2 system performance, and its
speed-up over VAX 11/750 (Stolfo 1987), showed that in the cases of executing
certain production systems with a smaller number of rules, the speed-up was as much
as 31 fold. Further, this study showed that, the more the number of rules are, the
more execution time would be needed.

3.52 NO-VAN MACHINE

NOVAN (or NO-VAN) machine (Boyle 1985), is a large parallel active memory that
consists of PEs, typically between 4K to 32K (with a projected increase to 1
million).There are three types of PEs :
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1) Small PEs (SPEs),
2) Large PEs with disc units,
3) Large PE Network.

LARGE PROCESSING ELEMENT

I—)TO HOST

5
)

| LEAF MESH CONNECTION |

Figure 3.10, the hardware organisation of NO-VAN machine.

The small PEs are configured in the form of a binary tree, whose leaves are also
interconnected, to form a 2-dimensional orthogonal mesh (see figure 3.10). Each
Large PE in the network broadcasts instructions to its SPEs for simultaneous
execution.

The architecture of a SPE consists of 256 Bytes of RAM, a Processor and an /O
(Input/Output) switch. A large PE comprises a 32-bit microprocessor (Motorola
68020) and a sufficient amount of RAM to hold the program (in NOVAN 1, VAX
11/750 is employed as a Large PE). Large PEs are connected by a Large PE network,
with a high bandwidth, low latency two-stage interconnection scheme. The central
point in the design of the NOVAN machine is to provide a single, flexible, general
purpose Al machine.

3.6 THE SHEFFIELD MACHINE

The Sheffield Machine ("SM") was originally designed as a numerical data-flow
architecture (for the modified version see Loh 1982a), consisting of a rectangular
array of PEs with a supervisory system, or controller, being positioned at the centre
of the array and being represented by nine PEs. The whole array is divided into a
number of physical grids, each of which comprises nine PEs, with the top left hand
side PE known as a recipient node. Each PE has four connection wires which are
connected to its four neighbours. There is an extra connecting wire added to each
recipient node, used to connect it to a switching network, which is then connected to the
disk unit. There are two processors in each PE; one is to provide communications with
other PEs and the controller, and the other is used for data manipulations. Another type
of communication is performed between the switching network and the recipient nodes
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to transfer data from the disk to each of the recipient nodes of the grids. The internal
communication between PEs involves message passing using data packets.

Later developments of the simulated SM involved the simulation of the data-flow
architecture suggested by Loh and Brown (Loh 1982b), with modifications to the
system, eg. an actor of a data-flow network was represented by a single PE (Walker
1983), the array size was increased to (99 x 99), and the central grid was
permanently allocated to the controller. The size of the data items were increased from
a single variable to a variable length data structure (Green 1984).

In the further development of the SM, comparison was made with the NETL system
(Fahiman 1979) to see if it was feasible to modify it so that it could be employed in Al
applications. As a result of this modification a working simulation was produced and
the notion of data-flow architecture, using Petri-Nets to represent programs and data,
was replaced by a parallel architecture employing a limited knowledge representation
scheme (Hird 1985). In recent developments on the SM simulation, an attempt was
made to build a distributed supervisory system over the central grid (Hollinghum
1985), and a graphical display of the movements of data packets between the
controller and PEs (White 1986).

2-DIMENSIONAL ARRAY OF PEs

% H \
. SUPERVISORY SYSTEM saax A

%é :---'E':E_E_._._'_ .iii...::-.éii.ili

rnﬂ
-
H
.
=

B 1
OUTSIDE :
WORLD [T e e == J

connection between
recipient nodes and disk-controlier with
switching network switching network

Figure 3.11 the SM architecture at the start of the project.

The version of the simulated SM architecture, at the start of this project (see figure
3.11), can be described as follows :
a) A rectangular array of a large number of PEs (100 x 100), each PE consists of
one communication processor, one arithmetic processor (utilised for
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knowledge manipulations), and two distinct memories for each processor, plus
a shared memory (see figure 3.12).
b) Centralised supervisory system, comprises nine PEs (a logical grid).
c) Bidirectional links, connecting each PE to its four immediate neighbours .
d) Switching network, connecting all the recipient nodes to the secondary storage.
e) Approximately 1100 recipient nodes, each positioned at the top left hand side

corner of each logical grid.
INPUT/

ARITHMATIC OUTPUT
PROCESSOR | o | PROCESSOR
x
%
MEMORY g MOMORY
BUS ° Bus
EAST SOUTH

WEST NORTH

Figure 3.12, a Processing Element in the SM.

The centralised supervisory system is responsible for communication with PEs,
issuing commands to PEs for knowledge manipulation, data packet creation and the
control of their propagation, and the management of external communications with the
outside world. All the recipient nodes are positioned at the top left hand side corner of
each grid and connected to the switching network. Thus, relevant information can be
transferred in parallel from disks to a subset of recipient nodes.

A frame-based knowledge representation language has, since the start of this project,
been developed that is suitable for the SM architecture. In turn, the SM architecture
has been modified and extended to reflect the computational requirements of this
frame-based language.

Figure 3.13 shows the modified architecture with a lattice of buses. In this
configuration, each PE is connected to the four buses that surround it (bus grid).

In each bus grid there are several switches that are used to divert the direction of
communication path. The type of buses used are as follows :

a) Control buses: these are used by the controller to broadcast signals to all the
relevant switches and PEs (the controller uses an address bus, control bus and
an interrupt acknowledge line).

b) Common buses : these are used to provide one-to-many communication between
PEs themselves, and between PEs and the controller.

Page 58



KEY : CONTROLLER

o PROCESSING ELEMENT (PE)

® SWITCH
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WEmN DATA BUS

Figure 3.13, the new architecture of the SM.

There is another type of link; diagonal "row-to-column" link. It is used to join a
horizontal bus to a vertical bus. In each bus grid, there is one diagonal "row-to-
column” link at the top left corner, and another one at the bottom right corner.

Switches are positioned as follows :

1-  There are four switches that are positioned at (NSEW) points of each PE. They
are used to link the PE to appropriate buses.

2- There is a switch positioned on the horizontal bus above each PE. This switch is
used to stop signal being transmitted any further.

3- There is a switch positioned on the vertical bus on the right hand side of each
PE. This switch is used in the same manner as in number 2.

4- There is a switch on each diagonal "row-to-column" link. When this is closed,
an L shape bus will be configured.

By opening or closing appropriate switches, the operation of a parallel dynamic
hardware configuration suitable to the logical configuration of a relevant hierarchy is

Page 59



performed. This is a critical feature, where the time spent on configuration will not
exceed the disk access/transfer time.

3.61 FINAL REVIEW OF THE SM'S PARALLEL ARCHITECTURE
The SM is of type medium grained MIMD parallel machine (Flynn 1972) and may be
classified as a knowledge based machine of type associative mode!l (Hwang 1987).

In the SM, in order to estimate the aggregate memory, the aggregate communication
bandwidth, and the overall performance with respect to the the execution of
instructions per second, the following assumptions have been made :

-The maximum number for the PEs in the array is assumed to be 33 x 33. In the
rectangular array, PEs are connected via tri-state drivers to a lattice of horizontal
and vertical buses. Each PE is assumed to be a 32-bit microprocessor, with 33 MHz
clock speed (1 cycle takes approx. 30 nsecs), and of 16 Kbyte of memory. The
aggregate memory of the SM (distributed) will then be 17 Mbytes (approx). Note that
the memory in each PE can be expanded substantially, eg; 8-16 Mbytes.

-There are approximately 33 vertical buses and 33 horizontal buses, with 33 PEs
connections per bus. The inter-communication is provided by a lattice of 32 bit buses
(with tri-state switches). The communication bandwidth for each PE in the SM with a
33 MHz clock speed, is 2.5 Mbyte/s and the aggregate bandwidth for the whole machine
is 2.7 Gbyte/s.

-The performance of each PE in the SM, with 33 MHz clock speed, is assumed to be 4
Mips. Note that this estimation is for CISC (Complex Instruction set Computers)
chips, where in a RISC (Reduced Instruction set Computers) chip, the time taken for
each instruction may take fewer cycles and thus increasing the performance. The
aggregate performance of the SM is 4.4 Gips

-As mentioned before, the knowledge base of the SM is too large and requires a disk
unit with a large capacity and a very high transfer rate. These requirements can be
achieved by commercially available disk subsystems that operate in parallel. In DIA
(Disk In Array) for example, a number of magnetic disk drives, configured into an
array and run in parallel, achieve a fast access time of 10 mseconds and a high
transfer rate of 36 Mbyte/s (Oyama 1991). This subsystem has the storage capacity
of 15 Gbytes, which can be increased to 120 Gbytes by adding extra disk drives to it. In
chapter 5 disk arrays and their benefits for the SM will be discussed in more detail.
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A switching network may be employed in the SM, which can then be set by the
controller to assist the mapping operation from the disk unit to the PEs in the array. A
128 way dynamic crossbar switch can provide a bandwidth of 100 Mbyte/s (Hayes

1988).

To conclude, looking at the spectrum of granularity, it seems clear that there is a
trade-off between the high granularity (number of PEs) and the complexity of each
individual PE. An example of this is the comparison between the complexity of PEs in
NETL, and that of PEs in NOVAN or Alice machine (Darlington 1983). This may be
reflected in the communication constraints as well, communication being quite
intensive and lengthy between two complex PEs in the SM, and light and infrequent on
the other machines. This notion can be exemplified by message passing in the SM or
SNAP, and bit propagation in NETL. In figure 3.14, a resume of comparison between

the SM and some of machines belonging to the knowledge based stream is given.

Machine | Knowledge Rep.| Communication | Structure  of| Connections
Formalism each PE amongst PEs

SM Frame-based net | Message passing | Complex 1 PE to 4 PEs

NETL Semantic net Marker Passing | Very Simple 1 PE to Many
PEs

Bolts. M| Associative net | Marker Passing | Very Simple 1 PE to Many
PEs

CM Semantic net Bus-oriented Simple 1 PE to 9 PEs

SNAP__ | Semantic Net Message Passing | Simple 1 PE to 4 PEs

DADO Rule-based Bus-oriented Simple Binary Tree
Form

NOVAN | Rule-based Bus-oriented Simple/Complex | Tree Form

Figure 3.14, characteristics of some of the knowledge based machines.

3.62 COMPARISON WITH THE EXISTING PARALLEL MACHINES

In this section, a brief review of some of the parallel machines that have already been
developed and are used in industry is given. The purpose of the information2 given
here is mainly to highlight the main characteristics of these machines that can be
compared with that of the SM.

2 This information has been collected by contacting the manufacturers and
their sale-publication.
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PARALLEL SIMD MACHINES

Machine : AMT (DAP) (Active Memory Technology Ltd)

Type : Fine grained SIMD array

PEs, Number, Memory : single bit processor, 1024-4096, 32-1024 kbit memory
Memory Shared : none

Inter-Comms : Nearest Neighbour and Orthogonal buses

Input/Output : SCSI or DEC link at app. 2 Mbyte/s

Disk connection : direct at 16 Mbyte/s

Performance : 1130 MIPS (integer), 3.1 GIPS (logical AND), 28-108 MFLPS (real)
Operating system and langs : provided by the host machine (VMS or UNIX), Fortran
andC

Host : Vax or Sun workstation

Machine : MasPar MP-1 (MasPar Computer Corporation)

Type : Fine grained SIMD array

PEs, Number, Memory : Custom designed chips with 32 PEs/chip, 1024-16384,
16Kbyte

Memory Shared : none

Inter-Comms : Nearest neighbour and Global router

Performance : 26 GIPS (integer), 1.3 GFLOPS (real)

Operaiing system and langs : ULTREX, extended version of C

Host : Vaxstation 3520

Machine : TMC CM-2 (Thinking Machine Corporation)

Type : Fine grained SIMD array

PEs, Number, Memory : Single bit, 4096-64536, 64-1024 Kbit

Memory shared : none

Inter-Comms : nearest neighbour, router communication based on hypercube
communication network

Input/Output : to disk farm (max 50 Mbytes/s

Performance : peak performance on the largest CM2 is 28 GFLOPS (the highest
recorded : 5.6 GFLOPS)

Operating system and langs : from the host system; UNIX or Lisp, Fortran 90, C and
Lisp

Host : Sun 4 workstation, Vax or Symbolics 3600-series
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SHARED MEMORY MULTIPROCESSORS

Machine : Alliant FX/2800 (Alliant Computer Systems)

Type : Symmetric vector multiprocessor with shared memory

PEs, Number, Memory : i860, 8-28, 1 Gbyte

Inter-Comms : through the shared memory

Input/Output : through LAN

Performance : peak; 1.12 GFLOPS

Operating system and langs : extended versions of UNIX, different version of Foriran,

Ada,C

Machine : BBN ACI TC2000 (BBN Advanced Computers Inc)

Type : Coarse grained, shared memory MIMD

PEs, Number, Memory : Motorola 88100 RISC,16-32, each node has 48 Kbyte of
cache and 4-16 Mbyte DRAM

inter-Comms : Butterfly switch provides point to point inter-processor
communication

Input/Output : 16-32 serial ports and Ethernet

Performance : peak; 960 Whetstone MIPS

Operating system and langs : extended versions of UNIX, Fortran, Ada, C

Machine : Convex C2 (Convex Computer Corporation)
Type : Multiprocessor, tightly coupled shared memory

PEs, Number, Memory : 64 bit, 1-4, 2 Gbyte 64-way max interleaved
Inter-Comms : 64 bus with max 200 Mbyte/s

Input/Output : Ethernet

Performance : peak; 200 MFLOPS on a 32 bit Whetstone benchmark
Operating system and langs : Convex UNIX, CCC, Fortran 77, Ada

HYPERCUBES : DISTRIBUTED MEMORY, MIMD PARALLEL COMPUTERS

Machine : iPSC/860 (Intel Scientific Computers)

Type : Medium grainéd MIMD hypercube system

PEs, Number, Memory : 80680/80386, 8-128, 8-16 Mbyte/node

Inter-Comms : each processing node has a direct-connect message routing chip
Input/Output : SCSI supports seven disk drives with 4 Mbytes/s data transfer rate
Performance : 60 MFLOPS/node, total of 7.6 GFOLPS (peak)

Operating system and langs : host; UNIX, nodes; NX/2, Fortran 77, C and Ada

host : Intel 80386 based PC-type

Page 63



Machine : NCUBE-2 (NCUBE Corporation)

Type : Medium grained MIMD hypercube system

PEs, Number, Memory : 64-8192, Custom chip, 1-64 Mbyte/node

Inter-Comms : each processing node has 14 serial links out of which 13 are used for
inter-comm

Input/Output : max 1024 I/O nodes

Performance : 7.5 MFLOPS/node, total of 27 GFOLPS (peak)

Operating system and langs : Vertex, UNIX, EXPRESS, Fortran 77, C

host : Sun workstation, DEC Vaxstation

TRANSPUTER-BASED PARALLEL MACHINES

Machine : Caplin HEX (Caplin Cybernetics)

Type : Transputer based Micro Vax add-on boards

PEs, Number, Memory : T800s, 8 upward, 64Mbyte/board

Inter-Comms : inter-board communication, peak 3 Mbit/s

Input/Output : Via Q-bus (on board) to Micro Vax

Performance : max 200 MIPS (16 node system)

Operating system and langs : Vax/VMS or ULTRIX, Fortran, C, Pascal, Ada and Occam
host : Vax/Micro Vax

Machine : Meiko Computing Surface (Meiko Scientific Ltd)
Type : Distributed Memory Reconfigurable Multiprocessor

PEs, Number, Memory : T800s/i860, 1-100s, 0.5-32 Mbyte/T800
Inter-Comms : inter-board communication with 20 MHz bandwidth
Input/Output : SCSI interfaces

Performance : 1 MFLOPS/T800

Operating system and langs : SunOS derivative, Fortran, C, Ada, Lisp and Occam
host : Self-hosting or hasted by Vax or Sun

Machine : SuperNode 1000 (Parsys Ltd)

Type : Reconfigurable Transputer network

PEs, Number, Memory : 16 T800s in a SuperNode (min), 16-64, 16 Mbyte DRAM or
256 Kbyte SRAM per Transputer

Inter-Comms : Special switch chip allows full connectivity for 32 Transputers with a
link speed of 80 Mbyte/s

Input/Output : RS232 external communication port

Performance : 100 MFLOPS from a 64 processor system

Operating system and langs : IDRIS, Fortran 77, C

host : IBM PC or Sun Workstation
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A PARALLEL DATABASE MACHINE

Machine : Teradata DBC/1012(Teradata Corporation)
Type : Massively parallel database engine

PEs, Number, Memory : Intel 80286/386, 400 Gbyte
Inter-Comms : Ynet (2 per machine) with total 12 MHz bandwidth
Input/Output : Ethernet

Performance : 300 Transactions/s

Operating system and langs : none (not available to the user), SQL
host : Mainframes (DEC, IBM), workstations (Sun, IBM PC)

VECTOR SUPERCOMPUTERS

Machine : Cray Y-MP (Cray Research Inc.)

Type :A multiprocessor pipelined vector supercomputer

PEs, Number, Memory : powerful, 2-8, 16-128 Mword (shared)
Inter-Comms : interprocessor communication via shared memory
Input/Output : I/O subsystem with 100 Mbyte/s

Performance : 2.67 GFLOPS (8 Processors)

Operating system and langs : UNICOS, Fortran 77, C, Pascal, Lisp and Ada
host : Front-end communication with IBM, CDC etc

The type of PEs used in these machines vary from very simple to very complex ones.
The simplicity/complexity of these PEs is directly related firstly, to their number,
secondly, to the type of memory used in their respective machines. In shared memory
machines, small number of powerful PEs are connected to a single (and large) memory
store. In Alliant FX/2800, Convex C2 and others mentioned above, the number of PEs
vary from 1 to 32, where each PE is extremely powerful. On the other hand, the PEs
used in fine grained parallel SIMD array machines like MasPar MP-1 or CM-2
(connection machine) have a very simple structure and are mostly single bit
processors. This simplicity of PEs is compensated for by a large number of them
working together.

In shared memory machines, all the PEs can access the shared memory and in certain
cases, as well as the shared memory, they have their own private memory. Shared
memory machines are attractive because they are relatively easy to program. Most of
the techniques developed for mutitasking computers, such as semaphores can be easily
applied to shared memory machines. The size of memory in this type of machines is
generally large and can vary from 1 to a few Gbytes (see the specification given
above). One major drawback of shared memory machines is the lack of ability to scale
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up. That is, as the number of PEs is increased, accessing the shared memory becomes a
bottle-neck and will degrade the machine's overall speed. A solution to this problem is
to add a local cache memory to each PE which would contain the commonly used data.

In contrast to shared memory machines, each PE in distributed parallel machines has
its own memory. In machines such as Intel iPSC/2, or the Meiko Computing Surface, it
is common for each processor to maintain its own memory and for the user program to
specifically request information from another node. Accessing memory, however, in a
remote location (node) will then pose a new problem of communication overheads. In
BBN Butterfly, the memory is distributed amongst the PEs and are connected by a
high-performance switching network. But to reduce the communication overhead,
shared memory is emulated on top of the distributed memory architecture by having a
global address-space and the interprocessor communications are hidden from the user.

For a large number of PEs the problem remains of how to link them together.
Connecting them all to a single bus, or through a single switch, leads to the same kind
of bottle-neck discussed above. Similarly, linking each PE to every other is not an
acceptable solution, because the number of connections, and hence the cost, rises with
the square of the number of PEs (Tabak 1990). One practical solution is to connect
each PE to only some of its neighbours. One of the most popular processor
interconnection topologies is the hypercube. Hypercube was pioneered by the CalTech
group in the early 1980s (Fox G. 1988, and Seitz 1985) and employed in the
Connection Machine, iPSC/860 and NCUBE-2. There are several advantages in using
hypercube topology. First, the number of nodes in a hypercube grows exponentially
with the number of connections per node, so that a small increase in the hardware at
each node allows a large increase in the size of the computer. Second, the number of
alternative paths between nodes increases with the size of the hypercube, which helps
relieve congestion. Third, efficient algorithms are known for routing messages
between processors in a hypercube. Finally, today a substantial amount of software and
programming techniques exists for hypercubes (for algorithm and programming
techniques see Fox 1988).

In the SM although the method adopted for the communication is based on message
passing, the physical linkage between the PEs is provided by a lattice of buses. In this
topology, each PE is also connected to its four immediate neighbours. Buses are fast
means of data transfer and their main disadvantage is that, at any time, only one PE can
access a bus. This may be a disadvantage in other architectures, but in the SM, because
of the method adopted for message passing, there would be no contention on each path of
the propagation (see chapter 4 and 5). In the SM, there is no restriction on scaling up
as far as the shared memory is concerned but, there is a different constraint, which is
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the physical limitation imposed by the number of PEs that can be attached to a bus.
Each PE is assumed to have 16Kbyte of memory, which can easily cope with the
applications that have high memory demand. A certain part of the memory in each PE
in the SM is allocated to distributed/replicated inference engine and the communication
protocols. The rest of the memory is then sufficiently used to hold a frame and all its
associated information. The PEs in the SM are powerful enough to perform all the
relevant operations on frames and communicate with each other and the controlier.
But, they are much less powerful than Intel's i860 and much more powerful than the
single bit processor used in AMT (DAP) machine. Like the Teradata (see Teradata
Cormporation above), the type of PE that can be used in the SM can be one of the off-the-
shelf ready to use PEs, like Intel's 80286. This is due to the type and the amount of
information that each PE will process. In Teradata the most common operation is
database transaction. Similarly, the most common operation that each PE in the SM is
involved with is pattern matching. Nevertheless, each PE in the SM would cope with
more computational hungry operations that may be required by the relevant
applications.

The theoretical figures given above for the SM's performance are merely an estimation
to enable the comparison between the SM and some of the existing parallel machines in
industry. The SM's performance should be measured in the number of frames
processed per second. This notion is discussed later in chapter 6, where the test runs
reveal the time penalties associated with frames execution. In a parallel database
machine Teradata the performance is measured according to the number of transactions
per second.
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4.0 CHAPTER FOUR : KNOWLEDGE REPRESENTATION AND ITS
MANIPULATION IN THE SHEFFIELD MACHINE

4.1 INTRODUCTION

The computational model of the Sheffield Machine's ("SM") knowledge representation
language consists of two main components : the knowledge base and the control
mechanism. At the abstract level, the knowledge base describes the state of the world
and the controller, by performing parallel propagation and inheritance, performs the
required computation. At a more practical level, the knowledge base (more precisely,
the appropriate portion of the knowledge base) is distributed amongst the rectangular
array of Processing Elements ("PEs"), each frame being mapped onto a single PE. The
control mechanism is also distributed and replicated. That is, every PE is capable of
performing the relevant manipulation on its contents (a frame) in conjunction with
the information brought in by the packet.

In chapter 2, various models of knowledge representation including associative
networks were discussed. In chapter 3, some of the architectures in Al for parallel
machines, including the SM, were presented. In this chapter, the SM's knowledge
representation language, which includes the knowledge base and its control mechanism,
are discussed. Here, the main emphasis is on the distributed/replicated control
mechanism, and includes methods employed for interrogating the knowledge base where
parallel propagation and parallel inheritance are involved. Note that in this chapter
the discussion on the knowledge base is mainly by way of introduction, and the reader
is referred to chapter 5 for full details on the SM's knowledge base.

4.2 THE KNOWLEDGE BASE

One way of organising real world knowledge is to employ associative networks (Hwang
87). In the Al community, associative networks have been explored extensively
(Quillian 1976, Brachman 1978a, Fahiman 1985, McClelland 1987), and they are
now widely accepted as a powerful model for knowledge representation. An associative
network, as mentioned in chapter 2, consists of a collection of nodes and a set of arcs.
One or more nodes denote an object, which can be a physical object, a situation, an
event, or a set. Each arc represents a binary relationship between two nodes.

Despite the widespread acceptance of associative nets as a powerful knowledge
representation model, the methods of encoding knowledge and labelling arcs are
controversial subjects (Woods 1977, Brachman 1978a, Brachman 1983, Touretzky
1988). One can imagine the associative nets as a spectrum where, on one side,
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knowledge encoding is performed using several nodes to represent an object (Fahiman
1979, Feldman 1985, McClelland 1987). On the other side of the spectrum, all the
déscriptions of an object and of its links with other objects, are encapsulated in a
single structure (Minsky 1974, Bobrow 1985, Moldovan 1985).

It also seems that there is no established formalism by which all the possible relations
amongst concepts can be defined (Brachman 1983b). Within the evaluation of semantic
nets a number of links are introduced by different authors, which generally have the
same implication. For example, IS-A link, is one of the most highly utilised links, in
both generalised and classified hierarchies. It seems however, that this link can not
cope with complex relationships that exist within real world knowledge. The other
links like IS, SUPERC, AKO, SUBSET, etc not only share the same concept as the IS-A,
but also the same inflexibilities (Woods 1985). In KL-ONE (Brachman 1978b) and
NETL (Fahlman 1979) systems, there are sets of links which, according to their
respective authors, are designed to cope with the complexities of relationships that
exist between objects in the real world.

An associative network however, has expressive power to encode any object with both
its explicit and implicit definition (Findler 1979). The explicit data is the object with
its associated information, where the implicit knowledge is represented by the pattern
in which the relationships between objects are given.

Having an explicit relationship between any two objects provides firstly, locality,
which can be fully exploited in a parallel machine. Most of the related information of a
given object is aggregated in a particular area in the knowledge base and relevant
information can be retrieved from short distances within the search spaces. Thus, the
main benefit gained by locality is faster communication with less overheads, and
consequently, reduction of paging of various parts of the knowledge base.

Secondly, the network data structure contains its own embedded indexing system by
means of arcs. These arcs represent the relationships between objects and are also
used as a guidance for exploring the network and message passing. Thirdly, the
associations amongst the frames (nodes) are extremely instrumental in disk storage,
identification, retrieval and mapping operations. Fourthly, these associations are
directly utilised in the hardware configuration. That is, the physical links between the
PEs are set up according to the hierarchical structure of the knowledge base
fragments, which is being mapped to the array of PEs.
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Finally, knowledge is distributed through the network in a hierarchical form, so that
operations such as inheritance of properties provide a powerful inference mechanism
(Attardi 1982, Fox 1986) and data economy.

Note that data economy has a substantial influence on machines with shared memory.
This is because of the limitation imposed by the size of the main memory. In contrast,
in some parallel machines where each PE has its own memory of relatively modest
size (eg, the SM), the emphasis would not be so much on data economy, but on the speed
of processing and communication, and reducing their related overheads.

In the SM, the knowledge, after the mapping operation, is distributed in the
rectangular array of PEs, where each PE contains only one frame. Within each PE, it
may be possible to hold, in addition to a frame, a substantial amount of additional
information. In chapter 6, the test runs and their analysis on the SM's simulation show
that for further utilisation of potential parallelism, there is a need firstly, to reduce
the communication overheads and secondly, for an increase in the speed of frame
processing. Thus, each PE should be able to perform most of the knowledge processing
itself, and has as little communication as possible. The analysis of the test runs also
shows that one of the major constraints on both communication and frame processing,
is the performance of inheritance where properties are inherited from higher level
frames by lower level frames, in a given hierarchy.

It has been suggested that representation of real world knowledge involves a large
number of tangled hierarchies (Fahiman 1987), forming a multi-domain knowledge
base of a considerable size (Lenat 1987). In the SM, the knowledge base consists of a
large number of heavily interlinked domains, where each domain is a combination of
several tangled hierarchies that are taxonomically structured. At the higher level in
each hierarchy, the generic objects contain the general characteristics of that
hierarchy, which can be inherited by individual objects at lower levels. The network
is assumed to enjoy all the characteristics that are known to associative nets. The local
and Qlobal relationships amongst frames, across the entire network are presented by
the 1S-A type link. The local parent-child relationships with other frames are
confined only in a single hierarchy, whereas the connections between two or more
hierarchies are defined as global relationships. In the case of having more than one
parent, the complexities associated with multiparentage and consequent multi-
inheritance arise, in particular, in maintaining the integrity and the consistency of
the knowledge base.

Storing this kind of knowledge in the SM's primary distributed memory, is almost
impossible (see chapter 3, the SM's memory). That is, the number of frames in the
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knowledge base would exceed the number of possible PEs (in a one-to-one mapping).
Thus, because of the shortage of memory space in the SM, it is necessary to store the
knowledge base on disks, as an auxiliary memory (Fox 1986), and later, retrieve the
appropriate portion of it which can be mapped to the PEs. The mapping operation is on
a "one-to-one" basis, which is the mapping of one frame to one PE.

In the following sections an attempt has been made to show the estimated size of a
knowledge base. This involves the calculation of the size of the knowledge base,
including the size of an individual node, number of nodes, and the size of the network.

4.3 SIZE ESTIMATION OF A FRAME-BASED NETWORK

We will now consider the size of a simple concept Arch represented in KL-ONE (see
figure 2.4, chapter 2). There are three concept nodes, three roles, and three SD's
(Structural Descriptions). The total number of links that connect these items is 30,
which is probably typical. Let us assume that on average, each concept role, SD, and
link is represented by a 2 byte word; this leads to an estimate of 40 words in the
concept Arch, and an estimated size of 80 bytes. In figure 4.2, the frame
representation in the simulation is shown. The average size of such frame can be
estimated at 50 words or 100 bytes. Note, that the frames at the lower levels of the
hierarchy are bound to be larger in size, and they tend to take more space than frames
at higher levels.

It is assumed that the knowledge base has a network structure and contains a large
number of domains, eg, the animal kingdom hierarchy can be regarded as one domain
within the network, where each domain consists of one or more hierarchies. These
assumptions are made to find the estimated sizes of different hierarchies within the
knowledge base. Nevertheless, it is very difficult to find the exact size of a hierarchy
or knowledge base before it is fully constructed. For example, in one representation of
the animal kingdom hierarchy, at its second level there are 26 branches, at the third
level there are 78, and at the fourth level 140 branches (Freeman 1985). At each
level it is possible that a node may not have any offspring, for example at the second
level there are some 10 nodes without any offspring. This highly irregular
combination does not assist in the calculation of the size of the hierarchies and
networks. In particular, the four levels in animal kingdom hierarchy are merely
classes and sub-classes of the living things, and one can imagine the full size of the
hierarchy by adding the relevant individual nodes to it. At the present time there
appears to be no appropriate mechanism for measuring the sizes of hierarchies.
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In calculating the size of knowledge bases, another parameter must be considered : the
number of levels of each hierarchy. In the animal kingdom there are four levels
(taking into consideration the living-things or the root-node being positioned at the
first level), which are the combinations of classes, sub-classes and generic names of
all living things. It seems reasonable to purport that in a wide range of applications,
by adding the individual entities to the hierarchy, the number of levels would not
exceed 10 levels. However it has been reported that the telecommunicational based
system, Prestel, is based on a hierarchical structure, the number of levels being
approximately 15 (Patterson 1990).

The estimated size of a tree (or a hierarchy) with ten levels and ten offspring at each
level is about 1,000 million nodes. If the knowledge base contained 1,000 hierarchies
whose nodes are inter-connected with great complexity, there would be 1,000 X
1,000m nodes in the knowledge base. In a frame-based system, each node may contain
about eighty bytes to represent a simple concept (as estimated above), and the
consequent estimated size of a frame-based knowledge base would be
80*1,000*1000m bytes. These estimations support the assumption that a knowledge
base of that magnitude should be stored, at present, on disks, and that certain
mechanisms should be employed to find the appropriate hierarchies and transfer them
to the array of PEs (Moldovan 1986). It should be noted that the number of links
connecting objects are not included in the estimation. The above calculatibn may sound
over-estimated but the example of large size databases like the Domesday system,
supports this estimation (Domesday Project 1987).

The knowledge-base is therefore a separate entity from the SM, and is stored on a set
of disks. In this case, accessing the knowledge base is an important feature of the
system which intends to process general real world knowledge. With the advancements
in technology, it is now possible to store a large amount of data on optical disks (Fox
1986), and there are also systems that can be utilised for fast data transfer
(Lavington 1987, Gray 1987).

Therefore in this system, the knowledge base is partitioned into all the domains that it
contains and will be stored on disks, so that a paging mechanism will be employed to
retrieve the appropriate information. When a query is made to the system, it is
assumed that with the help of an intelligent-front-end (ALVEY 84), the supervisory
system can be guided to fetch the appropriate domain and map it to the system. The
mapping mechanism is on a one-to-one basis, so that each frame would be mapped to a
PE. The mapping and paging operations will be discussed in chapter 5, whereas query
decomposition and analysis will be discussed later in this section.
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4.4 FRAMES STRUCTURE AND THEIR RELATIONSHIPS

In the SM's knowledge base, each node of the network is represented by a frame (see
figure 4.1). Each frame contains a substantial amount of information which is partly
used to define the characteristics of the object that it represents, and partly to
determine its relationships with other frames in the network (eg,
multiparents/parents-child relationships). In addition, certain information in each
frame is used to find appropriate paths for propagation and inheritance operations.

offspring-number : v

ld-slot parents ivi..vn
children ivlovn
level-number v

facet! :vi..vn

Slot-1 facet2 :vi..vn

;'ace(n tvi.ovn
Ind-slots

OBJECT

facet! :vi..vn
facet2 :vi..vn

facetn : vi...vn

facet! :vi..vn
facet2 :vi...vn

facetn : vi..vn

facet! :vi..vn
facet2 :vi...vn

\- facetn : vi..vn

Figure 4.1, a schematic representation of a frame.

Each frame contains three types of slots :

1) id-slots
2) ind-slots
3) inh-slots.

The identification slots (id-slots), are used for data packet/block
propagations/creations, frame identification, and path specification for both
propagation and inheritance operation. The id-slots comprise the following facets:
a) Offspring Number : it represents the number of children of the frame. Later,
this number will be used for data packet propagation.
b) Parents : it specifies the name of the parent, or names in the case of
multi-parents.
c) Children : this facet specifies the children names of the object.
d) Level Number : represents the position of the object within the hierarchy.

Individual slots (ind-slots) define any individual characteristics of the object which
cannot be passed down the hierarchy.
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The inheritable slots of the object are given by inh-slots. These slots have been
inherited from higher level parents and could be inherited by lower level frames
(children) in each hierarchy. All inheritable slots have a number of facets with
values, and some of these facets specify the constraints that are imposed on the slots.
The inheritance operation, for example, would require specifying various constraints
on how a particular property can be inherited. In general, the constraints specified by
the facets ensure the integrity of the knowledge base and each individual frame. This is
similar to constraints imposed on databases for entity/referential integrity (Beynon-
Davies 1991).

In figure 4.2, the same data structure for a frame is given, using complex lists, which
has been developed for the simulation. The first sublist contains the name of the object,
and the following sublists contain the Id-slots, Ind-slots and inh-slots. In figure 4.2,
there are hash numbers associated with each slot-name and the object name itself.
These hash numbers are used for identification at the time of upward/downward
transitive closure involving data packet propagation and inheritance operations. The
hash number is an associated hashing value of a frame name, which at the time of
creating the frame, will be calculated and placed at the appropriate position in the
frame's structure. The mechanism for hashing and the hashing table itself, will be
discussed in detail in chapter 5.

In the example given in figure 4.2, the inheritable-slots section contains four
inheritable slots.
(((1749  a1)
(id_slots((otfspring_no (value 3 ))
(level_no (value 1))
(parents (value none))
(children (value ((681 a11)(781 a12)(881 a13))))))
(ind_slots(al_ind_slot1 (value a1_ind_v1))
(a1_ind_slot2 (value ai1_ind_v2)))
(inh_slots({((1749 1 ) al_inh_slot1)
(value ai_v1)(inh_condition default))
(((1749 2 ) al_lnh_slot2)
(value ai_v2)(inh_condition default))
(((1749 3 ) al_inh_slot3)
(value ai1_v3)(inh_condition default))
(((1749 4 ) ai_inh_slot4)
(value ai1_vd)(inh_condition default)))))
Figure 4.2, The implemented version of frame structure
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The second slot shown in figure 4.3, is another complex list with three entries
(sublists). The first entry contains the name of the slot and its associated hash
number.
( ((1749 2 ) a1_inh_slot2)
(value ai1_v2) (inh_condition default) )

Figure 4.3, representation of a slot with its facets.

The second and third entries contain two facets; value facet and inheritance constraint
facet, respectively. The value facet represents the actual value of the slot, and the
inheritance constraint facet represents the constraint on how the inheritance should be
done.

The enormous flexibilities associated with frames allow further modifications to be
done to each frame. The number of facets, for example, can be increased according to
the application's requirements. If there is a need to specify the maximum and
minimum number of values that a slot can have, an extra facet can be added to satisfy
this requirement.

This internal definition of each object enables the control mechanism to identify the
path required for the data packet propagation and inheritance operations, data packet
creation, identifying the constraints on the inheritance operations, and defining the
individual and general characteristics of an object.

FACETS VALUES
offspring-no.| value
level-no. value
parents value
childredn value
MAIN TABLE
OBJECT-NAME SLOTS FACETS VALUES
ID-SLoT ] slot-1
IND-SLOTS I 11 |1 |
INH-SLOTS
slot-n
SLOTS FACETS VALUES
) slot-1
| (I (I ]
[slot-n | [

Figure 4.4, Low level frame structure.
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In figure 4.4, a frame structure is shown which can be utilised at the implementation
level. The low level data structure of each frame has been designed with only one point
of entry, which is directly related to the nature of one-to-one mapping operation, and
provides an overall consistency in respect of the path of propagation and inheritance.
According to the command issued by the supervisory system, each PE can retrieve any
appropriate set of slots (id-slots, ind-slots or inh-slots) via the main table.
Partitioning the slots in this manner ensures correct and fast retrieval of data.

4.5 CONTROL MECHANISM and KNOWLEDGE MANIPULATION

In serial machines, the whole control mechanism is encapsulated in a single
environment, and to perform any specific operations, certain instructions are serially
fetched from the primary memory and executed in sequence by the CPU (Central
Processing Unit). This concept, in general, is true for all the serial machines which
have a single shared memory, and act in a "fetch/execute" cycle to execute all the
statements defined in a programming language (Appalaraju 1984). In certain types of
parallel machines, on the other hand, the control mechanism is distributed/replicated,
where each PE, independent of the other PEs, can execute instructions in its own
memory (see chapter 3).

In an ideal parallel knowledge base system, the overall controller should provide an
environment where either a novice or an experienced user would easily be able to
interact with the system. Naturally, to develop such an environment, several sub-
fields of Al would be involved. The first component is a natural language understanding
front-end (Moore 1986) which, as an interface between the user and the system (eg
visual and/or acoustic interface), can play an important role.

The interface should be able to parse the user's input and translate it into a relevant
format that is understandable by the system. According to the translated input, the
control mechanism will go through an input-analysis phase as to what actions should
be taken. These actions may include message passing, propagation of information and
performance of inheritance operations.

In the SM, it is assumed that every PE in the rectangular array has a replicated set of
instructions in its own memory, that can be invoked and executed according to the
input data. As well as local control, the SM has its overall controller with the following
tasks :

1 - Interaction with the outside world, which involves accepting queries and
returning the integrated results back to the user.
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Query decomposition.

Supervising the operations involved with the disk unit.

retrieval of the relevant portion of the knowledge base and mapping operations.
Internal communications; communicates internally with all the PEs in the
array by means of broadcasting.

Controls and initiates parallel propagation of data packets (message passing).
Overall control over inference mechanism and knowledge manipulation.

Result integration.

In the simulation, several assumptions have been made which are as follows :

1 -

The knowledge base is a general purpose knowledge base, and consists of a large
number of domains which are heavily interlinked. Each domain, in turn,
consists of several hierarchies which implement the concepts of
multiparentage and multi-inheritance.

The size of the knowledge base is too large to be kept in the system's primary
distributed memory. Thus, a paging mechanism is employed to retrieve
appropriate portions of the knowledge base and map it to the rectangular array
of PEs. Because of the heavy interlinked hierarchies and consequently
multiparentage, this process may be invoked several times after the first
retrieval.

In the simulation, only the main characteristics of the system have been
implemented, showing its response to nested queries. The tasks of complex
interaction with the outside world, mapping, knowledge retrieval and other
desirable features that a general purpose system would require have been
implemented in a full or reduced version.

In general, the model of computation in the simulated SM can be defined as follows :

a)

b)

After the query is made, and according to the information given in the query,
the appropriate hierarchies are retrieved from the knowledge base and mapped
onto the machine's array of PEs. Note that, as mentioned above, while
propagating and performing inheritance operations, it may be necessary for the
controller to retrieve more hierarchies and map them to the array. This is
because of the multiparentage feature embedded in the knowledge base.

A decision based upon the type of query is made as to which type of propagation
and inheritance operations are required.
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c) The propagation starts with the controller sending the relevant information to
the appropriate PEs1. Each of these PEs will then create a data packet
containing the query and other relevant information, which is then passed to
the next level down in the hierarchy.

d) While each packet is being passed down from one PE to another PE, the
inheritance operation, if required, will be performed, and its result will be
stored in both the packet and the PE.

e) The parallel propagation of data packets and inheritance operations continues
until the relevant condiﬁons associated with the type of the given query are

met.

In the remaining sections of this chapter, the main emphasis will be on the inference
mechanism developed for the simulation of the SM. This involves the methods of
propagation; parallel message passing and parallel performance of inheritance
operations and a discussion of the query-system developed for the simulation.

4.6 INFERENCE IN THE SM

The inference facility in associative networks, particularly in frame-based networks,
can be rich, flexible and powerful (Ffuruhawa 1981). The source of this versatility
comes from the special characteristics of frames and their associations within the
network. The main inference mechanism in a frame-based network is based on the
relationships amongst frames, and on the inheritance of properties. At the higher
levels, in each hierarchy, generic concepts define the general properties which are
passed down to the frames at the lower level. Through these transactions, inferences
are made. Further inferences can also be made that are based on the hierarchical
relationships amongst the frames.

A frame in the network can contain different types of information, including
procedural and declarative knowledge (Winograd 1985). Rules, for example, by
referring to the frame's slots, can be used to reason about certain characteristics of
that frame. If an application so requires, one can increase the depth of inference in the
system by employing the rich facilities that frames offer. In most of today's Al tools,
frames are used as the basic representation scheme (IntelliCorp 1986, Clayton
1987, Laurent 1988).

1 Here, the appropriate PEs are those which contain the injection points
that can be root nodes or any other frame at higher levels of every relevant
mapped hierarchy.
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The inheritance of properties and consequent inferences rely quite heavily on matching
operations. A small portion of the knowledge structure is constructed according to the
external query, and matched against the knowledge base to see if such an object exists
(Barr 1981). During this process the control mechanism may deduce that the new
knowledge structure should be added to the knowledge base. The Sniffer system, by
Fikes and Handrix, is an example of a network deduction system based on matching
(Ringland 1989). Nevertheless, in certain types of associative networks, rather than
just relying on matching as the basic operation for inheritance, additional methods
have been employed. Spreading activation in Quillian's TLC (Quillian 1968), and VC
links in NETL (Fahlman 1979) are two examples of such methods (see chapter 2 & 3
for TLC and NETL respectively).

These extra mechanisms have emerged along with the new developments involving
parallel machines, where in some cases, the knowledge and control are distributed (or
replicated). Some of these machines, like SNAP (Dixit 1984) and the SM, have
distributed memory which houses the knowledge according to its predefined structure
(eg, one frame/PE). The inheritance of properties and consequent inferences in such
machines will, therefore, tend to be different to that of serial machines. In serial
machines, the execution takes place in sequence and there is considerable restriction
and complexity imposed on the system by the shared information. In parallel machines,
on the other hand, the emphasis is shifted onto reducing the communication overheads
by avoiding shared information, finding appropriate methods for propagation, message
passing, inheritance and inference making.

In the following subsection, there is a discussion of a new approach implemented in the
SM system which involves parallel propagation of data packets, parallel performance
of inheritance of properties and parallel matching operations.

4.61 PARALLEL PROPAGATION OF MESSAGES

In the SM system, the knowledge base is hierarchically structured so that the
properties of generic objects at higher level of a hierarchy can be passed down to more
individual objects at lower level. The mechanism for passing such knowledge from a
frame to another frame in each hierarchy, is known as inheritance. A frame in the
network can inherit a slot, slot-values, procedures, inheritance constraint and null
(ie no inheritance). In the case of multiple inheritance, a frame receives properties
from more than one parent, which can be anywhere in the knowledge base. Local
multiparentage involves parents in the same hierarchy; whereas a global parent is a
frame from another hierarchy.
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As a result of performing inheritance in the SM, inferences are made. In order to be
able to perform inheritance operations, and consequently, inferences, relevant
information should be propagated through the SM's array of PEs. Any method that is to
be developed for propagation must bear all the complexities involving the above
operations, and at the same time, must be as efficient as it can be. In a system
communication of this type, the most essential element is the speed of communication,
despite the size of messages and their asynchronous behaviour. The information and
messages are continuously updated and accumulated as the result of inheritance
operations.

In the test run analysis of the SM, in chapter 6, it is shown that one of the most crucial
aspects of parallel processing is to reduce the communication overheads. The
communications in the SM system involve the controller and all the relevant PEs in the
array. The controller broadcasts information to PEs via a set of buses, and the PEs
communicate with each other and the controller, via the same media (see chapter 3).
This is an important part of the system, where all the potential parallelism could be
fully exploited, otherwise the system will fail to be cost effective.

The propagation of messages involves data packets which contain information that are
initially sent by the controller, and then passed from one frame to another within the
array of PEs. While these packets are being propagated, as a result of matching and
inheritance operations, their contents are updated. Thus in the SM, data packets
provide two important services : communication and knowledge manipulation.

Knowledge manipulation is the term used to describe tasks such as pattern-directed
searching, and adding to, deleting or modifying the knowledge-base (Gray 1987).
Pattern-directed searching, in our model, is based on propagation of data packets
through the hierarchical relationships (paths). In each hierarchy, each frame is
associated with its ancestors and descendants, except the root-node which is connected
only to its descendants. These associations, or in this case, paths, are the directions
that the propagation will use. In the network of PEs, while data packets are
propagating, at each node (PE) the relevant contents of the incoming data packet are
matched against the appropriate parts of the frame residing at that node.

After the controller -according to the given query- has identified, retrieved and
mapped all the appropriate hierarchies to the array of PEs, it initiates the propagation
by sending the query-frame2 to the injection points. The injection points are those
PEs which contain the frames representing the root-nodes of all the relevant

2 The query-frame is a data structure similar to a frame that contains the
information given by the user.
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hierarchies. Each of these PEs creates a data packet containing the query-frame and
other relevant data that they have received from the controller. In each hierarchy, the
data packet starts moving down from the root-node and will be replicated at each frame
with children, one copy being sent to each child. Figure 4.5 shows the propagation of
messages starting from the root-nodes.

Root-Node Root-Node Root-Node

Figure 4.5 Data packet propagation.

This operation continues in parallel at each branch in each hierarchy, until the
required conditions are met.

This method of propagation utilises the potential parallelism in the system,
particularly where the hierarchies are bushy and the number of levels is small. As the
inheritance and matching operations are performed from the higher level to the lower
level of all the hierarchies, the whole process of finding a solution to a given query
will necessarily go through a number of cycles. In contrast to serial machines, the
process of exploring a large volume of data can be reduced to a few cycles, which are
the same in number as the maximum number of levels in a given domain. It is clear
that all the hierarchies in a knowledge base representing real world information will
not have the same number of levels, but it has been suggested that the maximum
number of levels would not exceed ten (Fahiman 1985, Walters 1988).

Nevertheless, the communication overheads caused by data packets moving down
hierarchies, should be carefully monitored. The size of each packet and the consequent
time penalty caused by transferring these packets down the hierarchies are important
issues. In the simulation, with the aid of upward pointers, the inheritance operation
will be performed only on appropriate frames and their slots. The result of this
optimisation is that the size of data packets is reduced, which ultimately will result in
a reduction of transfer time.

Let us summarise the main characteristics and activities invoived in this type of
propagation. The propagation begins by data packets moving down from the root-nodes
(or injection points) of all the hierarchies that have been mapped to the array. Each
packet contains the query-frame and other necessary information and while moving
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down, as the result of matching and inheritance operations, information can be deleted
from, or deposited in, the packet. Thus, a particular frame may inherit some values
for its slots and/or at the same time it may have some information which can be
inherited by lower level frames. All the packets at each stage of propagation will
contain the most updated data and, before moving down to the next level, their contents
will be copied and stored in the PE that contains the relevant frame. Thus, each packet
at any stage of the propagation (or cycle), contains all the inherited information from
higher levels and each PE has a copy of it. This information can later be used by the
controller or even by the user if any queries are made concerning that frame. Note that
these operations are performed in parallel, level by level in each hierarchy, involving
all the relevant PEs in the array.

The strategy used in this type of propagation can, in general, accommodate all types of
queries. All the queries developed for the SM utilise this method of propagation, which
offers the flexibility required for a general system. In this system, the structure and
the functions of the controller are made simpler, and the emphasis and the
responsibilities are shifted onto the array and all the PEs involved. In a parallel
environment, this is an important issue, where the task of resolving a problem is
given to a parallel distributed system rather than to a single control mechanism.

4.62 PARALLEL INHERITANCE OF PROPERTIES

It was mentioned that the propagation in the SM starts after the controller has located,
retrieved, and mapped all the hierarchies relevant to the given query. The controller,
by checking slots of the query-frame against its original version from the knowledge
base, determines the injection points in all the hierarchies3. The injection points are
the frames residing at the highest points in each hierarchy, from which the query-
frame is inheriting properties. The parallel propagation starts by the controller
broadcasting the query-frame to every PE that contains an injection point. Each of
these PEs then creates a data packet which includes the query-frame, and after
performing initial inheritance and matching operations, sends it down the hierarchy.
While each data packet is moving down, at each level on each frame, the inheritance of
properties and matching operations are performed.

Each inheritable slot in a frame in the knowledge base has two facets. The first facet
represents the value of that slot and the second facet defines the inheritance constraint
on how the value should be inherited. There are four different types of inheritance

3 In some of the queries available in the SM the frame-name may be absent.
The controller then starts the propagation from the root-nodes of all the
mapped hierarchies.
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constraints; default, union, intersection and override. The default constraint allows the
inheritance of slot/values. The union constraint requires the inherited slot/values
from one or more parents to be combined with the existing ones (without any
repetitions). The intersection constraint will allow only the common elements of
inherited properties from more than one parent to be inherited. The override
constraint allows null inheritance, which provides exceptions that add to the
flexibility required for representing real world knowledge.

There are different methods for how and when the inheritance operations should be
performed. The full inheritance operation can be performed while the knowledge base
is being created. Another option is to perform the inheritance at run time (or query
time). This option will mainly involve default reasoning, because if there are going to
be any exceptions (eg override), the user has to intervene to modify the default values
while querying the system. The third option is to perform part of the inheritance at
assert time and the rest of it at run time.

In the SM, the ADT4 (Application Development Tool) is used by the user to create a
knowledge base. For a newly created frame, all the slots from higher level frames will
be automatically inherited on a default basis. The user can then make the appropriate
modifications as to what slots and under what inheritance constraints they should be
inherited. Further, the user can add some inheritable slots to the frame which will be
inherited at lower levels of the hierarchy. Thus, at the time of knowledge base creation
(or assert time) in the SM, a semi-inheritance operation is performed by the user's
interaction. In this operation each new frame will inherit only those slot-names that
the user has decided are useful, and the values of those slots will be inherited at run
time, when the user makes a query.

The mechanism used for the inheritance operations in the ADT is exactly the same as
that used for inheritance operations at run time. Also, in both cases (knowledge base
creation and query time), all the relevant portions of the knowledge base are present
in the system or will be mapped as soon as they are required.

Another complexity involved in parallel inheritance operations is, how should frames
at lower level inherit slots and their values from higher level frames ? And, how does
the distributed/replicated control residing in each PE determine the coupling of
appropriate slots and their values ?

4 The operations of the ADT are discussed in chapter 5.
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In figure 4.6 for example, the frame "lan" should inherit all the properties from
"Human", "Adult-Male" and "Married-Adult-Male". This concept can be made more
complicated by assuming that the frame "lan" inherits properties from hierarchies
other than its original one. This is also shown in figure 4.6, where "lan" has a car of
type BMW 525e and plays sports of type volleyball.

Sports
Group Individual
Sports Sports Mercedes
Volley ba]]\ 450SL
Footb all 525s .

Jane Sue lan Jon

Figure 4.6, fragments of three different hierarchies.

There are two alternatives to determine how a frame can inherit its appropriate slots
and their values. The first alternative is to perform inheritance by default; ie, frames
at lower level will inherit every properties from its ancestors. In the second
alternative, the system allows each frame to inherit only specified properties.

The first alternative imposes simplicity as to how the inheritance operation should be
performed. That is, the only inheritance constraint that can be implemented is the
default inheritance, which in representing real world knowledge may cause severe
limitations. Having default inheritance only, will allow the system to be simple and
limited where an inheritance operation will be performed for every slot that a frame
can inherit. There would therefore be no need to assign hashing values for each frame
and its inheritable slots (see figure 4.7), to perform the coupling operation. The
major limitation in this method is that exceptions within individual frames cannot be
represented. In the example above, "lan" may inherit all the properties of being a
sportsman by playing volleyball, having a BMW but by being divorced will threaten
the consistency and integrity of the knowledge base. In such a knowledge base, there is
no provision made for dealing with the exception, which in this case is being divorced.
The default assumption is that whoever the person is, as long as he is an adult married
male, he will have a wife with some name. Thus, the simplicity provided by default
reasoning creates uncompromising problems for the knowledge base including
inconsistency and incorrect representation.
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In contrast, the second alternative provides better flexibility and more facilities,
while adding to the complexities of the system. In this alternative, there are hashing
values that are used to provide correct coupling between a slot and its value. The
advantages and disadvantages of this kind of implementation are as follows :
- Advantages :
Correct and easy coupling between a slot and its value.
Ability to include different constraints on what to inherit.
Ability to provide exception whenever is needed.
Ability to increase the efficiency of the system by optimising the amount of
inheritance operations performed in each PE.

- Disadvantages :
Extra complexity, resulting from the development of hashing algorithm.
Embodying the hashing values in each frame in the knowledge base.
Increase in size of each frame in the knowledge base.
The danger of being forced to utilise shared information.

By examining these two methods of performing inheritance operations, it seems the
most suitable method is that of the second alternative. That is, there should be some
additional information in each frame which enables the inheritance mechanism to
effectively find appropriate slots and their matching values. This contradicts in part
with what was said in chapter 2, by claiming that inheritance operations provide data
economy. But, since we are dealing with a parallel machine with distributed memory
where each PE has a large enough storage to hold a frame with its full additional data,
the contradiction can be ignored.

In the SM system, frames are regarded as the building blocks of the knowledge base.
Each slot in a frame contains the slot-name and two facets to define the inheritance
constraint, and the value of the slot, respectively. Associated with each slot-name
there is a hashing value of a frame from which that slot has been inherited. In figure
4.7 an example of a frame is given.

(({(H-No2  Adult-Male)
(id_slots ((offspring_no (value xx2 ))
(level_no (value xx2))
(parents (value (H-No1 Humany}))
(children (value ((H-No5 Married-A-Male)........ wm)

(ind_slots (ind_slot1 (value ind_v1))
(ind_slot2 (value ind_v2)))

(inh_slots  ({(((H-No1 1 ) date-of-birth) (value nil) (inh_condition default))
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(((H-No1 2 ) place-of-birth) (value nil) (inh_condition default))

(((H-No1 3 ) no-of-children) (value nil) (inh_condition default))

(((H-No1 4 ) occupation) (value nil) (inh_condition default))

(((H-No2 1 ) Wife-name) (value nil) (inh_condition default)) ))
Figure 4.7, an example of a frame in the knowledge base.

In figure 4.7, a frame is shown with all its three groups of slots. In id-slots, the
frame's parents and children names with their associated hashing values are given. In
this frame there are additionally 5 slots, four of which have been inherited from its
parent : Human. The last inheritable slot is to be inherited by Adult-Male's
descendants. All the inheritable slots, whether they are inherited from higher level
frames, or are to be inherited at lower levels, have associated with them a hashing
value of the frame of their origin. The frame in figure 4.7 is a generic frame, which
means its slots are general properties for its descendants. Thus, those slots usually
have nil-values and frames at lower levels will have individual values for these slots.

Another important issue is whether the value inheritance should be from the slot in
the original frame, or from a frame at lower level, where some modification has been
made to it (Brown 1988). In other words, should the pointer (hashing value) point to
the frame where the original slot is being inherited from, or should it be pointing at a
frame incurring the most recent modification ? This is an important issue, since these
points will be used to inject data packets, to start the propagation and perform
inheritance and matching operations.

Target-Node

Figure 4.8, an example of upward pointers.

In figure 4.8, a target-node (query-frame) is shown in a small fragment of the
knowledge base. The hashing values (or upward pointers) associated with each slot
shown in figure 4.7, are represented by upward arrows in figure 4.8. These arrows
are pointing at frames from which the slots for the target-node have been inherited.
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The injection points, as mentioned above, are important because, firstly, they
represent the starting point for the propagation, and secondly, they affect the way that
the propagation of messages is conducted.

Alternatively, the propagation can start from the root-node of each relevant hierarchy
ignoring the injection points.

It was mentioned that the propagation will go through a number of cycles, where in
each cycle, relevant inheritance and matching operations will be performed. The
completion of all the cycles may be crucial, so that the requirements set up by the
query can be achieved. Thus, the time taken for the whole propagation will be as long
as the time taken for the longest cycle. Therefore, whether we choose the first or the
second option, it may be possible that one of the injection points is the actual root-node
of one of the relevant hierarchies. This means that, in spite of early completion of
other cycles, for the propagation to end successfully we must wait for the longest
cycle. If this is the case, then the time and effort spent on determining the injection
points, and on other relevant computations, has been wasted.

In figure 4.8, for example, if the controller initiated the propagation by injecting
packets at nodes numbered 1,2,3,4,5,6,7,8 and 9, the target-node will receive
packets from nodes 8 and 9 much earlier than, say, node 1 and it will still have to wait
for the packets from other nodes in order to make any conclusions.

4.7 QUERIES

Queries are the means of providing information retrieval through interaction between
two different entities : human to human, human to machine etc. In natural languages
for example, queries are complex and mostly implicit, and the difficulties lie in
decomposing them into their most elementary form (Schank 1972, Woods 1978). In
computerised systems on the other hand, the queries tend to be simple (Deen 1985).
Nevertheless, there are query languages developed for databases and expert systems
providing a wide range of different queries (Date 1984, Forsyth 1985). In database
systems queries are used for information retrieval®, whereas in expert systems, as a
result of querying the system, certain modifications including additions and deletions
can be made to the knowledge base (Hays-Roth 1983, Jackson 1990). This is
equivalent to the DML (Data Manipulation Language) used in database systems (Date
1986).

5 Most of the query languages used in today's databases, as well as data
retrieval, provide added facilities for data-manipulations.
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In knowledge base/database systems, a query is a statement requesting the retrieval of
information from a bank of data- databases or knowledge bases (Frost 1986). Broadly
speaking, there are two types of queries : procedural and non-procedural '(or
declarative). Procedural queries involve the specification of what data is required and
how it should be retrieved; whereas in non-procedural queries, it is sufficient only to
ask for what data is needed and the system itself will perform the retrieval operations
(Benoit 1986).

In sophisticated knowledge base/database systems highly advanced graphical
environments have been developed to provide better interactions between users and the
system (KEE, ART etc). Facilities are also provided for the translation and
decomposition of the user-queries into forms specific to the internal structure of the
system. In large knowledge base/database systems, as the knowledge/data is stored on
disks, an important role is given to different mechanisms for identification and
retrieval of relevant information from the appropriate knowledge base (or database).

Applications involving knowledge base systems include interpretation, prediction,
diagnosis, design, planning, monitoring, debugging, repair, instruction, control and
many others (Hayes-Roth et al. 1983), most of which engage in a dialogue with the
user. The system may suggest options based both on the knowledge that it possesses and
the data given by the user. All the interactions can be either user initiated or computer
initiated (Jonson 1988). MYCIN for example, interacts with the user by starting with
a general set task like "compile the best therapy regime for this patient". Following
the initial action, the system requests input that will enable it to make the initial
inferences. Further inferences can be made by further requests for input until the
task is accomplished (Clancey 1984). In the user initiated mode, computer systems
are restricted only to the user's request. The accuracy of any conclusion or
recommendation reached by the system is influenced by the amount of data provided by
the user, eg programs in a high level language like Pascal or Lisp.

4.71 DIFFERENT QUERY LANGUAGES

Today's Al based systems or database systems, are still limited to a small set of
queries. These queries can be made through very high level languages, which describe
retrieval operations and data manipulation involving insertion, deletion and
modification. These facilities are embedded in languages like SQL : Structured Query
Language, QBE : Query By Example, (Date 1986), TellAndAsk (intelliCorp 1986),
rule-based manipulation in ART (Clayton 1987).
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In database systems, the software is built on an underlying data model. There are three
fundamental database models : the Hierarchical model, the network model (CODASYL)
and the relational model. In the hierarchical model data is organised hierarchically in
relationships of ownership. In the CODASYL model, the concept of hierarchy is extended
into the the concept of a network. Data redundancy and detailed navigational problems
are two major set-backs with the hierarchical and network models respectively (Date
1986). In contrast to both these models, the relational model has a sound theoretical
basis and thus has gained some supremacy.

In both network and hierarchical databases, the retrieval and update languages (DML)
tend to be procedural. In other words, the propagation is explicitly navigated by the
user's program rather than by stating the properties of the data of interest
(declaratively). In a declarative system, such as a relational database, the Data
Manipulation Language is a derivative of relational algebra or relational calculus. in
these languages the operations are specified in terms of names and values only.

One of the most utilised query languages in database systems is SQL, which is
fundamentally a query language based on the relational calculus. It is a declarative
query language in contrast to procedural query languages based on relational algebra.
In other words, in SQL the user will only need to specify the problem and the method of
how to solve it will be left to the underlying layers of the system. It should be
mentioned that SQL is not simply a query language, and it is becoming the standard
interface to relational and non-relational database management systems (Beynon-
Davice 1991). There are three major parts in SQL : DDL (Data Definition Language),
DML (Data Manipulation Language) and DCL (Data Control Language). These
components of the SQL are used for data/table creation, data insertion, deletion and
integrity maintenance of tables and their components, and data retrieval.

Although SQL has a data definition and data control facilities, it was designed primarily
for data retrieval. The extraction is accomplished by combining select, project and
join operators of the relational algebra. Simple selection can be performed as follows :

SELECT <attribute-1 name>, <attribute-2 name>, ........ , <attribute-n name>
FROM <table name>
WHERE <condition>

In SQL, the structure has the ability to nest queries in select statements. For instance,
to find out who earns more than Smithy, we could write :

SELECT employee-no, name

FROM  employee
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WHERE salary > (select salary
FROM employee
WHERE name = 'Smithy')

In the nested queries in SQL, the innermost query is evaluated first .

The join operations in SQL are performed by indicating common attributes in the
where clause of a select statement.

SELECT salesmen-no, salesmen-name, customer-no, customer-name
FROM  salesforce, customers
WHERE salesforce.sales-area = customers.sales-area

AND customers.sales-area = 'Sheffield’

In the example above, the select statement extracts data from the salesforce and
customers tables of relevance to salesmen working in the Sheffield sales area.

In Al based systems, mostly knowledge based systems, because of the small size and
narrowly defined application domains, the queries tend to be specific and limited®.
But, it is now widely accepted that for a knowledge base system to be both
commercially and scientifically effective, it should possess a large amount of
knowledge. This type of knowledge base system would also require computational
properties that the previous systems could not deliver. Fahlman suggests six
computational operations which he believes any large knowledge base system should
support (Fahlman 1987). These operations define the computational ability of an
intelligent system, which can provide facilities to develop complex queries.

The computational operations are as follows :
a) Set intersection.
b) Transitive closure.
c) Context and partitions.
d) Best-match recognition.
e) Gestalt recognition.
f) Recognition under transformation.

These computational opertations are, in theory, suitable for parallel machines, which
should speed up their execution. To do this, the machine must be able to cope with a
large search space and be armed with a powerful reasoning mechanism.

6 The reason for this is the lack of power and resources (see chapter 2 for
more detail).
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Lavington suggested a set of operations for associative nets which include both
knowledge manipulation and knowledge retrieval (Lavington 1987). These operations
include insertion, deletion, pattern-directed search, path traversal and
upward/downward transitive closure, and are implicitly or explicitly related to the
queries available in a system. A query, for example, may require the recognition and
retrieval of certain information which involves pattern-directed matching and
transitive closure.

In the KEE system (see chapter 2), there is a query language called TellAndAsk, which
provides essentially three basic functions : ASSERT to create a fact, RETRACT to
remove it, and QUERY to extract knowledge from the knowledge base. The visual
interface provided by the KEE system offers two different types of formats for
knowledge manipulation in TellAndAsk : an English-like form and a prefixed form.

KEE's TellAndAsk is similar to SQL. By using TellAndAsk, the user is able to add new
info