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Abstract.

This thesis is concerned with the extension of classical Titchmarsh-Weyl theory
to non-selfadjoint Sturm-Liouville operators on the half-line. We introduce the
thesis with some mathematical background which is needed for the development
of the main results. This includes a brief summary of relevant aspects of Lebesgue
measure and integration, analytic function theory, unbounded operator theory,
and selfadjoint extensions of symmetric operators, and is given in the first two
chapters. An introduction to Weyl theory and related topics for the self adjoint
case can be found in Chapter 3. The main work on non-selfadjoint second or-
der differential operators associated with the equation —y” 4 gy = Ay begins in
Chapter 4. We first describe Sims’ extension of Weyl’s limit point, limit circle the-
ory to the non-selfadjoint case, and some later generalisations by McLeod. Some
standard results of Titchmarsh are then extended from the selfadjoint to the non-
selfadjoint case and an important result on the stability of the essential spectrum
of a non-selfadjoint differential equation of form —(py')'+qy = My is also obtained.
In Chapter 5, we extend some results of Chaudhuri-Everitt to non-selfadjoint op-
erators in which the potential satisfies the condition lim,_,., Sq(z) = L. Some
worked examples at the end of Chapter 5 show that in certain cases where there
is a complex boundary condition and real coefficient, or a complex coefficient
with real boundary condition, some complex eigenvalues can be explicitly calcu-
lated. Finally in Chapter 6 we describe a physical problem which gives rise to a

non-selfadjoint eigenvalue problem on the half-line.

Keywords: Differential operator, Non-selfadjoint, Spectrum, Eigenvalue prob-

lem, Weyl m-function.
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Introduction

The theory of singular differential operators, which is a very familiar field of work
amongst physicists and mathematicians, was founded in 1909 by Hermann Weyl,
who published a famous paper entitled ” Uber gewdhnliche Differentialgleichungen
mit Singularitdten und die zugehdrigen wilkurlicher Funktionen” [50]. After
the fundamental work of Weyl in 1910, there was no further work in this area
until 1926, when Erwin Schrédinger published two papers ”Quantisierung als
Eigenwertproblem” [41], which are known as the mathematical foundation of
Quantum Mechanics. He obtained a stationary equation for the electron which

is known as the Schrédinger wave equation
~AYp+Vip =Xy

where 1 is the wave function, V is a potential function and X is the energy level
of the particle.

Further development of the theory of singular differential operators was due to
researchers who were interested in working on the problem of determining the
energy spectrum of concrete systems. In quantum mechanics in particular in-
vestigation of the spectrum of the one dimensional Schrédinger operator made
further progress during 1946-1952, due to A. Wintner, P. Hartman and K. Put-
nam. The theory was continued by R. Phillips who considered boundedness of
the imaginary part of the potential ¢ and determined the behaviour of the spec-
trum and resolvent when a real potential ¢ is associated with a small complex
perturbation [36]. J. Schwartz considered the same problem as Phillips but with
an extra condition on the potential ¢, giving singularities for ¢ at both end points
of the interval (a,b) [42].

There is an extensive literature concerning one dimensional Schrédinger operators
22z + v which are self adjoint differential operators of Sturm-Liouville type. E.
C. Titchmarsh developed the theory of self adjoint singular differential operators

from the point of view of complex analysis using the calculus of residues [46].
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In August, 1948 K. Kodaira obtained the same results independently of Titch-
marsh’s work [24], and it was M. Stone who rebuilt the theory from the view

point of linear operators and obtained some new results [45].

This thesis is not concerned with selfadjoint problems but rather with non-
selfadjoint problems, for which there is not a lot of literature available. The
earliest work in this connection goes back to 1952, when I. M. Gelfand considered
the differential operator defined in the Hilbert space L?(R3) by the differential
expression

—Au + pu + qu,

where p is a real function such that —Au + pu is a selfadjoint operator, and ¢
is a continuous complex function, vanishing outside of a bounded domain [13].
Also M. A. Naimark in a comprehensive article obtained results on the spectrum
of a non-selfadjoint second order differential operator on the positive half-line
for the first time [33]. He considered the case where the coefficient function
q is integrable and the boundary condition are complex. R. R. D. Kemp [22]

obtained similar results on the interval (—oo, c0).

Investigation of the spectrum of a non-selfadjoint problem when the coefficient
g is continuous and certain other conditions on ¢ and the boundary condition «
are satisfied, was also carried out in 1957 by A. Sims [44]. He obtained a very
important result about the limit-point limit-circle geometry that in the selfadjoint
case had been discovered by Weyl. In non-selfadjoint problems which are defined
on [0,0) by

—¢"+qp=2¢

#(0,A) cosa + ¢'(0,\)sina = 0
it is possible to have more than one solution of the corresponding differential
equation which is square integrable when ¢ is in the limit point case at infinity.
Later in 1961 J. B. McLeod ([30], [31] contributed to this area by extending
Sims’ result; he succeeded in removing some conditions and obtained two types

of eigenfunctions in the case of regular Sturm-Liouville problems and in the sin-
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gular case on the interval [0,00). An interesting result is that the eigenfunctions
can be complete in the Hilbert space sense if some functions which he called ad-
joint functions are added; moreover for large |A| the zeros of certain functions
corresponding to the L? solutions are simple. He also showed that it is possible
for there to be no L? solution of the equation for any A € C in the complex case
if S¢(z) is unbounded from both above and below.

Chapter One contains the mathematical background relating to Lebesgue mea-
sure and integration, Hilbert spaces and operator theory. Chapter Two contains
some basic materials related to real and complex analysis and gives some stan-
dard theorems of the theory of differential equations. In Chapter Three there is
some history about boundary value problems, both regular and singular, and we
include some material relating to selfadjoint Sturm-Liouville problems and a brief
introduction to J-symmetry and J-selfadjoint operators. Chapter Four and Five
are concerned with the main results, namely the extension of some material given
in Titchmarsh’s book [46] and the extension of some results of Chaudhuri-Everitt
on the m-function and its relationship to the resolvent set [4]. Chapter Six is
mainly concerned with the conclusion. It also states some results about the sin-
gular continuous spectrum of selfadjoint differential operators and asks whether
in the non-selfadjoint case there is a singular continuous part of the spectrum

and if so, how we can obtain and characterize it.
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Chapter 1

Mathematical background

1.1 Introduction

In this chapter we collect some definitions and results about Lebesgue measure
and Lebesgue-Stieltjes measure and integration with respect to those measures.
Of course some results about Hilbert spaces and linear operators on a Hilbert

space will also be considered.

1.2 Measure and Integral ]

Definition 1.2.1 A measure is an extended real-valued set function g having
the following properties:

i) The domain A of y is a o-algebra.

ii) u(E) > 0 for each E € A

iii) g is o-additive i.e. p(UZ,E,) = Yo u(E,) where the E, are mutually
disjoint sets of A.

iv) u(0) =o0.
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By property iii) we see that for each sequence {E,} of subsets of A we have

w(Upzy Er) < Z n(Ey)

n=1
If A is a o-algebra of subsets of X and p is a countably additive measure on A,
then the triple (X, A, pt) is called a measure space. Let X be a set and p an outer
measure on the class P(X) of all subsets of X. A subset A of X is said to be
p-measurable if

w(B) = p(BNA)+ u(BN A')

for all B C X, where A’ denotes the complement of A in X.

Let A be the class of all open intervals of real axis R which forms a sequential
covering of R. Let p* be given by

i) (@) =0

i) p*((a,0)) =b—aifa#bd

The complete measure y determined by the measure pu* is called the Lebesgue
measure [12].

Let f be a real-valued, monotone-increasing function defined on the real axis R.

We assume that f is right-continuous i.e.
lim f(2) = f(a)

Let A consist of all the open intervals (a, b) of R covering R sequentially as before
and define p* by

i) w(@)=0

i) (@) = £(8) - £(e)

The measure p corresponding to this p* is called the Lebesgue-Stieltjes measure

induced by f. So p((a,b]) = f(b) — f(a).

Theorem 1.2.1 There ezists a set on the real line which is not Lebesgue mea-

surable.

Proof: see [12] Thm.1.6.1.
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Let f be defined on a measurable set E,. Denote by E(f > A) the set of points
of Ey at which f(z) > A, with a similar meaning for E(f > A), etc. The function
f is said to be measurable if, for all values of the constant A, the sets of one of

the four families
E(f>A), E(f<A), E(f>A), E(f <A)

are measurable. Any one of these four conditions implies the other three.

Let f = ) i, aixEe; be a simple function defined on a measure space (X, A, p)
where xg; is the characteristic function of the measurable set E;. We say that f
is integrable on X if and only if u(E;) < oo for each i = 1,2,...,n. An extended
real-valued, measurable function f, on a measure space (X, A, p) is said to be
integrable if there exists a sequence {f,} of integrable simple functions having
the following properties:

i) {f»} is a Cauchy sequence in the mean

ii) limyeoo fu(z) = f(2) ace.

The integral of f is denoted by [y f(z)du(z) = limuoo [y fudp. If E is a mea-

surable set then the integral of a measurable function f over E is defined by

/ f(2)du(z) = / x5 () du(z)
E X

Three of the most important theorems in the theory of integration are

Theorem 1.2.2 (Lebesgue’s Bounded Convergence Theorem) Let {f,}
be a sequence of integrable functions that converges almost everywhere(in brief
a.c.) to a measurable function f. If |f,(z)| < g(z) a.e. for all n, where g is an

integrable function, then f is integrable and
tim [ 1~ fldi =0

Proof: [12] Thm. 2.9.1.

Theorem 1.2.3 (Lebesgue’s Monotone Convergence Theorem) Let {f,}

be a sequence of measurable functions on X and suppose that
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1) 0< fi(z) L falz) £... <0 for everyz € X
i) fu(z) = f(z) as n — oo, for every z € X.

then f is measurable, and

/fndue/fdu as n — 0o
X b'e

Proof: [38] Thm. 1.26.

Theorem 1.2.4 (Fatou’s Lemma) If f, : X — [0, 00| is measurable, for each

positive integer n, then

/(limixlfﬂl)dp Sliminf/ fadp (1.2.1)
X n—oo n—oo X
Strict inequality can occur in (1.2.1).

Proof: [38] Thm. 1.28.

1.3 Hilbert Space and Linear Operators

A separable Hilbert space H is a linear vector space over the field C of complex
numbers having the following properties:

i) There exists a strictly positive scalar product in H, i.e. a mapping H x H — C,
denoted by < -,- >, which is linear in the first and conjugate linear in the second

argument. Thus
<af+g,h>=a< fih>+<g,h> forall a€C, and f,g,h € H

<f,g>=<g,f>
< f, f>i= Il >0 unless f=0 (1.3.2)
ii)H is complete in the norm (1.3.2), i.e. if {f,} is a Cauchy sequence, so that
| fn = fm]l = 0 as n,m — oo, then there exists f € H such that ||f, — f|| — 0 as

n—0.

iii) There exists a denumerable sequence {f,} which is dense in H.
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Definition 1.3.1 A subset D of H is dense in H if, given any f € H and any
€ > 0, there exists g € D such that ||g — f|| < e

The two following inequalities are basic to the contents of this chapter, and hold
for each f and ¢ in the Hilbert space H.
i) Cauchy-Schwarz inequality.

| < f-g>1<1flllgll- (1.3.3)

i1} Triangle inequality.
If+gll < 11+ Nlgll- (1.3.4)

Definition 1.3.2 i) f is orthogonal to g, written f L g, if < f,¢g >= 0, where
f,g€H.

ii) The orthogonal complement Dt of D is defined as

D={feH:fLg forall g€ D}

Theorem 1.3.1 Let M be a closed subspace of H. Then
H=MaeM*
Proof: see [39], Thm. 12.4.
By Theorem 1.3.1 each f € H may be written as
f=h+/ (1.3.5)
with f; € M and f; € M*. Equation (1.3.5) enables us to define a mapping
P:H—-M

by Pf = f; € M, for each f € H. We call P the orthogonal projection of H onto
M.

Let {e,} be an orthonormal sequence in H. Then for every f € H

o0}

SI< fren> < I

n=1

This is known as Bessel’s inequality.
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Definition 1.3.3 A complete set in H is a subset M C H whose span is dense

in H. A total orthonormal set is sometimes called an orthonormal basis.

Let {e,}52, be an orthonormal basis for H. Then for each f € H we have

f=§:<fven>en

n=1

and Parseval’s equation

Y I< frew> P =|IFIP

n=1

The coefficient < f,e, > is called a Fourier coefficient. In a separable Hilbert
space every orthonormal basis is countable and if H contains a total orthonormal

sequence, then it is in other words, a separable Hilbert space.

Theorem 1.3.2 The Hilbert space H is separable if and only if H has a complete

orthonormal sequence.

Proof: see [1].

Definition 1.3.4 A linear operator T in H is a linear mapping defined on a

linear manifold D(T") C H with values in H. Thus we have
T:D(T)—H with T(af +g)=aT(f)+ T(9)
where f,g € D(T) and a € C

Let T and S be two linear operators in H. Then T' = S iff D(T') = D(S) = D
and T'f = Sf for all f € D. We mean by an extension S of T denoted by T' C S
an operator S with domain D(S) such that D(T) C D(S) and Tf = Sf for all
f € D(T). A linear operator T is said to be bounded if there exists a positive

constant M < oo such that
IT71l < MIf|| for all § e D(T)

The norm ||T|| of T is then defined as the minimum of all possible values of M

and we have
= inf —————"Tf”
ofen | f||

I
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The space of all bounded operators on H is denoted by B(H). A linear operator
T € B(H) is called a finite rank operator if the range R(T) = {T'f : f € D(T)}
of T is finite dimensional. The representation of a finite rank operator on H is

as follows

N
Tf=> <gif>h,
=1

where {g;, h;} are 2N vectors in H and N < oo.

Definition 1.3.5 An operator T' € B(H) is compact if, for every bounded se-

quence {f,} in H, the sequence {T'f,} has a convergent subsequence.

We obtain an extremely important realization of a separable Hilbert space by
taking, as the vectors, functions of points in a real Euclidean space. The Hilbert
space obtained is denoted by L2?(a,b) and it is the set of all complex-valued
measurable functions on (a,d) such that the square of their absolute value is
Lebesgue integrable. In this space two functions are regarded as identical if they
differ only on a set of Lebesgue measure zero. The inner product operation in

the linear space L*(a, b) satisfies

< fig>= /bf(t)ﬁdt-

for all f,g € L%*(a,b), and is a finite complex number since

| < fig>1]< /ab [f()g(#)ldt < (/ab |f(t)|2)%(/ab lg(®)I")? < o
We point out that the space L?(a,b) may be regarded as a subspace of L?(c,d)
if ¢ £ a < b £ d, and in particular, as a subspace of L?(—o0,+0c0). We also
mention that convergence in the topology of L? is based on the metric induced
by the norm and is called convergence in the mean. This is denoted by l.i.m. and

is such that if {f,,} is a convergent sequence in L? that converges to f € H, then
b
Limuee fa(t) = f(t) iff lim / |fn(t) = F(®)?dt =0

Let o be a non-decreasing function of bounded variation on the real axis, and

assume that o is right-continuous, i.e.

o(t+0)= cl_igl o(t+€) = o(t)
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With the aid of the function o we can construct a measure called the Lebesgue-
Stieltjes measure. This is analogous to Lebesgue measure, but a bit different from
it, since the Lebesgue measure of the interval (a,b) is its length b — a and the
Lebegue-Stieltjes measure of (a,b) corresponding to o is o(b — 0) — o(a) which
might be zero; also the Lebegue-Stieltjes measure of a singleton may be not equal
to zero. We consider the linear space of all o-measurable functions f for which
the Lebesgue-Stieltjes integral
+oo
| it
—o0
exists, and with inner product

<has= [ fDio)

—00

This is a separable Hilbert space which is denoted by £2 [1].

Definition 1.3.6 Let T be a densely defined operator on H. Corresponding to T’
there exists an adjoint operator T* with domain D(T™) consisting of all elements
f € H such that f € D(T™) if and only if there exists an element f* € H
satisfying

<Tg,f>=<g,f*> forall g€ D(T)

in which case T*f = f*.

Let T be a densely defined operator on H. Then T is called selfadjoint iff T* =

and T is said to be closed iff graph G(T') = {(f,Tf): f € D(T)} of T is a closed
subspace of H x H. We say that T is closable if T' has a closed extension. It is
equivalent to the condition that the graph G(T') of T is a submanifold of a closed

linear manifold which is at the same time a graph, and it follows that T is closable

iff the closure G(T') of G(T') is a graph. We say that T' is symmetric if D(T) is
dense in H and for all f,g € D(T) < Tf,g >=< f,Tg > . Since T C T* and
T* is closed, T has a closed extension T™ (i.e. T is closable) and it may be shown
that (T*)* = T. Essentially selfadjoint operators are those that have selfadjoint

closure. Obviously selfadjoint operators are closed and if T is finite rank operator,
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which is a bounded, then T is symmetric iff T is selfadjoint. However, in general
symmetric bounded and unbounded operators may be non-selfadjoint, as we can

see in the following example.

Example 1.3.1 Let H = L?[0,1] and let D(T') consist of all continuously differ-

entiable functions f in H which satisfy the boundary conditions

f)y=f(0)=0 (1.3.6)

and define T by T'f = %;—% for all f € D(T). Then

<Tf,g> = /0 T f(t)g(t)dt = /0 1 %f’(t)ﬁdt

= eIk [ ~3@rwa= [ eTaw
= < f,Tg>

We see that T is unbounded symmetric operator on L?[0,1] but T' # T™ since
D(T) # D(T*) and there exists g € D(T™*) which does not satisfy the boundary
condition 1.3.6.

Definition 1.3.7 Let T be an operator defined on H. A complex number A is

called an eigenvalue of T if there is a non-zero vector f € D(T) such that

Tf=\f

f is called an eigenfunction of T belonging to the eigenvalue A. The set

{f:Tf=Af}

which is denoted by N, is a linear manifold of H and is called the eigenspace of T
for the eigenvalue A and the dimension of V) is called the geometric multiplicity
of A. The algebraic multiplicity of A will be defined in Chapter Two §2.2.3. The
eigenvalue problem consists primarily in finding all eigenvalues and eigenfunctions
of a given operator T, and the boundary value problem is an eigenvalue problem

satisfying certain boundary conditions.
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Definition 1.3.8 Let T be defined on H. Then

i) The resolvent set p(T') of T is defined to be the set of all complex numbers A
such that (T'— AI)~? exists as an everywhere defined bounded operator. It may
be shown that p(T') is an open set. For each A € p(T') we denote by Ry(T') as the
resolvent operator (' — AI)~1.

ii) The spectrum o(T') of T' is defined to be the complement in C of the resolvent
set p(T).

iii) The point spectrum o,(T) of T is defined to be the set of those complex
numbers A in o(T') for which (T'— AI)D(T) # H.

iv) The continuous spectrum o, of T is defined to be the set of all complex numbers
A € o(T) for which (T — AI)™! exists and is an unbounded operator defined on a
dense subset of H.

v) The point continuous spectrum o, of T is defined to be the set of all complex

numbers A € o(T') for which (T — AI)~? exists and the manifold (T — AI)D(T)

is not dense in H and also it is not closed.

Definition 1.3.9 Let T be an operator on H. The dimension of the range R(T')
of T is called the rank of T and we denote it by rankT'. The codimension of R(T')
is called the deficiency of T' and is denoted by defT. Thus

rankT" + defT = dimH

The inverse image T~1(0) of T is called the kernel or null space of T and is denoted
by N(T). The dimension of N(T) is called the nullity of T which we shall denote
by nul7. We have

rankT + nulT = dimH

It follows that if dimension dimH of H is finite, then defT = nulT’; but if

dimH = oo, this may no longer be true.
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1.4 Essential Spectrum

For selfadjoint operators in a Hilbert space there are several definitions of the

essential spectrum o.

Definition 1.4.1 The essential spectrum o, is the set of limit-points of the spec-
trum (where eigenvalues are counted according to their multiplicity and hence
infinite dimensional eigenvalues are included.); i.e. all points of the spectrum

except isolated eigenvalues of finite multiplicity.

Definition 1.4.2 o, is the largest subset of the spectrum remaining invariant

under arbitrary compact perturbations, denoted by

oo(T)= () o(T+59).

S compact
In the general case for arbitrary operators such as non-selfadjoint operators the

following definitions are sometimes convenient [11].

Definition 1.4.3 Let T be a closed, densely defined linear operator in H and
define the following subsets of C

®*(T) = {): R(T — XI) is closed and nul(T — A\I) < oo}

O~ (T) = {X: R(T — M) is closed and def(T — A]) < oo}

where R(T — AI),nul(T — AI) and def(T' — AI) denote the range, nullity and
defficiency index of T'— AI respectively.

&,(T) = ®*(T) U & (T)
&,5(T) = ¥+(T) N &~ (T)
B4(T) = {\ € ®5(T) : nul(T — M) = def(T — \)}
05(T) = {\ € B4(T) : there is a deleted neighbourhood of X

lying in the resolvent set p(T') of T'}
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Let
oer(T)=C\ O(T), £=1,3,4,5

ci(T) = C\ o*(T).

Each of these sets oo (T), 05 (T) is used for the essential spectrum in the litera-

ture. ( [40] Chap 11).

The sets ook (T'), 05(T) are all closed subsets in C as their complements are open

and clearly

Jel(T) g o'ékz(T) g aeS(T) _C..e4 (T) g UeS(T)~

Since R(T) is closed if and only if R(T™) is closed and nulT*= defT, defT™*=nulT,
it follows that A € o5(T) if and only if A € 0,(T*). Also if A € 0ea(T)\ 0 H(T) =
®*(T)\ 4(T) then either ) is an eigenvalue of T (of finite geometric mutiplicity)
or A € o(T) = {}: nul(T — AI) =0, def(T — AI) # 0}, the so called residual

spectrum of T

Theorem 1.4.1 a) If T is selfadjoint the sets oo (T), k = 1,3,4,5, and o5(T)
are identical and A € o(T) \ oex(T) if and only if X is an isolated eigenvalue of
finite multiplicity.

b) If T is J-selfadjoint, the sets oo (T), k = 1,3,4 and o (T) are identical [11].

Definition 1.4.4 Let T be a closed operator defined on the Hilbert space H. A
complex number A belongs to the resolvent set p(T') of T if and only if nul(T —
M) = def(T — AI). A complex number A belongs to the essential spectrum of
T if and only if either R(T — AI) is not closed, or R(T" — AI) is closed but
def(T — AI) = nul(T — AI) = oo.

Theorem 1.4.2 A finite-dimensional perturbation leaves the continuous spec-

trum invariant [53] 2.8.



Chapter 2

Analytic functions

2.1 Introduction

In this chapter we study some mathematical tools that will be required in the
subsequent spectral analysis of differential operators, both in the case of self-
adjoint boundary-value problems and for non-selfadjoint problems, which arise
either from a complex potential, or a complex boundary condition, or both. We
need in this chapter to summarise properties of analytic functions defined on a
region and to describe some boundary properties of these functions. It is well-
known that certain analytic functions which are defined on some specific regions
play a very important role in characterising the different parts of the spectrum
in the selfadjoint case. We recall that a region is a point set contained in the

complex plane C which is connected and contains only interior points.

2.2 Complex Analysis

As a natural extension of real numbers one can step off the real axis to find more
points to associate with the square root of negative real numbers. We need to give

legitimacy to the operation 4/—1, since in the real numbers v/—1 is meaningless,

13
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so some sense has to be given to the above operation. By extending the set of real
numbers so as to form the smallest field containing RU {:}, we arrive at the set of
complex numbers C. Each element of C may be represented as a unique point in
the so-called complex plane, using rectangular Cartesian co-ordinates. We omit
further details of the definition of the complex numbers and their properties,
because they are extensively explained in every complex variable text book. Just
as real functions may be defined on R or some subset of R, so we may define
complex-valued functions on C or some subset G of C. We say that f: G — C is
differentiable at z¢ € G if the limit
lim f(2) — f(=0)

z—2z0 zZ—2p

exists. The limit f’(z) is called derivative of f(2) at z.

Definition 2.2.1 A function f which is defined and differentiable throughout a
region R is called an analytic (regular) function on R. The region R is called a

region of regularity of the function f.

For example elementary functions such as 2", €, sinz, cos z,- - are all regular;
however the function f(z) = Rz is easily seen to be a function which is continuous
in the entire plane but not a regular function in any region. We can denote a

complex function f(z) of the complex variable z by w = f(z) or, more preciswely,

w= f(z) = f(z + 1y) = u(z,y) + tv(z,y)

where u(z,y) and v(z,y) are real functions of the real variables z and y. Then

we have the following theorem:

Theorem 2.2.1 (Cauchy-Riemann) Let

f(2) = u(z,y) + iv(z,y)

be a function of a complex variable defined on a domain G. Then a necessary

and sufficient condition for f(z) to be differentiable(as a function of a complex
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variable) at the point zg = xo+1iyo € G is that the functions u(z,y) and v(z,y) de
differentiable(as functions of the two real variables ¢ and y) at the point (zo,Yo)

and satisfy the Cauchy-Riemann equations

Ju Ov Ou Ov

—— e, —— = —— 2.2.1
dz 0Jy’ Oy Oz ( )
at (zo,Yo0). If these conditions are satisfied, f'(z0) can be represented in any of

the forms

g2 Qg0 B0 Ou_Du_Bu_Ov 00
" 8z " 9z 0y Zay_ax Z33/_63,/ "oz

where the partial derivatives are calculated at (zo,yo)-

The equations (2.2.1), which are usually called the Cauchy-Riemann equations,
are of basic importance in the theory of analytic functions and its applications
to problems of physics and engineering. In fact, the equations (2.2.1) had al-
ready been studied in the eighteenth century by D’Alembert (1717-1783) and
Euler (1707-1783), in researches devoted to the application of functions of a com-
plex variable to hydrodynamics (D’Alembert and Euler), and to cartography and

integral calculus (Euler).

2.2.1 Singularities

Let f be a single-valued function. Then any point of the complex plane at which
f is analytic shall be called an ordinary point and any point at which f is not
analytic is called a singular point or a singularity. A singularity is called isolated
when no other singularities exist in its immediate neighborhood. The nature of
the singularity of f(z) at infinity is assumed to be the same as the nature of the
singularity of f(2) at the origin. There are singularities which are removable. For
example, the function f(z) = 22 has a singularity at the origin because it is not
defined there. But, taking into account that lim,_¢ f(2z) = 1 the singularity is
removed by defining f(0) = 1. A pole is a point at which the function f(z) is not

analytic because its modulus becomes infinity large, but at which ﬁ is regular.
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In other words if a is a pole of order n of f(2), it is possible by Laurent’s theorem
to define a function ¢(z) analytic at a, such that in a neighborhood of a (except

the point a itself)
fR)=¢(2)+Aq(z—a) '+ Ay (z—a)2+...+ A (z—a)™"

Evidently f(z) is not analytic at a, but
1 1

() - d(z)+Aa(z—a) 1+ Az(z—a)2+...+ Au(z —a)™

(z = a)"

(z—a)"¢(z) + A_1(z —a)" 1+ A(z—a)* 2 +... + A,

and ﬁ vanishes at a. We say that T(l'z')' has a zero of order n at a and so is regular
at a. If n = 1, the pole and the zero are called simple. All singularities of f(z)
which are not poles are called essential singularities. In a neighborhood of an

isolated essential singularity a, f(2) can be expanded into a Laurent series

f(2)=6(2) + Y A_a(z—a)™

where ¢(z) is analytic at a. If the function f(z) is analytic in a finite simply con-

1
2mi

nected closed domain C, the integral 5% [, f(2)dz evaluated along its boundary,
vanishes. If the function is not analytic in C, such an integral may not be zero; if
there is only one singularity in C, at the point a, the value of the above integral

is called the residue of f(z) at a.

2.2.2 Conformal mappings

Let f(z) be an analytic function of a complex variable defined on a domain G.
Suppose f(z) has a non-zero derivative f’(z) at a point 2o € G, and let [ be a
curve which passes through zo and has a tangent 7 at zo. Then w = f(z) maps
l into a curve L in the w-plane which passes through the point wo = f(20) and
has a tangent T' at wy. Moreover, the inclination of T exceeds the inclination of 7
by the angle Argf’(zo); it follows that the angle between any two curves passing

through z is preserved under f.
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Definition 2.2.2 A mapping by a continuous function which preserves angles

between curves passing through a given point 2 is said to be a conformal mapping

For example the fractional linear transformation, or Mobius transformation,

_az+b
T ez+d

L(z) (2.2.2)

where a,b,c and d are arbitrary complex numbers (except that ¢ and d are not
both zero, and ad — bc # 0) is a conformal mapping. Thus the function w = L(z)
maps the finite point —% into the point at infinity, and maps the point at infinity
into the finite point <. Moreover circles on the z-plane passing through the point
z = —-2— correspond to circles on the w-plane passing through the origin, circles
on the z-plane passing through the point z = —% correspond to straight lines on

the w-plane, and, in general, circles and straight lines on the z-plane correspond

to circles and straight lines on the w-plane.

2.2.3 Meromorphic functions

We are concerned with functions whose domain and range both lie in the extended
complex plane C U {oo}. A function f is said to be meromorphic at a provided

that the domain of f is a neighbourhood of a, that there exists r > 0 such that
{z:]z—a| <}
is contained in the domain of f and f is analytic in
{z:0<|z—a| <1}

and finally that f is continuous at a. A function f is meromorphic in a region (or
open set) Q provided that f is meromorphic at each point of Q. In other words,

a meromorphic function is one whose only singularities are poles [19].

Let f(z) = u(z) + tv(z) be an analytic function in the upper half-plane with
positive imaginary part; thus if z = z + ¢y then v(z) > 0 if y > 0. We can see

that the class P of all such functions is a convex cone; i.e. if @ and f are positive
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real numbers and f and ¢ are two functions in the set P, then the function
af(z)+ Bg(z) is also in P. The class P is also closed under composition and ﬁ:}
also is in the class P if f € P. Let (a,b) be an open interval of the real axis;
by P(a,b) we mean the subclass of P consisting of those functions in P which
admit an analytic continuation across the interval into the lower half-plane and
where the continuation is by reflection. Thus the functions in this class are real
on the interval (a,b) and are continuable throughout the lower half-plane. It is
clear that P(a,b) is also a convex cone. If f(z) is in P(a,b) then v(z) = 0 if
a < = < b, hence by the Cauchy-Rieman equations we see that f(z) = u(z) is an
increasing function on the interval. Consider that square root function 1/z which
is positive on the right half-axis; then f(z) = /2 is a function in the class P since
the argument of 1/z is a half of the argument of z and so the number /2 falls
in the upper right quadrant of the complex plane if &z > 0. . Other examples
of this kind of function are f(z) = 27, 0 <y < 1 and f(z) = tanz. Let T be
a selfadjoint transformation on a Hilbert space H and let z € C\R. Then the
resolvent operator R, = (T — zI)™! is a well defined and bounded operator, and
it is well known that, for any u € H the function f(z) =< R,u,u > is analytic
in the upper half-plane ( [49] Th. 5.16), and belongs to P since, if R,u = v then

(T — zI)v = u and therefore
f(z) =< R.u,u >=<vyu >=<v,(T — zl)v >=< v,Tv > -2 < v,v>

The imaginary part of f(z) is y||v]| since (v,Tv) is real and so S f(z) has the
same sign as §z = y.

The functions in the class P admit a canonical integral representation.

Theorem 2.2.2 A function f(z) in the class P has a unique canonical represen-

tation of the form

i
1241

1@ =at bt [ [ = ot

where o and B > 0 are two real constants, and o(t) is a non-decreasing function

on the real azis for which [ %}} < oo.
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Theorem 2.2.3 (Cauchy) If a function f(2) is analytic and one valued inside
and on a simple closed contour C, then [, f(2)dz = 0. [47]

Theorem 2.2.4 (Morera) If f(z) is a continuous function of z in a region D,
and if the integral [ f(z)dz taken round any closed contour in D is zero, then

f(2) is analytic inside D. [47]

Theorem 2.2.5 (Liouville) A function which is analytic for all finite values of
z, and is bounded, is a constant [47]. We know [47] §2.71 that in the neighbour-
hood of an isolated singularity z = a, a one valued analytic function f(z) may be

expanded in the form

f(2) =) an(z—a)"+ ) bu(z —a)™

The coefficient b; is of particular importance, and is called the residue of f(z) at

the point z = a. So by the Laurent’s series expansion of f(z)

bl = "'1"’ f(z)dza
C

2w

where C' is any circle with centre z = a, which does not include all other singu-

larities of the function. If z = a is a simple pole of f then b; = lim,,(z —a)f(2).

Theorem 2.2.6 Let f(z) be one-valued and analytic inside and on a simple
closed contour C, except at a finite number of singularities zy, z,. .., 2,. Let the

residue of f(z) at these points be r1,72,...,7,. Then

/f(z)dz =2mi(r +ra ...+ 1)

Definition 2.2.3 A root ) of an algebraic equation
FO) =X+ T +.. . +a,

is called nondegenerate or simple if F'(Ag) # 0. In other words )\ is simple if the

decomposition

FQ) =T (A = M)
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has \; = Ao for exactly one value of i.

A root g is said to have multiplicity m if
F'(Qo) =...= Fm D)) =0, F™()) 0.

Or equivalently if exactly m of the A; equal A,.



Chapter 3

Weyl Theory

3.1 Introduction

In the theory of differential operators we distinguish two cases, regular and singu-
lar, which lead to the study of boundary value problems. Most physical phenom-
ena appear as singular boundary value problems; this involves finding solutions
of an appropriate differential equation which satisfy certain boundary conditions
in an interval (a, b) of real numbers, where either a or b or both may be singular
points. Herman Weyl was (in 1909) the first to consider singular boundary value
problems; in particular he considered a singular second order Sturm-Liouville type
problem on the interval (e, b) C R. In this chapter we try to give a fairly complete
account of the theory of Weyl and will describe some later improvements to this
theory. The most important result that makes the Weyl theory so considerable
and remarkable is that we can extend the Fourier expansion of functions to the

much more general (Sturm-Liouville) eigenfunction expansion.

21
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3.2 Regular Boundary Value Problems

We consider one of the most important operators which is frequently encountered
in applications, namely the operator T' generated by the Sturm-Liouville type
differential expression

where ¢(z) is a continuous real-valued function which is regular and defined on

the interval [a, b]. Consider the operator T; defined on the Hilbert space
H = L?*[a,b], by Tof = 7f for each f in the domain of definition Dy of Ty, where

Do = {f € L*[a,b] : f and f are absolutely continuous, 7f € L?[a,b]}.

The operator Tp has a maximal domain on which 7f is meaningful for each
f € Dy, and so is called the mazimal operator. An operator T, a restriction of

To, is said to be a selfadjoint operator if and only if
<Tf,g>—-<f,Tg>=0

for all f, g in the domain D(T') of T. This means, in this case, that T is selfadjoint

if and only if

b b
/ (Tf)g - / 1Tg = WIf,gl(b) - W[f, gl(a) = 0 (3.2.1)

for all f,g € D(T), where Tf = 7f. So we can see, for example, that if f(a) =
f(b) =0forall f € D(T), then T is a selfadjoint operator. In general, the regular

boundary-value problem which we are dealing with, is of the form

7f=Af (3.2.2)
f(a)cosa+ f'(a)sina =10 (3.2.3)
f(b)cos B+ f'(b)sinB =0, (3.2.4)

where X is a complex parameter, a, 8 € [0,7) and the function f € L*[a,b] is a

solution of the problem (3.2.2-4), so that f is an eigenfunction corresponding to
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the eigenvalue A of the operator T. By (3.2.1) we can see that the above problem

is a selfadjoint one, and we define the domain of definition D, of T by

Dopg={f € Do: f(a)cosa+ f'(a)sina =0, f(b)cosB+ f/(b)sin B = 0}.
Lemma 3.2.1 For each f € H the equation

Ty=f

has a solution y(z) which satisfies the boundary condition

y(a) =y'(a) = y(b) = y'(b) =0

if and only if the function f is orthogonal to all solutions of the homogeneous

equation Ty = 0.
Proof: see [34]

If S denotes the set of all solutions of 7y = 0 and R denotes the range of the
operator T, then by Lemma 3.2.1 an element f of H lies in R if and only if it is
orthogonal to S and so H = § + R. Lemma 3.2.1 can be used to prove that D is
dense in H, and that T is closed [34] §17.3 Lemma 1.

Lemma 3.2.2 i)Figenfunctions corresponding to different eigenvalues are or-

thogonal. ii)Eigenvalues of the operator T' are real.

Proof: Suppose that f(z,\;) and g(z, A;) are eigenfunctions corresponding to

the different eigenvalues A; and ), respectively. Then
b b
/ f(z, M)7g(z, Ao)dz — / 9(z, A2)7 f(z, Ar)dz

ab
= f(@, M)(=9" (=, A2) + q(2)g(z, A2))dz

a

b
- / 92, 22) (= "2, M) + (@) (2, M))de
= [—f(ﬂ’, A1 )9'(37, )\2) + f'(a:, A1).‘](33, )\2)12
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or equivalently
b b
[ gz = [ gte, ) s )de
b b
= [ Mafe e e - [ has(eMgle, da)ds

b
=(M—M/fMMMaM®=WMﬁ (3.2.5)

where W(f, g]° = 0. Therefore

b
/ f(z, M)g(zy A2)dz =0

since A1 # As.
If an eigenvalue ) is a complex number i.e. S\ # 0 then X is also an eigenvalue
and from 3.2.5 with A; = A\, Ay = X, and g = f, where f(z,)) = f(z,])), we
obtain

(= X) / (@ V) Pde = 2692 / (e W)z = 0
which implies f = 0. B:1t this is a contradictioan, since f is a non-trivial eigen-
function corresponding to the eigenvalue A. Hence we conclude that S\ = 0, so

that X is a real number.
Suppose that ¢(z, ) and x(z,A) are two solutions of (3.2.2) satisfying
#(a,A) =sina, ¢'(a,A) = —cosa (3.2.6)

x(b,A) =sin B, x'(b,\) = —cos 8 (3.2.7)

where «, f are two fixed real numbers in the interval [0,7). We note that the
solution ¢(z,\) satisfies (3.2.3). It is easy to see that the Wronskian of ¢ and x

at the point z in the interval [a, b] satisfies
W(g(z, \)x(z, N)] = ¢(z, \)x'(z, A) = ¢'(z, M) x(z, A)

d
EW[qﬁ(x, Nx(z,A)] = é(z, \)x"(z,A) — ¢"(z,A)x(z,A) = 0
so that W{¢(z,A)x(z, )] = constant, with respect to the independent variable

z. Hence we can write

Wig(z, Nx(e, V] = w(A) (3.2.8)
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where w(\) has real zeros, since the zeros of w(A) are the eigenvalues of T' and by
Lemma 3.2.2 the eigenvalues are real. Noting that (3.2.5) is true for any solutions
frand frof (3.2.2),set Ay = A, A2 = X, fi(z,A) = é(z, ) and fo(z, A) = ¢(z, X).

Then we have

(=) [ oo, e, e = 6000, X) — 45, )68,
Also by (3.2.7) and (3.2.8)
w()9(b, X) = w(X)d(b, 1) = sin BL4(8, e (b, X) — (b, ), V)]
Hence if sin 8 # 0 then we have

b
(= X)sin g [ dle, (o, X)do = w()60,X) - w(N)60,3)  (329)

We are going to show by contradiction that the zeros of the function w()) are
all simple. First suppose sin # # 0 and that Ao is a multiple zero of degree two.
Then we can write w()A) = (A — Ag)2Q(A) where (o) # 0 so that w(Ae £ tv) =
—12Q( Mo £iv) = O(v?) as v — 0. Hence if we set A = g +iv and X = Ao — v
in (3.2.9) then the right-hand side of (3.2.9) is O(¢?), but the left-hand side is
2y sinﬂf: |#(z, A)|*dz, which is O(v). This is a contradiction. So w(A) has no
zeros of order 2; similarly, w(A) has no zeros of order n > 2. Hence all zeros of
w(A) are simple.

If sin B = 0 then cos B # 0 and we have
b
(A=) cos ,B/ #(z, A)¢'(z, N)dz = w(N)¢'(b, ) — w(A)F'(b, )

Theorem 3.2.1 Let q be a continuous function in the interval [a,b] and let o be
an arbitrary real number in the interval [0, 7). Then the equation (3.2.2) has a

solution ¢(x, ) satisfying
#(a,)) =sinea, ¢'(a,\) = —cosa
and for each z in [a,b] the function ¢(z,)) is an entire function of .

Proof: see [46] Theorem 1.5.



DECLO J.£. LLCHULGT DOUWRAATY VALUWC I"TO0CTNS

As a simple selfadjoint boundary-value problem on [0, 7] one can consider the
problem
f'+Xf =0, f(0)=f(r) =0
in which ¢ = 0. We see that a solution is of the form f(z) = esin Az where c is
a constant. Eigenvalues and the corresponding non-trivial eigenfunctions are as
follows
An=n, fu(z)=sinnz

for all n € N. Investigation of the eigenfunction properties of this example shows

that the eigenfunctions
sinz, sin2z, sin3z, ... sinnz

have two important properties

i) sinz has two zeros, sin 2z three zeros, sin 3z four zeros, ..., and sinnz has n
zeros in the interval [0, 7].

ii) Between every two consecutive zeros of the eigenfunction sin nz the eigenfunc-
tion sin(n + 1)z has a zero.

This example illustrates two important theorems due to Sturm and Liouville.

Theorem 3.2.2 (Comparison theorem) Let two homogeneous equation
u" 4+ q(z)u=10 (3.2.10)
v +r(z)v=10 (3.2.11)

be given, in the interval [a,b]. If q(z) < r(z) for all z € [a,b], there exzists at
least one zero of each solution of (3.2.11) between any two zeros of any solution

of (3.2.10)

Proof: see [2§]

Theorem 3.2.3 There is an indefinitely increasing sequence of eigenvalues
Aos A1, Az, ovny Any ... of the boundary-value problem (3.2.2-4), and the eigen-

function corresponding to the eigenvalue M, has exactly n zeros in the interval

(a,b).
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Proof: also see [28]

Recalling (3.2.6) and (3.2.7), we note that the solutions ¢(z,)) and x(z,\) are
linearly dependent, so that W[¢, x] = 0, if and only if ¢(z, \) is an eigenfunction
of the problem (3.2.2-4). Therefore the eigenvalues of (3.2.2-4) coincide with the
zeros of the Wronskian. We now give the integral representation of the resolvent.
Let W[¢, x] = w()) # 0 for some complex parameter A; then for each continuous

function g, the non-homogeneous equation

Tf-A=g (3.2.12)
has a solution f(z,)) = [ G(z,t; \)g(t)dt where

e i<z <t <b
G(z,t; ) = w(d)

%gr_k) ifa<t<z<b

and 1s called Green’s function. In other words we have

T b
e = 5757 { ot ) [ xte Moo+ xe [t oo}

The function f is called a resolvent and is a solution of (3.2.12) which satisfies

(3.2.3-4).

Theorem 3.2.4 Let g be a function with continuous second derivative and sat-
isfying the boundary conditions (3.2.3-4). Then g can be ezpanded into an abso-
lutely and uniformly convergent Fourier series of eigenfunctions of the boundary-

value problem (3.2.2-4).

Proof: see [2§]

3.3 Singular Boundary Value Problems

In this section the study of boundary-value problem is extended to the singu-

lar case on the interval [0, 00), where the left endpoint is regular. An ordinary
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boundary condition can be assigned at the origin but the point at infinity poses a
serious problem. The difficulty was resolved by Hermann Weyl in his dissertation
of 1909. Weyl also wrote three memoirs on singular ordinary linear differential
equations with completion dates in 1908, 1909, and 1910; these papers are re-
produced, respectively, as paper numbers 6, 8 and 7 in Volume I of his collected
mathematical works [50].
A translation into English of the relevant sections of the memoir of Weyl has been
made by D. Race, in his M. Sc. thesis, at the University of Dundee, Scotland,
U. K, in 1976. In the previous section we obtained the expansion theorem for
the regular Sturm-Liouville problem. It is also possible to obtain the expansion
theorem for a singular problem, if we consider it as the limit of a sequence of
regular problems. We will start by considering the case in which the function ¢
is real and continuous on the interval [0, 00); the analysis is similar if the interval
is [a, b) where the point b is a singular and « is a regular point.
Consider the operator T, defined on the Hilbert space H = L?[0, 00) and gener-
ated by the differential expression 7, whose domain of definition D is defined as
follows

D={feH: [ [ € ACi[0,0), Tf € H},
where ACi,c[0, 00) is the class of all locally absolutely continuous functions on
[0,0) i.e. f € ACloc[0,00) if and only if f is absolutely continuous on the finite
interval [0, X] for each X > 0, and 7f = —gj—} + ¢(z) in which q is regular at
0 and singular at infinity. We define T' by T'f = 7f for all f € D. The domain
D of T is the largest linear manifold that is dense in the Hilbert space H and is
such that T' can be well defined on it; we therefore denote this operator by Tax.
Among physicists the operator Ty is called the Hamiltonian.
We can also associate with T' a minimal operator Ty, by defining the operator

T’ with domain
D' = {f € D: f has compact support in [0, c0)}

such that T7'f = 7f for all f € D/, and Ty, = T’ where T" is the closure of T".

It is well known that 7" and hence T}, are densely defined and (Tipin)* = Tiax
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[34].

Let f(z) = f(z, ), 9(z) = g(z, ') satisfy the differential equation
Ty =—y" +q(z)y = Ay (3.3.13)

and the corresponding equation with X instead of ), respectively. Then for b > 0

b
/o {f(@)(=9"(2) + ¢(2)9(2)) - g(=)(= " () + ¢(2) f(=))}dz =

b b
(V=X /o f(z)g(z)dz = /0 {9(2)f"(2) - f(z)g"(2)}dz = W[g, £](b)—- W]y, £1(0)

Setting X' = X and g = f we obtain
b
-2 [ |f(@)ds = WIT, 1) -~ WIF, 110) (3.3.14)

Here we can identify conditions under which the operator Ty, is selfadjoint. First

of all T},ax has to be symmetric i.e.

< T;naxfag > - < f’ :rmaxg >= W[f’g](w) - W[f?ﬁ](o) = O

for all f,g € D(Thax), where W[f, g)(00) = limz—.o W[f,§](z) and this limit ex-
ists, since the integrals [7°(Tmaxf)g and I3 f(Tinaxg) are finite.
Now let ¢(z,A) and 6(z, A) be solutions of (3.3.13) satisfying the boundary con-

ditions

#(0,)) =coser, ¢'(0,)) = —sina (3.3.15)
0(0,)) =sina, 6'(0,)) = cosa

where A is a complex parameter and « is a real number. We note that é(z, )
satisfies

#(0,A)sin @ + ¢'(0,A) cos @ = 0

and
W(¢,0)(z) = W[¢,0)(0) =sina + cos’a = 1
Consider the solution (2, A) of (3.3.13) of the form 6(z, ) + m;(\)é(z, A). on

[0, 5] which satisfies a real boundary condition 8 at the point = b, so that

Yo(z, A) cos B+ p(z, A)sin 8 = 0.
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This gives
(b, X) cos B+ 0'(b, ) sin 8

#(b,X) cos B+ ¢'(b, \) sin B
If we set cot § = z, with B # 0 then

mb()\) = -

8(b, \)z + 6'(b, A)
$(b, M)z + ¢'(b, A)

This is a M6bius transformation on the complex plane C, which is well defined,

mp(A, 2) = — (3.3.16)

for fixed A € Cy, fixed b > 0 and variable z € C as we noe show. Since ¢(z, ) is

a solution of (3.3.13), we can write
¢"(z, M)d(z, A) = (¢(2) — V)Ié(2, V)[*
#(2, )F(z,3) = 1 (2, )3, V)] — 14z, )P
Taking the integral from 0 to b, then
_ b b
(¢ 03 l— [ 16 NP = [ (a(o) = NId(a, )P
0 0
so that
_ b b
- (¢’ (b, A)é(b, A) + sin ¢ cos o — / |¢'(z, N)|*dz) = 3(/ (g(z) = N)|é(z, A)[*dz)

0 0

from which
(¢ (b, )35, 1)) = A/ 16(2, )P)

Hence
S('(b, /\)J>(b, A)) = —(SN) /b |¢(z, )\)Izdm <0, if SA>0. (3.3.17)
0

But we have the identity

(0, N) _ S(4'(5,2)4(b, 1))
Yo T [BBAP

Hence if S\ # 0 then
¥, %)
Yo, n 7

i.e. the denominator of (3.3.16) is not zero, and so (3.3.16) is well defined. On
the other hand

0(b, )/ (b, ) — 0/(b, \)$(5, A) = W0, 4](5) = —1 #0,
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i.e. (3.3.16) is not constant. Also (3.3.16) does not degenerate into a linear
transformation since for each b > 0 the function ¢(b,A) is a non-zero entire

function except for a discrete set.

The real line corresponds to a circle C, and the upper half-plane goes to the
exterior of the circle C, while the lower half-plane corresponds to the interior of
the circle Cj, since from (3.3.16) we have

—¢I(b7 /\)

mb(/\, —m) =

and this shows that if A > 0 by (3.3.17) 3%%1 > 0 i.e. the upper half-plane
goes to the exterior of the circle Cy. The result for the lower half plane is obtained

similarly.

Recalling properties of conformal mappings in complex analysis we obtain for
each b as z = cot  varies, m; describes a circle C} in the complex plane C.
Also we obtain by (3.3.14) with f = ¢, that

s SN _ L #0N) PN, LWIHAD) Jo 19(z, V) [Pdz

“HEN) T EUEeN T ey T 2 BONE Y eGP

which has the same sign as v = S, since W[4, ¢](0) = 0. Hence if v > 0, the

exterior of Cy corresponds to the upper half of the complex plane Sz > 0.
We are going to characterize the behaviour of the circles Cy, when b approaches
large values. We see that the real line from the complex plane C is transferred,

by the conformal mapping (3.3.16), to a circle C and so the origin z = 0 maps

8'(b,))

—F@y) on the circle Gy Also since my = oo corresponds to

to a point my(A) =

z= —ﬂ(b’—)‘l, the centre of Cy, which is the conjugate of the point at infinity with
36N &

respect to the circle Cy, corresponds to the conjugate z = —-";'((:i)) of z = —%%

with respect to the real line; that is m;(), —%{f—)\’l)l) = —%%“&]]1(%. Hence the radius

ry of C} satisfies

0'(b,\) . W0, 4|(b)

. (b, _, W0, 410) 1
¢'(b,A) ~ Wig, 4](b)

w4, %](b)l " I (e, N)[2de

Now my () is inside of C, if and only if Sz = 3:(z —2) < 0 or ¢(2 — 2) > 0. If we

(3.3.18)




QCCLLOTE J.0. pIRGguiar pounaary vaiue rrouems

express z in terms of m; we have

__m(N)' (b, ) +6'(,A)
T (V)b \) + (5, )

(3.3.19)

and so

i(z—2) =i {_mb(A)¢’(b, N +0(5,2) | m(NE(b,2) +8(b,A) } o
my(A)B(b, A) +0(b, ) i (A\)B(b, ) + 6(b, ) ’

i(|ma*W[8, #1(5) + ms W10, 4](b) + s W6, 4)(b) + W[6,6](8)) > 0,
W (2, A), s(z, A)](b) > 0, (3.3.20)
Setting f = 1, and g = %, in (3.3.14) and (3.3.20) we obtain
b

21/'/0‘ 10(z, A) + mp(A)(z, A)[*dz < iW[0 + myd, O + mB)(0).

Since
W0 +mug, 0 + ] (0) = W10, 0)(0) + [mu P W g, 6](0)+
W0, 4)(0) + mW(g, 0](0) = m,W[0, 4)(0) + my W14, 8(0)

where we have used
W($,6)(0) =1, W[0,4] = —1, W[4, $](0) = W[0,6)(0) =0

then
W[9 + mypo, 6+ rﬁb(?)](()) =my —my = 21Smy
Hence m; is inside C if v > 0 and

Smb

b
/ 10 + myd|?dz < ———
0 v

The same result is obtained if » < 0. In each case the sign of Sm, is opposite to
that of v. It follows that, if m; is inside or on the circle Cy, and if b > a > 0 for

some real a then

gmb

a b
/ |0 4+ myd|*dzx < / |0 4 myd|*dz < —
0 0

124
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and therefore my is inside C,. This means that C, contains C} in its interior if
0 < a < b. Thus for a given A with S\ > 0, as b — oo the circles C} converges
either to a circle Cy, or to a point m. In the case where the limit is a circle Cyo,
then its radius re, = limy_.co 13 is positive, and from (3.3.18) this implies that
¢(x,A) € L*[0,00). If 7 is any point on Co,, then 7 is inside any circle C for
b > 0. Hence
o " S
The same argument holds if 7 reduces to the point m, i.e.

Sm

b
for all values of b > 0. Hence
Sm

|10+ mgpas < -3
0

S\
and consequently for every value of A with S\ # 0 (3.3.13) has a solution P(z, )
which belongs to L?[0, oo).

Theorem 3.3.1 For all non-real )\, there exists a square-integrable solution
¥(2,4) = 0(z, ) + m(A)¢(z, A)

of the equation (3.3.13) on the interval [0, 00)

Proof: see [50].

The solution t(x, }) is called a Weyl function [29].

Corollary 3.3.1 For each non-real \, we have

bli_}n Yo(z,A) = (z, A)

b 00
Jim Wl = Jim [ (e e = [ ot Ve = o
00 = Jo 0
Proof: Let S\ # 0. Then by Theorem 3.3.1 we obtain %(z, \) € L?[0, ), and

obviously we have

1,[)5(:11, A) = ¢'($7 )‘) + [mb()‘) - m(A)]¢(m, )‘)



WELLOI Jeq.  LIC LAIRIL=CLTCLE aNG Linil-point cases

Now in the case Cy — Co, we get my — m as b — oo, so s(z,A) — ¥(z,)) and

since ¥(z, A) € L*[0,00) then

b [o%e)
lim / hpu(, A)Pde = / I (z, \)de

In the case Cy — m as b — oo we get by (3.3.18) that

1

lmb(l\) - m(A)I S 27‘(, = l/j;)b |¢(x, /\)|2d$ —0

and hence my — m and ¥;(z, \) — ¥(z, \). Moreover

b b
/0 (m4(X) = m(A) (> N)dz = my(A) — m(A)]? / 16(2, )Pz <

b b
02 /0 |6(z, \)[Pdz < (? /O 6z, \)[dz)"!

and therefore, since ¢(z,\) ¢ L?[0,0), we conclude that

b )
lim / ls(, V)P = / (z, \)Pdz

3.4 The Limit-circle and Limit-point cases

In this section we still consider equation (3.3.13) on the interval [0, 00), where the
function ¢(z) is continuous in each finite subinterval of [0, c0). We recall that for
each b > 0 the conformal mapping (3.3.16) transforms the real line to a circle C

with radius
1

Ty = 3
2v fo |¢(z, A)|2dz

When b — oo then r, — r, where either r > 0 or r = 0. Therefore the circles

Cy converge either to a circle C or to a point m. If C, — C we say that 7 is
in the limit-circle case at infinity, and by (3.3.18) we have ¢(z, ) € L?[0,00) so
that by Theorem 3.3.1 all solutions of the problem (3.3.13), (3.3.15) are square
integrable. If r = 0 we say that 7 is limit-point at infinity. In this case ¢(z, )
no longer belongs to the Hilbert space L?[0,c0) and so not every solution of the
problem (3.3.13), (3.3.15) is square integrable. Thus in the Limit-point case there

is a solution which is not square integrable.
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Example 3.4.1 Let ¢ = 0 in the problem (3.3.13), (3.3.15). Then we have
y'+Ay=0 (3.4.21)

where A is a real parameter and yi(z,\) = =V, Y2z, A) = e~=V} are linearly
independent solutions of (3.4.21). We see that y, is not. a square integrable

solution for s\/X > 0.

There is a question here that says: Does the limit-circle and limit-point classifi-
cation depend on a particular value of Ag, or does it only depend on the operator

T 7 The answer is provided in the following theorem.

Theorem 3.4.1 If for some complex parameter Ao, all solutions of (3.3.13) are
in L?[0,00), then, for any complezr parameter A, all solutions of (3.3.13) also
belong to L*[0,00). In other words, if the operator T is in the limit-circle case for

some Ao, then T is in the limit-circle case for all A

Proof: see [50].

Corollary 3.4.1 The limit-circle case holds if and only if the equation
-y +q(z)y =y

has two linearly independent solutions in L?[0, o).

Corollary 3.4.2 The limit-point case holds either for all non-real values of X or

for no such values.

There are various criteria for the operator T to be in the limit-point case, some

of which are given in the following theorems.

Theorem 3.4.2 Ifq(z) > —ka?, where k is a positive constant, then the operator

T= —;‘% + ¢(z) is in the limit-point case

Proof: see [28]. Note that in Theorem 3.4.2, § and ¢ satisfy $(0,)) =
sina, ¢'(0,\) = —cosa and 0(0,)) = cose, 6'(0,\) = sinc, which are not

the same conditions as in (3.3.15.)
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Theorem 3.4.3 Let M be a positive differentiable function, and k; and ky posi-

tive constants such that for large values of =
q(z) 2 -k M(z),

where

1 M'(z)
dz =00, |——=|<k,
»/.1: vV M(z) l\/M(:c)3| =

Then T is in the limit-point case at infinity.
Proof: see [5].

Note that in this theorem 0, ¢ satisfy
#(0,)) = cosa, ¢'(0,)) =sina
{ 6(0,A) = sina, 0'(0,)) = —cos a.

Now consider the problem

Tf=—f"+q=)f=Af

sinaf(0) 4+ cosaf'(0) =0 (3.4.22)

cos Bf(b) +sinff'(b) =0
where 0 < «, f < 7. By (3.3.14) the above problem is a selfadjoint boundary-
value problem in the interval [0, ], and hence there exists a sequence {\,;}, n =
1,2,... of real eigenvalues and a corresponding complete set of normalised eigen-
functions { f. s} such that 7f,4(z) = A pfup(z), n =1,2,.... Let 8, ¢ be linearly
independent solutions satisfying (3.3.15); then we can see that ¢ satisfies the first

boundary condition in (3.4.22) so

fn,b(x) = 7'n,b¢(xa An,b)

where 7,4 is a constant independent of z. Now let the function p, be a non-

decreasing right continuous step function of A which satisfies

ps(0) =0, lim py(o +¢€) = p(o)
and is defined as follows:

if >0

1
po(0) = 20hnsso Jo I p(@0)dz
-1 . <
Za(l\n'bso j;)bf,z:,b(zf.o')dx lf g - 0
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Theorem 3.4.4 Let 7 be in the limit-point case at infinity. Then

i) There ezists a monotone nondecreasing function p on whole real azis such that

p(v) = p(p) = lim (py(v) — po(1))

at points of continuity v, pu of p.

ii) Let L2(p) denote the Hilbert space which consists of all real functions g, mea-

surable with respect to the Lebesgue-Stieltjes measure generated by p and such

that
/ 9(0)dp(0) < oo

-—00

Then if f € L?[0,00) there exists a function g € L*(p) such that

im [ lg(o) / " [(0)8(t,0)dtPdp() = 0

a—oo [ _

and

| i@ = [ lo@)Pdsto)

(o]

i4i) The integral

/00 g(o)é(z,0)dp(o)

—00

converges in L%[0,00) to f, that is,

im [ 1f(z) - / " 9(o)b(z, 0)dp(0)dz = 0

e
W00 0 w

w) If m is the limit point, considered as a function of A, then

NN .
p(v) — p(n) = lim — /ﬂ Sm(z + 1y)dz

at points of continuity v, u of p and inversely

*° 1 1

m(A) = m(he) = /

-0

(0'—/\ 0’—/\0

— ———)dp(0) + c(A — o)

where ¢ is a nonnegative constant, Ao > 0, A > 0 and Sm(A) > 0.

Proof: see [5].

The function p is called the spectral function for the problem

7f=Af, sinaf(0)+ cosaf(0) =0
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The value of g at o is given by the formula in the second part of the above theorem

and may be written
9(0) = Limea e / [(2)d(z, 0)dz
0

where l.i.m. denotes the limit in the mean. This leads to the Parseval equality

| v@rds= [ lao)tane) (3.4.23)

(e}

and the inverse relationship

f(z) = l.i.m.w_,oo/

W

9(N)¢(z, A)dp())

which is called the expansion formula.

Theorem 3.4.5 (Expansion theorem) Let f € L?[0,00) be a continuous

function in each finite subinterval of [0,00). Then there exists a function g € L2(p)

such that

w

(@) = Limnmeo [ o(0)dle,0)dp(0)

-_Ww
where

g(A) =lim.gee /Oa f(z)¢(z,0)dz.

where convergence is in the sense of Theorem 3.4.4.

Proof: see [5].

We also have the inverse statement of the expansion theorem, which is called the

Inversion Theorem.

Theorem 3.4.6 (Inversion theorem) If g € L?(p), there exists an

f € L?[0,00) satisfying

@) = Limoce [ (0)0(z,0)d(0)

-Ww

and by means of the function f we may represent the function g in the form
g(o) = l.i.m.a_,oo/ f(z)¢(z,0)dz.
0

Proof: see [5].
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3.5 The functions m(})

In this section we shall be concerned mainly with the complex function m which

is the coefficient function in the solution ¥ denoted by
¥(z, ) = 0(z, ) + m(A)é(z, A)
where 0, ¢ satisfy
#(0,)) = cosa, ¢'(0,)) =sina
{ 6(0,)) =sina, 0'(0,)) = —cosa.

Note that with 6, ¢ defined in this way, Sm(A) > 0 whenever SA > 0. Proceeding

as in Section 3.3, we start with the function m; which is given by the formula

_6(b,A) cos B+ 6'(b,\)sin 3
35, \ycos B+ # (5, N sin
The function my(A, 8) is a meromorphic function of A with simple real poles A, (b),

the zeros of ¢(b, A) cos f + ¢'(b, A) sin 8. Since the differential operator T is in the

mb()\) =

limit-point case at infinity the choice of 4 is immaterial, so we may take the value
of B to be zero, which gives
063
¢(b,A)
and the residue r,, of my(A) at A, (b) is given by

mb(/\) =

b
ra(b) = = / 16(2, Au(B)) Pda] (3.5.24)
[20] Lemma 10.2.1.

That the zeros of ¢(z,)) are all real follows from (3.3.16). To prove that the

poles of my(A) are simple we use
b
Sma(A) = SA / (2, \) 2z
0
which says that

b
Sma(A) = S /0 10(2, A) + ma(N)é(z, \)[2dz (3.5.25)
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Suppose the poles of my(A) are not simple but of degree k, and set A = A, + iv.
Then as v — 0 the right side of the above equality becomes infinite as a constant

1-2k

multiple of v while the left hand side becomes infinite at most as »~*. This

forces k to be 1. Multiplying both side of (3.5.25) by » and taking the limit as

v — 0. we obtain ,
—ra() = () [ #(a, )z
0
and since r,; # 0 this gives (3.5.24). Also the function m;(A, 8) for a constant

B is a meromorphic function where the poles are the zeros of denominator of m;

and all are real. Also on the circle Cp, we have

Smb < |mb|

b
/ 10+ myfPde = ST <
0

14 14

On the other hand

b b b
/ 10+ muglde > Hmy? / |[2dz — / 10dz
0 2 0 0

If we combine the two last inequalities we find m; in terms of v such that

1 2 [*16)%d 1 d
s < —; +{ f,,"l fde | : } (3.5.26)
v [y [¢2dz Lo lglPde — v3( [y |¢[2dz)?

For a given A the above inequality shows that the circles Cj decrease as b increases,

and hence my(A) converges boundedly in any region in the upper or (lower) half
of the A-plane. Hence if 7 is in the limit-point case the limit m()) of my(A) is
analytic in either half-plane. Since the right hand side of (3.5.26) is O(Z) as
v — 0 for any fixed b, it follows that the left hand side satisfies m;(A) = O(2).

This implies that if the limit function m has poles they are all simple poles.

Related to Theorem 3.3.1, if 7 is in the limit-point case and A and X are non-real,

we have the following theorems.

Theorem 3.5.1 For any fized and non-real A and X' we have
Jim Wz, A),1(z, X)) = 0

Proof: see [46] §2.3
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Corollary 3.5.1 Suppose that A\, X' are non-real, then

(V=) / Bz, (2, N)de = m(}) — m(X).
0
Proof: The result follows from Green’s formula and Theorem 3.5.1.

If ¢(z, An) is an eigenfunction corresponding to the eigenvalue ), then we have

Corollary 3.5.2 For any fized non-real A we have

/0 B Nz, )iz = 1 .

Proof: see [46] §2.5.

Corollary 3.5.3 Ifr, is the residue of m()\) at simple pole A, then

/ é(w, \)2dz = L
0 Tn
Proof: [46] Section 2.5.

In the real context there is an important result regarding the m-function which

was obtained by Titchmarsh around 1940,
1 A
() = p(g) = lim 1 / Sm(z + iy)de
vlow J,

Note that for thirty years after the workof Weyl, due to much emphasis on abstract
functional analysis, there had been no remarkable work in this area. If a # 0 the

related formula for the m-function is

m(A) = /—oo ﬁdp(t) + cot @ (3.5.27)

for non-real A. This is derived from the analyticity property of the function m(\)

in the half-planes Sz > 0,3z < 0, which was proved by H.Weyl in 1935 [51].



Chapter 4

Non-selfadjoint Differential

Operators.

4.1 Introduction.

This section is devoted to an investigation of the properties of some
non-selfadjoint one dimensional operators on the positive half line, and includes
generalization of the limit-point and limit-circle theory and the extension of some

results on the spectrum to the non-selfadjoint case.

4.2 Lagrange’s Identity

In this section we first recall some relevant results from the selfadjoint case and
then proceed to study the modified Lagrange’s identity in the non-selfadjoint

case.

Definition 4.2.1 Let H = L?[0,00) and consider the ordinary differential ex-
pression
&2

42
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on the half-line z > 0 where ¢ is a real-valued continuous function on [0, X], for
all X > 0. Let Tinax be the mazimal operator defined in §3.3 with domain D. It is
well known that Tpax is densely defined and closed so that its adjoint 10, exists

[35] p.72. A selfadjoint realisation Ty of Tiax can be defined on H with domain
D,={f€D: f(0)cosa+ f'(0)sina=0}, a€l0,n)

by
Tof =7f Yf €D, (4.2.1)

iff 7 is regular at 0 and limit-point at co. Hence every selfadjoint differential
operator generated by 7 is either a restriction of the maximal operator Tyayx or

an extension of the minimal operator T},;, where T,,, is defined as in §3.3.

Consider the differential equation
mf=\f (4.2.2)

where A is a complex parameter and let ¢(z, ) and 6(z, \) be two linearly inde-

pendent solutions of (4.2.2) satisfying
#(0,)) =sina ¢'(0,)) = —cos (4.2.3)

6(0,)) =cosa 6'(0,)) =sina (4.2.4)

where the Wronskian of ¢ and 6 at the point z = 0 is W[4, 0](0) = 1. Note that
the boundary conditions here are different from those in (3.3.15); this change is

not important, but for convenience they are now consistent with the usage in

[44] [46].

Theorem 4.2.1 For every non-real value of A there exists a non-trivial square

integrable solution v(x,)) of equation (4.2.2) on the interval [0, 00) where
Y(z,A) = 0(z,A) + m(A)g(z, \)

and the corresponding function m(\) is analytic in the upper and lower half

planes.
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Proof: see [50].

Let f and g be two functions for which the expression
2

T Y]

makes sense. If [f, g](z) = W[f,§](z), and if ¢(z) is real, then we have

e d -, d
Tf§—fTg= (9"~ ['9)(z) = —|f,](2) (4.2.5)
which is called the Lagrange identity. Integrating both sides of (4.2.5) on the

finite interval [0, X] we obtain Green’s formula

/OX(ng — fr9)dz = (f9' = "9l =/, 915 (4.2.6)
where [f, g]¥ is the difference of the values of [f, g](z) for z = X and z = 0.
Hence an operator T associated with 7 is selfadjoint if and only if
limy oo [f, 9]& = 0 for all f, g in the domain of T. However if the function ¢ in the
expression —-L; + ¢(z) is a complex function then (4.2.5) and (4.2.6) no longer

hold and we have
d .- d
75— f79 = -d;(fy' = f'9)(z) + fa(g—q) = (—l;[f,g] + 2iq2fg

X b'e
/ (tfg — frg)dz = [f, g + 2 / q2fgdz (4.2.7)
0 0
where ¢; = $¢. So (4.2.7) implies that if ¢ is complex the operators associated
with 7 cannot be symmetric, since fox ¢2fgdz cannot vanish for all f,g € D,

and all X > 0, and hence are non-selfadjoint. In the case where f and g are two

solutions of (4.2.2) we obtain the following formula

X X b'e
| @ta=rmyie =19 +2% [ fands =2 [ fodo
0 0 0
since
D'
11,90 =2 [ (= a13dz +11,910) (4.28)
where [f, g] is the Wronskian of solutions f and g, and » = $). Note that (4.2.8)

follows from

X X
A (/"5 — [7")da =‘4[@—AN§—fM—AMMw

X
%A(@—wmm
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4.3 Limit-point, limit-circle

Consider a differential operator Ty, defined on D, as in (4.2.1), but where « is now
a complex number and the coefficient function ¢ is a complex function. Then T,
is densely defined, closed and non-selfadjoint, and the corresponding differential
equation is

Tf=—f"+qf =Af (4.3.9)
where ¢ = g1 +ig2 and A = p + iv. With 0(z,\) and ¢(z,)) defined as in (4.2.3)

and (4.2.4), where @ = a; + iz we have the following theorem.

Theorem 4.3.1 (Sims) Let ¢; < 0, in equation (4.3.9), and a; < 0. Then for
v > 0 there exists a square integrable solution ¥(z,)) and a complez function m
satisfying

P(z,A) = 0(z, ) + m(A)g(z, N).

and the corresponding m-function, m(A) is analytic in the upper half-plane.

Proof: Let » > 0 and for b € [0,00), let my(A) be defined by the condition that
¥s(b, X) cos B + (b, ) sin = 0

for some fixed § € C, where
Yo(z,A) = 0(z, A) + mp(A)d(z, A) (4.3.10)

Since 1y(z, A) satisfies the given boundary condition it follows that

0(b,A) cos B+ 6'(b, N) sin 8

mu(A, B) = - (b, \) cos B+ ¢'(b, N sin B

Substituting cot § = z gives

_0(b, 2z +0'(b,\)
$(b, A)z + ¢'(,A)

which is a linear fractional transformation from the z-plane to the m;-plane. Since

mp(A, z) = (4.3.11)

# and 0 are linearly independent solutions and ¢ and ¢’ do not both vanish at b,

lines and circles of the z-plane are mapped onto lines and circles of the m;-plane.
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The critical point z = —%'z(:"—/{\)l on the z-plane corresponds to the point at infinity

on the my-plane. We now show that the image of the real line &z = 0 in the
z-plane is a circle Cy. Using the inverse transformation,

(b, my +0/(b, )
86, \yma + 605, )

2(b,)) = (4.3.12)

and setting z = Z gives

¢'(b, M)y + 0(5, ) _ (b, N)rizy + 0'(b, )
¢(b, \ymy +0(b,A) — H(b, \riiy + (b, \)

from which we have

Ime|*(¢'¢ — @) — my(d0" — ¢'0) — riig (40 — $0') + (06" — 06")  (4.3.13)
= |mb!2Wb[¢—S, d’] - mbWb[¢7 é] - mbWb[aa (Z] + Wb[ga 0]

Cwiafe W8, Wb, | Wid,0)
= W"["”"‘]{' ST W d T Wild, 9 Wb[$,¢]}
= (.

* -1 I+

where W;[4, 4] # 0. We see that by (4.3.13), m; lies on a circle Cy with centre

Wb [0’ ‘Z]
A) = —= W¢,0] =1,
P(d) Wi4, ¢] 6]
and radius
1
(A) = ——=
Y= g
since W;[0, ¢] = 1 and
T'b(A)2 — _Wb[qio] +|Wb[€-)¢] |2= |W6[€,¢] 2 _ E
Wb[é’ ¢] Wb[¢’ ¢] Wb[an ¢] IWb[¢a ¢] |2

The images of conjugates under a conformal mapping are the conjugates of im-
ages. Hence the image of the conjugate of the critical point z = —";’(i’;\) is the

centre py(A) of the circle Cj, since the centre of C, is the conjugate with respect

to C of the point at infinity in the m; plane. Thus we have by (4.2.8)

b
ro(A) = |Wil¢, <}5]|-1 = |/0 2(v — q2)|¢|* — sinh 2| (4.3.14)
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On the other hand the point at infinity in the mj-plane is outside the circle Cj

i C)]

VR Since we have ¢, <0, a; <0, v > 0,

and is the image of z =

_¢
5)

3(

1 / Y 1 T T 1
= -2—1-(_3 + 'z') = Z(¢¢ - ¢¢)I¢|2
- LWM ¢ = L[‘/b%(x/ — q2)|4|* — i sinh 2a)]
T aE T AR s " ’

1 [ . .
= W[/o 2(v — ¢2)|¢|* — sinh 2] > 0

so the upper half z-plane corresponds to the points outside C}, and the lower half

z-plane corresponds to the points inside Cj. Also from (4.3.12)

Sz = (b)) = %(z ~3)

1, ¢mp+0 ¢y + 0_']
2% ¢mp+0 T gmy+0
- L[Wb[(ﬁémb +6), ((_ﬁ-fﬁb + é)]]

o) |¢mb + 0|2
W[y, 1s)

2t |?

and using (4.2.8) we have
b
Wb, 1) = 2i/ (v = g2)|e]® + Wo[the, 4]
0
or
_ b
Wi[ths, ] = 2i/ (v — q2)|hs|* — i(1 + |ms]?) sinh 205 + 2Smy cosh 2a,
0
Hence if Sz < 0 then
1 b
Sz = W[%/ (v = q2)|s]* — i(1 + |my)?) sinh 20 + 2:Sm, cosh 2a5)
b 0
1 b
= W(/ 2(v — q2)[¥e]® — (1 + |ms|?) sinh 2, 4 28y cosh 2a) < 0
b 0
so that for Iz < 0 we have the inequality
b
/ 2(v — @2)|s|* < (1 + |ms)?) sinh 20, — 28, cosh 2a,. (4.3.15)
0

Hence the point my is inside Cj iff the inequality in (4.3.15) holds and m; is on

Cy iff the equality in (4.3.15) holds.
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Analysis of the limit-point and the limit-circle cases depends on an investigation
of the behaviour of the circles C, as b tends to oo, and this can be done using the
fact that the circles C, are decreasingly nested as b tends to co. To see this, note

that if &’ > b then ry < 7y since

b b
v l/ 2(v — @) ¢[* — sinh 20| < |/ 2(v — q2)|4)> — sinh 20,| ™" =1,
0 0

and Cy is inside C, because if my is a point in the circle Cpr we then have

bl

b
/0 2 — g2)s(z, ode < / A — g2) b (z, V)P

< (1 4 |my|?)sinh 20, — 23my cosh 2a;

or

b
/ 2(v — @2)|u(z, A)|Pdz < (1 + |my|?) sinh 2a2 — 23y cosh 2a
0

since v — q; > 0. This inequality shows that my is a point in the circle Cy. But
the inequality y )
[ w-wlnkz [o- e

implies that as b — oo then C} tends to a limit, which is either a point (limit-
point), or a circle (limit-circle). In the limit-point case 7, — 0 as b — oo and
consequently my(A) — m(X), ¥p(z,A) = P(z,A) = 0(z, ) + m(A)¢(x, A) and so
by (4.3.15) . N

[ -mmr - [0 - nipide <o (4.3.16)

The inequalities (4.3.15) and (4.3.16) show that the differential equation (4.3.9)
has a square integrable solution, 1, which satisfies /v — q; € L?[0,00). Note

that in Sims’ case, ¥ — ¢2 > 0, so that

/ w(v — @)’ dz,00 = /v — ¢z € L*[0,00)
0

This is not the end of the limit-point story, since from (4.3.15) if 7, — 0 as
b — oo, the integral [°(v — ¢2)|4|* tends to oo but it is possible for i [¢|? to be
convergent, in which case we have another linearly independent square integrable

solution. This is also a limit-point case, but with two square integrable solutions.
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In the remaining case when 7, — roo (> 0) as b — oo, then [°(v —g2)|¢|* < oo by
(4.3.15) and we have two linearly independent solutions in L?[0, c0) with weight
function v — ¢,.

We can therefore distinguish three cases:

Case I. There exists one and only one L?[0, 00)-solution, 1, with the property

I (v — @2)|9]? < o0, a limit-point case.

Case II. There exist two linearly independent solutions 3 and ¢ in L?[0, c0),
with the properties [[°(v — ¢2)|9|* < o0 and [;°(v — ¢2)|¢|* = oo, This is a

limit-point case too.

Case III. There exist two solutions 1 and ¢ which are square integrable in [0, 00)
and satisfy [°(v — q2)|9|* < 00 and f;°(v — ¢2)|¢|* < co. This is the limit-circle
case.

Note that in Sims’ case, v — ¢ > 0, so that

/ (v — g:)[h[2dz < oo if and only if $v7=q; € L]0, 00)
0

We omit the proof of the analyticity of m()) in the upper half plane; this can be
found in [44], Thm. 3.

The cases I, II and III are dependent only on ¢ as the following theorem asserts.

Theorem 4.3.2 If for a particular value Ag of the parameter \ all solutions of
equation (4.3.9) are in L*([0, 00); v—q2) respectively L*[0, 00), then for every other
value of the parameter X all solutions of the equation (4.3.9) are in L*([0,00); v —

q2), respectively L?[0, 00).
Proof: See [44] §3, Theorem 2.

We can see by the above argument that case II has no analogue in the classical

Weyl theory, but this case exists as the examples of Section 4.4.2 show.

Theorem 4.3.3 Let equation (4.3.9) and boundary conditions (4.2.3-4) be given
for some a € C and suppose a,q and A are as in Theorem 4.3.1. Then if 3 € C
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is such that a — B # km,k € Z, and S5 < 0, we have

—sin(a — f) + mg(A) cos(a — B)

mq(A) = cos(a — B) + mp(X) sin(a — B)

(4.3.17)

Proof: By Theorem 4.3.1, mq(A) and mp()) are analytic in the upper half-plane.

The proof now proceeds as in [10].

4.4 Normal solutions.

We noted in the previous section that Case II has no analogue in the theory of
Weyl. In order to show that this case actually occurs we give three examples.
The statements of the first two examples are taken from Sims [44] p. 257 and the
third one is new. First we give some standard material relating to series solutions
of second order differential equations. From these observations we acheive that

existence of the Case II is apparent.

4.4.1 Classification of singularities.

We shall discuss the differential equation
y" 4+ p(z)y’ + q(z)y =0 (4.4.18)

when z is a real variable ranging over [0,00) and p, ¢ are single valued analytic
functions on [0,00), which may or may not have singularities at infinity. We
briefly review the well-known classification of isolated singulatities of (4.4.18)
(see eg [21]).

Let y; and y2 be a fundamental system of solutions of (4.4.18).

1) The point zo is called an ordinary point of (4.4.18) iff p and ¢ are analytic at
zg, otherwise we say zg is a singular point of (4.4.18).

2) The point g is said to be a regular singular point of (4.4.18) iff (z — zo)p(z)
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and (z — zo)%q(z) are analytic at zg, otherwise o is an irregular singularity for
equation (4.4.18)

3) We speak of an irregular singular point zo of finite rank r — 1 iff (z — o) p(x)
and (z — z0)* ¢(x) are analytic at zo, where r is the least number satisfying the

above statement. Note that a regular singularity has rank zero.

4.4.2 Normal solutions.

Let = oo be an irregular singularity of (4.4.18) of finite rank r. It was discovered
by Thomé (see: [9]) that certain formal solutions of the form

o0

y = exp[P(z)] ) caz™™"

n=0
exist, where P(z) is a polynomial, and p is an integer. Here y is called a normal
solution.
We are going to give the construction of a normal solution in the case of an

irregular singularity of rank 1. Using the change of variable

y= zexp(—%/p(m)dx) (4.4.19)

transforms (4.4.18) into a differential equation without the coefficient p, so there

is no loss of generality if we consider the differential equation
v +q(z)y=0 (4.4.20)

in which

q(z) = Z gz

n=0
A normal solution then has the form
oo
y=€> ez, o #0 (4.4.21)
n=0

More details of normal solutions are given in the following examples, which illus-

trate Case 1I.
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Example 4.4.1 In the differential equation (4.3.9) suppose q(z) = —a® — 2iz?

where x € [1,00).

If we take /\ = 0 we ha.ve
" 6 3 .2

Infinity is a singular point and in the terminology of Section 4.4.1, it is an irregular

singular point of rank 4, since if we substitute z = % in the equation we obtain

By ox W

3.6
dx? dx Xy =0

4 (X104 5
so p(X) = 2X~! and ¢(X) = X‘m(l + 3iX*), and we see that X"¢(X) and
X3p(X) are analytic at point X = 0, i.e. the point at infinity is an irregular
singular point of rank 4. Hence there is a normal solution y = e9®)u(z) where

Q(z) is a polynomial and u(z) = z°(co + c1z™! + cpz™% +...). Substituting for y

in the first equation we have
(" +2Q'u + (Q" + Q%)u + qu) =0
which gives, since e?() £ 0,
' +2Qv +(Q"+Q*+q)u=0 (4.4.22)

The normal solution exists subject to the existence of a regular solution of this
equation at infinity. Let the degree of Q be s > 1 so that Q" + Q' has degree
at most 2s — 2 and Q' has degree s — 1; hence 2s — 2 < 6 or s < 4 so that
Q(z) = ap + a1z + az2® + ... + aqz*. After doing the relevant calculations we
obtain a4 = :l:%i and ap = a; = a; = a3 =050 Q4(z) = -za: 1 Qq(z) = —zm and

p1 =, p2 = 2 which give
wu(z) =27 (co+ iz + e ?+...) =z v (z)

and

U2(.'L') = al.:_s(do + d].’II_l + dzm_z +.. ) = mTvg(x)
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where v; and v, are bounded at infinity. We have therefore obtained two solutions
y1 and y, which are square integrable, viz.
y1(z) = et 2T vy(z)

y2(z) = e_Tl"ﬁ:v_Tam(x)

However y; and y, are two solutions such that

3
yi(v —‘12)% =11(0 5 z? % \/:xyl \/j 1y T Ul(fv)
so that
o0 1 o0 3 =5
[ o= wtnk = [ ¥ ur <o
1 1 2
and :
3 3 3 1.
Ya(v — g2)F = ya2(0 + S2?)7 = \/jxlh = \/:elex%vz(m)
2 2 2
so that
* 1 >3 .
[ 1=l = [ et = oo
1 1 2
although

o0 2 o0 3
/ lyal? = / 2% [vaf? < 00
1 1
. 1

Example 4.4.2 In the differential equation (4.3.9) suppose q(z) = Sz~% — iz
and let (0,1] be the corresponding interval.

5

15 — tz is analytic at

Clearly z = 0 is a regular singular point since z%q(z) =
z = 0. Using the method of Frobenius ( [43] Chap. 5) at the regular singular
point, the formal power series solution y = z™ Y~  a,z" satisfies the equation

y" +(Fz~? —iz71)y = 0, and the indicial equation m(m — 1) + & = 0 has the

roots m; = 2 7 and my = _— hence
o0 00
5 n =1
Y1 = x4 E anc™, =z E b,z"
n=0 n=0

Using the recursion formula we get

; 65 241
yl(:c)—:m(ao—zmx—zﬁz —.. )~z

5
1



DECLIoON 4.4. INOTrmal solutions.

yg(x) = mil(bo + bla: +.. .) ~ SE—TI

as z — 0, so that y; and y, are in L2(0,1].

Since ¢a(z) = —z~! and
65 241
|y1| =$2(ao—2aol6$—((16)2+aoz ):1: +...)
we have [ =1y, |? = [, 22(a2 —...)dz < co. However

lya* = :v_Tl(a(z, + agarz + (a? + ag)z? +...)

we have fol g7yl = [ 27 (a2 +...)dz = oo although

[l = [ e+ <o

Example 4.4.3 In the differential equation (4.3.9) let q(z) = —z* — iz and let
[1,00) be the corresponding interval.
We have

—y"+ =z’ —iz)y = Ny
To solve the problem for the particular value A = 0, we see that infinity is an
irregular singular point of rank 3 for the equation —y” + (~—z* — iz)y = 0, since
if we substitute = ¢~ in it then the point ¢ = 0 is an irregular singular point

of the corresponding equation which is
y'+ 27y + ity =0.

Hence we can use the method of normal solutions to find the required solutions.

Let a normal solution be of the form
y= eQ(”)x”(co +az V4 e+, J)

Substituting into the second equation we proceed as in Example 4.4.1 and first
determine the degree s of Q(x) which is less than or equal to 3, so that Q(z) =

az®+bz?+ cz. Equating coefficients we get = £2,b = 0 and ¢ = 0. If we denote

two values of a by a; = 331 and a; = ‘72‘ and the corresponding polynomials
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by Qi(z) = Za3,py = - and Qi(z) = =Za3,p, = ~32 then we obtain two

independent solutions

yi(z) = 32T (co + 1zl + ezt +...)

=2, 3

ya(z) = €32z 7 (do+ dha ' + dyz 2 +...)

Since v = 0 we see that (—qz)%yl € L?[1,00) and y; € L%[1,00); on the other
hand y, is an L?[1,00) solution but it is not an L?(—gq;[1, 00)) solution, so we

conclude that this is Case II in Sims’classification.

4.5 McLeod’s results

Results about non-selfadjoint problems in the interval [0,00) can be obtained
under more general conditions than those considered by Sims. For example,
Theorem 4.3.1 remains valid if v < 0 and ¢, > 0. To see this, note that since we

can write 7f = Af then

— "+ (q1(z) — iga(2))f = (n —iv)f

Also if ¥ < 0 then —v > 0 and if g, > 0 then —¢; < 0 so there exists a solution
¥(z, \) which is the conjugate of the Sims’ square integrable solution %(z, A), and
the corresponding m-function is the complex conjugate of the m-function given
by Theorem 4.3.1. Moreover if we change the coordinates for A = p + ¢~ and

¢(z) = q1(z) + ig2(z) simultaneously then the same result will be obtained if
v >supga(z) or v <infg(z)

for, if we transform the origin for both A and ¢(z) to an arbitrary point (u,v),

then the differential equation (4.3.9) remains unchanged, since

="+ (q1(z) = v) +iga(2) = v))f = (1 —v) +i(v = v)) S

and (4.3.9) is equivalent to the following equation

—f"+ (a(2) +ig(2))f = (n+iv)f.
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The full generalization of Sims’ results given by McLeod [30] is stated in the

following theorem and subsequent corollaries, where we suppose that

limsupga(z) = L and liminfge(z) =1

Before going further we recall that ¢(z, A) and (z, A) are two linearly independent

solutions of (4.3.9) satisfying
#(0,)) =sina, ¢'(0,)) = —cosa (4.5.23)
6(0,)) =cosa, 6'(0,)) =sina (4.5.24)

where a = og + ta, a3, a2 € R, and the result of Sims that, if » > 0, ¢ <0,

az < 0, then
P(z,A) = 0(z,A) + m(A)g(z, A) (4.5.25)

is an L2-solution.

Theorem 4.5.1 (McLeod) There is a square integrable solution for (4.3.9) if
v > L, or v < | and the corresponding m-functions are meromorphic on the

regions v > L,v < for any o € C.

Proof: See [30].

Corollary 4.5.1 If L =l = limg— q2(2) and if v # L, then (4.3.9) has a square
integrable solution and the corresponding m-function mq()) is meromorphic on

the half planes v < L and v > L.

Proof: see [30].

Corollary 4.5.2 If limyw0 2(z) = L and if v # L, then the m-function of the
Corollary 4.5.1 at X is regular or has a pole. If the m-function is regular at A,
and v # L, then

P(z,A) = 0(z,A) + m(A)¢(z, A)

is in L?[0,0).

Proof: see [30].
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Corollary 4.5.8 If L =1 = +o00 or L = | = —co then there is a square integrable
solution for all X and the corresponding m-function is meromorphic on the whole

plane.

Proof: see [30].

Corollary 4.5.4 If there is no L%*[0,0) solution of (4.3.9) for any value of A,

then | = —o0, L = oo.

Proof: see [30].

Remark 4.5.1 All cases I, II and III of Sims classification remain unchanged
under McLeod’s extension, since the condition
v > L = limsup ¢(z)
T—00
implies that for each ¢ = v — L > 0 there exists § > 0 such that v — ¢2(z) > 0
for all z > § > 0. Hence by Glazman’s decomposition method and the inequality

(4.3.15) there exists functions 1, s(z, A) and mys(A) satisfying

b
/ 2(v — q2) e 5] < (1 + |mu,s)?) sinh 202 — 28my, 5 cosh 2a,.
5

where

Yps(z,A) = Os(z, X) + mps(X)do,s(z, A)

and {05, ¢s} is a fundamental set of linearly independent solutions of (4.3.9) on
the interval [§, 00) which satisfy the following boundary conditions at the point
z=96

05(6,0) = 0, 04(8,)) =1
¢5(5a ’\) = _1’ ¢:5(6))‘) =0

Taking the limit as b — oo we then have 5,/ — q¢; € L?[§,0), and hence
VYs\/V — q2 € L?[0,00), so by recalling the arguments which established cases I, II
and III in Sims’ theorem we obtain the result. In the case v < liminf,_, g2()

the result follows by a similar argument.
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Example 4.5.1 (McLeod) Let q(z) = —2ie?(+)% = 2¢?% sin(2z) — 2ie?® cos(2z)
in equation (4.3.9).
We have

lim sup —2¢®* cos(2z) = 0o, liminf —2e?* cos(2z) = —oo0

and

& - 9(14i
ﬁ + (A + 26207y = ¢

Making the change of variable ¢ = ¢(1*)% we obtain the Bessel equation

d’y 1dy A
a o T U gig)

Two linearly independent solutions are J,(£) and J_(¢) where o = 1/32 and

y=0 (4.5.26)

|{] = o0 as z — oo. Since ¢ = e®(cosz + isinz), then argé = z, so using
Watson’s argument on solutions of the Bessel equation ( [48] p.202), we have the

asymptotic expansion

Ta6) ~ \/g exp {i(€ - ar — 1)) + \/% exp {—i(€ — am — 1m))

where

1 ppori(as
& = = gettmiets)

if (2k — 1)m < # < (2k + 1)7, and k a positive or negative integer

1 : (ot 1 mi(a+ 5
o = 562(k+1)m(a+;)’ ¢ = 56% (a+3)

if 2k < z < (2k 4 2)7, and k a positive or negative integer. Now. let z satisfy
the inequalities

(2k—%)7r_<_m§(2k—%)7r, kez

Then
: 1
le®] = exp (—e"sinz) > exp (Ee”)

and so |J(€)| = oo as 2 — oo since

Ja(6)] 2 \/%6—%0““01]6)(1)(%6”” - -;—:1:)
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Hence J,(£) is not in L*(0, 00), and similarly J_,(£) is not in L?(0, c0).
If one has a linear combination of J,(£) and J_o(€) in L?(0, 00) ,we know that this
linear combination should be chosen so that the terms in e and e~* respectively
in the intervals
1 1
Ve <z < (2% — -
(2 2)‘/r <z < (2 6)7r

_l_
6

are eliminated for each integer k. However no linear combination can eliminate

(2k + )7r_m§(2k+%)7r

both e and e~ so there is no L%(0, 00) solution for this equation.

4.5.1 Extension of the theory to the interval (—oo,c0)

We consider the non-selfadjoint differential expression 7 = —d‘% + ¢(z) on the
interval (—oo0, 00) where ¢(z) is a complex function integrable over any compact
subinterval [a, )] of (—00,0). Let limy—oo q2(z) = L and limy—o g2(z) = M
where —oo < M < L < co. By the decomposition method [15] we can extend
the preceding results obtained in §4.5 to the subintervals (—oo, 7] and [r, co) where
r € (—oo0,00) and ¢(z) is regular at the point r. We suppose that the boundary

condition « is real and define the operator T, by
Tof=1f
for all f € Dy, where
De={f : f € D, lim W[}, $](5) = lim W[f,1](e) = 0}

and D denotes the set of all functions f € L?(—o0, 00) for which f’ exists and is
absolutely continuous over every subinterval [a,b] and 7f € L%(—00,00) and 3

and 7 are independent solutions in L?[r,00) and L?(—oo, 7] respectively.

Theorem 4.5.2 Let v = S\ # L. Then there exists a solution ¢(zx, ) of equa-
tion 7f = Af which is L*[r, o).

Proof: see [26]
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Theorem 4.5.3 Let v = S\ # M. Then there exists a solution n(z, ) of equa-
tion 7f = Af which is L*(—oo,1].

Proof: see [26]

Theorem 4.5.4 Let L and M be finite. Then the essential spectrum o.ss of Ty
is contained on and in between the lines v = L, v = M and contains the zeros of

W, n). The zeros of Wi, n] are in the point spectrum of Te.

Proof: see [26]

4.6 Extension of Titchmarsh’s results

In this section we establish some extensions to the non-selfadjoint case of some
of Titchmarsh’s results for the selfadjoint case. The first result is an analogue
of [46] Chap.Il, Lemma 2.3. We begin by recalling the differential equation
(4.3.9) in which the coefficient function ¢ is in Case I in the sense of Sims, under
the assumption that lim,_, ¢g2(z) = L, and that 8, ¢ are linearly independent

solutions of (4.3.9) satisfying (4.2.3-4) for some a € C.

Lemma 4.6.1 Let f and g satisfy equation (4.3.9), and the corresponding equa-
tion with X' instead of A, respectively. Then

X
(¥ =) / f(@)g(z)dz = WL, g)(0) — WIF,l(X)
where X > 0.

Proof: For each X > 0 we can write

/onTg~ng=/0X(A’—/\)fg=/ox—fg"+gf~=

X
_/0 %(fg' —gf") = WI[f, g)(0) = W[, g)(X)

and the result follows.
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Theorem 4.6.1 Under the conditions of Theorem 4.3.1, let A # N be two fized
points in the upper half plane which are not poles of m(A). Then

Tim W0z, 3), (2, X)] = 0
where P(z, A) is as in (4.5.25).
Proof: Take b € (0,00) and let A > 0 and I\ > 0; then we have
Wilt(z, A), ¥u(z, N')] = 0
where 1;(z, A) is defined by (4.3.10), and satisfies the boundary condition
z/)b(b? A)cos B+ (b, \)sin B =0
at £ = b, which is independent of A. Hence
Wil(z, A) + (me(A) — m(A)(z, A), (2, X) + (my(X) — m(X))é(z, N')] =0
so that

+ (m(A) = m())(ms(X) = m(X)Wi[d(z, A), (=, X)]
+ (mu(A) —m(N))Wilg(z, A), (=, X)]

+ (me(XN) — m(X))Wi[ih(z, A), (=, X)]

0

Wb[’/’(ma )\)7 ‘l/J(:L', ’\’)]

But by Lemma 4.6.1 we obtain
b
Whld(z, A), b(z, X)) = (A = N) / B N (s N)dz + Wold(, A), (X))
and we have
b b
| / 8z, (2, N)dz| < / (2, A)b(z, N)|da
b b
2 "2 %
< / 16(z, )] / oz, X) Pdz)
b 1
< M / 16(z, \)Pda)t
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since ¥(z, \') € L*[0,00). Hence if ||¢]ls = (J} |¢(z, \)|?dz)? then
[ #le 209t X1 = (1l

as b — oo and since also Wo[é(z, A), ¥ (z, N')] = O(1) we have

Wilé(z, A), ¥(z, X)] = O(ll4]ls) + O(1) as b— o0

Since there is at most one square integrable solution in Case I and (4.3.14) holds

forv>0
b
|ms(A) — m(X)| < 2rp(X) = I/ (v — q2)|4(=, )\)|2da: — %sinh 2a2|'1
0

we have

™

(ma(3) = mOAL8(e, N, (o, )] = O (0 = ), )P — 5 inh 2]
and since v — g, is non-negative for all z € [0, 00)
(ms(X) = m(N)Wslé(=, ), (=, )] = O(ll4]l;")
which implies that
Jim (mp(A) = m(A))Wa[g(z, A), (2, A)] = 0
Similarly for v’ > 0 we have
Jim (ms(X) — m(X))Wi[p(z, A), ¢(z, A)] = 0

also
Jim (my(A) —m(A))(ms(X) — m(X))Wi[d(z, 1), é(z, X)] = 0
and hence
Jimm Wil (2, 2), (2, X)) = 0
thus the result follows. The argument is similar if » < 0, »' < 0.

Extension of the above theorem under the condition lim;_, g2 = L is given by

the following theorem.
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Theorem 4.6.2 For any fized X' and N with X' # M\ which are not poles of
m(A), and for which SN > L and SN > L

lim W [¢(z, \'),¥(z,\")] =0
where P(z, A) is as in (4.5.25).

Proof: Let SN, SN’ > L. Then since limg—,c g2(z) = L, there exist real num-

bers s; > 0 and s; > 0 such that
V' > qo(z), for all z € [s1,00) (4.6.27)

and

V"' > qo(z), for all z € [s2,00) (4.6.28)

where v = ), v = S)’. Now let s = max{s;,s2}; then the inequalities in
(4.6.26) and (4.6.27) hold for all z € [s, o). Here we may use the decomposition
method studied by Glazman [15]. Let the boundary condition at the point s be
given by & = 0 and {@,8)} be a fundamental set of solutions of (4.3.9) satisfying

B, ) =0 F(s,)) = -1 (4.6.29)

0(s,\) =1 0'(s,\)=0 (4.6.30)

We now have v/, " > ¢; on [s,0) and S& < 0. Hence by making a simultaneous
change of origin for S\, S¢(z) (as in [30] p. 131), it follows from Sims’ result

(Theorem 4.3.1) that
Bl@,A) = 0z, 2) + (N (2, A)

is an L?[s,00) solution for all A such that SA > min{v’,»"}, and that /(]) is
analytic on the half-plane. It also follows that we may use the results of Theorem
4.6.1 to give

lim W[(z, X', d(z,\")] = 0
But we are in Case I and the L? solutions are unique up to a constant coefficient,

so there exist non-zero constants ¢, ¢’ such that ¥(z, ) = cg@(m,)\’),ib(x,)\") =
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¢¥(z,\"). Hence
Jim, Wi (2,0, 92, X] = o lim Wlp(a, X), d(, )] = 0

which completes the proof.

Corollary 4.6.1 For any fized A and N satisfying the conditions of Theorem

4.6.2
. ) _ M) = m(X)
| vle e = A=

Proof: Consider the following identities (cf. Green’s formula)

/ow('““” Nrip(z, N) = (2, )iz, A))dz = (N = X) /Ow ¥(z, N)p(z, \)de =

/0°° ¥(@, (=", X) + (2)(z, N) = ¥ (z, X) (=" (2, A) + q(2)¥(z, A)) =

| 2508008 (@ 2) = e, X btz Wy =
Jim (Wil (z, X), (2 )]) — Woli(z, 1), (. V)]
By Theorem 4.6.2
Jim Wil (z, 2), 9z, X)) = 0
Also
Woly(a, 1), $(a, X)] = m(3) = m(X)

so that from the identity

(M=) /000 P(z, N)p(z, \)dz = m(A) — m()\)

from which the result follows.

Lemma 4.6.2 Let {f,} be a sequence of functions converging in the mean to f
on [0, X] for all X > 0 and suppose that for all n there is a constant M such that
Jo | fu(@)Pdz < M. Then f is square integrable on [0,00), and if g is in L*[0, 00)

then
1i1n/ fng=/ fg-
n=0o0 Jo 0
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Proof: See [46] §2.4.

Theorem 4.6.3 Suppose that Ao is an eigenvalue of T, with SAg > L and that
m(A) has a simple pole at Ao. Then

| #e i@ s = 1=

for each A, S\ > L not a pole of m(X)

Proof: For any A and A’ which are not poles of m(A) and for which A, SN > L,

we have by Corollary 4.6.1

/0 " (s (e, N)de = w
Since Ag is an eigenvalue of T, and $\g > L, the simple pole of m()) at Ao is
isolated. Let rg be the residue of m(A) at A. Since there is a deleted neighbour-
hood N(Xg) of Ao on which m()) is regular, let Ao + iv € AM(Xo), then setting
A= Ao + v with SN > L gives

. - N
/0 W, A, o +iv) oo = [m( ( A)O +";E o 1“)1’;)]“’. (4.6.31)

We are going to show that

[m(X) — m(Ao + iv)]iv o]
()\0 + w— )\)7'0 )\0 -

(4.6.32)

and

/0 " B, (e, Ao + iu)i—l;dx - /0 " bz, N)o(z, do)da (4.6.33)
as v — 0.
Setting 1 = 0 + m¢ at the point X' = Ag + iv in (4.6.31) we obtain

/0 " (@ VB, o + i) + m(Ao + iv)é(, do + z't/)]d:ci—z -

- m(AN)w __m(Ao +iv)iv
(Mo+iv—2Are  (Ao—A+iv)ry
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Since for A # Ag

lim PN )

v—0 (Ao + il/ o /\)7'0 v—0 (AO _I_ il/ _ A)TO) - O

and

i PRt iv)iv (o) + Ty anin)) |1
v=0 (Ao — A+ iv)rg  v=0 ro(Ao — A + i) o —

for some complex valued sequence {ax}, we have

lim (m(A) =—m(Ao+wv))iv 1
v—0 (/\o +iv — )\)T‘o - /\0 .

and (4.6.32) follows.

We now establish the limiting behaviour of (4.6.33) and first of all we prove
that ivi(z, Ao + tv) tends to a limit rog(z, Ao) in the topology of L?[0, X] for all
X €[0,00) as v — 0.

Since

X
/ livip(z, Ao + 1v) — rod(z, Xo)|dz =
0

X
/ liv0(z, Ao+iv)+[ivm(Ao+iv)—rold(z, do+iv)+10[d(z, Aotiv)—d(z, Xo)]|*dz
0

using Minkowski’s inequality we have

X bs
(/ |livip(x, Ao + 5v) — rod(z, Xo)|2dz)/? < |1/|(/ |0(z, Ao + il/)|2d3})%+
0 0
X 1
livm(Ao + tv) — r0|(/ |6z, Ao + iv)|[*dz)z+
0

X 1
Il / 16(2, do + iv) — B(z, do)Pde)}

Taking the limit as » — 0 we then have
X 1
lin(l) |1/|(/ |0(z, Ao + iv)|?dz)2 =0
| Zad 0
and since ro is residue of m(A) at Ag

X
lirré levm(z, Ao + tv) — rol(/ |¢(z, Ao + ill)lzdm)% =0
V— 0
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and .
i lra? [ 18(2, o+ iv) = 8z, o)l = 0
v— 0
so that
X
lim( [ |ivip(z, o +iv) — rod(z, Xo)|2dz)2 =0
v— 0
and hence | X
lim [ivp(z, Ao + tv) — rod(z, Ao)|*dz = 0 (4.6.34)
v=0 Jq
for all X > 0.

On the other hand there exists a constant M such that
/ livip(z, Ao + iv)|*dz < M.
0

for all X' € M(Xo). To show this, we see that since lim;—q, g2(z) = L and SN > L,
then using the continuity of ¢ on [0, 00), there exists a point s > 0 in [0, o)
and a constant K > 0 such that 1(SX — L) < SN — gy(z) for all £ > s, and

|SN — ¢2(z)| < K for all z € [0, s]. Hence we can write
|1/|2/ [(z, Ao + iv)|*dz = |1/|2/ |0 + mo|*dz
0 0
- |V|2/ |0+m¢l2dx+|z/I2/ 10 + mo|2dz
0 s

and using (4.3.15) we obtain

(SN = D)2 / 10+ mg|2de < |vf? / (SN — ga())[6 + me|2de <

S

%Iulz(l + |m|?) sinh 20 — |v[*Sm cosh 2a; — |v? /03(3/\’ — q2(2))|0 + m¢|*dz
(4.6.35)
and
W] /0 “(SN = )]0 + meftdz] < K|vf? /0 10+ mo|2dz (4.6.36)
where 0 = 0(z, Ao +1v), ¢ = ¢(z, Ao+ iv) and m = m(Ao + iv). Hence there exist
constants K’, K" > 0 so that

1 1
5'”'2(1 + |m|?) sinh 2a; — Sm cosh 20, — §|r0]2 sinh 2a,
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with 1|ro|?|sinh2a,| < K’, and

K| /0 10+ mof2dz — Krol? /0 "16ftdz < K"
as v — 0. Therefore by combining (4.6.34) and (4.6.35) we have

%(m' — L) / 10 + m[Pdz < %(m' _ L)P / 10 + mg|2dz+
0

0
[o o] 1 S
Ivf? / (SN = a0 + mefdz = Z(SN — L)lrof / \p[2do-+
s 0
-;—|r0|2 sinh2c; < K'+ K" = M’
as v — 0, from which it follows by continuity arguments that for each ' = Ag+tv
in M(Xo) we have
/ V)| (z, Ao + iv)|*dz < M.

0
Hence applying Lemma 4.6.2 to (4.6.33) we obtain |ro|? [ |¢(z, Ao)|?dz < oo,

and
lim / (2, Nb(, Do + iv) Ldz = / (2, \) (2, Ao)da
v=0Jo To 0
i.e. (4.6.33) follows. In the case S\, SAg < L same argument gives the result and

this completes the proof.

Corollary 4.6.2 Under the conditions of Theorem 4.6.3

/ #*(z, Mo)dz = —_—l

0 To

Proof: Setting A = Ag + v in the following formula
w

*° w

and taking the limit as v — 0 and using Lemma 4.6.2 as in Theorem 4.6.3 we

have the result.

Theorem 4.6.4 Let Ay, Ay be two distinct poles of the m-function mq(A) which
is given by Theorem 4.6.2 and let SAy, SAy > L. Then

/ " (2, M)b(2, M) dz = 0
0
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Proof: Using the m-function connection formula (4.3.17) it is straightforward
to show that there exist constants K7, K, € C and a boundary condition o' #
a(modr) such that

é(z, M1, @) = Kyp(z, A, &)

and

¢(z, A2, @) = Katp(z, Mg, &).
Also by Lemma 4.6.1
[ e 306, 2a) = (e 2o Ml = (=) [ b 2)a, de =
Lim W[g(z, M), ¢(z, A2)](z) — W(d(z, A1), 6(=, 22)](0)-
However, using Theorem 4.6.1
“}EEO W[¢(IB, ’\1’ a)¢(w’ A2a a)](:z:) = I{l 1(2 xh_{l(}o W[¢(m’ /\17 al)"'b(x’ /\2) a’)](x) = 0.

Also
W[¢($s /\1)’ (]5(.‘1}, /\2)](0) = O)

so that since A\; # A,
| ¢l 2)dte 2y =0
0

which completes the proof.

Remark 4.6.1 If we remove the condition lim,_c ¢2(z) = L from Theorem
4.6.2, Corollary 4.6.1, Theorem 4.6.3 and Corollary 4.6.2 then these results also

hold for A, X, A, and Aq in the region A > limsup,_, ., Sq(z).

4.7 Spectral Theory of Non-Selfadjoint Differ-

ential Operators

The general theory of eigenfunction expansions for non-selfadjoint ordinary dif-

ferential operators has not recieved much attention during the past forty years.
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It seems that initial investigations into non-selfadjoint eigenfunction expansions
need to address the problem under more restrictive conditions, adapting strate-
gies from the selfadjoint case and using related results in the literature to extend
the results to the non-selfadjoint case. Contributions to this area of research be-
gin with work of a few researchers from Eastern Euorope and the former Soviet
Union, such as I. M. Naimark and B. S. Pavlov. Investigation of the spectrum and
the expansion of certain functions in terms of eigenfunctions of a non-selfadjoint
ordinary differential operator of second order was initiated by M.A.Naimark in
1954. His results were obtained by considering a non-selfadjoint ordinary differ-
ential operator of order two from the point of view of analytic operator theory
[33]. An important consideration is how far is a non-selfadjoint differential oper-
ator from selfadjointness There is a considerable body of results in the spectral
theory of non-selfadjoint problems which are concerened with operators which
are J-symmetric in the sense of Glazman and have J-selfadjoint extensions; for
example David Race and Ian Knowles have contributed to this area. There is
an analogy for much of the theory of differential operators associated with the
expression T, between selfadjoint extensions of the corresponding operator with
real-valued coefficients and J-selfadjoint extensions of the operator with com-
plex coefficients, there is also an analogue between the deficiency indices in the
selfadjoint case and the defect number in the J-selfadjoint case, provided that
the regularity field is not empty [37], [23]. There are some results in spectral
theory by Allan M. Krall on the existence of solutions of a non-homogenous equa-
tion with complex coefficient [25], and we will describe these results in section
4.12. By considering non-selfadjoint problems from different points of view we
can clarify aspects of the non-selfadjoint theory, and this will be demonstrated in

the following sections.
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4.8 J-Symmetricity and J-Selfadjointness

An operator J on a complex Hilbert space H is said to be a conjugation if it is

an involution and
(Jz,Jy) = (y,z)

for all z and y in H.

By involution we mean that there is a single valued linear map z — z* on H
with:

i)z +3) = o+

ii)(A\z)* = Az*

i)(z*)* =z

for all z and y in H and A € C.

Definition 4.8.1 A linear operator T' with dense domain D(T') defined on a
Hilbert space H is said to be a J-symmetric operator if there exists a conjugation

operator J on H so that

JTJCT*

and T is called a J-selfadjoint operator if
JTJ =T".

It is well known that symmetric linear operators on H need not possess self-
adjoint extensions since such operators may have unequal deficiency indices ( [8]
X11.4.13). It follows from the definition that since T* is closed, if T' is J-symmetric

then it is closeable.

Theorem 4.8.1 Let T be a J-symmetric operator defined on a Hilbert space H
Then T has a J-selfadjoint extension on H

Proof: see [23].

Let T, be a non-selfadjoint differential operator generated by a non-selfadjoint
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Sturm-Liouville type differential expression 7 given by
mf=(-pf) +af

where p and ¢ are complex functions defined on [0, 00), with p locally absolutely
continuous, and %, q locally integrable on [0,00). Let the domain of definition
D(T.,) of T, be such that f € D(T,) if and only if

i)f € L*[0,0)

ii)f and pf’ are locally absolutely continuous

iii)y1.f(0) + 72/'(0) = 0

iv)Tf € L?*[0, 00)

and let T, be defined by

Tf=71f Vfe D)

where v = (71,72) and 71,72 € C. We see that although the spectrum of T, is
not necessarily contained in the real line, some properties of the selfadjoint case

are preserved such as the following,

Theorem 4.8.2 If for some fized value of parameter A\ = Ao, all solutions of

the equation 7f = Mf are in L*[0,00), then all solutions of the equation are in

L?[0,00) for all values of .
Proof: see [23]; note that this is an analogue of Theorem 3.4.1 and 4.3.2.

There is a connection between square integrable solutions and the spectrum of

T, which is given by the following theorem.

Theorem 4.8.3 Ifthere are no non-trivial square integrable solutions of 7f = Af

on the interval [0,00), then A € .(T,) for all 4
Proof: see [23].

This theorem will be proved later in Section 11 in the case of a more general

class of operators
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Definition 4.8.2 Let T be a closed densely defined linear operator in a Hilbert
space H. A complex number X is called a point of regularity type of T if

(T = ADf]| = EAll 7]

for all f € D(T') where k) is a positive constant independent of any f.

The set of such numbers A is denoted by #(T") and is called the regularity field
of T. The resolvent set p(T') of T is contained in 7(T'), since if A € p(T) then
(T — M)™? exists and is bounded i.e. A € 7(T). However if A € «(T) it is not
necessarily in p(T') since when ||(T'— M) f|| = k|| f]| for some k,, this means that
(T — M)7! exists but may be unbounded. We can see from definition of «(T")
that it is an open set, and the linear manifold (T'— AI)D(T') is closed [15] Chap.
1, Sec. 1.

Definition 4.8.3 i) Let Thax, Tin and Toyin be the linear operators in H =

min

L?[0,00) defined as in §3.3. We can see that D(T’; ) and hence also D(Tinin) is
dense in L?[0,00) [33] and by a method directly analogous to that of [34], §17,
it may be seen that f € D(T,yy) if and only if:

i)f € L?[0,00)

ii)pf’ is locally absolutely continuous

iii) £(0) = p(0)'(0) =0

iv)rf € L?*[0, 00) |

Wlimemeo p(E)(F(2)9'(2) — F/(D)9(8)) = 0 for all g € D(Tinar).

The following theorem shows that when explicit bounds on the coefficient func-

tion ¢ are known, the location of the essential spectrum is known as well.

Theorem 4.8.4 Let the coefficient function p be real and non-negative and let

T be a J-selfadjoint extension of Tin. Then

oo(T) € {X: liminfS(g(t)) < S(A) < limsup S(q(2))}

t—oo

Proof: see [23].
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Remark 4.8.1 The above results and the conclusion of [15] p. 29 assert that
the essential spectrum is determined solely by the behaviour of the coeflicients
at infinity. On the other hand, the behaviour of the set GP(T) is affected by the
behaviour of the coefficients at finite values of ¢. This explains why one cannot
easily locate ap(T) by conditions involving the integral of 3(¢). There is an impor-
tant result on the location of the essential spectrum of a non-selfadjoint operator

which is minimal in the sense of Definition 4.8.3. This result can be obtained

under certain conditions on the coeflicient functions p and q.

Theorem 4.8.5 If p =1 and Rq satisfies one of the following :

i) Jor,(Rq)™ < oo for any § > 0 where Ms = {t € [0,00) : (Rq(t))™ = 6} and f~
is the negative part of f which is defined by f~(z) = min{f(z),0}

it) [ {(Rq)"}" < o0 for somer >1

i) lin\lac_..,,o f:w(%q)" = 0 for some w # 0 (and consequently for any w # 0)
w) [;Rq > —C for some real number C, and for all intervals J of length <1

and if
/00 [Sql < o0
0

Oc (Tmin) C A,

then

where A = [0, 00) if i),ii), or iii) is satisfied and A = [-2C?, 00) if iv) is satisfied

Proof: see [37].

4.9 The spectrum of an operator with inte-
grable coefficient
In this section we continue the investigation of the spectrum of a non-selfsdjoint

differential operator 7 under the condition p = 1 and report some results given

by Naimark. Let 7 = _Tjﬂ' + ¢ and let g be a complex valued function integrable
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on [0,00). Naimark’s results identify the location of the spectrum of the linear
operator Ty generated by the the expression 7 on L%[0,0) in which the domain
of definition Dy is such that f € Dy if and only if

i) f € L*[0, 00),

ii) f and f’ are absolutely continuous on [0, X] for any X > 0,

iii) 7f € L?*[0, 00),

iv) f'(0) — 6£(0) = 0 for some 6 € C and Tyf = 7f.

Consider the equation 7f = Af where ) is a complex parameter and let v\ =
s=0+4+1 0 <L args < m, so that § > 0. The homogeneous equation 7f = 0
has two linearly independent solutions fi(z,s) = €%, fy(x,s) = e~**% and hence,
regarding

"+ Af=qf (4.9.37)
as a non-homogeneous equation, and using the method of variation of parameters,

we find that

J(z,5) = ere™ besemi* 4 i / ()t s)dt— e /b T emitg(t) (2, s)dt
(4.9.38)
Under various choices of constants ¢;, ¢z,a and b one obtains the integral equa-
tions:
ful@ys) = 6 4 %Lw[ea(z—t) — e (1) f1(t, 8)dt
where fi(z,s) is jointly continuous in z and s for z > 0, § > 0, s # 0 and for

each z € [0,00) is an analytic function of s in the half-plane § > 0;

fa(z,s) = e7= — %/0 e*E@=q(t) fo(t, s)dt — 22_3/ e~*E@=q(t) fo(t, s)dt

T

where f3(z, s) is jointly continuous in  and sforz >0, § >0, [s| >r > 0 and

for each z € [0, 00) is analytic in s in the region § > 0, |s| > r;
f(x,s) =7 4 5’_/ [eiS(z-—t) _ e—is(a:—t)]q(t)i(t’s)dt
S x

where f(:v,s) is jointly continuous in z and s for each z € [0,00), s > 0.
We obtain W{[fy, fo] = W[f1, f] = —2is. The asymptotic behaviour of the solu-

tions fi, f» and f when s — oo is given by the following theorems.
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Theorem 4.9.1 i) For Ss > 0 and s — oo, we have
fil@s) = 1+ O0R)], fila,s) = ise™[1 +O()
fo@s) = 1+ O], filars) = ~ise (1 + O()
it) For s > 0 and s — +oo we have
fz,s)= 1+ 0] Fla,s) = =ise (14 O()]
uniformly with respect to = in the interval [0, 00).

Proof: [34]

Theorem 4.9.2 i) For fized r > 0 as x — oo, we have
ful@s) = =1+ o()], Fi(z,5) = ¢*lis + o(1)]

fo(=,8) = e [L+0(1)], f3(z,s) =€ **[~is +o(1)]
uniformly for s in each region |s| >r >0, s> 0

i) As ¢ — +o0,
flz,8) = e [1+0(1)], J'(z,5) = e7*[~is +o(1)]
uniformly with respect to s in every interval [r,00), r > 0.

Proof: see [34]

These estimates lead to the main result concerning the spectrum of the operator

T, which is obtained using the integral representation of the resolvent.

Theorem 4.9.3 Every point of the positive semi azis A > 0 is a point of the
continuous spectrum of Ty. With the exception of these points, the spectrum of Ty
is a bounded set consisting of a finite or countable number of eigenvalues whose
accumﬁlation points lie on the positive semi-azis A > 0. For all the remaining

points A, not on the positive axis, the resolvent is a bounded integral operator

with kernel K (z,t,\) satisfying

/ | K (z,t,A)|*dt < oo, / | K (z,t,A)|*dz < .
0 0

v
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Proof: see [34]

If we consider the specific case Sq(z) < 0, S8 < 0, then the function

F(s) = fl’(oas) - HfI(O,S)

has no zero on the semi-axis s > 0 and hence we have the following result

Theorem 4.9.4 Let Sq(z) < 0, S8 < 0, where z lies in the interval [0, c0).
Then the eigenvalues of the operator Ty may be contained only in the lower half-
plane and on the negative real semi-azis. Here, if a single one of the eigenvalues
of Ty lies on the negative real semi-azis, then Sq(x) = 0,30 = 0, so that Ty is a
selfadjoint operator. Consequently, in this case, all the eigenvalues of Ty lie on
the negative part of the real azis and only A = 0 can be an accumulation point of

the eigenvalues of Ty.

Proof: see [34]

Remark 4.9.1 An analogous theorem holds for the case Sq(z) > 0, S0 > 0, in
the interval [0,00). For a proof it is sufficient to replace Ty and 6 by T and 8,
where the linear operator Ty on L?[0, 00) is generated by the differential expression

7= —a% + ¢ with domain
Dy = {fe L2[0,oo) i fe Dy}

and Tgf = 7f for all f € Ds.

Theorem 4.9.5 Suppose

/0 " e|g(z)|dz < oo

for some € > 0. Then the operator Ty has only a finite number of eigenvalues

which do not lie on the semi-azis A > 0.

Proof: see [34]
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Remark 4.9.2 An interesting result in this section is that, although for

non-selfadjoint differential operators generated by 7 with integrable coefficient ¢
and the more general case with continuous coefficient ¢, the distribution of the
isolated points of the spectrum with boundary condition « is not the same as
that with boundary condition 3 when a — 8 # kw, the location of the essential

spectrum o, is independent of the variations of the boundary condition.

4.10 Eigenfunction expansion for operator with

integrable coeflicient

In the general theory of non-selfadjoint differential operators defined on the
Hilbert space H = L?*(a,b), where —co < a < b < oo, the set of eigenfunc-
tions is not necessarily a complete set of orthogonal functions generating the
corresponding Hilbert space, but under certain circumstances they can be, as
shown by Naimark.

Let Ty be as in section 4.9 and denote by Ey the set of all functions g satisfying
the following conditions:

i) g € L'[0,00) on the interval [0, 00),

ii) ¢' exists and is absolutely continuous on every finite interval [0, X],

iii) The function 7g € L'[0, ) on the interval [0, o).

iv) ¢'(0) — 09(0) = 0.

Suppose also that

/ elg(z)|dz < oo
0

for some € > 0, that

£1(0,5) — 0£1(0,5) # 0, f(0,s) - 0£(0,5) # 0

for all s > 0 and that sy, s2,...s, are simple zeros of f{(0,s) — 0f1(0,s). Then
if f(z, M), f(z,A2),... f(z, A;) are the eigenfunctions corresponding to the eigen-
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values \; = s?, Xy = s,... A, = s2, we have the following identity

v J@NGA) 1 f(z,8)f(t,s)
Kzt d) =2, i =N [ (f(z,\))2dz 2n /o (s2 — \)A(s)A(s)

i=1

where the integral converges absolutely and uniformly for z, ¢ in the region

0<z,t<o0and
A(s) = f1(0,s) — 8f1(0,5), A(s) = f(0,s) — 05(0,s)

and K(z,t,)) is the kernel of the resolvent of the operator Tj.

Theorem 4.10.1 Under the above conditions any function g in Ey can be rep-
resented in the form

oS al@mX) 1 [ ae)f(zs),
9(z) Z:fo°°(f(x,A;))2dz 2vr/o A(s)fi(s)d

=1
where

0 = /0 " 9(@)f (3, \)ds
o) = [ 9(e)f(@,)ds

and the integral converges absolutely and uniformly with respect to x in the interval

[0, 00),

Proof: see [34].

4.11 Essential spectrum

It is well known that in selfadjoint problems the essential spectrum, which is
defined as the whole spectrum except the isolated point spectrum, is stable under
change of boundary conditions cf [10], Thm. 2.5.2. We will show that this is also
the case for the class of non-selfadjoint problems considered here. We recall that
as in the selfadjoint case the essential spectrum of the non-selfadjoint operator T,

is the same as the full spectrum of T, except for the isolated point spectrum of
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T4, and that in equation (4.2.3) the function m()) is dependent on the boundary
condition a. We can therefore write m(A) = m4(A). It is not too hard to see that
the m-function connection formula (Theorem 4.3.3) also holds in the particular

complex case considered in this thesis.

Theorem 4.11.1 Suppose that lim,_, g2(z) = L and that § € C is such that A
is not pole of mg where v # L. Then we have

—sin(a — B) + mg(A) cos(a — f3)
cos(a — ) + mg(A) sin(a — f3)

for all « € C such that a — f # krn, k € Z.

ma()) = (4.11.39)

Proof: see [10].

Theorem 4.11.2 If T, is selfadjoint, the essential spectrum o.s5(Ty) is indepen-
dent of a.

Proof: see [10]

The essential spectrum of a non-selfadjoint differential operator is also indepen-

dent of the boundary condition (see [11], Cor. 1.8).

Theorem 4.11.3 Let T, be non-selfadjoint in the sense of §4.3. Then 0ess(Tw)

is independent of a.
Proof: See [11].

According to the Hartman-Wintner paper [18], there is an oscillation theorem
for continuous spectra. This concerns a Sturm-Liouville type differential operator

T, with real coefficients on the half-line £ > 0 and which is defined on D* by

Tof =(=pf') +qf VfeD*

where p > 0 here D* consists of all functions of L?[0, 00) satisfying the following
conditions:

i) f,pf" are locally absolutely continuous on [0, 00)
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ii) (=pf')' + qf € L?[0,00)
ii1) f(0) cos a + p(0)f'(0) sin @ = 0.

and the corresponding differential equation is
(=pf) +af = Af. (4.11.40)

If o'(a) denotes the continuous spectrum of Ty, which includes the limit points
of the point spectrum, then o/(«) is independent of «, cf [6]. The theorem also
states that for each A which is not in ¢/(a) there exists an « such that A € o,(a)
where op(a) is the point spectrum of Tj,.

We can extend this result to a non-selfadjoint problem by assuming the coeflicient

functions p and ¢ are complex and « € C.

Theorem 4.11.4 Let A be such that the Sturm-Liouville type equation

(=pf') +af = Xf (4.11.41)

has no nontrivial square integrable solution, where p and q may be complex
on [0,00). Then A belongs to the spectrum of the corresponding operator Ty of
(4.11.40) for each o € C.

Proof: Suppose ) satisfies conditions of the theorem. We will show that A is not
in the resolvent set of T, for each a € C. Let a € [0, 7) be fixed. Then equation

(4.11.40) has a nontrivial solution g such that

g(zo) # 0 (4.11.42)

for some zo € (0,00), where g is not necessarily an L?[0, 0o)-solution but still
satisfies the boundary condition « cf [5].

Now consider the regular eigenvalue problem of Sturm-Liouville type

(Ta=Nf = (-pf) +af = A = pf, f(z0) =0 (4.11.43)

in the interval [0, zo]. Then there exists an eigenvalue p of this problem such that

equation (4.11.43) has a nontrivial solution A so that A(zg) = 0 but we have

R(z0) # 0 (4.11.44)
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because, if 2'(zo) = 0, then & would be identically zero. We will show that there

exists a continuous function u € L?[0, 00) such that

—(@f) +ef =M =u (4.11.45)

has no nontrivial solution which is in L2[0, c0) and satisfies the boundary cindition
« and then A is not in the resolvent set of T, and so it will be in the spectrum of
T,.

Define
ph(z) if0<z <
u(z) =
0 ifzg <z <00
so that u is continuous in the interval [0, c0) and

/ [u(z)|*dz < oo.
0

We now show that this function has the required property. Suppose that u fails
to have the property, so that u has the property that equation (4.11.43) has
a nontrivial solution v, satisfying v(zo) = 0 which is square integrable in the
interval [0, 00). We show that this assumption leads to a contradiction.

Since u(z) = 0 on [zo,0), equation (4.11.45) reduces to equation (4.11.40),
for € [zg,00). Hence v satisfies (4.11.40) on [z¢,00) and is therefore square
integrable on [0, 00). Since equation (4.11.40) has no nontrivial square integrable
solution, we obtain v(z) =0, Vz € [z, 00), so that v'(zo) = 0. Since v is also a
solution of (4.11.43) on the interval [0, zo], which satisfies the boundary condition
a at z = 0, we must have |

v(z) = h(z) + cg(a)

for each z in the interval 0 < z < zo where g is the solution of (4.11.40) and
(4.3.42) h is a solution of (4.11.43) and c is a constant. Since the solutions of

(4.11.45) are differentiable it follows that

v(zo) = h(zo) + cg(zo) =0
v'(zo) = h'(x0) + cg'(z0) =0
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Since this is a linear homogeneous system in 1 and ¢, the determinant hg’ — gh’ of
the coefficients vanishes, so (gh' — hg')(z¢) = 0. This means that, since h(zo) =0,
we get g(zo)h'(zo) = 0, which is a contradiction, by (4.11.42) and (4.11.44).

Since o was chosen arbitrary, the result is independent of a.

Corollary 4.11.1 If A belongs to the resolvent set of T, for any o € C then
(4.11.40) has a square integrable solution.

Proof: If there were no nontrivial L2-solution of (4.11.40), then by Theorem

4.3.4, A would be in the spectrum of T, for all a € C and this is a contradiction.

It is known that for a self-adjoint differential operator the spectrum is real and
that for each real number A there is a real boundary condition a such that A
belongs to the spectrum. We now show that in the non-selfadjoint case it is true
that for each complex number A there exists a complex boundary condition o

such that A belongs to the spectrum.

Corollary 4.11.2 Consider the differential operator defined by formula
(4.3.9) and a boundary condition at 0 and let A be any complex number. Then

there exists a boundary condition a such that X is in the spectrum of T,.

Proof: Let A be a complex number. If there is an L? solution of (4.3.9) it
certainly satisfies some boundary condition « at the point 0 since £ = 0 is a
regular point of (4.3.9) and so A is a point of the spectrum of T,. If there is no
L? solution, then by Theorem 4.3.4, ) belongs to the spectrum of T, for every

« € Cand the result follows.

4.12 Non-homogeneous Equations ]

In this section, we assume the Sims extension of the limit point-limit circle theory

of Weyl-Titchmarsh on the interval (a,b), —oco < b < a < 0o, which shows that
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a certain non-selfadjoint problem

—¥" + q(z)p = M

has a square integrable solution if » = SA > 0. A. Krall [25) showed that the limit
point-limit circle classification yields a natural proof that the nonhomogeneous

equation

- &+ (q(z) = NP = f(z) (4.12.46)

also has a square integrable solution if » > 0 provided that f(z) € L*(a,b),
and derived a necessary and sufficient conditions under which this occurs. Let

r € (a,b) be an interior point and recall the arguments in §4.3 and let r < ¥’ < b.

Then

Lemma 4.12.1 Let v > 0, my(A) be a point on the circle Cy, my(A) be the limit
point or a point on the limit circle Cy, s be fized, t,(A) be defined by

b
W)+ sma() = [ 1002, ) + a0z, V] ()
and ty(A) be defined by
bl
tor(A) + smp(A) = [ [0(z,X) + mpd(z, N)] f(z)dz
Then limb:_,b tbr(x\) = tb

Proof: see [25], Lemma 1.

Lemma 4.12.2 Let ) be a fized parameter with v = S\ > 0 and ¢o(z) = Sg(z) <

0 and let a = —o00 and b = oo. Then

/ (v — 2)|[¥[*dz < 00 <= / (1 — g2)|h|*dz < o0

Proof: Let [ (v — ¢2)[$)|*dz < 0o we can write

| = wlwbie = [~ = valipas < oo

[e e}
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since v > 0 and vgy(z) < 0. Now let [%° (1 — go)|#|%dz < oo easily we have

/ (v — @)|¥)*dz = 1// (1- %q2)|1/;|2da: < 0o

o] -00
since » > 0 and 2¢,(z) < 0.
These lemmas are used in the proof of the following theorem and in all cases I,

II and III we have

Theorem 4.12.1 (Krall) Let v > 0,m; be the limit point or a point on the limit
circle, s,t be arbitrary complez functions of A and let f(z) be L*[r,b). Then there
is a square integrable solution ®(z, X; f) of (4.12.46). Let

0() = s — tg+ [ [6(2)000) — 0N W)

In case 1 ®* € L?(r,b;[1 — q2]) and ®* € L%(r,b). if and only if

b
t+smp= / [0(z) + mud(2)] f(z)dz.

In case 11 every solution of (4.12.45) is in L?(r,b) and ®* € L2(r,b;[1 — ¢2]) if
and only if .
t+smy = / [0(z) + myd(2)] f(z)dz.

In case 111 every solution of (4.12.45) is in both L%(r,b;[1 — ¢2]) and L?(r,b).

Proof: see [25], Theorem 2.



Chapter 5

Complex Spectrum.

5.1 Introduction

This chapter is devoted to the extension of some results of Chaudhuri-Everitt
[4] to the non-selfadjoint case. They showed that in the selfadjoint case there
is a strong relationship between the m-function and the resolvent operator. We
are going to prove that some aspects of this relationship can be extended to

non-selfadjoint problems as well.

5.2 The m-function and the resolvent operator.

Throughout this chapter we consider the differential operator T, (a € C), defined
in Definition 4.2.1 under the condition lim;— g2(z) = L < oo on the coefficient
function ¢ on the interval [0,00), and recall that according to Theorem 4.3.1, if
SA = v # L, then there always exists an L?[0, co)-solution 1 (z, A) of the equation

7f = Af and a meromorphic function mq () satisfying

B(z,A) = 0(z, X) + ma(N)d(z, A).

86
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where ) is a regular point of m,()). We also suppose that the potential function
q is continuous and in the limit-point case at oo with just one L?[0, c0)-solution
for v # L, i.e. that Sims’ Case I holds. Under these assumptions we can prove a

theorem concerning the resolvent operator. Before that we give a lemma.

Lemma 5.2.1 Let f € L*[0,00), and let v # L. Suppose that X is a regular value
of mq(A) and define the function ®(z,A; f) on [0,00) by

waxn=¢uA%[¢wnﬂWh+ann/wwa»ﬂwﬁ

where ¢ and v are solutions of the equation 7f = A\f satisfying (4.5.23) and
(4.5.25) respectively. Then ® € L?[0,00) and there exists K > 0 such that

el < K|i£]

for all f € L?0,c0).

Proof: First we note that ® is well defined, since f is by hypothesis and 1 €
L?[0,00) by Corollary 4.5.2. Also ¢ and f are square integrable on [0, z] for all

x> 0. Let v > L. Then there exists a real number r > 0 so that
1
v — qz) > -é(l/ —-L)>0, (5.2.1)

for all z € [r, 00), so proceeding as in [44], §5, there are square integrable solutions

o and 1Py and meromorphic functions mo and m; satisfying
Yoz, A) = 6(z, A) + mo(A)$(z, A)

iz, A) = 0(z, ) + my(N)d(, A)

where 1o(z, \) € L?[0,r] satisfies the boundary condition
f(0)cosa+ f'(0)sina =0,

and ¥;(z,)) € L*[r,0). Note that there is no loss of generality if we suppose that

7 has been choosen so that mg()) and m(A) are analytic at A\. The fundamental
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set {0, 4} is defined in the usual way in terms of the boundary condition & = 0

at £ =7 i.e.

é(r,A) =0, 6(r,)) =1
¢(rA) = -1, G(r,\) =0

Hence, since we are in case I, there are non-zero scalars k() and k() depending

on A such that

Yo(z,A) = k1 (A)é(z, A)
Yi(z, A) = ka( M) (z, A).

Now define the function f, on the interval [0, 00) by

ifz<b
fo(z) = { /) . ©
0 ifz>0

for some b > r, and let

& = B(z,\ ) 6522)
1 z b
- Wlwo,«/»;]“{’/’*(‘”’*) f olts ) fo(t)dt + po(z, A) / ¢'1(t,/\)fb(t)dt}

We can write
b L b _ _
/ drd — drd = / Dy (—Bp" + ¢®s) — Do(—Dp" + §Ps)
0
Ob _ _ b
= /(q)bq)b'—@b@b’)'-}-/ 2iq2|®b|2
0 0
b
= Wik, & + 2 / 4s[ @4 2. (5.2.3)
0

On the other hand @, satisfies the non-homogenous differential equation

78, — A®, = f on [0,] so
/: 7Py — By70, = /: (A0 + f3) — O(A Dy + f3)
= /0 b 2iv| @) + /0 b 2i3(® f) (5.2.4)
By (5.2.3) and (5.2.4) we have

b b
% /0 (v — ga)| o = WDy, Gull — 2 /0 (&, f) (5.2.5)
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However, from (5.2.3)

b
Wby, $:)(8) = Wibs, $1](5)] / bolts ) fult)dt?

1
[Wtbo, ¥1)(0)[?

and

W[®s, 24)(0) =

1 _ b .
T gT@E" o Bl [ )0
Also from (4.2.8) and the fact that W[y, 1](r) = 2iSmy, Wi, Po)(r) = 2iSmo,

we have

_ b
Wiy, $1)(8) = 2i] / (v — @)1 + Sma)

Wlto, el(0) = 21 | (v — g2) ibof?dz — Smo]

Using these results in (5.2.5), we obtain

b b
[0l =l [t VAU~ it + S+

A , b
| / a1, M (O)de] / (v — go)lbolPdt — Sma]} + / S(@4f3)

It is straightforward to show that we may use inequality (5) of [44] to obtain

b
/ (v — gl < —Smy

and
/ (v — g2)lWol? < Smo
0

Thus by the Cauchy-Schwartz inequality we have

/Ob(u—qz)lcbst/ObS(q»,,f)g/Obm),,ﬂg(/oblq)b,z/()" P} (5.26)
/ - gl < ( / iy / I
/rb(u - q2)|®)* < (/Ob @y )2 /Ob If12)% - /OT(,, — 0)|®s?

By the continuity of ¢(z) on [0, 7], there exists a positive constant K’ such that

i.e.

or

|v — g2| < K'. Hence, using also (5.2.1) we have

S =) / 04 < / j04? / I+ K[ 1o / [u[2)%
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On the other hand since v > L, we can write

1 ’ 21 " 2\3 ' 2y1

S =L) | &P <5(v=L)(| 12)z([ |®4]*)

2 0 2 0 0
Hence, we may add the last two inequalities to obtain
1 ’ 2 ’ 2y1 ’ 214 0, 1 i 2\1 ’ 2\1
z(r=1) ; |@s]* < ( A 12:9=() Pz +(K'+5 (=L)X ) |®5]%)2( ; |©4]%)>
and dividing both sides of the above inequality by J(v — L)( fob I(I)bl"’)%, gives

b b ( r
([ 1ot < 2 1+ 2L+ e

But from (5.2.2), there exists a constant K" such that
r r b
([ 1ot < xer [ 1t < g [
0 0 0

since the functions ;(z, A) and f(z) are in L?[0, 00), so using the above inequality

in the previous one gives

([ 1o < a1 (5.2.7)
where K = gK;I_(—z'Hl + K" is not dependent on f.
On the other hand

W1, o) (z) = ka(A)k2(A)WTep, #l(z) = k1 (A)k2(X)

so we have
1 ' z
O O /0 Fa(0)(t, A) fi(2)de
b
+ l(W)é(z, A) ] Ea (A (8, A) fo(8)d]

T b
Py = q)(:l:, ’\;fb) = ’(b(:l,’, A)L ¢(ta )‘)fb(t)dt + ¢(:I:, ’\)/ 1»b(t’ /\)fb(t)dt

Now let b — co. Then &, — & and by Fatou’s theorem we conclude from (5.2.7)

/ B2 < K / P
0 0

that
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so that

el < K|

as required. If » < L the proof is similar to the case v > L.

Theorem 5.2.1 Consider the differential equation Tf = Af generated by the
non-selfadjoint differential expression T on [0,00) and let X' be a complex param-
eter such that SN # L. Then X' is in the resolvent set p(T,) of Ty if and only if
the corresponding m-function, ma(), is regular at X' and the resolvent operator

Ry\(T,) is given by

O(z,N; f) = Ru(To)(f)(z) = /000 G(z,t,X) f(t)dt (5.2.8)
where
Slont, X} = { Dz, Md(t,X) if0<t<z<oo
P, N)é(z,N) f0<z<t<oo
for all f € L?0,0)

Proof: Suppose that X' =y’ 4 i/ is a fixed point in p(T,), where v' > L. Then

there exists an L?-solution of the equation
rf=)Nf (5.2.9)

and the corresponding m-function m4(A) in case I is meromorphic in the region
v' > L by Corollary 4.5.1. If m4()) is regular at A’ then the solution % (z, X') is
square integrable by Corollary 4.5.2, whereas if m4(\) has a singularity (a pole)
at A’ the solution ¢(z, \’) is square integrable, as will now be shown.
First suppose a # 0 and let © and x be two linearly independent solutions of
(5.2.9) satisfying

0(0,)) =-1, 0'(0,A\) =0

x(0,A) =0, x'(0,)) =1

Then by Corollaries 4.5.1, 4.5.2, and Theorem 4.11.1 there exists a meromorphic

function M () such that

U(z, M) = O(z, ') + M(N)x(z, \)
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is an L%-solution whenever ) is a point of regularity of M()). Also there is a
constant k(A) such that for all A which are points of regularity of m,()) and

M(X), with SA > L,
O(z, ) + M(A)x(z,A) = k(A)[0(z, A) + ma(A)¢(z, A)] (5.2.10)

because changing boundary conditions does not affect the existence of square

integrable solutions. Applying (5.2.10) and its derivative at = 0 we obtain
9(07 ’\) + M(’\)X(O’ ’\) = k(/\)(G(O, ’\) + ma(’\)‘ﬁ(ov ’\))

0'(0,4) + M(A)x'(0,A) = E(A)(8'(0, 1) + ma(A)4'(0, 1))
which gives
—1 = k(A)(ma(A) sin a + cos a)
M(X) = k(A)(—mq(A) cos a + sin )
and hence the m-function satisfies

—sina + M(A) cos «
cosa+ M(N)sina

ma(A) =

It follows that m4()) has a pole at A = ) iff cosa + M()\)sin & has a zero at

A = X but when cosa + M()N)sina = 0 we have
cos a(0(0,X") + M(X)x(0, ")) + sina(O'(0,X") + M(N)x'(0,X") =0

so the L2-solution ¥(z, \') satisfies the boundary condition « at z = 0, and hence
#(x, X') is a scalar multiple of ¥(z, X'). Therefore ¢(z, ) € L?[0,00), so that X

is an eigenvalue and X’ € o(T,) whenever m,()) has a pole at A = X.

If @ = 0 the argument is similar; however, it is now necessary to choose the basis
{0, x} so that
x(0, ) cos 0 + x'(0,\)sin0 # 0

i.e. so that x(z,A) does not satisfy the boundary condition a = 0 at = = 0.
Now suppose that m, () is regular at ', where v’ > L. Since m4(A) is meromor-

phic [30], A’ is not a pole of m4()) and we will show that M € p(T,). To achieve
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this we first note that ® is a bounded operator defined on H by Lemma 5.2.1,
so that ®(z, \; f) € L?[0,00) wherever f € L?[0,0). To complete the proof that
®(z,); f) € D, the domain of T, we can show that ® satisfies the boundary

condition

®(0,); f)cosa+ @'(0,)N; f)sina =0 (5.2.11)

For since

8(0, X; 1) = $(0, X / ", M) f(1)dt = sina / "t X F(t)dt

¥(0, 1) = #0,%) [ 96 X) (0t = —cosar [ b6, X) 00
(5.2.11) follows immediately.

We also prove that ®(z, \’; - ) is the inverse operator for the operator T, — A'I.

Obviously we have
(2, N (Ta = NI)f) = (2, N5 (=f"+qf = Nf)) =
#e, ) [ N4 af = XD+ 9l ) [ 801"+ af - X )i
0 T
Integrating by parts twice we obtain

Bz, X (=f" + qf = Xf)) = $(z, X) /0 (=g + qb— Xg) [+

B ) [ (0" qh = XIS+ 9l T+ S
Ha, V(=% + F)]

The last two terms are zero so

Oz, s (Ta = X)f) = ¥(=,N)(f(2)¢'(z) - f'(2)¢(z) + f(0)¢'(0) — f(0)¢(0))
+ (e, M) (Weolf, ¥] = f(2)9'(z) + f'(2)1(2))

Since f € D, then Wy f, ¢] = 0, so that

O(z, X; (Ta = XN1)f) = f(2)We¥, 8] + 8z, N)Weo[f, ¥] = f(=)
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since we are in case I and D, = {f € D : W [f¢] = 0} ( [44] p.267). On the
other hand

(Ta=XD)® = —0"(a,X; f) + (= X)&(z, X; /)

—v(e, ) [ s X)) - '3 [T e 000
T+ L@ Wald, 8]+ (g — N)B(z, X; 1)

@)+ =7, 2) + (g = X X)) [ o )50

+ =N + = 00N [ v )@
= /=)

for all f € L?[0,00). Hence we can write for each A with the property S\ > L
(Ta_)\l)_l =0(- A +)

The operator ®( -, A; - ) therefore has all of the properties that make it identically
equal to the resolvent operator R)(T,) for each A with S\ > L, and we conclude
that X' € p(Ty).

If SN < L proof is the same as when S\ > L. The special case of SN = L is

considered in the next theorem.

Theorem 5.2.2 Let v' = L and X' € p(T,). Then m,()) is regular at ).

Proof: Let v’ = L and X € p(T,), Since p(T,) is an open set in the complex
plane, there is a disk Ds(\') = {2z : |z — X| < 6} around N such that Ds(\') C
p(Ts). Therefore, noting that there is no loss of generality if we take L # 1, by
Corollary (4.6.1) we have

ma(}) = mali) = (A — ) / (2, (s, 1)dz (5.2.12)
0
for A € Ds,SX # L. From the properties of ® as a function we see that
(7= 2@ = N)(z, A (2,7)) = (1 — \)yp(z, 1)

and since

(7 = Nb(z,2) = (2 = A)ih(z, 9)
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it follows that (i — A)®(x, A; 9(¢,7)) and ¥(z,?) are solutions of the
non-homogeneous equation (7 — A)f = (¢ — A)y(x,17), so their difference is a

solution of the homogeneous equation 7f = Af. Hence
(2= A)O(z, A;9(1,7)) — ¥(=,7) = c1é(z, A) + catp(z, A) (5.2.13)

where ¢; and ¢, are constants which can be determined, since if we set £ = 0 in
(5.2.13) and its derivative, and use (5.2.12), we obtain ¢; = 0 and c; = —1. We
have therefore

P(z,A) = P(z, 1) + (A =) 8(z, A; (2, 7))

Also we can use Theorem 5.2.1 and write ®(z, A;9(¢,7)) = Ra(Ta)¥(t,2)(x) for
A € Ds, X # L Then substituting for 1(z, A) in (5.2.12) gives

Ma(A) = ma(i) + (A —7) /Ooo P(z,i)*dz + (A — )*(Ra(Ta) (2, 1)(2), (=, 1))

But this equation implies, since the function A — (g, Ry(T4)f) is an analytic
function from p(T,) to C for given fixed functions f and g in H [49] p.101., that
mq(A) is analytic in the neighbourhood Djs of X, so that by analytic continuation
m, is regular on the resolvent set at A’. We believe that the converse of Theorem
5.2.2 is also true, but have not been able to prove this. However, the following

result provides a partial converse.

Theorem 5.2.3 Suppose that q is eventually real and that v' = L = 0. Then if
mq(A) is regular at X', X' € p(Ts) and the resolvent operator is given by

Bz, X; f) = (z, V) /0 " 6(t, M) S ()t + (z, V) / bt M) f ()t

Proof: Suppose firstly that g2(z) = 0 for all z > a for some real a > 0. Then we
define two operators Ty and T, on [0, ] and on [a, 00) respectively, with domains
of definition Dy and D, respectively, where f € Dy if and only if

i)f € L?*[0,q],

il)rf € L?[0, a],

iii) f and f’ are absolutely continuous on [0, a],



RECLION Jd.<. LNC TN=JUNCLION ana IREC TESOLVENL OpeEralor.

iv)f(0)cosa + f'(0)sina =0, a € C,

v)f(a)cos B + f'(a)sinf =0, B € [0,n),

and f € D, if and only if

i)f € L*[a, 00),

ii)rf € L*[a, ),

iii) f and f’ are absolutely continuous on [a, X], for all X > a,

iv)f(a) cos B+ f'(a)sin B = 0.

Then T and T, are defined by Tof = 7f for f € Dy and Too f = 7f for f € De.

Let solutions § and ¢ of 7f = Af be defined in terms of the boundary condition

B € [0,7) at z = a in the usual way, viz.
$(a,\) = sin 8 #'(a,)) = —cos 8 (5.2.14)

f(a,\) =cosfB 6'(a,)) =sing (5.2.15)

There then exist m-functions mg and m, such that
Yo(@,4) = 0(z,2) + mo(N)d(, )
satisfies the boundary condition a at £ = 0 and
P(z,2) = 0(z,2) + meo(N) (2, A) € L?[a, 0)

for each A such that SA = v # 0, apart from isolated poles of mg(A), where
é(z, A) satisfies the boundary condition at 0. Note that T is selfadjoint, so that
Moo(A) has no poles off the real axis.
Since 7 is in case I on the interval [0, c0) there exists a scalar k()\) depending on
A such that

P(z, A) = k(\)ih(z, \) (5.2.16)

when v # 0, unless ) is a pole of m4()), in which case 9(z, A) = ¢(A)é(z, A) for
some scalar ¢()). From (5.2.16)

_ [0(a,2) + mag(a, N)] = k(1)0(a, ))

() EN)3a, )
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Now let A’ € R and suppose that m, is regular at ). There is no loss of generality
if we assume f§ # 0, in which case, we see that if m, is analytic in a neighbourhood
N (XN) of X then muo(A) is also analytic in a neighbourhood A’()’) of X. Therefore
by [4] § 5, Thm.(i) we deduce that since T is a selfadjoint operator 3(z, N') €
L?*[a, 00) and hence ) belongs to the resolvent set p(Tw) of T, and the resolvent

operator Ry (Tw) is given by

RouTie) = 82, X5.) = Be, ) [ 8,001 @)+ 32 ) [ 50600700t

We now deduce that ¥(z, \') € L?[0,00) where S\ = v’ = L = 0. Using (5.2.16)
and the fact that the solutions ¢,0,,0 andv m-functions mq,, m, are analytic
in a neighbourhood N*”()\') of X', we have by continuity and the uniqueness of

solutions
Pz, N) = lim, k(N (z, X) = k(N )(z, X') € L*[a, 00) (5.2.17)

for all z > a, and hence ¥(z, \') € L?[0, 00).
Now define the function ®(z, \’; f) by

¥(e, ¥ ) = $(e, ) [ #ENIOd+ 6, Y) [T w00 (5219

for all f € L?[0,00). Clearly ® is well defined, since (z, \'), f € L?[0,0) and @
satisfies
¢ = —0" 4 ¢(z)@ = N0+ f

Also we have ®( -, X;Tof — Nf) = f and (T — N)O( -, N;f) = f and @
satisfies the boundary condition ®(0,X’; f)cosa + ®'(0,); f)sina = 0. Thus
satisfies all requirements for the resolvent operator Ry(T,) from LZ%[0,00) onto
the range of T, — X', except that we still have to show that ®(z, \'; f) € L?[0, c0).
To prove that for all f in L?[0,00) we have ® € L%[0,00), and @ is a bounded

linear operator, we proceed as follows. Evidently

1o = / 3] = / ] + / ]2
0 0 a

On the other hand from (5.2.16) we have

h(z, X) = k(lT,)«/)(w, X) (5.2.19)
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We may choose § € [0,7) such that the solutions ¢(z, ') and &(z,A') of the
equation 7f = N f, where {(a,\') = cosé, £'(a, \') = sind form a basis and the

corresponding m-function which satisfies
pp(z, X') + moo(, 6)é(z, X') € L*[a, 0)

where
Wipé(z,X),&(z, N)] = 1

for some scalar p, is regular at A’. There then exists scalars ¢ and e such that
3, X) = ch(o, N) + et(, X) (5.2.20)

Substituting (5.2.19) and (5.2.20) into (5.2.18) we have

B(e, X5 1) = (2,5 £,0) = (e ) [ feblt, 1) + e, X0+

led(z, N) + et (z, V)] / " ﬁzp(t, NVf(8)dt =
k—(cm[z/)(w,x) / ) ¢(t, X)f(t)dt + ¢(z, ) /x i b(t, M) f(t)dt)+

H%W)(m, X) /:E(t, XN)f(2)dt + &(z, X') /z ) p(t, N)f(t)dt]

Since the last term on the right hand side is —~®(z, '; f, §) we obtain by self-
7e0)

adjoint theory that

/ " (e, X) / ot (W)t + d(a, X) / "t V) f (1) dt P
< K / " )Rt < oo (5.2.21)

for some positive constant K which is independent of f. But from (5.2.18)

1@z, X; )| = / (e, V) / "8 XY F(0)dt + ¢z, X) / "ty M) F(0)dtdat

/ ” [v(z, \') /0 ’ o(t, N)f(t)dt + d(z, ') / ” P(t, N)f(t)dt|*dz

and

/ " 6z, ) /0 " 606, M) F (1) dt + bz, V) / bt M) [ (2)dt[Pdz =



DJECLION J.J. L NRE TN-JUNCLION ana e conlinuous specirum.

JE / (M) f(t)dt + [ s

oz, X) / RO

By Minkowski’s inequality
| e[ sexsaat [
a 0 a

HaX) [ 9 X) SOl <
( / " bz, N) / "8, X))} + ( / " (s X) | seswar
) [ (e, M) S0 de )P

The first square root in the above inequality is less than K’||f]| for some positive
constant K’ and the second one is less than K| f|| by (5.2.21). Hence the left
hand side of the above inequality is finite; moreover it is easy to show that
Js 12[> < C?||f]I%, and joining these results together we have ||®|| < C||f|| for
some C € R, so & € L?[0,00) also ® is a linear operator from (T — M'I)H to H
since

O(z, N; (cf + g)) = cP(z, N; f) + D(z, N g)

Therefore ® is a bounded linear operator and hence the theorem is proved.

5.3 The m-function and the continuous spec-

trum.

In this section we give a brief outline of the Chaudhuri-Everitt result on the con-
tinuous part of the spectrum of T, which is characterised by properties of the m-
function, and under certain conditions we prove the extension of the Chaudhuri-
Everitt result to the non-selfadjoint case.

As in the previous section we consider the differential operator T, where a € C

and lim;—,o g2 = L on the interval [0, o).
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Definition 5.3.1 Let T be an operator defined on a Hilbert space. The complex
number X is in the continuous spectrum o, of T iff (T — M)~ exists and is a

densely defined unbounded operator.

To see that the weather continuous part of the spectrum of T' can exist in the non-
selfadjoint case, consider the standard singular differential expression of Sturm-
Liouville type 7 = —3‘% + ¢(z) on the interval [0, oo) with ¢ = 0. This generates
the operator T, as defined in Definition 4.2.1, where « is a real number and T,
is a selfadjoint operator. However we obtain a non-selfadjoint operator if o is a

complex number, since for each f,g € D, we have

Tuf0) = (1 T) = [ (~1"@3a) + S@F(e)ie
= Im (/3 — 90 - (7 - F5)(0)
= 2if'(0)g'(0)S(tan «)

# 0

since if Sa # 0 then Stana # 0. Now take @ = 0; then by [10] we obtain
that (0,00) is the continuous part of the spectrum of T, (in fact, absolutely
continuous) and also we see that Ty, is a non-selfadjoint operator if we change the
boundary condition from 0 to @ € C \ R. Since changing the boundary condition
is equivalent to a one dimentional perturbation [53], the continuous part of the

spectrum of T, exists and is the same as the absolutely continuous spectrum of

Toie. o.(Ty) = (0,00) [15]

We now consider the differential operator T, generated by the differential expres-
sion T = d‘% + ¢(z) on the interval [0,00) where ¢ is a real function and in the
limit-point case at infinity. Let D, be a linear manifold of the Hilbert space H
consisting of all real functions f defined on [0, 00) such that:

i)feH

ii)f and f’ are absolutely continuous on the finite interval [0, X]

iii)cosaf(0) + sinaf'(0) =0, «€]0,n).

and define T, by T,.f = 7 f for all f € D,. We then have the following theorem
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Theorem 5.3.1 (Chaudhuri-Everitt) i) The number r is in the continuous

spectrum of T, iff the corresponding m-function mq()) is not regular at r and
lir% vmg(r +iv) = 0;
i) If for all numbers v and §

76(z,r) + 6¢(z,7)
is not an L%-solution then r belongs to the continuous spectrum of T.
Proof: see [4]
Since the following example shows Theorem 5.3.1 does not work generally for

non-selfadjoint operators.

Example 5.3.1 Consider the simplest case of a boundary value problem
—y" +q(z)y = My

y(0)cosa + y'(0) sina = 0

where g(z) = 0, Vz € [0, 00), and a fundamental set of solutions {¢, 8} satisfying

the boundary conditions
#(0,)) =sine, ¢'(0,)) = —cos
0(0,)) = cosa, 6'(0,)) =sina
where o € C. Then
0(z, ) = cos acos(zv/X) + A™7 sin arsin(zv/A)

¢(z, ) = sin acos(zvX) + —A~% cos arsin(zV/A)
and we obtain the m-function m,()) explicitly as

sina — 2V cos o

cos o + z'\/Xsin o

me(A) =
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where $v/A > 0. We now show that m is regular on the whole complex plane

except on the set

{A:SA=0, R\ >0}

and at poles of the m-function which satisfy the equation i cot & = v/X. To show
that this is true, note that mo(A) = —iv/) is the m-function for the selfadjoint

problem with ¢(z) = 0, = 0, and is analytic on
S=C\{A:SX=0,R) > 0}

It then follows from the expression for m4()) that for a € C\{0}, mq4(])) is

regular on S, apart from isolated poles at the zeros of cos a + iv/Asin .

Let a = o3 + ;. Using complex trigonometry we have

sin 2a; — ¢ sinh 2a,

A=—cot’a= ,
cora 2| sin af?
where a; # 0 and the condition S/ > 0 is equivalent to

1
n7r<a1<(n+-2—)7r, nelZ.

Taking a3 = 0,2 = 1 then m-function is

__isinh1— iv/Acosh 1
cosh1 —+/Xsinh1

m(

or

1—+Xcothl
cothl — /X
Note that the only pole of m()) is at A = Ag = coth?® 1, so that m()) is regular on

m(\) =1

S. To investigate whether Theorem 5.3.1(i) remains true in general in the non-
selfadjoint case, we consider the behaviour of vm(u' + iv) as v — 0 for u/ = Ao.

We have:

lim ym(y' + iv) = lim V[l = Ao + iv coth 1]
2 ~v=0 cothl—+/Ag + v

Using I’Hopital rule we have

lina vm(u' +iv) = 1in(1)’2z'(1 —coth?1—i4v coth1) coth 1 = 24(1 —coth?1) coth1 5 0
y— 72
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Since there is no L?[0, c0) solution of the equation —y” = Ay for any A > 0, S
lies in the essential spectrum by Theorem 4.11.4 and ) is not an eigenvalue.
Hence Ao is a point of the continuous spectrum, but Theorem 5.3.1(i) is not
satisfied for g’ = Ao. This shows that Theorem 5.3.1(i) is not generally true in

the non-selfadjoint case.

5.4 Point spectrum and the m-functions.

Consider the differential expression 7 generating the differential equation (4.3.9)
on the interval [0, 00), in which the function ¢ is limit point at infinity i.e. in case
I in Sims’ sense.

Let T be an unbounded operator defined on a Hilbert space H. Then the complex
number ) is said to be in the point spectrum (an eigenvalue) iff the operator T'— AT
is not one-to-one. This section is devoted to study of the relationship between the
m-function and the point spectrum in terms of the square integrable solutions of
the differential equation (4.3.9). Consider the formal adjoint 7 of the differential
expression 7, where the formal adjoint operator T, of the non-selfadjoint operator

Ty generated by 7 has domain of definition
Do = {f € L*0,00) : f € D,},

and let 1(z,)) be the solution of the differential equation (4.3.9) satisfying
(4.5.25) at point of regularity of m4()). Then %(z,)) is a solution of the for-

mal adjoint differential equation
Ff=—f"4+qf=)\f (5.4.22)

We can see that in contrast to the selfadjoint context, in the non-selfadjoint
context it is not necessarily true that 9(z,\) = ¥(z, \), so if m4 and 7, are the

corresponding m-functions then they will not necessarily satisfy mq()) = ma(A).

Lemma 5.4.1 Let T,, and m,()) be given as in §5.2, 4’ be a simple pole of my
with Sy’ # L, and suppose limsupy_, Ifox Sré(z, p")0(z, u"))dz| < oo. Then
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the functions 0(x, p') + réa(z, ') and 7(0 + ré») are in L?[0, 00), where r is the
residue of m, at the point p' and ¢y(z,p') = 9%(1—’)‘)|)‘=u:.

Proof: If 4 is a simple pole of m, and Sy’ > L, then u' is an isolated singularity
of m,, and hence there is a deleted neighbourhood NVs(u') of u' so that Ns(p') C

p(Tx), i.e. we have for some § with 0 < § < Sp' — L
Ns()={r € C:0< |\ —p'| < 8} C p(T)

If we define the function f(z,v) = ¢(z, p'+iv) — L é(z, '), where z € [0, 00) and
0 < v < §, we can see that for all 0 < v < § we get the result f(z,v) € L?[0, 00);
this is because g’ + iv € Ns(p') C p(To) and p' is a pole of m,, which implies
that ¥ (z, u'+v), ¢(z, ') € L*[0,00) by Corollary 4.5.2 and the proof of Theorem
5.2.1.

Also we can show that 7f(z,v) € L?[0, 00), since we have
)] = rlible,u +iv)] - —rig(e, )
= (W + i), i +iv) = p' =l 1)
= (W + i)z, i +iv) = = (e, 1) + ré(z, 1)
= (W + i) f(2,0) + (s i) (5.4.23)

Thus, since f(z,v), #(x,p’) € L*[0,00) we have 7[f(z,v)] € L?*[0,00) for all v,
where 0 < v < 6.

Applying the modified Green’s formula (4.2.8) in the interval [0, X], substituting
f=g9= f(z,v) in it, and using (5.4.23) we obtain

X _ _ X _ _
/ Fri- T = / (7@, )7 f(@,v) = (@, v)7F (@, v) }de
0 0
X
= Wlf@o), J@ol +2 [ @l )i
X
= 2 [ A+ 0P + (o 1) ()
and so, with obvious notation,

X 1 _ X -
/O (S + v — g(2)|fu(2)Pde = ZW[f,,(:v),f,,(w)]é(—A S(rofy)dz
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1 - X -
= --W[fu(w),fu(w)lé‘— P
|7'|2 2
+ ” |¢(a: p)|?dz (5.4.24)
Since f,,7f, € L*[0,00), we deduce that f, € D in Definition 4.2.1, so
Jim WIf,, £I(X) = 0

since limy_,o, W([f,¢¥(z, ' +iv)] = 0 for all f € D, (cf. [44] p. 252). On the
other hand
2 —
WIS F10) = Wiy, 810) + ZEwie, 310) + 2is(Z Wi, a)(0)

2

= ¢{2(Sm)cosh2a; — (1 + |m|?)sinh 2cr; — |—Z|2— sinh 2a

2
+ ;[rl cosh 2ap + (rgmy — r1m2) sinh 2]}
= .

+ 2((Sm+ r—l) cosh 2a2
v

2(remy — rlmg) |r|

— |m]?* = 1) sinh 20,

where r = r; + iry, m = m; + im,. Since m has a simple pole at A, we have
m = :T/ +a+ivb+O(|v]?) = CVE + a1 — vby + O(v]?) + i(:-u’il- +ay + vby),

where a = a; + tas, b = b; + 7b,. Hence the coefficient of sinh 2a; in the previous

equation satisfies the following equality

2(7‘27711—7'17712) _ JI_E
v

—|m|* =1 = 2v(aby — azb;) — 1 — |a|* — 2|
(l lz)(—— = 2a1 + 2vby + 2 — O(|v*))
as v — 0, and so we obtain
WIf., f.)J(0) = i{2a;cosh2a; — sinh2a,(1 + |a|?) + O(|v|)}
as v — 0. Hence
Wlf., £.](0) = K + O(v), K independent of v

and so W([f,, f,]J¥ is bounded as X — oo for all 0 < v < é.
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Now consider the behaviour of the second and the third terms on the right hand
side of (5.4.24) together. Both of these terms individually are unbounded as

v — 0. However,
S(r98) = 5:(r9 — FB) = -{2il8PS(rm) + 243 (rD)]

and since Srm = ]ﬂ; + S(ra — ivrb) + r,0(|v|?) we have

|r[?

—S(ré¥) + -9 = =S(ra — ivrd)|g|* — S(rd) — rO(Iv[*)|4|*

Hence
Ik

X X
. o~ n N2 ) =

14

X - —
lim / (S(=ra+ ivrB) — raO(vPY)4P — S(rg0)ldz =
X
/o _[S(r2)|éf + S(ré0))du

But by assumption limsupy_,, |f0X Sré(z, u)0(z, u))dz| < oo, and ¢(z,u') €
L?0, ), so R
| [ a6 + S(r40)del < &
0

for all X where £k is independent of X and ». It now follows from (5.4.24) that
X
| / (S + v — )\ ff2ds] < k+ K + O(v) (5.4.25)
0

for all X, where the constants K and k are independent of v. Now use the conti-
nuity of ¢z to find a real s > 0 such that Su’ — g, > K’ > 0 for all z > s so that,
by (5.4.25) we have using Minkowski’s inequality

X s
iy [ (9 + v = a0l = Yy | (@' +v - gl Pl < K +
v=0 /o v— 0

for all X > s. Hence

X X
0< lin(l)(K' + 1/)/ If.]? < lin&/ (Sp' + v — q)|f,|*dz =

K+k+|/ lina(Sp'+u—q2)|f,,|2dm|=K+k+|/ (S = g2)|foldz] < K"
o 0
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which gives .
lirré/ |f,|2dz < K"

where K" is independent of v, and so
X
lirré/ |fo]2dz < K™, for all X > s

we deduce that

X
/ |f0|2dx S I(’”

S

where fo = lim,_ f,, since f(z,v) satisfies

J(@,v) = 0,1 +iv) + mN) bl 1 +iv) = = (e, u') =

0 i +iv) 4 [ EEE ) Z @)y i) m(Y) - )

w w

or

f(z,v) = 0(z, p' +iv) + 7'[¢(m’ s “;3 — (=, ”I)] + ¢(z, 1’ + iv)(ao + O(|v]))
and then

lim f(z, ) = f(2,0) = 0(z, 4') + réa(z, 1) + a0d(z, 1)

It follows that
/ lfol2d$ S I(”l

s

and this together with [ |fo]?dz < oo gives the result that fo € L2[0,00) Hence
0(z, ') + réa(z, p') € L*[0, 00) since ¢(z, p') € L?[0, 0).
Moreover we see that 7(0(z, u') + réa(z, p')) € L*0, 00). Since

7(0(z, 1) + réa(z, 1)) = 76(2, 1) + r7¢a (2, 1) =

p0(z, 1) — réx +rqds = p'(0(z, p') + réa(z, 1)) + ré(z, 1)
To see this, note that since ¢(z, ') is jointly continuous with respect to both

variables £ and A we have

9 3¢, 8 9%
527 ax) = 5 (gg2)
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J(19) = 2(0) = 6+ 26
However
0 0 " "
an(79) = g (=¢"+¢) = —¢i+ gér = ¢ + Aé,
so taking the limit A — p’ we obtain the result

rréx =r(¢ + 4'41)

T(0+7rd))=p'0+rp'dr+rd=p'(0+1d)) + 1.

Hence 7(0 + r¢,) is also in L?[0, 00), so the proof of the lemma is complete. The

case of Sy’ < L is similar.

Let A be an eigenvalue of T, and let F) be the eigenmanifold corresponding to
A which is an invariant subspace of H and so reduces the operator Ty, i.e. if P,
is the orthogonal projection on the subspace H © E) = H; (say) and P, onto E)
then P,D(T) C D(T) and if T and T3 are defined by,

D(Ty) = PD(T) Tif =Tf forall fe D(T})
D(Ty) = B,D(T) Tof =Tf forall f€ D(Ty)
then we can write D(T) = D(T}) @ D(T3) and T =Ty @ Ty i.e.
Tf=Tifi +Tofs, whete f=fi+fo fi=Pif,fo= Pafforall fe D(T)

It can be shown that ) is not an eigenvalue of T and for such values of A we now

define the resolvent operator Ry(T) as (T3 — X)~.

Lemma 5.4.2 Suppose that under conditions of Lemma 5.4.1 an operator ®* on

Hi = L?[0,00) © {¢(z, ')} is defined by
O°f = 0%z, 15 () = Oz, u) / "Bt 1) (D)t + (i) / "ot 1) (t)dt
+ dlo) | L0, 1) + réa(, 1)} () dt

for all f € Hy and all x € [0,00). Then ®* satisfies the following:

i) ®* is a linear operator



VECLION J.4. L0l SPECITUM ana ine m-junclions. 1VJ

i) (1 — p)@*(z, 1’ £()) = f(z), Vf €M1, Vz€l0,00)
iii) @*(z, p's (r — W) f(-)) = f(z), Vf € DaNHy, Vze€[0,00)
iv) ®*(z, 1'; f) satisfies the boundary condition

(0, p'; f) cos . + ®*(0, 4’5 f)sina = 0
v) ®*(z,p'; f) € H.

Proof: Since 0+r¢, € L%0, ), by Lemma 5.4.1, the operator ®* is well defined,
and then '
1) since integration is a linear operator so the result follows.

ii) for each f € H; and all z € [0, 00) we can write
-0 4+ q(2)®* = —0"(z, ) A S(t, 1) f(2)dt — r¢"($,,u')/ a(t, 1) f(t)dt
0

_ ) / (062, 1) + réalt, 1)) ()t + 9(2)®*(z, 15 1)
T (¢ )0, 1) — bz, k)0 1)) f ()

If we substitute again for ®* in the above identity and use the fact that

W10, ¢l(z) = ¢'(z, " )0(z, ') — ¢(z, p')0'(z, 1) = 1, then
8 = (=0, i) + 4(2)0(e, 1)) / "o, ) F(1)dt
+ (=", i) + q(@)d(z 1)) / "t 1) 1 (1)t

(=) + (&)o@ )) [ 01 +rr(e W)@t
+ f(z)

Hence
= ) [ e+ o) [ )10

+ W) [ O + i) @t + 1 (2)
= p'o*+ f(z)

Thus we have shown that for all f € H; and for all z € [0, )

(r = 1)@ (z, s () = f(2)
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and ii) follows.

iii) If f € Do N"H; and z € [0, 00) then we have
0" (o s (r = I®) = i) [ w1+ 0 = W)
+ 1) [ )1+ af - WD)
+ 0o [0 +rasO) "+ af - W10

where 0(t) = 0(t,u') and ¢x(t) = ¢a(t,4’'). We now consider each of the three
expressions on the right hand side of this identity separately. Firstly

0(z, i) / 81, 1) (—1"(2) + () () — 1 F(1))dt =

0(a, /) WIS, 9I% + 0(a, 1) / (=" + q(0)d — 1 )(D)()dt =
0(, YW LS, 8)% = 0z, YW, 6)(z) (5.4.26)

since f € D(T,) and W{f, #](0) = 0. Secondly

r(e, i) / da(t, 1) (~F" + af — 1)(t)dt =

ré(z, W)W, ¢als + ré(z, u') /0 z(—¢&' +dxq(t) — w'ha) f()dt =

WL A5 +role, ) [ olt S @) (5.4.27)

since T7¢y = ¢ + u'é», and finally

¢(x,p') /w{(’(t, 1)+ roa(t, YW ="+ of — 4/ f)(t)dt =

Bart) [ 1O kr b a0+ ) = WO +ré) SOt + W0+l =

= W15, 0+ ral(a) + ré(e ) [ 9t ) (a1 (5.4.28)
since 7(0 + r¢y) = p'(0 + ré») + r¢é and by the proof of Lemma 5.4.1
W(f,0 4+ r¢x](co) = 0.
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Now let us add (5.4.26), (5.4.27) and (5.4.28) to give for the main identity

(2,5 (r = ) O) = OIS, dl(x) + réWlf, b2
T+ rd(a i) / 8(t, 1) (1)t — GWLS,0+ ré](2)

+ v [ i@

= 08 — 1'8) + réWIS, 4:1(z) — oW, ) (0)

— IO = 0 =W b(0) +16 [ S
= [@WI0,4)z) — ré(z )WIS, $:1(0)

= f(2)

since f € H; and ¢, 0 satisfy boundary conditions (4.2.4-5). Hence iii) follows.

iv) We can write

®*(0,z, f)cos a + ®*'(0,z; f)sina =
(cosc)p(0,1) [ "0+ ) F(2)dt + (sim o) (0, 1) JRGENOTE
(cos)(0,1) + sin )0, ) [ (00t )+ re(t, 1)) F(2)dt = 0

since (cos a)¢(0, ') + (sin @)¢'(0, ') = 0.

v) Since p' € o,(T,) it follows from the definition of point spectrum of T, that
the range (Th,1 — p') Do, of Ty — p' is Hy where D,y = D, N H;y and for each
f € H; there exists a function ¢ € Dy, such that (7 — p')g = f and hence

*(z,p'; f) = @ (2,45 (1 — 1)g) = ¢
so ®* € D,; C Hi. Thus the lemma is proved.
Lemma 5.4.3 Under the conditions of Lemma 4.5.1, the operator ®* defined in

Lemma 5.4.2 may be identified with the operator ® defined in Theorem 5.2.1.

Proof: From Theorem 5.2.1, for each f € H;, and for all A € NMs(p') \ {p'} we

have the function

O(e i 1) =@ 2) [ NI+ 900 [ vt 010

T
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where z € [0,00) and M;(y') is a neighbourhood of u/. We are going to show
that @ satisfies the following properties in all neighbourhoods N(p') included
in Ms(p') where 0 < e< 1.

1. & satisfies properties i)-iv) of Lemma 5.4.2.

2. ® is bounded on H;

3. be™,

1. By the linearity of integral operators 1-i) follows, except for A = u’ in which
® is not defined by the above equation. But since by [46] §2.6 we know that
®(z, A; f) is analytic in a deleted neighbourhood Ns(p')\ {1’} of i, so by limiting

process we have
0= lim{®(z, X (af + Bg)) — ad(, X; /) — 2(x, X;9)} =

®(z, 4'; (af + Bg)) — a®(z, 4's f) = B2(z, 1’5 9)
for all f,g € H; and all @, € C and hence 1-i) follows at point A = p'. We
now proceed to justify 1-ii). By Lemma 5.4.1 we obtain (7 — A\)® = f for all
A€ Ns(p') \ {1’} and each f € H;. To show this property for A = u' we see that
® satisfies 7® = A® + f for all A € Ns(x') \ {#'} and this is equivalent to the

following integral equation

‘I)(.'I), Af)= ®(0, A; f)+:1:(I)'(0, A f)+Ax /Ot[(q(s)—,\)(l)(s’ A f)_f]d'Sdt (5429)

where z € [0,00). Now let X > 0 be fixed, then for each z € [0, X] we have

X t
1B(z, % )] < [8(0, X; )] + X80, X; )] + / { / lg()®(s, X; f)lds+

N / 18(s, X f)lds + / |F(s)|ds}dt

and hence by the Cauchy-Schwarz inequality
[2(, X5 £)] < 19(0, 4 F)] + X[2°(0, ; f) |+
X X S ¢ l
J A a@past( [ 1065 D+

X X
ALX( /0 1B(s, s £)[2ds)E + X( /0 1 (s)[2ds)} Yt (5.4.30)
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So, using the fact that f and ® are square integrable in [0, 00), we deduce that
®(z, A; f) is uniformly bounded for each z € [0, X] and each A € Ny (y') so that
there exists a constant K = K(¢, X, f) which is independent of 2 and X such that

|2(z, A )| < K < o0 (5.4.31)

It follows from (5.4.30) and Theorem 1.2.2 (Lebesgue Bounded Convergence the-
orem) that we can take the limit as A — y’ on both sides of (5.4.29) and deduce
that (5.4.29) holds if A = p'. Then differentiating ®(z, u'; f) twice implies that
@’ is absolutely continuous on [0, X] and that for all f € H;, = € [0, X]

r® (e, s f) = W' (a, 15 f) + f(2) (5.4.32)

and since z is arbitrary, this is true for all z € [0.00) and 1-ii) follows.
To prove 1-iii) we have by Lemma 5.4.1 that ®(z, \;(7 — A)f) = f for all X # p'
and all f € D, N"H;, and since all terms in the identity

Oz, X; (1 = N)f() = f(=)
are regular on NMs(p') \ {¢'} we have by a limiting process
Jim, (2, X; (7 = Nf() = B, 15 (r = )f() = f(a)

for all € [0,00) and all f € Dq;1, where Dy = D, N H,.
To show the validity of 1-iv), we use the same argument as for 1-i) in Lemma
5.4.2 to give

®(0,A; f)cosa+ 9'(0,A; f)sina =0

for all A € Ms(p') \ {¢'} and all f € H. Then by a limiting process we have
0= /\liml[cos a@(O,)\;f) + sin a®(0, ; f)] = cos a®(0, p'; f) + sin a®(0, pt'; f)
—u
Thus property 1 is proved.

2. To prove that ¢ is bounded, we use Lemma. 5.2.1 to show that there exists a

constant K’ such that

/ ) |@(z, A5 ) < K / ) |/ (z)*dx (5.4.33)

0 0
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for all f € H; and all A € NMs(y'), except for the singular point A = u’ at which
the residue R of ® at p' is

R =ré(z,p) /0 ” (¢, A) f(t)dt

since

R = fim (= w)b(e,3) [ ot NS0+ 0= )83 [ pie Nsoi =

rde,id) [ )10t + Jim, g, ) [ O = (s NI
0 —H z
and for any fixed z > 0 and all X > z we have
b's
Jim, [ 1A® =6 VP =0
where fi(t) = (A — )9 (¢, )). Now using Lemma 4.6.2 we obtain
Jim, ¢z, ) [ = w0 V)t = (e, ) [ ot 0

where 7 is the residue of m,()) at g’ and hence

R=r¢(z,)) /000 é(t, \)dt

So by a limiting process, i.e. using Theorem 1.2.2, we obtain the inequality
(5.4.31) for A = . Also we deduce by (5.4.31) for A = p’ that ® € H,; and hence
2 follows.

3. To prove ® € H; for all A € Ns5(p') we have to show that

< B(z, 0 f), b(o, ) >= / " a2, X )d(a, 1)z = 0

Suppose it is not true i.e.

<z, ) f), d(z, 1) >= / " 8o, X 1) (e, 1) do £ 0

or equivalently suppose ®(z,A; -)Da,; L£H: Then there exists a function g € H;
such that
d(z,);9)=GeH
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where G = f + ké(z,u') with f € H; and some scalar & # 0, Hence
(Ta = N (2, X 9) = (1o — N + k(4 — N g(, 1") (5.4.34)
where p’ # ). But arguing as in the proof of Lemma 5.4.2, v) we can write
(ra =N = (ra =)+ (W = Nf e My

so by (5.4.34) we have (1, — A\)®(z,A;g) ¢ H;. On the other hand we obtain
(Ta = A)®(z, A;9) = g € Hy, which is a contradiction. Thus &(z, \; f) € H; and

the lemma follows.

Theorem 5.4.1 The complezx number p',Sp' # L belongs to the point spectrum
0p(Ta) of Ty if and only if ma(X) has a pole at y'. In this case ¢(z, p') € L?*[0, 00)
and if the pole of my() is simple and

X
limsup| | S(ré(z,p')0(z, p'))dz| < 0o
X—00 0
the resolvent operator at the point A = ' is a bounded linear operator from

HO Ey =M, onto D(T) N Hy which satisfies
Ru(T)() = 00ei) [ otm) @t +ré(ei) [ o)1
+ dleit) [0 +rbr(a IO
where r is as in Lemma 5.4.1.

Proof: Let y' € 0,(T,), Sp' > L. Since m,()) is a meromorphic function for
A # L by Corollary 4.5.1, 4’ is either a point of regularity or an isolated pole of
mq(A). But g/ cannot be a point of regularity of m,, since then by Theorem 5.2.1
' € p(Ta) and this is a contradiction, hence g’ is a pole of mq. If my()) has a
pole at p/, then it follows from the argument in the proof of Theorem 5.2.1 that
¢(z, ') € L?[0,00), and hence 0(z, ') ¢ L*[0,00) since q is in case I in the sense
of Sims. If we denote by E, the eigenmanifold generated by the eigenfunctions
corresponding to the eigenvalue ), the set of all functions f € H which are

orthogonal to Ey is given by Hy = HO E), which is a subspace of H. We will show
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that the restriction (To — p')|#, = Tw,1 — ¢’ of the operator (T — p'I) to Hy has a
bounded inverse i.e. the resolvent operator R,/(Ta,1) = (To,1 —p')~! is a bounded

operator from the whole of H; to the closed linear manifold D,; = D, N H;.

Since by Lemma 5.4.3 @ has all required conditions for being the resolvent oper-
ator at u’ and by Lemma 5.4.2 ®* represents an explicit identity for the resolvent
operator at p, so if we prove that ® and ®* which are defined on H; into Dg,

are identical the theorem follows. To show this, for any f € H; we can write
T[®(z, 1 f) — (2, s )] = W'[2(=, 4’5 f) = ©*(z, 4'; £)]

for all z € [0,00), since &, &* € H; so ® — ®* € H; and since there is no
nontrivial solution of 7f = y'f in the subspace H; so the solution ® — ®* is the

trivial solution i.e. ® = @* for all f € H,y, z € [0,00) This completes the proof.

Remark 5.4.1 It should be noted that the condition

lim Sg(z) =L

can be removed in several of the results in Sections 5.2-4, namely Lemma 5.2.1,
Theorem 5.2.1, Lemma 5.4.1-3 and Theorem 5.4.1. The requirement that v # L
in the statements of these results should then be replaced by

v ¢ [liminf g3(z), lim sup ¢(z)].

Tr—00

5.5 Examples.

This section contains some worked examples for the non-selfadjoint case, where
the spectrum includes gon-real numbers. We also consider some properties of the
spectrum (in the selfadjoint case) such as the relationship between the number
of zeros of solutions and the number of eigenvalues located in the half-line z < 0,

and investigate possible extensions of these result to non-selfadjoint problems.
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Example 5.5.1 Consider the boundary value problem
y"+Ay=0, y(0,))=0 (5.5.35)
on the interval [0, 00), where ) is a real parameter.

This problem is limit-point at infinity in the sense of the Weyl classification, since
for some A € C there is a solution of the equation y” + Ay = 0 which is not square
integrable. To see this note that for A # 0 the function y(z,\) = sinvAz is a
solution of the problem which is not square integrable. The essential spectrum is

[0, 00), and finally no point spectrum exists [10] p. 30.
If we change the boundary condition to a more general one, say,
y(0,\)cosa+y'(0,\)sina=0 a€[0,7) (5.5.36)

then a solution of the problem satisfying the boundary condition (5.5.36) for
A=0is
y(z,0) = zcosa —sina (5.5.37)

which is not square integrable, so zero is not an eigenvalue.
For A > 0, a solution satisfying (5.5.35) is

y(z,\) = cos asinzvA — VA sin a cos zvVA

which is not square integrable, so there is no positive eigenvalue. If A < 0, then

—A = p > 0 and a solution of the problem is of the form
y(z,A) = cosasinhzv—A — vV—Asinacosh zv—2A

or
y(z, u) = cos asinh z/p — /g sin o cosh z /1

and the m-function is

wsin a + cos «
mq(p) = Vi :
VEsina — cos o
Hence there is a pole of the m-function at A = —y = —cot? @ if and only if

cot @ > 0, and this is an eigenvalue of the problem.



DECLION J.J. LITAMPILES. 110

Now let A be a complex number; then a solution for the problem is
y(z, ) = cos asinzvVA — v Asin acos zvVA

and for &)X\ > 0 the m-function is

Vsina +icosa
Ma(A) = —= :
VAsina —icosa

where /X satisfies 3v/A > 0. To obtain the poles of the m-function we use the

(5.5.38)

following trigonometric formula for the complex case

sin 2z — ¢sinh 2y

2|sin(z + 2y)|? ’ y#0

cot(z + ty) =

Let a = a; +iay, where a3, a2 € R. Since the poles of m, () satisfy cot o = —ivA

sin? 2a; — sinh? 2a; — 27 sin 2¢ sinh 2a,

)X a;#0. (5.5.39)

t2aq =
cov @ 4|sin a|

and the condition SV > 0 is equivalent to R cot a = -;l‘s“ﬁig > 0, or to sin2a; >

0or n7 < ey < (n+ 3)w, wheren € Z.

We can check that if sin2a; > 0, then this A satisfies the following identity
cosa+iVAsina =0

and hence is a pole of m,(A), as given in (5.5.38). From (5.5.39), if sin2ay > 0,

then
\/X = W(Sillh 2a2 + 7sin 20(1)
since $v/A > 0. Hence
cosa+ iV Asina = cosa + ———(sinh 2a; + ¢sin 2 ) sina = 0.
2| sin a|?

as required, since

1

(2 cos asin asin @ + ¢ sin asinh 2a; + ¢ sin 201))'2| sin af? =

s . sin o
(2cosasin@ + ¢sinh 2a; — sin2a; ) o =
2| sin af?
