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Abstract

The ability of dealginated seaweed a waste material derived from the commercial processing 
of seaweed for alginate production, to remove cadmium, lead, nickel, copper, chromium, 
silver, aluminium and gold from solution was determined. Metal sorption was found to be rapid 
(90% removal within 5 minutes), achieving a residual concentration of 0.9 mg L'1 after 1 h 
contact time from an initial solution concentration of 10 mg L'1. The binding of metal by 
dealginate was found to be pH dependent, optimal sorption occurring at around pH 6-8 for 
cadmium, lead, nickel, copper and chromium and pH 3-4 for aluminium and gold 
respectively, suggesting an ion exchange mechanism. Determination of a molar ratio in the 
displacement of calcium by cadmium on dealginate supported the presence of an ion- 
exchange relationship, since the displacement of approximately 1 mol of calcium by 1 mol of 
cadmium was observed.

The sorption data was best fitted in the ion exchange approximation as opposed to the 
Langmuir model. The binding capacities were found to be 1.2, 0.5, 1.6, 0.8, 1.2, 0.4, 0.9 and 
0.4 mmol g '1 for cadmium, lead, nickel, copper, chromium, silver, aluminium and gold 
respectively. The ion exchange constants were calculated to be 3.3 x 10'6, 4.1 x 10'6, 6.2 x 10' 
6, 1.8 x 1 O'6, 2.3 x 10'6, 2.4 x 10'7,8 x 10'10 for cadmium, lead, nickel, copper, chromium, silver 
and aluminium. The values of the capacities and ion exchange constants showed affinity of 
the biosorbent to specific metals. The identification of the binding sites on the surface of 
dealginated seaweed was investigated by a number of techniques. Potentiometric titration 
revealed three distinct pKa values, the first having a similar value to carboxyl groups, the 
second being comparable with that of saturated thiols and amines and the third similar to 
sulphonate groups. Esterification of the dealginate resulted in the subsequent reduction in 
metal sorption, indicating that carboxyl groups are largely responsible for sorption except in the 
case of aluminium and gold, where 40:60% of the metal remained in solution after 
modification of the surface. Evidence of the FT-IR spectra confirmed the presence of carboxyl 
groups in untreated dealginate, while the number of carboxyl groups was markedly reduced in 
the esterified sample.

The occurrence of other mechanisms apart from ion exchange was suggested by the FT-IR 
spectrum for aluminium and gold. ESEM images of the surface of dealginated seaweed 
showed the algae cell structure still present in large areas. X-ray maps revealed the presence 
of silver, aluminium and gold associated with sulphur atoms on the dealginate surface. EXAFS 
results showed that cadmium, lead, copper and silver were bound to the dealginate through 
oxygen atoms, possibly from carboxylate groups. Evidence of gold reduction from Au (III) to 
Au(l) and Au(O) was also confirmed by the bond distance calculated for this metal.

Methods for the on-line preconcentration of cadmium, chromium, copper and lead and 
chemical speciation of Cr3* and Cr042' using a microcolumn packed with dealginated 
seaweed were developed. Effective column capacities were 4.0, 8.7, 9.4 and 8.5 nmol L'1 for 
cadmium, chromium, copper and lead, respectively. The application of the method was 
extended to the determination of zinc, cobalt, mercury, scandium, strontium, vanadium, 
arsenic, selenium, manganese and antimony. The analytical procedures developed for metal 
preconcentration and chromium speciation were validated by analyses of two Lake Ontario 
reference materials, TMDA 51.2 and TMDA 54.2 and a synthetic seawater sample. The findings 
of this study demonstrated that the sorption of metal by dealginate is mainly due to an ion- 
exchange mechanism. The binding capacities of the biosorbent for the elements studied were 
adequate for trace analysis and the use of dealginate was shown to be a cheaper alternative 
to synthetic resins.
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Section 1.1



During the last few decades, increasing attention has been focused on pollution of the natural 

environment. Heavy metais pose a serious threat of pollution to the biosphere. Due to their 

importance in industry, metals have become a major source of pollution in the environment. 

The mining, mineral processing and metallurgical industries are known to generate billions of 

tons of wastes (1). In most cases, it is possible to reduce the level of pollutants through the use 

of conventional technologies. However, the costs of technologies for the removal of heavy 

metai ions are often high and the efficiency of the treatment is inefficient due to the non- 

degradable nature of these elements.

To improve the current cleaning processes and satisfy environmental regulations, new 

supplementary methods must be developed. Biologically-induced metal removal has been 

perceived as a promising technique in the last decade (2). Natural materials that are available 

in large quantities or certain waste products from industrial operations have shown potential as 

inexpensive sorbents (3). The removal of metals from solution can be achieved using actively 

living cells via the process of bioaccumulation, or passively at the surface of both living and 

dead cells, in which case the process is referred to as biosorption (2).

The use of dead biomass is of particular interest, because the biosorbents can be employed 

in the same way as synthetic adsorbents. As such, regeneration is possible and the use of a 

dead biomass eliminates the problems of waste toxicity and nutrient requirements.

A wide range of dead biomasses have been studied as potential biosorbents for the removal 

of metal ions from aqueous solution (2, 4-8). Of the bacteria, fungi, yeast and algae studied, 

dead marine macroalgae have shown the highest capacity for the removal of heavy metals 

with almost unlimited availability. Furthermore, the microalgal product obtained from the 

production of biomaterial has become a cheap source of biosorbents (9).
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The production of polysaccharides from marine macroalgae or seaweeds is an economically 

important global industry. The extraction of agars, agaroses, algins and carrageenans for use 

in the food and pharmaceutical industries produces residues that could be used as cheap 

biosorbents (10).

Alginate is a polysaccharide-based biosorbent formed from algin by replacing protons in the 

carboxylic groups with metal ions such as Na, Ca and Mg to make commercial alginate 

products. It has been reported (11) that the ability of alginate to exchange heavy metal ions is 

an adsorption process.

Dealginate is a residue produced from the alginate extraction process from brown seaweed. 

This product has no marketable use and is dewatered after the extraction process for disposal. 

Since alginate has biosorptive properties, the waste dealginate product may also be a 

potential biosorbent for the removal of heavy metals from solution. The use of this waste 

material to remove and recover metal ions from aqueous effluents would be both 

environmentally and energetically satisfying.

This study aims to unravel the mechanisms of the binding of metal ions to dealginated 

seaweed waste material through a detailed understanding of the behaviour of those ions and 

their interaction with the surrounding environment. The specific aims of this study were:

• To characterise the uptake of Cd, Pb, Ni, Cu, Cr, Ag, Al and Au by dealginated seaweed.

• To elucidate the sorption mechanism involved in the uptake of the metal ions studied.

• To model the sorption process using different mathematical approaches.

• To identify the functional groups responsible for the sorption process.

• To optimise and improve the sorption process.
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• To develop a suitable method for the simultaneous removal of the aforementioned metal 

ions from aqueous solutions, and to use this as an application for a wide range of metals.

In order to achieve these aims a variety of analytical methods and techniques were used to 

provide the necessary data.

The dealginated seaweed characterisation was performed using batch and continuous 

methods. Parameters such as the amount of biomass, volume of effluent, pH and contact 

time were optimised using these methods, The identification of the functional groups on the 

dealginated seaweed surface was achieved by titration of the biosorbent surface. The 

presence of the functional groups was evaluated using Fourier transform infrared 

spectroscopy, environmental scanning electron microscopy and extended X-ray fluorescence 

analyses. A continuous flow system was developed for the application of dealginated 

seaweed for the removal of metal ions from aqueous solutions.
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Literature Review
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1.2.1. The sorption process

Diverse chemical, physical and biological processes occur at the boundaries of two phases. 

Variation in the concentration of a substance at the interface is referred to as adsorption (12). 

Adsorption is a concept that was developed for the gas-solid interface, involving the 

equilibrium of the gas with the bulk phase and the interfacial layer. The term adsorption 

denotes the process of molecules accumulating in the interfacial layer, while desorption deals 

with the converse process (13). A typical sorption process involves different phenomena that 

can alter the distribution of contaminants between and among the constituent phases and 

interfaces of the system. Sorption interactions generally operate in all phases present in any 

system and at the interfaces between these phases (14),

In adsorption, solute accumulation is generally restricted to a surface or interface between the 

solution and the adsorbent. In contrast absorption is a process in which solute transferred from 

one phase to another penetrates the sorbent phase. An additional variation of the process 

occurs if a sufficiently high accumulation of solute occurs at the interface to form a precipitate 

or some other type of molecular solute-solute association. When it is unclear whether the 

process is either adsorption or absorption, or the retention mechanism is unknown the word 

sorption is used.

Sorption arises as a result of a variety of different types of attractive forces between solute 

molecules, solvent molecules and the molecules of a sorbent. Such forces usually act 

together, but one or the other is usually more significant in a particular situation. Absorption 

processes involve exchanges in the molecular environment. In such case the energy of an 

individual molecule is altered by its interactions with the solution and sorbent phases. 

Adsorption entails intermolecular forces, but it is molecules at the surface of the sorbent rather 

than the molecules in the bulk phase that are involved, and the former typically manifest a 

broader range of interactions (15).
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Accordingly, three loosely defined categories of adsorption, namely physical, chemical and 

electrostatic, are traditionally distinguished, according to the class of attractive force that 

predominates (15). Figure 1 summarises some significant features of these different 

interactions and categories of adsorption.

Figure 1 Characteristic interactions associated with categories of adsorption after Weber (15)

Category and Characteristic
Interaction
Chemical

Covalent

Hydrogen Bond

Electrostatic

lon-lon

lon-Dipole

Physical

Dipole-Dipole
(Coulombic)

(Keesom energy)

Dipole-Induced dipole 
(Debye energy)

Instantaneous Dipole-Induced Dipole 
(London dispersion energy)

Representation of Interaction

A )  A

Interaction Range 

Short range 

Short range

1/r

1/r2

1/r3

1/r6

1/r6

1/r6

Firstly, there are those that are purely electrostatic in origin arising from the Coulomb force 

between charges. The interactions between charges, permanent dipoles and quadrupoles fall 

into this category. Secondly, there are polarisation forces that arise from the dipole moments 

induced in atoms and molecules by the electric fields of nearby charges and permanent 

dipoles. Thirdly, there are forces that are quantum mechanical in nature. Such forces give rise 

to covalent or chemical bonding and to the repulsive steric or exchange interactions that 

balance the attractive forces at very short distances.
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Forces associated with interactions between the dipole moments of sorbate and sorbent 

molecules commonly underlie physical sorption processes. Forces attributable to rapidly 

fluctuating or instantaneous dipole moments resulting from the motions of electrons in their 

orbitals are the so-called London dispersion forces. Forces of greater intensity and longer 

range exist between discretely charged entities. These forces derive from specific electrostatic 

interactions between localised charges and exhibit much higher energy of sorption than those 

associated with physical sorption. Electrostatic forces extend over long distances, varying 

inversely with the square of the distance between molecules and directly with the product of 

the charges. These forces can be attractive in the case of oppositely charged species or 

repulsive between species having like charges. The final category of sorption defined 

according to predominant surface-solute interaction is chemical sorption or chemisorption. 

The bonds that form between solute molecules and specific surface chemical groups in this 

type of sorption have all of the characteristics of true chemical bonds and are characterised 

by relatively large energy of sorption. The reactions may involve substantial activation energies 

and be favoured by high temperatures (16).

1.2.2. Adsorption Processes

Adsorption may be defined as the accumulation of matter at the solid-water interface and is 

the basis of most surface-chemical processes. It influences the distribution of substances 

between the aqueous phase and particulate matter. Adsorption affects the electrostatic 

properties of suspended particles and colloids, that, in turn, influences their tendency to 

aggregate and attach and influences the reactivity of the surfaces (15).

Adsorption reactions are considered to be intermolecular interactions between the solute and 

the solid phases. This includes surface complexation reactions such as surface hydrolysis, the 

formation of dative bonds between metals and ligands, electrostatic interactions at surfaces,
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extending over longer distances than chemical forces; hydrophobic expulsion, adsorption of 

surfactants and adsorption of polymers and polyelectrolytes (14).

1.2.2.1. Equilibrium Models

Models for characterising the equilibrium distribution of a solute among the phases and 

interfaces of a system typically relate the amount of solute, q, sorbed per unit of sorbing phase 

or interface to the amount of solute, C, retained in the solvent phase. A plot of q versus Ce at 

a given temperature is termed a sorption isotherm. The general types of behaviour are shown 

in Figure 2.

Figure 2 General types of sorption isotherms

Favorable
Adsorption

Linear/
Adsorption

Unfavorable
Adsorption

Aqueous phase equilibrium concentration, Ce
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1.2.2.1.1. Linear isotherm

The linear model describes the situation in which the accumulation of solute by the sorbent is 

directly proportional to the solution phase concentration:

q = K ■ Ce (1)

The constant of proportionality or distribution coefficient, K, is often referred to as a partition 

coefficient. Ce and q  are typically expressed in terms of mass per unit volume and mass per 

unit mass respectively, and K has the unit of volume per mass (15).

The linear isotherm accurately describes adsorption and desorption in certain instances, most 

commonly at very low solute concentrations and for solids of low sorption potential. Linear 

approximations are appropriate for modelling contaminant fate and transport, but even when 

a particular set of data are reasonably well described by a linear model, caution should be 

exercised in the application of the model because it may not be valid over wide 

concentration ranges.

1.2.2.1.2. Langmuir Isotherm

In the Langmuir model it is assumed that the adsorption sites, S, on the surface of the 

adsorbent become occupied by adsorbate, A. from the solution. The energy of sorption for 

each molecule is the same and independent of surface coverage, and that adsorption 

occurs only in localised sites and involves no interactions between sorbed molecules.
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The Langmuir isotherm can be derived by treating the adsorption process as an equilibrium 

process - except in this case the equilibrium is between the liquid phase molecules A, together 

with vacant surface sites, and the species adsorbed on the surface. Thus, for a non- 

dissociative (molecular) adsorption process, the adsorption is represented by the following 

chemical equation (14, 15):

S + A S-A (2)

Langmuir derived a relationship for q  and C based on some certain assumptions: a uniform 

surface, a single layer of adsorbed material and a constant temperature. The rate of 

attachment to the surface is proportional to the activity multiplied by area. The activity is 

proportional to the concentration in the liquid phase and the area is the amount of available 

surface. If the fraction of covered surface is $ the rate of sorption per unit of surface is:

rate of adsorption = k1 (3)

The evaporation from the surface is proportional to the amount of surface covered:

rote of desorption = k2 <j> (4)

Where: k1 and k2 are rate constants 

C = concentration in the fluid 

^ = fraction of the surface covered 

At equilibrium, the two rates are equal, hence:

k \C4> = ----- 1------  (5)
k2 + k xC
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By dividing the numerator and denominator by /q

C0 =    (6 )

(k2 k, + k xC)

Since g will be proportional to <f>, the useful form of the equation is:

qniK 0C _   0-----

1 + K 0C

Where qm = g for a completely covered monolayer

K0 = a constant

Taking reciprocals and rearranging:

1 1 1
-  =  —  +   (8)
? 9„ K o q „,c

1 1  1 1
A plot of — versus — should be a straight line with a slope o f  and an intercept of —

9 c  ^o9„, 9m

1.2.2.1.3. Ion Exchange

The adsorption of ions from solution can occur onto oppositely charged surface sites. This is 

known as ion exchange (16). Some materials typically contain a variety of surfaces that exhibit 

electrical charge characteristics, which in turn can exert a strong influence on the sorption of 

ionic and polar species. Surface charges can arise in two ways:

• By ionisation or dissociation of surface groups such as the dissociation of protons from 

surface carboxylic groups, which leaves behind a negatively charged surface and
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• By the adsorption of ions from solution onto a previously uncharged surface, for 

example, the binding of Ca2+ onto the zwitterionic groups of lipid bilayer surfaces 

results in a positive surface charge.

Irrespective of the origin an equal but oppositely charged region of counter-ions balances the 

final surface charge. The counter-ions may be bound, usually transiently, to the surface within 

the so-called Stern or Helmholtz layer, or may form a surrounding layer of ions on rapid thermal 

motion close to the surface, known as the diffuse electric double layer (Figure 3) (14).

Figure 3 Schematic representation of an electrical double layer
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charged
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+ )• ;  Bound ion

Water*
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This double layer consists of the charged surface sites and an equivalent aqueous-phase 

excess of ions of opposite charge (counter-ions), which accumulate in the solution near the 

surface of the particle. The counter-ions are attracted electrostatically to the interfacial region, 

giving rise to a concentration gradient, which in turn sets up a potential for random diffusion of 

ions away from the surface. The competing processes of electrostatic attraction and counter

diffusion spread the charge over a diffuse layer in which the excess concentration of counter

ions is highest immediately adjacent to the surface of the particle and decreases gradually 

with increasing distance from the solid-water interface (15).

A number of relationships have been developed to describe the ion-exchange equilibria. The 

exchange of a cation An+ of charge n, dissolved in solution, for a monovalent cation B+, 

associated with an adsorbent surface, can be written in terms of simple stoichiometry for a 

fixed charged site, S', as:

An+ + n(S-)B+ - -  fS 'V \n+ +  nB+ P ] )

A parameter corresponding in form to the mass law equilibrium constant but more correctly 

referred to as a selectivity coefficient can be defined in terms of the chemical activities of the 

species involved as:

Kab = (12)
(aA) (SSB)n

The selectivity coefficients of the mass law approach are related to ion size and ion charge 

(15).
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1.2.2.2. Biosorption

Gadd (1990) defined biosorption as the removal of metal or metalloid species, compounds 

and particulates from solution by biological material (7). The term biosorption can also mean 

uptake by living or dead biomass via physico-chemical mechanisms such as adsorption or ion 

exchange although, in living biomass, metabolic processes may also influence and contribute 

to the process (17). Biosorption involves the passive sorption and complexation of metals by 

biomass or material derived from that biomass. Bioaccumulation includes all processes 

responsible for the uptake of metals by living cells, and thus includes biosorptive mechanisms, 

together with intracellular accumulation and bioprecipitation mechanisms (18). There are a 

variety of mechanisms by which biological cells can remove metals from solution. 

Metabolism-independent binding or biosorption of metals to cell walls, extracellular 

polysaccharides, pigments or other materials can occur in living or dead cells and may be 

rapid (7, 19).

The complexity of the biomass structure implies that there are many ways for the metal to be 

captured by the surface, Biosorption mechanisms are therefore various and in some cases, 

they are still not very well understood, Biosorption mechanisms can be divided into:

• metabolism dependent, and

• non-metabolism dependent

Depending on the location where the metal removed from the solution is found, biosorption 

may be classified as:

• extracellular accumulation/precipitation

• cell surface sorption/precipitation

• intracellular accumulation
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Cell walls of microbial biomass which are mainly comprised of polysaccharides, proteins and 

lipids, offer particularly abundant metal-binding functional groups, such as carboxylate, 

hydroxyl, sulphate, phosphate and amino groups. Metal sorption to these sites is reversible and 

rapid (20). In this case, the biomass behaves like a synthetic resin. Precipitation of the metal 

may take place both in solution and on the cell surface (21).

The use of living organisms for metal removal and recovery is not generally feasible due to 

certain inherent difficulties. Wastewater usually contains high concentrations of toxic metals 

and pH fluctuations are not favourable conditions under which living micro-organism thrive. 

Dead microbial biomasses are therefore preferred (22).

1.2.2.3. Choice of metals

The increase in industrial activities has intensified environmental pollution and the deterioration 

of some ecosystems. As such growing attention has been given to the potential health hazard 

presented by heavy metals in the environment. Metals are among the most commonly 

encountered and difficult to treat environmental pollutants. Mining, metallurgical waste waters, 

refining of ores, combustion of fossil fuels, industrial processes and the disposal of industrial and 

domestic wastes are considered to be the major sources of heavy metal contamination (21, 

23). The recognition of toxic effects from low concentrations of some heavy metals has 

resulted in regulations to reduce their presence in the environment. Precipitation, ion 

exchange and electrochemical processes have been commonly used to treat metal- 

containing solutions. Biosorption based on the metal binding capacities of various biological 

materials such as algae, bacteria, fungi, yeast and plant residues has emerged as an 

alternative process for the remediation of metal laden wastewaters (18 - 20, 22, 24, 25).
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Metal ions can be classified using the hard and soft acids and bases approach. Pearson 

(1963) classified a number of Lewis acids as "hard" or "soft" in terms of equilibria data. Those 

metals that bind strongly to bases or nonpolarisable bases are denoted as hard and those that 

bind strongly to highly polarisable or unsaturated bases are named soft. Based on metal 

behaviour with respect to various degrees of ionic and covalent binding, electron correlation 

phenomena and solvatation effects the characteristics of the two classes of Lewis acids are 

easily discernible (26). Elements in class "hard" are small in size and have high positive 

oxidation state while elements in class "soft" are associated with a low or zero oxidation state 

and are large in size. Although elements can fit this classification, there are those whose 

behaviour is not in either class. These are considered borderline elements.

The essential metal ions such as Na+, K+, Ca2+ and Mg2+ are class "hard" cations. These 

metals are involved in nerve transmission, homeostasis and enzymatic reactions and they are 

not toxic except at high doses. Aluminium forms part of this group and is often referred to as 

the new toxic element, since its large use and exploitation has increased its presence in the 

environment. High levels of aluminium have been mobilised in the environment due to the 

phenomenon of acid rain, with devastating effects on plants and animals (27).

The group of intermediate metal ions includes the first row transition series metals. From a 

biological point of view, nickel, chromium and vanadium are considered as beneficial and 

manganese, iron copper, cobalt and molybdenum are considered as being essential. 

Tolerance levels for living organisms with respect to these metals are high if they are in the 

appropriate oxidation state. In the case of chromium, Cr3+ is thought to be involved in glucose 

metabolism in humans, while Cr6+, as chromate is extremely toxic and carcinogenic. 

Chromates are widely used in the metallurgy industry and as pigments. Copper and zinc are 

essential trace elements to life and found as components of several metalloenzymes, but they 

are also toxic to many microorganisms at high levels.
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The class 'soft' metal ions include the most common toxic elements cadmium, lead and 

mercury. Their wide use in industrial processes has increased their concentrations in the 

environment. These metals have no beneficial function in a normal healthy organism and their 

toxicity may be attributed to their ability to attack the active site such as sulphur of enzymes, 

competing with an essential element. Precious metals such as gold and silver are prime 

targets for study since an effective recovery method could use sorption processes in 

concentrating the metallic species of interest from dilute solutions. Apart from the toxicological 

criteria, the interest in studying the biosorption of specific metals may be based on their 

behaviour, their solution chemistry and their industrial use (14, 23, 27 - 29).

1.2.2.4. Biosorption by Algae Materials

Many biological materials bind heavy metals, but only those with sufficiently high metal- 

binding capacity and selectivity are suitable for use in a biosorption process (30). Seaweeds 

collected from the ocean have shown a capacity for biosorption of metals. Brown algae in 

particular are suited for binding metallic ions (31). Macroalgae have been used for analytical 

purposes to recover quantitatively metal ions from natural water samples at very low 

concentrations (32 - 34). Crist et al (1988) described the biosorption of heavy metals in two 

phases: a .fast (<4 s) surface reaction attributed to surface adsorption based on anion 

exchange and a much slower second phase (2 h) where the metal uptake takes place via 

diffusion of ions into the cell structures (35). Although there is controversy about the different 

mechanisms of biosorption, the extensive range of biomasses studied have demonstrated that 

the removal of heavy metal by algae material is possible.

Crist et al (1981) demonstrated that the alga Vaucheria s. was able to adsorb Cu2+, Na+, Sr2+, 

Zn2+ and Mg2+ while displacing H+. The process was pH dependent and an ion exchange 

mechanism was proposed with the following binding strength: Cu2+>Sr2+>Zn2+>M g2+>Na+ 

that suggested a trend from probable covalent to electrostatic bonding. Functional groups 

amino, carboxyl and sulphates have been proposed as being responsible for the metal
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binding on the algae cell wall (4). The algae Chlorella vulgaris was found to exhibit a capacity 

for binding metal ions such as Au3+, Ag+, Hg2+, Cr3+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Sn2+, U6+ (as 

U022+), Fe3+ Be2+ and Al3+ between pH 5 and 7 (36). All these metal ions except Au3+, Ag+ and 

Hg2+ are weakly bound at lower pH, while the latter were tightly bound at pH 2. The binding of 

the metals may be reversed by lowering the pH, thus enabling selective recovery. The 

interaction of gold complexes with Chlorella vulgaris was demonstrated to be nearly 

independent of pH from 1 to 8 suggesting that the sorption of tetrachloroaurate (III) and gold (I) 

by C. vulgaris may be covalent in nature (37). Further modifications of the algae surface 

indicated that the amine group plays an important role in the binding of gold to C. vulgaris.

Non-living Sargassum natans and Ascophyllum nodosum showed extraordinary uptake 

capacity for gold and cobalt was possible via ion exchange mechanism (20). The 

electrostatic interactions between cationic species and the negatively charged cell surfaces 

may be responsible for the metal binding. The solution pH influenced the uptake capacity 

whereas the equilibrium biosorption isotherms were independent of the initial concentration of 

the metal in solution. Comparisons between living and non-living biosorbents showed that 

dead biomass tends to sequester and effectively retain the metal ions due to the absence of 

active ion transport mechanisms. Desorption of the metal ions from the biomass was also 

demonstrated.

Adsorption of Na+, K+, Li+, Cs2+, Mg2+, Ca2+, Ba2+ and Sr2+ on Vaucheria, Splrogyra and 

Oedogonlum  was quantitatively represented by the Langmuir adsorption isotherm (35). The 

number and nature of surface sites were quantified by a pH titration technique. The maximum 

amount of metal adsorbed, ym and the equilibrium constant K, were determined for each 

metal ion. Variations in the adsorption parameters with pH and type of metal indicated that 

metal ions adsorb to algal surfaces by electrostatic attraction to negative sites, such as 

carboxylate anions.

Chapter 1 19 1.2 Literature Review •



The abilities of Ecklonla maxima, Lessonia flavicans and Durvillea potatorum  and two 

seaweeds derivatives, alginate fibres and dealginated seaweed waste to remove Cu2+, Ni2+, 

Zn2+, Pb2+ and Cd2+ from solution have been investigated (38). All the biomasses were found 

to efficiently remove (up to 0.98 mg/g) the metal ions studied. Although all the seaweeds and 

derived materials exhibited a relatively good ability to remove heavy metal ions, the seaweed- 

derived materials showed better overall performance. Selectivity in the adsorption process and 

recovery of the metal ions by the biomasses was also demonstrated. Further studies (39) 

demonstrated a molar relationship between nickel uptake and calcium release for Ecklonia 

maxima, dealginated seaweed waste and alginate fibre. The rate of uptake of nickel and the 

extent of ion exchange involved in the metal ion adsorption may vary for the different 

biomasses studied.

Another study performed using the blue-green algae Entromorpha, Cladophora and Bryposis 

described the ability of these biomaterials to bind Cu2+, Au3+ and Al3+ (40). The results showed 

increased metal binding with pH. A significant decrease in the measured pH of the 

supernatant was observed for those biomaterials, which demonstrated greater metal binding, 

suggesting an ion-exchange type mechanism due to the release of protons. The different 

metal binding profiles and capacities exhibited for the studied algae may enable the 

selective recovery of metals from solution by the manipulation of the solution pH. Studies 

indicated that gold could be sequestered from dilute or concentrated acidic solutions by 

dead Sargassum natans biomass (41, 42), The biosorptive gold sequestering mechanism may 

be based on adsorption in combination with a gold reduction process. The biomass was 

identified as a potent biosorbent material that can release the metal in a subsequent elution 

regenerative cycle.

The binding of Cu (II) to Chlamydomonas rehinhardii algae and exudates from the biomass 

was studied by a combination of several analytical techniques (43). The metal ion solution was 

used to titrate the biomass surface and the concentrations of Cu (II) species were determined
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by ion selective electrode, differential pulse polarography and acid treatment, The results were 

evaluated in terms of conditional equilibrium constants at pH 6.5. The information was used to 

simulate the binding of copper species to the biomass. Under the conditions studied, the 

binding of Cu (II) to algal exudates had a more significant dependency on copper speciation 

than the binding to the algal surfaces.

Biomass of non-living, dried brown marine algae Ascophyllum nodosum, Fucus vesiculosus 

and Sargassum natans demonstrated high equilibrium uptake of cadmium from aqueous 

solutions (44). A Langmuir sorption model served to estimate the maximum metal uptake 

values. Results showed that A. nodosum uptake exceeded the commercial ion exchange 

resin DUOLITE GT-73 with the highest amount of cadmium accumulated by the biomass 

exceeding 100 mg g '1. There was no damage to the biosorbent appearance and 

performance in repeated metal uptake/elution cycles employing 0.1-0.5 M HCI. The same 

group of brown algae mentioned above revealed a high biosorptive uptake of lead and 

nickel (45). Langmuir approximations were used to evaluate the sorption process. Metal uptake 

performance was demonstrated to be pH dependent. The sorption capacity and physical 

properties were reinforced by crosslinking the biomass with formaldehyde, bis(ethenyl)sulfone 

and l-chloro-2,3-epoxypropane, resulting in a slight increase in the uptake performance of the 

biomass.

The effect of temperature, initial pH and initial metal ion concentration on the adsorption of 

chromium (VI) ions to Chlorella vulgaris and Clodophara crispata was investigated (46). The 

results were evaluated using the Freundlich adsorption model and the Freundlich constants 

were reported for both biomasses. Maximum adsorption rates were found at pH 1-2 and high 

adsorption capacities were observed at low concentrations of metal ions.

Experimental studies have shown that brown marine algae Ecklonla radiata, can be used for 

the removal of heavy metal ions from wastewater (47). An uptake capacity of 1.36 mM g '1 for
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lead was reported within a pH range of 4.5 to 5.5. The equilibrium data fitted well to the 

Langmuir model. The presence of metal ions such as sodium, calcium, magnesium and 

potassium in solution did not significantly affect lead adsorption (< 10%) in contrast to 

commercial ion exchange resins.

The removal of heavy metals from an effluent from a Brazilian zinc-producing industry by 

Sargassum sp. showed efficiencies close to 100% in the biosorption of Zn2+, Cd2+, Cu2+, Al3+ 

and Mn2+ in the presence of high concentrations of Ca2+, Na+, Mg2+ and K+ (48). Batch 

experiments indicated no absorption of the alkaline-earth metal ions by the biomass but an 

influence on the uptake performance was observed suggesting an ion-exchange mechanism. 

The continuous system gave comparable treatment efficiency, with a high operational 

stability, suggesting the viability of recycling the recovered metals.

The biosorption process using a Sargassum biosorbent to remove and recover copper from 

ferruginous water has been demonstrated (49). The algal biomass binds approximately 2.3 

meq g '1 of metal cations from water by ion exchange. The values of ion exchange equilibrium 

constants showed that the affinities of metals towards the biosorbent decreased in the 

following order Cu>Ca>Fe. Results showed that the biosorbent saturated with Cu could be 

regenerated with HCI. In an attempt to improve the performance of this seaweed biosorbent, 

protonated and Ca-forms were prepared, by washing the biomass with H2S04 or with Ca(OH)2 

(50). The biosorbent bound up to 40 m g'1 of Cr (III) at pH 4. An ion-exchange model which 

assumed that the only species taken up by the biomass were Cr(OH)2+ successfully fitted the 

experimental biosorption data for Cr (III). Cr (VI) was efficiently removed by this biosorbent in the 

vicinity of pH 2. The existence of the optimum pH for the removal of Cr (VI) may be explained 

by the desorption of Cr (ill) from the biomass at low pH and the effect of pH on the reduction 

potential of Cr (VI) in aqueous solutions. Subsequently, it was demonstrated that protonated, 

non-living biomass of Sargassum fluitans effectively sequestered uranyl ions from aqueous 

solution (51), with the maximum uranium sorption capacity exceeding 560 mg g '1. Isotherms
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were interpreted in terms of the Langmuir model at various pH levels. The biosorption was 

demonstrated to be an ion exchange process between the uranium ions and protons 

introduced to the biomass binding sites during the acid pre-treatment.

Another study indicated that Durvilliea potatorum ; Ecklonia radiata and Laminaria japonica  

have high adsorption capacities and binding affinities for Pb2+, Cu2+ and Cd2+ (52), showing 

adsorption capacities comparable to those of commercial ion exchange resins and higher 

than other types of biomass that have been previously studied. The results generally fitted the 

Langmuir equation and showed low interference effects from other metal ions.

The biosorption characteristics of the brown algae Macrocystis pyrifera, Kjellmaniella 

crassiforia and Undaria pinnatifida for Cd2+ and Pb2+ ions have been investigated (53). The 

number of surface sites and the acid dissociation constants were determined by 

potentiometric titration, revealing the presence of carboxylic groups on alginic acid. The results 

showed that the biosorption of bivalent metal ions to the biomass studied was due to bivalent 

binding to the carboxylic groups on alginic acid present in the brown algae. A metal 

complexation model was applied to evaluate the results and the model gave good results for 

the description of the binding data.

The simultaneous biosorption of Cr (Vi) and Fe (III) ions together on the biosorption of Cr (VI) and 

Fe (III) ions by Chlorella vulgaris was investigated in terms of initial rates of biosorption and 

equilibrium isotherms (54). Since initial biosorption rates and equilibrium metal removal 

decreased with increasing concentrations of the other metal ion, the combined action of Cr 

(VI) and Fe (III) ions on C. vulgaris was generally found to be antagonistic. The competitive 

Freundlich model for binary metal mixtures was suitable for most adsorption equilibrium data of 

Cr (VI) and Fe (III) ions on the biomass.
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The sorption and desorption of Cu and Cd by two brown algae Laminaria japonlca  and 

Sagassum kjellmanionum and five species of microalgae Spirulina patensis, Nanochloropsis 

oculata, Phaeodaciylum tricornutum, Platymonas cordifolla and Chaetoceros minutissimus 

were studied (55). The macroalgae exhibited high capacities at pHs between 4 and 5 while for 

the microalgae the optimum pH value was at 6.7. Results evaluated using the Freundlich 

model suggested a multiplicity of mechanisms and sorption sites. The reversibility of metal 

sorption was achieved employing HCI and EDTA. The presence of other cations impaired the 

sorption process.

Calcium saturated Durvillaea potatorum  and Ecklonla radiata were used as biosorbents for 

the removal of Pb2+ and Cu2+ from aqueous solutions (56). The biomasses showed adsorption 

capacities comparable with those of commercial ion-exchange resins. Optimum pH value for 

the process was 4.5. Both biosorbents were effective in removing lead and copper in the 

presence of chelating agents and other light metal ions in the wastewater.

The Freundlich and Langmuir adsorption models were used for the mathematical description 

of the biosorption of Cu2+( Ni2+ and Cr6+ to dried C. vulgaris, S. obllquus and Shynechacystis sp. 

(5). The results showed that the adsorption equilibrium data fitted very well to both models. 

Optimum pH values were determined as 5, 4.5 and 2 for all three algae respectively. The 

results demonstrated that variations in algal concentration affect the biosorption process.

Another brown marine algae Pilayella littoralls was evaluated as a potential biosorbent for Al 

(III), Cd (II) Co (II), Cr (VI), Cu (II), Fe (III), Ni (II) and Zn (II) (57). High binding capacities between 

430 and 2000 fimol g '1 of dried biomass were reported for the metals studied. Fast rate of 

uptake and pH dependence in metal ions binding was found for the biosorption process. 

Metal ions were efficiently desorbed using 0.12 M HCI.
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Rapid kinetics for the removal of Ni2+ by Chlorella minlata were found (58). Langmuir 

parameters and an adsorption capacity value of 2985 jig g '1 were reported. The algae 

showed better sorption for Ni2+ compared with C. vulgaris under the same conditions.

It is evident that extensive laboratory studies have been carried out to study the biosorption of 

a range of metal ions by many different biomasses. However, the optimum process conditions 

largely depend on the type of biosorbent used, the nature of the metal studied and the 

mathematical approach used to describe the data.

1.2.2.4.1. Biosorption Columns

The metal binding capacity exhibited by biosorbents makes them suitable for remediation of 

metal-bearing industrial effluents. The fixed-bed and the continuous flow stirred tank reactor 

are two systems that could be used for the evaluation of these biosorbents on an industrial 

scale. The continuous flow fixed-bed reactor is now commonly used, despite the limited 

availability of granulated biosorbents (2). The advantages of using columns are that a steady 

state separation is achieved and parameters such as pH and solution concentration can be 

controlled. Column experiments are useful for the determination of biosorbent capacities, 

effective binding capacities, breakthrough curves and ion exchange capacities. Parameters 

such as flow rate, particle size and solution conditions evaluated using a bench scale 

experiment can be successfully applied to production scale prototypes (6).

The performance of columns is related to the length and shape of the ion exchange zone 

developed during the sorption and regeneration process. This zone is formed between the part 

of the column that is saturated with the adsorbed metals and the section that still contains 

unsaturated biosorbent. The zone moves along the column as the loading or regeneration of 

the biosorbent progresses. Once the sorbent saturation zone approaches the end of the 

column, the metal concentration in the outlet stream increases sharply, this is known as the 

breakthrough point (59).
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Biosorption can be exploited for the preconcentration of metals from dilute solutions (32, 60). A 

large volume of the dilute metal solution is passed through the column, and the sorbed metal 

is stripped from the column by lowering the pH using a much smaller volume of acid (61). 

Algal material has been used to preconcentrate specific analytes before quantitative 

determination by spectrometric techniques. Early attempts at using algae to preconcentrate 

metals did not employ column type systems. A strain of Stlchococcus bacillaris was used to 

preconcentrate Cd ions from a solution of 270 ^g L'1 cadmium in a batch type experiment 

(62). Cd uptake was affected by the analyte concentration, volume of solution and pH. 

Evaluation of the effectiveness of Cd biosorption and preconcentration from riverine and 

marine reference materials was later found to be unsuccessful because of the high salinity of 

the solutions. It was possible to analyse a sample in 4 min using this approach (33).

Copper preconcentration from seawater and riverine water samples by Chlorella and 

determination by slurry graphite furnace atomic absorption spectrometry has been described 

(34). The adsorption of Cu was improved by washing the algae with HCI and concentration 

factors between 5 and 100 were found. The seawater matrix showed no effect on the 

biosorption process. Similar preconcentration factors were found for nickel and cobalt (63). In 

this study, sampling volume, matrix effects and pH were evaluated and the results showed no 

influence from these parameters, Acid washing improved the biosorbent performance.

In a further development, an on-line system employing a column packed with silica- 

immobilised Chlorella pyrenldosa for the separation and detection of Pb2+ and Cu2+ by 

anodic stripping voltammetry was described (64). The data indicated that algae-silica 

preparations were durable under continuous flow conditions. Diluted acid was used as a 

regenerant and the column was continuously used for up to 100 Anodic Stripping Voltammetry 

cycles. The results confirmed the feasibility of using algae-silica column in an on-line 

configuration. The high binding capacity of algal biomass combined with the structural 

features of porous silica made the biosorbent suitable for column use.
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A biosorbent material derived from brown marine alga Ascophyllum nodosum has been 

examined in a packed-bed flow through sorption column for the removal Cd2+ (65). The algae 

were previously crosslinked with formaldehyde and the dry granules of this material were used 

to pack the column. The breakthrough times for the columns were determined for different 

flow rates and bed depths at pH 5.5. The Bohart and Adams theoretical approximation was 

used to evaluate the column performance. The results showed a 99% reduction in the 

concentration of Cd2+ from solution in a continuous flow operation, The high performance of 

the column, short contact time, short critical bed depth and the high adsorptive capacity for 

the biosorbent were demonstrated.

Continuous flow experiments were carried out using Ecklonia radiata in a packed column (47). 

The chromatographic columns (1 cm diameter) were loaded with algal granules and Pb2+, 

Cd2+ and Cu2+ solutions were injected at a flow rate of 1.5 ml min'1. The sorption capacities of 

the column were reported to be between 1.25 and 1.35 mM g*1. The capacities found were 

comparable to the capacities determined in a batch experiment. It was demonstrated that 

metals in solution at the parts per billion levels could be removed by the biosorbent column.

Polysilicate immobilised Medicago sativo has been used to show that up to 600 mg L'1 of 

copper ions in solution could be removed under flowing conditions (66). Diluted acid was 

employed to desorb the copper bound at a flow rate of 2 ml min-1. Using this experimental set 

up, 97% of copper ions in solution were efficiently removed and the column remained 

relatively stable after 10 binding/recovery cycles of 120 bed volumes per cycle using 5 mgL'1 

copper solution.

Cell fragments of Datura innoxla immobilised on a polysilicate matrix were used for the 

removal of Ag+, Cu2+, Cd2+ and Ca2+ (40). The biomass column was coupled on-line to form 

a frontal affinity chromatography type set up and furnace atomic absorption spectrometry 

was used for the determination of the elements. The metal binding affinity order at solution pH
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3 - 5  was determined to be Cu2+> Cd2+« Ag+> Ca2+. The application of a regularised least- 

squares method indicated the existence of two classes of sites on this biosorbent involved in 

the binding of Ag+.

A continuous metal biosorption system was conducted using a laboratory acrylic column 

packed with Sargassum sp. (48). Concentration factors of 514, 224 and 96 for cadmium, zinc 

and manganese respectively were reported. Experiments conducted in the absence of 

alkaline and alkaline-earth elements in solution produced much higher efficiency values, 

demonstrating the influence of these elements in the biosorption process.

An ion exchange type of mechanism was proposed to explain the biosorption of Cu2+ by 

Sargassum fluitanis biomass protonated by acidic wash or loaded with Ca2+ (67). Binary 

biosorption systems (Cu/H, Cu/Ca, Ca/H) were studied with the pre-treated biomass at 

controlled pH. Calcium bound biomass offered the advantage of longer column lifetime for 

sorption, but did not allow the effective recovery of Cu. Furthermore, the CaCI2 pre-treated 

biomass was prone to leaching leading to reduced Cu column capacity. The protonated 

biomass offered the advantage of efficient Cu recovery, but the sorption capacity was less 

than that for the calcium biomass. The Ca/H system had a longer column life, excellent Cu 

recovery but was time-consuming to prepare. Cu removal and recovery from the biosorption 

column was predicted by numerically solving the equations of a proposed ion-exchange 

model.

Macroalgae S. kjellmanianum packed into glass column and saturated with Cu was studied 

for its adsorption/desorption performance (55), EDTA and HCI were evaluated as desorption 

solutions. HCI was more effective than EDTA for the desorption of Cu from the m acroalgae. 

column (99.5%).
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Effective copper removal/recovery from ferruginous wastewater using a Sargassum biosorbent 

packed column has been described (49). The chromatographic behaviour could be 

described using an ion-exchange model. It was demonstrated that the column removed Cu2+ 

by biosorption and Fe (ill) by precipitation. Desorption of the Cu and Fe was achieved by 

lowering the pH of the feed solution.

A laboratory strain of S. cerevlsiae immobilised on sepiolite was successfully used to 

preconcentrate Fe and Ni in brass (NBS SRM 37e) demonstrating the capacity of the method 

for the determination of trace metals in metal alloys (68). A column packed with either D. 

potatorum  and E. radiata could be used to remove lead ions from a 2 mM solution so that 

only parts per billion levels could be detected in the effluent (56). The total adsorption 

capacities for both biosorbents were reported to be 1.6 and 1.3 mmol g '1 respectively.

The recovery of the metal from the biomasses was achieved using nitric acid. The authors also 

demonstrated that D. potatorum  could be used as an efficient biosorbent for the treatment of 

cadmium bearing waste streams (69). Pre-treatment of the native biomass with calcium 

chloride and subsequent thermal treatment considerably improved the swelling properties and 

physical stability of the biomass granules. Packed bed studies showed that the biosorbent 

column could purify (below 0.1 mg L'1) 500 bed volumes of 0.5mM Cd(N03)2 solution.

Immobilised alfalfa biomass (Medicago sativa) on silica has been employed as column 

packing for the biosorption studies of a mixture of cadmium, copper, lead, chromium, nickel 

and zinc ions in solution (70). The order of metal adsorption was found to be: Cu(ll) > Pb(ll) ~  

Cr(lll) > Zn(ll) > Cd(ll) ~  Ni(ll). Metal leaching with HCI resulted in recoveries greater than 90% 

except for Cr for which 44% was recovered.

Dry potassium pre-treated Sargassum algal biosorbent was used in the biosorption of Cu, Cd 

and Zn from multi-component mixtures in a column-type system (71). In a mixed solution
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containing Zn and Cd, the retention of Zn was reduced, because of the higher affinity of 

packing material for cadmium. The process was computationally simulated using the IMPACT 

programme.

A similar set up using Ca-Sorgassum biomass was employed to evaluate the sorption process 

for Cu, Cd and Zn (72). The results showed similar behaviour for Zn and Cu as described 

above. An ion exchange equilibrium model (ECM) was used to predict the metal 

displacement from the column. The ECM model successfully predicted the occurrence and 

the magnitude of the displacement. The column lifetime was predicted by combining the 

ECM with a mass transfer column model (MTCM).

The silica-immobilised cationic polyelectrolyte, [poly (N-xylene-N,N' dicyclohexyl 

ethylenediamine dibromide)], capable of electrostatic binding with the biofilm of a natural 

alga Spirogyras sp. was used in a column separation for the enrichment of trace analytes (73). 

The biosorbent AlgaSORB-sp could be used to selectively separate and preconcentrate Cu2+ 

ions from the mixture of multi-element samples at pH 6.9. Co-sorption of Cd2+ and Pb2+ ions 

was not observed at the studied pH despite the fact that individual metal solution experiments 

demonstrated that approximately 100% of metal was sorbed by AlgaSORB-sp. A total Cu2+ 

sorption capacity of 1.23 nmol g_1 was reported. The kinetics of the sorption phenomena were 

expressed using the Langmuir equation. Recoveries between 92 and 100% for Cu2+ were 

achieved when HCI was used as a stripping agent. The preconcentration factor of AlgaSORB- 

sp was 175-fold for Cu2+ ions. The results of the evaluation of three water samples containing 

Cu2+, Pb2+, Fe3+, Fe2+, Zn2+, Cd2+ and Co2+ demonstrated that AlgaSORB-sp selectively sorbed 

Cu2+ without interference from other ions. The study demonstrated that the biosorbent could 

be used under continuous flow conditions for over 100 cycles.

Some other biological substrates apart from algae have been used for the adsorption and 

preconcentration of metals in continuous flow systems. Columns packed with Escherichia coli 

and Pseudomonas pufida immobilised on silica were used to retain and preconcentrate gold
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from solution (74). The results showed that the optimum pH values of 9 and 11 for P. pufida 

and E. coll, respectively. Preconcentration factors between 2.5 and 25 were found for both 

bacteria, with a gold recovery of approximately 97% and 87% for E. coll and P. pufida, 

respectively.

The adsorption of Be (II), Cd (II), Se (IV) and Hg (I) by immobilised E. coli and P. pufida  was also 

studied (8). Metal sample solutions, real samples and standard reference materials, Water SRM 

1643c, Water SRM 1641b and Coal Fly Ash SRM 1633a were analysed as received. Metals 

were eluted using HN03 and the fractions were analysed by ETAAS. Breakthrough capacities 

and recoveries between 98 and 101 % were reported for each metal studied. The method was 

demonstrated to have applicability across a wide pH range. The detection limits were better 

than others reported previously and it was free from interference. The packing showed 

acceptable flow rates and no detectable signs of swelling.

The separation and speciation of Cr (III) and Cr (VI) with Saccharomyces cerevisiae 

immobilised on sepiolite has also been described (75). Samples of both chromium species at 

pH 2 were flushed through a glass column filled with the immobilised biomass and HCI was 

used to elute the retained Cr(lll). Total Cr was determined after the reduction of Cr(VI) to Cr (III) 

in the eluted sample by the addition of concentrated H2S04 and ethanol. The recovery of the 

analyte was >95% and the column was relatively stable for up to 20 runs. A breakthrough 

capacity of 228 nmol g '1 for Cr (III) was reported. The presence of other metal ions such as 

Zn2+, Cu2+, Cd2+, Ca2+, Mg2+ and Na+ did not significantly affect the retention of chromium. 

The proposed method was successfully applied to the separation, preconcentration and 

speciation of Cr (III) from Cr (VI) in spiked sample solutions and Kizilirmak river water samples.

A column containing Escherichia coli immobilised on sepiolite was used for the 

preconcentration of Cu, Zn, Fe, Ni and Cd (76). Different pH values, bed height, type and 

volume of elution solutions and flow rates were evaluated. Breakthrough capacities
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determined from breakthrough curve plots were reported for each metal studied. The 

determination of Cu, Zn, Fe and Ni using the biosorbent column was performed for Standard 

Reference Material (NBS SRM 85b). Results in good agreement with the reported values were 

found. The column was found to be relatively stable for up to 20 runs.

1.2.2.4.2. Modification of the Biosorbents

Chemical modification techniques have been used to explore the chemistry involved in metal 

ion adsorption by biomasses. Several chemical treatments have been employed to modify 

the functional groups such as carboxyl, amino and phosphate, that are considered to be the 

principal functional groups responsible for the adsorption process.

A decreasing in the sulphydryl groups available in algal cell walls of Chlorella vulgaris 

determined by polarographic titration with p-(hydroxymercuri)phenylsulfonate was shown when 

the algae was treated with tetrachloroaurate (III), (37). Other cell-wall modification experiments 

indicated that treatment of C. vulgaris with succinic anhydride lead to blockage of the amine 

group that resulted in a decrease in the binding capacity for Au (III).

Modification of carboxyl groups present in Cyanidium caldarlum, Elsenia bicyclis, Laminaria 

japonlca, Spirulina platensls and Chlorella pyrenoidosa was performed using acidic methanol 

(77). The degree of modification was monitored by base hydrolysis of the modified biomass 

and subsequent analysis of the released methanol by gas chromatography. All esterified 

biomasses showed a dramatic decrease in Cu2+ and Al3+ sorption capacities along with an 

enhancement of Au3+capacity, although the degree of reduction varied with the algal 

species. Hydrolysis of the biomass showed that during the first 12 h of esterification 90% of the 

carboxyl groups were modified and the remaining 10% were esterified in the subsequent 24 to 

48 h. These results indicate that carboxyl groups on algal cells were responsible for a great 

portion of Cu2+ and Al3+ binding and play an inhibitory role in Au3+ binding.
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Humic substances extracted from Sphagnum peat moss were esterified using acidic methanol 

and trimethoxymethane (78). The esterified carboxyl groups were hydrolysed by pH adjustment 

with sodium hydroxide. The binding of copper ions to both modified biomasses was studied. 

The Cu (II) binding ability decreased in the esterified biomass from 100% to 80% at pH 5, 

implying that although carboxyl groups are involved in the adsorption process, other groups 

such as phenol or hydroxyl groups may also bind Cu. After base hydrolysis the Cu (II) binding 

ability was completely restored.

The esterification of carboxylate groups present in the cell walls of Datura innoxla led to a 

decrease in metal uptake by as much as 40% for Cd2+, 21 % for Cu2+ and 18% for Sr2+ at pH 5 

(61). Experiments performed at pH 2 showed no change in the metal uptake ability of this 

modified material, supporting the assumption that other groups participated in the adsorption 

process. Base hydrolysis demonstrated the reversibility of the process. The results showed that 

the material retains a great portion of its binding capability even after being subjected to 

adverse conditions,

The role played by carboxylate groups was confirmed using the D. innoxia biomass for the 

binding of Pb2+ and Al3+ and monitoring the impact of the modification by FTIR and solid state- 

NMR (30, 79). In the same context, the X-ray absorption techniques, XANES and EXAFS were 

used to verify the possible mechanism of Cr (III) and Ni (II) binding by alfalfa biomass (80). The 

esterified biomass sample exhibited less binding capacity due to the reduction of the 

carboxylate groups on the surface, and the EXAFS results showed that the binding mostly 

occured through coordination with oxygen ligands. Esterification using propylene oxide in 

water was found to be faster and more selective than esterification using acidic methanol. The 

acidic methanol method was found to cause desulphonation reactions making it impossible 

to independently distinguish their effect on metal complexation (81). The use of these two 

techniques allowed distinction between the carboxylate contribution (methanol esterification) 

and the sulphonates contribution (propylene oxide esterification).
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It was found that lead was more efficiently bound to a modified sample of S. fluitonis with 

higher sulphonates content, while the cadmium binding capacity remained similar for both 

modified samples (82). Further modification of the biomass, using acetone/water as an 

extracting agent for hydrolysabie polyphenols showed no reduction in cadmium or lead 

uptake.

The chemical modification of different biomasses such as hetrotrophs, methanothrophs, 

algae, sulphate reducers and exopoly-saccharide-producing cultures was performed using a 

variety of methods including encapsulation in polysulphone resin, acid, alkali, carbon 

disulphide, phosphorus oxychloride, anhydrous formamide, sodium thiosulphate, sodium 

chloroacetic acid and phenylsulphonate treatments (83). Treatments with sodium chloroacetic 

acid, carbon disulfide, phosphorus oxychloride and sodium thiosulfate resulted in significant 

enhancements in metal cation-binding capacity, however chemically modified biosorbents 

do not appear to be very stable with repeated use. Some chemical treatments such as 

phosphorus oxychloride produced biosorbents capable of binding anions. Selective elution of 

metals bound to biosorbents demonstrated that a purification of mixtures of metals could be 

achieved.

Esterification of carboxylate groups and methylation of amino groups were performed on 

portions of raw Aspergillus nlger biomass, in order to study the role played by these functional 

groups in the biosorption of copper, lead and cadmium (84). It was found that modification of 

the functional groups significantly reduced the biosorption of the studied metals. Lead 

biosorption was observed to be more sensitive to modifications of the carboxyl group than of 

the amine group, while cadmium and copper binding was found to be more sensitive to 

modifications of the amino group than the carboxyl group. Release of Ca, Mg and K ions was 

observed during the biosorption by raw biomass suggesting an ion-exchange mechanism.
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The surface of non-living biomass of Pycnoporus sanguineus was chemically modified for lipid 

extraction by a methanol-chloroform mixture and proteins were extracted using sodium 

hydroxide in order to study their role in lead, copper and cadmium biosorption (85). 

Methylation of the amino groups and esterification of the carboxylate groups was also 

performed. Results showed a reduction in the metal uptake from the solution. The use of 

scanning electron microscopy indicated that the structure of biomass had changed due to 

the adsorption of the metals onto the cell walls. EDAX analysis showed release of calcium 

during the sorption process indicating the occurrence of an ion-exchange mechanism.

1.2.2.5. Modelling the biosorption process

Biosorption typically involves a combination of active and passive transport mechanisms 

starting with the diffusion of the metal ion to the surface of the biomass cell. Once the metal 

ion has diffused to the cell surface, it will bind to sites on the cell surface, which exhibit some 

chemical affinity for the metal. This step includes a number of passive accumulation 

processes and may include adsorption, ion exchange, coordination, complexation, chelation 

and microprecipitation. Generally, such metal ion adsorption is fast, reversible and not a 

limiting factor in bioremoval kinetics when dealing with dispersed cells. Biosorption is often 

followed by a slower metal ion binding process in which additional metal ions are bound, 

often irreversibly. This slow phase of metal uptake can be due to a number of mechanisms, 

including covalent bonding, surface precipitation, redox reactions, crystallisation on the cell 

surface or diffusion into the cell interior and binding to proteins and other intracellular sites (5).

The occurrence of a diversity of different processes opens the possibility to model the 

biosorption process using different approaches. Adsorption isotherms and ion exchange 

models are the most commonly employed mathematical approximations used to simulate 

the biosorption process. A number of approximations and mathematical programmes have 

been developed based mainly on these two approaches.
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The application of an ion-exchange model to illustrate the adsorption of Cu2+, Sr2+, Zn2+, Mg2+ 

and Na+ by Vaucheria s. has been described (4). The approach to determine the ion- 

exchange constants was based on measuring the amounts of all species, sorbed as well as in 

solution. The molar ratios of H+ displaced to mol of M2+ adsorbed for Cu2+, Zn2+, Mg2+ and Sr2+ 

were 1.2, 0.66, 0.59 and 0.30 respectively, with Na+ showing no affinity. Experiments 

conducted displacing Na+ and Sr2+ resulted in ion-exchange constants giving the strength of 

adsorption of metal ions to algae as Cu>Sr>Zn>Mg (by displacement of Na+) and 

Cu>Zn>Mg (by displacement of Sr2+). The constants by displacement of Na+ were found to 

be 2.6 x T O'3, 3.7 x 10"3, 7.7 x 10'3 and 8.1 x 10'3 for Cu, Sr, Zn and Mg, respectively. Ease of 

displacement was reflected by larger constants.

Further studies on Vaucheria sp., Rhizoclonium sp. and Tribonema sp. demonstrated that the 

overall stoichiometry of proton uptake was that 1 divalent metal (Ca or Mg) was released when 

2 protons were adsorbed (86). The stoichiometry of Sr adsorption by Vaucheria with an 

equivalent amount of Ca, Mg released identified the adsorption phenomena as an ion- 

exchange process. Sorption of amines on Vaucheria has also been studied using the 

approximation described above (87). Results showed the adsorption to be essentially an ion 

exchange process. The stoichiometry resulted in a displacement of equivalent amounts of Ca 

and Mg when the algae sorbed protonated ethylenediamine and ethyl glycinate. An unusually 

high sorption for ethylenediamine occurred at pH 10.5 indicating the possibility of other types 

of interaction, more probably including hydrogen bonding, since the amine is in a neutral form 

at this pH value.

Ion exchange constants for Mg, Mn, Ca, Ni Zn, Cd, Cu and Pb displacing calcium on Peat 

moss using the same approach have also been determined (88). A model in which two ion 

exchange sites are used has been compared to the experimental data for the sorption of Cd, 

Cu and Zn by protonated Sargassum fluitans in systems containing two metal ions and protons 

at pH values of 2.5, 3 and 4.5. Equilibrium constants were determined using MATLAB 4.0. The
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experimental data and the model showed that the binding is independent of the metal 

concentration, indicating metal competition for the same limited number of binding sites. In 

order to apply the model, only two equilibrium constants were necessary and the results 

showed that it was possible to predict the behaviour of a two-metal system using data from a 

single metal system, considerably reducing the amount of experimental work. The model was 

able to simulate the relative binding of the metals to the biomass. From the results, it was 

concluded that both electrostatic attraction and covalent bonds may contribute to 

biosorption.

The behaviour of a Cu-Zn system varying pH values for a constant total concentration of each 

metal showed that Zn is weakly bound to the biomass compared to Cu (89). The system was 

successfully modelled using the chemical equilibrium programs MINEQL+, demonstrating the 

predictive power of the model and the description of metal ion binding at different pH values 

can be achieved. The model employed as described above has also been used along with a 

fix-bed model to describe Cu2+ removal and recovery in a biosorption column packed using 

Sargassum fluitons seaweed biomass (67). Ion-exchange isotherms described the biosorption 

equilibrium for Ca-biomass and H-biomass as being "favourable" leading to a self-sharp 

dynamic exchange zone in the fixed-bed system, as was shown by the breakthrough results. 

The good agreement between the theoretical and experimental results revealed that the 

model could be used as a mathematical representation for the first biosorption cycle in the 

fixed-bed system. However, the use of the model is limited since it does not take into account 

variations in the values of the overall mass-transfer coefficients of the sorbing species with time.

A model combining an isotherm model and the Donnan model has been developed to 

predict the equilibrium of protons, Cd2+ and Ca2+ ions binding by the brown alga Sargassum 

(90). The effects of metal ion concentration, pH and ionic strength were established. The 

model showed that the Na+ concentration has no influence on Cd binding if the ionic strength 

was very high or if the Na concentration was very low. The model predicted a 50% reduction in
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Cd binding when the Ca2+ concentration was between 2 and TOO times higher than that of 

Cd2+. The model demonstrated that divalent ions had a greater effect on the Cd binding due 

to its higher electrostatic accumulation and because it partially binds co-ordinately.

The biosorption of Cu and Ni at different ionic strengths by Sargassum, Colpomenia, Petalonia 

and Ulva have been illustrated by a modified version of the model described above (91, 92). 

The pH effect on metal binding and the change in proton binding were predicted by the 

model and stoichiometries for the studied metal were proposed.

The equilibrium column model (ECM) for fixed-bed columns was introduced along with the ion- 

exchange model for the evaluation of Cu biosorption from ferruginous wastewater by 

Sargassum algal biomass (49). The ECM has been developed to describe the competitive ion 

exchange in a column and has proved to be useful for assessing the technical and 

economical feasibility of an ion exchange process. It is based on the assumptions that the 

composition of the feed solution is constant; that no neutralisation, complex formation or 

precipitation in the exchanger bed occur, the pre-saturation of the biosorbent is 

homogeneous and the mass transfer resistance for ions diffusing from the bulk of the feed 

solution into the biosorbent particle is negligible. The model predicted the chromatographic 

effect in the column performance due to the differences in sorption affinities of Fe and Cu. 

The Fe and Cu breakthrough curves could be predicted, however the assumption of negligible 

mass transfer resistance resulted in a steeper breakthrough curve than the one obtained, 

showing the limitation of the model.

A mathematical model to describe the uranium equilibrium binding to a nonliving protonated 

Sargassum biomass has been proposed (93). The hydrolysed ion exchange model (HIEM) was 

based on the assumptions that in the range of acidic to neutral pH values the uranium cation 

U022+is hydrolysed in an aqueous solution and the presence of hydrolysed uranium species 

depends on the solution pH and on the total uranium concentration in the solution. The ion

Chapter 1 38 1.2 Literature Review •



exchange reaction takes place between various hydrolysed uranium ions and protons in the 

biomass binding sites; the total uranium uptake consists of the binding of all forms of 

hydrolysed uranium ions by biomass and all types of possible biomass binding sites have the 

same affinity to uranium cations. The other parameters required for the application of the 

model such as equilibrium constants for hydrolysed species, protons and uranium ions could 

be regressed from the isotherm experimental data at various pH values. The total binding 

capacity of biomass could be determined by acid-base titration for the protonated biomass. 

A nonlinear square method developed in MATLAB was employed to find the optimal 

combination of the parameter sets. The regressed model curves at pH 2.4, 3, 3.5 and 4 

corresponded very well with the experimental points obtained. The model demonstrated that 

the monovalent behaviour of the hydrolysed uranyl ion enhances the overall uranium uptake. 

The acidic elution of the uranium bound to the biomass was successfully modelled. No 

significant error was found due to the heterogeneous nature of the binding sites, although the 

use of a multiple site model would be more appropriate. The model could predict the 

equilibrium status from the initial conditions for both uranium biosorption and acid desorption.

The multi-component Langmuir model, the ion exchange model and isotherms developed 

and described above were applied to evaluate the biosorption of Cd by brown seaweeds 

Durvillaea, Lominaria, Ecklonia and Horoslro pre-saturated with Ca, Mg or K (31). The ion 

exchange model fitted very well at low concentrations, and it was postulated that the 

Langmuir model was applicable at higher metal concentrations, where binding of the 

displaced ion is low. Application of the model allowed establishment of the biosorption metal 

affinity sequences for the materials studied, The calculated parameters could be used in the 

derivation of dimensionless ion-exchange isotherms for the prediction of the behaviour of the 

biosorbents in dynamic flow-through biosorption systems.

The IMPACT computer programme has been used to model the column performance in the 

biosorption of Cu, Cd and Zn from multi-component mixtures by potassium-saturated
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Sargassum biosorbent (71). The IMPACT code and the associated modelling methodology 

were adapted for describing the transport of chemicals for various flow patterns, assuming 

mass transfer kinetic limitations, steady flow, constant temperature, pressure and pore 

geometry. IMPACT accounts for the flow structure in the sorption bed by assuming a series of 

ideal mixing cells of uniform composition. The user has to define the parameters of the series, 

such as number and volume of cells, flow rate, chemical interactions and elementary 

reactions, including name of species, their stoichiometric coefficients and the equilibrium 

constants. The programme performed the simulations for three experimental column system 

and provided the concentration breakthrough profiles for the ionic species chosen. IMPACT 

could reasonably simulate the complex column biosorption performance, however the 

predictions for breakthrough times for zinc and cadmium were shifted ahead by 20% and 

copper simulation was not successfully completed.

The Equilibrium Column Model (ECM), described previously and the Mass Transfer Column 

Model (MTCM) have been applied in modelling the occurrence and magnitude of overshoots 

of toxic heavy metals sorbed by Sargassum algal biomass (72). An efficient and accurate 

numerical method previously developed (94) has been adapted for solving model equations, 

which consider different rate control mechanisms formulated for fixed bed multi-component 

ion exchange processes. The algorithms were applicable to both ion exchange and liquid 

adsorption and showed to be extendable to a general form of isotherms. The model enabled 

testing the approach for the case of biosorption while reducing the number of equations to a 

minimum. The elution order of the sorbed metals, the existence and the extent of the metal 

overshoots and the column lifetime were predicted by combining the two methods.

A titration model and the Langmuir isotherm sorption model have been applied to describe 

copper, cadmium and iron biosorption by a culture of Arthrobacter sp, (95). The results 

suggested the possible existence of two weakly acidic sites, demonstrated by the titration 

model. The chemical model was able to predict copper biosorption data between pH 3 and
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5, iron and cadmium modelling were not taken into consideration. The application of the 

model is limited since the occurrence of ion exchange and complexation could not be 

confirmed as unique mechanisms in the pH range studied.

The non-ideal competitive adsorption model (NICA) developed and applied to model metal 

ion binding to humic substances (96 - 99) has been used to describe the biosorption of 

protons, calcium, cadmium, zinc and lead ions by two bacteria strains. The proposed model 

assumes that two site types are involved in metal ion binding and the biosorption of bivalent 

metal ions is due to monodentate binding to all sites, resulting in a maximum adsorption for 

protons and for bivalent cations equal to the number of available binding sites. The model 

gave good results for the description of metal ion binding to whole cell bodies of the bacteria 

(53, 100).

The competitive adsorption Langmuir and Freundlich models have been used to describe and 

compare the competitive biosorption of Cr (VI) and Fe (III) ions to C. vulgaris and R. arrhizus 

(37). An interaction term tj,. which is a characteristic of each species and depends on the 

concentrations of the other components, has been added to the competitive Langmuir 

model. The data fitted both the non-competitive Langmuir and Freundlich models. The 

modified Langmuir model successfully characterised the competitive adsorption of Cr (VI) and 

Fe (III) ions from two components system by R. arrhizus, while the Freundlich model was 

satisfactory for most adsorption data of these ions on C. vulgaris. Because of the previous 

results on C. vulgaris, the Freundlich model has been applied for the simulation of the 

biosorption of copper (II) and chromium (VI) in a single-staged batch reactor (101). The residual 

concentration and equilibrium isotherms for one metal ion depending on a second metal ion 

were estimated at equilibrium.

Alternatively, Freundlich and Langmuir models have been applied to a multistage purification 

process employing Schizomeris leibleinii and Rhizopus arrhizus as biosorbents (102, 103). The
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adsorption of iron (III), lead (II) and cadmium (II) was modelled and the isotherm constants 

were calculated for both processes. The data fitted both Langmuir and Freundlich models and 

was useful for the estimation of residual metal concentrations at equilibrium at each stage. The 

calculated constants could be used to predict the parameter values in different purification 

systems serving different wastewater compositions.

1.2.3. Spectroscopic Techniques

1.2.3.1. Inductively Goupled Plasma Optical Emission Spectrometry (ICP-OES)

A variety of metals can be determined using inductively coupled plasma atomic spectrometry 

in a wide range of concentrations. This method has shown high sensitivity in the analysis of 

water, soil and biological samples, making it suitable for the determination of metals present in 

different matrices.

In principle, ICP can be used for the determination of all elements other than argon. The 

sample is nebulised and introduced in the flow of plasma support gas, which is typically Ar, 

where the atoms of the elements present are ionised, excited and quantified using a detector 

(Figure 4).

An inductively coupled plasma (ICP) is a very high temperature (7000-8000K) excitation source 

that efficiently desolvates, vaporises, excite, and ionises atoms. Molecular interferences are 

greatly reduced with this excitation source but are not eliminated. ICP sources are used to 

excite atoms for atomic-emission spectroscopy and to ionise atoms for mass spectrometry.

The plasma torch (Figure 5) consists of concentric quartz tubes. The inner tube contains the 

sample aerosol and Ar support gas and the outer tube contains flowing gas to keep the tubes 

cool. A radio frequency (RF) generator (typically 1-5 kW at 27 MHz) produces an oscillating 

current in an induction coil that wraps around the tubes, The induction coil creates an
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oscillating magnetic field. The magnetic field generated induces a current in the ionised Ar 

gas stream and a plasma is formed almost instantaneously when the Ar gas is seeded with 

energetic electrons. These electrons are produced either by a high voltage Tesla discharge, or 

a solid-state piezoelectric transducer. The atoms and ions contained in the plasma vapour are 

excited into a state of radiated light (photon) emission. The radiation emitted can be passed 

to the spectrometer optics via an optical fibre, where it is dispersed into its spectral 

components.

Figure 4 Schematic representation of an ICP-OES
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Figure 5 Simplified model of the plasma
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From the specific wavelengths emitted by each element, the most suitable line for the 

application is measured by means of a PMT (photomultiplier tube) or a CCD (charge coupled 

device). The radiation intensity, which is proportional to the concentration of the element in the 

sample, is recalculated internally from a stored set of calibration curves and can be shown 

directly as percent or measured concentration (104, 105).

1.2.3.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Inductively coupled plasma-mass spectrometry has become one of the most important 

techniques for elemental analysis because of its low detection limits for most elements, its high 

degree of selectivity and its good precision and accuracy. Ions produced in a conventional 

ICP torch are sampled through a differentially pumped interface linked to a quadrupole mass 

spectrometer, resulting in an optical spectrum consisting of a simple series of isotope peaks for 

each element studied. An important part of the ICP-MS instrumentation is the interface that
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couples the ICP torch, which operates at atmospheric pressure with the mass spectrometer, 

which requires pressure levels of less than 1 O'4 torr (106).

The sampling cone consists of a water-cooled nickel cone with a small orifice at its centre, 

which serves as a passage for the hot plasma gas that is pumped through this orifice into a 

region that is maintained at a pressure of about 1 torr. In this region, the gas is expanded and 

cooled. A fraction of the gas then passes through a small hole in a second cone called a 

skimmer and into a chamber maintained at the pressure of the mass spectrometer. In the 

chamber the positive ions that are separated from electrons and molecular species by a 

negative potential, are accelerated, and are focused by a magnetic ion lens onto the 

quadrupole mass analyser. ICP-MS instrument can determine elements in the mass range 3 to 

300, to resolve ions differing in m/z by 1, detect up to 90% of the elements in the periodic 

table with a measurement times of 10 s per element with detection limits in the 0.1 to 10 ^g L'1 

range for most elements (106).

1.2.3.3. Infrared Spectrometry

Infrared (IR) spectroscopy measures the absorption of infrared radiation by chemical bonds. 

Infrared radiation is defined as electromagnetic radiation with frequencies between 14300 

and 20 cm '1, When a normal molecular motion such as vibration, rotation, rotation/vibration or 

overtone of these normal vibrations results in a change in the molecule's dipole moment, a 

molecule absorbs infrared radiation. Chemical structural fragments of molecules, known as 

functional groups tends to absorb IR radiation in the same frequency range regardless of the 

structure of the rest of the molecule that the functional group is in. This correlation between the 

structure of a molecule and the frequencies at which it absorbs IR radiation allows the structure 

of unknown molecules to be identified (107).
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Fourier transform infrared spectrometry (FT-IR) has been developed in order to measure all the 

infrared frequencies simultaneously. This is accomplished using an interferometer, which 

produces a unique type of signal that has all of the infrared frequencies encoded into it. The 

signal can be measured very quickly, usually in one second or so, reducing the time of 

analysis per sample. The interferometer uses a beamsplitter which takes the incoming infrared 

beam and divides it into two optical beams, one beam reflects off of a flat mirror which is 

fixed in place and the other beam reflects off of a flat movable mirror. The two beams are 

recombined when they meet back at the beamsplitter at different lengths interfering with each 

other, resulting in an interferogram. The measured interferogram signal is decoded using 

Fourier transformation performed by a computer, which then presents the analyst with the 

desired spectral information for analysis. The major advantages of FT-IR are fast analysis 

because all of the frequencies are measured simultaneously in seconds; it is a very sensitive 

technique, the fast scans enable the addition of several scans in order to reduce the random 

measurement noise to a desired level, and the instruments are self calibrating employing a 

HeNe laser as an internal wavelength calibration standard (106).

Infrared spectrometry has been used to elucidate the biosorbent composition and 

mechanism of metal biosorption by different biomasses. The infrared spectroscopy of gold

laden S. natans revealed that the polysaccharidic carbonyl groups of the biomass were 

mainly responsible for binding gold with amino groups playing perhaps a minor role (108).

Infrared spectra of protonated Sargassum biomass showed the characteristic bands 

corresponding to free carbonyl double bonds from the carboxyl functional group, which 

correlated with the spectrum for alginic acid spectra (82). Cadmium loaded alginic acid and 

Sargassum biomass infrared spectra showed a clear shift, of the carbonyl-stretching band, 

typical of the complexation of the carbonyl group by dative coordination with cadmium. 

These results provided evidence for the ion exchange by complexation.
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Infrared analysis has been performed on esterified and unesterified biomass of Sphagnum 

peat moss (78). Results confirmed the presence of carboxyl groups on the unesterified 

samples. The esterification of these groups was also demonstrated. Modified and native D. 

innoxia biomasses contacted with Cd2+, Sr2+ and Cu2+ have been analysed using FT-IR. The 

spectra obtained for native cell fragments contacted with metal ions were the same as the 

blank samples, although the presence of carboxylate groups was elucidated (30, 61). 

Differences between the untreated, esterified and saponified samples demonstrated the 

presence of carboxyl groups and confirmed the modification of these groups by the chemical 

modification procedures employed.

The surfaces of Cyclotella cruptica and Chlamydomonas reinhardtii have been characterised 

using chemical and spectroscopic methods that included FT-IR (109). Results showed spectra 

comparable to those obtained for D. innoxia and seaweed, and indicated a wide variety of 

functional groups, of which some, like the -OH groups of carbohydrates, are not relevant for 

proton and metal binding, The importance of N-containing groups has also been indicated.

Infrared spectra of raw and chemically modified Aspergillus niger have been obtained to 

evaluate the effects of chemical treatment on the functional groups involved in the 

biosorption of lead, cadmium and copper (84). The spectra showed the presence of 

carboxylate and amino groups. The results from biosorption studies using chemically modified 

biomass suggested that both groups play an important role in the biosorption of the metal 

studied.

Chemically modified Pycnoporus sanguineus has been analysed using FT-IR (85). Modifications 

included methylation of the amino groups and esterification of the carboxylic acids. IR spectra 

of raw biomass showed the presence of amino groups, possibly from protein, and no carbonyl 

groups were observed in the range expected although some differences were observed in 

comparison with the spectra from the esterified samples. The spectra for the NaOH treated
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biomass was significantly reduced in intensity because of the amino-acid modification. Results 

from the biosorption studies were correlated to the functional groups described.

The infrared spectra of pure Spirogyra and prepared AlgaSORB have been used to monitor the 

immobilisation of the raw biomass on silica (73). Vibrations corresponding to terminal 

secondary amine groups were present in the native biomass spectrum but not in the polymer 

spectrum. The occurrence of C-N and C-Br vibrations in the polymer spectrum supported the 

immobilisation of the matrix onto silica gel. The presence of carboxylate anions was observed 

as well as prominent peaks for phosphate and sulphydryl groups.

FT-IR has been used to elucidate the main chemical groups present on the cell membrane of 

Arfhrobacter sp (95). The IR spectrum obtained revealed the existence of amino, hydroxyl, 

amide, acidic and phosphate groups, suggesting a polysaccharide structure of the biomass.

1.2.3.4. Scanning Electron Microscopy

The Scanning Electron Microscope (SEM) is one of the most versatile and widely used tools of 

modern science as it allows the study of both morphology and composition of biological and 

physical materials.

High-resolution images of the morphology or topography of a specimen, with great depth of 

field, at very low or very high magnifications can be obtained by scanning an electron probe 

across a specimen. Compositional analysis of a material may also be obtained by monitoring 

secondary X-rays produced by the specimen-electron beam interaction. Detailed maps of 

elemental distribution can be produced from multi-phase materials or complex, bioactive 

materials. Characterisation of fine particulate matter in terms of size, shape and distribution as 

well as statistical analyses of these parameters, may be performed (110, 111).
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The SEM consist basically of an illuminating/imaging system, which produces the electron 

beam and directs it onto the sample; an information system that collects the data released by 

the sample during electron bombardment; a detector which discriminates amongst and 

analyses these information signals; a display system consisting of one or two cathode tubes for 

observing and photographing the surface of interest and the vacuum system for the removal 

of gases from the microscope column, which would otherwise interfere with high-resolution 

imaging (112).

One of the most important developments of the SEM technique is the Environmental Scanning 

Electron Microscope (ESEM). In essence, conventional SEM samples would normally have to be 

clean, dry, vacuum compatible and electrically conductive in order to produce useable and 

easily obtained results. A number of SEM preparation techniques promoted the introduction of 

artefacts to a number of different types of materials. The use of ESEM makes possible wetting, 

drying, absorption, melting, corrosion, crystallisation allowing one to monitor and record 

dynamic processes as they happen, with virtually no sample preparation. The advantages of 

ESEM includes secondary electron imaging in dry gas or water vapour at full SEM resolution, up 

to 2 nm with FEG system; imaging of wet samples with no dehydration and observation of the 

sample in its natural environment. No sample preparation is required even for insulating 

samples, X-ray analysis of non-conductive samples and observation of dynamic experiments 

at high temperatures in a gas environment can also be achieved (113, 114).

Scanning electron microscopy has been employed mainly for the study of the morphology of 

several biological materials, Previous micrographs of Stlchococcus bacillaris used for the 

preconcentration of cadmium and lead have been reported (33, 115). The micrographs 

showed the morphology of the colony and an average radius of 1.54 ^m was determined. 

The electron micrograph of the immobilised algae on silica showed an incomplete total 

surface coverage. The overlapping of the cell walls and the large surface contact area
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between the silica and the algae surface observed suggested a loss of the metal sorption 

sites.

Both scanning and transmission electron microscopy were used to examine the possible 

morphological effects of exposure to high and trace concentrations of copper on M. rouxii 

(116). Electron micrographs of inactivated cells grown at higher copper concentration showed 

abnormal development in contrast to the filamentous hyphae which resulted when the same 

strain was grown at trace copper concentrations.

SEM has been used to evaluate the morphological changes in the drying of P. littorolis used for 

the biosorption of Al (III), Cd (II), Co (II) Cr (VI), Cu (II), Fe (III), Ni (II) and Zn(ll) (57). The electron 

micrographs of the freeze-dried and oven-dried material showed that the freeze-drying 

procedure was a gentler method of preservation, since the original plant's tissue microstructure 

was still present on the sample. Salt crystals could be observed on the algal fragments. No 

significant differences were reported when the metal binding efficiency of the two< samples 

was evaluated.

The microstructures of different forms of dry samples of the biomass of marine macro alga D. 

potatorum  have been obtained using SEM (117). The micrographs showed a structure of 

cylinder or fibre-like shaped sizes between 3 to 5 f.im and a uniform distribution of copper and 

cadmium ions on the biomass structure however, speciation of the ions could not be 

identified. The methods of drying and pre-treatment seemed to affect the internal structure of 

the biosorbent.

Electron micrographs of different biomasses have been recorded on a Transmission Electron 

Microscope (20, 23, 118). The results revealed that the cell wall of S. natans was responsible for 

sequestering gold and cobalt from solution; cadmium was accumulated within large vacuoles
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of S. cerevisiae and iron was distributed on the cell wall as well as in the cytoplasmic and 

nuclear materials of S. fluitans.

1.2.3.5. Extended X-ray Absorption Fine Structure

X-ray absorption spectrometry (XAS) using synchrotron radiation is based on the irradiation of. a 

sample with a monochromatic X-ray microbeam of tunable energy. By scanning the energy 

over an absorption edge of an element of interest in fractional steps and recording either the 

absorption of the beam (absorption XAS), the fluorescence radiation produced (fluorescence 

XAS) or another shell dependent phenomenon, the fine structure of the edge is measured. The 

edge location and the shape provide information on the chemical environment, as the 

energy necessary to excite the bound electron shifts slightly with changes in the chemical 

environment of the chemical species involved. Two energy regions around the edge may be 

exploited and provide different structural information, the near edge region (XANES) and the 

extended region. The extended X-ray absorption fine structure, EXAFS, provides information on 

the number, the atomic number and the distance of neighbouring atoms (119).

EXAFS does not occur for isolated atoms but only appears when atoms are in a condensed 

state. The absorption edge corresponds to an X-ray photon having enough energy to just free 

a bound electron in the atom. When the electrons are in the most tightly bound n = 1 shell the 

edge is called the K-edge. For the next most tightly bound shell of atoms, the n = 2 shell, the 

corresponding edges are called the L=edges. Atoms in molecules can absorb X-rays. 

Generally, the proportion of X-rays absorbed (the absorption coefficient) will decrease as their 

energy increases, but at certain values of energy, specific to each element, a sudden 

increase in the amount of energy absorbed is observed. These energies are known as 

absorption edges,

The energies correspond to the ejection of an electron from the atom in question [I.e., 

ionisation). The'ejected electron can be considered as a wave, travelling outwards from the
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central absorbing atom. The increase in absorption at the edge occurs when the energy of 

the incident X-rays is equal to the threshold energy necessary to eject an electron. Simple 

models of X-ray absorption predict a gradual monotonic decrease in the absorption 

coefficient with increasing energy away from the absorption edge. Such behaviour is observed 

in the spectra of isolated atoms such as Xe and Kr, but for atoms either in a molecule or a 

condensed phase, the presence of other atoms around the absorber causes oscillations in the 

absorption coefficient near the edge. These oscillations in the post edge region arise from the 

backscattering of the emitted electron wave of neighbouring atoms and so the structure of 

the post edge region of the X-ray absorption spectrum is related to the radial distribution of 

atoms in the sample (Figure 5) (119).

Figure 6 Illustration of the EXAFS process

The solid lines represent the energy of the X-ray absorbed by the central atom and the dashed 

lines indicate the outgoing scattered wave backscattered off from the surrounding atoms. How 

the oscillation varies with the wavelength of the photoelectron depends on the distance

Chapter 1 52 1.2 Literature Review •



between the centre atom and backscattering atom. The variation of the backscattering 

strength as a function of the energy of the photoelectron depends on the type of atom doing 

the backscattering. Thus, by analysing the structure, the frequency and amplitude of the 

oscillations, information about the local environment of the absorbing element can be derived 

( 120).

EXAFS has been used for the characterisation of Cr (III) and Ni (II) binding with alfalfa biomass 

(80). For nickel, good fits were obtained for six oxygens and six nitrogens and the distances 

were calculated. No reasonable fits were found using only sulphur or a mixture of sulphur and 

oxygen or nitrogen. Results for Cr(N03)2 standard and Cr biomass showed a good fit for six 

oxygens, suggesting that Cr binds to the biomass by oxygen ligands.

EXAFS results for the uptake and biotransformation of Cu (II) in Larrea tidentata have shown that 

a Cu(ll)-0 interaction occurs in the roots, stems and leaves (121). The presence of a strong Cu- 

S interaction in the roots, stems and leaves has also been observed with relative coordination 

numbers of 2, 2 and 4 respectively.

EXAFS and XANES experiments have been carried out to study the effect of oxidation state on 

iron binding by Medicago safiva (122). The data for iron (II) and iron (III) biomass indicated 

similar metal coordination environments and good fits for Fe-O were obtained in both cases. 

Monodentate carboxylate coordination was found to be more likely to occur than bidentate. 

The XAS data indicate that both iron (II) and iron (III) uptake proceeds without a redox change 

via carboxylate ligation.

Further EXAFS studies have been carried out to characterise the binding of Cr (VI) and Cr (III) by 

Avena monida biomass (123). The results demonstrated a reduction of Cr (VI) to Cr (III) by the 

biomass and the reduced Cr (III) was bound to oxygen containing ligands (possibly carboxyl 

groups) similar to a weak cation-exchange resin.
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The reduction and accumulation of gold by Medicago sativa has been studied using X-ray 

absorption spectroscopy (124). XANES results revealed that Au (III) is reduced to Au(0) and there 

was no evidence for either Au (III) or Ai (I) bound to the biomass. Analysis of the isolated first 

shell EXAFS oscillation was used to determine the size of the Au (0) particles.

EXFAS and XANES have been used for the determination of gold binding to Chlorella 

vulgaris^ 05). The oxidation state of the algae-bound gold was determined to be Au (I) and Au 

(III) and no Au (0) state was observed. Strong evidence was presented for ligand-exchange 

reactions leading to the formation of bonds between Au (I) and sulphur or nitrogen contained 

in the algae. The mode of binding appears to be different for the samples derived from the Au 

(I) complexes than for those derived from Au(lll)CI4\
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Materials and Methods

Chapter 2



2.1. Materials

2.1.1. Reagents

All reagents were Aristar grade and supplied by BDH, Poole, U.K. Deionised Millipore, (Milli-Q RG) 

water was used throughout. 10 mg L'1 single metal solutions of cadmium, copper, chromium, 

lead, nickel, silver, gold and aluminium ions were prepared by dissolving cadmium nitrate, 

copper nitrate, chromium nitrate, lead nitrate, nickel nitrate, silver nitrate, gold chloride and 

aluminium nitrate salts in distilled water. In the case of the column experiments, a multielement 

stock solution containing 10 mg L'1 of Cu, Cd, Cr and Pb was prepared from individual 1000 

mg L’1 Spectrosol solutions, Working standard solutions for ICP-AES and ICP-MS analysis were 

prepared by dilution of the 10 mg L'1 stock solution. The unbuffered standard solutions were 

kept in the pH range 5.5 -  6.5 by the addition of either 1.0 M HCI or NaOH solutions. Buffered 

solutions were prepared in 0.05 M ammonium acetate except for copper and silver, which 

were prepared in 0,1 M potassium dihydrogen phosphate. For the preconcentration 

experiments a multielement stock solution containing 10 mg L'1 of antimony, arsenic, 

cadmium, chromium, cobalt, copper, gold, lead, manganese, mercury, nickel, palladium, 

scandium, selenium, silver, strontium, tellurium, vanadium and zinc was prepared from 

individual 1000 mg L'1 Spectrosol solutions. Methanol was used for the esterification of the 

biomass. A NaOH 0.1 M solution was employed for the hydrolysation experiments. The 

potentiometric determination of Cd and Pb was performed using standard solutions prepared 

from cadmium nitrate and lead perchlorate. A 5 M NaN03 (Orion ISA 940011, Beverly, USA) 

solution was used as an ionic strength adjustor. All glassware was cleaned and stored in a 1 % 

v/v HN03 solution until required. Each item of glassware was then thoroughly rinsed with 

deionised water before use.
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2.1.2. Source of the Biomass

The dealginated seaweed waste was supplied courtesy of FMCc Biopolymers, Haugesund, 

Norway. This material is the residue after the commercial extraction of alginates and 

carageenans for the food and pharmaceutical industries. The material has undergone a 

number of processing steps in the extraction of alginates before being finally dewatered by 

calcium precipitation prior to disposal. This material has a moisture content of 66%. The fresh 

product was stored in the frozen state in order to prevent microbiological spoilage and 

alterations in the biosorption performance of the material.

2.1.3. Apparatus

An orbital shaker (Gallenkamp) was used to agitate the samples during the batch uptake 

experiments. A pH electrode (Geiplas, BDH) connected to a pH meter (Orion model 740A) was 

used for pH measurements. A cadmium ion selective electrode (Orion Sure Flow combination 

cadmium electrode model 9648, Beverly, USA) was used for the determination of Cd ions. 

Lead ion measurements were carried out using a Pb ion selective electrode (Orion lonplus 

series model 9682, Beverly, U.S.A.). A centrifuge RC5C Sorval Instruments (Du Pont, U.S.A) was 

used to centrifuge the samples. After the esterification and hydrolysis process, an Edwards 

freeze dryer, cold trap 1000 (S.B. Freeze Driers, Kent, U.K.) was employed to dry the samples. 

UVA/is UV2 spectrometer (Unicam Instruments, Cambridge, U.K.) was used for Cr determination.

2.1.4. Inductively Coupled Plasma Spectrometers

An ICP-AES (Spectro Instruments, Kleve, Germany) or an ICP-MS HP 4500 (Hewlett Packard, 

Yokogawa Corporation, Japan) was used to determine the metal concentrations. The 

instrument conditions are shown in Table 1.

Chapter 2 57 Materials and Methods •



Table 1 ICP operation conditions

ICP and sample introduction ICP -  MS ICP - AES

Power 1200 W ' 1200 W

Column to spray chamber distance 70 mm 70 mm

Torch Fassel Torch Three piece torch

Spray chamber Cyclonic Cyclonic

Nebuliser Babington Cross flow

Sample introduction Peristaltic Pump Peristaltic Pump

Solution uptake rate 0.8 ml min'1 0.8 ml min'1

Coolant gas flow rate 16 L min'1 16 L min"1

Nebuliser gas flow rate 1.28 L min'1 1.0 L min"1

Nebuliser gas pressure 590 kPa 234 kPa

No of sweeps per replicate 1 1

No of replicates 3 3

Masses / Wavelength (nm) 27AI
45Sc
5'V
53Cr Cr 267.716
55Mn Mn 257.610
58Ni Ni 231.603
59Co Co 238.892
63Cu Cu 324.754
64Zn Zn 213.856
75As As 228.812
80Se Se 196.026
88Sr Sr 407.771

107Ag Ag 328.068
in Cd Cd 226.502
121Sb Sb 252.852
,97Au Au 267.595
202Hg Hg 253.852
208Pb Pb 220.351

Measurement mode Time resolved analysis

Integration time 2 sec 2 sec

Measurement time 800 sec 800 sec

Detector mode Dual mode
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2.1.5. Titration Experiment

Dealginated seaweed samples were titrated potentiometrically using an automatic titrator 

Metrohm 678 EP/KF processor (Herisau, Switzerland) with a combined pH glass electrode 

(Model 6.0202) and a 665 Dosimat automatic burette.

2.1.6. Elemental Analysis

A Perkin Elmer 2400 CHN Elemental Analyser (Llantrisant, U.K.) was used for CHN determination.

2.1.7. Infrared Studies

Infrared measurements were performed using a Nicolet 860 E.S.P Magna infrared 

spectrometer (Nicolet, Wisconsin, U.S.A) employing a Nicolet Smart Golden Gate Single 

Reflection Diamond ATR accessory (Specac, Nicolet, Wisconsin, U.S.A) featuring a type lla 

diamond with up to 250 pounds of pressure available to keep the sample in optical contact 

with the diamond.

2.1.8. Environmental Scanning Electron Microscope

The Environmental Scanning Electron Microscope used in this study was a FEI-Philips, XL30- 

ESEM-FEG (FEI company, Eindhoven, The Netherlands). The instrument was operated in ESEM 

mode using water vapour as the deionising gas. An acceleration voltage between 15-30 Kev 

and a beam current of 2-8 nA was used for the imaging and X-ray surface analysis. The X-ray 

analyser employed was ah ISIS/300 EDS Analyser (Oxford Instruments, Hygh Wycombe, U.K.) 

using a Pentajet SA1W detector.

2.1.9. X-ray Absorption Fine Structure Spectroscopic Studies

The X-ray absorption spectra were measured at room temperature at the Synchrotron 

Radiation Source at CLRC Daresbury Laboratory, U.K. For the X-ray measurements, the 

synchrotron was running at energy of 2 Gev and beam currents of 100 -  200 mA during all
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experiments. Station 9.2 was used to measure Au, Ag, Cu and Pb. This station has a water- 

cooled, harmonic-rejecting double crystal Si (220) monochromator. Data were obtained in 

fluorescence mode using a Canberra 13 element solid state detector filled with a 32 channel 

scale to allow a maximum count rate of 85 KHz per channel. A monitor foil placed in front of a 

third ion chamber was used to determine the edge energy with precision. Ni was measured in 

Station 8.1, which has a water-cooled focussing double crystal Si (III) monochromator and a 

toroidal focussing mirror. A Canberra 13 element 550 detector with a maximum count of 17 

kHz per channel was employed.

2.2. Methods

2.2.1. Optimisation of the mass to volume ratio

In order to investigate the optimal quantity of biomass required to effectively sequester heavy 

metal ions from solution, experiments were conducted with known weight of biomass. 50 ml of 

10 mg L'1 cadmium ion solution was contacted with 0.1, 0.2, 0.5, 1, 1.5, 2.5 and 5.0 g of 

biomass dry weight. The samples were agitated in an orbital shaker for 2 h since previous 

studies showed that 2h was sufficient to achieve equilibrium. After the contact time, the 

samples were filtered through a Whatman No 1 filter paper, and analysed for cadmium 

content by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The 

concentration of cadmium in solution showed no differences in cadmium uptake between 0.2 

and 2.5 g. There was a reduction in cadmium uptake using O.lg, and the increase in 

cadmium uptake using 5 g was not high enough to justify the use of such an amount of 

biomass. Therefore, a mass to volume ratio of 1:100, or 10 g L'1, was chosen for all the 

experiments.
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2.2.2. Pretreatment of the Dealginated Seaweed

The dealginated seaweed used in early stages was as supplied. In order to optimise the 

biosorption process, the biomass was washed with deionised water several times. This process 

efficiently removed any precipitated salt on the surface of the biomass, but left bound cations. 

Cations such as calcium, sodium, potassium and magnesium were washed out using dilute 

hydrochloric acid. Hydrochloric acid was chosen in order to avoid the use of oxidising acids. 

Studies were carried out using 0.01, 0.1, 0.5, 1.0, 2.5 and 5.0 M HCI keeping a mass to volume 

ratio of 1:100. The biomass was stirred for 1, 2, 3, 4, 5, 6 and 24 h and filtered through a 

Whatman No 1 filter paper. The biomass was washed with deionised water three times and 

then was left to air dry. The pH of the water fraction was recorded. After this process the 

biomass was ready for use. The filtrate and the water fraction were analysed for calcium, 

sodium, potassium and magnesium content by ICP-AES. For silver the biomass was washed 

using phosphoric acid, since excess of chloride ions in the matrix led to silver chloride 

precipitation.

2.2.3. Batch Laboratory Experiments

2.2.3.1. pH Studies

The influence of the pH on the biosorption process was carried out using buffered and non

buffered solutions. 10 g of dealginate was placed in contact with 1 L of 10 mg L'1 of metal 

solution with the pH adjusted to 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 10.0. The pH was 

continuously monitored using an immersed pH electrode connected to a pH meter. The pH 

was adjusted when, necessary using either 0.1 M NaOH or HCI. Five millilitre aliquots were taken 

at set times up to a period of 24 hrs. The liquid was filtered as described above and the pH 

was recorded. The concentration of metai ions in the filtrate was determined by ICP-AES. For 

the non-buffered solutions, the pH of the sample was adjusted using either 0.1 M NaOH or HCI, 

except for Ag experiments where 0.1 M solutions of either H3P04 or KOH were employed. In the 

case of the buffered solutions, the Au, Al, Cd, Cr, Cu, Nhand Pb metal ion solutions were
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prepared in 0.05 M ammonium acetate buffer and the pH was adjusted using 0.1 M solutions 

of acetic acid or ammonium hydroxide. The solutions for Cu and Ag were prepared in 0.05 M 

potassium phosphate and the pH was adjusted using 0.1 M solutions of phosphoric acid or 

potassium hydroxide.

2.2.3.2. Kinetics Studies

The rate of adsorption of metal ions by dealginate was determined for Ag, Al, Au, Cu Cd, Cr, Ni 

and Pb. A 10 mg L'1 solution of each metal ions was prepared by dissolving the metal nitrate 

salt in distilled water. The pH of the solutions was adjusted to 6 using 0.1 M NaOH and 0.1 M 

HCI except for Al and Au where the pH working ranges were 4 for Al and 3 for Au because 

above this pH values Al and Au hydroxides may precipitate. 10 g of biomass was added to 1 L 

of the 10 mg L'1 metal solution in a 2 L beaker. The mixture was agitated on a magnetic stirrer. 

Five millilitres aliquots were taken at set times up to a period 24 h and the liquid was filtered 

through a Whatman Number 1 filter paper. The concentration of metal ions in the filtrate was 

determined by ICP-AES, All experiments were conducted in triplicate at room temperature. 

Control experiments without dealginate were carried out in order to determine the degree of 

removal of metal ions from solution by the glassware and filter papers.

The kinetics of the sorption process was also determined using a batch procedure as follows: 

0.5 g of dry biomass was added to 50 ml of the 10 mg L’1 metal solution in a 150 mL glass 

flask. The biomass and metal solution was contacted by agitation on an orbital shaker for 

periods ranging between 5 minutes and a maximum period of contact of 24 hours. After the 

appropriate period had elapsed, the liquid was separated from the biomass by filtration 

through a Whatman Number 1 filter paper. The concentration of metal ions in the filtrate was 

determined by ICP-AES. All experiments were conducted at room temperature and triplicates 

of each experiment were carried out in order to ascertain the degree of variation in the 

experimental procedure.
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2.2.3.3. Equilibrium Experiments

Standard adsorption experiments were conducted according to the batch method except 

that the initial solution pH was maintained at pH 6 for Cu, Cd, Cr, Ni, Pb and Ag, 3 and 4 for Au 

and Al respectively. The period of biomass and solution contact was fixed at two hours. The 

initial concentration of metal in solution was varied between 1 and 750 mg L'1. Metal 

concentrations in these experiments were determined by ICP-AES.

2.2.3.4. Saturation Experiments

The saturation capacity of dealginate to adsorb metals was studied in the batch mode. 5 g of 

washed dry dealginate was suspended in 500 mL of 500 mg L'1 single metal ion solution at the 

desired pH for two hours. After the appropriate contact time, the sample was filtered and the 

filtrate was kept for ICP-AES analysis. The biomass was then returned to the beaker and a fresh 

500 mL aliquot of the 500 mg L'1 metal ion solution was added to the beaker. The previously 

described methodology was repeated at this stage so that the beaker containing the biomass 

and the single metal ion solution was agitated for another two hours. These cycles were carried 

out using the same sample of biomass until the metal concentration in the filtrate did not 

change. Portions of these samples of biomass were kept for Infrared, Scanning Electron 

Microscopic and Extended X-ray Absorption Fine Structure spectroscopic analysis.

2.2.3.5. Titration of Dealginated Seaweed

Dealginated seaweed was titrated potentiometrically using the following procedure: 2.0 g of 

dry sample was suspended in a reaction vessel containing 50 mL of 0.1 M NaCI04, which was 

used as an inert electrolyte maintained the ionic strength in the solution. The sample was stirred 

and continuously purged using nitrogen. The titration was performed by adding standardised 

0.1 M HCI or NaOH to the sample every 30 seconds. The pH was recorded throughout the 

process. The software package Microcal Origin 5.0 (Microcal Software Inc, Northampton, USA) 

was used to calculate the first derivative of the titration curve.
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2.2.3.6. Esterification of Dealginated Seaweed

Modification of the carboxyl groups on dealginate using acidic methanol was performed as 

follows: 9 g of dry washed dealginate was suspended in 633 mL of 99.9% methanol to which 

5.4 mL of concentrated hydrochloric acid was added (0.1 M HCI final concentration). The 

solution was continuously stirred and heated to 60°C for 48 h. The biomass was then washed 

three times with cold deionised water in order to quench the esterification reaction, and then 

centrifuged to remove excess water. The esterified sample was lyophilised and used in metal 

binding experiments (77).

2.2.3.7. Hydrolysation of Dealginated Seaweed

Hydrolysation was performed as follows. 9 g of dry dealginate was reacted with 100 mL of 0.1 

M NaOH. The biomass was washed three times with deionised water and lyophilised for use in 

further metal binding experiments (77).

2.2.4. Column System Development

2.2.4.1. Preparation of Dealginated Seaweed Microcolumn

A sample of dealginate was oven dried at 105°C overnight, allowed to cool and gently 

separated with a spatula. The sample was ground using a pestle and mortar and sieved. 

Particles retained in an 85-mesh screen (mean particle size approximately 120 ^m) were used 

to pack the column. The column (50 mm x 7 mm i.d. MF-plus, Alltech Associates, Carnforth, 

UK) fitted with an acid resistant plastic PEEK frit was packed with a known weight of dry biomass 

(ca. 0.34 g) that had been slightly moistened to aid packing. The biomass was held in place 

by another frit fitted at the top of the column. The column was then connected to the 

inductively coupled plasma atomic emission spectrometer. The diagram of the on line system 

for the preconcentration, speciation and determination of the metals is shown in Figure 1.
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Figure 7 Schematic diagram of the on-line system
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2.2.4.2. Operation of the Dealginated Seaweed Microcolumn using ICP-AES and ICP-MS 

Detection

The standard procedure adapted for metal preconcentration in the biomass column is 

described as follows. Deionised water followed by 1 M HCI was pumped through the column 

using the pump on the instrument at a flow rate of 0.8 mL min'1 for 10 min, respectively. In use 

the column was connected on-line to either of the spectrometers using a 1.42 mm internal 

diameter tube (Altec Products Limited, Alton, U.K.) with the tube length (70 mm) kept short to 

minimise dead volume in operation. Deionised water was used as the carrier solution and 

pumped continuously through the column at a flow rate of 0.8 mL min'1. For metal 

preconcentration, 1 mL of either a single metal ion solution, the multielement standard 

solutions at metal concentrations of 0.1, 0.25, 0.5 and 1.0 mg L'1 or samples were loaded into 

the injection valve by syringe and then injected into the carrier stream onto the column. The 

preconcentrated metals were stripped off by manually injecting 500 ^L, 1.0 M HCI, into the 1 

mL sample loop on the column and detected by ICP-AES. Calibration graphs were
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constructed from the integrated area under each metal peak using the software package 

Microcal Origin 5.0 (Microcal Software Inc, Northampton, USA). Water and 1.0 M HCI blanks 

were run previous to any measurement.

The biomass microcolumn was then connected to the ICP-MS instrument, and used to 

preconcentrate metals in a low range of concentration employing the procedure described 

above.

Calibration curves were constructed at metal concentrations of 1.0, 5.0, 25.0 and 50.0 fig L'1. 

Multielement standard solutions of 0.01 ng L'1 of antimony, arsenic, cadmium, chromium, 

cobalt, copper, gold, lead, manganese, mercury, nickel, palladium, scandium, selenium, 

silver, strontium, tellurium, vanadium and zinc at pH 4 were analysed using the procedure 

described above. Detection limits for the studied elements were calculated from 10 replicates 

of the signal intensity obtained for deionised water using the system.

The effect of sample volume, acid concentration, acid volume and flow rate on the 

performance of the biomass microcolumn was studied by varying these parameters. Sample 

loops of 0.5, 1 and 5 mL were employed for this study. HCI solutions of 0.1, 0.5, 1.0, 2.5, 5 and 

6 M were evaluated for the desorption experiments. The influent flow rates examined were 0.5, 

0.8, 0.9, 1.0, 1.2, 1.5, and 2.0 ml min'1. When not in use the column and contents were stored 

at 4 °C in order to prevent bacterial and fungal growth.

2.2.4.3. Breakthrough Experiments

Breakthrough experiments were carried out by pumping either individual or multielement 

standard solutions through the column at a flow rate of 0.8 mL min'1 until a constant signal 

intensity was obtained by the ICP-MS detection system, The column was conditioned with 

deionised water and individual 500 (.ig L'1 single metal solutions of cadmium, copper,
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chromium, lead, nickel, silver, zinc, mercury, and antimony ions at pH 6, gold solution at pH 3 

and aluminium solution at pH 4 were pumped through the column while the signal intensity 

was continuously monitored. Multielement standard-solutions of 100 fig L'1 of antimony, 

arsenic, cadmium, chromium, cobalt, copper, gold, lead, manganese, mercury, nickel, 

palladium, scandium, selenium, silver, strontium, tellurium, vanadium and zinc at pH 4 were 

also analysed.

2.2.4.4. Determination of binding capacity

The capacity of dealginated seaweed to adsorb the studied metals was determined at the 

saturation point from the breakthrough cuives obtained. Once the intensity signal had reached 

a constant value suggesting that the effluent concentration had reached the influent 

concentration, the sample flow was stopped. Water was then passed through the lines for 10 s 

to remove metal-containing solution from the column dead volume and line tubing. The 

column was disconnected from the ICP-MS instrument, and the metal adsorbed into the 

biomass was stripped out from the column using 5 ml of 0.5 M HCI. The fractions were 

collected and the metal content was determined by ICP-AES. Acidified standards, which were 

not retained by the column, were pumped through the system after stripping. The signals from 

these standards were used to construct a calibration curve.

2.2.4.5. Analyses of Water Reference Materials

Two Lake Ontario water reference materials (National Water Research Institute, Canada) TMDA 

51.2 and TMDA 54.2 and synthetic seawater (Sea water corrosion test mixture to DEF 1053/B.S. 

3900/ B.S 2011, BDH, Poole, U.K.) were analysed in order to test the suitability of the procedure 

for the determination of the elements in real samples. 1 mL of the samples were injected onto 

the column and 0.5 mL of 1.0 M HCI was used for desorption. For these determinations, the pH 

of the Lake Ontario water reference materials were adjusted to 7.0 before metal 

preconcentration in the column.
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2.2.4.6. Chromium Speciation

2.2.4.6.1. Separation of Cr (III) and Cr (VI) by the Dealginated Seaweed Microcolumn

The same system configuration was used to study the distribution of chromium species but 

here ICP-MS was used for the Cr detection. As with metal preconcentration, 1 mL of a mixed 

chromium standard or sample was loaded onto the column via the injection valve. Unretained 

Cr (VI) was eluted almost immediately and detected. Adsorbed Cr (III) was stripped off using 

500 |uL, 1.0 M HCI as described for metal preconcentration. Calibration curves in the range 10 

- 250 pg L'1 were prepared from mixed Cr (III) and Cr (VI) standards.

2.2A.6.2. Determination of Chromium (VI) by the 1,5 diphenylcarbohydrazide Method

Independent confirmation of the Cr (lll):Cr (VI) ratio was obtained by using the 1,5 

diphenylcarbohydrazide method based on UV/Visible detection (125). This procedure 

measures only Cr (VI), therefore to determine total Cr the sample was treated with 

permanganate in order to oxidise the other chromium species. The oxidation of Cr (III) was 

carried out by adding to 10 mL of sample an excess of 1:1 H2S04:H20  solution until the volume 

was adjusted to 40 mL. The mixture was then boiled on a hot plate, to which 2 drops of KMn04 

solution. After 2 min, ImL NaN3 solution was added and gentle boiling was continued and 

then the solution was cooled, 0.25 mL of concentrated H3P04 was added to the solution. 

Measurements of Cr (VI) in all samples were carried out as follows. An appropriate sample 

portion was diluted to 100 mL, adjusted to pH 1 using 0.2 N H2S04 and 2 mL 

diphenylcarbohydrazide solution was added, The solution was mixed and left to stand for 5 to 

10 minutes for full colour development, A portion was transferred to a 1 cm  absorption cell 

and its absorbance was determined at 540 nm, Calibration curves were prepared in the 

range of 10 to 100 ^g L'1.
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2.2.5. Calcium Displacement Experiments

An investigation of the effect of the presence of adsorbed calcium ions on the uptake of 

cadmium from solution by dealginate was undertaken. 0.2 g of dealginate (dry weight) was 

added to 10 ml of deionised water that was spiked with a solution of calcium to provide a final 

calcium concentration of 30 mg L'1. Lithium hydroxide (0.01 M) was added to the solution to 

keep the pH constant at a value of 6. The biomass was left to adsorb calcium ions for 2 hours. 

At this point varying concentrations of cadmium in solution (50, 100, 225 and 450 mg L'1) were 

added to each flask for a period of 2 hours. The biomass was removed by filtration (Whatman 

number 1 filter paper) and the concentrations of cadmium and calcium ions in the solutions 

were determined by ICP-AES.

2.2.6. The speciation of cadmium, lead and silver ions in the adsorption 

process using ion selective electrode

The speciation of cadmium ions in the samples prepared for the standard equilibrium 

experiments was determined by the use of a cadmium ion selective electrode. The electrode 

response and the calibration curve were determined using standard solutions of cadmium, 

prepared from cadmium nitrate at concentrations ranging from 0.01 to 1000 mg L'1. Samples 

at a high solution pH were neutralised at pH 7 prior to measurement. A 5 M NaN03 solution was 

used in order to adjust the ionic strength of the samples and standards. An aliquot of 10 mL of 

standard or sample was placed in a beaker and 200 fiL of ISA solution was added. The 

sample was stirred using a magnetic stirrer and direct measurements were taken by placing 

the electrode into the beaker. When a stable reading is displayed, the mV value was 

recorded.

The speciation of lead ions was carried out using the procedure described above. An ion 

selective electrode for lead and lead perchlorate solution was employed to construct 

calibration curves. A methanol-formaldehyde solution was added in a ratio 1:1 to samples
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and standards to decrease solubility and retard oxidation of the pellet. The ionic strength 

adjustor used was a 5 M NaCI04 solution.

2.2.7. Elemental Composition of Dealginated Seaweed

Elemental Analysis of carbon, hydrogen and nitrogen was performed to characterise the 

elemental composition of dealginate. The sample was left to stand in a desiccator for 24 h. 

After this time, the sample was ground to a fine powder using an agate mortar and pestle. 3 

mg of sample was weighed for analysis and a stable six decimal place weight recording was 

attained, The tin capsule enclosing the sample was placed in the Perkin Elmer 2400 CHN 

Elemental Analyser auto sampler for analysis. The gases eluting from the column were 

measured as a function of thermal conductivity. This measurement was carried out at the 

Department of Chemistry of The University of Sheffield.

2.2.8. Infrared Studies

Infrared spectra were obtained for dealginated seaweed untreated biomass, washed 

biomass, esterified biomass and metal-saturated biomass for the following metal ions: Ca, Mg, 

Cu, Cd, Cr, Ni, Pb and Ag at pH 2 and 6, Au samples at pH 3 and Al samples at pH 4. An 

aliquot of the dry sample was placed in the Golden Gate Single Reflection Diamond 

accessory in the infrared spectrometer and the infrared spectra was taken in the transmission 

mode. Five scans were carried out for each sample.

2.2.9. Environmental Scanning Electron Microscopic Studies

The surface of dealginated seaweed was examined under both fully hydrated chamber 

conditions and at intermediate relative humidity conditions using a Peltier stage. 

Microphotography was obtained for dealginated seaweed untreated biomass, washed 

biomass, esterified biomass and metal- saturated biomass for Cu, Pb and Ag at pH levels of 2 

and 6, Au samples at pH 3 and Al samples at pH 4. A small amount of dry sample was
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mounted in the stage. Samples were analysed in hydrated conditions at 5°C and 5 Torr H20  

vapour pressure. Similarly, for dehydration, conditions were 16°C and < 2 Torr H20  vapour 

pressure. In each case, elemental X-ray mapping and spot analysis identified metal 

concentrations on the seaweed surface.

2.2.10. X-ray Absorption Fine Structure Spectroscopic Studies

X-ray spectra of untreated dealginated seaweed biomass, esterified biomass and metal- 

saturated biomass for Cu, Cd, Ni, Pb and Ag at pH 2 and 6, and Au samples at pH 3 were 

taken. The samples were lightly pressed into thin (approximately 0.5 mm) cardboard sample 

holders with sellotape windows. Solution standards were held in perspex sample holders of 

approximately 0.5 mm in thickness filled with Mylar windows. Metal standards were measured 

as an aqueous solution in transmission mode. Nitrate salts of Cu, Cd, Ni, Pb and Ag and 

HAuCI4 were measured as solids on the tape in transmission mode. All of the metal biomass 

samples were run as solid powders on tape in fluorescence mode. The absolute energy 

positions were calibrated with metal foils, except for Pb measurements where lead acetate salt 

was used. The EXAFS data obtained were calibrated, background subtracted and analysed 

using the standard Daresbury packages EXCALIB, EXBACK and EXCURVE98 respectively.
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3.1. Introduction

The uptake of Cd, Pb, Ni, Cu, Cr, Ag, Al and Au by dealginated seaweed was characterised 

using batch methods, Parameters such as the amount of biosorbent, the solution volume, 

contact time and pH were optimised. The optimum conditions were used to simulate the 

adsorption process. The titration method was used to characterise the functional groups on the 

surface of dealginated seaweed. Modification of the surface of the biosorbent was also 

carried out. The results obtained are described and discussed in the following sections.

3.2. Batch Laboratory Experiments

3.2.1. Optimisation of the mass to volume ratio

In order to optimse the amount of metal adsorbed per unit of biosorbent different dealginated 

mass to solution volume ratio were studied. Table 2 shows the percentage of cadmium 

removed using the different ratios investigated. The results are comparable at mass-to-volume 

ratios of 10, 16 and 20, the bulk of dealginate is considerable at 20. As a result, 10 was chosen 

as the mass to volume ratio for subsequent experiments.

Table 2 The effect of varying the Mass of Dealginate on Cadmium removal

Mass of dry dealginate (g) Concentration (g L'1) Cadmium removed (%)

0.1 2 92
0.2 4 95
0.3 6 97
0.5 10 99
0.8 16 99
1.0 20 99
1.5 30 95
2.0 40 96
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3.2.2. Elemental Composition of Dealginated Seaweed

The elemental analysis of dealginate revealed the following weight composition: C 30.0%, H 

4.5%, N 1.8% and S 1.3%. Carbon was the major component found on the sample as was 

expected in a seaweed derived material. The presence of nitrogen and sulphur was identified 

although their percentage concentrations were not very high compared with C and H. 

Previous energy dispersive X-ray spectroscopy (EDAX) analysis (126) showed no significant 

quantity of metal ions except calcium, on the surface of the material prior to use. Acidic 

digestion showed Ca, Na, Mg and K concentrations of up to 0.3, 0.3, 0.2 and 0.01 mmol g '1, 

respectively.

3.2.3. The effect of pH on metal biosorption

Figure 8 shows the removal of cadmium from 10 mg L'1 solution over 24 h contact time at 

solution pHs of 2, 3, 4, 6, 7, 8 and 10. The error bars on the figures were omitted for visualisation 

purposes. Data points were plotted from average of 5 replicates. The precision was within 5% 

error for all samples analysed. Results show that variations in pH influence the sorption of 

cadmium by dealginate. It has been shown that Cd(OH)2 precipitates after pH 9 (14). At pH 

values of 2, 3 and 4 cadmium is retained, but a considerable amount of Cd ions still remain in 

solution. Cd is effectively removed by dealginate at pH between 5 and 8, with the best 

performance at a pH 6 and 7.

There were little variations in the sorption of Cd after 1 h at the pH values studied. Therefore, 1 h 

was chosen as the equilibrium contact time for subsequent studies. Figure 8 shows that the 

kinetics of the sorption process are affected by solution pH. Figures 9 - 1 3  showed a similar 

pattern for Pb, Cu, Cr, Ni and Ag, respectively. Approximately 90% of the metal ions were 

removed between pH 6 and 7. The least metal ions were removed when the solution pH was 

maintained at 2 or at pH 10.
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Figure 8 Effect of pH on Cd sorption throughout 24 h contact time
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Figure 10 Effect of pH on Cu sorption throughout 24 h contact time
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Figure 11 Effect of pH on Cr sorption throughout 24 h contact time
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Figure 12 Effect of pH on Ni sorption throughout 24 h contact time
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In the case of Al, hydroxide complexes precipitate at pH 5.5 (127). Optimum removal was 

found at pH 4 (Figure 14). Figure 15 shows the pH influence on Au sorption by dealginated 

seaweed. Results were obtained for the pH range 2 - 6 ,  since the chemical behaviour of Au 

was markedly affected at higher solution pH. Colloidal gold aggregates are formed at pH 

values higher than 4.5 (128). At pH values lower than 2, Au+ and Au3+ are in solution as metal 

ions, but little removal of gold from the solution was observed. When the solution pH was 

adjusted to higher than 5.0, the solution was observed to change colour, from transparent to 

red, which is characteristic of the presence of colloidal gold complexes. Because of the 

formation of colloidal complexes the pH study was terminated at pH 6 for the 24 h experiment. 

However, data was obtained for 1 h contact time for the complete range of pH in order to 

compare with the data for other metals.

The overall effect of pH on metal ion sorption by dealginated seaweed is shown in Figures 16 

and 17. A similar pattern was found for Cd, Pb, Ni (Figure 16) Cu, Cr and Ag (Figure 17), while Al 

and Au showed marked differences in sorption behaviour across the pH range (Figure 18). Au 

and Al sorption were found to be highly pH dependent.

Figure 14 Effect of pH on Al sorption throughout 24 h contact time
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Figure 15 Effect of pH on Au sorption throughout 24 h contact time
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Figure 17 Effect of pH on Cu, Cr and Ag sorption
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Figure 18 Effect of pH on Aluminium and Gold sorption
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These results demonstrate the importance of pH monitoring and control throughout any metal 

ion removal process that uses dealginated seaweed as a biosorbent.

In order to complete the pH study, buffered metal solutions were prepared using the 

procedure described in Chapter 2 section 2.3.1. In the experiments using unbuffered solutions, 

the difference in pH before and after contact with the biomass was less than 0.1 pH units. 

Results obtained using both buffered and unbuffered solutions were similar. The findings 

showed that the sorption process was not affected by the presence of buffer solution in the 

system.

Schnitzer and Skinner (129) studied metal-fulvic acid interactions and concluded that two types 

of reactions can occur: (1) a major mechanism involving the simultaneous presence of both 

acidic and phenolic OH groups, and (2) of minor importance the weakly acidic carboxylic 

groups. At the high pH, strong acid groups are ionised while weak acids are still protonated.

Since Cd, Pb, Ni, Cr, Cu and Ag are not hydrolysed at pH < 6.0, the observed influence of pH 

on their binding by dealginated seaweed is an indication of the interaction of the biosorbent 

active sites with hydrogen ions. Metal ions therefore compete for the same binding sites, with 

more sites being available for metal ion sorption at higher pH values. Crist et al. (86) 

recognised that the main effect of pH on metal ion binding consisted of a reduction in the 

number of binding sites available with decreasing pH. Similar results were found for Chlorella 

vulgaris, Sargassum fluitans, Pllayella litorallis and Medicago sativa (24,31, 70, 75, 124).

A net negative charge on the surface of dealginate at pH values greater than the isoelectric 

point would be expected to lower any electrostatic energy barrier for the cations to bind to the 

negatively charged material. This might explain the increased metal ion removal at pH greater 

than 5. Gardea Torresdey et al. (130) found that this kind of behaviour suggests that carboxyl 

groups may play a major role in metal binding by the biomasses since the acid dissociation
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constants (pKa) for various carboxyl groups are reported to be around 3-4. At low pH values, 

the carboxyl groups are protonated thus reducing the available sites for metal binding. When 

the pH is higher than 4 the carboxyl groups are deprotonated, therefore negatively charged 

and able to bind positively charged metal ions. It is likely that the metal ions are bound to the 

biomass through the carboxyl groups in an ion-exchange type mechanism. Similar results were 

found for the sorption of Cd, Cu and Pb on Vaucheria (131), and for the binding of Cu, Pb and 

Zn on Peat Moss (132).

3.3. Titration of dealginated seaweed

A sample of dealginate was titrated with acid or alkali in order to identify possible metal 

binding sites. The titration data obtained is shown in Figure 19. Two end points were clearly 

discernible in the plot of the cadmium concentration against pH. Figure 19b shows a plot of 

buffer capacity against the pH. The buffer capacity was defined as the inverse of the slope of 

the titration curve:

dC

dpH (1 1

This approach was used to calculate the acidity constants (pKa) since the maximum buffer 

capacity occurs when:

[HA] = [A] (14)

Therefore,

pH = pK (15)

The two pKa values found were pKa, = 3.63 and pKa2 = 9.09, respectively. The pKa, is 

comparable to the values reported for carboxylic acids (77). The pKa2 value is similar to the 

reported for phenolic groups (9.5). (14). These groups are likely to be responsible for metal ion 

sorption. Crist et al. (131) reported a pK value between 5 and 7 for the carboxyl groups of 

marine algae. The pK value of the carboxylic groups in pure alginic acid is lower, 3.38 for
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polymannuronic acid and 3.65 for polyguluronic acid, respectively (133). This difference in pKs 

highlights the effect of molecular environments on the values measured.

Figure 19 (a) Titration data for dealginate, (b) Plot of buffer capacity p  against pH
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From the inflection points on the titration curve the total concentration of binding sites was 

determined to be 1.5 ± 0.04 mmol g '1 and 0.81 ± 0.06 mmol g*1 for pKa 3.63 and 9.09, 

respectively. The former value is comparable to those reported for the green alga Ulva fascia, 

and the brown seaweeds Sargassum, Colpomenia and Petalonia were reported to be 1.1, 

2.6, 1.5 and 2.9 mmol g '1, respectively (92).

The concentration of the binding sites at a particular pKa may not be assumed to be the total 

amount of binding sites for a determined biosorbent, since the titration did not approach zero 

at the endpoint of the titration of the weakly acidic groups. This means that no more protons 

are bound to the titrated weakly acidic carboxyl groups. Other binding sites with higher pKa 

values may still be protonated. These binding sites should therefore be taken into account in 

calculating the total amount of binding sites.

The titration plot clearly shows a steep increase in pH at the beginning of the titration, 

characteristic of the presence of strongly acidic groups, which are probably most sulphonates 

(82).

To estimate the amount of remaining binding sites, the titration was started by adding a known 

amount of HCI to the solution prior to the titration. The intersection between the linearly 

decreasing portion and the linear slowly increasing branch, corresponding to the titration of the 

weak acidic groups, yielded a quantitative estimation of the strong acidic groups in 

dealginate. This corresponds to the first equivalence point of the potentiometric titration curve. 

The amount of sulphate groups for dealginate was estimated to be 0.29 ± 0.06 mmol g '1 and 

the pKa was 1.8. This result is similar to those reported by Fourest et al. (82) and Schiewer et al. 

(90) for Sargassum fluitans, where the amount of sulphonate sites was estimated to be 0.25 

mmol g '1 at pK 2. Crist et al. (131) reported the pK of biomass sulphate groups to be 1 and 

2.5.
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The isoelectric point calculated from the relationship:

PZC = 0.5 (pK, + pK2) (16)

was 2.8. Thus, at low pHs below 2.8, the biomass has a net positive charge resulting in low 

metal sorption. Maximum sorption is likely to occur at pH values greater than 2.8 when the 

biomass has a net negative charge.

3.4. Kinetic studies

Experiments which studied the rate of metal sorption were carried out using metal solutions in 

contact with dealginate for varying lengths of time. These showed that sorption was rapid, 90% 

of the metal ions in solution were taken up by dealginate in the first 5 min, with equilibrium 

being attained after 2 h. A 5% increase in the metal bound to dealginate after 24 h was 

observed for Pb, Cu and Au (Figure 20 and 21). The fast kinetics observed in the first stage of 

the process indicates the occurrence of an ion-exchange type mechanism. However, other 

mechanisms may be involved subsequently. Results obtained using both batch and 

continuous methods were similar.

3.5. Equilibrium Experiments

Figure 22 shows the representation of the metal sorption isotherm, the capacity (q) of 

dealginate in mmol g '1 against the equilibrium concentration at pH 6. All the isotherms show 

steep initial slopes, indicative of high adsorption affinities for the metal ions studied. The Cd, Pb 

and Cu isotherms show a significant upward slope at higher concentrations and saturation was 

not achieved in the range studied. This behaviour was markedly observed for Cd isotherm. The 

same result was found for 9 different species of marine macro algae (134), and it was 

suggested that the difference in behaviour could be related to the different algal composition 

and uptake mechanism.
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Figure 20 Kinetics of metal sorption by dealginate
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Figure 21 Kinetics of metal sorption by dealginate.
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Figure 22 The isotherm for the sorption of Cd, Pb, Cu# Ni, Cr and Ag by dealginate at pH 6
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In the case of the isotherm for Cd the shape of the curve can be divided into two regions, A 

and B. The shape of the curve would seem to indicate that there are two types of metal 

binding sites. As the readily available sites in region A become saturated, the excess cadmium 

is bound to another type of site with reduced affinity for the metal as shown by the slope of the 

graph in region B. A similar behaviour was observed for Cu and Pb to some extent; however, 

Ni, Cr and Ag showed a levelling off at high concentration values.

The shape of the Ni, Cr and Ag isotherms indicate a different sorption process. For these 

elements the Langmuir isotherm describes their behaviour. Langmuir behaviour is observed 

when the energy of sorption for each molecule is the same and independent of surface 

coverage, and that sorption occurs only in specific sites involving no interactions between 

sorbed molecules.

All sets of equilibrium sorption data were found to fit the linear model at concentrations 

between 0 and 250 mg L-1. Results fit the linear model, since linear isotherms prevail at low
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solute concentrations (15). Sorption isotherm parameters for linear model are show in Table 3. 

The Kods values obtained for Pb and Cd suggests that the distribution of these ions in the sorbent 

phase is better, resulting in a higher affinity for dealginate to sorb these ions, giving higher 

values. The general affinity sequence for dealginated seaweed was Pb2+> Cd2+> Cu2+> 

Cr3+> Ni2+> Ag+> Au3+.

Table 3 The sorption isotherm parameters for the Linear model

Element Qmax
(mmol g '1)

âds
(L mmol'1)

R2

Cd 1.24 4.47 0.999

Pb 0.45 6.05 0.997

Cu 1.59 3.49 0.997

Ni 0.75 2.34 0.943

Cr 1.18 3.27 0.976

Ag 0.43 1.95 0.961

Au 0.40 0.10 0.991

The maximum capacity of dealginated seaweed to sorb the studied ions may be considered 

high compared to other biomasses (135, 136). The uptake capacity for Cd, Cu and Cr cations 

was higher than those for Pb, Ni, Ag or Au. Yu et al. (134) reported the metal uptake capacity 

for a wide range of biomasses including Ascophyllum nodosum, Durvillaea potatorum, 

Ecklonia radiata and Ecklonia maxima. The capacities for Pb (II), Cu (II) and Cd (II) were in the 

range of 1.0-1.6, 1.0-1.2 and 0.8-1.2 mmol g '1 dry biomass, respectively, for all species of 

algal biomass. These capacities are comparable to those found in this study. These results can 

also be compared to the capacities of ion exchange resins, which are typically in the range of 

1 to 2 mmol g '1 (137).

The binding capacities exhibited by dealginated seaweed for the elements studied are 

adequate for metal removal across a wide range of concentration. The main advantage
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compared to synthetic resins and living materials is that the biomass is a much cheaper 

alternative, since it has no commercial use and requires minimum preparation and 

maintenance.

The levelling off of the isotherm for Ni, Cr and Ag at high concentrations suggested the 

occurrence of a different binding mechanism. Modelling of the data obtained for Ni, Cr and 

Ag using the Langmuir equation at high concentrations showed a straight line, demonstrating 

that the equilibrium sorption data fits the Langmuir model much better than the linear model. 

Langmuir parameters were calculated and are shown in Table 4. The Langmuir model fit was 

poor for the other metals studied, Although the b  values were lower than the Kads values 

calculated from the linear fitting of these metals, the non-linear behaviour was demonstrated 

when individual Kods values were observed. For example, individual Kads values for Ni ranged 

from 0.4 L g '1 to 7.5 L g '\  indicating non-linear sorption, since Kads depends on the 

concentration studied.

The calculated capacity, qmax, for Ni using the Langmuir model was similar to that obtained 

using the linear model, but lower for Cr and higher for Ag, respectively. The higher value for Ag 

could be explained since a higher range of concentration was used to calculate the Langmuir 

model, thus yielding a higher capacity value.

Table 4 Langmuir Parameters for Ni, Cr, Ag and Al

Element Qmax

(mmol L'1)
b

(L mmol'1)
R2

Ni 1.35 1.42 0.997

Cr 0.96 5.67 0.995

Ag 1.14 6.93 0.994

Al 0.94 0.91
•

0.957
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The isotherm for Al at pH 4 showed a shape indicative of a favourable sorption process (Figure 

23) but it was not possible to apply the model. The Langmuir parameters for Al sorption are 

shown in Table 4. The Kads and b  values obtained for Au and Al (Tables 3 and 4 respectively) 

suggest that dealginate has a low capacity to sorb these metals, and in the case of Al, the 

degree of fit of the model was the poorest observed. A similar fitting for aluminium sorption by 

Sargassum flultons has been reported at Ph 4.5 (138), however the maximum capacity was 

higher (8.70 mequiv g '1) compared to the results found in this study.

Figure 23 Aluminium isotherm at pH 4
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The behaviour of gold was different to that of the other metals studied. Gold (III) may exist in 

natural waters as a complex anion AuCI4\  Figure 24 shows the gold isotherm at pH 3, which 

was chosen since retention of Au is strongly pH dependent, as shown previously in Figure 18. 

Although the shape of the isotherm is different from the other cations studied, the data fitted 

the linear model between 0 and 250 mg L‘\  The parameters calculated for low 

concentrations are reported in Table 3.
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The dealginate sorption capacity for Au is the lowest in comparison with the other metais 

studied because AuCI4' is the predominant species at this pH. Any sorption occurring must be 

due to the presence of positively charged sites on the dealginate surface. However, Greene et 

al. (37) reported that gold (I) and (III) sorption by Chlorella vulgaris was nearly independent of 

pH from 1.0 to 8.0 and suggested covalent interactions between the gold complexes and the 

algae. The possibility of the occurrence of covalent bonding in Au(lll) sorption by dealginated 

seaweed was demonstrated by the presence of a purple colour in the algae, which remained 

permanently. The colour is associated with the "Purple of Cassius", the colour exhibited by 

certain colloidal gold suspensions (124, 128, 139).

The reduction of Au(lll) to Au(0) by the algal biomass also has been proposed as a possible 

mechanism, along with photochemical reduction (70, 124). Hosea et al. (140) suggested that 

at least three classes of gold binding sites were present in Chlorella vulgaris;

• A class composed of weak binding sites, which provides a suitable environment for the

reduction of bound Au (I) to Au (0).

• A stronger second class which do not permit the reduction and

• A class of intermediate strength. An apparent enhancement in the binding of gold was

reported as an effect of the presence of Au(0) on the biomass.

A possible explanation was that the gold could migrate from the binding site to a growing gold 

crystal during or after reduction, thus freeing the binding site for additional binding. It was also 

suggested that gold atoms deposited on the algal cell during reduction of bound Au+ serve as 

nucleation sites, and additional gold is deposited directly into a growing crystal without first 

binding to the algae.
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Figure 24 Gold isotherm at pH 3
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The results suggest that the sorption mechanism may occur in two stages. The first, where ion- 

exchange between the cations in solution and the hydrogen bound on the surface, filling the 

ready available sites. Once these sites are filled, a second mechanism takes place, where the 

remaining cations in solution start slowly filling a homogeneous type-site until the dealginate 

surface is saturated.

According to phase partitioning theory, dealginated seaweed exhibits an essentially linear 

isotherm for Cd, Pb, Cu, Ni, Cr, Ag and Au at low concentrations. The values of the distribution 

coefficient of the linear model, Kads, were independent of the initial equilibrium concentration, 

when calculated from individual measured values, Therefore, the linear model is appropriate 

to describe the sorption data obtained for these metals,
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Although current literature reports the occurrence of different K values, a direct comparison 

was not possible in most cases since the results were obtained by applying a variety of models 

from different sources.

it is clear from inspection of the data that the Langmuir treatment is not appropriate for the 

experimental data at low solute concentrations, and may not be suitable in general to explain 

the mechanism of sorption by dealginated seaweed. One main disadvantage of this model is 

that the slope and intercept change with concentration because the reverse reaction with 

protons or other cations present in solution is not considered.

3.6. Non-linear regression fit and Scatchard Plots

Non-linear regression models have also been used to interpret the sorption data. A plot of 

'free' ligand vs. 'bound' ligand gives a curve that is known as a rectangular hyperbola, binding 

isotherm, or saturation binding curve. Y is zero initially, and increases to a maximum plateau 

value named Bmax, expressed by:

Y  =  ( ff ,m ' X ) (17)
K „ - X

This equation describes the equilibrium binding of a ligand to a receptor as a function of 

increasing ligand concentration, assuming one-site binding. X is the concentration of the 

ligand, and Y is the specific binding. Bmax is the maximum number of binding sites, expressed 

in the same units as the Y-axis (usually mol of metal per g of biosorbent). KD is the equilibrium 

dissociation constant, expressed in the same units as the X-axis (concentration). When the 

metal concentration equals Kd, half the binding sites are occupied at equilibrium.
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Non-linear regression data is often displayed as a Scatchard plot. Although Bmax and KD 

values can be calculated from Scatchard plots, the transformation distorts the experimental 

error and thus violates several assumptions of linear regression, giving erroneous results. This is 

the reason why the Scatchard plots are only used to display the non-linear regression results. In 

this plot, the X-axis is specific binding and the Y-axis is specific binding divided by free metal 

concentration.

A non-linear regression model, based on the one-site binding assumption and subsequent 

Scatchard plots were used to model the sorption data obtained for Cd, Cu, Cr, Ni, Pb, Ag, Au 

and Al and dealginated seaweed. The test was performed using GraphPad Prism, Version 3.0 

for Windows, (GraphPad Software, San Diego California, U.S.A, www.graphpad.com). Figures 

25 to 28 show the results obtained for Cd, Pb, Cu and Ag.

The data fits the model well for Cd, Pb, Cu and Ag. Bmax and KD values were calculated from 

the non-linear regression model and the results are shown in Table 5. From a Scatchard plot, a 

linear regression would be expected, with slope of -KD and an intercept of (K^sorbed 

amount]max. A curved plot which appears linear at low and high sorbate concentrations would 

normally be interpreted as adsorption on a material with two types of sites having different KD 

and (sorbed amount)mox because of the different slopes and intercepts.

Table 5 Adsorption parameters from the non-linear regression model

Metal & max

mmol g-1

K d

L mmol'1

R2

Cd 1.21 0.85 0.983

Pb 0.40 0.08 0.987

Cu 1.48 0.23 0.989

Ag 0.45 0.71 0.985
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Figure 25 Cd sorption data fitted into a non-linear regression model and Scatchard plot
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Figure 26 Pb data fitted into a non-linear model and Scatchard plot
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Figure 27 Cu data fitted into a non-linear model and Scatchard plot
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Figure 28 Ag data fitted into a non-linear model and Scatchard plot
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The Scatchard plots of the data modelled using the non-linear regression model showed two 

limiting regions corresponding to high and low concentrations of sorbing material. Surprisingly 

the data for Ag, which seems to fit the Langmuir model at high concentrations gave very 

different results from that obtained previously using the Langmuir equation. The data 

generated using one type of site with a given Kex and (sorbed amount]max, generated results 

analogous to the two-site binding. Crist et al. (86) reported similar results for the biosorption of 

Zn on Voucheria and stated that curved Scatchard plots prepared in biosorption studies, 

therefore should be viewed with caution, since it may indicate that the chemical process is 

one of ion exchange and not simple adsorption.

The approach used demonstrated that although it is useful to fit the sorption data for Cd, Pb, 

Cu and Ag using the Scatchard plots, the interpretation is not exactly what one might expect 

for a one-site binding model.

Figures 29 - 31 show the fitting of the sorption data of Ni, Cr and Al by dealginated seaweed 

using the non-linear regression model and the respective Scatchard plot. In the case of Ni, Cr 

and Al the Scatchard plot showed a linear relationship. Ni and Cr showed this behaviour on the 

application of the Langmuir model at high concentrations. The fact that the results from both 

models are comparable may suggest that Ni and Cr binding could be to a very specific site 

on the surface of dealginated seaweed. The Al data fitted this model much better than was 

the case for the linear or Langmuir models.

The data for Au is not shown because it did not fit the model. Parameters calculated from this 

model for Ni, Cr and Al are shown in Table 6.
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Figure 29 Ni data fitted into a non-iinear model and Scatchard plot
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Figure 30 Cr data fitted into a non-linear model and Scatchard plot
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Figure 31 Al data fitted into a non-linear model and Scatchard plot
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Table 6 Adsorption parameters from the non-linear regression model

Metal Bmax 
mmol g-1

Ko

L mmol'1

R2

Ni 0.87 0.27 0.998

Cr 1.19 0.23 0.988

Al 7.90 0.33 0.988
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The Bmax values obtained for all metals studied using either linear or the non-linear fitting 

showed similarities when compared to qmax values, although the fitting for the non-iinear model 

was made using a higher range of concentrations. These findings validated the uptake values 

obtained by the linear model, demonstrating that the capacity calculated is independent of 

the concentration range studied,

Comparisons between the Bmax and qmax obtained by the Langmuir fitting showed differences 

between the values obtained for Ni, Cr, Ag and Al. The maximum capacity for Al was too low 

compared to the value, and the values for Ag, Ni and Cr were very different, although 

these are still in the same order of magnitude. The fact that the capacities found are different 

suggests that the Langmuir model might not be a reasonable model to explain the overall 

sorption process.

3.7. Determination of ion exchange constant KexH

The wide use of the Langmuir isotherm in sorption studies is mainly due to its convenience in 

determining maximum sorption capacity and systematising data at high concentrations. The 

problem with these types of models is that they do not really apply to the actual chemical 

process involved. Several authors (83, 86, 91, 93, 141) have demonstrated that for aigae, 

sorption of metal ions is accompanied by displacement of protons or other cations. Therefore 

an ion exchange model is more consistent with the chemical system.

It has already been demonstrated that the process of sorption by dealginated seaweed is 

markedly affected by pH. Although the importance of protons in biosorption is generally 

known, it has been largely neglected in the mathematical description of the process. The 

application of methods used for the description of sorption in soils and ion exchange resins is a 

common practice, leading to the determination of separate isotherms for various pH values or
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for different initial biomass saturation states. This has been necessary because the most 

frequently used Langmuir or Freundlich sorption models do not take into account the fact that 

metal biosorption is an ion exchange phenomenon (91). These models do not incorporate the 

behaviour or concentration of previous ions bound to the biosorbent such as hydrogen or 

sodium, resulting in miscalculations in the prediction of the biosorbent performance.

An approach to modelling the binding of heavy metal ions and protons, as a function of 

metal ion concentration and pH for a range of initial sorbent loadings with the heavy metal ion 

or protons was developed by Crist et al. (141). The model enables the prediction of the effect 

of protons as exchanged species on the metal ion binding. The results for the application of 

this model to the determination of the stoichiometry for the algae Vaucherla, aiginic acid and 

humic acids showed more accurate results in establishing the ion exchange nature of the 

sorption mechanism.

To assess the extent of metal binding by ion exchange, the ion exchange constant KexH was 

determined. Sorption experiments were conducted using a batch method, except that the 

initial solution pH was maintained at pH 6 and the solution and dealginate were in contact for 

1 hr. The initial metal ion concentration was varied between 1 and 1000 mg L'1. The 

concentrations of Cd, Pb, Cu, Ni, Cr, Ag, Au and Al in these solutions were determined by ICP- 

AES. In the case of Al, the study was carried out at pH 4.

Ion exchange equilibrium constants were determined using the model proposed by Crist et al.

(141). The following reaction was assumed, at pH 6 for the Cd2+, Pb2+, Cu2+and Ni2+ cations:

M2+ + 2[HX) -  2H+ + (MX2) (18)
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[ H *  2 [ M X , ]
K "  = - --------------- ^  (19)

[ M 2* ] [ H X ] 2

Where (HX) represents the number of acid sites on the solid phase, (MXJ is sorbed M2+ and [H+] 

was calculated from the solution pH.

The unreacted (HX) required for this calculation is given by:

(H X ) =  (H X )0 - H 0 j r  (20)

where (HX)0 is the initial number of acids sites present at pH 6.

For Ag+ the assumption was made using the following equilibrium:

M + + (HX) H+ + (MX) (21 )

K ‘
[ H + ]  [ M X ]  

[ M + ] [ H X ]
(22 )

For Cr3+ and Al3+ the assumption was made based on the equilibrium:

M 3+ + 3(HX) -  3H+ + (MX3) (23)

K „
(24)

The values of (HX}0 in mmol g '1 used to calculate the ion exchange constants are shown in 

Table 7. The value of (HX)0 was derived using a minimisation procedure in which the value of 

(HX)0 was adjusted by several iterations until the values of KexH, which was calculated for a series
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of solutions with different initial metal concentrations, gave a minimum error. This was 

considered to be the optimum value of (HX)0.

The values of the ion exchange constants, KexH for the metals studied are presented in Table 7. 

The ion exchange constant could not be established for Au since the assumption has been 

developed for cations only. Crist et al. (131) reported a value of KexH of 9.3 ± 0.85 x 10'6 for 

cadmium adsorption by peat moss at pH 6. The reported KexH values for Cd and Pb were 3.3 x 

10'2 and 3.2 x 10‘5 respectively for sorption by Vaucheria at pH 6.0. The KexH values found for 

dealginated seaweed are constants for all of the metals studied except for Ag and Al. Crist et 

al. (131) observed that the calculated KexH values depend on the metal at a given pH and 

there is no apparent correlation between KexH and the binding strength of a metal.

Table 7 Values of acid sites (HX]ol and KexH for dealginated seaweed

Element (HX) o 
mmol g-1

Kex"

Cd 2.9 3.3 ± 0.1 x 10 6

Pb 2.8 4.1 ± 0.1 x 10 6

Cu 2.0 6.2 ± 0.6 x 10 6

Ni 2.2 1.8 ± 0.1 x 10‘6

Cr 2.3 2.3 ± 0.07 x 1 O’6

Ag 6.1 2.4 ± 0.3 x 10'7

Al 6.0 7.8 ± 1 x 1010

The (HXJ0 values found for the divalent cations were similar, but no pattern could be described 

for Ag+, Cr3* and Al3+. The low Kex value for Ag compared to those for divalent metals could be 

explained by the fact that only one proton is displaced. The values of the initial amount of acid 

sites (HX)0 calculated by iteration showed them to be higher than the total amount of binding 

sites at low pH determined by titration of dealginated seaweed for Ag, Cd and Al. Schiewer

(142) compared the use of this model against the Langmuir model and a two-sites binding
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model respectively, and established that although this ion exchange approximation tends to 

overestimate the initial amount of sites, due to the fact that its value has to be estimated from 

a series of iterations, the model can be advantageous at low metal concentrations.

3.8. Simulation of the solution conditions by PHREEQC and 

MINEQL+

Several authors (83, 142 - 144) have employed well know computer programme to simulate 

chemical equilibrium in aqueous solutions. Some of the most widely used programmes are 

PHREEQC and MINEQL+.

PHREEQC is a computer programme for simulating chemical reactions and transport 

processes in natural or polluted water. The programme is based on the equilibrium chemistry 

of aqueous solutions interacting with mineral, gases, solid solutions, exchangers and sorption 

surfaces, and includes the capability to model kinetic reactions with rate equations that are 

completely user-specified in the form of basic statements. PHREEQC was written in the C 

program language and was used as a speciation programme to calculate the distribution of 

aqueous species. Analytical data for mole balances were defined for a combination of 

valence states for each element studied (145).

PHREEQC employs three databases for the simulations. Surface complexation constants for 

two of the databases distributed with the programme (phreeqc.dat and wateq4f.dat) were 

taken from Dzombak and Morel (146); surface complexation constants for the other database 

distributed with the programme (minteq.dat) were taken from MINTEQA2. Ion exchange 

reactions are modelled with the Gaines-Thomas convention and equilibrium constants derived 

from Appelo and Postma (147) were included in two of the databases distributed with the 

programme.
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MINEQL+ is a chemical equilibrium modelling system that can be used to perform 

calculations on low temperature (0-50°C), low to moderate ionic strength (<0.5 M) aqueous 

systems. MINEQL+ is a data driven programme that can be used by selecting chemical 

components from a menu, scanning the thermodynamic database and running the 

calculation. However, MINEQL+ also provides tools that allow the user to take control of the 

reaction data, create a thermodynamic database, perform synthetic titrations and 

automatically process multiple samples (such as field data). MINEQL+ uses a thermodynamic 

database that contains the entire USEPA MINTEQA2 database plus data for chemical 

components that the EPA did not include, so all calculations produce results compatible with 

EPA specifications (148).

The results obtained for Cd are shown in Figure 32. Cadmium has one principal oxidation state 

Cd(ll). The chemistry of Cd in an aqueous system describes all the possible hydroxyl ions 

formed by Cd hydrolysis, however, at the concentration studied, three species seem to be the 

most important Cd2+, Cd(OH)+ and Cd(OH)2. For the range of pH evaluated between 3 x l0 ‘3 

and lx  10'9 M, Cd2+ ions predominant in solution and the hydroxide compound starts to 

precipitate at pH 8.2. At concentrations higher than 1 x 10‘3 M the ion Cd (OH)+ is not present.

Pb speciation in aqueous solution is shown in Figure 33. Pb2+ ions remain in solution until pH 

6.4. Pb hydrolyses to give initially the dissolved hydroxide complex Pb(OH)+ which finally forms 

the Pb(OH)2 precipitate at pH values higher than 7.2. Although other species have been 

reported for Cd and Pb (14) these do not occur in the concentration range studied.
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Figure 32 Distribution diagram for Cadmium hydroxide species in solution
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Figure 34 shows the Cu speciation diagram obtained from the solution simulation. The Cu2+ 

ions are present in solution until pH 6.0. At pH 6.2, the Cu(OH)2 rapidly starts to form. The 

transition species Cu(OH)+ was not observed at 2 x 10'5 M. At concentrations higher than 1 x 

10‘3 M Cu(OH)+ exists at a low percentage and Cu(OH)2 precipitation takes place at pH values 

around 4.8-5.0. Although Cu+ species exist at low concentrations, anions or other ligands 

present in solution to make the formation of other complexes favourable were not observed. 

Ni and Cu results were similar (Figure 35). The main difference is that approximately 20% of 

Ni(OH)2 species are present at pH 6.8.
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Figure 33 Distribution of Pb species with pH
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Figure 34 Distribution of Cu species with pH
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The speciation diagram obtained for Cr species in solution is shown in Figure 36. Three species 

were found to predominantly exist between 3 x TO'3 and 1 x 10‘5 M. 40% of Cr3+ ions started to 

disappear at pH 5.8, and Cr(OH)2+ is the main species at this pH. PHREEQC results showed that 

approximately 60% of the Cr (III) ions present in solution at pH 6 are Cr(OH)2+ ions and the 

remaining 40% are Cr(OH)2+ ions. Beyond this pH value, the equilibrium is displaced to form 

Cr20 3. According to Stumm and Morgan (14) Cr(OH)2+ and Cr(OH)2+ are the predominant 

species across a wide range of concentration and pH. This behaviour of Cr (III) in aqueous 

solution may explain the results obtained for the Cr ion exchange constant. The results have 

shown that Cr (III) behaves like Ni (II), which is a divalent cation. Furthermore, Cr ions seem to 

be bound through the same mechanism and gave similar results for K as the other divalent 

cations. Therefore, the fact that the results for Cr can be grouped with the other divalent 

cations is because it has a similar charge in the range of pH and concentration studied.

Figure 35 Distribution of Ni species with pH
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Figure 36 Distribution of Cr species with pH
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The results found for Ag speciation are shown in Figure 37. At concentrations between 1 x 10'3 

and 9 x TO-5 M, three predominant species, Ag+, Ag(OH)2‘ and Ag(OH) are present. The 

hydrolysis of Ag in aqueous solutions gave approximately 100% Ag+ ion in solution until pH 10. 

The other species appear at much higher pH. At concentrations higher than 1 x 10'3 M 

Ag(OH)2‘ is not found.

The diagram obtained for Al speciation (Figure 38) showed that at low pH (pH < 4) hydroxide 

complexes are not significant. Their importance increases towards higher pH values, greater 

than 7 the hydroxide complex completely dominates the solubility of Al. Although the 

simulation shows that at pH 4.6 the Al3+ ion completely disappears. It has been reported that 

the ion exists in solution up to pH 8 at concentrations between 1 x 1 O'4 and 1 x 10 16 M (147).
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Figure 37 Distribution of Ag species with pH
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Figure 38 Distribution of Al species with pH
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Results for the simulation of Au (I) are shown in Figure 39. Unfortunately, the databases 

employed by the two programmes used do not include Au (III). Au+ ions do not exist in 

solution, except in complexes. Gold (III) also is complexed in all solutions, usually as an anionic 

species.

Figure 39 Distribution of Au species with pH
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3.9. Proton and Calcium displacement investigation

In order to investigate the nature of the cadmium dealginate interaction, the dealginate was 

contacted with a solution containing calcium and then, solutions of cadm ium at known 

concentrations were added to the samples until equilibrium, during a 2h period. The amount 

of protons or calcium displaced was then estimated. This allowed the relationship between 

proton and calcium displacement and cadmium sorption to be determined.
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Results for a typical set of experiments with dealginated seaweed are shown in Table 8. The 

value of KexH was calculated using this set of data. As described before the amount of acid 

sites at equilibrium [HX] is the difference between (HX)0, the initial amount of acid sites and the 

amount of proton reacted (H0,J. Hoff was based on the amount of LiOH used to keep the pH at 

6. Values for KexH calculated from these data are comparable with the values calculated from 

the ion exchange data as has been previously shown. KexH was found to be constant over the 

given Cd concentration range.

Table 8 Proton displacement experiment

EXPERIMENT

1 2 3 4

Cd, mM 0.5 1.0 2.0 4.0

Hoff, |iequiv g '1 75 144 158 200

Ca0FF, fiequiv g '1 449 655 847 959

[CdXJ, nequiv g_1 524 799 985 1159

[CaXJ, fiequiv g '1 488 225 111 111

[Cd], mequiv L'1 3.3 934 17.4 40.0

[HX], fiequiv g_1 225 156 142 100

KexHx 106 3.1 3.5 2.8 2.9
x =  3.1 ±  0.3 x 10'6

The ratio of calcium displaced from dealginated seaweed per equivalent of Cd sorbed was 

calculated. The data is shown in Table 9. The ratios of calcium displaced to cadmium sorbed 

showed that approximately 1 mole of calcium was displaced when one mole of cadm ium 

was sorbed, regardless of the initial cadmium concentration. These results confirm that ion 

exchange may be one of the mechanisms for the retention of cadmium by dealginate.
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Table 9 The effect of calcium displacement on cadmium sorption by dealginate

Parameter Value

Initial Cd Concentration (mM) 0.5 1 2 4

Ca displaced (jimol g '1) 225 225 450 675

Cd adsorbed (nmol g '1) 300 369 588 875

Ratio Ca/Cd 0.80 0.70 0.77 0.77

Crist et al. (86, 141) showed that the stoichiometry for Vaucherla is approximately 2 protons 

displaced per Cd sorbed in the proton reaction and 1 Ca displaced per Zn sorbed in the 

calcium reaction, suggesting that the bonding is primarily electrostatic in nature. Schiewer et 

ol. (90 - 92) proposed and used a model to determine the stoichiometry of metal binding to 

algal biomass. The model demonstrated a binding stoichiometry of either BM0.5 or BM2 for 

protons, and reassured the ion exchange nature of the binding for a range of metals, 

including Cu, Ni, Zn, Ca, Cd, and Na. These findings suggested that at low ionic strength a 

significant portion of the binding is electrostatic, however, at higher metal concentrations all 

sites would be occupied by metal until "no" free sites were left and then the metal binding 

would be exclusively coordinative and not electrostatic (90).

The fact that metal binding on the dealginate occurs via proton exchange supports the 

assumption of the presence of carboxylic groups on the biomass surface as shown before. This 

has been also demonstrated by Schiewer et ol (92). for Cu binding constants for brown and 

green algae. Virtually no covalent metal binding occurred, for the green alga Ulva, because 

of its low content of alginate, which resulted in a lack of carboxyl groups spaced at a suitable 

distance for bridging of one metal ion between two binding sites.
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3.10. Esterification of dealginated seaweed

In an attempt to identify the nature of the functional group responsible for metal sorption, the 

carboxyl groups were esterified using the procedure described by Gardea-Torresdey et a/. (77).

The procedure involves chemically blocking the carboxyl groups by transforming them into 

methyl esters:

R-COOH + CH3OH —  ^  - R-COO-CH3 + H20  (25)

Figure 40 shows the results from the adsorption experiments. It was observed that the amount 

of cadmium bound was reduced from 95% to 17%, suggesting that cadmium ions bind to 

carboxyl groups. However, the residual sorption after esterification is indicative of the presence 

of other cadmium binding sites. The same behaviour was observed for all the metals studied. 

However, there were differences depending on the metal. In the case of Ni, Cu Cr and Ag 

results were similar to those reported for Cd, 82%, 80%, 80%, 83%, respectively. Values of 

72%, 57% and 48% were found for Pb, Au and Al, respectively. These values strongly suggest 

that other type of sites are involved in the sorption of Pb, Au and Al. In the case of Au and Al, 

the other type of site is responsible for nearly 50% of the sorption process, indicating that the 

presence of these sites may be important for the retention of these metals.

Although this material has been produced from a mixture of seaweeds, which have been 

chemically treated, it could still contain residues of polyuronates (alginates). According to the 

manufacturers, the waste contains about 1% alginic acid. The decrease in the affinity for the 

studied cations is analogous to that reported for Ca in which its affinity for polyuronates 

decreases with increasing esterification. Schweiger (150) has proposed two possible 

mechanisms by which divalent cations bind to polyuronates (see Figure 41). It is to be 

expected that in either case esterification of the carboxyl groups will result in diminished affinity
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for cations. However, some metal binding will still remain presumably due to the interaction 

with the vicinal hydroxyl groups.

Figure 40 Metal sorption on the untreated and esterified dealginated seaweed
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Figure 41 Possible Metal binding sites on polyuronates (after Schweiger (150))
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Although carboxylic groups have been identified as the main chemical group responsible for 

the sorption of metal by algae and other biomasses (36, 61, 80, 82 - 84, 86, 139, 142, 151)

the titration study has shown that other groups might be present and need to be taken into

consideration in order to fully explain the sorption process. These groups may be responsible 

for the remaining sorption that occurs in the presence of blocked carboxylic groups.

The presence of sulphonate groups has been quantitatively demonstrated, and although it has 

been difficult to establish their contribution to the sorption process, they have been identified 

as being responsible for the sorption of metals at very low pH (61, 82, 142). It has been

suggested (36, 141) that sulphydryl groups are mainly involved in Ag sorption by algae

biomass. The binding is probably covalent in nature making it independent of the pH. A 

reduction in Cu, Cd and Pb sorption was shown when amine groups in fungi biomass were 

modified (84). Crist et al. (86) also suggested that Cu bound to algae through amine groups 

via covalent bonding. The binding of Au to the biomass was shown to be less affected by the 

reduction in carboxylic groups on the surface, suggesting the involvement of other groups, or 

even other mechanisms. It has been shown that colloidal Au could be formed when Au(lll) is 

reduced to Au(0) on dealginate. Watkins e f al. (139) suggested that Au was most probably 

bound to S or N than to carboxylate groups. Gardea-Torresdey (124) also suggested an 

electrostatic interaction between amine residues and Au.

In order to establish the efficiency of the esterification process the reverse reaction was 

applied, and the biomass was hydrolysed via the hydrolysis reaction:

R-COO-CH3 + NaOH -  R-COO' + CH3OH (26)

The dealginate was placed in contact with the metal ion solution and the resulting uptake 

percentage is shown in Figure 42. The process was demonstrated to be reversible, since the
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hydrolysed dealginate showed a similar removal capacity to that of the untreated biomass. A 

slight increase in dealginate sorption was observed for Cd, Pb, Ni, Cu and Al. In the case of Ag 

there was little difference in the sorption by the untreated and hydrolysed dealginate and the 

sorption by hydrolysed dealginate was slightly lower for Cr and Au.

Figure 42 Metal sorption on untreated and hydrolysed dealginate seaweed
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These results are in agreement with metal binding studies performed using Datura innoxia, 

algal biomass and alfalfa biomass (61, 77, 80). In these studies, the binding of Ni, Cu, Sr and 

Cr was increased by saponification of the biomass and decreased in the case of Cd. This 

means that the overall binding capacity of the biomass was regained, and the slight variations 

present after the treatment may be due to the nature of the binding to specific metals.
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3.11. Saturation of Dealginated Seaweed

In order to ascertain the saturation capacity of the dealginated seaweed, a batch procedure 

using a high concentration of metal ion solution (500 mg L'1) was employed. A sample of 

dealginated seaweed was repeatedly placed in contact with this solution for over 9 cycles 

and the Cd, Pb, Ni, Cu, Cr, Ag, Al and Au concentrations were determined by ICP-AES. The 

results are shown in Figures 43 and 44.

Figure 43 The Cd, Pb, Ni and Cu uptake by dealginated seaweed over 9 consecutive cycles
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Figure 44 The Cr, Ag, Al and Au uptake by dealginated seaweed over 9 consecutive cycles
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It was observed that for the majority of the metals studied the dealginate was saturated with 

metal ions from the solution after the third cycle. The sorption of Ni and Ag was no longer 

observed after the fourth cycle and a small proportion of Cd, Cu, Cr, Al and Au were still 

bound during the 4th, 5th and 7th cycles. Total saturation was not achieved for Pb, since some 

sorption still occurred in the 9th cycle.

The capacities calculated from the saturation point were 1.31, 0.71, 1.57, 2.03, 1.56, 0.92, 

3.67, 0.75 mmol g '1 for Cd, Pb, Ni, Cu, Cr, Ag, Al and Au, respectively. The value for Pb was 

calculated assuming that the maximum saturation was achieved during the 3rd cycle, the 

remaining binding over subsequent cycles was not considered. The values found were in good 

agreement for Cd, Cu, Cr and Ag with the previously estimated capacities obtained using the 

linear regression, which were 1.24, 0.45, 0.75, 1.59, 1.18, 1.14, 0.94 and 0.40 mmol g ‘\  

respectively.

Chapter 3 119 Characteristics of Metal Biosorption •



3.12. The speciation of cadmium, lead and silver ions in the 

adsorption process

The speciation of Cd ions in the solutions collected during the isotherm experiments was 

determined by comparative analysis of the samples by ICP-AES and by ion selective electrode 

(ISE). The results of these analyses are shown in Table 10. The ISE technique is the only analytical 

technique available that can measure the concentration of free metal species.

The results from the ISE analysis provide a measure of the concentration of free Cd2+ ions in the 

dealginate supernatant solution, it should be noted that while the results of the determination 

of Cd by the two techniques in the initial solution are similar, once dealginate is added only 

about 30 per cent of the Cd left in solution was in the free form.

These results show that despite extensive washing before use, ligands, which bound cadmium, 

are introduced into the solution. Therefore, only a fraction of the Cd in equilibrium with the 

dealginate is available for exchange. The amount of Cd in this fraction was less than 10% of 

the initial concentration. This could explain the residual Cd concentration in solution even after 

24 h of contact.

Table 10 The Cd concentration before and after addition of dealginate as determined by ICP- 

AES and ISE

Initial Cd 
concentration by ICP- 

AES (mg L’1)

Initial Cd 
concentration by 

ISE (mg L-')

Cd concentration by 
ICP (mg L'1) after 

adsorption

Cd concentration by 
ISE (mg L'1) after 

adsorption
1.02 0.99 0.17 0.03
5.10 5.02 0.49 0.17

9.96 9.87 0.68 0.22

24.99 25.30 1.20 0.71

49.93 49.48 2.09 0.60

79.80 80.01 3.56 1.31

100.30 100.02 4.49 1.65
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Results for Pb are shown in Table 11. In the case of Pb a comparison between the values 

obtained by the two techniques showed that all the Pb remaining in solution was Pb2+. The 

total amount of Pb2+ ions present represents 2% of the total initial Pb concentration, as was 

expected from the Pb speciation. This also demonstrated a better performance for the 

removal of Pb ions by dealginate.

Table 11 The Pb concentration before and after addition of dealginate as determined by ICP- 

AES and ISE

Initial Pb concentration 

by ICP-AES (mg L'1)

initial Pb 

concentration by 

ISE (mg L'1)

Pb concentration by 

ICP (mg L'1) after 

adsorption

Pb concentration by ISE 

(mg L'1) after 

adsorption

1.07 1.09 0.11 0.13

4.98 5.21 0.14 0.17

10.06 10.53 0.23 0.26

25.01 25.17 0.35 0.31

50.12 51.03 1.05 1.16

80.05 80.65 1.35 1.13

100.61 99.41 2.44 2.52

The speciation of Ag+ ions in solution was found to be similar to the results obtained for Pb. All 

of the Ag remaining in solution after the dealginate was added was Ag+. It is more likely that 

these Ag+ ions were left in solution after the dealginate removed a considerable proportion of 

Ag, although the possibility of dynamic exchange may not be discarded.

Chapter 3 121 Characteristics of Metal Biosorption



Table 12 The Ag concentration before and after addition of dealginate as determined by ICP- 

AES and ISE

Initial Ag 

concentration by ICP- 

AES (mg L'1)

Initial Ag 

concentration by 

ISE (mg L'1)

Ag concentration by 

ICP (mg L'1) after 

adsorption

Ag concentration by 

ISE (mg L'1) after 

adsorption

1.14 0.98 0.09 0.15

5.13 4.93 0.16 0.21

10.00 10.39 0.28 0.31

25.11 24.96 0.75 0.69

50.22 49.87 2.15 2.21

79.63 80.18 2.28 2.23

99.97 99.77 3.43 3.51

3.13. Summary

The main mechanism of metal sorption by dealginated seaweed is ion exchange, featuring 

fast sorption kinetics and metal ion removal from solution between 92-97%. The sorption 

process is pH dependent and a negative surface charge was established. Three types of 

binding sites were identified on the dealginate surface: sulphonates, carboxylates and 

phenolic OH groups. The stoichiometry of the sorption process was found to be a B2M type. The 

esterification of the dealginated surface showed a reduction in the ability of the biosorbent to 

bind metal ions, indicating that carboxyl groups are mainly responsible for the sorption 

process. The efficiency of the sorption process was demonstrated to be dependent on the 

metal species used.
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4.1. Introduction

The performance of dealginated seaweed for metal preconcentration was evaluated in a 

continuous flow column system. The ability of the biosorbent to remove metal ions from dilute 

solutions was developed and optimised for a wide range of metals. The data presented here 

represent the average of 5 measurements in all cases except for the blank samples, for which 

10 measurements were collected.

4.2. Development and validation of the analytical procedures

4.2.1. Effect of the amount of adsorbent

The retention of the elements studied was evaluated in relation to the amount of dealginated 

seaweed, which was varied from 0.05 g to 0.5 g. It was found that above 0.1 g the recovery of 

Cd, Pb, Ni, Cr and Cu was gradually increased, and at about 0.3 g of adsorbent the metals 

reached a plateau. Values above 0.3 g caused clumping and hindered the control of a 

uniform flow rate through the column. Therefore 0.3 g was chosen as the optimum amount of 

dealginate to be packed into the column for preconcentration experiments.

4.2.2. Effect of the strength and volume of the elution solution

HCI was chosen for the elution of the sorbed metals because it was found to be less 

destructive to the biosorbent compared with HN03 or H2S04. The elution studies were 

performed with 0.1, 1.0 and 5.0 M HCI. The eluate volumes evaluated were 0.5, 1.0 and 5.0 

mL. As can be seen in Table 13, 0.5 mL of 1.0 M HCI was found to be satisfactory.
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Table 13 Effect of HCI volume on recovery of Cd by dealginated seaweed

Concentration Volume Recovery

mol L'1 mL (%)

0.1 0.5 93

1.0 94

5.0 91

1.0 0.5 96

1.0 96

5.0 97

5.0 0.5 97

1.0 97

5.0 96

4.2.3. Effect of the flow rate of sample solution

The flow rates were controlled using a peristaltic pump and were in the range of 0.1 -  3.0 mL 

min'1. For flow rates lower than 0.7 the analysis time became too long, although the 

equilibrium and recoveries found were satisfactory. Flow rates higher than 2.0 mL min'1 caused 

the biosorbent to clump at the end of the column, impeding the circulation of solution after a 

few hours analysis. Flow rates between 0.8 and 1.5 mL min'1 proved to be suitable, with 

recoveries for Cd in the range of 96-98%. In order not to compromise the performance of the 

column, a 0.8 mL min'1 flow rate value was chosen as the optimum.

4.2.4. Effect of the volume of the sample

Different volumes of a mixed standard solution at pH 6 containing 5 mg L'1 of each metal were 

preconcentrated and desorbed from the column using dilute HCI solutions. Up to 5 mL sample 

solutions could be injected and about 90% of the metals desorbed with 1.0 mL 1.0 M HCI. The
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preconcentration and desorption cycles were repeated for a period of up to four months 

without adverse effects on the performance of the column.

Up to 5 mL of the 5 mg L'1 mixed standard could be injected into the column, and mean

recoveries of 96, 97, 94, 93, 93, 94 and 97% obtained for Cd, Pb, Cu, Ni, Cr, Ag and Au,

respectively, when 0.5 mL of 1.0 M HCI was used for desorption.

It is important to emphasise that no reconditioning of the column is necessary after the initial 

column preparation. Analysis of the multi element solution was achieved using the ICP-AES, 1 

mL sample loop was used and the metals desorbed with 500 nL, 1.0 M HCI. With this set up, a 

two-fold increase in sensitivity compared to when no column is used was obtained for all seven 

elements. This preconcentration factor is adequate for the analysis of the samples used in this 

study.

A slight increase in the biosorption performance from 96 to 98% removal was observed after 

several sorption-desorption cycles, which was attributed to the fact that the acidic wash may 

generate more available sites on the surface. This behaviour has been reported for 

immobilised sphagnum peat moss (45), which showed an increase in retention of Cd, Zn and 

Mn after 5 runs.

4.2.5. Calibration graph and detection limit

The calibration graphs in the range 0 . 1 - 1  mg L'1 obtained, from mixed metal standard 

solutions were rectilinear with correlation coefficients (r2) of 0.9982, 0.9954, 0.9984, 0.9932, 

0.9995, 0.9991, 0.9975 for Cd, Pb, Cu, Ni, Cr, Ag and Au, respectively and corresponding 

detection limits of 0.069 mg L‘\  0.077 mg L'1, 0.018 mg L'1, 0.023 mg L‘\  0.077 mg L'1, 0.058 

m gb’and 0.083 mg L_1(n = 5).
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Typical chromatograms for the column elution are shown in Figures 45 and 46. The results are 

split for visualisation purposes. The negatively charged ions, Au, Se, As and V showed shorter 

retention times, appearing first in the chromatogram, as expected because of their poor 

affinity towards the biosorbent surface. It was observed that most of the divalent cations were 

stripped at the same time, with little separation between them. However, the retention time for 

Ag was shorter and for Sc the retention time was slightly longer, allowing their differentiation 

from the rest of the metals. The difference in retention time for Ag could be due to the single 

positive charge that this metal holds, resulting in more Ag ions being needed to fill the 

available sites in a shorter time. The separation observed indicates the potential use of the 

column for metal speciation. The overall retention time was short, demonstrating that the 

column performance is rapid.

Figure 45 Chromatogram for the separation of metals in dealginated seaweed column
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Figure 46 Chromatogram for the separation of metals in dealginated seaweed column
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4.3. Column Capacity

The dealginated seaweed packed column was evaluated for the simultaneous 

preconcentration and separation of several metal ions from solution. The experiments were 

performed at pH 6 for all metals except for Au and Al, which were examined at pH 3 and 4, 

respectively.

The exchange rate of biosorbent may be defined as the time taken to reach half of the 

maximal sorption of a metal (t1/2). This parameter along with measurement of capacity for 

metal sorption after a period of 2 min could be taken as a practical measure of the exchange 

rate for satisfactory column operation (42). Results from batch studies indicate that 

dealginated seaweed meets the requirements for satisfactory column operation with
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favourable sorption kinetics compared with a low capacity resin for all metals studied. The 

relationship between contact time and equilibrium capacity showed a t1/2 value of 1 min and 

a capacity greater than 60% for all metal ions studied.

The breakthrough curves which were obtained separately for Cd, Pb, Ni, Cu, Cr, Ag, Al and Au 

are shown in Figures 47 to 54. The eluted metals were detected by ICP-AES. Except for Pb, the 

shapes for all breakthrough curves were similar, a typical S shape. For Ni, Cr, Ag, Al and Au, the 

flat top is a straight line indicating saturation, when the influent concentration equals the outlet 

concentration. In the case of Cd and Cu the line approaches total saturation exponentially. 

For Pb, saturation was not achieved after 60 mL, and the dealginate seemed to keep sorbing 

Pb ions from solution, even after passing 120 mL of solution.

In experiments performed with single 5 mg L'1 element solutions, the breakthrough volumes 

were 17.0, 57.3, 29.0, 31.0, 34.8, 14.2, 19.8 and 9.0 ml for Cd, Pb, Ni, Cu, Cr, Ag, Al and Au, 

respectively. The ability of the dealginate to sorb Pb ions is clearly shown in the shape of the 

breakthrough curve and the value of the breakthrough volume, since a large volume of Pb 

solution was required to fill the sites on the surface (see Figure 48).

The differences in breakthrough volumes suggest that the binding sites for Pb are different from 

those of the other metals. In contrast, because of its weaker affinity for dealginate Au broke 

through the column faster than any of the other metals studied. The low breakthrough volume 

obtained indicates that the sites available for Au sorption are rapidly filled, and may be 

different in nature to those preferred by the other metals. The natural selectivity of the 

biosorbent for some metals reflected in the results obtained using the column makes it suitable 

for metal separation and speciation.
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Figure 47 Column breakthrough curve for Cd
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Figure 48 Column breakthrough curve for Pb
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Figure 49 Column breakthrough curve for Ni
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The column capacities obtained from single element experiments were 8.0, 12.0, 24.7, 26.2, 

33.7, 11.0, 18.2 and 3.80 jumol g '1 for Cd, Pb, Ni, Cu, Cr, Ag, Al and Au, respectively. For the 

preconcentration of trace metals the available column capacity is more than adequate. It is 

important to note that the uptake of the metals by the column from the solution pumped in at 

0.8 mL min'1 was complete until the breakthrough point suggesting that the metal uptake by 

the biomass at that flow rate is not limited by kinetic factors.

Similar experiments were performed using a multi element solution. The experiment was 

performed at pH 5, in order to keep all the studied species in solution. Due to the effect of pH 

in the diminution of Al, this metal was not included in this study. Au was included because 

maximum sorption was observed at this pH. The results obtained are shown in Figure 55 and 

56.
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The shapes of the curves obtained were similar to those reported using single metal ion 

solutions. The affinity of the biosorbent towards Pb is maintained even in a multi element 

solution. It can be seen that the sites for Pb are still available long after the sites for the other 

elements have become saturated, indicating the greater affinity of the biosorbent towards Pb. 

The affinity for Cu and Ag is similar, although a separation is clearly noted in the curves. There 

are no apparent differences in affinity towards Cr, Cd and Ni, and these metals seem to fill a 

similar type of site. As was shown previously, Au breaks through first in the series. The differences 

between the breakthrough volumes for individual solution and for the multi element solution 

indicate that there is competition between the metals for the available sites. No overshoots 

were observed for the metals studied. This could be explained by the fact that the metals that 

have higher affinities towards dealginate break through later, resulting in a minimum 

interference from the metals with fewer affinities in the sorption process.

Similar breakthrough volumes of 7.8 mL were obtained for both Cd and Cr, and the values for 

Pb, Cu, Ni, Ag and Au and were 28.0, 8.7, 6.3, 8.3 and 3.2 mL, respectively, using a 5 mg L'1 

multielement solution buffered at pH 5. Based on the volumes at which saturation was 

obtained, the effective column capacity for each of the elements were: 3.5, 6.8, 5.3, 6.9, 7.5, 

3.9 and 0.8 nmol g '1 for Cd, Pb, Ni, Cu, Cr, Ag and Au, respectively.

The lower capacity obtained for the mixed standard indicates that the column capacity for 

each element is affected by the presence of the other elements.
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Figure 50 Column breakthrough curve for Cu
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Figure 51 Column breakthrough curve for Cr
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Figure 52 Column breakthrough curve for Ag
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Figure 53 Column breakthrough curve for Al
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Figure 54 Column breakthrough curve for Au
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Figure 55 Column breakthrough for metal studied in a mixed metal solution
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Figure 56 Column breakthrough for metal studied in a mixed metal solution.
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In order to evaluate other possible applications for the dealginate column, a multi-element 

solution containing a wider range of metal ions was used. The multi-element solution included 

Zn, Sc, Sr, Co, Mn, Hg, Sb, As, Se and V in addition to the previously studied metals. The 

breakthrough curves obtained using a 500 f.ig L'1 multielement solution are shown in Figures 57 

-60.

The breakthrough curves were split for better visualisation. Similar results previously obtained 

were observed for Cd, Pb, Ni, Cu and Cr and Ag. In contrast, a slight overshoot was detected 

for Au. The biosorbent showed good affinity towards Sr2+ ions, which showed a similar retention 

as Pb2+ ions, but showed a less steep breakthrough curve. This behaviour could be compared 

to the affinity of the biosorbent to Cd2+ ions, since these two elements have similar 

characteristics,
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A more straight and favourable breakthrough was observed for Mn and Hg. In the case of Mn 

a clear overshoot was seen in the curve, demonstrating that the sorption of this metal by 

dealginate is markedly influenced by the presence of other metals. The biosorbent showed 

poor retention of Co2+ ions compared to the other divalent ions studied. In addition it was 

easily removed compared to similarly charged cations.

The affinity of dealginate for As, Se, V and Sb was lower than for other metal ions studied. As 

can be seen from the Figures 59 and 60 these metals broke through first along with Au. These 

metal ions are negatively charged in solution, forming the species H2As04\  H2Se03\  H2V04' and 

Sb03\  respectively. Considering that the dealginate performance is dominated by a 

negatively charged surface, the affinity is likely to be lower towards negatively charged 

species. However, the presence of positively charged groups on the biosorbent surface could 

not be discarded, and any small retention of these metal ions could be accounted for by 

sorption at those sites.

Figure 57 Column breakthrough from a 500 ng L'1 mixed metal solution using ICP-MS detection
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Figure 58 Column breakthrough from a 500 ng L1 mixed solution using ICP-MS detection.
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Figure 59 Column breakthrough from a 500 ng L1 mixed solution using ICP-MS detection.
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Figure 60 Column breakthrough from a 500 ng L1 mixed solution using ICP-MS detection.
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Using the breakthrough curves obtained, capacities at the saturation point were calculated for 

all the metals studied. The results are shown in Table 14. Comparison of the capacities 

calculated using the breakthrough to the capacities obtained after acid stripping of the 

metals in solution using 1.0 M HCI showed no significant differences at the 95% confidence 

limit.

The capacity values obtained were lower than those calculated using a single metal solution, 

and in some cases even lower than those obtained from the initial mixed multi element 

solution. This also indicates the competition between the metals for the available sites.
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Table 14 Capacities for the metal sorbed in the column experiment

Metal Ion Breakthrough capacity 

(imol g '1

Acid stripping capacity 

jimol g '1

Cd2+ 1.7 1.1

Pb2+ 8.4 8.0

Ni2+ 3.4 2.7

Cu2+ 2.4 1.1

Cr(OH)2+ 2.2 1.1

Ag+ 4.0 5.0

AuCI4' 0.2 3.7

Zn2+ 1.2 1.5

Sc3+ 1.0 0.9

Sr2+ 2.7 2.6

Co2+ 0.9 0.2

Mn2+ 6.4 5.3

Hg22+. 1.4 1.3

SbCV 0.4 0.3

H2As0 4' 0.8 0.6

HSe03- 0.5 0.4

h2v o 4- 1.0 0.8

The observed overshoots also indicate that the affinity for certain metals such as Pb or Sr, 

forces the dealginate to free already sorbed metal ions to enable it to bind preferred metal 

ions that appear subsequently. This causes interferences in the sorption process of the metal 

sorbed earlier. The capacity values also reflect the preference of the dealginate for some 

metals, especially the divalent cations.
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Experiments were performed using the same set up for Au, Zn, Sb and Hg single metal 

solutions. The breakthrough curve shapes were similar, but the breakthrough volumes were 

slightly higher, since there were no other metals present. However, the capacities obtained for 

Au and Sb, 0.5 and 0.3, respectively, were very similar to those calculated previously, since the 

capacity itself relies more on the affinity of the dealginate towards these species. In the case 

of Zn and Hg, the values obtained were 3.2 and 1.8, respectively. The increased capacity of 

Zn compared to the multi element solution, indicates that the sorption of Zn by dealginate is 

affected by the presence of other metals in solution. Kratochvil et al. (29) previously described 

this behaviour with respect to Zn. An overshoot was observed for Zn in a multi-component 

solution, and the biosorption of Zn was markedly affected by the presence of Cd, Cu and Ca.

4.4. Preconcentration of multi element solution

A diluted multi-element solution, containing the metal ions previously studied was employed to 

evaluate the ability of the column as a preconcentrator. A 500 mL aliquot of 1.0 ng L'1 multi 

element solution was passed through the column and stripped off using 5 mL of 0.5 M HCI. The 

experiment was carefully monitored to avoid saturation of the metals in the column.

The results are shown in Table 15. A 100-fold preconcentration factor was achieved with this set 

up for all the metals and saturation was not obseived during the experiment.
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Table 15 Preconcentration of 1.0 ngL'1 multi element solution

Metal Ion Concentration

ngL'’ ±S.D

Cd2+ 121.1 ± 0.7

Pb2+ 114.6 ± 0.6

Ni2+ 1-16.9 ±0 .7

Cu2+ 114.0 ± 1 .6

Cr(OH)2+ 111.2 ± 3.5

Ag+ 109.0 ± 1.1

AuCI4- 127.8 ± 5.1

Zn2+ 112.0 ± 2.1

Sc3+ 92.0 ± 0.5

Sr2+ 101.1 ± 0 .3

Co2+ 92.9 ± 4.2

Mn2+ 112.5 ± 0.6

Hg2+ 125.6 ± 0.9

Sb03- 90.8 ± 6.5

H2As04' 117.7 ± 5.6

HSe03- 115.9 ± 4.6

h2v o 4- 112.5 ± 3 .8

4.4.1. Analysis of Water Reference Materials

In order to test the suitability of the procedure for the determination of the elements in real 

samples two Lake Ontario water reference materials (National Water Research Institute, 

Canada) TMDA 51.2 and TMDA 54.2 and a synthetic seawater were analysed.

The results obtained for the simulated seawater can be found in Table 16. The metal recoveries 

were between 93 -  96% at pH 6.0 for the Cd, Pb, Cr and Cu, even though the ratio of Ca, Mg, 

Na and K ions to the other elements were in most cases in excess of 100:1. In this 

configuration, the major cations Ca, Mg, Na and K in the sample were not retained by the 

column, and eluted well ahead of the preconcentrated metals.
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Table 16 Recoveries of Cd, Pb, Cu and Cr in simulated seawater

Metal Values found, 

ng L'1 (n = 3)

Certified values, 

ng L'1 (n = 3)

Cu 257 ± 51 250 ± 1

Cd 221 ± 13 250 ± 1

Cr 243 ± 6 251 ± 2

Pb 249 ± 1 7 252 ± 4

For these determinations, the pH of the Lake Ontario water reference materials was adjusted to 

5.0 before metal preconcentration of the column. Comparisons of the results obtained with 

the certified values are given in Table 17. The differences between the two sets of results, 

except for Cd in TMDA 51.2, are not statistically significant at the 95% confidence limit except 

for As, Se and V.

The values for As, Se and V found were considerably lower compared to the certified values. 

The poor retention of these metal ions is mainly due to the metal species in solution. As, Se and 

V were in solution as negatively charged species and this diminished their affinity towards the 

biosorbent surface. As a result the retention observed was very low.

The poor retention for negatively charged species forms the basis for the separation of different 

metal species. Because of the surface of the biosorbent is mainly negatively charged, as 

shown by the titration results, the repulsion force created between the negatively charged 

species and the surface of the biosorbent resulted in low values found for these types of metal 

specie.
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Table 17 Results of the determination of metal content in two Lake Ontario Water Reference

Material.

Sample Element determined Values found, 

P9 L-1 (n = 3) 

x ± 1  S.D.

Certified values, 

P9 L'1 (n = 3) 

x ± 1 S.D.

TMDA 51.2 Cd 25 ± 3 • 72 ± 18.9

Pb 67 ± 13 72.9 ±  10.6

Cu 101 ± 6 91 ±  10.2

Ni 66.7 ± 7.4 62.7 ±  4.6

Cr 60 ± 8 62.5 ± 6.6

Zn 106.0 ± 15.0 105.9 ± 1.6

Co 71.9 ± 6.3 68.0 ±1.1

Mn 82.0 ± 10.2 80.9 ±  2.1

As 5.3 ± 3.4 14.5 ± 1.7

Se 6.0 ± 3.0 12.9 ± 1 .9

V 27.7 ± 7.7 45.8 ±  0.8

TMDA 54.2 Cu 457 ± 65 460 ± 41.9

Cd 172 ± 33 165 ±  16.1

Cr 450 ± 34 432 ± 32.1

Pb 498 ± 66 531 ± 54.4

4.4.2. Speciation Studies

It has already been demonstrated that dealginated seaweed was suitable for carrying out 

speciation studies, since it is mainly a cation exchanger, it could be used to study the cation 

and anion species of given metal.

Figure 61 shows that a broad chromium peak identified as Cr (VI) or Cr042'is eluted first and on 

subsequent injection of 500 jaL, 1.0 M HCI a much sharper peak corresponding to Cr (III) is 

observed. The point at which acid is injected could be chosen such that sample throughput is 

increased. For these experiments the acid was injected at 350 s, but as can be seen in the

Chapter 4 144 Dealginated Seaweed Column •



chromatogram anytime between 250-350 s could have been chosen. The microcolumn was 

reused immediately after the elution of Cr (III), in contrast to the system based on using 

activated alumina where three injections were required to completely strip the adsorbed Cr (VI) 

species (5). A throughput of about fifty samples per day could be achieved using the system 

described here.

Figure 61 Chromatogram of 25 ng L'1 of a mixed Cr (III) and Cr (VI) standard solution.
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The results of the determination of the two chromium species were 39 ± 0.3 |ig L'1 and 20 ± 

0.2 fig L'1 for Cr (VI) and Cr (III) respectively; to give a total chromium value of 59 ± 0.4 fig L'\ 

compared to a total certified value of 62.5 ± 6.6 fig L'\ Similar analysis of TMDA 54.2 (n = 3) 

found 299 ± 1 fig L'1 and 162 ± 1 fig L'1 Cr (VI) and Cr (III), respectively; and a total of 461 ± 

0.2 fig L'\ compared to a certified total value of 432 ±32.1 fig L'1. Detection limits calculated 

as three times the standard deviation of the background noise levels, were 0.97 fig L’1 and 

0.28 fig L'1 (n = 10) for Cr (VI) and Cr (III), respectively.
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In order to demonstrate that chromium speciation was not altered when the sample is in 

contact with the column material, the Cr (VI) and total Cr levels were determined 

spectrophotometrically. The complexing agent 1,5 diphenylcarbohydrazide reacts with Cr (VI) 

to form a coloured complex the absorbance of which is measured at 540 nm. Total Cr is 

determined after oxidation of Cr (III) to Cr (VI) with nitric acid. Comparison of the results 

obtained by both methods is presented in Table 18. The precision of the 1, 5 diphenyl 

carbohydrazide method is rather poor particularly at low concentrations. However, the 

comparisons of the results show that the differences in the values obtained by both methods 

are not statistically significant at the 95% confidence limit.

Table 18 Comparison of the chromium speciation results obtained by the proposed and the 

1,5 diphenylcarbohydrazide methods

Method 1,5 diphenylcarbohydrazide 

method 

Average ± 1 S.D. (n = 3)

Proposed method 

Average ± 1 S.D. 

(n = 3)

Sample Reference Cr (III) Cr (VI) Cr (III) Cr (VI)

value

(pg/L)

(pq/l) (pg/L) (pg/L) (pg/L)

TMDA 51.2 62.5 ± 6.6 12 ± 5 54 ± 31 20 ± 0.2 39 ±  0.3

TMDA 54.2 432 ± 32.1 132 ± 12 313 ± 16 162 ±  1 299 ± 1

It has been reported in the literature that Cr (VI) may be reduced by biosorbents, including oat 

biomass and immobilised Saccharomyces cerevisiae (19, 3). The researchers claim that the Cr 

(VI) biosorption is via reduction to Cr (III) with subsequent sorption of Cr3+ ions, since 

carboxylates are proposed as major binding sites. However, the separation observed in this 

work is based on the fact that Cr (VI) species, Cr042' was not retained by dealginate due to its 

negative charge. This result could invalidate the biosorption observed for other anions, such as 

H2As04‘, H2Se03', H2V04', but the possibility of the presence of positively charged sites, which
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would be able to bind anions with a single negative charge, instead of larger anions such as 

chromates is still strong.

4.5. Summary

In summary, these results have shown the ability of dealginated seaweed to bind several 

metal ions in a column set up under continuous flow conditions. The selectivity towards specific 

metal ions, which enables its use of the column for speciation and metal preconcentration 

from solution, was demonstrated. One of the main advantages compared to ion exchange 

resins is that dealginated seaweed is less subject to interference from alkaline-earth metals. 

The ability of the biosorbent to preconcentrate metals was comparable with those of other 

types of plant-derived materials, immobilised algae and bacteria (8, 24, 115). In these cases, 

preconcentration of Cd (II), Pb (II), Cu (II), Be (II), Se (IV), Hg (I), Al (III) and Au (III) was achieved 

with enhancement factors between 5 and 1000, similar to those obtained with dealginate (2 

and 100). However, the fact that there is no need to immobilise the dealginate makes it more 

suitable for use in a column system, compare with other biosorbents such as algal and 

bacterial cells (8, 115), It is also important to highlight the excellent durability of the biosorbent 

over a long period. The proposed method is simple, sensitive and accurate, making it suitable 

for further application in effluent treatment and sample preparation for atomic spectrometric 

methods.
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Identification of Functional Groups on
Dealginated Seaweed by 
Fourier Transform Infrared 

(FT-IR) Spectroscopy
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5.1. Fourier Transform Infrared Spectroscopy

To better understand the nature of the functional groups responsible for metal binding, FT-IR 

spectra of preparations of untreated dealginate, metal bound and esterified samples were 

obtained.

The FT-IR spectra of the dried HCI washed, alginic acid and Ca-containing dealginate are 

shown in Figures 62 and 63. The band assignments are shown in Table 19. In the fingerprint 

region (below 2000 c m 1) bands at 1605, 1205, 1159, 1112, 1055, 1030 and 868 cm '1 overlap 

in all the samples. The band at 1413 is not present in the alginic acid spectra, and is very 

strong and sharp in the Ca-bound spectra compared with HCI washed dealginate. The band 

at 1314 cm '1 is similar in the HCI and Ca spectra. The strong band at 1716 cm '1 observed in 

the alginic acid spectra assigned to carbonyl may be compared to the band at 1605 cm' 

’observed for HCI and Ca dealginate, possibly shifted towards lower wave number as an 

effect of metal interaction with the biosorbent.

The spectrum of the HCI washed dealginate shows similar characteristics to that of mannuronic 

acid rich calcium alginate as reported by Dupuy et a I. (155) (see bracketed figures in Table 

19). The wave number difference between the two bands assigned to the asymmetric and 

symmetric vibrations of the carboxyl group in both calcium alginate and dealginate are 

similar, 189 cm '1 and 186 cm '1, respectively. Although the dealginate sample has been acid 

washed to remove metals bound to the material there is no evidence of the presence of 

nonionised carboxyl groups as seen at 1716 cm '1 in the alginic acid spectrum (Figure 62).

Evidence from the FT-IR spectrum of dealginate suggests that functional groups contributing to 

the dealginate spectrum may be similar to those in calcium alginate. Mannuronic and 

guluronic acid units make up alginate and the dealginate spectrum is similar to that for the
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mannuronic acid rich calcium alginate. According to Kohn (156), the affinity of the monomers 

of the two acids for calcium is identical suggesting that the nature of the calcium interactions 

with both is similar. This is possible because all polyuronates have to some extent similar 

primary structures. The results observed are also in agreement with the functional groups 

described by Sartori et al. (157) for sodium and calcium alginates.

Table 19 Assignments of infrared absorption bands for hydrochloric acid washed dealginate, 

alginic acid and calcium dealginate. Figures in brackets are those of mannuronic acid rich 

calcium alginate

Wavenumber (cm'1) Intensity-shape Assignment

3500-3000 strong-broad O-H stretching 
C-H stretching

2892 (2904) medium-shoulder C-H stretching 
O-H stretching

1716 strong-sharp c = o

1605 (1609) medium-shoulder COO' stretching 
(asymmetric)

1413 (1420) strong-shoulder COO' stretching 
(symmetric)

1314 (1328) strong-shoulder C-O stretching

1205 (1200) medium-shoulder C-C stretching

1159 (1155) medium-sharp C-C stretching 
C-O stretching 
C-C-C bending

1112 (1115) strong-shoulder C-C stretching 
C-O stretching

1055 (1047) v strong-shoulder O-H bending

1030 (1027) strong-sharp C-C

868 (882) strong-sharp C-C-O
C-O-C

821 (811) medium-sharp C-O
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Figure 62 FT-IR spectra of (i) alginic acid and (ii) HCI washed dealginate
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Figure 63 FT-IR spectra of (i) Ca bound dealginate and (ii) HCI washed dealginate
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Tables 20 shows a summary of the infrared common bands observed for cadmium acetate, 

Cd-, Pb-, Ni-, Cu-, Cr- and Ag-dealginate samples at pH 2 and 6, as well as Al- and Au- 

dealginate samples prepared at pH 4 and 3, respectively. Table 21 shows a summary of the 

infrared common bands observed for esterified dealginate and metal-esterified samples. 

Differences in the intensity, shape and presence of other bands are discussed individually in 

the following sections.

Table 20 Assignments of infrared absorption bands for metal-bound dealginate and cadmium 

acetate

Wavenumber (cm*1) Intensity-shape Assignment Observed

3500-3000 strong-broad O-H stretching 
C-H stretching

All metal-dealginate
samples
Cd(C02CH3)2

2904-2885 medium-shoulder C-H stretching 
O-H stretching

Ail metal-dealginate 
samples

1605-1600 medium-shoulder COO' stretching 
(asymmetric)

All metal-dealginate 
samples at pH 6 and 
Ag pH 2

1424-1413 strong-shoulder COO' stretching 
(symmetric)

All metal-dealginate 
samples except Pb 
and Cu pH 2

1315-1310 medium-shoulder C-O stretching All metal-dealginate 
samples

1160-1154 medium-sharp C-C stretching 
C-O stretching 
C-C-C bending

All metal-dealginate 
samples

1106-1115 strong-shoulder C-C stretching 
C-O stretching

All samples except 
Pb, Cu pH 6 and Cr 
pH 2

1055-1053 v strong-shoulder O-H bending All metal-dealginate 
samples

1030-1028 strong-sharp C-C All metal-dealginate 
samples

893 strong-shoulder C-C-O
C-O-C

Cd, Pb, Ni, Cr and 
Ag pH 6, Ag pH 2, Al 
and Au
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Table 21 Assignments of infrared absorption bands for esterified and metal-bound esterified 

dealginated seaweed

Wavenumber (cm'1) Intensity-shape Assignment Observed

3500-3000 strong-broad O-H stretching 
C-H stretching

All samples except Cr

2904-2885 medium-shoulder C-H stretching 
O-H stretching

Ail samples

1604-1595 medium-shoulder COO' stretching 
(asymmetric)

All samples

1417-1414 strong-shoulder COO' stretching 
(symmetric)

All samples

1310-1303 strong-shoulder C-O stretching All samples

1160 medium-sharp C-C stretching 
C-O stretching 
C-C-C bending

All samples except Pb 
and Au

1106-1115 strong-shoulder C-C stretching 
C-O stretching

All samples except 
Pb, Cu pH 6 and Cr 
pH 2

1054 v strong-shoulder O-H bending All samples

1030-1028 strong-sharp C-C All samples

871 strong-sharp C-C-O
C-O-C

All samples except 
Cd

5.1.1. Cadmium

The spectra of Cd-dealginate samples prepared at pH 6 and 2 are shown in Figures 64 and 

65. The assignments for the observed bands have been made in Table 20. Both spectra 

showed similar characteristics to those HCI washed dealginate and most of the bands 

observed overlap in the three samples. The increased intensity of the bands at 1413 and 1314 

cm '1 in the Cd-bound pH 6 spectra indicates the interaction of the metal with the carboxylate 

groups. The intensity of the Cd-dealginate pH 2 spectra was weaker, suggesting less Cd bound
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to dealginate. The band at 1600 cm '1 was shifted towards higher wave numbers and could be 

attributed to a 0 = 0  stretching vibration, which has been associated with complexation of the 

carbonyl group by dative coordination (82).

Figure 66 shows the spectra of Cd-dealginate at pH 6 and cadmium acetate. The shape of 

the spectra were similar in the majority of the bands observed, with the bands shifted towards 

lower wave numbers on the Cd-dealginate sample. This result indicates that the binding of Cd 

to dealginate is through carboxylate groups forming acetate type complexes.

Comparison of the spectra obtained from esterified dealginate with and without cadmium 

addition show prominent new bands at 3244, 3059, 1303 and 828 cm '1 respectively in the 

former. The intensity of the band at 1303 cm '1 in the cadmium-containing nonesterified and 

esterified dealginate samples respectively, point to the presence of another cadmium binding 

site in addition to the carboxyl groups (see Figure 66).

In a review of ion binding on polyuronates, Kohn (156) proposed that divalent cations were 

bound by ionic exchange through binding to carboxyl groups. The FT-IR results show that 

cadmium binds to the carboxyl groups. This is confirmed by the disappearance of the strong 

band and the appearance of a shoulder at 1414 cm '1, when the cadmium esterified sample 

was examined (Figure 67). Similar results were described for D. innoxia samples treated with 

acidic methanol (61).
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Figure 64 FT-IR spectra of (i) Cd bound at pH 6 dealginate and (ii) HCI washed dealginate
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Figure 65 FT-IR spectra of (i) Cd bound dealginate at pH 2 (ii) HCI washed dealginate
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Figure 66 FT-IR spectra of (i) Cd-bound dealginate and (ii) Cadmium acetate
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Figure 67 FT-IR spectra of (i) Cd-bound esterified dealginate and (ii) esterified dealginate
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5.1.2. Lead

The spectra of Pb-dealginate showed significant differences when compared with HCI washed 

dealginate (Figure 68). The bands at 1417 and 1312 cm '1 became one very intense band at 

1352 cm '1, because of the interaction of Pb with carboxylate groups. Similarly, the bands at 

1054 and 1030 cm '1 disappeared to form a single less intense band at 1023 cm '1. The 

doublet has been attributed to the C-O stretching vibrations of alcoholic groups in 

carbohydrate component of the ceil walls of green algae (109). Therefore, this could be 

attributed to the interaction of Pb with carboxylate groups.

There were no marked differences between the spectra for Pb-dealginate pH 2 and HCI 

washed dealginate (Figure 69). The band at 1602 cm '1 was slightly shifted towards higher wave 

numbers, and the intensity was weaker. This could be the result of no Pb being bound to the 

biosorbent at pH 2. The Pb-esterified spectra was identical to the esterified dealginate spectra, 

indicating very low amounts of Pb sorbed on dealginate due to the blocked carboxylate 

groups (Figure 70).

5.1.3. Nickel

The spectra for Ni-dealginate pH 6 showed differences mainly in the region between 1650 and 

1150 cm '1 when compared with HCI washed dealginate spectra,. A broadening of the band 

at 1600 cm '1, as well as the increase of the intensity of the bands at 1424 and 1315 cm '1 

indicates the effect of the Ni bound to dealginate (Figure 71).

The Ni-dealginate spectra at pH 2 (Figure 72) showed the presence of unique bands at 1728, 

1638 and 1533 cm '1, resulting from the splitting of the band at 1600 cm -1. This might be due 

to the effect of Ni bound to carboxylate groups on the biosorbent surface.
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Figure 68 FT-IR spectra of (i) Pb bound dealginate and (ii) HCI washed dealginate
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Figure 69 FT-IR spectra of (i) Pb bound dealginate at pH 2 (ii) HCI washed dealginate
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The spectrum of the green algae Cyclotella cryptica and Chlamydomonas reinhardtii showed 

similar bands at 1623 and 1548 cm-1, which were attributed to C = 0  stretching, C-N stretching 

and N-H deformation (84, 109), probably revealing new binding sites for Ni on dealginate. 

Although the optimum sorption pH was demonstrated to be 6, the result observed for Ni- 

dealginate pH 2 sample suggests Ni sorption at pH 2. The increased intensity of the band 

located at 1315 cm-1 could indicate the presence of another binding site for Ni. A weak band 

was observed in Ni spectra at817cm'1 that could be a result of the presence of metal on the 

sample.

No differences were observed between the spectra for the Ni-esterified and esterified 

dealginate, nearly all the bands observed overlap in the two samples (see Table 21). This result 

suggests very low sorption of Ni when the carboxylate groups are blocked on the biosorbent 

surface.

Figure 70 FT-IR spectra of (i) Pb-bound esterified dealginate and (ii) esterified dealginate
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Figure 71 FT-IR spectra of (i) Ni bound at pH 6 dealginate and (ii) HCI washed dealginate
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Figure 72 FT-IR spectra of (i) Ni bound at pH 2 dealginate and (ii) HCI washed dealginate
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Figure 73 FT-IR spectra of (i) Ni-bound esterified dealginate and (ii) esterified dealginate
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5.1.4. Copper

The FT-IR spectra of Cu-dealginate sample at pH 6 (see Figure 74) showed similar bands as the 

HCI washed dealginate spectra, described in Table 20. The differences were observed mainly 

in two bands. The band at 1602 cm '1 appeared slightly shifted to 1629 cm '1, showing lower 

intensity and the presence of a small shoulder around 1530 cm '1. The intensity of the band at 

1315 cm '1 was increased, and the band at 1417 cm '1 virtually disappeared. These changes 

could be attributed to the effect of Cu bound to carboxylate groups on the biosorbent. These 

results were observed previously for the sorption of Cu on Sphagnum peat moss and Datura 

innoxla biomass (61, 78)

The spectra of Cu-dealginate at pH 2 showed similar changes, but the intensity of the bands 

was lower compared with the pH 6 sample. Although the bands were weaker, some Cu
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sorption was observed at pH 2. The Cu-esterified spectrum was very similar to the esterified 

spectra, showing little sorption of Cu (see Figures 75 and 76).

Figure 74 FT-IR spectra of (i) Cu bound at pH 6 dealginate and (ii) HCI washed dealginate
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Figure 75 FT-IR spectra of (i) Cu bound at pH 2 dealginate and (ii) HCI washed dealginate
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Figure 76 FT-IR spectra of (i) Cu bound esterified dealginate and (ii) esterified dealginate
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5.1.5. Chromium

Figure 77 shows the spectra of Cr-dealginate at pH 6. Marked differences were observed in 

the fingerprint region when compared with the HCI washed dealginate spectra. The band at 

1600 cm '1 was split, resulting in two more intense bands at 1628 and 1519 cm '1. The intensity 

of the band at 1310 cm '1 increased. The band at 1424 cm '1 and the shoulder located at 1106 

cm '1 disappeared due to the interaction of Cr with the biosorbent. The changes on the 

carboxylate region of the spectra indicate that the binding of Cr is through these types of 

group.

There were little changes in the spectra of Cr-dealginate at pH 2 indicating low metal sorption 

by the biosorbent. The very low intensity of the spectra of Cr-esterified suggests no sorption of 

Cr by the esterified biosorbent (Figure 78).
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Figure 77 FT-IR spectra of (i) Cr bound at pH 6 dealginate and (ii) HCI washed dealginate
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78 FT-IR spectra of (i) Cr bound at pH 2 dealginate and (ii) HCI washed dealginate
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Figure 79 FT-IR spectra of (i) Cr bound esterified dealginate and (ii) esterified dealginate
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5.1.6. Silver

The main differences between the Ag-dealginate pH 6 sample and HCI washed dealginate 

was observed in the presence of a strong sharp band at 1419 cm -1 and the diminishing of the 

existing band at 1315 cm'^Figure 80). Similar to the previous metais studied, these changes in 

the shape of the spectra could be attributed to the effect of Ag binding to the biosorbent. 

These results corroborate the indication of carboxylate groups as being mainly responsible for 

metal binding on dealginated seaweed.

As expected there were very little changes in the spectra of Ag-dealginate at pH 2, since the 

sorption process is not favourable at this pH. The reduction on the Ag bound to dealginate was 

observed in the shape of the Ag-esterified spectra. Apart from an increase in the intensity of 

the band at 1595 cm ’1 caused by the interaction of Ag, no other changes were observed 

(Figure 82).
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Figure 80 FT-IR spectra of (i) Ag bound at pH 6 dealginate and (ii) HCI washed dealginate
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Figure 81 FT-IR spectra of (i) Ag bound at pH 2 dealginate and (ii) HCI washed dealginate
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Figure 82 FT-IR spectra of (i) Ag bound esterified dealginate and (ii) esterified dealginate
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5.1.7. Aluminium

Figure 83 shows the spectra of Al-dealginate at pH 4. There were no differences when 

compared with the HCI washed dealginate, indicating that no Al was retained by the 

biosorbent. Similar results were observed for the Al-esterified sample (Figure 84). These results 

indicate that no sorption process occurred in the Al study.
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Figure 83 FT-IR spectra c , , bound at pH 4 dealginate and (ii) HCI washed dealginate
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Figure 84 FT-IR spectra of (i) Al bound esterified dealginate and (ii) esterified dealginate
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5.1.8. Gold

The spectra of Au-dealginate at pH 3 are shown in Figure 85. As observed previously for Ni and 

Cr, the band at 1600 cnrv’splits in to three, to give shoulders at 1728, 1638 and 1528 cm '1. The 

intensity and shape of the band at 1424 cm '1 remains the same, and the intensity of the 

bands at 1315 1159, 1104, 1054 and 1030 cm '1 increased. The changes in the shape of the 

spectra are attributed to the interaction of the Au with the carboxylate groups present on the 

surface of the biosorbent. Similar results were described for the sorption of Au by S. natans 

(108). The results showed IR peaks attributed to carbonyl groups, which were shifted towards 

lower wave numbers due to the chemical coordination.

Figure 86 shows the spectra of Au-esterified and esterified dealginated seaweed. The increase

in the intensity of the bands at 1595 and 1417 cm '1 along with the appearance of a band at
/

871 cm '1 suggests the presence of other types of binding sites for Au.

Figure 85 FT-IR spectra of (i) Au bound at pH 3 dealginate and (ii) HCI washed dealginate
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Figure 86 FT-IR spectra of (i) Au bound esterified dealginate and (ii) esterified dealginate

0.26-

0 .2 2 -

0 .2 0 -

0.18-

0.16-

0.14-

0 . 1 2 -

0.10  -

0.08-

0.06-

0.04-

0 .0 2 -

0 .0 0 - ■

3000 2500 2000 10003500 1500
Wavenumbers (cm '1)

5.2. Summary
The participation of carboxylate group in the uptake of metal ions by dealginated seaweed 

was demonstrated by use of Fourier transform infra-red spectroscopy. It was possible to 

elucidate the presence of carboxylate groups on the surface of the biosorbent, and the effect 

that uptake of metals causes on the carboxylate groups. The effectiveness of the esterification 

process was demonstrated with the reduction of carboxylate bands in the fingerprint region. In 

the case of Al, the possibility of precipitation instead of sorption occurring at the biosorbent 

surface was suggested. The use of FT-IR as a powerful tool for the characterisation of the 

nature of metal binding sites on dealginate was demonstrated.
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6.1. Direct observation of hydrated specimens

A programme of environmental scanning electron microscopy (ESEM) techniques, combined 

with elemental Energy Dispersive X-Ray analysis, was developed to assess the distribution of 

metal on the seaweed surface.

The advantages of ESEM over conventional SEM for this application include the minimal 

amounts of sample preparation (and surfaces artefacts); no requirement for conductive 

coatings and the ability to look at surfaces under fully hydrated conditions at high resolution 

(113).

The secondary electron detection process employed in this study is shown in Figure 87.

Figure 87 Hydration in the ESEM, chamber configuration and secondary electron amplification
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The gaseous secondary electron detector (GSED) is positioned around the pole piece and final 

pressure-limiting aperture. A voltage is applied between the specimen surface and the GSED, 

accelerating both secondary and derived electrons towards the detector (see Figure 87) (114). 

Three different types of collisions are created between secondary electrons and gas 

molecules: elastic, ionising (creating electron-ion pairs) and excitatory (transferring energy to 

gas molecules), all of which contribute to the amplification process.

The creation of electron-ion pairs by ionising collisions leads to amplification of the scanned 

electron signal with a residual cloud of positive ions around the sample. The presence of a 

gaseous atmosphere in the specimen chamber allows examination of the biological 

specimen with no need for a conductive coating, whilst at the same time maintaining the 

specimen in a fully or partially hydrated state.

The surface of dealginated seaweed was examined in the hydrated state using the ESEM. 

Untreated, esterified and Pb, Ag, Au and Al saturated samples were observed using this 

technique. Metals such as Ni and Cr could not be studied due to interference caused by the 

components of the peitier cup. The Cd and Cu lines were too weak to be monitored during 

the X-ray analysis.

Environmental scanning electron micrographs showed that the wet-state surface of the 

untreated dealginate was covered with porous particles (see Figure 88). The microstructure of 

the biosorbent was found to consist of cell walls ending in round tips, formed by intersecting 

and overlapping layers (see Figure 89). A more detailed examination revealed the presence of 

fibre-like areas (Figure 90) surrounded by round particles, similar to beads, distributed alongside 

the fibres.
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Figure 88 Electron micrograph of the Dealginated seaweed surface

Figure 89 Electron micrograph of the details on the dealginated seaweed surface
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Although the biosorbent has undergone the processes of chopping, milling and precipitation 

with salts, the cell structure was still evident in large areas of the surface, as it can be seen in 

Figures 91 and 92. The micrographs showed a lack of plant tissue organisation with only the 

cell wall being distinguishable. This is most likely to have resulted from the dehydration and 

exposure to acids and salts during the extraction of alginates. Similar results were reported for 

Sargassum fluitans examined using Transmission Electron Microscopy (TEM)'(l 18).

The presence of beads "sitting" inside the cells was observed on the surface of the entire 

specimen (Figure 92). Figure 93 shows the X-ray spectra of the beads showing a high Ca 

content, which confirmed the presence of Ca from the alginate removal process.

The dealginated seaweed surface was examined following the cleaning procedure used to 

prepare the biomass for sorption. The surface showed no damage as a result of the use of the 

HCI solution that was used to remove Ca, Na, Mg and K present from the untreated material. 

The surface retained its original structure, as shown in Figure 94.

The removal of the cations present on the surface was confirmed by ESEM since there was no 

presence of the beads observed previously. Figures 95 to 97 show secondary electron (SE) 

images of the surface after the cleaning procedure. Figure 97 shows the detail of the cell walls 

free of beads. This confirms the efficiency of the cleaning procedure.
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Figure 90 Detail of fibre type areas on dealginated seaweed surface

Figure 91 Typical cell areas on dealginated seaweed surface
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Figure 92 Detail of cells on dealginated seaweed surface
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Figure 93 X-ray analysis of a detail of Ca beads in cells on dealginated seaweed surface

>jj Full scale -  30 cps

EDS Spot Analysis

Energy keV

Acc.V Spot Magn 
15.0 kV 5.0 5000x

Det WD 
GSE 10.6 Wet 6.4 Torr

Chapter 6 177 ESEM •



In order to establish whether there were observable changes on the surface of the material 

after the esterification of the carboxylate groups treated samples were analysed. As shown in 

Figures 98 and 99 no changes to the surface were observed, even after the acidic methanol 

digestion. Furthermore, no Ca beads were observed. Similarly, possible changes on the 

surface of dealginate after repeated use as column packing material were evaluated. As 

shown in Figures 100 and 101 no changes were observed.

Examination of Durvillaea potatorum  using SEM showed no significant differences between 

biomass loaded with Cu2+ and Cd2+ when compared to untreated biomass (117). In contrast, 

morphological changes were observed during the binding of Cu2+ by Mucor rouxii (116).

Figure 94 SE image of HCI washed dealginated seaweed
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Figure 95 SE image of HCI washed dealginated seaweed

Figure 96 Detailed image of HCI washed dealginated seaweed
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Figure 97 Detailed of clean cell walls on dealginated seaweed surface

Figure 98 SE micrograph of esterified dealginated seaweed
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Figure 99 Detailed SE micrograph of esterified dealginated seaweed
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Figure 100 SE image of dealginated seaweed column packing
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Figure 101 Details of dealginated seaweed used for column packing

Sets of micrographs for the progressive removal of surface water film from wet untreated 

dealginated seaweed are shown in Figures 102 -107.

Initially, the chamber was saturated with water vapour at 6.8 torr of pressure and 3°C, since at 

a particular temperature, higher water vapour pressures resulted in water condensation. As 

shown on Figure 102, a water film was lying over the surface. An examination of the surface at 

higher magnification (Figure 103) revealed the dealginated surface was covered with water, 

and the characteristic surface was not visible.

Figure 104 shows a view of same field after the pressure was reduced to 4.2 torr and the 

temperature increased to 5°C. Some water was removed from the surface film allowing the 

surface to be partially exposed. Figure 105 shows a detailed image at higher magnification, 

where the water film is clearly visible with only a strand above the liquid surface.
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Following a further 5 minutes of exposure further free water was removed (Figure 106). Finally, 

as shown in Figure 107, the pressure was reduced to 3 torr and the temperature was increased 

to 17°C, causing water evaporation, until the material appeared completely dry.

Since it is important not to dehydrate the specimen the micrographs were taken so as not to 

cause morphological distortion by using a temperature of 4°C and a chamber pressure 

between 1 and 4 torr when the surface of dealginate was completely exposed.

Figure 102 SE image of surface of dealginated seaweed
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Figure 103 SE image of surface water film on dealginated seaweed

Figure 104 Image of the water film on dealginated seaweed surface at 4.8 torr pressure
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Figure 105 Detail of surface water film on dealginated seaweed surface
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Figure 107 SE image of dry dealginated seaweed surface
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6.2. Metal distribution on dealginated seaweed surface

Energy dispersive X-ray analysis was employed to determine distribution of Pb, Ag, Al and Au 

on the surface of dealginated seaweed. The samples were saturated with metal ion solution, 

air-dried and examined under the microscope.

6.2.1. Lead

The micrographs showed that Pb distribution on the dealginate surface was homogeneous 

when the sample was examined under fully hydrated conditions at 5°C. Although, it has been 

reported (158) that Pb is sizeable in patches on the surface of green algae, localised Pb was 

not observed on dealginated seaweed.
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Figure 108 and 109 shows the presence of Pb detected by X-ray analysis. No changes were 

observed in the surface of the biosorbent when compared to untreated dealginated or 

treated dealginated.

With certain optimisation of EDS collection method and slit minimisation, it was possible to 

quantify the Pb concentration in the sample. Table 22 shows the percentage distribution of 

elements in the sample, showing that approximately 5% of the sample was composed of Pb, 

as was expected from the initial concentration of Pb removed by the dealginated during the 

sorption process.

The presence of S and Cl observed were typical of the biomass composition. Chloride is a 

major component of seaweeds. Although S was found to represent only 1.3% of the elemental 

composition, its presence on the biosorbent was suggested by the titration results shown in 

Chapter 3, section 3.3.

Table 22 Elemental composition of the Pb saturated dealginate sample by EDS

Element Element %

C 14

O 67

N 11

S 2

Cl 2

Pb 5
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Figure 108 SE image of Pb saturated dealginated seaweed
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6.2.2. Silver

Images for Ag showed texture changes on the surface of the dealginate material. The 

presence of beads in some areas was also observed. The cell characteristics were not easily 

observed. The surface looked like all the components had clumped together (see Figure 110). 

Occasionally beads were found mixed in the flattened surface, as shown in Figure 111.

Figures 112 and 113 showed the EDS analysis of the beads. The EDS spot analysis showed a 

high content of Ag, demonstrating the nature of the new beads formed during the Ag 

saturation. The accumulation or precipitation of Ag may be due to interaction with elements 

present on the surface of the dealginate material.

An X-ray intensity map was taken of the surface of the Ag dealginated sample, showing the 

presence of silver, which was easily matched with the sulphur map obtained from the same 

sample (see Figure 114). No other elements such as oxygen or nitrogen matched the silver 

distribution.

6.2.3. Aluminium

There was no evidence of changes in the surface morphology in the Al-dealginate samples. 

As is shown in Figure 115 the structure was similar compared with the untreated biosorbent. 

Figure 116 shows the presence of Al determined by EDS analysis and the element seemed to 

be homogenously distributed.

The X-ray intensity map for Al matched that of S. The possibility of aluminium sulphate 

compounds may therefore be considered.
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Figure 110 SE image of Ag saturated dealginate surface
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Figure 111 Detail of beads on Ag saturated dealginate surface
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Figure 112 SE image of Ag beads accumulated on dealginated seaweed surface
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Figure 114 Se image and X-ray intensity elemental maps for Ag saturated dealginate
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Figure 115 SE image of Al saturated dealginated seaweed surface
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Figure 116 EDS spot analysis for Al saturated dealginate
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Figure 117 SE image and X-ray intensity elemental map for Al saturated dealginate
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6.2.4. Gold

Examination of the Au saturated dealginate samples showed the deposition of Au particles on 

the biomass surface, as shown in Figure 118. No structural changes were observed on the 

dealginate surface, since the fibre type and the cell structures were still visible after contact 

with the Au solution (see Figure 119). Flowever, the Au saturated dealginate sample was 

observed to be purple in colour.

Two types of Au deposits were found on the surface. Figure 120 shows the detail of one type of 

Au compound. Highly organised crystalline structures, with recognisable shapes were observed 

to be homogenously distributed over the surface. The other type of deposits can be seen in 

Figure 121. Round bead shaped precipitates, covering specific sites of the biosorbent surface 

were observed. EDS analysis of these structures showed that both contained high amounts of 

Au (see Figures 122 and 123).

Due to the visible presence of Au colloid on the surface, quantification analysis was made, 

revealing that Au was present in around 10% of the bulk sample. Table 23 shows the results for 

the elements analysed. No significant residues of elements present originally on the sample, as 

Na or K were found.

Table 23 Element composition of the Au saturated dealginate sample by EDS bulk analysis

Element Element %

O 84

Si 2

Cl 2

Au 11
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Figure 118 SE image of Au saturated dealginate seaweed surface

Figure 119 Detail of Au deposition on dealginated seaweed surface
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Figure 120 Au deposits on dealginate surface
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Figure 122 EDS analysis of Au deposits on dealginated seaweed surface

'•s if .y  : EDS Spot Analysis

Acc.V Spot Magn Det WD Exp 
20.0 kV 3.0 12800X GSE 12.0 383

Figure 123 EDS analysis of Au beads on dealginated seaweed surface
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Two different areas of the Au saturated dealginate samples were scanned to produce X-ray 

elemental maps. Figure 124 shows the X-ray elemental intensity map for an area of the Au 

saturated dealginate sample which was mainly comprised of a mixture of the two types of Au 

particles described previously.

The bright colour on the maps indicated higher concentration of atoms in a certain area, 

which produced higher intensities during the X-ray analysis. The Au distribution in the sample 

was highly concentrated in the bottom right hand corner of the picture, where the bead type 

particles were located, as was clearly indicated by the concentration of bright red points on 

the X-ray bulk map. An attempt to correlate the presence of Au on the surface with that for 

other element studied was unsuccessful since no other map showed a similar distribution to 

that the Au map.

Figure 125 shows the map of an area predominantly formed by Au beads. The Au 

concentration in the map could be clearly compared to the Au particles in the micrograph. 

Of the other elements analysed, only S showed a similar distribution to the Au. This finding 

suggests the association between Au and S.

Siegge (159) reported that the definition of X-ray maps is limited at water vapour pressures 

required to keep the sample in a wet state. However, the results obtained here shows that the 

element mapping could be performed at pressures as low as 1.6 torr with high resolution.
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Figure 124 SE image and X-ray intensity elemental maps for Au saturated dealginate

Acc.V  Spot Magn Det WD Exp
20 0 kV 3 0 3200x GSE 9 9 391 1.6 Torr

Chapter 6 2 0 0 ESEM



Figure 125 SE image and X-ray intensity elemental maps for Au saturated dealginate
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6.3. Analysis of Au saturated dealginate using Backscattered 

Electrons Detector

In order to complete the examination of Au on the dealginate surface, the sample was 

observed using the backscattered electron (BSE) imaging. Backscattered electrons are 

electrons emitted from the specimen at high energies and have been backscattered through 

angles approaching 180° within the sample. The yield of BSE varies monotonically with the 

atomic number, Z of the specimen; therefore, the number of BSE produced is greater than the 

number of SE (112).

Because of the yield of BSE varies with the atomic number of the element, its widely used for 

the determination of high atomic number elements. Au posses a high atomic number making 

it suitable for this type of study (112).

Figure 126 shows the SE image of an area of the Au saturated dealginate sample, which 

apparently shows no Au deposition on the surface, and only the biosorbent surface is 

observable. Although the SE image showed the biosorbent surface as being homogeneous, 

the same sample observed using BSE imaging revealed the presence of Au particles on the 

surface. Figure 127 clearly shows the bright Au particles on the surface of the dealginate. The 

phases are readily distinguished because the dealginate essentially formed by C, H and O 

produces significantly fewer backscattered electrons than the Au precipitates.

The detector allowed a more detailed study of the distribution of Au in the sample providing a 

convenient method of examining the distribution of the elements within dealginated seaweed. 

Figure 128 shows a different area that was not observed previously using the SE detector.
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Figure 126 SE image of Au saturated dealginate seaweed

0.0 kV

Figure 127 BSE image of Au saturated dealginated seaweed
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Figure 128 BSE image of Au layer on deaiginate surface
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Figure 129 Detail of BSE image of Au layer on dealginated seaweed
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Au particles in this zone had not shown specific shapes, like the larger particles observed 

previously. Instead, Au seems to be laid down on the surface in a layer, coating the surface of 

certain areas of the biosorbent. A detailed image of the area can be seen in Figure 129, 

where the Au layer is clearly visible. By comparing the BSE image with the SE image, the 

binding locations can be unambiguously located. These findings suggested the possibility of a 

different mechanism of colloidal Au deposition on the surface.

6.4. Summary

The analysis of fully hydrated dealginated seaweed has shown that the application of 

environmental scanning electron microscopy for the characterisation of biosorbent surface is 

possible. The X-ray microanalysis quantitatively revealed the elemental content of the 

dealginate seaweed. Elemental mapping showed the distribution of the element on the 

dealginated surface. SE images observed in combination with elemental mapping, localised 

the binding sites on the dealginate surface. Results obtained by BSE images suggested that Au 

is bound to sites on the surface, as well as in the interior of the biosorbent.
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7.1. Extended X-ray Absorption Fine Structure (EXAFS), Data analysis

The characterisation of the metal binding sites on dealginated seaweed was performed using 

the Extended X-ray absorption fine structure (EXAFS) technique.

EXAFS data was obtained using the synchrotron radiation source at CLRC Daresbury 

Laboratory. The data was calibrated, background-subtracted and analysed using the standard 

Daresbury packages EXCALIB, EXBACK and EXCURV98 respectively.

EXCALIB converts monochromator positions to X-ray energy and allows signals from poor 

detectors to be removed from the data. It is also used to sum spectra. EXBACK fits the pre- 

and post-edge regions of the spectra by low-order polynomials in the standard manner to 

extract the oscillatory EXAFS signal,

The package EXCURV98 utilises a least squares curve-fitting procedure to compare theoretical 

and experimental spectra with the structural parameters .(distance, coordination number, 

Debye-Waller factor and atom type) as fitting parameters. The theoretical spectra were 

calculated using first curved wave theory (160). The Hedin-Lundquist exchange potential and 

the von Barth ground state potential were used in the calculation of scattering data within the 

programme. Multiple scattering (161) was included if deemed necessary. The standard metal 

foil was used to determine the amplitude reduction factor (AFAC), which should be close to 

unity for the potentials used (162). The programme also determines the uncertainties in the 

fitted parameters and whether a shell significantly improved the fit, using the Joyner (163) 

method. The uncertainties quoted here were always ± 2a (95% confidence). All shells 

described improved the fit index significantly.
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7.2. Metal Ions in solution by EXAFS

In order to understand the coordination binding of metal ions to dealginated seaweed, EXAFS 

data were collected for several diluted solutions, approximately 10 mM concentrations of 

single metal ion solution of Cd, Pb, Ni, Cu, Ag and Au. The results are shown in Table 24.

Gold exists as a complex ion, AuCI4\  and its behaviour was very different from the other metals 

studied. The other metals were found to exist in a very well ordered oxygen environment. The 

coordination of 5-10 oxygens is typical in aqueous solution and the metal-oxygen distances 

are similar to those found in solids.

Table 24 Bonding distances of metal-ligand in solution obtained by EXAFS analysis

Metal Concentration

(mM)

Charge N Type R

A
a2

xlO'4A2

c 3

x io 4A3

Cd 8 2+ 8.7 ± 1.8 O 2.26 120 ± 30 -100 ± 120

Pb 14 2+ 6.6 ± 4.6 O 2.51 340 ±2 1 0 65 ± 10

Ni 33 2+ 6.9 ± 0.6 O 2.02 85 ± 10 10 ± 5

Cu 25 2+ 5.0 ± 0.5 O 1.96 85 ± 20 0 ± 4

Ag 8 1 + 4.9 ± 2.7 O 2.34 200 ± 120 10 ± 40

Au 5 3+ 4.0 ± 0.6 Cl 2.27 20 ± 1 0 —

The mean square variations in distance, a2, are very similar to those found in solid samples with 

ionic bonding, such as the solid salts, indicating similar bonding in solution. The third C3, which 

measures the asymmetry of the distribution, was always consistent with zero. Thus, the nearest- 

neighbour peak is accurately Gaussian, suggesting that a harmonic oscillator potential is 

appropriate.
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2If a harmonic oscillator potential v = — K ( r  -  r0) is used, then a classical analysis gives:

a 2 = k T  I k  = kT  / 4 /r2 juv2 (27)

where v is the stretch frequency. If the description is extended to calculate unharmonic terms, 

an analysis of the partition function gives:

v = ^ K ( r - r 0) 2 + b ( r - r 0y  (28) 

a 2 = kT  I K  C 3 =  - 6 b ( k T ) 2 I K 2 =  - 6 ( b l k ) a “ (29)

Since b/k ~  1 A '1, therefore the two terms in v are comparable, C3 will only be significant for a 2 

values greater than about 0.1 A2. The results showed that C3 was equal to zero, as was 

expected for this type of analysis, since a 2 value is approximately 0.01 A2.

The results enabled the evaluation of the force constant K (in J m 2) and hence the stretch 

frequency, v, since the effective mass, // is known. Taking n  to be the oxygen atomic mass, on 

the assumption that the heavy metal atoms do not move much, K was calculated for the 

metal studied. The results showed (see Table 25) that the force constants and the stretch 

frequencies were reasonable and were to be found in the far infrared region.

Table 25 Force constants and frequencies for the metals studied by EXAFS

Metal G 2

xl O'4 A2
K

Jnrr2
K

ev A'2
1

cm'1

Cd 120 ± 30 35 ±10 2.5 ±0.7 190

Pb 340 ±210 12 ± 8 0.8 ± 0.5 115

Ni 85 ± 10 50 ± 10 3.5 ± 0.7 220

Cu 85 ± 20 50 ± 15 3.5 ± 1.0 220

Ag 2 0 0  ± 120 20 ± 10 1.5 ± 0.7 140

Au 20 ± 10 200 ± 100 14 ± 17 300
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7.3. Modelling the potential

In order to further understand these results, the potential was modelled. A steep repulsion, 

representing the atomic cores, in addition to a Coulomb attraction was used. Assuming a 

purely ionic bond, the potential may be written as:

•trt \ ^  ^  Z ,Zz 1
V (r ) = —  - ~ ------- — -  (30)

r  4 7it0 t r

Where: Z, = the metal ion charge

Z z = the oxygen (or chlorine) atom charge 

t = mean dielectric function

To connect this to an oscillator model, the equilibrium separation r 0 has to be expanded:

dV ,  . . 1  rf2K, , , 2 1 d 3V
-  Y0( r - r 0) + ---------V(r )  =  V{r0) + - — \rl>( r - r 0) +

dr 2 dr 6 dr
3 f o ( r - r Q) 3 (31)

At r -  rodV/dr = 0. Thus,

dV nA e: Z ,Z2 1

dr j i + ]

A _ 1 e' Z ,Z 2 ^ n+] 
n 4 7rt0 t 0

(32)

V(r)
e: z  z  12 r"~] 1 ro 1

t n rn r
(33)

It is then found:

d 2V

dr ~> o, - = k =  B' Z ,Z l  . 1} (34)
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f L \ r o = 6 b  = - j L ^ ( " + W ” - v  ,35)
dr  4 7tiQ t r0

e: Z ,Z 2 i - n  ez Z ,Z 2 1
V(rQ) ~  —  -------- « -------------- —-— , n large (36)

47rtQ t nr0 47rt0 t r0

The last formula shows that the bond strength is essentially equal to the Coulomb attraction at 

the equilibrium spacing. This also gives:

T// . Icr* , n + 4 k
V ('■») = ------ V  b = ---------------------  -(37)

n — 1 6 r0

The index of repulsion n is of order 10 therefore bio  — lA '1 as noted above for normal 

distances. Using the values of k and rQ given above, the values of ionic strengths for n = l 1 were 

calculated. The results are shown in Table 26.

Table 26 Bond strength for the metals studied

Metal ro K V(r0) b

A CD < >° rb ev ev A'3

Cd 2.26 2.5 1.3 2.8

Pb 2.51 0.8 0.5 0.5

Ni 2.02 3.5 1.4 4.3

Cu 1.96 3.5 1.35 4.5

Ag 2.34 1.5 0.85 1.6

Au 2.27 14 7.3 15
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The bond strengths were all of the correct order. The value for Ag was weak since Z = 1, and 

the value for Pb was very low because Pb is a large atom. The Au-CI value is large, perhaps 

due to the more complete ionisation of Cl atoms compared to O atoms in H20. The values of 

b  for all the metals gave C3 values, which were very small, in the order of 10 x 1 O'4 A3. The 

results found by the model were in good agreement with the findings from the EXAFS analysis, 

corroborating the structures previously proposed for the metals in solution.

7.4. Metal studies on Dealginated Seaweed

7.4.1. Cadmium

For all the samples studied, the edge step was calculated as:

Aju — A c  x  nt (38)

The structural parameters obtained by the data analysis appearing on the Tables in the 

following description of the EXAFS results are: N, which is the number of scattering atoms; the 

type of atom found; r is the distance at which the atom was found. The Debye-Waller factor 

a2 is the mean square variation in interatomic distance between the emitting and scattering 

atoms and FI is the fit index.

Transmission and fluorescence data were collected for Cd saturated dealginate samples 

without a monitor foil, because it was not available. The Cd K edge was studied. The edge 

steps observed for the three Cd dealginate samples were very similar. The metal mass 

calculated for the samples was similar as well, as can be seen in Table 27. A concentration 

value of 8 mM was found for the Cd(N03)2 solution. The Act used for Cd was 0.81 x 10'24 m2 

atom '1 (164).
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Table 27 Transmission edge steps for Cd samples on dealginated seaweed

Sample

(Cd)

nt

(m-2)

t

(Mm)

n

(nr3)

Mass 

(mg c c 1)

Cd foil 1.0 1.23 x 1024 25 4.9 x 1028 9200

Cd solution —0.002 2.5 x lO 21 500 5 x 1024 1

Cd at pH 2 0.04 5 x 1022 500 10x 1025 19

Cd at pH 6 0.04 5x 1022 500 10 x 1025 19

Cd esterified 0.06 7.5 x 1022 500 14 x 1025 28

Analysis of EXAFS data collected for Cd metal foil, Cd(N03)2 solid and Cd(N03)2 solution are 

shown in Table 28. The results obtained for the foil were comparable to the crystal structure, 

which shows 6 Cd atoms in a plane at 2.98 A plus a further six out of plane atoms 3.21 A, 

although the precision for N and a2 was rather poor. The correlated Debye theory gave a 

value for a2 of 120 at temperature, 0O of 209 K. The data suggested 6 in-layer atoms with out- 

layer atoms being less well bound.

Table 28 EXAFS results for Cd foil, Cd(N03)2 solid and solution

Sample N Atom

type

r

± 0.02 A
a2

i o 4 A2

1/̂max

A-1
Ep FI

Cd foil 6 ± 3 Cd 2.97 120 ± 30 10 -10.9 7.0

7 ± 6 Cd 3.21 260 ± 180 10 -10.9

Cd(N03)2 solid 7.1 ± 0,9 O 2.30 120 ± 20 10 -0.9 11.7

6.6 ± 2.2 O 2.31 100 ± 70 10 -2;3 10.0

0.9 ± 2.4 O 2.53 0 ± 150 10 -2.3

Cd(N03)2 8.7 ± 1.8 O 2.26 120 ± 30 10 -2.3 27.2

solution
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The Cd(N03)2 solid sample showed a significant split in the first shell. A coordination number of 

approximately 7 was found, which can be compared to the crystal structure: 6 O atoms at 

2.26-2.43 A and 2 O atoms at 2.59 A. No evidence of N atoms at approximately 3.0 A was 

observed, as in crystals. Two split 6 + 1 fits significantly better. A value of a2 = 100 x 1 O'24 m2 

was calculated, which corresponds to a Cd-O stretch frequency of 210 cm -1 if the full oxygen 

mass is used. The data for the Cd(N03)2 solution showed no indication of splitting. A higher 

coordination number compared to the solid data was observed.

The EXAFS data collected for the Cd dealginate samples showed very good signal intensity. 

The results of the fitting analysis are shown in Tables 29 and 30. Three atom types were fitted for 

the Cd pH 2 sample: oxygen, carbon and nitrogen, all of them giving equally good fits. 

Sulphur atoms could not be fitted into the data. The distances found strongly suggest that an O 

atom is the nearest neighbour, if cadmium nitrate composition is to be considered. Other 

molecule distances, such as cyanide crystals give Cd-C at 2.10 A and Cd-N at 2.20 A. The 

difference with respect to these distances is slightly higher, therefore an O atom is considered 

to be the nearest neighbour.

Table 29 EXAFS results for Cd pH 2 samples

N Atom

type

r

± 0.02 A
a2

i o*4 A2

[/̂max

A-1
Ef FI

6.6 ±  0.6 O 2.29 140 ± 15 10 -4.0 6.5

9.0 ± 0.6 C 2.34 120 ± 10 10 -2.5 4.8

7.4 ±  0.5 N 2.32 120 ± 15 10 -3.2 5.2

7.6 ± 0.7 O 2.31 1 80 ± 20 10 -5.6 4.6

2.0 ± 1.1 C 2.66 50 ± 60 10 -5.6

6 O 2.30 60 ± 5 10 -6.0 5.2

3 C 2.66 85 ± 30 10 -6.0
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Assuming oxygen as the nearest neighbour a second shell was fitted, which significantly 

improved the fit index, as can be seen in rows 4 and 5 of Table 29. The coordination therefore 

is 6 + 3, and it was found to be within experimental errors. The a2 values also improved, 

corresponding to a Cd-O stretch frequency of 270 cm '1. These findings suggested an 

environment of three bidentated C 02 units. Attempts were made to simulate the experimental 

spectrum by assuming a fixed coordination number of 6 + 3. The results obtained are shown 

in rows 6 and 7 of Table 29. The fit index was found to be slightly higher, but still comparable to 

the best fit. The calculated distances gave a good structure for three-fold symmetry, if the 

distance for C-O bound is 1.36 A.

The data obtained for the Cd pH 6 sample were essentially the same as Cd pH 2 sample (see 

Table 30). The fitting of a second shell significantly improved the results. The C atom shell gave 

a low coordination number and a2 values, suggesting the 6 + 3 arrangement, as described in 

the previous sample.

Table 30 EXAFS results for Cd-dealginate samples

Sample N Atom

type

R

± 0.02 A

a2

l O'4 A2

[/
rxm ax

A-1
Ef FI

PH 6 5.6 ± 0.5 O 2.28 60 ± 10 10 -4.7 7.8

5.8 ± 0.8 O 2.30 60 ± 15 10 -6.5 5.9

1.5 ± 1.2 C 2.65 20 ± 50 10 -6.5

esterified 6.4 ± 0.6 O 2.29 70 ± 10 10 -5.9 7.1

6.5 ± 0.5 O 2.30 70 ± 15 10 -7.5 5.8

3.0 ± 2.0 C 2.65 90 ± 90 10 -7.5

In comparison with the two previous samples, the Cd esterified sample fitted better to a 

second atom shell, with significant improvement in the data. Again, a 6 + 3 structure was 

clearly observed (rows 5 and 6 of Table 30), corroborating the aforementioned results. The
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Cd2+ ion exhibits a d 10 configuration, which shows no stereochemical preferences from ligand 

field effects, allowing a variety of coordination numbers and geometries, based mainly on the 

importance of electrostatic forces, covalence and size factors. Because of its size, Cd2+ is 

more often found with a coordination number of 6 compared with other metals in the same 

group (127).

These findings indicated three fold symmetry for Cd surrounded by O atoms as nearest 

neighbour, bound to a C atom. Figure 100 depicts a possible structure for the Cd dealginate 

sample, based on the distances calculated using the EXAFS results. This indicates a slightly 

different outline with respect to the previously proposed structure shown in Figure 32 (Chapter 

3.1). Fiowever, the assumption that the bonding is Cd-O-C remains essentially the same. The 

proposed angles were 62° and 118° for the O-Cd-O and O-C-O respectively, giving an 

octahedral geometry type structure. Structural analysis of the compound Cd(C0 2CH3)2(H20)2 

has shown that it contains acetate groups that are monatomically bridging (165). Therefore, 

the Cd binding mechanism by dealginated seaweed may be an ion-exchange type, with Cd 

being bound to the biosorbent surface by O atoms from carboxyl groups.
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Figure 87 Proposed Cd-dealginate structure from EXAFS analysis.

7.4.2. Lead

EXAFS data for Pb was collected in transmission and fluorescence mode using Pb(CH3COO)2 

salt as a monitor, the Pb L3 edge was studied.

The results for the transmission edge steps are shown in Table 31. Samples showed an 

absorption edge for Br in dealginated seaweed. The Act value from tables (164) was 3.5 x 10' 

24 and 1.8 x 10'24 m2 atom'' for Pb and Br respectively. The edge step of Br was used to 

approximately correct for peak differences, assuming that is a constant amount. The 

concentration of the Pb(CH3COO)2 sample was determined to be 14 mM.

All three samples showed similar metal masses. The edges showed similar values between the 

Pb dealginate samples and similar values when compared to the Pb solution sample. The 

three Pb dealginate samples showed an edge shift of -1.7 eV relative to the solid Pb acetate. 

The main transition for the L3 edge is p ->  d, which is largely independent of the charge state.
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Table 31 Transmission edge steps for Pb samples on dealginated seaweed

Sample A ii 

(Pb)

Ap

(Br)

A|i

(Pb)

scaled

nt

(m-2)

N

(nrv3)

Mass 

(mg c c '1)

Pb(CH3COOH)2 0.015 - 0.015 0.43x1022 0.086x1026 3

Pb at pH 2 0.18 0.01 0.18 5.1 1.02 35

Pb at pH 6 0.19 0.01 0.17 4.9 0.98 34

Pb esterified 0.04 0.006 0.07 2.0 0.40 14

Br 0.01 0.55 0.11 1.5

Analysis of the transmission spectra collected for Pb(CH3COO)2 showed that there are

presumably two nearest neighbours for Pb2+ and two acetate ions were present. Table 32 

indicates the possibility that two O atoms are present in the environment. The value of a2 was

as expected, corresponding to A -1 4 0  cm '1. The fit was improved by splitting the shell into 

two distances. This procedure showed the presence of one O atom each time (see Table 32).

The new X values calculated were 270 and 210 cm '1 respectively. Two further light atom shells 

could be fitted at 3.5 A and 3.8 A, lowering the fit index significantly. These results are in good 

agreement with X-ray diffraction data reported for basic Pb acetate compounds (166).
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Table 32 EXAFS results for Pb(CH3COO)2 solid and solution

Sample N Atom type r

± 0.02 A
a2

l o 4 A2

[/
rNm ax

A-1
Ef FI

Pb(CH3COOH)2 1.6 ± O 2.34 220 ± 90 8 -0.1 54.5

solid 0.6

1 O 2.29 60 ± 25 8 -1.9 38.8

1 O 2.57 100 ± 50 8 -1.9

Pb(CH3COOH)2 6.6 ± O 2.51 340 ± 8 2.5 88.8

solution 4.6 210

Fluorescence scans similar to those for solids were taken for Pb acetate in solution. The results 

(Table 32) showed higher Pb-O bond lengths compared to the solid. Ionic radii from a high 

coordination number crystal gives a Pb-O distance value of 2.52 A, suggesting that the 

increase in the bond length value observed may be a higher coordination number effect. Pb 

often has a distorted oxygen environment. A 4+2 split fits at distances of 2.31 A and 2.56 A 

with no significant improvement in fit index, a2 for single shell fit implies RMS deviation a = 0.18 

A, suggesting around 6 atoms spread between 2.33 and 2.69 A, very similar to two shell fit.

Data from the Pb at pH 2 transmission spectra showed a clear improvement with a split shell. 

Two clear peaks are visible in the Fourier Transform. The use of an asymmetric single peak gave 

no improvement in fit index. The values in the last two rows in Table 33 clearly showed a 4+2 

light atom environment, suggesting the presence of 6 neighbours.
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Table 33 EXAFS results for Pb pH 2 sample

N Atom r a2 ^max EF FI

type ± 0.02 A i o-4 A2 A-1
5.7 ± 1.3 O 2.41 310 ± 60 8 13.8 27.1

4.4 ± 2.0 O 2.50 200 ± 130 8 5.9 20.6

1.4 ± 1.6 O 2.79 40 ± 120 8 5.9

4 O 2.50 180 ± 20 8 4.8 22.5

2 O 2.78 90 ± 25 8 4.8

The Pb at pH 6 sample showed a constant presence of four neighbours (see Table 34), clearly 

confirmed from the asymmetric or split peak. No other peaks were observed on the Fourier 

Transform. The split peak has mean radii of 2.52 A while the asymmetric peak has mean radii 

of 2.61 A, suggesting the presence of four light atoms in a moderately asymmetric peak.

Table 34 EXAFS results for Pb pH 6 sample

N Atom type r

± 0.02 A
a2

i o 4 A2
Kmax

A-1
Ef FI

3.2 ± 0.8 O 2.47 240 ± 70 8 0.2 37.0

0.9 ± 6.0 O 2.37 70 ± 900 8 -1.2 27.0

2.7 ± 8.2 O 2.59 480 ± 1 800 8 -1.2

3.1 O 2.61 220 ± 40 8 -2.6 23.7

EXAFS results for the Pb esterified sample are shown in Table 31. A second weak peak was 

observed in the Fourier transform. The degree of fit based on the asymmetric or split peak 

gave improved results. It can be seen that the structure was essentially identical to Pb pH 6, 

with approximately four light atoms being present in a moderately asymmetric peak.
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Most divalent Pb complexes exhibit octahedral geometry for a coordination number 6 and 

square planar geometry for coordination number 4 although other geometries can be 

achieved with particular ligands. The structure of the Pb binding could be similar to that 

proposed for Cd.

7.4.3. Nickel

Transmission and fluorescence data for Ni K edge were collected. The results obtained for 

transmission edge steps are shown in Table 35. The amount of Ni present in the pH 6 sample 

was considerably lower compared to the amount of Ni at pH 2 and in the esterified samples. 

The absorption edges were similar for the three samples, and a shift of approximately 2.3 eV 

from Ni foil was calculated. The concentration of the Ni(N03)2 solution was 33 mM, and A a 

value from tables was 2.9 x 1 O'24 m2 atom ’1 (164).

Analysis of EXAFS data for Ni metal foil (Table 36) showed that the distances for Ni were as 

expected, with an average of 11 neighbours when AFAC 1.0 was used for the calculation.

Table 35 Transmission edge steps for Ni samples on dealginated seaweed

Sample Am nt T n Mass

(Ni) (m-2) (pm) (nrr3) (mg c c '1)

Ni foil 1.25 4.3x1023 5 0.9 x lO 28 9000

Ni solution 0.03 0.1 x 1023 500 0.02 x lO 29 2

Ni at pH 2 0.25 0.86 x 1023 500 0.17 x 1027 17

Ni at pH 6 0.05 0.1 7 x 1023 500 0.034 x 1027 3.4

Ni esterified 0.15 0.52 x 1023 500 0.10 x lO 27 10
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The analysis was improved when AFAC 0.92 was employed (see Table 36), giving 

approximately 12 neighbours surrounding the Ni environment and a reduction of the fitting 

index from 25.6 to 6.4. Since the results were improved using AFAC 0.92, this value was used 

throughout the rest of the calculation. The correlated Debye theory gave a cj2 value of 70 x 1 0 '  

24 m2 for the first shell, rising to 100 x 1 O'24 m2 for the most distant shell.

Table 36 EXAFS results for Ni foil, Ni(N03)2 solid and solution

Sample N Atom

type

r

± 0.02 A
a2

l o 4 A2

1/•'max

A-'
Ef FI

Ni foil

AFAC 0.1 11.0 ± 2.4 Ni 2.47 65 ± 15 15 -10.9 25.6

AFAC 0.92 11.9 ± 0.4 Ni 3.48 65 ± 5 15 -11.1 6.4

6 Ni 3.48 120 ± 35 15 -11.1

24 Ni 4.33 100 ± 10 15 -11.1

11.9 ± 0.4 Ni 4.98 75 ± 20 15 -11.1

Ni(N03)2 solid 6.4 ± 0.5 O 2.03 80 ± 10 12 3.7 6.9

Ni(N03)2 solution 6.9 ± 0.6 O 2.02 85 ± 10 12 5.9 8.1

6 O 2.05 75 ± 10 12 4.7 8.5

6 O 2.06 75 ± 10 12 3.3 7.7

Single scattering 6 O 2.05 75 ± 10 12 4.7 8.5

Oh multiple 6 O 2.06 75 ± 10 12 4.7 7.7

scattering

In the case of Ni(N03)2 solid, a prominent peak at 4.5 A was observed. XRD measurements 

show 6 oxygens at 2.06 A or 2.08 A for hydrated crystals, which can be compared to the value 

of 2.03 A found for this sample. A value of A of 240 cm -1 was determined when the total 

oxygen mass was used. A well-ordered environment was found for the Ni solution. The value of 

a2 determined was similar to that calculated for the solid sample. A significant peak was found 

at 4.5 A, although this was much weaker compared to the solid sample. This peak gave rise to 

a characteristic shape around 3 A 1 in the spectrum, which was visible in all spectra described
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here. This peak was considered to be long for a second neighbour contribution, and could not 

be fitted. The presence of the peak might be due to a multiple scattering path of the type Ni- 

O-Ni-O-Ni with forward scattering through the central atom. A centro-symmetric Ni site is the 

only possible explanation for this effect, giving a regular octahedral geometry for Oh point 

group.

The data was improved by fitting a defined cluster for Oh symmetry, with the coordination 

number fixed at 6. The results were found to be significant, showing a good peak at 4.5 A and 

a very good shape at approximately 3 A'1 in the spectrum. These findings suggested a well- 

ordered octahedral Ni environment as is found in the solid nitrate salt.

The most common geometry for Ni complexes at a coordination number 6, as observed for Ni 

solid and Ni solution samples is octahedral (127). The Ni(N03)2 salt occurs most commonly as 

the hydrate, containing the green hexaaquanickei (II) ion in an octahedral environment. 

Tienmann ef a/. (80) reported similar results to those illustrated before, the fitting of 6 O atoms 

at 2.05 A for the Ni(H20)6(N03)2 complex, but no further peaks or shells were described.

EXAFS results for the Ni-dealginate samples are shown in Table 37. There were marked 

differences in the edges between the samples and compared to the Ni(N03)2 samples that 

may be attributed to differences in symmetry.

Ni in the pH 2 sample was fitted in three different atom type environments: oxygen, nitrogen 

and sulphur. The distances found for S atoms were too long to consider this type of atom as 

the nearest neighbour. The presence of four O atoms at 2.04 A was observed. Although the 

bond lengths suggested oxygen as the nearest neighbour, N cannot be discarded since cj2 

corresponds to stretch frequency X of 240 cm '1. No evidence for further shells at 2.5 -  3.0 A 

was found. A significant peak at approximately 4.5 A was observed, as for the Ni solid sample.
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This peak can be fitted well by including multiple scattering in C4h cluster, as can be seen in 

rows 4 and 5 of Table 37. The fitting index was significantly lower compared to the single 

scattering, strongly suggesting a square planar Ni environment.

The planar geometry is preferred for the majority of four-coordinated Ni complexes, due to the 

d8 configuration of this element. The planar ligand set causes one of the d orbitals to be high 

in energy leaving the remaining eight electrons to occupy the other four d orbitals, giving it 

preference over the tetrahedral geometry (127).

Table 37 EXAFS results for Ni-dealginate samples

Sample N Atom

type

r

± 0.02 A
a2

i o 4 A2

[/̂max

A - ’

Ef FI

pH 2 4.0 ± 0.3 O 2.04 75 ± 10 12 -0.4 7.1

4.6 ± 0.3 N 2.07 70 ± 10 12 0.6 6.8
8 ±  1 S 2.21 200 ± 25 12 13.5 13.3

Single scattering 4 O 2.04 .80 ± 5 12 0.3 6.9

^4h 4 O 2.05 80 ± 5 12 -0.5 5.1

pH 6 5.2 ± 0.7 O 2.05 80 ±  20 12 -0.2 15.3

esterified 4.9 ± 0.4 O 2.05 80 ± 10 12 -0.6 7.8

Single scattering 6 O 2.05 115 ± 10 12 0.6 9.3

Oh cluster 6 O 2.06 120 ± 10 12 -1.1 8.5

Single scattering 4 O 2.05 65 ± 1 0 12 -0.3 8.6
D4h cluster 4 O 2.05 65 ± 10 12 -1.1 6.4

The data for the Ni pH 6 sample showed that Ni is surrounded by five O atoms at 2.05 A. A 

significant peak at 4.5 A was also observed as well for the Ni pH 6 sample. This peak fitted well 

with multiple scattering, giving a coordination number 5. This coordination number implies that 

Ni is embedded in a square planar environment, with the presence of one O atom above the 

plane.
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The Ni esterified dealginate showed approximately five O atoms as nearest neighbour, located 

at 2.05 A. A similar peak at 4.5 A was observed for this set of data. There was no evidence of a 

further shell between 2.5 and 3.0 A. Single scattering fits suggest first shell coordination of five 

atoms. Attempts made to fit the peak at 4.5 A resulted in data fitted by defining cluster, 

including multiple scattering. The 4.5 A peak was best fitted with a D4h cluster (index fit of 6.4) 

implying a most likely square planar Ni with one additional O atom above the plane, as was 

found for Ni pH 6 sample. The symmetry is possibly C4v. This conformation clearly differs from 

the results found for the Ni pH 2 sample.

For coordination number 5, the Ni complex tends to adopt the trigonal bipyramidal geometry, 

but a number of square pyramidal complexes occur as well (127). Cyanide salts of Ni ions 

usually adopt the square pyramidal geometry, and a number of five-coordinated complexes 

with weak field oxygen ligands have been described to form square pyramidal high-spin 

complexes. Figure 88 depicts the proposed geometry for Ni at pH 2 and pH6 and Ni in the 

esterified sample, based on the EXAFS results. Tienmann ef a/. (80) found no other shell could 

be fitted to complete the picture, but assumptions based on previous findings of this study 

indicate that a C atom is the nearest neighbour to the O atom. In addition in Ni acetate 

complexes containing unidentate acetate ligands, no forming bridges have been described 

(167), making this type of structure the most probable.

Figure 88 Proposed Ni-dealginate structure from EXAFS analysis
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7.4.4. Copper

EXAFS transmission and fluorescence data for Cu K edge was collected using a Cu foil as a 

monitor. The absorption edges showed significant variation in edge shape, although the edge 

shape and the white line height were similar for the three Ni dealginate samples. A similar 

metal content was found for all the samples (see Table 38). The concentration of Cu solution 

was 25 mM and the Aa2 value used was 2.7x1 O'24 m2 atom '1 (164).

Table 38 Transmission edge steps for Cu dealginated seaweed samples

Sample Am

(Cu)

Nt

(m-2)

t

(Mm)

n

(nrr3)

Mass 

(mg c c 1)

Cu foil 1.05 3.9 xlO23 5 7.8 x 1028 8500

Cu solution 0.00 0.74 x lO 22 500 1.5x1025 1.6

Cu at pH 2 0.25 9.3 x 1022 500 19 x 1025 20

Cu at pH 6 0.25 9.3 x lO 22 500 19x1025 20

Cu esterified 0.14 5.2 x 1022 500 10.4 x 1025 11

The single transmission spectrum for the 5 (.im Cu foil gave good distances and scattering 

parameters (see Table 39). When an AFAC value of 1.0 was used the correct coordination 

numbers of 12, 6 and 24 for Cu-Cu interactions were produced, therefore, this value was used 

for subsequent analysis. The correlated Debye theory gave a a2 value of 77 x 10'24 rrr2 for the 

first shell, rising to 115 x 1 O'24 rrr2 for the distant shells.

The EXAFS data collected for the Cu(N03)2 solid was good, but produced low coordination 

symmetry. This low coordination could be a result of a poor background subtraction during the 

transforming process. The crystal has four O atoms in a square planar configuration located at 

1.96 A (see Table 39).
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The results showed no improvement when coordination number value was fixed to four atoms, 

but if multiple scattering is included in the calculations, a square planar, D4h symmetry type 

structure is observed. The fit index value obtained is 16.1 and a good peak appears at 

approximately 3.8 A. No evidence for other significant shells was observed. The coordination 

number 4 is often found in Cu(ll) complexes (127). Although the d9 configuration makes Cu (II) 

subject to the Jahn-Teller effect if placed in a regular octahedral or tetrahedral environment, 

with a few exceptions is not very often observed in these environments.

Furthermore, the Cu(N03)2 salt cannot be fully dehydrated and two different forms of the solid 

can exist, both possessing complex structures in which Cu(ll) ions are linked together by nitrate 

ions in an infinite array.

Table 39 EXAFS results for Cu foil, Cu(N03)2 solid and solution

Sample N Atom

type

r

± 0.02 A
a2

i O'4 A2
m̂ax
A-1

Ef FI

Cu foil 11.5 ± 1.4 Cu 2.54 90 ± 10 15 -14.2 8.2

6 Cu 3.60 120 ± 30 15 -14.2

24 Cu 4.46 120 ± 10 15 -14.2

11.5 ± 1.4 Cu 5.00 90 ± 120 15 -14.2

Cu(N03)2 solid 2.4 ± 0.3 O 1.97 90 ± 1 5 11.5 -12.6 12.3

4 O 1.96 120 ± 15 11.5 -11.1 18.0

4 O 1.96 120 ± 15 11.5 -11.0 16.1

Cu(NQ3)2 solution 5.0 ± 0.5 O 1.96 85 ± 20 11.5 -10.9 11.4

6 O 1.96 110 ± 20 11.5 -10.5 12.7

6 O 1.97 115 ± 20 11.5 -10.5

The results for Cu(N03)2 solution sample produced a good value for a2 when five O atoms 

were fitted at 1.96 A, suggesting a coordination number 5 (see Table 35). No improvement 

was observed when coordination number 6 was used, or by adding multiple scattering to the
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calculation, with observed values of fit index of 11.4, 12.7 and 12.8 for the three analyses. The 

peak in Fourier transform at approximately 3.8 A was not observed for this set of data, 

suggesting the possibility of five fold coordination with no definite centro-symmetric unit.

Copper salts are soluble in water forming the hexaaquocopper (II) ion. Successive additions of 

ligands leads to the formation of complexes by displacement of water molecules. As 

observed for the ammonia complexes, that four molecules are bound to Cu in the normal 

way, the fifth molecule is possible in aqueous solution, but the addition of the sixth molecule 

occurs under extreme conditions, showing that with Cu 5 and 6 coordination number are 

possible. This behaviour is caused by the Jahn-Teller effect, because the Cu does not bind the 

fifth or sixth ligand very strongly (127).

The EXAFS results for the three Cu dealginate samples studied are shown in Table 40. A very 

well ordered environment without any sign of asymmetry was observed for the pH 2 sample, 

showing four O atoms at 1.95 A. A small value of a2, corresponding to X of 280 cm '1 was 

established. Because the calculated bond lengths strongly suggested an O atom as the 

nearest neighbour, it was not necessary to include other metals in the fitting. A strong peak was 

observed at approximately 3.8 A.
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Table 40 EXAFS results for Cu-dealginate samples

Sample N Atom R a2 1/̂max Ef R

type A i O'4 A2 A-1 ± 0.02 A

pH 2 3.9 ± 0.3 O 1.95 60 ± 10 11.5 -11.4 6.9

4 O 1.95 60 ± 5 11.5 -11.3 6.9

4 O 1.95 60 ± 5 11.5 -11.2 4.9

pH 6 3.7 ± 0.2 O 1.93 60 ± 10 11.5 4.1 3.7

4 O 1.94 70 ± 5 11.5 . 4-3 3.8

4 O 1.93 70 ± 5 11.5 3.7 2.7

esterified 4.1 ± 0.3 O 1.94 70 ± 20 11.5 -11.3 4.7

4 O 1.94 65 ± 5 11.5 -11.4 4.7

Multiple 4 O 1.94 65 ± 5 11.5 -11.3 3.0

scattering

A significant improvement was observed when multiple scattering was included, lowering the 

fit index value to 4.9 and a good peak was observed at approximately 3.8 A. This result 

suggests the occurrence of a square planar environment, D4h symmetry, with a centro- 

symmetric atom, as suggested for the Cu(N03)2 solid sample.

The values obtained for the pH 6 and esterified samples were very similar to the pH 2 sample, 

also suggesting a square planar geometry. Identical to the pH 2 sample, four O atoms were 

located at 1.94 A. An improvement was observed when D4h cluster multiple scattering was 

included, giving a peak at 3.8 A, for both Cu pH 6 and the esterified samples.

The three Cu dealginate samples provided good data and a clear four fold oxygen 

coordination, most likely in square planar configuration. No evidence of asymmetry or any 

further significant shells were observed. The Cu environment observed on the samples was very 

well ordered, similar to Cu(N03)2 with a a2 value corresponding to X of 280 cm '1. The edges 

shapes for the three Cu dealginated samples were very similar to the Cu(NQ3)2 solid.

Chapter 7 229 EXAFS*



Although the results indicated a square planar geometry, similar to Ni, the geometry for Cu 

bound to dealginated seaweed, other structures have been proposed for copper carboxylate 

complexes, which are also possible. Binuclear complexes, with four carboxylate bridges that 

may have end groups (127) and linear or near linear crystalline groups type Cu-X-Cu (168) are 

among the complexes described. The known structure of copper (II) acetate monohydrate 

possesses four bridging acetate groups linking Cu ions in pairs to afford centrosymmetric eight- 

membered rings (168). Crystal structure studies (169, 170, 171) have shown that the majority of 

copper (II) carboxylates are in fact carboxylate-bridged dimers with two Cu atoms at 2.6 -  2.7 

A distance. Taking into account these structures, and the EXAFS findings for the Cu dealginate 

samples, the structure depicted in Figure 102 is proposed for Cu bound to dealginate. 

Unfortunately, no other shells were observed in the data collected for Cu to elucidate if the 

second shell contains two or four C atoms, which could have helped in the definition of a 

structure. The structure shows a binuclear type of molecule, with carboxylate groups acting as 

bridges for the Cu atoms.

Figure 89 Proposed structure for Cu bound to dealginated seaweed

Cu Cu
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7.4.5. Silver

Transmission and fluorescence data for Ag K edge was collected using a Ag metal foil as a 

monitor. The transmission edge steps of the three Ag dealginate samples were very similar, 

showing a weak white line and an edge shift of about -1.5 eV with respect to the metal foil. 

The solution showed a shift of +0.2 eV. The masses found were different between the three Ag 

dealginate samples (see Table 41), probably due to differences in packing or thickness. A 

concentration value of 8 mM was calculated for the AgN03 sample. The value of Aa used was

0.84 x 10‘24 m2 atom '1 (164).

Table 41 Transmission edge steps for Ag dealginate seaweed samples

Sample Am nt t n Mass

(Ag) (m-2) (nm) (nrv3) (mg c c '1)

Ag foil 1.2 1.43 xlO24 25 5.7 x 1028 10300

Ag solution 0.0002 2.4 x 1021 500 4.8 x 1024 0.86

Ag at pH 2 0.14 1.7 x lO 23 500 3.4 x 1026 61

Ag at pH 6 0.05 6.0 x 1021 500 12 x 1024 2.2

Ag esterified 0.02 21 x lO 21 500 42 x 1024 8.6

Data from 25 (am Ag foil with Afi of 1.2 was used to optimise the parameters in the

programme. The results showed that using an AFAC value of 0.9 the accuracy of the 

parameters increased, therefore, this value was used for further calculations (see Table 42). 

With these settings, a coordination number 12 was obtained for the Ag configuration. No 

improvement was observed when other shells were added by multiple scattering for 

coordination numbers of 6, 12 and 24, since the fit index value slightly changed from 4.2 to 

4.3. The correlated Debye theoiy gave a value of a2 of 110 x 1 O'24 A2 rising to 140 x 1 O'24 A2 for 

most distant shells.
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Data from transmission scans for AgN03 solid showed an edge shift of -1.1 eV with respect to 

the metal foil (see Table 42). The crystal structure for this solid shows 3 oxygen atoms at 2.48 A 

and 2 additional oxygen atoms at 2.57 A, giving an average of 5 oxygen atoms at 2.51 A. This 

value is in good agreement with 5 oxygen atoms fitted at 2.49 A in the AgN0 3 solid sample. 

Similarly, the value of Ag found is comparable to the value of Ag in the crystal structure, which 

is located at 3.2 A. When the oxygen mass is used, a a 2 value of 200 x 1 O'24 A2 was calculated, 

corresponding to Ag-O stretch frequency of approximately 140 cm '1.

Table 42 EXAFS results for Ag foil, AgN03 solid and solution

Sample N Atom r a2 1/
rxm ax Ef FI

type ±  0.02 A 10'4A2 A-1
Ag foil

AFAC 1.0 10.7 ±  1.1 Ag 2.07 90 ±  10 12 -8.8 6.5

AFAC 0.9 11.6 ±  1.0 Ag 2,87 90 ± 5 12 -9.0 4.2

6 ± 5 Ag 4.04 140 ± 60 12 -9.0

16 ±  1.4 Ag 5.00 130 ± 40 12 -9.0

11.6 ±  1.0 Ag 5.64 120 ± 30 12 -9.0

12 Ag 2.87 90 ±  5 12 -9.1 4.3

6 Ag 4.03 130 ±  25 12 -9.1

24 Ag 5.01 160 ± 20 12 -9.1

12 Ag 5.63 120 ± 30 12 -9.1

AgN03 solid 5.5 ±  0.9 o 2.49 240 ±  40 10 -8.1 22.5

5.5 ±  0.6 o 2.49 200 ± 25 10 -8.5 11.5

3.2 ±  1.1 o 2.82 270 ±  100 10 -8.5

6.7 ±  5.3 Ag 3.12 590 ±  2800 10 -8.25

5 o 2.49 200 ± 15 10 -8.5 14.3

2 o 2.82 200 ± 70 10 -8.5

1 Ag 3.12 320 ±  200 10 -8.5

AgNQ3 solution 4.9 ±  2.7 o 2.34 200 ± 125 10 -5.7 71.4
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The bond lengths for Ag-O in solution were much shorter compared to those found in the solid 

samples. This might be caused by the fact that Ag-N lies at 2.22 or 2.37 A and Ag-S appear at 

2.43 A in solids, increasing the distance of Ag-O. Furthermore, a five or six O atom is a 

common environment for metal atoms in aqueous solution, and both geometries are possible 

for Ag complexes (127). A well-ordered environment was observed for the solution as well as 

the solid sample, and a2 values between both samples were comparable. No further shells 

gave significant improvement in the fit index.

The EXAFS results for the Ag pH 2 samples are shown in Table 43. A higher content of Ag was 

found in this sample, with values around 60-70 mg g \  No fitting could be obtained using 5 

atoms, since the signal was found to be tc out of phase. Three different atoms were fitted, O, N 

and S all of them gave good fit for the Ag samples, suggesting a wide variety of possibilities 

compared to the other metals studied. The distances suggested that an O atom was most 

likely to be the nearest neighbour, located at 2.33 A.

Table 43 EXAFS results for Ag pH 2 samples

N Atom r a2 1/
rxm ax Ef FI

type ± 0.02 A 10'4 A2 A-1

2.7 ± 0.5 O 2.33 180 ± 50 10 -7.1 29.5

2.8 ± 0.6 N 2.34 1 70 ± 40 10 -6.1 30.5

3.0 ± 0.6 C 2.37 140 ± 40 10 -5.3 31.1

1.9 ± 0.8 O 2.30 100 ± 60 10 -8.4 19.9

1.9 ± 1.1 C 2.62 120 ± 120 10 -8.4

o+1 S 3.19 220 ± 110 10 -8.4 16.1

1.3 ± 0.5 C 3.00 40 ± 40 10 -8.4 15.2

0.8 ± 0.5 Ag 2.82 190 ± 90 10 -8.4 16.8
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Adding a second light atom shell significantly improved the fit index, as shown in rows 4 and 5 

of Table 42. It also lowered the O atom coordination distance to approximately 2.3 A due to 

interference between overlapping shells. The second shell was assumed as C, but N or S could 

equally be bound, especially because Ag has a relatively low affinity for oxygen donors, and 

forms numerous complexes with the donor atoms S and N (127). If the O atom and C atom 

form a unit with the same coordination number, and the distance of C-O is assumed to be

1.36 A, like in the case of Cd, then the angle Ag-O-C is about 90°, which produces a very rigid 

structure. The possibility of an Ag environment of 2 + 2 formed by four different bonding units 

cannot be discarded.

The three last rows of Table 42 show the results of a new fit using a peak observed at 

approximately 3.0 A in the Fourier transform of the data. The values suggested that all the 

atoms form possible structures with Ag. The coincidence of distance and the Debye-Wailer 

factor suggested Ag from Ag metal (12 nearest neighbours at 2.87 A). This coordination 

represents 7 ± 4 % of Ag as metal and is probably due to photo reduction. This could be 

verified by comparing data early and late in the exposure of the sample to the beam.

in addition crystal structure studies of some Ag-carboxylate compounds (172, 173) have shown 

the presence of centrosymmetric binuclear units containing bridging carboxylate groups. The 

units were described as being linked into polymeric structures by weak Ag-O interactions, and 

the Ag-Ag bond length was observed to be at 2.90 A distance.

The Ag content in the Ag pH 6 sample possesses the lower concentration of Ag of all the Ag 

dealginate samples studied, diminishing the quality of the data acquired. The results found 

were comparable to the Ag pH 2 sample (see Table 44). A lower coordination than the Ag pH 

2 sample was observed, and fitting of five atoms was not possible. The calculated bond 

lengths were shorter compared to Ag pH 2 sample. Shorter distances suggest a Ag-N, since
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this bond distance is 2.22 A in AgSCN, when the coordination is to one N atom and one S 

atom and 2.37 A in AgCNO when the coordination is to two N atoms. Because Ag (I) 

configuration is d 10, • when coordination number 2 is fitted the stereochemistry shows a 

pronounced tendency to form linear twofold coordination in most of the complexes (127). 

There was no evidence of the presence of the peak at 3 A observed in the pH 2 sample, 

suggesting that the Ag is not photo-reduced to Ag metal. No further shells could be fitted.

Table 44 EXAFS results for Ag pH 6 samples

N Atom

type

r

± 0.02 A
a2

i o 4 A2

[/̂
max

A-1
Ef FI

1.1 ± 0.4 O 2.19 120 ± 70 8 -1.4 58.0

1.3 ± 0.5 N 2.22 110 ± 70 8 -1.7 58.0

1.4 ± 0.9 O 2.19 190 ± 140 10 0.9 82.4

1.6 ± 1.0 N 2.22 1 70 ± 130 10 0.1 81.9

The EXAFS data obtained for Ag esterified sample showed a low Ag content. It was not possible 

to perform a five atom fit using this data. The results (see Table 45) clearly showed one light 

atom bound to Ag, or possibly two atoms bound at approximately 2.25 A. The distances 

suggested N atom as nearest neighbour, similar to the Ag pH 6 sample. A further peak was 

observed at approximately 3.0 A, giving the possibility of N or Ag as the nearest neighbour (see 

rows 5 and 6 of Table 44). The significant improvement in the fit and the value of a2 obtained 

indicated approximately 6 ± 4 % of Ag metal. The similarity of this result to the aforementioned 

presence of Ag metal in the pH 2 sample strongly indicates the possibility of photo-reduction 

during the analysis.

Analysis of a shorter range of data showed the possibility of S atom as nearest neighbour at 

3.22 A (row 11 of Table 45). As previously found, N is the likely nearest neighbour at 2.26 A, but
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instead of one, two N atoms are suggested. In addition, a signal from a small fraction of Ag 

metal was observed. No evidence of a second shell was found.

Table 45 EXAFS results for Ag esterified samples

N Atom r a2 l^m ax Ef FI

type ±  0.02 A l o*4 A2 A-1
1.7 ± 0.6 O 2.23 150 ± 70 10 -7.2 56.2

1.8 ±  0.6 N 2.26 130 ± 70 10 -6.6 57.1

2.1 ±  0.7 C 2.29 120 ± 70 10 -5.9 58.0

1.3 ± 0.7 S 2.48 160 ± 80 10 -4.0 70.5

1.9 ± 0.6 N 2.26 160 ± 70 10 -6.6 44.5

0.7 ±  0.5 Ag 2.84 90 ± 60 10 -6.6
1.6 ± 0.5 N 2.25 110 ±  100 8 -7.0 50.8

1.7 ± 0.5 N 2.26 130 ± 70 8 -7.0 39.8

0.8 ±  0.6 Ag 2.83 100 ±  100 8 -7.0

1.6 ± 0.4 N 2.26 110 ± 50 8 -7.4 40.5

0.8 ±  0.8 s 3.22 80 ± 130 8 -7.4

1.6 ± 0.5 N 2.24 110 ± 50 8 -5.7 44.2

2.2 ± 1.9 C 3.56 40 ± 130 8 -5.7

A specific structure for the binding of Ag to dealginated seaweed was not possible from the 

analysis of the Ag nearest neighbour, since all the samples produced different results. 

However, the coordination number proposed and the bond lengths are in good agreement 

with the stereochemistry of Ag described in the literature (127). However, ESEM results indicated 

the possibility of Ag being bound to S atoms on the biosorbent surface, since the intensity of 

the X-ray maps clearly showed a match between the location of Ag and S atoms. In addition, 

the microphotographs indicated the presence of possible Ag complexes on the surface, in the 

form of beads, which could be related to the photoreduction reaction proposed here, giving 

as a result beads of Ag-Ag metal. The map showed, a more extensive area covered by Ag 

than by S indicating that the photoreduction reaction might have occurred.
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7.4.6. Gold

Transmission and fluorescence data for Au L3 edge was collected using an Au 5 |im metal foil 

as monitor. The transmission edge steps calculated are shown in Table 46. The edge step as 

well as the concentration was different for the Au dealginate samples. This result is expected, 

since less Au would be bound to the biosorbent on the esterified sample, if a carboxylate 

binding type were considered. An estimated 5 mM was obtained as concentration value for 

the AuCI4H solution. The value used for Acr was 3.5 x 1 O'24 m2 atom '1 (164).

Table 46 Transmission edge steps for Au dealginated seaweed samples

Sample Am

(Au)

nt

(m-2)

t

(Mm)

N

(nr3)

Mass 

(mg c c 1)

Au foil 0.9 2.6 xlO23 5 5.2 x lO 28 17100

Au solution 0.005 1.5 x 1021 500 3 x 1024 1.0

Au at pH 3 0.19 5.4 x 1022 500 11 x lO 25 36

Au esterified 0.06 1.7 x 1022 500 3.4 x lO 25 11

EXAFS results for metal foil, AuCI4H solid and solution are in Table 46. Initially, single transmission 

scan and AFAC 1.0 were used to test parameters in the programme. Flowever, better results 

were obtained using AFAC 0.8. Therefore, this value was used throughout the calculations. It 

was necessary to include multiple scattering to fit the 4th shell. The correlated Debye theory 

gave a2 value of 105 x TO'24 m2. The results for the metal foil were as expected giving 

coordination numbers of 6, 12 and 24, all in good agreement with the Au metal crystal 

structure.
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Table 47 EXAFS results for Au foil, AuCI4H solid and solution

Sample N Atom

type

r

± 0.02 A
a2

l o*4 A2

1/•'max

A-1
ef FI

Au foil 12 Au 2.87 80 ± 10 12 -10.8 10.9

6 Au 4.08 80 ± 20 12 -10.8

24 Au 4.98 130 ± 20 12 -10.8

12 Au 5.67 80 ± 10 12 -10.8

HAuC!4 solid 3.7 ± 1.0 Cl 2.26 80 ±  30 10 -8.1 41.6

3 ± 1 O 2.08 20 ± 30 10 -8.1 59.0

HAuCI4 solution 4 ± 0.6 Cl 2.27 20 ± 10 12 -11.8 14.5

4.7 ± 0.8 O 2.17 20 ± 100 12 -27.8 19.4

An edge shift of 2.7 eV from metal foil was observed for the Au solid sample. The results 

showed the Cl atom as the nearest neighbour located at 2.26 A. Distances found were 

comparable to XRD distances for the Au-CI bond which is 2.29 A. The coordination number 

was lower compared to XRD (6 atoms) but the square planar type molecular geometry is 

appropriate for the AuCI4' complex (127).

The edge for Au solution sample was very similar to that obtained for the Au solid sample, a 

weak white line and an edge shift of 2.3 eV from the metal foil. Similar to the Au solid sample, 

the Cl atom is the nearest neighbour, suggesting the presence of AuCI4' complex in aqueous 

solution. The similarities of the edge shapes strongly indicated that Au is forming a negatively 

charged complex with Cl' in solution. It has been reported that the only possible form of Au in 

solution is this type of complex (127). Values of a2 corresponding to stretch frequencies of 140 

and 300 cm -1 were calculated when Cl atom mass is used for the oscillator.

The spectrum obtained for the pH 3 sample was very similar to the spectrum for Au foil. A first 

shell could be fitted for Au metal structure (see Table 48). The coordination number obtained 

indicated that approximately 75% of the Au present on the sample was colloidal metal. The
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fitting of an additional extra shell showed the possibility of S atom as the nearest neighbour, 

since the distances calculated are appropriate. The binding with O was also possible, but the 

second S atom shell significantly improved the results, suggesting 25% of the Au bound to one 

or possible two S atoms.

Table 48 EXAFS results for Au pH 3 samples

N Atom r a2 1/
rxm ox EF FI

type ± 0.02 A 1 O'4 A2 A-1

9.1 ± 1.8 Au 2.86 80 ± 10 12 -8.8 16.1

9 Au 2.87 80 ± 5 12 -9.2 11.2

4.5 Au 4.08 100 ± 30 12 -9.2

18 Au 4.99 120 ± 15 12 -9.2

4.5 Au 5.66 85 ± 30 12 -9.2

0.3 ± 0.2 S 2.33 0 ± 40 12 -9.2 8.9

0.4 ± 0.3 O 2.16 20 ± 50 12 -9.2 9.7

0 . 3  ± 0.2 S 2.33 0 ± 40 12 -9.2 66.8

0.3 ± 0.25 O 2.15 10 ± 90 12 -9.2 72.7

Similarly by fitting difference spectrum, the same result is achieved as shown in rows 8 and 9 of 

Table 49, enabling much better definition of the coordination number. The concentration of 

the pH 3 sample was determined as approximately 36 mg g 1. The result showed that 

approximately 75% of the total concentration is colloidal Au, leaving about 9 mg g '1 bound to 

the dealginate surface.

The EXAFS data obtained for the Au esterified sample showed that 85% of colloidal Au was 

present on the sample. The data fitted the Au metal structure very well, leaving 15% of Au 

bound to a different type of atom from the dealginate surface. Fitting of the data (Table 49) by 

adding an extra shell showed that S is the nearest neighbour. As was carried out for Au pH 3, 

by fitting the difference spectrum the previous result was confirmed, suggesting 17% of Au
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bound to one or two S atoms. The esterified sample therefore contains about 2 mg g '1 of Au 

bound to S atom.

Table 49 EXAFS results for Au esterified samples

N Atom r a2 l̂ max Ef FI

type ±  0.02 A 1 O'4 A2 A-1
10 ±  1.9 Au 2.86 80 ±  10 12 -9.3 13.9

10 Au 2.86 80 ± 5 12 -9.4 10.2

5 Au 4.06 100 ±  30 12 -9.4

20 Au 4.97 1 20 ± 20 12 -9.4

10 Au 5.67 90 ±  25 12 -9.4

0.3 ±  0.3 S 2.34 20 ± 70 12 -9.4 9.4

0.4 ±  0.5 O 2.13 30 ±  100 12 -9.4

0.3 ±  0.3 S 2.34 30 ±  70 12 -9.4 75.5

0.4 ±  0.4 O 2.14 30 ± 100 12 -9.4

There was no evidence of a white line on the Au pH 3 or Au esterified sample, even after 

subtracting the Au foil signal from the spectra. This finding suggests the presence of Au+ 

instead of Au3+ as in the Au solid and solution studied.

Au (III) only forms anionic complexes in solution, exhibiting a d8 configuration, which allows it to 

accom m odate the atoms in a high geometric structure with coordination numbers 4, 5 and 6, 

as was observed for the Au solution sample. The results for the Au dealginate sample 

consistently showed a lower coordination number two, indicating that the oxidation state for Au 

changed from Au (III) to Au (I). Furthermore, the fitting demonstrated that Au is bound to two S 

atoms. This type of configuration can only be adopted by a d 10 configuration, which allows the 

coordination number 2, to give a linear geometry, resulting in an oxidation state of Au (I). 

Watkins et al. (139) reported Au(lll) reduction to Au (I) on the surface of the algae Chlorella 

vulgaris, and EXAFS curve-fitting analysis described the environment as a two shell Au-S fit.
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ESEM results previously showed the correlation of Au and S in a Au dealginate sample X-ray 

map, which strongly indicates that the binding mechanism for non-colloidal Au in dealginated 

seaweed is reduction to Au(l) which is subsequently bound to two S atoms in a linear geometry.

The remaining Au present on the biosorbent surface was identified as colloidal Au. Gardea- 

Torresdey et ol. (124) reported Au (III) reduction to colloidal Au (0) on the surface of Medicago  

sativa by cysteine or methionine groups and the presence of colloidal Au (0) was corroborated 

by EXAFS analysis. The colloids formation on dealginated seaweed was also clearly shown on 

the SE microphotograph reported previously (Chapter 4, section 4.2).

7.5. Summary

These results have demonstrated that EXAFS is a useful tool for the elucidation of the binding 

mechanism of metals to dealginated seaweed. Although most of the metal studies showed a 

similar mechanism, the binding to the biosorbent surface strongly depends on the chemistry of 

the metal itself. Structures proposed for Cd, Pb, Ni and Cu corroborate the carboxylate type 

binding proposed previously in this study. In the case of Ag, the suggested binding could be to 

S atoms, but the formation of Ag-carboxylate complexes cannot be discarded. The reduction 

mechanism previously proposed for Au, as well as binding through S atoms was corroborated.
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General Discussion

Chapter 8



8.1. Characterisation of the sorption process and elucidation of the 

metal binding mechanism

In order to characterise and optimise the uptake process of Cd, Pb, Ni, Cu, Cr, Ag, Ai and Au 

by dealginated seaweed, the batch procedure was used to determine the parameters 

controlling the sorption process.

The results showed that the overall sorption process depends on the pH used. It was necessary 

to carefully control the pH during the experiments, since low metal removal was observed 

between pH 2 and 5. Above pH 8 most of metal ions in solution are present as hydroxides (14). 

The higher metal removal from solution was obseived between pH 5 and 7. In order to avoid 

precipitation, pH 6 was considered optimum for Cd, Pb, Ni, Cu, Cr and Ag. The chemistry of AI 

and Au did not permit the use of this pH value, since AI and Au species start precipitating after 

pH 4 (14). For this reason, pH 3 and 4 were used for Au and AI, respectively.

The batch experiments showed that the kinetics of the sorption process was fast for all the 

metals studied. Approximately 90% of the metal in the solution was effectively removed in the 

first 5 minutes of contact and saturation was achieved within 24 h for all the metals except Pb.

However, the results obtained from the equilibrium experiments showed different patterns 

depending on the metal studied. It was observed that at low concentrations linear and non

linear models are useful to describe the sorption mechanism of Cd, Pb, Ni, Cu, Cr, Ag, and AI, 

based on the assumption that there is only one type of site available on the biosorbent 

surface. However, when the concentration is increased, the behaviour of the biosorbent is 

different, in the case of Cd, Pb and Cu and Ag at high concentration the curve keeps 

increasing, while for Ni, Cr and AI a levelling off was observed. . For Cd, Pb, Cu and Ag the 

best fit to a two binding sites model was obtained. Therefore, the mechanism seems to occur
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in two stages, a rapid interchange with hydrogen ions from the surface, and a second step, 

where covalent binding slowly takes place.

The mechanism for Ni, Cr and AI differs from that proposed for the aforementioned metals. 

Although the results fit an ion exchange model at low concentration, the one-site type model 

prevails at high concentration. This suggests that Ni and Cr have affinities for homogeneous 

type-sites until the dealginate surface is saturated.

It was not possible to fit the Au data to the models proposed in this study. The assumption that 

ion exchange between cations and hydrogen ions is occurring on the surface of the 

biosorbent could not be applied in the case of Au, since AuCI3' was the species used. This 

finding suggests a completely different sorption mechanism from the other metals studied. 

Two possible mechanisms could be occurring: 1) the presence of positively charged sites that 

allow the ion exchange of negatively charged Au species, and 2) the reaction of Au species 

with components on the surface of the biosorbent. Due to the range of pH used during the 

experiment the first mechanism is less likely to occur, since the ionic balance has to be 

maintained between the solution and the biosorbent surface, leaving the possibility of 

chemical reaction between Au and the biosorbent surface as the mechanism of Au removal 

from solution.

Simulation of the metal solution conditions for Cd, Pb, Ni and Cu demonstrated that the metals 

were bound to dealginated seaweed as divalent cations at pH 6. Ag was found to exist at this 

pH as the monovalent cation.

The results found for Cr showed that CH+ behaviour was very similar to the rest of the divalent 

cations studied. Furthermore, Cr affinity for the same type of sites as Ni indicated a similar 

mechanism for a divalent or a trivalent cation. However, solution simulation showed that Cr
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exists as Cr(OH)2+ at pH 6, and therefore, the sorption process might be occurring as a divalent 

cation. This finding explains the similarities between the Cr results and the divalent cations, and 

the fact that the Cr uptake follows an analogous mechanism as Ni.

The simulation of AI solution showed that approximately 50% of AI present was AI(OH)3 

precipitate. This finding could explain the discrepancies found when the AI data was fitted to 

the proposed models. Therefore, in the case of AI, precipitation appears to be playing an 

important role in the removal of AI ions from solution. However, high adsorption of AI by 

Rhlzoclonium at pH 4 has been reported (174). The study also demonstrated AI adsorption at 

pH 5 from the AI(OH)3 (s) suspension. The mechanism was described as an ion exchange with 

protons, although the kinetics were slow, attributed to a masking of AI(OH)3 solid.

In order to confirm ion exchange as the proposed sorption mechanism for metal uptake by 

dealginated seaweed, the stoichiometry of the reaction was established, using Cd and Ca as 

representatives of the metals studied. The stoichiometry showed to be approximately 1:1, 

indicating an exchange of one divalent cation for another on the biosorbent surface.

The confirmation of the cation exchange was used to assume a B2M stoichiometry for the ion 

exchange with protons. Ion exchange constants and metal capacities were calculated using 

this approximation. The difference in capacities found between the metals studied showed 

that the efficiency of the sorption process depends on the metal studied and the affinity of the 

biosorbent towards the metallic species.

The dealginated seaweed capacity to remove metals from aqueous solution was similar to 

other biomasses (23 48, 60, 76, 91,95, 100, 117, 130, 131, 140, 152) demonstrating the 

potential contribution to industrial processes.
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Using the optimum parameters found from the batch experiments, the sorption process was 

extended to study a wider range of metals under continuous flow conditions. The evaluation of 

the removal of Cd, Pb, Ni, Cu, Cr, Ag, Au, Zn, Sc, Sr, Co, Mn, Hg, Sb, As, Se and V from solution 

by dealginated seaweed packed in a microcolumn showed the affinity of the biosorbent for 

binding specific metal ions. As was demonstrated previously in this study, the cations were 

retained by the biosorbent, and dealginate showed little or no retention of negatively charged 

species. This result demonstrates the possibility of using the biosorbent for specific metal 

removal in an industrial process and analytical applications.

The column packed with dealginated seaweed showed efficiencies comparable with 

columns filled with other types of chemical or biological sorbent without immobilisation or 

modification, demonstrating the advantages of direct use of the biosorbent in a column 

system, making the possibility of scale-up simple and easy use at low cost.

8.2. Identification of the binding sites on the surface of dealginated 

seaweed

Three possible binding sites were identified by titration of the dealginate surface. The 

calculated pKa's of 1.8, 3.63 and 9.09 were associated with sulphonate groups, carboxylic 

groups and phenolic groups, respectively. The amount of binding sites showed the 

predominance of carboxylate groups (1.5 ± 0.04 mmol g_1) on the biosorbent surface.

The presence of carboxylate groups was confirmed by modification of the biosorbent surface 

and by FT-IR. Esterification of dealginated seaweed showed a significant reduction in the 

sorption capacity of the biosorbent for all the metals studied, indicating that carboxyl group 

are primarly responsible for the metal retention.
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Hydrolysis of the biosorbent, resulted in the resumption of the sorption capabilities, confirming 

the previous results.

The FT-IR spectrum of dealginated seaweed showed the presence of carboxylate functional 

groups in the fingerprint region. The presence of other functionalities such as N or S was not 

confirmed. The spectra showed the dealginated seaweed to possess similar functionalities to 

those of alginic acid. The presence of metal bound to the biosorbent was evident in the 

changes observed in the fingerprint region of the spectra, indicating that the binding of Cd, 

Pb, Ni, Cu, Cr and Ag to the biosorbent is through carboxyl groups. Comparison of the Cd- 

dealginate spectra with the cadmium acetate spectra showed similarities, pointing to binding 

through oxygen on carboxyl to form acetate type complexes. EXAFS results allowed structures 

based on binding to oxygen atoms from carboxyl groups for Cd and Ni to be proposed. 

Results fit two shells, showing O as the nearest neighbour with the possibility of C atom as 

second neighbour. In the case of Cd, the suggested Cd-acetate type complex by FT-IR was 

confirmed. Structures of Pb and Cu bound to O atoms were also confirmed by EXAFS analysis, 

with coordination number 4 for both elements.

The study of the dealginate surface using ESEM showed the presence of the cell structure in 

the biosorbent, corroborating the similarity found between the alginic acid and dealginated 

seaweed FT-IR spectra. X-ray maps of the Ag-bound to dealginate sample suggested the 

possibility that Ag bound to the biosorbent through S sites. The occurrence of this binding is 

possible since S groups were identified by titration of the biosorbent surface. The binding of Ag 

to dealginate through O and S atoms was confirmed by EXAFS, since the data for both atoms 

were closely matched, corroborating the existence of two binding sites for Ag previously 

proposed from the equilibrium results.
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The prevalence of the precipitation process over the sorption process for AI was confirmed, as 

no differences were found in the Al-bound dealginate compared with the dealginated 

seaweed spectra. In an attempt to confirm this result, the sample was analysed for AI content 

by 27Ai NMR. The results showed that the AI present was in the sulphate form, used to prepare 

the AI solutions. Due to these results, and the previous sorption results observed, the process of 

AI retention was concluded to be more a precipitation rather than sorption by the biosorbent. 

The precipitation resulted in the removal of AI from the solution although little sorption might 

have occurred. As mentioned before, the sorption results for AI did not fit the models used, 

suggesting a precipitation process instead sorption on dealginated. The binding of AI to S 

observed in the FT-IR spectra and suggested by the equilibrium and simulation results was also 

confirmed by X-ray maps, since the AI and S atoms were located in the same regions on the 

biosorbent surface.

The changes observed for Au suggested very little sorption on the biosorbent surface, at least 

to carboxyl moieties. X-ray maps obtained for Au-bound to dealginate indicated possible 

binding through S atoms. The presence of colloidal Au, formed in the biosorbent surface by 

reduction of Au (III) to Au (0) was observed. The EXAFS results confirmed that Au retention 

mechanism is very different from the rest of the metals studied. As was observed using the 

ESEM, the EXAFS showed that colloidal Au is formed on the surface of the biosorbent, due to 

reduction of Au3+. This mechanism of retention accounts for approximately 85% of the Au 

present. The remaining Au (III) was reduced to Au (I) which was bound to the biosorbent 

through S atoms.

The identified binding sites on the dealginated seaweed surface were similar to those reported 

for a variety of biosorbents (2, 4, 11, 21, 25, 51, 56, 61, 77, 82, 92). The clear identification of 

the binding sites allows the modification of the surface of the biosorbent in order to improve 

the efficiency of the metal removal process.
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CONCLUSIONS

Chapter 9



9.1. Conclusions

The study of metal retention by dealginated seaweed and the characterisation of the surface

of the biosorbent demonstrated that:

• The main mechanism of metal sorption by dealginated seaweed is ion exchange.

• The sorption process is pH dependent and the efficiency of sorption process was 

demonstrated to be dependent on the metal species used.

• Three types of binding sites were identified on the dealginate surface: sulphonates, 

carboxylates and OH groups.

• The stoichiometry of the sorption process was found to be a B2M type.

• The esterification of the dealginate surface resulted in a reduction of the ability of the 

biosorbent to bind metal ions, indicating that the carboxyl groups are the major binding 

sites.

• The ability of dealginated seaweed to bind a wide range of metal ions in a column set up 

under continuous flow conditions was demonstrated. The biosorbent showed excellent 

durability during prolonged and repeated use.

• The proposed method is simple, sensitive and accurate making it suitable for further 

application in effluent treatment.

• Dealginated seaweed proved useful for speciation and separation of metals from solution.

• The participation of carboxyl groups in the uptake of metal ions by dealginated seaweed 

was elucidated by the use of Fourier transform infra-red spectroscopy. The effect of metal 

uptake on the carboxyl groups indicated the importance of these moieties in the binding 

process.

• The analysis of fully hydrated dealginated seaweed using ESEM for the characterisation of 

the surface of the biosorbent was demonstrated.
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• The X-ray microanalysis quantitatively revealed the element content of the dealginated 

seaweed.

• ESEM images observed in combination with elemental maps obtained for Pb, Ag, AI and 

Au were used to localise binding sites on the dealginated surface.

• EXAFS proved to be a useful tool for the elucidation of the binding mechanism of metals 

by dealginated seaweed. Structures proposed for Cd, Pb, Ni and Cu corroborate the 

carboxyl type binding previously proposed.

• Although ion exchange was proposed as the main mechanism, it was demonstrated that 

the binding mechanism for Au to dealginated seaweed was via covalent bond to S atoms, 

along with the formation of colloidal Au by reaction with the biosorbent surface.

9.2. Future Work

This study has indicated that further research in certain areas is required. In order to improve

the given results it is necessary that the following are undertaken:

• To evaluate the effect of the modification of the surface of the dealginated seaweed 

using other methods in order to make other binding sites available. The possibility of 

enhancing the retention capacity by chemically modifying the biosorbent should be 

explored.

• To extend of the sorption process to other metals or other type of pollutants such as 

organic molecules or metal-organic complexes, in order to extend the range of 

application of the biosorbent.

• To scale-up the column system and evaluate the possible application of dealginate to 

clean up effluent on an industrial scale.
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Postgraduate Study

The courses attended during the period of research studies are listed below:

• Postgraduate Certificate in Principles and Practice of Inductively Coupled Plasma (Mass) 

Spectrometry. Sheffield Hallam University. (35 h)

• Geochemical Modelling. Sheffield Hallam University. (16 h)

Presentations

• Williams, C. J. Romero-Gonzalez, M. Gardiner, P. H. E. The treatment of metal plating 

wastewaters by adsorption for metal ion removal and recovery. 8th World Filtration 

Congress. European Federation of Chemical Engineering. Brighton, U. K. April 2000.

• Romero-Gonzalez, M. E. Gardiner, P. H. E. Williams, C. J. On-line preconcentration and 

chemical speciation of trace metals using a dealginated seaweed packed microcolumn 

with inductively coupled plasma spectrometry detection. Tenth Biennial National Atomic 

Spectroscopy Symposium, Royal Society of Chemistry. Analytical Division. Sheffield, U. K. 

July 2000.

• Habesch, S, M. Romero-Gonzalez, M. A combined study of trace metal cation 

concentration and surface morphological characteristics on seaweed surfaces under 

hydrated conditions using environmental scanning electron microscopy (ESEM). Materials 

Research Society 2000 Fall Meeting. Symposium on Low-Vacuum SEM/ESEM in Materials 

Science: Wet SEM-The liquid frontier of Microscopy. Boston, USA. November 2000.
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Articles Published

• Romero-Gonzalez, M. E., Williams, C. J. Gardiner, P. H. E. (2000) The application of 

dealginated seaweed as a cation exchanger for on-line preconcentration and chemical 

speciation of trace metals. Journal of Analytical Atomic Spectrometry. 15, 1009-1013.

• Romero-Gonzalez, M. E. Williams, C. J. Gardiner, P. H. E. (2001) Study of the mechanism of 

cadmium biosorption by dealginated seaweed waste. Environmental Science and 

Technology. 35, 3025-3030.
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1. Atomic concentrations from X-ray Absorption Edge Steps

Standard transmission measurements of EXAFS or XANES spectra can be used to measure the 

concentration of the atom of interest in the sample. This cannot be done using fluorescence 

or reflection spectra because of the presence of unknown functions of energy in the data 

collection method.

In a transmission experiment, measurement of the voltages produced by two ion chambers 

was performed, one in front and one behind the sample, usually denoted by I0 and I, 

respectively. The X-ray flux at the front and back surfaces of the samples, i0 and i, are then 

given by:

h  = a I„ i, = b l,

Where a and b are unknown, slowly-varying functions of energy arising from the gas pressure in 

the ion chambers, amplifier settings, air absorption, etc. The absorption coefficient of the 

sample is then given by:

A = ln0'„ /*',) = ln(tf/ b) + ln(7„ 17, )

The routine EXCALIB calculates ln ( /„  / 11) for a single scan and saves it. This function is equal

to jj. plus an unknown, slowly-varying function of energy. Thus, an absolute value for the sample 

absorption simply can not be obtained.

The sample absorption coefficient jx is due to all the atoms in the sample. It may be written as:

M =  ' ^ a >n' t
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Where the sum is over the different atom types, gi is the absorption cross-section of atom type 

i, whose concentration is rij atoms, m '3 and t is the sample thickness.

If two measurements are to be considered, immediately above and below the adsorption 

edge of an atom of interest, a,, a and b are constant except for g , where the edge appears.

Therefore, the edge step as given by EXCALIB is:

Ajj =  A crxnxt

The adsorption edge step Act, can be obtained from tables (1). It is important to ignore the 

white line in the measured Aju if these tables are used. The sample thickness is known. Hence, 

n)( the atomic concentration of the species of interest can be determined.

5.3. Mean square deviation in interatomic distance

The mean square deviation in interatomic distance, g 2, is one of the structural parameters 

obtained from an EXAFS analysis. In the EXCURV program, the parameter An is equal to 2g2A2. 

This parameter contains two contributions, which are usually assumed to be independent:

a 2 = a fh(T) + a l

The first term is the thermal contribution arising from atomic vibrations, and this is clearly a 

function of sample temperature. The second is the static contribution, arising from the 

presence of different, unresolved, interatomic distances grouped together. It is of particular 

significance for non-crystalline samples although it may also arise in more complex crystalline 

structures. The two contributions can be separated by obtaining data at different sample 

temperatures. They can also be calculated, within simplifying assumptions. Thus for the thermal
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contribution the Debye or Einstein model could be used, or a simple one-dimensional 

oscillator model of a molecular bond. For these calculations the values of characteristic 

temperatures or a vibration frequency are needed.

Static disorder

Because of the limited data range of an EXAFS spectrum, closely spaced contributions may 

not be resolved. The programmes will then fit to an average distance. In this, the presence of

two or more different distances will contribute cr2h to cf. In the simplest case of two distances, 

the mean distance is:

R = (n] + n 2R2) /(n] + n 2) = 7?, + [n2 /(«, + n21]AT? 

where n, atoms line at Rj and AR and AR = R2 -  R{ :

Therefore

a l = n . ( R . - R ) 2 + n 2(R2 - R ) 2

(A * )1 2   / A D \  2
2

( " i n2y

Unresolved contributions generally will occur it AR < 0.1 A, For n] = n2, <j2st = (A R)2 /4  or 25 

x 1 O'4 A2 or less. Since n] + n2 is generally constant, a 2, arising from this source has a

characteristic quadratic dependence on nx ( and R a linear dependence on nx) and this 

may be used to resolve the two distances in favourable circumstances (2).
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Thermal disorder -  Debye Theory

The thermal disorder arising from thermal vibrations produces well-know effects in both X-ray 

diffraction and EXAFS theory. For simple crystal structures, it is very well described by the Debye 

theory.

Textbooks on X-ray diffraction theory (3) show that the Debye theory results for the mean square 

amplitude of thermal vibration is

1,1 = yAn mk0o / 1

Where m is an atomic mass, #0the Debye characteristic temperature and /  a standard 

function as T ->  co, f ( 0 , T )  —» 1 .0 ./(# /r ) r is e s  slowly as T  falls taking the value 1-1 at 

T = 0O / 2. Except at low temperatures and for a few materials with very high Debye such as 

diamond we may take f ( 6 / T ) =  1.

EXAFS measures the m.s.d. in interatomic distance. If the atomic motions are uncorrelated,

then cr2 = 2 u 2 . However, they are correlated, Ion wavelength vibrations contributing little to 

changes in interatomic distance. The correlation may be calculated in the Debye theory (4) 

and we find:

_  Q/i a  2 _  6(1 - y ) h 2Ta„, -2(1 r)u -  f ie , IT )

y  is a function of both temperature and interatomic distance. For nearest neighbour at

reasonable temperatures y  —1/3. Thus if #0 is known, a]h may be calculated. For most

materials at room temperature we find o]h ~  1000 x 10-4 A2. An EXAFS analysis with values 

very different from this is not accurate.
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Thermal disorder -  One-dimensional oscillator

In molecular applications a model using a one-dimensional oscillator, oscillating at the bond 

stretch frequency, is perhaps more appropriate. It is also much simpler than the Debye theory 

(in physics it is known as the Einstein (1906) model) and gives reasonable results for crystals.

A one-dimensional harmonic oscillator has allowed energy levels (n+l/2)hv where v is the 

oscillation frequency. The probability of an oscillator being in the state n is given by the 

Boltzmann factor exp[-h-(nl/2) hv/kT] and so the mean energy of such an oscillator is:

As T  —» cOjOQ,/, ->  2 k T / h u , therefore crfh ->  kT47i2n u 2, the classical limit, independent of 

h.

1 e~hu,kT

As T  —» 0, s -> hu  / 2 , the zero point of energy, s may also be written as:

£ ucoth(hu/ 2kT)

Showing that s ->  kT as T ->  co, the classical limit.

The mean P. E. is —kcr2 with kthe constant, or — 4 /r2 juv2cr2, since co = 2nv  = *Jk /  fj. . fd is
2 .2 

the reduced mass of the oscillator. Combining this result with equation 7 we have:
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An Einstein temperature may be defined analogous to the Debye temperature, by h u  = kOE. 

In terms of this we have:

At high temperature we can compare the Debye and Einstein forms easily. The correlation 

factor y takes care of the difference between the three-dimensional Debye and one-

dimension oscillator forms. If we take y = 1/3 we find the two values of cr?h are identical if:

If we assume that / /  = m /  2 , the case for a element oscillator. This ratio is fairly well obeyed by 

values of 0E and 0O derived from specific heat measurements. Thus either model may be

used to calculate o ]h . 0e may also be calculated for a molecular system if the stretch

frequency v is known. Alternatively, EXAFS measurements of a2 will indicate which part of the IR 

spectrum v is to be sought. One obvious problem is the estimation of the effective mass
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Study of the Mechanisms of 
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The ability of dealginated seaweed waste, a waste 
material derived from the commercial processing of 
seaweed for alginate production, to remove cadmium 
from solution was determined. Cadmium sorption was found 
to be rapid (91% removal within 5 min), achieving a 
residual concentration of 0.8 mg L-1 after 1-h contact 
time from an initial solution concentration of 10 mg L-1. 
The binding of cadmium by dealginate was found to be pH 
dependent, optimal sorption occurring at around pH 
6 -8 . The mechanism of cadmium ion binding by dealginate 
was investigated by a number of techniques. Potentiometric 
titration of the dealginate revealed two distinct pKa 

values, the first having a value similar to carboxyl groups 
and the second comparable with that of saturated 
thiols and amines. Esterification of the dealginate resulted 
in the subsequent reduction in cadmium sorption (95% 
to 17%), indicating that carboxyl groups are largely responsible 
for sorption. Evidence from FT-IR spectra confirmed the 
presence of carboxyl groups in untreated dealginate, while 
the number of carboxyl groups was markedly reduced in 
the esterified sample. Furthermore, the FT-IR spectrum for 
dealginate was found to be similar to that previously 
reported for mannuronic acid-rich calcium alginate. 
Determination of a molar ratio in the displacement of 
calcium by cadmium on dealginate further supported the 
presence of an ion-exchange relationship. The ion-exchange 
constant was calculated to be 0.329 x 10-6. The speciation 
of cadmium in solution both before and after sorption 
was determined by an ion-selective electrode (ISE) technique. 
The findings of this study suggest that the sorption of 
cadmium by dealginate is mainly due to an ion-exchange 
mechanism.

Introduction
The contamination of water by toxic heavy metals is a 
worldwide environmental problem. Concern over this prob
lem has led to the development o f alternative technologies 
for effecting the removal o f these pollutants from aqueous 
effluents. The use of low-cost and waste materials as

* Corresponding author e-mail: cj.williams@sheffield.ac.uk; tele
phone: +44-114-222 7510; fax: +44-114-222 7501.

* Sheffield Hallam  University.
* The University of Sheffield.

adsorbents o f dissolved metal ions has been shown to provide 
economic solutions to this global problem.

The search for an effective treatment technology for the 
removal o f heavy metal ions, such as cadmium, has included 
the use o f microorganisms (/), fungi {2—4), seaweeds and 
seaweed derivatives (5), and waste materials (6). The use of 
dead cells offers the following advantages (7): (i) the metal 
removal system is not subjected to metal toxicity lim itations,
(ii) there is no requirement for growth media and nutrients, 
and (c) the sorbed metal ions can be easily desorbed and the 
biomass can be reused. Furthermore, in  a dead biomass- 
based sorption system where there are no metabolic in te r
actions, they can be subjected to conventional theories and 
mathematical models already in place for traditional ad
sorption systems.

Cadmium is regarded as being highly toxic and is included 
w ith mercury in the so-called “Red List” o f priority pollutants 
published by the Department o f the Environment in 1987 
and in List I o f the EEC Dangerous Substances Directive (8). 
While the use o f mercury in industrial processes is declining 
due to the introduction of new technologies, the worldwide 
industrial use of cadmium is increasing. This represents a 
great potential hazard to humans and the environment.

The potential of nonviable brown seaweeds in  the recovery 
o f heavy metal ions from liquid effluents has been demon
strated (9). Other researchers have demonstrated that the 
alginates, which are extracted from seaweeds for the food 
processing industry, also perform well as biosorbents {10). 
In addition, research by Apel and Torma {11) demonstrated 
that metal recovery by alginate biopolymers could be more 
easily achieved than the separation o f other metal-loaded 
biomasses from the treated solutions.

In  order to progress the understanding and application 
of these biosorbent systems so that they may be commercially 
exploited, it is important that the mechanisms involved in 
metal ion binding are elucidated and optim ized. When a 
metal ion in solution interacts w ith a solid surface, a lim ited 
number o f outcomes are possible {12). It can be sorbed by 
physical adsorption, associated w ith the weak forces of 
attraction such as van der Waals's forces, or by chemical 
sorption, associated w ith the exchange o f electrons and the 
formation of a chemical bond between the sorbate and the 
solid surface (biosorbent). Alternatively, ion exchange may 
take place between the incoming cation and either sorbed 
metal ions or hydrogen ions of the functional groups at the 
sorbent surface. It is well-recognized that seaweeds and 
seaweed derivatives contain an array of functional groups 
on their surface structure, including carboxyl and sulfate 
groups that may be responsible for metal ion sorption and 
exchange.

This study aims to begin to unravel the mechanisms of 
the binding o f cadmium to dealginated seaweed waste 
material through a detailed understanding o f the behavior 
o f those ions and their interaction w ith  the surrounding 
environment (pH, presence of the biosorbent, presence of 
other ions). The findings suggest that ion exchange by 
electrostatic interaction is the mechanism o f metal ion 
uptake. It is recognized that the chemical speciation o f an 
element, which is defined as the determ ination of the 
individual physicochemical form of that element which 
together determines its total concentration as a sample, is 
critical to its availability for adsorption {13). Moreover, 
variations in the distribution o f the species o f an element 
due to physical and chemical changes w ith in  the sample can 
drastically affect its form and oxidation state and thus its 
bioavailability.
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In this study, the ability o f dealginated seaweed waste, a 
waste product from the alginate industry, to sorb cadmium 
ions from dilute solution is determined. Polysaccharides 
produced by marine macroalgae (seaweeds) form the basis 
o f an economically im portant and expanding global industry, 
which produces significant tonages of alginate-free seaweed 
waste (14). The use of this waste material to remove and 
recover metal ions from aqueous effluents would be both 
environmentally and energetically satisfying.

Materials and Methods
Source and Pretreatm ent o f Dealginate. The dealginated 
seaweed waste, referred to from hereon as dealginate, was 
supplied courtesy o f FMC BioPolymer AS, Haugesund, 
Norway. This material is the residue remaining after the 
commercial extraction of alginates and carageenans for the 
food and pharmaceutical industries. The material has 
undergone a number of processing steps in the extraction 
of alginates before being finally dewatered by calcium 
precipitation prior to disposal. This material has a moisture 
content o f 66%, and the fresh product was stored in the frozen 
state in order to prevent microbiological spoilage and possible 
alterations in  the biosorption performance o f the material. 
Before use, the material was washed several times w ith 
deionized water to remove any precipitated salt. Any cations 
bound to dealginate such as calcium, sodium, potassium, 
and magnesium were removed by washing w ith 1.0 M  HC1. 
The mixture o f acid and dealginate at a mass-to-volume ratio 
o f 10 g L-1 was stirred w ith a magnetic stirrer for 2 h, and 
then the supernatant was decanted. This washing process 
was repeated five times, and finally the sample o f dealginate 
was washed w ith  deionized water. The water was carefully 
decanted, making sure that none of the dealginate was lost. 
The moist dealginate was air-dried before use.

Effect o f pH on Cadmium Biosorption. All reagents used 
were o f Aristar grade supplied by BDH, Poole, U.K. A total 
o f 10 g o f dealginate was weighed into individual 2-L beakers 
that had been acid-washed w ith 1% H N 03 to remove metal 
contamination. One liter o f 10 mg L "1 cadmium solution, 
prepared from a 1000 mg L~‘ stock solution made by 
dissolving 2.7436 g o f cadmium nitrate in deionized water, 
was transferred into each beaker. The mixture was agitated 
w ith a magnetic stirrer, and the pH was adjusted to a given 
value and kept constant w ith the addition of either 0.1 M 
NaOH or 0.1 M  HC1. The pH was continuously monitored 
using an immersed pH electrode (Gelplas, BDH, Poole, 
Dorset, U.K.) connected to a pH meter (Orion, model 740A, 
Beverly, MA). The pH values investigated were 2.0, 3.0, 4.0, 
5.0, 6.0, 7.0, 8.0, and 10.0, respectively.

After pH adjustment, 5-mL aliquots o f the solution were 
taken at 5-, 10-, and 30-min and 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 
12-, and 24-h intervals, making sure that the dealginate was 
not removed during the process. Each 5-mL aliquot was 
filtered through a Whatman No. 1 filter paper, and the 
cadmium concentration in  the filtrate was determined by 
inductively coupled plasma atomic emission spectrometry 
(ICP-AES). All experiments were conducted in triplicate. 
Control experiments without dealginate were carried out in 
order to determine the degree o f removal o f cadmium from 
solution by the glassware and filter papers. Extraneous metal 
contamination was found to be negligible.

Calculation o f Ion-Exchange Constant -K̂ x. Sorption 
experiments were conducted using a batch method, except 
that the in itia l solution pH was maintained at pH 6, and the 
solution and the dealginate were in  contact for 1 h. The initial 
cadmium concentration was varied between 1 and 1000 mg 
L-1. The concentrations o f cadmium in these solutions were 
determined by ICP-AES.

Ion-exchange equilibrium  constants were determined 
using the model proposed by Crist et al. (15). The following

reaction was assumed, at pH 6:

Cd2+ +  2(HX) =  2H+ +  (CdX2) (1)

„  [H +]z(CdX2)
=  rr \  (2)

[Cd ](HX)

where (HX) represents the number o f acid sites on the solid 
phase, (CdX2) is sorbed Cd2+, and [H+] was calculated from 
the solution pH.

The unreacted (HX) required for this calculation is given
by

(HX) =  (HX)0 -  H +off (3)

where (HX)0 is the in itia l number o f acids sites present at pH 
6.

Calcium Displacement Investigation. A total o f 0.2 g of
dried dealginate was weighed into each of five 25-mL flasks. 
Following the addition of 10 mL o f deionized water to each 
flask, the pH was adjusted to 6 by the addition of 0.01 M 
calcium hydroxide. Aliquots o f 0.1 M  cadmium standard 
solution were added to each flask to give final cadmium 
concentrations of 0, 0.5, 1, 2, and 4 mM, respectively. The 
pH o f the solutions was kept at 6 w ith  the addition o f 0.01 
M lith ium  hydroxide as required. The solutions were stirred 
and left in  contact w ith dealginate for a period o f 2 h. The 
dealginate was removed by filtra tion (Whatman No. 1 filter 
paper), and the concentrations of cadmium, lith ium , and 
calcium ions in the solutions were determined by ICP-AES. 
The dealginate samples remaining at the end of the experi
ment were analyzed for calcium content after suspension in 
10 mL of concentrated H N 03.

T itra tion  o f Dealginated Seaweed. Dealginated seaweed 
samples were titrated potentiometrically using an automatic 
titrator (Metrohm 678 EP/KF processor, Herisau, Switzerland) 
w ith a combined pH glass electrode (model 6.0202). A total 
of 2.0 g of the dry sample was suspended in a reaction vessel 
containing 50 mL of 0.1 M NaClCh used as an inert electrolyte 
to keep the ionic strength of the solution constant. The sample 
was stirred and continuously purged w ith nitrogen. Stan
dardized O .IM H C lo rO .lM  NaOH was added to the sample, 
and the solution pH was recorded. The software package 
Microcal Origin 5.0 (Microcal Software Inc, Northhampton, 
USA) was used to calculate the first derivative o f the titration 
curve.

Speciation o f Cadmium Ions in  the Sorption Process.
To find out the form of cadmium in the supernatant after 
metal sorption on dealginate, the concentration o f free metal 
ions in the solution was determined using a cadmium ion- 
selective electrode (Orion Sure Flow combination cadmium 
electrode model 9648, Beverly, MA). The electrode response 
and the calibration curve were determined using standard 
solutions of cadmium, prepared from cadmium nitrate at 
concentrations ranging from 0.01 to 1000 mg L~‘ . The pH of 
all the solutions was adjusted to 7, and a 5 M NaN 03 solution 
(Orion ISA 940011, Beverly, MA) was used in order to adjust 
the ionic strength of the samples and standards. The 10-mL 
aliquots of cadmium standard solution or sample were placed 
in a beaker, and 200 /iL  o f ionic strength adjustor was added. 
The electrode was immersed in  the solution un til a stable 
reading was obtained. Calibration curves were constructed 
from the least concentrated to most concentrated standard. 
The m inim um  detectable concentration was 1 /<g L_I of 
cadmium, and the linear range o f the calibration curve was 
found to be w ith in  the concentration range o f 0.1 -1000 mg 
L_1 of cadmium.

Esterification o f Dealginated Seaweed. M odification o f 
the carboxyl groups on the surface o f the dealginate using
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FIGURE 1. Effect of solution pH on cadmium sorption.

acidic methanol was performed as follows: 9 g of dry-washed 
dealginate was suspended in 633 mL of 99.9% methanol to 
which 5.4 mL o f concentrated hydrochloric acid was added 
(0.1 M HC1 final concentration). The solution was continu
ously stirred and heated to 60 °C for 48 h. The biomass was 
then washed three times w ith  cold deionized water in order 
to quench the esterification reaction and was then centrifuged 
to remove excess water. The esterified sample was lyophilized 
and used in  metal binding experiments (16).

FT-IR Spectroscopy. The spectra of dried, calcium- 
containing, cadmium-containing, and esterified dealginate 
were obtained using a Nicolet 860 ESP Magna infrared 
spectrometer (Nicolet, Wisconsin) employing a Nicolet Smart 
Golden Gate Single Reflection Diamond ATR accessory 
(Specac, Nicolet, Wisconsin) and featuring a type Ha diamond 
with up to 250 lb o f pressure available to keep the sample 
in optical contact w ith  the diamond. An aliquot o f the dry 
sample was placed in  the Golden Gate Single Reflection 
Diamond accessory in the infrared spectrometer, and the 
infrared spectra were obtained and averaged over 5 scans in 
transmission mode.

Results and Discussion
Rate o f Cadmium Sorption. Results showed that at pH 6, 
where there was maximum cadmium retention (see below 
for pH effect), sorption was rapid, and about 91% o f the 
cadmium in  solution was removed in the first 5 m in w ith a 
residual concentration of 0.8 mg L~* achieved after the first 
hour. This fell to 0.4 mg L-1 after 24 h. As a result o f these 
findings, 1-h contact time was used in all subsequent sorption 
experiments unless otherwise stated. The coefficient o f 
variation of all data points was less than 6%. Although only 
data for cadmium sorption has been reported in  this paper, 
the authors have found that a range of toxic metals (Pb, Cu, 
Ni, and Cr) can be removed from solution by this sorbent 
material (17).

Effect o f pH on Cadmium Biosorption. Figure 1 shows 
the removal o f cadmium from 10 mg L_1 solution after 1 h 
at solution pH values of 2, 3, 4, 6, 7, 8, and 10. The optimal 
cadmium removal occurred at a solution pH of 6. The least 
cadmium was removed when the solution pH was maintained 
at 2. Gardea-Torresdey et al. (18) noted that the ionization 
constants for different carboxyl groups were around 3 -4 . 
This means that when the pH is higher than 4 the carboxyl 
groups are deprotonated and therefore negatively charged 
and able to bind positively charged metal ions. At pH values 
less than 3, the carboxyl groups become protonated and thus 
are no longer available to attract metal ions from solution. 
The situation is likely to be different at high solution pH 
values. Stumm and Morgan (19) reported that hydroxyl 
species are formed above pH 8, w ith Cd(OH)^ and Cd(OH)3~ 
formed at pH values of 9 and 11, respectively. Therefore at 
pH 6, cadmium precipitation as hydroxide is not a possible 
retention mechanism.

0 200 400 600 800 1000 1200
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FIGURE 2. Isotherm for the adsorption of cadmium by dealginate.
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FIGURE 3. (a) Titration data for dealginate, (b) Plot of buffer capacity 
(JJ) against pH.

Sorption Isotherm. Figure 2 shows the representation of 
the cadmium sorption isotherm, the capacity (q) o f dealginate 
(in mg g_1) against the equilibrium  concentration at pH 6. 
The shape of the curve can be divided in to two regions, A 
and B. The shape of the curve would seem to indicate that 
there are two types o f cadmium binding sites. As the readily 
available sites in region A become saturated, the excess 
cadmium is bound to another type of site w ith reduced affinity 
for the metal as shown by the slope o f the graph in region 
B.

T itra tion  o f Dealginated Seaweed. A sample o f dealginate 
was titrated w ith acid or alkali in order to identify possible 
metal binding sites. The titration data obtained are shown 
in Figure 3a. Two end points were clearly discernible in the 
plot o f the cadmium concentration against pH. Figure 3b 
shows a plot o f buffer capacity, defined as the inverse o f the 
slope o f the titration curve: j3 =  — <5C/<3pH, against pH. This 
approach was used to calculate the acidity constants (p/Q
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FIGURE 4. Possible cadmium binding sites on polyuronates (after 
Schweiger (20)).

since the maximum buffer capacity occurs where [HA] =  
[A- ] and, therefore, pH =  pK. The two pAa values found were 
pAai =  3.63 and pKa2 =  9.09, respectively. The pAai is 
comparable to the values reported for carboxylic acids (18). 
The p Aa2 value is sim ilar to those reported for saturated thiols 
or saturated amines (8.5-12.5) (19). These groups are likely 
to be responsible for metal ion sorption. The point of zero 
charge calculated from the relationship PZC =  0.5(pAi +  
pK2) was 6.36. Thus, at low pH below 6.4, the biomass has 
a net positive charge resulting in low metal sorption. 
Maximum sorption is likely to occur at pH values greater 
than 6.4 when the biomass has a net negative charge.

Esterification o f Dealginated Seaweed. In an attempt to 
identify the nature of the functional group responsible for 
cadmium adsorption, the carboxyl groups were esterified 
using the procedure described by Gardea-Torresday et al. 
(16). Results from the adsorption experiments showed that 
the amount o f cadmium bound was reduced from 95% to 
17%, suggesting that cadmium ions bind to carboxyl groups. 
However, the residual sorption after esterification is indicative 
of the presence o f other cadmium binding sites. Although 
this material has been produced from a mixture of seaweeds 
that have been chemically treated, it could still contain 
residues of polyuronates (alginates). According to the manu
facturers, the waste contains about 1% alginic acid. The 
decrease in the affin ity for cadmium is analogous to that 
reported for calcium in which its affin ity for polyuronates 
decreases w ith increasing esterification. Schweiger (20) has 
proposed two possible mechanisms by which divalent cations 
bind to polyuronates (see Figure 4). It is to be expected that 
in either case esterification of the carboxyl groups w ill result 
in diminished affin ity for cations. However, some metal 
binding w ill still remain presumably due to the interaction 
w ith the vicinal hydroxyl groups.

FT-IR Spectra o f Dealginate. To better understand the 
nature of the functional groups responsible for cadmium 
binding, FT-IR spectra o f preparations o f dealginate bound
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FIGURE 5. (a) FT-IT spectra of (i) cadmium-bound dealginate, (ii) calcium-bound dealginate, and (iii) dried HCI-washed dealginate, (b) 
FT-IR spectra of (i) esterified dealginate and (ii) cadmium-bound esterified dealginate.
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TABLE 1. Assignments of Infrared Absorption Bands for 
Cadmium Dealginate, Calcium Dealginate, and Hydrochloric 
Acid-Washed Dealginate3

wavenumber (cm-1) 

3500-3000 

2892 (2904) 

1605 (1609) 

1413 (1420)

1314 (1328)

1205 (1200) 
1159 (1155)

1056 (1047) 
1028 (1027) 
868 (882)

intensity-shape

strong-broad

medium-shoulder

medium-shoulder

(i) v strong-shoulder
(ii) v strong-sharp
(iii) medium-shoulder
(i) v strong-shoulder
(ii) medium-shoulder
(iii) medium-sharp 
medium-shoulder 
medium-sharp

1112(1115) strong-shoulder

v strong-shoulder 
v strong-sharp 
strong-sharp

821 (811) medium-sharp

assignment

O -H  stretching 
C-H stretching 
C-H stretching 
O -H  stretching 
COO- stretching 
(asymmetric) 
COO- stretching 
(symmetric)

C -0  stretching

C-C stretching 
C-C stretching 
C -0  stretching 
C -C -C  bending 
C-C stretching 
C -0  stretching 
O -H bending 
C-C 
C -C -0  
C -O -C  
C -0

* Numbers in parentheses are those o f m annuronic acid-rich calcium 
alginate.

samples were obtained. The FT-IR spectra o f the dried HC1 
washed, calcium- and cadmium-containing dealginate are 
shown in  Figure 5a. The bands assignments are shown in 
Table 1. In the fingerprint region (below 2000 cm-1) bands 
at 1605, 1413, 1205, 1159, 1112, 1056, 1028, and 868 cm -1 
overlap in all the three samples; the band at 1314 cm-1 is 
weak in  the HC1 and calcium spectra, whereas it is strong in 
the case of cadmium. The medium sharp band at 821 cm-1 
is unique to the cadmium-bound sample. In a review o f ion 
binding on polyuronates, Kohn (21) proposes that divalent 
cations are bound by ionic exchange through binding to 
carboxyl groups. The FT-IR results show that cadmium and 
calcium bind to the carboxyl groups. This is confirmed by 
the disappearance o f the strong band and the appearance 
of a shoulder at 1414 cm -1, when the cadmium esterified 
sample was examined (see Figure 5b).

The spectrum of the HCI-washed dealginate shows similar 
characteristics to that o f mannuronic acid-rich calcium 
alginate as reported by Dupuy et al. (22) (see numbers in

TABLE 2. Effect of Calcium Displacement on Cadmium Sorption 
by Dealginate

parameter value

initial Cd concn (mM) 0.5 1 2 4
Ca displaced (umol g-1) 225 225 450 675
Cd adsorbed («mol g-1) 300 369 588 875
ratio of Ca:Cd 1:1.3 1:1.6 1:1.3 1:1.3

parentheses in Table 1). The wavenumber difference between 
the two bands assigned to the asymmetric and symmetric 
vibrations of the carboxyl group in both calcium alginate 
and dealginate are similar: 189 and 186 cm -1, respectively. 
Although the dealginate sample has been acid-washed to 
remove metals bound to the material, there is no evidence 
o f the presence of nonionized carboxyl groups as seen at 
1716 cm-1 in the alginic acid spectrum (Figure 6). Evidence 
from the FT-IR spectrum of dealginate suggests that func
tional groups contributing to the dealginate spectrum may 
be sim ilar to those in calcium alginate. M annuronic and 
guluronic acid units make up alginate, and the dealginate 
spectrum is similar to that for the mannuronic acid-rich 
calcium alginate. According to Kohn (21), the affin ity o f the 
monomers of the two acids for calcium are identical, 
suggesting that the nature of the calcium interactions w ith 
both are similar. This is possible because all polyuronates 
have to some extent sim ilar prim ary structures. Comparison 
o f the spectra obtained from esterified dealginate w ith  and 
w ithout cadmium addition show prom inent new bands at 
3244, 3059, 1303, and 828 cm-1, respectively, in the former. 
The bands at 1314 and 1304 cm-1 in the cadmium-containing 
nonesterified and esterified dealginate samples, respectively, 
point to the presence of another cadmium binding site in 
addition to the carboxyl groups (see Figure 5b).

Calcium Displacement Investigation. To investigate the 
nature of the cadmium dealginate interaction, the dealginate 
was contacted with a solution containing calcium, and then 
solutions o f cadmium at known concentrations were added 
to the samples. The amount o f calcium displaced was then 
estimated. This allowed the relationship between calcium 
displacement and cadmium sorption to be determined. The 
data are shown in Table 2. The ratios o f calcium displaced 
to cadmium sorbed showed that approximately 1 mol of 
calcium was displaced when 1 mol o f cadmium was sorbed, 
regardless o f the in itia l cadmium concentration. These results 
confirm that ion exchange may be one o f the mechanisms 
for the binding of cadmium by dealginate.

Calculation o f Ion-Exchange Constant To assess the
extent o f cadmium binding by ion exchange, the ion-
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TABLE 3. Cadmium Concentration before and after Addition of 
Dealginate as Determined by ICP-AES and ISE

initial Cd concn initial Cd Cd concn by Cd concn by
by ICP-AES concn by ISE ICP (mg L-1) ISE (mg L-1)

(mg L-1) (mg L-1) after adsorption after adsorption

1.02 0.99 0.17 0.03
5.10 5.02 0.49 0.17
9.96 9.87 0.68 0.22

24.99 25.30 1.20 0.71
49.93 49.48 2.09 0.60
79.80 80.01 3.56 1.31

100.30 100.02 4.49 1.65

exchange constant A^x was determined. The ion-exchange 
constant was calculated using a value o f (HX)0 of 2.90 
mM g~ *. This value of (HX)0 was derived using a minimization 
procedure in which the value of (HX)0 was adjusted by several 
iterations until the values o f A^x, which was calculated for a 
series o f solutions w ith different in itia l metal concentrations, 
gave a m in im um  error. This was considered to be the 
optim um  value of (HX)0. The value of the ion-exchange 
constant, A^x, was found to be 0.329 ±  0.049 x 10-6 as 
compared w ith a value o f A^x of 9.3 ±  0.85 x 10-6 reported 
by Crist et al. (15) for cadmium adsorption by peat moss at 
pH 6.

Speciation of Cadmium Ions in the Adsorption Process.
The speciation o f cadmium ions in the solutions collected 
during the isotherm experiments was determined by com
parative analysis o f the samples by ICP-AES and by ion 
selective electrode (ISE). The results o f these analyses are 
shown in Table 3. The ISE technique is the only analytical 
technique available that can measure the concentration of 
free metal species (13). The results from the ISE analysis 
provide a measure o f the concentration o f free Cd2+ ions in 
the dealginate supernatant solution. It should be noted that 
while the results o f the determination of cadmium by the 
two techniques in  the in itia l solution are similar, once 
dealginate is added only about 30% o f the cadmium left in 
solution was in the free form. These results show that despite 
extensive washing before use, ligands that bound cadmium 
are introduced into the solution. Therefore, only a fraction 
o f the cadmium in  equilibrium  w ith dealginate is available 
for exchange. The amount o f cadmium in this fraction was 
less than 10% of the in itia l concentration. This could explain 
the residual cadmium concentration in solution even after 
24 h of contact.

This study has demonstrated that cadmium binding to 
dealginate seaweed waste is sim ilar in some aspects to that

o f calcium to polyuronates. Mannuronic and guluronic acid 
residues may be the major constituents responsible for 
cadmium sorption in dealginate. The evidence is o f a 
predominantly ion-exchange mechanism involving carboxyl 
groups on the surface of the dealginate.
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Interlaboratory
Note

Methods for the on-line preconcentration of Cd2+, Cr3+, Cu2+ and Pb2+ and chemical speciation of Cr3 + 
and Cr042- using a microcolumn (50 x 7 mm id) packed with about 0.34 g dealginated seaweed biomass are 
described. Preliminary batch experiments showed that metal sorption by the biomass is rapid, about 90% of the 
metals in solution is taken up in less than 5 min, and occurs in a wide pH range, 2-7. Maximum binding was 
obtained between pH 6 and 7 and the effective binding capacities at pH 6, determined from column 
breakthrough measurements using a flow rate of 0.8 m Lmin-1, were 4.0, 8.7, 9.4 and 8.5 pmol g -1 for Cd, Cr 
Cu and Pb, respectively. Unretained Cr042~ was separated from Cr3+ thus making it possible to determine the 
levels of both species in solution. The analytical procedures developed for metal preconcentration and 
chromium speciation were validated by analyses of two Lake Ontario water reference materials, TMDA 51.2 
and TMDA 54.2, and a synthetic seawater sample. Comparison of the results obtained by the proposed 
methods with the certified total values using the Student t test at 95% confidence limit showed that the 
differences were not statistically significant. Independent confirmation of the accuracy of the chromium 
speciation results was obtained using the measurement of absorbance of the 1,5-diphenylcarbohydrazide- 
chromium complex, before and after treatment with nitric acid, to determine the levels of Cr042- and Cr3+ by 
difference. The results obtained with the proposed method for the analyses of TMDA 51.2 and TM DA 54.2 for 
Cr3+ and Cr042- were 20 +  0.2 and 39 +  0.3 p gL -1 , and 162+1 and 299+1 p gL -1, compared with 12 +  5 and 
54 +  31, and 132+12 and 313 + 1 6 p g L _1, respectively.

Introduction
Metal sorption by biomasses involves active uptake determined 
by metabolic processes such as ion transport, internal compart- 
mentation and extracellular precipitation by excreted metabolites, 
as well as passive physico-chemical interactions with functional 
groups on cellular structural components.1 The use of live 
microorganisms for active as opposed to passive retention and 
concentration of metals has been well documented.2-7 In a 
number of applications, biomasses have been used to preconcen
trate metals before determination by graphite furnace atomic 
absorption spectrometry,8,9 inductively coupled plasma atomic 
emission spectrometry10 and flame atomic absorption spectro
metry.11 Using this approach, enrichment factors of between 2- 
and 200-fold have been obtained after tedious and time- 
consuming sample pre-treatment steps. To improve the efficiency 
of this process, cells have been immobilised on suitable supports 
and used as column packing materials.11-15

In order to develop column materials that can withstand 
repeated use, non-living biomasses are preferred. Work in our 
laboratories has demonstrated that dealginated seaweed, a 
non-living biomass, can be used as a biosorbent to remove 
metals from aqueous solutions.16,17 Dealginated seaweed is a 
seaweed derivative produced when commercially harvested 
seaweeds are subjected to alginate extraction by precipitation 
using calcium hydroxide or sodium hydroxide. This material, 
referred to as dealginate, is easy to handle and can be stored for 
long periods. It is physically stable and, therefore, there is no 
need to immobilise the material onto a support. In contrast to 
most commercially available ion exchangers, biosorbents 
possess an array of weakly acidic and basic functional 
groups, which enable them to bind metal ions.18,19 All these 
attributes make dealginated seaweed a suitable material for use

in the on-line preconcentration and subsequent determination 
o f these metals by spectrometric techniques.

In this study the preconcentration and determination of 
copper, cadmium, chromium and lead in aqueous solutions 
using dealginated seaweed as a biosorbent in an on-line 
microcolumn configuration is described. These four elements 
were chosen because they are important environmental 
pollutants. The use of the column to study the distribution 
o f Cr(m) and Cr(vi) species in aqueous solution is also reported.

Experimental
Reagents

A multielement stock solution containing 10 mg L_1 of Cd, Cr, 
Cu and Pb was prepared from individual 1000 mg L -1 
Spectrosol solutions (BDH, Poole, Dorset, UK). Working 
standard solutions were prepared by dilution o f the 10 mg L -1 
stock solution. All reagents were Aristar grade and supplied by 
BDH. Concentrated HC1 was diluted to give a 1.0 M solution. 
Deionized Millipore (Milli-Q RG) water was used throughout. 
The unbuffered standard solutions were kept in the pH range 
5.5-6.5 by the addition of either 1.0 M solutions of HC1 or 
NaOH. Buffered solutions were prepared in 0.05 M ammo
nium acetate except for copper which was prepared in 0.1 M 
potassium dihydrogen phosphate in order to avoid the 
formation of copper-ammine complexes.

Biosorbent

The biomass used was dealginated seaweed, a waste product 
from a mixture of commercially harvested brown seaweeds 
including Ecklonia maxima from which alginate has been
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removed by calcium hydroxide precipitation. The moisture 
content of the residue was about 66%. This material has currently 
no marketable value and was donated by Pronova Biopolymers 
Limited, Norway. Previous energy dispersive X-ray spectroscopy 
(EDAX) analysis1' showed no significant quantity of metal ions 
except calcium, on the surface of the material prior to use.

Apparatus

Fig. 1 shows the schematic diagram of the on-line system. An 
ICP-AES (Spectro Instruments) or an ICP-MS (Hewlett 
Packard 4500) was used to determine the metal ion concentra
tions. The instrumental conditions are shown in Table 1. An 
orbital shaker (Gallenkamp) was used to agitate the samples 
during the batch uptake experiments. A pH electrode (Gelplas, 
BDH) connected to a pH meter (Orion model 740A) was used 
for pH measurements.

All glassware was cleaned and stored in a 1% v/v HNO3 
solution until required, and then thoroughly rinsed with 
deionised water before use.

Metal ion uptake efficiency

The time it took for equilibrium to be attained when solutions 
containing a single metal were added to dealginated seaweed 
was determined in batchwise experiments. A 50 mL aliquot o f a 
lO m gL -1 solution containing either Cd, Cr, Cu or Pb was 
added to 1.5 g o f dealginated seaweed in a 150 mL conical flask 
at room temperature. The pH of the solution was taken and 
then the conical flask was agitated on an orbital shaker at 
100 rpm for 5, 10, 30, 60, 120, 240, 300, 360 or 420 min. 
Following the period of agitation, the solution was filtered 
using a Whatman N o 1 filter paper, and a sample of filtrate was 
taken for pH measurement. The concentrations of the metal in 
the initial and final solution were determined by ICP-AES and 
the amount of metal adsorbed was calculated from the results.

pH studies

1.5 g of dealginated seaweed was brought into contact batch 
wise with 50 mL of 10 mg L-1 single metal ion solutions of Cd, 
Cr, Cu or Pb. Both buffered and unbuffered solutions were 
used in this investigation. The buffered standard solutions were 
prepared in 0.05 M ammonium acetate, except for Cu which 
was prepared in a 0.01 M potassium dihydrogen phosphate. 
After pH adjustments with either hydrochloric acid, acetic acid, 
phosphoric acid, potassium hydroxide, sodium hydroxide or 
ammonium hydroxide, the solutions were left in contact with 
the biomass for 2h . The solutions were filtered through a 
Whatman N o 1 filter paper and the final pH values o f the 
filtrates were recorded. The metal concentrations in the filtrates 
were determined by ICP-AES or ICP-MS.

Preparation and operation of the microcolumn

A sample of dealginate was oven dried at 105 °C overnight, 
allowed to cool and gently separated with a spatula. The sample 
was ground using a pestle and mortar and sieved. Particles

ICP

ICP Pump
Waste

Plasmd
r  Loop Biomass

Sample columnWater

Fig. 1 Schematic diagram o f the on line system for the preconcentra
tion, speciation and determination o f the metals.
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Table 1 ICP operation conditions

ICP and sample introduction ICP-MS ICP-AES

R f generator 1200 W 1200 W
Column to spray chamber 70 mm 70 mm

distance
Torch Fassel Torch Three piece 

torch
Spray chamber Cyclonic Cyclonic
Nebulizer Babington Cross flow
Sample introduction Peristaltic Peristaltic

pump pump
Solution uptake rate 0.8 ml min-1 0.8 ml min-1
Coolant gas flow rate 16 L min-1 16 L min-1
Nebulizer gas flow rate 1.28 L  min-1 1.0 L  min-1
Nebulizer gas pressure 590 kPa 234 kPa
No of sweeps per replicate 1 1
No o f replicates 3 3
MassesAVavelength/nm in Cd Cd 226.502

53Cr Cr 267.716
63Cu Cu 324.754
20Spb Pb 220.351

Measurement mode Time resolved analysis
Integration time 2s 2 s
Detector mode Dual mode —

retained in an 85-mesh screen (mean particle size approximately 
120 pm) were used to pack the column. The column 
(50 mm x 7mm id MF-plus, Alltech Associates, Carnforth, 
Lancashire, UK) fitted with an acid resistant plastic PEEK frit 
was packed with a known weight o f dry' biomass (ca. 0.34 g) that 
had been slightly moistened to aid packing. The biomass was held 
in place by another frit fitted at the top of the column. The 
column was connected to the inductively coupled plasma atomic 
emission spectrometer. Deionised water followed by 1 M HC1 
was pumped through the column using the pump on the 
instrument at a flow rate of 0.8 mL min-1 for 10 min. In use, the 
column was connected on-line to either of the spectrometers 
using a 1.42 mm internal diameter tube (Altec Products Limited, 
Alton, Hampshire, UK) with the tube length (70 mm) kept short 
to minimise dead volume in operation. Deionised water was used 
as the carrier solution and pumped continuously through the 
column at a flow rate of 0.8 mL min-1 . For metal preconcentra
tion, 1 mL of the multielement standard solutions at metal 
concentrations of 0.1, 0.25, 0.5 and 1.0 mg L -1 or samples were 
loaded into the injection valve using a syringe and then injected 
into the carrier stream and onto the column. The preconcentrated 
metals were stripped off by manually injecting 500 pL of 1.0 M 
HC1 into the 1 mL sample loop on the column and detected by 
ICP-AES. Calibration graphs were constructed from the 
integrated area under each metal peak using the software 
package Microcal Origin 5.0 (Microcal Software Inc, North
ampton, USA). Breakthrough experiments were carried out by 
pumping either individual or multielement standard solutions 
through the column at a flow rate of 0.8 mL min-1 until a 
constant signal intensity was obtained. When not in use, the 
column and contents were store at 4 °C in order to prevent 
bacterial and fungal growth.

Distribution of Cr(m) and Cr(vi)

The same system configuration was used to study the 
distribution o f chromium species, but here ICP-MS was used 
for Cr detection. As with metal preconcentration, 1 mL of a 
mixed chromium standard or sample was loaded onto the 
column via the injection valve. Unretained Cr(vi) was eluted 
almost immediately and detected. Adsorbed Cr(m) was 
stripped off using 500 pL o f 1.0 M HC1 as described for 
metal preconcentration. Calibration curves in the range 10- 
250 p gL -1 were prepared from mixed Cr(m) and Cr(vi) 
standards. Independent confirmation o f the Cr(ni): Cr(vi)



ratio was obtained by using the 1,5-diphenylcarbohydrazide 
method based on UV/Visible detection.20

Results and discussion 
pH studies

Rate experiments in which metal solutions were in contact with 
the biomass for varying length o f time have shown that 90% of 
the metals studied were taken up by the biomass in the first 
5 min, with the equilibrium attained after 2 h (Fig. 2). The 
effects of pH on metal uptake as determined in batch 
experiments are shown in Fig. 3. The percentage of bound 
metal increases with pH from 2.0 to 6.0 with maximum binding 
occurring between pH 6.0 and 7.0. At pH 6, between 90 and 
99% of Cd(n), C u ( i i ) ,  Cr(ui), Pb(n) and in solution was 
removed. Results obtained using both buffered and unbuffered 
solutions were similar. In the experiments with unbuffered 
solutions, the difference in pH before and after contact with the 
biomass was less than 0.1 pH units.

A net negative charge on the surface o f dealginate at pH 
values greater than the isoelectric point would be expected to 
lower any electrostatic energy barrier for the cations to bind to 
the negatively charged material. This might explain the 
increased binding capacity at pH greater than 5. The functional 
groups responsible for binding these metals under different pH 
conditions are yet to be identified. Gardea Torresday et al.2X 
found that this kind of behaviour suggests that carboxyl groups 
may play a major role in metal binding by biomass since the 
acid dissociation constants (p/Ta) for various carboxyl groups 
are reported to be around 3-4. It is likely that the metal ions are 
bound to the biomass through the carboxyl groups in an ion- 
exchange type mechanism. At low pH values, the carboxyl 
groups are protonated thus reducing the available sites for 
metal binding.

Column capacity

The breakthrough curves for the four metals obtained 
separately are shown in Fig. 4. The eluted metals were detected 
by ICP-AES. A similar breakthrough volume of 6.4 mL was 
obtained for both Cd and Cr, and the values for Cu and Pb 
were 7.9 mL and 25.0 mL, respectively, using a 5 m g L -1 
multielement solution buffered at pH 6. Based on the volumes 
at which saturation was obtained, the effective column 
capacities for each of the elements were: 4.0, 8.7, 9.4,
8.5 pmol g -1  for Cd, Cr, Cu and Pb, respectively. In similar 
experiments performed with single 5 mg L-1 element solutions, 
the column capacities were 8.0, 33.7, 26.0 and 12.0 gmol g-1 
for Cd, Cr, Cu and Pb, respectively. The lower values obtained 
for the mixed standard indicate that the column capacity for 
each element is affected by the presence of the other elements. 
However, for preconcentration of trace metals, the available 
column capacity is more than adequate. It is important to note 
that the uptake o f the metals by the column from the solution
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Fig. 2 The extent o f Cd (A), Cr (■ ), Cu (♦ )  and Pb ( • )  retention at 
pH 6 as a function of time (n =  3).
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Fig. 3 The effect o f the pH on the retention of Cd ( A ), Cr (B ), Cu (♦ )  
and Pb (© ) as determined in batch experiments at pH 6 (77 =  3).
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Fig. 4 Column breakthrough curves for Cd (A), Cr (B ), Cu (♦ )  and 
Pb (® ) obtained using 1 mg L -1 of single metal ion solution at a flow 
rate o f 0.8 mL min-1, and pH 6.
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Fig. 5 Chromatogram o f 25 pg 1 7 1 of a mixed Cr(m) and Cr(vi) 
standard solution.

pumped in at 0.8 mL min-1 was complete until the break
through point, suggesting that the metal uptake by the biomass 
at that flow rate is not limited by kinetic factors.

The differences in breakthrough volumes suggest that the

Table 2 Results o f the determination o f Cd, Cr, Cu and Pb in two Lake 
Ontario water reference material and a simulated seawater sample

Sample
Element
determined

Values found/ 
p g L -1 (?j =  3)

Certified values/ 
Pg L -1 (n =  3)

X ±  \ s x + 1 s
T M D A  51.2 Cd 25 +  3 72+18.9

Cr 60 +  8 62.5 +  6.6
Cu 101+6 91 ±10.2
Pb 67+13 72.9 ±10.6

TM D A 54.2 Cd 172 ±  33 165 ±  16.1
Cr 450 +  34 432 ±32.1
Cu 457 +  65 460±41.9
Pb 498 ±66 531 ±54.4

Seawater Cd 221 ±13 250 ±1
Cr 243 +  6 251+2
Cu 257 ±51 250+1
Pb 249 +  17 252 +  4
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Table 3 Comparison of the chromium speciation results obtained by the proposed and the 1.5-diphenylcarbohydrazide methods

1,5-Diphenylcarbohydrazide method .v ± l .v (72 =  3) Proposed method .v+1 s (72 =  3)

Sample Reference value/pg L 1 Cr(in)/pg L 1 Cr(vi)/gg L  1 Cr(iii)/gg L~ 1 Cr(vi)/pg L _ ’

TM D A  51.2 62.5 +  6.6 12 +  5 54 +  31 20 +  0.2 39±0.3
TM D A  54.2 432 ±32.1 132 +  12 313+ 16 162± 1 299+1

binding sites for Pb and Cu are different from those of Cd and 
Cr. Clearly, the sites for Pb are still available long after the sites 
for the other elements have become saturated. The aim of on 
going work is to characterise the different binding sites.

Development and validation of the analytical procedures

Sample volume and desorption experiments. Different 
volumes of a mixed standard solution at pH 6 containing 
5m g L_1 of each metal were preconcentrated and desorbed 
from the column using dilute HC1 solutions. Up to 5 mL 
sample solutions could be injected, and about 90% of the 
metals was desorbed with 1.0 mL of 1.0 M HC1. The 
preconcentration and desorption cycles were repeated for a 
period of up to four months without adverse effects on the 
performance o f the column. It is important to emphasis that no 
reconditioning of the column is necessary after the initial 
column preparation. For these series o f measurements, a 1 mL 
sample loop was used and the metals were desorbed with 
500 pL of 1.0 M HC1. With this set up, a two-fold increase in 
sensitivity, compared to when no column is used, was obtained 
for all four elements. This preconcentration factor is adequate 
for the analysis of the samples in this study. The calibration 
graphs in the range 0.1-1 mg L-1 , obtained from mixed metal 
standard solutions, were rectilinear with correlation coeffi
cients (r2) o f 0.9982, 0.9984, 0.9995 and 0.9954 for Cd, Cu, Cr 
and Pb, respectively, and corresponding detection limits of 
0.069 mg L ~‘, 0.018 mg L " \ 0.012 mg L"1 and 0.077 mg L_1 
(72 =  5).

Analyses of water reference materials. Two Lake Ontario 
water reference materials (National Water Research Institute, 
Canada) TM DA 51.2 and TMDA 54.2 and a synthetic sea
water (Sea water corrosion test mixture to DEF 1053/B.S. 3900/ 
B.S 2011, BDH, Poole, UK) were analysed in order to test the 
suitability of the procedure for the determination of the four 
elements in real samples. Up to 5 mL of the 5 mg L'1 mixed 
standard could be injected onto the column, and mean 
recoveries o f 96, 93, 94 and 97% obtained for Cd, Cr, Cu 
and Pb, respectively, when 0.5 mL of 1.0 M HC1 was used for 
desorption. For these determinations, the pH values of the 
Lake Ontario water reference materials were adjusted to 7.0 
before metal preconcentration on the column. Comparisons of 
the results obtained with the certified values are given in 
Table 2. The differences between the two sets of results, except 
for Cd in TM DA 51.2, are not statistically significant at the 
95% confidence limit. The reason for this disparity in the 
cadmium results is currently being investigated. The metal 
recoveries from the simulated sea-water sample were between 
93-96% at pH 6.0 for the four elements studied, even though 
the ratio of Ca, Mg, Na and K ions to the elements were in 
most cases in excess o f 100:1. In this configuration, the major 
cations Ca, Mg, Na and K in the sample were unretained by 
the column, and eluted well ahead of the preconcentrated 
metals.

Speciation studies. Fig. 5 shows that a broad chromium peak 
identified as Cr(vi) is eluted first and on subsequent injection of 
500 pL of 1.0 M HC1 a much sharper peak, corresponding to 
Cr(m), is observed. The point at which acid is injected could be 
chosen such that the sample throughput is increased. For these

experiments the acid was injected after 350 s, but, as can be seen 
in the chromatogram, anytime between 250-350 s could have 
been chosen. The microcolumn was re-used immediately after 
the elution of Cr(m), in contrast to the system based on using 
activated alumina where three injections were required to 
completely strip the adsorbed Cr(vi) species.22 A throughput of 
about fifty samples a day could be achieved using the system 
described here.

The results of the determination of the two chromium species 
were 39 ±0.3 pg L -1 and 20 ± 0 .2  pg L-1 for Cr(vi) and Cr(m), 
respectively, which gives a total chromium value of 
5 9 ± 0 .4 p g L ~ \ compared to a total certified value of
62.5 ±  6.6 pg L-1 . A similar analysis of TMDA 54.2 (n =  3) 
found 299 ±1 pgL -1 and 162 ±  1 pgL -1 o f Cr(vi) and Cr(m), 
respectively, and a total o f 461 ±0 .2  pg L-1 , compared to a 
certified total value of 432 ±32.1 pg L-1 . Detection limits, 
calculated as three times standard deviation of the background 
noise levels, were 0.97 pgL -1 and 0.28 p gL -1 (72=10) for 
Cr(vi) and Cr(m), respectively.

In order to demonstrate that chromium speciation was not 
altered when the sample was in contact with the column 
material, the Cr(vi) and total Cr levels were determined 
spectrophotometrically. The complexing agent 1,5-diphenyl- 
carbohydrazide reacts with Cr(vi) to form a coloured 
complex, the absorbance o f which is measured at 540 nm. 
Total Cr is determined after oxidation of Cr(m) to Cr(vi) with 
nitric acid. Comparison of the results obtained by both 
methods is presented in Table 3. The precision o f the 1,5- 
diphenyl carbohydrazide method was poorer particularly at 
low concentrations. However, the comparison o f the results 
shows that the differences in the values obtained by both 
methods are not statistically significant at the 95% confidence 
limit.

Conclusion
This study has demonstrated that dealginate, a waste product 
of the alginate extraction process, can be used as a column 
packing material for the preconcentration and determination 
of Cd, Cr, Cu and Pb at trace levels in aqueous solutions. 
Because dealginate is, in the main, a cation-exchanger, it can be 
used for separation and determination of levels o f C r04 2~ and 
Cr3+ in environmental samples. The binding capacities of the 
material for the elements studied are adequate for trace analysis 
and also the biomass is a much cheaper alternative to synthetic 
resins. In addition, a single 500 pL injection of 1 M HC1 is 
adequate for stripping the adsorbed metals from the column. 
With this set-up, a preconcentration factor o f two' was 
adequate for the analysis of the reference materials, however, 
depending on the concentration on the metals in a sample and 
the method of detection, concentration factors of 10 and higher 
could easily be obtained when the column is used in an off-line 
configuration.
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