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Abstract

In this study, a new analytical method for the simultaneous determination of total N, P 
and S using hydrogen peroxide oxidation has been developed for the analysis of water 
and sediment samples. The products of the oxidation reaction (nitrate, phosphate and 
sulphate) were determined by ion chromatography. A method for the simultaneous 
chemical speciation of arsenic, selenium and chromium was developed using ion 
chromatography coupled with ICP-MS. Reversed phase chromatography and ICP-MS 
was used for the simultaneous determination of mercury and selenium species. For the 
speciation of vanadium a new method using HPLC with reversed phase and ICP-MS 
detection was developed. The species arsenite, arsenate, selenite, selenate, chromate, 
methylmercury, inorganic mercury, selenocystine, selenomethionine, vanadium (IV) 
and vanadium (V) in samples of water, sediment, fish muscle tissue and mussel, were 
determined using the developed methods. Simultaneous determination of nutrients and 
metal species were applied to the study of pollution in Lake Maracaibo, Venezuela. The 
distribution of As, Se, Pb, Hg, Sn and V in sediment was studied using a sequential 
extraction scheme and related to the physicochemical parameters and nutrient content. 
The major concentrations of arsenic and lead found inside the lake were associated with 
the fraction associated with the Fe/Mn hydroxides phase, however, mercury and 
selenium were distributed at the main zone of the lake in the organic-sulphide fraction. 
In the strait and the gulf, metals were distributed mainly in the residual phase with the 
exception of tin. Conditions which favour mercury methylation in the lake are 
discussed. In the centre of the lake, with anaerobic conditions, methylmercury was the 
predominant species for mercury. The results found for vanadium and arsenic 
speciation showed that the predominant species in all the samples of Lake Maracaibo 
was vanadium (IV) and arsenite, respectively. Results were compared with those from 
lakes with similar pollution problems.
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Chapter I: Introduction

l.-INTRODUCTION

The large lakes in the world have been for many years prime resources. Industrial societies 

are very heavily water-dependent, and thus population densities and industralization are 

increasing rapidly on the shores of all large lakes of different latitudes. Effort at removing 

man-made pollution from this natural environment has not kept pace with the increasing 

amount of waste materials generated. As a result, man-made pollution has disrupted the 

natural biological balance in lakes. Two groups of substances in particular have lasting 

effects on the natural balance in aquatic systems: nutrients, which promote unrestricted 

biological growth and, in turn, lead to oxygen depletion, and synthetic chemicals and 

metals that are not eliminated from aquatic ecosystems by natural processes and in the most 

cases are concentrated through the food chain.

1.1.- Lakes and estuaries

Lakes are masses of waters situated in a depression of the ground without direct 

communication with the sea (1); these reservoirs are distinguished by water currents 

typically driven by the wind rather than by gravity. These water currents provide advective 

transport, generally turbulent, and chemical transport by turbulent diffusion. The pattern of 

water movement in a lake is also affected by the shape of the lake basin, by variations in 

water density, by inflow streams and by the Coriolis effect(2). Stratification divides lakes 

into different layers by inhibiting vertical mixing between the layers. Stratification occurs 

when the water at the bottom of a lake is denser than the surface water, and water currents 

are not strong enough to penetrate the boundary between the water layers. Such a density 

difference is usually due to temperature differences between upper and lower water masses;
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the lake is then called thermally stratified. The upper layer, which is typically well mixed, 

is named epilimnion and the lower layer hypolimnion; the region which separates them is 

the thermocline. The thermal stratification is common in lakes located in climates with 

seasonal variations (temperate lakes).

Estuaries are mixing zones between freshwaters and seawaters (3). Water flow in estuaries 

is more complicated than in rivers and lakes; it is influenced by the inflow of fresh waters 

from rivers and streams, by tides of the sea, and by the large salinity, and hence density, 

difference between fresh and seawaters. The density difference tends to create a strong 

stratification, while the back and forth movement of water driven by tides enhances 

dispersion and mixing. Stratification in estuaries in some aspects is similar to stratification 

in lakes; the density difference in estuaries is due to the difference in salinity between fresh 

water and seawaters rather than temperature differences (2).

In the past decade, there has been a resurgence in the study of pollution in lakes, estuaries 

and wetlands which cover millions of km2 of continental area. Lakes are now seen as major 

regulators in the carbon, nitrogen and phosphorus global geochemical cycles through 

various processes: sedimentation of detrital organic matter, production of autochtnonous 

organic matter, precipitation of carbonates, and precipitation of evaporates (4). From 1968 

until now, the study of the Great Lakes (USA) has shown how pollution can affect large 

water bodies, and the steps to eventual restoration (5-8). Fresh water lakes such as Lake 

Alexandria (9), in the South of Australia, have provided historical information on changes 

in the N and C cycles. Other studies in the Szczecin Lagoon in the Southern Baltics (10) 

and Oder Estuary in Poland (11) have yielded valuable information about eutrophication. 

Eutrophication and subsequent lake-quality deterioration is already visible in many
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countries, Lake Zurich in Switzerland which has been under scientific observation for over 

half a century, is the best example (12); eutrophication can damage many aspects of life 

including water supply, fisheries, bird life and public health.

The abundance of studies of temperate lakes throughout different seasons including 

summer, has produced results that have been compared to tropical lakes., however tropical 

lakes are very different during all parts of the year. Information about nutrients in temperate 

lakes can not be associated or extrapolated to tropical lakes, because of the fundamental 

differences in the physical and the biological dynamics of the two types of systems.

These fundamental differences between tropical and temperate Great Lakes have been 

reviewed recently by Hecky (13) with the following conclusions : tropical lakes have 

continuously high temperatures throughout the water column and high rates of annual 

photosynthesis under continuously high solar irradiance. These aspects not only lead to 

permanent stratification and hypolimnetic anoxia in the deepest tropical lakes, but also they 

have consequences for oxygen concentrations throughout the water column and can 

dramatically affect the biogeochemical cycles of carbon, nitrogen and phosphorus. 

Denitrification and enhanced regeneration of phosphorus from metal oxides cause low 

nitrogen:phosphorus ratios in the deep waters and create a nitrogen deficit when deep 

waters mix with surface waters, which is met through N-fixation. In Lake Malawi ( a large 

African tropical lake ), nitrogen has a residence time of 2 years while in dimictic Lake 

Superior, the nitrogen residence time is over 50 years. This disparity in the residence time 

indicates that nitrogen is poorly recycled to the mixed layer of Lake Malawi. The chronic 

anoxia of tropical lakes promotes the release of phosphorus bound to metal oxides and 

allows soil erosion to increase eutrophication .
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1.2.-Lake Maracaibo

Lake Maracaibo, Venezuela is a tropical lake (mean temperature 30 °C); it is the largest 

lake in South America (8th in the World), and covers an area of 13,010 Km2 . Lake 

Maracaibo has been classified as of miscellaneous tectonic origin (>36 Ma) with a very 

ancient structure (14 -15); in this lake the sedimentation rate, of the order of 0.1-1 mm/year, 

is compensated by subsidence rate; otherwise it would have filled up over 0.1-1 Ma (4, 16). 

The Lake Maracaibo basin involves six states of the Republic of Venezuela with an area of 

82,035 Km2 (without taking into account the lake itself) and the Republic of Colombia with 

an area of 16,130 km2. These basin waters flow into the Gulf of Venezuela. (17) Figure 1.3 

shows the location of Lake Maracaibo in South America (Latitude 9°0,- l l o0’ North, 

Longitude 71o0’-72.0’ West). Lake Maracaibo System which is loaded for 135 rivers with 

fresh water of 1,900,000 L.sec'1 is formed by: the Venezuelan Gulf, the Tablazo Bay, the 

Strait and the Lake itself. The total extension of the system is 121,422 Km2 of which 

104,900 Km2 belongs to Venezuela and 16,432 Km2 belongs to Colombia because it is the 

bom from Catatumbo River, the main water source of the lake (18). The area of the water 

mirror is 12,780 Km2 with a volume of 280 Km3. The lake is 152 Km long and 70 Km 

wide The mean slope is 0.8 %(19). The Strait covers an area of 479 Km2, with 40 Km long 

and 14 Km wide; this Strait ( and The Tablazo Bay) is an estuarine zone where there is a 

mix of fresh water from the lake and seawater from the Caribbean Sea through the 

Venezuelan Gulf.
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Figure 1.1.: Location o f Lake Maracaibo

The proximity of Venezuela to the Equator results in minimal annual temperature 

differences. The climate is predominantly tropical, with a warm zone extending along the 

coast. The climatic zones are defined by the rainfall rather than by differences in 

temperature. The dry season extends from December to April, and the wet season covers 

the remainder of the year. The mean temperature in Lake Maracaibo varies between 29-32

°C. Figure 1.2 shows a map of the currents inside the lake and the strait. During the dry

6
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season the salinity o f the lake increases significantly, but during the wet season (April to 

December) the water flows from the rivers to the cone (centre o f the lake) and maintains an 

anticlockwise circulation. At the centre, the salinity varies between 4.2 g.L'1 and 5.2 g.L"1 

(17). The concentrations of total phosphorus during the dry season varies between less than 

0.05 mgL"1 to more than 0.12 mgL"1 and in the wet season from less than 0.06 mgL'1 to 

more than 0.12 mgL"1; the concentration of total nitrogen varies during the dry and wet 

seasons, (between 0.5 and 1.21 mgL"1 ) but in different sites of the lake(17).

Gulf of Venezuela

Lake Maracaibo

Figure 1.2. The map o f water currents inside Lake Maracaibo

1

Maracaibo strait
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70% of the Gross National Product of Venezuela comes from the petroleum extracted from 

zones lying under Lake Maracaibo, the Misoa Formation sands, which produce basically 

light crude oils (24-40 0 API)(20), thereby creating a heavy traffic in tankers in and out of 

the lake. In spite of this, an annual maintenance dredging in Lake Maracaibo has been 

carried out by the INC (National Institute of Channels) since 1938. This institute was 

formed to manage a dredging program to maintain a navigable channel in Lake Maracaibq 

of an average depth of 1 lm. The maximum normal depth is 32 m and the mean depth is 20 

m. Over the last 40 years, the salinity of the water has increased by about 300 % as a result 

of dredging, which has altered the nature of interaction between the lake and the Caribbean 

Sea. The lake is surrounded by about 2,000 industries sites and 10,000 oil drilling platforms 

are situated near to its centre. A growing open coal industry near to the Guasare River (an 

inflow) and the transport through the lake (non-point contamination source) could also 

affect the concentrations of As, Hg, V and Pb . In addition Lake Maracaibo receives loads 

of nutrients frpjn tributaries W age $S?!wges> an(* agricultural sources. Phosphorus 

mining m the ihountairi^ |f9 j|||j 10 tbe tributary phosphorus loading to

fy? Witb popul^jpn of 3 million ^|^j)le discharges raw sewage

directly into the Strait of Maracaibo located on the northern part of the lake. Moreover, the 

constant dredging of the lake maintain the sediments in a 'Qppstant re-suspension and open 

to different reactions with the nutrients that can increase^Ufrophication and the availability 

of heavy metals which can increase the concentrations of the most dangerous toxic species.

8
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1.3.- Eutrophication

The term eutrophication describes the condition of lakes or reservoirs involving excess 

algal growth caused by high nutrient content. The main cause of eutrophication in a water 

body is the presence of nutrient excess from watershed runoff or sewage. As a result, the 

dead biomass is accumulated at the bottom of the water body, recycling nutrient carbon 

dioxide, phosphorus, nitrogen, and potassium. The growth of plants is accelerated, leading 

to solid material (21). Where river loads of nitrogen (N) and phosphorus (P) have increased

(22), eutrophication poses a threat to the quality of reservoir water used for potable supply, 

especially during the summer months (23)

A number of lakes and lagoons world-wide have been studied, for example the Szczecin 

Lagoon (Poland), Bodensee (Germany), Zurich (Switzerland) , Laurentian Great Lakes in 

North America (24) and Lake Biwa in Japan (25). Sediment investigations in Szczecin 

Lagoon have revealed that 100,000 tons of nitrogen and about 30,000 tons of phosphorus 

have been retained in the lagoon during the last 100 years (26), The Saginaw Bay in Lake 

Huron (Michigan ), now being remediated , has a loading of phosphorus of 1,544 metric 

tons per year (27).

Table 1.1 (28) shows the chemical elements needed for plant growth. The eutrophication or 

enrichment process has been described as a natural process of ageing of a lake (21); the 

activity of man in the catchment area of lake waters gives rise to domestic, agricultural and 

industrial wastes and as a consequence the relatively slow process of natural eutrophication 

is greatly accelerated; thus what might have occurred in a period of thousand years can 

happen in a few decades.

9
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Table 1.1.: Essential plant nutrient sources and functions(28)

Nutrient Source Function and/or constituent

M a c r o n u t r i e n t s
Carbon (C 02) Atmosphere, decay Biomass constituent

Hydrogen Water Biomass constituent

Oxygen Water respiration

Nitrogen (N 03‘) Decay, atmosphere (from 
nitrogen-fixing organisms), 

pollutants

Protein constituent

Phosphorus Decay, minerals, pollutants DNA/RNA constituent
Potassium Minerals, pollutants Metabolic function

Sulphur (sulphate) Minerals Proteins, enzymes

Magnesium Minerals Metabolic function

Calcium Minerals Metabolic function

M i c r o n u t r i e n t s
B, Cl, Co, Cu, Fe, Mo, Mn, Na, Si, V, Zn Minerals Metabolic function and/ or 

constituent of enzymes

There is a basic relationship between the tropic or nutrient state of a lake and its biological 

productivity, the increase of which is a function of the nutrients available, and is evidenced 

by a change in composition and an increase in amount of plankton, benthic fauna and fish 

production (21). The nutrients which play the predominant role in the phenomena are 

nitrogen and phosphorus.. Many other substances including potassium, magnesium, 

sulphates and trace elements (Co, Mo, Cu, Zn, B, Fe, Mn, etc), together with organic 

growth factors, are also of importance.

The cycling o f nutrients has been entensively studied in large temperate lakes, but this is

not the case for the large tropical lakes, except for studies by Kilham and Kilham (29) and

Lewis (30), the study of Lake Calado, Brazil by Fisher et al (31) and a study from the 80’s

by Parra-Pardi (32) of Lake Maracaibo, Venezuela. There is a recent paper about nitrogen

cycling rates in this lake by Gardner et al (33).
10
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1.3.- Heavy metals

It is well known that the major ions such as sodium, potassium, magnesium and calcium are 

essential for biological life. For several decades, it has been known that trace quantities of 

certain elements exert a positive influence on plant, animal and human life. There are at 

least six transition (Co, Mo, Cu, Zn, Fe, Mn, V) metals that are essential to the growth, 

development and reproduction of humans. The other elements that dp not have a 

identifiable beneficial biological function are referred to as non essential.

The biogeochemical cycle of a metal is used to understand the possible short and long term 

problems associated with the release of heavy metals in to the environment . In particular 

the following problems need to be understood : (a) the physico-chemical forms in which 

heavy metals can exist in the environment, (b) the processes responsible for transporting 

the metals through the system, (c) the processes by which the metals are transformed from 

one compound to another , and (d) the most important pathways by which the trace metals 

interact with the biota. A conceptual model for an aquatic system has been developed by 

Hart (34), consisting of a number of compartments or reservoirs coupled by transfer 

pathways. A heavy metal tends to accumulate in the bottom and surface sediments from 

which it is released by various physical processes, Figure 1.3. shows a biogeochemical 

cycle for a lake (34). The system consists of four compartments: (a) the dissolved 

compartment containing free metal ions, complexed and colloidally- bound metal species; 

(b) the (abiotic) particulate compartment consisting of both inorganic and organic 

particulates; (c) the (biotic) particulate compartment consisting mainly of phytoplankton 

(and bacteria) in lakes and the deep ocean, littoral areas in

11
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Input Invprtebrates/fish

Particulate

Dissolved 
M2%  ML
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organisms Main pathway 

for heavy 
metal uptake 
by biota

Sediments

Figure 1.3.: A simplified biogeochemical cycle for a heavy metals in an aquatic system
(34).

estuaries and attached plants in streams; and d) bottom sediments, the largest reservoir of 

heavy metals in most aquatic systems.

The transfer processes o f heavy metals between compartments have been discussed in 

detail by Hart (1982)( 34), Salomons and Forstner (1984)(35), Tessier (1992) (36) and 

others (37-38).

Metals can occurs in various chemical forms resulting from a series o f natural bio- 

(geo)chemical processes. These chemical forms have distinct biological, physical, and 

chemical properties.
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The factors that influence the toxicity o f heavy metals in aquatic organisms have been 

compiled by Bryan (39), as is summarised in Table 1.2. Factors such as temperature, pH 

and salinity have an influence on the metal toxicity.

Table 1.2: Factors influencing the toxicity o f heavy metals in solution (59).

Form of metal in water
Inorganic
organic

Presence of other metals of 
poisons or poisons

Factors influencing physiology of 
organisms and possibly form of metal 
in water

Condition of organism

Behavioral response

so lub le — ►
Ion
Ion Com plex
Chelate ion
M olecule

(articulate Colloidal
Precipitated
A dsorbed

Joint actions
No interaction 
Antagonism

-►Vlore-than additive 
Xdditive
Less than additive

Temperature
pH

-------- ► dissolved oxygen
light
salinity

Stage in life history (eggjarva, etc)
changes in life cycle(e.g. M oulting,
reproduction)
age and size
sex
starvation
activity
additional protection (e.g., shell) 
adaptation to metals 

Altered behavior

Usually organometallic compounds are much more toxic than ions o f the corresponding 

inorganic compounds. Mercury, lead and tin follow this general rule, whereas arsenic and 

selenium represent exceptions because most organo-arsenicals are less toxic than inorganic 

arsenic species, and organic forms of Se are ordinarily less toxic than Se(VI)(40). The 

toxicity o f compounds varies in relation to the compound, e.g., for tin mono- and 

dialkylated species are less toxic than trialkylated ones. The toxicity o f the organometallic
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species also varies with the organism monitored. For example, trimethyltin is more toxic 

for insects, triethyltin for mammals, and tributyltin for fish, fungi and bivalves (41).

The rate of absorption of a metal from solution, or indeed from food, is governed by its 

chemical form.. Studies of toxicity (24h., LC50), made by O’Hara (42) in crabs, 

demonstrated that the toxicity of Cd is least at low temperature coupled with high salinity, 

and greatest at high temperature coupled with low salinity.

D. Boening (43) reported that in aquatic matrices the toxicity of mercury in marine 

invertebrates, fish and marine mammals is affected by temperature, salinity, dissolved 

oxygen and water hardness.

1.3. l.Temperature

Most sorption processes of inorganic elements possess negative enthalpy (e.g. are 

endothermic) (44). Temperature control should always be exercised and reported and may 

be systematically varied to assess certain thermodynamic properties of sorption reactions. 

The observation that heavy metal toxicity increases with higher water temperatures (44) can 

be explained by elevated respiratory activity. Moreover , the metal solution itself causes 

increased respiratory activity. The absorption and the release of metals can also depend on 

temperature. This has been established for mercury, methylmercury, and phenylmercury 

acetate using rainbow trout (45-46).

Temperature differences influence the mixing of water masses in estuaries. Resistance to

mixing in an even partially stratified estuary is proportional to density differences between

the water masses; under isothermal conditions, these differences are usually produced by

salinity differences, the lower mass being denser and more saline. Differential warming of

the upper layer or chilling of the lower can lead to increased stratification and mixing

14
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resistance (3). Although, estuarine dissolved oxygen levels are normally near to saturation, 

the occasional occurrence of a high summer temperature can result in low oxygen levels 

producing anaerobic conditions. The reduction of bicarbonate to methane and sulphate to 

sulphite mark the limit of ps (the hypothetical electron activity) attainable by microbial 

redox processes. It can be sufficiently low to reduce As(V) to As(III) or Hg(II) to Hg(0), for 

example, which are species which have differences in toxicity.

1.3.2.- Dissolved Oxygen

The most important oxidizing agent in natural waters is dissolved molecular oxygen, O2 , 

Upon reaction, each of its oxygen atoms is reduced from the zero oxidation state to the -2 

state in H2O or OH". The half reaction that occurs in acidic solution is:

0 2 + 4 H + + 4e  ----------------►2H20

in basic aqueous solution it is

0 2 + 2 H20  + 4 e' ----------------M OIT

Because the solubilities of gases increase with decreasing temperature, the amount of O2 

that dissolves at 0°C (14.7 mg/L) is greater than the amount that dissolves at 35 °C (7.0 

mg/L)(47). The mean concentration of oxygen in unpolluted waters is about 10 mg/L. The 

most common substance oxidized by dissolved oxygen in water is organic matter. 

Similarly, dissolved oxygen in water is consumed by oxidation of dissolved ammonia and 

ammonium ion. Water that is aerated is constantly replenished with oxygen; however, 

stagnant water or that near the bottom of a deep lake is usually almost completely depleted 

of oxygen because of its reaction with organic matter. Since anaerobic conditions are 

reducing in the chemical sense, insoluble Fe3+ compounds that are present in sediments at
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the bottom of lakes are converted into soluble Fe2+ compounds which then dissolve into 

lake water:

F e3+ + e" ------------------- >Fe2+

It is not uncommon to find aerobic and anaerobic conditions in different parts of the same 

lake at the same time, particularly in the summertime, when a stable stratification of distinct 

layers often occurs. Water at the top of the lake is warmed by absorption of sunshine by 

biological materials, while below the level of penetration of sunlight remains cold. Thus 

conditions in the top layer are aerobic, and consequently elements exist in their most 

oxidized forms: carbon as CO2 or H2CO3 or HCO3", sulphur as SO42', nitrogen as NO3', and 

iron as insoluble Fe(OH)3. In the bottom, under anaerobic conditions elements exist in their 

most reduced forms: carbon as CH4, sulphur as H2S, nitrogen as NH3 and NH4+, and iron
r s \

as soluble Fe .

As a result of physiological changes in the organism, these two parameters can, due to 

chemical processes in water and sediment (e.g., oxidizing-reducing environment) decisively 

influence heavy metal availability. Thus, the concentration of heavy metals in interstitial 

waters with anaerobic sediments can be up to 10 times higher than in supernatant water

(48).

1.3.3.- pH

pH values play an important role in the interactions between heavy metals and species such

as organic compounds. For surface coordination reactions of metallic cations and

oxyanions on hydroxylated mineral surfaces, pH is the master variable. The strong pH

dependency of adsorption reflects solution hydrolysis or protonation of adsorbing ions,

and more importantly, the surface properties of the adsorbent (49).
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Metal pollution introduces excessive quantities of certain Lewis acidic metal ions to 

ecosystems. The biological consequences of metal pollution strongly depend on the 

resulting chemical species, which is a function of the kind and amounts of Lewis bases, the 

redox potential and the acidity-alkalinity (pH) characteristics of particular environments. In 

the biota, the Lewis bases include ligands (in solution as well as on particle surfaces) 

containing oxygen donors (e.g., -OH; RCOOH); sulphur donors (e.g., -SH), or nitrogen 

donors (e.g., -NH; -NH2) which can be coordinated to trace metals (e.g., Mg, Mn, Fe, Co, 

Zn) (50). It is very important to recognize and make use of the general pattern of chemical 

affinities between Lewis acids and bases, i.e., the position of equilibria for all reactions 

involving metal coordination.

M, + Lj *  ► MiLj

The redox state of the electron acceptors, Mi, and of the donors, Lj, strongly affects the 

affinities (e.g., Fe+3 vs Fe+2 and SO42* vs S2‘)(4). The proportion of free metal ions increases 

with lower pH, because H* ions compete with metal ions for the available ligands:

CO32 +H + =H C03‘

RCOO+H^ = RCOOH 

MeO' + H* = MeOH 

MeOPb+ + H+ =  MeOH + Pb2+

The heavy metal concentrations in acidic lakes, even those with significant smaller

pollutional metal input, are much larger than those measured in eutrophic lakes, because

metal binding by sorption to particle surfaces decreases with decreasing pH (51).

Also, the toxicity of some heavy metals can increase at basic pH values, for example lead

was found to be more toxic at a pH value of 8.5 than at pH 6.5 (52). With respect to organic
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substances, changes in the pH values in the water can strongly influence the adsorption or 

desorption of cations. For example, amino acids, in both water and sediments , can adsorb 

or desorb cations due to the pH-dependent amphoteric character of the acids.

1.3.4.- Salinity

Salinity is a conservative variable. It offers a convenient index of strength of the buffer 

systems (carbonate and borate) in seawater. Also, salinity is an indication of the osmotic 

environment for living organims. In general, salinity in the marine environment is relatively 

constant and has little influence on heavy metal concentrations. In estuaries, where fresh- 

and salt-water mix, salinity, however, plays a dominant role in influencing metal 

concentrations in water.

The salinity gradient in an estuary has several effects on chemical fate and transport. As 

salinity increases in the region where fresh and salt waters meet, particles brought in by 

fresh waters tend to stick together (coagulate) and thus settle to the bottom more rapidly. 

Rising salinity also affects the activity of dissolved ionic chemical species due to increasing 

ionic strength, thereby changing the position of chemical equillibria in the water. 

Oxidation/ reduction reactions are affected because oxygen is less soluble in saline waters 

(1) .

In sea water, the concentrations of dissolved heavy metals are generally much lower than in 

fresh water. Moreover, the high salt content alters the pH- and consequently the metal 

solubility (fresh water environment pH 7-7.5, marine environment approx. 8.0)(53).

1.4.-Chemical speciation

Chemical speciation as defined by Caroli (54) is “the process yielding evidence of the

atomic or molecular form of an analyte”. This statement can accommodate both organic
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and inorganic substances. The International Union of Pure and Applied Chemistry 

(IUPAC)(55) defined speciation analysis as “the analytical activity of identifying and 

measuring species”. It is also part of this term to indicate the distribution of species in a 

particular sample or matrix. The chemical speciation determines the environmental 

mobility of an element, especially with respect to partitioning between the water and 

sediment reservoir.

Historically, a general scheme of metal speciation-mainly based on the particle size 

fractions was introduced by Stumm and Bilinski (1972) (56). A method involving the 

separation of particulate from soluble metals using filtration through a 0.45 pm pore size 

membrane filter was developed by Guy and Chakrabarti, (1975)(57).

Following his observations on particulate substances from the Amazon and Yukon Rivers, 

Gibbs (1973)(58) suggested four categories of heavy metal retention in aquatic solid 

substances. They can be characterized by the following processes: adsorptive bonding (2), 

coprecipitation by hydrous iron and manganese oxides, (3) complexation by organic 

molecules, and (4) incorporation in crystalline minerals.

The concentration of an element in the aqueous phase associated with a sediment is

controlled by the formation of well-defined, poorly soluble compounds of the element but

this is dependant on the interaction of the dissolved species with the solid/water soluble

sediment and particulate phases by adsorption or coprecipitation (59). Metals can be

adsorbed at particulate surfaces, occluded in amorphous material, or be present in the

lattices of minerals, with each form exhibiting different chemical properties (60).

Based on these mechanisms, operationally defined speciation that involve the use of

single or sequential extractants to separate species associated with particular sediment
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phases has been developed since 1973. The nature of the fraction is largely determined by 

operational conditions. Ure et al (59) compiled in a table (Table 1.3) the single extractants 

designed to isolate a particular species , these extractants can, to some extent extract other 

species.

Table 1.3: Different extracting reagents or procedures and the soil/sediment phase 
isolated(59).

Phase extracted Reagent

Water-soluble 
Soil solution 

Sediment pore water

Water
Centrifugation
Displacement

Dialvsis
Exchangeable 1 mol.L" MgCl2  

1 mol.L' 1 NH4Oac 
0.05 mol.L' 1 CaCl2  

1 mol.L' 1 KN03

Organically bound 0 . 1  mol.L'r Na4P2 0 7  

0.7 mol.L' 1 NaOCl 
0.05 mol.L'1EDTA 

H2 0 2/ HN03/Na0Ac
Carbonate HOAc 

NaOAc pH=5 
EDTA

Mn oxide bound 0.1 mol.L' 1 NHoOH. HC1
Fe oxide bound Dithionite/citrate
Mineral lattice HF

An improvement o f the single extraction scheme was developed by combination o f single 

extractants into a sequential extraction scheme in which the residue of one is extracted by 

the next extractant in sequence to specifically dissolve different sediment phases or 

fractions. The use of sequential extraction procedures is justified for its ability to extract 

metal species from particular soil or sediment phases. The single step methods are usually 

used to determine mobility of metals in soils and sequential methods are more commonly 

used for sediments.
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Fortsner et al (61) were one of the first groups to propose a 5 -step procedure to isolate the 

individual fractions. The five fractions were identified as cation exchange, the easily 

reducible, the moderately easily reducible, the organic fraction and the detrital fraction 

respectively. Tessier (62) developed a procedure in which the first fraction is represented 

by the exchangeable metals, and those nominally associated with carbonate, Fe-Mn oxides, 

organic material and silicate residues were extracted with magnesium chloride, sodium 

acetate-acetic acid, hydroxylammonium chloride, hydrogen peroxide, and hydrofluoric -  

perchloric acid, respectively. A number of sequential extraction procedures based on the 

Tessier method (63-68) have since been developed . Table 1.4 (59) show the methods 

commonly used for the study of sediments.

It is generally recognised that most extraction schemes are less than perfect, i.e. few 

extractants can be relied on to release elements solely from a particular phase. In addition, 

redistribution between phases can occur during the sequential procedure (69). Despite these 

limitations, these methods provide useful diagnostic information on which environmental 

impact decisions can be based. Furthermore, they provide a reference method which 

laboratories world-wide can use for comparisons.

As part of a recent attempt to harmonize methodology for leaching/extraction tests 

throughout the European Community, the BCR has developed a three-step extraction 

protocol (73) in which metals are divided into acid soluble/exchangeable, reducible and 

oxidisable fractions. The method is reproducible and gives good recoveries with respect to 

acid dissolution (70). However, it lacks specificity and in this respect it is similar to other 

older schemes. The uncertainty of this method has been studied by Sahuquillo et al (74)
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Table 1.4: Some examples o f sequential extraction schemes(59).

Ref. (70) (Miller et all) Ref (71) Shuman

Extractant Metal phase Extractant Metal phase
h 2o Soluble

1 mol.L1 KN03 Exchangeable 1 mol.L1 MgNOj Exchangeable
0.05 mol.L' 1 NH4F Adsorbed
O.lmol.L' 1 Na4P2 C> 7 Organic 0.7 mol.L1 NaOCl Organic

O.Olmol.L' 1

NH2 OH.HCl
Mn Oxide

Citrate/dithionite/bicarb
onate

Fe Oxide 0.2 mol.L' 1 NH4 OX, 
pH =3

Amorphous Fe oxides

0.2 mol.L^NFCOx + 0.1 
mol.L' 1 ascorbic acid

Crystalline Fe oxides

1 mol.L1 HNO3 Precipitated
Cone. HNO3 Residual O.llmol.L ' 1 Na4P2 0 7 10

h 2o
Sand, Silt, Clay

[Ref(63)(Tessier et al)| Ref (72) (Salomons and 
Forstner)

1 mol.L' 1 MgCl2 Exchangeable 1 mol.L"1 NH4Oac Exchangeable
1 mol.L' 1 NaOAc/HOAc 

pH=5
Carbonate 0.1 mol.L' 1 

NaOAc/HOAc pH=5
Carbonate

0.04 mol.L1 

NH2 OH.HCl/ 25 % 
HOAC

Fe/Mn Oxides NH2 OH.HC1/0.01 
mol.L1 HNO3

Easily reducible Mn 
Oxide/ Amorphous Fe 

Oxides

0.2 mol.L^NFfOx pH=3 Moderately reducible 
Amorphous Fe oxides

30 % H2 0 2 /HN03 

pH=2 then 3.2 mol.L1 

NH4 Ac/ 20 % HNO3

Organic + Sulfide 30 % H2 0 2 /HN03 

pH=2 then 3.2 mol.L" 1 

NH4 Ac/ 20 % HNO3

Organic + Sulfide

Cone HF/HCIO4 Residual HF +HC104 Residual

showing that modification of certain variables is necessary. The pH, type of acid used for 

adjustment o f pH, the temperature and duration of the extraction can influence the metal 

extractibility.

Chemical speciation could also be based on the identification of well-defined molecular 

or atomic structure. This is achieved by means o f advanced chromatographic or 

electrophoretic techniques which are usually coupled to element specific detectors. The 

successful approach depends on two factors: selectivity (to determine the proper species
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required) and sensitivity (to determine the species at the detection range of the sample). 

Advanced hyphenated techniques have recently been subject of a book and several reviews 

(55, 75-81) with emphasis on the interface and the detection (42, 82-83). The element- 

selective detectors are normally atomic absorption (84-86), atomic emission (87-89), 

atomic fluorescence (90), mass spectrometry (91-93), inductively coupled plasma (ICP) 

(94-100), microwave plasma (101), glow discharge (GD) (102). Neutron Activation 

Analysis (103) or coupled techniques such as ICP-MS (104-112), hydride generation(HG) 

with fluorescence (113), HG and ICP-MS (114), GC-ICP-MS (115), etc. have also been 

used. ICP-MS has proved to be a convenient technique for this task and has qualities such 

as capacity for simultaneous, rapid and precise determination with wide analytical range 

and low detection limits which allow it to compete successfully with other techniques (116- 

118). Chromatograpic techniques are used to separate the species according to the nature of 

the mobile phase in gas, supercritical fluid and conventional liquid chromatography (119- 

122). The separation mechanism (adsorption, reversed phase, partition, ion-exchange, size 

exclusion)(123-128), the column used (open, tubular or packed), operational mode (elution, 

displacement, counter-current) and filling (free, flow or gel) have been studied and used, 

depending on species to be determined.
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1.5.- Aims
New analytical methods that can be used to determine simultaneously various elements are 

preferred because of reduced cost and analysis time. Most of the techniques used for 

determination of nutrients such as nitrogen, phosphorus and sulphur are time-consuming 

and use a lot of reagents, sometimes the use of quite toxic chemicals is also necessary. In 

this study, a new analytical technique for the simultaneous determination of total nitrogen, 

phosphorus and sulphur using hydrogen peroxide and ion chromatography has been 

developed to analyse environmental samples of water and sediment. The products of the 

oxidation reaction with hydrogen peroxide (nitrate, phosphate and sulphate) have been 

determined by ion chromatography. However, these products of oxidation can be 

determined by other detection techniques such as capillary electrophoresis, and traditional 

wet determination methods available in many laboratories.

In addition, methods for simultaneous determination of metal species have been developed:

1) A method for the simultaneous chemical speciation of arsenic, selenium and chromium 

has been developed using ion chromatography coupled with ICP-MS. The species arsenite, 

arsenate, selenite, selenate and chromate can be determined with the developed method in 

samples of water, sediment, fish muscle tissue and mussels.

2)A method for the simultaneous determination of mercury and selenium species has 

developed using reversed phase chromatography and ICP-MS. Methylmercury, inorganic 

mercury, selenocystine and selenomethionine can be determined by this method in samples 

of sediment, fish muscle tissue and mussel.
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3) A new method for the speciation of vanadium has been developed with using HPLC with 

a reversed phase and ICP-MS detection. Vanadium (IV) and Vanadium (V) can be 

determined in samples of sediment, fish muscle tissue and mussel using this method.

Only a few papers have been published about nutrients in Lake Maracaibo, these being 

mainly the work of Parra-Pardi in 1983 (32) and a more recent paper published in 1998

(33). Other publications have been concerned with the geological origin of Lake Maracaibo 

(14-16, 20). Two papers by Colina and Romero (129-130) about the total mercury 

concentration in sediments and fish muscle tissue and organs of biological indicators from 

Lake Maracaibo. Information on the nature of anions in waters and air also has been 

published (131-132). In this thesis, two sampling campaings were done in Lake Maracaibo 

and physicochemical parameters measured in situ during these samplings. Background 

concentrations of metals were determined using X-ray fluorescense spectrometry and the 

total content of the major cations and trace elements by standard methods; all the 

methodologies presented for simultaneous determination of different nutrient and metal 

species were applied to the study of this lake. The results have been discussed in order to 

determine the effects of the excess of nutrients, the aging state of the lake and the metal 

pollution The distribution of arsenic, selenium, lead, mercury, tin and vanadium in 

sediment was studied by a sequential extraction scheme and related to the physicochemical 

parameters and nutrients. Conditions which favour mercury methylation in the lake are 

discussed. All the results were compared with other lakes that have similar problems of 

pollution.
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Chapter II: Sample collection and pre-treatment.

2.1.- INTRODUCTION

2.1.1. Sampling strategy:

Sampling is defined as the total activity which end with the acquisition of the test 

portion (actual subject of analysis)(l). Sampling starts by taking an increment (an 

individual portion of material collected by a single operation of a sampling device). The 

collection of one or more increments or units initially taken for a population represents 

a primary sample which on division and reduction gives rise to a reduced sample of a 

mass approximating that of the final laboratory sample. The final step of sampling 

consists of the selection, removal and preparation of analytical portions from the 

laboratory sample.

An important requisite for a test sample is to be homogeneous. The homogeneity 

denotes the degree to which a constituent is uniformly distributed throughout a quantity 

of material. The degree of heterogeneity is the determining factor of sampling error. In 

addition, the test sample should be representative, i.e., adequately represents the 

population of material from which it was taken. The sampling strategy should include a 

predetermined procedure for the selection, withdrawal, preservation, transportation and 

preparation of the portions to be removed from a population as samples. This strategy is 

usually done using a statistical sampling plan to minimize the difference between the 

properties from the original sampling site and the actual properties of a sample portion. 

During sampling, precautions to avoid the change of the characteristics of the sample 

(contamination, moisture loss or gain) should be considered, particularly during 

collection and storage.

In this study, two sampling campaigns were made during November 1998 to March

1999 on the sampling points that have been previously established and used for the
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ICLAM (The Institute for the Conservation of Lake Maracaibo) during 10 years. These 

sampling sites have been chosen using a statistical plan following the COVENIN 

norms ( Government of Venezuela accreditation scheme for analytical procedures).

2.2.- SAMPLING

The study area is located between Latitude 9°32’ and 11°0’ North and Longitude 

71°0r -  72°0r West (Figure 2.1.). The area was represented by 17 sampling points 

where the samples were taken during November 1998 and March 1999. Three samples 

of 1 L of water (at one meter depth) were taken at 15 sites and 1 Kg of sediment sample 

was taken at 13 sampling sites.

All the in situ parameters were measured on the R/V Bergantin , the research vessel of 

ICLAM. Physicochemical parameters including temperature, pH, conductivity, salinity, 

dissolved oxygen and redox potential were measured with a Hydrolab Surveyor II at 

different depths of the lake. Only the parameters at 1.0 m depth and those near to the 

sediment surface were to considered in this study (Tables 2.1 and 2.2.).

Before sampling all the plastic bottles were carefully acid washed and then rinsed with 

deionized water. The samples of water were taken using a diaphragm pump (JABSCO, 

PAR-MAX4, model 30620-00-12), the plastic bottles were rinsed with this water 

before the sample was taken. The samples were homogenized and kept at -4  °C after 

sampling and during transportation to England.

The samples of sediment were taken using an Eckman dredge,. The sediments were 

homogenized and kept in plastic bags at -4°C during sampling, after these were 

translated to a 50 mL plastic bottle and frozen to -20°C. The sediments were covered 

and mantained in the dark until analysis. Before lyophilization sediments were 

mantained frozen to avoid losses during defrosting.

36



Chapter II: Sample collection and pre-treatment.

The samples of lyophilized mussels (Polymesoda solida) and fish muscle tissue of 

Curvina (Cysnocion acoupa Maracaiboensis) were supplied by ICLAM.

11.00 San Carlos Gulf of Venezuela
Coal mine

•PR  f?

Coal mine port
10.80

Maracaibo City

10.60 •D-Coal mine port Maracaibo strait

•D-5A
•NO-2

10.40

•0-13
Oil extraction Oil extraction

10.20

•D-119 • 0-20
•C-1

Barranquita10.00 Lake Maracaibo
•D-114 •C-4Oil extraction

9.80 —
Oil extractioniUAM

•C-9
9.60 —

LaCeiba

•CA-2 *S-6
•D-339.40 —

Catatunbo River

9.20 —

-72.00 -71.80 -71.60 -71.40 -71.20

Figure 2.1: Lake Maracaibo and the sampling points

The samples of sediment were lyophilised in a Hereaus Lyophilizer at -44 °C for 12 h. 

After lyophilization, the sediments were homogenized with a mortar.

37



Chapter II: Sample collection and pre-treatment.

Table 2.1.: Parameters measured in situ for samples o f water taken at 1 m of depth.

Site Temperature

(°C)

pH Conductivity

(nS)

Dissolved 

Oxygen(mgL *)

Salinity 

(g L 1)
D-114 29.95 7.54 7.19 6.70 3.9

0-13 30.67 7.78 7.26 7.16 3.9

0-20 30.92 8.01 7.62 8.05 4.1

D-2 29.72 7.97 7.66 6.26 4.2

D-33 29.63 7.91 6.19 7.43 3.3

PR 30.02 8.25 8.02 7.01 4.4

SC 29.53 8.18 8.89 7.18 4.9

D-4 29.73 7.81 7.09 6.03 3.8

D-5a 29.94 7.82 7.03 5.92 3.8

C-9 29.78 7.30 8.18 4.88 4.5

C-l 31.15 8.13 7.09 7.30 3.8

C -ll 29.85 7.43 7.73 5.37 4.2

C-l 31.15 8.13 7.09 7.30 3.8

NO-2 7.82 7.82 7.03 5.92 3.8

CA-2 29.28 7.44 6.00 6.10 3.2

S-6 28.89 8.05 7.14 6.56 3.9

D-119 29.36 8.44 6.77 7.52 3.6

D-74 28.45 7.43 7.41 4.90 4.0
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Table 2.2.: Parameters measured in situ for the maximum depth, the zone nearest to the 
surface sediments.

Site Temperature

<°C)

pH Conductivity

(nS)

Dissolved

Oxygen(mgL')
Salinity 
(g L 1)

Depth

(m)
sc 27.33 8.15 30.9 6.25 19.2 9.9

D-2 28.15 7.73 15.8 3.06 9.2 10.8

D-4 28.54 7.73 7.31 4.9 4.0 14

NO-2 29.21 8.46 6.87 6.28 3.7 14.7

0-13 28.91 7.61 6.56 4.97 3.5 15

0-20 28.46 7.3 7.12 3.49 3.9 27.1

C-9 28.81 7.17 9.74 0.05 5.4 28

CA-2 28.64 7.79 6.72 3.45 3.6 25.2

D-33 28.46 7.08 7.47 1.90 4.1 28.7

C-l 28.68 7.13 8.45 0.79 4.6 28.1

PR 29.74 8.27 8.19 6.80 4.5 3.20

D-5a 29.98 7.84 7.12 5.72 3.8 14.60

C -ll 30.06 6.62 14.10 0.01 8.1 27.70

2.3.- Lake M aracaibo System

This lake is connected to the Gulf of Venezuela via the Strait o f Maracaibo and the Bay 

El Tablazo. Sampling points in the three zones are as follows. These zones are:

(1)The Gulf of Venezuela (mixing zone with the Caribbean Sea) (sampling points SC, 

PR)

(2) The Strait of Maracaibo (intermediate zone)(sampling points (D-2, D-4, D5a, NO- 

2)

(3)The lake (main zone of the lake)(the rest of the sampling points)
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Although considerable research has been conducted in describing the salient features of 

the hydrodynamics of Lake Maracaibo, little has been done in order to quantify the 

exchange between Lake Maracaibo and the Gulf o f Venezuela by characterising the 

internal processes and their interactions. Furthermore, there have been no attempts to 

describe the dynamics o f the entire system. Figures 2.2. a, b, c show the variation of 

salinity with depth during 1999 in three different zones of the Lake Maracaibo system , 

the estuary, the strait and the lake itself ( SC, D-2 and C-9)

(a) Point SC
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(b) Point D-2
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Figure 2.2. (a,b and c): Variations o f the salinity with the depth in three zones (estuary, 
strait and lake itself) of Lake Maracaibo system.

41



Chapter II: Sample collection and pre-treatment.

Lake Maracaibo is a stratified lake in which salinity changes with depth. The coned- 

shaped hypolimnion is defined by higher salinity and lower temperature than the 

overlying epilimnetic water that circulates at the hypolimnetic layer in a 

counterclockwise direction (2).
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CHAPTER III: Determination o f  nitrogen, phosphorus and sulphur.

3.1. INTRODUCTION

3.1.1. Nitrogen

Nitrogen occurs in numerous chemical compounds and in various environmental 

compartments (1). 14N and 15N of relative natural abundance 99.63 % and 0.37 % 

respectively, are the two stable isotopes . The breakdown of the stable N2 molecule is the 

limiting step in the incorporation of nitrogen into its inorganic and organic chemical forms 

(2). Elemental nitrogen is also incorporated into chemically bound forms, or fixed by 

biochemical processes mediated by microorganisms (see Figure 3.1). Biological nitrogen 

fixation is a key biochemical process in the environment and is essential for plant growth in 

absence of synthetic fertilizers (3).

Nitrification, the conversion of N(-IH) to N(V), is a very common and extremely important 

process in water and soil. Aquatic nitrogen in thermodynamic equilibrium with air is in the 

+5 oxidation state as nitrate, whereas in most biological compounds, nitrogen is present as 

N(-III), such as -NH2 in amino acids.

2 0 2+ NH4+ -> N 03 +2H++ H20

Nitrate reduction is a microbial process by which nitrogen in chemical compounds is 

reduced to lower oxidation states. In the absence of free oxygen, nitrate may be used by 

some bacteria as an alternative electron receptor.

Generally, when nitrate ion functions as an electron receptor, the product is NO2 ':
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2 N 0 3 + CH20  -» 2 N 0 2‘ + H20  + C 0 2

An important case of nitrate reduction is denitrification, in which the reduced nitrogen 

product is a nitrogen-containing gas, usually N2:

4 N 0 3" + 5 C H 20 +  4 H+_̂  2 N2 + 7 H20  + 5 C 0 2

Denitrification is the process by which nitrogen is returned to the atmosphere.

Atmospheric
Nitrogen fixation by 
microorganisms

Den it rifle at ion

Denitrification

Microbial decay

Nitrobacter Nitrosomonas

Chemical and 
atmospheric synthesis of 
nitrate

Nitrogen in organic matter (e.g.NI| 
groups in proteins)

Chemical fixation of 
nitrogen

Figure 3.1.: The nitrogen cycle which describes the dynamic processes through which 
nitrogen is interchanged among the atmosphere, organic matter, and inorganic compounds
(3).
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Nitrogen is present as free nitrogen (N2) and as salts (NFL**, NO3 ', NO2") in soil and water

(2). As an essential element for plant growth, it is a constituent of proteins, amino acids, 

vitamins, chlorophyll, enzymes, etc. Consequently, nitrogen availability may often be the 

limiting factor in plant growth and yield of agricultural crops.

3.1.2. Phosphorus

Phosphorus is a highly reactive element and forms compounds with various elements by 

direct bonding with or through oxygen. Phosphorus exhibits nine formal oxidation states 

from +5 to -3. Typical oxoacids such as orthophosphate (+5), hypophosphate( or di

phosphate) (+4); and hypophosphite, (+1) and their derivatives are well known. Sodium 

diphosphate is familiar as the phosphorylation agent for biological substances. Phosphorus 

oxo acids, phosphate and its polymers are important in nature and in industry 

orthophosphoric acid is used as raw material in the manufacture of fertilizers, detergents, 

surfactants and flame retardants (4).

Although cyclopolymers such as trimetaphosphate exist in nature, linear polymers of 

phosphate such as &\-(pyro\ tri- (tripoly) and polyphosphate are the most abundant.

The phosphorus cycle is shown in Figure 3.2.. There are no common stable gaseous forms 

of phosphorus. In the geosphere, phosphorus is held largely in poorly soluble minerals, 

such as hydroxyapatite, a calcium salt, deposits of which constitute the major reservoir of 

environmental phosphate. Soluble phosphorus from phosphate minerals and others sources, 

such as fertilizer, is taken up by plants and incorporated into nucleic acids, which make up
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the genetic material o f organisms. Mineralization of biomass by microbial decay returns 

phosphorus to the salt form from which it may precipitate as mineral matter (4). 

Biodegradation of phosphorus compounds is important in the environment for two reasons. 

The first one is that it provides a source of algae nutrient orthophosphate from the 

hydrolysis of polyphosphates. Secondly, biodegradation deactivates highly toxic 

orthophosphates compounds, such as the orthophosphate insecticides

Soluble inorganic phosphate 
as H P 042 ,H2P 0 4 ,and 

 polyphosphates

t t
Assimilation by 
organisms

Biodegradation 
▲

Precipitation

Fertilizer runoff, wastewater, 
detergent wastes

Xenobiotic 
o r ganoph osph ates

Biological phosphorus, 
predominantly nucleic acids, 
________ ADP, ATP________

Dissolution

Insoluble inorganic phosphate, 
such as Ca5(0H )(P 04)3 or

iron phosphates  -------------------------------------

Biological, organic and inorganic 
phosphates in sediments

Figure 3.2.: The phosphorus cycle (4) showing phosphorus-containing species found in the 
environment

Phosphorus occurs in waters, either in dissolved or particulate forms and, as inorganic or 

organically bound species (5). Total phosphorus concentrations in water can vary from less
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than 0.01 mgL*1 in small, near pristine, mountain streams to over 1 mgL'1 in heavily 

polluted rivers (5).

Phosphorus entering a wetland or stream is typically present in both organic and inorganic 

forms. These forms are dissolved inorganic phosphorus, dissolved organic phosphorus, 

particulate inorganic and particulate organic phosphorus. Dissolved inorganic phosphorus is 

considered bioavailable, whereas organic and particulate phosphorus forms generally 

undergo transformations to inorganic forms before being considered bioavailable (6). 

Seawater contains various organic esters of phosphorus as well as orthophosphate.

Due to the pre-eminence of phosphorus in primary production in all kinds of aquatic 

environments, research has focused on the origin and fate of phosphorus in lakes and seas 

(7-10). In sediment from lakes, it has been demonstrated that there are many cases in which 

phosphorus has been the limiting nutrient (7). The classification of the trophic status of 

standing water bodies is still based on the total phosphorus concentrations suggested by 

Vollenweider and modified by Wetzel in 1983 (11).

Some lakes in Central Europe have been regularly analysed during the last few years. Lakes 

such as Bodensee, Zurichsee and Greifensee have different degrees of eutrophication as a 

result of increases in phosphate concentration (12); for example, the phosphate loads in 

Lake Bodensee (Germany)have increased from 3 to 6 mg per m3 per year (12).

3.1.3. Sulphur

Sulphur is the tenth most abundant element in the earth’s crust (0.03-0.1 % w/w) and it is 

found in both the elemental form and in metal sulphide ores The four naturally occurring
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stable sulphur isotopes are 32S (95%), 33S (0.76%), 34S (4.22%) and 36S (0.014%). The 

figures in brackets denote their natural abundance (13).

The cycling of sulphur on the Earth’s surface has been greatly increased since the start of 

the Industrial Revolution by the demand for fuel, metals and fertilizers. Despite a great deal 

of study that the sulphur cycle has received in the past few years, there is still some 

uncertainity about many of the sources of the element. The sulphur and nitrogen cycles 

have a number of similarities, but one of the most important differences is that the major 

reservoir for nitrogen is the atmosphere, whereas the major available reservoir for sulphur 

is the earth’s crust.

The sulphur cycle, illustrated in Figure 3.3., is relatively complex in that it involves several 

gaseous species, poorly soluble minerals, and several species in solution. It interacts with 

the oxygen cycle to form sulphur dioxide SO2, an atmospheric pollutant, and soluble 

sulphate ion, SO42'. Among the significant species involved in the sulphur cycle are 

gaseous hydrogen sulphide, FfeS, mineral sulphides, such as PbS; sulphuric acid, H2SO4, 

the main constituent of acid rain; and biologically bound sulphur in sulphur-containing 

proteins.

Insofar as pollution is concerned, the most significant part of the sulphur cycle is the 

presence of pollutant SO2 gas and H2SO4 in the atmosphere. The former is a toxic gaseous 

air pollutant evolved in the combustion of sulphur containing fossil fuels.

Microorganisms and the sulphur cycle:

There is a strong analogy between sulphur and nitrogen in the way that microorganisms 

influence their biogeochemical cycling. Each element tends to be present in living
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organisms in its most reduced form, i.e. nitrogen(-3) as amino groups, -NH2, and sulphur (- 

2) as hydrosulphide groups, -SH. Sulphur is an important secondary constituent of amino 

acids and proteins. The ability o f this sulphur to form sulphur-sulphur bonds allows cross- 

linking in proteins by so-called disulphide linkages. When organic sulphur compounds are 

decomposed by bacteria, the initial excreted sulphur product is often hydrogen sulphide, 

H2S,

R -S H ------------------- ► H2S + RH

1
Atmospheric sulphur, S02,H,S, H,SO^n,

CS2,(CHj);S ' '
• * I

Inorganic S042'in both 
soluble and insoluble forms

Interch ange, of atmospheric 
sulphur speUes with other 
environmental spheres

I iigl! m (
'

t
Assimilation 
by organisms

S axidadon
A _____
Elemental sulphur, S

Sulphate
reduction

H S oxidation

Sulphide
oxidation

Biological sulphur,
Decomposition

Sulphides as H2S and as metal
including -SH groups

sulphides, such as FeS►

Microbial metabolism
 ±_____________

Biodegradcgion

;:-v:

Microbially produced organic 
sulphur in small molecules, 

largely as -SH and R-S-R groups

Xenobiotic sulphur such as that
g roups in insecticides

Figure 3.3.: The sulphur cycle(13). Sulphate ion, is found in varying concentrations in 
practically all natural waters. Organic sulphur compounds are common in natural aquatic 
systems and the degradation of these compounds is an important microbial process.
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in the same way that organic nitrogen compounds yield the hydrogen containing products 

ammonia, NH3, or ammonium ions, NFL**. Many marine phytoplankton produce 

compounds that break down to produce dimethylsulphide, (CFfe^S.

Dimethyl sulphide is a major biogenically produced sulphur compound, releasing about 20- 

40TgSa'1from the oceans .The formation of hydrogen sulphide (H2 S) is a characteristic 

feature of anaerobic marine sediments due to the high levels of sulphate, as compared with 

nitrate, in the sea. The hydrogen sulphide that is produced may be released as a gas to the 

atmosphere, where it is oxidised or may undergo reaction with metal ions in the sediments 

or water column to form insoluble sulphides. The later transition metals and those metals 

which come after the transition metals in the periodic table are especially likely to form 

insoluble sulphides (14). Iron , because it is present in relatively large quantities, forms the 

major sulphides mineral reservoir such as triolite, FeS, and as iron pyrites FeS2 . The black 

colour of many sediments is partially due to the presence of iron sulphides as well as 

organic matter.

3.1.4.-Analytical determination of nutrients

The nitrogen, phosphorus and sulphur cycles are of particular significance in a number of 

biological and non-biological processes in the environment (15). Natural and anthropogenic 

effects can cause localised inter-related changes to the cycles. In order to assess the impact 

and extent of the changes, it is essential to develop analytical methods which allow the 

simultaneous determination of two or all three constituents in a wide variety of 

environmental samples.
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Phosphorus determination involves two general steps, conversion of the phosphorus species 

to dissolved orthophosphate followed by determination of dissolved orthophosphate. Three 

digestion methods involving either perchloric acid, nitric-sulphuric acid mixture or 

persulphate solution are usually used. The phosphate generated is determined 

colorimetrically (16-18). Determination of phosphorus by inductively coupled argon 

plasma spectrometry is possible but requires that the instrument is adapted to work in the 

low ultraviolet region. (19)

Several methods have been described in the literature for the determination of sulphur 

which include gravimetric, turbidimetric, ion selective methods, chemiluminescence and 

capillary gas chromatography (20-22). These methods are both time- and reactant

consuming. Recently ICP-AES has been used to determine sulphur with the disadvantage 

that the recoveries and interference show dependence on the wavelength used. Calcium and 

boron are considered spectral interferences, and potassium, magnesium and phosphorus 

cause inter-element interferences (23).

The total dissolved nitrogen content of natural and marine waters and sediments are 

important quality parameters, given that nitrogen is an essential nutrient for primary 

production, and in some cases may be the limiting factor. Dissolved nitrogen in natural 

waters include inorganic species (nitrate, nitrite, ammonia) and organic matter such as 

amino acids, enzymes, nucleic acids, vitamins and alkaloids . Historically, analysis of total 

nitrogen is by the Kjeldahl method (24). The sample is digested with a mixture of 

concentrated sulphuric acid and potassium sulphate and selenium or mercury is added as a 

catalyst. Using this method dissolved organic nitrogen and ammonia are measured, but the
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oxidized forms, nitrate and nitrite, must be determined separately. Another limiting factor 

in the nitrogen determination using the Kjeldahl method is the time required (ca. 12 hours). 

Other methods that have been used include photooxidation (25-26), generic combustion 

(27), pyrochemiluminescence (28) and peroxidisulphate oxidation (29-30).

A modified alkaline persulphate procedure has been developed for the simultaneous 

determination of nitrogen and phosphorus after oxidation to nitrate and phosphate, 

respectively (31). This digestion method has also been used, followed by ion 

chromatography to determine the anions, nitrate and phosphate, but the method is subject to 

interference in the determination of phosphate due to a large sulphate peak (32-34) .

In one of the first attempts at simultaneous determination, Ebina et al (16) developed a 

method of oxidizing nitrogen and phosphorus to nitrate and phosphate, respectively using 

alkaline potassium peroxodisulphate. The composition of the oxidizing solution was 

carefully chosen so that its pH changed from basic to acidic during the oxidation step. The 

change in pH was necessary because oxidation with potassium peroxodisulphate of 

nitrogen and phosphorus occurs under basic and acidic conditions, respectively. The nitrate 

and phosphate ions were then determined colorimetrically.

In a different approach, Collins at al (35) developed a method for the combined analysis of 

total phosphorus and Kjeldahl nitrogen in complex matrices using a pressure microwave 

digestion and final colorimetric determination of phosphorus. More recently, Matilainen 

and Tummavuori (23) investigated the application of ICP-AES to the determination of 

water soluble sulphur in fertilizers and reported on spectral and interelement effects.
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To be able to analyse both bound and water soluble fractions, samples have to be digested. 

However, existing digestion methods are not easily adapted to simultaneous determinations 

because the use of oxidants such as nitric and sulphuric acids and potassium 

peroxodisulphate precludes the determination of one or more of the analytes. The use of 

hydrogen peroxide as an oxidant has a number of benefits compared with some of the more 

traditional oxidants (36). These include long term storage stability, and when the oxidising 

power of the peroxide is spent, only water is left as the by-product, thus eliminating the 

need for expensive effluent disposal treatments. In addition, it is a relatively inexpensive 

reagent, etc (37). Furthermore, samples digested with hydrogen peroxide can be used in 

analyses involving ion chromatography (38), potentiometry (39), colorimetry (40), UV- 

induced photoxidation (41), and other traditional techniques such as the cadmium reduction 

method (N)(42) and the ascorbic acid method (P) (43).

The oxidation strength of hydrogen peroxide is much enhanced when it is activated by the 

presence of an alkali, acid, metal ions or UV light. Activation via peroxyacid formation is 

the most common industrial use of H2O2 (36, 44-45).

Organic peroxyacids take part in a wide range of oxidation reactions often resulting in high 

product yields (46). Organic peroxyacids , or peroxyacids, are derivatives of hydrogen 

peroxide in which one of the hydrogen atoms is replaced by one acyl or aroyl group.
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Monoperoxyacids contain one peroxycarboxyl 

(-CO3H) group: diperoxyacids contain two. O---- H

A AR O'

For example: Peroxyformic acid: q ___ |_j

A  A
H O

Pure peroxyformic acid has probably never been prepared, but concentrated solutions are 

known; e.g. a mixture of 98 % hydrogen peroxide and 20 g of formic acid can contain up 

to 48% of peroxyformic acid under vacuum. Peroxyformic acid solutions of lower 

concentrations are obtained when less concentrated hydrogen peroxide (30%v/v) is used, 

with a resulting increase in safety (46).

About 25 % of active oxygen is lost within 24 h even at 0° in a 90 % v/v solution of 

peroxyformic acid. The decomposition products are reported to be carbon dioxide and 

water or formic acid and oxygen (46):

HCO3H -»H 20  + C0 2 

2HC03H h c o 2h  + o 2

In the presence of UV light H20 2 and ROOH can be degraded as follows: (47)

H20 2 + hv-> 20H 

R 0 2 + H 0 2 -> ROOH + 0 2 

ROOH + hv -> RO + OH 

R02‘ + H 02‘ + hv -> RO + OH + 0 2 (Net equation)

In aqueous phase,
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H2O2 (aq) + hv 2  OH (aq)

Hydrogen peroxide can oxidise transition metals such as Fe (II),

Fe(II) + H2 0 2 (aq)“̂  Fe(IH) + OH (aq) +OH* in acidic medium (48) 

and oxidise gaseous sulphur dioxide as well 

SO2 H2O -> S02 (aq)

S02‘ (aq)->H + + HS03‘

HSO3' H+ + S032‘

Bisulphate anions (HS03‘) can reacts with hydrogen peroxide over a pH range 3 to 6  

producing sulfuric acid (47):

H S03- + H20 2 (aq) + IT S0 42’ + 2lT + H20

Examples of the applications of hydrogen peroxide include the following: the degradation 

of the nitrogen containing organic compounds (49), degradation of PCB (50), degradation 

of humic acids (51), use in a tertiary treatment scheme with activated carbon (52), 

destruction of chemical pollutants (53), degradation of organophosphorus pesticides (54), 

monitoring oxygen demand in polluted waters (55), determination of sodium hydrosulphite 

in waste liquid by ion chromatography (56) and many other applications (57).

Speciation of nitrogen, phosphorus and sulphur in aquatic systems has become increasingly 

important due to the realisation that the environmental behaviour of these elements (i.e., 

bioavailability, bioaccumulation and biogeochemical transport) is often critically dependent 

on its physco-chemical form (58). There are many methods for the determination of 

nitrogen, phosphorus and sulphur species, some of them using techniques such as 

separation by precipitation (59), colorimetry (60), titrimetry (61), ion selective electrodes
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(62), anion exchange chromatography (63), photo-oxidation (64), capillary electrophoresis 

(65), electron microscopy (6 6 ), ion chromatography (67), integrated pervaporation (6 8 ), 

liquid chromatography-mass spectrometry (69) and others. There is a simultaneous method 

for the speciation of sulphur and nitrogen in humic substances that uses x-ray as a detection 

technique (70).

3.1.5.- Microwave digestion

Microwave heating involves direct absorption of energy by the sample material being 

digested. Microwaves are electromagnetic energy, which is non-ionising radiation that 

causes molecular motion by the migration of ions and rotation of dipoles, but does not 

causes changes in molecular structure (71). Microwave energy has a frequency range from 

300 to 300 000 MHz.

A microwave unit used in a laboratory consists of six major components: the microwave 

generator (the magnetron), the wave cavity, the wave guide, the mode stirrer, a circulator 

and a turntable.

The magnetron produces microwaves that are radiated from its antenna into the wave guide.

The microwave guide is a reflective metal that directs the waves into the microwave cavity.

As the microwaves enter the cavity, they are reflected by the mode stirrer to assist in

homogeneity the microwave field inside the cavity. To improve the homogeneity of the

microwave field, the samples are rotated through the variable field. A laboratory

microwave unit has vessels in a turntable which contain the samples to digest. The closed-

vessel systems have a number of advantages over open vessel systems. The pressure raises

the boiling point of the acids, achieving higher temperatures, which reduce the time
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required for digestion (72) , losses of volatile elements are eliminated by closed system, 

less acid is required because little evaporation of the sample digest occurs and the 

hazardous fumes are contained within the vessel.

In this study, a simultaneous procedure to determine nitrogen, phosphorus and sulphur is 

described. Hydrogen peroxide, formic acid and a microwave digestion system were used to 

oxidise nitrogen to nitrate, phosphorus to phosphate and sulphur to sulphate which were 

determined by ion chromatography. The methodology was validated using a number of 

inorganic and organic N,P and S containing compounds and reference materials.

3.2. M aterials a nd  M ethods

3.2.1. Apparatus

A Dionex QIC analyzer ion chromatograph equipped with a Dionex AG4 A guard column, 

a Dionex AS4A anion separation column, and a Dionex AMMS-II suppressor and 

conductivity detector was used. The sample was injected into the chromatograph via a 100 

pL sample loop, and eluted with a solution of 1.8 mM sodium carbonate / l .7 mM sodium 

bicarbonate at a flow rate of 1 mL min'1. A chart speed of 0.5 cm s' 1 , conductivity range 

setting of 30 pS, and conductivity suppressor solution of 12.5 mM H2SO4 were used 

throughout.

A Milestone model MLS-1200 Mega microwave system (24010 Sorisole, Italy) was used 

for the digestion of the samples.

The digestion programme was as follows:
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STEP POWER (W) TIME (min)

1 250 5

2 0 15

3 600 10

4 Ventilation 10

3.2.2. Reagents

The column eluent was prepared from reagent grade sodium carbonate and bicarbonate, and 

distilled deionized water ( 18 MT2 -cm, nanopure, Millipore Corporation, Massachusetts 

01730, USA ) The suppressor solution was prepared from 1.4 mL Aristar grade sulphuric 

acid (Merck, Poole, Dorset, UK) and made up to 2 L with distilled deionised water. The 

following analytical grade compounds were subjected to the digestion treatment: sodium 

nitrite, urea, L-cysteine and ammonium nitrate (all supplied by Merck, Poole, Dorset, UK), 

L-lysine and sodium pyrophosphate (both supplied by Aldrich, Gillingham, Dorset, UK), 

sodium sulphite (East Anglia Chemicals, UK). A 22% v/v solution was prepared from 

Aristar grade 30% v/v hydrogen peroxide. A reference material rain water LGC 6018 was 

used to test the ion chromatograph response.

3.2.3.- Sample preparation

To test the efficiency o f the oxidation procedure, solutions containing 50 pL o f formic 

acid and 40-100 mg L '1 in nitrogen, phosphorus or sulphur were prepared.

Standard reference materials oyster tissue (NIST, SRM 1566a) and Buffalo River sediment 

(NIST SRM 2704) were used to validate the digestion procedure.
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3.2.4. Stock standard solutions

Individual 1000 mg L'1 stock standard solutions of nitrate-N, phosphate-P, sulphate -S and 

nitrite-N were prepared from Aristar grade reagents (supplied by Merck) by dissolving 

6.0679 g NaN03, 4.3937 g KH2P04, 1.8145 g K2S04 and 0.2020 g of NaN02 , 

respectively, in one litre of distilled deionised water.

Mixed anion standard solutions of 1.0, 2.5, 5.0 and 10.0 mg L*1, respectively, were used to 

calibrate the ion chromatograph.

3.2.5. Sample digestion

Ten mL of hydrogen peroxide solution were added to 5 mL of sample or 0.2 g of a 

reference material and 50 pL of formic acid added to the microwave sample vessel. The 

mixture was capped and the microwave programme initiated. At the end of the first run, 

the sample was allowed to cool to room temperature, a further 10 mL of the same strength 

hydrogen peroxide solution was added and then the same programme was repeated. After 

oxidation, the digest was cooled to room temperature, made up to 100 mL with distilled 

deionised water, and analysed on the ion chromatograph. Each compound was digested 

and analysed at least five times.
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3.3. RESULTS AND DISCUSSION

3.3.1.- Concentration of the oxidising solution

it

-♦—  Nitrogen as 
Nitrate

-El—  Phosphorus as 
Phosphate

- A —  Sulphur as 
Sulphate

5 6.4 7.2 9.6 15 17 22 30

%v/v H ydrogen pero x id e  ad d ed

Figure 3.4: Effect of varying hydrogen peroxide concentration on the recovery o f nitrogen, 
phosphorus and sulphur from urea, sodium pyrophosphate, and L-cysteine, respectively 
after the first digestion.
Figure 3.4 shows the effect in percent recovery of varying hydrogen peroxide 

concentrations on the conversion o f urea, sodium pyrophosphate and L-cysteine to nitrate, 

phosphate and sulphate, respectively.

It has been suggested that the oxidising power of hydrogen peroxide is enhanced when it is 

activated by either acid, metal ions or is exposed to UV light (20).

The extent of conversion o f urea to nitrate was much improved (Figure 3.5) when a second 

10 ml aliquot of the same concentration hydrogen peroxide solution was added and the 

sample subjected to the microwave programme for a second time. In subsequent

S 60
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experiments, 22 % v/v hydrogen peroxide and the two stage digestion procedure were used 

to test the efficiency of the oxidation process on a variety of compounds

120
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p h o s p h a t e
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Figure 3.5.: Effect o f varying hydrogen peroxide concentration on the recovery o f
nitrogen, phosphorus and sulphur from urea, sodium pyrophosphate, and l-cysteine, 
respectively after the second digestion.

Tables 3.1 and 3.2 summarise the extent of oxidation expressed as recoveries of total 

nitrogen, phosphorus and sulphur. Varying the amounts of urea, L-cysteine and sodium 

pyrophosphate did not affect the extent of oxidation (see Table 3.2). The very good 

recovery values indicate that the oxidation process is efficient at converting N, P and S 

from the form in which they occur in these compounds. The efficiency of the procedure in 

oxidizing compounds containing nitrogen-nitrogen bonds or amide groups, and condensed 

polyphosphates is currently being assessed. A comparison of the expected and found values 

for N, P, S (Table 3.1) using a paired-t test was found not to be statistically significant at 

the 95% confidence limits except for the L-cysteine for which high recoveries were
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obtained. The difference in the results could be due to the poorer sensitivity for the 

determination of sulphate ions at low concentrations.

Table 3.1: Recoveries o f nitrogen, phosphorus and sulphur as nitrate, phosphate and 
sulphate ions from different concentrations (mgL1) ofpure compounds after digestion with 
22% %  hydrogen peroxide (n=5f_________________ ____________________________

Compound N-NOy

Expected

N-N03‘

Found

P-PO /

expected

P-PO /

found

S-SO42

Expected

S-SO42

found

Urea 9.93 9.96+0.62

L-Lysine 4.00 4.0110.04

Ammoniun

nitrate

6.49 6.6810.06

Sodium nitrite 10.0 10.0210.08

L-Cysteine 2.26 2.1210.01 5.17 6.1010.01

Sodium

Pyrophosphate

9.78 9.8010.13

Sodium sulphite 5.38 5.3510.04

Mix 1-Cysteine 

and sodium 

pyrophosphate

2.26 2.1210.01 9.78 9.6510.26 5.17 6.1110.02

64



CHAPTER III: Determination o f nitrogen, phosphorus and sulphur.

Table 3.2: Recoveries o f nitrogen, phosphorus and sulphur using different concentrations 
o f analyte and 22% 7 V hydrogen peroxide.

Compounds Concentration 

expected (mgL *)

Concentration

found(mgL'1)

% Recovery

Urea (N-N03‘) 5.00 4.85 97.0

9.93 10.40 104.7

6.00 5.42 90.3

6.24 5.50 88.1

8.00 7.45 93.1

L-C y steine( S-S042)- 23.10 22.59 97.7

11.48 12.11 105.4

15.11 14.44 95.5

10.00 10.50 105.0

5.17 6.10 117.0

Sodiuni Pyrophosphate 

(P-P043')

10.00 9.56 95.6

20.50 22.19 108.2

6.49 6.72 103.5

31.8 30.13 94.7

9.78 9.70 99.2
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3.3.2.- Analytical performance

A chromatogram of a mixture of L-cysteine and sodium pyrophosphate after oxidation is 

shown in Figure 3.6. The mean ± sd retention times for nitrate, phosphate and sulphate ions 

were: 4.11+ 0.14, 6.60 ±0.05 and 8.65 + 0.24 min, respectively. The three peaks are 

very well resolved and as a result samples containing widely different proportions of the 

analytes can be analyzed without interferences.

Calibration graphs obtained from mixed anion standards gave the following highly linear 

best-fit equations:

Nitrate: y = 1.18 x 107 x - 7.18 x 106 (r2= 0.9970)

Phosphate: y = 4.71 x 107 x - 3.78 x 106 (r2= 0.9886)

Sulphate: y = 4.37 x 106 x - 3.76 x 106 (r2= 0.9865)

y = Peak area (arbitrary units) 

x= Anion concentration (mgL*1)

Detection limits were calculated from the calibration graphs using the method of Miller and 

Miller (7). The results were 0.123 mg/L N-nitrate, 0.251 mg/L P- phosphate and 0.850 

mg/L S-sulphate. The detection limits based on 0.2 g of sediment were 0.006% w/w N,

0.012 % w/w P and 0.042 % w/w S .
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PO,

10

Retention time(min)

Figure 3.6: Chromatogram o f a sample containing L-cysteine and sodium pyrophosphate 
after oxidation to nitrate (1), phosphate (2) and sulphate(3).

3.3.3. -Method validation

The N, P and S contents for NIST SRM 1566a oyster tissue and NIST SRM 2704 Buffalo 

river sediment samples digested with 22% v/v hydrogen peroxide are given in Table 3.3. 

Satisfactory agreement with the certified values was obtained. The presence of a sample 

matrix did not have an adverse effect on the recoveries.
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Table 3.3 : Comparison o f the quantities o f nitrogen phosphorus and sulphur found using 
the proposed method and the reported values for the standard reference materials (n=3).

Element Oyster Tissue (%w/w± 95% 
confidence limit)

Buffalo Kiver 

(%w/w± 95% confidence limit)
N Found 6.62 ±0.28

Reference value 6.81

P Found 0.62±0.02 0.09±0.01

Certified 0.62±0.02 O.lOdtO.Ol

S Found 0.87±0.01 0.43+0.05

Certified 0.86±0.02 0.40±0.01

The proposed method for the oxidation of N, P and S followed by the determination o f the 

nitrate, phosphate and sulphate ion by ion chromatography gave satisfactory results for the 

compounds tested. The effectiveness of this procedure is demonstrated by the good 

recoveries obtained for the two SRMs, oyster tissue and Buffalo river sediment. However, 

this work was focused on the application of the method to more recalcitrant compounds 

where the N, P and S atoms are in ring systems.

3.3.4- Chemical speciation of nitrogen, phosphorus and sulphur.

This previously reported method (38) was modified in order to extend the range of 

compounds that can be analysed for total nitrogen, phosphorus and sulphur. Parameters 

affecting the extent of oxidation such as microwave power, hydrogen peroxide
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concentration and microwave program sequence were optimised. By altering the amount of 

hydrogen peroxide added to the sample, and the stepwise use of the microwave programme, 

it was possible, depending on the nature of the compound, to control the extent of the 

oxidation. Anions formed after oxidation of the samples were separated and determined by 

ion chromatography with conductivity detection. The developed procedures were validated 

using pure compounds: sodium nitrite, sodium sulphite, L- cysteine, lysine, phosphonitrile 

chloride, saccharin, urea, and reference material prawn GBW08572.

3.3.4.1. M odified Method:

The instrumental settings for the microwave digestion were modified so that stepwise 

oxidation of the following compounds could be achieved. Parameters such as hydrogen 

peroxide added to an organic acid, the power of the microwave, and time of digestion were 

studied in order to control the oxidation to nitrate, phosphate and sulphate respectively.

The modified microwave programme was as follows (Table 3.4):

Table 3.4: Microwave conditions in each step used with the modified method.
STEP POWER (W) TIME (min)

1 250 5

2 0 15

3 450 10

4 0 10

5 650 10

6 Ventilation 15
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3.3.4.2. Sample digestion:

Ten mL 30 % v/v hydrogen peroxide were added to 1 mL of sample or 0.2 g of a 

reference material followed by 50 pL of formic acid in the microwave vessel. The mixture 

was capped and the microwave programme initiated. For organic nitrogen and sulphur 

compounds, at the end of the first run, the sample was allowed to cool to room temperature, 

a further 5 mL of the same strength of hydrogen peroxide solution was added and then the 

same programme was repeated. For cyclic compounds and the reference material, an 

additional step was included after addition of 5 mL hydrogen peroxide. After oxidation, the 

digest was cooled to room temperature, made up to 25 mL with distilled deionised water, 

and analysed on the ion chromatograph.

3.3.4.3.- Inorganic and linear organic compounds

The Figure 3 .7 (a,and b) shows variation of the conversion of urea to nitrate when different 

powers of the microwave, and one or two oxidation steps were used. An appreciable 

increase in the recovery is seen with the additional step. The nitrite (Figure 3.8a and b) and 

ammonium ions (Figure 3.9 , a and b) are converted to nitrate in only one step.
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Figure S. 7. (a): Recoveries o f nitrogen from a solution o f 9.72 m gL'1 o f urea when 
different microwave program steps are used.
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Figure 3.7(b): Recoveries nitrogen using different power.
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Figure 3.8(a).: Recoveries o f nitrogen from a solution of 40 mg.L'1 o f sodium nitrite when a 
one step program is applied.
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Figure 3.8. (b): Chromatogram o f the 40 mg.L1 solution of nitrite after oxidation with 
hydrogen peroxide.
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The Figure 3.8(b) shows the chromatogram following oxidation of the nitrite solution with 

different concentrations of hydrogen peroxide; the nitrate peak increases in size with the 

addition of hydrogen peroxide until total conversion to nitrate is achieved.

Volume of 30 %hydrogen peroxide added (mL)

Figure 3.9. (a): Recoveries o f nitrogen from ammonium chloride when a one step program 
is applied to the sample

HCOO NCV ]V 0 3

10 mL added 
7 mL added 
3 mL added 
1 mL added 
0 mL added 
blank

Retention time(min)

Figure 3.9 (b): Chromatogram showing the variation o f the nitrate peak from ammonium 
chloride when different volumes of hydrogen peroxide are added to the sample.
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Organic compounds such as urea, L-Lysine and L-cysteine require a two step programme in 

order to convert to them to nitrate and sulphate, respectively (Table 3.5).

Table 3.5: Recoveries o f nitrogen, phosphorus and sulphur obtained using different 
compounds and the modified programme.

Compound Added (mg/1) Found (mg/1) Recovery (%)
Sodium sulphite(S) 25.8 26.0 + 0.2 100.7

Sodium pyrophosphate (P) 30.9 30.9 + 0.1 100.1

Sodium nitrite (N) 8.1 8.6 ±0.6 106.0

Ammonium chloride(N) 40.0 42.5+2.1 106.0

L-Lysine (N) 7.1 7.2+  0.2 101.4

Urea (N) 17.7 17.0 ±1.2 96.0

Saccharin (N) 2.3 2.2 ±0.1 95.6

3.3.4.4.- Cyclic organic compounds:

Experiments were performed with the cyclic compounds saccharin (FW= 183.19) and 

phosphonitrile chloride ( FW= 347.66).

Saccharin Phosphosnitiile Chloride
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In Figure 3.10 (a and b), the recoveries of saccharin in response to varying amounts of 

hydrogen peroxide added and the number of steps used, and the resulting chromatograms, 

are shown. All of the nitrogen is converted to nitrate in the third step. Sulphate is also 

formed in this step.
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«t-l
©
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120

100 -

80 -

60 -

40 -

20  -

-■—one step 
-a—two steps 
-■-three steps

1 3  5 7
Hydrogen peroxide added (mL)

10

Figure 3.10 (a): Variation o f the recoveries o f nitrogen from saccharin when a different 
step program is used.
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Figure 3.10(b) Chromatogram o f the saccharin solution after oxidation.
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Figure 3.11: Recoveries o f phosphorus and nitrogen from a solution of phosphonitrile 
chloride using a three step program method.
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Figure 3.11 shows a graph of percentage of conversion of N and P from a solution of 51.4 

mg L '1 digested in one, two and three steps. Three steps are required to convert all the 

phosphorus in phosphonitrile chloride to phosphate.

The Table 3.6. shows the recovery of nitrogen and sulphur from a mixture o f nitrite, urea 

and saccharin and a mixture of L-lysine, saccharin and cysteine.

Table 3.6 : Recoveries o f nitrogen obtained from two mixtures : Mixture 1 : containing 
12.71 mg-N.L1 as nitrite, 9.72 mg-N.L1 urea and 2.96 mg-N.L1 saccharin; Mixture 2: 
4.05 mg-N.L1 as nitrite, 7.12 mg-N.L1 L-lysine and 2.96 mg-N.L1 saccharin respectively.

Element One step Two steps Three steps Added (mg/1) Found (mg/I)

Mix 1 (N) 18.5 22.8 25.0 25.4 25.6

(mg-NL-1)

Recovery(%) 72.8 89.6 100.7

Mix 2 (N) 7.7 11.4 15.0 14.3 15.0

(mg-N.L1)

Recovery(%) 54.1 79.8 104.8

The Figure 3.12 shows the presence of a sulphite peak in the first and the second steps, 

before the sulphate peak.
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SO
SO,

HCOO

3 steps

10

Retention time(min)

Figure 3.12: Chromatogram o f a digestion o f a mix of saccharin, nitrite and L-lysine after
the three steps runs method.

As shown in Table 3.7 most of the nitrogen is converted to nitrate in the third step from the 

prawn reference material (Prawn GBW08572). An increased recovery o f 70 % from the 

second to the third steps indicates that the nitrogen is found probably in a cyclic 

compounds, whereas most of the phosphorus is present as phosphate or related inorganic 

form.
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Table 3.7: Recoveries o f nitrogen and phosphorus obtained front a reference material 
(Prawn GBW08572) using the modified programme.

Element One step(%) Two steps(%) Three steps(%) Added

(%w/w)

Found

(%w/w)

N 21.5 25.0 95.9 14.1 13.6

P 34.8 93.6 108 0.85 0.91

In order to ensure that there are not cyclic compounds present, if is advisable to carry out 

the three step digestion programme so that all nitrogen is converted to nitrate. The varying 

amount of recovery after each step is maybe indicative of the nature of the compounds 

present in the sample. On the basis o f this difference in behaviour it maybe possible to 

obtain speciation information from the samples.

3.3.4.5.- Environmental results.

The method for nitrogen, phosphorus and sulphur total content was applied to the samples 

of water and lyophilised sediment from Lake Maracaibo, and the ion chromatographic 

determinations were validated.
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Table 3.8: Results o f the reference materials (Rain water LGC 6018) for ion 
chromatography.

Element Rain Water (found) (mg.L1) Rain Water (RM) (mg.L1)

N 1.1 ±0.1 1.0 ±0.3

S 4.8 ±0.4 5.3 ±0.2

*SD: Standard deviation

Table 3.9: Results of the total (mg.L1) nitrogen, phosphorus and sulphur in water samples 
from Lake Maracaibo determined by the three steps program.

Sampling points N (mg/L) SD P (mg/L) SD S(mg/L) SD

PR 2.2 0.2 <1.0 24.7 0.8

SC 1.6 0.0 <1.0 22.6 1.4

D-2 9.5 0.4 <1.0 18.4 0.7

D-4 76.8 0.9 4.7 0.1 54.3 0.5

D5a 11.6 0.6 6.3 5.9 53.0 1.4

N02 135.0 7.8 1.2 0.1 270.3 9.6

0-13 75.7 1.1 <1.0 76.3 3.1

0-20 101.4 0.4 <1.0 733.0 122.3

C-l 19.8 1.3 <1.0 187.6 15.5

C -ll 60.5 6.0 10.8 1.7 250.5 22.1

C-9 63.7 4.4 6.5 0.6 942.4 37.7

CA-2 109.0 2.9 8.1 2.2 239.0 19.4

D-33 64.2 0.8 10.6 1.4 140.0 1.3

D-119 126.1 1.9 <1.0 575.7 99.7

D114 97.4 0.1 <1.0 1009.0 10.9

S-6 124.0 1.9 <1.0 128.1 12.5

Guam 75.6 0.5 20.3 0.1 1227.6 121.9

D-74 5.40 0.5 1.2 0.0 1.06 0.0
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with two reference materials for nitrate, phosphate and sulphate in rain water and in river 

water, giving a good agreement. The results are shown in Tables 3.8 and 3.9.

The forms of greatest interest in waters are nitrate, nitrite, ammonia and organic nitrogen, 

and all can be oxidised by the hydrogen peroxide in the proposed method for total nitrogen.

Nitrogen levels in aquatic system, as with phosphorus, are intimately linked with excessive 

algal growth, as are seen in Lake Maracaibo. Total nitrogen levels in waters can vary from 

as low as 0.1 mg L'1 to in excess of 10 mgL*1 in heavily polluted aquatic systems (58). 

These total nitrogen levels are exceeded in most of the sampling points in Lake Maracaibo, 

for which total nitrogen varies in the range 1.6-135.0 mg/L.

Apart from the natural input of nitrogen from rainfall, the main inputs of nitrogenous matter 

into freshwater is from agricultural land (58), via wastewater point discharges or diffuse 

runoff. Lake Maracaibo also receives wastewater discharges from the cities of Maracaibo, 

Cabimas and Santa Rita, without any pre-treatment. Most of the area around the Lake is 

covered by farms that also can contribute to the nitrogen input to the lake.

Total phosphorus in waters can vary from less than 0.01 mgL'1 in uncontaminated waters 

to over 1 mgL'1 in heavily polluted rivers (73). Nitrogen may be a limiting nutrient in some 

situations (74) but phosphorus is generally regarded as the limiting nutrient for primary 

production (75), as shown by the results determined in Lake Maracaibo. Excessive loading 

of phosphorus in its various physico-chemical forms is known to be causal factor in the 

eutrophication of waters . Furthermore, classification of the trophic status of standing water 

bodies is still largely based on the total phosphorus concentration (76). The maximum 

levels of phosphorus encountered in Lake Maracaibo (ca. 20.3 mg L*1) correspond to a
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general level o f productivity of a hyper-eutrophic lake, in terms of the Vollenweider 

classification, modified by Wetzel (77), as shown in study o f this lake during 1998 (78).

Table 3.10: Total nitrogen, phosphorus and sulphur (pmolg1) found in sediments during 
the sampling o f Lake Maracaibo and determined by the three step program.

Sampling points N SD P SD S SD

PR 3.9 0.3 <0.03 320.5 12.0

SC 0.9 0.4 <0.03 33.0 3.0

D-2 3.2 0.3 <0.03 287.8 39.1

D-4 4.8 0.3 <0.03 770.3 29.0

D5a 1.7 0.1 1.2 0.1 11.7 1.20

N 02 5.2 0.3 1.3 0.1 470.9 11.6

0-13 2.6 0.1 9.5 0.1 1719.2' 35.4

0-20 10.6 1.1 40.6 3.9 1947.3 40.5

C-l 4.2 0.4 31.1 0.3 132.8 13.4

C -ll 9.6 1.9 12.9 1.2 1248.0 27.6

C-9 8.1 1.5 15.0 1.0 1176.9 69.5

CA2 0.1 0.1 27.1 1.0 1412.3 30.6

D-33 1.0 0.1 10.4 1.0 1975.6 91.1

The values for total nitrogen content in water and sediments, are very high if they are 

compared with a subtropical bay in Oahu, Hawaii, for example, where Stimson and Larned 

determined the nitrogen efflux from the sediments (79). The maximum concentrations of 

the dissolved nitrogen in positions close to the sediments were in the range o f 0.38 -  0.72 

pM. The concentration in water one meter in depth in Lake Maracaibo exceeds this range, 

but the concentration of total phosphorus was lower (except 0-20) than those found in
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other lakes such as Lannngjon, Flaten and Gommaren in Sweeden where the range of total 

phosphorus is [36.2 -  62.6 pmol.g'1] (80).

Sediments can accumulate sulphur in the range of 132.8 (pmol.g'1) where pyrite is the 

most common mineral form of sulphur (81). In Lake Maracaibo, the concentration of 

sulphur is in the range 11.6 -  1975 pmol.g'1 and these concentrations could be associated 

with the intrusion of salt waters from the Caribbean Sea to the lake. It is also characteristic 

of depletion of dissolved oxygen, with concentrations of oxygen around zero mg.L'1 in the 

centre. In this zone, sulphur occurs as a reducible form of mostly HS", and it can result in 

the precipitation of metals such as Hg, Pb and Se.

3.4.- CONCLUSIONS

The proposed method for the microwave oxidation with hydrogen peroxide of nitrogen, 

phosphorus and sulphur followed by the determination of the nitrate, phosphate and 

sulphate ion by ion chromatography gave satisfactory results for the compounds tested, 

however, this method was modified in order to applied the methodology in more 

recalcitrant compounds where nitrogen, phosphorus and sulphur atoms were in ring 

system. The amount of recovery after each step in the modified method could be indicative 

of the nature of the compounds present in the sample. The results of Lake Maracaibo 

showed high concentrations of the three elements (N,P and S) in the samples of water and 

sediment. Lake Maracaibo can be classified as a hyper-eutrophic lake because the high 

concentrations of phosphorus.
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Chapter IV: Distribution o f metals in samples from Lake Maracaibo

4.1.- INTRODUCTION

4.1.1.- Distribution of metals in sediments

The sediments represent the major sink for material in the aquatic environment. The 

main pathway to the sediments is the deposition of suspended particles. Such particles 

may only be in transit though the ocean from continental origin or be formed in situ by 

chemical and biological processes. Sinking particles can scavenge material from 

solution. The formation of marine sediments depends upon chemical, biological, 

geological, and physical influences. There are four distinct processes that are important 

in the formation of sediments: a) the source of the material b) the material and its 

distribution which is influenced by the transportation history, c) the deposition process 

that must include particle formation and alteration in the water column and d) the 

diagenesis which is a process that occurs after deposition.

The components of sediments are classified according to origin : Lithogenous materials 

which are those that come from the continents as a result of weathering processes. The 

most important components in the lithogenous fraction being quartz and the clay 

minerals ( kaolinite, illite, montmorillonite and chlorite) (1). Kaolinite typifies intense 

weathering observed in tropical and desert conditions. Therefore, it is relatively 

enriched in equatorial regions. Hydrogenous components are those produced abiotally 

within the water column. Biogenous material is produced by the fixation of mineral 

phases by marine organisms. There are two further minor components which are 

cosmogenous material, derived from extraterrestrial sources, and anthropogenic 

components, notably heavy metals which can have a significant influence on sediments 

in coastal environments (1).
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4.1.1.1.- Chemical and physical process in sediments

4.1.1.1.1.-Chemistry of particles:

Surface charge:

Particles in seawater tend to exhibit a negative surface charge. There are several 

mechanisms by which particles can develop this charge. It can be produced by crystal 

defects (i.e. vacant cation positions) or cation substitution. For example, clay minerals 

are layered structures of octahedral A106 and tetrahedral SiC>4, substitution of Mg11 and 

Fe11 for the Al111 in octahedral sites or replacement of SiIV can cause net negative charge. 

Also a charge can result from differential dissolution of an electrolytic salt as barite 

(BaSC>4) and finally, organic material can be negatively charged because they possess 

acidic functional groups (2).

Adsorption processes can also lead to the development of a negatively charged particle 

surface. One example is the specific adsorption of anionic organic compounds onto 

surfaces of particles. Another mechanism relates to the acid base behaviour of oxides in 

suspension. Metal oxides (most commonly Fe, Mn) and clay minerals have frayed edges 

resulting from broken metal-oxygen bonds; the surfaces can be hydrolysed and exhibit 

amphoteric behaviour:

The hydroxide surface exhibits a different charge depending on the pH.

Adsorption process:

Physical or non-specific adsorption involves relatively weak attractive forces, such as 

electrostatic attraction and van der Waals forces. Adsorbed species retain their

X—0-(s) + H 1 (iU|l ± *  X— OH (s)

2X-OH-(s) + 2H*(lq — *. 2 X - OH2+(s)
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coordinated sphere of water and, hence, cannot approach the surface closer than the 

radius of the hydrated ion. Adsorption is favoured by ions having a high charge density, 

i.e., trivalent ions in preference to univalent ones. Additionally, an entropy effect 

promotes the physical adsorption of polymeric species, such as A1 and Fe oxides, 

because a large number of water molecules and monomeric species is displaced. 

Chemisorption or specific adsorption involves greater forces of attraction than physical 

adsorption. As hydrogen bonding or % orbital interactions are utilised, the adsorbed 

species lose their hydrated spheres and can approach the surface as close as the ionic 

radius.

Hydrated oxide surfaces have sites that are either negatively charged or readily 

deprotonated . The oxygen atoms tend to be available for bond formation, a favourable 

process for transition metals; an incoming metal ion, Mz+, may eliminate an H+ ion as:

—X—O—H +M Z+ -j  -►  X O M<zl)+ + H +0)

Alternatively , two or more H+ ions may be displaced forming a chelate as shown 

below:

—X—O—H

+ m z+ < z z :

—X—o —H

A metal complex, MLnZ+, may be coordinated instead of a free ion by displacement of 

one or more H+ ions in a manner analogous to the above reaction. In addition, the metal 

complex might eliminate a hydroxide group, giving rise to a metal-metal bond as:

—X—O—H +ML11Z+ 4   Z *  —X— MLn(zl)+ + PET (3)

X—O

X—O
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Ion exchange reactions:

Both mineral particles and particulate organic material can take up cations and release 

an equivalent amount of another cation into solution; this process is termed cation 

exchange. There are factors that influence the affinity of cations towards a given 

surface; the surface coverage increases as a function of cation concentration. The 

affinity for the exchange site is enhanced as the oxidation state and the charge density of 

the hydrated cation increase. In order of increasing charge density, the group I and II 

cations are: Ba<Sr<Ca<Mg<Cs<Rb<K<Na<Li

4.1.1.2. Association in sediments

There are four types of association in the bonding process of sediment formation (3):

1.- Adsorptive bonding ; 2.- Coprecipitation by hydrated iron and manganese oxides; 

3.-Complexation by organic molecules and 4.-Incorporation in crystalline minerals. 

These four types of association have been expanded by Forstner and Pachineelam (4) as 

in Table 1., which includes all of main types of association both in natural and polluted 

water systems.

Table 4.1: Carrier substances and mechanisms o f heavy metal bonding (3)

Minerals in natural
rock debris
e.g., heavy minerals

Metal bonding 
in inert positions

Heavy metal 
-hydroxides 
-carbonates 
-sulphides

Precipitation as a result of 
exceeding the solubility 
product in the area o f the 
water course

Hydroxides and oxides of Fe/

Physico-serption 
Chemical sorption(exchange 
■of H + in fixed positions) 

Coprecipitation as a result

pH - dependent

Coprecipitation as a result 
of exceeding the solubility

Bitumen, lipids 
Humic substances 
Residual organics

pH - dependent Chemical sorption(exchange 
of H  + in COOH-, OH- groups) 
Complexes

Calcium carbonate

Pliysico -soption

Pseudomorphosis (depent on supply and lime

pH - dependent

Coprecipitation (incorporation by 
exceeding the solubility product
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Incorporation in mineral crystals: Heavy metals, as major, minor or trace 

components, can be transported and deposited in the mineral substances of natural rock 

debris. The silicate minerals feldspar and quartz usually have very low heavy metal 

contents. The distribution of elements in minerals is determined by the physico- 

chemistry of the source medium (magma, lava, aqueous solution) and by crystal- 

chemical factors, i.e., ionic radius, valence and electron configuration (4)

Precipitation and co-precipitation: The heavy metals can be precipitated as 

hydroxides, carbonates and sulphides when their solubility product is exceeded. The 

process of precipitation of metal hydroxides results in different forms that can also 

coprecipitate or redissolve. The heavy metal sulphides are practically insoluble at 

neutral pH; in addition, the solubility of carbonates in aqueous solution is dependent on 

the CO2 partial pressure.

Cation exchange and adsorption: A number of sediment-forming materials with a 

large surface area are known, particularly clay minerals, freshly precipitated iron 

hydroxides, amorphous silica acids, and also organic substances. All these are capable 

of sorbing cations from solution and releasing equivalent amounts of other cations into 

the solution by ion exchange. In addition, all fine-grained materials with a large surface 

area are capable of accumulating heavy metals ions at the solid liquid interface as a 

result of intermolecular forces by adsorption phenomena.

4.1.3. Heavy metals in lakes and estuaries

4.I.3.I.- Heavy metals in lakes:

There are a number of studies of heavy metal pollution in lakes carried out in North

America and Europe (5). There are three main biogeochemical processes that affect the

cycling of trace elements in lakes: the algal production and degradation, Fe and Mn

redox cycling, and sulphide precipitation. Other important factors include trace metal
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complexation with ligands (e.g. carbonate and humic substances) and the effects of 

competition for surface exchange sites arising out of the increased cation (e.g. Ca2+. 

NH4+) concentrations that occur in anoxic water lakes (6 ). In well-oxygenated waters, 

the stable forms of Fe and Mn are their higher oxidation states [Fe(III) and Mn(III/IV)], 

which are completely hydrolyzed oxides present as colloids or particles. Where oxygen 

is absent the lower redox states, Fe(II) and Mn(II), are favoured. These divalent ions are 

very soluble in the pH range of 4-8. In seasonal or permanently stratified lakes, where 

the bottom is anoxic, Fe(II) and Mn(II) can accumulate.

The removal of trace elements as sulphides in anoxic lakes has been widely recognized. 

Elements for which sulphide precipitation is an important factor in their accumulation in 

sediments include As, Cd, Cu, Co, Ni, Pb and Zn (7 )

The Great Lakes region represents one of the most important reservoirs in the world and 

includes nine states of the USA; there are studies on trace element pollution and its 

impact in this aquatic system (5); for example, studies of Batterson and McNabb (8 ) in 

Lake Lansing, Michigan showed that arsenic as arsenite becomes oxidized to arsenate, 

As(V), in aerobic epilimnetic water; in this portion of the lake, arsenate exists as the
rs b

anion HASO4 ' and this, like phosphate, can be adsorbed, occluded or precipitated with 

hydrous ferric oxides; thus ferric iron controls arsenate solubility in oxic portions of a 

lake basin. The turbulent dispersion and convection of the lake can transport some of 

the arsenate and metal complexes into the oxygen-depleted hypolimnion; once there, 

reduction of these species is likely to take place in the water or on the surface of 

anaerobic sediments. Depending on the pH, Eh, iron and sulphur concentrations, 

arsenite, insoluble arsenic sulphides or ferrous arsenic sulphides could result. Ferguson 

and Anderson (9) report that at low Eh in the presence of S2', As(III) should be 

effectively removed from the water column as insoluble sulphides. This trace element
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isomorphous replacement into the crystalline lattice of Fe sulphides can influence its 

concentrations in anoxic waters (10). Trace elements associated with Fe monosulphides 

can be released and redistributed during their transformation to pyrite (11); naturally 

occuring Fe sulphides can adsorb Au, Cd, Cu, Pb and Zn and can play an important role 

in metal deposition and formation of deposits (12). However, Agget and O’Brien (13), 

in their study of Lake Ohakuri showed that the most important mechanism for the 

adsorption of arsenic at the sediment-water interface was adsorption onto hydroxyiron

(III) species, and thus there is no evidence for the precipitation of arsenious sulphide as 

was suggested by Ferguson and Anderson (9).

Studies by J. Hlavay and K. Polyak (14) of Lake Balaton, Hungary, the largest lake in 

Central Europe, showed that significant amounts of Pb were found mainly in the acid 

soluble- fraction, bound to organic matter-, and sulphide- fractions. Similar results were 

found in studies by Stalikas et al (15) on soils irrigated by lake waters; lead was mainly 

associated with the carbonate, organic and residual phases, vanadium linked to the 

residual phase, and arsenic associated with carbonate and residual phases.

4.1.3.2.- Heavy metals in estuaries:

Estuaries and the associated offshore areas are the sites of most of the great fisheries of 

the world. The estuaries also, being inshore, are more sensitive than any other marine 

environment to the influence of pollution from man. Estuarine sediments consist of 

several geochemical phases such as carbonates, iron and manganese oxides, organic 

matter and clays. These diverse components that constitute the sediment matrix do not 

usually exist as separate particles but rather as aggregates and act as reservoirs of trace 

metals in the environment (16).

The oxides of Fe Mn, Al and Si, together with the reactive particulate organic matter

and clays, provide the sorption sites for dissolved metals. Under oxic conditions, Fe and
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Mn oxides, together with organic matter, are generally regarded as the most important 

scavenging or carrier phases for the labile trace element fraction in this aquatic 

environment. Competition among metals for the available ligand, can also substantially 

influence the sorption of a metal.

Ngiam and Lim (17) have reported the determination of Cu, Pb, Zn, Cd, Fe and Mn in 

tropical estuarine anoxic and oxidized sediments by a sequential extraction scheme. It 

was concluded that these metals (except Cu) existed mostly as sulphides in the 

organic/sulphide fraction in anoxic sediments. Balkis and Gagatay (18) studied the 

Erdek Bay (Turkey), an estuary with oxic surface sediments; the results of the 

sequential scheme indicated that the metals investigated (Pb,Cu, Zn, Ni and Cr) were 

mainly associated with the residual aluminosilicate-mineral phases. Lead was also 

associated with the Fe/Mn oxyhydroxide phase. The percentage of Pb associated with 

the different fractions in the Pearl River Estuary (China) (19) was in the following 

order: residual > Fe-Mn oxide> organic>carbonate>exchangeable, using the sequential 

extraction procedure of Tessier referred to in Chapter I. Arsenic in sediments from the 

Humber Estuary (UK)(20) was associated with the iron and clay fraction.

4.1.4.- Analytical techniques used for the determination of metals

4.I.4.I.- Inductively coupled plasma atomic emission spectrometry

An ICP ( Inductively coupled plasma) is a plasma sustained in a quartz torch placed in a

radio frequency (27.12 MHz) oscillating magnetic field. Argon is chosen as the plasma 

gas for its inertness, optical transparence in the UV-VIS part of the spectrum, high first 

ionization energy and moderate low thermal conductivity, so that heat is retained within 

the plasma fireball, sustaining stable operation of moderate power inputs (20). The
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temperature in the plasma reaches up to 8000 °C. The vortex flow of coolant gas 

prevents the torch from melting.

4.1.4.2.- Inductively coupled plasma mass spectrometry

An ICP argon plasma is used in this technique as the ion source. Plasma gases are 

extracted through an orifice into a chamber held at 1 torr and then passed into a mass 

analyzer for dispersion and measurement.

An ICP mass spectrometer is composed for (1) a sample introduction system, (2) an 

argon plasma torch configured at 90 ° with respect to the conventional ICP AES 

operation, thus allowing plasma gases to be sampled through an orifice, via differential 

pumping unit into the quadrupole mass filter and (3) a quadrupole mass spectrometer 

and associated data collection electronics which permit rapid scanning of selected mass 

ranges between 0 and 300 daltons. Atomization source may be placed in a glove box for 

a radiactive materials analysis (21). The sample is usually taken up in solution and 

introduced into the plasma via a pneumatic nebulizer and a conventional spray chamber. 

The salt load is limited to ca 0.2- 1 % by sampling orifice clogging. Ion which pass 

through the quadrupole are detected by an electron multiplier. Output pulses are fed to a 

multi-channel are swept synchronously with the mass scan. Depending on the number 

of elements with rapid switching between them, or scanning mode over the whole mass 

range or pre-selected parts of it, can be used. ICP-MS is a versatile, sensitive analytical 

technique which offers a simple approach to the analysis of a wide variety of metals in a 

variety of biological materials.

4.1.4.3.- X-ray fluorescence spectrometry (XRF)

Bombardment of an atom with high energy photons, electrons or photons induces 

removal of inner electrons (from K, L or M shells). The orbital vacancies formed are
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filled by outer orbital electrons giving rise to the emission of X-ray photons. The 

measurement of their energy (wavelength) and intensity forms the basis of XRF 

techniques. They are usually divided according to the design and principle of operation 

of the spectrometer into wavelelngth dispersive XRF (WDXRF), energy dispersive 

XRF(EDXRF) and, a modification of the latter, total reflection XRF(TXRF). Since 

there is a simple relationship between wavelength and energy the same basic type of 

information is provided and the same character of interferences encountered. There are 

significant differences in terms of sensitivity, selectivity, versatility and speed. XRF 

methods are usually applied to direct analysis, sample pre-treatment is often required to 

enhance its performance. Solid homogeneous samples as metals, glasses, ceramics or 

polymers disks can be analyzed directly or after polishing the surface. Signal intensity 

depends on particle shape and size, particle size distribution and packing density so 

these must be kept uniform. Inhomogeneity and particle size problems can further 

overcome by fusion of the material, usually with Li borate fluxes, to give smooth 

surfaced amorphous glass disks (20,22).

4.1.5.- Principal Component Analysis(PCA)

One consequence of automation is that many variables can be determined

simultaneously for the same sample, for example with inductively coupled plasma

emission technique, various metals can be measured simultaneously. The set of

measurements which is used to characterise the sample is called the pattern. When only

two variables are measured for each sample the pattern can be represented graphically

by a point where the co-ordinates of the point are the values taken by the two variables

(23). This point can also be defined by a vector, drawn to it from the origin and known

as a pattern or data vector; the co-ordinate system is known as the pattern space. The

basis of all pattern recognition methods is the pattern vector for similar samples lie
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close together in the pattern space, forming clusters. However, when more than two 

variables are measured, graphical representation is no longer possible; if n- variables are 

measured, each variable will be represented by a point in n-dimensional space and 

mathematical methods are needed to detect clustering. One such method, known as 

principal component analysis (PCA), allow the pattern vectors to be projected onto a 

plane in such a way that as little information as possible is lost. The most important use 

of the PCA (as factor analysis) is to represent the n-dimensional data structure in a 

smaller number of dimension usually two or three. This permit one to observe grouping 

of objects, outliers, etc which define the structure of a data set.

In this work, the distribution of metals in Lake Maracaibo has been studied. The total 

content of major cations and trace elements was determined after digestion by ICP-AES 

and ICP-MS, respectively. Oxides were determined by X-Ray Fluorescence 

Spectrometry. The distribution of six metals (arsenic, selenium, lead, tin, mercury and 

vanadium), by sequential extraction scheme using the BCR protocol of Davidson et al 

(24) was determined in the three aquatic systems of the Lake Maracaibo,i.e. the Estuary 

or Tablazo Bay; the Maracaibo Strait, and the main zone of the lake. Some correlations 

between the total concentration of metals and the physicochemical parameters or total 

concentrations of nutrients were found. Principal component analysis was used to 

determine the most polluted sampling points in the lake.
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4.2.- M aterial and  M ethods 

4.2.1.: Determination of major cations

The total content of the major cations sodium, potassium, calcium, magnesium, iron 

and manganese in sediments were determined as follows by a method which is based on 

method ISO 11466, using aqua regia as the extraction medium.

4.2.1.1.- Procedure

3 g of sample was introduced into a 250 mL reaction vessel containing roughened glass 

beads (2-3 mm of diameter). It was moistened with about 2mL of water and to this was 

added a mixture of 21 mL of hydrochloric acid (12 molL'1, density = 1.19 g.mL"1) 

followed by 7 mL of nitric acid (15.8 mol.L'1, density = 1.42 g.L*1). It was then 

connected to an absorption vessel and a condenser (lengths of aprox 340 mm) added to 

the reaction vessel and then allowed to stand for 16 h at room temperature. The reaction 

mixture was heated under reflux conditions for 2 h,. after which the heating was stopped 

and the system allowed to cool. The contents of the absorption vessel were added to the 

reaction vessel via the condenser, rinsing both the absorption and the reaction vessels 

with 10 mL of nitric acid (0.5 mol L'1). The contents of the reaction vessel were filtered 

into a 100 mL volumetric flask, using 0.5 mol L'1 to wash the reaction vessel. It was 

diluted to 100 mL with 0.5 mol L'1 nitric acid.
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4.2.1.2 Reactants

Stock solutions of 1000 mg L 1 sodium, potassium, calcium, magnesium, iron and 

manganese were purchased from Merck . Calibrations curves were prepared from these 

stock by dilution to 0.5 to 10 mg L '1.

The following wavelength and detection limits were used for the determination of each 

major cations:

Metal Wavelength(nm)
':;y -

Detection ltmits(mg L )

Calcium
......  - .......  ....... - ___ ___

317.93
__________________ ____ ______

0.07

Magnesium 285.21 0.06

Iron 259.94 0 . 0 1

Potassium 766.49 0 . 0 1

Sodium 589.59 0.07

Manganese 257.61 0 . 0 1

4.2.I.3. Instruments

A ICP Spectro model P was used for the determination of the major cations using the 

following conditions (Table 4.2.)
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Table 4.2: Instrumental conditions used during the study for the ICP-AES.

Conditions
.

R f Power/W 1500

Carrier gas flow rate 

(L.miri1)

1.00

Uptake speed (mL m iri1) 1.0

Pump speed rps 0.12

Torch Fassel torch

Coolant gas flow 17 Lmiri1

Number of repetitions 3

4.2.2.- X-ray fluorescence spectrometry analysis of oxides and silicates

The fusion technique was used for sample preparation, and the instrument calibrated 

using theoretically based correction coefficients (2 2 ) to determine oxides and silicates in 

samples of sediment from Lake Maracaibo. Anaytes determined include the following 

Na20 , MgO, Si02, P20 5, S 0 3, K20 , CaO, T i02, V20 5, Cr20 3, Mn30 4, Fe20 3, ZnO, SrO, 

Y20 3, Z r0 2, BaO and H f02.

4.2.2.1.-Instruments:

The spectrometer used for this study was a Philips PW2400 fitted with a rhodium target 

end window X-ray tube and Philips X-40 analytical software.

4.2.2.2.-Procedure

Each calibration sample was prepared by weighing, to four decimal places, the required 

amount of a pure salt o f the element with 10.0000 g of Li2B40 7 , the total weight being 

sufficient to produce a bead of 40 mm diameter. The weights and suppliers of the 

chemicals are given in Table 4.3.
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The fusion was carried out in a 95% platinum-5% gold crucible at 1,250°C . The fusion 

time was 12 min, with vigorous swirling after 6 and 9 min. The casting dish, which is of 

the same alloy as the crucible, was placed in the muffle furnace for 3 min before casting 

was due to take place. After casting, the bead was cooled, in the dish, over an air jet of 

about 1.5 L m 1 until the bead was seen to have separated from the casting dish. It was 

then moved over a second air jet of about 4 L m'1 and cooled further until the bead was 

cool enough to handle. Preparation time was approximately 17 min. Analytical lines 

used for each elements are given in Table 4.4.
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Table 4.3.: Chemicals used for calibration samples

Standard Chemical SotirCf VVeigtit(g)

25 % N a20 Na2C 0 3 Aldrich(20442-0) 0.4275

100% MgO MgO Aldrich(20371-8) 1.0000

100%A120 3 A120 3 Aldrich(20260-6) 1.0000

100% Si02 S i02 Aldrich(20435-8) 1.0000

25% P20 5 (NH4)2H P04 Aldrich(37998-0) 0.3200

5% S 03 Li2S 0 4 Aldrich(20365-3) 0.0690

50% K2O k 2c o 3 Aldrich(20408-0) 0.5300

100% CaO CaO Aldrich(22953-9) 0.5000

10% T i02 T i02 Aldrich(20473-0) 0.1000

50%V2O5 V20 5 Aldricli(20485-4) 0.3000

25% Cr20 3 Cr20 3 Aldrich(20306-8) 0.1000

100% Mn30 4 M n02 Aldrich(20375-0) 0.9000

100% Fe20 3 Fe metal 99.999% purity 0.6994

25% ZnO Zn metal 99.999% purity 0.1400

50% SrO Sr(N03)2 Johson Matthcy Specpure 0.8000

100% y 2o 3 Y20 3 Aldrich(20492-7) 1.0000

100% Z r02 Z r02 Aldrich(20499-0) 1.0000

50% BaO BaC03 Aldrich(20271-1) 0.4000

100% H f02 H f02 Heraeus(004010) 1.0000
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Table 4.4.: Measurement parameters for X-ray fluorescence spectrometry analysis

Element Line mA Colt(lllili)*
:

A1 K a 50 60 0.70

Ba l P j 50 60 0.15

Ca K a 50 60 0.15

Cr K a 50 60 0.15

Fe K a 50 60 0.15

Hf Lpi 60 50 0.15

K K a 50 60 0.30

Mg K a 50 60 0.70

Mn K a 50 60 0.15

Na K a 50 60 0.70

P K a 50 60 0.30

S K a 50 60 0.30

Si K a 50 60 0.30

Sr** K a 60 50 0.15

Ti K a 50 60 0.15

V K a 50 60 0.15

Y La 50 60 0.30

Zn K a 60 50 0.15

Zr La 50 60 0.30

*Collimator spacing in mm

Sr** K a measured with 0.10 nun brass filter over the x-ray tube window.
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Sequential extraction

4.2.3.I.- Reagents:

All the reagents were Analar grade except were stated. Acetic acid (Aristar), nitric acid 

(Aristar), hydrogen peroxide 30 % v/v, ammonium acetate (Analar),

hydroxylammonium chloride (Analar) and ammonium acetate (Analar) were purcharsed 

from Merck. All the solutions were prepared using double deionized water grade II 

(MilliQ). Arsenic, lead, mercury, vanadium, tin and selenium 1000 mg L' 1 stock 

solutions were purchased from Merck.

Standard solutions were prepared by dilution of the stock solutions with deionised water 

(Milli -RO/Milli-Q system from Millipore, 18 mfi). The standards were stored at 4 °C 

in the dark.

The following certified and reference materials were used to validate the methodology 

during the determination of the metals in the different extractable phases and the total 

content.

Certified Materials from The National Water Research Institute of Canada (NWRI 

RM)Lake Ontario water (preserved in 0 . 2  % nitric acid):

TM 23.5, TMDA 51.4 and TM 52.4 were used 

Reference Materials:

Polluted Marine Sediment IAEA 356 Reference Material was used to validate the total 

metals determination.

4.2.3.2.-Apparatus:

An ICP-MS (Hewlett Packard 4500) was used as detector. The instrumental conditions 

are summarised in Table 4.45
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Table 4.5.: Instrumental conditions used during this study for the ICP-MS.

Conditions For spectrum analysis

R f Power/W 1200

Carrier gas flow rate 

(L.m in1)

1.25

Sample Depth/mm 6.0

Pump speed rps 0.12

Uptake speed rps 0.5

Acquisition Mode Spectrum Analysis

Acquisition Time (sec) 1.23

Torch Fassel torch

Spray chamber Cyclonic

Nebulizer Babington

Coolant gas flow 10 Lm in1

Number of repetition 3

4.2.3.3- Procedure

The method used for the sequential extraction was that developed by Davidson et al

(24):

Step one: 

The exchangeable, water and acid soluble phases

A 40 mL volume of acetic acid (0.11 mol L '1) was added to 1 g of dry sediment in a

100 mL centrifuge tube. The tube was shaken for 16 h (overnight) at ambient

temperature on a mechanical shaker. The extract was separated from the solid residue

by centrifugation at 4000 rpm. The liquid was decanted into a clean container and stored

108



Chapter IV: Distribution o f metals in samples from Lake Maracaibo

at 4 °C for analysis. The residue was shaken for 15 min, centrifuged and washings 

discarded.

Step two:

The reducible (e.g. iron/ manganese oxides) phase

A 40 mL volume of hydroxylammonium chloride (0.1 molL'1, adjusted to pH 2 with 

nitric acid) was added to the residue from step one. The extraction procedure was 

repeated as described above, i.e. the sample was shaken overnight, the extract separated 

by centrifugation, and the residue washed with deionised water.

Step three .

The oxidisable (e.g. organic matter and sulphides) phase

A 10 mL volume of hydrogen peroxide (8 . 8  mol L'1) was carefully added, in small 

aliquots, to the residue from step two. The centrifuge tube was covered with a watch 

glass and the contents digested at room temperature for one hour with occasional 

manual shaking. Digestion was continued by heating the tube to 85°C in a water bath 

for one hour. The watch glass was then removed and the tube contents reduced to a 

small volume (1-2 mL). A second 10 mL aliquot of H2O2 was added and the tube was 

again covered and heated to 85°C for one hour. The cover was removed and the volume 

reduced as before. A 50 mL volume of ammonium acetate solution ( 1 molL*1, adjusted 

to pH 2 with nitric acid) was added to the cool, moist residue. The sample was then 

shaken, centrifuged and the extract separated as described in step one. The solid residue 

was retained for microwave digestion.

Residual:

The solid residual was heated until dryness and transferred to a microwave vessel for 

digestion with 2 : 1  mixture of concentrated HC1 and HNO3 • The program used was the 

same for the trace element total content which is described in the following paragraph
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The total content of trace elements

0.2 g of sediment was transferred in a microwave vessel, and 4 mL of concentrated 

HNO3 and 1 mL of H2O2 (30 % v/v) were added. The vessel was transferred into the 

microwave and the following program was run (Table 4.6):

Table 4.6.: Microwave program used during this study

Time (min) j Power(W)

1 5 250

2 2 0

3 5 400

4 2 0

5 5 500

6 2 0

7 5 600

8 10 Ventilation

After the run, the vessel was cooled and opened, 1 mL of nitric acid and 0.25 mL of 

hydrogen peroxide were added. The microwave programme was then run again. The 

vessel was cooled, opened and the contents transferred to a 25 mL volumetric flask and 

made up to volume with deionised water. The trace elements were determined using a 

ICP-MS (conditions described before). The following isotopes and calibration curves 

were used.
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M etal Iso tonefm /z) C a lib ra tio n  c u rv e

Chromium 53 y = 6.0x104X + 8.2xl03

Coball 59 y = 5.9x104X + 2.4xl04

Nickel 60 y = 1.3x104X + l.OxlO4

Copper 63 y = 3.1x104X + 4.8x101

Zinc 6 6 y = 9.64x103X +9.96x103

Arsenic 75 y -  7. lxl03X -  3.4xl03

Selenium 82 y = 7.7x102X + 1.6xl02

Cadmium 1 1 1 y = 9.5x103X +3.8x103

Tin 118 y = 1.9x104X - 2 .0 x104

Mercury 2 0 2 y = 8.0x103X + 4.3xl03

Lead 208 y = 5.4x104X + 3.9xl03

Vanadium and titanium were measured by ICP-AES at a wavelength of 311.07 nm and 

334.94 nm respectively.

The method was validated with the reference material RM IAEA-356 estuarine 

sediment.
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4.3.- RESULTS AND DISCUSSION

4.3.1.-M ajor cations and trace elements :

4.3.1.1. Major Cations:

Table 4.7. shows the results for the major cations found in the background analysis of 

the Lake Maracaibo.

Table 4.7.: Concentrations o f the major cations (mg. K g 1) found in sediments during the 
sampling o f the Lake Maracaibo.

Sampling Na * M Mg Mu Fe

point

PR 8.48E+02 6.91E+02 9.65E+02 3.24E+03 1.38E+03 7.26E+01 1.00E+04

SC 1.51E+03 6.24E+02 1.93E+04 2.95E+03 1.16E+03 1.38E+02 9.95E+03

D-2 1.46E+03 1.01E+03 1.48E+03 4.47E+03 1.80E+03 1.09E+02 1.09E+04

D-4 1.78E+03 1.11E+03 1.68E+03 4.37E+03 2.16E+03 1.36E+02 1.07E+04

D-5a 2.88E+02 5.58E+01 2.43E+02 1.13E+02 6.76E+01 3.82E+00 3.17E+02

N02 1.78E+03 1.11E+03 1.68E+03 4.37E+03 2.16E+03 1.36E+02 1.07E+04

0-13 1.66E+03 1.14E+03 8.00E+02 5.49E+03 1.70E+03 1.71E+02 1.14E+04

0 - 2 0 1.87E+03 1.27E+03 7.60E+02 6.84E+03 1.89E+03 3.25E+02 1.22E+04

C-l 7.82E+02 4.37E+02 4.67E+02 2.80E+03 1.03E+02 1.15E+02 1.66E+04

C -ll 1.62E+03 8.45E+02 5.21E+02 4.25E+03 1.17E+03 5.76E+02 6.59E+03

C-9 1.71E+03 5.04E+02 1.04E+03 2.49E+03 9.14E+02 1.71E+03 5.32E+03

CA-2 9.99E+02 8.32E+02 6.08E+02 4.45E+03 1.18E+03 7.24E+01 1.04E+04

D-33 1.87E+03 1.43E+03 9.20E+02 8.91E+03 2.01E+03 3.69E+02 1.39E+04

Correlations:

The Pearson product moment correlations between each pair of variables (25) were 

calculated. These correlation coefficients range between -land +1 and measure the
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strength of the linear relationship between the variables. P-values below 0.05 indicate 

statistically significant non-zero correlations at the 95%confidence level. The following 

pairs of variables have P-values below 0.05: Na and K, Na and Al; Na and Mg; K and 

Al; K and Mg; K and Fe; Al and Mg; Al and Fe.

Correlations between Na and K were found; both elements belong to group I of the 

periodic table. Their compounds have similar solubilities but their geochemical 

behaviour differs in a number of ways. Sodium and calcium undergo isomorphous 

replacement in silicates because of their similar ionic radii, whereas potassium is found 

in separate primary igneous minerals. The weathered potassium silicates release 

potassium ions but these are even more strongly adsorbed by negatively charged clays 

and organic colloids than sodium ions (26). Unlike sodium, the potassium is readily 

reincoporated into silicate structures with the formation of clay minerals and its 

concentration in biological material is about 15 times greater that of sodium. As a 

consequence the concentration of potassium in fresh waters is one-third that of sodium.

4.3.1.2.- Trace elements, total content in waters

Data in Tables 4.8, 4.9 and 4.10 represent the checking of the accuracy of the method 

using three different water reference materials for metal determination. A good 

agreement were found for all these reference materials (p<0.05) when the results were 

compared with those obtained for the metals in the present study.
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Table 4.8: Results for the reference material TM 23.2

M e t a l F o u n d  ( l i f t ! / 1) C e r t i f i e d  t j i g X 1)

As 9.4 ±0.1 8.5+1.6

Cr 5.8+0.1 6.5+1.4

Pb 3.4±0.0 3.8+1.0

Se 5.G±0.1 4.2+1.4

V 2.2+0.1 2.1+0.7

Table 4.9: Results for the reference material TMDA 51.2

M e t a l F o u n d  (m& LT1) C e r t i f i e d  ( jig .L T 1)

As 17.5±0.3 15.3+3.4

Cr 58.2±1.1 62.5+6.6

Pb 68.6±1.5 72.9+10.6

Se 11.7+0.3 12.0+3.0

V 48.8+1.1 47.6 3.0

Table 4.10: Results for the reference material TMDA 54.2

M e t a l F o u n d  (jjgJL T 1) C e r t i f i e d  f a g X  *)

As 28.0+0.4 25.0+4.2

Cr 395.8+5.0 432.0+32.1

Pb 493.1+9.3 531.0+54.4

Se 15.2+0.2 15.0+3.0

V 342.0+0.2 343.0+26.2

The metal content found in water samples from Lake Maracaibo is shown in Table 4.11.
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Table 4.11: Mean concentrations o f dissolved arsenic, chromium, lead, tin, vanadium, 
mercury and selenium in water samples from Lake Maracaibo (pg.L1):

Site Pb SeAst Sa \ Hg

0-13 30.7 7.8 7..3 2.0 9.0 2.1 7.2

0-20 30.9 8.0 7.6 2.0 11.0 1.9 8.6

D-2 29.7 8.0 7.7 1.7 14.0 1.9 6.3

D-33 29.6 7.9 6.2 1.9 14.0 2.0 7.4

PR 30.0 8.3 8.0 1.8 11.0 3.0 7.0

SC 29.5 8.2 8.9 1.9 11.0 2.2 7.2

D-4 29.7 7.8 7.1 1.9 12.0 2.0 6.0

D-5a 29.9 7.8 7.0 1.0 12.0 2.0 5.9

C-9 29.8 7.3 8.2 1.19 11.0 2.2 4.9

C-l 31.2 8.1 7.1 2.4 15.0 2.5 7.3

C -ll 29.9 7.4 7.7 3.3 11.0 4.3 5.4

NO-2 7.8 7.8 7.0 1.9 12.0 2.8 5.9

CA-2 29. 7.4 6.0 2.0 10.0 2.0 6.1

S-6 28.9 8.1 7.1 2.0 12.0 1.9 6.6

D-119 29.4 8.4 6.8 1.9 12.0 1.8 7.5

D-74 28.5 7.4 7.4 1.0 14.0 2.2 4.9

The total concentration of arsenic in waters varies between 7.82 to 31.15 jag L '1. For 

arsenic these concentrations are high if they are compared with the typical 

concentrations in open ocean and coastal sea-water which are in the range of 

1-2 pg L_1(27). The source of contamination is probably an open-cast coal mine located 

on the edge of Lake Maracaibo. The total selenium concentration is below the average 

found in surface ocean and well waters, which usually contain less than 50 pg L ' 1 (28). 

The concentration of chromium is below the limit of the EPA which is 50pg L '1(29). 

The values of Hg in water were higher than the normal estuarine waters (ca. <50 ng L’1)
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and lakes (10-50 ng L-1)(30). The limit for lead of US Public Health is 50 gg L '1 ; the 

values of the Lake Maracaibo waters were below this limit(31).

4.3.1.3 Trace elements, total content in sediments

The Table 4.12. (a and b) shows the results for the total content of all trace elements in

sediments determined by the developed microwave digestion method.

Table 4.12. (a and b): Mean concentrations of the trace elements (mg K g 1)
(a)

Sampling
points

Cu Nt Cd Cr V Ti Pb Zn

PR 3.7 3.4 3.66 8.3 30.8 47.4 23.6 46.7

SC 3.2 8.9 5.4 11.2 31.6 23.5 43.3 47.7

D-2 6.2 6.1 10 11.6 46.3 88.7 58.5 48.2

D-4 7.4 7.3 4.9 11 72.7 19.3 58.5 53.4

D-5a 1.0 0.7 0.37 0.9 1.77 7.2 10.1 4.7

N02 7.4 7.3 4.9 11.0 32.3 19.3 6.2 53.4

0-13 10.3 6.1 4.4 11.7 91.8 80.4 24.8 50.7

0-20 12.6 7.2 4.6 13.1 113.5 176.7 86.0 49.6

C-l 3.0 4.2 5.4 6.1 47.5 67.6 4.0 24.7

C -ll 11.4 5.9 2.7 6.5 81.2 38.6 64.9 26.2

C-9 15.4 5.4 2.41 7.9 62.3 33.7 69.6 36.3

CA-2 6.7 6.0 3.8 8.6 61.7 89.7 6.2 28.7

D-33 13.3 9.8 5.3 15.0 79 182.6 110.0 48.5
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(b) Concentrations in (fig K g 1)

Sampling points As Sn Hg Se

PR 6080.9 17.1 404.2 21.2

SC 10099.5 17.2 258.5 94.4

D-2 9313.0 24.8 281.7 159.0

D-4 8000.0 27.1 124.7 160.0

D-5a 40.7 7.2 190.2 ND

N 02 2033.0 0.5 52.7 590.8

0-13 2369.0 0.3 130.3 511.0

0-20 4082.0 0.2 130.3 683.9

C-l 2159.0 0.2 188.7 687.4

C -ll 5774.0 0.2 280.5 691.2

C-9 5314.0 0.3 187.4 812.3

CA-2 2153.0 1.1 520.1 260.0

D-33 5057.0 0.8 148.3 631.9

Correlations:

The Pearson product moment correlations between each pair of variables with P-values 

below 0.05 which indicate statistically significant non-zero correlations have been 

calculated. At the 95% confidence level, the following pairs of variables have P-values 

below 0.05: Cu and Se; Cu and Pb; Cu and V; Ni and Cr; Ni and Zn; Ni and Pb; Cd and 

Cr; Cd and Zn; Cr and Ti; Cr and Zn; Cr and Pb ; Ti and Pb ; Ti and V; As and Sn; Se 

and Sn; Se and V ; Pb and V .

Similar correlations between Pb and V have been found in the Gulf of Mexico with

similar petroleum- related activities (32). Also, correlations have been found between

Ni and Pb and V and Ti in sediments from Kuwait which had oil fires during the Gulf
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War in 1991(33).

Correlations between total arsenic and the total phosphorus concentration were found 

(r=0.6411, n=13, p<0.018) and total selenium and total sulphur concentrations 

(r=0.5768, n=13, p<0.039). These results were expected because the respective pairs of 

variables (As and P) and (Se and S) belong to the same group of the periodic table.

Correlations were found between Se and Depth (r= 0.7230, n=13, p<0.005); pH (r= - 

0.6600, n=13, p<0.014) and dissolved oxygen (DO) (r= -0.5404, n=13, p<0.05). No 

correlations were found between As and the physicochemical parameters.

4.3.2 -X-ray fluorescence spectrometry results

The results of X-Ray fluorescence spectrometry are given in the Table 4.8 (a and b)., 

concentrations are given in % w/w.

Table 4.J3(a and b): X-ray fluorescence spectrometry results(%w/w) for the samples of

Points Na20 MgO AI2O3 SiQ2

.........
P2Os SO3 k 2o CaO m v 2o s

PR 0.47 0.61 6.08 83.14 0.05 0.12 0.90 0.47 0.51 0.02

SC 0.29 0.30 2.38 71.79 0.06 0.06 1.42 8.79 0.15 0.01

D-2 0.81 1.08 11.85 68.41 0.12 0.01 1.45 0.53 0.73 0.02

D-4 0.95 1.49 16.11 57.23 0.21 0.02 1.89 0.69 0.80 0.03

D5a 0.06 0.01 0.73 97.16 0.01 0.016 0.44 0.18 0.11 <0.014

N02 0.68 0.76 9.23 72.27 0.12 0.01 1.30 0.38 0.52 0.02

0-13 1.43 1.33 16.50 50.10 0.14 0.12 1.99 0.33 0.65 0.03

0-20 1.01 1.29 17.31 48.99 0.15 0.1 2.11 0.30 0.60 0.03

C-l 0.34 0.51 4.75 78.70 0.25 0.07 0.57 0.16 0.27 0.01

C -ll 0.92 1.13 15.01 49.86 0.12 0.1 1.95 0.32 0.47 0.03

C-9 1.02 1.12 14.36 47.58 0.15 0.04 1.80 0.40 0.46 0.02

CA-2 0.78 0.85 10.87 65.66 0.14 0.01 1.42 0.29 0.59 0.02

D-33 1.08 1.15 16.28 50.30 0.15 0.02 1.92 0.29 0.60 0.03
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(b)

Sampling C r f h F«2()3 z«o SrO y 2o3 Zr©2 BaO IMh
points

PR 0.01 0.02 3.59 0.01 <0.008 0.01 0.06 0.05 0.01

SC 0.06 0.05 4.85 0.01 0.02 0.01 <0.017 0.05 0.01

D-2 0.01 0.05 5.71 0.02 0.01 0.01 0.03 0.06 0.01

D-4 0.01 0.06 6.31 0.02 0.01 0.01 0.02 0.06 0.01

D5a 0.09 0.01 0.17 0.01 0.01 0.01 0.02 0.03 0.01

N02 0.04 0.04 3.99 0.02 <0.008 0.01 0.04 0.1 0.01

0-13 0.01 0.09 6.69 0.02 0.01 0.01 0.01 0.08 0.01

0-20 0.01 0.16 7.28 0.02 0.01 0.01 0.01 0.13 0.01

C-l 0.04 0.04 7.69 0.01 0.01 0.01 0.03 0.05 0.01

C -ll <0.024 0.4 5.47 0.01 0.01 0.01 <0.017 0.15 0.01

C-9 0.01 0.64 5.65 0.02 0.01 0.01 0.01 0.22 0.01

CA-2 0.01 0.04 6.4 0.01 <0.008 0.01 0.03 0.09 0.01

D-33 0.01 0.11 5.93 0.02 <0.008 0.01 <0.017 0.07 0.01

Limit o f  determinability(L.O.D.)(%w/w): SOs : 0.016; Cr20 3 ; 0.024; V2 0 5 : 0.014; SrO: 0.008; Zr02: 
0.017.

Correlations:

The following pairs of variables have correlations with p<0.05 ( 95 % of confidence): 

Fe2 0 3  and V2O5; , Fe20 3  and Cr20 3 ; Fe20 3  and P2O5; Fe2 0 3  and K20 ; Fe20 3  and AI2O3, 

Fe2 0 3  and Si0 2 ; Fe2C>3 and Na2 0 ; Fe2 0 3  and MgO. AI2O3 and Si0 2 ; AI2O3 and Na2 0 ; 

AI2O3 and MgO; AI2O3 and V total. Similar correlations between % AI2O3 and total V 

have been observed in the Gulf of Mexico (32).

Table 4.14.shows the results of the principal components analysis (PCA) using the 

Statgraphics program (25) for the different sampling sites.
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Table 4.14 : The eigen values for the three principal components.

Sampling site Component 1 Component 2 Component 3

PR -2,12534 -1,9331 0,635728

SC -0,541212 -3,04569 0,891025

D-2 0,344223 -3,11663 0,07483

D-4 0,397966 -1,98982 0,421493

D 5a -5,74657 1,7443 -0,113156

N02 0,25357 0,339748 -1,57195

0-13 1,11893 0,609787 -0,920445

0-20 3,17701 0,766038 -0,140658

C-l -1,13605 0,613193 -2,04273

C -ll -0,19987 1,44116 1,79935

C-9 0,778882 2,51182 3,11197

Ca-2 -0,201003 1,478 -1,6673

D-33 3,87945 0,581203 -0,478158

Three components had eigen values that represent 78 % of the variability o f all the data 

reported in this work. According to this table the sampling points D-33, 0-20, 0-13 and 

C-9 have the main values for the principal component 1, and the points C -11, CA-2, C-9 

and D5a for the component 2. These results indicate that these sampling points are 

having a greater influence on the variability o f data for total metal concentration either 

because they are more polluted; because D5a is a low concentration point, which is 

affecting negatively all the data. D5a is located in the Strait o f Maracaibo near to the
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shore and it is not so affected by pollution as are the other points, probably because the 

currents from the lake do not reach it.

4.3.3.- Sequential extraction

Table 4.15 presents the results obtained for the Reference Material IAEA-356 for total 

content of each metal studied.

Table 4.15: Comparison of the results obtained with the reference material IAEA-356

M eta! F o a a d  (gg.g  )

As 2 3.06±4.61 26.9[ 22.6-30.0]

Cr 60.5±0.90 69.8 [62.9-74.4]

Pb 351..2±2.9 [301-365]

V 43.1 ±3.0 55.5[32.8-60.1]

Hg 7.4 ±0.7 7.62 [6.74-7.98]

Sn 53.7±2.6 [43.6-62.2]

Se* 0.54 ±0.02 0.76 [0.40-1.58]

* I n f o r m a t i o n  v a l u e  *  * M e d i a n

4.3.3.1 Arsenic:
The results showed that arsenic in Lake Maracaibo is present in large amounts [0.04 -

10.1 pg.g’1], Table 4.16 The highest concentration of the element is at the point SC (ca. 

lO .lpg.g'1) and points D-4, D-2, the source of the contamination could be coal mining 

ports located near of this sampling area. In the main zone of the Lake, the total 

concentration of arsenic varies between 0.04 -  5.8pg.g'1. It is known that environmental 

conditions in sediment can influence arsenic concentrations and potential mobility. The 

anaerobic conditions found in the centre o f Lake Maracaibo increases the total arsenic 

concentration (see C- l l  and C-9 sites, 5.5-5 .8 pg.g' 1 ). In general, arsenic is well
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distributed in the various phases in all of the Lake Maracaibo System as is shown in 

Figure 4.1. The major concentration of arsenic found inside the lake was associated 

with the step two, that extractable with hydroxylammonium chloride, the fraction 

associated with the Fe/Mn hydroxous phase (10-60%). Fe oxides are generally the 

major carrier phase for arsenic (5).

Table 4.16: Arsenic concentrations (jug g 1) and recoveries in the four sequential 
extraction steps.

Samples i 3 Residual Total Total
content

% Recovery

PR 0.57 0.41 2.76 3.20 6.94 6.08 114.1
SC 0.05 0.18 0.11 5.80 6.14 10.09 60.8
D-2 0.23 0.41 2.52 1.80 4.96 6.08 81.6
D-4 0.27 0.46 2.02 0.44 3.19 6.34 50.3
D5a 0.00 0.05 0.02 0.01 0.08 0.04 195.1

NO-2 0.50 0.77 0.34 0.44 2.05 2.03 100.5
0-13 0.39 0.96 0.76 1.46 3.56 2.37 150.3
0-20 0.44 1.66 0.95 1.78 4.83 4.08 118.2
C-1 0.07 0.24 0.20 1.67 2.19 2.16 101.1

C-11 1.39 1.34 1.68 1.04 5.45 5.77 94.3
C-9 0.93 1.75 1.66 1.50 5.84 5.31 109.8
Ca-2 0.38 0.55 0.31 0.51 1.74 2.19 79.5
D-33 0.40 0.82 0.55 0.25 2.03 2.20 92.3
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Figure 4.1: Distribution of arsenic in the sediment o f Lake Maracaibo.
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The distribution of arsenic in the strait of Maracaibo is mainly in the oxidisable and 

organic matter nominal phase (15-80%); there are raw sewage discharges from the 

heavy industrialised area of the city of Maracaibo (3 million population), a major source 

of organic matter, and a nearby source of arsenic pollution of an open-cast coal mine 

that can produce this effect. The arsenic in the residual phase is mainly present in the 

sample taken from PR at the entrance to the Gulf of Venezuela. The phase of 

exchangeable arsenic was present essentially in the centre of the lake (0-25%); under 

reducing conditions , Mn(II) associated with exchangeable fractions and sulphides can 

be the primary Mn forms present; half of the reduced Fe(III) is converted to Fe(II) 

carbonate (34); both Fe(II) and Mn(II) could be the carrier phases for arsenic in 

sediment in the centre of the lake. Under these conditions, binding to sulphide and 

insoluble large molecular weight humic acid can control the iron behaviour (35).

The first extraction phase (exchangeable metal, water and acid soluble) and the second 

extraction of the iron /manganese oxyhydroxides phase were mainly present and higher 

in the lake zone. The behaviour of arsenic in the gulf and the strait were similar (paired 

t-test, not statistically significant differences, p<0.05) with the exception of the residual 

phase that was present at a higher level in the zone near to the Gulf of Venezuela and 

the mixing zone with the Caribbean Sea waters and also to the effect of arsenic 

contamination from lake-side open-coast coal mine.

A correlation was also found between levels of arsenic in the residual phase and the 

amount of CaO as determined by X-Ray Fluorescence spectrometry (r=0.8328, n=13, 

p<0.0004).

4.3.3.2.- Selenium:

The total concentration of selenium in Lake Maracaibo varied from 0.02 to 0.85 jig.g'1;

the results are shown in Table 4.17 and Figure 4.2. The sequential extraction results
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showed that selenium was distributed mainly in the third extraction phase in the zone of 

the lake which is associated with organic matter and sulphides. This is understandable 

because the chemistry o f selenium is very similar to that o f sulphur, including their 

presence in organic matter. At these sample points was also found the highest 

concentration of total selenium (ca. 0.85 pg.g'1), the anoxic conditions favouring 

enrichment of the sediment by this element.

Table 4.17.: Selenium concentrations (jug g 1) and recoveries in the four sequential 
extraction steps.

Sample 1 2 3 Residual Total Total content % Recovery
SC 0 . 0 0 0 . 0 0 0 . 0 0 0.06 0.06 0.09 63.8
PR 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 2 1 0 0 . 0

D-2 0 . 0 0 0 . 0 0 0 . 2 0 0 . 0 2 0 . 2 2 0.16 137.5
D-4 0 . 0 0 0 . 0 0 0.03 0.07 0 . 1 0 0.18 55.6
D5a 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 0 . 0

NO-2 0.06 0.03 0 . 2 0 0.14 0.42 0.59 71.3
0-13 0 . 1 0 0.04 0.57 0.19 0.89 0.51 174.6
0 - 2 0 0.09 0.08 0.60 0 . 2 0 0.97 0 . 6 8 142.2
C-1 0.05 0.05 0.19 0.18 0.46 0.69 67.2

C-11 0.08 0.05 0.54 0.23 0.90 0.70 128.0
C-9 0.07 0.04 0.57 0 . 2 2 0.90 0.81 1 1 1 . 2

Ca-2 0.05 0.03 0.23 0.15 0.45 0.83 55.1
D33 0.08 0 . 0 2 0.41 0.14 0 . 6 6 0.85 77.4

The results of the first extraction step (the exchangeable phase, the water- and acid- 

soluble phase, and the second extraction step associated with Fe/Mn carrier phases, 

showed that only 0 - 1 0  % of selenium was present as the dissolved element in these 

phases. This behaviour has also been found in studies of other lakes (5).

The recoveries o f method used were between 55 to 172 %, the low recovery being 

possibly due to a redistribution of the element during the extraction method, and the 

high recovery due to contamination during the different extraction steps.
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Figures 4.2.: Distribution o f selenium in sediments o f Lake Maracaibo.

In the four extraction steps the highest concentrations of selenium were found in the 

main zone of the lake which is a similar behaviour to sulphur. In the gulf- and strait of 

Maracaibo-zones, the results of the scheme of sequential extractions for all the extracted 

phases, exchangeable, reducible, oxidisable and residual, were similar (t-test showed not 

statistically significant differences, p<0.05) and completely different to the lake zone. 

The residual fraction o f selenium showed correlations with Na2 0  (r=0.6094, n=13, 

p<0.027); A120 3 (r=0.6091, n=13, p<0.0271) and S i02 (r= -0.6949, n=13, p<0.0084), 

from X-ray fluorescence spectrometry results.

4.3.3.3.- Lead:

Inorganic lead arising from a number of industrial and mining sources occurs in water

in the +2 oxidation state. Lead can exist in organic form as Pb(II), but less as Pb(lV),

and also in organic form (up to 4 Pb-C bonds). The flux of organometallic lead is small

compared with that of inorganic lead on a global basis, but on a local basis (e.g. near

gasoline stations) it might be a significant factor (36). Inorganic lead is far more
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extensively studied than organometallic lead and numerous reviews have discussed 

speciation and cycling (37-39).

Lead in the centre of Lake Maracaibo was mainly associated with Fe/Mn phases where 

between 5-90 % is present in this form (Figures 4.3). This behaviour was reported by 

Lum and Gammon in 1985 (40) in their study of Lake Eries and Lake Detroit, which are 

similar to Lake Maracaibo. Lead mobility is controlled by Fe oxides. A study on 

sequential leaching of contaminated reservoirs by Schintu et al (1991 )(41) indicated that 

Fe and Mn oxides were the dominant sorbent for lead. Organic phases showed only a 

low affinity for lead. The concentration of lead was high at all the points sampled [4.0 -  

110.0 p-g.g"1]. The highest concentration was found at the sites D-2 and D-4, possibly 

due to the traffic over the bridge that joins the two coasts in the strait., The high 

concentration near to the Venezuelan Gulf (points SC-PR ) could be associated with the 

coal mining port in the north of the lake. In all of these points, lead was associated with 

the residual phase.
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Figure 4.3: Distribution o f lead in the sediments o f Lake Maracaibo
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Table 4.18.- Lead .concentrations (jug g  ) and recoveries in the four sequential 
extraction steps ___________________________________________________

Samples 1 2 3 Residual Total Total content % Recoverv
SC 0.78 1.81 21.91 0 . 2 2 24.72 23.60 104.7
PR 1.71 8 . 2 1 1.30 32.71 43.93 43.28 101.5
D-2 0.82 3.84 1.54 50.26 56.46 58.46 96.6
D-4 1.04 3.61 1.79 52.00 58.44 58.50 99.9
D5a 0.80 1.33 1.30 6.70 10.13 1 0 . 1 1 1 0 0 . 2

NO-2 1.32 7.41 0.45 0.51 9.70 6 . 2 1 156.2
0-13 2.55 10.73 0.63 3.04 16.95 24.79 68.4
0 - 2 0 2.03 10.58 0.39 3.47 16.48 86.03 19.2
C-1 0.48 3.35 1.35 1.57 6.74 3.96 170.2

C-11 1.54 7.39 1.62 4.03 14.57 64.91 22.5
C-9 2.81 14.77 2.92 4.37 24.87 69.56 35.8
Ca-2 0 . 6 6 4.65 0.55 0.70 6.57 6 . 2 1 105.7
D-33 1.84 9.89 0.45 0.96 13.13 1 1 0 . 0 2 11.9

The percentage recovery of the sequential extraction method used was good in general 

(Table 4.18) with the exception of the sample C-11, C-9, 0-20 and D-33 which are 

anaerobic sediments. Possible transformation during the extraction procedure could 

have affected the results. A similar behaviour between estuary (SC, PR) and strait (D-2, 

D-4, N 02) in phases exchangeable, reducible and residual was found; and different 

behaviour for the metal associations between these and the main lake zone. The Pearson 

product moment correlations between lead in the residual phases and the X-Ray 

fluorescence spectrometry results did not show any correlations between lead and the 

other metal oxides determined with this technique.

4.3.3.4.- Tin:

Tin is present in natural waters at concentrations below 50 pg.L ' 1 and is generally 

accepted as being principally Sn(IV) on the basis of thermodynamic equilibria. 

However, it is possible that kinetic control of steady-state speciation may indeed favour 

Sn (II), especially in polluted waters, and this is not always readily measurable (42). 

The major source of tin compounds in the aquatic environment is organotin compounds,
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particularly trialkytins, which are extensively used as biocides, algicides, fungicides, 

and molluscides, in marine antifouling paints, and agriculture.

In the sequential extraction experiments, the tin concentrations in the lake itself were 

found to be associated to the residual phase and to be at very low concentrations, which 

means that Sn is not present as a dissolved species. However, this behaviour is different 

in the estuary and the strait where tin was mainly associated with the organic and 

Fe/Mn hydroxides phases,( Figure 4.4).
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Figure 4.4. : Distribution of tin in the Lake Maracaibo.

Table 4.19: Tin concentrations (jug g 1) and recoveries in the four sequential extraction
steps.

Samples 1 2 3 Residual Total Total content %  Recovery
PR 0.00 7.70 8.20 0.00 15.90 17.05 93.3
SC 0.00 7.70 8.16 0.00 15.86 17.16 92.4
D-2 0.00 11.53 6.99 0.00 18.52 24.78 74.7
D-4 0.00 17.06 7.00 0.23 24.29 27.14 89.5
D5a 0.00 7.28 0.00 0.00 7.28 7.22 100.8

NO-2 0.09 0.08 0.23 0.26 0.66 0.45 146.4
0-13 0.07 0.07 0.23 0.98 1.35 0.25 548.2
0-20 0.07 0.07 0.23 1.02 1.39 0.23 594.1
C-1 0.07 0.06 0.23 0.69 1.06 0.24 444.6

C-11 0.07 0.08 0.27 0.83 1.24 0.24 523.0
C-9 0.07 0.07 0.24 0.66 1.04 0.25 414.0

Ca-2 0.06 0.06 0.21 0.35 0.68 1.05 65.3
D-33 0.07 0.06 0.22 0.15 0.50 0.84 60.2
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The percentage recoveries that were found for the sequential extraction method were 

high in some places having anaerobic sediments (Table 4.19). In the strait and the gulf 

the concentrations were higher than the main zone of the lake. The third extraction step 

results showed that the tin is associated mainly with organic phases or sulphur- 

containing compounds in the Gulf of Venezuela and in the zone of the Strait of 

Maracaibo.

The multivariate statistical analysis between the residual tin and the X-ray fluorescence 

results showed correlations between Sn and Na20 (r = 0.5773, n=13, p<0.0388), Sn and 

Al20 3(r =0.5636, n=13, p<0.0449), Sn and Fe20 3 ( r = 0.5990, n=13, p<0.0305) and Sn 

and Si02(r = -0.6282, n=13, p<0.0215). Tin in the residual phase could be associated 

with Fe oxides or aluminum oxides.

4.3.3.5.- Vanadium:

Concentrations of vanadium in all the lake sites were high [1.8-113.5 mg Kg'1], 

especially in the centre where there are 10,000 petroleum extraction towers. Vanadium 

in this zone is distributed mainly in the Fe/Mn hydroxide carrier phases and in the 

residual phase (Figure 4.5).
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Figure 4.5.: Distribution o f vanadium in Lake Maracaibo

Table 4.20: Vanadium concentrations (jug g ')  and recoveries in the four sequential
extraction steps.

Samples 1 2 3 Residual Total Total Content %Reeoven
PR 0.89 4.46 1.63 23.80 30.78 30.80 99.9

SC 0.14 1.98 1.97 27.50 31.58 31.63 99.9

D-2 0.00 10.13 3.82 32.34 46.29 46.29 100.0

D-4 0.50 10.47 5.10 50.67 66.74 72.73 91.8

D5a 1.91 0.98 1.63 1.77 6.29 1.77 355.4
NO-2 2.87 13.18 7.65 8.55 32.25 50.60 63.7

0 -1 3 4.03 23.15 30.25 63.03 120.46 91.83 131.2
0 -2 0 3.42 26.82 11.00 48.09 89.33 113.49 78.7

C -l 0.46 14.36 0.46 26.33 41.61 47.54 87.5

C - l l 4.54 20.17 10.34 27.03 62.07 81.18 76.5

C-9 2.91 31.65 12.39 30.29 77.23 81.07 95.3

Ca-2 1.69 9.57 10.21 84.88 106.35 61.73 172.3
D-33 2.23 19.49 10.68 27.42 59.83 79.01 75.7

The correlations between the residual phase and the X-Ray results showed that there 

were correlations between the residual phase of vanadium and the Fe2 0 3  results (r 

=0.6435, n=13, p <0.0177). The recovery for the extraction method, seen in Table 4.20,
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indicates that high recovery percentages could be associated to contamination during 

the extraction method.

The multivariate analyses between trace elements ( total Cu, Ni, Cd, Cr, Ti, Zn, As, Se, 

Pb, Sn, Hg) and V showed that there were correlations between V and Cu (r =0.8682, 

n=13, p<0.0001); V and Cr (r= 0.5922; n=13, p<0.0330) ( that behaviour is expected 

because both can exist as anions in solution); V and Ti (i= 0.5890, n= 13, p<0.0342) ( 

this behaviour is expected because the contamination source is the oil extraction 

industry for both); Se and V (r = 0.6791, n=13, p<0.0107) and V and Pb (r= 0.5894, 

n=13, p<0.0340). A coal mine port is one of the sources of contamination for selenium, 

vanadium and lead. Similar correlations have been found by M. Leivuori (43) for the 

sediments of the Gulf of Finland and the Gulf of Bothnia.

Correlations also exist between : V2O5 and Fe2C>3 (r = 0.6019, n=13, p<0.0295); Fe2 0 3  

and V total (r = 0.7712, n=13, p< 0.0020); Fe oxides can be the carrier phases of 

vanadium in the sediment as is seen in the sequential extraction results; V total and 

Cr20 3  (r = 0.7458, n=13, p<0.0034) ; TiC>2 and V total (i=0.6164, n=13, p<0.0249) ; 

Si02 and V total (r=-0.8957, n=13, p<0.0001)( this similar correlation was found by A. 

Shiller and L. Mao in the Mississippi River in 1990 (44)); AI2O3 and V total (r =0.8957, 

n=13, p<0.0001); P2O5 and V total (r=0.5580, n=13, p<0.0475).

4.3.3.6.- Mercury:

In the results found for the Lake Maracaibo system, three different zones for the 

distribution of metals were apparently as previously noted for other metals.. The results 

of the sequential extractions revealed that most of the mercury in the centre of Lake 

Maracaibo (sites N02 to D-33) was extracted in the organic/sulfide phases [95-100 %], 

indicating the occurence of comparatively stable mercury compounds such as humic
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acid -  bound mercury or mercury sulfides. In contrast, data from samples taken in the 

Strait and in the Gulf showed that mercury occurs mainly in the residual phase even 

after an oxidising step (organic-sulfide fraction),in which mercury was oxidised by 

HNO3-H2O2 solution. The ocurrence of mercury after the oxidising leaching steps 

indicates that the mercury found in the residual fraction consists of Hg° and matrix-

bound mercury, which has not been extracted in the previous steps.
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Figures 4.6. : Distribution o f mercury in sediments o f Lake Maracaibo.

The data for the samples from the Strait are associated with an essentially inorganic

mercury contamination source (a clhor-alkali plant located in the point D-2 or near the

point). The percentage of recovery of mercury in all the sites sampled were between

70.8 -  264.9 %; high percentages (more than 100%) could appear because the different

sequential extraction method might introduce contamination to the sample or because

the method used for total concentration determination does not solubilise all the

mercury compounds (Table 4.21., mercury concentrations in pg.g'1).
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Table 4.2L: Mercury concentrations (jug g 1) and recoveries in the four sequential 
extraction steps______________ ______________________________________________________

Sample 1 2 ■ 2  
■ ̂ T . « .. Total % Recovery

..... . .............. Content
PR 0 .0 1 0.02 0.04 0.30 0.37 0.40 91.9
SC 0.01 0.00 0.00 0.21 0.22 0.26 84.5
D-2 0.00 0.01 0.02 0.20 0.24 0.28 84.7
D-4 0.02 0.01 0.01 0.09 0.12 0.12 100.2
D5a 0.00 0.02 0.02 0.10 0.15 0.19 81.4

NO-2 0.00 0.00 0.14 0.00 0.14 0.05 264.9
0 -1 3 0.00 0.00 0.14 0.01 0.15 0.13 111.7
0 -2 0 0.00 0.00 0.15 0.00 0.15 0.13 122.2
C -l 0.00 0.00 0.16 0.00 0.16 0.19 84.2

C - l l 0.00 0.00 0.19 0.03 0.21 0.27 78.8
C-9 0.00 0.00 0.15 0.01 0.16 0.19 87.5

Ca-2 0.00 0.00 0.13 0.00 0.13 0.07 173.4
D-33 0.00 0.00 0.13 0.00 0.13 0.14 98.29

In the Figure 4.6. in which is presented data for the four extraction phases, for all 

extraction phases determined, the differences between each zone is seen clearly, every 

zone representing a different system with different physicochemical parameters and 

different species of mercury. The exchangeable or water soluble fraction is mostly 

present in the zone near to the Strait and the Gulf o f Venezuela (SC, D-4), and it is also 

near to the former source of inorganic mercury contamination in the Tablazo Bay. 

Although, this source of contamination was eliminated five years ago, the continous 

dredging releases the mercury in the water column. These zones also represent the 

major values of the residual phases. There is clearly a difference between the above two 

zones and the main lake zone where most of the mercury is bound to organic matter or 

sulphides. Sulphides can produce a precipitation of mercury in the form of methylated 

compounds. Similar results where mercury is bound mainly to the organic-sulphide 

phase and the residual phase have been found by Biester and Scholz (45) in previous 

laboratory scale studies.

There was not a correlation between the total concentration of mercury and the

nutrients; a correlation between Hg (inorganic) and the dissolved oxygen concentration
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was found (r= 0.6601, n=13, p<0.0141). There was also a correlation between the 

residual phase of mercury and the P2O5 ( r= -0.5701, n=13, p<0.0419), as shown by the 

X-ray fluorescence spectrometry results.

4.4.- CONCLUSIONS

In conclusion the distribution of the six metals studied varied in the three systems 

found in Lake Maracaibo. Mercury and selenium were distributed in the main zone of 

the lake as the third extraction phase, bonded to organic matter and sulphides, however, 

for arsenic, the first extraction phase (exchangeable metal, water and acid soluble) and 

the second extraction of the iron /manganese oxyhydroxides phase were mainly present 

and higher in the lake zone. Vanadium in this zone was distributed mainly as residual 

phase and the Fe/Mn hydroxide carrier phases. Lead distribution was controlled by Fe 

oxides in the main zone of the lake. Tin concentrations were higher in the estuary and 

the strait where this element was mainly associated with the organic and Fe/Mn 

hydroxides phases.
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Chapter V: Chemical speciation o f  arsenic, selenium and chromium in water, fish muscle tissue, mussel
and sediment samples from Lake Maracaibo.

5.1.- INTRODUCTION

The environmental levels of trace elements such as arsenic, selenium and chromium are 

of considerable interest because of the potential toxic and carcinogenic properties of 

these elements. The toxicological and physiological behaviour of these elements is 

known to depend on the oxidation state and the chemical form .

5.1.1.- Arsenic

The location of arsenic in the periodic table directly below phosphorus predicts an 

analogous chemical behaviour for arsenate and phosphate including incorporation into 

organic molecules (1). Similar to phosphorus, arsenic can occur in numerous oxidation 

states ( +5, +3, +1, 0, -1, -3) and in both inorganic and organic compounds, as is 

described in the arsenic cycle by Ferguson and Gavis in 1972 (2).

Environmental contamination by arsenic has increased in the world as a result of the 

application of arsenical herbicides and pesticides, smelting and mining operations, and 

the burning o f fossil fuels. The toxicity and mobility of this clement are dependent on 

the chemical forms in which it exists; the two more toxic species are arsenite (As111) and 

arsenate (Asv), which represent the main forms of arsenic present in soils, sediments and 

water (3). Methylated arsenic, such as monomethylarsonic acid (MMAA) and 

dimethylarsinic acid (DMMA) are less toxic and arsenic compounds such as 

arsenocholine (AsC) and arsenobetaine (AsB) are considered non- toxic (4).

In waters, dissolved arsenic can occur in both inorganic and organic forms. The 

inorganic forms at natural pHs include anionic (FkAsOT and HAsC>42‘) or neutral
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arsenite (As(0H)3 ) (5). In lakes, arsenic can exists in two common oxidation states, 

As(V) and As(III). Its behaviour is closely linked to that of Fe and to a lesser extent Mn 

oxides, and it can undergo biological uptake and methylation. Both the oxidation of 

As(III) and the reduction of As (V) can be microbially mediated (6).

The mobility of arsenic in sediments in Lake Ohakuri (New Zealand) (7) (a stratified 

lake during the summer) was investigated during 1980 and 1982, including studies of 

the release of arsenic to the overlying water related to seasonal changes in both water 

and sediment. The results showed that in shallow areas of the lake, the release of arsenic 

contributes to the continuous seasonal variation in the arsenic concentration in the lake 

water. Speciation of arsenic in the interstitial water indicated that in this lake, only 

inorganic As (V) and As (El) were present, neither methylarsonic acid nor dimethyl- 

arsinie acid being found in any of the samples, As {III) was usually the major 

constituent, and in many instances it accounted for > 90% of the total arsenic 

concentration, although, superficially, variations in the percentage of arsenic present in 

the interstitial water as As (IE) appeared rather large.

The typical concentrations of arsenic in uncontaminated waters are in the range of 1-2 

pg L'1 (8). In surface sediments, Seydel (9) reported total concentrations of As in Lake 

Superior that ranged from 2.8 to 5.4 pg.g’1 . The maximum total concentration of 

arsenic found in Lake Lansing, studied by Batterson and McNabb (10) was 

330 pg.g’1 whereas studies of Lake Michigan (10) found arsenic in sediments in the 

range from 7.2 to 28.8 pg.g’1. Two lakes studied by Wagerman et al (11), contaminated 

with arsenic as a consequence of gold mining activities, had concentrations between 6 

to 3500 pg.g’1 of As by dry weight.
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Figure 5.1. shows the cycling of arsenic in a lake under summer conditions.

STRATIFIED SUMMER LAKE CONDITIONS

ARSENITE
ARSENATE

'f
MMAA

t
DMAAJM A A ^w
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Figure 5.1 : The As cycle. Transformations include oxidation-reduction and ligand 
exchange. Methylation o f arsenic compounds is thermodynamically unfavourable in 
water and can occur only by biological mediation (5)

In the oxic photic zone, arsenate and DMAA dominate the chemistry in solution. The 

dominant form in the hypolimnion is arsenate until reducing conditions increase 

sufficiently to cause the reduction of arsenate to arsenite. DMAA concentrations could 

arise from direct excretion from algae or microbes or degradation o f excreted arsenicals 

or more complex cellular organoarsenicals. Reduction of first Mn and then Fe 

compounds results in a release of adsorbed or precipitated total As in the hypolimnion. 

Under sulphate-reducing conditions arsenate can be reduced to arsenite. Evidence exists 

for the removal of an As-enriched mineral phase (5).
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The transformations presented in the cycle include oxidation- reduction and ligand 

exchange, tranfers from solution to solid phases, and vice versa. Although, the 

methylation of arsenic compounds is thermodynamically unfavorable in water and can 

occur only by biological activity, the presence of monomethylarsenic acid (MMAA) 

and dimethylarsinic acid (DMAA) in natural waters may be as a result of pesticide 

residues from agriculture or home use. Studies of an eutrophic lake (Lake Biwa, Japan) 

presented by Sohrin et al (12), showed that a depletion of oxygen concentrations and 

increased sulphide concentration in some situations can cause a release of arsenic from 

the sediments.

A study of bivalve species collected from Miami River (USA) showed concentrations of 

arsenic ranging between 23. 6 to 37.3 pg.g'1 (13). Similar determination of arsenic in 

muscle tissue and inner organs of mullet from Lake Macquarie, Australia (14) revealed 

concentrations of arsenic between 4.7 to 19.2 pg.g'1, the concentration in muscle tissue 

being the lowest. Arsenic in marine organisms is not usually present as inorganic 

arsenic or simple methylated forms (15). Arsenobetaine has been identified in lobster

(16) and other organo-arsenic compounds (trimethylarsine, arsenocholine, 

tetramethylarsonium ion) in algae and molluscs( 17-19)). However, M. Suner et al (20) 

found inorganic arsenic (As(III) + As (V)) in a variety of molluscs, shrimp and fish 

from the Guadalquivir Estuary in Spain.

5.1.2. Selenium

Selenium (Se) has a complicated redox chemistry, closely related to that of S, and is 

biologically both an essential and a toxic element (21). In natural waters, it can occur in 

four oxidation states: selenate (VI) as the selenate oxyanion ( SeCL2’) , selenite (IV) as
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the selenite oxyanion (HSeCV and SeC>3 '), elemental Se(0) as colloidal elemental 

selenium. The latter is stable over a wide Eh-pH range, and also as formally zero valent 

atoms in various inorganic and organic compounds and species. Selenide (-II) as 

biselenide (HSe"), and as a variety of organic and inorganic compounds is also known. 

Organic forms of selenium are analogous to those of sulphur and include seleno amino 

acids and their derivatives, methylselenides, methyseleninic esters, methylselenones, 

and methylselenonium ions (21).

Selenate should thermodynamically predominate in well-oxygenated surface waters, but 

this is frequently not the case. Most of the transformations of Se are microbially 

mediated and its methylation is of both biological and environmental significance (21- 

22). Selenate has a low adsorption affinity for common inorganic solids, and therefore 

tends to exhibit high mobility. Selenite is strongly adsorbed, especially by Fe and Mn 

oxides. The Fe oxides have the greater affinity for selenite and adsorption increases with 

decreasing pH (23), as expected for an oxyanion. The reduction of selenate to selenite 

has been found in lakes such as Katepwa Lake in the Qu’Apelle river basin in Canada, 

whereas the sediment from Buffalo Pound Lake in the basin promoted the reverse 

reaction (24).

The biogeochemical cycle of Se in lakes, proposed by Cutter (1991) (20), is shown in 

Figure 5.2.. The speciation of Se in the inputs varied according to source. Dissolved 

selenite dominance was associated with coal ash leachates, whereas Se (-11, 0) was the 

main dissolved forms in normal stream inputs. The Se within the reservoirs exhibited a 

very dynamic cycle, showing seasonally-based, non-steady-state behaviour. Scavenging 

of dissolved Se took place mainly in the epilimnion and was maximal during the
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summer months, due to uptake by algae. Selenite appeared to be preferentially taken up, 

and once incorporated into the algae, was converted to Se (-11). These findings are 

consistent with Se behaviour observed in lake and ocean experiments (25). Rapid 

regeneration of dissolved Se from the algae in reservoirs has also been demonstrated

(26). Se(-II) and Se(0) were the predominant species released mainly as dissolved 

organic selenide. In the hypolimnia o f the various reservoirs, regeneration o f dissolved 

Se from decomposing algae is an important process. During periods of hypolimnetic 

anoxia, dissolved selenite and selenate concentrations are decreased, with increased 

concentrations of elemental particulate.

Se(IV,VI)
Se(-II,IV,VI) (CH3)2Se

epUimnionParticulate Se

hypolimnion

Particulate Se(-il,0)

Figure 5.2. Biogeochemical cycle o f selenium in lakes (20).

Studies o f the Kesterson Reservoir, California, USA( 27) which was contaminated with
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selenium, showed concentrations in surface water between 200 -  300 pig L'1. A similar 

investigation reported a distribution of Se in the sediment of 2.216 mg.m'. The 

concentrations found in Lake Macquarie, Australia showed concentrations between 0.1 

and 12 pg g*1 in surficial sediment (28).

5.1.3.- Chromium

The wide spread use of chromium and the frequently inadequate disposal of by-products 

and wastes from industrial processes have created serious environmental pollution 

problems in urban areas and in other ecosystems. For instance, industrial discharges 

have resulted in severe Cr(VI) contamination of an aquifer underlying a farming region 

in southern California (29). Consequently, regulatory agencies have mandated 

remediation of the site, setting a maximum concentration limit of 50 pg/L for Cr(VI) 

and 1700 pg/L for Cr(IH) (30).

As a transition metal, Cr can occur in several oxidation states, from Cr(0) to Cr(VI). In 

aqueous environments, however, Cr exists primarily in two oxidation states, trivalent Cr

(III) and hexavalent Cr(VI). Cr(VI) exhibits d° electron configuration and forms 

complexes mainly with oxo- or hydroxo-ligands with a tetrahedral configuration. In 

aqueous solutions Cr(VI) is present in anionic forms whose compounds are generally 

soluble over a wide pH range. Hydrolysis of Cr(VI) yields a number of pH dependent 

species, chromic acid (H2C1O 4), hydrogen chromate (HC1O 4’), chromate (C1O 4 '), 

dichromate (Cr20 7 2) , hydrogen dichromate (HC^CV), trichromate (Cr30io2') and 

tetrachromate (Cr40i32). The last three ions have been detected only in solutions of 

pH<0 or at chromium concentrations greater than 1 mol L'1 (31). In natural water (at pH
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6-9, Cr(VI) concentration less than 10' M), however, Cr04 "ion is the main species of 

Cr(VI) (32). On the other hand, the main aqueous Cr(DI) species are Cr^, Cr(OH)2+, 

Cr(OH)2+, Cr(OH)3° and Cr(OH)4’ while polymeric species such as Cr2(OH)24+, 

Cr(OH)45+ and Cr4(OH)66+ are insignificant in natural systems. In the pH range 

encountered in natural waters, most Cr(III) exists in the least soluble form of 

Cr(OH)3(33).

Chromium oxidation states are directly related to environmental conditions. Cr(VI) ions 

possess a relatively high oxidizing potential and exhibit toxic and mutagenic effects on 

biological systems, while Cr(III) in nature is relatively insoluble and considerably less 

toxic.

Cr (VI) is reduced rapidly by Fe(II) and sulphide (34). Organic matter, including humic 

substances, is also an effective reductant (35). Cr(III) is more readily scavenged by 

particles, except possibly at low pH, and exhibits typical metal-like sorption 

characteristics. Anionic Cr(VI) is adsorbed less readily, with Fe oxide generally being 

its most important carrier phase.

Studies in seasonally anoxic lakes (36-37) have shown that Cr(VI) is the predominant 

dissolved species throughout the year, whereas dissolved Cr(III) is invariably 

undetectable, probably due to its efficient scavenging. The findings of Gunkel and 

Sztraka (38) in two seasonally anoxic urban lakes are different from those described 

previously, in that greatly enhanced dissolved Cr (III) concentrations were observed in 

anoxic bottom waters, a result attributed to reductive remobilization of Fe oxides.

5.1.4. Speciation of arsenic, selenium and chromium.
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Several instrumental techniques have been developed that allow selective detection of 

different species at very low levels. Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS) is a technique which allow the determination of the total concentration of 

many elements with the high sensitivity of mass spectrometry. ICP-MS is well suited as 

a detector for inorganic and organometallic species separated by High Performance 

Liquid Chromatography (HPLC) (39), comparing favourably with other atomic 

spectrometric techniques particularly when an aqueous mobile phase is used. Moreover, 

sample pre-treatment may be minimised when ICP-MS is used, restricting eventual 

changes in the relative concentration of individual species.

HPLC-ICP-MS has been applied to As(III), DMAA, MMAA, arsenobetaine, 

arsenocholine and As(V) studies, mostly in biological matrices (14, 40-41), sediments 

and soils (42-43) or natural waters (44-45). The direct coupling hyphenated system 

HPLC-ICP-MS can improve the sensitivity and reduce interferences with the use of 

hydride generation (HG) (46) but non-hydride forming species such as arsenobetaine 

and the arsenosugars can not be determined by this technique. Furthermore, conflicting 

results reported for the determination of arsenic and selenium by the hydride generation 

method can be attributed to variations in the production of the hydride and its transit 

into the atomizer. GFAAS using ethylation and on-line trapping detection have been 

used for the determination of Se(IV)(47) with the disadvantage of a drastic depression 

in the signal when acid is added to the real samples. Se(IV) and Se(VI) also have been 

determined in environmental matrices using HPLC-ICP-MS (48-50). HG coupled with 

AFS (atomic fluorescence spectrometry) has been used for determination of Se(IV) at 

very low levels (51) and coupled with ICP-MS (52). Organic (seleniomethionine and 

selenocystine) and inorganic selenium compounds (selenite and selenate) have been
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studied using HPLC coupled with UV irradiation and HG in synthetic samples (53). 

Neutron activation (54) and stripping voltametry (55) have also been used for Se 

speciation.

The application of the hyphenated technique HPLC-ICP-MS to simultaneous chemical 

speciation of two or more metal or metalloid species is limited by the different 

chromatographic conditions required for their resolution. Careful choice of the column, 

mobile phase and the type of chemical species is essential for success. Simultaneous 

speciation of As and Se compounds has been realised using emission spectrometry 

detection (56-57), neutron activation (54) and more recently by the use of ICP-MS as 

detector (58). Simultaneous determination of arsenic and chromium species in water 

samples has been developed using ion chromatography and ICP-MS (59), using 

gradient conditions, with the disadvantage of an increase in the detection limit for 

chromium.

In this study, an HPLC-ICP-MS method is described for the simultaneous determination 

of As(m), As(V), Se (IV), Se(VT) and Cr(VI) in water, sediments, fish muscle tissue 

and mussels . Distribution of these species in water, sediments and biological materials 

taken from Lake Maracaibo are discussed. Correlations using the Statgraphics 

statistical program (60) were found between them and the As, Se and Cr speciation 

results. The variation in the nature and concentration of these metal species and the 

physicochemical parameters (pH, dissolved oxygen, conductivity, salinity), the 

variations of the total concentration of selenium with total sulphur, the total 

concentration of arsenic with the total concentration of phosphorus, and total sulphur 

were also discussed.
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5.2.-MATERIALS AND METHODS

5.2.1.- Reagents

Sodium meta-arsenite (NaAsC^), sodium arsenate heptahydrate (Na2HAs0 4 .7 H20 ), 

ammonium carbonate ((NH^CCb), ammonium bi-carbonate (NH4HCO3 ) were 

purchased from Sigma. Di-ammonium hydrogen phosphate (NfL^HPC^ and 

ammonium dihydrogen phosphate NH4H2PO4, calcium nitrate Ca(N0 3 )2, sodium 

carbonate (Na2C0 3 ) , sodium bi-carbonate (NaHCCh), sodium selenite pentahydrate 

Na2SeC>3.5H20, sodium selenate NaSeCU (analar) and a solution of 1000 mgL'1 of 

cromium (VI) were purchased from Merck.

A stock solution of arsenic (1000 pg AsL'1) was prepared by dissolving 433.0 mg 

NaAsC>2 and 1041 mg of Na2HAs0 4 .7 H2 0  in 250 mL. The stock solution of selenium 

(1000 pgSeL'1) was prepared by dissolving 81.02 mg of sodium selenite and 106.77 of 

sodium selenate in 250 mL of deionized water (Milli -RO/Milli-Q) system from 

Millipore, 18 mW). The standards were stored at -4  °C in the dark.

Five working standards from the stock solution of Se and As (5-100 pgL*1) were 

prepared daily by dilution. The eluent ammonium dihydrogen phosphate (1.87mM)- di 

ammonium hydrogen phosphate (1.87 mM) was prepared and filtered (0.20pm) before 

use; the pH of the eluent solution was 6.5.

5.2.2.- Instruments

The HPLC system for these studies was a DIONEX gradient pump equipped with a 

Rheodyne Model 7125 injection valve with a 50 pL sample loop and a AS 9 DIONEX
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ion exchange colum n, 10 psi of Helium pressure, flow rate of 1.0 mL.min' 1 .

Arsenic has one isotope 75As (100 % abundance). Selenium has 6  isotopes 

(74,76,77,78,80 and 82), and it is 35 % ionised in the Ar plasma. Se with mass 82 was 

used in this study. Chromium has 4 isotopes (masses 50,52,53,54). Cr is over 95 % 

ionised in the Ar plasma. The main Cr isotopes can suffer interference from Ar, C, Cl 

and S based species. Therefore C f and S' based compounds must be avoided in the 

determination of Cr and care must be taken when determining samples which may have 

a high organic content. The isotope "3Cr was used for quantification in this study, as it 

produces less background with the eluent used.

An ICP-MS Hewlett Packard 4500 was used as detector. Instrumental conditions for 

the ICP-MS are shown in the Table 5.1.

Table 5.1.: Conditions used for the ICP-MS during the As, Se and Cr speciation

Conditions For As, Se, Cr speciation

R f Power/W 1200

Carrier gas flow rate 1.25

Sample Depth/mm 6.0

Pump speed/rps 0.30

Uptake speed rps 0.5

Acquisition Mode Time resolved analysis

Acquisition Time (sec) 2

Torch Fasseltorch

Spray chamber Cyclonic

Nebulizer Babington

Coolant aas flow 10 Lm in1

Number of repetitions 3
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5.2.3.- Sample preparation

The samples of water were filtered before the analysis (0.2 pm). The samples of 

sediment, muscle tissue and mussels were extracted with a solution of ImM of 

Ca(NC>3 )2  (61). An aliquot of approximately 5 g of each was extracted with 25 mL of 

Ca(NOs)2  solution , shaken for 2 h, and then centrifuged at 3000 rpm for 10 min and 

then separated and filtered prior the analysis in the ICP-MS.

The sampling area is described in the Chapter II. The samples of lyophilised mussels 

(Polymesoda solida) and fish muscle tissue (Cysnocion Acoupa Maracaiboencis) were 

supplied by the ICLAM (Institute for the Conservation of Lake Maracaibo, Venezuela).
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5.3.- RESULTS AND DISCUSSION

5.3.1.- Method optimisation

ICP-MS sensitivity was optimised by varying one instrumental setting at a time during the 

analysis of standard solutions of the various species studied'.

The mass spectrometer was set to sample ion intensities using a Time Resolved Analysis 

mode (TRA) at the following mass-charge ratios (mIt)  ( 75A s ) ,  (^Se) and (53Cr) during the 

coupling measurements.

Comparison of ICP-MS signal intensities obtained for each species prepared in water was 

made using conventional aspiration at 1.0 mLmin*1. The following calibration curves were 

obtained.

As r= 0.9999 y = 7.1x103X — 3.4xl03

DL = 0.1 pg .L'1

Se r= 1.0000 y= 2.602xl02 X + 1.270xl02

DL= 1.0 pg.L_1

Cr r=0.9990 y= 3.316x103X -  2.540xl03
DL= 0.8 pg .L 1
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5.3.1.1. Mobile phase optimisation

Three mobile phases with different ranges of concentrations were investigated (Table 5.2). 

Poor resolution of As (III) was obtained using the Na2CC>3 / NaHCC>3 mixture. In addition, 

there was a slow build-up of salt deposits in the nebuliser with time. To avoid this , the 

ammonium salts ((NFL^CC^ /NH4HCO3) were used instead.

Table 5.2. Optimisation o f the mobile phase

Liquid Chromatography Column Mobile Phase

Anion Exchange AS-9 Na2C 0 3-N a H C 0 3 

(2.1 to 7mM) 

(optimised at 3.5 mM) 

pH=8.5

Anion Exchange AS-9 (NH4)2C 0 3-NH4H C 03 

( 7mM to 21mM) 

(optimised at 10.5 mM) pH=8.7

Anion Exchange AS-9 (NH4)2H P04-NH4H2P 0 4 

(0.93 to 7.5 mM) 

(optimised at 1.87 mM) 

pH=6.5

However, the resolution o f As species did not improve. Good resolution was obtained when 

(NH4)2HP0 4 /NH4H2PO4) was used as is shown in the Figure 5.3.
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Figure 5.3.: Chromatogram showing the separation o f the species from a solution with 100 
pgL 1 o f selenite, selenate, arsenite, arsenate and chr ornate

Because the long retention time for chromium (VI) (1400 sec), different programs of 

gradient concentration of the eluent were applied in attempt to eluate the species earlier. 

The optimised gradient elution program is shown in the Table 5.3.:

Table 5.3.: Gradient program used during the separation o f arsenic, selenium and 
chromium species.

Time Eluent

0 - 2 .5  min h 2o

2.5 -  3.0 min change

3.0 -1 5  min 7.5 mM eluent ammonium phophate, 7.5 mM di

ammonium phosphate
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Although good separations were found for all of the species studied, this program was 

eliminated because of interference due to the formation of the species N Ar in the ICP when

53the concentration of the eluent is increased, the resulting high background for the Cr 

affecting its detection limit (Figure 5.4).
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Figure 5.4: Chromatogram showing the separation o f the species using the gradient 
program.

The following calibration curves were used with the developed method without gradient 

elution:
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Regression Curves 

As(OH)3

y=  1145.6 X -57.4 

DL= 1.3 ng .L'1 

HAs0 42

y = 611.7 X + 2226.0 

DL= 3.0 jig .L*1

Se032

y =  100.6 X + 459.1 

DL= 1.3 n g X '1 

Se042

y = 29.8 X + 911.6 

DL= 4.5 . |ig .L’1 

Cr042

y= 516.5 X + 5742.0 

DL=2.0 .L'1

r= 0.9970

r= 0.9994

r=  0.9996

r = 0.9995

r = 0.9999
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The method optimised with isocratic conditions was applied to water, sediments, muscle 

tissue and mussels samples, with the species Cr(VI) included in the analysis. The samples 

of water were filtered before analysis. Figure 5.5 shows the chromatogram of a sample of 

water.

Most of the isotopes of Se are subject to interferences from isobaric overlap (masses 

74,76,78,80 and 82) or polyatomic interferences, principally Ar2+ on masses 76, 78, 80 . 

77Se (7.63 % abundance) is one of the most useful isotopes used for the determination of Se 

but is susceptible to interference of ArCl from Cl matrices such as in sea water and 

sediments. 82Se (8.73 % of abundance) is also useful for quantification but does suffer from
  OA

HBr interference in Br-containing samples. In this study Se was used as isotope for 

quantitation.
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Figure 5.5.: Chromatogram o f a sample from Lake Maracaibo showing the species o f Se 
and As.

The following table shows the most common interferences for 82Se:

Compounds Interference (%)

Kr 11.6

CuO 0.012

ZnO 27.93

BrH 49.30

A spectral interference was found in the samples of water and sediment because the high 

Br' concentration leading to the formation of HBr that can interfere with the signal at 82S e ,.
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Figure 5.6 shows the effect of addition of an aliquot of a solution of 1000 jig.L'1 of KBr to 

the water sample from Lake Maracaibo.

(a) Sample of water from Maracaibo
1000 82: Se

HBr
SeO

3  500

0 50 100 150 200 250 300 350 400 450 500 550 600

(b) Sample of water from Maracaibo Lake spiked with 1000 pgL"1 of KBr

2000 82: Se HBr

1000
ieO

0 50 100 150 200 250 300 350 400 450 500 550 600

Retention time (s)

Figure 5.6: Chromatogram o f a sample o f water with the addition o f a spike o f KBr 
showing the interference o f the HBr.

Table 5.4 presents the results of the analysis of water samples from Lake Maracaibo. The 

selenate species was not found at most of the sampling points, although selenate should
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predominate thermodynamically in aerated waters. Selenite is more adsorbed by Fe and Mn 

oxides and this increases with decrease in pH, as is found in zones near to the sediment in 

the centre o f Lake Maracaibo. In addition, selenate reduction to selenite by bacteria has 

been reported recently (62), and dissolved selenite dominance in lakes has been associated 

with coal ash leachates.

Table 5.4: Water samples results (pg.L']) o f the sampling in Lake Maracaibo.

SamUinsooints Ason) As(V) Se(IV> Se(VD Total As Total Se
CA-2 4.4 ± 2.74 <3.6 <1.3 <4.5 2.86+0.30 2.61 ±0.33
C-1 4 19+0 02 <3.0 1 60+0 15 <4.5 3 1i+CU)-L 3 41 ±0 09
NO-2 4.40+0.02 <3.0 <1.3 <4.5 4.13+0.06 4.31+0.11
D-4 2.82+0.04 <3.0 1.72+0.15 <4.5 3.56+0.11 4.38+0.09
PR 6.58+0.05 3.08 +.0.30 <1.3 <4.5 10.56 ±0.11 3.82+0.09
D-2 4.40+0.12 <3.0 <1.3 <4.5 3.70+0.01 3.94+0.01
D-114 4.57+0.12 <3.0 <1.3 <4.5 4.18+0.13 4.64+0.19
D-74 4.22+0.24 <3.0 <1.3 <4.5 5.32+0.02 2.60+0.16
Guam 6.14+0.24 <3.0 <1.3 <4.5 10.33 ±0.12 8.11 + 0.22
S-6 4.07+0.05 <3.0 <1.3 <4.5 2.51 + 0.00 2.85 + 0.01
D-119 3.58+0.34 <3.0 <1.3 <4.5 2.97+0.06 2.62 + 0.18
C-ll 5.09+0.01 3.98 + 0.61 2.29+0.24 <4.5 8.68+0.06 2.84 ± 0.07
D-33 2.93 ± 0.80 <3.0 2.18+0.04 <4.5 4.54+0.04 3.27 + 0.07
0-20 ± 3.96+0.14 <3.0 <1.3 <4.5 3.80+0.06 3.23 + 0.14
0-13 4.16+0.14 <3.0 <1.3 <4.5 4.06+0.05 4.18 + 0.10
C-9 4.06+0.01 <3.0 <1.3 <4.5 4.02+0.05 2.34+0.11
D5a <1.3 <3.0 <1.3 1 <4.5 4.19+0.07 4.56 + 0.09
San Carlos <1.3 <3.0 <1.3 1 <4.5 <0.1 <0.1

Two species o f arsenic were found in the samples as was expected. Arsenic in lakes (63) 

normally occurs in the two common oxidation states (+3, +5), these species existing in 

solution as arsenate (H2A s04" and H A s04 2), and arsenite in the form of the neutral species 

As(OH)3.
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♦ As(lll) 

■ As (V) 

▲ Se(IV)

Sampling points

Figure 5.7: Dominance o f As(III) species over the other species found in water samples 
from Lake Maracaibo

The Figure 5.7 shows the dominance of the As(III) specie in all of the places sampled. This 

can be explained because As(V), remobilised from Fe oxides, can be reduced to As(IH)

(64), and S(-II) could also act as a reductant (65). In addition, algae and microbiological 

cultures under aerobic conditions are able to reduce As(V) to As(III). The ecological logic 

of microbiological As(V) reduction has been explained in terms of a detoxifications 

strategy aimed at avoiding the consequences of incorporating arsenate instead of phosphate 

(66).
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5.3.2.-Sediment results

The total Se concentrations found in waters and sediments from Lake Maracaibo were in 

the ranges of 4.8 -  8.1 pg L '1 and 286 -  1,890 pg Kg'1, respectively which are low if they 

are compared with the studies of the Kesterson Reservoir, California, USA, that was 

contaminated with selenium and showed concentrations in surface water between 200 -  

300 pg L"1. Se concentrations in sediments found in a lake in Australia showed 

concentrations between 100 to 12,000 pg Kg'1 in surficial sediment (28).

The concentration ranges of As (III) and As (V) of the sediments were (13.1-200.7 pg g’1 ) 

and (26.7 -  237.8 pg g '1), respectively. The levels of Se (IV) range between 8.5 -  38.5 

pg g '1. No Se (VI) species was detected. The dominance of As (III) in the sediments of 

Lake Maracaibo at different pH is shown in the Figure 5.8.

300.00

250.00

200 .00

150.00

100.00

50.00 -

0.00
6.60 6.80 7.10 7.60 7.80

A s( I I I )

A s (  V)

Figure 5.8: The variation o f As(III) and As(V)in sediment at different pH  values found in 
Lake Maracaibo.
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5.3.3. Biological indicator results

The selenite species was found in samples of muscle tissue of curvine (Cynoscion Acoupa 

Maracaiboensis), a more abundant fish from Lake Maracaibo. The mean concentration of 

trace metal species in the samples analysed were As (EH) = 764.5 pg Kg'1 and Se (IV) = 

313.6 pgKg'1, respectively. Inorganic arsenic species have been found by Suner et al (20) in 

fish from Guadalquivir estuary, Spain, contaminated with arsenic and heavy metals 

released from a mine, at concentrations of 260 pg Kg'1 , which are lower than the 

concentrations found in Lake Maracaibo.

The total arsenic found in bivalve species from Miami River (USA) revealed concentrations

ranging between 23. 6 to 37.3 pg.g’1 . A study of total arsenic in muscle tissue and the

inner organs of mullet from Lake Macquarie, Australia (14) showed concentrations of

arsenic between in 4.7 to 19.2 pg.g'1, this being a much lower level for muscle tissue than

that found in Lake Maracaibo. Valette-Silver et al (13) have shown that the most common

species of arsenic in bivalves from the Southeast Coast of the USA are monomethylarsonic

acid (MMA) and dimethylarsinic acid (DMA) . The mean concentrations of the various

metallic species found in mussel (Polymesoda solida) from Lake Maracaibo were As (III) =

1.3 pg g'1, Se (IV) = 0.3 pg g'1 ; Se(VI) = 6.3pg g'1 which are solely inorganic species as

was also found in the Guadalquivir Estuary in Spain. However, the behaviour of tropical

lakes like Lake Maracaibo is different and estuarine chemistry cannot be compared with

seasonal lakes which have high differences in temperature. The natural cycles of the

elements can produce changes in the binding of these elements and this could be the cause
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of the differences between the arsenic species in this lake and the species found in other 

seasonally variable lakes. Information about selenium species in fish muscle tissue and 

mussels does not appear to be available.

Although, the total chromium concentration in the waters of Lake Maracaibo ranged 

between (1.71 -  2.14 pg.L'1) and in sediments between (0.93-17.20 mg.Kg"1), Cr(VI) was 

not found in the samples. The reduction of Cr(VI) to Cr(HI) by bacteria, Fe oxides and 

algae could be the cause of this effect. Cr(III) cannot be determined by the developed 

methodology.

Correlations:

The Pearson product moment showed correlations between the following pairs of variables 

(P-values below 0.05 indicating statistically non-zero correlations at the 95% confidence 

level): As (III) and Fe20 3 (r = -0.5630, n=13, p< 0.0451); As(V) and Fe20 3 (r = -0.6421, 

n=13, p< 0.0180); Si02 and As(ffl) (r = 0.5823, n=13, p< 0.0368) and As(V) (r= 0.5544, 

n=13, p< 0.0493) ; As(III) and As(V)( (r =0.9304, n=13, p<0.001); Se(IV) and Mn3 0 4 (r = 

0.7272, n=13, p< 0.0049).

5.4.-CONCLUSIONS

In conclusion, the developed method can be used for the determination of As(III) and

As(V), Se(IV) and Se(VI) and Cr(VI) in waters, sediments, fish muscle tissue and mussel.

The reducing conditions of the lake sediments could be the cause of the reduction of As, Se

and Cr and the fact that they mainly occur as reduced species in the Lake. The method was

not suitable for the determination the Cr(III) species.
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ChapterVl: Chemical speciation o f mercury and selenium in water, sediment, fish muscle tissue and
mussel from Lake Maracaibo, Venezuela

6.1.- INTRODUCTION

6.1.1.-Mercury

Mercury is considered a nonessential but highly toxic element for living organisms. 

Even at low concentrations, mercury and its compounds present potential hazards due 

to bioconcentration in the food chain. Poisoning by methylmercury compounds 

presents a bizarre neurological picture as observed in large scale out-breaks in Japan 

and Iraq. Damage is chiefly in the cerebellum and sensory pathways with lesions in the 

cerebral cortex of man (1).

The high toxicity of mercury (II) compounds has long been known . This high toxicity 

can be explained for the profound capacity of the soft acid (acceptor) such as CH3Hg+ 

to bind soft ligands such as -SH groups of proteins (2). The conversion of inorganic 

mercury to the more toxic monomethyl and dimethyl mercury was first detected in 

aquarium sediments. It was discovered that microorganisms are capable of this 

transformation (3). Thus a pathway was uncovered by which mercury could enter the 

biological food chain. Monomethylmercury, being a toxic compound, is not tightly 

bound to sediments is somewhat water-soluble and volatile, and it is rapidly assimilated 

by living organisms and then retained (4).

A typical biological food chain for mercury is shown Figure 6.1(4). Decay of organic 

material in the aquatic environment enriched by disposal of sewage and industrial 

effluents together with detritus formed by natural weathering processes, provides a rich 

source of nutrients in both the bottom sediments and the overlying water body. 

Microorganisms and the microflora are capable of incorporating and accumulating

170



ChapterVl: Chemical speciation o f mercury and selenium in water, sediment, fish muscle tissue and
mussel from Lake Maracaibo, Venezuela

metal species into their living cells from these sources. Subsequently, small fish 

become enriched with the accumulated substances. Predatory fish, generally display 

higher levels than their prey. Eventually man, consuming fish, inevitably suffers from 

the results of bioaccumulation having taken place at each tropic level i.e., where less is 

excreted than ingested.

With regard to the element mercury, it is generally accepted that large predatory 

species such as swordfish and tuna usually have higher levels o f mercury in their tissue 

than lower species in the food chain (4) . A study revealed that the position of the fish

Zooplanktoi

Sediment

Suspended

Aquatic predatory
y< ■ '• •;

Descomposers

Figure 6.1: Food chain model for mercury (4).

in the food chain appears to be an important factor in determining its mercury content, 

the 51% of fish species whose diet predominantly consists of other fish, had mercury 

concentrations in excess of 0.5 mgKg"1. In contrast, only 24% of invertebrate predators 

and 7% of individuals of herbivorous habits had mercury concentrations in excess o f
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0.5mgKg->.

The largest single source of mercury pollution results from the Hg-electrode process in 

the chlor-alkali industry; mercury based fungicides formerly contributed extensively 

toward mercury in the environment (5).

The mercury ion can be converted into methylmercury species by algae (6), humic 

substances (7) etc via methylation of mercury derivatives by bacteria (8,9,10). It 

should be stressed that most cases of human poisoning by organometallic compounds 

have involved the ingestion of methylmercury compounds. This organometallic species 

is neurotoxic, causes blockage of enzymes binding sites, interferes in protein synthesis, 

impedes thymidine incorporation into DNA, etc (11) . Reports of such cases have come 

from many areas of the world, but those from Asia have been most numerous. 

Particularly disastrous were the widespread methylmercury poisoning cases of 

Minamata Bay, Japan from which the name of <cMinamata Desease” was derived to 

describe methylmercury poisoning (12).

The high affinity of methylmercury to sulphydryl groups and the lipids of animals 

would explain its accumulation in living organisms, particularly in lipid tissue of 

mammals. It appears that sulphide groups in the sediment have influences on the 

binding and final preconcentration of mercury species in sediments (13)

The rate and the extent of methylation of Hg(II) in waters and sediments depend upon 

factors such as: precise nature of the inorganic mercury precursor, e.g., mercury acetate 

is easier to methylate than mercury chloride, the methylating agent (14), the chemical 

composition of the sediment, its oxygen concentration and the pH (15).

Several interconversions are possible which are catalysed or at least promoted by 

microorganisms (16). Three characteristic steps are described in the Figure 5.2. in
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biological cycle of mercury (17).

(a) Mercury sulphide transformations: (1) precipitation from Hg and S " ions 

(2) Take over of sulphide ions from other sulphides like FeS and

(3interaction with the equilibria of organomercurials

(b) Hg2+-Hg° Transformations. Reduction o f dissolved Hg2t to Hg° by enzymatic

reactions.

(c) Organomercurial transformations

M  Hi W  B m  —

Figure 6.2 : Biological cycles o f mercury in the environment (17)

Recent reports have estimated a total mercury concentration in natural waters, ranging 

from 0.2 to 100 ng LT1, while methylmercury levels were much more lower, around 

0.05 ng L '1 (18- 20). However, higher levels can be found in water from heavily 

industrialised areas (21-22). The upper limit for total mercury concentration in drinking
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water recommended by the EU is 1 jig L"1. Inorganic mercury and methyl mercury can 

be preconcentrated in sediments and they are found at relatively high levels in fish (23- 

25). The concentration of Hg in lakes and rivers can vary from a few ng L-1to 1000 ng 

L-1 for waters exposed to sewage effluents, industrial contamination or Hg deposits (1). 

Klein (26) suggested that an average concentration of 55 ng L"1 was a reasonable 

estimate for a natural Hg background in the rivers and lakes of the USA.

Sediment cores from lakes, which have been investigated with respect to an assessment 

of historical changes in the pollution intensities, mostly exhibit a characteristic increase 

of the mercury concentrations during the last few centuries even if there is no 

significant variation of other metals (except in many cases of lead) (27). Industrial and 

mining activities were sources of contamination which can affect the enrichment of 

mercury in most aquatic sediments (27). Sediments from lakes in Southern Sweden 

were examined for mercury pollution from pulp and paper mills and from chlor-alkali 

plants; the smaller lake (Lake Bjorken) presented a maximum of mercury of 11 

mg.Kg'1 Hg in the surface sediment (1). Colina and Romero (28) studied the total 

mercury concentration in muscle and organs of fish (Curvina), shrimp and mussels 

from Lake Maracaibo where a chlor-alkali plant was located; they reported 

concentrations that ranged between 0.06 to 1.5 mg.Kg-1 of total mercury.

The mercury problem in the North American Great Lakes has aroused public concern 

because fish in Lake Eric had mercury concentrations of 5 mg Kg-1 ie. ten times the 

current permissible level laid down by the U.S. Food and Drug Administration Act. In 

the bottom sediment, the highest value was 86 mg Kg-1 ; significantly, a chlor-alkali 

plant was located near to the area(l).
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Dredging processes have been investigated because they can also increase the mercury 

problem, dredging activities dispersing uncovered mercury sediment over large areas, 

resulting in an increase in the mercury content over a period of time in the flora and 

fauna of the water course (27,29).

The physico-chemical state of mercury in water systems is rather complicated, as 

mercury can form a wide variety of species. The reported partitioning of total Hg 

between the dissolved and particulate fractions indicates that between 10 to 90 % of 

the Hg may be associated with particulates (5). Mercury can exist in three stable 

oxidation states, ie. 0 (elemental), +1 (mercurous) and +2 (mercuric); bivalent mercury 

has ability to form complexes with many chemical species in solution, commonly 

referred to as complexing ligands. Complexation of mercury by both inorganic and 

organic ligands plays an important role in the migration and behaviour of mercury 

forms in natural waters. In addition to the complexes, bivalent mercury forms an 

important group of organomercury compounds, where one or two alkyl groups (R or 

R’) are directly linked via their carbon atoms to the mercury atom: R-Hg-X or R-Hg-R’ 

(X is an inorganic ligand)(5).

Hem (30) calculated the soluble inorganic mercury forms in typical fresh waters using 

chemical equilibrium constants and standard redox potentials published in the 

literature. This results showed in the form of a Eh-pH diagram how the chemical form 

of mercury in solution was strongly affected by the redox conditions in the system, 

characterized by its redox potential Eh, and the pH. The redox potential in natural 

waters is determined mainly by the concentration of dissolved oxygen and by the 

organic matter content. In well-aerated, oxygen-containing waters (Eh~0.5 V), the 

predominant mercury species will be the form of inorganic soluble mercury. On the
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other hand, elemental mercury is formed under mildly reducing conditions, unless 

enough sulphide is present to stabilize hydrosulphide or sulphide complexes of bivalent 

mercury. A significant abundance of the sulphidic complexes can be expected in 

sulphide marine waters (8) in the interstitial water of bottom sediments, or in certain 

types of waste waters.

As mentioned before, the alkyl-mercury compounds representing the most toxic forms 

of mercury can be divided into two types: those which in the mercury atom is linked to 

one alkyl group and those in whist the mercury it is attached to two alkyl groups. The 

first type is rather soluble in water where it is attached to give R-Hg+ cation and an X* 

anion. The second type of organo-mercurial compound, such as dimethyl-mercury and 

diphenyl-mercury, are volatile, non-polar and very poorly soluble in water. Thus it is 

improbable that dimethyl-mercury would represent a significant part of the mercury 

dissolved in water (18). The occurrence of organo-mercurials in some Canadian lakes 

was studied by Chau et al (31); methyl mercury was detected in three lakes with a 

concentration between 0.5 and 1.7 ng.L'1 . No dimethyl or diphenyl-mercury was 

found.

An inverse relationship has been observed between dissolved sulphide concentration 

and the production of methylmercury (MeHg+) in sediments from aquatic ecosystems 

(32-34). However, Benoit and co-workers (35) have recently hypothesised that uptake 

of inorganic Hg by methylating bacteria is diffusive and that the observed sulphide 

inhibition arises from a decreasing fraction of neutral Hg complexes with increasing 

sulphide concentration . Also, it has been shown that at least some neutral complexes 

such as HgCl2, are lipid soluble and that their uptake by phytoplankton occurs by 

passive diffusion (36). In contrast, the transport across the blood-brain barrier by
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methylmercury appears to involve one of the amino acid transport systems (37). 

Complexation of Hg may affect its availability to the bacteria that produce 

methylmercury (MeHg). Sulphate-reducing bacteria (SBR) mediate methylation of 

inorganic Hg in aquatic sediments (8), and these organisms produce sulphide as a 

byproduct of their metabolic activity. Methylation of Hg occurs inside SBR via 

enzyme-mediated transfer of methyl group from vitamin B12 (38), but the Hg uptake 

mechanism in SBR is unknown. The presence of sulphate both stimulates MeHg+ 

production and enhances the activity of SBR in sediments (39), except under conditions 

where sulphide accumulation limits MeHg production (40). Sulphide inhibition has 

been ascribed to the removal of Hg from solution via enhanced precipitation of HgS(s)

(41) or to the formation of volatile dimethylmercury from reaction of MeHg+with H2 S

(42). Recent studies by Tossels (43) concluded that the species HgS is unstable in the 

presence of H2O, reacting to form HgS-(H20) which subsequently isomerizes to 

Hg(SH)(OH). This is more stable than HgS(H20) at all levels of theory, in both gas 

phase and solution. When the SH' concentration increases, [Hg(SH)2(OH)]1' 

predominates. This anion has a large hydration energy, and is thus confined to aqueous 

solution.

6.1.2.- Mercury species determination

The determination of the two main environmentally relevant species of mercury, Hg(II) 

and CH3Hg+ in aqueous solutions is relatively straightforward but is more involved 

when they are present in solid samples (44). It is essential that the integrity of the 

mercury species is maintained during the sample pre-treatment and analysis. Sample 

preparation includes homogenisation, extraction and pre-concentration before the

177



ChapterVl: Chemical speciation o f mercury and selenium in water, sediment, fish muscle tissue and
mussel from Lake Maracaibo, Venezuela

chemical species are separated and determined.

Cryogenic trapping (45), column chromatography (46), non-chromatographic column

(47) and electrochemical methods (48) can be used as pre-concentration techniques. On 

the other hand, GC (49), HPLC (50-51) and non-chromatograpic (5) methods are 

normally included during the separation of mercury species. In HPLC-ICP-MS methods 

the column- atomiser interface is simple, via direct connection with a teflon tube, (52- 

55). Plasmas, both at atmospheric and reduced pressure (56) offer great analytical 

potential as detectors. Some of them, particularly ICP-MS, have many of the main 

desirable features for a detector in hybrid chromatographic techniques. Other methods 

for mercury species detection include AFS (57) and electrochemical techniques (58).

6.1.3.- Selenium

Selenium (Se) has a complicated redox chemistry, closely related to that of S, and 

biologically, is both an essential and a toxic element (59).

The aquatic chemistry of selenium is also complicated since it can exist in four 

different oxidation states and as a variety of inorganic and organic compounds. These 

are described in Chapter V.

Several techniques have been developed that allow selective detection of different 

species of Se at very low levels. HPLC-ICP-MS (60-61) or HPLC-ICP-AES (62-63), 

hydride generation techniques (64) coupled atomic absorption techniques and ICP-MS, 

fluorimetric methods (65), GC-AED (66) and neutron activation analysis (67) have been 

used for Se speciation, but in most of the cases, only selenite and selenate have been 

determined.
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Seleno-aminoacids have been determined using GC with element specific atomic 

emission detection (AED)(68). More recently, Goessler et al (69) have described a 

method which determined the distribution of eight selenium species by chromatographic 

separation and inductively coupled plasma-mass spectrometry detection. Another 

method for chiral speciation and determination of selenomethionine enantiomers in 

yeast was developed by Sanz-Medel et al (70) using HPLC with methanol-water as 

mobile phase and ICP-MS as detection. Gonzalez-La Fuente et al developed a method 

for the determination of selenite, selenate, selenomethionine and selenoethionine in 

urine using an on-line reversed -phased high performace liquid chromatography sstem 

with microwave digestion-hydride generation atomic detection (71). The retention time 

obtained for those species varied between 3-9.0 min and the method is complicated to 

use. Ion -chromatography coupled with ETAAS (72) has been used to determine 

inorganic and organic selenium compounds with the disadvantage that it involves 

matrix modifiers because of the differences of thermal stability of the selenium species. 

HPLC-ICP-MS, with an anion exchange column, has been used for the determination of 

selenocystine, selenomethionine, selenite and selenate in fish (73).

This investigation describes a simultaneous method for the separation and 

determination of the inorganic mercury and methyl mercury, and selenocystine and 

selenomethionine using HPLC with a reversed phase column and ICP-MS detection. 

The method was used for the environmental evaluation of mercury and selenium in 

Lake Maracaibo. Samples of water, sediment, mussel and fish muscle tissue were 

analysed using this methodology. Mercury species in sediment were correlated with the 

physicochemical parameters and the availability of nutrients, e.g. nitrogen, phosphorus 

and sulphur, the total content of which was determined during sampling .
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6.2.- MATERIAL AND METHODS

6.2.1. Simultaneous determination of Hg and Se

6.2.1.1.-Reagents

The inorganic mercury solution was prepared from a stock solution of 1000 mg Hg L'1 

ICP Aristar standard in 2% HNO3, supplied by Merck (Poole, Dorset, UK), and a stock 

solution of 1000 mg L'1 of the methyl mercury chloride from Reidel-de-Haen (Seelze, 

Germany) was made by dissolving 0.125 g in 10 ml of 10 %v/v HNO3 . Seleno(dl)- 

cystine (99 %w/w) and seleno(dl)-methionine (99 %w/w) were purchased from Sigma 

(Poole, UK) and Fluka (Poole, UK) respectively.

Toluene, hydrochloric acid, L-cysteine, hydrogen peroxide and nitric acid used during 

the extraction-digestion methods were supplied by Merck.

For the mobile phase, ethylenediaminotetraacetic acid (EDTA) from Fluka, HPLC grade 

methanol (99.9%) and 2-mercaptoethanol (Analar grade) from Merck and ammonium 

acetate from Aldrich (Milwuakee, USA) were used.

Reference Materials

Polluted Marine Sediment IAEA 356 Reference Material and Estuarine Sediment LGC 

6137 was used to validate the total mercury content and the methylmercury 

concentration in sediments.

6.2.1.2.- Procedure 

Instruments

180



ChapterVl: Chemical speciation o f mercury and selenium in water, sediment, fish muscle tissue and
mussel from Lake Maracaibo, Venezuela

The HPLC system (isocratic conditions) for these studies was a DIONEX GPM 2 

(Dionex Corporation, Sunnyvale, California, USA) gradient pump equipped with a 

Rheodyne Model 7125 injection valve with a 50 p.L sample loop and a C18 reversed 

phase column (150mmx 3.9 mm, 4 pm) which was comprised of

dimethyloctadecylsilyl bonded amorphous silica (Waters HPLC column Milford, MA, 

USA) , 10 psi of Helium pressure, flow rate of 1.0 mL.min'1'.

For the determination of mercury, the most abundant 202Hg isotope was used. An ICP- 

MS Hewlett Packard 4500 was used as detector.

The mobile phase was connected directly into the nebulizer without the need to use 

ICP-MS pumps.

The method is modified from that previously reported (74) for inorganic mercury and 

methyl mercury, Table 2 shows the LC conditions standardised during the study.

The water samples were filtered with a 0.2 pm Millipore filter before the injection in the 

HPLC system for the determination of the mercury species.
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Table 6.1: ICP-MS conditions used during this study

Conditions For Hg speciation

Rf Power/W 1200

Torch Fassel torch

Spray chamber Cyclonic

Nebulizer Babington

Coolant gas flow 10 Lmm1

Sample introduction HPLC gradient pump

Carrier gas flow rate 

(L.min1)

1.25

Sample Depth/mm 6.0

Pump speed/rps 0.30

Acquisition/seconds 2 using time 

Resolved Analysis

The lyophilised samples of sediment, mussel (Polymesoda solida) and fish muscle 

tissue of curvina (Cysnocion acoupa Maracaiboencis) were extracted using two 

different methods:

(1) Cold digestion procedure(74): 1.5-2.0 g of freeze dried sample mixed with 2 

mL of concentrated HNO3 and 1 mL of H2O2 , left to stand for 24 h at room 

temperature and finally diluted to 15 mL solution. The solution pH was about

1.0 .

(2) Digestion-extraction method : 1.5-5 g o f freeze dried sample was mixed with 

10 ml o f water, 5 mL of HC1 and 20 mL of toluene in a 100 mL conical flask 

and shaken for 10 min, the mixture was then centrifuged at 3000 rpm for 5 min.
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12 mL of the extracted organic phase was mixed with 3 mL of L-cysteine and 

shaken for 2 min. The mixture was then centrifuged for 5 min and 2 mL of the 

aqueous phase was taken for the mercury species determination, final was about 

pH=4.

After the extraction or digestion, the samples were adjusted to pH= 6.5 with NaOH 1 

%.

The final HPLC conditions used were the following:

Mobile phase: 0.06 M ammonium acetate, 3 % methanol, 0.1 % 2-mercaptoethanol,

2 mM EDTA, pH= 6.5 

Column: Cig (Reverse Phase)

The mercury and selenium total content method of determination is described in 

Chapter IV.

The total nitrogen, phosphorus and sulphur content were determined by a previous 

method reported using microwave digestion and ion chromatography detection (75).

6.3.- RESULTS AND DISCUSSION

6.3.1.- Analytical results

The Table 6.2. shows the optimal chromatographic conditions and mobile phase used to 

determine inorganic mercury and methylmercury, and selenocystine and 

selenomethionine were suitable to determine with the method.
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Table 6.2. : LC conditions used during this study

Liquid Chromatography Column Mobile phase

Reverse phase Clg 0.06 M ammonium acetate, 

5 %  methanol, 0.1%  

2-mercaptoethanol, 

pH=6.5

Reverse phase Cl8 0.045 M ammonium acetate, 

2.5 %  methanol, 0.1 %  

0.075-mercaptoethanol, 

pH=6.5

Reverse phase Cl8 0.06 M ammonium acetate, 

3 %  methanol, 0.1 % 

2-mercaptoethanol,

2 mM EDTA 

pH=6.5

The Figure 6.3. shows the separation of a 40 pg L '1 solution of inorganic mercury and

40 pg L '1 methyl mercury with the third mobile phase used. A good separation o f the 

mercury species is shown in the figure. Figure 6.4. shows the separation of a solution 

o f 100 pg L’1 o f selenocystine and 100 pg L '1 of selenomethionine simultaneously with

the mercury species determination.

Calibration Curves:

CH3Hg+ retention time: 480 sec y= 331.2X + 669.1

r2 = 0.99933 detection limit: 2.4 pg L '1

Hg2+ retention time: 680 sec y = 129.7 X + 1127.2

r2 = 0.99829 detection lim it: 4.3 pg L '1

SeCys retention time: 50 sec y = 163.3 X + 1012.9

r2 = 0.99997 detection lim it: 3.0 pg L '1

SeMe
r2 =0.. 99999

retention time: 100 sec y= 194.4 X + 1454.7
detection limit: 6.8 pg L '1
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Figure 6.3: Chromatogram o f a solution o f 40 jug.L'1 o f methyl mercury and 40 jug.L'1 
o f inorganic mercury using the proposed method by HPLC-ICP-MS.
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Figure 6.4.: Chromatogram o f a solution with 100 pg.L'1 o f selenocystine and JOOpg.L 
1 o f selenomethionine
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The methodologies were checked for methyl mercury, mercury total content and 

selenium total content in sediment using a Reference Material IAEA 356 and LGC 

6137. Table 6.3 and 6.4 shown the results:

Table 6.3: Comparison o f the results obtained with the reference material IAEA-356

Metal Found (pg.g *) Certifiedftig^1)**

Hg (total content) 7.4 +0.7 7.62 [6.74-7.98]

Se (total content)* 0.54 ±0.02 0.76 [0.40-1.58]

MeHg (Methylmercury) 

(Hg.Kg1)

5.5 ±0.7 5.46 [5.07- 5.84]

information value 

**Median

Table 6.4: Comparison o f the results obtained with reference material Estuarine
Sediment LGC 6137.

Metal Found Certified

Hg 0.38 ±0.05 0.34±0.05

6.3.2.. M ercury environmental results

6.3.2.1. Mercury in waters:

In the waters, it is interesting to note that levels o f methyl mercury are usually lower 

than those of inorganic mercury. This is due to the difficulty o f methylation reactions in 

aqueous phases, and to the easy decomposition by solar UV light (17-18 ) of organo - 

mercury compounds . The results obtained during the sampling of Lake Maracaibo 

show a range between 1.1 to 7.8 pg L '1 for total mercury concentration in waters,
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which are under the detection limit of the developed determination method for mercury 

species but higher than the EC, WHO(World Health Organisation) and TVO-D 

(German drinking water standards) drinking water recommended limit (1 pg L_I)(76).

6.3.2.2 Mercury in sediments:

In sediments and biota, the levels of methyl mercury normally are higher than in the 

waters because of accumulative phenomena (17); inorganic mercury and methyl 

mercury is pre-concentrated in sediments. The Figure 6.5 shows the chromatogram of 

the mercury species from a sediment sample from the centre of Lake Maracaibo.

202 : Hg

1000

a  500

100 200 300 400 500 600 700 800 900 1000 11000

Retention Time (s)

Figure 6.5: Chromatogram o f a sediment sample from the centre o f Lake Maracaibo 
(U'.unidentified)

There are three systems in Lake Maracaibo that are clearly different, as the sequential
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extraction results showed in Chapter IV. The behaviour of the mercury species in the 

Gulf (PR- SC points) zone corresponds to a mixture of the two species methyl mercury 

[18.6 -  39.7 pg Kg'1 ]and inorganic mercury [50.2 -  79.2 pg.Kg'1]; in this zone, the pH 

is high, salinity and sulphur concentrations are low, and the dissolved oxygen 

concentration and redox potential are high. In the Strait of Maracaibo, only inorganic 

mercury was found [ 30.4 -  85.5 pg.Kg'1]; this zone is near to a petrochemical complex 

which had a chlor-alkali plant and coal from an open mine is transported through the 

lake.

The multivariant analysis correlations between Hg2+, total mercury and MeHg+ and the 

nutrients N, P and S, showed no correlations. However, in the main zone of the lake 

there is a cone in the centre which has zero oxygen content and high salinity in the 

bottom, Figures 6.6 and Figure 6.7 show the variation of the methylmercury 

concentration with the physicochemical parameters and total sulphur concentration; the 

zone with a high concentration of methylmercury corresponds to a zone with very low 

concentration of dissolved oxygen, lower pH, negative redox potential, high salinity 

and high concentration of sulphur (under reduced conditions). Sites with high 

concentrations of total sulphur but high dissolved oxygen, or low dissolved oxygen and 

low total sulphur concentration, have low methyl mercury concentrations.

Multivariable analysis correlations of the mercury species and the physicochemical 

parameters showed correlations between MeHg+ and salinity (r= 0.885, n=13, 

p<0.0286) and Hg 2+ and dissolved oxygen concentrations (r=0.6601, n=13, p <0.0141), 

taking into account all the zones in the lake.
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Figure 6.6.: Variation of the concentration o f methylmercury (jug. K g1), total sulphur 
concentration, and dissolved oxygen concentration.
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Figure 6.7: Variation of the methyl mercury (pg.Kg1) concentration, pH, and salinity at 
the surface sediments from the centre o f the Lake Maracaibo.
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The behaviour of MeHg+ and sulphur can be explained in terms of coordination

I *

chemistry. Binding constants for inorganic ligands show that MeHg , like Hg , is a 

B class acceptor (19,77). Methylmercury forms extremely stable complexes with 

anionic sulphur ligands. Furthermore, sulphide is known to occur in anoxic 

environments where the rate of oxygen removal is close to or exceeds its rate of supply; 

in such environments the residual oxygen is present at low or non-detectable levels. At 

these levels, sulphate is used by anaerobic bacteria as an electron acceptor, leading to 

the reduction of sulphate to sulphide. These environments are highly dynamic regions 

and remarkable variations in the dissolved concentration of metals have been found at 

the oxic-anoxic boundary in anoxic lakes (78).

The results from Lake Maracaibo showed that the methylmercury concentrations can 

increase with increasing sulphur concentrations under certain conditions. On the other 

hand, the correlation between methylmercury and salinity could be a signal of that, 

because in Lake Maracaibo the salinity increases with the depth, the maximum in 

salinity corresponds to the centre of the Lake. There is also high concentration of 

sulphur from sulphate intrusions from the Caribbean Sea.

6.3.2.3 Mercury total content

The sediments from Lake Maracaibo reveal a total mercury concentration in the range 

of 126.3 to 277.5 pg. Kg'1. These concentrations are low when compared with Lake 

Bjorken (Sweeden) which has 11 mg Hg .Kg'1 (1). However, the EC threshold values 

of total mercury concentration in soil are 1-1.5 mg.Kg'1 and 0.3-10 in NL (Dutch 

standards). The general conditions of Lake Maracaibo as a eutrophic lake do not 

favour the methylation process. Eutrophic lakes have a high productivity and thus a
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large biomass in which methyl mercury will be diluted. The pH in eutrophic lakes is 

usually high, which favours the formation of the volatile dimethyl-mercury which may 

escape from the system (5). The high productivity in eutrophic lakes gives rise to large 

amounts of complexing agents and also to high sedimentation rates. In addition Lake 

Maracaibo is a tropical lake which has high rate of productivity because of its 

temperature (79). However, the Lake Maracaibo is continuously dredged to maintain a 

shipping channel, and these dredging activities will disperse uncovered mercury 

sediment over large areas and are likely to result in an increase in the mercury content 

in the flora and fauna over a period of time.

6.3.2.4. Mercury in fish and mussel

The high affinity of methyl mercury for sulphydryl groups and animal lipids would 

explain its accumulation in living organisms, particularly in lipid tissue of mammals. 

Figures 6.8 and 6.9 show the chromatograms from a fish muscle tissue (Cysnoscion 

Maracaiboensis) and mussels (Polymesoda solida) from Lake Maracaibo, determined 

with the proposed method. In the muscle tissue of fish, only methylmercury was found 

(25.1 pg.Kg'1). Previous investigations by Westoo (80) found that mercury in fish is 

mainly in the form of methylmercury, as is also the case for other types of aquatic 

organisms. The value found in Lake Maracaibo is low compared with data from Lake 

Mississipi (USA), where the concentration ranged from 0.634 mg Hg Kg'1 to 1.89 mg 

Hg Kg'1 (81).
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Figure 6.8: Chromatogram o f a sample o f fish  muscle tissue (Curvina, Cysnoscion 
Maracaihoencis) from Lake Maracaibo using the proposed method fo r the 
determination o f mercury species.

The mussel samples (Polymesoda solida) showed both species, methylmercury (mean: 

101 pg.Kg'1) and inorganic mercury (mean: 73.4 pg.Kg'1). The mean of the total 

mercury concentration in this sample was 178.0 pg.Kg'1. The total value is similar to 

the values found in estuaries (82) and in oysters from Cartagena Bay(Colombia) where 

a chlor-alkali plant is located (83).
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Figure 6.9: Chromatogram o f a sample o f mussel (Polymesoda solida) from Lake 
Maracaibo.

6 ,3 .3 Principal components analysis

The purpose of the analysis is to obtain a small number of linear combinations of the 10 

variables which account for most of the variability in the data (84). In this case, 4 

components have been extracted, since 1888 components had eigenvalues greater than 

or equal to 1.0. Together they account for 88.9% of the variability in the original data. 

The variables taken in to account are : Nitrogen, phosphorus, sulphur, methylmercury, 

inorganic mercury, total mercury, depth, dissolved oxygen, pH and salinity, at 13 

sampling points.
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Figure 6.10: Curve o f the eigenvalues and the component which shows the four 
principal components o f the experiment

Figure 6.10 and the Table 6.6 shows that there are four components that control 88.9 % 

of the variability of the data. The parameters that affect most of these components are 

methylmercury, total mercury, salinity, sulphur, depth and nitrogen (Figure 6.11). Table 

6.7 shows the coefficients that could be taken to make equations with these variables.

For example, the first principal component has the equation

0.316*N(|imol/g) -  0.094*P(jimol/g) + 0.299* S(fimol/g) + 0,228*CH3Hg(pg/Kg) -  

0.301 *Hg(fjg/Kg) + 0.043*Total Hg + 0.386*Depth(m) -  0.455*DO (mg/L)- 0.444*pH 

+ 0.348*Salinity(mg/L)= first principal component

where the values of the variables in the equation are standardized by subtracting their 

means and dividing by their standard deviations.
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Table 6.6: Percentage o f variability o f each component o f the analysis and the 
eigenvalues

Principal Components Analysis

Component Percent of Cumulative
Number Eigenvalue Variance Percentage

1 4.543 45.4 45.4
2 1.838 18.4 63.8
3 1.449 14.5 78.3
4 1.058 10.6 88.9
5 0.526 5.3 94.2
6 0.303 3.0 97.2
7 0,215 2.2 99.3
8 0.052 0.5 99.8
9 0.014 0.1 99.9
10 0.004 0.1 100.0

Table 6.7: This table shows the coeficients fo r the equations o f the principal 
components.

Table of Component Weights

Component Component Component Component
1 2 3 4

N 0.316 -0.064 0.153 -0.596
P -0.094 -0.248 0.662 0.324
S 0.269 -0.353 -0.414 0.192

MeHg 0.228 0.520 -0.016 -0.051
Hg2+ -0.301 -0.033 -0.564 -0.175
Total Hg 0.043 0.563 -0.119 0.559
Depth 0.386 -0.301 -0.106 0.262
DO -0.455 -0.010 -0.012 -0.001
pH -0.444 0.145 0.094 -0.187
Salinity 0.348 0.323 0.120 -0.235
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Figure 6.11: Plot o f the component weightings o f the parameters for the principal 
components 1 and 2 that produce more variabilty o f the data.

Figure 6.11 shows the parameters that have more influence of the variability of the 

data. The relatively high eigen values for the components 1 and 2 of the principal 

component analysis showed that salinity, methylmercury and total mercury were 

affecting all of the results in the Lake Maracaibo system for this experiment, this can be 

explained because Lake Maracaibo system is formed from an estuary, a strait and the 

lake. In these three ecosystems salinity variations can affect the distribution of methyl 

mercury and inorganic mercury. Also, the depth and the sulphur concentration in 

general can contribute to the variation of data for he component 1, but are affecting 

negatively the component 2 values. These results can be explained because 

methylmercury increases with the sulphur concentration under certain conditions that
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are affected by the dissolved oxygen concentration and the pH.

6.3.4. Selenium results

J. Marchante et al (59) developed a method for the determination of selenium species 

using ion pair chromatography-HPLC-ICP-MS, having similar retention times for 

selenomethionine and selenocystine to the method described in this thesis. In the 

samples taken in Lake Maracaibo, these species were not found in water and sediment, 

but this is not surprising because, as it is reported in the results of Chapter V the 

dominant species of Se in water and sediments was selenite. Only in fish muscle tissue 

were the two species selenomethionine (S.Spg.Kg'1) and selenocystine (24.0 pg.Kg'1) 

found as shown the Figure 6.12.

82 : Se

1000

SeCys SeMe

-4->e3o
Ci

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Retention Time (s)

Figure 6.12: Chromatogram o f a sample o f fish muscle tissue with the two species of 
Selenium selenocystine (24.0 pg.Kg'1) and selenomethionine (S.Spg.Kg1)

There is no information about organoselenium compounds in fish or mussel. The total
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selenium concentrations reported for fish and bivalves ranged between 0.05 to 3.9jugg'1 

in contaminated zones of India (85), which are higher than those reported for Lake 

Maracaibo.

6.4.- CONCLUSIONS

In conclusion, the proposed method for the determination of mercury species is useful 

in the analysis of environmental samples such as sediment, fish and mussels. The results 

from Lake Maracaibo show accumulation of the methylmercury species in sediment and 

biological materials. There is evidence of some methylation of the inorganic mercury in 

the centre of the Lake. Certain sulphur species appear to influence the methylation of 

mercury in sediments and it is desirable that further investigations into these effects are 

carried out.
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7.1.- INTRODUCTION

7.1.1.- Vanadium

Environmental pollution caused by vanadium is almost entirely due to industrial activities 

such as the production of steel, pigments, photographic materials and insecticides. 

Vanadium is released on oil combustion. (1) The toxicity of its species is well documented

(2). Vanadium in trace amounts is beneficial to normal cell growth, being one of the so- 

called essential elements. However, toxicity arises when vanadium concentrations are 

increased to a higher level. The Vv oxidation state ion is more toxic than V IV ion (3). 

Vanadium is absorbed from a variety of foods with a relatively low efficiency but in 

sufficient quantities to be absorbed at detectable levels in many body tissues (4).

The chemistry of vanadium is complex because this element can exist in oxidation states 

from -1 to +5 and frequently forms polymers (5). V IV and Vv form many complexes in 

water that change in accordance with the solution pH, and their concentrations. It is known 

that in the pH range 2-6 the main species of Vv is the orange decavanadate anion V10O296’, 

which can exist in several protonated forms, and which changes to the dioxovanadium (v) 

anion VC>2+ below pH 2 (6). In contrast, V IV exits as the blue oxovanadium(iv) in acidic 

solution and this cation readily changes to the anion V10O4 212' at about pH 4 (6).

The concentration of vanadium is natural waters is very low and usually in the range 0.5- 

2.5 pg L'1 (6,7). The vanadium concentrations found in sediments from near the shores of 

Kuwait varied from 24.8 to 179.4 pg g'1 with an average concentration of 108.3 ± 34 pg g'1

(8). Vanadium and nickel porphyrins dominate those porphyrins found in the petroleum 

and bitumen extracted from shales (9). Frequently, V is found in largest concentration in
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crude oil, for example, values presented for some Venezuelan crude oils (1) as well as 

Middle East crude oils (10) have a predominance of V and Ni content. Vanadium 

concentrations can be as high as 2,000 pg.g'1 (11). It is expected that, upon extraction of the 

crude oil and accidental deposition on surface sediments, bacterial decomposition, 

dissolution and oxidation of most of the organic components and remineralization of the 

organic matrix, trace elements such as vanadium can be incorporated in the sediment load, 

increasing the background levels of metal content of the local sediment (11).

The redox chemistry of vanadium leads to a decrease in the solubility of this element on 

going from an oxic a reducing environment (12). Thus, the fluvial dissolved vanadium, 

concentrations might be an indicator of inputs from reducing sources within a river 

drainage (12). Furthermore, various workers have examined vanadium in oceanic sediments 

and sedimentary components as a possible indicator of the redox history of specific ocean 

areas as well as of the ocean as a whole (13). However, explaining oceanic changes in 

dissolved vanadium may also require an understanding of the processes affecting the 

majority of oceanic sources of this element (i.e., rivers). Crude oil is enriched in vanadium 

relative to many other trace elements with concentrations occasionally exceeding 1000 

pg.g'1 (12). The high vanadium enrichment found in the North Atlantic, but not in 

Antarctica, is probably due to vanadium produced by the burning of heavy fuel oil 

(containing high concentrations of vanadium porphyrin complexes) along the east coast of 

North America (14). This element, like nickel, does not cause high metal levels in airbrone 

particles; however, exceptionally high metal concentrations are found in residues.
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During the extraction of oil, produced water is found in sub-seafloor sedimentary 

formations from which offshore oil and gas are derived (15). This water is piped to the 

surface along with oil and gas during the production process. Then produced water is 

separated from oil and gas on the platform by depressurization and gravity separation 

techniques and either discharged back down the well to increase oil recovery or to adjacent 

surface water. In the Gulf of Mexico (which has 3,000 production platforms, there are 

10,000 production platforms in Lake Maracaibo) discharge to the surface water amounts 

to more than 140 million m3 per year. Sometimes waste water (produced water) is called 

oil brine, which contain total dissolved solid (TSD) at levels as high as 300 g/Kg along 

with elevated concentrations of selected heavy metals and petroleum hydrocarbons(16-17).
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7.1.2.- Vanadium determination

The total content of vanadium has been determined by atomic spectroscopy or 

spectrophotometry (18,19). Some authors have studied vanadium speciation using a flow 

injection system that incorporated a strong anion-exchange resin and was coupled to a 

flame atomic absorption spectrometry (AAS)(20) or UV (21) detector. Hirayama et al (22) 

used a two-column system and inductively coupled plasma atomic emission spectrometry 

to determine V IV and Vv ions. R. Wuilloud et al (23) used an on line vanadium pre

concentration system with a knotted reactor and ultrasonic nebulizer with an inductively 

coupled plasma optical emission spectrometer (ICP-OES) to determine Vv in drinking 

water. Recently the same authors have reported a method for the simultaneous 

determination of Viv and Vv , using a similar flow injection system with an amberlite 

XAD-7 resin to retain the species (24).

Sugiyama et al (5) applied air-segmented continuous-flow analysis based on a catalytic

reaction to determine V Iv; this method has the disadvantage that the analytical peaks

broaden and overlap with each other due to the dispersion of the sample in the mobile phase

in the reaction coil, and the sensitivity decreases. A method using Fe(II) as catalyst was

developed by Safavi et al for the determination of V IV (25). However, these methods still

do not satisfy the requirements for routine analyses because of their complicated process

design. Methods for the determination of the speciation of metal ions using liquid

chromatography (LC) have increased rapidly. Komarova et al (26) have studied the ion

chromatographic behaviour of EDTA complexes of V IV and Vv using aqueous sodium

carbonate as eluent. The simultaneous determination of V IV and Vv as EDTA complexes

has been reported, involving reversed- phase ion pair LC with a conventional UV detector
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(21). Complexation of EDTA with V1V and Vv forms [VOY]2' ( log Kf = 18.8) and 

[VO2Y]3' (log Kf = 15.55) (27) (where Y represents the deprotonated EDTA species), 

respectively. This makes possible separate ion of vanadium species as anionic EDTA, 

complexes by ion chromatography (26). As vanadium species are separated as a EDTA 

complex, the retention of the former depends on the extent of the chelation. The pH is the 

most important factor in the chelation because the condensation of vanadium species occurs 

at pH > 10 and the protonation of Vv chelates occurs at pH < 5 (21). Therefore, the pH 

chelation and the ion elution have to be maintained at pH 6.

7.2.- MATERIAL AND METHODS

7.2.1..- Instruments

The HPLC system for these studies was a DIONEX gradient pump equipped with a 

Rheodyne Model 7125 injection valve with a 50 pL sample loop and a Zorbax HICHROM 

Cg (150 mmx4.6 mm) reversed phase column , 10 psi of Helium pressure, flow rate of 1.2 

mL.mm1 (Figure 7.1).

V has two isotopes, 50 and 51, with 0.25 % and 99.75% abundance respectively. V is over 

95 % ionized in the argon plasma. 51V should be used as isotope for the ICP determination. 

50V is both low abundance and subject to interference from Cr and Ti isotopes. In this study 

51V was used for the determination of vanadium.

An ICP-MS Hewlett Packard 4500 was used as detector. The following Table 7.1. shows 

the conditions for the ICP-MS.
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Table 7.1: Conditions for the ICP-MS

CoaditMms For V speciation

Torch Fassel torch

Spray chamber Cyclonic

Nebulizer Babington

Sample introduction HPLC gradient pump

Solution uptake 1.0 ml. m l1

Rf Power 1200 W

Carrier gas flow rate 1.25 L.min1

Coolant gas flow rate 10 L. min'1

Sample Depth 6.0 mm

Pump speed 0.40 rps

Acquisition 2 sec using time 
Resolved Analysis

7.2.2.- Reagents

Deionized distilled water was used to prepare all solutions. Stock standard solutions 1000 

of mg L '1 VO2 and VO2 were prepared by dissolving 0.42 g o f analytical grade 

VOSO4 .3 H2O (Fluka, Dorset, UK) in 100 mL of water and 0.229 g o f analytical reagent 

NH4VO3 (Fluka, Dorset, UK) in 5 mL of concentrated H2SO4 and dilution to 100 mL with 

water. Fresh working standard solutions of VO2 and VO2 (single and mixed) were 

prepared daily by dilution of the stock solution.

Ethylenediaminotetraacetic acid (EDTA) from Fluka (Dorset, UK) , tetrabutylammonium 

hydroxide (TBAOF1) from Aldrich (Dorset, UK), ammonium acetate (analar grade) and di-
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ammonium orthophosphate (NH^HPC^ from BDH(Poole, Dorset, UK) were used to 

prepare the eluent.

7.2.3.- Procedure

A 25 ml volume of sample solution containing V02+ and/or V02+ was pipetted into a 50 

mL beaker and the pH adjusted with NaOH l%w/v to pH=6.0. After adding excess of 

EDTA (1.5 times equimolar proportions), the solution was kept for 20 min for the reaction 

to go to completion, and then transferred into 25 mL volumetric flask, followed by dilution 

with water. The working standard solutions were prepared from the 10 mg L’1 solution. 

After filtration through a membrane filter (0.2 pm), 50 pL of sample was injected onto the 

column.

The mobile phase was a solution of 0.06 M of ammonium acetate, 10 mM of TBAOH, 

2.5mM EDTA and 10 mM of (NH^HPC^ at pH=6.0.

The eluent composition and the elution conditions were adjusted in order to obtain 

optimum separation of the vanadium complexes.

7.2.4.- Sample preparation

The vanadium species were extracted from 0.2 g of lyophilised sediment, mussel and fish 

muscle tissue samples respectively, using 15 mL of EDTA 2.5 mM with 1 h shaking.
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Column C 18,15 
cm long

Gradient
pump

Figure 7.1: A photograph o f the chromatographic system coupled to the ICP-MS.
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7.3.- RESULTS AND DISCUSSION

7.3.1.- Separation and identification o f the species:

A summary o f the chromatographic systems investigated in the development of the 

vanadium speciation method is given in Table 7.2. In the Na-DDTC solution only one 

vanadium peak was detected, in contrast two species of vanadium were detected using

Table 7.2: Coupling HPLC-systems used during the development o f the methodology.

Liquid Chromatography Column Eluent

Anion exchange 

EDTA complexes

AS-9 anion DIONEX 1.87mM ammonium phosphate- 
1.87 mM di-ammonium 

phosphate

Anion exchange 

NaDDTC complexes

AS-9 anion DIONEX 1.87mM ammonium phosphate- 
1.87 mM di-ammonium 

phosphate

Reverse phase 

EDTA complexes

C-18 Waters (15mmX 4.6mm) 0.06 M ammonium acetate,3% 
methanol, 0.1 % ,2- 

mercaptoethanol 2mM EDTA

Reverse phase 

NaDDTC complexes

C-l 8 Waters (15mmX 4.6mm) 0.06 M ammonium acetate,3% 
methanol, 0.1 % ,2- 

mercaptoethanol, 2mM EDTA

Reverse phase 

EDTA complexes

C-8 (250mmX4.6mm) 0.06 M ammonium acetate, 3% 
ethanol, 0.1 % 2- 

mercaptoethanol, 2mM EDTA

Reverse phase 

EDTA complexes

C-8 (250mmX4.6mm) 0.06M ammonium acetate, 7 mM 
to 70 m M , TBAOH 7mM to 70 

mM di-ammonium phosphate, 2.5 
mMEDTA

Reverse phase-Ion pair 

EDTA complexes

C-8(250mmX4.6mm) 5% to 10 % acetonitrile, 0.05 M 
TBAOH2mM EDTA

Reverse phase-Ion pair 

EDTA complexes

C-8( 150mmX4.6mm) 5 % to 10 % acetonitrile, 0.05 M 
TBAOH, 2mM EDTA

Reverse phase-Ion pair 

EDTA complexes

C-8( 150mmX4.6mm) 0.06 M ammonium acetate, 7mM 
to 70 mM TBAOH, 2.5 mM 

EDTA, 7 to 70 mM di-ammonium 
phosphate

on
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The dissociation o f TBA aids ion-pair formation, which enhances the retention of 

vanadium species. Conversely, the ionisation of EDTA increases the ionic strength of 

the eluent and shortens the retention times of species. At pH values greater than 10, VR 

and Vv , in the form of V 10O4212 and V 10O286’ , respectively, can precipitate out of 

solution. In order to prevent this, the pH of the mobile phase, standards and samples was 

kept at pH 6.

In a reversed phase ion pair chromatographic column, the sorption o f TBAr offers 

dynamic ion-exchage sites. Thus, the retention of [VO2Y]2' and [VOY]3' is directly 

related to the surface charge arising from the adsorbed TBA" (TBAS+) and an adsorption 

equilibrium of TBA is established between the eluent and the stationary phase; Jen et 

al(21) has reported that retention of [ VO2Y] ' only increases at low TBA concentration 

ranges and then decrease after an optimun addition. Figure 7.6 shows that above a 

concentration of 7.5 mM of TBAOH the two species can be separated and the retention 

times of both species increase with the addition of the ion pair solution.
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Figure 7.6: Variation o f the retention times o f the vanadium complexes with the TBAOH 
concentration
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The size of the column was changed from 250mm to 150mm to have a better separation 

and shorter retention times, Table 7.3.

Table 7.3.: Effect o f column length on retention times.

Size (mm) Retention time(sec) Vlv Retention time{sec) Vv

150 308 479

250 930 1501

Because the matrix of the sediment samples are complex, serious tailing occurred in the 

separation using acetonitrile solvent. Ammonium acetate was instead added to decrease 

peak tailing and the flow rate o f the mobile phase was also increased to reduce all 

retention times (Table 7.4)

Table 7.4: Effect o f flow rates on retention times, using a 100 jug L 1 solution o f V- 
EDTA complexes.

Flow rate(inLiniii l) Retention time (sec) V,v Retention time (sec) Vv

0.8 505 813

1.0 393 645

1.1 365 589

1.2 336 547

7.3.2- Calibration curves and detection limits

Calibration graphs were linear in the range of 50 pg L_1and 500 pg L '1 . The equation 

for the two species were the following:

918
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V«v =
y= 6528.9 X +  123484.5 (X= concentration pg L*1)
r= 0.9965 (Y= Peak area (counts, s"1)

DL=59.1 pg L '1

Vv

y= 5475.8 X+ 233247.2

r=0.9986 D L - 113.1 pg L '1

7.3.3- Interferences

EDTA can form complexes with other metals ions and these species could form ion 

pairs in the mobile phase. The following table shows the most common spectral 

interferences for the isotope 51V. V readly suffers interference from Cl O and SOH 

species. Therefore, Cl and S compounds should be avoided in the determination o f V.

Compounds Inteiference (%)

CIO 75.590

BA r 79.780

NCI 24.141

In the case of vanadium 51, a peak of Cl O appeared at the beginning o f the 

chromatogram, but this does not interfere with the peak due to the vanadium-EDTA 

complex. Figure 7.7 shows the EDTA solution peak alone and Figures 7.8a and b the 

peaks following an addition of 10 pL of a solution 1000 mgL'1 o f C f to a sea water 

synthetic sample showing the enhanced CIO peak.

OlO
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Figure 7.7: Chromatogram o f solution o f EDTA 2.5 mM.
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Figure 7.8(a and b) : a) Synthetic water chromatogram b) Chromatogram synthetic 
water plus 10 pL o f solution o f1000 mg L'1 C l

7.3.4.- Distribution of vanadium species in environmental samples

The total content of vanadium in water samples ranged between 9-15 pg L'1. However, 

because these values were under the detection limit of the method of speciation, the
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water samples could not be further investigated. In Figure 7.9 is shown the 

chromatogram from a sample of sediment from Lake Maracaibo. Viv was the 

predominant species in all of the samples investigated ( see Figure 7.9), the distribution 

of VIY and Vv in sediments ranging from 0.4 -25.8 and 0 -  9.2 pg g-1, respectively. The 

total vanadium concentration ranged between 1.7 -  113. 5 pg g'1; these are similar to 

the total vanadium concentration found in Kuwait after the Gulf War [25-119pg g'1 ](8) 

. Vv is the normal predominant species in well-aerated waters (5) but this is not the 

case for Lake Maracaibo, which has levels of oxygen nearly at zero in the centre near 

the source of vanadium pollution. Oil extraction is the probable source of vanadium in 

the lake; the dominance of the VIY species in sediments can be attributed to the presence

of the vanadium-porphyrin complexes in crude petroleum (Figure 7.10).

1.0E6

y  iv

5 .0 E 5 '

C lO -b

50

Retent ion  T im e  ( sec )

Figure 7.9: Chromatogram from a sediment sample.
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Figure 7.10: Distribution o f V 7 species in sediment samples taken from the lake. 

Metalloporphyrins in sediments have been investigated by Deanton et al (9) who has 

shown that vanadium and nickel porphyrin complexes dominate those porphyrins found 

in petroleum. In addittion, vanadyl porphyrin (VO-porphyrin) is the most common 

vanadium porphyrin, especially those from Canada ,Venezuela (28) and Mexico(29) 

crude oils. These porphyrins have been isolated from sediments (30) but their manner 

of formation is still unclear. Marquez et al (31) studied the porphyrin from crude oil 

from Lake Maracaibo and they found vanadyl porphyrins, using three different 

methods of determination. Salcedo et al (32) and Fujii et al (33) have studied the 

structures of the vanadyl porphyrin ; porphyrinate rings present a great affinity for the 

VO group with the unit binding to the N atoms (33); Figure 7.11.

It is expected that a simple complex of porphyrin and vanadium, being so reactive, 

would capture any oxygen atom near it, although the vanadyl group can be formed

'jo')



Chapter vn : L-nemicai speciuuvri uj vunuuium  m  wui&i, otui/»w», j,* ,,
from Lake Maracaibo, Venezuela.

Figure 7.11: Vanadyl specie bonded to porphyrin group.

before any other coordination. More relevant to the study of Fujii (33) is the nature of 

the complex formed. It is an open shell species, because of the electronic configuration 

of the V(IV)ion. Bonding of oxo-vanadium (IV) porphyrins to zeolites can occur via a 

zeolite oxygen atom to vanadyl group and this is one of the dopand effects on catalytic 

processes (31).

The multivariate analysis of total and species of vanadium in sediment from Lake 

Maracaibo, and the X-Ray fluorescence spectrometry results, showed correlations 

between K2O and VIY (r= 0.8679, n=13, p<0.0001); and K2O and V total, Viv and 

AI2O3 (r=0.6117, n=13, p<0.05). The nutrients and physicochemical parameters showed 

correlations between N and VIV;P and Vv; S and V total; Depth and V total; and DO 

and V total.

Figure 7.12 (a and b) shows the chromatograms for Viv found in fish muscle tissue 

(0.92 jig. g'1) and mussel (1.52 jig. g'1). The levels of vanadium



X^napier V ll em icu i apcciuuuri Uj vunuuium  m  rvuier, aeuim cm , jian  //jmjojc iijjiit- u/iu muoji-i

from Lake Maracaibo, Venezuela.

S2.5E I

V iv

0 50 100 150 200 250 300 350 400 450 500 550 600
0 50 100 150 200 250 300 350 400 450 500 550 600 650Retentiotime

Retention time (sec)

b)Vanadium in fish muscle tissuea) Vanadium in mussel

Figure 7.12: Species o f vanadium found in mussel and fish muscle tissue. 

found in fish muscle tissue from species taken on the Kuwait coast showed 

concentrations between [0.1-15.6 pg. g_1](34). Studies in seafood in the same area (35) 

showed the highest concentrations of 1.48 pg. g'1, which is lower than the 

concentrations in mussels found in Lake Maracaibo. There is no information available 

to be referred about vanadium species in fish and mussels.

7.4. CONCLUSION

In conclusion, the method for vanadium speciation described here can be used to study 

the distribution of VIY and Vv in sediments, fish muscle tissue and mussels. The 

dominance of V(IV) at all the sampling points and in the biological indicators could be 

associated with the source of crude oil, involving a vanadyl porphyrin complex. The 

results found in Lake Maracaibo can be used as a reference for further studies on 

vanadium species in tropical lakes or ecosystems which receive pollution from crude 

oils.
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8.1.-General Conclusions

The proposed method for the oxidation of N, P and S followed by the determination of 

the nitrate, phosphate and sulphate ion by ion chromatography gave satisfactory results 

for the compounds tested. The effectiveness of this procedure was demonstrated by the 

good recoveries obtained for the two SRMs, oyster tissue and Buffalo river sediment. 

However, this work was extended and modified in order to determine nitrogen, 

phosphorus and sulphur in more recalcitrant compounds where the nitrogen, phosphorus 

and sulphur atoms are in ring systems. For a biological material, sediment or soil, a 

three step programme could be applied and as a result, three total quantities of each 

oxidised element in each step (the third step is the quantity of total nitrogen, phosphorus 

and sulphur in the sample); on this basis a kind of speciation of these elements could be 

achieved and in a further research using a numeric method may serve to improve this 

approach.

High levels of nitrogen, phosphorus and sulphur were presented in water and sediments 

samples collected from the sampling points that indicate that Lake Maracaibo is a 

hyper-eutrophic lake.

Concentration of sulphur in the sediment at the centre of the Lake with anoxic 

conditions are responsible for the reduction and precipitation of some metal such as 

arsenic, mercury and selenium. The concentration of methyl mercury is seen to be 

affected by the reduced state of sulphur .

The distribution of arsenic and lead in sediments is related to the Fe/Mn concentrations, 

however, vanadium was distributed mainly in the residual phases and selenium and 

mercury in the organic-sulphide phase.
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The arsenic species found in the lake was mainly reduced arsenite, vanadium was 

presented as vanadyl and selenium as selenite. Mercury was found in the estuary and the 

strait as inorganic mercury and methylmercury but is in the latter form in the main zone 

of the lake.

The three methods developed were satisfactory for the determination of mercury, 

arsenic , selenium and vanadium species in water, sediment, fish muscle tissue and 

mussels.

The results of Lake Maracaibo System showed that the distribution of metals in lakes 

and estuaries are different, variation in salinity and dissolved oxygen can cause changes 

in the association of metals to the sediments.

8.2.-Future Work
A further work with the nitrogen, phosphorus and sulphur method to improve the 

methodology can be achieved using hydrogen peroxide and UV light for the digestion 

of the samples. The identification of the intermediate species of nitrogen, phosphorus 

and sulphur formed during the digestion with hydrogen peroxide and formic acid could 

be used to investigate oxidation processes. Further refinement of the speciation of 

nitrogen, phosphorus and sulphur is required .

To evaluate how sulphur affects the concentration of methylmercury, speciation of the 

sulphur will be necessary. This information will be useful for understanding the 

behaviour of arsenic and selenium.

Sampling for fish and mussel in the various zones of Lake Maracaibo could improve 

understanding of the extent of pollution in the food chain.

The method for vanadium speciation could be used as the basis for the further 

development of a faster and simple method for the study of the element in the samples.
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8.3.- Recommendations

To avoid losses of arsenic and selenium in samples of water, the analysis of these 

samples should be made immediately after the sampling campaign.
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: Abstract

. A method for the oxidation of nitrogen, phosphorus and sulphur to nitrate, phosphate and sulphate ions using 22% (v/v) 
Lydrogen peroxide and closed-vessel microwave assisted digestion in two stages is described. Solutions of a variety of 
-nitrogen-, phosphorus- and sulphur-containing compounds with formic acid added to prevent hydrolysis were used to test the 
efficiency of the procedure. The products of oxidation were determined by ion chromatography. Good recoveries of nitrogen, 
phosphorus and sulphur were obtained. The results for the NIST reference materials, oyster tissue and Buffalo River 
pediments agree well with the certified values. © 1999 Elsevier Science B.V. All rights reserved.

■ K e y w o r d s :  Nitrogen; Phosphorus; Inorganic anions; Sulphur

4

I. Introduction

'■ The nitrogen, phosphorus and sulphur circles are 
of particular significance to a number of biological 
4d non-biological processes in the environment [1]. 
Natural and anthropogenic effects can cause local- 
fed inter-related changes to the cycles. In order to 

T assess the impact and extent of the changes, it is 
* «8ssential to develop analytical methods which allow 

' tHe simultaneous determination of two or all of the 
/  cfiree constituents in a wide variety of environmental 
(  samples.

Tn one of the first attempts at simultaneous de- 
f termination. Ebina et al. [2] developed a method of 

oxidizing nitrogen and phosphorus to nitrate and 
Phosphate, respectively using alkaline potassium 
P̂ roxodisulphate. The composition of the oxidizing

% nanent address: Laborarorio de Qirimica Ambiental. Facultad 
■" 3  ^ eacris. Universidad del Zulia. Maracaibo 4011. Zulia, 
A&ezueia.

Responding author.

n V r^T > /99 /S  -  see front matter :§ 1999 Elsevier Science B.V. 
3 0 0 2 1 -9 6 7 3 (9 9 )0 0 0 2 4 -2

y\r
r-

T

solution was carefully chosen so that its pH changed 
from basic to acidic during the oxidation step. The 
change in pH was necessary because oxidation with 
potassium peroxoaisulphate of nitrogen and phos
phorus occurs under basic and acidic conditions, 
respectively. The nitrate and phosphate ions were 
then determined colorimetrically.

In a different approach, Nygaard and Sotera [3] 
used inductively coupled plasma atomic emission 
spectrometry (ICP-AES) to determine water-soluble 
nitrogen and phosphorus in fertilisers. More recently, 
Matilainen and Tummavuori [4] investigated the 
application of ICP-AES to the determination of water 
soluble sulphur in fertilisers and reported on spectral 
and interelement effects.

To be able to analyse both bound and water 
soluble fractions, samples have to be digested. 
However, existing digestion methods are not easily 
adapted to simultaneous determinations because the 
use of oxidants such as nitric and sulphuric acids and 
potassium peroxodisulpnate precludes the determi
nation of one or more of the analytes.

All rights reserved.



in addition, water is the main product when the 
oxidizing strength of hydrogen peroxide is spent, and 
as a result the digest is amenable to analysis by 
techniques such ion chromatography (IC) and ion 
selective potentiometry. UV-induced photoxidation 
using hydrogen peroxide has been applied success
fully to the oxidation of nitrogen, phosphorus and 
carbon in sea water [5].

In this study, we report results from an inves
tigation of the use of hydrogen peroxide at low pH in 
combination with closed-vessel microwave assisted 
digestion for the oxidation of various nitrogen-, 
phopshorus- and sulphur-containing compounds. The 
nitrate, phosphate and sulphate ions formed were 
determined by IC. *

2. Experimental

2.1. Apparatus

A Dionex QIC analyser ion chromatograph 
equipped with a Dionex AG4A guard column, a 
Dionex AS4A anion separation column, and a 
Dionex AMMS-II suppressor and conductivity detec
tor was used. The sample was injected into the 
chromatograph via a 100-fxl sample loop, and eluted 
with a solution of 1.8 m M  sodium carbonate-1.7 
miVI sodium hydrogencarbonate at a fiow-rate of a 
flow-rate of 1 ml min-1. A chart speed of 0.5 cm 
s ~ l, conductivity range setting of/30 jxS, and con
ductivity suppressor solution of 12.5 mM  H2SO_, 
were used throughout.
, A Milestone Model MLS-1200 Mega microwave 
system (24010 Sorisole, Italy) was used for the 
digestion of the samples. The digestion programme 
was as follows:

Step Power (W) Time (mini

I 250 5
2 0 15
n 600 10
•I

T Ventilation 10

Keagents

The column eluent was prepared from reagent 
grade sodium carbonate and bicarbonate, and dis
tilled. deionized water (18 MD cm, nanopure, Milli- 

: pore, MA, USA) The suppressor solution was pre
pared from 1.4 ml AristaR grade sulphuric acid 
(Merck, Poole, UK) and made up to 2 1 with distilled 
deionised water. The following analytical grade 
compounds were subjected to the digestion treat
ment: sodium nitrite, urea, L-cysteine and ammonium 
nitrate (all supplied by Merck), L-lysine and sodium 
pyrophosphate (both supplied by Aldrich, Gilling
ham, UK), sodium sulphite (East Anglia Chemicals, 
UK).

A 22% (v/v) solution was prepared from AristaR 
grade 30% (v/v) hydrogen peroxide.

2.3. Sample preparation

To test the efficiency of the oxidation procedure, 
solutions containing 50 jxl of formic acid and 40 -  
100 mg I-1 in nitrogen, phosphorus or sulphur were 
prepared.

Standard reference materials oyster tissue (NIST, 
SRM 1566a) and Buffalo River sediment (NIST 
SRM 2704) were used to validate the digestion 
procedure.

2.4. Stock standard solutions

Individual 1000 mg l -1 stock standard solutions of 
nitrate (N), phosphate (P), sulphate (S) and nitrite 
(N) were prepared from Aristar grade reagents. 
(supplied by Merck) by dissolving 6.0679 g NaNCL, 
4.3937 g KH,PO,, 1.8141 g K.SO, and 0.2020 g of 
NaNCA, respectively, in distilled deionised water.

Mixed anion standard solutions of 1.0, 2.5, 5.0 and 
10.0 mg I-1, respectively, were used to calibrate the 
ion chromatograph.

2.5. Sample digestion

Ten ml of hydrogen peroxide solution were added 
to 5 ml of sample or 0.2 g of a reference material and 
50 fxi of formic acid in the microwave sample vessel. 
The mixture was capped and the microwave pro
gramme initiated. At the end of the first run. the
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Fig. 1. Effect o f  varying hydrogen peroxide concentration on the recovery o f nitrogen, phosphorus and sulphur from  urea, sodium 
pyrophosphate, and L-cysteine, respectively after the first digestion.

sample was allowed to cool to room temperature, a 
further 10 ml of the same strength hydrogen peroxide 
solution was added and then the same programme 
was repeated. After oxidation, the digest was cooled 
to room temperature, made up to 100 ml with 
distilled deionised water, and analysed on the ion 
chromatograph. Each compound was digested and 
analysed at least five times.

3. Results and discussion

3.1. Concentration o f the oxidizing solution

Fig. 1 represents the effect in percent recovery by 
varying hydrogen peroxide concentrations on the 
conversion of urea, sodium pyrophosphate and l- 
cysteine in the presence of formic acid to nitrate,
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or varying hydrogen peroxide concentration on the recovery of nitrogen, phosphorus and sulphur from  urea, sodium 
and L-cvsteine. resDectiveiv after the second digestion.



re c o v er ie s  o r in, ?  a a a  0 as n itrate , pnosphate  and  su lphate  ions from  diirerenc concentrations (m g i ' )  o f  pure com pounds a fte r digestion
with 22 %  iv /v ;  hydrogen  perox ide  (n = 5 )

Compound n -n o :  ! n - n o : 1 p - p o : 5 p-p o ; :’ s-so;- s-so;-
' expected found expected round expected found

Urea ,0.93 9 . 9 6 - 0 . 6 2

L-Lvsine 4.00 4.01=0 .04
Ammonium nitrate 6.49 6.63=0.06
Sodium nitrite 10.0 10.02=0.08
L-Cysteine 2.26 2.12= 0.01 5.17 6.10 =  0.01
Sodium pyrophosphate 9.7S 9.80=0.13’
Sodium sulphice 5.38 5.35=0.04
Mix L-cysteine and sodium pyrophosphate 2.26 2 .12= 0.01 9.78 9.65=0.26 5.17 6 .11= 0.02

variety of compounds. Tables 1 and 2 summarise the 
extent of oxidation expressed as recoveries of total 
nitrogen, phosphorus and sulphur. Varying the 
amounts of urea, L-cysteine and sodium pyrophos
phate did not affect the extent of oxidation (see Table 
2). The very good recovery values indicate that the 
oxidation process is efficient at convening N. P and 
S in the form they occur in the compounds. The 
efficiency of the procedure in oxidizing compounds 
containing nitrogen-nitrogen bonds or amide groups, 
and condensed polyphosphates is currently being 
assessed. A comparison of the expected and found 
values for N, P, S (Table 1) using a paired-r test was 
found not to be statistically significant at the 95% 
confidence limits except for the L-cysteine for which

Table 2
Recoveries o f nitrogen, phosphorus and sulphur using different concentrations of analyte and 2 2 %  (v/v) hydrogen peroxide 

Compounds Concentration expected (mg I- ! ) Concentration found (mg V 1) Recovery ( % )

Urea (N -N CC1)- 5.00 4.85 97.0
9.93 10.40 104.7

, 6.00 5.42 90.3
6.24 5.50 88.1
8.00 7.45 93.1

L-Cysteine (S -S O f: ) 23.10 5 9 97.7
11.48 12.11 105.4
15.11 IA-Ld 95.5
10.00 10.50 ■ 105.0
5.17 6.10 117.0

Sodium pyrophosphate 10.00 9.56 95.6
(P-pr- 20.50 22.19 108.2

6.49 6.72 103.5
31.8 30.13 9^.7

phosphate and sulphate, respectively. Formic acid 
was added to the samples in order to prevent the 
hydrolysis of the compounds. However, it has been 
suggested that the oxidizing power of hydrogen 
peroxide is enhanced when it is activated by either 
acid, metal ions or is exposed to UV light [6]. This 
aspect was not investigated.

The extent of conversion of urea to nitrate was 
much improved.. (Fig. 2) when a second 10-ml 
aliquot of the same concentration hydrogen peroxide 
solution was added and the sample subjected to the 
microwave programme for a second time. In sub
sequent experiments, 22% (v/v) hydrogen peroxide 
and the two-stage digestion procedure were used to 
test the efficiency of the oxidation process on a



high recoveries were obtained. 'The difference in the 
results could be due to the poorer sensitivity for the 
determination of sulphate ions at low concentrations.

3.2. Analytical performance

A chromatogram of a mixture of L-cysteine and 
sodium pyrophosphate after oxidation is shown in 
Fin. 3. The mean±SD. retention times for nitrate.

phosphate ana sulphate ions were: 4.11 ±0.14, 
6.60—0.05 and 8.65±0.24 min. respectively. The 
three peaks are very well resolved and as a result 
samples containing widely different proportions of 
the analytes can be analysed without interferences.

Calibration graphs obtained from mixed anion 
standards gave the following highly linear best-lit 
equations: nitrate: y= i.l8-10br-7.18-106 (r2 = 
0.9970); phosphate: y=4.71-10/.r-3.78-106 (r"=

R etention  T im e(m in )

3. Chromatogram of a  sample containing a-oysteine and sodium pyrophosphate after oxidation to nitrate (1), phosphate (21 and sulphate
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Table 3
Comparison of the quantities o f N. P and S found using the proposed method and the reported values for the standard reference materials 
( n  =  2 )

Element Oyster tissue ( % .  w /w =  
9 5 ? o  confidence limit)

Buffalo River ( % .  w /w  =  
9 5 %  confidence lim it)

N Found 6.62=0.28
Reference value 6.81

P Found 0 . 6 1 9 = 0 . 0 2 0 0.0888=0.0125
Certified 0.623=0.020 0.0993=0.0003

S Found O CO to II o O 0 .432=0.045
,  Certified 0.862=0.021 0.397 = 0.0005

0.9886); sulphate: y =4.37-I0°r—3.76-10° (r'=  
0.9865) where y=peak area (arbitrary units) and 
,r=anion concentration (mg I-1).

Detection limits were calculated from the cali
bration graphs using the method of Miller, and Miller 
[7]. The results were 0.123 mg/1 nitrate, 0.251 mg/1 
phosphate and 0.850 mg/1 sulphate. The detection 
limits based on 0.2 g of sediment were 0.006% 
(w/w) N, 0.012% (w/w) P and 0.042% (w/w) S.

3 . 3 .  M e t h o d  v a l i d a t i o n

recoveries obtained for the two SRMs. oyster tissue 
and Buffalo River sediment. Current work is focused 
on the application of the method to more recalcitrant 
compounds where the N, P and S atoms are in ring 
systems.
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The N, P and S contents for NIST SRM 1566a 
oyster tissue and NIST SRM 2704 Buffalo River 
sediment samples digested with 22% (v/v) hydrogen 
peroxide are given in Table 3. Satisfactory agree
ment with the certified values; was obtained. The 
presence of a sample matrix did not have an adverse 
effect on the recoveries.

4. C onclusions

The proposed method for the oxidation of N, P 
and S followed by the determination of the nitrate, 
phosphate and sulphate ion by IC gave satisfactory 
results for the compounds tested. The effectiveness 
of this procedure is demonstrated by the good
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CHEMICAL SPEC!ATXON OF MERCURY AND SELENIUM IN j j

WATER, MUSSEL, FISH MUSCLE TISSUE AND SEDIMENT f !

SAMPLES FROM LAKE MARACAIBO, VENEZUELA - j ;

Marineia Colina* and P.H.E. Gardiner J i

Sheffield Hailam University. Division of Chemistry. School o f Sciences and *j ; 
Mathematics. Owen Building. Howard Street. Sheffield SI 1WB. UK <

I &
A method for the determination of methylmercury, inorganic mercury, seleno-dl- cystine and ij : 

seleno-/- methionine in environmental samples was developed using a Reverse phase C,g S 

column which was comprised of dimethyloctadecylsilyl bonded amorphous silica (Waters > g 

HPLC column) and connected to a Dionex GPM 2 gradient pump equipped with a Reodyne ; 1 

Model 7125 injection valve with a 50 pL sample loop. Mercury and selenium species 

separated on the column using a mobile phase containing a mixture of 0.06 ammonium ' 

acetate, 3 % methanol, 0.1 % 2-mercaptoethanol, 2 mM EDTA with pH adjusted to 6.5 were ( ,|^ 

detected by ICP-MS (Hewlett Packcard 4500).

The mercury and selenium species were extracted from the lyophilised samples of sediment, 5; 

mussels and fish muscle tissue using two different methods: a) A modified digestion- t 

extraction method extracting mercury species from the toluene organic phase with L- 

Cysteine; b) Cold digestion procedure using hydrogen peroxide and nitric acid.

After the extraction or digestion method used the samples were adjusted to pH= 6.5 with 

NaOH 1 % w/v.

The water samples were filtered with a 0.2 pm Millipore filter before the injection onto the 

column.

The methods were validated using the following Reference Materials: IAEA-356 sediment 

and Dogfish Muscle DORM-2 ..

* Permanent Address: Laboratorio de Quimica Ambiental. Facultad Experimental de ' 'J 

Ciencias. Universidad del Zulia. Maracaibo , Venezuela. 1 •



SIMULTANEOUS CHEMICAL SPECIATION OF ARSENIC, 

SELENIUM AND CHROMIUM IN ENVIRONMENTAL SAMPLES 1 

USING ION CHROMATOGRAPHY AND ICP-MS 1

Marinela Colina* and P.H.E. Gardiner 
Sheffield Hallam University. School of Sciences and Mathematics. Division of 
Chemistry. Owen Building. Howard Street. Sheffield SI 1WB. UK

A method for the simultaneous separation and speciation of As(III), As(V), Se (IV), Se (VI) 

and Cr(VI) levels in water, sediment, mussel and fish muscle tissue using Ion 1 

Chromatography with ICP-MS detection is reported. An HPLC system with a Dionex GPM 

2 gradient pump, a Dionex AS-9 anion column, a Reodyne Model 7125 injection valve with 

a 50 pL sample loop and coupled directly to the ICP-MS (HP-4500) was used for the 

separation and detection, the various chemical species.

The following isotopes 15As (100 % abundance), 82Se and 53Cr were used for detection, and 

interference effects of ArCl and HBr with the As and Se, respectively were investigated. 

Water samples were filtered using 0.2 pm filters before injection to the column. A 5 g 

aliquot of either sediment, fish muscle tissue and mussels was added to 25 mL of ImM of 

Ca(N03)2 and shaken for 2 h. The supernatant obtained after the sample is centrifuged, 

filtered and a 50 pL injected onto the column.In order to optimise the column conditions 

three different mobile phase mixtures: a) Na2C03 -  NaHC03 b) (NH4)2C03 -NH4HC03 c) 

(NH4)2P04 -NH4HP04 were studied varying the concentrations of each of the constituents. 

Both gradient and isocratic conditions were used and the effect on the resolution of the 

species investigated. Optimum resolution was obtained with the buffer 1.87 mM (NH4)2P04-  

NH4IIP04) pH= 6.5 under isocratic conditions.

The developed method was used to study the distribution of the chemical species in 

environmental samples collected from Lake Maracaibo, Venezuela.

* Permanent address: Laboratorio de Quimica Ambiental. Facultad Experimental de Ciencias. 

Universidad del Zulia. Maracaibo 4011. Venezuela.



DETERMINATION OF VANADIUM SPECIES USING LIQUID 
CHROMATOGRAPHY AND ICP-MS DETECTION.

Marinela Colina* and P.H.E.Gardiner * *.
Sheffield Hallam University, School of Sciences and Mathematics. Owen Building 

.Howard Street. Sheffield, United Kingdom

Environmental pollution caused by vanadium is almost entirely due to industrial activities 

" such as steels, insecticides, oil combustion etc. In the surface waters vanadium exits as Vv 

A and Viv; the Vv as vanadate is more toxic than Viv present as vanadyl ions. In this work, a

V liquid chromatographic method for the simultaneous determination of V™ and Vv as EDTA 

■ complexes was developed using reversed phase ion- pair liquid chromatography. The 

1 method was applied to the quantification of the species by ICP-MS. Ammonium acetate

0.06 M, tetrabutylammonium hydroxide lOmM ammonium di-phosphate 10 mM and

•; EDTA 2.5mM at pH=6 was used as eluent to avoid the use of organic solvents that can
"M
'] reduce the sensitivity of the instrument. A C8 reversed phase column; 15 cm long was used 

I  to separate the species. Standards and complexed samples should be recently prepared for 

v the vanadium species determination. The application of the method to water and sediment

V samples from Maracaibo Lake, Venezuela is also discussed. The concentration ranges of 

f  sediment samples were [0.7- 61 p.g/g] and [0.0 -  2.3 p.g/g] for V+‘l and Vv respectively 

f  .The method is simple and has adequate sensitivity for these practical applications.

, •;+ ...

I *Permanent address: Laboratorio de Quimica Ambiental. Facultad Experimental de 

’*] Ciencias. Universidad del Zulia. Maracaibo 4011. Venezuela.
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