Sheffield Hallam University

Synthetic studies towards virantmycin.

RICHARDSON, Stewart K.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20276/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20276/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.

01771

Sheffield City Polytechnic Library

REFERENCE ONLY

ProQuest Number: 10700921

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10700921

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

A Thesis Entitled

SYNTHETIC STUDIES TOWARDS VIRANTMYCIN.

By

Stewart Kevin Richardson B.Sc.

A thesis submitted to the Council for National Academic Awards in partial fulfilment for the degree of Doctor of Philosophy

Sept

1985

Sponsoring Establishment: Sheffield City Polytechnic Collaborating Establishment: Glaxo Group Research Ltd., Ware.

SHEFFIELD CITY POLYTSCHEIC LIBER 547.2 RI Q POND STREET

7935602-01

DECLARATION

I declare that the research presented herein is original work carried out by the author and has not been submitted for any other degree.

Signed:

S.K. Richardson (Author)

Date

A.T. Hewson (Supervisor)

CONTENTS

.

	Page No.
Acknowledgments	1
Abstract	2
1. The development and use of vinylphosphonium	3
salts.	
2. Approaches to the synthesis of virantmycin.	12
3. The formation and reactions of	62
ketenedithioacetal S-oxides.	
4. An approach to the synthesis of	87
carbaprostacyclin using vinylphosphonium	
salts.	
5. Experimental section.	108
References	148
Study Programme	163
Publication	164

ACKNOWLEDGMENT

The author would like to express his gratitude to Dr. Hewson for his advice and encouragement throughout the duration of this project.

The technical assistance of Mr. S. Osbourne is also appreciated especially for the preparation of the vinyl phosphonium salts.

Crystal structure determination experiments were performed by Miss L.A. March by kind permission of Dr. I.W. Nowell.

Mass spectra were obtained with the cooperation of Dr. M.E. Rose.

Financial support from the S.E.R.C. is also acknowledged.

Synthetic studies towards virantmycin

Stewart K Richardson

ABSTRACT

The use of vinylphosphonium salts in the construction of acyclic and cyclic systems by both ourselves and others is reviewed.

The alkylthio and arylthio vinylphosphonium salts are used in an unsuccessful approach to the synthesis of the tetrahydroquinoline natural product virantmycin. The use of this approach in the early stages of a synthesis of carbaprostacyclin and analogues is also examined.

The synthesis of virantmycin was also investigated using a regioselective Dieckmann reaction. Two procedures have been developed for the synthesis of the mixed O,Sdiester required to study the cyclisation. The first of these has as the key step a one carbon homologation reaction of a benzaldehyde to a phenylacetic acid derivative. The second relies on a pericyclic rearrangement reaction. The latter route has proved more successful and the Dieckmann product has been made using this procedure. Applications of this to the synthesis of virantmycin are discussed.

The use of methyl methylsulphinylmethyl sulphide in the one carbon homologation for the synthesis of the Dieckmann precursor has been extended. Thus a set of conditions has been developed for the synthesis of chloroketenedithioacetals from ketenedithioacetal S-oxides which complements the only other known set of conditions for this transformation. Under our conditions the ketene dithioacetal S-oxide derived from 2-aminobenzaldehyde cyclises to give two indoles. A modified set of conditions are presented which give rise to anomalous products. In the light of this a mechanism is proposed.

Finally the use of this strategy is extended to a synthesis of benzofurans and further discussion shows how this might be used in a general preparation of thiol esters and in the synthesis of other heterocyclic systems or natural products.

CHAPTER 1

The development and use of vinyl phosphonium salts

1.1 The use of the vinyl phosphonium salts <u>1</u> in synthesis has been of significant interest over the past 20 years¹. The main reason for this has been their dual role as Michael accepters and/or Wittig reagents for both intermolecular and intramolecular processes.

$$CH_2 = C < Y + PPh_3 1 1 1 1 1 1 Y = OC_2H_5 1 1 Y = SCH_3 1 1 Y = SC_6H_5 Y = SC_6$$

The simplest analogue of <u>1</u>, namely vinyltriphenyl phosphonium bromide <u>1a</u>, was first prepared independently by two groups^{2a,2b} using a 1,2 elimination sequence (Scheme 1). In both of these early reports the potential use of <u>1a</u>, as a Michael accepter was recognised. Seyferths group^{2a} performed an intermolecular conjugate addition/

Scheme 1

Wittig trapping reaction using phenyl lithium and acetone to give 2-methyl-4-phenyl-2-butene in low

1a

Scheme 2

yield (Scheme 2). Schweizer's group^{2b} extended this using heteroatoms as nucleophiles to give the adducts 2 (Scheme 3).

-4-

 $\underline{1a}$ + PhSH

Thus <u>la</u> has been shown (Scheme 2 and ref 3) to give low to moderate yields of chain extended compounds, but the vast majority of work in this area has involved the construction of cyclic systems. This relies on both Michael donor and carbonyl group being part of the same molecule (Scheme 4).

Scheme 3

PhSCH₂CH₂PPh₃ Br

nuc=C,N,S,O

Scheme 4

A large variety of carbocyclic and heterocyclic compounds have been assembled using this strategy. For example chromenes from salicylaldehyde^{4,5}, dihydrofurans from α hydroxy aldehydes or ketones⁶, pyrrolizines from 2-formylpyrroles⁷, cycloalkenes from ketoesters⁸, dihydroquinolines from 2-amino benzaldehydes⁹ and pyrroles from α ketooximes¹⁰. Some of these transformations are outlined in Scheme 5. An isolated use of la in a non

Wittig reaction has also been reported^{11,12} (Scheme 6).

Scheme 6

Because of these useful reactions it is perhaps surprising that more use has not been made of <u>la</u> in natural product synthesis. This points to the fact that there is a major obstacle to the widespread use of <u>la</u> and that is that the product obtained is an alkene (Scheme 4, Y=H). Whilst isolated carbon-carbon double bonds can be useful functional groups¹³, for example via their hydroboration to alcohols, oxidation to oxiranes or ketones and halogenation, the often non chemoselective or regioselective conditions associated with these transformations may preclude the use of <u>la</u> in the synthesis of complex organic molecules. Thus a substituted alkene (or vinyl derivative) was required which could be converted under mild conditions to a more useful functional group.

Both vinylethers (Scheme 4, Y=OR) and vinylthioethers (vinylsulphides, Scheme 4, Y=SR) are readily converted to carbonyl groups. Because of the importance of the carbonyl group in general organic chemistry any method for the introduction of this functionality is extremely useful. Thus a corresponding route to vinylethers or vinylsulphides would be equally important. In order to synthesise these latter compounds using the strategy outlined earlier (Scheme 4) the corresponding phosphonium salts lb, lc and ld were required. A number of research groups concerned themselves with this problem. McIntosh, at the University of Windsor, reported the synthesis of l-ethoxy vinyltriphenyl phosphonium bromide lb¹⁴ (for other examples of ethoxy substituted phosphonium salts or phophonates see ref 15 and 16) and noted its ability to function as a Michael accepter¹⁴. He subsequently used it in the formation of dihydrothiophenes¹⁷ (Scheme 7). Unfortunately the yield of the expected

OEt OEt Η Et₃N 1bSH <u>3</u> 14% 0Et 4 12% Scheme 7 5% 5

· -/-

vinylether <u>3</u> was low (even allowing for the presence of the isomeric compound <u>5</u>). The presence of 2-ethyl-4-ethoxy thiophene <u>4</u> was explained not in terms of atmospheric oxidation of <u>3</u> or <u>5</u> as both of these compounds were stable to air. Instead a different mechanism was proposed^{17,18} (Scheme 8).

Scheme 8

This competition between reaction pathways was explained¹⁷ in terms of the relatively unstable ylid <u>6</u> which can, subsequently, undergo a 1,2 elimination sequence as well as Wittig cyclisation. With this explanation of the low yields in mind (the total yield of cyclic products was only 31%) a search was made for species which could increase

-8-

the stability of the intermediate ylid and hopefully also the yields of desired Wittig products^{19,20}.

The ability of sulphur to stabilise adjacent anions meant that the alkylthio or arylthio substituted vinylphosphonium salts <u>lc</u> and <u>ld</u> should give ylids of enhanced stability over the ylid derived from <u>lb</u>. Since their initial synthesis in these laboratories in 1978^{21} <u>lc</u> and <u>ld</u> have shown themselves to be the most useful of all the salts <u>l</u>. Where direct comparison is possible (vide infra) better yields of Wittig products have been obtained with both <u>lc</u> and <u>ld</u> than either <u>la</u> or <u>lb</u>.

Both <u>lc</u> and <u>ld</u> can be prepared in a similar manner²² (Scheme 9) (although a slight modification for

the preparation of a related salt has recently been reported²³) and have been used in a number of total and partial natural product syntheses. For example cyclopentanones^{22,24} (Scheme 10), prostaglandins²⁵ (Scheme 11) and bicyclo (3.3.0.) octanes²⁶ (Scheme 12). These syntheses have been discussed in greater detail in the relevant references. However in . each case the key points are the useful transformations that can be effected using vinylsulphides as intermediates.

The following chapters describe the use of the salts lc and ld in one approach to the synthesis of

i) NaH,<u>1c</u>

dihydrojasmolone

Scheme 10

virantmycin (chapter 2) and in the initial stages of an approach to prostacyclin (chapter 4). Also included are descriptions of a regioselective Dieckmann reaction towards a synthesis of virantmycin and some observations on the chemistry of methyl methylsulphinylmethyl sulphide (chapters 2 and 3 respectively).

chrysomelidial

CHAPTER 2

Approaches to the synthesis of virantmycin

2.1 Introduction

The synthetic formation or natural occurrence of compounds bearing a quinoline nucleus (I)²⁷ is perhaps less common than those containing an isoquinoline one (II).

Shown in figure two are an example of each, namely oxamniquine a tetrahydroquinoline showing anti blood fluke activity²⁸ and papaverine a smooth muscle relaxant and vasodilator²⁹.

oxamniquine

papaverine

figure 2

Another example of a tetrahydroquinoline was recently reported³⁰ and given the name virantmycin. This compound was isolated from the fermentation broth of streptomyces nitrosporeus and shown to have biological potential as an antiviral antibiotic. Structural illucidation soon followed, and, using a combination of spectral techniques and chemical degradation virantmycin was assigned the structure 12^{31} .

In virantmycin both C_2 and C_3 (virantmycin numbering used throughout) are chiral. In the original communication no evidence was given to suggest the relative or absolute configuration of the natural product, nor were other isomers reported. So far as we are aware no further stereochemical details are available in the literature nor have any total or partial syntheses been reported. Thus it seemed to be of interest to develop a synthesis of virantmycin which would allow the determination of the absolute structure of the natural product and the biological activity of all the other isomers. The route developed should also show sufficient flexibility in order to allow the synthesis of a series of compounds of slightly different structures.

2.2 An approach to the synthesis of virantmycin using vinyl phosphonium salts

2.2.1 Introduction

Previous work from these laboratories using the phosphonium salts <u>lc</u> and <u>ld</u> has led only to the synthesis of carbocyclic cyclopentanoids (see chapter 1 and Scheme 13 nuc = carbon, n=1. It was of obvious interest to see whether this approach could be extended to the synthesis of larger rings both with or without heterocyclic components (Scheme 13, nuc = carbon, nitrogen, oxygen or sulphur, n>1).

If successful this would lead to the synthesis of carbocyclic or heterocyclic compounds containing a vinylsulphide. We believed that the heterocyclic ring of virantmycin could be constructed using this strategy, with the nitrogen atom as the nucleophile, C_2 and C_3 arising from the phosphonium salts <u>lc</u> or <u>ld</u> and C_4 from a formyl residue suitably situated in the same molecule as the nitrogen atom. Thus virantmycin represented a suitable target to assess the use of <u>lc</u> and <u>ld</u> in the synthesis of heterocyclic compounds.

We were encouraged in this respect by some earlier work by Schweizer on the synthesis of dihydroquinolines using $\underline{1a}^9$ (Scheme 14). This same reaction applied to our phosphonium salts $\underline{1c}$ and $\underline{1d}$ with the aminoaldehyde 14 would give the vinylsulphides <u>15c</u> and <u>15d</u> which are intermediates in our retrosynthetic analysis (Scheme 15).

i) NaH/Et₀0,<u>1a</u>

Scheme 14

The synthesis of vinylsulphides has been of increasing interest over the last decade or so because of the number of synthetic transformations to which they are susceptible. As well as the addition reactions characteristic of simple alkenes, the electronic effect of the sulphur atom allows vinylsulphides to undergo acylation and anion forming reactions³². Our own primary interest in the formation of vinylsulphides originated from the fact that they are readily transformed into carbonyl groups.

Some of the reagents which have been reported as being successful for this transformation are:- TiCl_4^{33} , HgCl_2^{34} , HgO^{35} , TFA^{26} , HCl/PhSH^{36} and $\text{HClO}_4/\text{PhSH}^{37}$. More recently these have been complemented by two procedures from Trosts group for allylic functionalisation of vinylsulphides^{38,39}.

Thus the starting material chosen for the synthesis was 2-amino-5-methylbenzoic acid <u>13</u>. The protected aldehyde <u>14</u> should be available from <u>13</u> via simple chemical transformations and, by analogy⁹, would give the vinylsulphide <u>15</u> on treatment with <u>1c</u> or <u>1d</u>. The development of <u>15</u> towards virantmycin would proceed in one of two ways.

The first approach would involve initial hydrolysis of <u>15</u> to the corresponding ketone <u>16</u> (Scheme 16). Treatment of the latter with a base (1 equivalent) followed by an alkyl halide could give products arising from reaction at C_2 or C_4 . Providing that reaction was observed predominantly at one site or the other then a solution was in hand. If alkylation occurred at C_2 , the desired site, then the procedure is straightforward. However if C_4 is preferred then this position would have to be blocked so that subsequent alkylation could only occur at C_2 . Removal of the blocking group should then give <u>17</u>.

When <u>17</u> had been obtained, subsequent elaboration was expected to proceed as shown (Scheme 17). Thus conversion of the benzylic methyl group of <u>17</u> to an ester and selective reduction of the ketone to an alcohol followed by chlorination would give <u>19</u>. Double deprotection of this should give virantmycin possibly contaminated with other isomers.

The alternative approach to virantmycin from the vinylsulphide 15 was based on the work done by Trost (Scheme 18).

The advantage of these procedures is that they allow access to a compound which would not automatically be available directly from the corresponding carbonyl without regiochemical contamination (Scheme 19).

Thus treatment of the vinylsulphide <u>15</u> with lead tetraacetate should give the allylic acetate <u>20</u> (Scheme 20)., So far³⁸ coupling of these species has only been achieved with organocuprates derived from simple alkyl, alkenyl or aryl halides so it is unknown whether the methoxymethyl group present in virantmycin could be attached using this approach (Scheme 20). In addition the formation of the quaternary acetate <u>22</u> was ambiguous. No evidence for the formation of quaternary acetates using this approach was given in the original communication³⁸, so this also needed some investigation. The envisaged approach to virantmycin using this strategy is shown (Scheme 20).

-17-

2.2.2 Results and discussion

The well known susceptibility of anilines to oxidative degradation and Schweizer's observations⁹, that unprotected 2-aminobenzaldehydes gave poor yields of 1,2 dihydroquinolines on reaction with <u>la</u> (Scheme 21), meant that protection of one N-H bond in the starting material was essential.

i) NaH,1a

Scheme 21

Due consideration of the retrosynthetic analysis (Scheme 15) and the proposed synthetic route allowed prediction of the reagents to be used. Thus a protecting group could be chosen whose stability was compatible with the conditions required. A search of the relevant literature^{40,41} indicated a number of possibilities. From these the one chosen was the 4-toluenesulphonyl group as it is readily attached and with a wide variety of conditions having been reported for its removal⁴². From this starting point the dihydroquinolines 15c and 15d were synthesised as shown in Scheme 22.

Scheme 22

Thus the sodium carboxylate, prepared in situ, of 2-amino-5-methylbenzoic acid was tosylated⁴³ with 4-toluenesulphonyl chloride to give <u>24</u> in quantatative yield. Reduction of this acid with lithium aluminium hydride

-21-

(LiAlH₄) required a larger mole ratio of reducing agent to acid than expected, but after a number of attempts good and reproducible yields of the alcohol <u>25</u> were obtained. As expected the aldehyde <u>14</u> was readily available from <u>25</u> using pyridinium chlorochromate (PCC) in dichloromethane $(CH_2Cl_2)^{44}$ in excellent yield (93%).

The experimental procedure developed by Schweizer⁹ for the synthesis of the dihydroquinoline <u>15a</u> (Scheme 14) involved a mixture of solvents and a long reaction time (3 days). Our synthesis (Scheme 22) of the dihydroquinolines <u>15c</u> and <u>15d</u> from <u>14</u> proved much simpler and quicker and gave better yields of the desired products. Thus treatment of <u>14</u> with sodium hydride (NaH) in tetrahydrofuran (THF) for 20 minutes at room temperature gave the sodium salt as a white solid. Subsequent addition of <u>1c</u> or <u>1d</u>, followed by refluxing for 4 hours, gave <u>15c</u> and <u>15d</u> in 70% and 90% yields.

As the first approach to virantmycin using vinylsulphide methodology we attempted to hydrolyse <u>15</u> to the ketone 16 (Scheme 23).

Scheme 23

The literature published on this transformation indicates that there are apparently some problems in the hydrolysis of terminal vinylsulphides to aldehydes³⁶. For these

compounds the classical Hg (II) or Ti (IV) methods frequently fail and alternative acid promoted addition/hydrolytic procedures have been developed^{36,37}. The conversion of internal vinylsulphides to ketones (for example <u>15</u> to <u>16</u>), however, has usually been more predictable. In the light of this it proved extremely disappointing to find that under none of the conditions outlined previously could <u>16</u> be obtained from <u>15c</u> or <u>15d</u>. Other reagents, for example HCl or HBF_4^{45} , were also tried but with no success. In all cases except one, <u>15c</u> or <u>15d</u> were recovered exclusively and in good yields. Only prolonged reflux with concentrated HCl caused complete disappearance of starting material, but the reaction mixture from this gave no useful products.

The rationalisation for this is not clear, but assuming a common mechanism is applicable for each of the reagents and using the $HgCl_2/CH_3CN/H_2O$ conditions as an example a possible explanation is outlined here. The proposed mechanism for the mercuric chloride method involves oxymercuration of the double bond via a Markovnikov addition³⁶. Subsequent loss of Hg(Cl)SPh leads to the intermediate enol which reverts to the more stable carbonyl tautomer (Scheme 24).

-47-

A postulated intermediate in this reaction is the mercurinium ion^{46} (Scheme 25) formed in a pre-equilibrium with subsequent attack by the solvent giving the adduct <u>26</u>. Mercurinium ions have been detected under non nucleophilic conditions⁴⁶.

A kinetic study has been undertaken⁴⁷ on a similar reaction (Scheme 26) and this showed, as expected, that the presence of electron withdrawing groups at the allylic carbon atom retarded donation of the π electrons from the alkene to mercury and thus reduced the rate of reaction (Scheme 26 and Table 1).

 $H_{2}C \xrightarrow{H} \frac{HgCl_{2}/H_{2}O}{CH_{2}R} \xrightarrow{ClHgCH_{2}CH(OH)CH_{2}R}$

Scheme 20

R	<u>rate const</u> $(mol^{-1} s^{-1})$
Η	100000
ОН	1120
C1	11
CN	4.3

- 44

Considering, Scheme 24, when R^2 = alkyl and the product is a ketone, the inductive effect of R^2 should aid formation of the mercury-olefin complex and thus facilitate the overall reaction. However when R^2 =H and the product an aldehyde no inductive effect is possible and the reaction may be hindered or prevented.

In our case, <u>15c</u> and <u>15d</u>, we have, by analogy, $R^2 = CH_2N(Ar)Ts$ and it may be that the electron withdrawing effect of the sulphonamide passed through the methylene group could also prevent the formation of the mercury-olefin complex and thus also prevent any hydrolysis⁴⁸. Some analogy with this was recently demonstrated by Evans who found that the effect of a carbamate ester, through a methylene group, affected nucleophilic ring opening of an oxirane.⁴⁹

The desired ketone 16 was successfully synthesised using the vinyl phosphonium salt 1b (Scheme 27).

i) NaH/THF, <u>1b</u>/reflux/2 days ii) $HC10_4/Et_20$

Scheme 27

Unfortunately the yield of the first step was too low (13%) to use this route for further studies towards virantmycin. However this does allow, as far as we are aware, the only direct comparison between all four phosphonium salts (Scheme 28 and Table 2).

 $\frac{15b}{15c} = CH_3, Y=0C_2H_5$ $\frac{15c}{15c} = CH_3, Y=SCH_3$ $\frac{15d}{15c} = CH_3, Y=SC_6H_5$

<u>aldehyde</u>	<u>phosphonium</u> <u>salt</u>	<u>reaction</u> conditions	product	<u>yield</u>
12	<u>1a</u>	reflux/60 hr	<u>15a</u>	50%
<u>14</u>	<u>1b</u>	reflux/48 hr	<u>15b</u>	1 3%
<u>14</u>	<u>1c</u>	reflux/2-4 hr	<u>15c</u>	70%
<u>14</u>	<u>1d</u>	reflux/2-4 hr	<u>15d</u>	90%

Scheme 28

Table 2

This demonstrates the better yields of intramolecular Wittig products achieved with our salts <u>lc</u> and <u>ld</u> over the analogues <u>la</u> and <u>lb</u>.

This failure at a key stage prompted us to explore the second strategy to virantmycin using vinylsulphide methodology, that is Trost's allylic acetoxylation³⁸. When $\underline{15d}$ was treated with 1.1 equivalents of lead tetraacetate, Pb(OAc)₄, TLC evidence indicated the formation of the monoacetate <u>20</u> and the bisacetate <u>27</u>. These were assigned on the basis that, as predicted by Trost, of these only <u>20</u> was observed on work up of the reaction mixture with potassium

- -

hydroxide (Scheme 29).

Scheme 29

However a number of other products were also observed, possibly arising from oxidation of 15d with Pb(OAc)₄ at sulphur or at one of the benzylic carbon atoms, so this route was not pursued.

2.3 Approaches to virantmycin using a regioselective Dieckmann reaction

2.3.1 Introduction

With the failure of our original approach to virantmycin at a key stage, an alternative strategy was required. One aspect of the first synthesis provided an important clue to the second. Thus as outlined earlier (Scheme 16) it appeared theoretically possible that treatment of the ketone <u>16</u> with base followed by a suitable electrophile could give a mixture of products. This problem of regioisomeric alkylation of ketones is frequently encountered in organic synthesis. One solution is to activate the α carbon atom, where reaction is desired, with an electron withdrawing group. Then, using one equivalent of base followed by an alkyl halide, reaction occurs only at the activated site. (Scheme 30).

Scheme 30

When this concept is applied to the synthesis of virantmycin, using the methoxycarbonyl group for activation, the 1,3ketoester <u>28</u> becomes the key intermediate. As well as overcoming this ambiguous alkylation, <u>28</u> shows one other potential advantage over <u>16</u> for the synthesis of virantmycin.

28

This is that the methoxycarbonyl group at C₂ provides ideal access to the methoxymethyl group which occupies the same position in virantmycin.

The two most well established methods for the construction of cyclic 1,3-ketoesters like <u>28</u> are the reaction of ketone enolates with acid derivatives (Scheme 31) and the Dieckmann reaction (Scheme 32). It appeared possible that the former could suffer from the same regioisomeric problems as outlined earlier (Scheme 16), but the latter looked much more attractive.

i)base,RCOX

Scheme 31

A great deal of literature has been published on the Dieckmann reaction 50 .

Scheme 32

Scheme 33

The Dieckmann reaction has, since its conception, been used to construct carbocyclic 4, 5, 6 and 7 membered rings⁵⁰ and also rings containing heterocyclic components. For symmetrical and asymmetrical diesters overall chemical yields can vary from moderate to excellent, but for asymmetrical diesters there can be a problem with regioisomer formation. For diethyl-3-methyladipate, <u>29</u>, cyclisation can produce a mixture of products.

CH₃CHCH₂COOC₂H₅ EtO сн,сн,соос,н,

<u>29</u>

Whilst the yield of <u>30</u>, if that was the desired product, could be tolerated the effect of a more remote or more subtle substituent might lead to a lower regioselectivity. This problem of regioselectivity in the Dieckmann reaction can be a significant one although there are ways to overcome it. Two of these are outlined below.

In the first the presence of a substituent on one of the α carbon atoms leads to cyclisation in one direction only (Scheme 34). This is because the driving force for the reaction, the formation of the 1,3-ketoester enolate, can only occur in one of the possible products.

Scheme 34

This is not particularly useful for the synthesis of complex molecules as it requires a specific substitution pattern in the target molecule and is inflexible, although specific examples are known. Scheme 35 shows one stop of Rapaport's approach to apovincamine⁵¹.

i) LiOCH₂ ii) CH₂COOH

Scheme 35

Our proposed intermediate <u>28</u> would arise from the Dieckmann precursor <u>32</u> but as both esters are unsubstituted at the α carbon atom it seemed likely that the undesired isomer <u>33</u> would also be formed. Thus the alternative approach to the Dieckmann reaction, which appears to be structurally independent, proved much more attractive.

This is based on a recent observation by Liu⁵² that dithiol esters cyclise under much milder conditions than their O analogues (Scheme 37).

Two groups then independently combined these observations to introduce a mild and regioselective Dieckmann reaction of mixed O,S diesters^{54,55} (Scheme 38). In this reaction the location of the keto and ester groups in the product is controlled by the position of the S and O esters in the reactent. In both of the original communications the only products obtained arose through loss of the -SR group.

No products were observed arising from loss of -OR. Hatanaka's group have subsequently applied this methodology to the synthesis of the carbapen am^{56} <u>34</u> (Scheme 39) and the carbacephem⁵⁷ 35 (Scheme 40).

Using this approach we felt that the key 1,3keto ester <u>28</u> could be made in one step from the mixed O,S diester <u>36</u> (Scheme 41) and so the synthesis of this latter compound became our initial objective. The strategy was to prepare either the aldehyde 37 or the alcohol 38 and incorporate into them one extra carbon atom, so as to allow subsequent elaboration into the acid $\underline{39}$ (Scheme 42).

From this the diester <u>36</u> should be readily available.

Scheme 42

2.3.2 Results and discussion

With this objective in mind <u>14</u> (see section 2.2.2) was treated successively with NaH in DMF and methyl bromoacetate to give <u>37</u> in 98% yield. This was condensed with the ylid derived from methoxymethyl triphenylphosphonium chloride $\underline{40}^{58,59,60}$ in THF at 0°C to give the vinylethers <u>42</u> (Scheme 43).

$$\frac{1}{2} Ph_{3}PCH_{2}OCH_{3}C1 Ph_{3}P=CHOCH_{3}$$

$$\frac{40}{41}$$

Subsequent hydrolysis and oxidation should give the desired acid 39. Unfortunately the yield of the vinylethers 42, obtained in an approximately 1:1 E:Z ratio, was fairly low (only 30%).

i) NaH/DMF, BrCH₂COOCH₃ ii) <u>41</u>/THF/0^oC

Scheme 43

In addition a number of other products were formed. These are believed to arise from the ability of <u>41</u> to act not only as a nucleophile but also as a base thus promoting an intramolecular cyclisation as shown in Scheme 44. Other experimental and theoretical evidence supports this hypothesis. Thus treatment of <u>37</u> with lithium diisopropylamide (LDA) gave a similar reaction profile to that obtained on treating <u>37</u> with <u>41</u>.

Scheme 44

In addition according to the observations made by Baldwin on ring closure reactions^{61,62}, this represents a 5-(enolexo)-exotrig process which has been shown to be relatively facile. The phosphine oxide analoge of <u>40</u> ie <u> 43^{60} </u> has been reported to give better results in one carbon homologation reactions where enolisation is a problem.

This has been attributed to the enhanced nucleophilicity and reduced basicity of its anion $\underline{44}$ with respect to the ylid $\underline{41}$. However when $\underline{37}$ was treated with $\underline{44}$ a similar result was obtained to that outlined above.

Thus attention was diverted to the alcohol <u>38</u>, which was synthesised in the following manner. Protection of the alcohol 25 (see section 2.2.2) with ethyl vinylether followed by alkylation and deprotection gave <u>38</u> (Scheme 45) in 73% yield over the three steps. Preparation of the O-tosylate of <u>38</u> using pTsCl/pyridine or pTsCl/(C_2H_5)₃N failed but triphenylphosphine dibromide⁶³, prepared in situ, smoothly converted <u>38</u> into <u>45</u> in 83% yield. Nucleophilic displacement of the halide by cyanide then gave <u>46</u> (96%). It was anticipated that from <u>46</u> we would be able to obtain the acid <u>39</u>, most probably via the intermediate amide <u>47a</u> (Scheme 45). The method most frequently used for the conversion of nitriles to amides, for example as tried by Woodward and Eschenmoser in their approaches to the synthesis of vitamin B_{12}^{64} , involves acid catalysed hydrolysis, followed by nitrosation to the corresponding acid. When <u>46</u> was treated with concentrated sulphuric acid (H_2SO_4) at O^OC a single product was obtained as a brown solid.

Scheme 45

Analysis of its IR and NMR spectra showed that, as expected from Woodward's work, the methyl ester was retained. However it appeared that the p-toluenesulphonyl group had been cleaved by the rather vigorous conditions. Therefore the structure of the product was tentatively assigned as the amide $\underline{47b}$. Several other reagents, which have been reported for the hydrolysis of nitriles to carbonyl compounds, were also tried but with no success⁶⁵⁻⁶⁹.

The partial success of the Wittig reaction between the aldehyde <u>37</u> and the phosphorane <u>41</u> led us to reexamine this route. The problem appeared to be that the presence of the methoxycarbonyl group attached to nitrogen allows a competitive intramolecular cyclisation to occur. What seemed to be required was an alkylating agent that could be attached to nitrogen, that does not contain a free carbonyl group, but that could be ultimately converted to the $-CH_2CO_2CH_3$ residue essential for the Dieckmann precursor <u>36</u>. After some preliminary studies involving 2-bromoethanol <u>48</u> and 2-bromoacetaldehyde diethyl acetal <u>49</u>, allyl bromide <u>50</u> was chosen. It was envisaged that the allyl group could be converted to the $-CH_2CO_2CH_3$ residue via ozonolysis, oxidative work up and esterification.

BrCH₂CH₂OH BrCH₂CH(OC_2H_5)₂ CH₂CHCH₂Br <u>48</u> <u>49</u> <u>50</u>

Using this strategy the mixed O,S diester $\underline{36}$ was successfully synthesised as shown (Scheme 46).

vi)vii)

i) NaH/DMF, <u>50</u> ii) <u>41</u>/THF iii) $Hg(OAc)_2/THF/H_2O$ iv) Jones reagent v)NaH/DMF, PhCH₂Br vi) O_3/CH_2Cl_2 , Jones reagent vii) CH_2N_2/e ther viii) $H_2/5\%$ Pd on C/ $C_2H_5OH/CH_3COOC_2H_5$ ix) PhSH/DCC/THF

Scheme 46

Thus the vinylethers <u>52</u> were prepared from <u>14</u> via stepwise allylation (93%) and Wittig condensation (64%). The ratio of E and Z isomers in <u>52</u> was 1:1 with their structures being assigned on the basis of their NMR spectra (see experimental section). Hydrolysis⁵⁹ of <u>52</u> to the aldehyde <u>56</u> followed by Jones oxidation gave the acid <u>53</u>, which on treatment with sodium hydride and benzyl bromide gave the ester <u>54</u>. The carbon-carbon double bond in <u>54</u> was subjected to ozonolysis followed by an oxidative work up to give the acid 57.

This was immediately esterified with diazomethane to give 55 in 93% yield from 54. Selective deprotection of the benzyl ester using catalytic hydrogenation (92%) was followed by treatment of the resultant acid 39 with thiophenol in the presence of dicyclohexyl carbodiimide⁷⁰ (DCC) to give the Dieckmann precursor 36 (51%) in a small scale preliminary investigation.

When the scale of this synthesis was increased, in order to obtain a sufficient quantity of 36 to study the cyclisation, all of the steps gave acceptable yields of

39

products except the conversion of 52 to 53. The aldehyde <u>56</u>, obtained from <u>52</u>, was both oxidised without purification and purified prior to oxidation, but in neither case was a yield of <u>53</u> better than 10-25% obtained. Thus we were unable to obtain significant amounts of 36 using this route.

It appeared that the problem might lie in the phenylacetaldehyde derivative <u>56</u>. Phenylacetaldehydes are known to be rather sensitive. Thus we considered a one carbon homologation reaction on the aldehyde <u>51</u> to give a product which could be directly transformed into the carboxylic acid <u>53</u>. A search of the relevant literature on acyl anion equivalents⁷¹ and homologating reagents⁷² indicated several possibilities from which two were chosen.

2-Trimethylsilyl-1,3-dithiane, prepared using the method of Corey⁷³, was treated successively with n-butyl lithium and 51 to give the ketenedithioacetal 58 (Scheme 47).

 $\frac{\text{HgCl}_2/\text{CH}_3\text{CN/H}_20 \text{ or}}{\text{Hg0/BF}_3.\text{Et}_20} \longrightarrow \text{ no reaction}$

The most common methods for the hydrolysis of compounds like 58 involve mercuric salts. Unfortunately, under neither of the conditions 36,74 shown in Scheme 47 was any of the corresponding acid 53 obtained.

Methyl methylsulphinylmethyl sulphide (MMTS) <u>59</u> was first reported for the one carbon homologation of alkyl halides to aldehydes, via the intermediate dithioacetal S- oxides, by Ogura's group in 1971⁷⁵ (Scheme 48).

Scheme 48

The following year they used the same reagent to transform benzaldehyde or its derivatives into ketenedithioacetal S-oxides⁷⁶. On acid hydrolysis these latter compounds were transformed into phenylacetic acids (Scheme 49).

i) <u>59</u>/Triton B/THF/reflux ii) HCl/1,2-dimethoxyethane

Scheme 49

Applying this strategy to the synthesis of our required acid <u>53</u>, the aldehyde <u>14</u> (Scheme 50) was transformed into <u>60</u> on prolonged reflux with <u>59</u>. Reaction of the sodium salt of <u>60</u> with allyl bromide <u>50</u> gave <u>61</u> in 86% yield. Using the conditions developed by Ogura for the hydrolysis of ketendithioacetal-S-oxides^{76,77}, <u>61</u> was treated with concentrated hydrochloric acid (HCl) in 1,2-dimethoxyethane (DME). Prolonged reaction times were necessary in order to get a significant amount of product formation. But even after stirring for several days at room temperature a substantial amount (40%) of $\underline{61}$ was recovered from the reaction mixture.

Scheme 50

No trace of the acid $\underline{53}$ was observed and the only other product obtained in any appreciable amount (15%) was relatively non polar. A study of its IR and NMR spectra allowed the structure to be tentatively assigned as the thiol ester $\underline{62}$ (the hydrolysis of ketenedithioacetal-S-oxides under standard conditions is not always predictable and anomalous products are known^{77,78}).

 \mathbf{Ts} NCH₂CHCH₂ CH₂COSCH₂

<u>62</u>

We were particularly intrigued by this observation, as we required a thiol ester functionality at this position in order to study the Dieckmann cyclisation (cf. compound <u>36</u>). However we were not sure that it would be possible to convert <u>62</u> into <u>64</u> using ozonolysis and an oxidative work up, followed by esterification, (see Scheme 46) without disruption of the thiol ester. Thus we attempted to use this strategy (Scheme 51) in a more direct synthesis of <u>64</u> (a close analogue of <u>36</u>) which could itself be subjected to the Dieckmann reaction.

i) NaH/DMF, BrCH₂COOCH₃ ii) HC1/DME

Scheme 51

The sulphonamide <u>60</u> was treated with NaH in DMF and the resultant anion quenched with methyl bromoacetate. The reaction was essentially complete within 5 minutes and prolonged exposure resulted in extensive degradation, so a rapid work up was employed to give <u>63</u> in excellent yield (79%). On hydrolysis of <u>63</u> with HCl/DME again only a low yield (23%) of the thiol ester <u>64</u> was obtained. A change

of solvent to tetrahydrofuran (THF), ether or p-dioxan gave no apparent advantage. However when the same reaction was performed in dichloromethane (CH_2Cl_2) a single product was obtained in quantatative yield. TLC analysis showed this to be different to the thiol ester <u>64</u> and a combination of spectral and X-ray crystallographic techniques enabled the structure to be assigned as the chloroketenedithioacetal <u>65</u>.

(For a more detailed discussion on the chemistry of methyl methylsulphinylmethyl sulphide <u>59</u>, ketenedithioacetal S-oxides c.f. <u>60</u>, <u>61</u> and <u>63</u> and chloroketenedithioacetals c.f. <u>65</u> see chapter 3).

It also proved impossible to hydrolyse the ketenedithioacetal-S-oxide <u>63</u> to the thiol ester <u>64</u> or the acid <u>39</u> using perchloric acid or mercuric salts, so this route to the Dieckmann precursor <u>64</u> was abandoned.

The problem with this approach to the synthesis of virantmycin appeared to lie with the one carbon homologation reaction. It had proved impossible to obtain useful yields of the acid 39 or the thiol ester 64 from the benzaldehydes 51 or 37, either directly, or via the intermediate phenylacetaldehyde 56. In order to overcome this we proposed to formulate the two carbon chain attached to the aromatic ring prior to functionalisation at nitrogen (Scheme 52). This is essentially the reverse of the procedure outlined above.

マノ

An attractive method for the introduction of this two carbon appeared to be via a pericyclic rearrangement rather than simple functional group manipulation.

The simplest sigmatropic rearrangement of anilines, the amino Claisen rearrangement (Scheme 53), has been extensively studied⁷⁹, but in general with much less success than the Claisen rearrangement itself^{79,80}.

Scheme 53

In general the former requires much more drastic conditions than the latter and tends to give mixtures of products arising from rearrangement and cleavage. The reaction was originally promoted thermally, but both Lewis and Bronsted acids have recently been used to greater effect⁷⁹. Some improvements have been made resulting in the synthesis of more complex molecules⁸¹ (Scheme 54), but the rearrangement of groups more complex than allyl would represent a significant improvement.

Scheme 54

To this end a number of variants on the simple amino Claisen rearrangement have been published including a preparation of x oxindoles⁸² (Scheme 55) and one of pyrroloindoles⁸³ (Scheme 56).

i) H₂CCO

In the context of our own aims (Scheme 52) attention was focused on some results by Coates⁸⁴ on the rearrangement of acetoacetates (Scheme 57) and mixed malonate esters

Based on some earlier work by others⁸⁵ and some of their own experimental observations⁸⁴ they proposed the following mechanism (Scheme 59).

i) PhCH₃/C₅H₅N/110^oC

60%

Scheme 58

Thus the enol tautomer $\underline{67}$ rearranges via 68 to 69.

Scheme 59

In one case the monomalonic acid (cf. $\underline{69}$) could be isolated thus proving that rearrangement precedes decarboxylation, but

Scheme 60

Thus the mixed malonate $\underline{72}$, which would be available from $\underline{71}$ using Coates' procedure⁸⁴, should give the ester $\underline{73}$ upon rearrangement. There appeared to be a theoretical possibility that formation of the amide anion from $\underline{73}$ (for subsequent reaction with methyl bromoacetate to give $\underline{74}$) would result only in intramolecular cyclisation to give the oxindole $\underline{78}$ (Scheme 61).

Thus we required a group R which could prevent nucleophilic attack at the ester group. It is well known that ^tbutyl esters resist basic hydrolysis and do so presumably as a consequence of the steric bulk of the ^tbutyl group preventing nucleophilic attack by the hydroxide anion. Therefore we felt that the presence of a ^tbutyl ester in <u>73</u> might prevent oxindole formation and favour an intermolecular reaction. This has another advantage in that selective deprotection of the ^tbutyl ester in <u>74</u> (R = ^tBu), using acid, should allow ready formation of the acid <u>75</u> from <u>74</u>. Condensation of the former with PhSH as previously described should give the Dieckmann precursor <u>76</u>, similar to the one prepared earlier, i.e. <u>36</u> (Scheme 46).

In fact this route has been particularly successful allowing preparation (Scheme 62) of the mixed S,O diester 86

in multigram quantities, sufficient for a subsequent study of the Dieckmann reaction (vide infra).

i) $CH_3OH/H_2SO_4/reflux$ ii) $Zn/C_2H_5OH/H_2O/NH_4C1/\Delta$ iii) $CH_3COCI/Et_2O/NaHCO_3/H_2O$ iv) $HOOCCH_2COO^{t}C_4H_9/DCC/THF$ v) $C_5H_5N/PhCH_3/110^{O}C/3$ hrs vi) $LDA/THF,BrCH_2COOCH_3$ vii) CF_3COOH viii) PhSH/DCC/THF

Scheme 62

The starting material chosen was 4-nitrobenzoic acid <u>79</u> because it contains a nitrogen atom and a carbonyl group in the equivalent positions as they can be found in virantmycin. Thus <u>79</u> was esterified using standard conditions and the nitro group was reduced to the hydroxylamine <u>80</u> using zinc⁸⁶ dust in 62% yield from <u>79</u>. Treatment of <u>80</u> with a slight excess of acetyl chloride in a two-phase medium gave the amide <u>81</u> in moderate yield together with recovered <u>80</u>. In an attempt to force the reaction to completion a larger proportion (1.5-1.75 mole equivalents) of acetyl chloride was used, but this resulted in no greater yield of <u>81</u>. In addition the formation of a second product (presumably the bisacetate <u>87</u>⁸²) resulted in a more tedious separation.

It was anticipated that the preparation of <u>82</u> from <u>81</u> would be achieved by reaction of the latter with tertbutylmalonyl chloride^{87,88} (prepared as shown in Scheme 63). However the major product was not the expected malonate <u>82</u> but again the bisacetate <u>87</u>. We were unsure whether this had arisen from rapid decarboxylation of <u>82</u> or from a preponderance of acetyl chloride in <u>89</u>.

 $\begin{array}{c|c} \text{CH}_{3}\text{COC1} & \underbrace{\text{i)}} & \text{CH}_{3}\text{Coo}^{\text{t}}\text{C}_{4}\text{H}_{9} & \underbrace{\text{ii)}} & \text{HOOCCH}_{2}\text{Coo}^{\text{t}}\text{C}_{4}\text{H}_{9} \\ \hline & \underbrace{\text{iii)}} & \text{CloccH}_{2}\text{Coo}^{\text{t}}\text{C}_{4}\text{H}_{9} & \text{Scheme } 63 \\ \hline & \underbrace{89} \\ \text{i)} & \stackrel{\text{t}}{\text{BuOH}/(\text{CH}_{3})_{2}\text{NPh}/\text{Et}_{2}0 & \text{ii)} \stackrel{\text{n'BuLi}/\text{THF}/-78}{}^{\text{o}}\text{C},\text{CO}_{2} \end{array}$

iii) Ph₃P/CCl₄

This did not prove to be a serious problem as simple condensation of 88 with 81 in the presence of DCC gave 82 in 62% yield. Subsequent rearrangement of this to 83 proceeded as predicted by Coates⁸⁴ (56%). Our confidence in the ability of the ^tbutyl group to aid 83 in resisting intramolecular attack was justified when formation of the anion of 83 and exposure of this to methyl bromoacetate gave only the diester 84. Selective cleavage of the ^tbutyl ester, using acid, and condensation of the resultant acid 85 with PhSH/DCC gave the mixed O,S diester 86 in 57% yield from 84 on a multigram scale.

The Dieckmann reaction of mixed S,O diesters⁵⁴⁻⁵⁷ has been performed using a variety of bases. Hatanaka's group have used exclusively lithium hexamethyldisilazide 55-57 (LHMDS) where as Yamada's group⁵⁴ have used either lithium diisopropylamide (LDA) or, when the ester group is further stabilised by a α heteroatom, NaH (Scheme 64). One of the compounds in this scheme (<u>90a</u>) bears some resemblance to our own Dieckmann precursor 86 in terms of this additional stabilisation. Both groups made other practical observations.

 $\underline{91b}$ X=NC00C₂H₅

Scheme 64

Yamada stressed that dilute conditions (0.1-0.01 M) were required, specifically in one case, to avoid a competitive side reaction.

We have concentrated on the use of LDA in an investigation of the effect of the concentration of base on the reaction (Scheme 66), but have also performed isolated reactions with other bases, for example LHMDS, potassium tert-butoxide (KO^tBu) and NaH.

As the first attempt to convert 86 into 92, the former was treated with 1.2 mole equivalents of LDA in THF (total concentration of 86 not exceeding 0.1 M) at -78° C. No reaction was observed, but on warming the reaction mixture to room temperature complete disappearance of starting material was noted. From the reaction mixture two major products were isolated, both more polar on TLC than 86, together with a number of minor ones. Analysis of their IR and NMR spectra appeared to indicate that the most polar of the major products was the one required, i.e. 92. However the yield was disappointingly quite low. In an attempt to rectify this the reaction was repeated using 2.2 mole equivalents of LDA. Under the same reaction conditions as used for the previous experiment a similar reaction profile was observed, but the general impression gained was that the ratio of the desired product to undesired side products was less favoured. This tendency to get lower yields on increasing the concentration of base was confirmed when no useful products were obtained when 86 was treated with 3.2 mole equivalents of LDA.

Using other bases the results were less encouraging. For example with LHMDS (1.2 eq) at -78° C, with subsequent warming to room temperature, the major component isolated was recovered 86. When KO^tBu was treated with 86 at O^OC there again proved to be a significant quantity of starting material left, with the only other products being less polar on TLC than 86. It appeared therefore that a change of base gave no solution to the presence of unwanted side products. Hatanaka's group had also encountered this problem in their synthesis of the cephem 35. There, treatment of 93 with 1 equivalent of LHMDS gave not the desired product 35 but the product derived from intramolecular N-acylation 94 (Scheme 67). They solved this problem by increasing the proportion of base. We had already tried this solution to the problem of our own unwanted side products but to no effect.

Although no attempt has been made to characterise the side products produced in the conversion of <u>86</u> to <u>92</u> one possibility might involve the participation of the acetamide in a competing intramolecular reaction. To test this hypothesis we planned to prepare the amides <u>95</u> and <u>96</u> (having no α hydrogen atoms on the amide) and carry them through the synthesis shown earlier (Scheme 62). Unfortunately this did not go quite as anticipated, thus we were unable to prepare <u>96</u> satisfactorily using either of the conditions shown (Scheme 68).

~ •

Although the synthesis of $\underline{95}$ was achieved satisfactorily and this could subsequently be carried through to the diester $\underline{97}$ (Scheme 69), the next step, involving acid hydrolysis of the ^tbutyl ester also appeared to affect the protecting group on nitrogen.

i) $(CF_{3}CO)_{2}/CH_{2}Cl_{2}$ or $(CF_{3}CO)_{2}/NaHCO_{3}/Et_{2}O/H_{2}O$

Scheme 68

This meant we had to return to the use of the 1,3-ketoester 92. $C(CH_3)_3$

Having achieved the synthesis of this compound we turned our attention to the synthesis of the halide 98.

Thus butane-1,3-diol was selectively protected at the primary alcohol with ^tbutyldimethylsilyl chloride.

Oxidation of the secondary alcohol with buffered PCC gave the ketone <u>99</u>. Although this work is unfinished subsequent Wittig condensation of this with isopropyltriphenyl phosphonium bromide, deprotection of the alcohol and bromination should give 98.

The envisaged route for the completion of the synthesis is outlined in the next section.

2.4 Further work

The elaboration of the 1,3 ketoester <u>92</u> to the target molecule virantmycin was not investigated, but a number of different approaches were considered and one possibility is outlined here.

Thus (Scheme 70) following a successful synthesis of the pentenyl bromide $\underline{98}$ coupling of this to $\underline{92}$ should give <u>100</u>.

virantmycin

 $R = -H_2C$

Scheme 70

Protection of the ketone, for example with ethane-1,2-diol, and reduction of the two ester groups in the presence of the amide as reported by Kim^{89} should give the diol <u>101</u>. Selective oxidation of the benzylic alcohol using MnO_2 or one of the more modern reagents effective for this conversion⁹⁰ would give the aldehyde <u>102</u>. Methylation of the remaining alcohol followed by oxidation of the aldehyde to the acid and deprotection of the ketone should give <u>104</u>. From this virantmycin should be readily available using the three step procedure of removal of the acetamide group reduction of the ketone to the alcohol and chlorination.

It is expected that the compound obtained from this route is likely to be a mixture of isomers derived from the two chiral centres in virantmycin⁹¹. Hopefully this mixture could be separated into diastereomerically pure components by chromatography. Resolution of the enantiomers from each pair could be achieved by chiral derivatisation at the acid or amino group followed by separation and regeneration of the enantiomers. Thus this route to virantmycin should allow the production of all four enantiomers of the target molecule for further structural and biological studies (see section 2.1).

CHAPTER 3

<u>The formation and reactions of ketenedithioacetal</u> <u>S-oxides</u>

~ -

3.1 INTRODUCTION

Since it was first shown to be effective for the one carbon homologation reaction of alkyl halides to aldehydes via the intermediate dithioacetal S-oxides <u>106</u> (Scheme 71), the use of methyl methylsulphinylmethyl sulphide (MMTS) 59 has been greatly extended.

 $CH_{3}SCH_{2}SOCH_{3}$ $\frac{59}{106}$ RBr + <u>59</u> RCH(SCH_{3})SOCH_{3} RCH0

Scheme 71

It has now been shown to be effective for the synthesis of α hydroxyaldehydes and ketones⁹², ketones⁹³, acids^{76,77,94}, esters, thiol esters, amides^{95,96}, α ketoesters^{95,96}, α ketoamides^{95,96} and α alkylthio or α amino acids and their derivatives^{95,96} (Scheme 72). These reactions proceed either via the dithioacetal S-oxide <u>106</u> or ketenedithioacetal S-oxide 107.

<u>107</u>

In each case subsequent hydrolysis gives the corresponding carbonyl compound. As stated earlier (section 2.3.2) our initial interest in $\underline{59}$ arose from its ability to react with benzaldehyde or its derivatives to give phenylacetic acids^{76,77} (Scheme 73).

-04-

Scheme 73

However applying this strategy to our benzaldehyde derivatives <u>37</u> and <u>51</u> we were unable to obtain the corresponding acids <u>39</u> and <u>53</u> under the published conditions. Instead, on hydrolysis of the intermediate ketenedithioacetal S-oxides <u>63</u> and <u>61</u> (HCl in 1,2-dimethoxyethane, DME) low yields of the thiol esters <u>64</u> and <u>62</u> were obtained. In an attempt to improve the yields of these latter compounds the solvent was changed from DME to THF, ether or 1,4-dioxan, but to no advantage.

However when $\underline{63}$ was treated with HCl in dichloromethane (CH_2Cl_2) as the solvent a single product was obtained in quantatative yield. Thin-layer chromatography showed it to be different to the thiol ester $\underline{64}$ but a combination of spectral and X-ray crystallographic techniques allowed the structure to be assigned as the chloroketenedithio acetal 65.

So far as we are aware only one reagent has been reported for the transformation of ketenedithioacetal Soxides to chloroketenedithioacetals (Scheme 74), this being thionyl chloride⁹⁷.

The use of thionyl chloride for this conversion appears to be a general method which is successful independently of the structure of the rest of the molecule. Some specific examples using this reagent are shown (Scheme 75).

75%

ref 99

Scheme 75

The subsequent sections in this chapter will deal with the following points:-

Section 3.2 deals with the general applicability of our conditions (CH₂Cl₂/HCl) for the conversion of ketenedithioacetal S-oxides to chloroketenedithioacetals (in addition we have also studied the hydrolysis of chloroketenedithioacetals using trifluoroacetic acid).

Section 3.3 extends this work into a novel synthesis of an indole nucleus 100.

Section 3.4 begins with a proposed mechanism for the formation of the indoles. However some additional observations were made under modified conditions and on the basis of these and earlier observations made by others an alternative mechanism is proposed. This latter could be used to account for the formation of both the indole and chloroketenedithioacetals under standard and modified conditions.

-00-

3.2 The formation and reactions of ketenedithioacetal Soxides and chloroketenedithioacetals

The synthetic utility of the chloroketenedithioacetal moiety has been investigated by Ogura and it has been found that they are readily transformed into α methylthic esters from which a variety of other compounds are available¹⁰¹ (Scheme 76).

The same group used this sequence to synthesise the antirheumatic compound ibuprofen¹⁰¹ 108.

Thus it was of interest to see if our conditions for the formation of <u>65</u> from <u>63</u> could be extended as a general method for the synthesis of aryl chloroketenedithioacetals from aryl ketenedithioacetal S-oxides. With this end in mind a series of ketenedithioacetal S-oxides were prepared

and subjected to treatment with HCl in CH_2Cl_2 . (Scheme 77 and Table 3).

- -

i) <u>59</u>/THF/Triton B/reflux ii) HCl/CH₂Cl₂

Scheme 77

Table 3. The preparation of ketenedithioacetal-S-oxides and subsequent conversion to chloroketenedithioacetals.

No	aldehyde Ar=	No	% yield	No	% yield
<u>37</u>	Ts NCH ₂ COOCH ₃	<u>63</u>	61 ¹⁰³	<u>65</u>	100
<u>51</u>	Ts NCH2CHCH2	<u>61</u>	67 ¹⁰³	<u>111a</u>	100
<u>109b</u>	с ₆ н ₅ -	<u>110b</u>	77 ¹⁰⁴	<u>111b</u>	100
<u>109c</u>	2-Brc ₆ H ₄ -	<u>110c</u>	64 ¹⁰⁵	<u>111c</u>	82
<u>109d</u>	3-сн ₃ ос ₆ н ₄ -	<u>110d</u>	84	<u>111d</u>	79

Thus it can be seen from this table that the conversion of ketenedithioacetal S-oxides into chloro ketenedithioacetals using HCl in CH_2Cl_2 is independent of other substituents on the aromatic¹⁰⁶ ring and is thus a general method for this transformation complementing the one already known⁹⁷.

Because of the excellent yield in which <u>65</u> could be obtained (54% from <u>13</u> in six steps), it was felt that this compound might serve as an intermediate to the Dieckmann precursor <u>36</u> required for virantmycin. One way of performing this (Scheme 78) would be the hydrolysis of <u>65</u> to the α chloro acid <u>112</u> using Hg(II) promoted procedures, followed by dechlorination and conversion to the mixed O,S diester <u>36</u>.

However because of the inability (section 2.3.2) to convert the related ketenedithioacetal <u>58</u> into the acid <u>53</u> (Scheme 79) we were not convinced that this would be successful.

Scheme 79

We did not feel that this would be a significant disadvantage as an alternative procedure also seemed attractive. Thus there is a method for the direct conversion¹⁰⁷ of ketenedithioacetals to thiol esters which was reported as being applicable to compounds containing a bis(methylthio) methane residue (eg. <u>65</u>) but not to compounds derived from 1,3-dithiane (eg. <u>58</u>). This method is based on the use of trifluoracetic acid/water. Using this strategy the α chloro thiolester <u>114</u> (Scheme 80) should be available from <u>65</u> and might ultimately be converted to <u>36</u>. In order to test this hypothesis the simple chloroketenedithioacetal <u>111b</u> was used.

Scheme 80

Thus, following the procedure developed by Seebach, <u>111b</u> was treated with trifluoroacetic acid. After 20 minutes water was added and the solution stirred for 6 hours. A standard work up produced a crude reaction mixture which did give an IR spectrum containing a peak typical of thiol esters (1680 cm⁻¹). Careful column chromatography of this gave two components in a ratio of 3:8, both of which retained the thiolester absorbtion band in the IR spectrum. The more polar fraction appeared from its NMR spectrum to contain only one compound to which we assigned the structure $\underline{115}^{108}$ (Scheme 81). One way in which this product could arise would be by attack of liberated methanethiol¹⁰⁷ on any α chloro thiolester <u>116</u> which might be produced.

Scheme 81

The NMR spectra of the second fraction did indeed indicate (δ C-H = 5.2 ppm) that <u>116</u> was present, but there were also two other peaks in the spectra which indicated the co-existence of an impurity. The chemical shift values of these two other peaks indicated that one possible structure for this third compound was the thiol ester <u>117</u>. In order to confirm that these two compounds were present in the mixture they were synthesised unambiguously (Schemes 82 and 83). When the spectra from authentic <u>116</u> and <u>117</u> were compared with the spectra obtained from the mixture of compounds, they were

Scheme 82

The ratio of <u>116</u> to <u>117</u> in the mixture was determined by NMR spectroscopy.

Thus the methylthio singlet for <u>116</u> appeared at a different chemical shift value (δ ppm = 1.25) to the corresponding peak in <u>117</u> (δ ppm = 1.23). Presumably this is due to a through bond or through space effect of the chlorine atom α to the carbonyl group in <u>116</u> resulting in a downfield shift of the methylthio group. The integration ratio for these two peaks indicated a ratio of <u>116:117</u> of 1.13:1 in the inseparable mixture (there was good agreement for this on integration of the peaks due to the α hydrogen atoms in <u>116</u> and 117). The compounds <u>lllc</u> and <u>llld</u> were subjected to the same reaction conditions and the products analysed in the same way. The results of this are presented in the experimental section.

3.3 The synthesis of an indole nucleus

In the attempt described earlier (section 3.2) to test the general applicability of our synthesis of chloro ketenedithioacetals from ketenedithioacetal S-oxides using $HC1/CH_2Cl_2$, one example was to have been the conversion of 60 to <u>118</u> (Scheme 84).

Unexpectedly, when this reaction was performed, two major products were observed and neither of these gave a N-H stretching band in the IR spectrum as was expected for <u>118</u>. Thus a detailed spectral analysis of each compound was undertaken.

The least polar compound, a white crystalline solid, was assigned the structure <u>119</u> on the basis of its UV, IR and NMR spectra complemented by mass spectrometry and an X-ray crystallographic analysis. To the less polar compound, a clear oil which turned blue on prolonged standing, was initially assigned the structure <u>120¹⁰⁰</u> (Scheme 85).

i) HC1/CH₂C1₂

Scheme 85

Attempts were made to confirm the structure of this latter compound via a synthesis of the authentic material (Scheme 86).

<u>123</u>

iv)

<u>121</u>

 $\xrightarrow{v)}$ $\xrightarrow{120}$

i) $C_5H_5N/C1CH_2COC1/PhCH_3$ ii) A1Cl₃ iii) $P_2S_5/C_6H_6/\Delta$ iv) $K_2CO_3/CH_3I/(CH_3)_2CO$ v) KOH/pTsC1/DME

Thus 4-methylaniline was treated with chloroacetyl chloride in the presence of pyridine to give 122¹⁰⁹ The Friedel-Crafts cyclisation of 122 to 123 (76%). occurred only under rather vigorous conditions by mixing 122 with aluminium trichloride¹⁰⁹ and heating to $200^{\circ}C$. After work up, see experimental section, 59% yield of a white solid was obtained. The NMR spectra of this compound was not quite in the form expected, with the peaks for both the methyl and methylene groups being split, each into an uneven pair. This was explained in terms of migration of the methyl group, during the Friedel-Crafts reaction, producing not only 123 but also one or more of the possible structural isomers. The oxindole 123 was carried through to the indole 120, as shown in Scheme 86, followed by attempts to separate the isomers by column chromatography. This proved unsuccessful as again a multiplicity of peaks due to the aromatic methyl group was observed. This did not prove to be a serious problem however, as the structure of 120 was confirmed using a different approach. Thus simple treatment of <u>120</u> with sulphuryl chloride in $CH_2Cl_2^{110}$ gave 119 (75%), thereby confirming the structure of both compounds.

It appears that there is some particular feature about our conditions for this reaction or the structure of the substrate 60 (Scheme 85) which enhances cyclisation, as a similar substrate,¹¹¹ under similar conditions was shown to give a product arising from hydrolysis and not cyclisation (Scheme 87).

i) HC1/THF/10 hr/reflux

Scheme 87

As a final synthetic aspect to the use of ketenedithioacetal S-oxides, we were interested in extending our successful synthesis of indoles (Scheme 85) into the synthesis of other heterocyclic systems, for example derivatives of benzofuran 126 and benzothiophene 127.

To this end a preliminary study has resulted in a synthesis of two benzofurans 112 (Scheme 88).

3.4 Mechanistic aspects and further observations

In our original communication on the synthesis of indoles¹⁰⁰ we proposed a mechanism for the reaction which appeared to satisfactorily explain the formation of <u>119</u> and <u>120</u> (Scheme 89). Thus initial addition of HCl to the double bond gives the common intermediate <u>128</u> from which both products are obtained. In route a, protonation at the sulphinyl oxygen atom and loss of methanesulphenic acid gives <u>129</u>. Intramolecular nucleophilic attack at the stabilised cation gives the indoline <u>130</u> which undergoes loss of HCl to give the 3-unsubstituted indole <u>120</u>. The initial step in the alternative path, route b, involves a Pummerer rearrangement¹¹³⁻¹¹⁷ of <u>128</u> to <u>131</u>, cyclisation to give <u>132</u> and loss of methanethiol from this to give the 3-chloroindole 119.

However during a brief investigation on the effect of the addition of various species to the reaction mixture (i.e. Scheme 90) an interesting observation was made. Thus when CH_2Cl_2 was pretreated with hydrogen sulphide (H_2S) before addition of <u>60</u> and HCl, instead of a mixture of <u>119</u> and <u>120</u> being obtained the major product observed was 120 in 71% yield.

i) H₂S/HC1/CH₂C1₂

. .

In addition when <u>llOd</u> was treated under the same conditions, instead of the expected chloro ketenedithioacetal <u>llld</u> the major product observed was the thiol ester <u>l33</u> (Scheme 91) in 58% yield.

i) H₂S/HC1/CH₂Cl₂ Scheme 91 It did not appear that the first of these observations could be readily explained in terms of the mechanism outlined earlier. Thus some consideration was given to other possible mechanisms by which the indoles <u>119</u> and 120 might be formed.

We were prompted in this by some work done by other groups. Among these, Louw¹¹⁸ had performed a study on the conversion of dithioacetal S,S-dioxides to carbonyls using similar conditions to our own (Scheme 92). He reported, as the first step, the formation of chlorine gas and the reduction of the disulphoxide to the monosulphoxide.

Using this and other observations it has proved possible to draw a mechanism which could possibly be used to connect Louw's observations, the synthesis of indoles and

chloroketenedithioacetals under normal conditions (Schemes 85 and 77) and the formation of an indole and a thiolester under modified conditions (Schemes 90 and 91). This is described below.

Thus using the standard conditions of HCl in CH2Cl2, 60 is converted (Scheme 93) into a mixture of 119 and 120. The former arises from a pathway involving an initial oxidation/reduction sequence whereby chloride is oxidised to chlorine and sulphinyl sulphur is reduced to sulphenyl sulphur. The ketenedithioacetal 134 then undergoes electrophilic attack by chlorine to give the resonance stabilised cation 131. This undergoes spontaneous intramolecular nucleophilic attack by the sulphonamide nitrogen atom to give the indoline 132. Loss of methane thiol then gives the 3-chloroindole 119. The other product, 120, arises in the same way as previously described, thus initial addition of HCl to the double bond followed by protonation and loss of methanesulphenic acid gives 129. Subsequent cyclisation and loss of HCl produced the product 120.

Theoretical evidence is available which supports this.

Thus intramolecular cyclisation of sulphoxides in the presence of acid¹¹⁹, loss of methanesulphenic acid in the presence of mineral acid to give stabilised cations¹²⁰ and electrophilic attack at ketenedithioacetals¹²¹ are all known processes. Under the modified conditions using H_2S (Scheme 90) only the 3-unsubstituted indole <u>120</u> was produced. This apparently means that the presence of H_2S was blocking formation of the other product, the 3-chloroindole <u>119</u>. The way in which this might occur would be for H_2S to act as a reducing agent, thus preventing the initial sulphoxide promoted oxidation of chloride to chlorine, leaving the formation of 120 as the only possible route available.

It was felt that the same mechanism could be used to explain the formation of 65 from 63 and 133 from 110d (Scheme 94). Thus 63 undergoes the same sequence of reactions as outlined earlier to give the stabilised cation 136. Unlike the previous case intramolecular attack is impossible so proton loss¹¹⁹ occurs to give the chloroketenedithioacetal 65. Under the modified conditions 110d gives mainly the thiol ester. This can be explained in the same way as before, thus initial addition of HCl to the double bond, protonation and loss of methanesulphenic acid gives the cation 138. Again intramolecular attack is impossible so nucleophilic attack by water occurs to give Elimination of HCl and rearrangement of the enol 140 139. gives the thiol ester 133. Thus the formation of all 4 products can be explained in terms of one divergent mechanism.

3.5 Further work

Two aspects of this work would benefit from an additional study. First the mechanistic proposals. In order to determine fully the exact mechanism for the formation of the indoles, chloroketenedithioacetals and thiol ester from ketenedithioacetal S-oxides it will be essential to perform additional experiments. Preparation of ketenedithioacetal S-oxides derived from 141^{122} rather than 59 might allow detection of any sulphenic acid or disulphide^{76,77} by products more readily, but would not necessarily differentiate between the two mechanisms outlined earlier (section 3.4).

PhSOCH₂SPh

CH₃SOCH₂SCH₃

<u>141</u>

<u>59</u>

More useful perhaps would be the detection of any chlorine produced from oxidation of chloride or experiments to determine whether electrophilic addition of chlorine to $\underline{134}$ can occur and if so what are the products from the reaction.

Synthetically, it would be satisfying to complete the successful synthesis of indoles and benzofurans with a synthesis of benzothiophenes. As part of a more long term project an extension of the synthesis of one or more of the heterocyclic skeletons listed above into the area of naturally occurring heterocycles, for example <u>142</u> and <u>143</u>, could be undertaken.

 142^{149}

 143^{150}

As a final aspect of this cyclic chemistry it would be of interest to construct 5 membered ring precursors to investigate the synthesis of fused [5.5] bicyclic molecules using this strategy (Scheme 95).

The last point would be to investigate the potential of the conversion of <u>110d</u> into <u>133</u> as a general preparation of thiol esters.

i) H₂S/CH₂Cl₂/HCl

CHAPTER 4

<u>An approach to the synthesis of carbaprostacyclin</u> <u>using vinylphosphonium salts</u>

4.1 Introduction

It was 50 years ago that two groups, one of which was led by von Euler, were performing experiments on the effect on muscle tissue of extracts from mammalian reproductive systems. They found a substance which could stimulate the muscle into activity and von Euler gave this the name prostaglandin as it was believed that it arose from the prostate gland. Unfortunately it became obvious that there was only a small concentration of these species in vivo (evidently they can be made rapidly when and where required) and so little material was available for further study. In addition the lack of sophisticated chromatographic and analytical techniques available at the time meant that no assessment of the purity or structure of the active agents could be made. It is now known that there is a large number of prostaglandins produced by natural sources and this is continually being supplemented by the output of synthetic chemists¹²³.

The prostaglandins can be divided into nine classes, PGA to PGI, with additional nomenclature specifying the exact structure. In addition another similar class of compounds has been discovered which arise biosynthetically from the same source, called the thromboxanes. Thus 2-series prostaglandins and thromboxanes are formed from arachidonic acid (eicosa-5,8,11,14-tetraenoic acid) whilst 1 and 3 series compounds come from eicosa-8,11,14-trienoic acid and eicosa-5,8,11,14,17-pentaenoic acid respectively. For the PG₂ series this is shown in brief outline (Scheme 97).

Scheme 97. The biosynthetic conversion of arachidonic acid into PGG_2 and PGH_2 .

Scheme 98. The interconversion of prostaglandins and thromboxanes.

It was not until thirty years after von Eulers original experiments that the structure of the primary prostaglandins PGA to PGF was illucidated and during the intervening period their biological properties have become well documented and understood¹²⁴. In addition a great number of unnatural prostaglandins have been synthesised and biologically evaluated. The more reactive peroxide containing intermediates PGG, and PGH, were not fully identified until later. It was then from these latter compounds that, in the mid 1970's, evidence was put forward for the existence of two further compounds having mutually opposing biological properties. These were called prostacyclin¹²⁵ (PGI₂) and thromboxane A_2 (TXA₂), the existence of the latter being inferred from the presence of a metabolite TXB,. Theory now says that it is PGI, and TXA, which are responsible for the control of platelet aggregation, for example during bleeding. It is believed that prostacyclin synthetase, the enzyme that converts PGH2 into PGI, is concentrated in the walls of the blood vessels. Thus, when these are intact, sufficient enzyme is present to maintain PGI, inhibition of platelet aggregation. However disruption of the endothelium results in a decrease in enzyme concentration and lowering of PGI, levels. Then under control of TXA, vasoconstriction and platelet aggregation occur. It is also possible that a disturbance of the normal balance between PGI, and TXA, could lead to some pathological conditions (for example thrombosis).

The potential value of many of the primary prostaglandins and thromboxanes as theraputic agents is limited by their broad spectrum of activity and also by their instability under physiological conditions. Thus synthetic chemists have been interested in the formation of unnatural analogues which can show the high biological potential of the parent compounds whilst at the same time demonstrating separation of activity and/or increased stability. For the series of prostaglandins PGA to PGF the last few years has seen a large concentration of effort in this area and some positive results have been achieved^{123,124}. For example the PGF_{2a} derivative chloprostenol <u>144</u> is commercially available for the control of oestrus in cattle whilst 15-methyl PGF_{2a} methyl ester <u>145</u> has found some use in the induction of abortion in women.

Because PGI_2 has only relatively recently been isolated¹²⁵ much less is known about its function and properties. However like other prostaglandins it has only limited stability. Under simulated physiological conditions PGI_2 has a halflife of 3 minutes with the degradation product being 6-keto $PGF_{1\alpha}$ (Scheme 99).

Thus there has been a certain significance attached to the synthesis of analogues of prostacyclin showing increased stability over PGI, itself. During these investigations¹²³ many compounds have been made and undergone biological evaluation. A small sample of these are shown here together with their biological activity, if known. Thus carbaprostacyclin¹²⁶, 146, shows increased stability over PGI₂ but less than 10% of its activity¹²⁷. The 13,14-dehydro prostacyclin 147 is also more stable than the parent compound and shows some platelet aggregation activity¹²⁷. The azaprostacyclin¹²⁸ 148 shows activity comparable to that of prostacyclin whilst the thiaprostacyclin 150¹²⁹ was also biologically active. The structurally elaborate carbaprostacyclin derivative¹³⁰ 151 has not yet been biologically evaluated.

146

147

148

149

<u>150</u>

151

Along with other groups^{123,126} we were interested in the synthesis of the prostacyclin derivative carbaprostacyclin <u>146</u> and also in the synthesis of any related analogues. Carbaprostacyclin has been the object of a number of synthetic approaches, for two examples see Schemes 100 and 101, and has been biologically evaluated as more stable than prostacyclin but only 0.03 times as efficient in the inhibition of platelet aggregation¹²⁴.

Scheme 100^{148}

- -

vi) H₃0

Scheme 101¹²⁶

With this object in mind we felt that the bicyclo [3.3.0] octane <u>152</u>, analogous to the compound <u>153</u> already prepared in these laboratories¹³¹, would represent an ideal starting point.

The scope of this part of the project was to prepare the unsaturated ester 155 from 152 and if possible take this material through to a compound more closely resembling carbaprostacyclin. The full retrosynthetic analysis for this route is shown (Scheme 102).

155

From a synthetic viewpoint, 152 should be available in the same way as 153¹³¹. Retro-Dieckmann ring opening followed by ring closure (section 2.3.1) should give 154 which on reduction, conversion of the resultant alcohol to a better leaving group and elimination should give 155.

For a detailed discussion on how 155 might ultimately be converted into carbaprostacyclin see section 4.3.

4.2 Results and discussion

The published procedure¹³¹ to the bicyclo [3.3.0] octane 153 is shown in Scheme 103.

i) $CH_3CH_2NO_2/tetramethylguanidine$ ii) $TiCl_3/NH_4OAc/H_2O/NaOCH_3$ iii) CF_3COOH/H_2O iv) $NaH/THF, \underline{1d}/reflux$

Scheme 103

The adaption of this route to our desired compound <u>152</u> was expected to proceed on similar lines. Thus the cyclopentenone ketal <u>159</u> was subjected to treatment with nitromethane and tetramethylguanidine (TMG) under a nitrogen atmosphere to give the adduct <u>160</u> as a mixture of cis and trans isomers in 92% yield.

iii) CF₃COOH/H₂O

Scheme 104

Conversion of the nitro group to the aldehyde using McMurrey's procedure¹³² gave the formylester <u>161</u>. After treatment of this with aqueous trifluoroacetic acid (TFA)¹³¹ and subsequent work up, see experimental section, a product was obtained which still retained peaks in the NMR spectrum due to the acetal protons. The only way this could be rationalised was by invoking an acid catalysed transfer of the ethane-1,2-diol unit to give the ketoester <u>163</u>. The absence of an aldehyde C-H stretch in the IR spectrum appeared to confirm this. Presumably the greater reactivity of aldehydes, with respect to ketones, towards nucleophilic attack by the alcohol explains why this effect was not observed in the conversion of 165 to 166.

163

One solution to this problem would appear to be to reverse the order of the last two transformatios shown in Scheme 104. Thus (Scheme 105) the nitroester <u>160</u> was converted to <u>167</u>, using identical conditions to those outlined above, and the latter was converted into the tricarbonyl 162.

i) CF_3COOH/H_2O ii) $TiCl_3/NH_4OAc/H_2O/NaOAc$ The yield of the second step is quite low, at best only 35%, and the reason for this is not exactly clear.

There are a number of methods known for the conversion of nitro groups to carbonyls (known as the Nef reaction) based, in general, on solvolytic, reductive, oxidative, neutral or solid-phase procedures¹³³. Several out of these were tried in an attempt to convert <u>167</u> into <u>162</u> in better yield than that obtained using titanium

trichloride. Thus hydrogen peroxide in the presence of potassium carbonate¹³⁴ under the published conditions produced a number of products. It may be that under the conditions used, i.e. excess base, the 1,3-ketoester <u>167</u> has become converted to the corresponding enolate <u>168</u> and the oxidising agent has attacked the resultant carbon-carbon double bond. When sodium permanganate¹³⁵ was added to the lithium nitronate salt of <u>167</u> and the reaction mixture subjected to prolonged stirring only the reactant <u>167</u> was recovered.

Similarly no products were observed using ceric ammonium nitrate¹³⁶ with >80% of <u>167</u> being recovered. Therefore we were forced to return to the use of the reductive titanium trichloride procedure.

As expected the tricarbonyl <u>162</u> cyclised with the phosphonium salt <u>1d</u> in the presence of NaH to give the bicyclo 3.3.0 octane <u>152</u>. In order to convert this into the isomeric 1,3-ketoester <u>154</u> we envisaged using a retro-Dieckmann ring opening reaction followed by spontaneous ring closure (Scheme 106). The 1,3-ketoester <u>154</u> should be formed specifically due to its ability to enolise under the reaction conditions (see section 2.3.1).

Scheme 106

When 152 was treated with sodium methoxide in a variety of solvents the same product was formed in each case. The best method was to use methanol as the solvent, whereby the product was obtained in 67% yield. The NMR spectrum of this product contained two singlets at approximately 3.7 ppm with a combined integration ratio due to six This appeared to indicate that although retroprotons. Dieckmann ring opening occurred to give the diester 169 this was reluctant to undergo ring closure under the Thus this compound was isolated from reaction conditions. the reaction mixture and attempts were made to perform the Dieckmann reaction using other combinations of base and solvent. Unfortunately none of these were successful with no ring closed products being detected. This did not prove to be a serious disadvantage as an alternative approach to the synthesis of 154 from 152 was available. According to an earlier study¹³⁷ only one method was successful for the decarboxylation of the related compound 153^{26} , this involving the use of sodium cyanide in hexamethyl phosphoramide¹³⁸.

Using these reagents (Scheme 107) <u>170</u> was obtained from <u>152</u> in 59% yield. The methoxylcarbonyl group was reattached using NaH and dimethylcarbonate¹³⁹ to give the 1,3-ketoester <u>154</u>. Selective reduction of the ketone group in <u>154</u> with sodium borohydride in methanol gave, presumably, the alcohol <u>171</u> derived from attack of hydride at the more available top face of the molecule. A successful synthesis of the ester <u>155</u> was achieved by the formation of the O-mesylate from <u>171</u> and elimination of methanesulphonic acid to give 155 in 64% overall yield from 171.

i) NaCN/HMPA/70[°]C ii) NaH/(CH₃0)₂CO/p-dioxan iii) NaBH₄/CH₃OH iv) CH₃SO₂C1/(C₂H₅)₃N/CH₂C1₂ v) DBU/CH₂C1₂

Scheme 107

4.3 Future work

Having obtained the unsaturated ester <u>155</u> copper catalysed conjugate¹⁴⁰ addition of the vinyl iodide <u>172</u> should give the adduct <u>173</u>. From this conversion to the α hydroxi¹⁴¹ or α methyl thio¹⁴² acids (<u>176</u> and <u>175</u>) and oxadative decarboxylation should give the ketone <u>177</u> (Scheme 108) from which the protected alcohol <u>156</u> (see Scheme 102)

Hydrolysis of the vinylsulphide in <u>156</u> (Scheme 102) would give <u>157</u> and Wittig condensation of this with the phosphorane <u>178</u> should give a mixture of <u>158</u> and its geometrical isomer <u>179</u>.

$$Ph_3PCH(CH_2)_3COO$$

<u>178</u>

Double deprotection of this should give raceamic carbaprostacyclin 146.

It is also conceivable that novel analogues of carbaprostacyclin could be obtained either by the preparation of more novel vinylphosphonium salts or using the ability of sulphur, in one or more of its oxidation states, to stabilise adjacent anions.

S(0)_nCH₂ ^C5^H11 Ξ OP 0P

5. EXPERIMENTAL

5.1 General Information

Infrared spectra were obtained on a Pye-Unicam SP3-100 spectrophotometer. Samples were prepared as potassium bromide (KBr) discs or liquid films. ¹H NMR spectra were obtained on one of the following:- Joel C60, Joel PMX si or Bruker WP80 spectrophotometers. Samples were prepared in the solvent stated in each method. UV spectra were obtained on a Perkin Elmer 550-S spectrophotometer. Microanalyses were performed by EMAL, Beauworthy, Devon or the City University, London.

IR data is given in cm^{-1} . NMR data is given on the δ scale using tetramethylsilane as the internal reference. Abbreviations used for the form of the signal are as follows:- s = singlet, d = doublet, t = triplet, q = quartet and m = multiplet. UV data was obtained in ethanol as the solvent and is given in nm. Melting points are uncorrected.

Rapid column chromatography and column chromatography were performed on Merck 7734 and Merck 7736 silica gel respectively. Thin-layer chromatography was performed on Merck 5554 Alufolien Kieselgel $60F_{254}$ plates. Solvents for column chromatography were distilled before use. Petrol refers to that fraction of petroleum spirit boiling between 40 and 60° c.

Dry THF was obtained by distillation from potassium metal. Dry diethyl ether was obtained by distillation from LiAlH₄. Dry CH₂Cl₂ was distilled from calcium hydride and

stored over 4A molecular sieves. Dry diisopropylamine was distilled from calcium hydride and stored under nitrogen over 4A molecular sieves. Dry DMF was obtained by heating over calcium hydride followed by distillation under reduced pressure onto 4A molecular sieves. Dry pyridine was obtained by storage over potassium hydroxide. n-Butyl lithium was standardised before use and its molarity is given where needed. Sodium hydride was obtained as a 60% dispersion in mineral oil. Dry nitromethane was obtained by washing with conc H_2SO_4 , water, saturated sodium carbonate, water and drying over MgSO₄ and distillation from calcium hydride. Dry methanol was distilled from sodium.

All reactions requiring inert atmospheres were done under nitrogen.

Ozonolysis reactions were performed using a BOC Mark II ozonizer. Hyflo super cell filter aid was obtained from BDH chemicals.

N-(4-Toluenesulphonyl)-2-amino-5-methylbenzoic acid (24)

Into a three necked flask fitted with a thermometer and magnetic stirrer was placed water (300 mls). This was warmed slowly to 60°C with stirring while sodium carbonate (50.3g, 0.473 mol) was added in portions. With the temperature of the liquid maintained at $60-65^{\circ}C$, 13 (29.78g, 0.197 mol) was added in 5 portions. Then pTsCl (41.17g, 0.217 mol) was introduced over 20 minutes with the temperature of the reaction mixture kept below 70°C. This temperature was maintained for a further 20 minutes and then raised to 80°C whilst 1.5g of charcoal was added cautiously. The reaction mixture was filtered on hot buchner apparatus and the filtrate added to a swirled solution of 5M HCl (100 mls). The solid was stirred manually for 10 minutes and filtered, washed with HCl(2M), water and dried at 60°C under vacuum overnight to give 24 as a brown solid. 60.5g, 100% mp 195-199^OC. IR (KBr) 3400-2300, 3210, 1675, 1580, 1340 and 1170. ¹H NMR (CDCl₂) 2.30 (s, 3H), 6.47 (broad s, 1H), 7.10-7.90 (m, 7H) and 10.18 (s, 1H).

N-(2-Hydroxymethyl-4-methylphenyl)-4-toluenesulphonamide (25)

To a flask fitted with a reflux condenser, dropping funnel and inert atmosphere was charged dry THF (30 mls). LiAlH₄ (3.8g, 0.1 mol) was added in several portions and the slurry stirred for 5 minutes. Meanwhile the acid <u>24</u> (15.24g, 0.05 mol) in THF (125 mls) was placed in the dropping funnel and introduced into the flask dropwise. After complete addition the reaction mixture was refluxed for 1 hr. HCl (2M) was carefully added and the THF layer removed. The aqueous layer was extracted with ethyl acetate and the combined organic phases washed with saturated sodium bicarbonate (twice), brine and dried over MgSO₄. The solvent was removed to give the product as a brown solid used in the next step without purification. 13.74g, 94.5%. mp 144-146^oC. IR (KBr) 3450, 3100, 3050, 2960, 2920, 1600, 1495, 1320 and 1150. ¹H NMR (CDCl₃) 2.26 (s, 3H), 2.38 (s, 3H), 4.35 (s, 2H) and 6.85-7.78 (m, 9H). Microanalysis found C, 61.95; H, 6.03; N, 4.94. $C_{15}H_{17}NO_3S$ requires C, 61.82; H, 5.88; N, 4.83.

<u>N-(2-Formyl-4-methylphenyl)-4-toluenesulphonamide</u> (14)

Pyridinium chlorochromate (13.82g, 64.2 mmol) and dry dichloromethane (150 mls) were placed in a flask fitted with mechanical stirring and the suspension stirred for 5 minutes. The alcohol $\underline{25}$ (12.46g, 43 mmol) dissolved in a minimal amount of the same solvent was added and stirring continued for 3 hr. At the end of this time the liquid was decanted from the solid which was washed several times with ether. The combined solvent was passed through a short pad of Merck 7734 grade silica and evaporated to give a pale brown solid. 11.56g, 93.4%. mp 114-115^oC IR (KBr) 3150, 3080, 2930, 2860, 2760, 1685, 1590, 1500, 1345 and 1155. ¹H NMR (CDCl₃) 2.34 (s, 3H), 2.37 (s, 3H), 7.05-7.9 (m, 7H), 9.75 (s, 1H) and 10.57 (s, 1H). Microanalysis found C, 59.76; H, 5.50. $C_{15}H_{15}NO_{3}S$ requires C, 59.86; H, 5.30.

1,2-Dihydro-6-methyl-3-methylthio-1(4-toluenesulphonyl)

quinoline (15c)

To a flame dried flask fitted with an inert atmosphere, reflux condenser and a magnetic stirrer was charged sodium hydride (0.2q, 5 mmol). This was washed once with petrol and the solvent removed. Dry THF (50 mls) was added with stirring followed by the aldehyde 14 (1.302g, 4.5 mmol) in one portion. After stirring for 20 minutes the phosphonium salt 1c (1.85g, 5 mmol) was introduced as a solid, after an additional 20 minutes at room temperature the reaction mixture was refluxed for 3 The reaction mixture was poured into ethyl acetate/ hours. HCl(2M) and the aqueous phase extracted with more ethyl acetate. The combined organic layers were dried over MgSO, and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:3) to give the product as a pale yellow solid. 0.93g, 70%. mp 126-128^oC. IR (KBr) 3100, 2950, 1615, 1605, 1490, 1365 and 1165. ¹NMR (CDCl₂) 2.12 (s, 3H), 2.34 (s, 3H), 2.39 (s, 3H), 4.35 (s, 2H), 5.50 (s, 1H) and 6.70-7.78 (m, 7H). Microanalysis found C, 62.33; H, 5.51; N, 3.96. C₁₈H₁₉S₂O₂N requires C, 62.58; H, 5.54; N, 4.05.

1,2-Dihydro-6-methyl-3-phenylthio-1(4-toluenesulphonyl) quinoline (15d)

Prepared in the same way as <u>15c</u> from sodium hydride (.153g, 3.8 mmol), <u>14</u> (lg, 3.46 mmol) and <u>1d</u> (1.99g, 3.8 mmol) in THF (40 mls) with refluxing of the final reaction mixture for 2 hours. 1.27g, 90.1%. mp 115-117⁰C. IR (KBr) 3100, 2950, 2900, 1620, 1605, 1355 and 1165. ¹H NMR (CDCl₃) 2.35 (s, 3H), 2.41 (s, 3H), 4.40 (s, 2H), 5.67 (s, 1H) and 6.69-7.70 (m, 7H). Microanalysis found C, 67.48; H, 5.17; N, 3.37. C₂₃H₂₁S₂NO₂ requires C, 67.78; H, 5.19; N, 3.44.

1,2-Dihydro-3-ethoxy-6-methyl-1(4-toluenesulphonyl)
quinoline (15b)

Prepared in the same way as <u>15c</u> and <u>15d</u> from sodium hydride (0.212g, 5.3 mmol), <u>14</u> (1.39g, 4.8 mmol) and <u>1b</u> (2.16g, 5.3 mmol) in THF (50 mls) with refluxing of the final reaction mixture for 2 days. 0.215g, 13%. mp 108-110^oC. IR (KBr) 3080, 2950, 1650, 1600, 1490, 1355 and 1165. ¹H NMR (CDCl₃) 1.27 (t, 3H, J = 6 Hz), 2.35 (s, 3H), 2.39 (s, 3H), 3.50 (q, 2H, J = 6 Hz), 4.30 (s, 2H), 4.91 (s, 1H) and 6.75-7.70 (m, 7H). Microanalysis found C, 66.46; H, 6.25; N, 4.09. $C_{19}H_{21}NSO_{3}$ requires C, 66.45; H, 6.16; N, 4.08.

<u>6-Methyl-3-oxo-1,2,3,4 tetrahydro-1(4-toluenesulphonyl)</u> quinoline (16)

Dry diethylether (3 mls) was saturated with perchloric acid (72%) in a separating funnel and the excess acid removed. The vinylether <u>15b</u> (57 mg) was dissolved in the ether and the mixture stirred for 30 minutes at room temperature. The solution was poured into ether/saturated sodium bicarbonate and the organic phase dried over $MgSO_4$. Evaporation of the solvent gave the product as a white solid. 51.3 mg, 98%. mp 109-110^OC. IR (KBr) 2910, 1720, 1590, 1350 and 1160. ¹H NMR (CDCl₃) 2.35 (s, 3H), 2.40 (s, 3H), 2.65 (s, 2H), 4.26 (s, 2H) and 6.90-7.81 (m, 7H). Microanalysis found C, 64.92; H, 5.55; N, 4.56. C₁₇H₁₇NSO₃ required C, 64.74; H, 5.43; N, 4.44.

Methyl N-(2-formyl-4-methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (37)

A flame dried flask fitted with an inert atmosphere and magnetic stirring was charged with sodium hydride (0.229g, 5.71 mmol). This was washed once with petrol and the solvent removed. Dry DMF (10 mls) was added, followed by the aldehyde 14 (1.5g, 5.18 mmol) in two portions. The resultant solution was stirred for 5 minutes at room temperature and methyl bromoacetate (0.874g, 5.71 mmol, 0.541 mls) introduced rapidly. The reaction mixture was stirred at 40[°]C for 1 hour and poured into ethyl acetate/ HCl(2M). After separation of the layers the aqueous layer was reextracted with more ethyl acetate and the combined extracts washed with brine and dried over $MgSO_A$. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:2) to give the product as a pale yellow solid. 1.82g, 98%. mp 153-155^OC. IR (KBr) 3050, 2950, 2890, 2750, 1755, 1695, 1600, 1355 and 1165. ¹H NMR (CDCl₃) 2.40 (s, 3H), 2.45 (s, 3H), 3.68 (s, 3H), 4.40 (broad s, 2H), 6.61-7.69 (m, 7H) and 10.49 (s, 1H). Microanalysis found C, 59.76; H, 5.50; N, 3.96. C₁₈H₁₉NSO₅ requires C, 59.82; H, 5.30; N, 3.88.

Methyl N-(2(2-methoxy)ethenyl-4-methylphenyl)-N-(4toluenesulphonyl)-2-aminoacetate (42)

A flame dried flask fitted with inert atmosphere, rubber septum and magnetic stirring was charged with dry

THF (30 mls). Diisopropylamine (2.12g, 21 mmol, 2.94 mls) was added and the flask cooled to O^OC. n-Butyl lithium (14.1 mls, 21 mmol, 1.48 Mol solution in hexane) was introduced by syringe and stirring continued for 15 minutes at O^OC. After addition of the phosphonium salt 40 (7.20g, 21 mmol) the red ylid formed and stirring was continued for a further 15 minutes at O^OC. The aldehyde 37 (2.1g, 5.82 mmol) dissolved in THF (20 mls) was added and after 20 minutes the reaction was worked up by pouring into ethyl acetate/ saturated ammonium chloride, the aqueous phase was reextracted with more ethyl acetate and the combined organic phases washed with brine and dried over MgSO,. Column chromatography of the residue after evaporation (ethyl acetate:petrol 1:4) gave the vinylethers 42. 0.515g, 19.8%. IR (liq film) 2950, 1740, 1660, 1510, 1340, 1165 and 1090. ¹H NMR (CDCl₃). <u>z isomer</u> 2.30 (s, 3H), 2.43 (s, 3H), 3.64 (s, 3H), 3.76 (s, 3H), 4.29 (broad s, 2H), 5.38 (d, lH, J = 5 Hz), 6.11 (d, lH, J = 5 Hz) and 6.79-7.80 (m, 7H). e isomer 2.29 (s, 3H), 2.42 (s, 3H), 3.55 (s, 3H), 3.67 (s, 3H), 4.29 (broad s, 2H), 5.76 (d, 1H, J = 9 Hz) and 6.78-7.72 (m, 8H).

Methyl-N-(2-hydroxymethyl-4-methylphenyl)-N-(4toluenesulphonyl)-2-aminoacetate (38)

The alcohol <u>25</u> (13.74g, 47.8 mmol) was dissolved in ethylvinyl ether (140 mls) at room temperature with stirring. Hydrochloric acid (10 M, 0.5 mls) was added and the solution stirred overnight. The reaction mixture was neutralised with saturated sodium bicarbonate, dried over MgSO₄ and the solvent evaporated to give the product as a

brown oil (100%). This was immediately dissolved in dry DMF (75 mls) and added to petrol washed sodium hydride (2.3g, 58.4 mmol). After stirring for 5 minutes, methyl bromoacetate (6.77 mls, 10.94g, 73 mmol) was added by syringe and stirring continued for a further 15 minutes at 40[°]C. The reaction mixture was poured into ethyl acetate/ HCl(2M) and the aqueous layer extracted with more ethyl acetate. After removal of most of the solvent the residue was added to HCl (2 M, 100 mls) and the mixture stirred vigorously overnight. This was then neutralised with saturated sodium bicarbonate and extracted with ethyl acetate. After drying over MgSO, and evaporation of the solvent the residue was subjected to column chromatography (ethyl acetate:petrol 1:2) to give 38 12.58g, 73.4%. mp 81-83°C. IR (KBr) 3350, 2980, 1755, 1610, 1510, 1360 and 1160. ¹H NMR (CDCl₂). 2.35 (s, 3H), 2.48 (s, 3H), 3.38 (broad s, 1H, OH), 3.69 (s, 3H), 4.29 (d, 2H, J = 14 Hz), 4.83 (s, 2H) and 6.31-7.62 (m, 7H). Microanalysis found C, 59.62; H, 6.02; N, 3.90. C₁₈H₂₁NSO₅ requires C, 59.49; H, 5.82; N, 3.85.

Methyl N-(2-bromomethyl-4-methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (45)

The alcohol <u>38</u>¹⁴³ (4.71g, 13 mmol) was placed in a flame dried flask, fitted with an inert atmosphere and magnetic stirrer, together with dry DMF (50 mls). To this was added triphenylphosphine (6.82, 26 mmol) and the reaction mixture cooled over ice. Bromine was added dropwise until the first permanent orange colour persisted, after which the solution was allowed to warm to room temperature and stirred for 45 minutes. The reaction mixture was poured into HCl(2M) and extracted several times with ethyl acetate, the combined organic phases were washed with saturated sodium bicarbonate, water and brine, dried over MgSO₄ and the solvent removed under vacuum. The residue was subjected to rapid column chromatography (ethyl acetate:petrol 1:1) to give the bromide $\underline{45}$ as a solid 4.55g, 82.5%. mp 108-109^OC. IR (KBr) 2950, 1755, 1610, 1510, 1340, 1210 and 1160. ¹H NMR (CDCl₃) 2.34 (s, 3H), 2.44 (s, 3H), 3.71 (s, 3H), 4.48 (s, 2H), 4.31-5.04 (m, 2H) and 6.7-7.68 (m, 7H). Microanalysis found C, 50.60; H, 4.77; N, 3.22. C₁₈H₂₀BrNSO₄ requires C, 50.71; H, 4.73; N, 3.28.

. .

Methyl-N-(2-cyanomethyl-4-methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (46)

The halide 45 (4.55g, 10.7 mmol) prepared above was added to a solution of sodium cyanide (0.58g, 11.8 mmol) dissolved in dry DMF (35 mls) in a flame dried flask fitted. with an inert atmosphere. The deep yellow solution was stirred for 1 hr at room temperature and the reaction then quenched with HCl(2M). This was extracted with ethyl acetate and the organics washed with saturated sodium bicarbonate, brine and dried over $MgSO_A$. Column chromatography of the residue after evaporation (ethyl acetate:petrol 1:4) gave 3.82g, 96%. mp 123-125^OC. IR (KBr) 3010, 2950, 2920, 46. 2245, 1750, 1590, 1500, 1340, 1225 and 1160. ¹H NMR (CDCl₂) 2.37 (s, 3H), 2.46 (s, 3H), 3.69 (s, 3H), 3.78-4.77 (series of m, 4H) and 6.32-7.6 (m, 7H). Microanalysis found C, 61.21; H, 5.45; N, 7.39. C₁₉H₂₀N₂SO₄ requires C, 61.27; H, 5.41; N, 7.52.

Methyl N-(2-carbamoylmethyl-4-methylphenyl)-2-amino

acetate (47b)

<u>46</u> (65 mg) was added to precooled H_2SO_4 (10 Mol, 0.2 mls) at O^OC with stirring. After 30 minutes saturated sodium bicarbonate was added and the aqueous phase extracted with ether. The combined organic phases were washed once with brine and dried over MgSO₄. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:3) to give the product as a red solid. 23 mg, 62%. mp 153-155^OC. IR (KBr) 3400, 3270, 2940, 2910, 1740, 1705, 1655, 1615, 1580, 1490 and 1210. ¹H NMR (CDCl₃) 2.31 (s, 3H), 3.76 (s, 3H), 4.55 (s, 2H), 6.59-7.5 (m, 4H), and 8.5 (broad s, 2H).

<u>N-(2-Formyl-4-methylphenyl)-N-(2-propenyl)-4-</u> toluenesulphonamide (51)

A flame dried flask fitted with inert atmosphere and magnetic stirring was charged with sodium hydride (0.76g, 19 mmol). This was washed once with petrol and the solvent removed. Dry DMF (40 mls) was added followed by <u>14</u> (5g, 17.3 mmol) in two portions. The resultant mixture was stirred for 5 minutes and allyl bromide (2.30g, 19 mmol, 1.65 mls) added by syringe. After heating to 40° C for 1 hr the solution was poured into ethyl acetate/HCl(2M) and the aqueous layer extracted with more ethyl acetate. The combined extracts were washed with brine, dried over MgSO₄ and the residue after evaporation was subjected to column chromatography (ether:petrol 1:1) to give <u>51</u>. 5.32g, 93.5%. mp 77-78^oC. IR (KBr) 2860, 2750, 1690, 1600, 1360 and 1165. ¹H NMR (CDCl₃) 2.38 (s, 3H), 2.42 (s, 3H), 3.73-4.62 (broad s, 2H), 4.80-5.19 (m, 2H), 5.46-6.04 (m, 1H), 6.50-8.00 (m, 7H) and 10.36 (s, 1H). Microanalysis found C, 65.98; H, 5.89; N, 4.24. C₁₈H₁₉NSO₃ requires C, 66.24; H, 5.81; N, 4.25.

N-(2(2-Methoxy)ethenyl-4-methylphenyl)-N-(2-propenyl)-4toluenesulphonamide (52)

A flame dried flask fitted with an inert atmosphere and magnetic stirring was charged with THF (100 mls) and diisopropylamine (3.08g, 30.4 mmol, 4.26 mls). After cooling to O^OC n-butyl lithium (19.14 mls, 1.59 Mol, 30.4 mmol) was added by syringe and stirring continued for 15 minutes at 0°C. After addition of the phosphonium salt 40 (10.42g, 30.4 mmol) the red ylid was observed and this was stirred for a further 15 minutes at O^OC. The aldehyde 51 (5g, 15.2 mmol) in THF (40 mls) was introduced and after 1 hour at O^OC the solution was poured into ethyl acetate/saturated ammonium chloride. The aqueous phase was extracted with more ethyl acetate and the combined extracts washed with brine and dried over ${\rm MgSO}_4.$ The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:9) to give 52. Least polar isomer (E) 1.79g, 33.0%. mp 90-91⁰C. IR (KBr) 3040, 2900, 1625, 1590, 1335 and 1150. ¹H NMR (CDCl₃) 2.30 (s, 3H), 2.44 (s, 3H), 3.60 (s, 3H), 4.12 (broad s, 2H), 4.81-4.19 (m, 2H), 5.46-6.21 (m, 1H), 5.90 (d, 1H, J = 10 Hz) and 6.52-7.76 (m, 8H). More polar isomer (Z) 1.67g, 30.8%. Oil. IR (liq film) 3050, 2910, 2840, 1635, 1590, 1340 and 1155. ¹H NMR (CDCl₂) 2.30 (s, 3H), 2.39 (s, 3H), 3.60 (s, 3H), 3.90 (d, 2H), J = 6 Hz, 4.59-4.98 (m, 2H), 5.19 (d, 1H, J = 6 Hz),

5.20-5.95 (m, 1H), 5.81 (d, 1H, J = 6 Hz) and 6.38-7.58 (m, 7H). Microanalysis (isomeric mixture) found C, 67.03; H, 6.55; N, 3.91. C₂₀H₂₃NSO₃ requires C, 67.12; H, 6.49; N, 3.92.

Benzyl N-(2-propenyl)-N-(4-toluenesulphonyl)-2-amino-5-methylphenylacetate (54)

A mixture of the isomers prepared above (1.06g, 2.97 mmol) was dissolved in 50 mls of THF and 8 mls of water in a flask fitted with magnetic stirring and an inert atmosphere. Mercuric acetate (1.88q, 6 mmol) was added and the bright yellow solution was stirred at room temperature for 1 hour. At the end of this time the reaction mixture was poured into a separating funnel containing benzene/potassium iodide (7% solution in water, 250 mls). The organic phase was washed with brine and dried over MgSO,. After evaporation the aldehyde was obtained as a viscous white oil. This was dissolved in acetone and treated with Jones reagent. This was worked up in the usual way to give the acid 53. 0.3g, 25.9%. IR (KBr) 3600-2400, 2910, 1700, 1635, 1590, 1335 and 1150. This (0.3g, 0.83 mmol) was dissolved in dry DMF (3 mls) and added to petrol washed sodium hydride (40 mg, 1 mmol) in a flame dried flask fitted with an inert atmosphere. This was stirred for 5 minutes at room temperature after which benzyl bromide (0.171g, 1 mmol, 0.12 mls) was added by syringe. After 20 minutes at 40[°]C the reaction mixture was poured into ethyl acetate/ HCl (2M) and the organic phase washed with saturated sodium bicarbonate, brine and dried over MgSO,. The residue after evaporation was subjected to column chromatography

(ethyl acetate:petrol 1:6) to give the ester as clear oil 0.23g, 61.7% (from the acid 53). IR (liq film) 3010, 2940, 2910, 1725, 1630, 1590, 1490 1340 and 1155. ¹H NMR (CDCl₃) 2.30 (s, 3H), 2.42 (s, 3H), 3.69-4.45 (series of m, 4H), 4.72-5.08 (m, 2H), 5.17 (s, 2H), 5.4-5.91 (m, 1H) and 6.32-7.70 (m, 12H). Microanalysis found C, 69.61; H, 6.43; N, 3.26. $C_{26}H_{27}NSO_4$ requires C, 69.46; H, 6.06; N, 3.12.

Methyl N-(2-benzyloxycarbonylmethyl-4-methylphenyl) N-(4-toluenesulphonyl)-2-aminoacetate (55)

The alkene (0.318g) was ozonolysed at -78° C in CH₂Cl₂ (40 mls). The solvent was removed from the crude ozonides using a stream of nitrogen and the residue taken up in acetone and treated dropwise with a slight excess of Jones reagent to give <u>57</u>. After the usual work up the solvent was dried over MgSO₄ and evaporated to give a clear oil which was dissolved in a small volume of ether and treated with diazomethane to give, after column chromatography, (ethyl acetate:petrol 1:3) the diester 53 as a colourless oil. 0.315g, 92.6%. IR (liq film) 2920, 1725, 1590, 1345, 1200 and ll60. ¹H NMR (CDCl₃) 2.30 (s, 3H), 2.42 (s, 3H), 3.62 (s, 3H), 3.71-4.12 (m, 2H), 4.30 (s, 2H), 5.17 (s, 2H) and 6.63-7.67 (m, 12H).

Methyl N-(2-phenylthiocarbonylmethyl-4-methylphenyl) N-(4-toluenesulphonyl)-2-aminoacetate (36)

The diester <u>53</u> (184 mg) was dissolved in 5 mls of a 5% ethyl acetate 95% ethanol mixture and hydrogenated over 5% palladium on charcoal. The mixture was filtered through Hyflo super cell and the solvent removed. The residual oil was taken up in ether washed several times with saturated sodium bicarbonate and the combined aqueous layers were reacidified with HCl (2M). The resultant solution was extracted with more ether and the combined organic phases dried over $MgSO_A$ followed by removal of the solvent to give the crude acid 39. 150 mg 92% IR (liq film) 3500-2600, 2920, 1715, 1590, 1490, 1345, 1205 and 1155. This was immediately dissolved in a THF (4 mls) solution of thiophenol (46 mg, 0.422 mmol) and dicyclohexyl carbodiimide (87 mg, 0.422 mmol) under an inert atmosphere. After stirring for 2 hrs, the solid was filtered using Hyflo super cell and the residue after evaporation subjected to column chromatography to give 36 as a viscous oil. 94.5 mg, IR (liq film) 3050, 2920, 2845, 1750, 1685, 1600, 518. 1345, 1200 and 1150. ¹H NMR (CDCl₃) 2.32 (s, 3H), 2.44 (s, 3H), 3.65 (s, 3H), 3.80-4.13 (m, 2H), 4.37 (m, 2H) and 6.8-7.75 (m, 12H).

N-(2-Propenyl)-N-(2(2(1,3-dithia)cyclohexylidene)methyl-4methylphenyl)-4-toluenesulphonamide (58)

A flame dried flask fitted with inert atmosphere and magnetic stirrer was charged with dry THF (2 mls) and 2-trimethylsilyl-1,3-dithiane (0.142 mls, 0.75 mmol). This was cooled to -78° C and n-butyl lithium (48 mg, 0.75 mmol, 0.47 mls) added by syringe. After 30 minutes at the same temperature the aldehyde <u>51</u> (0.1g, 0.3 mmol) in THF (2 mls) was added and the solution allowed to warm to room temperature. After 3 hours the reaction was poured into ethyl acetate/HCl (2M) and the organic layer washed with brine and dried over MgSO₄. The residue after evaporation was subjected to column chromatography (ethyl acetate: petrol 1:4) to give <u>58</u> as a pale yellow solid. 0.111g, 85%. mp 116-118^oC. IR (KBr) 3030, 2940, 2880, 1600, 1490, 1355 and 1170 cm⁻¹. ¹H NMR 2.00-2.40 (m, 2H), 2.34 (s, 3H), 2.43 (s, 3H), 2.81-3.05 (q, 4H, J = 4 Hz), 4.1 (d, 2H, J = 5 Hz), 4.82-5.14 (m, 2H), 5.50-6.05) (m, 1H) and 6.61-7.78 (m, 8H). Microanalysis found C, 61.22; H, 5.93; N, 3.20. $C_{22}H_{25}NS_{3}O_{2}$ requires C, 61.22; H, 5.84; N, 3.24.

<u>N-E(2(2-Methylsulphinyl-2-methylthio)ethenyl-4-methylphenyl)-</u> <u>4-toluenesulphonamide</u> (<u>60</u>)

A flame dried flask fitted with inert atmosphere and magnetic stirring was charged with the aldehyde 14 (3g, 10.4 mmol), 59 (2.14g, 17.3 mmol) and THF (12 mls). TO this was then added Triton B (12 mls). The resulting mixture was heated to reflux for 2.5 days, allowed to cool and poured into ethyl acetate. This was washed with saturated ammonium chloride and the aqueous layer reextracted with more ethyl acetate. The combined organic phases were washed with brine and dried over $MgSO_4$. The residue after evaporation was subjected to rapid column chromatography (ethyl acetate:petrol 1:3 followed by 3:1) to give 14 0.78g and 60 as a pale yellow solid 2.34g 77% (based on recovered <u>14</u>). mp 160-162⁰C. IR (KBr) 3120, 2920, 2840, 1595, 1330, 1155 and 1035. ¹H NMR (CDCl₃) 2.03 (s, 3H), 2.32 (s, 6H), 2.72 (s, 3H), 6.80-7.53 (m, 8H) and 7.60 (broad s, 1H). Microanalysis found C, 54.25; H, 5.38; N, 3.46. C₁₈H₂₁NS₃O₃ requires C, 54.65; H, 5.35; N, 3.54.

N-(2-propenyl)-4-toluenesulphonamide (61)

To a flame dried flask fitted with inert atmosphere and magnetic stirring was charged sodium hydride (0.183g, 4.57 mmol). This was washed once with petrol and the solvent removed. Into the flask was placed dry DMF (10 mls) followed by 60 (1.5g, 3.79 mmol) in two portions. After 5 minutes, allyl bromide (0.55g, 4.55 mmol, 0.4 mls) was introduced and the flask heated to 40° C for 10 minutes. At the end of this time the reaction mixture was poured into ethyl acetate which was washed with saturated ammonium chloride. The aqueous layer was reextracted with more ethyl acetate and the combined organic layers washed with brine and dried over MgSO,. The residue after evaporation was subjected to rapid column chromatography (ethyl acetate: petrol 1:1) to give a 61 as a gum 1.42, 86.3%. IR (liq film) 2905, 1630, 1590, 1340, 1155 and 1060. ¹H NMR (CDCl₂) 2.30 (s, 3H), 2.40 (s, 3H), 2.45 (s, 3H), 2.80 (s, 3H), 3.93-4.20 (m, 2H), 4.81-5.18 (m, 2H), 5.48-6.05 (m, 1H) and 6.55-8.00 (m, 8H). Microanalysis found C, 57.81; H, 5.89; N, 3.13. C₂₁H₂₅NS₃O₃ requires C, 57.90; H, 5.79; N, 3.21.

<u>Methyl-N-E(2(2-methylthio-2-methylsulphinyl)ethenyl-4-</u> methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (63)

Prepared in the same way as <u>61</u> from <u>60</u> (2.0g, 5.05 mmol), methyl bromoacetate (0.92g, 6 mmol, 0.57 mls) and sodium hydride (0.225g, 5.6 mmol) in dry DMF (15 mls). The final reaction mixture was heated to 40° C for 5 minutes before work up. 1.85g, 78.5%. IR (liq film) 2950, 2910, 1755, 1595, 1355, 1210 and 1160. ¹H NMR 2.32 (s, 3H), 2.40 (s, 3H), 2.45 (s, 3H), 2.72 (s, 3H), 3.64 (s, 3H), 4.38 (s, 2H), 6.84-7.78 (m, 7H) and 7.95 (s, 1H). Microanalysis found C, 54.17; H, 5.49; N, 3.05. $C_{21}H_{25}NS_{3}O_{5}$ requires C, 53.94; H, 5.40; N, 3.00.

Methyl-N-(2-methylthiocarbonylmethyl-4-methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (64)

The compound prepared above (0.15g) was dissolved in 1,2-dimethoxyethane (3 mls) with stirring and to this was added HCl (0.5 mls, 10 M). After 4 days at room temperature the reaction was poured into water and extracted several times with ethyl acetate. The combined organic phases were dried over MgSO₄ and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:5) to give <u>64</u> as a clear oil. 31.2 mg, 23.1%. IR (liq film) 2920, 1750, 1680, 1595, 1495, 1340, 1210 and 1160. ¹H NMR (CDCl₃) 2.30 (s, 6H), 2.44 (s, 3H), 3.63 (s, 3H), 4.04 (d, 2H, J = 17 Hz), 4.33 (s, 2H) and 6.63-7.57 (m, 7H). Microanalysis found C, 57.39; H, 5.94; N, 3.10. $C_{20}H_{23}Ns_2O_3$ requires C, 56.99; H, 5.50; N, 3.32. Further elution with ethyl acetate:petrol 3:1 gave <u>63</u>. 61 mg, 40.7%.

Methyl N-(2(1-chloro-2-bis(methylthio)ethenyl-4methylphenyl)-N-(4-toluenesulphonyl)-2-aminoacetate (65)

The ketenedithioacetal S-oxide <u>63</u>, prepared above, (1.86g, 4 mmol) was dissolved in dichloromethane (30 mls) and HCl (4 mls, 10 Mol) added with stirring. After 2 hours the solution was poured into saturated sodium bicarbonate and the aqueous phase reextracted with more dichloromethane. The combined organic phases were dried over MgSO₄ and the solvent removed to give a clear oil which slowly solidified to give a white solid. 1.98g, 100%. mp 135-136^OC. IR (KBr) 3000, 2960, 1760, 1355, 1210 and 1165. ¹H NMR (CDCl₃) 2.27 (s, 3H), 2.35 (s, 3H), 2.42 (s, 3H), 2.48 (s, 3H), 3.59 (s, 3H), 4.48 (d, 2H, J = 5 Hz) and 7.00-7.75 (m, 7H). Microanalysis found C, 52.03; H, 5.08; N, 2.93. $C_{21}H_{24}NS_{3}O_{4}Cl$ requires C, 51.89; H, 4.98; N, 2.88.

Methyl-4-nitrobenzoate

Into a large flask fitted with a reflux condensor was placed 4-nitrobenzoic acid (74g, 0.443 mol) and dry methanol (700 mls). To this was carefully added sulphuric acid (15 mls, 10 M) and the resultant solution refluxed for 6 hours. At the end of this time the majority of the solvent was removed under vacuum and the residue dissolved in ethyl acetate. The organic phase was washed several times with saturated sodium bicarbonate and dried over $MgSO_4$. After evaporation of the solvent the product was obtained. 81g, 100%. mp 96°C (lit 96°C¹⁴⁴).

Methyl-4-hydroxyaminobenzoate (80)

To 150 mls of a 50% aqueous ethanol solution in a flask was added the ester prepared above (20g, 0.110 mol) and ammonium chloride (7g, 0.131 mol). To this was added zinc dust¹⁴⁵ (14.44g, 0.217 mol) and the temperature rises slightly, the mixture was heated to 50[°]C with stirring for 3 hours. At the end of this time the mixture was filtered on a hot buchner funnel, the filter cake washed with

-14/-

dichloromethane and the solvent removed under vacuum. The residue was extracted several times with dichloromethane and the combined organic phases dried over $MgSO_4$. Removal of the solvent gave <u>80</u> as an orange solid. 15.14g, 82.0%. mp 117-119^OC. IR (KBr) 3330, 3230, 1670, 1595, 1500 and 1280. ¹H NMR (CDCl₃/CF₃CO₂H) 3.98 (s, 3H) and 7.1-8.23 (m, 4H).

Methyl N-acetyl-N-hydroxy-4-aminobenzoate (81)

To a three necked flask fitted with a dropping funnel and magnetic stirring was charged ether (250 mls) and water (80 mls). This was cooled over ice and the ester 80 (12g, 71 mmol) and sodium bicarbonate (5.96g, 71 mmol) were introduced followed by acetyl chloride (6.67g, 85 mmol, 6.04 mls) over 30 minutes. After a further 1 hour the organic layer was removed and the aqueous layer extracted with more ether. The combined organic layers were dried over $MgSO_4$ and evaporated to give crude <u>81</u> used in the next step without purification. 11.76g, 79.5%. Further purification by column chromatography (ethyl acetate:petrol 1:2) gave pure 81. mp 108-110⁰C. IR (KBr) 3110, 2910, 2870, 1710, 1620, 1595, 1500 and 1270. ¹H NMR (CDCl₃) 2.10 (s, 3H), 3.90 (s, 3H) and 7.50-8.25 (m, 5H). Microanalysis found C,57.27; H, 5.29; N, 6.67. C10H11NO4 requires C, 57.41; H, 5.30; N, 6.69.

Malonic acid mono ^tbutyl ester (88)

A flame dried flask fitted with an inert atmosphere and magnetic stirring was charged with dry THF (700 mls) and diisopropylamine (60.71g, 0.60 mol, 84.1 mls). This was cooled to -78° C and n-butyl lithium added (38.4g, 0.60 mol, 1.53 M solution, 392 mls) by syringe. The resultant mixture was stirred for 15 minutes at -78°C and t-butyl acetate (63.06g, 0.54 mol) in THF (50 mls) added. After stirring for an additional 20 minutes gaseous CO_2 (from solid CO_2 237g, 5.4 mol) was allowed to bubble through the solution. At the end of this time the THF was partially removed under vacuum and after the addition of ether (250 mls) the organic phase was washed several times with saturated sodium bicarbonate. The combined aqueous layers were acidified with HCl (2M) and extracted several times with ether, with the latter being dried over MgSO₄. Removal of the solvent under vacuum gave the product as a brown oil 52.03g, 59.8 %. IR (liq film) 3550-2400, 2960, 1720 and 1240. ¹H NMR (CCl₄) 1.48 (s, 9H), 3.11 (s, 2H) and 10.10 (broad s, 1H).

The Condensation Product (82)

A dry flask fitted with magnetic stirring and an inert atmosphere was charged with dry THF (150 mls). To this was added, with stirring <u>88</u> (8.31g, 50.7 mmol) and dicyclohexylcarbodiimide (11.48g, 55.7 mmol). After stirring for 5 minutes the hydroxamic acid <u>81</u> (10.6g, 50.7 mmol) in dry THF (50 mls) was added and stirring continued for a further 2 hours at room temperature. The final solution was filtered through Hyflo super cell and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:4) to give <u>82</u> as an oil which slowly crystallises to a solid. 11.00g, 61.8%. mp 48-50^oC. IR (KBr) 2960, 1800, 1720, 1690, 1600 and 1280. ¹H NMR (CCl₄) 1.41 (s, 9H), 2.10 (s, 3H), 3.33 (s, 2H), 3.75 (s, 3H) and 7.19-7.88 (m, 4H). Microanalysis found C, 58.35; H, 6.31; N, 4.10. C₁₇H₂₁NO₇ requires C, 58.11; H, 6.03; N, 3.99.

tert-Butyl N-acetyl-2 amino-5-methoxycarbonyl phenylacetate (83)

The ester prepared above (11.00g, 31.3 mmol) was dissolved in toluene (150 mls) in a dry flask fitted with reflux condenser and inert atmosphere. Pyridine (2.47g, 31.3 mmol, 2.53 mls) was added by syringe and the final solution heated gently to reflux for 4 hours. At the end of this time the reaction mixture was poured into ethyl acetate/saturated sodium chloride and the organic phase dried over $MgSO_4$. The residue after evaporation was subjected to rapid column chromatography (ethyl acetate: petrol 1:2) to give 83. 5.35g, 55.6%. mp 75-77⁰C. IR (KBr) 3200, 2960, 2920, 1790, 1720, 1630, 1580, 1280 and 1150. ¹H NMR (CCl₄) 1.41 (s, 9H), 2.10 (s, 3H), 3.45 (s, 2H), 3.75 (s, 3H), 7.46-8.04 (m, 3H) and 8.85 (broad s, 1H). Microanalysis found C, 62.29; H, 7.03; N, 4.58. C₁₆H₂₁NO₅ requires C, 62.53; H, 6.89; N, 4.58.

Methyl N-acetyl-N-(2-t-butoxycarbonylmethyl-4methoxycarbonylphenyl)-2-aminoacetate (84)

A flame dried flask fitted with magnetic stirring and an inert atmosphere was charged with dry THF (50 mls). The reaction was cooled over ice and diisopropylamine added (1.94g, 19.15 mmol, 2.69 mls) followed by n-butyl lithium (1.23g, 19.15 mmol, 1.54 M solution, 12.47 mls). After

15 minutes at $0^{\circ}C$ the ester 83 prepared above (5.35g, 17.41 mmol) in THF (20 mls) was added and stirring continued for a further 15 minutes at the same temperature. Methyl bromoacetate (5.33g, 34.82 mmol, 3.30 mls) was introduced and the solution warmed to $40^{\circ}C$ for 1 hour. The volume of solvent was reduced under vacuum and the residue poured into dichloromethane/saturated ammonium chloride. The organic phase was dried over MgSO, and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 3:2) to give <u>84</u>. 3.70g, 56.1%. mp 101-102⁰C. IR (KBr) 2960, 1750, 1710, 1655, 1600, 1590 and 1210. ¹H NMR (CDCl₂) 1.38 (3, 9H), 1.78 (s, 3H), 3.52 (s, 2H), 3.64 (s, 3H), 3.82 (s, 3H), 3.52-4.75 (m, 2H) and 7.05-7.88 (m, 4H). Microanalysis found C, 60.26; H, 6.94; N, 3.71. C₁₀H₂₅NO₇ requires C, 60.15; H, 6.64; N, 3.69.

Methyl-N-acetyl N-(4-methoxycarbonyl-2-phenylthiocarbonyl methylphenyl)-2-aminoacetate (86)

The ester prepared above (3.65g) was stirred in trifluoroacetic acid (25 mls) at room temperature for 30 minutes. The majority of the solvent was removed and the residue subjected to rapid column chromatography (ethyl acetate:petrol 3:2) to give <u>85</u>. 2.44g, 78.5%. IR (KBr) 3450-2800, 2940, 1715, 1630, 1600, 1490 and 1200. ¹H NMR 1.83 (s, 3H), 3.67 (s, 3H), 3.83 (s, 3H), 3.67-4.7 (m, 4H), 7.43-8.00 (m, 3H) and 8.93 (broad s, 1H). This was immediately added to a dry flask containing THF (30 mls) and dicyclohexylcarbodiimide (1.71g, 8.31 mmol). This was stirred for 5 minutes at room temperature and thiophenol (0.83g, 7.55 mmol, 0.77 mls) added by syringe. After a further 2 hours the solution was filtered through Hyflo super cell and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 2:3) to give <u>86</u> as a clear oil 2.26g, 72.0%. IR (liq film) 3055, 2950, 2840, 1745, 1720, 1675, 1605 and 1200. ¹H NMR (CDCl₃) 1.77 (s, 3H), 3.60 (s, 3H), 3.70 (s, 3H), 3.99 (s, 2H), 3.60-4.80 (m, 2H) and 7.15-8.00 (m, 8H). Microanalysis found C, 60.69; H, 5.15; N, 3.43. $C_{21}H_{21}NSO_6$ requires C, 60.71; H, 5.09; N, 3.37.

Methyl-l-acetyl-6-methoxycarbonyl-3-oxo-1,2,3,4 tetrahydroquinolyl-2-carboxylate (92)

To a flame dried flask fitted with inert atmosphere and magnetic stirring was charged dry THF (50 mls) and diisopropylamine (0.433g, 4.28 mmol, 0.6 mls). The reaction mixture was cooled to $-78^{\circ}C$ and n-butyl lithium added (0.274g, 4.28 mmol, 1.54 M solution, 2.78 mls). After a further 15 minutes 92 (1.48g, 3.56 mmol) in THF (10 mls) was added and after 1 hour at $-78^{\circ}C$ the reaction was allowed to warm to room temperature and stirred for a further 1.5 hours. The solution was poured into ethyl acetate/HCl (2M) and the aqueous phase extracted with more ethyl acetate. The combined organic phases were dried over ${\rm MgSO}_4$ and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 2:3) to give 92. 0.2156g, 23.1%. IR (liq film) 2940, 1740, 1710, 1655, 1625 and 1190. ¹H NMR (CDCl₂) 1.81 (s, 3H), 3.65 (s, 3H), 3.85 (s, 3H), 3.60-4.65 (series of m, 3H), 7.11-7.95 (m, 3H).

4(1,1-Dimethylethyl)dimethylsilyloxybutan-2-ol

To a solution of butane-1,3-diol (2g, 22.2 mmol) and imidazole (3.77g, 55.5 mmol) in dry DMF (ly mls) was added t-butyldimethylsilylchloride (3.68g, 24.4 mmol) and the resultant solution stirred at 37° C for 12 hours. The final mixture was poured into ethyl acetate and washed several times with saturated ammonium chloride. The organic phase was dried over MgSO₄ and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:4) to give the product. 2.65g, 58.1%. IR (liq film) 3400, 2955, 2880 and 1200. ¹H NMR (CCl₄) 0.83 (s, 9H), 1.05 (d, 2H, J = 5 Hz), 1.47 (q, 2H, J = 5 Hz), 2.55 (s, 1H) and 3.50-4.13 (series of m, 3H).

4(1,1-Dimethylethyl)dimethylsilyloxybutan-2-one (99)

To dichloromethane (50 mls) in a dry flask was added, with stirring, PCC (5.26g, 25 mmol) and anhydrous sodium acetate (0.41g, 5 mmol). After 5 minutes the alcohol prepared above (3.39g, 16.6 mmol) was added and the resultant solution stirred for 2 hours. Ether was added and the liquid decanted from solid, the residue was washed with more ether and the solvent subjected to rapid column chromatography to give, after removal of the solvent <u>99</u>. 1.4g, 41%. IR (liq film) 2940, 2860, 1710 and 1260. ¹H NMR (CCl₄) 0.83 (s, 9H), 2.04 (s, 3H), 2.43 (t, 2H, J = 6 Hz) and 3.71 (t, 2H, J = 6 Hz).

The preparation of the ketenedithioacetal S-oxides 110b, 110c and 110d

These were prepared in an identical manner as

illustrated by the general procedure outlined below.

To a solution of the aldehyde <u>109</u> in THF (2 mls/g of <u>109</u>) and <u>59</u> in a dry flask fitted with an inert atmosphere was added Triton B. The resultant solution was heated to reflux for 3-4 hours and cooled to room temperature. This was then poured into ethyl acetate/saturated ammonium chloride and the aqueous phase extracted with more ethyl acetate. The combined organic phases were dried over MgSO₄ and the residue after evaporation subjected to rapid column chromatography to give the products <u>llOb-llOd</u>.

<u>110b</u> from <u>109b</u> (1.566g, 14.8 mmol), <u>59</u> (1.25g, 10 mmol, 1.07 mls) and Triton B (1 ml) gives <u>110b</u>, 1.64g, 77%. See ref. <u>7</u>7.

110c from 109c (3g, 16.2 mmol), 59 (1.358g, 10.9 mmol, 1.14 mls) and Triton B (2 ml) gives 110c. 2.04g, 63.9%. mp 33-35^oC. IR (KBr) 3040, 2970, 2900, 1420 and 1055. ¹H NMR (CCl₄) 2.20 (s, 3H), 2.65 (s, 3H) and 6.90-7.70 (m, 5H). Microanalysis found C, 41.23; H, 3.82. C₁₀H₁₁BrS₂O requires C, 41.24; H, 3.80 and 180 0.58g, 19.2%. IR (liq film) 3040, 2960, 2900, 1425 and 1020. ¹H NMR (CCl₄) 2.17 (2, 3H), 2.33 (s, 3H), 6.49 (s, 1H) and 6.70-7.56 (m, 4H).

<u>110d</u> from <u>109d</u> (2g, 14.7 mmol), <u>59</u> (1.2g, 9.6 mmol, 1 ml) and Triton B (1 ml). 1.94g, 83.6%. IR (liq film) 3040, 2980, 2905, 1590, 1565, 1250, 1150 and 1055. ¹H NMR (CCl₄) 2.23 (s, 3H), 2.60 (s, 3H), 3.70 (s, 3H) and 6.50-7.40 (m, 5H). Microanalysis found C, 54.42; H, 5.92. C₁₁H₁₄S₂O₂ requires C, 54.51; H, 5.82.

_

The preparation of chloroketene dithioacetals <u>llla-llld</u> (for the preparation of the related compound <u>65</u> see earlier). General procedure

To a solution of <u>111</u> (lg) in dry dichloromethane (25 mls) was added, with vigorous stirring, HCl (2.5 mls, 10 M). After 2-3 hours the reaction was neutralised with saturated sodium bicarbonate and the organic layer dried over MgSO₄. Removal of the solvent gave the pure compound in the case of <u>111a</u> or <u>111b</u> or after column chromatography in the case of <u>111c</u> or <u>111d</u>.

<u>111a</u> from <u>61</u> (0.53g, 1.22 mmol). 0.55g, 100%. IR (liq film) 3020, 2965, 2940, 1630, 1585, 1345 and 1160. ¹H NMR (CDCl₃) 2.33 (s, 3H), 2.38 (s, 3H), 2.45 (s, 3H), 2.50 (s, 3H), 4.05 (broad s, 2H), 5.00 (m, 2H), 5.54-6.09 (m, 1H) and 6.80-7.80 (m, 7H). Microanalysis found C, 55.50; H, 5.37; N, 3.08. $C_{21}H_{24}NS_{3}O_{2}Cl$ requires C, 55.55; H, 5.33; N, 3.08. <u>111b</u> from <u>110b</u> (1.03g, 4.71 mmol). 1.12g, 100%. IR (liq film) 1420, 1410, 1300, 1200 and 1065. ¹H NMR (CDCl₃) 2.20 (s, 3H), 2.46 (s, 3H) and 7.38 (s, 5H).

<u>lllc</u> from <u>llOc</u> (0.73g, 2.51 mmol). 0.64g, 82.3%. mp 43-45^oC. IR (KBr) 3040, 2970, 2900, 1450, 1410 and 1020. ¹H NMR (CDCl₃) 2.20 (s, 3H), 2.45 (s, 3H) and 6.95-7.55 (m, 4H). Microanalysis found C, 38.88; H, 3.36. C₁₀H₁₀BrS₂Cl requires C, 38.79; H, 3.26.

111d from 111c (0.95g, 4.13 mmol). 0.80g, 78.6%. IR (liq
film) 3040, 2975, 2900, 1585, 1415 and 1255. ¹H NMR (CCl₄)
2.05 (s, 3H), 2.32 (s, 3H), 3.63 (s, 3H) and 6.40-7.10 (m, 4H).

Microanalysis found C, 50.66; H, 5.03. $C_{11}H_{13}S_2OC1$ requires C, 50.66; H, 5.02.

<u>S-Methyl α -methylthiophenylthioacetate</u> (<u>115</u>). <u>S-Methyl</u> <u> α -chlorophenylthioacetate</u> (<u>116</u>) and <u>S-Methyl phenylthio</u> <u>acetate</u> (<u>117</u>)

To a flask fitted with magnetic stirring was charged <u>111b</u> (0.181g, 0.78 mmol) and trifluoroacetic acid (0.89g, 7.8 mmol). After 20 minutes water (0.14g, 7.8 mmol) was added and stirring continued for a further 6 hours. At the end of this time the reaction mixture was poured into ethyl acetate/saturated sodium bicarbonate and the aqueous phase extracted with more ethyl acetate. The combined organic phases were dried over MgSO₄ and the residue after evaporation subjected to column chromatography (ether: petrol 1:50) to give <u>115</u> and a mixture of <u>116</u> and <u>117</u> (analysed spectroscopically).

<u>115</u> 31 mg, 18.7%. mp $60-62^{\circ}C$ (lit $63-65.3^{\circ}C$)¹⁰⁸. IR (KBr) 3020, 2940 and 1680. ¹H NMR (CCl₄) 2.23 (s, 3H), 2.30 (s, 3H), 4.61 (s, 1H) and 7.13-7.46 (s, 5H).

<u>116</u> 44.2 mg, 28.3%. IR (liq film) 3025, 2945 and 1680. ¹H NMR (CCl₄) 2.25 (s, 3H), 5.23 (s, 1H) and 7.04-7.44 (m, 5H).

<u>117</u> 36.8 mg, 28.3%. IR (liq film) 3020, 2940 and 1680. ¹H NMR (CCl₄) 2.23 (s, 3H), 3.68 (s, 2H) and 7.04-7.44 (m, 5H).

The compounds <u>lllc</u> and <u>llld</u> were treated in the same way and the results are presented here. Thus from <u>lllc</u> (0.22g, 0.72 mmol), trifluoroacetic acid (0.83g, 7.2 mmol)

and water (0.13 mls, 7.2 mmol) was obtained a mixture of the following (analysed by NMR spectroscopy).

<u>S-Methyl-(2-bromo)phenylthioacetate</u> 57.4 mg, 33%. ¹H NMR (CCl₄) 2BrC₆H₄<u>CH</u>₂COSCH₃ 3.81 (s, 2H). <u>S-Methyl α -chloro-(2-bromo)phenylthioacetate</u> 59.7 mg, 3%. ¹H NMR (CCl₄) 2BrC₆H₄<u>CH</u>ClCOSCH₃ 5.71 (s, 1H). <u>S-Methyl α -methylthio-(2-bromo)phenylthioacetate</u> 24.7 mg, 12%. ¹H NMR (CCl₄) 2BrC₆H₄<u>CH</u>(SCH₃)COSCH₃ 4.84 (s, 1H).

From <u>111d</u> (0.52g, 1.99 mmol), trifluoroacetic acid (1.70g, 14.95 mmol) and water (0.36g, 19.9 mmol) was obtained S-methyl- α -methylthio-(3-methoxy)phenylthioacetate and a mixture of the corresponding \propto chloro thiol ester and thiol ester (analysed by NMR spectroscopy).

<u>S-Methyl α-methylthio-(3-methoxy)phenylthioacetate</u> 0.135g, 28%. IR (liq film) 3010, 2930, 2845 and 1680. ¹H NMR (CCl₄) 2.01 (s, 3H), 2.23 (s, 3H), 3.68 (s, 3H), 4.39 (s, 1H) and 6.31-7.15 (m, 4H).

<u>S-Methyl α-chloro-(3-methoxy)phenylthioacetate</u> 0.129g, 28%. IR (liq film) 3015, 2940, 2845 and 1685. ¹H NMR (CCl₄) 2.25 (s, 3H), 3.68 (s, 3H), 5.15 (s, 1H) and 6.41-7.53 (m, 4H). <u>S-Methyl-(3-methoxy)phenylthioacetate</u> (<u>133</u>). 0.075g, 19.2%. IR (liq film) 3015, 2940, 2845 and 1685. ¹H NMR (CCl₄) 2.19 (s, 3H), 3.63 (s, 2H), 3.68 (s, 3H) and 6.41-7.53 (m, 4H).

<u>S-Methyl phenylthioacetate</u> (<u>117</u>) (prepared for comparison with 117 formed in the mixture above).

To a dry flask fitted with magnetic stirring and an inert atmosphere was charged dry ether (10 mls), phenylacetic acid (1g, 7.34 mmol) and dicyclohexyl carbodiimide (1.53g, 7.42 mmol). To this was added a solution of methanethiol¹⁴⁷ in dry ether and the reaction stirred for 1 hour. The reaction mixture was filtered through Hyflo super cell and the solvent removed. The residue was subjected to column chromatography (ethyl acetate:petrol 1:20) to give <u>117</u> identical by ¹H NMR spectroscopy to that prepared above.

<u>S-Methyl α -chlorophenylthioacetate</u> (<u>116</u>) (prepared for comparison with <u>116</u> formed in the mixture above).

Thionyl chloride (21.89g, 0.184 mol) was added to CCl_A (100 mls) with stirring and the resultant solution colled to 5^OC. Dry DMF (13.45g, 0.184 mol) was added over 20 minutes so that the temperature did not rise to above 7^oC. This was stirred for an additional 30 minutes over ice and mandelic acid (lOg, 0.066 mol) added so that the temperature did not rise to above 7°C. Stirring was continued for a further 1 hour over ice and the solution allowed to warm to room temperature during 2 hours. The final reaction mixture was poured into ice (100g), separated, washed with icewater, dried over MgSO, and distilled to give α -chlorophenylacetyl chloride. 7.40g, 59.5%. 85-88^OC/ IR (liq film) 3060, 3025, 2960, 1800 and 720. 2 mmHq. ¹H NMR (CCl_a) 5.69 (s, 1H) and 7.33-7.60 (m, 5H). The acid chloride prepared above (5g, 27 mmol) was added dropwise¹⁴⁶ over 1 hour to a solution of potassium hydroxide (5.95q, 0.106 mol) in methanol (100 mls). The solution was stirred for a further 30 minutes, cooled over ice and 100 mls of water added. This was then acidified to pH=l with 2M HCl
and extracted with ether. The organic phase was dried over MgSO₄ and evaporated to give the chloro acid. 1g (5.86 mmol) of this was dissolved in dry ether in a dry flask fitted with magnetic stirring and inert atmosphere. To it was added DCC (1.21g, 5.86 mmol) and a solution of methanethiol in ether and the reaction mixture stirred for 1 hour at room temperature. This was then filtered through Hyflo super cell and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:20) to give <u>116</u> having identical spectral and chromatographic products as that obtained earlier.

<u>3-Chloro-5-methyl-2-methylthio-1 (4-toluenesulphonyl)</u> <u>indole (119)</u> and <u>5-Methyl-2-methylthio-1(4-toluenesulphonyl)</u> <u>indole (120)</u>

To a flask fitted with magnetic stirring was charged dry CH_2Cl_2 (20 mls) and <u>60</u> (1.5g, 3.80 mmol). HCl (1.5 mls, 10 M) was added and the solution stirred for 1.5 hours. At the end of this time the solution was neutralised with saturated sodium bicarbonate and the aqueous phase extracted with more CH_2Cl_2 . The combined organic phases were dried over MgSO₄ and subjected to column chromatography (ethyl acetate:petrol 1:25) to give (in order of elution) <u>119</u>. 0.534g, 38.4%. mp 118°C. IR (KBr) 3020, 2920, 1590, 1365, 1170 and 1145. ¹H NMR (CDCl₃) 2.34 (s, 3H), 2.40 (s, 3H), 2.45 (s, 3H), 6.90-7.25 (m, 4H), 7.55 (d, 2H, J = 8 Hz) and 8.05 (d, 1H, J = 8 Hz). UV (EtOH) λ max 262, 274, 284 and 288 nm. Microanalysis found C, 55.82; H, 4.34; N, 3.83. $C_{17}H_{16}ClNS_2O_2$ requires C, 55.80; H, 4.41; N, 3.83 and <u>120</u>. 0.451g, 35.8%. IR (liq film)

Chloro-N-(4-methylphenyl)acetamide (122)

To a dry flask fitted with magnetic stirring was charged dry benzene (50 mls), dry pyridine (3.68g, 46.6 mmol) and 4-methylaniline (5g, 46.6 mmol). The mixture was cooled over ice and chloroacetyl chloride (5.26g, 46.6 mmol) in dry benzene (20 mls) added with cooling. The mixture was allowed to stand overnight. At the end of this time ethyl acetate was added and the organic phase washed once with HCl (2M), brine and dried over MgSO₄. Evaporation gave the product as a white solid. 6.44g, 75.2%. ¹H NMR (CDCl₃) 2.26 (s, 3H), 3.96 (s, 2H), 6.71-7.20 (m, 4H) and 7.90 (broad s, 1H).

5-Methyloxindole (123)

A mixture of aluminium trichloride (8.93g, 67 mmol) and <u>122</u> (5.27g, 28.7 mmol) were stirred with a glass rod for 1 minute. The resulting homogeneous mixture was placed in a flask fitted with drying tube and heated to $50^{\circ}C$ for 10 minutes and subsequently to $200^{\circ}C$ for 1 hour. The resultant black gum was allowed to cool and to it was added ice (25g) and ethyl acetate. The aqueous phase was extracted with more ethyl acetate and the combined extracts dried over MgSO₄. The residue after evaporation was subjected to rapid column chromatography (ethyl acetate:petrol 2:3) to give <u>123</u>. 2.66g, 63.0%. IR (KBr) 2920, 1700, 1620, 1605, 1360 and 1170. ¹H NMR (CDCl₃) 2.27 (2s, 3H), 3.46 (2s, 2H), 6.51-7.24 (m, 4H) and 8.71 (broad s, 1H).

The conversion of <u>120</u> into <u>119</u> by SO_2Cl_2

To a solution of <u>120</u> (92 mg, 0.28 mmol) in dry CH_2Cl_2 (1 ml) under nitrogen was added two drops of sulphuryl chloride. After stirring for 25 minutes the reaction mixture was poured into ethyl acetate/water and the organic phase was dried with MgSO₄. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:25) to give <u>119</u> having identical TLC and ¹H NMR characteristics as that prepared earlier.

5-Methyl-2-methylthio-1(4-toluenesulphonyl) indole (120)

A stream of H_2S was passed through 15 mls of dry CH_2Cl_2 for 20 minutes with stirring. To 7.5 mls of this solution was added successively, with stirring <u>60</u> (0.25g, 0.63 mmol) and HCl (15 drops, 10 M). After stirring for 1 hour at room temperature the reaction was treated as for the preparation of <u>119/120</u> to give <u>119</u> 0.148g, 70.5% having identical TLC and NMR characteristics as that prepared earlier.

<u>S-Methyl-(3-methoxy)phenylthioacetate</u> (133)

A stream of H_2S was passed through 25 mls of dry CH_2Cl_2 for 20 minutes with stirring. To 15 mls of this solution was added successively <u>110d</u> (0.501g, 2.07 mmol) and HCl (15 drops, 10 M). After stirring for 1 hour at room temperature the reaction mixture was treated as for compounds <u>llla-llld</u> to give (after column chromatography, ethyl acetate:petrol 1:25 then 3:2) in order of elution. <u>133</u> 0.197g, 58% (based on recovered <u>llOd</u>) having identical spectral characteristics to that prepared earlier. <u>llld</u> 0.075g, 13.9% and <u>llOd</u> 0.075g.

6-Methoxycarbonyl-7-nitromethyl-1,4-dioxaspiro[4.4]nonane (160)

A dry flask fitted with magnetic stirring and inert atmosphere was charged with 159 (15g, 81.4 mmol) and nitromethane (22 mls). To this was added tetramethylguanidine (2 mls) and the reaction mixture stirred at room temperature for 12 hours. The reaction mixture was acidified to pH=6 with HCl (2M) and extracted with ether. The organic phase was dried over MgSO, and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:9) to give the product as a mixture of isomers (1:1) 18.39g, 92.1%. Least polar isomer. IR (liq film) 2945, 2890, 1725 and 1535. ¹H NMR (CDCl₃) 1.37-2.51 (series of m, 4H), 2.72-3.06 (m, 2H), 3.65 (s, 3H), 3.85 (s, 4H) and 4.26-4.63 (m, 2H). Most polar isomer. IR (liq film) 2940, 2880, 1730 and 1535. ¹H NMR (CDCl₃) 1.29-2.42 (series of m, 4H), 2.59 (d, 1H, J = 7 Hz), 2.73-3.45 (m, 1H), 3.61 (s, 3H), 3.78 (s, 4H) and 4.31 (d, 2H, J = 7 Hz).Microanalysis (isomeric mixture) found C, 49.14; H, 6.37; N, 5.55. C₁₀H₁₅NO₆ requires C, 48.97; H, 6.16; N, 5.71.

7-Formy1-6-methoxycarbony1-1,4-dioxaspiro[4.4]nonane (161)

The nitro compound 160 (1g, 4.08 mmol) was dissolved in dry methanol (4 mls) and added to a dry flask containing a solution of sodium methoxide (from sodium 94 mg, 4.08 mmol) in dry methanol (4 mls) under an inert atmosphere. After stirring for 10 minutes separate solutions of titanium trichloride (15% w/v, 2.52g, 16.32 mmol, 16.8 mls) and ammonium acetate (3.77g, 49 mmol in water 12.5 mls) were prepared and combined under nitrogen. The mixture was added to the flask and the resultant solution stirred for 2 hours at room temperature. This was then poured into ether and the aqueous phase extracted with more ether. The combined organic layers were washed with saturated sodium bicarbonate, brine and dried over Na₂SO₄. The residue after evaporation was subjected to rapid column chromatography (ethyl acetate:petrol 1:2) to give the product as a pale yellow oil 0.56g, 64.2%. IR (lig film) 2940, 2880, 1720 and 1195. ¹H NMR (CDCl₃) 1.37-2.22 (series of m, 4H). 2.60-3.38 (series of m, 2H), 3.67 (s, 3H), 3.88 (s, 4H) and 9.45 (broad s, 1H).

Methyl-2(1,3-dioxolan-2-yl)-5-oxocyclopentane carboxylate (<u>163</u>)

A mixture of trifluoroacetic acid (2 mls) and water (1 ml) was added to <u>161</u> (0.56g) and the resultant mixture stirred for 3 hours. Some of the solvent was removed under vacuum and the residue poured into ether/ brine. The organic phase was dried over MgSO₄ and subjected to column chromatography (ethyl acetate:petrol 1:3) to give a clear oil 0.256g, 45.7 % IR (liq film) 2940, 2890 and 1720.

- -

¹H NMR (CDCl₃) 1.63-2.59 (series of m, 4H), 2.82-3.36 (series of m, 2H), 3.76 (s, 3H), 4.91 (d, 4H, J = 2 Hz) and 4.98 (d, 1H, J = 3 Hz).

Methyl-2-nitromethyl-5-oxocyclopentane carboxylate (167)

Prepared in the same way as <u>163</u> from <u>160</u> (9g, 44.7 mmol), trifluoroacetic acid (24 mls) and water (12 mls) to give a red oil which slowly crystallises to a solid 6.51g, 88.2%. Recrystallisation from ether gave a white solid. mp 50-52^oC. IR (KBr) 2970, 2920, 1730, 1755, 1565 and 1225. ¹H NMR (CDCl₃) 1.34-3.36 (series of m, 6H), 3.65 (s, 3H) and 4.38 (d, 2H, J = 6 Hz). Microanalysis found C, 47.82; H, 5.53; N, 6.95. $C_8H_{11}NO_5$ requires C, 47.76; H, 5.51; N, 6.96.

Methyl-2-formyl-5-oxocyclopentanecarboxylate (162)

Prepared in the same way as <u>161</u> from <u>167</u> (4.73g, 23.5 mmol), sodium (0.6g, 26 mmol) in methanol (47 mls) and TiCl₃ (95 mls, 15% w/v, 92.4 mmol) with NH₄OAc (21.62g, 281 mmol, in water 70 mls). The final reaction mixture was stirred for 2 hours, poured into ether and the aqueous phase extracted with more ether. The combined extracts were dried over MgSO₄ and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:3) to give the product as a pale oil. 1.38g, 35%. IR (liq film) 2955, 1755 and 1720. ¹H NMR 1.55-3.61 (series of m, 6H), 3.69 (s, 3H) and 9.72 (s, 1H). l-Methoxycarbonyl-7-phenylthiobicyclo[3.3.0]oct-6-en-

<u>2-one (152)</u>

A flame dried flask fitted with an inert atmosphere and magnetic stirring was charged with sodium hydride (0.32q, 7.96 mmol). This was washed once with petrol and the solvent removed. The tricarbonyl 162 (1.23g, 7.24 mmol) in THF (30 mls) was added and the resultant solution stirred at room temperature for 15 minutes. To this was added the phosphonium salt 1d (4.17g, 7.96 mmol) and after a further 15 minutes at room temperature the reaction mixture was heated to reflux for 2 hours. The solution was allowed to cool to room temperature and poured into ethyl acetate/saturated ammonium chloride. The aqueous phase was extracted with more ethyl acetate and the combined organic solutions dried over $MgSO_4$. The residue after evaporation was subjected to column chromatography (ether: petrol 2:3) to give the product as a yellow oil 1.21g, 59.6%. IR (liq film) 3040, 2935, 1745, 1725 and 1245. ¹H NMR (CDCl₃) 1.78-3.41 (series of m, 7H), 3.70 (s, 3H), 5.31 (broad s, 1H) and 7.35 (broad s, 5H). Microanalysis found C, 66.55; H, 5.76. C₁₆H₁₆SO₃ requires C, 66.64; Н, 5.59.

Methyl-3-(2-methoxycarbonyl-4-phenylthiocyclopent-4enyl)propionate (169)

A flame dried flask fitted with an inert atmosphere and magnetic stirring was charged with dry methanol (1 ml) and sodium (8.9 mg, 0.39 mmol). After stirring for 5 minutes <u>152</u> (97 mg, 0.34 mmol) was added as a solution in methanol (1 ml) and the reaction mixture heated to reflux for 3 hours. At the end of this time the solution was cooled and poured into ethyl acetate/HCl (2M). The aqueous phase was extracted with more ethyl acetate and the combined organic solutions dried over $MgSO_4$. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:9) to give a clear oil. 74 mg, 67%. IR (liq film) 3050, 2950, 2860, 1745, 1655, 1610 and 1235. ¹H NMR (CDCl₃) 1.49-2.99 (series of m, 8H), 3.63 (s, 3H), 3.65 (s, 3H), 5.25 (broad s, 1H) and 7.19 (broad s, 5H).

7-Phenylthiobicyclo[3.3.0]oct-6-en-2-one (170)

A dry flask fitted with inert atmosphere and magnetic stirring was charged with finely powdered sodium cyanide (0.432g, 8.83 mmol) and HMPA (25 mls). The ketoester (1.21g, 4.2 mmol) <u>152</u> in a small volume of the same solvemt was added and the reaction mixture stirred at 75° C for 1.5 hours. After cooling the solution was poured into HCl (2M) and extracted several times with carbon tetrachloride. The combined extracts were washed twice with NaOH (2M) and dried over MgSO₄. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:9) to give an oil. 0.566g, 59.1%. IR (liq film) 3050, 2920, 1730 and 745. ¹H NMR (CCl₄) 1.74-2.68 (series of m, 8H), 5.24 (broad s, 1H) and 7.20 (s, 5H).

<u>3-Methoxycarbonyl-7-phenylthiobicyclo[3.3.0]oct-6-en-</u> 2-one (154)

A dry flask fitted with inert atmosphere and magnetic stirring was charged with sodium hydride (0.16g, 3.93 mmol). This was washed once with petrol and the solvent removed. To this was then added dry dioxan (3 mls) and dry dimethyl carbonate (1.06g, 11.8 mmol, 0.99 mls). The ketone <u>170</u> (0.452g, 1.96 mmol) dissolved in dry dioxan (4 mls) was added and stirring continued at 50° C whilst the reaction was followed by TLC. The residue was poured into ethyl acetate/HC1 (2M) and the aqueous phase extracted with more solvent. The combined organic phases were dried over MgSO₄ and the residue after evaporation subjected to column chromatography (ether:petrol 1:4) to give a yellow oil. 0.336g, 59.4%. IR (liq film) 3040, 2900, 2840, 1740, 1715, 1650, 1610 and 1235. ¹H NMR (CDC1₃) 1.65-2.82 (series of m, 7H), 3.55-3.60 (2s, 3H, 1:1), 5.30 (broad s, 1H) and 7.18 (s, 5H). Microanalysis found C, 66.78; H, 5.70. C₁₆H₁₆O₃S requires C, 66.64; H, 5.70.

<u>3-Methoxycarbonyl-7-phenylthiobicyclo[3.3.0]oct-6-en-</u> endo-2-ol (171)

The ketone prepared above (258 mg) was dissolved in methanol and treated with a solution of sodium borohydride in methanol. The final reaction mixture was poured into ethyl acetate/water and the aqueous phase extracted several times with more solvent. The combined organic phases were dried over $MgSO_4$ and the residue after evaporation subjected to column chromatography (ethyl acetate:petrol 1:2) to give as the major product <u>171</u>. 0.195g, 61.2%. IR (liq film) 3450, 3030, 2910, 1715 and 1190. ¹H NMR 1.54-3.23 (series of m, 8H), 3.60 (s, 3H), 4.02-4.30 (m, 1H), 5.20 (d, 1H, J = 2 Hz) and 6.95-7.32 (m, 5H). 3-Methoxycarbonyl-7-phenylthiobicyclo[3.3.0]octa-2,6diene (155)

A dry flask was charged with the alcohol 171 (0.15g, 0.52 mmol), dry triethylamine (0.157g, 1.55 mmol, 0.22 mls) and CH_2Cl_2 (6 mls) and the mixture cooled over ice with stirring. To this was added dry methanesulphonyl chloride (0.177g, 1.55 mmol, 0.12 mls) and the resultant mixture stirred at RT for 2 hours. This was poured into saturated sodium bicarbonate and the organic layer dried over MgSO₄. The residue after evaporation was dissolved in more CH_2Cl_2 (4 mls) and treated with DBU (0.236g, 1.55 mls, 0.232 mls). After 3 hours at room temperature the reaction mixture was poured into $CH_2Cl_2/brine$ and the organic phase dried over $MgSO_A$. The residue after evaporation was subjected to column chromatography (ethyl acetate:petrol 1:9) to give a clear oil 90 mg, 63.8%. IR (liq film) 3035, 2900, 2830, 1700, 1620 and 1260. ¹H NMR (CDCl₃) 2.09-3.97 (series of m, 6H), 3.63 (s, 3H), 5.33 (broad s, 1H), 6.40 (broad s, 1H) and 7.21 (s, 5H).

•

- K.B. Becker, Tetrahedron report No. 86, <u>Tetrahedron</u>, 1980, 36, 1717.
- a) D. Seyferth, J.S. Fogel and J.K. Herren,
 <u>J. Am. Chem. Soc</u>., 1964, <u>86</u>, 307.
 - b) E.E. Schweizer and R.D. Bach, <u>J. Org. Chem</u>., 1964, <u>29</u>, 1746.
- E.E. Schweizer, L.D. Smucker and R.J. Votral, J. Org. Chem., 1966, <u>31</u>, 467.
- 4. E.E. Schweizer, J. Am. Chem. Soc., 1964, 86, 2744.
- E.E. Schweizer, J.G. Liehr and D.J. Monaco, <u>J. Org. Chem</u>., 1968, <u>33</u>, 2416.
- E.E. Schweizer and J.G. Liehr, <u>J. Org. Chem</u>., 1968, <u>33</u>, 583.
- E.E. Schweizer and K.K. Light, <u>J. Am. Chem. Soc</u>., 1964, <u>86</u>, 2963.
- E.E. Schweizer and G.J. O'Neill, <u>J. Org. Chem</u>., 1965, 30, 2082.
- E.E. Schweizer and L.D. Smucker, <u>J. Org. Chem.</u>, 1966, <u>31</u>, 3146.
- E.E. Schweizer and C.M. Kopy, <u>J. Org. Chem</u>., 1972, <u>37</u>, 1561.
- 11. T. Kawamoto, S. Murramatsu and Y. Yura, <u>Tetrahedron</u> Lett., 1974, 4223.
- 12. R.M. Corey and D.M.T. Chan, <u>Tetrahedron Lett.</u>, 1975, 4441.
- G.H. Whitham in "Comprehensive Organic Chemistry",
 Vol. 1, pl21. Series Eds Barton and Ollis, Pergammon Press, 1979.

- 14. J.M. McIntosh and H.B. Goodbrand, Synthesis, 1974, 862.
- 15. P. Golborn. <u>Synthesis</u>, 1973, 547.
- 16. M.E. Garst and T.A. Spencer, <u>J. Org. Chem</u>., 1974, <u>39</u>, 584.
- 17. J.M. McIntosh and R.S. Steevensz, <u>Can. J. Chem.</u>, 1977, <u>55</u>, 2442.
- J.M. McIntosh and F.P. Seguin, <u>Can. J. Chem</u>., 1975, <u>53</u>, 5326.
- T. Minama, H. Suganuma and T. Agawa, <u>Chem. Lett.</u>, 1978, 285.
- 20. J.M. McIntosh and R.A. Sieler, <u>J. Org. Chem</u>., 1978, <u>43</u>, 4431.
- 21. A.T. Hewson, Tetrahedron Lett., 1978, 3267.
- 22. A.G. Cameron and A.T. Hewson, <u>J. Chem. Soc. P.T.I</u>., 1983, 2979.
- 23. J.P. Marino and E. Laborde, <u>J. Am. Chem. Soc</u>., 1985, <u>107</u>, 735.
- 24. A.G. Cameron, A.T. Hewson and M.I. Osammor, Tetrahedron Lett., 1984, 2267
- 25. A.G. Cameron, A.T. Hewson and A.H. Wadsworth, Tetrahedron Lett., 1982, 561.
- 26. A.T. Hewson and D.T. MacPherson, <u>Tetrahedron Letters</u>, 1983, 5807.
- 27. M.F. Grunden, <u>Natural Product Reports</u>, 1984, <u>1</u>, 195. contains a review of the recent literature.
- T.L. Gilchrist in "Heterocyclic Chemistry", p269,
 Pitman, 1985, London.
- 29. J.A. Joule and G.F. Smith in "Heterocyclic Chemistry", pl08, Van Nostrand Reinhold, 1972, London

- 30. S. Omura, A. Nakagawa, H. Hashimoto, R. Oiwa, Y. Iwai, A. Hirano, N. Shibukawa and Y. Kojima. <u>J. Antibiotics</u>, 1980, 33, 1395.
- 31. S. Omura and A. Nakagawa, Tetrahedron Lett., 1981, 2199.
- 32. G.C. Barrett in "Comprehensive Organic Chemistry", Vol. 3 p78, series Ed's Barton and Ollis, Pergammon Press, Oxford, 1979.
- 33. T. Mukaiyama, K. Kamio, S.K. Kobayash, and H. Takai, Bull. Chem. Soc. Jpn., 1975, 45, 3723.
- 34. a) E.J. Corey and J.I. Schulman, <u>J. Org. Chem</u>., 1970, <u>35</u>, 777.
 - b) E.J. Corey, B.W. Erickson and R. Noyori,
 J. Am. Chem. Soc., 1971, 93, 1724.
- 35. E. Vedejs and P.L. Fuchs, J. Org. Chem., 1971, 36, 366.
- 36. A.J. Mura, G. Majatich, P.A. Grieco and T. Cohen, Tetrahedron Lett., 1975, 4437.
- 37. V. Reutrakol and P. Poochaivatananon, <u>Tetrahedron Lett</u>., 1983, 535.
- 38. B.M. Trost and Y. Tanigawa, <u>J. Am. Chem. Soc</u>., 1979, <u>101</u>, 4413.
- 39. B.M. Trost and A.C. Lavoie, <u>J. Am. Chem. Soc</u>., 1983, <u>105</u>. 5075.
- 40. T.W. Greene in "Protecting groups in Organic synthesis" Wiley, Chichester, 1981.
- 41. J.F. McOmie in "Protective groups in Organic Chemistry" Plenum Press, London, 1973.
- 42. See ref. 41 and also S. Searles and S. Nukina, <u>Chemical Reviews</u> 1959, <u>59</u>, 1077. K.S. Quaal, S. Ji, Y.M. Kim, W.D. Closson and J.A. Zubieta, <u>J. Org. Chem</u>., 1978, 43. 1311. P.D. Carpenter and M. Lennon, J. Chem.

Soc. Chem. Comm., 1973, 664. R. Walchli, A. Guggisberg and M. Hesse, <u>Tetrahedron Lett</u>., 1984, 2205. K. Fugami, Y. Morizawa, K. Oshima and H. Nozaki, <u>Tetrahedron Lett</u>., 1985, 857.

- 43. H.J. Scheifele and D.F. deTar, Org. Syn. Coll. Vol. 4,
 34, Wiley, London.
- 44. E.J. Corey and J.W. Suggs, <u>Tetrahedron Lett.</u>, 1975, 2647.
- 45. B.T. Grobel and D. Seebach, Synthesis, 1977, 357.
- 46. G.A. Olah and P.R. Clifford, <u>J. Am. Chem. Soc</u>., 1973 <u>95</u>, 6067, state "these mercurinium ions are primarily formed by overlap of the 6 s orbitals on mercury with the two electrons in the carbon-carbon π bond. They have been observed under special conditions, but this does not prove that they exist in other environments. However this may lend credance to other reports implicating these species as intermediates in mercury promoted addition reactions.
- 47. J. Halpern and H.B. Tinker, <u>J. Am. Chem. Soc</u>., 1967, <u>89</u>, 6427.
- 48. Many examples are known where vinylsulphides conjugated to aromatic rings are hydrolysed to ketones. Therefore we do not believe that this aspect of the structure of 15 accounts for its apparent unreactivity.

see ref 34a

- 49. D.A. Evans and S.A. Biller, <u>Tetrahedron Lett</u>., 1985, 1907.
- 50. J.P. Schaefer and J.J. Bloomfield. <u>Org. React.</u>, <u>15</u>, 1, 1967, Wiley, London.
- 51. B.D. Christie and H. Rapoport, <u>J. Org. Chem</u>., 1985, <u>50</u>, 1239.
- 52. H.J. Liu and H.K. Lai, Tetrahedron Lett., 1979, 1193.
- 53. P.S. Pinkey, Org. Syn. Coll. Vol. 2, 116, Wiley, London.
- 54. Y. Yamada, T. Ishii, M. Kimura and K. Hosaka, Tetrahedron Lett., 1981, 1353.
- 55. M. Hatanaka, Y. Yamamoto, H. Nitta and T. Ishimaru, <u>Tetrahedron Lett.</u>, 1981, 3883.
- 56. M. Hatanaka, H. Nitta and T. Ishimaru, <u>Tetrahedron Lett</u>., 1984, 2387.
- M. Hatanaka and T. Ishimaru, <u>Tetrahedron Lett.</u>, 1983, 4837.
- 58. S.G. Levine, J. Am. Chem. Soc., 1958, 80, 6150.
- 59. K.C. Nicolaou, R.L. Magolda and D.A. Claremon, J. Am. Chem. Soc., 1980, 102, 1404.
- 60. S. Warren, C.J. Wallis and C. Earnshaw, <u>J. Chem. Soc.</u> Perkin. Trans. 1., 1979, 3099.
- 61. J.E. Baldwin, J. Chem. Soc. Chem. Comm., 1976, 734
- 62. J.E. Baldwin and M.J. Lusch, Tetrahedron, 1982, 38, 2939.
- 63. G.A. Wiley, R.L. Hershkowitz, B.M. Rein and B.C. Chung, J. Am. Chem. Soc., 1964, 86, 964.
- 64. R.B. Woodward, Pure and Applied Chemistry, 1973, 33, 145.
- 65. W. Wenner, Org. Syn. Coll. Vol. 4., 760, Wiley, London.
- C.B. Hauser and D.S. Hoffenberg, <u>J. Org. Chem.</u>, 1955, 20, 1448.

- 67. M.J. Cook, E.J. Forbes and G.M. Khan, <u>J. Chem. Soc.</u> <u>Chem. Comm.</u>, 1966, 121.
- 68. J.H. Hall and M. Gisler, J. Org. Chem., 1976, 41, 3769.
- 69. A.E.G. Miller, J.W. Bliss and L.S. Schwartzman,J. Org. Chem., 1959, 24, 627.
- 70. J.R. Grunwell and D.L. Foerst, Syn Comm., 1976, 6, 453.
- O.W. Lever, Tetrahedron report No. 19, <u>Tetrahedron</u>, 1976, <u>32</u>, 1943.
- 72. S.F. Martin, Synthesis, 1979, 633.
- 73. E.J. Corey, D. Seebach and R. Freedman, <u>J. Am. Chem. Soc</u>., 1967, <u>89</u>, 434.
- 74. E.J. Corey and D.J. Beames, <u>J. Am. Chem. Soc</u>., 1973, 95, 5829.
- 75. K. Ogura and G. Tsuchihashi, <u>Tetrahedron Lett</u>., 1971,3151.
- 76. K. Ogura and G. Tsuchihashi, <u>Tetrahedron Lett</u>., 1972, 1383.
- 77. K. Ogura, Y. Ito and G. Tsuchihashi, <u>Bull. Chem. Soc. Jap.</u>, 1979, <u>52</u>, 2013.
- 78. M. Artico, F. Corelli, S. Massa and G. Stefancich, J. Het. Chem., 1982, <u>19</u>, 1493.
- 79. R.P. Lutz, Chem. Rev., 1984, 84, 205.
- 80. L.M. Harwood, <u>J. Chem. Soc. Perkin Trans</u> 1984, 2577 and references cited therein.
- S.J. Danishefsky and G.B. Phillips, <u>Tetrahedron Lett.</u>, 1984, 3159.
- I.C. Calder and P.J. Williams, <u>J. Chem. Soc. Chem. Comm.</u>, 1972, 891.
- R.M. Coates and C.W. Hutchins, <u>J. Org. Chem</u>., 1979,
 <u>44</u>, 4742.

- 84. R.M. Coates and I.M. Said, <u>J. Am. Chem. Soc</u>., 1977, <u>99</u>, 2355.
- 85. See references cited in reference 84.
- 86. C.S. Marvel and O. Kamm, <u>Org Syn Coll. Vol. 1</u>., 445. M.C. Kloetzel and J.L. Pinkus, <u>J. Am. Chem. Soc</u>., 1958, 80, 2332.
- 87. E. Baumgarten & C.R. Hauser, <u>J. Am. Chem. Soc</u>., 1944, <u>66</u>, 1037.
- C.R. Hauser, B.E. Hudson, B. Abramovitch and
 J.C. Shivers, Org Syn Coll Vol. 3., 142, Wiley, London
- 89. S. Kim and K.H. Ahn, <u>J. Org. Chem.</u>, 1984, <u>49</u>, 1717.
- 90. PDC/((CH₃)₃SiO)₂. S. Kanemoto, K. Oshima, S. Matsubara, K. Takai and H. Nozaki, <u>Tetrahedron</u> <u>Lett</u>., 1983, 2185. K₂FeO₄. K.S. Kim, Y.K. Chang, S.K. Bae and C.S. Hahn, <u>Synthesis</u>, 1984, 866. PCC/DMAP. F.S. Guziel and F.A. Luzzio, <u>J. Org. Chem</u>., 1982, 47, 1787.
- 91. see ref. 30 and 31.
- 92. K. Ogura and G. Tsuchihashi, <u>Tetrahedron Lett</u>., 1972, 2681.
- 93. K. Ogura, M. Yamashita and G. Tsuchihashi, <u>Tetrahedron</u> <u>Lett.</u>, 1976, 759. K. Ogura, G. Tsuchihashi,
 S. Furukawa, M. Suzuki and M. Yamashita, <u>Tetrahedron</u> <u>Lett.</u>, 1975, 2767. K. Ogura, M. Yamashita, M. Suzuki and G. Tsuchihashi, <u>Tetrahedron Lett.</u>, 1974, 3653.
- 94. K. Ogura, G. Tsuchihashi, S. Mitamura and K. Kishi, Synthesis, 1979, 880.
- 95. K. Ogura, G. Tsuchihashi and S. Mitamura, <u>J. Am. Chem.</u> <u>Soc.</u>, 1974, <u>96</u>, 1960.

- 96. K. Ogura, G. Tsuchihashi, N. Katoh and I. Yoshimura, Tetrahedron Lett., 1978, 375.
- 97. G. Tsuchihashi and K. Ogura, <u>Jap Patent</u> No. 76/22,672 <u>Chem Abs.</u>, 1977, <u>87</u>, 201300t
- 98. G. Tsuchihashi and K. Ogura, <u>Jap Patent</u> No. 76/156,359 <u>Chem Abs.</u>, 1979, 90, 22621.
- 99. G. Tsuchihashi, K. Ogura and S. Mitamura, <u>Jap Patent</u> No. 77/143,247. <u>Chem Abs.</u>, 1979, 91, 193161.
- 100. A.T. Hewson, L.A. March, I.W. Nowell and S.K. Richardson, J. Chem. Soc. Chem. Comm., 1985, 618.
- 101. G. Tsuchihashi and K. Ogura, Jap Patent No. 78/124,233. Chem Abs., 1979, 90, 137513.
- 102. Compounds <u>63</u> and <u>61</u> were prepared in a slightly different way to that represented in Scheme 77. See experimental section.
- 103. Yields given are those obtained in 2 steps from $\underline{37}$ and $\underline{51}$.
- 104. ref. 76 and 77.

180

105. The low yield is explained by contamination of the desired product with the ketenedithioacetal 180.

This was confirmed by tlc analysis against the genuine compound prepared as shown below.

i) ⁿBuLi/TMSCL/THF ii) ⁿBuLi/THF,2-BrC₆H₄CHO

- 106. A.T. Hewson, L.A. March, I.W. Nowell and S.K. Richardson, Submitted to Synthesis for publication.
- 107. D. Seebach and R. Burstinghaus, Synthesis, 1975, 461.
- 108. J.N. Denis and A. Krief, Tetrahedron Letters, 1982 3407.
- 109. A.H. Beckett, R.W. Daisley and J. Walker, <u>Tetrahedron</u>, 1968, 24, 6093.
- 110. J.C. Powers, J. Org. Chem., 1966, 31, 2627.
- 111. P.P. Llobet and E. Goday, <u>Span Patent</u> No. 480,874.
 <u>Chem Abs.</u>, 1980, <u>93</u>, 204276z.
- 112. A. Jackson, unpublished work from this laboratory.
- 113. H. Kosugi, H. Uda and S. Yamagiwa, <u>J. Chem. Soc. Chem</u>. Comm., 1976, 71.
- 114. G.A. Russell and L. Ochrymowycz, <u>J. Org. Chem</u>., 1969, 34, 3618.
- 115. L.S. Reamonn and W.I. O'Sullivan, <u>J. Chem. Soc. Chem.</u> <u>Comm.</u>, 1976, 643. The Pummerer rearrangement was defined in accordance with ref. 116 as "reactions involving the reduction of a sulphonium sulphur with concomitant oxidation at the α carbon atom.
- 116. C.R. Johnson and W.G. Phillips, <u>J. Am. Chem. Soc</u>., 1969, <u>91</u>, 682.
- 117. G.A. Russell, E. Sabourin and G.J. Mikol, <u>J. Org. Chem.</u>, 1966, <u>31</u>, 2854.
- 118. H. Nieuwenhuyse and R. Louw, <u>Tetrahedron Lett</u>., 1971, 4141.

- 119. Y. Oikawa and O. Yonemitsu, <u>Tetrahedron</u>, 1974, <u>30</u>, 2653.
- 120. G.E. Veenstra and B. Zwanenburg, <u>Tetrahedron</u>, 1978, <u>34</u>, 1585.
- 121. for example during Hg(II) promoted hydrolysis reactions.
- 122. K. Ogura and G. Tsuchihashi, <u>Bull. Chem. Soc. Jap.</u>, 1972, <u>45</u>, 2203.
- 123. S.M. Roberts and F. Schienmann "New Synthetic Routes to Prostaglandins and Thromboxanes", Academic Press, London, 1982. S.M. Roberts, R.F. Newton and R.J.K. Taylor, <u>Synthesis</u>, 1984, 449. R.F. Newton and S.M. Roberts in "Annual Reports on the Progress of Chemistry", The Royal Society of Chemistry, 1981, Section B, p347.
- 124. P. Crabbe "Prostaglandin Research", Vo. 36 of a series of monographs, Academic Press, London, 1972.
 S.M. Roberts and R.F. Newton "Prostaglandins and Thromboxanes", Butterworth Scientific, London, 1982.
 J.S. Bindra and R. Bindra, "Prostaglandin Synthesis", Academic Press, London, 1977. A. Mitra, "The Synthesis of Prostaglandins", Wiley-Interscience, New York, 1977.
 M. Johnson, F. Carey and R. Mcmillen in "Essays in Biochemistry", Vol. 19, p40, Academic Press, London, 1983.
- 125. S. Moncada, R. Gryclewski, S. Bunting and J.R. Vane, <u>Nature</u>, 1976, <u>263</u>, 633. J.R. Vane et al, <u>Prostaglandins</u>, 1976, 12, 685.
- 126. K. Kojima and K. Sakai, <u>Tetrahedron Lett.</u>, 1978, 3743.
 P.A. Aristoff, <u>J. Org. Chem.</u>, 1981, <u>46</u>, 1954. D.R. Morton and F.C. Brokaw, <u>J. Org. Chem.</u>, 1979, <u>44</u>, 2880.

- 127a. D.R. Morton, G.L. Bundry and E.E. Nishizawa in "Prostacyclin", Eds. J.R. Vane and S. Bergstrom, p.31, Raven Press, New York, 1979.
- 127b. J. Fried and J. Barton, <u>Proc. Nat. Acad. Sci. USA</u>., 1977, <u>99</u>, 2006.
- 128. G.L. Bundy and J.M. Baldwin, <u>Tetrahedron Lett</u>., 1978, 1371.
- 129. K.C. Nicolaou, W.E. Barnette, G.P. Gasic and R.L. Magolda, <u>J. Am. Chem. Soc</u>., 1981, <u>103</u>, 3472.
 M. Shibasaki and S. Ikegami, <u>Tetrahedron Lett</u>., 1978, 559.
- 130. B.F. Riefling and H.E. Radunz, <u>Tetrahedron Lett.</u>, 1983, 5487.
- 131. A.T. Hewson and D.T. MacPherson, <u>Tetrahedron Lett</u>., 1983, 647.
- 132. J.E. McMurry and J. Melton, <u>J. Org. Chem.</u>, 1973, <u>38</u>, 4367.
- 133. D. Seebach, E.W. Colvin, F. Lehr and T. Weller, Chimia, 1979, <u>33</u>, 1.
- 134. G.A. Olah, M. Arvanaghi, Y.D. Vanker and G.K.S. Prakash, Synthesis, 1980, 662.
- 135. F. Kienzle, G.W. Holland, J.L. Jernow, S. Kwoh and P. Rosen, J. Org. Chem., 1973, 38, 3440.
- 136. G.A. Olah and B.G.B. Gupta, Synthesis, 1980, 44.
- 137. D.T. MacPherson, Ph.D. Thesis, Sheffield City Polytechnic, 1984.
- 138. P. Muller and B. Siegfried, <u>Tetrahedron Lett</u>., 1973, 3565.
- 139. E.J. Corey, R.B. Mitra and H. Uda, <u>J. Am. Chem. Soc</u>., 1964, <u>86</u>, 485. E.J. Eisenbraun, P.G. Hanel, K.S. Schorno,

S.F. Dilgen and J. Osieki, <u>J. Org. Chem</u>., 1967, <u>32</u>, 3010.

- 140. J.L. Lambert and S.K. Yasuda, <u>Inorg. Syn.</u>, <u>Vol. 7</u>, p9, McGraw-Hill, New York, 1963. G. Stork and M. Isobe, <u>J. Am. Chem. Soc</u>., 1975, <u>97</u>, 6260.
 M. Suzuki, T. Kawagishi, T. Suzuki and R. Noyori, <u>Tetrahedron Lett</u>., 1982, 4057. C.J. Sih, R.G. Salomon, P. Price, R. Sood and G. Peruzzotti, <u>J. Am. Chem. Soc</u>., 1975, 97, 857.
- 141. T.R. Beebe, R.L. Adkins, A.I. Belcher, T. Choy, A.E. Fuller, V.L. Morgan, B.B. Sencherey, L.J. Russell and S.W. Yates, <u>J. Org. Chem</u>., 1982, <u>47</u>, 3006.
- 142. B.M. Trost and Y. Tamaru, <u>J. Am. Chem. Soc</u>., 1977, <u>99</u>, 3101.
- 143. The alcohol <u>38</u> was recrystallised from ethyl acetate before use in this experiment. This aids detection of the addition of a slight excess of bromine.
- 144. The Dictionary of Organic Compounds p4230, Chapman-Hall, Fifth Edition, New York 1982.
- 145. The zinc dust was activated prior to use by washing 40g of zinc on a Buchner apparatus with sodium hydroxide (2M), water, acetic acid (ag), water, ethanol, acetone and ether. The residue was dried under vacuum and used immediately.
- 146. W.R. Reeve, R.J. Bianchi and J.R. McKee, <u>J. Org. Chem</u>., 1975, <u>40</u>, 339.
- 147. prepared by the treatment of dimethyldisulphide with 0.75 mole equivalents of $LiAlH_4$ in ether to give, after the usual work up an ethereal solution of methanethiol.

- 148. K.C. Nicolaou, W.J. Sipio, R.L. Magolda, S. Seitz and W.E. Barnette, <u>J. Chem. Soc. Chem. Comm</u>., 1978, 1067.
- 149. P. Cagniant and D. Cagniant, p337 in "Advances in Heterocyclic Chemistry" Eds. A.R. Katritzky and A.J. Boulton, Vol. 18, Academic Press, New York, 1975.
- 150. J.E. Saxton, Natural Product Reports, 1984, 1, 21.

RESEARCH STUDY PROGRAMME

As part of this project the author has attended the following lecture courses at Sheffield University.

Organoiron Complexes in Organic Chemistry Biosynthesis Ring Closure Reactions

The Synthesis of Vitamin B_{12}

Organic synthesis

The author has attended appropriate colloquia at the sponsoring and other establishments given by internal and external speakers and presented a research colloquia on this work at the sponsoring establishment.

The author has attended symposia on:-

Stereochemistry (Sheffield 1982, 1983). Organic Chemistry (Nottingham 1982,

Leicester 1983 and London 1985).

A Novel Synthesis of the Indole Ring System

Alan T. Hewson,* Lorraine A. March, Ian W. Nowell, and Stewart K. Richardson Department of Chemistry, Sheffield City Polytechnic, Pond Street, Sheffield, S1 1WB, U.K.

Intramolecular acid catalysed cyclisation of the ketene dithioacetal S-oxide (3) from the o-toluenesulphonamidobenzaldehyde (2) leads to two indole derivatives (5) and (6), the structure (6) being confirmed by X-ray crystallography.

> Reprinted from the Journal of The Chemical Society Chemical Communications 1985

A Novel Synthesis of the Indole Ring System

Alan T. Hewson,* Lorraine A. March, Ian W. Nowell, and Stewart K. Richardson

Department of Chemistry, Sheffield City Polytechnic, Pond Street, Sheffield, S1 1WB, U.K.

Intramolecular acid catalysed cyclisation of the ketene dithioacetal *S*-oxide (3) from the *o*-toluenesulphonamidobenzaldehyde (2) leads to two indole derivatives (5) and (6), the structure (6) being confirmed by *X*-ray crystallography.

One of the established methods for the conversion of aromatic aldehydes into the corresponding arylacetic acids is by acid treatment of the derived ketene dithioacetal S-oxide (1).¹ In the course of a synthetic study we needed to carry out such a transformation on the aldehyde (2). Reaction between (2) and MeSCH₂SOMe, catalysed by Triton B,¹ gave (3) as desired (58%, m.p. 160—162 °C) but treatment of (3) with aqueous acid under a range of conditions failed to yield the desired acid (4). However, when (3) was stirred in dichloromethane containing 10 m HCl, two major products were isolated, to which we assign structures (5) [36%; oil; λ_{max} (EtOH) 263, 269, and 290 nm; $\delta_{\rm H}$ (CDCl₁) 2.30 (3H, s), 2.37 (3H, s), 2.48

† Crystal data: C₁₇H₁₆ClNO₂S₂, M = 365.9, monoclinic, space group $P2_1/c$, a = 8.732(2), b = 19.392(6), c = 10.186(3) Å, $\beta = 96.19(6)^\circ$, U = 1708.4 Å³, Z = 4, $D_c = 1.42$ g cm⁻³, F(000) = 760 electrons, graphite-monochromated Mo- K_{α} X-radiation, $\lambda = 0.71069$ Å, μ (Mo- $K_{\alpha}) = 4.2$ cm⁻¹; R = 0.040 for 1460 independent reflections having l/σ (I) >3.0 collected on a Stöe Stadi 2 two-circle diffractometer. The structure was solved by direct and Fourier methods and refined by least squares calculations using SHELX.⁴ The atomic co-ordinates for this work are available on request from the Director of the Cambridge Crystallographic Data Centre. University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

Scheme 1

sulphuryl chloride in dichloromethane gave (6) (75%) thus confirming the structure of (5).

The two products are thought to arise by initial addition of HCl to the highly electrophilic double bond of the ketene dithioacetal S-oxide. The adduct may then react (Scheme 1) by loss of methanesulphenic acid (path a) or by Pummerer rearrangement (path b). Related Pummerer reactions have been described.^{2.3}

Received, 11th February 1985; Com. 176

References

- 1 K. Ogura, Y. Ito, and G. Tsuchihashi, Bull. Chem. Soc. Jpn., 1979, 52, 2013.
- 2 M. Artico, F. Corelli, S. Massa, and G. Stefancich, J. Heterocycl. Chem., 1982, 19, 1493.
- 3 Jap. P. 61 159, 1979.
- 4 G. M. Sheldrick, 1976, SHELX—a Programme for crystal structure analysis, University of Cambridge, England.