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Abstract

This thesis reports a developmental programme of work undertaken for a number of 
installations at the Scunthorpe site o f Corns pic (formerly British Steel pic).

The thesis commences with an introduction and outline o f the problems, together with the 
objectives o f the research This is followed by a survey o f literature and work by other groups, 
and an introduction to relevant aspects o f neural networks. Chapter 4 details the experimental 
background and procedures, whilst chapters 5 -  9 are concerned with analysis o f data and 
results relating to specific installations. Finally, chapter 10 presents an overall review o f the 
results, with conclusions and suggestions for further work. Tables o f typical results are listed 
in the appendices.

The central theme concerns the optimisation o f the combustion o f gas mixes produced by on­
site processes through parameter prediction, the constituents of the mixtures included blast 
furnace gas (BFG), coke oven gas (COG), and basic oxygen steelmaking gas (BOS).
The main parameters under investigation were calorific value (CV), air/fuel ratio, and specific 
gravity. Finally, a secondary investigation was conducted into predicting oxygen content in 
flue gases with a view to reducing recuperator corrosion.

Data from three different systems was considered: a power station, a coke oven gas plant and 
a section mill. All data sets were subject to aliasing both as a result of the slowness o f the 
mass spectrometer measuring devices with respect to gas content fluctuations, and as a result 
o f the relatively long sampling interval employed by the main archiving system. The sets 
from the section mill were particularly prone to abrupt and extreme variations.

Neural network solutions based on function approximation were proposed and developed. 
There was a specific requirement that any solution be compatible with unsophisticated low- 
budget hardware. Hence there were major constraints on network size and complexity. A 
linear time series based network was found to perform more efficiently in the data supplied 
rather than the more conventional non-linear counterpart.

The proposed networks indicated potential gains in accuracy in excess o f 50% over a second- 
order least squares-based method proposed by the collaborating organisation.

At the time of writing it is understood that no other similar systems have been investigated in 
this manner, let alone resulting in a successful minimalist neural network solution. Hence the 
contribution to knowledge is that it is possible to accurately predict the above parameters with 
a minimalist linear network, trained with data subjected to varying degrees o f aliasing.
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1.Introduction and objectives

This thesis describes investigations into the development o f neural network-based predictors 

with the purpose o f forecasting parameters in gas mixes o f varying complexity in several 

different installations at Corns’ (formerly British Steel’s) Scunthorpe site. These parameters 

in the main consisted o f calorific value (CV), specific gravity (s.g.), and air/fuel ratio (a/f), 

with some work in the later stages involving Wobbe indices, and percentage oxygen content 

in exhaust flue gases. (This thesis follows the particular industry convention of using 

‘specific gravity’ rather than the more contemporary ‘relative density’.) The Wobbe number 

or index is used as a means o f comparing the heat inputs to a burner o f different gases at fixed 

pressure, and is defined as

C V
W  = - j = M J / k g  --------------- (1.1)

y/S.g.

where CV = calorific value, s.g. = specific gravity

Discussions with Corns staff had revealed a requirement for parameter prediction in order to 

assist with the optimisation o f combustion systems on economic and environmental grounds. 

On-site processes produced a variety o f gases as bye-products, such as blast furnace gas 

(BFG), coke oven gas (COG), and basic oxygen steel-making gas (BOS), which are then 

mixed and distributed throughout the site for use as fuels. (Appendix A 1 tabulates typical 

properties.) The cost of these compared to that o f importing fuels from external sources (e.g. 

heavy fuel oil or natural gas) was described as “negligible”. Further, the author was informed 

that forthcoming environmental legislation would restrict the practice o f ‘flaring o f f  unused 

fuel gas; it was essential that as much energy as possible be recovered from on-site gas mixes.

Corns staff also stated that these mixes could vary widely in content, often abruptly, and that 

there were significant transportation time-lags within the distribution system, the effects o f 

these being exacerbated by the relatively slow operation o f the associated valve-trains (up to 

20 seconds). In addition, due to budget constraints any potential solution would have to be 

compatible with low-specification hardware.

The author had been involved in some earlier investigations into the feasibility o f developing 

an expert system to optimise combustion processes. This had involved both Genetic
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Algorithms (GAs) and neural networks. Whilst GAs were capable o f highly accurate 

solutions, those solutions were specific to a given dataset. In contrast, neural networks [e.g. 

Hayk99, p205 et seq] are capable o f generalisation and thus have an inherent ability to cope 

with previously unseen data. Hence a neural network approach was adopted. However 

potential network size and sophistication were constrained by the above limitations on 

hardware specification. Minimalist, or parsimonious, solutions were sought. Initially some 

non-linear networks were developed on the understanding that redundant PCs might be 

available; later in the project information was received that only PLCs were available and 

non-linear work ceased. (Nonetheless, the non-linear work is reported in the earlier chapters.) 

Mass spectrometer datasets from the fuel distributions systems of the following departments 

were investigated:

Central Power Station -  CPS (chapter 5)

Heavy Section Mill -  HSM (chapters 6 and 8)

Dawes Lane Coke Ovens (chapter 7)

In addition exhaust flue data (percentage oxygen content) from the HSM was also examined 

in respect of a recuperator corrosion problem (chapter 9).

Data from the mass spectrometers was received in the form o f spreadsheets largely from the 

main archiving system (sampled at 1-minute intervals) with some data recorded directly at the 

mass spectrometer outputs (sampled at 30- or 23-second intervals depending on mass 

spectrometer type).

No indication o f acceptable accuracy levels was provided but it was learnt that a second-order 

least squares-based predictor (based on the previous 5 values) had been investigated by Corns 

and found to give acceptable results. Such a predictor was developed in the course o f this 

research and used to provide benchmarking for the proposed neural network solutions.

1.1 Objectives

• To provide minimalist neural network predictors capable o f being implement on 

unsophisticated low-specification hardware, predicting specified parameters up to two 

sampling intervals ahead.

• These parameters consisted of CV, Wobbe index, s.g. and air/fuel ratio, from gas 

mixes o f varying complexity, and with constituent gases including COG, BFG and 

BOS.
2



•  Predictor performance was to attain greater accuracy than that o f the benchmark least 

squares implementation, and to demonstrate greater resilience when operating with 

aliased data, e.g. data from the main archiving system as opposed to that obtained 

directly from mass spectrometer outputs.

•  A secondary investigation would attempt to apply the method to predicting oxygen 

content in exhaust flue gas in respect o f a recuperator corrosion problem.

3



2.0 Survey o f Literature and Work by Other Groups.

(References to literature relevant to general neural network topics are contained in the 

appropriate sections in subsequent chapters.)

2.1 QUB (Queen's University Belfast)

In the UK many of the papers published concerning modelling, and control and optimisation, 

o f power stations emanate from Queen's University, Belfast. (The Control o f Power Systems 

Group led by Professor B.W.Hogg.)

This work commenced in the 1980s and much o f it is centred around the Ballylumford Power 

Station in collaboration with Northern Ireland Electric (NIE). (Ballylumford is a 

conventional oil-fired electricity generating station supplying the national grid.)

The bulk o f the research is based on classical differential/algebraic equation techniques. It 

ranges from boiler identification [Chawdry89] to object-oriented modelling techniques (using 

the C++ Programming Language)[ Lu94].

These papers are somewhat descriptive in nature and lacking in detail to be capable o f any 

immediate contribution to this research. It is assumed that there is a measure o f commercial 

confidentiality involved.

More recently, the group's work has begun to embrace soft computing methods with the 

design o f a proposed Adaptive Fuzzy Logic controller for AVR (Automatic Voltage 

Regulation) [Lown97].

Nothing in their published work suggests the study o f mixed-fuel systems, nor prediction o f 

fuel parameters.

2.2 University of Strathclyde

This is a group from that university's Industrial Control Centre led by Professor Michael J. 

Grimble, and working in conjunction with Scottish Power and John Brown Engineering. The 

text consulted was "Modelling and Simulation o f Power Generation Plants". [Ordys94]

Much of the early investigative work in this research involved verification of the modelling 

presented in the book, using Simulink. Much of the data presented proved to have 

ambiguities, or had been omitted, and work ceased.



Again there appears to be no involvement with mixed-fuel systems, nor the prediction o f fuel 

parameters.

2.3 K.F. Reinschmidt

Dr K.Reinschmidt (Senior Vice President o f Stone & Webster Engineering Group) has 

published a number of papers concerning the involvement of neural networks in power 

generation.

Two of the earlier papers read [Rein91, Rein94] concern the modelling and control o f power 

plants. However he states that the data used was obtained from an earlier work describing a 

"utility once-through boiler" (a type that does not feature in this research).

The second two papers on “Short term electrical loadforecasting” [Rein95a, Rein95b], 

employing neural networks, genetic algorithms, and knowledge-based systems, 

are o f particular relevance and interest to this project.

In these, Reinschmidt describes a method for forecasting demand at an electricity generating 

station, on an hourly basis. He utilises such input data as temperature, humidity and other 

meteorological data, together with other factors such as holidays.

There are two types o f neural network employed - linear and non-linear. The former is a 

single-layer network with a linear activation function employing a ‘time series’ model, and 

the latter a multilayer network with non-linear activation functions.

The following time series is utilised in both the GA-based and linear neural network 

approaches:

Zt = ajZt., + a2zt.2 + ... + apZt_p + c0xt + CjXn + ... + cpxt.p + ut -----(2 .1)

where zt = electrical load at time t 

xt = independent variable 

ut = random disturbance 

aj, Cj are coefficients

Reinschmidt states in his April 1995 paper [Rein95a] that

“Linear neural networks can successfully learn the coefficients ... from historical load 
data and the independent variables. Both ... Widrow-Hoff... and back propagation 
have been used ... both give equivalent results, but Widrow-Hoff is faster in training.”
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However, he also states that genetic algorithms were also used to establish the parameters in

the linear time series equation, commenting that

“The genetic algorithm often gives forecasts as accurate as those obtained from 
neural networks ...However, the results ... are more variable than those from the 
neural network method.”

The non-linear network uses the sigmoid activation function and consists “typically” o f one 

hidden layer although “in some cases two”, and has no bias terms in the output layer. The 

standard back-propagation training method is used. O f great interest to this research, 

especially the concept and development o f a parsimonious network, he comments

“Unlike the linear time series model, in which there is one fitted coefficient for each 
lagged variable, in the nonlinear neural network forecaster the selection of lagged 
input variables is independent of the number of fitted coefficients, the network 
weights, the number of which is determined by the number of layers and the number 
of hidden units. Also, in linear regression models, if an input is extraneous, then its 
regression coefficient is zero (or more properly, is not significantly different from zero 
...) . However, in nonlinear neural networks this is not necessarily true; an input ■ 
variable may be unimportant but still have large weights; the effects of these weights 
cancel somewhere downstream.

Therefore, in conventional backpropagation for nonlinear neural networks, there is no 
automatic elimination of extraneous input nodes or hidden nodes. However in 
practical forecasting it is necessary to achieve a parsimonious model, one which is 
neither too simple nor too complex for the problem at hand. If the neural network is 
chosen to be too small (to have too few inputs or hidden units), then it will not be 
flexible enough to capture the dynamics of the ... system; this is known as 
underfitting. Conversely, if the neural network is too large, then it can fit not only the 
underlying signal but also the noise in the training set; this is known as overfitting. 
Overfitted models may show low error rates on the training set but do not generalise; 
they may then have high error rates in actual prediction.

The nonlinear model can yield greater accuracy than the linear formulation, but takes 
longer to train. Large nonlinear neural networks are also prone to overfitting. 
Forecasting requires parsimonious models capable of generalisation. The size of the 
neural network can be reduced by examining the correlation coefficients, or by using 
genetic algorithms to select the optimum set of input variables. The linear model is a 
satisfactory approximation to the nonlinear model for the purpose of selecting the 
input terms.

Large ... neural networks trained using backpropagation are notoriously time- 
consuming, and a number of methods to reduce training time have been evaluated. 
One method that had been found to yield orders of magnitude reductions in training 
time replaces the steepest descent search by techniques that modify the network 
weights using a least-squares approach; the computations in each step are greater 
but the number of training iterations is greatly reduced. Reductions in training time 
are desirable not only to reduce computation costs, but to allow more alternative input 
variables to be investigated, and hence to optimise forecast accuracy.
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He concludes, that by using all three methods and incorporating them into a rule-based expert 

system, that

“it is possible to produce composite forecasts that are more robust and more accurate 
than any single method.”

Whilst this research concerns parameter forecasting over much shorter periods than 

Reinschmidt’s hourly load forecasting, his discussion provides in the absence o f other criteria, 

some pointers/indications for potential network design and evaluation. In particular his use o f 

MAPE (mean absolute percentage error) as an accuracy measurement. However little in the 

way of advice on number o f cells and layers is offered.

2.4 Boccaletti et al

The paper “An application o f neural network in combustion process evaluations” [Bocc99] 

refers to a power plant but does not indicate its purpose or fuel used. However it is one o f the 

few papers in this field that provides details of neural network architecture and training 

methods, together with a discussion o f the justification for the employment o f neural 

networks and a discussion o f results and accuracy, and as such is o f interest to this research.

The neural computing approach was adopted because o f the complexity o f the non-linear 

equations utilised in conventional methods and the consequent demands on computing time 

and resources.

A feed-forward network consisting o f one hidden layer with log sigmoid activation functions 

and trained by back propagation was used to obtain highly accurate results in predicting 

combustion output conditions.

O f the network, he comments

“Choosing an appropriate number of hidden neurons is extremely important. Using 
too few will starve the network. Using too many hidden neurons will increase the 
training time, perhaps so much that it becomes very difficult to train the network 
adequately in a reasonable period of time. The present study has been started with 
four hidden neurons and subsequently increased in a step of one. (sic)”

and whilst discussing the choice of activation function, he adds

“ .... In most cases, it has been found that the exact shape of the activation function 
has little effect on the ultimate power of the network, though it can have a significant 
impact on training speed.”
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The chosen data set sizes are listed as:

Sample size Case #1 Case #2

Total data 3982 3982

Training 2982 (75%)** 2582 (56%)

Validation 600 (15%) 1000 (25%)

Cross-validation * 400 (10%) 400 (10%)
"Termed the verification set in this research.

** Percentage of the available data.

Table 2.1 relative sizes of datasets (see text)

The results for his optimised networks are shown below :

Parameters Case #1 Case #2

Inputs 13 13

Hidden neurons 45 22

Output neurons 6 6

Learning rate 0.7 0.7

Training sample size 2982 2582

Epoch size 18,000 20,000

Training error 0.00993 0.002516

Testing error 0.00990 0.002544

Table 2.2 results (see text)

It should be noted that Case #2 with the larger validation set required fewer hidden neurons 

and provided a near three-fold increase in accuracy. However, Boccaletti draws attention to 

the fact that in Case #2 one o f the output parameters was changed for another whose

... range of variability ....is sm aller... This reduces the network complexity, and 
consequently the number of hidden layer neurons and the training time.”

(It is this author’s view that a further factor might be that a larger validation set may have 

increased training efficiency.)

Boccaletti concludes

"This work has demonstrated that it is possible to describe by means o f neural 
networks the connections among quantities involved in physical, chemical and 
thermodynamic processes."

and adds that

8



"1. It is not only the number of input and output variables which affect the learning, 
but also the relationships between the input and output variables play an important 
role.
2. The number of hidden neurons depends not only on the number of input and 
output neurons, but much more on the relationship between the input and output. 
Higher the the complexity of the problem, greater the number of hidden neurons."

It should be noted that the data described in this paper was contrived : random number 

routines were used to generate artificial data within known ranges. Further, the sizes o f 

validation and verification sets seem small compared to that o f the training set.

Nonetheless, the comments on training and structure are o f interest.

2.5 Other publications

Cui and Shin [Cui92] apply a neural network to temperature control of a ‘once-through’ boiler 

using a multi-layer perceptron network, with two hidden layers, trained by back-propagation. 

In contrast to other texts -  e.g. Boccaletti above -  they assert that

“It is proved that a four-layer (with two hidden) perceptron can be used to 
approximate any continuous function with the desired accuracy.”

The number o f hidden cells

“ ... depends on the controlled plant under consideration and is selected 
experimentally.”

and eventually conclude for that system, that increasing the number of hidden neurons beyond 

a certain point

“ ... does not improve system performance. But adding more nodes will improve the 
system’s reliability.”

Khalil and Omatu [Khalil92] describe the use of a neural network in the control of a non-linear 

heating process. The learning scheme is a two-phase process involving training a network as 

a plant emulator, followed by the training o f a second network as a controller. Essentially this 

is an instance of function approximation using a three-layer network with one hidden layer 

containing eight neurons with sigmoid activation functions trained by a variation o f the 

generalised delta rule. It is also stated that the number o f hidden neurons is determined 

empirically.
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Other work relates to using Al/Soft-Computing for load prediction and performance 

enhancement. Gibson [Gib96] describes a commercial system (for conventional power plants) 

and is therefore somewhat sparse in detail, whilst Krost [Krost96, Krost98] deals with a photo­

voltaic cell installation. Sanz [Sanz95]details a “multi-fuel” system which is in fact a hydro­

electric plant with a diesel back-up generator, rather than a “mixed fuel” system such as the 

one under investigation in this project.

In conclusion, none o f the publications found to date describe any mixed (fossil) fuel systems, 

let alone anything approaching the diversity o f that at the BS (British Steel) Scunthorpe site.
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3.0 Neural Networks

3.1 Intoduction

A neural network is

“....an information-processing system that has certain performance characteristics in 
common with biological neural networks. Artificial neural networks have been 
developed as generalisations of mathematical models of human cognition or neural 
biology, based on the assumptions that:

1. Information processing occurs at many simple elements called neurons.
2. Signals are passed between neurons over connection links.
3. Each connection has an associated weight, which, in a typical neural net, 

multiplies the signal transmitted.
4. Each neuron applies an activation function (usually non-linear) to its net 

input (sum of weighted inputs) to determine its output signal. “

[Faus94, p3]

Neural networks, sometimes referred to as artificial neural networks (ANNs), are therefore a 

paradigm based on biological nervous systems and their nerve cells (neurons). Such a 

biological nerve cell may be shown as

dendrite from
next cell

som a (cell body)
axon

dendrites

O
Axon from 
previous cell cell

synaptic g a p s

fig. 3.1 biological nerve cell, or neuron

The dendrites form inputs (receptors) to the cell, and the axon the output to the next cell(s). 

Axons and dendrites are connected by synapses. Electrical signals from one cell to another 

are transmitted across the synaptic gap by chemical action, which modifies the signal by 

scaling it. This scaling can be viewed as being analogous to the weighting in artificial neural 

networks. (See below.) The soma or cell body sums the incoming signals and when a 

particular threshold has been reached a signal is sent out along the axon.

11



Figure 3.2 (below) is a functional representation, which may be expressed in mathematical 

terms, with reference to the input values i and their weightings w, as follows:

• 1 ________ W-I
\aT2/2 ----------------- —

output
(axon)r- W/ V \ Activation

W3 ^ ) ------------
Function ------ --------►

h /
/  in

sca led  Jw e^ghied) cell b o d y  (som a)

fig. 3.2 functional representation of neuron

n

output = factivation (  ^  )  (3.1)
j= i

Which in turn may also be expressed in vector form as 

output = factivation (  tw + b )  (3.2)

where b is an optional bias term (see below) and functions as an additional input of 
constant value 1 and of weighting b.

The values o f the weights (including the bias b) may be determined either by inspection or 

training.

In the course o f the development o f artificial neural networks technology, several forms o f 

activation function emerged; those relevant to this research are described below.

One o f the earliest practical examples was the thresholding function (fig. 3.3 below) based on 

that proposed by McCulloch and Pitts in their 1943 paper which according to Hagan et al.

“show ed that networks of artificial neurons could, in principle, com pute any arithmetic 
or logical function.” [Hagan95, p 1-3]

The threshold value (7) may be adjusted to suit the application. However, use o f a bias term 

will have the same effect o f shifting the plot along the x-axis, and thus T  can be set to zero, as 

in fig. 3.4, which in some cases may be more convenient when using certain training 

algorithms where b is derived automatically. (This applies to all subsequent functions.)
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x  = X ijWi Output f(x)
<T 0
> T 1

fig. 3.3 thresholding function without bias 

input term

x  = £  ijWi + b Output f(x)
<0 0
>0 1

fig. 3.4 thresholding function with bias

It might be perceived that networks composed of such cells could only be capable o f 

producing binary outputs. However within a network o f several interconnected cells

" ... frequency of firing varies and can be viewed as a signal of greater or lesser 
magnitude. This corresponds to looking at discrete time steps and summing all 
activity ... at a particular moment in time.” [Faus94, p5]

Thus the signals may also be considered as varying in level and not necessarily as being 

limited to fixed binary levels.

As a discontinuous function the threshold function is not viable for use with gradient-based 

training methods that require the use o f derivatives. Thus a flattened, “S”-shaped or
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‘sigmoidal’, differentiable version o f the function emerged, the sigm oid, or logistic, function 

shown below. Schalkoff [Shalk97, p78] asserts that

it has a biological basis. The average frequency of biological neurons, as a 
function of excitation, follows a sigmoidal characteristic.”

For the log sigmoid, or logistic function, f  (*) = — i—  --------(3.3)
1 +  e~x

where x is the sum o f the weighted input signals and bias for the neuron.

X  - XQ — Q
Similarly for the tanh function, f { x )  = ---------7-   (3.4)

e x +  e  x

logistic function

f(x)

-1
tanh x

(x)

fig. 3.5 sigmoidal activation functions

The linear function is often used in the output layer o f a neural network and together with the 

associated weights and bias(es) scales the output signal(s).

f i x )  =  x (3.5)

3.1.1 Differentiation of Activation Functions

Some training methods require the use o f the first derivative o f the cell activation function. 

For the linear function,

/ ' ( * ) = ! • (3.6)

In the case of the sigmoidal function, 

1
f ( x )  =

l  +  e~
f  (*) =

( i + e - T

(3.3) and (3.7)
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requiring the evaluation o f e x , normally via a computationally-intensive series 

approximation. However it may be shown [Shalk97, p80] that in this particular case

/ ' (* )  = / ( * ) ( ! - / ( * ) ) (3.8)

with consequent savings in computational time and memory requirements.

3.2 Network architectures

External inputs to 
network, or outputs

h

<2
Outputs from 
network, or inputs 
to next layerWin

In

1
Unity bias term

fig.3.6 example of two-cell neuron layer

Several cells may be connected in series, or ‘stacked’ vertically within a layer, these layers in 

turn may be connected in series with other layers. Fig. 3.6 shows such a two cell (neuron) 

layer with n inputs, and with the weights and bias shown for the first cell, those to the second 

cell being omitted for clarity. The nomenclature used is that wji refers to the weight 

connecting the I th input to t h e /h cell, and bj its bias. The bias input may be considered to be 

an additional, constant, unity input, sometimes termed i0 with synaptic weight Wj0 instead of 

bj. This is particularly convenient when matrix algebra is employed within training 

algorithms.

All cells have connections to all network inputs, or in the case of cells in a hidden layer, to all 

outputs in the previous layer. The option of a constant ‘unity’ input provides a possible bias 

source for the neurons.
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Input Laver 
Input connections 
only.

(Does not contain 
any cells)

N

Central 'Hidden' Laver(s) 
So called because there 
are no connections to the 
network inputs and outputs

(Contain cells, weights and 
biasing)

...... ...... K

Output Laver 
Output(s) of cells 
form network 
outputs

(Has cells, weights 
and biasing)

1 > 1........ V

fig 3.7 schematic of feed-forward network

Fig. 3.7 shows the basic structure o f a feed-forward network (FFN). (There appears to be 

some disagreement over the terminology in that some texts refer to this type o f network as a 

Multi-Layer Perception (MLP), while others restrict the term ‘perceptron’ to vision 

applications.)

input
u(n) output

Y(n+1)
Neural
Network

fig 3.8 external connections to network, including feedback

Figure 3.8 shows the external connections, including feedback, to a recurrent temporal 

network o f the type used in this research. Only a single input u(n) is shown together with a 

delayed version o f itself u(n-l) forming a second network input. Several such inputs may be 

used, with or without delays. Similarly, delayed versions o f the output y(n+7) form 

additional, feedback, inputsy{n),y(n-l) ... Multiple outputs may also be present.

During the course o f the experimental work several variations o f the above model were used, 

mainly one which utilised fed back versions of the output as the only inputs.

3.3 Typical Applications

Schalkoff [Schalk97, p6] characterises problems suitable for solution by neural networks as 

including:

“Emulation of biological computational structures may yield superior computational 
paradigms for certain classes of problems. Among these are ... labelling problems, 
scheduling problems, search problems, and other constraint problems; the class of
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pattern/object recognition problems, notably in vision and speech understanding; and 
the class of problems dealing with flawed, missing, contradicting, fuzzy or 
probabilistic data. These problems are characterised by some or all of the following : 
a high dimensional problem space; complex, unknown, or mathematically intractable 
interactions between problem variables; and a solution space that may be empty, 
contain a unique solution, or (most typically) contain a number of (almost equally) 
useful solutions ...”

Thus for example, Fausett [Faus94, p7 et seq] suggests that neural networks are employed in 

situations including

• pattern recognition, pattern association —  particularly in machine vision 

applications, and signal processing generally.

• Languages —  speech recognition (can be trained to recognise individual speech 

characteristics, hand writing analysis.

• Function approximation, particularly when information and/or data are missing or 

deficient., e.g. system modelling, control systems, predictors, [eg see  Nar90]

O f greatest interest to this research is function approximation —  the potential for a network to 

Team’ the relationships between given sets o f input and output data and, in particular, to 

operate as a predictor. Such implementations, in addition to the work describe in Section 2.0, 

also include prediction o f tool wear [Elan95] and the control of rolling mills where data 

deficiency is encountered. [Rosch92]

Finally, the above solutions may be implemented as adaptive networks, where further network 

training occurs in real-time, between sampling intervals, so that the network responds and 

adapts to changes in data characteristics and system circumstances. Whilst intuitively 

attractive as a solution to some o f the problems encountered in the experimental work the 

following factors precluded the inclusion of adaptive solutions:

• There exists the potential for the network to ‘forget’ the longterm historical data 

characteristics.

• There is the possibility o f a pre-trained network ‘adapting’ from a generalised 

solution to a ‘memorised’ one. (Section 3.4.2)

• Training requires considerable computing resources; the preferred solution was a 

minimalist one to be implemented on relatively unsophisticated hardware.
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3.3.1 F unction  A pproxim ation  [e.g. Hayk99. P209; Shalk97]

This is a development o f the Stone WeierstraB theorem, which Haykin [Hayk99. P209] 

interprets as

where (p{.) is a “nonconstant, bounded, and monotone-increasing (sic) continuous function.” 

as an approximate realisation o f the function f(.), i.e.

(The logistic and tanh activation functions both fulfill these criteria.)

Equation (3.10) maybe interpreted as describing a network having m0 inputs, a single hidden 

layer of non-linear neurons with connecting weights w and bias values b and with linear 

outputs o f synaptic weighting ai

Effectively, a single hidden layer is sufficient to enable a network to compute an 

approximation to any given function.

Significantly, Haykin concludes

“.... However, the theorem d oes not sa y  that a single layer is optimum in the s e n s e  of 
learning time, e a se  of implementation, or (more importantly) generalization.”

3.4 Practical considerations in network implementation

3.4.1 Network design
Fundamental to network design is the question o f the number o f layers in a network and the 

number o f cells per layer. All networks must have an input and an output layer. The function 

o f hidden layers is to provide feature identification; Haykin [Hayk99, p199] states that

"... As learning progresses, the hidden neurons begin to gradually ‘discover’ the 
salient features that characterise the training data. They do so  by performing a 
nonlinear transformation on the data into a new sp a ce  called the hidden space, or 
feature space ...”

M  V *=i J
(3.10)

(3.11)

for all (Xj, ,XmQ) that lie in the input space and where £ is the permitted error,

Schalkoff [Shalk97, p166] elaborates, referring to hidden layers as internal layers:
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“1. The internal layers rem ap  the inputs and results of other (previous) internal layers 
to achieve a more seperable representation of the data. Suitable external 
preprocessing of the inputs may yield the sam e effect.

2. The internal layers may allow the attachment of sem antics to certain combinations 
of layer inputs and thus serve a s  matched filters. Often it is illustrative to exam ine the 
structure of internal layer remapping that evolves from training. For exam ple, in 
investigating the neural network application to ed ge classification, it w as observed  
that hidden units behaved like ‘feature detectors’, each implementing a portion of a 
matched filter.” ... (memorisation) . . .’’may be an extrem e ca se  of this behaviour.”

The number o f cells in the output layer is governed by the number of network outputs 

required by the application, as is the number of inputs. However deciding the number of cells 

in a hidden layer is a somewhat iterative, heuristic process. Schalkoff [Shalk97, p166] 

commences his discussion o f the topic with the observation that

“The choice of the number of hidden units in a feedforward structure design often 
involves considerable engineering judgement. Often, trade-offs between training time 
and mapping accuracy lead to iterative adjustment of the network using simulation. 
For a given problem, the design of an appropriately sized hidden layer is often 
nonobvious. Intuition su g g ests  that ‘the more the better’ could be used  a s  a guide to 
sizing of the hidden layer, since the number of hidden units may be 
counterproductive. For one thing, the network training time is influenced by the size  
of the hidden la y er ... Increasing the number of hidden units greatly ... increases  
training time substantially, with little gain in overall mapping capability of accuracy. 
Furthermore, an excessively  large number of hidden units allows an undesirable” ... 
(m em orising).. .” effect which results in units memorising certain a sp ects of certain 
units rather than providing a distributed computation.”

Haykin [Hayk99, p199] suggests two approaches : netw ork grow in g  and netw ork prun ing  

appearing to favour the latter.

N etw ork g r o w in g : the design process commences with a minimal network and then 

adding further cells and layers only when it is established that the required degree of 

accuracy can not be met without enlarging the network.

N etw ork  p ru n in g : the design process commences with a large network

“...with an adequate performance for the problem at hand, and then prune it 
by weakening or eliminating certain synaptic weights in a selective and 
orderly fash ion ...”

until there is a significant reduction in accuracy.

The latter approach requires a large amount o f memory and a high speed processor to offset 

the increase in training time. Given the restricted computing power and capability available 

to the project it was decided to follow a network growing approach. Further both 

Reinschmidt and Boccaletti [Section 2.0] describe network growing approaches in their 

accounts o f practical network development.
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Interestingly, Haykin appears to infer a minimum of two hidden layers when discussing the 

practical considerations o f using a network as function approximator, and states that local 

features (of the data set) are extracted in the first layer whilst global features are extracted in 

the second [Hayk99, p199]. (Inferring perhaps, that the global features are necessary for 

generalisation.)

3.4.2 Generalisation and memorisation

test data
error

training data data overfitted, 
validation data error 
increasing

training iterations

fig. 3.9 validation (test) set error increasing after ‘over-fitting’

A significant issue in design and training is that o f generalisation verses memorisation. The 

available data is divided into two sets, a training set to actually train the network by 

establishing the synaptic weights of the network, and a separate test, or validation, set to 

verify the network’s performance and accuracy.

Generalisation refers to the ability o f a network to perform accurately with input data other 

than that presented to it during training. If training is allowed to continue until the output 

error of the network when presented with the training data reaches a minimum, memorisation 

may occur. That is, the network eventually memorises the training set input-output 

relationships and behaves as a look-up table, losing its ‘knowledge’ of the data characteristics 

in the process. When (previously) unseen data is presented to the network, e.g. for validation 

purposes, it may not produce the required outputs.
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Both Schalkoff and Haykin advocate the frequent interruption of the training process and 

validation o f the results so far obtained, in order to avoid ‘overtraining’. Whilst there might 

be scope for further error reduction with the training set, the network’s output error with the 

validation data begins to increase, (fig. 3.9) In fact Schalkoff [Shalk97, p195] raises the 

possibility that an extreme case might be that the network performs poorly with the training 

data but performs well on validation. In practical terms, Schalkoff [Shalk97, p196] suggests 

that available data be split 20% for training data and the remainder used for validation.

3.4.3 Preprocessing of Data
Rao [Rao95, pp379-381] in his case study o f a financial forecasting model raises several 

issues o f relevance to this research, grouping his comments as follows:

• Highlighting o f (input data) features

• Transformation

• Scaling and bias (offset)

He suggests consideration o f presenting rates of change (first and second derivatives) o f the 

data as additional inputs to the network. (The experience o f this writer during the work 

reported in this thesis was that negative weightings appear during network training and that 

these, combined with the remaining positive ones, combine at the summing junction to give 

difference (i.e. derivative) information to the network, and hence such inputs are largely 

superfluous. [Section 5.3.7])

Further it might also be beneficial to emphasise, or highlight, certain important influences by 

using binary inputs to represent their presence or otherwise. (In his example on financial 

systems Rao cites Central Bank intervention.) Furthermore it might be beneficial to “de- 

emphasise” unwanted noise in the inputs, e.g. data spikes, by smoothing it with a moving 

average filter. However he cautions against “introducing excessive lag in the resulting data.”

For time series data Rao advocates consideration o f the use o f a Fourier Transform to expose 

cyclic events, together with other signal processing techniques such as digital filtering.
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Recalling the 0 to 1 output range o f the sigmoidal activation function, he recommends that 

data should be chosen that does not cause saturation, or “overwhelm” the neurons. He 

suggests normalising both inputs and corresponding outputs. Furthermore, given that the 

GDR [Appendix A.2] is less effective for near-zero training values the addition o f a constant 

bias might make training more effective. (0.5 is suggested for a sigmoidal function to bring 

the data near to the centre of the output function. However, in the Matlab neural network 

toolbox, and other systems, bias values are computed during training rather than implemented 

as fixed constants.)

Rao does not comment on the tanh sigmoidal function which is antisymmetric about zero, and 

which finds favour with Haykin:

“A multilayer perceptron trained with the back-propagation algorithm may, in general, 
learn faster (in terms of the number of training iterations required) when the ... “ 
(activation function) ... “ is antisymmetric than when it is nonsymmetric ... A popular 
exam ple of an antisymmetric activation function is ... in the form of a hyperbolic 
tangent

In contrast to Rao, Haykin later adds (with respect to the hyperbolic function)

“Each input variable should be p re p ro cessed  so  that its mean value, averaged over 
the entire dataset, is c lose  to zero, or e lse  it is small compared to its standard 
deviation.”

[Hayk99, p179-181]

3.4.4 Training

Standard back-propagation [Appendix A.2] was adopted for the early stages o f this research due 

to the extremely limited computing resources then available. This proved to be somewhat 

slow and inefficient, requiring several hours training for a single network. However in the 

latter stages when much improved facilities did become available the Levenberg-Marquardt 

variation was adopted with much improved timing and efficiency.

The Levenberg-Marquardt algorithm involves numerous matrix inversions and as such 

is computationally demanding; however it is described as the fastest training method 

available [Hagan95: chapter 12].
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4.0 Experimental strategy and procedures
4.1 Background and analysis

4.1.1 Software used

MATLAB was used throughout the project, in particular the MATLAB neural network 

toolbox. Other systems were available, principally SNNS (Stuttgart Neural Network 

Simulator). However this required computer operating systems that were not readily 

available to the project - e.g. Linux or Unix - or the installation o f X-Windows to enable the 

software to run on the Microsoft Windows platform. [SNNS98]

4.1.2 Accuracy considerations and benchmarking

Cords had considered the use o f a second-order least squares-based predictor. Hence such a 

predictor was implemented in MATLAB and its performance used as benchmarking for 

neural network development.

Accuracy measurements were made on a per unit basis:

Further, for a given experimental run, the mean and maximum error values were recorded, 

together with the standard deviation as an indication o f the dispersion o f the results.

4.1.2.1 Effects of pre-processing on accuracy

Pre-processing may be employed in order to bring the data ranges closer to those o f the non­

linear activation function sigmoids, i.e. <= 1.0, thus reducing the magnitude and number o f 

weight changes during backpropagation (Appendix A 2 ) , and enhancing the efficiency and 

speed o f training.

A method o f pre-processing was investigated, involving division o f the current data value by 

a running mean of the last m values, in accordance with the following algorithm:

e =
predicted -  actual

(4.1)
actual

where x '\k \  is the pre-processed value 

x[&] is the actual value
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jc[&] is the current value of the running average 

1 ^ '
and 3c[A:] =  — ôr Previ°us m values ------- (4.3.)

m  n = k - m + 1

However at 'post-processing' after predicting x '\k  + 1 ] , the value o f x \k  + 1] will not be 

known, so the data will have to be re-constituted using x[&] as shown below:

x\k  + l ]  =  x ’\k  + 1]* x[k\ ------ (4.4)

with consequent inaccuracies (particularly where data is subject to rapid fluctuations relative 

to the sampling interval) in addition to those resulting from network training, and thus placing 

limitations on the maximum possible accuracy attainable. Further, division would have a 

smoothing effect on the data introducing a loss o f dynamics which might reduce the 

effectiveness o f the training process.

It should be noted that an advantage o f pre-processing by division by a running mean is that a 

dimensionless dataset is produced which is independent o f the measurement units, and 

further, where the absolute ranges are not known, reduces the range of the datasets.

Simple scaling through division by 10 or 100 was also used. This requires little in the way o f 

post-processing and preserves the dynamics o f the data. (Significantly higher accuracies were 

obtained by scaling than by preprocessing through division by a running mean.)

4.1.3 Neural network-specific issues

With reference to Section 3.4.1, few texts give adequate indications of possible sizes and 

structure (i.e. the number of network inputs, the number o f layers, the number o f cells per 

layer, and the type of activation functions) o f networks for given applications, particularly for 

a predictor network involving MLPs, other than experimental iteration. However, 

Reinschmidt [Rein95a] suggests a method for determining the approximate number o f inputs, 

which was adopted as a basis for the work described in this thesis (described in section 2.3). 

However, his discussion gives little indication o f the type o f non-linear activation function 

and hence, both types o f sigmoidal function were investigated during the relevant stages.
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4.2 Strategy
It was decided that Reinschmidt’s neural network-based work as discussed earlier in Section

2.3 might form a suitable basis for investigation and that development should proceed from 

there. However, it should be noted that his paper

• reported the development o f a load forecasting system rather than fuel parameters and 
that the system under investigation was a conventional single-fuel power generation 
plant rather than mixed fuel system of fluctuating content.

• concerned hourly predictions and that this project required predictions on a minute- 
by-minute basis, and possibly more than one sampling interval ahead.

Reinschmidt describes three approaches -  a linear neural network, a genetic algorithms 

method, and a non-linear neural network. All o f which are adaptive. Further, the limiting 

time for any computations is a one-hour sampling interval, which allows scope for some 

lengthy and sophisticated computations.

In this work, in the case of predicting one interval ahead, there would be less than one minute 

due to the time required for mass spectrometer computations and valve train operation, and 

the solution implemented on equipment with only limited computational resources, such as 

low-specification PCs or PLCs redundant from other projects It was therefore decided to 

proceed with a non-adaptive approach and a purely neural network solution, using both linear 

and non-linear techniques, rather than incorporating genetic algorithms-based work which is 

extremely demanding in terms o f resources. (Section 1.1)

4.2.1 Proposed network structures

It was proposed to develop linear networks based on the method outlined in Section 2.3 

(Equation (2.1) reproduced as equation (4.5) below).

z ( t )  =  a xz { t  - 1) +  d 2z { t  - 2 )  + . . .  +  d nz ( t  — n) +  u ( t)  -------- (4.5)

where z  is the predicted (tracked) parameter 

an etc, are coefficients 

u(t) is a random disturbance

Equation (4.5) is analogous to a single layer, single cell network with n inputs and with a 

linear activation function, and whose output is given by

y ( p )  =  wxy ( p  - 1 )  +  w2y ( p  -  2) + . . .  +  wny ( p  - n )  + b  ------- (4.6)

where w n , etc are input weightings
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b is a bias added to the sum of the input signals, and whose value is 

determined during training.

n may be determined during network development by allowing the number o f inputs to ‘grow’ 

from a predetermined lower limit to an upper one, and observing the number o f input 

weightings with low values -  i.e. those with potentially extraneous inputs. This would 

provide an indication o f the optimum number o f network inputs. Where relevant, this was 

used as a basis for non-linear network development. It was felt that a lower limit o f 3 would 

be the minimum required to facilitate the possible inclusion of gradient (rate o f change) 

information. (Weightings o f different signs would indicate that subtraction was taking place 

and first-order difference information had been absorbed into the network.)

4.3 Procedures
Data from the mass spectrometers monitoring gas content was supplied in the form of 

spreadsheets which were then converted to a text format readable by MATLAB. Script files 

were developed which automated loading o f data and preparation o f datasets for training, 

validation and verification during training, and introducing any required pre-processing.

The main datasets were divided into smaller subsets with the subset possessing the widest 

dynamics being used for training and the subset with the second most extreme excursions 

being used for validation. The remaining data points were then used for verification purposes. 

(The justification for this being that the network would be trained with the ‘worst case’ 

available, in the absence o f any other information.)

Further script files were developed which automated the training process, iterating through a 

chosen range of inputs (usually 3 to 20) for a particular type o f network and, in the case o f 

non-linear networks, further iterating through a prescribed number o f cells in a hidden layer 

for a particular number o f inputs. Training utilised standard back-propagation [Appendix A2] 

initially until the acquisition o f more sophisticated hardware permitted the introduction o f the 

superior (in terms o f training time) Levenberg Marquardt adaptation. [Section 3.4.4]

The MATLAB neural network toolbox was used to produce feedforward networks which 

were then simulated against verification data, and the maximum and mean absolute errors 

were recorded, together with the standard deviation. Furthermore, when it was envisaged that 

a linear network would be used to indicate the optimum number o f inputs for non-linear 

solutions the number of input weightings less that 0.01 in magnitude was recorded as an 

indicator o f potentially extraneous inputs.
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Initially there was some uncertainty in respect o f the possible available hardware for 

implementation, and it was believed that a low-specification PC might be available. Hence 

some non-linear solutions were investigated, albeit generally with a limited number o f hidden 

cells in keeping with a minimalist solution to reduce computational overheads. In these cases 

both types o f sigmoidal activation function -  logistic and tanh (MATLAB refers to them as 

Togsig’ and ‘tansig’) -  were employed.

For the CPS work only one parameter -  calorific value (CV) -  was to be predicted. Later 

work introduced the additional parameters o f specific gravity (s.g.) and air/fuel ratio (a/f) 

were introduced as were Wobbe numbers (or indices) for both phases o f the HSM work. 

Where a parameter was not directly available, data was synthesised using appropriate 

formulae. Data sampled at 1-minute intervals was also synthesised from either that sampled 

at 23-second or 30-second intervals directly at the mass spectrometer outputs for comparison 

purpose, i.e. to induce the effects o f aliasing inherent in the main archiving system.

Where parameter ranges were greater than 1.0 -  the conventional upper limit o f non-linear 

neuron activation functions -  an additional linear output cell was added to non-linear 

networks for output scaling purposes. However, the need for the further output cell and layer 

could be avoided by introducing pre-processing o f the data by scaling through division by a 

constant -  e.g. 100.

A further method of pre-processing was investigated, that o f dividing the current data value 

by a running mean of the last m values. This had the advantage o f bringing the values in 

different datasets into a common ranges around unity, thus facilitating training o f generalised 

networks when the overall data ranges likely to be encountered are unknown. It was 

established that m = 2 produced the most acceptable results, and in this text the expression "m 

= 2 ’ refers to networks trained with this method. In that case, the effects o f post-processing 

are also tabulated with relevant absolute error parameters. However, it was later established 

that for rapidly changing data -  e.g. in the HSM -  the results were greatly inferior to the other 

pre-processing methods and it was abandoned. In fact there proved to be little difference if  

any, between developing linear networks without pre-processing and those pre-processed 

through division by a constant so that ultimately, development o f linear networks proceeded 

without any pre-processing.

The HSM data was subject to extreme and abrupt fluctuations in parameter levels when 

switching from one mixing station to another. [Chapter 6] CO and H2 levels acted as potential
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indicators as to which station was the dominant supplier. Linear networks which contained 

additional inputs o f CO and H2 were also investigated.

4.4 Summary of procedures/experimental steps
The above experimental procedures may be summarised as follows

1. Examination o f the supplied spreadsheets to obtain data ranges, mean and median 

values, and their standard deviation.

2. Selection o f sets for network training, validation and verification purposes.

Given the relatively short time spans o f the supplied data with respect to the 

plants’ all-year operations, the data set with the maximum range and dynamics 

were chosen for training to give maximum training efficiency; those with the 

least were selected for verification.

3. Network development proceeded using non-preprocessed data followed by data 

pre-processed by scaling, and then by the im=n> running mean method of 

processing.

4. Maximum and mean absolute error together with the standard deviation o f the 

absolute error were noted. Tables o f typical results are shown in each section; for 

the non-linear work the 10 network solutions with the lowest maximum absolute 

error are listed.

5. Where a non-linear network investigation was conducted, network architectures 

were based on the corresponding linear network results both in terms o f 

potentially extraneous inputs and network accuracy.

6. Potential network solutions were assessed both with respect to their overall 

accuracy and in terms o f computational requirements. There were compromises 

between reduced accuracy and complexity.
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4.4.1 Notation used when reporting neural network results

The following abbreviations and conventions were used to describe network structures:

K = linear activation function 

L = log sigmoid, or iogsig ’, activation function 

T = tanh sigmoid, ‘tansig’, activation function

E.g. 6+K describes a simple linear network with 6 inputs. 7+2L+K describes a 7-input non­

linear network with 2 ‘Iogsig1 cells in a single hidden layer, with a linear output (scaling) cell.

Where pre-processing was investigated the abbreviations below indicate the method:

‘ m = n ’ Scaling through division by m, where m is the mean o f the past n values 

‘-5- k\ Scaling through division by a constant.

E.g ‘m = 2 ’, or ‘-^100’

* Potentially optimum solutions in terms o f accuracy and/or minimalist structure are 

indicated in the tables by an asterisk.
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5.0 Central Power Station (CPS)

The Central Power Station (CPS) operates as a cogeneration plant supplying steam and 

electricity for on-site processes, and hot water for office heating, but electricity generation is 

sacrificed when demand for ‘process steam’ is high.

The plant contains a diversity o f equipment, much of it acquired as surplus from other BS 

sites around the UK. The availability o f that equipment has dictated its development to a 

significant extent, and as a result has its own particular requirements and problems.

There are several boiler/furnace combinations which supply steam via common mains to a 

number o f turbo-generator sets. Unlike the HSM (Section 6.0), the different constituent fuels 

appear to have separate burners and mass spectrometers. The boiler designs are a 

compromise from the ideal because of the need to bum any of, or a combination of, the 

following fuels (see also Appendix A .l)

• Coke Oven Gas (COG - mainly Hydrogen and Methane)

• Blast Furnace Gas (BFG - mainly Carbon Monoxide, Nitrogen, and Carbon 
Dioxide)

• Synthetic Coke Oven Gas (SCOG - which is produced by mixing BFG with 
bought-in Natural Gas to produce a gas similar to COG)

• Heavy Fuel Oil

Both BFG and COG are on-site by-products and are negligible in cost compared to the price 

o f the ’imported' fuels.-Thus maximising their use in boiler operation is o f particular 

importance.

COG is heavily contaminated and the resulting fouling o f flues also affects the operation over 

time. Additionally all boilers are equipped with COG pilot burners so some COG is always 

being burnt.

Some method of predicting calorific values as an aid to optimising the control systems and 

overcoming some significant transport lags caused by the measuring equipment being situated 

some distance from the burners and the associated valve trains being somewhat slow in 

operation was investigated. (It was understood that the valve trains took some 20+ seconds to 

operate.)
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5.1 Analysis of data
The following data files were extracted from the supplied spreadsheets containing information 

from the BS logging system. Values o f CV are given in MJ/kg for range, mean and m edian.'

usage from to points range mean median s/dev
Training 22:02:00

10/May/99
06:03:00 

11/May/99 482 1 8 .0 3 -2 2 .0 9 20.65 20.81 0.94

validation 22:00:00
17/May/99

06:01:00
18/May/99 482 (369*) 17.42 -19 .87* 18.59 18.55 0.56

verification 23:00:30 
10/Jul/99

07:00:00 
11/Jul/99 480 1 7 .0 7 -2 0 .2 9 19.28 19.49 0.81

* = Has zero values between 74 and 114 mins. Some form of equipment failure is assumed. Range for 114 mins 
onwards quoted.

Table 5.1 Properties of supplied data with intended usage

Examination o f the above files showed that several files covering a given period have an 

irregular sampling intervals (30 secs instead o f lmin. at midnight) and therefore theoretically 

should not be used to make one continuous data file. However, information received 

confirmed that aliasing was already present in the data (the mass spectrometers operated at 25 

-  35-second intervals) and therefore such a combined file might be used with little or no 

effect on training and accuracy as a result o f the irregular interval at the join.

Figures 5.1 to 5.3 show variations in values o f CV for the three usages shown in table 5.1.
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CV for May 10 onwards
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fig. 5.1 CV May 10th onwards

x 10 CV for M ay 17 th  o n w ard s
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fig. 5.2 CV May 17th onwards
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CV for July 10th. onwards
2.05

1.95

MJ
/kg

1.85

1.75

1.7
100 150 200

sampling intervals (mins)
250 300 350 400 450 500

fig. 5.3 CV July 10th onwards

There are potentially significant differences in ranges which might be overcome by pre­

processing.

percentage constituents range mean A ppendix A.1

Carbon monoxide CO 0 -1 0 .0 8 5.69 6
Carbon dioxide co2 1 .3 5 -3 .0 5 2.4 2.41
Hydrogen h2 50.21 -  65.56 58.09 51.47
Nitrogen n2 0 -1 2 .6 5 3.81 7.17
Methane ch4 2 2 .0 7 -3 1 .6 5 26.63 29.94
Ethylene c2h4 0 .5 9 -1 .1 3 0.95 1.67
Ethane c2h6 1 .3 3 -1 .9 5 1.71 0.82

Calorific value (MJ/Nm3) 17 .07-22 .09 19.03 19
specific gravity 0 .3 5 -0 .3 5 0.35 0.38

Air/fuel ratio (true) Not supplied not supplied -----

Table 5.2 Comparison of supplied data with typical values in Appendix A.1

Table 5.2 describes the main gas characteristics found in the above files, and how they 

compare with the typical COG values given in Appendix A l. Whilst some parameters are 

similar, CPS COG is higher in hydrogen, lower in methane, and significantly lower in 

nitrogen. Further the values for ethylene and ethane vary by approximately 50%. Mean 

calorific value and specific gravity are at typical levels.
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5.1.1 Effects of pre-processing of data by the mean of the previous m values

Pre-processing o f the data through division by a running mean of the last m values alters the 

dynamics o f the data and introduces errors when reconstituting the data during post­

processing. For an ideal network with 100% accuracy in prediction, it is possible to calculate 

the errors introduced in post-processing for various values of m by pre-processing the datasets 

and then reconstructing them according to equations (4.2) to (4.4) assuming the predictions to 

be 100% accurate.

dataset m = 2 5 10 20

training
1.68 

(0.14, 0.26)

2.44 
(0.29, 0.43)

4.63 
(0.89, 1.17)

6.53 
(1.17, 2.27)

Validation 1.24 
(0.14, 0.27)

1.92 
(0.30, 0.44)

4.21 
(0.84, 1.15)

6.89 
(1.50, 2.10)

Verification 1.17 
(0.09, 0.17)

1.56 
(0.19, 0.28)

3.64 
(0.52. 0.70)

5.17 
(0.89, 1.19)

Table 5.3 Error levels for increasing values of m (see text)

Table 5.3 shows the maximum percentage absolute error (with mean and standard deviation in 

parenthesis) for increasing values o f m. In all cases as m is increased, there are 

corresponding increases in all error parameters; increasing m beyond 2 was seen as counter 

productive.

Training set after pre-processing by m = 2
1.025

1.02

1.015

1.01

1.005

0.995

0.99
0 50 100 150 200 250 300 350 400 450 500

sam p lin g  in tervals  (m ins)

fig. 5.4 Effect of preprocessing by m = 2 on training set
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Figure 5.4 shows the altered dynamics o f the training set data for m -  2, with corresponding 

plots o f the validation and verification sets in fig. 5.5 and 5.6.

1.015

1.01

1.005

0.995

0.99

0.985
100 150 200 250 300 400350

sam p lin g  in tervals  (m ins) 

fig. 5.5 Validation set after preprocessing by m = 2
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.005

1

.995
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fig. 5.6 Verification set after preprocessing by m = 2

Figure 5.7 shows the reconstructed (post-processed) training set data for m = 2 which 

compares closely with the original plot in fig. 5.1.
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fig. 5.8 Training set (reconstituted data -  see text)

The modified ranges for the data sets after pre-processing by m = 2 are shown in table 5.4:

dataset range mean median std. deviation
training 0 .9 9 -1 .0 2 1.0 1.0 0.003

validation 0 .9 9 -1 .0 1 1.0 1.0 0.003

verification 0 .9 9 -1 .0 2 1.0 1.0 0.002

Table 5.4 Modified dataset ranges after preprocessing by m = 2

All sets now have similar ranges o f values, including mean and standard deviation, and hence 

similar characteristics.
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5.2 Overall results and discussion

Tables o f typical results are given in Appendix A3; the tables below summarise those results. 

In addition to the most accurate results obtained, tables 5.5 and 5.6 also show potentially 

acceptable results which are less computationally demanding. The columns list type o f pre­

processing, network structure, activation function and percentage absolute error -  mean, 

maximum, together with the standard deviation. For the ‘m = 2 ’ systems, the post processing 

error is quoted.

p .p /
method

struct fund mean max s.d.

Isq* — —  ■ 0.29 1.87 0.25

None 13+K linear 0.18 1.52 0.20

-10 0 11+K 0.18 1.49 0.20

m = 2 7+K 0.23 2.11 0.22

-10 0 12+Kog log 0.24 1.50 0.27

13+tanh tanh 0.18 1.52 0.20

None 11+4+K log 0.18 1.32 0.20

11+2+K 0.19 1.51 0.21

12+3+K tanh 0.23 1.30 0.23

12+2+K 0.19 1.48 0.21

-100 12+6+K log 0.23 1.33 0.23

12+2+K 0.19 1.71 0.21

13+2+K tanh 0.20 1.57 0.20

m = 2** 13+6+K log 0.26 2.07 0.26

13+4+K 0.25 2.19 0.26

13+8+K tanh 0.25 1.99 0.25

13+2+K 0.28 2.25 0.28

*least squares benchmarking result **after post-processing 

Table 5.5 Possible network solutions (predicting one sampling interval ahead)

The ‘m = 2’ networks required significantly less training time but produced inherently lower 

accuracy due to post-processing error. Further, there was a tendency to produce maximum 

error levels in excess o f those resulting from the benchmark least squares-based predictor. 

Networks with tanh sigmoid activation functions were capable o f high accuracy but software 

instability occurred regularly during training as a result o f “singular matrix” errors. Pre­

processing through division by 100 also resulted in lower maximum error but at the cost o f 

increased mean absolute error and standard deviation.
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p.p/
method

struct funct mean max s.d.

Isq* — ■ — 0.29 1.87 0.25

None 13+K linear 0.28 2.06 0.25

H-100 3+K 0.29 1.97 0.26

12+K 0.28 2.04 0.25

M = 2 5+K 0.37 3.22 0.33

None 11+13+L log 0.31 1.72 0.26

12+4+L 0.31 2.03 0.26

12+6+L tanh 0.32 1.72 0.27

12+3+L 0.31 1.88 0.27

H-100 12+7+L log 0.40 1.95 0.31

12+2+L 0.31 2.23 0.27

11+4+L tanh 0.35 1.72 0.31

12+2+L 0.37 2.57 0.34

m =2** 12+7+K log 0.40 3.11 0.36

12+3+K 0.37 3.16 0.34

11+7+K tanh 0.39 3.06 0.35

12+3+K 0.40 3.22 0.37

‘least squares benchmarking result “ after post-processing 

Table 5.6 Possible network solutions (predicting two sampling intervals ahead)

There was, as anticipated, a general increase in error levels when predicting values for two 

sampling intervals ahead.

Effective results were obtained from simple linear networks with no pre-processing. None of 

the linear network solutions exhibited a large number o f potentially extraneous inputs; a 

maximum o f 1 per network being found to be below the arbitrary threshold o f 0.01.

In. conclusion it must be stressed that the above results were obtained from relatively short 

datasets (ca. 8hrs) which may not be typical o f operations at this plant. (In fact, all the files 

cover night time operations; there is nothing to indicate that daytime processes are identical.) 

A discussion o f the CPS results in comparison with those o f Dawes Lane is given at the end 

o f Chapter 7.
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6.0 Heavy Section Mill

The fuel supply for the Heavy Section Mill (HSM) consists of a gas main common to a 

number o f mills, (fig. 6.1) This main is supplied with different gas mixes via two mixing 

stations with a wide range o f variations in gas content, and supplied via secondary supply 

mains to the individual mills. It is even possible for a situation to exist where a ‘dead band’ 

occurs between the two mixing stations where the gases mix, but there is zero flow. 

Furthermore, it is also possible at certain times that only one o f the stations may be supplying 

all of the mills.

BFG

COG

BOS -- — -> Anchor MixingCentral Mixing
Station COG -- - - - >

Station

o

Heavy Scunthorpe
Section Mill Plate Mill

(HSM) (SPM)

Medium Bloom/
Section Mill Billet Mill

(MSM) (BBM)

fig. 6.1 Schematic of fuel supply to HSM

The two mixing stations supply Mixed Enhanced Gas (MEG) which has different constituents 

depending which station supplies i t : Central supplies a mix o f BFG and COG, and Anchor 

BOS and COG. (The gas produced by Basic Oxygen Steel-making is termed BOS.) These 

constituent gases can themselves vary in content and quality. An indication o f the majority 

supplier may be obtained by examining the CO content; e.g. a high percentage indicates that 

Anchor is the main supplier. [Table 6.1]

Table 6.1 (below) shows ‘snapshots’ o f gas contents at low and high CO values with the 

right-hand two columns containing typical values for the two mixing stations [Appendix A1]. 

The figures for the two different CO levels would appear to broadly agree with the ranges for 

the two different mixing stations confirming CO as an indicator.
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HSM supply Central Anchor

Gas At min CO 

(time 23475 mins)

At max CO 

(time 38004 mins)

Carbon monoxide CO 13.32 67.48 14.74 60.78
Carbon dioxide C 02 12.72 10.76 13.41 12.63
Hydrogen h2 29.7 5.45 28.88 9.17
Nitrogen n2 28.88 11.73 29.10 13.23
Methane ch4 13.37 3.61 11.5 3.108

Calorific values (MJ/NmJ) 10.6 10.61 10.06 10.14

Specific gravity 0.71 0.96 0.738 0.945

Table 6.1 HSM fuel properties compared with typical values from both mixing stations

6.1 Analysis of data

Some 40, 000 data points were supplied covering a period o f approximately 30 days during 

April/May 2000. Table 6.2 shows the ranges for the required, predicted parameters

Quantity /  units Range Mean median s.d.
calorific value (MJ/Nm3) 7 .9 3 -1 1 .4 7 9.75 9.62 0.48
air/fuel ratio 1 .7 6 -2 .5 7 2.18 2.19 0.11
specific gravity 0.70 -  0.98 0.84 0.84 0.06

Table 6.2 Properties of parameters under investigation, from supplied data

CV dataset
11.5

10.5
C 
V (M 
J / 
N m 
3) 9.5

7.5
0.5 1.5 2.5 3.5 4.5

4sampling intervals x 10

fig. 6.2 Variation in CV

Figure 6.2 shows the entire CV data set with its fluctuations, whilst figures 6.3 - 5 show a 

‘snapshot’ o f CV, CO and H2 for the period 1,000 to 14,500 mins. From 6.3 it will be seen 

that there are clearly defined (often abrupt) swings between two discernible levels.
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Examination o f the CO plot suggests that gas supply is alternating between the two mixing

stations.

CV levels between 11000 -14500 mins
11.5

CV
^  10 5J/N 10-°
m3
)

8.5
1.35 1.451.2 1.25 1.41.15

sampling intervals x10 4

fig. 6.3 CV between 11000 and 14500 mins

COcortert (%) between interns 11 COO and 14500
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fig. 6.4 Carbon monoxide (%) for the above period
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fig. 6.5 Hydrogen (%) for the same period

However whilst the CO plot is fairly steady in the first section o f the graph, that o f CV is still 

fluctuating. Figure 6.5 suggests that this is due to variations in the H2 content. Given that at 

least some o f the unpredictability was caused by the presence o f two mixing stations 

supplying different forms o f MEG in differing proportions and at varying rates, it was decided 

to examine the effect o f introducing additional parameters (CO and H2) as the network inputs 

which would function as an indicator to which mixing station was the dominant supplier, if  

any, at a given instant. [Section 6.3.3]

There was also a requirement for additional predicted parameters -  air/fuel ratio (a/f), and 

specific gravity (s.g.). Additionally, since some of the data supplied for Phase 2 o f the work 

was in the form o f Wobbe numbers or indices (defined in Section 1), data for this parameter 

was synthesised using equation 1.1 and networks developed for comparison purposes.

Tables 6.3 to 6.6 and figures 6.6 to 6.8 show the variations in values for the above parameters.

set time (mins) range mean median s.d.
training 15001 -3 0 0 0 0 8 .2 -1 1 .2 5 9.79 9.63 0.48

validation 3 1 0 0 0 -4 0 3 1 9 7 .9 3 -1 1 .1 8 9.59 9.54 0.42

verification 1 -1 5 0 0 0 8 .5 6 -1 1 .4 7 9.78 9.64 0.48

Table 6.3 CV development dataset characteristics

set time (mins) range mean median s.d.
training 15001 -3 0 0 0 0 0.71 -  0.97 0.86 0.86 0.05

validation 3 1 0 0 0 -4 0 3 1 9 0.70 -  0.98 0.84 0.84 0.06

verification 1 -1 5 0 0 0 0.71 -  0.96 0.82 0.82 0.005

Table 6.4 s.g. dataset characteristics
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fig. 6.6 Variations in s.g. over entire data set
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fig. 6.7 Variations in a/f ratio over entire data set

set time (mins) range mean Median s.d.
training 15001 -3 0 0 0 0 1 .7 6 -2 .5 4 2.16 2.17 0.11

validation 1 -1 5 0 0 0 1 .9 0 -2 .5 8 2.21 2.22 0.10

verification 3 1 0 0 0 -4 0 3 1 9 1 .7 6 -2 .5 2 2.15 2.16 0.12

Table 6.5 a/f data characteristics (Note: different set groupings to above)

set time (mins) range mean median s.d.
verification 15001 -3 0 0 0 0 8 .7 2 -1 2 .5 8 10.59 10.54 0.47

training 3 1 0 0 0 -4 0 3 1 9 8.51 -1 2 .6 8 10.46 10.46 0.44

validation 1 -1 5 0 0 0 9 .0 7 -1 2 .7 4 10.78 10.70 0.44

Table 6.6 Synthesised Wobbe index datasets
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synthesised W obbe indices

8.5  -----------------------------1-----------------------------'-----------------------------1-----------------------------1-----------------------------1-----------------------------1-----------------------------1-----------------------------1-----------------------------
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sampling intervals

fig. 6.8 Synthesised Wobbe numbers

It should be noted that in the case o f the datasets for air/fuel prediction the validation and 

verification sets have been interchanged. The set ranging from l - 15000 mins has somewhat 

different characteristics to the other two. Intuitively, it was felt that the verification set should 

reflect the dynamic characteristics o f the training set.

6.1.1 E ffec t o f  p r e -p r o c e s s in g  b y 'm = 2 ’

Table 6.7 and figure 6.9 show the effects of pre-processing by the ‘m = 2 ’ method on the 

datasets whilst table 6.8 provides the corresponding CPS datasets for comparison purposes.

set time (mins) Range mean median s.d.
training 15001 -3 0 0 0 0 0 .9 4 -1 .0 4 1.0 1.0 0.010

validation 3 1 0 0 0 -4 0 3 1 9 0 .9 3 -1 0 4 1.0 1.0 0.010

verification 1 -1 5 0 0 0 0 .9 5 -1 .0 3 1.0 1.0 0.005

Table 6.7 CV data characteristics after pre-processing by m = 2

dataset Range mean Median s. d.
Training 0 .9 9 -1 .0 2 1.0 1.0 0.003

Validation 0 .9 9 -1 .0 1 1.0 1.0 0.003

Verification 0 .9 9 -1 .0 2 1.0 1.0 0.002

Table 6.8 equivalent CPS CV sets
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fig 6.9 pre-processing by m = 2 on CV (first 15000 mins)

It will be seen that as in the case o f the CPS (table 6.8), all data sets are normalised about 

similar ranges. However the CPS sets are smaller, consisting only o f several hundred data 

points, and o f fewer constituent gases.

6.1.2 The possibility of a mass spectrometer failure

Whilst examining the data for potential training, validation and verification sets it was 

observed that the data exhibited some unusually near constant levels between approximately 

30200 and 30980 mins (figs 6.10 to 6.13). (A duration o f some 13hrs.)
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Examination o f the o f the above graphs (figs 6.11 to 6.13) shows the s.g. plot to be constant 

whilst a/f ratio and CO content have a slow, minor upward trend, but devoid o f the usual 

noise and abrupt excursions. In the absence of any information it is assumed that there is a 

fault condition and the above datasets for network development do not utilise data from this 

time period. However, the apparent fault condition for the CPS work (Table 5.1, page 32) 

indicates a zero level for c.v., whereas the above data shows a slow upward drift from 10.5 

MJ/Nm3 .

6.1.3 Revised experimental strategy

Informal preliminary testing (using both linear and non-linear networks) performed before 

substantive information was received on the nature and content o f the HSM gas supply, and 

before adequate computing facilities became available, had produced extremely unpredictable 

results with error magnitudes o f up to 35%. This was particularly true o f non-linear network 

development which also witnessed regular instability induced within the training software. 

Hence it was decided not to proceed with any non-linear investigation for these datasets.

Further, it was suspected that the system dynamics were such that the range and frequency o f 

the changes were not being fully captured by the mass spectrometer and that this caused a
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further layer o f aliasing in addition to that induced by the main data logging system operating 

with a much longer sampling interval than the mass spectrometer. Thus the *m=2 ’ method of 

pre/post-processing used with some success in the CPS and Dawes Lane work might only 

exacerbate the situation by introducing data smoothing with consequent loss o f available 

dynamic knowledge with consequent reductions in accuracy. Analysis o f the results for CV 

prediction (section 6.3.1) showed that to be the case and the tm=2> method of pre/post­

processing discarded for the remaining HSM parameter investigations.

6.2 Least-squares-based method

Information was received from Corns that a least-squares method had been investigated, using 

a second order equation with coefficients obtained from the previous 5 values to predict the 

next output. This had been performed on ‘ 1-minute’ CV data from the HSM and found to be 

satisfactory. Thus an opportunity arose to obtain benchmarks for accuracy and an appropriate 

script file was implemented employing the Matlab ‘polyfit’ function.

Whilst Corns did not state that other parameters had been investigated, nor that more than one 

sampling interval ahead had been predicted, it was decided to also test the method in these 

circumstances; results are shown in table 6.9.

1 sampling interval ahead 2  sampling intervals ahead

parameter Mean max s.d. mean max s.d.
CV 1.31 18.13 1.72 2.85 43.24 3.65
s.g. 1.26 18.99 1.38 2.62 39.29 2.87
a/f 1.44 17.98 1.72 3.15 42.49 3.68
Wobbe index* 1.53 20.52 1.87 3.28 49.64 3.98
‘ synthesised data

Table 6.9 Results from least squares-based predictor

The actual results for Corns’ investigation were not known but the result for predicting a 

single sampling interval ahead for CV appeared to infer that maximum absolute error 

values o f up to 20% could be acceptable.
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6.3 Summary of results and discussion
6.3.1 Calorific Value (CV)

Table 6.10 shows the maximum error range (percentage) for five approaches for one interval 

and two intervals ahead.

p .p . /
method

max error range (%)
1 interval ahead 2 intervals ahead

Lsq* 18.13 43.24

None 1 1 .4 0 -1 1 .4 3 1 6 .7 8 -1 6 .9 9

+100 1 1 .4 0 -1 1 .4 4 1 6 .7 8 -1 6 .9 9

m = 2** 1 2 .2 7 -1 2 .3 4 1 7 .7 4 -1 7 .7 6

‘CV + CO’ m 1 1 .4 2 -1 1 .4 3 -----

*least-squares approach ** after post-processing 
m multiple inputs of CV and CO (or H2)

Table 6.10 CV maximum error ranges

Table 6.11 shows the mean, maximum and standard deviation in error (percentage) for five 

approaches for one interval and two intervals ahead.

p .p /
method

1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

lsq — 1.31 18.13 1.72 — — 2.85 43.24 3.65 —

none 3+K 0.57 11.40 0.71 0 3+K 0.97 16.78 1.11 0

+ 100 3+K 0.57 11.40 0.71 0 3+K 0.97 16.78 1.11 0

m = 2** 4+K 0.70 12.27 0.86 1 3+K 1.04 17.74 1.26 0

CV + CO* (3+2)+K 0.57 11.42 0.70 0

**after post-processing ‘results for cv +H2 identical

Table 6.11 CV possible network solutions

The lm = 2’ method consistently presents lower accuracy than no-preprocessing and the 

‘division by 100’ methods. The least-squares approximation offers the poorest performance 

with an increase over the most accurate o f solutions in maximum error o f some 60% for 

predicting one sampling interval ahead , and 158% for two intervals ahead. The respective 

figures for mean error are 130% and 194%, while those for s.d. (standard deviation) are 149% 

and 229%.

Introducing a second input parameter o f percentage carbon monoxide (or hydrogen) content 

results in a network with 3 CV inputs and 2 for CO (or H) (tables 6.10 and 6.11). The results 

are almost identical to those o f the network trained with unprocessed data, and presents little 

justification for the increased demand on computing resources that the additional input 

requires.
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Further, the above results demonstrate that scaling the training data through division by 100 

does not enhance accuracy and again does not justify the increased computational demands.

6.3.2 Specific gravity (s.g.)

No pre-processing was required for this parameter since all values were < 1.0. Given the low 

accuracy figures in the investigations above, the lm = 2 ’ method was discarded for this 

section and those that follow. Table 6.12 shows the maximum error range (percentage) for 

one interval and two intervals ahead.

max error range (%)
1 interval ahead 2  intervals ahead

1 8 .0 6 -1 8 .0 7 1 9 .4 7 -1 9 .5 0

Table 6.12 s.g. maximum error ranges

Table 6.13 shows the error characteristics for a possible solution and compares it with the 

corresponding least squares simulation.

1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

lsq 1.26 18.99 1.38 — lsq 2.62 39.29 2.87 —

7+K 0.81 18.06 0.81 1 6+K 0.96 19.47 1.17 0
lsq = ‘least squares’ simulation

Table 6.13 s.g. possible network solutions

Whilst all error parameters are higher in value than those for the most effective CV solutions, 

the network is absorbing information across a greater time span, 6 and 7 minutes, as opposed 

to some 3 minutes. The maximum error for one interval ahead was similar to the benchmark 

‘least squares’ result, but that for two intervals ahead was considerably more accurate than the 

benchmark.

6.3.3 Air/fuel ratio (a/f)

Table 6.14 shows the maximum error range (percentage) for one interval and two intervals 

ahead. Again, there is little significant difference between scaling through division by 100 

and the networks trained with unprocessed data.

max error range (%)
1 interval ahead 2  intervals ahead

1 3 .0 8 -1 3 .1 4 1 8 .8 8 -1 9 .0 0

Table 6.14 a/f maximum error ranges 
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Table 6.15 shows the error characteristics for a possible solution and compares it with the 

corresponding least squares simulation.

1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 Struct mean max s.d. <0.01

lsq 1.44 17.98 1.72 — lsq 3.15 42.49 3.68 —

4+K 0.97 13.07 1.11 1 5+K 1.80 18.88 1.87 0
lsq = ‘least squares’ simulation

Table 6.15 a/f possible network solutions

The results do not achieve error levels comparable to those for CV; however the levels are 

lower than those for s.g., although requiring fewer inputs, i.e. less knowledge o f the history of 

the data. The ‘least squares’ benchmarking results in significantly higher error levels than the 

neural network approach.

6.3.4 Wobbe number, or index

Table 6.16 shows the maximum error range (percentage) for one interval and two intervals 

ahead. Work with this parameter also demonstrated that scaling contributes little to training 

efficiency.

max error range (%)
1 interval ahead 2 intervals ahead

1 3 .0 8 -1 3 .1 4 1 8 .8 8 -1 9 .0 0

Table 6.16 Wobbe index maximum error ranges

1 interval ahead 2  intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

lsq 1.53 20.52 1.87 — lsq 3.28 49.64 3.98 —

4+K 0.97 13.07 1.11 1 5+K 1.80 18.88 1.87 0
lsq = ‘least squares’ simulation

Table 6.17 Wobbe index possible network solutions

Table 6.17 shows the error characteristics for a possible solution and compares it with the 

corresponding least squares simulation. Contrary to the results obtained in Chapter 8 where 

predicting Wobbe index was found to be more accurate than predicting CV, table 6.17 shows 

an increase in error parameters when compared with the CV results above for 1 interval ahead 

(table 6.11). However the maximum absolute error for 2 intervals ahead shows a 17% 

improvement over that for CV. Nonetheless the other parameters remain higher. (It should 

be noted that the Wobbe data was synthesised from CV data sets.) With reference to table 6.9 

the ‘least squares’ approach when applied to Wobbe indices produced the least accurate 

results.
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6.3.5 Discussion

It was suspected that the data is changing too rapidly for a sampling interval o f 1 minute in 

light o f the results obtained in Chapters 7 and 8 with shorter sampling intervals. The ‘m = 2’ 

method of pre-processing consistently exhibits lower accuracy, while scaling offers no 

benefits over networks trained without pre-processing o f data.

W ork with the least-squares-based method resulted in maximum absolute errors of up to 20% 

for one interval ahead, and approximately twice that when predicting two intervals ahead.

Further discussion and comparison of the above results is included at the end o f Chapter 8 

(HSM Phase2).
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7.0 Dawes Lane Coke Ovens

There are two sets o f coke ovens (Dawes Lane and Appleby) supplying the Scunthorpe site 

with COG. This investigation considers data from the Dawes Lane plant. O f particular 

significance in this data was the 23 sec. sampling interval. This meant that the data was 

obtained directly from the mass spectrometer output and therefore not subjected to aliasing 

through being only logged at 1 min intervals by the main logging system as in all previous 

data. Thus there was an opportunity to compare the effect o f ‘ 1 minute’ logging with actual 

mass spectrometer output by artificially generating one-minute data.

7.1 Analysis of data

percentage constituents range mean median std. dev.
Carbon monoxide CO 5.59 - 6.22 5.94 0.09

Carbon dioxide c o 2 1 .0 9 -1 .4 9 1.25 0.08

Hydrogen h2 62.26 -  67.89 65.53 1.17

Nitrogen n 2 0.70 - 3.68 1.52 0.68

Methane ch4 2 1 .0 2 -2 4 .2 5 22.73 0.75

Ethylene c 2h4 1 .6 5 -2 .0 0 1.84 0.08

Ethane c 2h6 0.55 - 0.71 0.64 0.04

Calorific value (MJ/Nm3) 1 6 .99 -1 8 .41 17.81 17.84 0.28

Specific gravity 0.28 -  0.32 0.30 0.30 0.01

air/fuel ratio (true) 4.11 -4 .4 9 4.33 4.33 0.08

Table 7.1 COG characteristics (March 12th onwards)

Percentage constituents range mean meridian std. dev.
Carbon monoxide CO 5.64 -  6.43 5.82 0.11
Carbon dioxide co2 1 .2 5 -1 .4 7 1.33 0.05
Hydrogen h 2 63.25 - 66.76 65.33 0.81
Nitrogen n 2 0.69 - 3.59 1.48 0.71
Methane c h 4 2 1 .6 9 -2 4 .0 0 22.93 0.50
Ethylene c 2h 4 1 .7 4 -1 .9 5 1.85 0.05
Ethane c 2h 6 0.61 - 0.73 0.67 0.02

Calorific value (MJ/Nm3) 1 7 .2 9 -1 8 .3 5 17.91 17.93 0.21

Specific gravity 0.29 -  0.32 0.30 0.30 0.01

air/fuel ratio (true) 4 .1 9 -4 .4 7 4.36 4.36 0.06

Table 7.2 COG characteristics (March 15th onwards)

There are two files covering a 24-hour period on 12th March 2001 (Table 7.1) and a 9-hour 

period from midnight to 9.30am on 15th March 2001 (Table 7.2). ( The magnitudes are 

similar to those given in appendix A1 for typical COG values.) Given that the larger file had 

the wider range of dynamics it was decided to select sets from it for training and validation, 

and to verify against the March 15th file.
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fig. 7.2 CV March 15th onwards

Fig. 7.1 shows a slow overall undulation with what appear to be noise spikes. Closer 

examination o f the first 250 points (fig. 7.3) reveals that the spikes are in fact slow moving, 

and, when they do occur are o f approximately 26 mins duration falling by around 400 

kJ/Nm3.

It is assumed in the absence o f confirmation from Corns, that these variations illustrate 

fluctuations in the quality and type o f fuel used.
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fig. 7.3 First 250 data points from fig. 7.1

Note that in fig. 7.2 there is a major change in level between sampling intervals 1080 and 1081 

from 18.2 to 17.46 MJ/Nm3, i.e. a gradient o f 0.74 MJ/Nm3 per min. The maximum gradient 

encountered in the training data was -0.1762 MJ/Nm3 per min, located between intervals 245 

and 246 secs. Unlike the HSM data, these follow broadly the same trend as a result of only a 

single gas type being present.
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fig. 7.4 s.g. March 12th onwards

Figure 7.4 shows the s.g. data for March 12th onwards. Note that the fluctuations in level 

occur in the opposite direction to those o f CV (fig.7.1).
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fig. 7.5 s.g. March 15th onwards

Figure 7.5 shows the s.g. corresponding to that shown in fig. 7.2; there is no corresponding 

abrupt change in levels at sampling interval 1080 and the data remains constant there at 0.3.
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fig. 7.6 air/fuel ratio March 12th onwards
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Comparison o f fig.7.6 with fig. 7.1 and o f fig. 7.7 below with fig. 7.2 above suggests that the 

dynamics o f the air/fuel data reflect the changes in CV.
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fig. 7.7 air/fuel ratio March 15th onwards

The methods established during the CPS investigations were used to predict values o f CV, 

specific gravity (s.g.) and air/fuel ratio (a/f) using both linear and non-linear networks, and for 

predictions o f up to two sampling intervals ahead. Further, data with one-minute sampling 

intervals was synthesised in order to validate the results obtained in the CPS section with 

longer data sets, and to examine the effect o f the longer sampling interval on accuracy, i.e. 

the effect o f introducing aliasing.

(Although work in chapter 6 with fast-changing gas content datasets had revealed a tendency 

for the lm= 2 ’ pre-processing method to produce higher error levels, it was decided to 

continue with that method for the slower-changing Dawes Lane datasets.)
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Data sampled at 1-minute intervals was synthesised from both supplied 23-sec data sets. 

(Section 7.0). The results are shown in figures 7.8 and 7.9.
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fig. 7.9 CV (1min.) March 15th onwards

dataset 1 min 23 s e c
range mean median s.d. Range mean median s.d.

Mar 12th 1 7 .0 5 -1 8 .4 17.81 18.84 0.28 1 6 .99 -1 8 .41 17.81 17.84 0.28

Mar 15th 1 7 .2 9 -1 8 .3 5 17.91 17.93 0.22 1 7 .2 9 -1 8 .3 5 17.91 17.93 0.21

Table 7.3 Comparison of CV data for 1min and 23 sec intervals

Table 7.3 compares the characteristics o f the two types o f dataset. Apart from a minor change 

in range, the differences between the two are not greatly significant.
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dataset 1 min
Range mean median s.d.

Dawes
Lane

Mar 12th 1 7 .0 5 -1 8 .4 17.81 18.84 0.28

Mar 15th 1 7 .2 9 -1 8 .3 5 17.91 17.93 0.22

CPS training 1 8 .0 3 -2 2 .0 9 20.65 20.81 0.94

validation 17.42 - 19.87 18.59 18.55 0.56

verification 1 7 .0 7 -2 0 .2 9 19.28 19.49 0.81

Table 7.4 Comparison of 1min CV data for CPS and Dawes Lane

Table 7.4 compares the relevant values from the corresponding CPS datasets. These latter are 

higher in range and cover a broader span of values, with the higher standard deviation 

indicating a wider range o f dynamics.

7.1.1 Effect of m = 2 pre-processing

The inherent post-processing 

effects on error are shown in 

table 7.5, whilst table 7.6 shows 

the changed data characteristics 

due to the method. A large spike 

is present in the verification set at 

interval 410 as a result. (Fig.

7.10)

Intervals
Ahead

Mean max s.d.

1 0.0016 1.98 0.0024

2 0.004 0.0422 0.006

Table 7.5 error induced during post-processing

Data range span mean s.d.
Mar 12th 0 .9 9 - 1.0091 0.0191 1.0 0.0022

Mar 15th 0 .9 8 -1 .0 0 79 0.0277 1.0 0.0024

Table 7.6 changed characteristics after pre-processing.
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7.1.2 Possibility of mass spectrometer fault

Analysis o f the results from the investigations using both 1-minute and 23-second sets o f data 

showed the high maximum error to be located at a previously (in terms o f training) unseen 

major abrupt change in values within the verification sets, at 1080 intervals for the 23-second 

set and 414 for the 1-minute data. Further analysis o f the nearby data is illustrated in figure 

7.11 and in more detail in 7.12.
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fig. 7.11 23-sec CV data near abrupt change
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fig. 7.12 close-up of above

The CV levels either side o f the change are 18.21 and 17.46 at intervals 1080 and 1081 

respectively. The geometry o f the graph suggests that but for the abrupt change in level the
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curve would continue. Adding the difference in values (0.749 MJ/Nm3) between the two 

points as an offset to the points from interval 1081 onwards produced the fig. 7.13.

18.6

18.4

18.2

CV 
(MJ / 
Nm3)

17.8

17.6

17.4
600 1400200 400 800 1000 1200

sampling intervals

fig. 7.13 0.749 MJ/Nm3 added to the latter part of the 23-sec data

Examination o f fig. 7.2 shows that there is an approximate periodicity o f 1500 -  2000 

intervals per ‘rise’ cycle; the above alteration to the latter section of the date now appears to 

have brought it into line with the remainder o f the data. Hence a tentative conclusion is that 

the above data set now matches this and thus suggests the possible existence o f a mass 

spectrometer fault.

Further experiments were therefore carried out on the existing networks developed in the 

previous sections using the linear networks as indicators, in order to re-examine the results 

when verified without out the above gradient being present. Two verification sets were used : 

the first with data before the possible fault and the second with data after it to investigate how 

quickly a given network resumed efficient operation after encountering a possible fault 

condition. Both unprocessed data and data scaled through division by 100 were used; the ‘m 

= 2 ’ method was not employed in view of the change in training data characteristics inherent 

in that method.

(Results are reported in Section A5.3 and commented on in Section 7.2.2.)
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7.2 Summary of results and discussion
7.2.1 Calorific Value (CV)

p.p Function C.P.S Dawes Lane
1-minute 23-second

none Linear 1 .5 2 -1 .7 9 3.91 -4 .1 5  (1.74 -  1.96)1 4 .3 4 -4 .4 2  (0 .8 3 -0 .8 8 )1
Log 1 .3 2 -2 0 .5 3 .2 9 -4 .3 1 4.33 -  4.73
Tanh 1 .3 0 -2 1 .4 3 .8 8 -3 5 .6 3 3 .2 7 -4 .4 1

+100 Linear 1 .4 9 -1 .7 1 3.91 -4 .1 5  (1.69 — 1.96)1 4 .3 4 -4 .4 2  (0 .8 3 -0 .8 8 )1
Log 1 .3 3 -3 7 .5 3 .2 8 -4 .5 1 3.80 -  4.38
Tanh 1 .5 7 -1 0 .1 3.62 -  6.70 3.75 -  9.09

m = 2** Linear 2 .1 1 -2 .1 9 4 .2 4 -4 .3 2 4.27 -  4.29
Log 2.07 -  4.43 4 .1 4 -6 .9 0 4 .2 7 -7 5 1 .7 2
Tanh 1 .9 9 -4 .4 3 4.08 -  4.94 4.27 -  67.39

after post-processing 1 from section 7.3

Table 7.7 Maximum error ranges for CV, one interval ahead

Maximum absolute error ranges for both ‘un-preprocessed’ data and ‘4-100’ are almost 

identical (table7.7). The ‘m = 2 ’ method produces after post-processing, the lowest maximum 

errors for the linear solutions, although the mean error is some 60% higher with a greater 

errror standard deviation.

However, pre-processing by this method alters the dynamics o f the of the training, validation 

and verification sets (e.g. Section 7.1.1); essentially the networks are being developed using 

different data to the other two methods o f pre-processing with all data being distributed about 

an approximate mean o f 1.0. As an example, the verification set contains a previously unseen 

abrupt change from 18.21 to 17.46 MJ/Nm3 ( -750kJ/ Nm3 , or 4%), possibly due to a 

measurement malfunction, at interval 414 for the 1-minute data. (The effects o f this are 

reported in more detail in Section 7.1.2) Figure 7.13 shows how the lm = 2 ‘ method has 

reduced this to a fall o f approximately -0.02 ( 2 % )  at sampling minute 410. With the 

exception o f non-linear network results for the 23-second data, the ‘m = 2 ’ ranges remain 

broadly similar for all network types, although the lower limits tend to be higher than other 

forms o f pre-processing, possibly indicating the resilience o f this type o f network to 

unforeseen major fluctuations in data sets not previously encountered during training.

From Table 7.7 the effect o f increasing the number o f points in each set by reducing the 

sampling interval to 23 seconds is that error ranges increase; the 23-second sets have most 

points and the CPS sets the least. However work in Section 7. 1.2 demonstrated that for the 

Dawes Lane sets this is due to the above gradient obscuring the improvement in accuracy by 

the introduction o f a higher sampling frequency. In fact, there is a potential 50% reduction in 

maximum error when utilising the 23-second data, with corresponding fall in mean error and 

standard deviation o f some 2/3.
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The methods employing non-pre-processed data and pre-processing through division by 100 

produce near identical results, the differences being assumed to arise from different initial 

random weighting in the training method. However informal observation o f the training times 

showed that there was a 30% reduction for the latter method.

With the exception o f the CPS ‘-s-100’ networks, non-linear solutions have reduced the lower 

limits o f the maximum error ranges, especially in the case o f the tanh activation function, 

although that particular function resulted in many instances of singular matrix warnings and 

potential software instability during training.

Table 7.9 (next page) lists the most accurate networks (in terms o f maximum error) for each 

method and activation function, together with acceptable computationally less-demanding 

solutions where different. The error ranges for those solutions are summarised in table 7.8 

below.

Error CPS Dawes Lane

1-minute 23-second

mean 0.28 -  0.40 0 .2 6 -1 .2 4 0 .1 0 -1 .2 2

max 1 .7 2 -3 .2 2 3.29 -  4.24 3.27 -  4.38

s.d. 0.25 -  0.37 0.32 -  0.89 0 .1 7 -0 .8 7

Table 7.8 Comparison of error parameters for CV

The CPS results have the lowest maximum error ranges but development and verification 

involved fewer data points. There is little difference between the Dawes Lane 1-minute and 

23-second results. Both verification sets contained a possible measurement malfunction. 

However the lower limits o f the mean error and standard deviation are much reduced for the 

higher sampling frequency. With regard to Section 7.3 and Table A5.3.5, when verification 

was performed on the linear solutions with the malfunction omitted, a further improvement in 

maximum error by the 23-second set over the 1-minute set was observed.'

In terms o f the number o f inputs, i.e. the number o f previous samples required to predict one 

sampling interval ahead, the CPS solutions require 3 - 5  or 1 1 - 1 2  “past values” (inputs) . 

For the Dawes Lane ‘ 1-minute’ networks either 4 - 6  or 1 5 - 1 7 ,  and for the ‘23-second’ data 

two networks require 16 past values and the remainder 3 - 6 .  However, in terms of accuracy 

the results appear evenly distributed between small and large networks.
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O f particular note is that several results show a fall, in maximum absolute error at the expense 

o f an increase in mean error to values greater than 1%, with corresponding increases in 

standard deviation. It is possible that some overtraining has taken place despite the presence 

o f a validation set.

Tables 7.10 to 7.12 show the corresponding results for predictions two intervals ahead.

p .p function C.P.S Dawes Lane
1-minute 23-second

None linear 2 .0 6 -2 .3 6 4 .0 9 -4 .3 5 4.38 -  5.09
log 1 .7 2 -2 0 .5 3 .2 9 -1 9 .1 4 4.24 -  46.61
tanh 1 .7 4 -2 .8 4 3.59 -  5.79 3 .9 4 -6 5 .0 1

-10 0 linear 1 .9 7 -2 .3 0 4 .1 0 -4 .3 5 4 .3 8 -5 .1 1
log 1 .9 5 -1 2 .1 9 3.56 -  8.25 3.89 -  8.57
tanh 1 .7 2 -7 5 .9 3 .5 7 -1 1 .8 3 4.02 -  6.46

m = 2** linear 3.22 -  3.28 4 .6 0 -4 .6 5 4 .2 5 -4 .2 7
log 3 .1 1 -3 .5 2 4 .4 7 -3 9 .1 4 4 .1 7 -6 7 .4
tanh 3.06 -  3.49 4 .5 0 -1 6 .0 4 .1 7 -3 4 2 .6 8

** after post-processing

Table 7.10 Maximum error ranges for CV, two intervals ahead

In table 7.10 the lower limits o f the maximum error ranges show a slight increases over those 

in table 7.2. Again there is evidence o f non-linear solutions producing high upper limits.

Error CPS Dawes Lane

1-minute 23-second
mean 0.28 -  0.40 0 .4 8 -1 .2 4 0 .1 7 -1 .0 1

max 1 .7 2 -3 .2 2 3.29 -  4.54 3 .8 9 -4 .3 8

s.d. 0.25 -  0.34 0.48 -  0.89 0.24 -  0.74

Table 7.11 Summary of ranges in 7.10

Again there are lower maximum error levels for the CPS, and similar ranges for Dawes Lane, 

both for 1-minute and 23-second data (tables 7.11 and 7.12). Also the 23-second data has 

lower ranges for mean error and standard deviation when compared to the 1-minute data. 

With respect to the latter there is no change in the maximum error lower limits between 

predicting 1 interval head and two, although the values for mean error and standard deviation 

are increased by some 50%. O f interest in both those cases is that the upper limits are 

unchanged. As in the ‘ 1 interval ahead’ results, the 23-second data is capable of significant 

reductions in mean error and standard deviation.
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With the exception o f the Dawes Lane im = 2 ’ results there is a far larger incidence o f 

networks with a higher number o f inputs -  up to 17 prior values, the additional information 

absorbed possibly enabling accuracies similar to those obtained when predicting a single 

interval ahead.

Again, there are several solutions with increased minimum error resulting in reduced 

maximum error. Further the ‘23-second’ networks exhibit lower mean error and standard 

deviation when compared to the ‘ 1-minute’ solutions.

7.2.2 Specific gravity (s.g.) and air/fuel ratio (a/f)

function 1 interval ahead 2 intervals ahead
linear 0 .9 4 -1 .0 7 2.27 -  2.52

log 0.84 -  2.56 1 .9 9 -4 .1 3
tanh 0.84 -  3.55 2 .0 5 -4 .4 7

Table 7.13 Maximum error ranges (s.g.)

Table 7.13 summarises the maximum error ranges for predicting s.g. by 3 different 

approaches, whilst table 7.14 shows the error characteristics for possible solutions.

function 1 interval ahead 2 intervals ahead
Struct. mean max. s.d. struct. mean max. s.d.

Isq — 0.33 2.03 0.34 — 0.86 4.79 0.91
linear 13+K 0.16 0.94 0.14 15+K 0.36 2.27 0.35

log 13+3+K 0.15 0.84 0.13 13+4+K 0.30 1.99 0.29
13+2+K 0.15 0.92 0.13 12+2+K 0.37 2.19 0.34

tanh 12+3+K 0.14 0.84 0.12 13+3+K 0.33 2.05 0.30
12+2+K 0.16 0.92 0.13 14+2+K 0.34 2.07 0.31

Table 7.14 Potential solutions (s.g.)

For the s.g. results there is an approximately 200% increase in all parameters when extending 

the prediction time to two intervals. All networks require some 1 2 - 1 5  inputs. There would 

appear to be an approximate gain o f 10% in accuracy by opting for a non-linear solution but 

the overall accuracy is such that a (more parsimonious) linear solution would suffice. There 

are no instances o f networks with increased mean error providing a reduced maximum error. 

Benchmarking with the ‘least squares’ predictor exhibits considerably reduced error levels.

p/p function 1 interval ahead 2 intervals ahead
none linear 4.87 -  4.95 4.90 -  5.28

log 3.66 -  5.92 4 .7 4 -1 0 .5 9
tanh 4.81 -4 .9 6 3 .5 4 -1 2 .7 7

H-10 linear 4 .8 7 -4 .9 5 4.90 -  5.30
log 4 .8 4 -4 .9 0 4 .7 2 -2 1 .5 0
tanh 3.67 -  9.42 4 .7 6 -7 .1 2

m = 2** linear 4.80 -  4.82 4 .6 8 -4 .7 0
log 4 .7 5 -2 1 .4 4 4 .7 6 -1 4 .9 9
tanh 4.74 -  526.97 4 .6 4 -2 1 .3 4

Table 7.15 Maximum error ranges (a/f)
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1 interval ahead 2 intervals ahead
p/p funct struct. mean max s.d. struct. mean max s.d.

Isq — — 0.16 5.15 0.26 — 0.40 9.55 0.40

none linear 3+K 0.11 4.87 0.18 12+K 0.21 4.90 0.29

log 8+2+K 1.37 3.66 0.97 12+5+k 0.19 4.74 0.31

14+2+K 0.19 4.82 0.30

tanh 9+5+K 0.10 4.81 0.17 13+2+K 1.15 3.54 0.79

8+2+K 0.10 4.86 0.19

+ 10 linear 3+K 0.11 4.87 0.18 12+K 0.21 4.90 0.30

log 8+2+K 0.10 4.85 0.19 13+3+K 0.20 4.72 0.31

14+2+K 0.21 4.82 0.28

tanh 10+2+K 1.38 3.67 0.97 13+4+K 0.20 4.76 0.31

14+2+K 0.21 4.86 0.29

m = 2** linear 3+K 0.17 4.80 0.21 3+K 0.29 4.68 0.34

log 8+3+K 0.18 4.75 0.23 14+4+K 0.32 4.64 0.37

6+2+K 0.16 4.80 0.22 12+2+K 0.31 4.65 0.36

tanh 10+3+K 0.21 4.74 0.29 13+4+k 0.30 4.64 0.35

10+2+K 0.20 4.80 0.27 12+2+K 0.28 4.68 0.34

Table 7.16 Potential solutions (a/f)

In the case o f the maximum ranges for the a/f results (table 7.15) there is generally little 

difference between those for the * 1 -interval ahead’ investigation and that for two intervals, 

with the exception o f the ‘m = 2 ’ method which results in exceptionally high upper limit for 

the tanh activation function. Table 7.16 shows a general increase in the number o f network 

inputs when extending the prediction interval. Further, there are several instances o f 

networks with increased mean error providing reduced maximum error. Again, ‘least 

squares’ benchmarking demonstrates the considerably higher error levels of that approach.

7.2.3 Discussion

It is possible to produce acceptable parsimonious linear networks utilising data without pre­

processing. There is aliasing present in the synthesised ‘ 1-minute’ data, indicated by the 

reduction in mean error and standard deviation within the ’23 second’ data networks. 

However, maximum error levels remain similar even when a previously unseen -  in terms of 

training data -  major excursion is encountered in the input data. The networks recover from 

such perturbations (Sections 7.1.2 and A5.3)

The ‘division by 100’ method of pre-processing tends to track the ‘non-processed’ networks 

in terms o f accuracy o f the results. (However, informal observations during training 

suggested that training times were shorter for the former method). The ‘m = 2 ’ method of 

pre-processing results in consistent levels o f accuracy o f around 4-5% maximum error for all
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types of data. It appears to demonstrate resilience in the face of the data excursions described 

above.

High levels o f accuracy were obtained with the s.g. data which was o f such a range that did 

not require any form of pre-processing. The results for a/f ratio were generally o f a lower 

quality than those for the other parameters -  greater than 4% maximum error.

There were several instances o f networks with substantially increased mean error and 

standard deviation which resulted in reduced maximum error. This indicates the possibility of 

over-training and thus the possibility o f the validation networks lacking in effectiveness. 

(Tables 7.9, 7.12 and 7.16.)

In all cases the ‘least squares’ predictors were out performed by neural network solutions in 

terms o f accuracy, with the former method exhibiting greatly reduced accuracy when 

predicting two sampling intervals ahead. (Tables 7.9, 7.12, 7.14 and 7.16.)
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8.0 HSM Phase 2

Additional data logged at 30 second intervals was supplied, which was closer to the stated 

mass spectrometer output of approximately 35 second intervals. Hence there was an 

opportunity to investigate the fuel supply with less aliased data and to compare the results 

with those o f phase 1. However, no details o f constituent gases were given in this file; hence 

it was not possible to deduce which mixing station the gas was being supplied from (See 

Phase 1, chapter 6).

Furthermore, CV data was not supplied directly but rather in the form o f Wobbe numbers.

The Wobbe number or index is used as a means of comparing the heat inputs to a burner of 

different gases at fixed pressure, and is defined as

CV
W  = - j= = M J /k g  --------------- (8.1)

where CV = calorific value, s.g. = specific gravity

8.1 Analysis of data
The 30 sec data covers an unspecified period during September 2001 and consists o f 20,000 

points. The parameters o f interest to this project are listed in Table 8.1, with graphs o f the 

first three parameters shown in figs. 8.1 -  8.3. (The percentage oxygen content in the exhaust 

flue forms the basis for the investigation described in chapter 9.)

p a ra m e te r ran ge m ean s td . d ev . m ed ia n
Wobbe number (MJ/kg) 9 .4 7 -1 1 .6 10.1 0.18 10.09
Specific gravity (s.g.) 0.70 -  0.94 0.78 0.06 0.77
Air/fuel ratio 1.98-2.76 2.34 0.11 2.35
Oxygen in exhaust flue (%) 0.2 -26.22 3.38 2.54 2.75

Table 8.1 Gas parameter characteristics under investigation

The investigations in this phase o f the research proceeded on the following bases:

It had been established by this stage that there was a clear requirement for a 

minimalist solution in that any implementation would take place on low-specification 

PLCs salvaged from redundant equipment.

There existed the opportunity to synthesise both 1-minute data for Wobbe numbers 

and 30-second data for CV using equation 8.1 above, for comparison purposes with 

Phase 1.
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Wobbe number - 30 sec. intervals

Wobbe

s . g

11.5

10.5

9.5

0.4 0.6 0.8 1.2 1.4 1.6 1.8

sampling intervals 

fig. 8.1 Wobbe indices

s .g . s a m p le d  a t 30  s e c  in tervals

0 .95

0.9

0 .85

0.8

0.75

0.7

0.65
0.2 0.80.4 0.6

sam p lin g  in te rvals x 10 *

fig. 8.2 specific gravity
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Air/fuel ratio sampled at 30 sec intervals
2.8

2.6

2.4

2.2

2

1.8
0.2 1.2 1.4 1.6

Sampling intervals

fig. 8.3 air/fuel ratio

Above are figures showing the original 30-second datasets. It was intended to compare the 

effect o f 1-minute and 30-second sampling intervals on accuracy, and investigate the 

possibility that CV was inherently more difficult to track than Wobbe number.

Thus further data was synthesised as follows:

Wobbe number data sampled at 1-minute intervals, from the 30-second data.

CV datasets sampled at both 30-second and 1-minute details using the supplied s.g. 

data and equation 8.1 above.

data Range mean median s.d.
Wobbe (30 sec) 9 .4 7 -1 1 .6 0 10.1 10.08 0.18

Wobbe (60 sec)* 9 .4 8 -1 1 .6 0 10.1 10.09 0.18

Wobbe (Ph1 )* 8.51 -1 2 .7 4 10.64 10.6 0.47

CV (30 sec)* 8 .1 8 -1 0 .2 9 8.93 8.84 0.39

CV (60 sec)* 8 .1 8 -1 0 .2 8 8.93 8.84 0.39

CV (Ph.1 60 sec) 7 .9 3 -1 1 .4 7 9.75 9.62 0.48

Table 8.2 Comparison of supplied and synthesised(*) data
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8.2 Summary of results and discussion

In view of the significant differences both in range and other characteristics between the data 

sets in Phases 1 and 2, further least-squares-based investigations were conducted for 

comparison purposes. Those results have been included in the tables below.

8.2.1 Wobbe numbers or indices

p .p . /
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 20.52 17.87 7.95

none 1 3 .0 8 -1 3 .1 4 5.91 -  6.06 3 .9 6 -4 .1 7

-10 0 1 3 .0 8 -1 3 .1 4 5 .9 1 -6 .1 1 3 .9 6 -4 .1 7

Table 8.3 Wobbe indices maximum error ranges (1 interval ahead)

p .p . /
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 49.64 35.18 17.8

None 1 8 .8 8 -1 9 .0 0 9 .6 7 -1 0 .2 7 7.75 -  8.59

-10 0 1 8 .8 8 -1 9 .0 0 9 .6 4 -1 0 .2 8 7.75 -  8.60

Table 8.4 Wobbe indices maximum error ranges (2 intervals ahead)

Examination o f the results (tables 8.3 and 8.4) for predicting one sampling interval ahead 

shows that the ranges for the Phase 1 work are very much smaller than those for their Phase 2 

counterparts and the accuracy is lower; the maximum error for the Phase 2 data is reduced by 

some 50% over that in Phase 1. The 30-second data shows a further 30% reduction over the 

1-minute data in terms o f maximum error. Least accurate o f all is the least squares-based 

method of prediction. Pre-processing through scaling by division by 100 serves little practical 

purpose.

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

P -P /
method struct mean max s.d. struct mean max s.d. struct mean max s.d.

Isq — 1.53 20.52 1.87 — 0.92 17.87 1.23 — 0.44 7.95 0.58

none 4+K 0.97 13.07 1.11 7+K 0.45 5.91 0.48 12+K 0.22 3.96 0.25

-  100 4+K 0.97 13.07 1.11 7+K 0.45 5.91 0.48 12+K 0.22 3.96 0.25

Table 8.5 Wobbe index possible network solutions (1 interval ahead )
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HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct Mean max s.d. struct mean max s.d. struct mean max s.d.

Isq — 3.28 49.64 3.98 — 1.97 35.18 2.59 — 1.03 17.8 1.39

none 5+K 1.80 18.88 1.87 6+K 0.69 9.67 0.70 19+K 0.43 7.75 0.46

-1 0 0 5+K 1.80 18.88 1.87 9+K 0.68 9.64 0.69 19+K 0.43 7.75 0.46

Table 8.6 Wobbe index possible network solutions (2 intervals ahead )

The network solutions (tables 8.5 and 8.6) indicate that those from Phase 1 o f the HSM work 

possess fewer cells and therefore fewer inputs, and hence refer to fewer data past values 

during prediction. In addition they exhibit the highest error parameters. The 30-second 

training data produces the largest networks, absorbing more o f the data 'history' during 

prediction and hence offer the greatest accuracy.

8.2.2 Calorific value

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 18.13 13.33 7.55

None 1 1 .4 0 -1 1 .4 3 5..69 -  5.77 3.25 -  3.27

-100 1 1 .4 0 -1 1 .4 4 5..69 -  5.77 3.25 -  3.27

•CV + CO’ m 1 1 .4 2 -1 1 .4 3 ----- ------
*least-squares approach 01 multiple inputs of CV and CO

Table 8.7 CV maximum error ranges (1 interval ahead)

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Lsq* 43.24 26.52 16.28

None 1 6 .7 8 -1 6 .9 9 1 0 .0 3 -1 0 .1 5 7.21 -  7.27

-100 1 6 .7 8 -1 6 .9 9 1 0 .0 3 -1 0 .1 5 7.23 -  7.32

*least-squares approach

Table 8.8 CV maximum error ranges (2 intervals ahead)

As in the section on Wobbe index prediction above, the least squares-based method offers the 

least accuracy (tables 8.7 and 8.8). The Phase 1 results appear to indicate that there is little to 

be gained by the additional CO parameter input. (CO data was not available for the Phase 2 

investigations.) The Phase 2 networks yield major improvements : 50% in the case o f the 1- 

minute data over its Phase 1 counterparts, and 58% in the case o f the 30-second data over the 

corresponding 1-minute data, when predicting one sampling interval ahead (tables 8.7 and 

8.9). Pre-processing through scaling again appears to serve little practical purpose.
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HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct mean max s.d. struct mean max s.d. struct mean max s.d.

Lsq — 1.31 18.13 1.72 — 0.86 13.33 1.01 — 0.43 7.55 0.51

None 3+K 0.57 11.40 0.71 6+K 0.47 5.70 0.49 3+K 0.22 3.25 0.24

H-100 3+K 0.57 11.40 0.71 5+K 0.47 5.70 0.49 3+K 0.22 3.26 0.24

CV + CO (3+2)+K 0.57 11.42 0.70

Table 8.9 CV possible network solutions (1 interval ahead )

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct Mean max s.d. struct mean max s.d. Struct mean max s.d.

Lsq — 2.85 43.24 3.65 — 1.82 26.52 2.12 — 1.00 16.28 1.19

None 3+K 0.97 16.78 1.11 3+K 0.74 10.03 0.76 3+K 0.44 7.21 0.46

H-100 3+K 0.97 16.78 1.11 3+K 0.74 10.02 0.76 3+K 0.44 7.23 0.46

Table 8.10 CV possible network solutions (2 intervals ahead )

When predicting 2 sampling intervals ahead (tables 8.8 and 8.10) there is a similar 

improvement in performance by the neural networks over the least squares-based approach. 

For the Phase 1 data the fall in maximum error is 60% and for the Phase 2 data 60% and 55% 

respectively for the 1-minute and 30-second data. The increase in sampling frequency yields 

30% decrease in maximum error with similar performance enhancements for the other error 

parameters.

8.2.3 Specific gravity

(This data is in a range less than 1.0 and hence no pre-processing was required.)

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 20.52 17.87 7.95

none 1 3 .0 7 -1 3 .1 4 5.91 -  6.06 3 .9 6 -4 .1 7

*least-squares approach 

Table 8.11 Specific gravity maximum error ranges (1 interval ahead)

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq 49.64 35.18 17.8

none 1 8 .8 8 -1 9 .0 0 9 .6 7 -1 0 .2 7 7.75 -  8.59

*least-squares approach 

Table 8.12 Specific gravity maximum error ranges (2 intervals ahead)
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When predicting one interval ahead (table 8.11) the neural network solution in Phase 1 shows 

an improvement o f 36% over the least squares-based method in terms o f maximum error. 

Similarly for Phase 2 the figures are 67% and 50% for the 1-minute and 30-second data 

respectively. Additionally the higher sampling frequency results in a performance 

enhancement o f 3 3 %.

When predicting 2 sampling intervals ahead (table 8.12) the neural network solution exhibits 

even greater efficiency reducing maximum error by 62%. For Phase 2 the figures are 73% 

and 56% for 1-minute and 30-second data with the higher sampling frequency enhancing 

network performance by 20% - lower than for the case above.

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct mean max s.d. struct mean max s.d. struct mean max s.d.

Isq — 1.53 20.52 1.87 — 0.92 17.87 1.23 — 0.44 7.95 0.58

none 4+K 0.97 13.07 1.11 7+K 0.45 5.91 0.48 12+K 0.22 3.96 0.25

Table 8.13 s.g. possible network solutions (1 interval ahead )

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct mean max s.d. struct mean max s.d. struct Mean max s.d.

Isq — 3.28 49.64 3.98 — 1.97 35.18 2.59 — 1.03 17.8 1.39

none 5+K 1.80 18.88 1.87 6+K 0.69 9.67 0.70 19+K 0.43 7.75 0.46

**after post-processing

Table 8.14 s.g. possible network solutions (2 intervals ahead )

Comparison o f the possible solutions in table 8.14 with those o f table 8.13 shows that for the 

least squares method results the maximum error levels are increased by a factor o f two or 

greater when increasing the prediction interval from 1 to 2. However in the cases o f the 

neural network solutions the respective increases in maximum error levels are 31%, 39%, 

49% for each network solution. The Phase 1 networks have the least number o f inputs, i.e. 

make the least reference to historical data, whilst the 30-second trained data has the highest 

number and the greatest accuracy.
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8.2.4 Air/fuel ratio

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 17.98 19.84 13.43

none 1 3 .0 8 -1 3 .1 4 1 1 .3 6 -1 1 .6 7 6.53 -  6.59

H-100 1 3 .0 8 -1 3 .1 4 11 .36 -1 1 .91 6.53 -  6.59

*least-squares approach 

Table 8.15 a/f ratio maximum error ranges (1 interval ahead)

p.p./
method

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

Isq* 42.49 44.05 30.11

none 1 8 .8 8 -1 9 .0 0 1 4 .0 5 -1 4 .5 6 1 2 .2 0 -1 2 .3 6

-5-100 1 8 .8 8 -1 9 .0 0 1 3 .6 4 -1 4 .5 6 1 2 .2 0 -1 2 .3 6

*least-squares approach 

Table 8.16 a/f ratio maximum error ranges (2 intervals ahead)

In contrast to all other sets o f results obtained so far, the least squares-based solutions offer 

more accurate solutions for the Phase 1 data than for the Phase 2 1-minute data (tables 8.15 

and 8.16). However with reference to tables 8.17 and 8.18, the mean error and standard 

deviation for the latter solutions are lower in all cases. This is not true o f the neural network 

solutions which continue the trend for more accurate solutions with Phase 2 1-minute data 

than those for Phase 1.

The least squares-based solutions exhibit more than 200% increase in maximum error when 

extending the prediction interval to 2 sampling intervals -  236%, 222% and 224% 

respectively for Phase 1, 1-minute and 30-second Phase 2 data (table 8.18). This contrasts 

with the corresponding neural network solution figures o f 45%, 20%, and 87%.

HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct mean max s.d. struct mean max s.d. Struct mean max s.d.

Isq — 1.44 17.98 1.72 — 1.17 19.84 1.66 — 0.55 13.43 0.75

none 4+K 0.97 13.07 1.11 8+K 0.59 11.36 0.61 3+K 0.30 6.53 0.38

+ 100 4+K 0.97 13.07 1.11 7+K 0.59 11.36 0.61 3+K 0.30 6.53 0.38

Table 8.17 a/f ratio possible network solutions (1 interval ahead )
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HSM Phase 1 HSM Phase 2
1-minute data 30-second data

p.p/
method struct mean max s.d. struct mean Max s.d. Struct mean max s.d.

Isq — 3.15 42.49 3.68 — 2.52 44.05 3.54 — 1.29 30.11 1.81

none 5+K 1.60 18.88 1.67 7+K 0.92 14.05 0.95 3+K 0.62 12.20 0.73

+ 100 5+K 1.60 18.88 1.67 10+K 0.92 13.64 0.95 3+K 0.62 12.20 0.73

Table 8.18 a/f ratio possible network solutions (2 intervals ahead )

8.2.5 Discussion

In all cases in this section, the least squares-based method produces significantly higher error 

levels than those o f their neural network counterparts; in certain instances the increase is 

greater than 100%

All methods show significant increases in error levels when the prediction interval is 

doubled, with typical increases in maximum absolute error o f around 100%. This is o f 

particular interest when evaulating the results for the 30-second data trained networks. It 

should be recalled that the furnace valve trains require some 20 seconds to implement changes 

in settings. This coupled with the probable presence o f large transport lags in the systems 

may require predictions for two sampling intervals ahead thus nullifying gains in accuracy 

due to the higher sampling frequency.

It is also instructive to examine the reductions in error levels resulting from doubling the 

sampling frequency. These are shown in the tables below with the least squares-based results 

in table 8.19 and those for neural networks trained without pre-processing in table 8.20.

parameter 1-interval ahead 2-intervals ahead
mean max s.d. mean max s.d.

Wobbe index -52 -56 -53 -48 -49 -46
CV -50 -43 -50 -45 -39 -44

s.g. -52 -56 -53 -48 -49 -46

a/f ratio -53 -32 -55 -49 32 -49

Table 8.19 Percentage reductions in error levels for ‘least squares’ predictor 
after doubling sampling frequency
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parameter 1-interval ahead 2-intervals ahead
mean max s.d. mean max s.d.

Wobbe index -51 -33 -48 -38 -20 -34

CV -53 -43 -51 -41 -28 -39

s.g. -51 -33 -48 -38 -20 -34

a/f ratio -49 -43 -38 -33 -11 -23

Table 8.20 Percentage reductions in error levels for neural networks 
(using unpreprocessed data) after doubling sampling frequency

For the neural networks the greatest reductions occur in mean absolute error levels, i.e. the 

increase in accuracy benefits the majority o f the data. Overall there would seem a strong case 

for further reductions in sampling frequency. However, as discussed in the preceding 

paragraph there are hardware constraints and a 15 second interval may require predictions o f 

3 intervals ahead with corresponding loss of accuracy. Further if  the resulting networks were 

incorporated into an on-line closed-loop control system, too high a sampling frequency might 

result in over frequent activation o f the valve trains, with the system never settling to a given 

set point, and with consequent increases in wear on the valve trains.

Unlike the results for Dawes Lane Coke Ovens (Chapter 7) which indicate that Wobbe index 

prediction is more efficient than that for CV, the results in this investigation exhibit the 

opposite trend.

Methods developed using the Phase 2 synthesised 1-minute data are substantially more 

accurate than those utilising the Phase 1 (sampled at 1-minute intervals) data, often by a factor 

o f 50%. (However, comparison o f data in table 6.2 with the data supplied for the Phase 2 

work -  table 8.1 -  shows that the former have wider ranges and higher standard deviations 

indicating far more ‘severe’ dynamics.) However there is a single exception with the least 

squares-based method for air/fuel ratio (Table 8.15).

Scaling through division by 100 offers little improvement in accuracy over unpreprocessed 

data network training, the differences between the respective results being assumed due to 

random initialisation o f weightings in training.

Overall, the use of pre-trained neural networks to obtain parameters for a linear time series 

results in some 50% higher accuracy and a much reduced requirement in terms o f 

computational overheads compared to the least squares-based approach.
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9.0 Recuperator Corrosion Problem

9.1 Background

Information was received from Corns that they were experiencing a problem with corrosion in 

the recuperator pipes within a heat exchanger, and a request was made for a brief 

investigation into developing a predictor along the lines o f the previous work, to forecast 

potentially low oxygen levels in the combustion process which was alleged to be the cause. 

The suggested indicator was a fall in carbon monoxide level. A spreadsheet was supplied 

with several sets o f data where the oxygen levels in the exhaust flue had fallen to below that 

which the informant deemed to be desirable -  around 1.5%. The author examined these but 

was not able to identify a specific linkage between fall in CO and consequent fall in 0 2.

A decision was made to attempt to track the oxygen levels with a predictor in keeping with 

previous parameter prediction development, not merely those where the 0 2 fell below the 

acceptable threshold. The data sets supplied were some 30 -  40 points in length. This was 

inadequate to train, validate and verify a neural network. Examination o f the spreadsheet 

supplied for the HSM Phase 2 work revealed a listing for exhaust flue gas oxygen content, 

sampled at 30-second intervals and network development proceeded using that data.

p e rcen tag e  oxygen In flue g a s
30 

25

20

02
(%)

15

10

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Sam pling Intervals x 1 0  4

fig. 9.1 Variations in oxygen levels in furnace exhaust gas.

P a ra m eter ran ge m ean s td . d e v . m ed ian
Oxygen level in exhast flue (%) 0 .2 -2 6 .2 3.38 2.54 2.75

Table 9.1 Data ranges for exhaust flue oxygen content
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9.2 Analysis of data and procedures
The data whilst largely grouped within the range 0 -  6 % shows some significant spikes well 

in excess o f 10%, at intervals 1617 (18.5%), 5416 (22.9%), 6232(22%) and 12821 (26.2%).

(It did not prove possible to ascertain the cause of these extreme excursions.) These might 

hinder the development o f a network whose purpose is to detect very low levels of 0 2 content.

Hence two strategies evolved : The first developed a linear network along using the 

techniques in previous chapters. In the second a linear network was trained, validated and 

verified using low 0 2 values only, approximately 10% and lower. Visual inspection o f the 

spikes in figure 9.1 revealed that these last for sometime with gentle slope back to the lower 

values. (Figure 9.2 below shows the profile for the 26.2% spike at sampling interval 12821.) 

If  it were possible to develop a network which high in accuracy at the critical low values, but 

less so at the non-critical higher values, the output o f the network could be disregarded for 

values above a certain threshold; the gentle transition from high to low 0 2 levels (fig. 9.2) 

indicated that such a network would have adequate time to resume efficient operation as 

levels returned to their lower ranges.

purpose mins range mean median std. dev.
training 9001 -1 5 0 0 0 0.28 -  26.22 3.39 2.72 2.58

validation 15001 -2 0 0 0 0 1 .2 6 -1 4 .2 3 2.91 2.52 1.45

verification 1-9000 0.2 -  22.93 3.63 3.0 2.94

Table 9.2 Datasets for first strategy (all data)

Table 9.2 contains details of the datasets chosen for development in strategy 1. Ideally, all sets 

should exhibit similar characteristics but this did not prove possible with the available data. 

However, the training and validation sets cover almost the entire data range, whilst their 

lowest value is similar to that of the verification set. Table 9.3 details the datasets for strategy 

2 .

purpose mins range mean median std. dev.
Training 9 4 4 9 -1 2 7 9 8 0 .2 8 -1 1 .1 2 3.25 2.93 1.73

Validation 1 2 8 80 -1 9 5 80 0 .4 8 -1 1 .6 9 2.80 2.46 1.24

Verification 1 9 0 0 -5 0 0 0 0.2 -  8.0 3.58 3.58 1.6

Table 9.3 Datasets for second strategy (low 0 2 only)
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No pre-processing o f data was undertaken in either case, and only values one sampling 

interval ahead were predicted. A least squares-based predictor simulation was performed to 

provide benchmarking data.

30

25

20

15

10

5

0
100 120 140 160

sampling intervals 

fig. 9.2 close-up of spike at sampling interval 12821 mins

9.3 Results and discussion
Tables 9.4 and 9.5 record typical experimental results, with error parameters summarised in 

table 9.6. Tables 9.7 suggests 4-input network solutions for both approaches, with maximum 

absolute error magnitudes 15.8% and 15.4% respectively. Whilst these figures are similar, 

the mean error levels and standard deviation are higher for strategy 2, limited to lower level 

0 2 values. (It should be noted that because o f this limitation there were fewer data points 

available.)
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inputs Mean max s.d. <0.01
3 0.0129 0.1571 0.0160 0

*4 0.0129 0.1544 0.0159 0

5 0.0129 0.1567 0.0159 0

6 0.0130 0.1666 0.0161 0

7 0.0134 0.1662 0.0164 0

8 0.0133 0.1670 0.0164 0

9 0.0135 0.1813 0.0166 1

10 0.0135 0.1815 0.0166 2

11 0.0136 0.1886 0.0169 0

12 0.0137 0.1917 0.0170 1

13 0.0137 0.1906 0.0170 2

14 0.0137 0.1894 0.0169 1

15 0.0137 0.1878 0.0170 2

16 0.0137 0.1834 0.0169 1

17 0.0137 0.1840 0.0170 1

18 0.0137 0.1806 0.0169 1

19 0.0137 0.1812 0.0169 0

20 0.0137 0.1783 0.0169 2

Inputs mean max s.d. <0.01
3 0.0122 0.1656 0.0136 0

*4 0.0125 0.1580 0.0134 0

5 0.0127 0.1642 0.0137 0

6 0.0128 0.1651 0.0138 0

7 0.0128 0.1676 0.0139 0

8 0.0128 0.1683 0.0140 0

9 0.0128 0.1684 0.0140 0

10 0.0128 0.1684 0.0140 1

11 0.0129 0.1700 0.0141 0

12 0.0129 0.1694 0.0142 1

13 0.0129 0.1704 0.0142 1

14 0.0129 0.1704 0.0142 2

15 0.0129 0.1695 0.0142 1

16 0.0129 0.1683 0.0142 1

17 0.0129 0.1681 0.0142 1

18 0.0129 0.1689 0.0142 1

19 0.0129 0.1692 0.0142 2

20 0.0129 0.1691 0.0142 1

Table 9.4 Strategy 1 (all data) Table 9.5 Strategy 2 (low O2 only)

Tables 9.4 and 9.5 Typical results

error (%)
method mean max std. dev
Isq* 4.54 71.04 4.82

all data 1 .2 2 -1 .2 9 1 5 .8 -17 .04 1.34-1.42

low 1 .2 9 -1 .3 7 15 .44 -19 .17 1 .5 9 -1 .7 0

‘ least squares-based simulation

Table 9.6 Error ranges for tables 9.4 and 9.5

error (%)
method Structure mean max std. dev
Isq* — 4.5 71 4.8

all data 4+K 1.3 15.8 1.3

low 4+K 1.3 15.4 1.6

‘ least squares-based simulation

Table 9.7 Comparison of potential solutions

Examination o f the neural network solutions in table 9.7 reveals that the network derived 

from low 0 2 data only, provides little in the way o f enhanced accuracy, merely a marginal 

reduction in maximum error at the expense o f increased standard deviation. Both neural 

networks exhibit improvements in excess of 70% in terms of mean and maximum error when 

compared to the least squares-based simulation, thus emphasising the superiority o f neural 

network approach within this context.
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10.Review, Conclusion, and Further Work

10.1 Review
Both linear and non-linear minimalist neural network solutions were investigated and their

performance evaluated against equivalent least squares-based predictors.

Data from a variety o f sources was investigated:

(a) Single gas mix COG (Appendix 1)

Tw o sets o f  data supplied from  two different sources.

(i) A user -  Central Power Station (CPS, chapter 5) -  predicting CV only, and 

sampled at 1-minute intervals from the main archiving systems.

(ii) A producer -  Dawes Lane Coke Ovens (chapter 7) -  predicting CV, s.g., and 

air/fuel ratio. In this case data was supplied directly from the mass spectrometer 

output at 23-second intervals. CV data was synthesised at 1-minute intervals for 

comparison with the CPS results (chapters 5 and 7).

(b) Complex gas mix MEG (Appendix 1)

Two sets o f data from the Heavy Section Mill (HSM), using Mixed Enhanced Gas supplied

via a complex gas grid (chapter 6).

(i) The initial set (chapter 6) emanated from the 1-minute sampled main archival 

system covering CV, s.g., and air/fuel ratio. Wobbe index data was calculated 

from CV data for comparison with the results obtained in (b) below. The 

addition o f secondary percentage gas content parameters (oxygen and hydrogen) 

as a means of indicating gas supplier, did not improve network accuracy.

(ii) A second series o f data (chapter 8) was provided directly from the mass 

spectrometer output, sampled at 30-second intervals, and consisting o f Wobbe 

indices, s.g., and air/fuel ratio. For each o f these parameters, ‘ 1-minute’ data was 

synthesised to enable comparison with the work in (a) above (chapter 8). 

Similarly, CV data was calculated from Wobbe index information and again ‘ 1- 

minute’ data sythesised.
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(c) Flue gas percentage oxv2en content

A secondary investigation (chapter 9) was conducted into the feasibility o f applying the 

neural network methodology to predicting low oxygen content in the exhaust flues o f the 

HSM, which was understood to be a contributing factor in recuperator corrosion. Data 

sampled at 1-minute intervals was obtained from the HSM archival system.

Where minimalist non-linear networks were investigated (chapters 5 and 7), their 

performance was found to be equivalent, or inferior, to the equivalent linear networks.

It was established that pre-processing o f data via scaling was unnecessary (chapters 5-8). In 

the case o f division by m, the mean of the past n values, it was found that the optimum 

accuracy was obtained when n = 2 (referred to as lm = 2 ’ in this work). However that method 

consistently resulted in lower accuracy especially when applied to the rapidly fluctuating data 

o f the HSM with information loss due to the inherent smoothing effect o f the method 

(chapters 5-7). Scaling through division by a constant (100) -  ‘-J-100’ -  had only minimal 

effect on accuracy when compared to the output o f networks trained with unprocessed data 

(chapters 5-8).

Least squares-based predictor performance when predicting CV 1 sampling interval ahead on 

relatively slowly changing data such as COG was comparable to that o f linear network 

solutions (chapter 7). However error levels increased substantially when predicting two 

intervals ahead, or when aliasing was introduced through increasing the sampling interval to 1 

minute (tables 7.8 and 7.11). In contrast, examination o f the s.g. and air/fuel results for COG 

indicate substantially higher levels for all error parameters in respect of the ‘least squares’ 

approach (tables 7.14 and 7.16).

The results from the more rapidly fluctuating data levels o f the MEG parameters (chapter 6) 

further emphasised the superior accuracy o f the neural network approach with reductions in 

error levels o f 50% or greater over the equivalent ‘least squares’ predictors (chapter 8). 

Particularly noteworthy was the ca. 75% reduction in maximum error (table 8.14) for s.g. (two 

sampling intervals ahead, ‘ 1-minute’ data), attained by the neural network predictor. (That 

data contained aliasing deliberately introduced by synthesising ‘ 1-minute data’ from that 

originally sampled at 30-second intervals.) Addition of secondary network inputs of
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percentage gas content (oxygen and hydrogen) as a means of indica.ting gas supplier, did not 

improve accuracy over that attained by simple CV-tracking networks

Finally, the results (table 9.7) obtained when predicting oxygen content in flue gas (sampled 

at 1-minute intervals) using a linear neural network show very substantial reductions in mean 

error (66%), maximum error (ca. 80%) and standard deviation (ca. 75%) over the levels 

attained by the least squares approach.

10.2 Conclusion
Minimalist linear neural networks capable o f predicting values up to two sampling intervals 

ahead were successfully developed.

Where an additional non-linear network investigation was performed, the corresponding 

linear solution was found to be equivalent or superior, in performance.

When measured against a benchmark least squares-based predictor, the neural network 

approach resulted in substantially higher accuracy when predicting two intervals ahead, or 

when confronted with rapidly changing and/or aliased data .

It is possible to develop networks o f high accuracy without recourse to pre-processing o f data 

during training.

The networks developed in this work are eminently suited to implementation on low 

specification, possibly nominally redundant, hardware (e.g. a PLC) prolonging the life o f 

equipment and reducing the need for new investment, with consequent economic advantages. 

Additionally, there are environmental benefits in the re:use, rather than the immediate 

disposal, o f nominally redundant equipment.

11. Further Work

A “shadow” implementation o f the results from this research is proposed, running in parallel 

to the existing control methods with data being logged over a period o f several months, in 

order to further validate the method. Predicted values would be compared with actual values, 

and calculations would be performed with respect to the corresponding controller settings 

(proposed and actual) in order to evaluate possible enhancements and efficiency savings.
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However, several of the departments at Corns’ Scunthorpe site have now ceased operation 

including the HSM, and alternative arrangements would have to be sought.-

Investigation into the economic and environmental benefits of such minimalist solutions 

should be extended to other (non-steelworks related) processes, e.g. prediction o f flow rates, 

gas content, temperature, especially where aliasing appears to be present or data is 

incomplete.
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A.1 Gas Properties

COG BFG B O S N atural
G a s

Carbon monoxide CO 6 25 5 8 .5 -8 0 .2 —

Carbon dioxide C 02 2.41 25 9 .0 0 -1 6 .7 7 0.1
Hydrogen h2 51.47 3.5 0 .5 7 -1 .2 2 -----------

Nitrogen n2 7.17 46.5 9.61 -2 2 .9 8 2.6
Argon A 0.05 ----------- 0.22 -  0.27
Methane ch4 29.94 ----------- ---- 92.6
Ethylene c2h4 1.67 ---- ----
Ethane c2h6 0.82 ---- - — 3.6
Oxygen o 2 0.05 ----------- -----------

Hydrogen sulphide H2S 0.1 0.00092 -----------

Benzine c 6h6 trace ----------- -----------

Toluene c 7h8 trace ----------- -----------

Propylene c 3h6 0.08 ----------- -----------

Acetylene c2h2 0.05 ----------- -----------

Propane c3h8 0.09 ----------- ----------- 0.8

Calorific values (MJ/NmJ) 19 3.5 7 .5 -1 0 38.6
Specific gravity 0.38 1.073 1 .0 -1 .0 5

Flammability 
(% in air)

lower 4.5 32.8 -  55.8 
(usually 38.9)

16.2

Higher 37.2 69 .5 -7 0 .1  
(usually 70.1)

70.5

Table A1.1 Typical percentage constituents and calorific values

COG has a lower C 0 2 content which improves furnace efficiency, high H2 which improves 

flame speed and stability and lower nitrogen than BFG, improving furnace efficiency. 

However COG produces the pollutant sulphur dioxide (S 0 2).

However the amount of COG produced at the Scunthorpe site is insufficient for all 

requirements and has at at times o f high demand to be supplemented by Synthetic Coke Oven 

Gas (SCOG) which is produced by mixing BFG and Natural Gas. No details were supplied in 

respect o f the mixing ratio and percentage constituents, but some details for Natural Gas alone 

were obtained from Eastop [Eastop90, p76, p353] and are listed in the rightmost column. It is 

assumed that the resulting mix would probably be high in methane content, and have a far 

higher cv than BFG alone.

It is unclear how a large proportion o f SCOG rather than COG would affect the gas in the 

supply main to the HSM, nor if  it were actually present during the period covered by the 

supplied data.
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Central Anchor

Carbon monoxide CO 14.74 60.78
Carbon dioxide C 02 13.41 12.63
Hydrogen h2 28.88 9.17
Nitrogen n2 29.10 13.23
Argon A 0.74 0.34
Methane ch4 11.5 3.108
Ethylene c2h4 0.93 0.258
Ethane c2h6 0.42 0.084
Oxygen o 2 0.05 0.33
Hydrogen sulphide h2s 0.16 0.023
Benzene c 6h6 ---- ----
Toluene C7H8 ---- ----
Propylene c 3h6 0.035 0.015
Acetylene c2h2 0.016 0.007
Propane c 3h8 0.83 0.022

Calorific values (MJ/Nm13) 10.06 10.14
Specific gravity 0.738 0.945

Table A1.2 Comparison of the Mixed Enhanced Gas (MEG) percentage 
constituents as supplied by the Central and Anchor mixing stations

The most significant constituent in the Anchor gas mix is CO at 61%, four times that of 

Central. Whereas Central’s mix is rich in H2 and N2. (With methane levels at four times 

those o f Anchor, it is assumed that Central receives a higher proportion o f COG -  see Table 

A l .l  above) The respective levels o f CO, H2 and N2 should serve as indicators as to which 

mixing station is the predominant supplier, if  any, at a given moment.
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Appendix A. 2 -  Network Training
(The Method of Backpropagation of Errors, and the Delta Rule)

The back-propagation o f errors, and the generalised delta rule (GDR) training algorithms 

appear to have been developed independently by several researchers, e.g. Rummelhart, 

McClelland, and others [Hayk99, Faus94], and is in part derived from the method of least mean 

squares. It is a steepest descent method and seeks to apply a correction Avyjj to the ‘synaptic’ 

weight linking input y* to th e /h cell in the network, which is proportional to dE/dw^ the 

sensitivity o f the output error to incremental changes in Aw,j at the p th training iteration, or

Avvji (p) = - r \  dE / dwj\ (p) --------- (A2.1)

This is known as the Delta Rule. The minus sign indicates a descent in error space and r| is a 

positive constant termed the gain or learning rate.

It is characterised by two passes through the netw ork: forward where the network outputs are 

calculated and compared with actual target values and the differences or errors, computed. 

These errors are then backpropagated in a backward pass through the network layer by layer 

and adjustments to the cell input weightings made in accordance with the above equation.

target value 
tj(p)activation function

|  ej(p)
*o— » o

cell output error

Yi(P) fj(p)

Wj0 = bj(p) -biasterm
cell output

inputs - either external to
network or from preceding 
cells

fig. A2.1 Signal flow diagram for cell in output layer
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Whilst target (desired) values are available for cells in the network output layer and the error . 

computed easily, no such values are directly available for intermediate (hidden) layers 

although the weightings within these layers contribute to the effectiveness o f the network. A 

different method utilising the back-propagation of errors is employed, and accordingly the 

two cases are treated separately in this description.

A2.1.1 Cells in the output layer

Consider the diagram (fig. A2.1 above) showing the j th cell in an output layer at the p th 

iteration o f training. Each input-output pattern is presented to the network and the error e(p) 

computed.

For a training set containing A  input-output patterns, then over one epoch (one pass through 

the entire training data) the mean squared error is given by

This serves as a measure o f performance and is the cost function to be minimised during 

training.

For the j th cell the sum of the weighted m input signals is given by

ej (P) = tj (p) - y j  ip) -----------(A2-2)

The instantaneous error energy for the j th cell is defined as — e

the output layer

E (p ) = -x 1 £ ej 2(p )  --------- (A2.3a)E(p)=^'ZeJ2(p)
£  i= 1

m
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where y t is an input signal which may be a direct input to the network or the output o f a cell in 

the previous layer. The bias input bj is expressed as a constant input y 0 = 1 with weighting 

Wj0.

The output from that cell’s activation function fj (.) is

y j { p )  = f M j ( p ) )  ---------- (A 16 )

Now from the delta rule above (.A2.1) the correction to be applied to weight w# at the p th 

training iteration is

A wji(p) = - r \ d E  (p)ldwji(p) (A!2.1)

The derivative term may be expanded via the calculus chain rule to incorporate responses to 

incremental changes in

-  network error E(p) with respect to changes in cell output error ej (p)
-  cell output error ej (p) with respect to changes in cell output yy (p)
-  cell output yj(p) with respect to changes in total input signal level X j(p)
-  total input signal level xy- (p) with respect to changes in weighting (p)

Hence

dE{p)  _  dE(p)  de j (p)  t y j j p ) dx j (p)  

Swj: (? ) 8es ( p ) t y j ( p )  dxj  (p ) dw.  (p)

And from eqn. (A2.3)

(A2.8)

From (A2.2)

f e j ( p )  , 
Syj(p)

(42.9)

From (A2.6)
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where f ’(xj(p)) is the first derivative o f the cell’s activation function. For certain activation 

functions there exists a simplified relationship with the derivative which greatly facilitates 

computation with minimal overheads. (Section A3.1)

From (A2.6)

^ -  = y ,(P) ---------(42.1D

Substituting (A2.18) to (A2.ll) in (A2.7)

=  -1  *  ( p ) . f  (X( p ) \ y , (p)  ----------(A2.12)
dwj, (p)

At this point a local gradient Sj (p) due to the effect o f the /  cell within the error field for the 

network is defined as the sensitivity o f the total network output error to incremental changes 

in the sum of input signals to cell j th, i.e.

5 { p )  = -  8E^    (42.13)
dx j (p)

which expands by chain rule to

dE(n)  de, (p)  f y i i p )
d . ( p )  = -  KP) ----------(A2.14)

de j (p)  dy j (p )  dx j (p)

and using the results gained for those partial derivatives, above

Sj  (P ) =  ej ( p ) . f j  {xj (p )) ---------- (A2.15)

Substituting this result into (A2.12) gives 

dE{p )
- ;  '  = - S j ( p ) . y , ( p )  ----------(A2.16)
dwji(p)

Thus for a cell in the network output layer the Delta Rule (A2.1 above) may be expressed as 

(p ) = - ij-Sj (p).y t (p )  ---------- (A2.17)
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A2.1.2 Cells in a Hidden Layer

target value 
tk(P)

* o

yj(p)

* o

Qk(P)

output from cell j, 
input to cell k

fig. A2.2 Simplified signal flow diagram for cell k in 
output layer fed from cell j  in hidden layer

Figure A2.2 depicts a situation in which cell j  above lies within a hidden a hidden layer 

feeding the k!h cell o f an output layer, and connected to that cell via a weight wkj.

Equation (A2.3a) above may be re-written for the kfh cell as

and similarly, re-writing and combining (A2.2) and (A2.6)

ek ( ? )  = h  ( ? )  -  y t  ( ? )  = h  ( ? )  -  f t  Cxk ( ? ) )  ---------- (A2.19)

where the input to the activation function f k is defined per (A2.5) above as

m

j =0

The local gradient Sj (p) is re-defined for the j th cell in the hidden layer with a different chain 
rule expansion without reference to cell output error ej (p).

dE( p ) ^  dE(p)  dy j (p)  

dxj (p)  dy j (p)  dxj (p)
(A2.20)

which from (A2.10) becomes

(A2.2J)

A  link between the h idden /Acell and the tih output cell, for which the error is known, is 

established by differentiating (A2.18) with respect to the j th cell’s output^-
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ZE(p)  v  - , , 8et (p)  _  v  , , 8ek (p)  dxk (p)  ---------- (A2 22)

W ~ ¥ l{p\ }{ p V ¥ t(p)dxk{p)ayj(p)
again by chain rule and noting the introduction o f the additional term x* -  the sum of the b!h 

cell’s input signals, i.e. the total input to its activation function.

From (A2.19)

dek(p)
dxk(p)

= ~ f k { x (P)) (A2.23)

And from (A2.19a)

=  (42.24)
t y j ( p )

Hence

^ ^  = Y Jet ( P ') { - f A x k (P )% ’k M )  = - Y j et ( P ) f k { x k(.P))Wkj(.P) —  (42.25) 
vy j  (P) k k

Now from (A2.15) the local gradient for the output cell

$k(P)  = ek(P) - f k(x k(pj )  ---------- (A2.26)

Substituting this result in (A2.25)

^ \  = - ^ S k( p ) WkJ(p)  ---------- (42.26)
f y j ( p )  k

Thus from (A2.2I) the local gradient for the j  cell in a hidden layer is given by 

Ss (P) =  / '  (*,■ ( P ) ) Z  Sk (P)wk] (p )  -----------(A2.27)
k

i.e. the product of the derivative of the activation function and the summed products o f the 

local gradients o f the cells in the next layer, fed by that cell, and the respective connecting 

weights.

A2.1.3 In general

For cells in the both the output and hidden layers, Haykin summarises the above as
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r weight rlearningNr local ' r neuron'
correction = rate gradient input

Aw.. V *  > Sj(P)  J K y t (p )  >
[Hayk99, p166]

Or,

A Wji = tjS j ( p ) y t ( p ) ----- —  (A2.28)

For the j th cell in a layer at the p th training iteration. For cells the output layer, the local 

gradient is given by

S j (P ) = ej (p ) . f j  (xJ (p )) -----------(A2.29)

which contains actual information about the network output error. For cells in the hidden 

layer(s) the local gradient is given by

S j ( p )  = f ' { x j ( p ) ) ' Z S k{ p > kj ( p )  ---------- (A2.30)
k

which does not directly contain network output error information. Instead the error 

information is propagated back through the network by local gradients in the next layer.

A2.2 The generalised delta rule learning rate, and momentum

Schalkoff remarks that equation (A2.28) is based on a first-order gradient descent method and 

therefore may

“... find a local minimum in” ...error space E which “ .... may correspond to 
suboptimal solutions with respect to the global minima.”

Varying the learning rate 77 may diminish the possibility o f this but its should be noted that 

for

small 77
-  there are small changes to weights, but a smoother trajectory in weight 

space. However there is the risk that the function will become ‘trapped’ 
within a local minimum.

-  training is slow.
large 77

-  training is fast and ‘steps’ between changes to weightings are sufficiently
large to result in a ‘trapped’ function to emerge from a local minimum.

-  the resulting large changes in weights may make network unstable -
oscillation may occur may occur around the optimum solution -  and the 
function may ‘jump over’ and miss the actual global minimum.
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Schalkoff proposes a variable learning rate solution, in which training is commenced with a 

large learning rate 77(C)) and is reduced after each epoch according to the formula

V (p)  = —  ---------- (42.31)
P

The Delta Rule above can be refined to overcome this to a large extent by including a 

(positive) momentum constant a

AwJI(p)  = r}SJ( p ) y i (p)  + aAwji( p - l ) — ----- (A2.32)

i.e. the current weight adjustment is now also dependent on that previously obtained.
Equation (A2.28) forms the generalised delta rule.

Two significant aspects o f momentum with respect to dE/d\Vj i , the error sensitivity -  see 

equations (A2.1) and (A2.7) -  are

-  when d E / d  wp has the same algebraic sign on consecutive iterations, w# is 
modified by a large amount. Thus, momentum tends to accelerate descent in steady 
downhill directions (ie, giving momentum to the correction).

-  when d E / d  wp has alternating algebraic signs on consecutive iterations, w# 
becomes smaller and so the weight adjustment is small. Thus, momentum has a 
stabilising effect on learning.

A2.3 Potential deficiencies in backpropagation

For a cell in the output layer, from (A2.17) substituting from (A2.15)

(p ) = - 1].ej (p ) . f j  (Xj (p ) )y ,  (p )  ---------- (A2.17)

If the input y,- (p) to cell j  is zero, or near zero, then the weight correction will be zero or near 

zero.

Correction is also dependent on the derivative o f the activation function. It will be minimised 

for a non-linear activation function when the cell is operating in its saturation zones, i.e. at the 

extremes where the curve flattens and the derivative becomes small.

In the case of hidden cells where

5 j  (P) = f ' { x j (p ) ) Y t St (p )wkJ( p ) (A2.27)
k

there is also a dependency on the activation function derivative.
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Schalkoff comments that it illustrates

the necessarily serial nature of the GDR ... algorithm. First, note the possibility of 
premature saturation in hidden-layer units. However, there is an even more significant 
possible shortcoming due to the recursive formulation. S in ce ... “ (eqn z  com putes Sh )" ... 
additional concerns are as follows:

1. The effect of small £in a previous layer (perhaps due to premature saturation) 
could be exaggerated in the cascaded  combination of two saturated units (cells). 
If unit h is saturated the weighting” ... ( due to fh'( xh (p) )  ) ... “further reduces 
the correction.

2. This process may continue backward, from the output layer, until weight 
corrections are in consequential. This partially explains why networks with large 
numbers of hidden layers train poorly using the GDR strategy.” [Shalk97, p158]
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Appendices A3-6 -  Tables of typical experimental results

Notation used when reporting neural network results

The following abbreviations and conventions were used to describe network structures:

K = linear activation function 

L = log sigmoid, or Togsig’, activation function 

T = tanh sigmoid, ‘tansig’, activation function

E.g. 6+K describes a simple linear network with 6 inputs. 7+2L+K describes a 7-input non­

linear network with 2 Togsig' cells in a single hidden layer, with a linear output (scaling) cell.

Where pre-processing was investigated the abbreviations below indicate the method:

‘m = n ’ Scaling through division by m, where m is the mean of the past n values 

*-*■ k ’ Scaling through division by a constant.

E .g ‘/w = 2 \ o r ‘-s-100’

* Potentially optimum solutions in terms o f accuracy and/or minimalist structure are 

indicated in the tables by an asterisk.
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A3 Tables of typical experimental results -  CPS CV prediction 

A3.1 Linear networks

Inputs mean max s.d. <0.01
3 0.0018 0.0179 0.0020 0

4 0.0019 0.0170 0.0020 0

5 0.0019 0.0169 0.0020 0

6 0.0019 0.0169 0.0020 0

7 0.0018 0.0170 0.0020 0

8 0.0018 0.0170 0.0020 1

9 0.0018 0.0162 0.0020 0

10 0.0018 0.0160 0.0020 0

11 0.0018 0.0155 0.0020 0

12 0.0018 0.0153 0.0020 0

*13 0.0018 0.0152 0.0020 0

14 0.0018 0.0152 0.0020 1

15 0.0018 0.0159 0.0020 0

16 0.0018 0.0158 0.0020 0

17 0.0018 0.0156 0.0020 1

18 0.0018 0.0158 0.0020 1

19 0.0018 0.0157 0.0020 0

20 0.0018 0.0156 0.0020 1

Table A3.1 No pre-processing of data

Inputs mean max s.d. <0.01
3 0.0008 0.0080 0.0011 0

4 0.0008 0.0081 0.0011 0

5 0.0008 0.0079 0.0010 0

6 0.0008 0.0082 0.0011 0

7 0.0008 0.0085 0.0010 1

8 0.0008 0.0077 0.0010 0

9 0.0008 0.0084 0.0010 2

10 0.0009 0.0075 0.0010 1

11 0.0009 0.0074 0.0010 1

*12 0.0009 0.0073 0.0010 1

13 0.0009 0.0075 0.0010 0

14 0.0009 0.0074 0.0010 0

15 0.0009 0.0076 0.0010 0

16 0.0009 0.0075 0.0010 0

17 0.0009 0.0074 0.0010 1

18 0.0009 0.0076 0.0010 1

19 0.0009 0.0075 0.0010 0

20 0.0009 0.0079 0.0010 0

Inputs mean max s.d. <0.01
3 0.0018 0.0152 0.0020 0

*4 0.0021 0.0139 0.0020 0

5 0.0019 0.0172 0.0020 1

6 0.0019 0.0169 0.0020 0

7 0.0018 0.0169 0.0020 0

8 0.0018 0.0171 0.0020 1

9 0.0018 0.0162 0.0020 1

10 0.0018 0.0162 0.0020 0

*11 0.0018 0.0149 0.0020 0

12 0.0018 0.0149 0.0020 0

13 0.0018 0.0152 0.0020 0

14 0.0018 0.0150 0.0020 1

15 0.0018 0.0159 0.0020 0

16 0.0018 0.0152 0.0020 1

17 0.0018 0.0156 0.0020 1

18 0.0018 0.0158 0.0020 1

19 0.0018 0.0153 0.0020 2

*20 0.0018 0.0147 0.0020 0

Table A3.2 Division by 100

Inputs mean max s.d.
3 0.0024 0.0217 0.0023

4 0.0024 0.0215 0.0023

5 0.0024 0.0213 0.0023

6 0.0023 0.0213 0.0023

*7 0.0023 0.0211 0.0022

8 0.0023 0.0216 0.0023

9 0.0023 0.0213 0.0023

10 0.0023 0.0219 0.0023

11 0.0023 0.0217 0.0023

12 0.0023 0.0217 0.0023

13 0.0023 0.0217 0.0023

14 0.0023 0.0216 0.0023

15 0.0023 0.0217 0.0022

16 0.0023 0.0217 0.0023

17 0.0023 0.0218 0.0023

18 0.0023 0.0217 0.0023

19 0.0023 0.0217 0.0023

20 0.0023 0.0218 0.0023

Table A3.3 (“m = 2”) Table A3.3a post-processed

The maximum error ranges for each pre-processing method are shown in A3.4.



pre-proc? max error range (%)
none 1 .5 2 -1 .7 9

-100 1 .4 9 -1 .7 1

m = 2 0.73 -  0.85

2 .1 1 -2 .1 9 **

** after post-processing 

Table A3.4

Solutions which demonstrate low maximum error are indicated with and asterisk and are 

summarised below in table A3.5 (errors are expressed as percentages):

preproc struct mean max s.d. <0.01
none 13+1 0.18 1.52 0.2 0

-  100 11+1 0.18 1.49 0.2 0

- 1 0 0 20+1 0.18 1.47 0.20 0

m = 2 12+1 0.92 1.17 0.17 1

m = 2** 7+K 0.23 2.11 0.22 1

**after post-processing
Table A3.5

The error values for the ‘m =2’ solution are those obtained after post-processing o f the results 

had taken place. Pre-processing by division by 100 offers optimum solutions, with the 11- 

input network appropriate for a minimalist implementation.

A3.2 Non-linear single-cell networks

Two experiments were performed on data pre-processed by division by 100 using both log 

sigmoid and tan sigmoid activation functions. Again 12 and 13-input networks offer viable 

solutions but do not achieve the accuracy attained by the linear solutions.

Inputs mean max s.d.
3 0.0026 0.0175 0.0032

4 0.0026 0.0166 0.0032

5 0.0026 0.0167 0.0031

6 0.0026 0.0164 0.0031

7 0.0025 0.0170 0.0031

8 0.0025 0.0169 0.003

9 0.0025 0.0160 0.0029

10 0.0024 0.0158 0.0028

11 0.0024 0.0152 0.0028

*12 0.0024 0.0150 0.0027

13 0.0024 0.0151 0.0027

14 0.0024 0.0150 0.0027

15 0.0024 0.0156 0.0027

16 0.0023 0.0155 0.0026

17 0.0023 0.0154 0.0026

18 0.0023 0.0157 0.0026

19 0.0023 0.0156 0.0026

20 0.0023 0.0156 0.0025

inputs mean max s.d.
3 0.0018 0.0180 0.0020

4 0.0019 0.0170 0.0020

5 0.0018 0.0170 0.0020

6 0.0018 0.0171 0.0020

7 0.0018 0.0170 0.0020

8 0.0018 0.0170 0.0020

9 0.0018 0.0159 0.0020

10 0.0018 0.0160 0.0020

11 0.0018 0.0156 0.0020

12 0.0018 0.0153 0.0020

*13 0.0018 0.0152 0.0020

14 0.0018 0.0153 0.0020

15 0.0018 0.0160 0.0020

16 0.0018 0.0159 0.0020

17 0.0018 0.0156 0.0020

18 0.0018 0.0154 0.0020

19 0.0018 0.0157 0.0020

20 0.0018 0.0160 0.0020

Table A3.6 (log sigmoid) Table A3.7 (tanh sigmoid)



A3.3 Non-linear multi-cell networks

The above experiments in A3.2 were repeated with the number o f inputs restricted to the 

range 11 -  13, as indicated by the linear network solutions, and with a single hidden whose 

cells were allowed to increase in number from 2 to 13 (in line with the number o f inputs). 

Tables A3.8 -  13a show the first 10 results for the various network structures, sorted by 

maximum error. (In the case o f the m = 2 pre-processed data, measurements were taken prior 

to post-processing.)

Without pre-processing:

inputs cells mean max std
*11 4 0.0018 0.0132 0.002

12 9 0.0028 0.0134 0.0025

12 11 0.0018 0.0143 0.002

11 3 0.0021 0.0147 0.0024

12 4 0.0019 0.0148 0.0021

12 2 0.0019 0.0149 0.0021

12 5 0.0019 0.0149 0.0021

*11 2 0.0019 0.0151 0.0021

11 6 0.0028 0.0151 0.0026

13 8 0.0025 0.0156 0.0028

Table A3.8 log sigmoid

Data divided by 100:

Inputs cells mean max std
*12 6 0.0023 0.0133 0.0023

12 5 0.0023 0.0146 0.0023

13 3 0.0021 0.0152 0.0022

11 3 0.0023 0.0161 0.0023

*12 2 0.0019 0.0171 0.0021

12 3 0.0023 0.0171 0.0024

13 11 0.0043 0.0172 0.0031

12 12 0.0040 0.0205 0.0035

11 8 0.0037 0.0225 0.0040

13 13 0.0045 0.0248 0.0036

Table A3.10 log sigmoid +100

inputs cells mean max std
*12 3 0.0023 0.013 0.0023

12 5 0.0024 0.0132 0.0023

13 6 0.0021 0.0144 0.0023

12 6 0.0022 0.0146 0.0024

*12 2 0.0019 0.0148 0.0021

12 4 0.0019 0.0148 0.0021

12 8 0.0019 0.0148 0.0021

13 5 0.002 0.0149 0.0022

11 10 0.0023 0.0149 0.0024

13 2 0.0021 0.015 0.0024

Table A3.9 tanh sigmoid

Inputs cells mean Max std
*13 2 0.0020 0.0157 0.0020

13 7 0.0018 0.0163 0.0021

12 8 0.0027 0.0182 0.0033

13 3 0.0025 0.0187 0.0026

12 13 0.0028 0.0219 0.0028

12 12 0.0038 0.0219 0.0038

12 10 0.0050 0.0220 0.0036

11 6 0.0034 0.0221 0.0037

13 6 0.0036 0.0235 0.0039

12 3 0.0049 0.0262 0.0041

Table A3.11 tanh sig
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Pre-processed using £w = 2’ :

Inputs cells mean max std
*11 12 0.0009 0.0066 0.0010

11 7 0.0009 0.0068 0.0010

13 11 0.0009 0.0070 0.0010

11 11 0.0010 0.0070 0.0010

*12 3 0.0009 0.0071 0.0010

11 8 0.0009 0.0073 0.0010

12 10 0.0010 0.0073 0.0010

12 11 0.0010 0.0073 0.0010

12 12 0.0010 0.0073 0.0010

11 9 0.0010 0.0074 0.0010

Inputs cells mean Max std
*13 6 0.0026 0.0207 0.0026
13 5 0.0026 0.0209 0.0027
13 12 0.0024 0.0210 0.0024
13 9 0.0026 0.0211 0.0025
13 13 0.0023 0.0214 0.0024
13 11 0.0024 0.0216 0.0025
13 8 0.0025 0.0218 0.0025

*13 4 0.0025 0.0219 0.0026
13 7 0.0026 0.0225 0.0026
13 10 0.0023 0.0226 0.0025

Table A3.12 m = 2 logsig 2nd Table A3.12a -  after post-processing

Inputs cells mean max std
*13 8 0.0025 0.0199 0.0025

13 6 0.0023 0.0214 0.0024

13 11 0.0025 0.0214 0.0025

*13 3 0.0027 0.0217 0.0027

13 5 0.0024 0.0218 0.0024

13 7 0.0027 0.0224 0.0027

*13 2 0.0028 0.0225 0.0028

13 13 0.0026 0.0227 0.0025

13 4 0.0026 0.0229 0.0027

13 10 0.0025 0.0234 0.0025

Inputs cells mean max std
*11 9 0.0010 0.0066 0.0010

12 12 0.0010 0.0070 0.0010

11 2 0.0009 0.0071 0.0010

11 5 0.0009 0.0071 0.0010

13 5 0.0009 0.0071 0.0010

11 8 0.0010 0.0071 0.0010

11 12 0.0009 0.0072 0.0010

11 10 0.0010 0.0072 0.0010

12 3 0.0009 0.0073 0.0010

12 11 0.0010 0.0074 0.0010

Table A3.13 m = 2 tansig Table A3.13a -  after post-processing

pre-proc? function max error range (%)
none log 1 .3 2 -2 0 .5

tanh 1 .3 0 -2 1 .4

-100 log 1 .3 3 -3 7 .5

tanh 1 .5 7 -1 0 .1

m = 2** Log 2 .0 7 -4 .4 3

Tanh 1 .9 9 -4 .3 5

** after post-processing 

Table A3.14 -  maximum error ranges, 1 interval ahead

Table A3.14 summarises the above results in terms of maximum error ranges, while table 

A3.15 (overleaf) lists potential solutions selected from the above tables:
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pre-proc? struct. function mean max s.d.
none 11+4+K log 0.18 1.32 0.20

11+2+K 0.19 1.51 0.21

12+3+K tanh 0.23 1.30 0.23

100 12+6+K log 0.23 1.33 0.23

12+2+K 0.19 1.71 0.21

13+2+K tanh 0.20 1.57 0.20

m = 2 13+6+K log 0.26 2.07 0.26
13+4+K 0.25 2.19 0.26
13+8+K tanh 0.25 1.99 0.25

13+2+K 0.28 2.25 0.28

Table A3.15 -  potential solutions, 1 interval ahead

A3.4 Predicting two intervals ahead -  linear networks

inputs mean max s.d. <0.01
*3 0.0029 0.0197 0.0026 0
4 0.0031 0.0224 0.0026 0

5 0.0030 0.0223 0.0026 0

6 0.0030 0.0227 0.0026 1

7 0.0029 0.0231 0.0026 0

8 0.0029 0.0230 0.0025 0

9 0.0029 0.0218 0.0025 0

10 0.0028 0.0217 0.0025 0

11 0.0028 0.0207 0.0025 0

*12 0.0028 0.0204 0.0025 0

13 0.0028 0.0206 0.0025 0

14 0.0028 0.0208 0.0025 0

15 0.0028 0.0212 0.0025 0

16 0.0028 0.021 0.0025 0

17 0.0028 0.0212 0.0025 0

18 0.0028 0.0212 0.0025 0

19 0.0028 0.0212 0.0025 1

20 0.0027 0.0205 0.0024 0

inputs mean Max s.d. <0.01
3 0.0030 0.0236 0.0026 0

4 0.0030 0.0228 0.0026 0

5 0.0030 0.0227 0.0026 0

6 0.0030 0.0227 0.0026 1

7 0.0029 0.0233 0.0026 0

8 0.0028 0.0232 0.0026 0

9 0.0028 0.0222 0.0025 0

10 0.0028 0.0217 0.0025 0

11 0.0028 0.0209 0.0025 1

12 0.0028 0.0209 0.0025 1

*13 0.0028 0.0206 0.0025 0

14 0.0028 0.0209 0.0025 0

15 0.0028 0.0212 0.0025 0

16 0.0028 0.0210 0.0025 0

17 0.0028 0.0212 0.0025 0

18 0.0028 0.0213 0.0025 0

19 0.0028 0.0212 0.0025 0

20 0.0028 0.0210 0.0025 0

Table A3.16 no pre-processing Table A3.17-r100
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inputs mean max s.d. <0.01
3 0.0008 0.0084 0.00101 0

4 0.0008 0.0085 0.00101 0

5 0.0008 0.0087 0.00101 0

6 0.0008 0.0086 0.0010 1

7 0.0008 0.0083 0.0010 0

8 0.0008 0.0083 0.0010 0

9 0.0008 0.0081 0.0010 0

10 0.0008 0.0080 0.0010 1

*11 0.0008 0.0079 0.0010 1

12 0.0008 0.008 0.0010 1

13 0.0009 0.0081 0.0010 0

14 0.0009 0.0081 0.0010 0

15 0.0008 0.0081 0.0010 2

16 0.0008 0.0081 0.0010 0

17 0.0008 0.0082 0.0010 0

18 0.0008 0.0081 0.0010 1

19 0.0009 0.0083 0.0010 1

20 0.0008 0.0082 0.0010 2

inputs mean Max s.d.
3 0.0037 0.0326 0.0034

4 0.0037 0.0324 0.0033

*5 0.0037 0.0322 0.0033

6 0.0037 0.0325 0.0033

7 0.0036 0.0326 0.0033

8 0.0036 0.0327 0.0033

9 0.0036 0.0327 0.0033

10 0.0036 0.0326 0.0033

11 0.0036 0.0326 0.0033

12 0.0036 0.0325 0.0033

13 0.0036 0.0325 0.0033

14 0.0036 0.0328 0.0033

15 0.0036 0.0327 0.0033

16 0.0036 0.0326 0.0033

17 0.0036 0.0326 0.0033

18 0.0036 0.0327 0.0033

19 0.0036 0.0324 0.0033

20 0.0036 0.0327 0.0033

Table A3.18 m = 2 Table A3.18a post-processed

pre-proc? max error range (%)
none 2 .0 6 -2 .3 6

-100 1 .9 7 -2 .3 0

m = 2** 3.22 -  3.28

** after post-processing

Table A3.19

preproc struct mean max s.d. <0.01
none 13+K 0.28 2.06 0.25 0

- 1 0 0 3+K 0.29 1.97 0.26 0

-  100 12+K 0.28 2.04 0.25 0

m = 2 5+K 0.37 3.22 0.33 0

Table A3.20

Table A3.19 lists the maximum error ranges while table A3.20. summarises the above results, 

with those for in = 2 being adjusted for post-processing induced error. There is an increase of 

some 400% in the maximum error value. From the above tables non-linear solutions should 

require 11-13 inputs.
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A3.5 Two intervals ahead -  non-linear

inputs cells mean max Std
*11 13 0.0031 0.0172 0.0026

13 11 0.0037 0.0176 0.003

13 13 0.0033 0.0182 0.0026

11 8 0.0033 0.0194 0.0028

*12 4 0.0031 0.0203 0.0026

12 8 0.0035 0.0205 0.003

13 2 0.0029 0.0206 0.0026

13 3 0.0029 0.0206 0.0026

11 2 0.0032 0.0206 0.0029

12 3 0.0029 0.0209 0.0026

inputs cells mean max std
*12 6 0.0032 0.0174 0.0027

13 6 0.0036 0.0175 0.0032

11 6 0.0028 0.018 0.0024

*12 3 0.0031 0.0188 0.0027

13 5 0.0033 0.0189 0.0028

13 8 0.0036 0.0195 0.003

12 12 0.003 0.0201 0.0028

13 2 0.003 0.0204 0.0027

11 5 0.0031 0.0205 0.0028

12 4 0.003 0.0207 0.0027

Table A3.21 log sigmoid Table A3.22 tanh sigmoid

A3.21 -  22 show results from unpre-processed data.

inputs cells mean max std
*12 7 0.004 0.0195 0.0031

13 3 0.0029 0.0208 0.0026

12 4 0.0032 0.0217 0.0028

*12 2 0.0031 0.0223 0.0027

13 4 0.0032 0.0229 0.0029

11 4 0.0045 0.0241 0.0042

12 3 0.0043 0.0242 0.0036

11 11 0.0045 0.0255 0.0039

13 6 0.0057 0.0268 0.0057

12 11 0.0054 0.0284 0.0048

inputs cells mean max std
*11 4 0.0035 0.0172 0.0031

13 3 0.003 0.0216 0.0026

13 7 0.0034 0.024 0.003

11 3 0.0043 0.0251 0.0048

*12 2 0.0037 0.0257 0.0034

13 8 0.0055 0.0262 0.0043

13 9 0.0047 0.0266 0.0048

13 5 0.0055 0.0291 0.0055

11 5 0.0052 0.0319 0.0055

12 6 0.0054 0.0323 0.0059

Table A3.23 log sigmoid Table A3.24 tanh sigmoid

A3.23 -  4 show results for pre-processing via division by 100, while A3.25 -  6 below show 

those for m - 2 .

inputs cells mean max std
*12 12 0.0010 0.0065 0.0010

13 10 0.0010 0.0065 0.00101

12 11 . 0.0010 0.0066 0.0010

*12 2 0.0009 0.0067 0.0010

11 11 0.0009 0.0068 0.0010

11 7 0.0010 0.0069 0.0010

11 2 0.0008 0.0071 0.0010

13 12 0.00101 0.0073 0.00101

11 13 0.0009 0.0074 0.0010

12 5 0.0010 0.0075 0.00101

Table A3.25 log sigmoid

inputs cells mean max std
*12 7 0.004 0.0311 0.0036

11 10 0.0041 0.0315 0.0036

*12 3 0.0037 0.0316 0.0034

13 13 0.0036 0.0318 0.0033

11 12 0.0037 0.0318 0.0033

13 4 0.0035 0.0319 0.0033

12 9 0.0036 0.0319 0.0033

11 9 0.0037 0.0319 0.0034

12 12 0.0036 0.0321 0.0033

13 3 0.004 0.0321 0.0036

Table A3.25a -  after post-processing
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inputs cells mean max std
*11 12 0.0010 0.0063 0.0010

12 8 0.0009 0.0069 0.00101

13 6 0.0010 0.0069 0.0010

13 8 0.0009 0.0071 0.0010

13 13 0.00101 0.0072 0.0010

*11 4 0.0008 0.0073 0.0010

11 5 0.0009 0.0073 0.0010

11 3 0.0008 0.0074 0.0010

13 3 0.0009 0.0074 0.0010

13 4 0.0009 0.0074 0.0010

inputs cells mean max std
*11 7 0.0039 0.0306 0.0035

11 11 0.0037 0.0316 0.0033

13 11 0.0036 0.0318 0.0034

11 6 0.0037 0.0318 0.0034

13 10 0.0038 0.032 0.0035

13 6 0.0037 0.0321 0.0033

11 5 0.0037 0.0322 0.0033

*12 3 0.004 0.0322 0.0037

13 5 0.004 0.0322 0.0036

12 5 0.0037 0.0323 0.0034

Table A3.26 tanh sigmoid Table A3.26a -  after post-processing

Table A3.27 summarises the above results in terms o f maximum error ranges, while table 

A3.28 shows potential solutions.

p re -p ro c ? fu n ction m a x  erro r ra n g e  (%)
None log 1 .7 2 -2 0 .5

tanh 1.74-2.84
-5-100 log 1 .9 5 -1 2 .1 9

tanh 1 .7 2 -7 5 .9
m = 2 log 3 .1 1 -3 .5 2

tanh 3 .0 6 -3 .4 9

Table A3.27 -  maximum error ranges, 2 intervals ahead

pre-proc? Struct function mean max s.d.
none 11+13+K log 0.31 1.72 0.26

12+4+K 0.31 2.03 0.26

12+6+K tanh 032 1.72 0.27

12+3+K 0.31 1.88 0.27

+100 12+7+K log 0.40 1.95 0.31

12+2+K 0.31 2.23 0.27

11+4+K tanh 0.35 1.72 0.31

12+2+K 0.37 2.57 0.34

m = 2 12+7+K log 0.40 3.11 0.36

12+3+K 0.37 3.16 0.34

11+7+K tanh 0.39 3.06 0.35

12+3+K 0.40 3.22 0.37

Table A3.28 -  possible solutions, 2 intervals ahead
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A4.HSM  Phase 1 

A4.1 Predicting CV 
A4.1.11-interval ahead

Inputs mean max s.d. <0.01
*3 0.0057 0.1140 0.0071 0

4 0.0057 0.1140 0.0071 1

5 0.0057 0.1140 0.0071 0

6 0.0057 0.1141 0.0071 1

7 0.0057 0.1142 0.0071 1

8 0.0057 0.1142 0.0071 1

9 0.0057 0.1142 0.0071 3

10 0.0057 0.1142 0.0071 1

11 0.0057 0.1143 0.0071 1

12 0.0057 0.1143 0.0071 3

13 0.0057 0.1143 0.0071 1

14 0.0057 0.1143 0.0071 3

15 0.0057 0.1143 0.0071 3

16 0.0057 0.1143 0.0071 3

17 0.0057 0.1143 0.0071 3

18 0.0057 0.1143 0.0071 3

19 0.0057 0.1144 0.0071 6

20 0.0057 0.1144 0.0071 7

Table A4.1 unprocessed

inputs mean max s.d. <0.01
3 0.0028 0.0579 0.0036 0

4 0.0028 0.0579 0.0036 1

5 0.0028 0.0579 0.0036 0

6 0.0028 0.0579 0.0036 0

7 0.0028 0.0579 0.0036 0

8 0.0028 0.0579 0.0036 0

9 0.0028 0.0579 0.0036 1

10 0.0028 0.0579 0.0036 0

11 0.0028 0.0579 0.0036 0

12 0.0028 0.0579 0.0036 0

13 0.0028 0.0579 0.0036 0

14 0.0028 0.0579 0.0036 0

15 0.0028 0.0579 0.0036 1

16 0.0028 0.0579 0.0036 1

17 0.0028 0.0579 0.0036 2

18 0.0028 0.0579 0.0036 1

19 0.0028 0.0579 0.0036 1

20 0.0028 0.0579 0.0036 1

Table A 4 .3 - ‘m = 2’

inputs mean max s.d. <0.01
*3 0.0057 0.1140 0.0071 0

4 0.0057 0.1140 0.0071 1

5 0.0057 0.1140 0.0071 0

6 0.0057 0.1141 0.0071 1

7 0.0057 0.1142 0.0071 1

8 0.0057 0.1142 0.0071 1

9 0.0057 0.1142 0.0071 3

10 0.0057 0.1142 0.0071 2

11 0.0057 0.1143 0.0071 1

12 0.0057 0.1143 0.0071 3

13 0.0057 0.1143 0.0071 1

14 0.0057 0.1143 0.0071 3

15 0.0057 0.1143 0.0071 3

16 0.0057 0.1143 0.0071 3

17 0.0057 0.1143 0.0071 3

18 0.0057 0.1143 0.0071 4

19 0.0057 0.1144 0.0071 4

20 0.0057 0.1144 0.0071 8

Table A 4 .2 - +100

inputs mean max s.d.
3 0.0070 0.1228 0.0086

*4 0.0070 0.1227 0.0086

5 0.0070 0.1229 0.0086

6 0.0070 0.1231 0.0086

7 0.0070 0.1231 0.0086

8 0.0070 0.1232 0.0086

9 0.0070 0.1233 0.0086

10 0.0070 0.1233 0.0086

11 0.0070 0.1234 0.0086

12 0.0070 0.1234 0.0086

13 0.0070 0.1234 0.0086

14 0.0070 0.1234 0.0086

15 0.0070 0.1234 0.0086

16 0.0070 0.1234 0.0086

17 0.0070 0.1234 0.0086

18 0.0070 0.1234 0.0086

19 0.0070 0.1234 0.0086

20 0.0070 0.1234 0.0086

Table A4.3a -  post-processed
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A 4 .1 .2  2 -in terva ls  a h e a d

inputs mean Max s.d. <0.01
*3 0.0097 0.1678 0.0111 0

4 0.0097 0.1678 0.0111 0

5 0.0097 0.1682 0.0112 0

6 0.0097 0.1687 0.0112 1

7 0.0096 0.1689 0.0112 0

8 0.0096 0.1690 0.0112 0

9 0.0097 0.1694 0.0112 0

10 0.0097 0.1695 0.0112 1

11 0.0097 0.1696 0.0112 2

12 0.0096 0.1697 0.0112 2

13 0.0097 0.1698 0.0112 3

14 0.0096 0.1699 0.0112 4

15 0.0096 0.1699 0.0112 5

16 0.0097 0.1699 0.0112 5

17 0.0097 0.1699 0.0112 4

18 0.0097 0.1699 0.0112 4

19 0.0097 0.1699 0.0112 6

20 0.0097 0.1699 0.0112 6

Tab le  A 4 .4  unprocessed

inputs mean max s.d. < 0.01
3 0.003 0.0579 0.0037 0

4 0.0029 0.0579 0.0037 0

5 0.0029 0.0579 0.0037 0

6 0.0029 0.0579 0.0037 0

7 0.0029 0.0579 0.0037 0

8 0.003 0.0579 0.0037 0

9 0.003 0.0579 0.0037 0

10 0.003 0.0579 0.0037 0

11 0.003 0.0579 0.0037 0

12 0.003 0.0579 0.0037 0

13 0.003 0.0579 0.0037 0

14 0.003 0.0579 0.0037 1

15 0.003 0.0579 0.0037 1

16 0.003 0.0579 0.0037 2

17 0.003 0.0579 0.0037 1

18 0.003 0.0579 0.0037 1

19 0.003 0.0579 0.0037 1

20 0.003 0.0579 0.0037 1

Tab le A 4 .6  - 'm  = 2'

inputs mean max s.d. <0.01
*3 0.0097 0.1678 0.0111 0

4 0.0097 0.1678 0.0111 0

5 0.0097 0.1682 0.0112 0

6 0.0097 0.1687 0.0112 1

7 0.0096 0.1689 0.0112 0

8 0.0096 0.169 0.0112 0

9 0.0097 0.1694 0.0112 0

10 0.0097 0.1695 0.0112 1

11 0.0097 0.1696 0.0112 2

12 0.0096 0.1697 0.0112 2

13 0.0097 0.1698 0.0112 3

14 0.0096 0.1699 0.0112 4

15 0.0096 0.1699 0.0112 5

16 0.0097 0.1699 0.0112 5

17 0.0097 0.1699 0.0112 4

18 0.0097 0.1699 0.0112 4

19 0.0097 0.1699 0.0112 6

20 0.0097 0.1699 0.0112 8

Tab le  A 4.5--r100

inputs mean max s.d.
*3 0.0104 0.1774 0.0126

4 0.0104 0.1776 0.0126

5 0.0104 0.1775 0.0126

6 0.0104 0.1775 0.0126

7 0.0104 0.1776 0.0126

8 0.0104 0.1776 0.0126

9 0.0104 0.1775 0.0126

10 0.0104 0.1775 0.0126

11 0.0104 0.1776 0.0126

12 0.0104 0.1775 0.0126

13 0.0104 0.1776 0.0126

14 0.0104 0.1776 0.0126

15 0.0104 0.1775 0.0125

16 0.0104 0.1775 0.0125

17 0.0104 0.1775 0.0125

18 0.0104 0.1774 0.0125

19 0.0104 0.1774 0.0125

20 0.0104 0.1774 0.0125

Tab le  A 4 .6 a  -  post-processed
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The tables below summarise the above results and those from the previous section. There is 

minimal difference between the maximum error ranges with the unprocessed training data 

networks and those using the ‘division by 100’ method being almost identical.

p .p . max error range (%)
1 interval ahead 2  intervals ahead

none 1 1 .4 0 -1 1 .4 3 1 6 .7 8 -1 6 .9 9

H-100 1 1 .4 0 -1 1 .4 4 1 6 .7 8 -1 6 .9 9

m = 2 5.79 (all) 5.79 (all)

1 2 .27 -1 2 .34 ** 1 7 .7 4 -1 7 .7 6

** after post-processing 

Table A4.7 -  maximum error ranges

p .p 1 interval ahead 2  intervals ahead
struct mean max s.d. <0.01 struct Mean max s.d. <0.01

none 3+K 0.57 11.40 0.71 0 3+K 0.97 16.78 1.11 0

- 1 0 0 3+K 0.57 11.40 0.71 0 3+K 0.97 16.78 1.11 0

m = 2** 4+K 0.70 12.27 0.86 1 3+K 1.04 17.74 1.26 0

**after post-processing
Table A4.8 -  possible network solutions

It should be noted that the ‘w = 2 ’ method shows fewer potentially extraneous inputs in the 

overall results tables than the other forms o f pre-processing but it is significantly less accurate 

in all accuracy measurement parameters.
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A4.1.3 Predicting CV using CO and H2 as additional input parameters (1-interval ahead)

Inputs
(CV+Hz)

mean max s.d. <0.01*

3+1 0.0058 0.1141 0.0070 0

3+2 0.0058 0.1141 0.0070 0

3+3 0.0058 0.1142 0.0070 0

3+4 0.0057 0.1141 0.0070 0

3+5 0.0057 0.1141 0.0070 0

3+6 0.0057 0.1141 0.0070 0

4+1 0.0058 0.1141 0.0070 1

4+2 0.0058 0.1141 0.0070 1

4+3 0.0058 0.1142 0.0070 1

4+4 0.0057 0.1141 0.0070 1

4+5 0.0057 0.1141 0.0070 1

4+6 0.0057 0.1141 0.0070 1

5+1 0.0058 0.1142 0.0070 2

5+2 0.0058 0.1142 0.0070 2

5+3 0.0058 0.1142 0.0070 2

5+4 0.0057 0.1142 0.0070 2

5+5 0.0057 0.1142 0.0070 2

5+6 0.0057 0.1141 0.0070 2

6+1 0.0057 0.1142 0.0070 3

6+2 0.0057 0.1142 0.0070 3

6+3 0.0058 0.1142 0.0070 3

6+4 0.0057 0.1142 0.0070 3

6+5 0.0057 0.1142 0.0070 3

6+6 0.0057 0.1142 0.0070 3

Inputs
(CV+CO)

mean max s.d. <0.01*

3+1 0.0058 0.1143 0.0070 0

3+2 0.0057 0.1142 0.0070 0

3+3 0.0058 0.1143 0.0070 0

3+4 0.0057 0.1142 0.0070 0

3+5 0.0057 0.1142 0.0070 0

3+6 0.0057 0.1142 0.0070 0

4+1 0.0058 0.1142 0.0070 1

4+2 0.0057 0.1142 0.0070 1

4+3 0.0058 0.1143 0.0070 1

4+4 0.0057 0.1142 0.0070 1

4+5 0.0057 0.1142 0.0070 1

4+6 0.0057 0.1142 0.0070 1

5+1 0.0057 0.1143 0.0070 2

5+2 0.0057 0.1143 0.0070 2

5+3 0.0058 0.1143 0.0070 2

5+4 0.0057 0.1142 0.0070 2

5+5 0.0057 0.1142 0.0070 2

5+6 0.0057 0.1142 0.0070 2

6+1 0.0057 0.1143 0.0070 3

6+2 0.0057 0.1143 0.0070 3

6+3 0.0057 0.1143 0.0070 3

6+4 0.0057 0.1143 0.0070 3

6+5 0.0057 0.1143 0.0070 3

6+6 0.0057 0.1143 0.0070 3

Table A4.9 additional CO input Table A4.10 additional H2 input

*The pattern (and number) of potentially extraneous inputs was identical for both parameters in each 

case.

Table A4.9 shows the results for a linear network investigation using an additional input 

parameter o f percentage CO content, and without pre-processing, whilst Table A4.10 shows 

an identical investigation for Hydrogen. The network was allowed in both cases to expand 

from 3 inputs to a maximum of 6, with those for CO and H2 increasing from 1 to 6.

The training data set for that value used decimal fractions -  i.e. values less than 1 for the 

percentage values, hence no pre-processing was required The results are comparable with 

those obtained with a single CV input parameter and suggest that tracking additional 

parameters has negligible effect on accuracy.
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A4.2 Predicting specific gravity (s.g.)

All data was in the range < 1.0; thus no pre-processing was required

inputs mean max s.d. <0.01
3 0.0096 0.1948 0.0117 0

4 0.0096 0.1948 0.0117 0

5 0.0096 0.1948 0.0117 0

*6 0.0096 0.1947 0.0117 0

7 0.0096 0.1947 0.0117 0

8 0.0096 0.1947 0.0117 1

9 0.0096 0.1948 0.0117 1

10 0.0096 0.1948 0.0117 1

11 0.0096 0.1949 0.0117 1

12 0.0096 0.1948 0.0117 1

13 0.0096 0.1949 0.0117 1

14 0.0096 0.1949 0.0117 1

15 0.0096 0.1949 0.0117 1

16 0.0096 0.1949 0.0117 1

17 0.0096 0.1950 0.0117 2

18 0.0096 0.1950 0.0117 2

19 0.0096 0.1950 0.0117 3

20 0.0096 0.1950 0.0117 4

Inputs mean max s.d. <0.01
3 0.0061 0.1806 0.0082 0

4 0.0061 0.1806 0.0082 1

5 0.0061 0.1806 0.0082 0

6 0.0061 0.1806 0.0082 0

*7 0.0061 0.1806 0.0081 1

8 0.0061 0.1806 0.0082 2

9 0.0061 0.1806 0.0082 2

10 0.0061 0.1806 0.0081 0

11 0.0061 0.1806 0.0082 2

12 0.0061 0.1806 0.0081 2

13 0.0061 0.1806 0.0081 3

14 0.0061 0.1806 0.0082 2

15 0.0061 0.1807 0.0082 3

16 0.0061 0.1807 0.0082 3

17 0.0061 0.1807 0.0081 2

18 0.0061 0.1807 0.0081 3

19 0.0061 0.1807 0.0081 5

20 0.0061 0.1807 0.0081 5

Table 6.11 1-interval ahead Table A4.12 2-intervals ahead

p.p. max error range (%)
1 interval ahead 2 intervals ahead

none 1 8 .0 6 -1 8 .0 7 1 9 .4 7 -1 9 .5 0

Table A4.13 -  maximum error ranges

p.p 1 interval ahead 2  intervals ahead
struct mean max s.d. <0.01 struct Mean max s.d. <0.01

None 7+K** 0.61 18.06 0.81 1 6+K 0.96 19.47 1.17 0
** selected for lower s.d.

Table A4.14 -  possible network solutions

Note that there are fewer potentially extraneous inputs in the results for two intervals ahead 

solutions than those for a single interval ahead.
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A4.3 Predicting air/fuel ratio (a/f) 
A4.3.1 I sampling interval ahead

Inputs mean max s.d. <0.01
3 0.0097 0.1308 0.0111 0

*4 0.0097 0.1307 0.0111 1

5 0.0097 0.1309 0.0111 0

6 0.0097 0.1308 0.01,1 1

7 0.0097 0.1309 0.011 0

8 0.0097 0.1309 0.011 2

9 0.0097 0.1311 0.011 1

10 0.0097 0.1314 0.011 2

11 0.0097 0.1314 0.011 3

12 0.0097 0.1314 0.011 4

13 0.0097 0.1314 0.011 3

14 0.0097 0.1314 0.011 4

15 0.0097 0.1315 0.011 5

16 0.0097 0.1314 0.011 4

17 0.0097 0.1314 0.011 5

18 0.0097 0.1314 0.011 6

19 0.0097 0.1314 0.011 7

20 0.0097 0.1314 0.011 6

Table A4.15 unprocessed

A4.3.2 2 sampling intervals ahead

inputs mean max s.d. <0.01
3 0.016 0.1891 0.0167 0

4 0.016 0.1893 0.0167 0

*5 0.016 0.1888 0.0167 0

6 0.016 0.1890 0.0167 1

7 0.016 0.1890 0.0167 0

8 0.016 0.1894 0.0167 2

9 0.016 0.1897 0.0167 2

10 0.016 0.1899 0.0167 4

11 0.016 0.1900 0.0167 4

12 0.016 0.1900 0.0167 5

13 0.016 0.1900 0.0167 6

14 0.016 0.1900 0.0167 8

15 0.016 0.1899 0.0167 9

16 0.016 0.1899 0.0167 7

17 0.016 0.1899 0.0167 7

18 0.016 0.1899 0.0167 7

19 0.016 0.1899 0.0167 8

20 0.016 0.1899 0.0167 8

Table A4.17 unprocessed

inputs mean max s.d. <0.01
3 0.0097 0.1308 0.0111 0

*4 0.1307 0.0111 1

5 0.0097 0.1309 0.0111 0

6 0.0097 0.1308 0.0110 1

7 0.0097 0.1309 0.0110 0

8 0.0097 0.1309 0.0110 2

9 0.0097 0.1311 0.0110 1

10 0.0097 0.1314 0.0110 2

11 0.0097 0.1314 0.0110 3

12 0.0097 0.1314 0.0110 4

13 0.0097 0.1314 0.0110 3

14 0.0097 0.1315 0.0110 7

15 0.0097 0.1315 0.0110 5

16 0.0097 0.1314 0.0110 4

17 0.0097 0.1314 0.0110 5

18 0.0097 0.1314 0.0110 6

19 0.0097 0.1314 0.0110 7

20 0.0097 0.1314 0.0110 6

Table A 4.16‘-f 100’

inputs mean max s.d. <0.01
3 0.016 0.1891 0.0167 0

4 0.016 0.1893 0.0167 0

*5 0.016 0.1888 0.0167 0

6 0.016 0.1890 0.0167 1

7 0.016 0.1890 0.0167 0

8 0.016 0.1894 0.0167 2

9 0.016 0.1897 0.0167 2

10 0.016 0.1899 0.0167 4

11 0.016 0.1900 0.0167 4

12 0.016 0.1900 0.0167 5

13 0.016 0.1899 0.0167 1

14 0.016 0.1900 0.0167 8

15 0.016 0.1899 0.0167 9

16 0.016 0.1899 0.0167 7

17 0.016 0.1899 0.0167 7

18 0.016 0.1899 0.0167 7

19 0.016 0.1899 0.0167 9

20 0.016 0.1899 0.0167 8

Table A4.18 V 100’
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The two methods o f pre-processing produced near identical results, which are summarised in 

the tables below.

max error range (%)
1 interval ahead 2  intervals ahead

1 3 .07 8 -1 3 .1 4 1 8 .8 8 -1 9 .0 0

Table A4.19 -  maximum error ranges

1 interval ahead 2  intervals ahead
Struct mean max s.d. <0.01 struct mean max s.d. <0.01

4+K 0.97 13.07 1.11 1 5+K 1.60 18.88 1.67 0
** selected for lower s.d.

Table A4.20 -  possible network solutions 

O f note is the steady increase in the number o f potentially extraneous inputs for networks 

where the number o f inputs exceeds seven.

A4.4 Predicting Wobbe indices 
A 4.4.11 sampling interval ahead

inputs Mean max s.d. <0.01
3 0.0088 0.1258 0.0095 0

4 0.0088 0.1252 0.0095 0

5 0.0088 0.1250 0.0095 0

6 0.0087 0.1246 0.0095 2

7 0.0087 0.1220 0.0095 0

8 0.0087 0.1222 0.0095 0

9 0.0087 0.1218 0.0095 0

10 0.0087 0.1211 0.0095 0

11 0.0087 0.1205 0.0095 1

12 0.0087 0.1213 0.0095 2

13 0.0087 0.1208 0.0095 1

14 0.0087 0.1208 0.0095 3

15 0.0087 0.1204 0.0095 3

16 0.0087 0.1204 0.0095 2

17 0.0087 0.1208 0.0095 3

*18 0.0087 0.1187 0.0095 3

19 0.0087 0.1191 0.0095 3

20 0.0087 0.1197 0.0095 4

Table A4.21 unprocessed

inputs mean max s.d. <0.01
3 0.0088 0.1258 0.0095 0

4 0.0088 0.1252 0.0095 0

5 0.0088 0.1250 0.0095 0

6 0.0087 0.1246 0.0095 2

7 0.0087 0.1220 0.0095 0

8 0.0087 0.1222 0.0095 0

9 0.0087 0.1218 0.0095 0

10 0.0087 0.1211 0.0095 0

11 0.0087 0.1205 0.0095 1

12 0.0087 0.1213 0.0095 2

13 0.0087 0.1208 0.0095 1

14 0.0087 0.1208 0.0095 2

15 0.0087 0.1204 0.0095 3

16 0.0087 0.1204 0.0095 2

17 0.0087 0.1208 0.0095 3

*18 0.0087 0.1187 0.0095 3

19 0.0087 0.1191 0.0095 3

20 0.0087 0.1197 0.0095 ■4

Table A4.22 ‘+ 100’
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A4.4.2 2 sampling intervals ahead

inputs m e a n max s.d. <0.01
3 0.0138 0.1450 0.0139 0

4 0.0137 0.1404 0.0139 0

5 0.0137 0.1393 0.0139 0

6 0.0136 0.1419 0.0139 0

7 0.0136 0.1415 0.0139 2

8 0.0136 0.1414 0.0139 3

9 0.0136 0.1413 0.0139 4

10 0.0135 0.1403 0.0139 3

*11 0.0135 0.1394 0.0139 4

12 0.0135 .0.1395 0.0139 5

13 0.0135 0.1402 0.0139 4

14 0.0135 0.1404 0.0139 5

15 0.0135 0.1407 0.0139 7

16 0.0135 0.1413 0.0139 4

17 0.0135 0.1443 0.0139 7

18 0.0135 0.1459 0.0139 7

19 0.0135 0.1462 0.0139 6

20 0.0135 0.1463 0.0139 6

Inputs mean max s.d. <0.01
3 0.0138 0.1450 0.0139 0

4 0.0137 0.1404 0.0139 0

5 0.0137 0.1393 0.0139 0

6 0.0136 0.1419 0.0139 0

7 0.0136 0.1415 0.0139 2

8 0.0136 0.1414 0.0139 3

9 0.0136 0.1413 0.0139 4

10 0.0135 0.1403 0.0139 3

*11 0.0135 0.1393 0.0139 4

12 0.0135 0.1395 0.0139 5

13 0.0135 0.1402 0.0139 4

14 0.0135 0.1404 0.0139 5

15 0.0135 0.1407 0.0139 6

16 0.0135 0.1413 0.0139 4

17 0.0135 0.1443 0.0139 7

18 0.0135 0.1459 0.0139 7

19 0.0135 0.1462 0.0139 6

20 0.0135 0.1463 0.0139 6

Table A4.23 unprocessed Table A4.24 100’

Again the two methods o f pre-processing produced near identical results, which are 

summarised in the tables below.

max error range (%)
1 interval ahead 2 intervals ahead

1 1 .8 7 -1 2 .5 8 1 3 .9 3 -1 4 .6 3

Table A4.25 -  maximum error ranges

1 interval ahead 2  intervals ahead
Struct mean max s.d. <0.01 struct mean max s.d. <0.01

18+K 0.87 11.87 0.95 3 11+K 1.35 13.93 1.39 4

Table A4.26 -  possible network solutions

Again there is a steady increase in the number o f potentially extraneous inputs for networks 

where the number o f inputs exceeds seven.
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A 5 Dawes Lane Coke Ovens 

A5.1 Predicting CV
A5.1.1 Predicting one interval ahead -  linear networks

inputs mean max s.d. <0.01
3 0.003 0.0393 0.0034 0

*4 0.0029 0.0391 0.0034 0

5 0.0029 0.0398 0.0034 0

6 0.0028 0.0401 0.0031 0

7 0.0028 0.0407 0.0032 0

8 0.0027 0.0411 0.0031 0

9 0.0027 0.041 0.0031 0

10 0.0027 0.0414 0.0031 0

11 0.0027 0.0414 0.0032 1

12 0.0027 0.0415 0.0032 0

13 0.0027 0.0413 0.0032 0

14 0.0027 0.0411 0.0032 1

15 0.0027 0.041 0.0032 0

16 0.0027 0.041 0.0032 1

17 0.0027 0.041 0.0032 0

18 0.0027 0.041 0.0032 0

19 0.0027 0.041 0.0032 0

20 0.0027 0.0411 0.0032 1

Table A5.1 unprocessed data

inputs mean max s.d. <0.01

3 0.0016 0.0208 0.0018 0

*4 0.0015 0.0207 0.0016 0

5 0.0015 0.0209 0.0016 0

6 0.0014 0.021 0.0016 0

7 0.0014 0.021 0.0016 0

8 0.0014 0.0211 0.0016 0

9 0.0014 0.0212 0.0016 1

10 0.0014 0.0212 0.0016 0

11 0.0014 0.0211 0.0016 1

12 0.0014 0.021 0.0016 1

13 0.0014 0.0209 0.0016 0

14 0.0014 0.0209 0.0016 1

15 0.0014 0.0209 0.0016 1

16 0.0014 0.0209 0.0016 2

17 0.0014 0.0209 0.0016 1

18 0.0014 0.021 0.0016 0

19 0.0014 0.021 0.0016 2

20 0.0014 0.0209 0.0016 1

Table A 5.3 'm = 2’

Inputs mean max s.d. <0.01
3 0.0030 0.0393 0.0034 0

*4 0.0029 0.0391 0.0034 0

5 0.0029 0.0398 0.0034 0

6 0.0028 0.0401 0.0031 0

7 0.0028 0.0407 0.0032 1

8 0.0027 0.0411 0.0031 0

9 0.0027 0.041 0.0031 0

10 0.0027 0.0414 0.0031 0

11 0.0027 0.0414 0.0032 1

12 0.0027 0.0415 0.0032 0

13 0.0027 0.0413 0.0032 0

14 0.0027 0.0412 0.0031 0

15 0.0027 0.0411 0.0032 1

16 0.0027 0.041 0.0032 1

17 0.0027 0.041 0.0032 0

18 0.0027 0.041 0.0032 0

19 0.0027 0.041 0.0032 0

20 0.0027 0.0411 0.0032 1

Table A5.2 division by 100

inputs mean max s.d.
*3 0.0044 0.0424 0.0047

4 0.0043 0.0427 0.0046

5 0.0043 0.0428 0.0046

6 0.0044 0.0431 0.0045

7 0.0043 0.0429 0.0045

8 0.0044 0.0431 0.0045

9 0.0044 0.0432 0.0045

10 0.0044 0.0431 0.0045

11 0.0044 0.0432 0.0045

12 0.0044 0.0431 0.0045

13 0.0044 0.0431 0.0045

14 0.0044 0.043 0.0045

15 0.0044 0.0431 0.0045

16 0.0044 0.043 0.0045

17 0.0045 • 0.043 0.0045

18 0.0045 0.043 0.0045

19 0.0044 0.043 0.0045

20 0.0045 0.043 0.0045

Table A5.3a -  after post-processing
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The maximum error ranges for each pre-processing method are shown in 7.1.2.4.

p .p . max error range (%)
none 3.91 - 4 .1 5

-5-100 3.91 - 4 .1 5

m -2 2 .0 7 -2 .1 2

4.24 -  4.32**

** a fter post-processing  

Tab le  A 5 .4

Solutions which demonstrate low maximum error are indicated with an asterisk and are 

summarised below in Table A5.1.2.5 (errors are expressed as percentages):

p .p struct mean max s.d. <0.01
none 4+K 0.30 3.93 0.34 0

+ 100 4+K 0.29 3.91 0.34 0

m = 2 4+K 0.15 2.07 0.16 0

m = 2** 3+K 0.44 4.24 0.47 0

**after post-processing
Tab le  A 5 .5

There is little difference between the network trained without out pre-processing and that 

using ‘+-100’ data. However their maximum error levels are now approaching that o f the ‘m 

= 2 ’ solution, although the latter displays lower accuracy in terms o f mean absolute error and 

standard deviation.

A 5 .1 .2  P red ic tin g  o n e  in terva l a h e a d  (n on -lin ear n e tw o rk s)

There is little in the above tables to give adequate information on the number o f inputs to be 

used; the author is sceptical o f the 3-4 input results in that they infer that only knowledge o f 

the past 3 minutes is sufficient to produce a an accurate prediction over a longer operating 

period. However, further examination o f the above tables shows that whilst maximum error 

values rise after the low-input network solutions there is a fall in error levels for 14 -  19 input 

networks. Accordingly it was decided to seek solutions using both 3 - 6  input networks and 

those with 1 4 -1 9  inputs. In each case the hidden layer would be allowed to grow from 3 to 

20 cells. However stability problems with the software lead to a revision o f strategy: for the 

smaller networks it was established that as the number o f cells approached the number o f 

inputs ‘singular matrix’ warnings were encountered and the test had to be terminated. For the 

larger networks the number o f cells had to be limited to some 4 to 6 depending on the number 

o f inputs; it was possible to increase the number o f cells by decreasing the number o f inputs.
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Networks with 3 to 6 inputs:

inputs cells mean max s.d.
*5 2 0.0124 0.0329 0.0089

5 4 0.0124 0.0329 0.0089

5 3 0.0121 0.0333 0.0087

4 4 0.0028 0.0366 0.0035

4 3 0.0029 0.037 0.0033

4 5 0.0028 0.0371 0.0035

3 4 0.0029 0.0375 0.0033

3 3 0.003 0.0386 0.0034

3 5 0.0029 0.039 0.0033

4 2 0.0029 0.0391 0.0034

3 2 0.003 0.0394 0.0034

6 5 0.0025 0.0397 0.003

6 2 0.0028 0.04 0.0031

6 3 0.0023 0.0407 0.003

6 4 0.0028 0.0407 0.0032

5 5 0.0028 0.0431 0.0039

Table A5.6 unprocessed data -  log sigmoid 

(No. of cells restricted to 5)

inputs cells mean max std
*4 6 0.0029 0.0359 0.0033

3 4 0.0029 0.0362 0.0032

3 3 0.0029 0.0373 0.0034

3 5 0.0029 0.0373 0.0035

4 4 0.0029 0.0374 0.0035

*6 2 0.0028 0.0375 0.0037

5 5 0.0026 0.0376 0.0032

5 3 0.0029 0.0377 0.0035

4 2 0.0029 0.038 0.0034

4 5 0.0028 0.0381 0.0034

6 5 0.0026 0.0384 0.0033

3 2 0.003 0.0387 0.0034

6 6 0.0026 0.0391 0.0032

6 4 0.0025 0.0393 0.0036

4 3 0.003 0.0393 0.0034

5 2 0.0029 0.0395 0.0033

5 4 0.0056 0.0399 0.0046

6 3 0.0041 0.041 0.004

5 6 0.0029 0.0453 0.0038

3 6 0.0032 0.0759 0.0051

Table A5.8 ‘+100’ -  log sigmoid 

(No. of cells restricted to 6)

inputs cells mean max s.d.
*4 2 0.0029 0.0391 0.0034

5 2 0.0028 0.0394 0.0035

3 3 0.0031 0.0394 0.0034

5 3 0.0029 0.0396 0.0034

4 3 0.003 0.0396 0.0035

3 2 0.003 0.0399 0.0035

Table A5.7 unprocessed data -  tanh sigmoid. 

(No. of cells restricted to 3)

inputs cells mean max std
*4 4 0.0029 0.0362 0.0037

4 5 0.0027 0.0368 0.0035

3 5 0.0029 0.0374 0.0035

5 5 0.0027 0.0378 0.0032

5 6 0.0027 0.0378 0.0034

3 3 0.003 0.0379 0.0033

3 6 0.0031 0.0383 0.0034

4 6 0.003 0.0384 0.0034

4 3 0.0041 0.0384 0.0039

5 4 0.0029 0.0387 0.0034

*3 2 0.0029 0.0389 0.0037

4 2 0.003 0.0389 0.0034

6 5 0.0025 0.0391 0.0033

6 3 0.0029 0.0391 0.0031

6 2 0.0029 0.0392 0.0031

6 4 0.0024 0.0398 0.0037

5 2 0.0029 0.0402 0.0032

5 3 0.0028 0.0422 0.0039

3 4 0.0032 0.0495 0.0039

6 6 0.0031 0.067 0.0043

Table A5.9 V1 00’ -  tanh sigmoid 

(No. of cells restricted to 6)

120



inputs cells mean max std
4 4 0.0011 0.0195 0.0015

3 3 0.0012 0.0195 0.0016

6 5 0.0012 0.0195 0.0014

3 4 0.0014 0.0195 0.0017

3 5 0.0013 0.0198 0.0016

3 2 0.0014 0.02 0.0017

5 5 0.0014 0.0201 0.0017

5 4 0.0012 0.0203 0.0014

4 3 0.0014 0.0203 0.0015

4 5 0.0014 0.0203 0.0016

5 3 0.0015 0.0203 0.0017

4 2 0.0016 0.021 0.0021

5 2 0.0016 0.0248 0.0021

6 4 0.0016 0.0277 0.0021

6 3 0.0014 0.0447 0.0025

6 2 0.0018 0.0679 0.0049

Table A5.10 -  ‘m = 2’ -  log sigmoid 
(No. of cells restricted to 5)

inputs cells mean max std
5 5 0.0011 0.0196 0.0015

6 4 0.0012 0.0198 0.0015

4 3 0.0016 0.0201 0.002

3 5 0.0014 0.0202 0.0017

5 4 0.0011 0.0205 0.0016

6 2 0.0012 0.0206 0.0015

4 2 0.0013 0.0206 0.0016

4 4 0.0014 0.0272 0.0023

4 5 0.0013 0.0279 0.0022

5 2 0.0013 0.0347 0.0026

3 2 0.0015 0.0551 0.0029

6 5 0.0015 0.0977 0.006

3 4 0.0017 0.1163 0.0053

5 3 0.0015 0.122 0.0056

3 3 0.0021 0.1516 0.0082

6 3 0.0017 0.1649 0.0073

Table A5.11 -  ‘m = 2’ -  tanh sigmoid 
(No. of cells restricted to 5)

inputs cells mean max std
*4 4 0.0034 0.0414 0.0039

6 5 0.0034 0.0414 0.0038

3 3 0.0035 0.0414 0.004

3 4 0.0036 0.0414 0.0041

3 5 0.0035 0.0418 0.0039

*3 2 0.0036 0.042 0.0041

5 5 0.0035 0.0421 0.0039

4 2 0.0038 0.0421 0.0043

4 5 0.0034 0.0422 0.004

4 3 0.0035 0.0422 0.0039

5 2 0.004 0.0422 0.0046

5 4 0.0034 0.0423 0.0038

5 3 0.0037 0.0423 0.0041

6 4 0.0038 0.0426 0.0042

6 3 0.0036 0.0459 0.0043

6 2 0.0041 0.069 0.0061

Table A 5.10a- post-processed

inputs cells mean max std
*5 5 0.0033 0.0415 0.0037

6 4 0.0034 0.0417 0.0038

4 4 0.0036 0.0417 0.0045

*5 2 0.0035 0.042 0.0044

3 5 0.0037 0.0421 0.0042

4 3 0.004 0.0421 0.0045

5 4 0.0033 0.0424 0.0039

4 2 0.0034 0.0425 0.0039

6 2 0.0033 0.0426 0.0038

4 5 0.0035 0.0481 0.0045

3 2 0.0038 0.0563 0.0048

3 4 0.0038 0.0989 0.0059

6 5 0.0037 0.1192 0.0075

5 3 0.0037 0.1231 0.0065

3 3 0.0044 0.148 0.0086

6 3 0.0039 0.1662 0.0081

Table A 5.11a- post-processed
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Networks with 14 to 17 inputs:

inputs cells mean max std
*17 3 0.0124 0.033 0.0091

14 3 0.0125 0.0333 0.0091

*14 2 0.0099 0.0374 0.0072

15 5 0.0026 0.0387 0.0033

14 5 0.0026 0.0389 0.0032

16 2 0.0027 0.039 0.0032

17 5 0.0027 0.0393 0.0035

16 5 0.0027 0.0394 0.0031

14 4 0.0028 0.0398 0.0032

15 3 0.0027 0.0402 0.0035

16 4 0.0029 0.0407 0.0035

17 4 0.0027 0.0408 0.0032

17 2 0.0027 0.041 0.0032

15 4 0.0029 0.0411 0.0033

16 3 0.0029 0.0419 0.0032

15 2 0.0033 0.0549 0.0056

Table A5.12 -  unprocessed -  log sigmoid

inputs cells mean max std
*6 2 0.0102 0.0328 0.0072

17 4 0.0027 0.0382 0.0031

16 5 0.0027 0.0384 0.004

15 4 0.0028 0.0384 0.0036

14 2 0.0028 0.0385 0.0037

17 5 0.0027 0.0388 0.0032

17 2 0.0027 0.0391 0.0034

14 3 0.0026 0.0392 0.0039

16 3 0.0027 0.0398 0.0033

15 5 0.0045 0.04 0.0041

14 5 0.0032 0.0402 0.0034

15 2 0.0028 0.0405 0.0035

16 4 0.0028 0.0405 0.0032

14 4 0.0026 0.0406 0.0036

15 3 0.0028 0.041 0.0032

17 3 0.0068 0.0451 0.0056

Table A5.1 4 -  ‘*100’ -  log sigmoid

inputs cells mean max std
*17 4 0.0026 0.0388 0.0033

16 5 0.0028 0.0392 0.0035

*17 2 0.0028 0.0392 0.0032

17 3 0.0026 0.0394 0.0035

16 3 0.0025 0.0396 0.0033

14 3 0.0028 0.0396 0.0032

15 4 0.0028 0.0398 0.0034

14 5 0.0026 0.04 0.0035

15 3 0.0027 0.0404 0.0032

14 2 0.0027 0.0406 0.0032

16 2 0.0027 0.0407 0.0032

14 4 0.0027 0.0408 0.0031

15 2 0.0027 0.0408 0.0032

17 5 0.0028 0.0409 0.0033

16 4 0.0028 0.0416 0.0032

15 5 0.0059 0.3563 0.0218

Table A5.13 -  unprocessed -  tanh sigmoid

inputs cells mean max std
*5 3 0.0028 0.0383 0.0036

16 3 0.0027 0.0385 0.0032

16 4 0.0035 0.0386 0.0034

17 4 0.0025 0.0388 0.0036

14 5 0.0028 0.0394 0.0032

17 5 0.0026 0.0395 0.0036

*6 2 0.0028 0.0395 0.0035

15 5 0.0025 0.0397 0.0037

17 3 0.0027 0.0397 0.0033

14 2 0.0026 0.0399 0.0032

14 4 0.0027 0.04 0.0033

15 2 0.0027 0.0403 0.0031

14 3 0.0027 0.0405 0.0034

15 4 0.0025 0.0409 0.0037

17 2 0.0028 0.041 0.0032

16 5 0.005 0.0475 0.0051

T ableA 5.15- ‘-*-100’ -tanh  sigmoid
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inputs cells mean max std
16 4 0.0016 0.0195 0.0016

14 4 0.0013 0.0196 0.0017

15 3 0.0012 0.0199 0.0015

14 2 0.0012 0.02 0.0015

14 5 0.0016 0.0201 0.0018

17 2 0.0016 0.0202 0.0019

16 5 0.0013 0.0203 0.0017

16 2 0.0016 0.0203 0.0019

14 3 0.0017 0.0203 0.0018

15 4 0.0016 0.0204 0.0019

15 2 0.0012 0.0205 0.0016

17 5 0.0015 0.0207 0.0017

17 3 . 0.0016 0.0207 0.0019

17 4 0.0017 0.0207 0.0018

16 3 0.0017 0.0212 0.0018

15 5 0.0016 0.0215 0.0017

inputs cells mean max std
*16 4 0.0038 0.0415 0.004

14 4 0.0035 0.0416 0.004

15 3 0.0034 0.0418 0.0038

14 2 0.0035 0.0419 0.0039

14 5 0.0039 0.0421 0.0042

16 5 0.0035 0.0422 0.0039

14 3 0.0041 0.0422 0.0044

*16 2 0.0041 0.0422 0.0045

17 2 0.0041 0.0422 0.0045

15 4 0.0041 0.0423 0.0044

15 2 0.0034 0.0424 0.0039

17 4 0.0041 0.0426 0.0044

17 5 0.0037 0.0427 0.004

17 3 0.0041 0.0427 0.0044

16 3 0.0041 0.0432 0.0044

15 5 0.0039 0.0434 0.0043

Table A5.16 -  ‘m = 2’ -  log sigmoid Table A 5.16a- post-processed

inputs cells mean max std
17 3 0.0012 0.0189 0.0014

15 5 0.0016 0.0196 0.0017

17 5 0.0015 0.02 0.0018

15 2 0.0017 0.0202 0.0018

16 3 0.0015 0.0203 0.0016

16 5 0.0015 0.0203 0.0018

17 2 0.0015 0.0203 0.0018

16 2 0.0014 0.0204 0.0016

14 5 0.0016 0.0205 0.0019

17 4 0.0014 0.0206 0.0018

14 4 0.0014 0.0207 0.0017

16 4 0.0016 0.0209 0.0017

15 4 0.0016 0.0212 0.0018

15 3 0.0014 0.0378 0.0028

14 2 0.0016 0.0454 0.0027

14 3 0.0015 0.0482 0.0026

inputs cells mean max std
*17 3 0.0034 0.0408 0.0038

15 5 0.0038 0.0416 0.004

17 5 0.0037 0.042 0.0039

16 5 0.0038 0.0422 0.0041

*14 2 0.0039 0.0422 0.0045

15 2 0.0041 0.0422 0.0044

16 2 0.0036 0.0423 0.0039

16 3 0.0037 0.0423 0.004

17 2 0.0039 0.0423 0.0043

15 3 0.0037 0.0424 0.0045

17 4 0.0037 0.0425 0.0041

14 5 0.004 0.0425 0.0044

14 4 0.0037 0.0426 0.004

16 4 0.004 0.0428 0.0043

15 4 0.0039 0.0432 0.0043

14 3 0.0037 0.0494 0.0044

Table A5.17 ~ ‘m = 2’ tanh sigmoid Table A 5.17a- post-processed

p.p. function max error range (%)
low input networks high input networks

none log 3 .29 -4 .31 3 .3 3 -5 .4 9
tanh 3.91 -3 .9 9 3 .8 8 -3 5 .6 3

-100 log 3 .5 9 -3 .9 9 3 .2 8 -4 .5 1
tanh 3.62 -  6.70 3 .8 3 -4 .7 5

m = 2 log 1 .9 5 -6 .7 9 (4 .1 4 -6 .9 0 ) 1 .9 5 -2 .1 5  (4 .15 -4 .34 )
tanh 1 .9 6 -1 6 .4 9 (4 .1 5 -1 6 .6 2 ) 1 .8 9 -4 .8 2 (4 .0 8 -4 .9 4 )

Table A5.18
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Table A5.18 summarises the above results in terms o f maximum error ranges, while Table 

A5.19 shows potential network solutions.

p/p struct Function mean max s.d.
none 5+2+K Log 1.24 3.29 0.89

17+3+K 1.24 3.30 0.91

14+2+K 0.99 3.74 0.72

4+2+K Tanh 0.29 3.91 0.34

17+4+K 0.26 3.88 0.33

17+2+K 0.28 3.92 0.32

-10 0 4+6+K log 0.29 3.59 0.33

6+2+K 0.28 3.75 0.37

16+2+K 1.02 3.28 0.72

4+4+K tanh 0.29 3.62 0.37

3+2+K 0.29 3.89 0.37

15+3+K 0.28 3.83 0.36

16+2+K 0.28 3.95 0.35

m = 2 4+4+K log **0.34 **4.14 **0.39

3+2+K **0.36 **4.20 **0.41

16+4+K **0.38 **4.15 **0.40

14+2+K **0.35 **4.19 **0.39

5+5+K tanh **0.33 **4.15 **0.37

5+2+K **0.35 **4.20 **0.44

17+3+K **0.34 **4.08 **0.38

14+2+K **0.39 **4.22 **0.45

* * a f t e r  p o s t - p r o c e s s i n g

Tab le  A 5 .19

Examination o f Table A5.18 shows that the tanh sigmoid based solutions with the higher 

number o f inputs exhibit lower maximum error ranges than those with fewer inputs. Whilst 

the ‘m = 2 ’ networks are consistently above 4% for maximum error values, in three cases the 

upper limit is lower than those o f other network types, although the post-processed result for 

the tanh solution with few inputs has an extremely high upper limit o f 16.62%

Table A5.19 suggests a relationship between maximum error, mean error and standard 

deviation; as the former rises the other two parameter values fall. The solution with the least 

maximum error was achieved by a log sigmoid network with 16 inputs and 2 hidden cells. 

However the second highest accuracy was achieved by a 5 input (2 hidden cells) log sigmoid 

network using data without pre-processing, and which would therefore be less demanding in 

terms o f computational requirements.
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A5.1.3 Predicting two intervals ahead (linear networks)

Inputs mean max s.d. <0.01
3 0.0053 0.0412 0.0053 0

*4 0.0053 0.0409 0.0052 0

5 0.0052 0.0415 0.0049 0

6 0.0049 0.0428 0.0046 0

7 0.0047 0.0435 0.0047 0

8 0.0046 0.0431 0.0046 0

9 0.0046 0.0431 0.0046 1

10 0.0046 0.0434 0.0046 0

11 0.0046 0.0435 0.0046 0

12 0.0046 0.0432 0.0046 1

13 0.0046 0.0427 0.0047 0

14 0.0046 0.0428 0.0047 0

15 0.0046 0.0427 0.0047 0

16 0.0046 0.0427 0.0047 0

17 0.0046 0.0427 0.0047 0

18 0.0046 0.0427 0.0047 1

19 0.0046 0.0431 0.0047 0

20 0.0046 0.0432 0.0047 0

Table A5.20 -  unprocessed

inputs mean max s.d. <0.01
3 0.0016 0.0208 0.0018 0

*4 0.0015 0.0207 0.0016 0

5 0.0015 0.0209 0.0016 0

6 0.0014 0.021 0.0016 0

7 0.0014 0.021 0.0016 0

8 0.0014 0.0211 0.0016 0

9 0.0014 0.0212 0.0016 1

10 0.0014 0.0212 0.0016 0

11 0.0014 0.0211 0.0016 1

12 0.0014 0.021 0.0016 0

13 0.0014 0.0209 0.0016 0

14 0.0014 0.0209 0.0016 1

15 0.0014 0.0209 0.0016 2

16 0.0014 0.0209 0.0016 2 .

17 0.0014 0.0209 0.0016 1

18 0.0014 0.021 0.0016 0

19 0.0014 0.021 0.0016 2

20 0.0014 0.0209 0.0016 2

Table A5.22 - ‘m = 2’

inputs mean max s.d. <0.01
3 0.0053 0.0412 0.0053 0

*4 0.0053 0.041 0.0053 0

5 0.0051 0.0416 0.0049 0

6 0.0049 0.043 0.0046 0

7 0.0047 0.0435 0.0047 0

8 0.0046 0.0432 0.0046 1

9 0.0046 0.0431 0.0046 1

10 0.0046 0.0434 0.0046 0

11 0.0046 0.0435 0.0046 0

12 0.0046 0.0432 0.0046 1

13 0.0046 0.0427 0.0046 1

14 0.0045 0.0429 0.0047 2

15 0.0046 0.0427 0.0047 0 .

16 0.0046 0.0427 0.0047 0

17 0.0046 0.0427 0.0047 0

18 0.0046 0.0427 0.0047 2

19 0.0046 0.0429 0.0047 0

20 0.0046 0.0432 0.0047 0

Table A5.21 -  VI00’

inputs mean max s.d.
3 0.0059 0.046 0.0061

*4 0.0057 0.046 0.006

5 0.0056 0.0462 0.0058

6 0.0056 0.0463 0.0057

7 0.0056 0.0462 0.0057

8 0.0056 0.0464 0.0057

9 0.0056 0.0464 0.0057

10 0.0056 0.0465 0.0057

11 0.0056 0.0464 0.0057

12 0.0056 0.0462 0.0057

13 0.0056 0.0461 0.0057

14 0.0056 0.0461 0.0057

15 0.0056 0.0462 0.0057

16 0.0056 0.0461 0.0057

17 0.0056 0.0461 0.0058

18 0.0056 0.0463 0.0058

19 0.0056 0.0462 0.0058

20 0.0057 0.0462 0.0058

Table A5.22a -  post processed
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The maximum error ranges for each pre-processing method are shown in 7.23.

p.p. max error range (%)
none 4 .0 9 -4 .3 5

-10 0 4 .1 0 -4 .3 5

m = 2 2 .0 7 -2 .1 2

4.60 -  4.65**

** after post-processing 

Table A5.23 

Solutions which demonstrate low maximum error are indicated above with an asterisk and are 

summarised below in Table A5.24 (errors are expressed as percentages) :

p.p struct Mean max s.d. <0.01
none 4+K 0.53 4.09 0.53 0

+ 100 4+K 0.53 4.10 0.53 0

m = 2 4+K 0.15 2.07 0.16 0

m = 2** 3+K 0.57 4.60 0.60 0

**after post-processing 
Table A5.24 

All solutions have maximum error ranges greater than 4%; the network trained without pre- 

processed data offers the most accurate solution whilst the *m = 2 ’ network is the least 

accurate.

A5.1.4 Predicting two intervals ahead (non-linear networks)

inputs cells mean max std
*4 2 0.0124 0.0329 0.0089

6 2 0.0124 0.033 0.0089

3 5 0.0101 0.0331 0.0071

4 5 0.0052 0.0352 0.0053

5 3 0.0047 0.0383 0.0047

4 4 0.005 0.0395 0.0052

3 3 0.0051 0.0395 0.0054

6 4 0.0042 0.0398 0.0046

3 4 0.0054 0.0402 0.0052

3 2 0.0054 0.0404 0.0053

6 5 0.0042 0.0406 0.0046

5 2 0.0052 0.0406 0.0049

5 4 0.0046 0.0407 0.0049

6 3 0.0049 0.0422 0.0046

5 5 0.0047 0.0495 0.005

4 3 0.0056 0.1914 0.0096

Table A5.25 -  unprocessed log sigmoid

inputs cells mean max std
*5 2 0.0048 0.0359 0.0048

4 4 0.0052 0.0372 0.0051

3 3 0.005 0.0376 0.0051

5 5 0.0049 0.039 0.0047

5 3 0.0045 0.0393 0.0046

3 4 0.0051 0.0395 0.0052

3 5 0.0051 0.0395 0.0053

6 5 0.0043 0.0399 0.0043

5 4 0.0053 0.0399 0.0049

4 3 0.0054 0.0401 0.0052

3 2 0.0054 0.0404 0.0053

6 4 0.0043 0.0409 0.0049

6 2 0.0049 0.0417 0.0046

6 3 0.0049 0.0417 0.0046

4 5 0.0052 0.0574 0.0056

4 2 0.0107 0.0579 0.0079

Table A5.26 -  unprocessed tanh sigmoid
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Inputs cells mean max std
*5 2 0.0048 0.0356 0.0048

3 3 0.0058 0.0359 0.0053

4 3 0.0053 0.0362 0.0054

5 3 0.0045 0.0367 0.0045

5 5 0.0048 0.0367 0.005

3 5 0.005 0.0369 0.0051

4 4 0.0051 0.0375 0.0051

3 2 0.0052 0.0375 0.0053

3 4 0.0051 0.0381 0.0051

6 5 0.0044 0.0394 0.0046

6 3 0.0042 0.0398 0.0046

4 2 0.0057 0.0399 0.0052

6 2 0.0043 0.0411 0.0049

6 4 0.0047 0.0678 0.0057

4 5 0.0053 0.0803 0.0061

5 4 0.005 0.0825 0.006

Table A 5 .27 - ‘-MOO’ log sigmoid

inputs cells mean Max std
*5 2 0.0048 0.0357 0.0048

4 3 0.0053 0.0361 0.0054

4 5 0.0059 0.0366 0.0054

3 4 0.0053 0.0367 0.005

3 3 0.0055 0.0375 0.0051

3 5 0.0052 0.038 0.0053

3 2 0.005 0.0386 0.0054

4 4 0.0056 0.039 0.0052

6 5 0.0042 0.0396 0.0046

5 5 0.0055 0.0396 0.0051

6 4 0.005 0.0426 0.0049

4 2 0.0094 0.051 0.0073

5 4 0.0047 0.061 0.0056

5 3 0.0075 0.0655 0.0071

6 2 0.0075 0.0697 0.0062

6 3 0.0049 0.1183 0.0078

Table A5.28 -  ‘-r-100’ tanh sigmoid

Inputs cells mean Max std
4 4 0.0013 0.0195 0.0015

3 5 0.0014 0.0197 0.0016

4 5 0.0013 0.0202 0.0015

6 2 0.0016 0.0202 0.0019

6 5 0.0012 0.0203 0.0015

6 3 0.0013 0.0203 0.0015

5 2 0.0016 0.0203 0.0018

5 3 0.0013 0.0204 0.0015

5 5 0.0013 0.0205 0.0015

3 2 0.0016 0.0207 0.0018

4 2 0.0015 0.0236 0.002

5 4 0.0016 0.0251 0.002

3 3 0.0016 0.027 0.0021

3 4 0.0017 0.0625 0.0033

6 4 0.0017 0.0662 0.0034

4 3 0.0025 0.3632 0.018

Table A5.29 -  'm = 2’ log sigmoid

inputs cells mean Max std
*4 4 0.0055 0.0447 0.0057

3 5 0.0057 0.0449 0.0059

4 5 0.0055 0.0454 0.0056

*6 2 0.0057 0.0454 0.0059

5 3 0.0055 0.0456 0.0056

6 3 0.0055 0.0456 0.0056

6 5 0.0055 0.0456 0.0056

4 2 0.0058 0.0456 0.0061

5 2 0.0058 0.0456 0.0059

5 5 0.0055 0.0457 0.0056

3 2 0.006 0.046 0.0061

5 4 0.0059 0.0464 0.0061

3 3 0.0059 0.0483 0.0062

3 4 0.0059 0.0845 0.0068

6 4 0.0057 0.0883 0.0069

4 3 0.0067 0.3914 0.0197

Table A 5.29a- post-processed
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inputs cells mean max std
*6 2 0.0054 0.045 0.0056

5 3 0.0055 0.045 0.0057

6 4 0.0055 0.0451 0.0056

4 2 0.0057 0.0453 0.006

5 5 0.0055 0.0455 0.0057

4 5 0.0057 0.0456 0.006

6 3 0.0055 0.0457 0.0056

3 4 0.0059 0.0458 0.006

5 2 0.0056 0.0459 0.0058

4 3 0.0058 0.0459 0.006

3 5 0.0059 0.046 0.006

3 2 0.006 0.0461 0.0062

6 5 0.0056 0.047 0.0059

4 4 0.0058 0.0713 0.0066

5 4 0.0058 0.0852 0.007

3 3 0.0062 0.16 0.0091

inputs cells mean max std
5 3 0.0016 0.0198 0.0018

6 4 0.0013 0.0199 0.0015

4 2 0.0016 0.0201 0.0017

4 5 0.0015 0.0203 0.0018

6 3 0.0013 0.0205 0.0015

5 2 0.0014 0.0206 0.0016

3 4 0.0016 0.0206 0.0017

4 3 0.0016 0.0206 0.0017

3 5 0.0015 0.0208 0.0018

6 2 0.0015 0.0225 0.0019

6 5 0.0015 0.0258 0.0019

5 5 0.0014 0.0294 0.0019

3 2 0.0016 0.0491 0.0027

4 4 0.0016 0.0761 0.0036

5 4 0.0016 0.0833 0.0047

3 3 0.0019 0.154 0.0069

Table A5.30 -  ‘m = 2 ’ tanh sigmoid Table A5.30a -  post-processed

p.p. function max error range (%)

none log 3 .2 9 -1 9 .1 4
tanh 3 .5 9 -5 .7 9

-100 log 3 .5 6 -8 .2 5
tanh 3 .5 7 -1 1 .8 3

m = 2 log 1 .9 5 -3 6 .3 2  (4 .47-39 .14)
tanh 1 .9 8 -1 5 .4 0 (4 .5 0 -1 6 .0 0 )

Table A5.31

Table A5.31 summarises the above results in terms of maximum error ranges, while table 

A5.32 shows potential solutions.

pre-proc? struct. function Mean max s.d.
none 4+2+K log 1.24 3.29 0.89

5+2+K tanh 0.48 3.59 0.48

- 1 0 0 5+2+K log 0.48 3.56 0.48

5+5+K tanh 0.48 3.57 0.48

CMU£ 4+4+K log **0.55 **4.47 **0.59

6+2+K **0.57 **4.54 **0.59

6+2+K tanh **0.54 **4.50 **0.56

* * a f t e r  p o s t - p r o c e s s i n g

Table A5.32

The upper limits of the maximum error ranges are greatly increased over those o f the 

corresponding linear solutions and over those o f the one sampling interval ahead results. A 

log sigmoid network trained without pre-processing offers the most accurate solution
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although the mean error and standard deviation are nearly twice those o f the other networks. 

Again, as the maximum error is reduced there is a corresponding increase in mean error and 

standard deviation.

A5.2 Investigating CV Prediction with Original 23-sec data 

A5.2.1 One interval ahead (linear networks)

inputs mean max s.d. < 0.01
3 0.001 0.0434 0.0017 0

4 0.0009 0.0436 0.0017 0

5 0.001 0.0439 0.0017 0

6 0.0009 0.0439 0.0017 0

7 0.0009 0.0439 0.0017 0

8 0.0009 0.0438 0.0017 0

9 0.0009 0.0438 0.0017 0

10 0.0009 0.0439 0.0017 0

11 0.001 0.044 0.0017 1

12 0.001 0.044 0.0017 1

13 0.0009 0.044 0.0016 1

14 0.001 0.044 0.0016 1

15 0.001 0.044 0.0017 3

16 0.001 0.044 0.0017 4

17 0.001 0.0439 0.0016 1

18 0.0009 0.0441 0.0016 1

19 0.0009 0.0442 0.0016 1

20 0.0009 0.0442 0.0016 2

Table A5.33 -  unprocessed

inputs mean max s.d. <0.01
3 0.001 0.0434 0.0017 0

4 0.0009 0.0436 0.0017 0

5 0.001 0.0439 0.0017 0

6 0.0009 0.0439 0.0017 0

7 0.0009 0.0439 0.0017 0

8 0.0009 0.0438 0.0017 0

9 0.0009 0.0438 0.0017 0

10 0.0009 0.0439 0.0017 0

11 0.001 0.044 0.0017 1

12 0.001 0.044 0.0017 1

13 0.0009 0.044 0.0016 2

14 0.001 0.044 0.0016 1

15 0.001 0.044 0.0017 3

16 0.001 0.044 0.0017 4

17 0.001 0.0439 0.0016 1

18 0.0009 0.0441 0.0016 1

19 0.0009 0.0441 0.0016 1

20 0.0009 0.0442 0.0016 2

Table A 5 .34 - VI00’
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inputs mean max s.d. <0.01
3 0.0005 0.0219 0.0009 0

4 0.0005 0.0221 0.0008 0

5 0.0005 0.0221 0.0009 0

6 0.0005 0.0221 0.0008 0

7 0.0005 0.022 0.0008 0

8 0.0005 0.022 0.0008 0

9 0.0005 0.022 0.0008 2

10 0.0005 0.0221 0.0008 1

11 0.0005 0.0221 0.0008 2

12 0.0005 0.0221 0.0008 1

13 0.0005 0.0221 0.0008 1

14 0.0005 0.022 0.0008 2

15 0.0005 0.022 0.0008 2

16 0.0005 0.022 0.0008 1

17 0.0005 0.0221 0.0008 1

18 0.0005 0.0221 0.0008 1

19 0.0005 0.0221 0.0008 2

20 0.0005 0.0221 0.0008 3

inputs m e a n max s.d.
3 0.0016 0.0427 0.0019

4 0.0016 0.0429 0.0019

5 0.0016 0.0429 0.0019

6 0.0016 0.0429 0.0019

7 0.0016 0.0428 0.0019

8 0.0016 0.0428 0.0019

9 0.0016 0.0429 0.0019

10 0.0016 0.0429 0.0019

11 0.0016 0.0429 0.0019

12 0.0016 0.0429 0.0019

13 0.0016 0.0429 0.0019

14 0.0016 0.0429 0.0019

15 0.0016 0.0429 0.0019

16 0.0016 0.0428 0.0019

17 0.0015 0.0429 0.0019

18 0.0015 0.0429 0.0019

19 0.0015 0.0429 0.0019

20 0.0015 0.0429 0.0019

Table A 5.35a- post-processed

The maximum error ranges for each pre-processing method are shown in A5.36.

p-p max error range (%)
none 4.34 -  4.42

-100 4.34 -  4.42

m = 2 2 .1 9 -2 .2 1

m = 2 4.27 -  4.29**

** after post-processing 

Table A5.36

Solutions which demonstrate low maximum error are indicated with and asterisk and are 

summarised below in Table A5.37 (errors are expressed as percentages):

p/p struct Mean max s.d. <0.01
none 3+K 0.10 4.34 0.17 0

- 1 0 0 3+K 0.10 4.34 0.17 0

m = 2 3+K 0.05 2.19 0.09 0

m = 2** 3+K 0.16 4.27 0.19 0
**after post-processing

Table A5.37
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A5.2.2 One interval ahead (non-linear)

inputs cells mean max std
3 2 0.001 0.0433 0.0017

4 4 0.0009 0.0434 0.0017

3 5 0.001 0.0434 0.0016

6 4 0.0009 0.0435 0.0016

3 3 0.001 0.0435 0.0017

3 4 0.001 0.0435 0.0017

4 2 0.001 0.0435 0.0017

6 3 0.0009 0.0436 0.0017

4 3 0.001 0.0436 0.0017

5 5 0.0009 0.0437 0.0017

6 2 0.0009 0.0438 0.0017

6 5 0.001 0.0438 0.0017

5 2 0.001 0.0439 0.0017

5 3 0.001 0.0439 0.0017

5 4 0.001 0.0439 0.0017

4 5 0.0009 0.0473 0.002

Table A5.38 -  log sigmoid unprocessed

inputs cells mean max std
6 2 0.0038 0.038 0.0039

5 2 0.003 0.0413 0.0028

3 4 0.0011 0.0429 0.0016

4 3 0.001 0.043 0.0017

3 3 0.0013 0.0431 0.0017

4 4 0.0009 0.0432 0.0016

5 5 0.001 0.0433 0.0016

3 2 0.001 0.0434 0.0016

4 2 0.001 0.0434 0.0017

6 4 0.0009 0.0435 0.0016

6 5 0.001 0.0435 0.0016

4 5 0.0009 0.0436 0.0018

n6 3 0.0009 0.0436 0.0017

5 3 0.0009 0.0437 0.0017

3 5 0.0014 0.0437 0.0017

5 4 0.0009 0.0438 0.0016

Table A5.40 -  VI00’ log sigmoid

inputs cells mean max std
3 2 0.0122 0.0327 0.0087

3 3 0.001 0.0433 0.0017

3 5 0.001 0.0433 0.0017

3 4 0.001 0.0434 0.0016

4 5 0.0009 0.0436 0.0019

6 4 0.0009 0.0436 0.0017

4 2 0.001 0.0436 0.0017

4 4 0.001 0.0436 0.0017

4 3 0.0009 0.0438 0.0016

5 5 0.001 0.0438 0.0019

6 2 0.001 0.0438 0.0017

5 2 0.001 0.0439 0.0017

5 3 0.001 0.0439 0.0017

5 4 0.001 0.044 0.0017

6 5 0.001 0.044 0.002

6 3 0.0009 0.0441 0.0017

Table A5.39 -  tanh sigmoid unprocessed

inputs cells mean max std
6 2 0.0034 0.0375 0.003

5 4 0.0015 0.0406 0.0017

6 4 0.0019 0.0424 0.0023

3 4 0.001 0.0429 0.0017

6 5 0.001 0.0431 0.0017

3 5 0.001 0.0432 0.0017

3 2 0.001 0.0433 0.0017

5 5 0.0009 0.0434 0.0015

6 3 0.0009 0.0434 0.0017

3 3 0.001 0.0434 0.0016

4 2 0.001 0.0434 0.0017

4 3 0.001 0.0436 0.0016

4 4 0.001 0.0436 0.0018

4 5 0.0009 0.0437 0.0016

5 2 0.001 0.0439 0.0017

5 3 0.0037 0.0909 0.0044

Table A5.41 -  VI00’ tanh sigmoid
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inputs cells mean max std
3 5 0.0004 0.0219 0.0007

4 2 0.0004 0.0219 0.0007

4 4 0.0004 0.022 0.0007

4 5 0.0004 0.022 0.0007

6 2 0.0004 0.022 0.0008

6 4 0.0005 0.022 0.0008

5 2 0.0004 0.0221 0.0008

5 3 0.0004 0.0221 0.0007

6 3 0.0004 0.0221 0.0007

5 4 0.0005 0.0221 0.0008

6 5 0.0005 0.0483 0.0016

5 5 0.0005 0.0642 0.0025

4 3 0.001 0.6186 0.0169

3 2 0.0011 0.657 0.0178

3 3 0.0011 0.85 0.023

3 4 0.0059 7.5182 0.2034

Table A5.42 -  ‘m = 2’ log sigmoid

Inputs cells mean max std
3 3 0.0004 0.0219 0.0007

5 2 0.0004 0.0219 0.0008

6 4 0.0004 0.0219 0.0007

3 2 0.0005 €.0219 0.0008

3 5 0.0004 0.022 0.0007

5 5 0.0004 0.022 0.0008

4 3 0.0004 0.0221 0.0007

5 3 0.0004 0.0221 0.0007

5 4 0.0005 0.0221 0.0008

6 3 0.0005 0.0221 0.0008

4 5 0.0004 0.0306 0.0012

6 5 0.0005 0.0331 0.0013

4 4 0.0006 0.1926 0.0054

6 2 0.0012 0.4989 0.0152

3 4 0.0008 0.57 0.0154

4 2 0.0012 0.6749 0.0183

Table A5.43~ ‘m = 2’ tanh sigmoid

inputs cells mean max std
4 2 0.0015 0.0427 0.002

3 5 0.0015 0.0428 0.002

4 4 0.0015 0.0428 0.002

6 2 0.0015 0.0428 0.0019

4 5 0.0015 0.0429 0.0019

5 2 0.0015 0.0429 0.0019

5 3 0.0015 0.0429 0.002

6 3 0.0015 0.0429 0.0019

5 4 0.0016 0.0429 0.0021

6 4 0.0016 0.0429 0.002

6 5 0.0017 0.05 0.0025

5 5 0.0016 0.065 0.003

4 3 0.002 0.6186 0.017

3 2 0.0023 0.6568 0.0179

3 3 0.0022 0.8489 0.023

3 4 0.007 7.5172 0.2035

Table R42a -  post-processed

inputs cells mean max std
3 3 0.0015 0.0427 0.002

5 2 0.0015 0.0427 0.002

6 4 0.0015 0.0427 0.002

3 2 0.0016 0.0427 0.002

3 5 0.0015 0.0428 0.002

4 5 0.0015 0.0428 0.002

5 5 0.0015 0.0429 0.0019

5 4 0.0016 0.0429 0.002

6 3 0.0016 0.0429 0.002

6 5 0.0016 0.0429 0.0024

4 3 0.0015 0.043 0.002

5 3 0.0015 0.043 0.002

4 4 0.0017 0.1931 0.0057

6 2 0.0023 0.499 0.0151

3 4 0.0019 0.57 0.0155

4 2 0.0023 0.6739 0.0184

Table A5.43a -  post-processed
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p.p. function max error range (%)
none log 4 .3 3 -4 .7 3

tanh 3 .27 -4 .41
-100 log 3 .8 0 -4 .3 8

tanh 3 .7 5 -9 .0 9
m = 2 log 4 .2 7 -751 .72

tanh 4.27 -  67.39

Table A5.44

Table A5.44 summarises the above results in terms of maximum error ranges, while table 

A5.45 shows potential network solutions.

p/p struct function mean max s.d.
none 3+2+K log 0.10 4.33 0.17

3+2+K tanh 1.22 3.27 0.87

-100 6+2+K log 0.38 3.80 0.39

6+2+K tanh 0.34 3.75 0.30

m = 2** 4+2+K log 0.15 4.27 0.20

3+3+K tanh 0.15 4.27 0.20

5+2+K 0.15 4.27 0.20

* * a f t e r  p o s t - p r o c e s s i n g

Table A5.45

A5.2.3 Two intervals ahead (linear)

inputs mean max s.d. <0.01 inputs mean max s.d. <0.01
3 0.002 0.05 0.0028 0 3 0.002 0.0499 0.0028 0

4 0.002 0.0509 0.0028 0 4 0.002 0.0508 0.0028 0

5 0.002 0.049 0.0028 0 5 0.002 0.0491 0.0028 0

6 0.002 0.0509 0.0029 0 6 0.002 0.0511 0.0029 0

7 0.0019 0.05 0.0029 0 7 0.0019 0.05 0.0029 0

8 0.0019 0.0495 0.0028 0 8 0.0019 0.0495 0.0028 0

9 0.0019 0.0495 0.0028 0 9 0.0019 0.0496 0.0028 0

10 0.002 0.05 0.0029 0 - 10 0.002 0.0499 0.0028 0

11 0.002 0.0485 0.0028 0 11 0.002 0.0485 0.0028 0

12 0.002 0.046 0.0027 0 12 0.002 0.0459 0.0027 0

13 0.0019 0.045 0.0027 0 13 0.0019 0.0449 0.0027 0

14 0.0019 0.044 0.0027 0 14 0.0019 0.0441 0.0027 0

15 0.0019 0.0443 0.0027 0 15 0.0019 0.0443 0.0027 0

*16 0.0019 0.0438 0.0027 0 *16 0.0019 0.0438 0.0027 0

17 0.0019 0.0442 0.0027 0 17 0.0019 0.0441 0.0027 0

18 0.0019 0.0443 0.0026 0 18 0.0019 0.0443 0.0026 0

19 0.0019 0.0443 0.0026 0 19 0.0019 0.0443 0.0026 0

20 0.0019 0.0443 0.0026 0 20 0.0019 0.0443 0.0026 0

Table A5.46 -  unprocessed Table A5.47 -  ‘+100’

133



inputs mean max s.d. <0.01
*3 0.0006 0.0221 0.0009 0

4 0.0006 0.0221 0.0009 1

5 0.0006 0.0221 0.0009 0

6 0.0006 0.022 0.0009 0

7 0.0006 0.022 0.0009 0

8 0.0006 0.022 0.0009 0

9 0.0006 0.0221 0.0009 0

10 0.0006 0.0221 0.0009 1

11 0.0006 0.0221 0.0009 0

12 0.0006 0.0221 0.0009 0

13 0.0006 0.022 0.0009 1

14 0.0006 0.0221 0.0009 0

15 0.0006 0.022 0.0009 0

16 0.0006 0.0221 0.0008 0

17 0.0006 0.0222 0.0008 0

18 0.0006 0.0222 0.0008 0

19 0.0006 0.0222 0.0008 0

20 0.0006 0.0222 0.0008 1

inputs mean max s.d.
*3 0.0017 0.0425 0.0021

4 0.0017 0.0425 0.0021

5 0.0017 0.0426 0.0021

6 . 0.0017 0.0425 0.0021

7 0.0017 0.0425 0.0021

8 ' 0.0017 0.0425 0.0021

9 0.0017 0.0425 0.0021

10 0.0017 0.0426 0.002

11 0.0017 0.0426 0.002

12 0.0017 0.0426 0.002

13 0.0017 0.0426 0.002

14 0.0017 0.0426 0.002

15 0.0017 0.0426 0.002

16 0.0017 0.0426 0.002

17 0.0017 0.0427 0.002

18 0.0017 0.0427 0.002

19 0.0017 0.0427 0.002

20 0.0017 0.0427 0.002

Table A5.48 - 'm -  2’ Table A5.48a -  post-processed

The maximum error ranges for each pre-processing method are shown in table A5.49.

p-p max error range (%)
none 4 .3 8 -5 .0 9

-10 0 4 .3 8 -5 .1 1

m = 2 2.21 -  2.22

m = 2 4 .2 5 -4 .2 7 **

** after post-processing 

Table A5.49

Solutions which demonstrate low maximum error are indicated with an asterisk and are 

summarised below in table A5.50 (errors are expressed as percentages):

p/p struct mean max s.d. <0.01
none 16+K 0.19 4.38 0.27 0

+ 100 16+K 0.19 4.38 0.27 0

m = 2 3+K 0.06 2.21 0.09 0

m = 2** 3+K 0.17 4.25 0.21 0
**after post-processing

Table A5.50
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A5.2.4 Two intervals ahead (non-linear)

The above tables indicate some 1 5 - 17  inputs would be appropriate for this investigation with 

the exception o f the im = 2 ’ method where some 3 - 5  inputs are indicated.

inputs cells mean max std
*15 3 0.0017 0.0424 0.0024

16 3 0.0018 0.0425 0.0026

16 5 0.0019 0.043 0.003

15 5 0.0017 0.0433 0.0027

*17 2 0.0017 0.0433 0.0027

16 2 0.0019 0.0436 0.0027

17 4 0.0017 0.0437 0.0025

15 . 2 0.0019 0.0437 0.0027

17 5 0.0019 0.0439 0.0026

17 3 0.0019 0.0441 0.0026

15 4 0.0017 0.0552 0.003

16 4 0.0031 0.4661 0.023

Table A5.51 -  log sigmoid unprocessed

Inputs cells mean max std
*16 5 0.004 0.0389 0.0039

17 4 0.0018 0.0419 0.0028

17 5 0.0018 0.0419 0.0027

*17 3 0.0017 0.0426 0.0028

16 4 0.0017 0.0428 0.0028

15 3 0.0019 0.0434 0.0026

17 2 0.0019 0.0435 0.0026

16 2 0.0019 0.0436 0.0027

15 2 0.0019 0.0437 0.0028

15 4 0.0017 0.0438 0.0025

16 3 0.0051 0.0596 0.0052

15 5 0.0018 0.0857 0.0037

Table A5.53 -  log sigmoid V100’

inputs cells Mean max std
*15 2 0.0101 0.0394 0.0074

15 4 0.0017 0.0427 0.0027

17 4 0.0017 0.0429 0.0027

17 5 0.0019 0.0429 0.0025

16 3 0.0019 0.043 0.003

15 3 0.0016 0.0433 0.0026

17 3 0.0017 0.0434 0.0027

16 4 0.0018 0.0439 0.0026

16 2 0.0019 0.0439 0.0026

17 2 0.0019 0.0446 0.0026

15 5 0.0091 0.0949 0.0068

16 5 0.003 0.6501 0.028

Table A5.52 -  tanh sigmoid unprocessed

Inputs cells Mean max std
*17 4 0.0058 0.0402 0.0053

16 5 0.0024 0.0418 0.0029

17 5 0.0017 0.0422 0.0029

16 4 0.0019 0.0422 0.0027

*17 2 0.0017 0.0427 0.0027

16 2 0.0019 0.0431 0.0026

17 3 0.0017 0.0432 0.0028

16 3 0.0019 0.0433 0.0026

15 2 0.0019 0.0437 0.0027

15 4 0.0017 0.0438 0.0028

15 5 0.0024 0.0446 0.0032

15 3 0.002 0.0646 0.0035

Table A5.54 -  tanh sigmoid ‘-5-100’
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inputs cells mean max std
*3 5 0.0027 0.0417 0.0032

5 5 0.0027 0.0417 0.0032

*5 2 0.0029 0.0417 0.0034

4 2 0.0027 0.0418 0.0032

4 4 0.0027 0.0418 0.0032

3 3 0.0027 0.0419 0.0032

4 3 0.0027 0.0419 0.0032

4 5 0.0027 0.0422 0.0032

5 3 0.0027 0.0425 0.0032

3 2 0.003 0.0561 0.0037

3 4 0.003 0.2469 0.0096

5 4 0.0037 0.674 0.0242

inputs cells mean max std
5 2 0.0006 0.0218 0.0009

5 5 0.0005 0.022 0.0008

3 5 0.0006 0.0221 0.0008

4 2 0.0005 0.0222 0.0008

4 4 0.0005 0.0222 0.0008

3 3 0.0005 0.0223 0.0008

4 3 0.0005 0.0223 0.0008

4 5 0.0005 0.0226 0.0008

5 3 0.0005 0.0228 0.0008

3 2 0.0007 0.0569 0.0018

3 4 0.0009 0.2463 0.0091

5 4 0.0015 0.6806 0.0242

Table A5.55 -  log sigmoid ‘m = 2’ Table A5.55a -  post-processed

inputs cells mean max std
5 5 0.0006 0.0221 0.0008

3 2 0.0005 0.0223 0.0008

4 4 0.0005 0.0224 0.0008

3 5 0.0006 0.0294 0.0011

4 5 0.0006 0.0318 0.0012

5 2 0.0008 0.0908 0.0032

4 2 0.0007 0.104 0.0029

5 3 0.0008 0.405 0.011

4 3 0.0011 0.6294 0.017

3 4 0.0013 0.7682 0.0217

3 3 0.0049 3.072 0.1043

5 4 0.0041 3.4241 0.0957

inputs cells mean max std
*4 5 0.0027 0.0417 0.0033

5 5 0.0027 0.0417 0.0032

3 5 0.0027 0.0418 0.0033

*3 2 0.0027 0.042 0.0032

4 4 0.0027 0.042 0.0032

5 2 0.0031 0.0915 0.0046

4 2 0.0028 0.1047 0.0043

5 3 0.003 0.4039 0.0113

4 3 0.0032 0.6219 0.0171

3 4 0.0035 0.768 0.0219

3 3 0.0071 3.0746 0.1048

5 4 0.0063 3.4268 0.0959

Table A5.56 — tanh sigmoid'm = 2’ Table A5.56a — post-processed

p.p. function max error range (%)
none log 4 .24 -46 .61

tanh 3 .94 -65 .01
-100 log 3 .8 9 -8 .5 7

tanh 4.02 -  6.46
m = 2** log 4 .1 7 -6 7 .4 0

tanh 4 .1 7 -3 4 2 .6 8
** after post-processing

Table A5.57

Table A5.57 summarises the above results in terms o f maximum error ranges, while table 

A5.58 (below) shows potential network solutions.
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p/p struct function mean max s.d.
none 15+3+K log 0.17 4.24 0.24

17+2+K 0.17 4.33 0.27

15+2+K tanh 1.01 3.94 0.74
-100 16+5+K log 0.40 3.89 0.39

17+3+K 0.17 4.26 0.28

17+4+K tanh 0.58 4.02 0.53

17+2+K 0.17 4.27 0.27
m = 2** 3+5+K log 0.27 4.17 0.32

5+2+K 0.29 4.17 0.34

4+5+K tanh 0.27 4.17 0.33

3+2+K 0.27 4.20 0.32
* * a f t e r  p o s t - p r o c e s s i n g

Table A5.58
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A5.3 Effect of possible mass spectrometer failure on CV results

Tables A5.59 -  7.60 show results for the data before the possible fault whilst tables A5.61 
62 show those for the data after it.

inputs mean max s.d.
3 0.0031 0.0174 0.003

4 0.0029 0.0176 0.003

*5 0.0029 0.0169 0.0028

6 0.0028 0.0196 0.0026

7 0.0028 0.0183 0.0026

8 0.0027 0.0186 0.0025

9 0.0027 0.0183 0.0025

10 0.0027 0.0184 0.0025

11 0.0027 0.0184 0.0025

12 0.0027 0.0187 0.0025

13 0.0027 0.0185 0.0025

14 0.0027 0.0184 0.0025

15 0.0027 0.0185 0.0025

16 0.0027 0.0184 0.0025

17 0.0027 0.0184 0.0025

18 0.0027 0.0182 0.0025

19 0.0027 0.0182 0.0025

20 0.0027 0.0182 0.0025

inputs mean max s.d.
3 0.0010 0.0086 0.0010

4 0.0009 0.0085 0.0010

5 0.0009 0.0085 0.0010

*6 0.0009 0.0083 0.0010

7 0.0009 0.0084 0.0010

8 0.0009 0.0083 0.0010

9 0.0009 0.0083 0.0010

10 0.0009 0.0083 0.0010

11 0.0009 0.0085 0.0009

12 0.0009 0.0085 0.0009

13 0.0009 0.0086 0.0009

14 0.0009 0.0086 0.0009

15 0.0009 0.0086 0.0009

16 0.0009 0.0086 0.0009

17 0.0009 0.0087 0.0009

18 0.0009 0.0088 0.0009

19 0.0009 0.0088 0.0009

20 0.0009 0.0088 0.0009

Table A5.59 -  unprocessed 1-min Table A5.60 — unprocessed 23-sec

inputs mean max s.d.
3 0.0010 0.0087 0.001

4 0.0009 0.0085 0.001

5 0.0009 0.0085 0.001

*6 0.0009 0.0083 0.001

7 0.0009 0.0084 0.001

8 0.0009 0.0083 0.001

9 0.0009 0.0083 0.001

10 0.0009 0.0083 0.001

11 0.0009 0.0085 0.0009

12 0.0009 0.0085 0.0009

13 0.0009 0.0086 0.0009

14 0.0009 0.0086 0.0009

15 0.0009 0.0086 0.0009

16 0.0009 0.0086 0.0009

17 0.0009 0.0087 0.0009

18 0.0009 0.0088 0.0009

19 0.0009 0.0088 0.0009

20 0.0009 0.0088 0.0009

inputs mean max s.d.
3 0.0031 0.0173 0.003

4 0.0029 0.0175 0.003

*5 0.0029 0.0169 0.0028

6 0.0028 0.0196 0.0026

7 0.0028 0.0180 0.0026

8 0.0027 0.0186 0.0025

9 0.0027 0.0183 0.0025

10 0.0027 0.0184 0.0025

11 0.0027 0.0184 0.0025

12 0.0027 0.0187 0.0025

13 0.0027 0.0185 0.0025

14 0.0027 0.0191 0.0025

15 0.0027 0.0194 0.0025

16 0.0027 0.0184 0.0025

17 0.0027 0.0184 0.0025

18 0.0027 0.0183 0.0025

19 0.0027 0.0182 0.0025

20 0.0027 0.0182 0.0025

Table A5.61 -  V 0 0 ’ 1-min Table A5.62 -  V I 00’ 23-sec



inputs mean max s.d.
3 0.0023 0.0125 0.0028

4 0.0023 0.0126 0.0026

5 0.0022 0.0114 0.0025

6 0.0022 0.0099 0.0022

7 . 0.0021 0.0104 0.0024

8 0.0020 0.0094 0.0022

9 0.0020 0.0093 0.0022

10 0.0020 0.0093 0.0022

11 0.0020 0.0092 0.0022

12 0.0020 0.0092 0.0022

13 0.0019 0.0090 0.0020

*14 0.0019 0.0091 0.0020

15 0.0019 0.0091 0.0020

16 0.0019 0.0092 0.0020

17 0.0019 0.0091 0.0020

18 0.0018 0.0091 0.0020

19 0.0018 0.0092 0.0020

20 0.0018 0.0091 0.0020

Table A5.63 -1-min

inputs mean max s.d.
3 0.0023 0.0125 0.0028

4 0.0022 0.0126 0.0026

5 0.0022 0.0114 0.0025

6 0.0022 0.0099 0.0022

7 0.0021 0.0105 0.0024

8 0.0020 0.0094 0.0022

9 0.0020 0.0093 0.0022

10 0.0020 0.0093 0.0022

11 0.0020 0.0092 0.0022

12 0.0020 0.0092 0.0022

13 0.0019 0.0090 0.0020

14 0.0019 0.0095 0.0020

15 0.0018 0.0096 0.0019

16 0.0019 0.0092 0.0020

*17 0.0019 0.0091 0.0020

18 0.0018 0.0091 0.0020

19 0.0018 0.0092 0.0020

20 0.0018 0.0091 0.0020

Table A5.65 -  ‘+100’ 1 min

inputs mean max s.d.
3 0.0009 0.0090 0.0010

4 0.0008 0.0091 0.0009

5 0.0008 0.0089 0.0009

6 0.0008 0.0090 0.0009

7 0.0008 0.0090 0.0009

8 0.0008 0.0090 0.0009

9 0.0008 0.0089 0.0009

10 0.0008 0.0090 0.0009

11 0.0008 0.0089 0.0009

12 0.0008 0.0087 0.0009

13 0.0008 0.0088 0.0008

14 0.0008 0.0088 0.0009

15 0.0008 0.0088 0.0009

16 0.0008 0.0088 0.0009

17 0.0008 0.0087 0.0009

18 0.0008 0.0087 0.0009

*19 0.0008 0.0086 0.0009

20 0.0008 0.0086 0.0009

Table A5.64 -23-sec

inputs mean max s.d.
3 0.0009 0.0089 0.0010

4 0.0008 0.0091 0.0009

5 0.0008 0.0090 0.0009

6 0.0008 0.0090 0.0009

7 0.0008 0.0090 0.0009

8 0.0008 0.0090 0.0009

9 0.0008 0.0089 0.0009

10 0.0008 0.0090 0.0009

11 0.0008 0.0089 0.0009

12 0.0008 0.0087 0.0009

13 0.0008 0.0088 0.0008

14 0.0008 0.0088 0.0009

15 0.0008 0.0088 0.0009

16 0.0008 0.0088 0.0009

17 0.0008 0.0087 0.0009

18 0.0008 0.0087 0.0009

*19 0.0008 0.0086 0.0009

20 0.0008 0.0086 0.0009

Table A5.66 -  ‘-5-100’ 23-sec
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max error ranges

PP
before after

1-min 23-sec 1-min 23-sec
none 1 .7 4 -1 .9 6 0.83 - 0.88 0 .9 0 -1 .2 6 0.86 - 0.91

100 1 .6 9 -1 .9 6 0.83 - 0.88 0 .9 1 -1 .2 6 0.86 - 0.91

Table A5.67 -  max percentage absolute error ranges

The above table shows that there is little justification for the extra computational effort 

require in pre-processing. Further, it indicates that the networks resume efficient operation 

after the disruption following the encounter with the suspected mass spectrometer fault.

before after
PP data type mean max std type mean max std

1-min 5+K 0.29 1.69 0.28 14+k 0.19 0.91 0.20

23-sec 6+K 0.09 0.83 0.10 19+k 0.08 0.86 0.09

•i- _
x

O O 1-min 5+K 0.29 1.69 0.28 17+K 0.19 0.91 0.2

23-sec 6+k 0.09 0.83 0.10 19+K 0.08 0.86 0.09

Table A5.68 -  suitable networks as indicated by the above results.

The later, shorter, data set suggests higher accuracy may be obtained from networks with a 

larger number o f inputs, although this set would have less variation in dynamics than its larger 

counterpart. In both cases there is a gain in accuracy by utilising the 23-second data. With 

respect to the larger data set there is a 50% fall in maximum error, with the mean absolute 

error and the standard deviation reducing by some 2/3. These results also confirm that pre­

processing through division by 100 does not increase the efficiency o f the network.
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A5.4 Specific Gravity (s.g.)
The data lies within the overall range 0.28 -  0.32, suitable for direct input to a neural network; 

hence there was no requirement for pre-processing.

A5.4.1 Predicting 1 sampling interval ahead

Examination o f Table A5.69 (results for 

the linear network investigation) shows 

that non-linear investigation should 

proceed with 12-14 input networks.

inputs mean max s.d. <0.01
3 0.0017 0.0107 0.0015 0

4 0.0017 0.0107 0.0015 0

5 0.0016 0.0107 0.0014 1

6 0.0016 0.0106 0.0014 1

7 0.0016 0.0106 0.0014 2

8 0.0016 0.0106 0.0014 1

9 0.0016 0.0106 0.0014 0

10 0.0016 0.0102 0.0014 1

11 0.0016 0.0098 0.0014 1

12 0.0016 0.0095 0.0014 0

*13 0.0016 0.0094 0.0014 2

14 0.0016 0.0096 0.0014 1

15 0.0016 0.0098 0.0014 0

16 0.0015 • 0.0096 0.0014 2

17 0.0015 0.0095 0.0014 3

18 0.0015 0.0094 0.0014 1

19 0.0015 0.0094 0.0014 2

20 0.0015 0.0094 0.0014 3

Table A5.69 -  linear

inputs cells mean Max std
*13 3 0.0015 0.0084 0.0013

12 5 0.0014 0.0085 0.0012

14 3 0.0014 0.0086 0.0013

12 4 0.0015 0.0086 0.0013

12 3 0.0015 0.0088 0.0013

*12 2 0.0015 0.0092 0.0013

13 5 0.0015 0.0093 0.0013

13 2 0.0015 0.0095 0.0013

13 4 0.0016 0.0095 0.0014

14 4 0.0015 0.0096 0.0013

14 2 0.0015 0.0098 0.0013

14 5 0.0048 0.0256 0.004

Table A5.70 -  log sigmoid

inputs cells mean max std
*12 3 0.0014 0.0084 0.0012

13 5 0.0014 0.0086 0.0013

12 4 0.0015 0.0091 0.0013

12 5 0.0016 0.0091 0.0013

*12 2 0.0016 0.0092 0.0013

14 4 0.0015 0.0093 0.0013

14 2 0.0014 0.0096 0.0013

13 4 0.0015 0.0099 0.0013

14 5 0.0016 0.0124 0.0014

14 3 0.0014 0.0126 0.0013

13 2 0.0055 0.0216 0.0039

13 3 0.0106 0.0355 0.0078

Table A5.71 -  tanh sigmoid
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The maximum error ranges for each pre-processing method for the linear networks are shown 
in A5.72. Solutions which demonstrate low maximum error are indicated with an asterisk and 
are summarised below in Table A5.73 (errors are expressed as percentages).

function max error range (%)
linear 0 .9 4 -1 .0 7

log 0.84 -  2.56

tanh 0.84 -  3.55

Table A5.72

function struct mean max s.d. <0.01
linear 13+K 0.16 0.94 0.14 2

log
13+3K 0.15 0.84 0.13 —
12+2K 0.15 0.92 0.13 —

tanh
12+3K 0.14 0.84 0.12 —

12+2K 0.16 0.92 0.13 —

Table A5.73

Whilst marginally higher accuracy may be achieved with a non-linear solution there is little to 

recommend it over the linear version particularly when mean error and standard deviation, 

and extra computing overheads have been taken into account.

A5.4.2 Predicting 2 sampling intervals ahead

Table A5.74 shows the results for the 

linear investigation, which suggest 1 2 -1 5  

inputs for the non-linear networks. The 

results for these are shown below in A5.75 

-76.

Table A5.74 -  linear

inputs mean max s.d. <0.01
3 0.0039 0.0251 0.0039 0

4 0.0039 0.0251 0.0039 0

5 0.0038 0.0252 0.0038 0

6 0.0037 0.0249 0.0038 0

7 0.0037 0.0249 0.0038 0

8 0.0037 0.0249 0.0038 0

9 0.0037 0.0248 0.0038 0

10 0.0037 0.0237 0.0037 0

11 0.0037 0.023 0.0036 0

12 0.0037 0.0228 0.0036 1

13 0.0037 0.023 0.0036 0

14 0.0037 0.0232 0.0036 0

*15 0.0036 0.0227 0.0035 1

16 0.0036 0.023 0.0035 0

17 0.0036 0.023 0.0035 3
18 0.0036 0.023 0.0035 2

19 0.0036 0.023 0.0035 3

20 0.0036 0.023 0.0035 2
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inputs cells mean max std
*13 4 0.0030 0.0199 0.0029

13 5 0.0034 0.0209 0.0032

15 4 0.0034 0.0215 0.0031

*12 2 0.0037 0.0219 0.0034

15 2 0.0033 0.0220 0.0032

12 5 0.003 0.0222 0.003

13 2 0.0034 0.0222 0.0032

14 3 0.0037 0.0223 0.0034

14 2 0.0036 0.0226 0.0034

14 4 0.0031 0.0227 0.0031

15 3 0.0034 0.0228 0.0032

12 4 0.00^5 0.0237 0.0032

15 5 0.0036 0.0280 0.0036

14 5 0.0054 0.0329 0.0056

13 3 0.0061 0.0355 0.0063

12 3 0.007 0.0413 0.0067

inputs cells mean max std
*13 3 0.0033 0.0205 0.0030

*14 2 0.0034 0.0207 0.0031

13 4 0.0031 0.0208 0.0029

15 2 0.0034 0.0208 0.0031

14 5 0.0029 0.0212 0.0029

12 3 0.0035 0.0215 0.0033

12 4 0.0034 0.0216 0.0032

14 4 0.0032 0.0219 0.0031

15 3 0.0036 0.0222 0.0034

15 4 0.0037 0.0222 0.0033

12 2 0.0037 0.0223 0.0034

13 2 0.004 0.0235 0.0036

14 3 0.004 0.0249 0.0037

15 5 0.0032 0.0271 0.0031

12 5 0.0031 0.0278 0.003

13 5 0.0089 0.0447 0.0081

Table A5.75 -  log sigmoid Table A5.76 -  tanh sigmoid

The maximum error ranges for each pre-processing method for the linear networks are shown 

in A5.77. Solutions which demonstrate low maximum error are indicated with an asterisk and 

are summarised below in Table A5.78 (errors are expressed as percentages).

function max error range (%)
linear 2.27 -  2.51

log 1 .9 9 -4 .1 3

tanh 2.05 -  4.47

Table A5.77

function struct mean max s.d. «0.01
linear 15+K 0.36 2.27 0.35 1

log
13+4K 0.30 1.99 0.29 —

12+2K 0.37 2.19 0.34 —

tanh
13+3K 0.33 2.05 0.30 —

14+2K 0.34 2.07 0.31 —

Table A5.78

A5.5 Air/fuel ratio (a/f.)
The data lies within the overall range 4.11 -  4.49; therefore it was decided to experiment with 

division by 10 for pre-processing to bring the data level closer to that o f midrange for the 

sigmoid activation functions, rather than division by 100.
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A5.5.1 Predicting 1 sampling interval ahead (linear networks)

inputs mean max s.d. <0.01
3 0.0011 0.0487 0.0018 0

4 0.001 0.0489 0.0018 0

5 0.001 0.0493 0.0018 0

6 0.001 0.0493 0.0019 1

7 0.001 0.0492 0.0019 0

*8 0.001 0.0491 0.0019 0

9 0.001 0.0491 0.0019 0

10 0.001 0.0492 0.0019 1

11 0.001 0.0493 0.0019 1

12 0.001 0.0494 0.0018 0

13 0.001 0.0493 0.0018 2

14 0.001 0.0493 0.0018 1

15 0.001 0.0493 0.0018 1

16 0.001 0.0493 0.0018 1

17 0.001 0.0492 0.0018 0

18 0.001 0.0494 0.0018 0

19 0.001 0.0495 0.0018 1

20 0.001 0.0495 0.0018 1

Table A5.79 -  linear

inputs mean max s.d. <0.01
*3 0.0011 0.0487 0.0018 0

4 0.001 0.0489 0.0019 0

5 0.001 0.0493 0.0018 0

6 0.001 0.0493 0.0019 1

7 0.001 0.0492 0.0019 0

*8 0.001 0.0491 0.0019 0

9 0.001 0.0491 0.0019 0

10 0.001 0.0492 0.0019 0

11 0.001 0.0493 0.0019 1

12 0.001 0.0494 0.0018 0

13 0.001 0.0493 0.0018 0

14 0.001 0.0493 0.0018 2

15 0.001 0.0493 0.0018 1

16 0.001 0.0493 0.0018 1

17 0.001 0.0493 0.0018 0

18 0.001 0.0494 0.0018 0

19 0.001 0.0495 0.0018 2

20 0.001 0.0495 0.0018 1

Table A5.80 -  linear ‘+10’

inputs mean max s.d. <0.01
3 0.0015 1.3372 0.0362 0

4 0.0015 1.337 0.0362 0

5 0.0015 1.337 0.0362 0

6 0.0015 1.337 0.0362 0

7 0.0015 1.337 0.0362 1

8 0.0015 1.337 0.0362 1

9 0.0015 1.337 0.0362 0

10 0.0015 1.3369 0.0363 0

11 0.0015 1.3371 0.0363 1

12 0.0015 1.337 0.0363 0

13 0.0015 1.337 0.0363 1

14 0.0015 1.3371 0.0363 2

15 0.0015 1.3371 0.0363 1

16 0.0015 1.3371 0.0363 1

17 0.0015 1.3371 0.0363 1

18 0.0015 1.3371 0.0364 1

19 0.0015 1.3371 0.0364 1

20 0.0015 1.3371 0.0364 2

inputs mean max s.d.
*3 0.0017 0.0480 0.0021

4 0.0017 0.0481 0.0021

5 0.0017 0.0481 0.0021

6 0.0017 0.0481 0.0021

7 0.0017 0.0481 0.0021

8 0.0017 0.0481 0.0021

9 0.0017 0.0481 0.0021

10 0.0017 0.0482 0.0021

11 0.0017 0.0482 0.0021

12 0.0017 0.0481 0.0021

13 0.0017 0.0481 0.0021

14 0.0017 0.0481 0.0021

15 0.0017 0.0481 0.0021

16 0.0017 0.0481 0.0021

17 0.0017 0.0481 0.0021

18 0.0017 0.0482 0.0021

19 0.0017 0.0482 0.0021

20 0.0017 0.0482 0.0021

Table A5.81 -  linear ‘m = 2’ Table A5.81a -  post-processed

Examination o f the linear solutions with the exception o f the *m = 2 ’ networks where there 

are extremely high maximum errors before post-processing suggests non-linear networks with 

some 8 -  10 inputs.
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The maximum error ranges for each pre­

processing method for the linear networks 

are shown in A5.82. Solutions which 

demonstrate low maximum error are 

indicated with an asterisk and are 

summarised below in Table A5.83 (errors 

are expressed as percentages).

p .p struct mean max s.d. <0.01
none 3+K 0.11 4.87 0.18 0

+ 10 3+K 0.11 4.87 0.18 .0

m -2 3+K 0.15 133.7 3.62 0

m -2 ** 3+K 0.17 4.80 0.21 0

**after post-processing
Table A5.83

O f note is the high ‘m = 2 ’ error o f 134% before post-processing which reduces to less that of 

the other solutions after post-processing.

A5.5.2 Predicting 1 sampling interval ahead (non-linear networks)

inputs cells mean max std
*8 2 0.0137 0.0366 0.0097

9 3 0.001 0.0483 0.0018

8 4 0.001 0.0486 0.0019

9 2 0.001 0.0488 0.0018

10 5 0.001 0.0489 0.002

10 2 0.001 0.049 0.0019

8 3 0.001 0.049 0.0018

9 4 0.001 0.049 0.0018

8 5 0.001 0.049 0.0018

10 3 0.001 0.0491 0.0019

9 5 0.001 0.0492 0.0019

10 4 0.0011 0.0592 0.0023

inputs cells mean max std
*9 5 0.001 0.0481 0.0017

8 4 0.0011 0.0485 0.0021

*8 2 0.001 0.0486 0.0019

8 5 0.001 0.0486 0.0019

9 4 0.001 0.0488 0.0018

9 2 0.001 0.0490 0.0018

10 2 0.001 0.0490 0.0019

9 3 0.001 0.0490 0.0019

10 4 0.001 0.0490 0.0019

10 5 0.001 0.0490 0.0018

8 3 0.001 0.0491 0.0019

10 3 0.0011 0.0496 0.0022

Table A5.84 -  log sigmoid Table A5.85 -  tanh sigmoid

p.p. max error range (%)
none 4 .8 7 -4 .9 5

H-10 4 .8 7 -4 .9 5

m -2 133.71 -1 3 3 .7 2

4.80 -  4.82**

** after post-processing
Table A5.82
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inputs cells mean max std
*10 4 0.001 0.0485 0.0019

9 4 0.001 0.0486 0.0018

*8 2 0.001 0.0487 0.0018

9 5 0.001 0.0487 0.0019

10 5 0.001 0.0487 0.0022

10 3 0.0047 0.0487 0.004

8 3 0.001 0.0488 0.0017

8 5 0.001 0.0488 0.0018

9 3 0.001 0.0489 0.0018

8 4 0.001 0.0489 0.0018

9 2 0.001 0.049 0.0018

10 2 0.001 0.049 0.0019

Table A5.86 -  log sigmoid ‘+10’

inputs cells mean max std
10 4 0.0007 0.0241 0.0009

8 3 0.0006 0.0242 0.0009

8 4 0.0007 0.0244 0.0009

•9 5 0.0004 0.0246 0.0008

8 2 0.0005 0.0246 0.0008

9 2 0.0005 0.0247 0.0009

10 5 0.0005 0.0247 0.0008

9 4 0.0006 0.0248 0.0009

10 3 0.0005 0.0249 0.0008

10 2 0.0008 0.0962 0.0034

8 5 0.0006 0.1023 0.0034

9 3 0.0011 0.2111 0.0085

Table A5.88 -  log sigmoid ‘m = 2’

inputs cells mean max std
10 4 0.0007 0.0241 0.001

8 3 0.0006 0.0242 0.0009

8 2 0.0005 0.0247 0.0008

9 5 0.0005 0.0247 0.001

10 5 0.0005 0.0248 0.0008

8 4 0.0005 0.0255 0.0008

10 2 0.0007 0.0348 0.0016

10 3 0.0008 0.0400 0.0018

8 5 0.0007 0.0515 0.0018

9 4 0.0008 0.0693 0.0025

9 3 0.0009 0.0781 0.0035

9 2 0.0045 5.2734 0.143

Table A5.89 -  tanh sigmoid ‘m = 2 ’

inputs cells mean max std
*10 2 0.0138 0.0367 0.0097

10 4 0.0022 0.0449 0.0029

8 3 0.0011 0.0484 0.002

10 5 0.0011 0.0484 0.0023

8 4 0.001 0.0487 0.0019

9 4 0.001 0.0487 0.0018

10 3 0.001 0.0488 0.0018

8 2 0.001 0.0489 0.0018

9 5 0.001 0.0489 0.0018

9 2 0.001 0.0490 0.0018

9 3 0.0011 0.0549 0.0023

8 5 0.0011 0.0942 0.0033

TableA5.87-tanhsigmoid ‘+10’

inputs cells mean max std
*8 3 0.0018 0.0475 0.0023

10 4 0.0019 0.0475 0.0023

8 4 0.0018 0.0478 0.0023

*8 2 0.0016 0.0480 0.0022

9 5 0.0016 0.0480 0.0021

10 5 0.0016 0.0480 0.002

9 2 0.0017 0.0481 0.0021

9 4 0.0017 0.0482 0.0022

10 3 0.0016 0.0483 0.0021

10 2 0.002 0.0944 0.004

8 5 0.0018 0.1053 0.004

9 3 0.0023 0.2144 0.0088

Table A5.88a -post-processed

inputs cells mean Max std
*10 3 0.0021 0.0474 0.0029

10 4 0.0019 0.0475 0.0025

8 3 0.0018 0.0476 0.0023

*10 2 0.0020 0.0480 0.0027

8 2 0.0016 0.0481 0.0022

9 5 0.0017 0.0481 0.0022

10 5 0.0016 0.0482 0.0022

8 4 0.0016 0.0489 0.0022

8 5 0.0019 0.0524 0.0028

9 4 0.002 0.0691 0.0034

9 3 0.0021 0.0810 0.0042

9 2 0.0056 5.2697 0.1430

Table A5.89a -  post -processed
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The maximum error ranges for each pre-processing method for the linear networks are shown 

in A5.90. Solutions which demonstrate low maximum error are indicated with an asterisk and 

are summarised below in table A5.91 (errors are expressed as percentages).

p.p. function Max error range (%)

none log 3.66 -  5.92

tanh 4.81 - 4 .9 6

+10 log 4 .8 5 -4 .9 0

tanh 3.67 -  9.42
m = 2 log 2.41 -2 1 .1 1  (4 .7 5 -2 1 .4 4 )

tanh 2.41 -  527.34 (4.74 -  526.97)

Table A5.90 (Post-processed data in parenthesis)

pre-proc? struct. function mean max s.d.
none 8+2+K log 1.37 3.66 0.97

9+5+K tanh 0.10 4.81 0.17

8+2+K 0.10 4.86 0.19
+10 8+2+K log 0.10 4.85 0.19

10+2+K tanh 1.38 3.67 0.97
m = 2** 8+3+K log 0.18 4.75 0.23

6+2+K 0.16 4.80 0.22

10+3|+K tanh 0.21 4.74 0.29

10+2+K 0.20 4.80 0.27
* * a f t e r  p o s t - p r o c e s s i n g

Table A5.91
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A5.5.3 Predicting 2 sampling intervals ahead (linear networks)

inputs mean max s.d. <0.01
3 0.0022 0.0504 0.0030 0

4 0.0021 0.0517 0.0031 0

5 0.0021 0.0509 0.0031 0

6 0.0021 0.0528 0.0031 0

7 0.0021 0.0521 0.0031 0

8 0.0021 0.0513 0.0031 0

9 0.0021 0.0514 0.0031 0

10 0.0021 0.0521 0.0031 0

11 0.0021 0.0505 0.0031 0

*12 0.0021 0.0490 0.0029 0

13 0.0021 0.0490 0.0029 0

14 0.0021 0.0490 0.0029 0

15 0.0021 0.0491 0.0029 0

16 0.0021 0.0490 0.0029 0

17 0.002 0.0494 0.0029 0
18 0.002 0.0496 0.0029 0

19 0.002 0.0495 0.0029 0

20 0.002 0.0495 0.0029 0

Table A5.92 -  linear

inputs mean max s.d. <0.01
3 0.0016 1.3369 0.0362 0

4 0.0016 1.3369 0.0362 0

5 0.0016 1.3368 0.0362 0

6 0.0016 1.3369 0.0362 0

7 0.0016 1.3369 0.0362 0

8 0.0016 1.3368 0.0362 0

9 0.0016 1.3368 0.0362 1

10 0.0016 1.337 0.0363 1

11 0.0016 1.337 0.0363 1

12 0.0016 1.3369 0.0363 1

13 0.0016 1.337 0.0363 0

14 0.0016 1.337 0.0363 0

15 0.0016 1.337 0.0363 0

16 0.0016 1.337 0.0363 0

17 0.0016 1.337 0.0364 0
18 0.0016 1.337 0.0364 0

19 0.0016 1.337 0.0364 0

20 0.0016 1.337 0.0364 1

Table A5.94 -  linear ‘m = 2 ’

inputs mean max s.d. <0.01
3 0.0022 0.0511 0.003 0

4 0.0021 0.0530 0.0031 0

5 0.0021 0.0509 0.0031 0

6 0.0021 0.0528 0.0031 0

7 0.0021 0.0521 0.0031 0

8 0.0021 0.0513 0.0031 0

9 0.0021 0.0514 0.0031 0

10 0.0021 0.0516 0.0031 0

11 0.0021 0.0505 0.0031 0

*12 0.0021 0.0490 0.003 1

13 0.0021 0.0490 0.0029 0

14 0.0021 0.0490 0.0029 0

15 0.0021 0.0491 0.0029 0

16 0.0021 0.0490 0.0029 0

17 0.002 0.0494 0.0029 0
18 0.002 0.0495 0.0029 0

19 0.002 0.0495 0.0029 0

20 0.002 0.0495 0.0029 1

Table A5.93 -  linear V10’

inputs mean max s.d. <0.01
*3 0.0029 0.0468 0.0034 0

4 0.0029 0.0469 0.0034 0

5 0.0029 0.0469 0.0034 0

6 0.0029 0.0469 0.0034 0

7 0.0029 0.0468 0.0034 0

8 0.0029 0.0468 0.0034 0

9 0.0029 0.0469 0.0034 1

10 0.0029 0.0469 0.0034 1

11 0.0029 0.0469 0.0034 1

12 0.0029 0.0469 0.0034 1

13 0.0029 0.0470 0.0034 0

14 0.0029 0.0469 0.0034 0

15 0.0029 0.0470 0.0034 0

16 0.0029 0.0469 0.0034 0

17 0.0029 0.0470 0.0034 0
18 0.0029 0.0470 0.0034 0

19 0.0029 0.0470 0.0034 0

20 0.0029 0.0470 0.0034 1

Table A5.94a -  linear ‘m = 2 ’ post-processed
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Examination o f the linear solutions with the exception o f the ‘/w = 2 ’ networks where there 

are extremely high maximum errors before post-processing suggests non-linear networks with 

some 1 2 -1 4  inputs.

The maximum error ranges for each pre­

processing method for the linear networks 

are shown in A5.95. Solutions which 

demonstrate low maximum error are 

indicated with an asterisk and are 

summarised below in Table A5.96 (errors 

are expressed as percentages).

PP struct mean max s.d. <0.01
none 12+K 0.21 4.90 0.29 0

+ 10 12+K 0.21 4.90 0.30 1

m = 2 5+K 0.16 133.68 3.62 0

m = 2** 3+K 0.29 4.68 0.34 0

**after post-processing 
Table A5.96

Again, o f note is the high ‘m = 2 ’ error of some 134% before post-processing which reduces 

to less that of the other matters after post-processing.

A5.5.4 Predicting 2 sampling intervals ahead (non-linear networks)

inputs cells mean max std
*13 2 0.0115 0.0354 0.0079

12 3 0.0020 0.0477 0.0032

13 4 0.0019 0.0478 0.0030

14 5 0.0018 0.0480 0.0031

13 3 0.0018 0.0481 0.0030

14 4 0.0018 0.0483 0.0029

12 4 0.0019 0.0486 0.0033

12 2 0.0021 0.0486 0.0029

14 2 0.0021 0.0487 0.0029

14 3 0.0021 0.0543 0.0030

13 5 0.0018 0.0849 0.0035

12 5 0.0023 0.1277 0.0051

inputs cells mean max std
*12 5 0.0019 0.0474 0.0031

14 5 0.0018 0.0480 0.0028

14 3 0.0019 0.0480 0.0031

*14 2 0.0019 0.0482 0.003

13 5 0.002 0.0482 0.0035

13 2 0.002 0.0483 0.0028

13 3 0.0021 0.0487 0.0028

12 3 0.0021 0.0489 0.0031

13 4 0.0021 0.0489 0.0027

12 2 0.0021 0.0493 0.0029

12 4 0.002 0.0506 0.0035

14 4 0.003 0.1059 0.0046

p.p. max error range (%)
none 4.90 -  5.28

*1 0 4.90 -  5.30

m = 2 1 3 3 .6 8 -1 3 3 .7 0

4.68 -  4.70**

** after post-processing

Table A5.95

Table A5.97 -  log sigmoid Table A5.98 -  tanh sigmoid



inputs cells mean max std
*13 3 0.0020 0.0472 0.0031

14 4 0.0021 0.0473 0.0031

12 4 0.0026 0.0476 0.0032

14 3 0.0023 0.0479 0.0031

*14 2 0.0021 0.0482 0.0028

12 3 0.0021 0.0485 0.0029

13 2 0.0021 0.0486 0.0029

12 2 0.0022 0.0487 0.0029

13 4 0.0021 0.0492 0.0030

14 5 0.0026 0.0543 0.0035

12 5 0.0022 0.2083 0.0064

13 5 0.0022 0.2150 0.0075

Table A5.99 -  V10’ log sigmoid

inputs cells mean max std
14 5 0.0015 1.3364 0.0363

13 4 0.0016 1.3364 0.0363

13 5 0.0015 1.3365 0.0363

13 3 0.0016 1.3366 0.0363

12 4 0.0019 1.3366 0.0366

14 2 0.0015 1.3367 0.0363

13 2 0.0017 1.3368 0.0363

12 2 0.0017 1.3369 0.0363

12 5 0.0018 1.3369 0.0364

14 4 0.0017 1.3370 0.0363

14 3 0.0018 1.3370 0.0364

12 3 0.0017 1.3371 0.0363

Table A5.101 -  ‘m = 2’ log sigmoid

inputs cells mean max std
12 3 0.0016 1.3365 0.0363

12 2 0.0015 1.3366 0.0363

13 4 0.0016 1.3366 0.0363

12 5 0.0018 1.3366 0.0368

13 5 0.0017 1.3367 0.0363

13 2 0.0016 1.3368 0.0363

14 2 0.0018 1.3368 0.0364

14 5 0.0019 1.3368 0.0368

12 4 0.0018 1.3369 0.0363

14 4 0.0017 1.3370 0.0363

14 3 0.0018 1.3370 0.0363

13 3 0.0017 1.3372 0.0363

Table A5.102 -  ‘m = 2 ’ tanh sigmoid

inputs cells mean max std
*13 4 0.0020 0.0476 0.0031

13 3 0.0019 0.0477 0.0034

12 5 0.0020 0.0477 0.0032

13 5 0.0019 0.0482 0.0034

*14 2 0.0021 0.0486 0.0029

12 4 0.0020 0.0487 0.0031

13 2 0.0021 0.0487 0.0029

12 3 . 0.0021 0.0487 0.0029

14 3 0.0021 0.0487 0.0028

14 5 0.0018 0.0488 0.0030

14 4 0.0020 0.0668 0.0037

12 2 0.0058 0.0712 0.0054

Table A5.100 -  ‘-M0’ tanh sigmoid

inputs cells mean max std
*14 4 0.0032 0.0464 0.0037

*12 2 0.0031 0.0465 0.0036

12 3 0.0031 0.0465 0.0037

13 4 0.0029 0.0466 0.0035

13 2 0.0030 0.0467 0.0037

14 5 0.0028 0.0469 0.0034

13 5 0.0028 0.0470 0.0034

14 2 0.0028 0.0472 0.0034

12 5 0.0032 0.0552 0.0042

14 3 0.0032 0.0601 0.0042

13 3 0.0029 0.0700 0.0039

12 4 0.0033 0.1499 0.0058

Table A5.101a -  log sigmoid post-processed

inputs cells mean max std
*13 4 0.0030 0.0464 0.0035

12 4 0.0032 0.0465 0.0039

14 3 0.0032 0.0465 0.0038

13 3 0.0031 0.0466 0.0037

*12 2 0.0028 0.0468 0.0034

12 3 0.0029 0.0468 0.0034

13 5 0.0030 0.0468 0.0036

14 4 0.0031 0.0468 0.0037

13 2 0.0029 0.0469 0.0035

14 2 0.0032 0.0547 0.0043

14 5 0.0032 0.2097 0.0067

12 5 0.0031 0.2134 0.0071

Table A5.102a -tanh sigmoid post-processed
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The maximum error ranges for each pre-processing method for the linear networks are shown 

in table A5.103. Solutions which demonstrate low maximum error are indicated with an 

asterisk and are summarised below in table A5.104 (errors are expressed as percentages).

p.p. function max error range (%)

none log 4 .7 4 -1 0 .5 9

tanh 3 .5 4 -1 2 .7 7

+10 log 4 .7 2 -2 1 .5 0

tanh 4 .7 6 -  7.12

m = 2 log 133 .64 -133 .71  (4 .6 4 -1 4 .9 9 )

tanh 133.65 -  133.72 (4.64 -  21.34)

Table A5.103 (Post-processed data in parenthesis)

pre-proc? struct. function mean max s.d.
none 12+5+k log 0.19 4.74 0.31

14+2+K 0.19 4.82 0.30

13+2+K tanh 1.15 3.54 0.79

+10 13+3+K log 0.20 4.72 0.31

14+2+K 0.21 4.82 0.28

13+4+K tanh 0.20 4.76 0.31

14+2+K 0.21 4.86 0.29
m = 2 14+4+K log** 0.32 4.64 0.37

12+2+K 0.31 4.65 0.36

13+4+k tanh** 0.30 4.64 0.35

12+2+K 0.28 4.68 0.34

* * a f t e r  p o s t - p r o c e s s i n g

Table A5.104
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A6HSM Phase 2
A6.1 Predicting Wobbe Numbers
A6.1.1 Original 30-second data (1 sampling interval ahead)

inputs mean max s.d. <0.01
3 0.0022 0.0417 0.0026 0

4 0.0022 0.0415 0.0026 0

5 0.0022 0.0408 0.0026 0

6 0.0022 0.0405 0.0026 2

7 0.0022 0.0405 0.0026 1

8 0.0022 0.0424 0.0026 1

9 0.0022 0.0406 0.0026 1

10 0.0022 0.0404 0.0026 2

11 0.0022 0.0400 0.0026 1

*12 0.0022 0.0396 0.0025 2

13 0.0022 0.0398 0.0025 4

14 0.0022 0.0406 0.0025 6

15 0.0022 0.0401 0.0025 4

16 0.0022 0.0402 0.0025 6

17 0.0022 0.0402 0.0025 7

18 0.0022 0.0402 0.0025 6

19 0.0022 0.0403 0.0025 7

20 0.0022 0.0403 0.0025 8

inputs mean max s.d. <0.01
3 0.0022 0.0417 0.0026 0

4 0.0022 0.0415 0.0026 0

5 0.0022 0.0408 0.0026 0

6 0.0022 0.0405 0.0026 2

7 0.0022 0.0405 0.0026 1

8 0.0022 0.0424 0.0026 1

9 0.0022 0.0406 0.0026 1

10 0.0022 0.0404 0.0026 2

11 0.0022 0.0400 0.0026 1

*12 0.0022 0.0396 0.0025 2

13 0.0022 0.0398 0.0025 3

14 0.0022 0.0406 0.0025 6

15 0.0022 0.0401 0.0025 4

16 0.0022 0.0402 0.0025 6

17 0.0022 0.0402 0.0025 7

18 0.0022 0.0402 0.0025 6

19 0.0022 0.0404 0.0025 7

20 0.0022 0.0404 0.0025 8

Table A6.1 -  unprocessed Table A6.2 :100

A6.1.2 Original 30-second data (2 sampling intervals ahead)

inputs mean max s.d. <0.01
3 0.0043 0.0859 0.0047 0

4 0.0043 0.0843 0.0047 0

5 0.0043 0.0820 0.0047 0

6 0.0043 0.0818 0.0047 0

7 0.0043 0.0816 0.0047 1

8 0.0043 0.0806 0.0047 0

9 0.0043 0.0798 0.0046 0

10 0.0043 0.0800 . 0.0046 0

11 0.0043 0.0789 0.0046 1

12 0.0043 0.0788 0.0046 1

13 0.0043 0.0787 0.0046 3

14 0.0043 0.0786 0.0046 3

15 0.0043 0.0786 0.0046 2

16 0.0043 0.0786 0.0046 3

17 0.0043 0.0788 0.0046 2

18 0.0043 0.0777 0.0046 3

*19 0.0043 0.0775 0.0046 4

20 0.0043 0.0776 0.0046 5

inputs mean max s.d. <0.01
3 0.0043 0.0860 0.0047 0

4 0.0043 0.0841 0.0047 0

5 0.0043 0.0820 0.0047 0

6 0.0043 0.0818 0.0047 0

7 0.0043 0.0816 0.0047 1

8 0.0043 0.0806 0.0047 0

9 0.0043 0.0798 0.0046 0

10 0.0043 0.0800 0.0046 0

11 0.0043 0.0789 0.0046 1

12 0.0043 0.0788 0.0046 1

13 0.0043 0.0787 0.0046 3

14 0.0043 0.0786 0.0046 2

15 0.0043 0.0786 0.0046 2

16 0.0043 0.0786 0.0046 4

17 0.0043 0.0788 0.0046 2

18 0.0043 0.0777 0.0046 3

*19 0.0043 0.0775 0.0046 4

20 0.0043 0.0776 0.0046 5

Table A6.3-unprocessed Table A6.4 -  -^100

152



The following tables summarise the results for both prediction intervals. When predicting 

two sampling intervals ahead the error ranges are approximately double those o f predicting 

one interval ahead. The ‘-+100’ method differs little from the unprocessed data results.

p.p. max error range (%)
1 interval ahead 2  intervals ahead

none 3 .9 6 -4 .1 7 7.75 -  8.59

H-100 3 .9 6 -4 .1 7 7.75 -  8.60

Table A6.5 -  maximum error ranges

p.p 1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none 12+K 0.22 3.96 0.25 2 19+K 0.43 7.75 0.46 4

+ 100 12+K 0.22 3.96 0.25 2 19+K 0.43 7.75 0.46 4

Table A6.6 -  possible network solutions

It should be noted that in contrast to the Dawes Lane and CPS work there appear to be a 

significant number o f potentially extraneous network inputs although the networks concerned 

produce the most accurate results.

A6.1.3 Synthesised 1-minute data (1 sampling interval ahead)

inputs mean max s.d. <0.01
3 0.0045 0.0603 0.0049 0

4 0.0045 0.0598 0.0049 0

5 0.0045 0.0597 0.0049 0

6 0.0045 0.0595 0.0049 0

*7 0.0045 0.0591 0.0048 1

8 0.0045 0.0611 0.0048 0

9 0.0045 0.0606 0.0048 0

10 0.0045 0.0605 0.0048 0

11 0.0045 0.0598 0.0048 0

12 0.0045 0.0598 0.0048 1

13 0.0045 0.0603 0.0048 2

14 0.0045 0.0604 0.0048 0

15 0.0045 0.0604 0.0048 2

16 0.0045 0.0607 0.0048 0

17 0.0045 0.0606 0.0048 1

18 0.0045 0.0608 0.0048 2

19 0.0045 0.0608 0.0048 4

20 0.0045 0.0606 0.0048 3

inputs mean max s.d. <0.01
3 0.0045 0.0603 0.0049 0

4 0.0045 0.0598 0.0049 0

5 0.0045 0.0597 0.0049 0

6 0.0045 0.0594 0.0049 1

*7 0.0045 0.0591 0.0048 1

8 0.0045 0.0594 0.0048 0

9 0.0045 0.0594 0.0048 0

10 0.0045 0.0594 0.0048 0

11 0.0045 0.0597 0.0048 0

12 0.0045 0.0598 0.0048 1

13 0.0045 0.0602 0.0048 0

14 0.0045 0.0604 0.0048 0

15 0.0045 0.0603 0.0048 0

16 0.0045 0.0606 0.0048 0

17 0.0045 0.0606 0.0048 1

18 0.0045 0.0606 0.0048 1

19 0>0045 0.0606 0.0048 2

20 0.0045 0.0606 0.0048 3

Table A6.7 -  unprocessed Table A6.8 -  V100’
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A6.1.4 Synthesised 1-minute data (2 sampling intervals ahead)

inputs mean max s.d. <0.01
3 0.007 0.1028 0.0072 0

4 0.007 0.1017 0.0072 0

5 0.0069 0.0987 0.0071 0

6 0.0076 0.0994 0.0073 1

7 0.0069 0.0971 0.007 0

8 0.0068 0.0968 0.007 0

*9 0.0068 0.0964 0.0069 1

10 0.0068 0.0979 0.0069 0

11 0.0068 0.0981 0.0069 1

12 0.0068 0.0987 0.0069 0

13 0.0068 0.0991 0.0069 1

14 0.0068 0.0992 0.0069 2

15 0.0068 0.0996 0.0069 2

16 0.0068 0.0994 0.0069 2

17 0.0068 0.0994 0.0069 3

18 0.0068 0.0994 0.0069 2

19 0.0068 0.0994 0.0069 5

20 0.0068 0.0995 0.0069 5

inputs mean Max s.d. <0.01
3 0.007 0.1027 0.0072 0

4 0.007 0.1017 0.0072 0

5 0.0069 0.0987 0.0071 0

*6 0.0069 0.0967 0.007 1

7 0.0069 0.0971 0.007 0

8 0.0068 0.0968 0.007 0

9 0.0068 0.0968 0.0069 1

10 0.0068 0.0979 0.0069 0

11 0.0068 0.0981 0.0069 1

12 0.0068 0.0987 0.0069 0

13 0.0068 0.0991 0.0069 1

14 0.0068 0.0992 0.0069 2

15 0.0068 0.0997 0.0069 2

16 0.0068 0.0994 0.0069 2

17 0.0068 0.0994 0.0069 3

18 0.0068 0.0993 0.0069 4

19 0.0068 0.0994 0.0069 5

20 0.0068 0.0996 0.0069 4

Table A6.9 -  unprocessed . Table A6.10 -  ‘+100’

p.p. max error range (%)
1 interval ahead 2  intervals ahead

none 5 .9 1 -6 .0 6 9 .6 7 -1 0 .2 7

-10 0 5 .9 1 -6 .1 1 9 .6 4 -1 0 .2 8

Table A6.11 -  maximum error ranges

p.p 1 interval ahead 2  intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none 7+K 0.45 5.91 0.48 1 6+K 0.69 9.67 0.70 1

+ 100 7+K 0.45 5.91 0.48 1 9+K 0.68 9.64 0.69 1

Table A6.12 -  possible network solutions
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A6.2 Predicting synthesised CV

A6.2.1 30-second data (1 sampling interval ahead)

inputs mean max s.d. <0.01
*3 0.0022 0.0325 0.0024 0

4 0.0022 0.0327 0.0024 0

5 0.0022 0.0327 0.0024 1

6 0.0022 0.0327 0.0024 0

7 0.0022 0.0327 0.0024 0

8 0.0022 0.0327 0.0024 0

9 0.0022 0.0327 0.0024 1

10 0.0022 0.0327 0.0024 2

11 0.0022 0.0327 0.0024 0

12 0.0022 0.0327 0.0024 1

13 0.0022 0.0327 0.0024 2

14 0.0022 0.0327 0.0024 2

15 0.0022 0.0327 0.0024 4

16 0.0022 0.0327 0.0024 2

17 0.0022 0.0327 0.0024 2

18 0.0022 0.0327 0.0024 3

19 0.0022 0.0327 0.0024 3

20 0.0022 0.0327 0.0024 4

inputs mean max s.d. <0.01
*3 0.0022 0.0326 0.0024 0

4 0.0022 0.0330 0.0024 0

5 0.0022 0.0327 0.0024 1

6 0.0022 0.0328 0.0024 2

7 0.0022 0.0330 0.0024 1

8 0.0022 0.0327 0.0024 0

9 0.0022 0.0327 0.0024 1

10 0.0022 0.0327 0.0024 2

11 0.0022 0.0333 0.0024 0

12 0.0022 0.0331 0.0024 1

13 0.0022 0.0328 0.0024 2

14 0.0022 0.0330 0.0024 3

15 0.0022 0.0327 0.0024 4

16 0.0022 0.0330 0.0024 3

17 0.0022 0.0331 0.0024 2

18 0.0022 0.0327 , 0.0024 3

19 0.0022 0.0327 0.0024 3

20 0.0022 0.0327 0.0024 4

Table A6.13 -  unprocessed

A6.2.2 30-second data (2 sampling intervals

Table A6.14 -  V100’ 

ahead)

inputs mean max s.d. <0.01
*3 0.0044 0.0721 0.0046 0

4 0.0044 0.0725 0.0046 0

5 0.0044 0.0724 0.0046 0

6 0.0044 0.0725 0.0046 2

7 0.0044 0.0725 0.0046 2

8 0.0044 0.0725 0.0046 2

9 0.0044 0.0725 0.0046 3

10 0.0044 0.0725 0.0046 2

11 0.0044 0.0727 0.0046 2

12 0.0044 0.0726 0.0046 4

13 0.0044 0.0727 0.0046 4

14 0.0044 0.0727 0.0046 4

15 0.0044 0.0727 0.0046 5

16 0.0044 0.0727 0.0046 5

17 0.0044 0.0726 0.0046 4

18 0.0044 0.0726 0.0046 3

19 0.0044 0.0727 0.0046 4

20 0.0044 0.0726 0.0046 4

inputs mean max s.d. <0.01
*3 0.0044 0.0723 0.0046 0

4 0.0044 0.0732 0.0046 0

5 0.0044 0.0728 0.0046 0

6 0.0044 0.0727 0.0046 1

7 0.0044 0.0728 0.0046 1

8 0.0044 0.0733 0.0046 0

9 0.0044 0.0729 0.0046 2

10 0.0044 0.0732 0.0046 0

11 0.0044 0.0732 0.0046 0

12 0.0044 0.0733 0.0046 1

13 0.0044 0.0734 0.0046 1

14 0.0044 0.0731 0.0046 1

15 0.0044 0.0727 0.0046 5

16 0.0044 0.0730 0.0046 1

17 0.0044 0.0732 0.0046 0

18 0.0044 0.0726 0.0046 4

19 0.0044 0.0736 0.0046 2

20 0.0044 0.0726 0.0046 4

Table A6.15 -  unprocessed Table A6.16 -  V I 00*
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p.p. max error range (%)
1 interval ahead 2 intervals ahead

none 3.25 -  3.27 7.21 -  7.27

-100 3.26 -  3.31 7.23 -  7.32

Table A6.17 -  maximum error ranges

PP 1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none 3+K 0.22 3.25 0.24 0 3+K 0.44 7.21 0.46 0

- 1 0 0 3+K 0.22 3.26 0.24 0 3+K 0.44 7.23 0.46 0

Table A6.18 -  possible network solutions

A6.2.3 1-minute data (1 sampling interval ahead)

inputs mean max s.d. <0.01
3 0.0047 0.0577 0.0049 0

4 0.0047 0.0571 0.0049 0

*5 0.0047 0.0570 0.0049 0

6 0.0047 0.0572 0.0049 0

7 0.0047 0.0573 0.0049 0

8 0.0047 0.0573 0.0049 0

9 0.0047 0.0572 0.0049 1

10 0.0047 0.0574 0.0049 0

11 0.0047 0.0574 0.0049 2

12 0.0047 0.0575 0.0049 1

13 0.0047 0.0574 0.0049 2

14 0.0047 0.0577 0.0049 3

15 0.0047 0.0574 0.0049 3

16 0.0047 0.0576 0.0049 4

17 0.0047 0.0573 0.0049 3

18 0.0047 0.0572 0.0049 5

19 0.0047 0.0570 0.0049 6

*20 0.0047 0.0569 0.0049 7

inputs mean max s.d. <0.01
3 0.0047 0.0577 0.0049 0

4 0.0047 0.0570 0.0049 0

5 0.0047 0.0570 0.0049 0

*6 0.0047 0.0570 0.0049 0

7 0.0047 0.0572 0.0049 0

8 0.0047 0.0572 0.0049 0

9 0.0047 0.0572 0.0049 1

10 0.0047 0.0573 0.0049 0

11 0.0047 0.0573 0.0049 1

12 0.0047 0.0573 0.0049 1

13 0.0047 0.0574 0.0049 2

14 0.0047 0.0575 0.0049 3

15 0.0047 0.0574 0.0049 3

16 0.0047 0.0574 0.0049 4

17 0.0047 0.0572 0.0049 4

18 0.0047 0.0572 0.0049 5

19 0.0047 0.0570 0.0049 6

*20 0.0047 0.0569 0.0049 7

Table A6.19 -  unprocessed Table A6.20 -  V I 00’



A6.2.4 1-minute data (2 sampling intervals ahead)

inputs mean max s.d. <0.01
*3 0.0074 0.1002 0.0076 0

4 0.0074 0.1003 0.0076 1

5 0.0074 0.1005 0.0076 0

6 0.0074 0.1007 0.0077 0

7 0.0073 0.1008 0.0077 1

8 0.0073 0.1008 0.0077 1

9 0.0073 0.1009 0.0077 2

10 0.0073 0.1010 0.0077 3

11 0.0073 0.1010 0.0077 4

12 0.0073 0.1011 0.0077 1

13 0.0073 0.1014 0.0077 5

14 0.0073 0.1015 0.0077 6

15 0.0073 0.1015 0.0077 4

16 0.0073 0.1014 0.0077 5

17 0.0073 0.1012 0.0077 5

18 0.0073 0.1010 0.0077 6

19 0.0073 0.1007 0.0077 6

20 0.0073 0.1006 0.0077 6

inputs mean max s.d. <0.01
*3 0.0074 0.1003 0.0076 0

4 0.0074 0.1003 0.0076 1

5 0.0074 0.1005 0.0076 0

6 0.0074 0.1007 0.0077 0

7 0.0073 0.1008 0.0077 1

8 0.0073 0.1008 0.0077 1

9 0.0073 0.1009 0.0077 2

10 0.0073 0.1010 0.0077 3

11 0.0073 0.1010 0.0077 4

12 0.0073 0.1011 0.0077 1

13 0.0073 0.1014 0.0077 5

14 0.0073 0.1015 0.0077 6

15 0.0073 0.1015 0.0077 4

16 0.0073 0.1014 0.0077 5

17 0.0073 0.1012 0.0077 5

18 0.0073 0.1010 0.0077 6

19 0.0073 0.1007 0.0077 6

20 0.0073 0.1006 0.0077 6

Table A6.21 -  unprocessed Table A6.22 -  -100’

p.p. max error range (%)
1 interval ahead 2 intervals ahead

none 5.69 -  5.77 1 0 .0 3 -1 0 .1 5
-10 0 5 .6 9 -5 .7 7 1 0 .0 3 -1 0 .1 5

Table A6.23 -  maximum error ranges

p.p 1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none
6+K 0.47 5.70 0.49 0 3+K 0.74 10.03 0.76 0

20+K 0.47 5.69 0.49 7

+ 100
5+K 0.47 5.70 0.49 0 3+K 0.74 10.02 0.76 0

20+K 0.47 5.69 0.49 7

Table A6.24 -  possible network solutions

(Note the high number o f potentially extraneous inputs (7 out o f 20) for the two most accurate 

solutions.)
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A6.3 Predicting specific gravity 

A6.3.1 Original 30 second data

This data lies in a range less than 1.0 and as such, requires no pre-processing.

inputs mean max s.d. <0.01
3 0.0024 0.0462 0.0031 0

*4 0.0024 0.0461 0.0032 0

5 0.0024 0.0461 0.0032 1

6 0.0024 0.0461 0.0032 0

7 0.0024 0.0462 0.0032 0

8 0.0024 0.0462 0.0032 1

9 0.0024 0.0462 0.0032 0

10 0.0024 0.0462 0.0032 1

11 0.0024 0.0462 0.0032 1

12 0.0024 0.0462 0.0032 2

13 0.0024 0.0462 0.0032 3

14 0.0024 0.0462 0.0032 2

15 0.0024 0.0462 0.0032 3

16 0.0024 0.0462 0.0032 4

17 0.0024 0.0462 0.0032 3

18 0.0024 0.0462 0.0032 3

19 0.0024 0.0462 0.0032 ■ 3

20 0.0024 0.0462 0.0032 3

Table A6.25 -  1 interval ahead

A6.3.2 Synthesised 1-minute data

inputs mean max s.d. <0.01
3 0.0056 0.0952 0.0066 0

4 0.0056 0.0950 0.0066 1

5 0.0056 0.0950 0.0066 1

6 0.0056 0.0949 0.0066 0

7 0.0056 0.0948 0.0066 0

8 0.0056 0.0947 0.0066 0

9 0.0056 0.0947 0.0067 0

10 0.0056 0.0947 0.0067 1

11 0.0056 0.0947 0.0067 2

12 0.0056 0.0949 0.0067 1

13 0.0056 0.0950 0.0066 1

*14 0.0056 0.0943 0.0067 1

15 0.0057 0.0943 0.0067 1

16 0.0057 0.0946 0.0067 0

17 . 0.0057 0.0947 0.0067 3

18 0.0057 0.0951 0.0067 3

19 0.0057 0.0952 0.0067 3

20 0.0057 0.0952 0.0067 3

Table A6.27 -  1 interval ahead

inputs mean max s.d. <0.01
3 0.0052 0.0778 0.0062 0

4 0.0051 0.0768 0.0062 0

5 0.0051 0.0767 0.0062 0

6 0.0051 0.0767 0.0062 0

7 0.0051 0.0768 0.0062 2

8 0.0051 0.0767 0.0062 1

*9 0.0051 0.0765 0.0062 2

10 0.0051 0.0766 0.0062 2

11 0.0051 0.0766 0.0062 2

12 0.0051 0.0766 0.0062 2

13 0.0051 0.0766 0.0062 3

14 0.0051 0.0766 0.0062 3

15 0.0052 0.0766 0.0062 2

16 0.0052 0.0766 0.0062 2

17 0.0052 0.0766 0.0062 4

18 0.0052 0.0766 0.0062 3

19 0.0052 0.0766 0.0062 3

20 0.0052 0.0781 0.0062 1

Table A6.26 -  2 intervals ahead

inputs mean max s.d. <0.01
3 0.0089 0.1561 0.0107 0

4 0.0089 0.1558 0.0107 0

5 0.0089 0.1556 0.0107 0

6 0.0089 0.1560 0.0107 0

7 0.0089 0.1557 0.0107 1

8 0.0089 0.1555 0.0107 0

9 0.0089 0.1562 0.0108 1

10 0.0089 0.1556 0.0108 1

11 0.0089 0.1557 0.0108 2

12 0.0089 0.1554 0.0108 0

13 0.0089 0.1553 0.0108 1

14 0.0090 0.1549 0.0108 2

*15 0.0090 0.1547 0.0108 1

16 0.0090 0.1554 0.0108 1

17 0.0090 0.1565 0.0109 2

18 0.0090 0.1571 0.0109 2

19 0.0090 0.1576 0.0109 2

20 0.0090 0.1572 0.0109 2

Table A6.28 -  2 intervals ahead
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1 interval ahead 2 intervals ahead
30-second data 1-minute data 30-second data 1-minute data

4 .6 1 -4 .6 2 9.43 -  9.52 7 .6 5 -7 .8 1 1 5 .4 7 -1 5 .7 2

Table A6.29 Maximum error ranges for s.g.

intervals
ahead

30-second data 1-minute data
Struct mean max s.d. <0.01 struct mean max s.d. <0 .01

1 4+K 0.24 4.61 0.32 0 14+K 0.56 9.43 0.67 1
2 9+K 0.51 7.65 0.62 2 15+K 0.90 0.1547 1.08 1

Table A6.30 -  Specific gravity possible network solutions

A6.4 Predicting air/fuel ratio (a/f)

A6.4.1 Original 30 second data (1 sampling interval ahead)

inputs mean max s.d. <0.01
3 0.003 0.0653 0.0038 0

4 0.003 0.0656 0.0038 0

5 0.003 0.0658 0.0037 0

6 0.003 0.0658 0.0037 1

7 0.003 0.0658 0.0037 0

8 0.003 0.0653 0.0037 0

9 0.003 0.0657 0.0037 0

10 0.003 0.0656 0.0037 0

11 0.003 0.0656 0.0037 0

12 0.003 0.0657 0.0037 1

13 0.003 0.0657 0.0037 1

14 0.003 0.0657 0.0037 2

15 0.003 0.0656 0.0037 1

16 0.003 0.0658 0.0037 1

17 0.003 0.0658 0.0037 3

18 0.003 0.0659 0.0037 2

19 0.003 0.0659 0.0037 3

20 0.003 0.0659 0.0037 4

inputs mean max s.d. <0.01
*3 0.003 0.0653 0.0038 0

4 0.003 0.0656 0.0038 0

5 0.003 0.0658 0.0037 0

6 0.003 0.0658 0.0037 1

7 0.003 0.0658 0.0037 0

8 0.003 0.0653 0.0037 0

9 0.003 0.0657 0.0037 0

10 0.003 0.0656 0.0037 0

11 0.003 0.0656 0.0037 0

12 0.003 0.0657 0.0037 1

13 0.003 0.0658 0.0037 1

14 0.003 0.0657 0.0037 3

15 0.003 0.0656 0.0037 1

16 0.003 0.0657 0.0037 3

17 0.003 0.0658 0.0037 3

18 0.003 0.0659 0.0037 3

19 0.003 0.0659 0.0037 3

20 0.003 0.0659 0.0037 4

Table A6.31 -  unprocessed Table A6.32 -  ‘-100’



A6.4.2 Original 30 second data (2 sampling intervals ahead)

inputs mean max s.d. <0.01
*3 0.0062 0.1220 0.0073 0

4 0.0061 0.1227 0.0072 0

5 0.0061 0.1228 0.0072 0

6 0.0061 0.1227 0.0072 0

7 0.0061 0.1228 0.0071 1

8 0.0061 0.1230 0.0071 0

9 0.0061 0.1232 0.0071 0

10 0.0061 0.1234 0.0071 0

11 0.0061 0.1235 0.0071 0

12 0.0061 0.1236 0.0071 0

13 0.0061 0.1235 0.0071 1

14 0.0061 0.1236 0.0071 0

15 0.0061 0.1236 0.0071 2

16 0.0061 0.1236 0.0071 1

17 0.0061 0.1236 0.0071 2

18 0.0061 0.1236 0.0071 2

19 0.0061 0.1236 0.0071 2

20 0.0061 0.1235 0.0071 3

inputs mean max s.d. <0.01
*3 0.0062 0.1220 0.0073 0

4 0.0061 0.1227 0.0072 0

5 0.0061 0.1228 0.0072 0

6 0.0061 0.1227 0.0072 0

7 0.0061 0.1228 0.0071 1

8 0.0061 0.1230 0.0071 0

9 0.0061 0.1232 0.0071 0

10 0.0061 0.1234 0.0071 0

11 . 0.0061 0.1236 0.0071 1

12 0.0061 0.1236 0.0071 0

13 0.0061 0.1236 0.0071 2

14 0.0061 0.1236 0.0071 0

15 0.0061 0.1236 0.0071 2

16 0.0061 0.1236 0,0071 1

17 0.0061 0.1237 0.0071 2

18 0.0061 0.1236 0.0071 2

19 0.0061 0.1236 0.0071 3

20 0.0061 0.1235 0.0071 3

Table A6.33 -  unprocessed Table A6.34 -  -100’

p.p. max error range (%)
1 interval ahead 2 intervals ahead

none 6.53 -  6.59 1 2 .2 0 -1 2 .3 6

-10 0 6.53 -  6.59 1 2 .2 0 -1 2 .3 6

Table A6.35 -  maximum error ranges, a/f 30 second data

p.p 1 interval ahead 2 intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none 3+K 0.30 6.53 0.38 0 3+K 0.62 12.20 0.73 0

-10 0 3+K 0.30 6.53 0.38 0 3+K 0.62 12.20 0.73 0

Table A6.36 -  possible network solutions, a/f 30 second data
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A6.4.3 1-minute data (1 sampling interval ahead)

inputs mean max s.d. <0.01
3 0.0059 0.1160 0.0062 0

4 0.0059 0.1167 0.0062 0

5 0.0059 0.1149 0.0062 0

6 0.0059 0.1139 0.0061 0

7 0.0059 0.1137 0.0061 0

*8 0.0059 0.1136 0.0061 1

9 0.0059 0.1137 0.0061 1

10 0.0059 0.1136 0.0061 2

11 0.0059 0.1136 0.0061 3

12 0.0059 0.1135 0.0061 3

13 0.0059 0.1137 0.0061 4

14 0.0059 0.1137 0.0062 3

15 0.0059 0.1144 0.0062 5

16 0.0059 0.1143 0.0062 6

17 0.0059 0.1142 0.0062 4

18 0.0059 0.1143 0.0062 5

19 0.0059 0.1141 0.0062 5

20 0.0059 0.1142 0.0062 5

inputs mean max s.d. <0.01
3 0.0059 0.1161 0.0062 0

4 0.0059 0.1187 0.0062 1

5 0.0059 0.1195 0.0062 0

6 0.0059 0.1182 0.0062 0

*7 0.0059 0.1136 0.0061 0

8 0.0059 0.1138 0.0061 1

9 0.0059 0.1136 0.0061 1

10 0.0059 0.1136 0.0061 2

11 0.0058 0.1191 0.0062 0

12 0.0059 0.1144 0.0061 1

13 0.0059 0.1138 0.0061 4

14 0.0059 0.1137 0.0062 3

15 0.0059 0.1145 0.0062 5

16 0.0059 0.1145 0.0062 6

17 0.0059 0.1143 0.0062 4

18 ■ 0.0059 0.1143 0.0062 5

19 0.0059 0.1140 0.0062 4

20 0.0059 0.1142 0.0062 4

Table A6.37 -  unprocessed Table A6.38 -  V100’

A6.4.4 1-minute data (2 sampling intervals ahead)

inputs mean max s.d. <0.01
3 0.0094 0.1456 0.0095 0

4 0.0094 0.1446 0.0095 0

5 0.0094 0.1414 0.0095 0

6 0.0093 0.1406 0.0095 1

*7 0.0092 0.1405 0.0095 0

8 0.0092 0.1405 0.0095 0

9 0.0092 0.1406 0.0095 1

10 0.0092 0.1406 0.0095 1

11 0.0092 0.1406 0.0095 1

12 0.0092 0.1407 0.0095 1

13 0.0092 0.1409 0.0095 2

14 0.0093 0.1419 0.0095 1

15 0.0093 0.1424 0.0095 2

16 0.0093 0.1422 0.0095 2

17 0.0093 0.1423 0.0095 3

18 0.0093 0.1421 0.0095 4

19 0.0093 0.1418 0.0095 6

20 0.0093 0.1418 0.0095 7

Table A6.39 -  unprocessed

inputs mean max s.d. <0.01
3 0.0094 0.1456 0.0095 0

4 0.0094 0.1446 0.0095 0

5 0.0094 0.1413 0.0095 0

6 0.0093 0.1406 0.0095 1

7 0.0092 0.1405 0.0095 0

8 0.0092 0.1404 0.0095 0

9 0.0092 0.1406 0.0095 1

*10 0.0092 0.1364 0.0095 3

11 0.0092 0.1406 0.0095 1

12 0.0092 0.1408 0.0095 1

13 0.0092 0.1409 0.0095 1

14 0.0093 0.1418 0.0095 1

15 0.0093 0.1424 0.0095 2

16 0.0093 0.1423 0.0095 2

17 0.0093 0.1423 0.0095 3

18 0.0093 0.1421 0.0095 3

19 0.0093 0.1419 0.0095 6

20 0.0093 0.1418 0.0095 7

Table A6.40 - - V I 00’
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p.p. max error range (%)
1 interval ahead 2 intervals ahead

none 1 1 .3 6 -1 1 .6 7 1 4 .0 5 -1 4 .5 6

-10 0 1 1 .36 -1 1 .91 1 3 .6 4 -1 4 .5 6

Table A6.41 -  maximum error ranges, a/f 1 minute data

p.p 1 interval ahead 2  intervals ahead
struct mean max s.d. <0.01 struct mean max s.d. <0.01

none 8+K 0.59 11.36 0.61 1 7+K 0.92 14.05 0.95 0

-100 7+K 0.59 11.36 0.61 1 10+K 0.92 13.64 0.95 3

Table A6.42 -  possible network solutions, a/f 1 minute data
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A.7 Microprocessor-based Systems and Hardware Limitations

This appendix outlines the basic differences between PLCs (Progammable Logic Controllers) 

and general purpose computers. It is not intended as an in-depth study but to serve as an 

informal introduction to the topic for non-IT specialist readers. For more detailed treatments 

the reader is referred to specialist texts [e.g. Mano88, Kiss86]. An effective overview of PLC 

ladder logic programming and other related issues, which the author has used in the course of 

teaching undergraduates may be found at [PLCS05]. Details o f pricing and datasheets for 

individual component types may be obtained from major UK suppliers such as Famell, 

Maplin, RS Components. (Contact details are given in the main reference section.)

A.7.1 Microprocessor-based systems
Microprocessors are single-chip devices that together with a few additional components (e.g. 

memory chips, chips interfacing to external equipment such as keyboards and monitors, 

printers, etc) are capable of forming the bases o f a complete computer.

The microprocessor itself consists primarily o f an ALU (Arithmetic and Logic Unit) 

surrounded by temporary (data) storage registers. The ALU is capable o f performing Boolean 

logic operations on the contents o f these registers and in its most basic form, elementary 

arithmetic operations (add, subtract, multiply and divide) on integer values. Because the 

registers are integral to the chip and access the ALU directly, register operations are 

extremely fast (at the speed o f light).

In the case o f a basic integer-arithmetic ALU, operations involving floating point values 

require additional software programs located externally to the chip in system memory. This 

involves numerous transfers via the data bus between memory and the microprocessor 

registers. As a result the speed o f operation is limited by the speed o f the bus which is 

dependent on the system clock (a signal which synchronises the microprocessor’s actions), 

the width o f the data bus (in bits), and the number o f transfers required.

E.g. An IEEE-standard 32-bit representation of a floating point value on an 8-bit bus would 

require 4 transfer operations, whereas a 16-bit bus would require only 2.

The time taken for each individual transfer is dependent on system clock speed which in turn 

is limited by the physical characteristics o f the system components. The faster the operational 

speed o f the component, the higher the cost.
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The program requirement for data transfers to and from external memory is decreased as 

number o f data storage registers on the processor is increased. Again component 

(microprocessor) cost is a factor.

More recently floating point operations have been performed in hardware as facilities for 

these together with more sophisticated functions such as trigonometric and exponential 

calculations have been incorporated into microprocessor hardware. However there is a 

substantial cost differential between the simpler processors and these more sophisticated 

examples. For example the MC6800 processor which formed the basis o f many of the older 

PLC types was less than 10% of the cost o f an MC68000 processor used in the earlier Apple 

computers.

A.7.2 Limitations of Programamble Logic Controllers (PLCs)
A PLC a specific implementation of a microprocessor system whose primary purpose is to 

emulate the behaviour o f an industrial electrical switching system through the use o f virtual 

relays, timers and counters. The arrangement and interconnection o f these virtual devices is 

dictated by a user program most conventionally written using 'ladder logic' where the various 

switching circuits appear to be represented by the rungs o f a ladder [e.g. PLCS05]. This 

program is in turn, executed largely as a series o f Boolean logic statements with some integer 

arithmetic operations.

Thus a sophisticated ALU with complex floating point capabilities is not normally required 

and manufacturing costs for the device can be reduced correspondingly. Further, the results 

o f these operations are largely Boolean 'true' or 'false' which can be represented as a single 

h it' rather than a series o f ‘8-bit’ bytes. (A 32-bit floating point number would require the 

memory space of 32 such Boolean results above.) Hence further cost reductions are possible 

with respect to memory requirements. In addition, the operational speeds o f the electro­

mechanical systems being replaced by PLCs are relatively low; thus a low-speed, low-cost 

microprocessor is adequate for the majority o f implementations, again with potential for cost 

reduction.

In summary, the reduced memory capacity places severe restrictions on the amount o f data 

storage space and length o f program. Further, fewer registers and reduced bus size and speed 

constrain the number o f arithmetic calculations that may be performed with in a given time 

interval. Thus for a neural network implementation to attain a reasonable operational speed it 

is advantageous to minimise the number of computations, and memory requirements, by
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minimising the number o f network inputs and by utilising linear activation functions rather 

than the more computationally demanding non-linear functions.
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