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Off-line condition monitoring of powered train doors

Abstract

Powered passenger train door unreliability is a major source of in-service delay and 
cancellation to passenger train services. This unreliability costs UK Train Operating 
Companies significant amounts o f money through Railtrack charges, customer 
compensation payments and loss o f revenue as well as door maintenance and repair 
procedures. The successful and reliable identification of incipient powered door faults 
could therefore help to reduce these charges and subsequent maintenance costs, 
increase train reliability and potentially reduce safety-related incidents.

This thesis presents the research and development o f an off-line condition monitoring 
tool fo r electric powered passenger train doors, the Door Analysis Tool. The Door 
Analysis Tool was developed through a two-year, collaborative TCS project between 
Sheffield Hallam University and Interfleet Technology, an international railway 
engineering consultancy. The project was partly funded by the Department o f Trade and 
Industry.

This thesis focuses on a number of primary areas of work, namely:
• Introduction to powered train doors and condition monitoring in the railway industry;
• Identification of suitable data collection and condition monitoring equipment fo r

powered train doors;
• Development of suitable data analysis and interpretation algorithms;
• Development of a commercially viable prototype condition monitoring product fo r

powered passenger train doors, the Door Analysis Tool;
• Validation o f the Door Analysis Tool through theoretical and practical testing;
• Identification of further development opportunities and further future work.

The Door Analysis Tool uses clamp-on current probes to measure the door motor 
current characteristic and traction interlock status during opening and closing cycles to 
monitor the performance of train doors. It offers a range of opportunities to different 
parties within the railway industry to help reduce the impact o f powered train door 
unreliability and thereby improve train performance through the identification of faulty 
train doors prior to costly in-service failures.

The practical testing of the prototype Door Analysis Tool showed that it functions as 
intended in a train maintenance depot environment and that it is capable o f collecting, 
analysing and classifying data relating to train door performance.

The theoretical tests presented the prototype Door Analysis Tool with nine different sets 
of data, each representing a range of faulty and fault-free door operations. The Door 
Analysis Tool was able to correctly classify six of the nine tests. Three o f the tests 
incorporating m inor fault conditions were not highlighted by the door performance 
classification, however all o f the theoretical faults were identifiable through inspection o f 
the analysis parameters, which can be stored after each test. The sensitivity o f the Door 
Analysis Tool analysis routines can be adjusted to ta ilo r the tool to different systems.
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1. Introduction

Powered passenger train door unreliability is a m ajor source of in-service delay and 

cancellation to passenger services. This unreliability costs train operating companies 

(TOCs) significant amounts o f money through Railtrack charges, customer compensation 

payments and loss of revenue as well as door maintenance and repair procedures. The 

successful and reliable identification of incipient powered train door faults could 

therefore help to reduce these charges and subsequent maintenance costs, increase 

train reliability and potentially reduce the likelihood of safety-related incidents.

There are a large number o f powered train doors currently in use in the United Kingdom 

and even a small fleet o f trains contains a large number o f doors. Although an 

individual powered train door can be generally quite reliable, the high number of doors 

on a train, combined with their interconnection within the traction interlock safety circuit, 

makes powered passenger doors one of the largest sources o f train unreliability. 

Condition monitoring o f powered train doors could help to identify problems or faults 

before they occur in passenger service. However, fo r condition monitoring to be a 

commercially viable engineering solution, the technique must require no retro-fitting o f 

components and no modification to train systems, since this would be prohibitively 

expensive due to the high number o f doors. This implies that the solution must exploit 

non-intrusive, non-continuous monitoring techniques, which can be employed whilst 

trains are not in passenger service. The solution must also be portable and self- 

contained as well as simple and quick to use so that every door in a fleet o f trains can 

be effectively monitored.

This thesis discusses the development and testing of an off-line condition monitoring 

device fo r use with powered train doors, which is based upon the work undertaken by 

Simon Perkin as part of a Department of Trade and Industry-funded Teaching Company 

Scheme (TCS) project. The project was a collaboration between Interfleet Technology 

Limited and Sheffield Hallam University (SHU). The thesis details the identification o f a 

suitable condition monitoring technique, suitably tested and refined through practical 

depot testing, as well as the refinement o f data analysis algorithms to identify normal 

and abnormal door operation. The thesis finally presents the development o f a 

microprocessor-controlled off-line condition monitoring tool fo r powered train doors.
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2. Powered train doors

This chapter will focus on the fundamental area of powered train doors, briefly reviewing 

their history and examining the main advantages and disadvantages of powered train 

doors in comparison to older slam doors to explain why they have become a standard 

feature of modern railway vehicles. Additionally, the main features and components of 

electric and pneumatic powered train doors will be discussed. The commonalties and 

fundamental differences between these two types of door system will be explained, 

allowing the benefits and drawbacks of both systems to be identified.

2.1 A brief history of powered doors

Powered train doors are now a standard feature of modern and new-build trains, 

however powered doors first entered general mainline passenger service in 1938 

on the LMS Mersey-Wirral electric multiple unit (EMU) stock1 (figure 2a).

Sisif

Figure 2a: Photograph o f a LMS Mersey-Wirral Electric M ultip le U n it 19381

Before the widespread introduction of powered doors, passenger trains were fitted 

with doors that had to be manually opened and closed by the passengers 

themselves, known as slam doors. This type of door is still in use today w ithin the
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UK rail industry, fitted to the majority of high speed train (HST) passenger coaches 

(Mark 2 and M ark 3 type), which are currently used on a high proportion o f long 

distance, inter-city services. Slam doors passenger vehicles are also still in 

operation on a range of suburban rail vehicles (e.g. Class 101 diesel multiple unit 

(DMU), 308 EMU or 411 EMU). The Rail Safety Regulations 1999 require that all 

Mk 1 rolling stock (slam door) rail vehicles must be withdrawn from  service, and 

that all trains must be fitted with central door locking by the end of 20042.

In the mid 1990s, all high-speed trains featuring slam doors were fitted with a 

central door locking safety system. This modification successfully reduced the 

number of injuries and deaths caused by passengers falling from moving trains at, 

or between, stations. It also helped to reduce accidents caused by passengers 

attempting to board moving trains. The system allows the train driver or guard to 

lock, or unlock, every external passenger train door from  a single location and 

signified the continuing process of transferring door control away from  the 

passenger.

2.2 Powered doors versus slam doors

Powered train doors offer a number of distinct advantages over the older slam 

type of door, which explains why powered doors have become a standard feature 

o f modern trains. These advantages can be summarised as follows:

1. A passenger inside the train or on the station platform  must only push a 

single button in order to open or close a train door.

2. The ability of passengers to operate powered train doors can be restricted in 

order to minimise the risk of incidents that could result in injury or death.

3. Powered train doors are not fitted with opening windows. This reduces the 

risk of injury or death to passengers and stops objects being thrown from  the 

train.

4. The train guard or driver can remotely operate all, or a selection of, the 

doors on the train. Consequently, platform staff do not have to close any 

open doors before the train can leave a station, reducing stopping times and 

total journey times whilst maximising the likelihood of a punctual service.
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5. Powered doors can automatically close after a defined period of inactivity, 

helping to maintain optimum levels of passenger comfort (e.g. temperature 

and humidity) throughout a train journey.

6. Powered doors imply a certain level of technology to the fare-paying public. 

This may play a significant role fo r TOCs in helping to generate and 

maintain the company corporate image. Although image is traditionally 

associated with service punctuality and reliability, in-train features, service 

and passenger comfort, the first and last part o f a train that all of the 

passengers will encounter will be the train doors.

Although powered train doors would appear to be a clear technological 

improvement upon basic slam doors, they introduce new problems as well as 

operational and safety issues. The typical disadvantages of modern powered 

passenger train doors are summarised below:

1. Even basic powered train doors are much more complex in design and 

operation than traditional slam-type doors. This is because they move 

through complex paths, must be controlled locally and remotely, feature 

automatic locking and other safety systems. Consequently they are normally 

more difficult to set-up, maintain or overhaul, which leads to poor in-service 

performance and reliability3.

2. External powered train doors are safety-critical components, which must 

remain operationally safe at all times. This means that if a fault does occur, 

safety must not be compromised (i.e. the doors must fail safely). The doors 

must only open when a command is given by the driver/guard and, even

then, only when it is safe to do so (when the train is stationary). The doors 

must remain closed and positively locked whilst the train is not at a station, 

however the passengers must be able to easily egress from  the tra in in an 

emergency. Powered train doors must be able to detect obstructions, such as 

a piece of baggage, a pushchair or a hand, norm ally during the door 

closing cycle and must a llow the obstruction to be removed before the train 

can depart. The force capable o f being exerted in the direction o f travel by 

any part of the door or exposed door mechanism, during either opening or 

closing, should preferably be in the range 80 N to 100 N and should not
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exceed 120 N' 4. All of these features demand 100% reliable operation and 

the failure of any one of the features can cause a train to be withdrawn from 

service.

3. Powered train doors are normally designed to tight mechanical tolerances 

and so are quite sensitive to changes in their immediate environment. The 

dynamic response of the train body whilst in-service (due to passenger 

loading or wheel-rail interaction fo r example), temperature changes or 

simple vandalism and rubbish can all lead to abnormal o r incorrect 

operation.

4. As the complexity o f the powered train door increases, so naturally does the 

cost o f each installation. This is true fo r the initial equipment cost as well as 

fo r the cost o f spares, replacement components o r overhaul servicing. 

However, the total cost of a single powered train door is negligible and 

incidental in comparison to the cost o f a new train.

Despite these problems, powered doors are now considered a standard 

component o f modern trains and new trains must feature powered passenger train 

doors rather than slam doors. From their initial introduction into passenger trains, 

powered doors continue to be developed to incorporate new technology if it can 

offer improved performance or additional features. An example o f this is the 

selective door opening system (SDO) on the Adtranz Class 375 Electrostar fleet o f 

trains. This system uses the global satellite positioning system (GPS) to identify the 

current location of the train and to control the opening of the appropriate 

passenger doors at the next station on the route. SDO aims to improve passenger 

safety fo r train services that operate at stations whose platforms are shorter than 

the train, which is a particular problem in the south of the United Kingdom.

However, powered doors continually prove to be one of the most unreliable on- 

train systems. For modern doors, this may partly be due to the use of 

inappropriate technology that is simply unreliable or that has not been properly 

developed fo r use within a harsh railway environment5. O ther factors concern the 

m odular manufacture and assembly o f modern trains. Powered doors are
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normally designed and tested by a sub-contracted manufacturer, often in isolation 

from  the train. The doors normally require highly rigid mountings in order to 

operate correctly and reliably, however the train body is designed to flex and 

deform under normal train loading and operating conditions, resulting in door 

systems operating outside o f the design tolerances. Incorrect maintenance, 

overhaul or fault-finding procedures as well as poor original design all contribute 

to the problem. Finally, powered doors suffer a significant amount o f passenger 

abuse, either as deliberate vandalism or just through normal usage, and are often 

exposed to extreme temperature and weather conditions on a daily basis. Irwing 

discusses the causes of powered door unreliability and suggests possible 

improvements or solutions in more detail5.

2.3 Major components of a powered train door system

In order to successfully condition m onitor any electro-mechanical component, it is 

firstly necessary to fully understand the system. This section will identify the major 

components o f a generic powered train door system, explaining their operation 

and purpose.

1. Door leaves

These are the most visible components of a powered door system, 

comprising the door panel and window structure. Passenger powered doors 

tend to have two leaves that move in opposing directions, providing a large 

portal fo r passenger embarkation and disembarkation. Although less 

common, single leaf passenger powered doors do exist (e.g. Class 156, 

British Rail Mark 4 passenger coaches or Eurostar Class 373), though the 

width o f the leaf is normally slightly larger to provide adequate portal 

dimensions. Powered cab doors are always of a single leaf design that is a 

sim ilar width to a single powered passenger door leaf. For safety reasons, 

cab doors are normally only powered fo r the first portion of the door 

opening motion and the driver must then physically fully open the door. This 

stops drivers from  being injured if they open the door whilst leaning out of 

the cab door window.
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2. Power source

This is arguably the most important m ajor component o f a powered door 

system, without which it would not function. Train powered doors are fitted 

with pneumatic actuators or electric motors, because both compressed a ir 

and electricity are readily available on all trains.

Compressed a ir at a main reservoir pressure in the range of 7 bar to 8 bar 

is used on all railway vehicles as part o f the braking system and so adapting 

the system to service other on-train functions, including powered doors, is a 

logical progression. Linear pneumatic actuators are the common power 

source fo r pneumatic doors (e.g. Class 507 /508  or Class 313), however 

rotary pneumatic actuators are sometimes also used (e.g. Eurostar Class 

373 passenger powered doors).

Similarly, electricity is universally available on both diesel (e.g. Turbostar 

Class 170) and electric trains (e.g. Heathrow Express Class 332) and is 

extensively used to operate and control nearly all aspects of trains. Electric 

motors, normally d.c., can be supplied directly from  the 110 V d.c. train line 

or alternatively from 24 V d.c., both of which are commonly available on 

trains.

3. Transmission and mechanical linkage

It is necessary to transmit mechanical power from the pneumatic actuator or 

the electric m otor to the door leaves so that they can be opened and closed. 

This can be achieved in any number o f different ways in various mechanical 

configurations, but common examples are toothed belt drives (e.g. Class 

507/508), lead screw and gearbox (e.g. Class 323 or Class 332) or lead 

screw and toothed belt (e.g. Class 333). In addition, mechanical linkages, 

hinges and rollers are used to restrict door degrees o f freedom  whilst 

helping to guide the door leaves during operation.
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4. Mechanical locking mechanism

The locking mechanism is the main safety feature o f passenger train doors, 

which also forms part of the train traction interlock circuit (see below). Each 

train door must be fitted with a mechanical locking mechanism that 

physically stops the doors from  being opened at an inappropriate time either 

accidentally, or by a passenger (inside the train or on the station platform). 

However, in an emergency, it must be manually possible to release the 

locking mechanism and open the train doors to a llow passenger egress.

5. Control system

A control system is necessary fo r each powered door to control the operation 

of the door. For pneumatic doors, the control system may simply consist o f a 

number of valves and regulators, which control the flow  of compressed a ir 

from  the main train reservoir to the door actuator cylinder. Modern electric 

doors feature dedicated control units, which contain a printed circuit board 

(PCB) featuring software-controlled microprocessors. The microprocessors 

rely on electrical signals from  sensors or microswitches to correctly control 

the powered doors.

The control system must also be able to interact with other systems, such as 

obstruction detection, emergency egress /  access, train functions and input 

from the passengers via the door control panel. Consequently the control 

system must not be able to compromise the safe operation o f a powered 

door and fo r this reason, the safety-critical aspects of door control have 

always been controlled by hardwired electrical circuits, rather than software. 

The response of an electric circuit containing switches and relays to different 

system inputs can be analysed and predicted, whereas the behaviour of 

complex software in response to any number o f different inputs, is much 

more difficult to guarantee.

6. Traction interlock circuit

The traction interlock circuit is a major safety feature o f all passenger trains 

that operate on the United Kingdom rail network. It ensures that all o f the 

external train doors (powered or slam) are correctly closed and locked
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before the driver is able to gain tractive power. The traction interlock system 

is an electrical circuit connected in series to a number o f microswitches that 

are fitted to each external door. When a door is closed and locked, the 

microswitches complete the traction interlock circuit locally and so 

consequently all o f the switches fo r each door on the train must be correctly 

operated in order fo r the driver to gain tractive power. Conversely, if the 

traction interlock circuit is broken whilst the train is not at a station, the train 

brakes will be automatically applied. The circuit w ill be broken if a door 

opens in traffic, due to a microswitch fault or in response to a passenger 

operating an emergency egress device.

2.4 Pneumatic doors versus electric doors

Until the early 1980s the majority of, if not all, powered train doors utilised 

pneumatic systems as the power source. This was because compressed a ir was 

readily available on trains and probably partly because railway engineers were 

fam ilia r with pneumatic actuators and the associated pneumatic system 

components. Control methodologies enabling the powered doors to meet the 

operational requirements were well understood, as were the common types of 

problems, maintenance requirements and overhaul procedures. In comparison, 

the technology required to implement electric doors was still new and untested in a 

railway environment and would lead to more complex, and consequently more 

expensive, powered door systems. However, as the component cost of 

microprocessor technology has reduced whilst improving system reliability, more 

fleets o f trains were introduced that featured electrically powered train doors. 

Currently, a high proportion of new build trains feature electric powered doors 

and this trend seems set to continue in the near future. This section will h ighlight 

the advantages and disadvantages of both types of system.

With respect to the performance of a set of powered doors, an electric system 

offers a much greater degree of control over the velocity and acceleration than the 

pneumatic counterpart, as detailed by Morvan6. Ideally a door will open at a near 

constant velocity, which is d ifficult to achieve with a pneumatic actuator, but can
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be accurately controlled using a motor in conjunction with an encoder to feed­

back the real-time position of the door. It is also difficult to accurately control the 

final position of the pneumatic actuator piston (and hence the door leaf) w ithout 

using complex control circuits. As a result, pneumatic doors tend to open and 

close quickly and jerkily, or slowly and smoothly. In comparison, electric powered 

doors can be accurately controlled during the complete door operating cycle using 

software in accordance with the demands of the train operator or in line with 

current legislation. The door control software can also be upgraded to improve the 

door performance, if necessary.

Compared to the current drawn by traction motors and other current-intensive 

train systems, electric powered doors have minimal power requirements and all of 

the doors could operate at the same time with no observable affect on the 

performance of other on-train electric systems. Conversely, the operation of one 

electric door will not affect the correct performance of another electric door on the 

train, which is not necessarily true fo r pneumatic doors. If the a ir demand from 

other train systems is high, then the performance of pneumatic doors can be 

compromised.

Electric powered doors are also able to offer a much wider range o f ancillary 

features without the need fo r extra components. Examples are obstruction 

detection, self-diagnosis and fault detection, system monitoring and event logging, 

all of which can be achieved by an electric door electronic microprocessor, but 

which would need to be added as a secondary system fo r a pneumatic door 

system. The introduction of these secondary components, such as transducers or 

microswitches, can adversely affect the reliability o f the door system that they are 

attempting to improve if their reliability is equal to or less than the reliability o f the 

door system.

The maintenance and overhaul requirements of both systems are also markedly 

different. M ajor pneumatic components, such as the actuator components, need to 

be lubricated, replaced or cleaned on a periodic basis (typically based upon either 

time in service or mileage). This often requires the entire door system to be 

dismantled, which reduces the availability o f the train and increases the likelihood
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of introducing new faults into the system. In comparison, electric motors require 

little or no maintenance, though it is advisable to periodically check fo r 

misalignment or component wear. A  disadvantage of microprocessor-controlled 

electric doors is that it is much more difficult to diagnose and correct electronic 

hardware or software-related problems, which can lead to the philosophy of 

simply renewing suspected faulty components if they are within a warranty 

agreement.

Based upon all o f these factors, it is difficult to accurately compare the financial 

implication of selecting either an electric or a pneumatic door system. It is likely 

that the initial costs o f an electric door system are much greater due to the higher 

complexity o f components, such as the electronic control unit. This cost has to be 

offset against the greater operating, maintenance and overhaul costs o f pneumatic 

door systems. The final financial factor to be considered, though often overlooked, 

relates to the cost o f installing and operating a suitable power generation system 

(e.g. compressor or power converter)6.

2.5 Powered door configurations

One of the first decisions that must be made when selecting or designing a 

powered door system fo r use on a train is the door configuration. There are four 

basic configurations or types of powered door, which describe the motion of the 

door leaves and the configurations are generally independent of the door power 

source. This section will discuss the features o f each door configuration (sliding, 

sliding plug, swing and folding doors) as well as the advantages or disadvantages 

of each system.

2.5.1 Sliding doors

This configuration features door leaves that move in opposing directions in a 

plane parallel to the side o f the train. The door leaves are slightly recessed 

with respect to the train body so that they can slide into a pocket formed 

between the inner and outer skin of the train. This type of configuration is
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commonly used in conjunction with linear pneumatic actuators, which are 

ideally suited to generating the necessary door leaf one-dimensional motion. 

The linear nature of the motion normally results in the simplest transmission 

and linkage arrangement o f the three types of door configurations.

Figure 2b: Diagram showing a typical sliding door opening cycle

A disadvantage of sliding doors is that it is extremely difficult to successfully 

seal between the door leaf and the inner/outer skins and so a common 

problem for this type of powered door is therefore moisture, d irt o r debris 

ingress into the door pockets. This can lead to operational problems and 

can reduce the life of the different components, either through increased 

wear or corrosion.

Sliding type powered doors have been in general use on trains since the 

1930s and the system is commonly found on older UK rolling stock due to 

its simplicity. The simple door motion is ideally suited to rapid operation, fo r 

example on suburban and metro applications featuring frequent stops and 

high passenger densities7. Examples of rolling stock that use this powered 

door configuration are:

• Class 507 /508  EMU (pneumatic doors)

• London Underground EMU (pneumatic doors)

• Class 150/2 DMU (pneumatic doors)

• Class 313 DMU (pneumatic doors)

2.5 .2  Sliding plug doors

This configuration is sim ilar to sliding doors and is currently the most 

common door configuration fo r new passenger trains. When closed, the 

doors sit flush with the body of the train, presenting a continuous smooth 

surface. This is a major factor fo r the popularity o f this configuration, since it
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results in an aesthetically pleasing smooth side to the train and an improved 

seal against weather and noise.

As before, the name of the configuration is derived from  the door motion, 

which is predominantly perpendicular to the train side (unplugging) as the 

doors first begin to open. When the doors have unplugged from  the train 

body, the door leaves move in opposing directions (sliding) in a plane 

parallel to the train side until they are fully open. Seals around the edges of 

each door leaf also effectively stop the ingress of moisture, d irt o r debris into 

the train and the door sub-system as well as providing good resistance 

against pressure pulses. Consequently, the complexity of the actuation 

mechanism and the associated set-up problems are the main disadvantages 

of sliding plug doors, which are otherwise extremely robust and suitable fo r 

modern train applications.

w
-I / / / / / /

Figure 2c: Diagram showing a typical sliding plug door opening cycle

This powered door configuration requires the most complex mechanical 

arrangement to ensure that the doors unplug smoothly, often using guides 

and linkages to restrict the door leaf degrees of freedom. The two different 

stages of door motion (unplugging and sliding) are not easily generated 

using a single linear pneumatic actuator, however a rotary pneumatic 

actuator, or more commonly an electric motor, is a suitable power source 

when combined with a lead-screw mechanical transmission system. Sliding 

plug type powered doors have been in general use since the 1950s7. 

Examples of rolling stock that use this powered door configuration are:

• Northern Spirit Class 333 EMU (electric doors)

• Heathrow Express Class 332 EMU (electric doors)

• Eurostar Class 373 EMU (single leaf pneumatic doors)

• Mark 4 British Rail standard coaches (single leaf pneumatic doors)

• Virgin Voyager DMU (pneumatic doors)
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2 .5 .3  Swing doors

Powered train doors featuring the swing configuration use rotary motion to 

generate a sim ilar operation to sliding plug doors. Each door leaf is 

connected to a vertical post located just within the passenger compartment 

area of the train, which often doubles as a passenger support when the 

doors are closed. The door power source transmits rotary motion to both 

posts, causing them to rotate about their axis o f symmetry, which in turn 

opens or closes the door leaves. Whilst in motion, the door leaves are kept 

parallel to the train body by linkages connecting each door leaf to the 

respective post.

Figure 2d: Diagram showing a typical swing door opening cycle

The main advantage of this configuration is in the simplicity o f the rotary 

mechanism that generates the door motion. Additionally, the door leaves sit 

flush with the train body when closed, which is both aesthetically pleasing 

and functional, because it facilitates the sealing o f the door portal against 

d irt and moisture ingress. A  disadvantage of this configuration is that at least 

part of the rotating post and support fram e assembly must be located within 

the passenger area of the train. This could lead to passenger injury and it is 

necessary to carefully consider the extra safety implications when designing 

and testing this type of door. Swing type powered doors have been in 

general use since the early 1960s, though they tend to be mainly used in 

light rail vehicle applications7. Examples of rolling stock that use this 

powered door configuration are:

• Sheffield Supertram EMU (pneumatic doors)

• Birmingham tram EMU (electric doors)

• Class 158 DMU (pneumatic doors)

• Class 220, 221 'Voyager' DMU (single leaf pneumatic doors)
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2 .5 .4  Folding doors

The folding powered train door configuration is characterised by door leaves 

that fold inwards during opening and are commonly used on road bus 

powered doors. Their use is limited to a number o f classes of train that were 

based upon standard road buses, such as Class 142, 143, 144. This 

configuration comprises two door leaves, each featuring two separate 

sections that are hinged in the middle. This allows the door leaves to fold as 

the doors open and close.

Figure 2e: Diagram showing a typical folding door opening cycle

Folding powered doors are not particularly suitable fo r high speed train 

services, since it is particularly difficult to seal the doors against the weather 

and, consequently they also have poor resistance to pressure pulse 

disturbances7. Examples of rolling stock that use this powered door 

configuration are:

• Class 142, 143, 144 DMU (pneumatic doors)
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3. Railway industry condition monitoring

Condition monitoring is not a new concept to the UK rail industry. A wide range of 

condition monitoring applications has been developed and successfully implemented to 

address particular engineering problems. The aim of railway based condition 

monitoring applications is identical to those in other industries, namely to identify faults 

with systems or components before a critical or catastrophic failure occurs. This is 

particularly important in the railway industry, where the catastrophic failure o f a 

locomotive can cause m ajor network disruption or where the failure o f an individual 

component could result in dam age to a larger, higher-value system. Examples of current 

rail industry condition monitoring applications include:

• Traction-based (e.g. diesel engine or gearbox oil, traction motor m onitoring8)

• Rolling stock (e.g. brake pad wear, wheel profile monitoring)

• Power collection (e.g. pantograph9,10 or overhead line monitoring)

• Track (e.g. track geometry, rail profile, gauging monitoring)

• Infrastructure equipment (e.g. point motors /  heaters, flange lubricator monitoring)

Prior to privatisation, British Rail Research was heavily involved with the development of 

railway condition monitoring applications, such as DEMON, Padview, Panchex, TRACS 

or Headline, fo r example11. Many new-build or modern trains are fitted with monitoring 

systems, aimed at providing comprehensive information about train sub-system 

performance. Nesbitt12 identifies the type of monitoring systems fitted to new-build trains 

in the UK as well as a range o f train systems that could benefit from  condition 

monitoring, including braking systems, heating and a ir conditioning, engines, auxiliaries 

and passenger door systems.

Current research in the field of rail-related condition monitoring is also much in 

evidence through the Advanced Railway Research Centre at the University o f Sheffield 

and the Rail Systems Engineering group at the University of Birmingham. A  review of 

journals and publications also reveals that railway focussed research continues to be 

undertaken through a number of institutions on a range of topics, including locomotive 

traction motors8, single-throw mechanical equipment13, generic fau lt detection and 

isolation14, condition related maintenance15 or remote diagnosis and m onitoring16.
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Fararooy13,17,18, A llan18 and Lehrasab13,17,19 have conducted research specifically relating 

to single-throw mechanical equipment, which includes powered train doors. Their 

research focussed on the condition monitoring o f pneumatically powered passenger 

train doors, however their research is predominantly laboratory based. The condition 

monitoring solution developed is a complex, continuous system designed to be installed 

within a train on a per-door basis. However, retrofitting even low value equipment to a 

fleet of train doors is not currently financially viable, and so the system is presumably 

limited to new build fleets o f trains.

Dassanayake20 has recently completed research at the University o f Birmingham 

concerning pneumatic powered train passenger doors, sponsored by Vapor UK, the UK 

branch of the Canadian door manufacturer. The research addressed the continuous on­

line monitoring o f pneumatic sliding train doors using a variety o f different transducers 

installed on a per-door basis. The performance of each door was analysed and 

classified using a range of advanced analysis techniques, including neural networks fo r 

fault identification and classification21.

This thesis discusses the development of a prototype condition monitoring tool fo r 

powered train doors that does not require any retro-fitting o f equipment to door systems. 

The condition monitoring detailed in this thesis is non-continuous or off-line and would 

be undertaken at train maintenance depots. This implementation will a llow the condition 

monitoring tool to be used both on existing passenger doors and new build door 

systems. To further extend the applications, the data analysis routines could be 

incorporated into new build fleets as part o f the door control systems. No previous 

research relating to this particular aspect of condition monitoring was identified.
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4. Powered train door condition monitoring

To successfully condition m onitor a complex electro-mechanical system such as powered 

train doors, it is necessary to understand the roles and purposes of the different 

components. Subsequently, the component (or components) to be monitored must be 

identified which is most likely to provide useful data relating to the condition of the door 

system. The selection process also needs to consider the parameters that can be 

measured, the measurement technique and the frequency of the monitoring process. All 

o f these considerations are inter-related and there may be multiple suitable condition 

monitoring techniques fo r any particular system. For powered train doors, the data 

generated by the selected condition monitoring technique will need to be analysed and 

interpreted in order to determine whether a door is operating correctly. This analysis is 

most effectively undertaken by a computer, which can also process and present the raw 

data or results as required. For this reason, transducers will be needed to measure 

specific parameters and generate corresponding signals to be interpreted by a 

datalogger. The datalogger will a llow  the signals from the transducer to be transferred 

to a personal computer (PC) and stored fo r further analysis or interpretation.

This section will present the different component, parameter, transducer and datalogger 

options that were considered fo r the condition monitoring of both electric and pneumatic 

powered train doors. The final choice of solution for pneumatic and electric powered 

train doors will be presented along with the reasoning behind each selection. 

Additionally, any specific items of equipment that were selected to implement the 

condition monitoring technique will be identified.

State A

State BState A

Cyclical system Single-throw system

Figure 4a: Diagrammatic representation o f cyclical and single-throw systems
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Powered train doors are unlike other common electro-mechanical condition monitoring 

applications, because they are an example of single-throw mechanical equipment. This 

means that the system does not constantly repeat one specific motion, fo r example a 

rotating drive shaft. A  single-throw mechanical device moves from one state to another 

(e.g. state A to state B) and this state transition is defined as a forward throw. Transition 

from state B to state A  is defined as a reverse throw 19. This second motion is norm ally 

simply the reverse of the first motion (figure 4a). It should therefore be possible to 

determine the condition of the powered door system by observing and analysing aspects 

o f the door performance during the opening and closing cycles.

4.1 Monitoring pneumatic doors

Figure 4b identifies the components that could form  the basis o f a performance 

monitoring solution fo r pneumatic powered train doors. For each selected door 

component, one or more potential parameters are identified, along with a suitable 

unit o f measurement, a typical transducer and contributory factors such as the 

cost, difficulty or reliability of implementing the condition monitoring solution.

Component Parameter Units Transducer

D
ifficulty1

no
CO 
—♦*

R
eliability2

R
etrofit3

Pneumatic actuator Pressure Bar Pressure 2 2 3 Maybe

Air flow Is'1 Flowmeter 5 5 1 Yes

Vibration mms"2 Accelerometer 5 3 4 Yes

Door leaf Displacement mm Draw-wire 3 2 1 Maybe

Velocity mms’1 Draw-wire 3 2 1 Maybe

Acceleration mms'2 Draw-wire 3 2 1 Maybe

Mechanical lock Displacement mm Linear motion 5 3 2 Yes

Traction interlock Current mA Current probe 1 2 1 No

Figure 4b: Potential performance monitoring solutions fo r pneumatic train doors

1 Difficulty /  cost of measurement, data collection and analysis (1 - low, 5 - high)

2 Reliability of measurement, data collection and analysis (1 - high, 5 - low)

3 is modification /  retrofitting required to take reliable measurements? (Yes /  Maybe /  No)
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This review of the condition monitoring options fo r pneumatic powered train doors 

formed the basis o f the project. Based upon this assessment, three different 

parameters were chosen as those most likely to lead to a successful condition 

monitoring solution within the project constraints. The selected parameters are:

• Pneumatic actuator a ir pressure during door opening and closing cycles;

• Door leaf displacement during opening and closing cycles;

• Traction interlock circuit status during opening and closing cycles.

These three parameters are most likely to be sensitive to incorrect door set-up,

component failure or other likely causes of door unreliability. The actuator cylinder 

a ir pressure will provide useful information about door operation12 as well as the 

door operating forces, whilst the door leaf displacement will define the resulting 

output o f the power source, including derived velocities and accelerations. The 

status o f the traction interlock should provide insight into a common source of 

train unreliability, namely failure or incorrect setting of microswitches linked to the 

traction interlock circuit. All o f these parameters can also theoretically be 

measured using relatively cheap transducers without requiring modification to 

existing train systems.

The other parameters in the table were not deemed suitable as potential condition 

monitoring solutions fo r pneumatic powered train doors. The main factors behind 

this decision were:

• The parameter would not provide useful information concerning the door 

condition or performance (e.g. pneumatic actuator vibration);

• The parameter would be too difficult, expensive or unreliable to measure;

• The measurement method would require modification to train systems, or 

would require tailoring to different types of train door.

4.2 Monitoring electric doors

Figure 4c identifies the components that could form  the basis of a performance 

monitoring solution fo r electric powered train doors. For each selected door 

component, one or more potential parameters are identified, along with a suitable
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unit of measurement, a typical transducer and contributory factors, such as the 

cost, difficulty or reliability o f implementing the condition monitoring solution.

Component Parameter Units Transducer

D
ifficulty1

Oo
in

R
eliability2

R
etrofit3

Motor Current mA d.c. Current probe 1 2 1 No

Temperature °C IR camera 1 5 4 No

Shaft rotation o Rotary encoder 5 3 2 Maybe

Vibration mms'2 Accelerometer 5 3 4 Yes

Door leaf Displacement mm Draw-wire 3 2 1 Maybe

Velocity mms'1 Draw-wire 3 2 1 Maybe

Acceleration mms'2 Draw-wire 3 2 1 Maybe

Mechanical lock Displacement mm Linear motion 5 3 2 Yes

Traction interlock Current mA d.c. Current probe 2 2 2 No

Transmission Vibration mms'2 Accelerometer 5 3 4 Yes

Table 4c: Potential performance monitoring solutions fo r electric train doors

This review of the different condition monitoring options fo r electric powered train 

doors formed the basis of the project. Based upon this assessment, three different 

parameters were chosen as those most likely to lead to a successful condition 

monitoring solution within the project constraints. The selected parameters are:

• Door m otor electrical current during opening and closing cycles;

• Door leaf displacement during opening and closing cycles;

• Traction interlock circuit status during opening and closing cycles.

These three parameters are most likely to be sensitive to incorrect door set-up, 

component failure or other likely causes of door unreliability. The m otor current 

will provide useful information about the load on the door m otor (forces to operate 

the door), because the torque is proportional to the electrical current22. The 

displacement o f the door leaf will define the resulting output o f the power source, 

including derived velocities and accelerations. The status o f the traction interlock

1 Difficulty /  cost of measurement, data collection and analysis (1 - low, 5 - high)

2 Reliability of measurement, data collection and analysis (1 - high, 5 - low)

3 Is modification /  retrofitting required to take reliable measurements? (Yes /  Maybe /  No)
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should provide insight into a common source of train unreliability, namely failure 

or incorrect setting of microswitches linked to the traction interlock circuit. All o f 

these parameters can also theoretically be measured non-intrusively using 

relatively cheap transducers without requiring modification to existing train 

systems. In figure 4c, the traction interlock parameter was given slightly higher 

scores than the m otor current parameter, even though it utilises exactly the same 

technique. This is because the traction interlock signal current will probably be two 

orders o f magnitude smaller than the applied motor current (e.g. 25 mA 

compared to 2500 mA) and consequently more difficult to measure.

The other parameters in the table were not deemed suitable as a potential 

condition monitoring solution fo r electric powered doors. The main factors behind 

this decision were identical to those highlighted fo r pneumatic doors, namely that 

the:

• Parameter would not provide useful information concerning the door 

performance (e.g. temperature of door motor).

• Parameter would be too difficult, expensive or unreliable to measure.

• Measurement method would require modification to train systems, o r would 

require tailoring to different type of train door.
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5. Initial data collection

Three critical phases in the development o f a viable condition monitoring technique are:

1. Analysis o f the system that is being monitored, both theoretically and practically;

2. Testing of the data collection process;

3. Collection of sample data.

These phases are im portant because without an understanding of the target system, it 

will be difficult to analyse and understand the data that is generated by the condition 

monitoring process. Analysis o f the system will a llow the likely failure modes to be 

determined, assuming they are not already known, and provide insight into the manner 

in which each failure mode can be identified through the condition monitoring data. 

Basic testing o f the transducers in the operating environment o f the condition monitoring 

system is also vital to allow early identification of operational or technical problems. This 

forms an integral part o f the final data collection phase, which provides prelim inary data 

upon which the condition monitoring process will be based.

This thesis is concerned with the development o f a generic condition monitoring 

technique that can be applied to a wide range of pneumatic and electric powered 

passenger train doors. For this reason, an initial theoretical analysis o f a powered train 

door was discounted, since any mathematical model representing a specific type of door 

would not be valid fo r different powered train doors. Another reason to discount the 

theoretical analysis and modelling o f powered train doors was simply due to the 

complexity of the system. A mathematical model probably could have been developed, 

however the results would have required extensive verification and calibration through 

comparison with practical data. In order fo r any model to be sufficiently accurate to use 

as a benchmark fo r a condition monitoring technique, it would need to be highly 

detailed, which would probably result in a non-generic solution that could not simply be 

modified fo r use on different powered train door systems.

Consequently, it was decided that an intense period of data collection at a range of train 

maintenance depots on a variety of trains would be a suitable approach fo r generating 

useful door operating data, upon which to base the development o f a condition 

monitoring solution fo r powered train doors. This section of the thesis provides basic
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information about the transducers that were selected fo r this purpose. It w ill also detail 

the main findings and outcomes of the intensive data collection period.

5.1 Data collection

A basic piece o f equipment that is required to collect and store data from  any type 

of transducer is a datalogger. Dataloggers convert voltages o r currents generated 

by transducers into a form at that can be stored and understood by computers. This 

is normally achieved through the use of an analogue to d ig ital converter (ADC), 

which digitises the input signal into a number o f discrete numerical values. Prior to 

selecting a suitable datalogger fo r data collection in train maintenance depots, the 

following requirements were identified:

• Multiple input channels would be required because the anticipated number of 

input parameters was thought in the range 2 to 4.

• The resolution o f the ADC should be at least 8 bit. H igher resolutions would be 

preferable to improve the resolution o f even small signals, improve the 

accuracy of the conversion and maximise equipment flexibility.

• A minimum sampling frequency of 10 samples per second per channel (10 Hz) 

would be needed in order to capture data. A higher sample rate would be 

preferable, though it was envisaged that 100 Hz would be a practical 

maximum frequency, given that high frequency vibration or acoustic emission 

condition monitoring techniques had not been selected.

• It must be possible and practicable to transfer, view and analyse data from  the 

datalogger on a standard PC.

• The datalogger must be suitable fo r use in train depot environments and 

relatively inexpensive to meet the project budgets.

A suitable datalogger was identified and purchased which fulfilled all o f these 

requirements (see appendix A fo r further details o f the datalogger). The 

datalogger was used throughout the project as a simple means o f testing 

transducers and signal conditioning modules, developing data collection processes 

and collecting data.
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5.2 Collection of pneumatic door performance data

Once the parameters had been selected fo r pneumatic powered train doors, it was 

necessary to identify and procure suitable transducers that would complete the test 

condition monitoring system fo r pneumatic train doors. The problem of measuring 

the door motion during opening and closing cycles can be solved in a variety of 

ways. A  draw-wire transducer connected to a door leaf was chosen due to the 

simplicity o f the solution and it consists o f a length o f spring-loaded cable attached 

to a potentiometer. SHU was able to provide a draw-wire transducer with a cable 

length o f 2 meters, making it ideal fo r the application (see appendix A). An output 

voltage is generated in proportion to the cable extension, which allows the door 

displacement to be measured using the datalogger (velocity and acceleration can 

be derived from  the displacement by differentiation).

Pressure transducers generate an output signal proportional to the sensed 

pressure. Train a ir systems operate at a nominal maximum pressure of between 7 

bar and 8 bar, which defines the upper sensing lim it fo r a suitable transducer. In 

practice however, a system such as passenger doors operates at a lower, 

regulated pressure o f approximately 5 bar. A Druck pressure transducer was 

selected to complete the test condition monitoring system fo r pneumatic train 

doors (see appendix A).

5.3 Collection of electric door performance data

The draw-wire transducer was also used to generate door displacement, velocity 

and acceleration data fo r electric powered train doors (see appendix A  fo r further 

information about this transducer). In section 4.2 the most suitable method for 

measuring the applied motor current during door opening and closing cycles was 

identified as a Hall effect current probe. Current probes are able to measure a 

wide range of a.c. and d.c. currents (different probes are required fo r a.c. o r d.c. 

applications) with isolation23, which means no direct contact with the electrical 

circuit. This isolation is advantageous in circumstances where safety is critical, 

which is definitely true in railway applications. Drafts22 gives a detailed description 

of Hall effect current probes.
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The LEM-HEME PR30 was identified as the most suitable current probe for the door 

m otor application, because it is a clamp-on current probe suitable fo r measuring 

low currents. This means that the coil can be broken through operation of a lever 

allowing it to be placed around a wire in-situ and allows measurements to be 

taken without modification to train door systems (further transducer details are 

given in appendix A). This transducer was also the most suitable current probe for 

measuring the traction interlock current, even though typical traction interlock 

currents are two orders of magnitude smaller than door m otor currents.

5.4  Shift of project focus onto purely electric powered doors

Towards the end of the intensive data collection period (end of the first year o f the 

two year project), it was clear that electric powered train doors offered a uniform 

and consistent m otor current characteristic during opening and closing cycles (see 

figure 5a).
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Figure 5a: Graph highlighting the typical consistency o f door m otor current 
characteristics (figure shows four different door opening cycles on a modern EMU)

The motor current data enables specific aspects of door motion to be identified, as 

detailed below:
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• door unlocks during the first 0.5 s o f data operation (high m otor torque);

• door leaves are unplugged between 0.5 s and 1.25 s (high m otor torque);

• door leaves slide open between 1.25 s and 3 s (constant, low m otor torque);

• door leaves decelerate and are fully open at 3.5 s (motor stalled).

Continuous review and analysis of the raw data collected from the trains identified 

the door motor current characteristic to be the most appropriate basis fo r an 

electric powered train door condition monitoring technique. This is because the 

clamp-on current probes were quick and simple to use and provided consistent 

information about the door performance via the motor current. In comparison, 

measuring door leaf displacement was cumbersome, slow, prone to measurement 

inaccuracy and generally impractical fo r use in a train depot environment. 

Although the door displacement data did provide valuable information relating to 

door motion, the velocity and acceleration data was not reliably repeatable and 

the marginal increase in information was greatly outweighed by time, physical and 

computational disadvantages.

After extensive data collection and analysis it was also obvious that a sim ilar 

condition monitoring solution, based upon the door actuator pressure 

characteristic, fo r pneumatic powered train doors would not be successful. The 

following factors all contributed to this conclusion:

• Measurement of the door cylinder a ir pressure can only be undertaken using

in-built test points in each vehicle5. Different fleets of train use different types of

test points, which require adapters in order to interface with a standard 

pressure transducer.

• The test point is not necessarily near to the door under investigation and

consequently the observed pressure changes are not only related to door

operation. In worst-case scenarios the test point was also near to an a ir 

reservoir, which if sufficiently well supplied, is able to maintain a near constant 

pressure at the point o f measurement. Thus flow  measurement would be more 

appropriate in principle, however fo r this application it would be impractical.

5 no modification to train systems is permitted.
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• Compressed a ir is also used fo r other train systems, such as braking, 

pantograph operation or indeed other doors on the train. For this reason, 

measured pressure changes during door operation can be easily influenced by 

the other systems as well as by compressor efficiency or duty cycle.
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Figure 5b: Example o f pneumatic door characteristic variability between doors
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Figure 5c: Example o f pneumatic door characteristic variability fo r one door
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Consequently, the raw data readily available within the project constraints did not 

appear to be particularly consistent, repeatable or reliable. Figure 5b shows 

example pressure characteristics collected from  different doors on one train and 

figure 5c shows pressure characteristics recorded sequentially from  only one 

pneumatic train door. These graphs highlight the inconsistency and lack o f clearly 

definable features of a pneumatic actuator operating characteristic fo r different 

doors as well as fo r sequential operations o f a single door. On the basis of these 

observations, the decision was made to redefine the scope of the TCS project to 

focus purely on electric powered train doors. This decision will consequently be 

mirrored by this thesis.

5.5 Selection of final condition monitoring parameters

The intensive period of door performance data collection and analysis fulfilled the 

intended purpose, because it allowed the identification of two suitable parameters 

that could form  the basis o f a viable condition monitoring technique fo r electric 

powered passenger train doors. The two final selected parameters are:

1. Door motor current drawn during the opening and closing cycles o f a door.

2. Traction interlock status, specifically the time at which it changes state.

Both parameters will be measured using clamp-on current probes identified 

previously, because they are an ideal solution to the problem of measuring electric 

currents without invasive electrical connection to train circuits. They have the 

additional advantage of being suitable fo r all types of electric train door systems. 

This is important, because it means that the condition monitoring solution will not 

require any safety approval prior to use on a train and the same transducers can 

be used independently of the class of train. The motor current is an ideal basis fo r 

a condition monitoring system due to the consistent operation of electric door 

systems. This applies both to successive measurements taken at an individual door 

and to measurements taken from  different doors within a fleet (see figure 5a).

The current drawn by the door motor during opening and closing cycles w ill be 

complemented by information provided by the second current clamp relating to 

the status of the traction interlock system. The traction interlock circuit is an
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im portant safety system that ensures that the train brakes will be applied 

automatically if a door is open in traffic. If a door is also not correctly closed and 

locked at a station, the driver will be unable to take tractive power. The traction 

interlock circuit is a common source of train delay that often generates many "no 

fault is found" problems. Therefore, data relating to the status of the traction 

interlock circuit w ill provide engineers with more information about faulty doors.

Interlock
circuit current

A

Door locked.
Circuit energised.

Door unlocked.
Circuit de-energised. 

---------------------------------------------------------- ►

Figure 5d: Idealised representation o f fraction interlock circuit operation
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Figure 5e: Examples o f monitored traction interlock status changes

Relays are used to identify when traction interlock is gained or lost. For this reason 

the signal is either in a low (no current) or a high (some current) state and the 

change in signal between these states should be an almost perfect step change 

(see figure 5d). However unlike semiconductor technology, which detects rising or
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fa lling edges of the signal, the relays used to detect traction interlock status 

operate only when the current reaches a specified magnitude. This can be 

considered to be essentially a design feature that helps to ensure reliable 

operation, because a stable, clean and interference free power supply is generally 

not available to train electrical systems. However, this makes the reliable detection 

o f the traction interlock status change particularly difficult (see figure 5e).

5.6 Examples of real door faults

During the period o f data collection, a number o f door m otor characteristics from  

a range of train fleets were observed to deviate from  the standard motor 

characteristic, implying a potential door fault. This section of the thesis will present 

the normal and abnormal door characteristics graphically, discuss the differences 

and, where possible, suggest a reason fo r the fault.
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Figure 5f: Example faulty door motor characteristic 7

Figure 5 f shows a faulty door opening cycle fo r a modern a irport link EMU. The 

motor current is significantly higher and the time taken to open the door fully is 

also shorter, at 2.0 seconds compared to the normal 2.5 seconds (the high current 

at the end of the data represent a stalled m otor trying to open a door that is
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already fully open). It is possible that incorrect or faulty door control software is 

responsible fo r this door response. High m otor current consumption normally 

implies mechanical stiffness or high friction, however in this case, the faster door 

opening speed appears to contradict this possible explanation. The closing 

performance of the same door is presented in figure 5g, which shows that the 

door takes roughly 1 second longer to close than normal. The abnorm al door 

m otor current data does also not match the normal m otor characteristic at all, 

supporting the hypothesis that faulty control software is the cause of the door 

problems.
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Figure 5g: Example faulty door motor characteristic 2

The door closing motor cycle for a new EMU, designed fo r suburban services, is 

shown by figure 5h. Increased peak motor current is identifiable as the door leaves 

plug flush with the vehicle body at roughly 3.5 seconds (the door plugging motion 

occurs between roughly 2.5 and 3.75 seconds). This could be signify the 

beginnings of a problem relating to mechanical stiffness in the plugging 

mechanism. Sliding plug doors often suffer from  mechanical problems in this 

region, because the mechanism has to force the doors through a defined curved 

path. Incorrect set-up, misalignment or dirt build-up can all cause increased 

mechanical stiffness, resulting in increased m otor torque, and hence current.
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Figure 5h: Example faulty door motor characteristic 3

Another door motor closing characteristic from  the same fleet shows the result of 

an incorrectly set-up microswitch (figure 5i). In this example the stalled door motor 

is not turned o ff once the doors are closed (4.5 seconds), which, if undetected, 

could have eventually resulted in motor burn-out. The fau lt was easily rectified by 

re-positioning the microswitch so that the closing doors cause the m otor to be de­

activated.
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Figure 5i: Example faulty door motor characteristic 4

A light-rail vehicle swing plug door opening characteristic is presented in figure 5j. 

The doors initially open quickly and are approximately two thirds open after two 

seconds. The door motion is damped during the last third o f motion (good door) 

until the leaves are fully open at 3.5 seconds. This fleet suffered from excessive dirt 

build-up in the door mechanism due to poor design, making the system stiff and 

difficult to operate. The motor must therefore apply higher torque, represented by 

the high current values and slower door motion between 2.0 and 4.5 seconds.
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Figure 5j: Example faulty door motor characteristic 5

A door closing cycle fo r the same light-rail fleet is shown by figure 5k. In this 

example, the door takes 1 second longer to close than normal. The data shows 

that the door is slow throughout the entire closing cycle, rather than at any specific 

point. However, it is interesting to note that the faulty motor current data is broadly 

sim ilar in magnitude to the good door motor data.
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Figure 5k: Example faulty door motor characteristic 6

These six examples show the types of abnormal door operation that were observed 

on a range of different fleets. For all o f the cases, it is possible to identify potential 

causes of the observed problems, which would enable a train maintenance team 

to determine the root cause more quickly than by visual inspection and enable a 

solution to be defined. As knowledge and experience relating to door faults is 

gained, common patterns and relationships can be established, enabling door 

faults to be reliably identified in their early stages.
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6. Data analysis techniques

This chapter of the thesis will present the data analysis techniques that were investigated 

during the development o f a suitable condition monitoring solution fo r electric powered 

train doors. The potential implementation, advantages, disadvantages and suitability of 

each technique will be outlined. However, the detailed theory relating to each technique 

will not be discussed, except where specifically relevant. The analysis techniques 

discussed here do not form  an exhaustive list o f those reviewed, but are merely of most 

interest. The raw data available to each analytical method is of course identical and 

comprises:

1. Door m otor current data (either door opening or door closing) [mA]

2. Traction interlock current data [mA]

A  major problem, in developing a suitable analysis technique, related to collecting fault 

data from  incorrectly operating powered train doors. Faults could not be introduced into 

the rolling stock at depots due to the safety implications and obvious operational 

constraints. Also, the project did not have the financial capability to invest in a powered 

door test rig. For these reasons, the analysis techniques could only be reviewed and 

developed based upon data relating to a small number o f faulty doors.

6.1 Parametrical analysis

Parametrical analysis was considered as a first step to developing a suitable data 

analysis technique. Parametrical analysis potentially allows large amounts of data 

to be represented by a small number o f parameters that can be analysed fo r 

trends or patterns. The follow ing parameters were considered because they are 

simple to calculate and easy to interpret in relation to powered train door systems:

• Maximum motor current [mA]

• M inimum m otor current [mA]

• Mean motor current [mA]

• Median motor current [mA]

• Sum of all sampled motor current values [mA]

• Total m otor operating time [ms]
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• Interlock operation as a proportion of the total motor operating time [%]

In order to develop a successful condition monitoring technique based upon 

statistical analysis, it must be possible to differentiate the parameters o f faulty 

doors from normal doors. If this cannot be achieved, then the technique is not 

suitable, or requires modification. A  m ajor factor in the success of such a 

technique is the selection of parameters. The parameters described above 

represent very simple, physical parameters of the system under investigation, 

however there are many other parameters that could be considered, fo r example:

• Standard deviation of the motor current data from the mean

• Variance of the motor current data

• Power consumed by the motor (integral of current squared)

Data were collected from a number o f train doors that were considered to be 

operating incorrectly and this incorrect operation was identifiable by the human 

eye through visual inspection of the door motor current data. Therefore it was 

decided to concentrate on parameters that described the physical features o f the 

door motor data in the time domain. Frequency domain analysis o f the door 

motor data was investigated. However, based upon the limited data available, no 

distinction was identifiable between normal and abnormal door operation.

The follow ing conclusions, or observations, were identified based upon this 

investigation into the suitability o f the parametrical data analysis:

1. No single parameter was able to reliably differentiate between normal or

abnormal doors. This was primarily due to the wide numerical range o f the

motor current data, which, when converted into a small number o f

parameters, ensured that all of the detail within the data was lost. This 

shortcoming could be overcome through the generation of more parameters 

or the segregation of similar data.

2. It was possible to identify faulty doors by reviewing the changes in

combinations of two or three different parameters, though this was not 

particularly reliable.

3. Calculating the minimum motor current parameter did not add value to the 

analysis, since this value was observed to be always zero, o r very close to zero.
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4. All o f the parameters could be form  the basis of a historical trend analysis. 

Since all doors within a fleet should operate identically, it should be possible to 

quickly assemble a large database of trends fo r each parameter. The change 

in each parameter value fo r all doors within a fleet o f trains could be used to 

identify potential future faults prior to in-service failure.

In summary, parametrical analysis alone is unlikely to be suitable fo r condition 

monitoring applications, since it appears to be unable to easily differentiate 

between faulty and normal train door operation. The technique could however be 

used as the basis fo r a long-term trend analysis. A  parametrical analysis could be 

improved through the use of a greater range of parameters or data processing.

6.2 Error detection

Another possible analysis technique that was identified and subsequently tested 

was error detection, or pattern matching. Both types o f algorithm compare data 

under investigation to a known set o f data. A pattern matching technique would 

attempt to describe how well the two sets o f data match, whereas an error 

detection routine would identify the mismatch o r error between the data. Both 

types o f analysis are totally dependent upon the availability o f a known 

characteristic, against which to compare the data. This could be a:

• Single set of data defining the normal operation of an electric train door;

• Number of sets of data, each defining a typical failure mode.

In this application, the known characteristic always defines the door motor 

operating cycle under normal or correct conditions. This is prim arily because the 

different motor characteristics corresponding to the various failure modes of the 

door are probably not known and it is also relatively easy to define the motor 

characteristic describing normal operation.
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6.2.1 Direct data comparison

The simplest error detection routine compares two arrays of data, sefA[10] 

and sefB[ 10], and generates a set of error values, error[10], thus:

errort = setAi -  setBi (Equation 6 .X) where / is the array index.

When the data contained within setA is identical to that defined in setB, then 

error will always be zero. As data in setA deviates from  the corresponding 

data in setB, so the error increases. This is potentially an ideal method of 

analysing the train door m otor current to determine if a door is operating 

normally (low error) or if it is operating abnormally (high error). This simple 

analysis technique was quickly identified as unsuitable fo r the application of 

powered train door condition monitoring. Figures 6a and 6b each contain 

two sets of sample door operating data and highlight how, fo r the technique 

to be successful, the collected data must be perfectly synchronised to ensure 

an acceptable data match.
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Figure 6 a: Graph o f synchronised motor data and corresponding error

The two sets of door motor data shown in figure 6a are nearly identical. The 

second set of data is identical to the first set fo r the first 1.5 seconds. For the 

subsequent 1.5 seconds, a random error factor o f ± 5 % is added to second
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set o f data. For this reason, figure 6a shows either zero error, or low error 

throughout. Figure 6b contains exactly the same two sets o f data used in 

figure 6a. The only difference is that the second set o f data has been offset 

from  the first by 1 sample. The error detection algorithm compares each 

array index in turn and so, due to this offset, the calculated error is much 

greater.
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Figure 6 b: Graph o f unsynchronised motor data and corresponding error

However from an operational perspective, the data are identical and both 

should have a correspondingly low error. This highlights the unsuitability of 

this simple error detection algorithm fo r this condition monitoring 

application. The artificial offset introduced into the data is typical of data 

collected from condition monitoring systems. In fact it must be expected that 

different door systems respond differently on a sample by sample basis, 

even if the overall response can be considered identical. For this type of 

algorithm  to be suitable the algorithm must be modified. Possible 

modifications are:

• A running average filter could be applied to one o f the sets of data to 

compensate fo r any m inor offset in the time domain.

• To overcome offset errors, each data value in setA could be compared to 

the corresponding data value in setB as well as the two immediately 

adjacent values in setB (3 comparisons in total). The minimum error
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value is selected and the process is repeated fo r each data value in setA. 

This has the effect of overcoming natural data offset by ±1 sample.

6.2 .2  Data processing and pattern recognition

A second type o f error detection algorithm that was considered relates to 

pattern recognition, which attempts to define the similarity between two or 

more sets o f data. Pattern recognition problems, particularly relating to 

character recognition, are currently the focus of extensive neural network 

research. The potential condition monitoring algorithm considered here is 

much simpler and involves converting the raw door m otor data into a 

number of discrete blocks (see figure 6c fo r an example), which can then be 

compared to a known good pattern fo r analysis.

T im e

Figure 6 c: Example o f data discretisation p rio r to pattern recognition analysis

Conversion o f the data into discrete blocks reduces the resolution o f the data 

in both the time and motor current dimensions, which would help to address 

the data misalignment problem associated with the simple error detection 

routine described in section 6.2.1. Once the data has been discretised, it 

could be analysed by any number o f analysis algorithms including neural 

networks, correlation techniques or by simple comparison on a block by 

block or column by column basis. The data shown graphically in figure 6c
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could be stored numerically in a number o f different formats, o f which two of 

many possibilities are:

Binary:

(20 bits represent 1 

column)

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, 
1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 
1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

(only data fo r first 3 columns shown)

Integer: 15,12,6,7,6 ,3,1 ,2,1 ,4 ,12,15,13,9,6,2 ,3,3 ,1

(by column)

The main disadvantage of this approach is that an additional data analysis 

algorithm is required. The flexibility o f the data processing is the main 

strength o f this methodology, but the analysis quality depends upon:

• the number of blocks in the time dimension;

• the number of blocks in the motor current dimension;

• the scaling factor fo r the motor current data;

• the filters used to further process the raw data (user-definable).

Selection of a suitable data processing algorithm could ensure that the final 

analysis algorithm is much more reliable and robust.

6.3 Neural networks

Neural networks were considered to be a potentially viable method of analysing 

door motor current characteristics in order to classify door performance and 

identify incipient faults. For this reason, a study of current neural network 

technology was undertaken to answer the following questions so that the suitability 

o f neural networks could be assessed24,25,26.

• W hat can neural networks achieve?

• How are neural networks created and how do they function?

• W hat are the advantages and disadvantages of neural networks?
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Neural networks have been extensively researched fo r a wide range of purposes, 

including engineering control, condition monitoring27,28,29,30'31 and railway 

applications17,20,32. Research continues to be undertaken to improve the 

performance of neural networks so that they can be used in increasingly complex 

applications. Based upon this review of current neural network research, 

applications and performance, it was clear that neural networks would not form 

the basis of a suitable condition monitoring solution fo r electric train doors. The 

m ajor argument fo r this is that neural networks require extensive training before 

they can reliably identify and classify data. The training process involves presenting 

a large number o f different data to the neural network fo r a correctly operating 

door17. The procedure must be repeated to train the neural network to recognise 

each individual fault condition. This training procedure would involve an 

unacceptable level of data collection from  a fleet o f trains and would also have to 

be repeated fo r every different class o f train and, as discussed previously, the 

current characteristics of faulty doors are probably not known. If this approach 

were adopted, it would be necessary to collect data from  an entire fleet o f train 

doors just to calibrate the condition monitoring tool. A large number o f doors 

would also have to exhibit fau lt conditions, which is clearly unlikely and 

impractical.

6.4  Fuzzy logic

Fuzzy logic is sim ilar to Boolean logic, except that where Boolean logic only 

recognises two logic states, true or false, fuzzy logic allows the definition o f an 

infinitely variable logic state33,34. Fuzzy logic is powerful because it allows logical 

expressions to be determined where the relationship between variables is not 

adequately described using standard Boolean logic. For example, day could be 

defined using Boolean logic as being TRUE between the hours o f 6am and 6pm 

(FALSE from 6pm to 6am). However, it is clear that day does not end immediately 

and exactly at 6pm and so the rules are not ideal. Fuzzy logic allows the definition 

of a state between 5pm and 7pm where it is neither 100% day or 100% night, but 

a combination of both (e.g. 45% day and 55% night).
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Fuzzy logic can be easily applied to aid in the classification of powered train door 

performance. A  requirement of the condition monitoring system is that each door 

is immediately identified as either operating correctly o r abnormally. To do this, it 

will be necessary to classify the door operation based upon the results o f the 

analysis algorithm. If the analysis algorithm generates a single parameter 

representing the door performance based upon the raw data, then fuzzy logic 

could be applied advantageously. Assuming that the condition monitoring analysis 

algorithm is able to calculate a percentage error value, ETOT/ which is proportional 

to the deviation of the motor current from the norm, then a fuzzy membership 

function can be defined (see figure 6d). This membership function classifies the 

door performance and assigns a confidence level to that classification.

Confidence [%]

100

FAIR BADG O O D

Error

Figure 6 d: Generic membership diagram for fuzzy logic door classification

This diagram defines the membership areas and confidence level, of three 

possible different door performance classifications based upon the value o f the 

single input variable, ETOT. The corresponding rules are defined in figure 6e. 

Where the total error fo r a door analysis lies within the 100% confidence level o f a 

classification band, then the classification will be purely G O O D , FAIR or BAD. 

However, if the total error lies between E2 and E3 fo r example, then the 

classification will be both G O O D and FAIR, but the corresponding confidence 

levels will be proportionally less than 100%, depending on the actual value o f £r0r-
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Classification Etot Confidence [%]

1 G O O D Ej <  Etot <  E2 =  100

2 G O O D , FAIR ^2 <  Etot <  E3 < 100 , > 0

3 FAIR E3 <  Etot <  E4 =  100

4 FAIR, BAD E4 <  ETOT <  E5 < 100 , > 0

5 BAD E5 <  Etot <  E6 =  100

Figure 6 e: Possible fuzzy logic rules fo r a condition monitoring classification system

Using fuzzy logic to classify the performance of a train door based upon 

information derived from  the door motor current is a powerful and flexible 

technique, because it allows logic rules to be defined based on fact, experience 

and estimation. The fuzzy logic algorithms can be easily reproduced in software 

code with the variables £, to E6 defined as parameters fo r flexibility.
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7. Analysis technique refinement

This chapter of the thesis will detail the final algorithms developed to analyse the 

performance of electrically powered train doors. Each aspect of the final algorithms will 

be outlined in order to allow  complete understanding o f the condition monitoring 

technique. Chapter 9 of this thesis will address the implementation o f these algorithms 

as embedded software routines form ing part of a condition monitoring tool fo r electric 

powered train doors.

7.1 Normalisation of the door motor data

Normalisation of m otor current data in the time domain was quickly identified as a 

significant step towards the development o f a successful data analysis a lgorithm . 

Through investigation of raw motor data it was observed that normalisation allows 

a much simpler direct comparison of m otor current characteristics. Although every 

door on a train should have identical m otor current characteristics to other doors 

on a macroscopic level, on a sample by sample basis each door w ill exhibit a 

slightly different response. This will be due to m inor differences in the door system 

(e.g. m inor variations in mechanical stiffness, lubrication levels o r friction).

Correctly operating doors will also naturally exhibit slight variations in the open 

and close times, however as shown in section 6 .2 . 1 , even small data 

misalignments could potentially result in large errors when the data is compared 

on a point by point basis. Normalising the data in the time dom ain helps to 

reduce this misalignment resulting in improved performance o f the data analysis 

algorithms. To normalise the data in the time dom ain, the tim e index 

corresponding to each data value is divided by the total motor operating time:

t
(Equation 1.1)

total

In order to maintain full information about the true door performance, it is 

necessary to record the original total m otor operating time before the data was
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normalised. This is because the normalisation process can mask incorrect or 

distorted motor current characteristics in certain situations. Recording the total time 

of a door to close or open ensures that this information is not lost.

7.2 Identification of door motion using the traction interlock

The traction interlock system can be used to identify the direction o f door motion 

so that the correct analysis can be applied to the raw m otor data. The traction 

interlock circuit must be completed before a train can leave a station, which 

requires all passenger doors on a train to be correctly closed and locked.

When the condition monitoring technique is used to analyse the performance of a 

door opening cycle, the door must firstly unlock and then open. When the door 

unlocks, the traction interlock circuit will be broken and de-energised. Conversely, 

the traction interlock circuit will be completed and energised when the door is 

closed and locked. Therefore the time, T,NT/ at which the traction interlock circuit 

changes state, as shown by figures 5e and 7a, can be used to identify the direction 

o f door operation:

T in t  (typical) T ,n t  (analysis algorithm)

[% of normalised door cycle] [% of normalised door cycle]

Door opening 0 - 5 <  50

Door closing 7 5 -  100 * >  50

Figure 7a: Identification of door motion based upon traction interlock signal

Therefore the condition monitoring technique will identify the door operation as an 

opening cycle if the traction interlock circuit changes state at a time less than 50 % 

of the normalised door operation cycle. The algorithm uses a simple technique to 

identify the operation of the traction interlock circuit. Once the door motor begins 

operating, triggering the start o f data sampling, then each interlock current 

sample, lj, is compared to the previous value,

81 = | / ( -  | {Equation 7.2)
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If the value of SI calculated using equation 7.2 is greater than the variable 6 /^ax 

(initially set to zero), then the time of interlock operation is defined as time Tr This 

simple comparison is repeated fo r each sample and, once the sampling is 

complete, the point o f the traction interlock operation will have been identified and 

recorded. This is based upon the fact that the change in traction interlock current 

value is greatest when the traction interlock is operated (see figure 5e).

7.3 Partitioning of the door motor data into discrete zones

The most important aspect o f the data processing concerns the generation of 

partitions or zones in the normalised m otor data. These zones, once identified, will 

be treated as separate entities by the analysis algorithms and will individually 

contribute to the final classification of door performance. The normalised data is 

split into three zones, because this was found to be an optim um balance between 

insufficient partitioning (1 zone) and excessive partitioning (4+  zones) resulting in 

inconclusive results o r over-complicated algorithms. The three zones are pre­

defined within the condition monitoring technique based upon data collected from  

train doors that are considered to be operating correctly. The zones can be 

defined in a number o f ways:

• Related to physical door movements (i.e. unplugging, sliding, then stopping);

• Related to distinct contrasts in the raw motor data (i.e. high, low current);

• A rbitrary division o f the door operating cycle into manageable sections.

Start index End index

Zone 1 0 h

Zone 2 Jj +  1 J2

Zone 3 J2~t~ 1 99

Figure 7b: Example definition of zone partitions

The normalised door data is represented by 100 integer values and therefore 

three zones can be defined using two integers, and J2, in the range 0 to 99. It is 

necessary to define parameters X7 and X2 fo r both the door opening and door
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closing cycles, because it is unlikely that the two motor current characteristics will 

be similar. Figure 7c shows an example o f the partitioning of an opening door 

m otor characteristic into three zones.

7000

Zone 2Zone 1 Zone 3
6000 -

5000 -

■£ 4000 -

-  3000 -

2000  -

1000 -

0.0 0.5 1.0 1.5 4.02.0 2.5 3.0 3.5

Time [s]

 Door closing motor current

Figure 7c: Partitioning of normalised motor data info zones

7.4 Door performance analysis

Once the raw door motor and traction interlock data have been collected, the 

algorithm must analyse the data so that the performance of the door can be 

subsequently classified. The analysis algorithm developed fo r this application is 

based predominantly on the data relating to the door m otor current. Before the 

data can be analysed it is necessary to know whether the data under investigation 

relates to an opening or closing door because the motor current characteristic will 

be different fo r both cases. The direction o f door motion is determined by 

reviewing the traction interlock data (refer to section 7.2).

The algorithm  developed to analyse the performance of electric train doors is 

based upon the simple error detection methods described in section 6.2. The 

following steps describe the process of determining the total error fo r a door m otor
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characteristic, which forms the basis of the door performance classification. Any 

constants or parameters must be individually defined fo r both the opening and 

closing door cycles.

Data scaling

The raw m otor data are scaled and rounded down to ensure that the data 

analysis algorithm always analyses values of a known magnitude. This is 

useful because it means that the magnitude of the calculated error is 

proportional to the original data.

h . s c l ' d  = i n t

( ioo *V
l max y

( Equation 7.3)

lmax is a pre-defined constant defining an estimated nominal maximum 

current drawn by the motor during the corresponding door motion. For 

example, if the maximum motor current fo r a door opening cycle was 

approximately 5300 mA, lmax could be defined as 5500 mA. Consequently, 

the magnitude of the scaled data is in the region 0 to 100. Data values can 

exceed 1 0 0  if the maximum m otor current exceeds lmax.

2. Data comparison

The normalised and scaled data are then compared to pre-defined set o f 

data describing the performance of a correctly operating door. Again two 

sets of data are required fo r the analysis, one fo r door opening and one fo r 

door closing. Each set is pre-defined and pre-scaled within the analysis 

routine and contains 1 0 0  data values, which cannot be altered except 

through re-program ming.

To calculate the total error the algorithm  compares the normalised and 

scaled door m otor data (array /) to the corresponding data that defines the 

operation of a correct door (array X). To account fo r any m isalignment in the 

data that would cause a large error value to be calculated, as discussed in 

section 6 .2 . 1 , the data are compared using the follow ing equation:
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E, =  m in [|/„ (Equation 7.4)

For each data value in array X (representing a correct door), three 

consecutive values in the / array (door being analysed) are used to calculate 

an error value, E„ which is defined as the m inimum absolute error of the 

three combinations. The algorithm is therefore able to account fo r the likely 

misalignment in the data by selecting the lowest error (see figure 7d). This 

technique is repeated fo r each of the 1 0 0  normalised and scaled data 

values.

Scaled
current

l+ f

' i + i

Normalised time

E =  E3 =  1 /,,-X il

Figure 7d: Diagram showing misalignment-tolerant error algorithm

The three zones of the motor data, which were defined previously in section 

7.3, play an important role in the data analysis a lgorithm . Each data point 

belongs to one of the three zones and a zone error value is therefore 

defined, EZJ, EZ2 or EZ3, as the sum of errors in that specific zone:

i - j ,

E zj = ^  Ei (.Equation 7.5)

i - J 2

E Z2 = V  Et {Equation 7.6) 
/-X+i
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i -9 9

E z3 = V  E i {Equation 7.7)
i - J  2+1

These three error values are then converted to percentage errors by dividing 

them by the sum of the data contained within the corresponding zone, Azlt 

or AZ3 (shown in equations 7.8 to 7.10 in summation form):

E
E zi = lW {Equation 7.8)

£
E Z2 = ■■_-/ 2 ■ {Equation 7.9)

i
t,

+i

E z 3 = •■ i" -  • {Equation 1AQ)' Z  3 ,-9 9

3. Calculation o f total error parameter

Once the percentage error values are known for the different zones, it is 

possible to calculate an overall error, ETOT:

E tot = ( * z i£ z A i ) + [kZiE Z2AZ2) + {kZ3E Z3AZ3) {Eqm tion JA 1}
\AZ i + AZ1 + AZ3)

The zone errors are modified using two factors:

• a 'weighting' factor - the sum of data within the zone (AZ1, AZ2 o r Az3) 

taken from array X (the good door data);

• a 'variability' factor in the range 0 . 0  to 1 . 0  [kzl, !<& or kZ3).

The weighting factor ensures that zones, where the current is on average 

low, will contribute less to the total error than a zone with a higher average 

current. The variability factor, which is usually set to unity (1.0), allows the 

analysis algorithm to be robust fo r cases where the motor current varies 

substantially during normal operation. For example, if the m otor current in 

zone 3 was known to vary by roughly 20% in normal operation, then this
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could result in a large total error. By setting kZ3 to 0.75 fo r example, the 

contribution o f EZ3 is reduced, minimising the impact o f the m otor current 

variability on the total error value.

7.5 Classification of door performance

The performance o f each door opening or closing cycle is classified based upon 

the value of the total error parameter calculated by the performance analysis 

algorithm (see section 7.4). A  simple fuzzy logic algorithm is used to classify the 

door performance as either 'good1, 'fair', 'bad' or a combination (e.g. 'good' to 'fair' 

or 'fair' to 'bad'). See figures 6 c and 6 d fo r further information.

Classification Ei [%] e2 [%] e3 [%] e4 [%]

G O O D - 0 0 0 1 0 15

FAIR 1 0 15 2 0 25

BAD 2 0 25 1 0 0 +  00

Figure 7e: Matrix defining door performance classifications

A matrix must be created to define the relationship between the input parameter 

and the associated confidence levels. An example matrix is shown in figure 7e, 

which contains generic values that should be valid fo r most door systems. Each 

classification requires four points to fully define the membership function, 

represented by points Eu E2, E3/ E4 in figure 7f. A  confidence level fo r each of the 

three door performance classifications can be calculated based upon the total 

error, ETOT. There are three possible outcomes:

1 Ej >  EToj or Ejot falls outside the classification limits. The confidence

£ 4 <  £ror level is set to 0 % (not within classification) and the process

is repeated fo r the next classification.

2. E2 =s Etot <  E3 Etot falls within the maximum confidence level fo r the

classification and the confidence level is set at 95%6.

6 95% is the maximum confidence level assigned to a classification, because it is not possible to 

state with 100% certainty that the classification is correct.
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3  Ej ^ etot <  E2 e t o t  f a l l s  within the fuzzy region. The confidence level for 

£ 3 Etot <  E4 classification must be calculated using the following

formulae (confidence is between 0% and 95%).

Confidence [%]

1 0 0

Case 1 Case 3 Case 3Case 2 Case 1
Error0

Figure 7f: Example definition of a generic door classification

Formulas 7.12 and 7.13 are used to calculate the confidence level of a 

classification fo r Case 3 as defined in figure 7f. Equation 7.12 calculates the 

interpolation factor, which is then used by Equation 7.13 to derive the confidence 

level fo r Case 3.

(e  - E  )
Interpolation factor, X  = (Equation 7.12)

\E 2 ~ E \)

Equation 7.12 is slightly different if E3 <  ETOT <  E4

(E - E  )
Interpolation factor, X  = l-^ -p ----- (.Equation 7.12a)

1^4 “  ^3  )

Case 3 confidence = 0.95:
1

(Equation 7.13)

,1.0 + e'

Equation 7.13 limits the maximum confidence to 95% and maps an S-shaped 

curve to the confidence level transition throughout Case 3, hence creating a
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smooth transition between case 1 (0% confidence) and case 2 (95% confidence). 

Where the total error parameter falls between two classifications (case 3), then the 

sum of all confidences will equal 95% (e.g. fa ir 40%, bad 55%). Equation 7.13 

was selected after investigating different methods of smoothing this transition using 

a spreadsheet analysis.

7.6 Calculation of descriptive and statistical parameters

The division of the door motor characteristic into three zones allows the effective 

use of statistical parameters to define door performance. The effectiveness o f the 

parameters to identify faults is partly dependent on the definition o f the zones. 

Descriptive parameters can be divided into two distinct groups, namely those 

based upon the entire raw data and those from  a specific zone.

7.6.1 Parameters derived from the entire raw data

The follow ing parameters are derived from  the complete set o f raw data:

1. Door identification code [-]

2. Date and time o f data collection [dd.mm.yy hh:mm]

3. Door action (0 =  opening, 1 =  closing)

4. Point of interlock operation as a percentage of motor operation [%]

5. M otor operating time [s]

6 . Door performance classification - Good door [%]

7. Door performance classification - Fair door [%]

8 . Door performance classification - Bad door [%]

9. Total calculated error [%]

These parameters provide important, basic information about the door 

performance analysis. The data identifies the specific door in question as 

well as the time and date of the door performance analysis, form ing an 

auditable and traceable record of the results. The direction o f door motion 

(opening or closing cycle) is recorded with the time taken to open and the 

point at which the interlock was operated. Finally, the results o f the analysis
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are provided, showing the classification and associated confidence levels as 

well as the total calculated error. This allows the identification of incorrectly 

operating doors and could be used as the basis o f a high-level door-by-door 

fleet report. For more detailed information about the potential fault, the 

parameters derived from the individual zones must be reviewed.

7.6 .2  Parameters derived from a specific data zone

The following parameters are derived from  each raw data zone (i.e. 21 

parameters are calculated in total fo r the 3 zones):

1 . Zone error [%]

2 . Zone mean error [%]

3. Zone maximum error [%]

4. Zone maximum current [mA]

5. Zone mean current [mA]

6 . Zone current variability [mA]

7. Zone sum of current [A]

The first three error parameters are calculated as part of the data analysis 

algorithm as described in section 7.4. The maximum and mean parameters 

are useful fo r identifying changes in the data within a zone. For example, a 

higher than normal mean current would imply that the door m otor is 

generating more torque throughout the zone. If the maximum current value 

is substantially higher than normal but the mean current remains roughly 

normal, this implies that the door mechanism is stiff at a specific point 

through the operating cycle.

The zone variability parameter is calculated by summing only the motor 

current data that is greater than the mean current, calculated previously, and 

then dividing by the number of summed values. This parameter indicates the 

data spread about the mean and is useful fo r understanding how well the 

mean parameter represents the data in that zone. For example, if the mean 

and variability parameters are sim ilar in magnitude, then the data in that 

zone is tightly packed about the mean. However, if the variability parameter
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is significantly larger than the mean current parameter, then the data varies 

much more about the mean, as shown in figure 7g.

2500 

2000

<f
“  1500 c 
£
D u
o 1000o
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0

1 2 3 4 5 6 7 8 9  10
Samples

11 Data set 1 —  —  Data set 2

Figure 7g: Graph showing use of mean and variability parameters

The zone sum of current parameter is calculated by summing all of the 

m otor current values in a zone. This parameter provides useful information 

relating to the area under the current vs. time graph, which is comparable to 

the power consumed by the motor. The power is actually represented by the 

integration of m otor current squared, however the sum of current parameter 

is simpler to calculate and provides sim ilar information fo r a uni-directional 

current (d.c.). It enables the identification of increased or reduced current 

consumption in each zone.

The information provided by these two groups of parameters should allow a 

wide range of different door faults to be identified. Some of the parameters 

will enable faults to be identified independently, whilst other parameters will 

h ighlight faults when reviewed in combination with other parameters. The 

condition monitoring system end-user will gain knowledge and experience of 

reviewing and interpreting the descriptive parameters through repeated use 

of the tool.

 *
\  /  S x - '  \\  /  \

v  v -

Set 1 mean: 1500mA Set 2 mean: 1500mA

Set 1 variability 1515mA Set 2 variability: 1815mA

i P
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8. Prototype Door Analysis Tool

This chapter o f the thesis will present the design of the prototype Door Analysis Tool 

(DAT), which represents the m ajor deliverable o f the TCS project. The prototype DAT was 

developed so that Interfleet Technology could evaluate whether the concepts, ideas and 

solutions developed through the TCS project and presented in this thesis form  the basis 

fo r a saleable railway condition monitoring product fo r electric powered train doors. The 

design of the prototype DAT can be split into two main sections, which will be discussed 

in more detail:

1. Analogue and digital circuitry;

2. Enclosure incorporating the operator interface components.

The circuitry and essential control software were developed in conjunction with an 

experienced SHU electronics lecturer, Alan Goude. The TCS project team decided that it 

would be the most effective use of time and resources to exploit SHU experience to 

design the electronic aspects of the DAT to a defined specification (appendix B).

8.1 Analogue circuit design

The first role of the analogue circuitry is to provide the power supply fo r the DAT. 

The specification stated that power should be supplied from  a battery to enable the 

tool to be portable. Standard, rechargeable 9 V PP3 cells were selected due to 

their small size and their ability to supply the required current at the 5 V required 

by solid-state electronic components. The supply is regulated by a 5 V regulator 

(component LM7805, appendix F). The DAT consumes an estimated average 

current of 60 mA (excluding LCD backlight) and so the operating life from  the 

single PP3 cell is approximately 2 hours7. A  second 9 V PP3 cell provides power fo r 

the LCD backlight, because the current consumption of the backlight is relatively 

high at approximately 80 mA, and therefore this maximises the life o f the DAT 

main power supply.

7 The capacity of the PP3 cell is 120 mAh.
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The second role of the analogue circuit is to provide an interface between the input 

data signals, generated by the two current clamps, and the ADC microchip 

mounted on the PCB, which converts the analogue input signals into digital signals 

prior to processing by the microprocessor. This interface is extremely important 

because it performs a number o f functions (refer to appendix C fo r the analogue 

amplification circuit schematics):

1. Door motor current signal amplification

The current clamps generate a voltage signal proportional to the sensed 

current (100 mV/A). During door monitoring and testing at train 

maintenance depots, the maximum observed motor current was 6.5 Amps. 

Therefore the maximum input signal was defined as 1000 mV, which is 

equivalent to 10 A  motor current consumption. The input signal range of the 

ADC is 5 V and full use o f the input range ensures maximum accuracy of the 

signal conversion as stated by the manufacturer. Consequently an 

amplification factor o f 5 was specified fo r the door m otor signal channel 

(see figure 8 a).

2. Traction interlock signal amplification

The signal from  the second current clamp, which measures the traction 

interlock current, also needs to be amplified. The traction interlock signal is 

small in comparison to the door m otor current, being of the order o f 25 mA 

to 50 mA, though smaller or larger signals are possible.

A gain of 23 was selected as the amplification factor fo r this input channel to 

use a greater range of the ADC input. A larger gain could have been 

selected to use the entire 5 V range of the ADC input, however this would 

have introduced certain disadvantages. With higher am plification factors, 

circuitry damage could occur if an excessively large signal were applied to 

the input. A higher amplification factor on the second channel could also 

interfere with the amplification of the door motor signal.

3. Signal rectification
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The signal generated by the current clamps is dependent upon the direction 

of the sensed current flow. The sense of the output voltage signal would 

change (i.e. from  +0.1 V to -0.1 V) if the direction o f current flow  through 

the clamp changes whilst the maintaining a consistent current of 1 A.

However the ADC only accepts +ve input signals, which would require the 

operator to connect the current clamp in the correct orientation prior to 

analysing door performance. This would make the DAT more difficult to use 

and less user-friendly. To overcome this problem, both input signals pass 

through a signal rectification circuit, which maintains the magnitude of the 

signal but changes the sense so that only positive signals are presented to 

the ADC (refer to figure 8 a).

6

5

4

3

2

0

0.4 0.60.2 0.3 0.5 0.7 0.8 0.9
1

■2

Time [s]

 Raw signal Amplified and rectified signal

Figure 8a: Data showing door motor signal rectification and amplification process

8.2 Digital circuit design

The design o f the digital circuit is prim arily dictated by the interface requirements 

of the selected components (refer to appendix D and appendix E fo r more 

information about the electronic components). The digital components can be 

divided into the follow ing main groups:

Page 66



Off-line condition monitoring of powered train doors Prototype Door Analysis Tool

1. Microprocessor

The microprocessor (Philips P89C51RD+) controls all aspects of the DAT 

and interfaces with all other digital components. The microprocessor 

requires a simple reset circuit so that in the case o f a software fau lt it is 

possible to physically re-boot the microprocessor. This circuit comprises a 

switch (momentary, normally open), a capacitor, a resistor and a diode. 

Additionally, the microprocessor requires a crystal oscillator (clock) input to 

use as tim ing reference. The selected clock fo r the DAT operates at 12 MHz, 

but the microprocessor can operate from 0 MHz to 33 MHz35.

The P89C51RD+ instructions can be written in the C computer language 

with a microcontroller-specific compiler. It features on-chip FLASH program 

memory with In-System Programming (ISP) capability, allowing the software 

stored within the m icrocontroller to be re-programmed using only a 

standard PC in conjunction with an RS232 interface and a free software 

package. The compiler converts the high-level software code into 

hexadecimal instructions specific to the microcontroller, which are loaded 

into the program memory using the ISP software.

2. Operator interface components

The keypad (Storm 700 series) is a simple device that is directly connected to 

the microprocessor via port 1 bits 0 to 7. Only 8  bits are required to detect 

the operation of the 16 keys, because the keys are inter-connected in a 

matrix arrangement, as shown by figure 8 b. For example, bits 2 and 6  are 

pulled low if key 1 1  is pressed, which can be decoded using a simple 

software routine.

The LCD screen (Powertip 24x2 LCD module) interfaces with the PCB fo r the 

power supply and is connected directly to the microprocessor via port 0  bits 

0 to 7. Only bits 4 to 7 are used by the microprocessor to send data to the 

LCD screen and bits 0 to 3 are used fo r control commands. The LCD unit 

has a number of in-built functions such as cursor control, display scrolling
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and definition o f up to 8  custom characters within the LCD Random Access 

Memory (RAM).

bit 4 bit 5 bit 6  bit 7

bit 0  

bit 1 

bit 2  

bit 3 ■
13

10

14

11

15

2 3 4
>

8

12
>

16

Figure 8b: Keypad matrix connections

The selected LEDs (Dialight 559 series) operate from the PCB 5 V d.c. power 

supply. One leg of each LED is connected to the microprocessor via port 2 

bit 0 (red LED), bit 1 (yellow LED) and bit 2 (green LED). The microprocessor 

pulls the corresponding bit low to illuminate the LED.

3. O ther solid-state devices

The 32 Kbyte serial EEPROM (Microchip 24LC256) requires a power supply 

[+VCc ar,d GND) and communicates with the microprocessor via the SCL 

and SDA pins. The SEEPROM device address is defined by the pins 1, 2 and 

3, which in this case are connected to ground giving a device binary address 

of 000. It is possible to address up to eight serial EEPROM devices by setting 

the logic levels on these pins using GND  (0 V) or +V Cc (5 V) (e.g. 001, 010 

or 011), allowing the microprocessor to access 256 Kbytes of storage.

The RS232 port device (Maxim RS-232 transceiver) requires a power supply 

(+VCC and GND) and communicates with the microprocessor via port 3 bits 

0 and 1. Capacitors are used as directed by the manufacturer and the 

device transmits to the physical RS232 port on the DAT casing via three 

wires. The RS232 device converts the data transmitted by the microprocessor 

in a standard form  that can be interpreted by a standard PC (ASCII format).
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The ADC (Linear Technology LTC1288) requires a power supply [+Vcc ar,d 

GND) and communicates with the microprocessor via port 3 bits 2, 3, 4 and

5. The inputs to the ADC are the outputs from  the analogue signal 

amplification circuit, which are converted to a digital value in the range 0  to 

4095 (equivalent to 0 V to 5 V).

The final device in this category is the real time clock (RTC) (Dallas 

Semiconductor DS1307) that provides the microprocessor with the date and 

time using a battery back-up. The device requires a standard power supply 

in addition to the battery and a 32768 Hz crystal oscillator. It communicates 

with the microprocessor via the SCL and SDA pins.

8.3 Selection of user interface components

This section identifies the components required by the operator to control the DAT. 

These components are all mounted on the front panel o f the enclosure and form  

the interface between the microprocessor and the operator. The role and reason 

fo r the selection o f each component will be discussed (see appendix F fo r further 

information relating to these components).

1. Display screen

The display screen allows the operator to visually interact with the DAT. The 

screen displays menus, messages, options and information to the operator 

enabling them to analyse the performance of electric passenger tra in doors. 

The messages displayed on the screen are defined and controlled by the 

embedded software in the microprocessor. A lphanum eric liquid crystal 

displays (LCD) were deemed most suitable due to their low power 

consumption and ease of integration with the microprocessor. A  24x2 LCD 

(24 characters by 2 rows) (Powertip) was selected as a compromise between 

display area and physical size. The LCD module features contrast control, a 

built-in backlight with brightness control and the ability to display a wide 

range of ASCII characters as well as eight user-definable characters that can 

be used to generate custom graphics.
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2. Data entry keypad

The operator uses the data entry keypad to interact with and control the 

DAT. The m inimum functional requirement fo r the keypad was to the ability 

to enter numerical values in the range 0 to 9. This is because each rail 

vehicle in the UK can be identified by a unique five d ig it code and each door 

on the vehicle is identified using a one dig it code (1 - 4 or A  - D). A  16-d ig it 

keypad (Storm 700 series) was selected that allows user-definable symbols 

to be mounted on the face of each key. The keypad also features excellent 

environmental protection, whilst the six non-numerical keys will a llow  the 

operator to perform additional functions such as 'select', 'cancel', 'increment' 

or 'decrement'.

3. Battery holder

The DAT operates from a minimum of one 9 V PP3 cell, but a second cell is 

required to operate the LCD backlight. The cells could be mounted within 

the DAT, however it would be inconvenient to dismantle the tool simply to 

replace a discharged cell. A  battery holder (Bulgin) allows the cells to be 

mounted from  the front control panel, allowing easy access to the cells. A 

battery holder was selected that holds two PP3 cells and allows the cells to 

be independently changed through the removal of a cartridge. No tools are 

required to remove a cell from  the holder and the cartridge locks securely in 

place to ensure correct electrical connection.

4. Indicators

The purpose of the LEDs is to provide the operator with a visual indication of 

the door analysis result, where Green =  Good, Yellow =  Fair and Red =  

Bad. The LED indicators (Dialight 559 series) were selected fo r the follow ing 

reasons:

• Available in red, yellow and green;

• Operate from  a 5 V d.c. power supply and feature an internal resistor;

• Snap fit (using retaining flanges), making them easy to assemble.
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5. Communication port

The communication port (FCT Electronic) allows the DAT to communicate 

with a PC. A standard D-type connector was selected to enable RS232 

communication via the PC serial port. The port is prim arily used to upload 

data from  the DAT to a PC fo r further interpretation or storage, however it 

also facilitates microprocessor reprogram m ing. The connector is sealed 

using a rear-mounted o-ring and provides excellent environmental 

protection, which will help to minimise moisture /  d irt ingress.

6 . Power switches

Two power switches control the power supply to the DAT and the LCD 

backlight. A  switch (Apem) was selected that met both the electrical and the 

environmental requirements outlined below:

• Two states (on and off);

• The main power switch had to be double pole, but the LCD backlight 

switch could be single pole. This allows the LCD backlight to be 

connected such that power can only be supplied to it when the DAT is 

switched on (refer to appendix C);

• Environmental protection, where possible.

7. Signal input sockets

The selection of the signal input sockets was restricted because they have to 

interface with the current clamps' connections, which are 'twist and lock' BNC 

type plugs. A suitable socket was selected that features positive and negative 

connections, with the negative connector isolated from  the connector body. 

This helps to minimise input signal noise and interference.

8.4  Design of casing and front panel layout

The DAT is designed fo r use in train maintenance depots by engineers or fitters. 

Therefore the electronic and user-interface components need to be housed within 

an enclosure to protect them from damage, moisture or dirt. To minim ise the 

prototype construction costs, an off-the-shelf enclosure was identified (refer to
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appendix F) featuring a removable, fla t alum inium front panel o f sufficient surface 

area to allow the components to be adequately mounted. This minimised the 

manufacturing costs, because the machining and assembly of the front panel 

could be undertaken using the SHU workshop facilities. The enclosure does not 

offer any specific level of environmental protection, however this was considered a 

m inor disadvantage for the prototype design. The enclosure was sufficiently large 

to allow the circuitry to be mounted inside, whilst being small and light enough to 

be hand-held. The design layout o f the interface components on the front panel 

was intended to meet a number of criteria:

1. Physically f it with the available area and volume leaving space fo r the PCB;

2. Simplify and minimise the DAT manufacture and assembly;

3. Be user-friendly, intuitive and aesthetically pleasing.

A photograph of the completed prototype DAT is shown in figure 8 c. All of the 

user interface components are located on the front panel to minimise the required 

machining and simplify the assembly process.

Figure 8c: Photograph of the prototype Door Analysis Tool
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9. Door Analysis Tool software routines

This chapter o f the thesis will detail the key areas of the data analysis software, briefly 

explaining how the analysis algorithms translate into software routines. Only a brief 

explanation o f relevant aspects o f the source code will be given, however the associated 

source code is available (see appendix G). The software algorithms discussed in this 

chapter fo llow  the same order as the algorithms described in chapter 7.

The Philips Semiconductor P89C51RD+35 microcontroller was selected to control the 

operation and perform the analysis functions of the prototype DAT (see appendix E fo r 

more information). The microcontroller features 64 Kbytes of program  memory, which is 

sufficient to store the prototype code and allow substantial further software development. 

It also features 1024 bytes of RAM to tem porarily store the sampled door m otor data 

prior to data analysis.

9.1 Identification of door motor start and end

The DAT must be able to identify the start and end o f the door m otor data, which 

is sampled and stored within the samples array. Once the start and end array 

indices are known, then the data analysis routines can be executed. Operation of 

the door motor is automatically detected by the collecf_dafa function and so the 

first door motor current data value is always stored in samplesfO], Identification of 

the end of the door motor operation is handled by the find_end function. The steps 

fo r identifying the start of m otor operation are:

1. A baseline parameter, tolerance, is immediately defined by calculating the 

average of the first 16 samples collected whilst the door m otor is not 

operating. The tolerance parameter defines the observed motor current that 

must be exceeded before the start o f door m otor operation is identified.

2. Each subsequent door motor sample is compared with the tolerance 

parameter. If the sampled door m otor current, chO, exceeds tolerance, then 

the value is stored in samples[0]. Each subsequent door m otor sample is stored 

in the samples array until all 300 values have been collected, which represent
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6  seconds of data at a sampling frequency of 50 Hz. Door operations 

normally take a maximum of 5 seconds or less.

The same technique is used to identify the end of the motor data after the 300 

samples have been stored in the samples array. The only differences is that the 

tolerance parameter is defined by the data value stored in samples[299] and the 

find_end function searches backwards through the samples array until the new 

tolerance parameter is exceeded.

9.2 Identification of interlock operation

The DAT identifies the point of traction interlock operation using the collectjdata 

function by comparing the change in the sampled value of c h i. O nly the point in 

time at which the traction interlock is either gained or lost, relay_time is stored. As 

each sample is taken, the current sample, chi ,  and the previous sample, 

chi jDrevious, are compared. If the absolute difference between these parameters 

is greater than chi_max_diff, then the relay_time parameter is defined by the 

current sample, sample_counf. Once the sampling is complete, the relay_time 

parameter will define the time of traction interlock operation.

9.3 Door performance analysis

The DAT analyses the sampled door motor data, in samples, using the 

analyse_door_error function. Before the algorithm can identify the differences 

between the sampled data and the pre-defined good m otor data, in the 

two-dimensional goodjdata array, the parameters defining the three zones, 

zonelend and zone2end, must be assigned to variables. The parameters that 

define the importance of the three zones, impl ,  imp2 and imp3 are also assigned.

The good door data is defined within the code by 100 integers. The algorithm  

must compare each individual good data value, goodjdata[][i], to an equivalent 

value derived from the samples array. However, the samples array will norm ally
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contain between 200 to 250 motor data values and so the algorithm must 

calculate an interpolated value, stored in avjdata[2], to compare with 

good_data[][i]. In order to counteract the effect of data offset, the algorithm 

actually calculates three error values using the three values stored in the avjdata  

array, av_data[0], av_data[l] and avjdafa[2]. The minimum of the three errors is 

selected and added to the error sum corresponding to the current data zone, 

rec.z7_err, rec.z2_err o r rec.z3_err. Before the algorithm repeats the procedure fo r 

goodjdafa[][i+ l], it must rotate the data in the avjdata array, such that 

av_data[2] can be filled by the next value and the two previous values are stored 

in av_data[0] and av_data[l]. The av_data[0] value is no longer required.

The algorithm  constantly identifies the maximum error, sums the total error and 

sums the motor current data fo r each zone. When the 100 data in goodjdata 

have been processed, the mean zone error can also be determined. Finally the 

total error parameter, rec.fotaljerror, can be calculated using the importance 

factors, the sum of the zone errors and the sum of the zone motor currents. The 

door performance can now be classified using this error parameter.

9.4  Classification of door performance

The classification o f the door performance by the DAT is handled by the calc_result 

routine using the rec.totaljerror parameter (previously defined in the 

analyse_door_error function). The routine loops three times, which calculates the 

confidence level of the good (/ =  0 ), fa ir (/ =  1 ) and bad (/ =  2 ) classifications. 

The rec.fotaljerror parameter can fall in to one of four options fo r each 

classifcation:

1. Rec.fofal_error falls outside of the classification band and a confidence level 

o f 0  % is assigned to the parameter rec.resulf[i].

2. Rec.fotaljerror falls within the band of ascending confidence and so the 

exact confidence level must be calculated using the equations defined in 

section 7.5. The result is assigned to the parameter rec.resulffi].
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3. Rec.total_error falls within the band of maximum confidence and a 

confidence level o f maxjconfidence (=  99 %) is assigned to the parameter 

rec.resulf[i]. The maximum confidence level is not 100 % because it is 

unrealistic to state that the classification is correct.

4. Rec.total_error falls within the band of descending confidence and so the 

exact confidence level must be calculated using the equations defined in 

section 7.5. The result is assigned to the parameter rec.resulf[i].

9.5 Generation of descriptive /  statistical parameters

Two of the parameters, the door identification code and the date and tim e of the 

test are defined through user input prior to the collection of data. O ther basic 

parameters such as the motor operating time, the traction interlock time and the 

door motion are determined in the findjend, collectjdata and door_action 

routines respectively.

The remaining descriptive parameters, detailed in section 7.6, are calculated 

either during data analysis by the analyse_door_error function o r by the 

calc_parameters function. The 9 zonal error parameters (e.g. rec.zljerr, 

rec.zlmaxjerr and rec.zlavjerr) form  part o f the main analysis routine and must 

be calculated to derive the overall error parameter rec.fotaljerror. The other 12 

zone descriptive parameters (e.g. rec.zlJmax, rec.zljm ean , rec.zlJmod_mean  

and rec.zlJsum) do not form  part of the analysis, but are calculated so that 

subsequent trend analysis can be undertaken by the operator o f the DAT.
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10. Practical testing of the Door Analysis Tool

This chapter o f the thesis will briefly address the practical testing that was carried out 

with the prototype DAT. The objectives of the practical tests were to ensure that the DAT:

• Functions correctly in a train depot environment;

• Allows the collection of raw data to aid the generation of good door characteristics;

• Correctly identifies and interprets the traction interlock signal;

• Correctly classifies normal doors as G O O D  and abnormal door operation as FAIR

or BAD depending on the observed deviation from the pre-defined characteristic;

• Facilitates the investigation o f door faults.

The practical testing was undertaken at a train maintenance depot in Leeds in 

conjunction with a new-build EMU fleet with the support o f the fleet commissioning 

team, which allowed the performance of the prototype DAT to be proven. The prototype 

DAT was successfully programmed based upon the door motor characteristic o f the fleet. 

Doors exhibiting the defined correct characteristic were accurately classified as good, 

whilst doors whose performance was artificially impaired (by attempting to stop the 

doors closing) were correctly classified as fa ir or bad, depending upon the level o f 

interference. During testing, a couple o f passenger doors were identified that were 

incorrectly set-up. One of the faults concerned the incorrect setting of a microswitch, 

resulting in the continuous operation of the motor even once the door was closed. This 

would have caused the motor to burn out and fail prematurely.

The practical testing of the prototype DAT was extremely valuable, because it proved that 

it could achieve the objectives outlined above and that the tool was suitable fo r use in a 

depot environment. Further use of the DAT by the fleet maintenance team should enable 

them to identify faulty train doors. It is also likely that further use of the tool will help to 

identify further areas o f product improvement or refinement.
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11. Theoretical testing of the Door Analysis Tool

This chapter o f the thesis aims to show that the DAT is able to identify faulty electric 

powered train doors by analysing the door m otor current characteristic. A  special 

software function was developed to enable the DAT to undertake this theoretical testing, 

allowing the DAT to analyse and classify pre-defined door m otor data stored within the 

program memory of the microcontroller. To change or re-define the door m otor data 

held in the program  memory, the source code must be modified, re-compiled and the 

microcontroller re-programmed.

The theoretical testing comprises nine specific sets o f artificially generated door motor 

data, where each test represents a potential mode of door failure. The testing focuses on 

the opening cycle of a sliding plug type door and the good door definition is based 

upon data collected from a new EMU fleet. These tests do not simulate the traction 

interlock signal and so the operator must indicate that each test represents an opening 

door. The test data are defined by figure 11a and represent:

1. A  correctly functioning opening door;

2. A  correctly functioning closing door;

3. An opening door with no dam ping function when fully open;

4. An opening door with slight stiffness during unplugging motion;

5. An opening door with increased stiffness during unplugging motion;

6 . An opening door with increased stiffness during sliding motion;

7. An opening door that is slow to open;

8 . An opening door that is quick to open;

9. An opening door with a faulty locking mechanism (stiff or damaged)
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Figure 1 la: Graphs showing the raw data for the nine theoretical tests
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11.1 Results of the theoretical testing

The results o f the nine theoretical tests are provided in tabu lar form at in appendix

H. The shaded cells h ighlight the parameters that identify the particular failure 

mode represented by the test. The test results were transferred from  the non­

volatile memory o f the DAT and copied directly into the table. For all of the tests, 

the variability factors were defined as /cZ] =  1.0, /cZ2 = 1 .0  and kZ3= 0 .5 . Factor kZ3 

was defined as 0.5 because zone 3 contains a significant block o f data (that is 

largely unimportant), which could cause spurious error warnings to be generated. 

Reducing the factor to 0.5 reduces the impact o f the zone 3 error on the total error 

calculation. A short review of the test results will be undertaken fo r each of the 

nine tests.

Test 1 The data represents a correctly operating opening door, which is confirmed 

by the 'good' classification and the low zone error values (see appendix H. 

Error values will never be zero because the door motor data is unlikely to 

exactly match the definition o f a 'good door'.

Test 2 This test involved m otor data fo r a closing door being incorrectly analysed 

as an opening door. The door classification is correct because the data 

does not correspond to an opening door. The operator could identify the 

mistake by reviewing the raw motor data graphically on the LCD. 

Alternatively, almost all o f the parameters confirm that there is no 

correlation between the test data and a 'good door'.

Test 3 Door motion is not damped as it approaches the end stops, causing it to 

slam open. This is indicated by the abnormally large current consumption 

at the end of the opening cycle. The door is however still classified as 

'good', which is due to the kZ3 factor minimising the impact o f the error. The 

fault can be clearly identified by the change in a number o f parameters. 

Modification o f factor kZ3 would cause the DAT to classify this type of fau lt 

as 'fair'. A door with this characteristic would appear to operate correctly, 

however it could lead to premature wear or damage, if not rectified.
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Test 4 The door in this test suffers from  slight abnorm al stiffness during

unplugging, however the DAT still classifies the door as 'good'. The total 

error is on the lim it o f the 'good door' classification boundary (1 0 %) and 

the parameters do identify this specific fault (Z, error and Z 1 I mean). A 

door with this characteristic could continue to be monitored to ensure that 

the fault does not become more severe and repaired when next

convenient.

Test 5 This test represents a door with a significant level of abnorm al stiffness

during unplugging, which causes the DAT to classify it as 'fair'. The nature 

o f the fault is clearly identifiable through the parameters. A  door with this 

characteristic should be repaired as soon as practicable.

Test 6  The door featured in this test has significant mechanical sliding stiffness.

The DAT correctly classifies the condition of this door as 'fair' and the

nature of the fault can be clearly identified by reviewing the parameters (Z2 

I mean or Z2 I sum). A  door with this characteristic should be repaired as 

soon as practicable to ensure that it does not cause an in-service failure.

Test 7 The door simulated in test 7 takes approximately 0.5 seconds longer to

complete the sliding motion, which is identifiable by the motor time 

parameter. The overall error is low, corresponding to a 'good' door, 

because the normalisation process partly counteracts the extra time. This 

reduces the data misalignment, b u tZ 2 error can be seen to be much higher 

than normal (13%). Door manufacturer specifications often quote opening 

and closing times as ± 1  second and so this door would be within tolerance. 

If the door were to open still slower the DAT should identify greater error, 

especially since the reduction in door speed should be associated with 

increased motor current.

Test 8  The door in this test is roughly 0.5 seconds quicker than norm al, which is 

shown by the motor time parameter. This door is classified by the DAT as 

borderline 'good /  fair' and the errors are noticeably higher than normal.
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This door is operating within specified parameters, however the DAT does 

highlight that there may be a fau lt with the door warranting further 

investigation when practicable.

Test 9 The door lock fau lt simulated by this test results in a 'bad' classification by 

the DAT, which is totally correct. The fault can be quickly confirmed to be in 

zone 1 by inspecting the Z, error parameter. The error is high because of 

the comparatively small amount o f motor data located within zone 1 , 

which could be considered to be misleading. A number of the parameters 

allow  the specific nature of this fault to be readily identified.

11.2 Conclusions from the theoretical testing

The results o f the theoretical tests showed that the DAT could successfully identify 

and correctly classify different types of door faults. The results can be summarised 

as follows:

N° o f correct classifications: 6  (tests 1, 2, 5, 6  , 8  ,9)

N° of incorrect classifications: 0

N° of inconclusive classifications: 3 (tests 3, 4, 7)

Total 9

N° o f faults identifiable by parameter review: 9

N° o f faults not identifiable by parameter review: 0

The most difficult tests fo r the DAT to resolve were test 3 (no dam ping), test 4 

(m inor stiffness) and test 7 (door slow to open), because the deviation of the test 

data from  the pre-defined 'good' data was not particularly significant. The analysis 

algorithm is capable o f detecting m inor errors in the respective zones, however the 

impact o f small errors can be overwhelmed by the weighting factor o f the other 

data. This is also an advantage, because it allows the doors to exhibit a certain 

amount o f natural variability without flagging fault conditions, which could reduce 

operator confidence in the tool. In reality, it is also not sensible to identify every 

m inor change in door performance given the large numbers o f doors in a fleet. It
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is much more im portant to be able to identify clear door faults before they lead to 

in-service door failures.

The other tests were all correctly classified in meaningful ways proportionate to the 

deviation of the door m otor characteristic from  the 'good' definition. The 

parameters allow an operator to identify the nature o f each fault. This can also be 

achieved by storing and reviewing the raw m otor data, though only 1 0  complete 

sets o f data can be stored in the prototype DAT due to the size o f the raw data 

(612 bytes), compared to 2 0 0 +  sets o f parameters.

The results o f the door tests are highly dependent upon the zone definitions, the 

'good' door m otor characteristic and the variability parameters. The variability 

parameter kZ3 could have been set at 1.0 rather than at 0.5 in the tests. This 

change would probably cause test 3 (no damping) to be classified as 'fair',

however it would have also increased the impact o f inconsequential data

mismatch in zone 3 fo r other tests. This could result in faults being incorrectly

predicted, which is potentially a worse situation.

It is a straightforward procedure to define a new set o f analysis parameters in 

order to use the DAT with a fleet o f electric train doors. It is also simple to modify 

existing analysis parameters to ta ilo r the DAT analysis to any type o f electric train 

door. The successful definition and adjustment o f parameters will be refined by 

Interfleet Technology through increased experience of setting up and using the 

DAT on a variety o f different train door systems.
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12. Future work

The TCS project was successfully completed and resulted in the development of the 

prototype DAT, a condition monitoring tool fo r electric powered train doors. This thesis 

documents the development o f the DAT along with theoretical testing highlighting the 

suitability of the DAT as a condition monitoring tool fo r the railway industry. However the 

DAT could benefit from further work, as identified below.

1. Re-development of the DAT

For the DAT to be extended to a production version, the entire design and 

selection of components and materials should be reviewed in order to improve the 

environmental protection, ruggedness and overall aesthetics o f the final product. 

The re-development should also take into account relevant legislation applicable 

to commercial products in the UK or the railway industry.

2. Pneumatic powered train doors

A large number of powered train doors in the UK are powered by compressed air. 

Further research should be conducted to determine whether a commercially 

feasible off-line /  on-line condition monitoring system can be developed fo r 

pneumatic train doors.

3. Integration of the DAT into new-build door systems

The DAT is an off-line system, however the data collection and analysis algorithms 

could be integrated into new train door systems, as supplied by an orig inal 

equipment manufacturer (OEM) with m inimal re-development work.

4. Identification of other condition monitoring applications

The analysis algorithms developed for the DAT could be adapted fo r use in a 

range of sim ilar condition monitoring applications, such as other single-throw 

systems (e.g. point motors). The algorithms could also be adapted to encompass 

other wider aspects o f railway condition monitoring applications.
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13. Conclusions

Powered passenger train doors are fitted to a high proportion o f passenger rolling stock 

in the United Kingdom. Powered passenger train doors utilise pneumatic actuators or 

electric motors to open and close and there is a wide range o f designs and operating 

mechanisms available. They are often one of the most unreliable train sub-systems, a 

problem compounded by their interaction with the train traction interlock system due to 

the safety-critical nature o f the external doors. This thesis provides detailed information 

about powered passenger train doors and condition monitoring applications in the 

railway industry, identifying why a condition monitoring system fo r powered train doors 

is needed. This thesis subsequently presents the development o f a prototype condition 

monitoring tool, the Door Analysis Tool, fo r electrically powered passenger train doors, 

which was developed by the author through a TCS collaborative project between 

Interfleet Technology and SHU.

The DAT is designed to be portable, rugged and easy to use so that it can be used in 

train maintenance depot environments. It is able to analyse the performance of an 

electric train door by monitoring the door m otor current and traction interlock current as 

it opens and closes. Data collection is non-invasive and safe, therefore requiring no train 

modification or retro-fitting o f components. The DAT is able to immediately classify door 

performance as 'good1, 'fa ir1 or 'bad', and allows the operator to store detailed 

information fo r further investigation.

The DAT was tested practically in collaboration with a new-fleet commissioning team, 

which identified that it was able to operate in a train depot environment and successfully 

identify correct and faulty door operation.

The DAT was also tested theoretically using nine pre-defined, simulated door fault 

conditions and it correctly classified six o f the nine tests. The remaining three simulated 

door faults were incorrectly classified as 'good'. However, in each case the deviation of 

the test data from the pre-defined 'good' data was not particularly significant and the 

stored parameters allowed the incipient fault to be successfully identified. Based upon 

these tests, it can be concluded that the Door Analysis Tool is a viable condition 

monitoring tool fo r electric train doors.
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14 . Author's note

Following the development, manufacture and testing of the prototype Door Analysis Tool 

as described by this thesis, Interfleet Technology decided that it was a viable commercial 

product. The future work option 1, outlined in chapter 12 was implemented and an 

initial batch o f ten production versions of the DAT were manufactured. As a result o f this 

review a number of significant improvements were made to the design including:

1. Design and manufacture o f a brushed stainless steel casing;

2. Design and manufacture o f an integrated PCB (analogue and d ig ital circuits);

3. Re-selection of user interface components to improve environmental protection, 

durability and suitability fo r depot environments. Improved component layout;

4. Expansion of on-board memory from  32 Kbytes to 96 Kbytes to improve data 

storage capabilities. Further software development to improve functionality;

5. Microprocessor upgrade to P89C51RD2 allowing In-System Programming using a 

5 V d.c. power supply (i.e. internal power supply), making the DAT truly re­

programmable at any external site using only a laptop PC.

The DAT is currently being marketed by Interfleet Technology as a condition monitoring 

tool fo r the railway industry. A  photograph of the production version of the DAT is 

shown below in figure 14a fo r completeness.

Figure 74a: Door Analysis Tool (production version)
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1 7. Appendices

17.1 Appendix A: Monitoring equipment specifications

This appendix provides an overview specification fo r key transducers or equipment used 
whilst developing the prototype DAT.

Commerical dataloaaer fused initially)
Manufacturer 
Product 
Input channels 
Input range 
ADC resolution 
Accuracy
Max. sampling rate 
Features

Dimensions: L x W x D 
Cost

Draw-wire transducer
Manufacturer
Product
Weight
Dimensions: L x W  x D
Maximum extension
Resolution
Accuracy
Output signal
Cost

Pressure transducer
Manufacturer
Product
Maximum pressure 
Accuracy 
Output signal 
Cost
Comments

Current clamp
Manufacturer
Product
Maximum current 
Resolution 
Accuracy 
Output signal 
Cost
Comments

Pico Technology 
A D C -11 +  screw terminal block 
1 1

0 V d.c. to 2.5 V d.c.
1 0  bit 
1 %
15 kHz
Parallel port connectivity to a standard PC. 
Complete with logging and display software. 
Screw terminals fo r easy transducer connection. 
110 mm x 54 mm x 16 mm 
£120.00 +  VAT

RDP Electronics 
DWT-10-20-C-1
1 . 1  kg
176 mm x 137 mm x 72 mm 
2 0 0 0  mm 
0 . 1 % typical
0 .2 % full-scale maximum
0 V d.c. to 10 V d.c. proportional to wire extension 
Unknown - SHU equipment loan

Druck Ltd 
PMP1400 
6  bar gauge 
±0.15% typical
0 V d.c. to 5 V d.c. proportional to pressure 
£148.00 +VAT
IP65 rated, requires power supply (9 V d.c. to 30 V d.c.)

LEM-HEME 
PR30 
30 A 
±1 mA
± 1 % of reading
100 mV/A
£210.00 +  VAT
Requires internal 9 V PP3 cell.
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1 7.2 Appendix B: Specification for the prototype Door Analysis Tool

Door Analysis Tool performance specification (created December 2000)

This document forms the performance specification fo r the Door Analysis Tool that is 
being developed by Alan Goude (Sheffield Hallam University) and Simon Perkin 
(Interfleet Technology). This performance specification has been developed through 
detailed discussions and specifies the operating and performance requirements o f the 
door analysis device. The project deliverables are also specified.

Inputs
The Door Analysis Tool must:
• Accept voltage inputs from  2 current clamps in the range 0 to 1 Volt (equivalent to 0 

to 10 Amps). One channel will record a door motor current and the other channel 
will record the traction interlock status. Both inputs will be terminated using standard 
"BNC type" twist and lock connectors.

• Sample both o f the input channels at 50 Hz.
• Feature an Analogue to Digital converter with a 10 bit m inimum resolution.
• Accept either +ve or -ve voltages from  the current clamps and interpret them as +ve 

data. This will allow the current clamps to be connected in either orientation and will 
simplify the monitoring process.

• Store the motor current data tem porarily in a defined block of memory for 
subsequent analysis, after which it can be discarded.

• Operate from  an internal power supply, probably utilising a standard 
replaceable/rechargeable battery.

• A llow  operator interaction with the door analysis device, probably via a 9 or 16 d ig it 
keypad.

Outputs
The Door Analysis Tool must feature:
• A  LCD (24 characters x 2 rows) with backlighting to enable messages to be 

displayed for the human operator. The backlight should be switch operated from  a 
separate power supply to maximise the operating life of the device.

• A  method to allow stored records to be transferred to a PC, probably via a standard 
serial-type connection. The records should be transferred as ASCII characters in a 
specific form at (to be defined). The operator will instigate the transfer of the records. 
The door analysis device will not check fo r communication errors during the data 
transfer process.

• A  method to allow the door m otor current data (last set stored in memory) to be 
transferred to a PC, probably via a standard serial-type connection. The records 
should be transferred as ASCII characters in a specific form at (to be defined). The 
operator will instigate the transfer o f the records. The door analysis device will not 
check fo r communication errors during the data transfer process.

Analysis
The Door Analysis Tool must:
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• Allow the human operator to identify the door being analysed. The 6 -d ig it code will 
comprise the unique 5 -d ig it vehicle number and a door identification number. The 
human operator w ill enter the 6 -d ig it identification code before analysis begins.

• Identify the point at which traction interlock status changes (code supplied by S. 
Perkin). If no point is detected, then an error should be generated.

• Generate up to 30 parameters using software (supplied by S. Perkin) based upon the 
collected door m otor data.

• Interpret the generated parameters to enable the operating status o f the door under 
analysis can be determined (code supplied by S. Perkin).

• Allow the parameters to be stored as a complete record in non-volatile memory. The 
records will be of fixed size and form at (to be defined). The record will include the 
door identification code, the date and time of the analysis, the parameters and the 
analysis evaluation.

• Present the outcome of the analysis and interpretation to the human operator via the 
LCD as well as using 3 LED's (green =  good, yellow =  okay, red =  bad).

Other
The Door Analysis Tool must:
• Have sufficient non-volatile memory to store at least 200 individual records, each 

containing up to 30 parameters fo r a duration of at least 6  months.
• Feature a "calibrate" function fo r the current clamps. This function will continuously 

display the output from  the current clamps allowing them to be correctly zeroed 
before operation.

• Feature memory management functions. These functions must allow  all of the 
records to be deleted from  the non-volatile memory, restore previously deleted 
records (not on an individual basis) and transfer all records to a PC.

• Allow the human operator to correctly set the date and time.
• Be of suitable dimensions and weight to allow it to be comfortably operated as a

hand-held device.
• Feature a power switch allowing the user to turn it on or off.
• Feature components that are suitable fo r use in a dirty train depot environment and

be robust.

Project deliverables
• lx  door analysis device (conforming to the above performance specification).
• All documentation supporting the development, design, procurement, assembly and 

operation of door analysis device (including source code fo r the microprocessor in 
electronic ASCII format).

• Cost breakdown (time and component costs).

Simon Perkin 19.12.2000
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1 7.3 Appendix C: Prototype Door Analysis Tool analogue circuits
l/P  1

(in te rlo ck )  v ia  
B N C  s o cke t 

o n  f r o n t  p a n e l

—I K?i h

l/P  0  
(m o to r)  v ia  
B N C  s o cke t 

o n  f r o n t  p a n e l Quad 12' 
Op-Amp 
TL074 111

G N DG N D -

+Ve<
IC L

7 6 6 0 -V o

{K \—
Information

G N D

lO O nF All capacitors: 1 OpF 
All diodies: use IN4148 
All resistors: 1% accuracyO/PO

(m o to r)
O/Pl

(in te rlo ck )

R,m = 10kQ R,, = lOkfi
Rjm = 10k£2 R2i = lOkfi
R3m = 4k7Q R3; = 4k7Q
R,m = 30kQ R4i = 30kQ
R5m=15kQ Rg; = 15kQ 
R̂  ̂= 200kQ* R,, = 680kQ 
R7m = lOkQ R7;=10k£2

‘Preset variable resistor

L M 7 8 0 5

LED-

LC D  +

N o te : n o t p a r t o f  PCB

BAT, 9 V  PP3 b a tte ry  caso

BA T j 9 V  PP3 b a tte ry  case
SW , D P D T  (e x e c u te /p ro g ra m  sw itch)
S W j SPDT o n  f r o n t  p a n e l
S W , D P D T  o n  fr o n t  p a n e l

c, lO O n F

c, lO p F

C3 lO p F

Ik O Q
ikoa

LED, 3 m m , red
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1 7.4 Appendix D: Prototype Door Analysis Tool digital circuits

In fo rm a tio n  ■ P89C51RDr-

Pin
1

4
5
6
7
89
10 
11 
12
13
14
1516 
17 
IB
19
20 
21 
2?
23
2425
26
27
28
29
30
31 37
33
34
3536
37
38
39
40
41
42
43
44

Nam*
P10-T2
P11.T2EX
P12
PI 3
P14
P15
P16
PI 7
B5T
P3Q-RXD
P31-TXD
P324NT0
P33.1NT1
P34-T0
P35-T1
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XTAL2
XTALl
G N D

P20AS
P21-A9
P72-AI0
P23-AII
P24-AI2
P25-A13
P76-A14
P27-A15
PSEN
Alt
EA
P07AD7
P06-AD6
P05-A05
P04-AD4
P03-AD3
P02-AD2
P01-AD1
POO-ADO
VCC

Micro pin LCD pin ICO name
36 14 D87
37 13 D86
38 12 085
39 11 084
41 6 ENABLE
42 5 R/W
43 4 RS

:n«f switch

W l

1 4

a £#,

14 pin DIL-LCD port |8 pm alt - Ktypod pert
T

Philips
P89C51RD2 V ft/E A

44 t»n

Information

SCL SDA

1 8 24LC256P 
3 E EPROM 7 

000
3

6 pin DEL 
LEDs

Infamwiim
Rj lOkfl
K lOkQ-
R» ua
K IkQ
Rt IkQ
R. IkQ
R. IkQ
Rt# IkQ
Rt, IkQ
c. 33pF
C, 33 pF
C,o 10|iF
D, IN4148
QU, 12MHi
•Prwet variable re.

Vcc Information Information 
C4 1nF Horizbat
C7 luF 32768XTAL
C„ IjiF
<V luF

+3V
32.768kHz crystal connedior P3_2

O/PO
(motor)

■Vcc 
-GND

P3 3
32768XTAL

rlOh P3 S
G ND

P3_0

GND

sa
■HORIZBAT

SDAGND

RS232 port (female)
(rear mounted on front panel) GND

DS1307

LTC128B
ADC

MAX232
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1 7.5 Appendix E: Overview of selected electronic components

This appendix provides an overview specification fo r a number o f key electronic 

components used within the prototype Door Analysis Tool.

Component: Philips P89C51RD+ 80C51 8 bit FLASH microcontroller

Processor, power supply 

RAM, FLASH program memory 

External addressable RAM 

Clock frequency

I/O  ports, Timers/counters, Interrupts 

Communication

80C51 (8 bit), + 5  V d.c.

1024 bytes, 64 Kbytes 

64 Kbytes 

Up to 33 MHz

4 (8 bit), 3 (16 bit), 7 (4 levels)

Automatic Address Recognition (UART), l2C

Component: Powertip 24x2 LCD module

Power supply + 5  V d.c. ± 10%

Interfaces 4-bit or 8-bit data bus

Characters and symbols 192 standard +  8 user-definable characters

Component: Microchip 24LC256 serial EEPROM

Memory, Cascade

Operating voltage

Communication

Power consumption

Write/erase cycles, Data retention

Electrostatic discharge protection

32 Kbytes serial EEPROM, up to 8 devices 

+  1.8 V to + 5 .5  V

2-wire serial interface bus, l2C compatible 

3 mA write, 400 pA read, 100 nA standby 

100,000 guaranteed, > 2 0 0  years 

> 4 0 0 0  V

Component: Maxim MAX232E RS-232 transceiver

Operating voltage + 5  V

Data transfer rate Up to 120 Kbits per second

Electrostatic discharge protection ±15 kV

Component: 

Power supply 

Resolution 

Input

Component: 

Power supply 

Interface 

Memory

Linear Technology LTC1288 Analogue to Digital Converter 

+ 3  V d.c. to + 6  V d.c., 160 pA typical 

12-bit

Software selectable 2-channel MUX

Dallas DS1307 Real Time Clock

+ 5  V d.c., 500 nA in battery back-up mode

2 wire serial interface

56 byte non-volatile RAM for data storage
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1 7.6 Appendix F: Prototype Door Analysis Tool component inventory

This appendix identifies all o f the components required to construct the prototype DAT, 

including the cost and source of each item.

Item Component description Quantity Supplier Order
code

1 -off 
cost [£j

1 Sloped panel ABS case 1 RS 207-1537 17.48

2 BNC isolated bulkhead socket 2 RS 193-8344 2.64

3 LED (red) 1 RS 311-6748 0.85

4 LED (yellow) 1 RS 311-6776 0.85

5 LED (green) 1 RS 311-6760 0.85

6 SPDT switch 1 RS 219-3700 3.12

7 DPDT switch 1 RS 219-3716 3.74

8 Switch waterproof cover RS 321-228 1.34

9 2x PP3 battery holder 1 RS 501-244 3.49

10 16-way keypad, IP67 sealed 1 RS 198-286 22.21

11 Keypad legend tiles, set A 1 RS 198-084 3.00

12 Waterproof 9-way D-socket 1 RS 195-7395 8.98

13 Alphanumerical LCD (24x2) 1 RS 214-3569 20.95

14 Philips P89C51RD+ microcontroller 1 RS 355-7717 15.27

15 LTC1288 ADC 1 RS 197-1795 9.20

16 ICL7660 voltage generator 1 RS 427-304 1.80

17 MAX232 RS232 level generator 1 RS 225-8510 1.45

18 DS1307 real time clock 1 RS 218-3501 2.22

19 LM317T voltage regulator 1 RS 370-5310 0.24

20 24LC256 serial EEPROM 1 FAR 3001696 3.49

21 12MHz crystal oscillator 1 RS 2 -1 .0 0

22 LM7805 voltage regulator 1 RS 648-488 0 .20

23 TL074 quad op-amp 1 RS 182-2441 0 .88

24 Power socket 1 RS 486-662 0.39

25 Power connector jack 1 RS 294-7052 2.01

26 Switch (O N -O N ) 1 RS 320-938 2.37

27 Lithium coin cell 1 RS 407-977 3.65

28 Misc. resistors and capacitors - RS - -5 .0 0

29 PCB adhesive guide strips 3 RS 543-973 2.63

30 Misc. wires and cables - RS - -1 0 .0 0

Total [£] 150.28
RS =  Radio Spares (www.rswww.com)

FAR =  Farnell (www.farnell.com/uk)
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1 7.7 Appendix G: Prototype Door Analysis Tool source code (partial)

This appendix contains part o f the source code from  the prototype DAT relating to 

aspects o f the analysis algorithms described in this thesis. The source code is provided to 

show the implementation o f the algorithms within the constraints o f an 8 -b it 

microcontroller. The code is presented here with m inor form atting changes to improve 

readability, but is otherwise unchanged.

z * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

collect_data

Samples and stores chO (motor current) and chi (traction interlock) data for a period of 6 
seconds at a frequency of 50Hz (300 samples).

Calculate a motor_current tolerance and sampling begins when motor current exceeds tolerance. 
Each sample of traction interlock current is analysed for a maximum change and this time 
index is stored and returned as an integer.

Author: Simon Perkin, November 2000
i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

int collect_data(void)
{

bit collecting_data = 0 ;  
int sample_count = 0; 
int ch0_previous =0; 
int chl_previous =0;
int chl_max_diff = INTERLOCK_TOLERANCE; 
int relay_time = 0; 
int tolerance;

lcd_clear();
lcd_puts(" Activate door to start");

// read baseline current 
chO = 0;
for(sample_count = 0; sample_count < 16; sample_count++)
{

chO = chO + adc_read(0);
}
chO = chO / 16;

// Determine tolerance for motor current 
if (chO < BASE_I_LIMIT)
{

tolerance = L0W_T0LERANCE;
}
else
{

tolerance = THRESHOLD_SCALE * chO;
}
ch0_previous = chO; // remember last value for chO 
sampling = 1 ;  // start sampling in interrupt routine
second_timer = 20; // start timer for timeout

// NOTE: ISR collects 1 sample for each channel and signals via adc_flag 
do 
{

// wait for one sample to be taken for each channel 
while(adc_flag == 0); 
adc_flag = 0; 
if (collecting_data == 0)
{ // check for start

if (chO > tolerance)
{

collecting_data = 1; 
sample_count = 0;
samples[sample_count++] = ch0_previous; 
samples[sample_count++] = chO;
second_timer = 10; // reset timer to more than 6 seconds
lcd_clear();
lcd_puts(" Sampling data"); 
lcd_goto_rc(1,1);

}
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chO_previous = chO; // remember last value for chO 
chl_previous = chi; // remember last value for chi

}
else // collect data 
{

// check relay current
if (abs(chl - chl_previous) > chl_max_diff)
{

chl_max_diff = abs(chl - chl_previous);
relay_time = sample_count; // remember time index

}
chl_previous = chi; // update last value for chi 
samples[sample_count++] = chO; // store data 
if (sample_count == MAX_SAMPLES)
{

sampling = 0; // turn off sampling in ISR
}
if ( sample_count % 25 == 0)
{

lcd_putchar
}

}
} while(sampling && second_timer && key_value != CANCEL);

// if sampling is not off then data not collected or user has cancelled 
// so display message 
if (sampling != 0)
{

sampling = 0; // turn off sampling
relay_time = -1; // reset relay_time to indicate no valid data 
lcd_clear();
if (key_value == CANCEL)
{ // user cancelled

lcd_puts(" Analysis cancelled");
}
else
{

lcd_puts(" Analysis timed out");
}
wait_or_key(5);

}
return (relay_time);

find_end
Identifies the samples[] array index that contains the last door motor 
data point. This value is returned as an integer.

Author: Simon Perkin, November 2000
★ ★ +  +  +  +  +  +  +  +  +  ★ +  *  j
int find_end(void)
{

int ival;
int tolerance; // Data value defining limit for detection of data end point

if (samples[MAX_SAMPLES - 1] < BASE_I_LIMIT)
{

tolerance = LOW_TOLERANCE;
}
else
{

tolerance = THRESHOLD_SCALE * samples[MAX_SAMPLES - 1];
}
for(ival = MAX_SAMPLES - 1; ival >= 0; ival— )
{

if (samples[ival] > tolerance)
{

return (ival + 1); // take previous position
}

}
// Something wrong

return(MAX_SAMPLES); // End of data not found

Door_action

Determines door action from interlock value or from user input.
Displays door interlock % and derived door direction for confirmation purposes 
operator to spot if interlock incorrectly detected).

Appendices

(allows
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Author: Simon Perkin, November 2000
+  ★ +  +  +  +  ★ +  +  ★ +  ★ +  +  ★ +  ★ +  ★ +  ★ +  +  j
void door_action(void)
{

BYTE detect_interlock;

// if interlock detection turned off, set interlock to zero. 
detect_interlock = read_seeprom(12); 
if(detect_interlock == 0)
{

rec.interlock = 0;
}

// if interlock occured after 50% of motor activation time 
if ( rec.interlock > 50)
{

rec.door_action = DOOR_CLOSING;
}
else
{

rec.door_action = D00R_0PENING;
}
//if no interlock was detected then interlock is zero; so ask user 
if (rec.interlock == 0)
{

char ch;
rec.door_action = DOOR_OPENING; //assume door has opened 
lcd_clear();
lcd_puts(" Door is now open?"); 
lcd_goto_rc(1,0); 
lcd_puts(" Press ENT or ->"); 
do 
{

ch = getkeyO; 
if (ch == NEXT)
{

if (rec.door_action ==* DOOR_OPENING)
{

rec.door_action = D00R_CL0SING;
lcd_goto_rc(0,0);
lcd_puts(" Door is now closed?");

}
else
{

rec.door_action = DOOR_OPENING;
lcd_goto_rc(0,0);
lcd_puts(" Door is now open? ");

}
}

} while (ch != SELECT);
}
else // added 30.04.2001 to display result of interlock detection 
{

lcd_clear();
if (rec.door_action == DOOR_OPENING)
{

sprintf(lcd_buf, " Interlock: %bu%%", rec.interlock);
lcd_puts(lcd_buf);
lcd_goto_rc(1,0);
lcd_puts(" Door is now open");
wait_or_key(5);

}
else
{

sprintf(lcd_buf, " Interlock: %bu%%", rec.interlock);
lcd_puts(lcd_buf);
lcd_goto_rc(1,0);
lcd_puts(" Door is now closed");
wait_or_key(5);

}
}

}

analyse_door_error

Normalises the raw data (on the fly) and compares it to the 
motor data describing a good door. Calculates total error.

Author: Simon Perkin, November 2000
J

void analyse_door_error(int last_val)
{
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int sample_count = 0; 
float step = 100.0/last_val; 
float total = 0.0; 
float sum, suml, sum2, sum3; 
int av_count, count, min;
BYTE av_data[3];
float impl =1.0, imp2 =1.0, imp3 =1.0;

// set zone 1 and 2 ends + importance factors depending on door action 
if( rec.door_action == D00R_0PENING)
{

zonelend = 0PEN_Z0NE1END; 
zone2end = 0PEN_Z0NE2END; 
impl = 0PEN_IMP1; 
imp2 = 0PEN_IMP2; 
imp3 = 0PEN_IMP3;

}
else
{

zonelend = CL0SE_Z0NE1END; 
zone2end = CL0SE_Z0NE2END; 
impl = CL0SE_IMP1; 
imp2 = CL0SE_IMP2; 
imp3 = CL0SE_IMP3;

}
// Do start section
av_data[0] = (samples[0] * SCALE_FACTOR) / I_GRID_MAX; 
sum = 0.0; 
av_count = 0; 
while(total < 1.0)
{

sum += samples[sample_count++];
av_count++;
total = total + step;

}
sum = sum / av_count;

av_data[1] = (sum * SCALE_FACTOR) / I_GRID_MAX; 

min = 9999;
if (a b s (av_data[0] - good_data[rec.door_action][0]) < min)
{

min = abs(av_data[0] - good_data[rec.door_action][0]);
}
if (abs(av_data[1] - good_data[rec.door_action][0]) < min)
{

min = abs(av_data[1] - good_data[rec.door_action][0]);
)
if (a b s (av_data[0] - good_data[rec.door_action][1]) < min)
{

min = abs(av_data[0] - good_data[rec.door_action][1]);
}
rec.zlmax_err = min; 
rec.zl_err = min;

/ / D o  middle section
for(count = 1; count < 99; count++)
{ .

sum = 0.0; 
av_count = 0;
while( total < (float)(count + 1))
{

sum += samples[sample_count++];
total += step;
av_count++;

}
sum = sum / av_count;
av_data[2] = (sum + SCALE_FACTOR) / I_GRID_MAX;

// Calc errors and find minimum error 
min = 9999;
if( abs(av_data[0] - good_data[rec.door_action][count]) < min )
{

min = abs(av_data[0] - good_data[rec.door_action][count]);
}
if( abs(av_data[1] - good_data[rec.door_action][count]) < min )
{

min = abs(av_data[1] - good_data[rec.door_action][count]);
}
if( abs(av_data[2] - good_data[rec.door_action][count]) < min )
{

min = abs(av_data[2] - good_data[rec.door_action][count]);
}
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if( abs(av_data[1] - good_data[rec.door_action][count - 1]) < min )
{

min = abs(av_data[1] - good_data[rec.door_action][count - 1]);
}
if( abs(av_data[1] - good_data[rec.door_action][count + 1]) < min )
{

min = abs(av_data[l] - good_data[rec.door_action][count +1]);
}

// update max error and running totals 
if (count < zonelend)
{

rec.zl_err += min; 
if (min > rec.zlmax_err)
{

rec.zlmax_err = min;
}

}
else
{

if (count < zone2end)
{

rec.z2_err += min; 
if (min > rec.z2max_err)
{

rec.z2max_err = min;
}

}
else
{

rec.z3_err += min; 
if (min > rec.z3max_err)
{

rec.z3max_err = min;
}

}

}
// update
av_data[0] = av_data[l]; 
av_data[l] = av_data[2];

}// end middle section

// do end section 
min =9999;
if (abs(av_data[2] - good_data[rec.door_action][99]) < min)
{

min = abs(av_data[2] - good_data[rec.door_action][99]);
}
if (abs(av_data[2] - good_data[rec.door_action][98]) < min)
{

min = abs(av_data[2] - good_data[rec.door_action][98]);
}
if (abs(av_data[1] - good_data[rec.door_action][99]) < min)
{

min = abs(av_data[1] - good_data[rec.door_action][99]);
}
rec.z3_err += min; 
if (min > rec.z3max_err)
{

rec.z3max_err = min;
}
// Calc size of good data and round up average error 
suml = 0.0;
for ( count = 0; count < zonelend; count++)
{

suml += good_data[ rec.door_action][count];
}
rec.zlav_err = (UINT) ((float)rec.zl_err/(zonelend) + 0.5); 
rec.zl_err = (UINT) ( ((float)rec.zl_err * 100.0)/suml + 0.5);

sum2 = 0.0;
for ( count = zonelend; count < zone2end; count++)
{

sum2 += good_data[ rec.door_action][count];
}
rec.z2av_err = (UINT) ((float)rec.z2_err/(zone2end - zonelend) + 0.5); 
rec.z2_err = (UINT) (((float)rec.z2_err * 100.0)/sum2 + 0.5);

sum3 = 0.0;
for ( count = zone2end; count < 100; count++)
{

sum3 += good_data[rec.door_action][count];
}
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rec.z3av_err = (UINT) ((float)rec.z3_err/(100 - zone2end) + 0.5); 
rec.z3_err = (UINT) (((float)rec.z3_err * 100.0)/sum3 + 0.5);

// Calc total error
rec.total_error = ((impl * rec.zl_err * suml) + (imp2 * rec.z2_err * sum2) + 

(imp3 * rec.z3_err * sum3)) / (suml + sum2 + sum3);
}

calc_parameters

Calculates the maximum, mean, modified mean and sum for each
of the 3 zones based upon the raw data in samples array.

Author: Simon Perkin, November 2000
+  +  +  *  +  +  *  +  +  +  ★ +  +  *  +  +  j
void calc_parameters(int end)
{

int temp; 
long int isum; 
int imax; 
int i , j;

// first pass
// scale zonelend to raw data index 
temp = zonelend * end / 100; 
isum = 0L; 
imax = 0;
for(i = 0 ;  i < temp; i++)
{

if(samples[i] > imax)
{

imax = samples[i];
}
isum += samples[i];

}
rec.zl_imax = imax;
rec.zl_isum = (UINT) (isum / SCALE_SUM) ; 
rec.zl_imean = isum / temp;

temp = zone2end * end / 100; 
isum = 0L; 
imax = 0;

// carry on from end of zone 1 
for( ; i < temp; i++)
{

if(samples[i] > imax)
{

imax = samples[i];
}
isum += samples[i];

}
rec.z2_imax = imax;
rec..z2_isum = (UINT) (isum / SCALE_SUM) ; 
rec.z2_imean = isum / (temp - (zonelend * end / 100));

isum = 0L; 
imax = 0;

// carry on from end of zone 2 
for ( ; i <= end; i++)
{

if(samples [i] > imax)
{

imax = samples[i];
}
isum += samples[i];

}
rec.z3_imax = imax;
rec.z3_isum = (UINT) ( isum / SCALE_SUM);
rec.z3_imean = isum / (end - temp); // temp is end of zone 2 

// Second pass
temp = zonelend * end / 100; 
isum = 0L; 
j = 0;
for(i = 0 ;  i < temp; i++)
{

if(samples[i] > rec.zl_imean)
{

isum += samples[i];
j++;

}
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}
i f (j == 0)
{

rec.zl_imod_mean = rec.zl_imean;
}
else
{

rec.zl_imod_mean = (UINT) (isum / j);
}

temp = zone2end * end / 100; 
isum = 0L; 
j = 0;
for( ; i < temp; i++)
{

if(samples[i] > rec.z2_imean)
{

isum += samples[i];
j++;

}
}
i f (j == 0)
{

rec.z2_imod_mean = rec.z2_imean;
}
else
{

rec.z2_imod_mean = (UINT) (isum / j);
}
isum = 0L; 
j = 0;
for( ; i <= end; i++)
{

if(samples[i] > rec.z3_imean)
{

isum += samples[i] ;
j++;

}
}
i f (j == 0)
{

rec.z3_imod_mean = rec.z3_imean;
}
else
{

rec.z3_imod_mean = (UINT) (isum / j);
}

calc_result

Uses rec.total_error value to determine the door classification using a fuzzy logic approach. 
Confidence levels are assigned to each results contained in the result[] array, where 
result[0] refers to GOOD classification, result[1] refers to FAIR classification and
result[2] refers to BAD classification.

Author: Simon Perkin, December 2000

15.03.2001 S. Perkin
- Maximum confidence output set to max_confidence.
- Max_confidence set to 95 to avoid implication of 100% confidence.

void calc_result(void)
{

BYTE count; 
float confidence;
// Max [%] confidence to be defined based upon analysis 
float max_confidence = 99;

for (count = 0; count < 3; count++)
{

// Confidence level minimum
if(rec.total_error < membership[count][0] || rec.total_error >

membership[count][3])
{

rec.result[count] = 0;
}
else
{

// Confidence level ascending
if ( rec.total_error >= membership[count][0] && 

rec.total_error < membership[count][1] )
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{
confidence = (membership[count][1] - rec.total_error) / 

(membership[count][1] - membership[count][0]); 
confidence = 1.0 + e x p (10.0 * (confidence - 0.5)); 
confidence = 1.0 / confidence;
rec.result[count] = max_confidence * confidence;

}
// Confidence level maximum
if ( rec.total_error >= membership[count][1] && 

rec.total_error < membership[count][2] )
{

rec.result[count] = max_confidence;
}

// Confidence level descending
if(rec.total_error >= membership[count][2] && rec.total_error < 

membership[count][3])
{

confidence = 1.0 - (membership[count][3] - rec.total_error) 
/ (membership[count][3] - membership[count][2]); 

confidence = 1.0 + exp(10.0 * (confidence - 0.5)); 
confidence = 1.0 / confidence;
rec.result[count] = max_confidence * confidence;

}

}
}

}
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1 7.8 Appendix H: Door Analysis Tool theoretical testing results

This appendix contains the results fo r the nine theoretical tests, as described in section

11. The shaded parameters facilitate the correct identification of each simulated fault.

Parameter 

Test ID 1 2 3 4

Tests

5 6 7 8 9

Door motion8 0 1 0 0 0 0 0 0 0

Motor time [s] 4.52 4.80 4.38 4.58 4.58 4.58 4.9 4.1 4.60

Good confidence [%] 99 0 98 99 4 0 99 72 0

Fair confidence [%] 0 0 0 0 94 98 0 26 0

Bad confidence [%] 0 99 0 0 0 0 0 0 99

Total error [%] 5 55 10 8 14 20 6 12 26

Z, error [%] 10 32 8 12 30 9 6 20 54

Z2 error [%] 3 59 9 6 4 73 13 10 8

Z3 error [%] 6 156 26 11 8 9 9 12 13

Z, mean error [%] 3 9 2 4 9 3 2 6 16

Z2 mean error [%] 0 6 1 1 0 8 1 1 1

Z3 mean error [%] 2 43 7 3 2 3 2 3 4

Z, max error [%] 11 42 8 10 33 9 8 22 66

Z2 max error [%] 2 29 8 8 1 12 11 11 7

Z3 max error [%] 5 98 54 54 12 12 12 26 26

Z t 1 max [mA] 3779 1657 3779 3779 3779 3779 3779 3779 4572

Z2 1 maxfmA] 1040 2172 1040 1040 1040 1782 1040 895 874

Z3 1 max [mA] 3273 6186 3942 3273 3273 3273 3273 3273 3637

7-y 1 mean [mA] 1386 932 1423 1635 2014 1418 1306 1494 2072

Z2 1 mean [mA] 515 795 534 512 507 1049 546 480 554

Z3 1 mean [mA] 1362 4150 1965 1367 1367 1367 1254 1445 1213

Z, 1 mod. Mean [mA] 2453 1289 2495 2548 2812 2458 2282 2495 3598

Z2 1 mod. Mean [mA] 639 1447 659 642 637 1230 659 622 659

Z3 1 mod mean [mA] 3085 5422 3376 3085 3085 3085 3085 3085 3234

Z } 1 sum [A] 90.28 64.40 89.75 107.96 133.06 93.60 92.87 88.14 136.82

Z2 1 sum [A] 48.0 78.91 48.29 48.29 47.90 98.83 54.74 40.48 52.64

Z3 1 sum [A] 92.68 298.83 129.69 94.43 94.43 94.43 92.87 89.70 83.74

8 0 =  opening door, 1 =  closing door
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