
Formation and organisation in robot swarms.

OTHMAN, Wan Amir Fuad Wajdi.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20156/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20156/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

MustJiur venire uny uampus
_ Sheffield S1 1WB

1 0 1 9 1 1 093 7

§H@ffi§ld Hallsm University
k§§fflln0 and IT Services

Ad§§tt‘» Centre City Cam pus
ihgffield S1 1WB

REFERENCE

ProQuest Number: 10697463

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t u p on the quality of the co p y subm itted .

In the unlikely e v e n t that the author did not send a c o m p le te m anuscript
and there are missing p a g e s , th ese will be n o te d . Also, if m aterial had to be rem o v ed ,

a n o te will in d ica te the d e le tio n .

uest
ProQ uest 10697463

Published by ProQuest LLC(2017). C opyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected a g a in st unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

Formation and Organisation in
Robot Swarms

Wan Amir Fuad Wajdi Othman

A thesis submitted in partial fulfilment o f the requirements o f
Sheffield Hallam University

for the degree o f Doctor o f Philosophy

March 2009

Declaration

This is to certify that I am responsible for the work submitted in the thesis, that the original

work is my own except as specified in acknowledgements, and that neither the thesis nor the

original work contained therein has been submitted to this or any institution for a higher degree.

Signature: ..

Name : WAN AMIR FUAD WAJDI OTHMAN

Date iO March 2009

Acknowledgement

I would like to express my sincere gratitude to my research supervisor, Bala P. Amavasai, for

his excellent guidance and consistent support during my research. I am grateful to him for

giving me an invaluable opportunity to work on four different aspect o f swarming over the past

four years. Thanks for broadening my scope and helping me achieve my goals. I would like to

communicate my appreciation to Jon R. Travis, Bala P. Amavasai and Reza Saatchi for their

interest and enthusiasm, to read, modify and comment on the manuscript.

I would like to thank all colleagues of the Microsystems and Machine Vision Laboratory,

particularly Jan Wedekind, Kim Chuan Lim, Tan Kang Song, Manuel Boissenin and Arul

Selvan for their support and encouragement. Also, I would like to extend my gratitude to Fabio

Caparrelli and Stephen McKibbin for many insightful suggestions, fruitful discussions and

constructive comments.

I would like also to thank Alan Goude for his enthusiasm in teaching and guidance on my extra

curriculum lecture. I benefited a lot from his valuable course on Object Oriented Programming.

Thanks to the Ministry o f Higher Education of Malaysia and University Science of Malaysia

for giving me the opportunity to pursue my research, and for sponsoring my studies. Special

thanks to members o f the Registrar office of USM particularly to Fatimah Othman and Ramli

Osman, for their kind support and cooperation towards the completion o f this thesis.

Finally, but most importantly, I would like to express my sincere love and appreciation to my

mother, Faizah Othman, my wife, Fazrin Mohamad Azemi and my son Aleef Imran for their

unconditional love, support, patience, encouragement and du'a throughout the work which has

taken many hours that should have been dedicated exclusively to them. No matter, what

happens they have always stood behind me and have shared in my happiness and difficulties.

Thanks again to my wife, she has tolerated all my stress, helping me with her unbelievable

love. Also I would like to express my love to my late father, brothers and sisters as well as

parents in law for their continuous support and du'a.

Abstract

A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents

operating in a common environment and seemingly acting in a coherent and coordinated manner.

Swarm architectures promote decentralisation and self-organisation which often leads to emergent

behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its

environment (or fellow agents), but not as a direct result of design. The creation of artificially

simulated swarms or practical robot swarms has become an interesting topic of research in the last

decade. Even though many studies have been undertaken using a practical approach to swarm

construction, there are still many problems need to be addressed. Such problems include the

problem of how to control very simple agents to form patterns; the problem of how an attractor will

affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting

multiple locations. The central goal of this thesis is to develop early novel theories and algorithms

to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for

understanding how to model, design and control individual units have to be developed. This thesis

consists of three independent pieces of research work that address the problem of pattern formation

of robot swarms in both a centralised and a decentralised way.

The first research contribution proposes algorithms of line formation and cluster formation in a

decentralised way for relatively simple homogenous agents with very little memory, limited sensing

capabilities and processing power. This research utilises the Finite State Machine approach.

In the second research contribution, by extending Wilensky's (1999) work on flocking, three

different movement models are modelled by changing the maximum viewing angle each agent

possesses during the course of changing its direction. An object which releases an artificial potential

field is then introduced in the centre of the arena and the behaviours of the collective movement

model are studied.

The third research contribution studies the complex formation of agents in a task that requires a

formation of agents between two locations. This novel research proposes the use Of L-Systems that

are evolved using genetic algorithms so that more complex pattern formations can be represented

and achieved. Agents will need to have the ability to interpret short strings of rules that form the

basic DNA of the formation.

v

Table of Contents

Chapter 1 Thesis Overview *... 1
1.1 Motivation..........................,................................. 1

1.2 Self Organisation......................... 3

1.3 Context... 6

1.4 Structure o f the Thesis.. 8

Chapter 2 Literature Survey....................... 10
2.1 Pattern Formations..10

2.1.1 Pattern Forming Paradigms ... 13

2.1.1.1 Biomimetics... 13

2.1.1.2 Physicomimetics.. 16

2.1.2 Organised Formations..:.......................19

2.1.2.1 Centralised... 21

2.1.2.2 Decentralised............................... 23

Behaviour based approach 23

Leader-follower approach....................... .29

2.2 Definitions.................................... 33

2.2.1 Intelligence... 33

2.2.2 Swarm Intelligence....................... 35

2.3 Swarm Robotics..................................... 39

2.3.1 The Autonomous Nano-Technology Swarm (ANTS)............................... 42

2.3.2 The Swarm-bots project... 42

2.3.3 The Pheromones robotics project .. 43

2.3.4 The GUARDIANS project ... 44

2.4 Robot Architecture........................... 44

2.5 Artificial Life 47

2.5.1 Inspirations from Natural Systems... 47

2.5.2 L-Systems 52

2.6 Swarm Modelling... 55

2.6.1 Eularian model.................. 55

2.6.2 Lagrangian model.. 56

2.6.3 Behaviour-based model................... 56

2.7 Simulation Tools................... 60

2.7.1 Breve.................. :.60

2.7.2 NetLogo.................................. 62

2.7.3 Other Simulation Tools... !.................................. 64

2.8 Summary.. 66

Chapter 3 State Based Models................................. 68
3.1 Introduction............................. 69

3.2 Tasks and Approaches ... 70

3.3 Simulation Environment... 71

3.3.1 Simulator and agent designs......................... 71

3.3.2 Agents dynamics.............................. 74

3.4 Encoding of Rules.. 77

3.4.1 Line formation................... 78

3.4.2 Cluster formation....................... 82

3.5 Experiments... ~..84

3.5.1 Simulations setup.. 84

3.5.2 Evaluating line formation... 85

3.5.3 Evaluating cluster formation............................... 87

3.6 Discussions.. 90

Chapter 4 Modelling of Collective Movement...96
4.1 Introduction........................ 96

4.2 Collective Movement in Robotics. ... 98

4.3 Simulation Approach............................... 99

4.4 Methodology and Implementation 101

4.4.1 Simulation methodology.. 101

4.4.2 Pre-simulation runs...108

4.5 Evaluation..................................... I l l

4.5.1 Evaluating the fish-like movement model.................... :.............. 112

4.5.2 Evaluating the mosquito-like movement model.................... 116

4.5.3 Evaluating the firefly-like movement model......................... 120

4.5.4 Mean distance ... 124

4.6 Summary..................... 128

Chapter 5 L-Systems for Formation Tasks... 130
5.1 Introduction.............. ..130

5.2 Background.. 133

5.2.1 L-Systems.. 133

The generative process................... 136

The interpretive process.. 137

5.2.2 Evolutionary algorithms... 139

5.2.2.1 Parent selection................. 141

5.2.2.2 Crossover 142

5.2.2.3 Mutation........................... 142

5.3 Methodologies and Implementations ...143

5.3.1 Pattern construction 144

5.3.2 Representation methodologies..................................... 147

5.3.3 Evolutionary algorithms................................. 148

5.3.3.1 Encoding.................. 148

5.3.3.2 Selection method.. 149

5.3.3.3 Genetic operators.. :....................................... 151

5.3.4 Evolving the patterns - pre-runs.................... 155

5.4 Evaluation / Simulation ... 157

5.4.1 Task and procedure............................ 157

5.4.1.1 Evolutionary process 158

5.4.1.2 Piece-wise solutions..159

5.4.2 Results... 160

5.4.3 Comparison with RGT and A* search algorithms.. ...175

5.5 Summary Remarks................ ,.. 181

Chapter 6 Conclusions and Future Work................... 184
6.1 Overview.......................... 184

6.2 Original Contributions to Knowledge... 185

6.2.1 State based models.. 185

6.2.2 Collective movements model................. 187

6.2.3 L-Systems for formation tasks 188

6.3 Recommendation for Future Works..................... 189

6.3.1 State based models... 189

6.3.2 Collective movements model 189

6.3.3 L-Systems for formation tasks.................... 190 .

6.4 Summary...190

viii

References

Publications

Figure Index

Figure 1.1: An example of pattern formation in nature, showing sand dunes............... 3

Figure 1.2: Artist impression of cooperation between I-SWARM microrobots.............................. 7

Figure 1.3: The final I-SWARM robot with dimension of 3x3x3 mm3................................... 8

Figure 2.1: Schematic presentation of several anti-predator strategies in a school of fish. (Taken

from Vabo & Nottestad 1997)... 12

Figure 2.2: Illustration of a direction decision according to an environment computation of

magnitudes for each favourite vector. (Taken from Hanada et al. 2007)................ 14

Figure 2.3: A roadmap. Black dots represent nodes; connections between nodes represent

feasible paths, (taken from Bayazit et al. 2002)....................:.. 15

Figure 2.4: Example o f biological swarms, (a) Wildebeest herd grazing across Savannah Kenya

(reproduced with permission from the Planet Earth Productions), (b) Wild parrots, wheeling in

the sky, in Edgewater New Jersey, USA (reproduced with permission from Stephen C.

Baldwin, brooklynparrots.com). (c) School of Silverside fish (reproduced with permission from

R. Kent Wenger)................ 20

Figure 2.5: The four quadrants of agent's view. (Taken from Cohen and Peleg 2006)................27

Figure 2.6: Artist impressions of Braitenberg vehicle..................................... ■............45

Figure 2.7: The Brook's subsumption architecture................................ 45

Figure 2.8: Control and information flow in artificial fish. (Taken from Terzopoulos et al. 1994)

.. 49

Figure 2.9: Example of slime moulds aggregation wave patterns. Each step o f the transition

from top left to top right and then to the centre takes about 30 minutes. Images courtesy o f P.C.

Newell 50

Figure 2.10: A boxfish. MARCO (Kodati et al. 2007) the under water robot gains inspiration

from boxfish.(Image courtesy of divegallery.com).................. 52

Figure 2.11: A complete cast of the arterial system of a rat. Modelled by parametric L-Systems

(Zamir 2001)...................... ;..................... 54

Figure 2.12: Reynolds's basic flocking steering strategies. The circle indicates the

neighbourhood range o f the agent's in the centre o f the circle. The left shows cohesion, the

centre shows separation, and the right shows alignment strategy respectively.........................57

Figure 2.13: Cohesion strategy in SPARROW, taken from Folino and Spezzano (2002). In this

strategy, the green agent in the centre feel the attraction towards red agents, and repulsion

against white agent.. 59

Figure 2.14: Example o f Breve simulation world; showing the simulation of Braitenberg

vehicle written by Klein (2002)...61

Figure 2.15: Example o f NetLogo simulation world, showing the simulation of the ant foraging

model written by Wilensky (1999).. 63

Figure 3.1: Simulation world; showing floor, wall with seven agents in the arena...................... 71

Figure 3.2: Simulated agent...;......................... 72

Figure 3.3: State diagram for line and cluster formation. States are shown as labelled circles

while transitions are depicted as arrows. Each transition is labelled as event which triggers the

transitions. Letter s represents sensory input to the agent; where s = 0 depicts no sensory input,

while s > 0 means there at least one of the sensor gives a reading.. 77

Figure 3.4: Agents start position in the arena for; (a) line formation, (b) clustering.................... 79

Figure 3.5: Transmitters' on-off arrangement for line formation. Agent on the left is in the

following state where three transmitters at the back is switched on. On the right is in the

randomWalk state where all transmitters are on... 79

Figure 3.6: On-off arrangement o f transmitters for cluster formation. On the left is the searcher

agent in the following state switching on all the transmitters except the front three. Agent on the

right is the attractor switching on all its transmitters..84

Figure 3.7: Number of agents in the randomWalk state in line formation against time. 85

Figure 3.8: Stages in line formations: (a) at t = 40[s]; (b) at t = 100[s]; (c) at t = 190[s], and (d)

at t = 240[s].. 87

Figure 3.9: Number of searcher agents in the following state in cluster formation against time.

Figure 3.10: Stages in cluster formations in one of the simulation runs: (a) at t = 0[s]; (b) at t =

40[s]; (c) at t = 100[s], and (d) at t = 160[s].. 90

Figure 3.11: The SHUBOT and four SHUBOTs performing line formation (Fernandez et al.

2005)...................... 93

Figure 3.12: Obstacle .avoidance on SHUBOT. The triple check is due to the fact that the

robot's own infra-red transmitter may affect sensing...................... 94

Figure 4.1: Example o f a working arena with 300 agents........................ 100

Figure 4.2: Representation of an individual agent..101

Figure 4.3: Flowchart of movement models.... .. 107

Figure 4.4: Agents motion trajectories for each movement model: (a) fish-like, (b) mosquito­

like, (c) firefly-like... 109

Figure 4.5: Agents motion trajectories for each movement model: (a) fish-like, (b) mosquito­

like, (c) firefly-like.. 110

Figure 4.6: Agents position at t = 1000 time steps of three movement models: (a) fish-like, (b)

mosquito-like, (c) firefly-like... I l l

Figure 4.7: Positions of 300 agents in the arena at different time steps for the fish-like

movement model from one o f the simulation runs; (a) at t=150, (b) at t=330, (c) at t=500 time

steps................... 113

Figure 4.8: Number of agents for the fish-like movement model within circular area from the

attractor; (a) at t = 200, (b) at t = 600 simulation time steps............................. 115

Figure 4.9: Number of agents for the fish-like movement model within circular area from the

centre of APF at different simulation time steps...................................... 116

Figure 4.10: Positions o f 300 agents in the arena at different time steps for the mosquito-like

movement model; (a) at t=0, (b) at t=500, (c) at t=1000, (d) at t=1500 time steps117

Figure 4.11: Number of agents for the mosquito-like movement model within circular area

from the attractor; (a) at t = 400, (b) at t = 1200 simulation time steps 119

Figure 4.12: Number of agents for the mosquito-like movement model within circular area

from the centre o f APF at several different simulation time steps...120

Figure 4.13: Positions o f 300 agents in the arena at different time steps for the firefly-like

movement model at: (a) t=0, (b) t=1000, (c) t=2000, (d) t=3000 simulation time steps 121

Figure 4.14: Number of agents for the firefly-like movement model within circular area from

the attractor; (a) at t = 1000, (b) at t = 3000 simulation time steps..123

Figure 4.15: Number of agents for the firefly-like movement model within circular area from

the centre o f APF at different simulation time steps.......................... 124

Figure 4.16: Convergence o f mean distance, D for (a) fish-like, (b) mosquito-like, (c) firefly­

like movement model... 126

Figure 4.17: Convergence of mean distance, D for (a) 300, (b) 500 agents.................................127

Figure 5.1: Example of patterns generated by L-Systems. (a) Outline o f Koch island or

snowflake fractal after five iterations o f rewriting, (b) Realistic modelling o f Fall trees (image

copyright of Svetlin (Alex) Bostandjiev of University o f California in Santa Barbara) 134

Figure 5.2: Top-level description of a genetic algorithm.....................................:..........................140

Figure 5.3: The roulette wheel selection algorithm.. 141

Figure 5.4: The roulette wheel selection example. The top table shows the fitness o f seven

individuals and the running total of fitness. The bottom table shows the individual that would

be chosen by the roulette wheel method using these fitness values for each o f six randomly

generated numbers ... 141

Figure 5.5: Example o f one-point crossover. The offsprings are made by cutting the parents at

the point denoted by the vertical dotted line and exchanging parental genetic material after the

cut.................:... 143

Figure 5.6: Example o f mutation operation. Offspringl is made by mutating the Parentl at 2nd

and 9th bits from left 143

Figure 5.7: Generative module o f pattern construction command...145

Figure 5.8: Interpretive module of pattern construction command..146

Figure 5.9: Visualisation of L-System: (a) the axiom; (b) the rule string, (c) formed pattern after

the first iteration o f rewriting process, 147

Figure 5.10: Mutation operation. From the Parent, Offspringl commits insertions o f new 3

symbols; Offspring2 deletes 3 symbols in the axiom string; Offspring3 replaces 4 symbols in

the successor string........................... 151

Figure 5.11: Some of possible blending operations. At first, all the offsprings makes a copy of

Parentl. Offspringl replaces the successor string taken from Parent2; Offspring2 replaces some

of its symbols in the axiom string and replaces with some symbols taken from Parent2's axiom

string; Offspring3 takes and replaces some symbols in its successor string with some symbols

taken from Parent2's successor string.. 153

Figure 5.12: Crossover operation by swapping element(s) or gene(s). Offspringl and

Offspirng2 depict one gene swapping, and Offspring3 and Offsping4 show 2 genes swapping

take place... .154

Figure 5.13: Crossover operation by swapping symbols. Offspimgl and Offspirng2 show

example o f one-point crossover; Offspring3 and Offsprig4 show the example o f two-point

crossover............................... 155

Figure 5.14: Example evolution of an L-System that maximises spread for exploration

purposes. Each red point indicates the location of an agent* and the blue lines indicate parent-

child relationship..... ...156

Figure 5.15: Working arenas where the black colour box(es) indicate(s) the obstacle(s): (a)

open, (b) cross, (c) scatter. The blue square on the bottom left depicts the start location and the

red square on the top left o f the arena shows the goal location.............................. 158

Figure 5.16: Distribution of number of successful simulations for DOL-Systems in each arena

arrangement............................ 162

Figure 5.17: Distribution of number of simulations for CSL-Systems in each arena arrangement

 162

Figure 5.18: Number of agents against generations during the evolutionary process from one of

the DOL-System samples in the scatter arena................................ 164

Figure 5.19: Coverage against generations during the evolutionary process from one o f the

DOL-System samples in the scatter arena.................. '... 164

Figure 5.20: Nearest distance to goal against generations during the evolutionary process from

one of the DOL-System samples in the scatter arena........................ 164

xiv

Figure 5.21: Evolving pattern formation of DOL-Systems in the open arena. The fittest L-

System for first segment in the: (a) 2nd, (b) 4th,(c) 6th, (d) 12th, (e) 48th generation; second

segment in the: (f) 28th generation, of the evolutionary process................................. 166

Figure 5.22: Evolving pattern formation of DOL-Systems in. the cross arena. The fittest L-

System for the first segment at the: (a) 5th,(b) 10th,(c) 30th, (d) 70th generation; second

segment at the: (e) 5th,(f) 30thgeneration, of evolutionary process................................ .168

Figure 5.23: Evolving pattern formation of DOL-Systems in the scatter arena. The fittest L-

System for first segment in the: (a) 10th, (b) 25th,(c) 60th generation; second segment in the:

(d) 5th, (e) 10th, (f) 35th generation, o f evolutionary process..... 170

Figure 5.24: Evolving pattern formation of CSL-Systems in the open arena. The fittest L-

System for first segment in the: (a) 2nd, (b) 6th,(c) 8th, (d) 12th generation; second segment in

the: (e) 2nd, (f) 32nd generation, of the evolutionary process..171

Figure 5.25: Evolving pattern formation of CSL-Systems in the cross arena. The fittest L-

System for the first segment at the: (a) 25th generation; second segment at the: (b)5th

generation, (c) 15th generation, (d) 50th generation; third segment: (e) 5th generation, (f)

30thgeneration, of evolutionary process 172

Figure 5.26: Evolving pattern formation of CSL-Systems in the scatter arena. The fittest L-

System for first segment in the: (a) 5th, (b) 10th generation; second segment in: (c) 10th, (d)

30th generation; third segment in the; (e) 15th, (f) 45th generation, o f evolutionary process. .173

Figure 5.27: Example of formed pattern using RGT method. Small coloured squares represent

agents position, (a) in open arena with total o f 61 agents, (b) in cross arena with 71 agents, (c)

in scatter arena with 69 agents ... 178

Figure 5.28: Formed pattern using (a)-(c) A* 4-direction and (d)-(e) 8-direction methods, in the

open (a)(d), scatter (b)(e), and cross (c)(f) arena respectively................................. 179

Figure 5.29: Evolved L-Systems robot swarms formation. Each figure show the “best”

generated results for: DOL-Systems in (a) open, (b) cross, (c) scatter arena; and for CSL-

Systems in (d) open, (e) cross, (f) scatter arena, respectively... 180

xv

Index of Tables

Table 3.1: Agent's parts.. .73

Table 3.2: Pseudo code for agents dynamics...76

Table 3.3: Pseudo codes for three states in line formation algorithm..80

Table 3.4: Pseudo codes for three states in cluster formation algorithm................................ 82

Table 3.5: Percentage o f number of agents in the randomWalk state over 51 simulations mn for

line formation... 86

Table 3.6: Percentage o f number of agents in the randomWalk state over 51 simulations mn for

cluster formation.. 89

Table 4.1: Variables for movement models..... 102

Table 4.2: Flocking variables for each movement model......................... 103

Table 4.3: Fish-like movement model.. 114

Table 4.4: Mosquito-like movement model.......................118

Table 4.5: Firefly-like movement model............................... 122

Table 4.6: Mean distance, D at t = 400 simulation time steps.. 128

Table 4.7: Mean distance, D at t = 5000 simulation time steps........................... 128

Table 5.1: Design symbols and descriptions.. 145

Table 5.2: Distribution of number of simulations for each model o f L-Systems in each arena

arrangement........................ 163

Table 5.3: Average total number of agents for Deterministic OL-Systems after 51 simulation

xvi

runs with regard number of segments, 163

Table 5.4: Average total number of agents for Context-sensitive L-Systems after 51 simulation

runs with regard number o f segments..................... ...163

Table 5.5: Average, median and minimum total number of agents for Deterministic 0L- and

Context-sensitive L-Systems after 51 simulation runs in each arena arrangement. 176

Table 5.6: Average, median and minimum total number of agents for Random Growing Tree

(RGT), A* search with 4 directions (A* (4)) and A* search with 8 directions (A* (8)) methods

over 51 simulation runs in each arena arrangement..................... 176

Chapter 1 Thesis Overview

1.1 Motivation
Since the dawn of time, humans have observed a variety o f interesting and intriguing patterns

found in nature due to the natural movements of animals and insects. A flock of birds in

formation in the sky, a school of fish which turns and flees in perfect coordination (Shaw

1962), a group of eusocial insects (e.g. ants) foraging cooperatively for food. These kind of

behaviours that lead to organised formation is termed as “swarm behaviour” (Liu & Passino

2000). In recent times, researchers from many diverse fields have converged to study the

interaction in biological swarms and how to model them, through the observation of

organisation and evolution in the swarm agents. Researchers in the- applied sciences, for

instance, have shown an even greater interest in swarm behaviour since the understanding of

these behaviours can lead to new optimisation techniques such as the Particle Swarm

Optimisation (Kennedy & Eberhart 1995) and Ant Colony Optimisation (Bonabeau et al.

1999). These behaviour inspired algorithms can be applied in many fields, such as in networks

and telecommunication systems (Bonabeau et al. 1999), robotics (Beni 2005, Cao et al. 1997)

etc.

Recent advances in robotics in general and electronics in particular have started to make the

deployment o f large numbers of inexpensive agents or robots for many practical applications

more feasible. Such applications include for example search and rescue type tasks where these

inexpensive agents are tasked with looking for survivors in collapsed buildings after a natural

disaster like the aftermath of an earthquake. Agents in this instance have to perform dangerous

or explorative tasks in hazardous, unknown and remote environments. In deploying these

1

agents, the number of autonomous agents involved can be very large, ranging from hundreds to

thousands.

When dealing with large numbers o f agents, many problems need to be addressed. Such

problems include the agent's design and architecture, task allocations, control strategy,

localisation and so forth. Another important question that needs to be addressed is one of

organisation. Agents in the system should be able to form and organise themselves around

complex patterns which are generally required to perform specific tasks in a complex arena.

This thesis focuses on the latter problem, i.e. the organisation of the robot swarms.

Although many approaches and solutions have been proposed to address the organisation

issues, as swarm robotics is relatively a new field, there are still many aspects that can be

investigated. With a fuller understanding, researchers may find solutions that lead to better

algorithms.

In this thesis, the wide range of techniques and algorithms currently being developed or

available is examined and studied in-depth. With this new understanding this thesis

• proposes algorithms of line formation and cluster formation for relatively simple multi­

robot system using existing state based model,

• studies the impact o f collective movement model behaviours in the presence o f an

attractor unit (artificial potential field), and

• proposes a novel method of robots formation connecting two locations by using

Lindenmayer Systems in conjunction with evolutionary algorithms.

Original contributions are offered in the three key areas above through the study and analysis of

existing algorithms, improvements of these algorithms and finally and most importantly the

contribution o f new algorithms.

In this Chapter, a brief introduction to self organisation, research context and outline o f the

thesis is presented. Firstly an overview of self organisation systems including some definitions

2

is presented and some of the main ingredients that make up these swarm systems are explained.

The research in this thesis is then put into context. Finally, the outline o f this thesis is presented

in Section 1.4.

1.2 Self Organisation
Self organisation in swarm systems refers to a broad range o f pattern-formation processes in

nature. These include sand grains forming rippled dunes (Figure 1.1), orderly rows of clouds in

the sky, flocking behaviours in birds and so on. Camazine et al. (2001) in their book (p.8)

provided an “open” definition on self organisation as reproduced below:

"Self-organisation is a process in which patterns at the global level o f a

system emerge solely from numerous interactions among the lower-level

components o f the system. Moreover, the rules specifying interactions

among the system's components are executed using only local information,

without reference to the global pattern ”.

Figure 1.1: An example o f pattern formation in nature, showing sand dunes.

3

Bonabeau et al. (1997) who worked closely on insects gave another definition on self

organisation which focuses more on ethological aspect as follows:

"Self organisation does not rely on individual complexity to account fo r

complex spatiotemporal features that emerge at the colony level, but rather

assumes that interactions amongst simple individuals can produce highly

structured collective behaviours”.

This thesis proposes the following summary definition

"In self-organised swarming systems, pattern formation usually occurs

through local interactions o f agents in the system without intervention by

external directing influences ”.

There are four basic ingredients that may contribute to the self-organising systems:

• multiple interactions

• amplification o f fluctuation and randomness

• positive feedback

• negative feedback

Interaction is the main ingredient and it is a basic requirement for self-organising systems. In

nature, interaction is needed to allow an agent to obtain information which is used to determine

a response. Obtaining information from an interaction is a result of some kind of

communication with the nearest neighbours or its environment. In the simplest case of flocking

birds for example, the local information acquired in the interaction is simply the relative

position o f other birds in the neighbourhood. This information is gathered directly without the

need of direct communication, e.g.. bird to bird communication. It is also unnecessary for birds

to leave some sort o f “marker” in the environment to communicate with the others in the flock.

In the case o f foraging ants, ants also do not require direct communication with other

individuals. However, ants leave behind in their tracks a type o f chemical substance called

pheromones as an environment marker to communicate with other ants (Bonabeau et al. 1997).

In cases like these (ants foraging and birds flocking), it demonstrates that only by having

indirect communication during an interaction is sufficient to produce complex behaviour. In

many other cases, information usually transfers by direct communication. A well known

example o f this type o f interaction is the dancing performance by some species o f bees. When a

bee returns from foraging to the hive, the bee will perform a dance that conveys information

about the approximate location of the nectar source (Bonabeau et al. 1999).

In biological. systems, random fluctuation is a common ingredient in boosting up self

organisation performance. Many of these systems do actually rely on certain stochastic

elements to some degree for behavioural flexibility. The amplification of fluctuation and

randomness often leads to the discovery of new solutions. Moreover, these fluctuations will

also act as seeds in which new solutions and structures can grow. A popular example of the

random fluctuation is caused by stochastic trail following in ant colonies. In the beginning, the

ants will follow trails imperfectly due to the low concentrations o f pheromone on the ground

(Deneubourg 1983). But when an ant loses the trail and is lost in the environment, this ant has

the potential to find an undiscovered food source. The newly found food could be a better food

source than the currently being utilised by the colony. From this example, it shows that random

fluctuations are also vital to the swarm systems.

Another common ingredient in self-organising systems is positive feedback or cumulative

causation. Positive feedback promotes radical changes in the system by reinforcing it in the

same direction. A commonly observed example o f positive feedback can be found again in the

trail-laying in ants. When an ant finds food, it will leave behind a pheromone trail while

returning to the nest. Others who find this trail will follow the trail to the food source, and they

will reinforce the initial trail as they return to the nest. As the result o f positive feedback, the

more ants that use the trail, the stronger the pheromone concentration will be.

Negative feedback in the self organising systems acts as a balancing mechanism o f the effect of

positive feedback. In nature, the autocatalytic process usually requires an opposing force in

most cases, otherwise the system will use huge amounts o f resources for a single particular

activity. Negative feedback usually occurs due to the depletion o f limited individual or

resources. In swarm systems, the negative feedback can be in the form of saturation, exhaustion

overcrowding, and even competition within individuals. In the case o f foraging ants, the

negative feedback will come from the exhaustion of the food, overcrowding at the food source,

competition between two or more food sources, limited number of available ants, and so on and

so forth.

As there is no unique or satisfactory definition of self organisation, the summary above serves

as a set o f heuristic rules to design or discover a self organising system.

In systems that lack self organisation, order or organisation can be imposed on them in many

different ways. The order not only can come through the presence o f a supervisory team but

through various directives such as pre-existing patterns in the environment as well.

1.3 Context
The origin o f the work that is presented in this thesis is intimately related to and emerges from

the development o f the I-SWARM project (Intelligent Small World Autonomous Robots for

Micro-manipulation), funded by European Union Information Society Technologies (1ST) 6th

framework programme (FP6-IST project 507006) which began in January 2004 and completed

at the end of 2008 (Woem et al. 2006). The project aims to take a leap forward in robotics

research by bringing together experts and combining expertise in micro-robotics, in distributed

and adaptive systems, and in self-organising biological swarm systems. The project also seeks

to produce technological advances to facilitate the mass production of micro-robots, which can

then be employed as a “real” swarm consisting o f up to 1000 robot agents. The agents that form

the swarm will each be equipped with limited pre-rational on-board intelligence. The swarm

will consist of a huge number of heterogeneous robots, differing in the type o f sensors,

manipulators and computational power. Such a robot swarm is expected to perform a variety of

applications in the not too distant future, including micro assembly, biological, medical or

cleaning tasks.

6

The main challenge in the I-SWARM project is to build a micro robot with the initial aim of

achieving a size of 4mm3 (2mm x 2mm x 1mm) complete with sensors and manipulators. The

work in the first phase was a joint effort of the partners in the Consortium to define the

minimum capabilities of a micro robots which are able to self organise and able to have

emergent behaviours. As the size is the main issue in the project, based on the robot hardware

conceived, the behaviour of the robot is designed by using a bottom-up approach.

Figure 1.2: Artist impression o f cooperation between I-SWARM m icrorobots

Each of the I-SWARM robot has three “legs” (two at the front and one at the back) made from

special materials (electro-active polymers) as a locomotion unit. As the swarm needs a

continuous supply of energy, micro solar cells and a thin film battery that acts as a buffer have

been mounted onto the main platform. The onboard electronics consists of an 8051 micro

controller core, analogue circuitry (for the power drivers for the actuators), and the A/D

converters (for communication and sensor modules and power management). Optical

communication using custom fabricated infra-red LEDs and photodiodes technology has been

chosen as the communication mod for the I-SWARM robots. The communication range is set

to about 2-4 times the size of the robot in four directions (front, right, back and left relative to

the robot).

7

At the time of writing, the I-SWARM robots have been manufactured as shown in Figure 1.3,

with the final size of 27mm3 (3mm x 3mm x 3mm). The remaining tasks now are to program

the robots so that they can exhibit some sort of intelligence and show some kind of emergence

behaviours.

Figure 1.3: The final I-SWARM robot with dimension o f 3x3x3 mm3.

1.4 Structure of the Thesis
This rest of the thesis is organised as follows:

• Chapter 2 gives background information and provides a literature review surrounding

other research related to this thesis. These include some background studies in the

biological, artificial intelligence and robotics field. An overview of the current state of

the art in the field is also presented.

• Chapter 3 introduces two robot swarm control algorithms which are used for

distributed pattern formations. In these control algorithms, there is no explicit

communication between agents and the pattern formations are formed based solely on

reactivity of the agents towards its environments. Agents in this study have very little

memory, limited sensor capabilities and processing power.

8

Chapter 4 models collective movements or aggregations of robots swarms using simple

flocking rules. From the' model, aggregation behaviours that emerge from the different

movement models of relatively simple agents, which differ only in the maximum

turning angle and sensing range, are examined.

Chapter 5 presents an original contribution on complex pattern formations of robots

swarms by combining Lindenmayer Systems (or L-Systems in short) and genetic

algorithms. In this study, it is shown that the pattern that is formed when connecting

two locations can be achieved and represented using simply evolved L-Systems,

provided each robot has the ability to interpret short strings of L-Systems that form the

basic DNA of the formation.

Finally in Chapter 6, conclusions are drawn. The results and the performance of the

algorithms are discussed. Additionally the contributions of the research are summarised

and recommendations and directions for possible future research are proposed.

9

Chapter 2 Literature Survey

2.1 Pattern Formations
Since the dawn of time, humans have been fascinated with the regular natural patterns that

emerge around them - social insects foraging, birds flocking, shepherding, not to mention,

countless examples from physical systems such as the orderly rows of clouds and the

washboard pattern of sand ripples in deserts.

In biological systems, groups of the same species of animals seem to move as a single unit,

changing direction in a split second which has led some researchers to believe that some kind

of communication or even “thought transference” must be involved as argued by Parrish &

Edelstein-Keshet (1999). In reality this behaviour is less mysterious.

Many believe that birds must have leaders, e.g. the bird at the front of the flock leads and the

others follow. But, in fact, most bird flocks do not have a leader at all. There is no overall

control. Instead, the flock movements are determined by the instantaneous decisions of

individual birds.

Birds follow simple rules in response to interactions with their neighbours in the flock. Orderly

flock patterns arise from these simple rules, reacting to the movements of its neighbours. None

of the birds have a sense of the overall flock pattern. The flock is coordinated without a

coordinator and organised without an organiser.

10

There are many reasons to believe why animals aggregate in numbers. The most common

reason seems to be that it serves as a defence against predators. Having many eyes together

ensures that at least some will spot a predator while the others are feeding, resting, or looking in

the opposite directions (Vab0 & N0ttestad 1997)(Howard 1929). Parrish and Edelstein-Keshet

(1999) pointed out that aggregation is actually an evolutionarily advantageous state: where it is

believed that aggregation may increase the chances of survival of newborns and juveniles from

being killed by predators, such that the reproduction of the species can be continued. Secondly,

the aggregation also helps in the search for food; where a large number of individuals has more

capability to sense and search than a single one.

In 1975, Powell conducted experiments on bird aggregation where he took a number of

Starlings (a species of bird) and put them in an aviary. He then separated some of the birds on

their own and some in a group of around ten. He made an artificial hawk and flew it over the

Starlings and noticed that birds on their own took a longer time to react than in the groups. He

concluded that even though it might be advantageous in some aspect for the Starlings to forage

on their own, it is better for them to forage as a group and take turns in looking out for

predators as they will be able to react more quickly in danger.

A number of the anti-predator strategies in schools of fish, such as split, join and vacuole

(Figure 2.1), performed by schools during predator attack are some of the most interesting

behaviours in a swarm (Vab0 & Npttestad 1997). Another benefit of moving in formation is the

dilution effect. The dilution effect is simply that the bigger the group size, the smaller the

probability that each individual is attacked. Krause (1994) stressed that odd individuals are

attacked first; however that does not mean that each individual is fighting to gain access to the

safest location in the swarm. In 1994, Cress well observed and studied the behaviour of a

species of bird called Redshanks. He found that once the group of the birds reaches a certain

number, vigilance no longer has such a crucial effect on the group. He also realised that it

actually became harder for an individual to be singled out by a predator for attack and some

times by staying together it would even deter a predator.

11

^ Hourgloss
X\

o

V a cu o le

W Split

Tight ball F ou n ta in e f f e c t«» o,«S» «>«_

’■ j f i

Figure 2.1: Schematic presentation o f several anti-predator strategies in a school offish. (Taken from
Vab0 & N0ttestad 1997)

In the special case of flying in a V-formation by large birds such as geese and pelicans, there is

an energy benefit (Lissaman & Shollenberger 1970), since following birds can take advantage

of vortexes in the air produced by the ones ahead of them (Gould & Heppner 1974). Although

such formations clearly have leaders, these are temporary ones. Because a leading bird does not

gain any energetic advantage from its position, it will drop back after some time while another

takes the lead. It is not known if flock members do this on a rotation basis, although it is

possible that larger and stronger birds are in the lead a greater percentage of the time.

Alternatively, the V-form may reflect a mechanism by which birds avoid collisions with other

birds and stay in visual contact all the time (Gould & Heppner 1974). Additional background

on biological swarms and why they aggregate can be found in (Parrish et al. 2002)(Hamilton

1971) and references there in.

12

2.1.1 Pattern Forming Paradigms

In designing artificial swarms, a variety of approaches have been proposed to create global

behaviour or pattern formation of a group of mobile robots. Spears et al. (2005a) divided the

approaches in to two significant paradigms; Biomimetics and Physicomimetics.

2.1.1.1 Biomimetics

Biomimetics is a general description for an engineering process or system that mimics

(imitating, copying, or learning from) biological systems. The term emerged from biochemistry

and applies to an infinite range of chemical and mechanical phenomena, from cellular processes

to whole-organism functions. As an early example, the Wright brothers are said to have built

their aeroplane structure based on observations and analysis of bird flight. However,

researchers diverge in precisely how to define biomimetics. “Biomimetics” is often a vague

term, much like the “intelligent” term.

In the field of swarm engineering, Reynolds was one of the first researcher to investigate

behavioural control animation (1987). He developed a system to model flocking characteristics

of birds and fishes. It was based on three dimensional computational geometry of the sort

normally used in computer animation or computer aided design. He called the generic

simulated flocking creatures as boids. The basic flocking model consists of three simple

steering behaviours which describe how an individual boid manoeuvres based on the positions

and velocities to its nearby flockmates. More detail about Reynolds's flocking algorithm will be

described later on in the next section.

Based on the schooling behaviour of a group of tuna, Hanada et al. (2007) proposed an

adaptive flocking algorithm. In this algorithm, an agent first dynamically selects two of the

neighbouring agents within its perception range and maintains a uniform distance with them,

resulting in three neighbouring agents form a regular triangle. As the number of agents grow,

the group of agents will form an equilateral triangle lattice. Secondly, in the presence of

obstacles, the swarm of agents is required to be divided into multiple smaller group in order to

avoid the obstacles. The split takes place by the relative degree of attractive force termed

13

favourite force, which is similar to Newton's law of Universal Gravitation, that helps agents to

decide their direction in various environmental conditions. Based on the magnitude of favourite

vector / , each agent decides where to move. A favourite vector / . for the passageway sj

is defined by |/J = w Jd f where wj is the width of the passageway and dj is the distance

to the passageway, as shown in the Figure 2.2. A set of favourite vectors { / .| 1 < j< n \ is

the representation of the passageways, and the agent will select the maximum magnitude of

/ . denotes by | / 7|mrw:- By combining the above methods, the swarm agents are enable to

split into multiple groups, and also can rejoin as a big group according to the environmental

conditions.

Figure 2.2: Illustration o f a direction decision according to an environment
computation o f magnitudes fo r each favourite vector. (Taken from Hanada et al.

2007).

Another recent example of research in this category is the “pherobots” or pheromone robot

developed by Payton et al. (2004). Pherobots mimic chemical pheromones released by insects

to produce sophisticated organised group activity that emerges out of the simple interactions

between individuals. The key concept of pherobots is “Virtual Pheromones” which provide a

diffusive local-neighbourhood interaction mechanism by which the robots communicate and

coordinate. Unlike chemical pheromones released by insects in the environment, virtual

pheromones are tied to the robots themselves. In addition, virtual pheromones.are propagated as

symbolic messages and are received only by nearby neighbours. More detail about pherobots

will be described later on in the next section (Swarm Robotics section).

14

Bayazit et al. (2002) proposed using rule-based roadmaps to achieve better group behaviour. In

this technique, first a roadmap as in Figure 2 3 is built. A roadmap is simply a connectivity

graph encoding representation of feasible paths in the environment. Each node of the graph is a

configuration of the robot that satisfies certain requirements, collision-free for instance.

Connections between nodes of the roadmap graph represent feasible paths. Secondly, rules at

each node are added. The rules may be as simple as “Go to next node in your path”; or can be

as complex as “wait for others to arrive, then select a leader, follow the leader”. Their results

show that the the performance of agents using rule-based roadmap behaviours is very close as if

the agents have complete global knowledge of the arena.

O bstacle

O bstacle

bstacle

Figure 2 3 : A roadmap. Black dots represent nodes; connections between nodes represent
feasible paths, (taken from Bayazit et al. 2002)

Bayazit et al. (2004) then extended their model to achieve different behaviours from their

swarm robots. One of the interesting behaviours presented is shepherding between a dog and a

flock of sheep. The dog agent tries to move the flock toward a goal, the dog steers the flock

from the rear and if any subgroup separates out, it is the dog's job to move the subgroup back to

the flock. Their work showed that complex group behaviours can be generated if some global

information of the environment is available which can not be modelled with local information

alone.

15

In the European SWARM-BOTS project, the agents behaviours are directly inspired by the

collective behaviour of social insects colonies and other social animal societies (Dorigo et al.

2004a). In particular the project focuses on the study of the mechanisms which govern the

processes of self-organisation and self-assembling in artificial autonomous agents.

2.1.1.2 Physicomimetics

Another approach to creating global behaviour of a group of mobile robots is called

“physicomimetics” or “artificial physics” (Spears et al. 2005a). Physicomimetics is a general

description for engineering processes or systems which gain inspiration from physical systems

such as fluid flow analyses, Newtonian analyses and kinetic analyses. The key points in

physicomimetics are:

• Any aggregate behaviour seen in classical physics is potentially reproducible with

collections of mobile robots.

• Any design is not restricted to copying physical systems precisely, i.e. modifications

can be made.

• Understanding of classical physics can be used to synthesise the emerged collective

behaviour.

In physicomimetics, the research is focused on robotics behaviours that are similar to those

shown by solids, liquids and gases (Spears et al. 2005a). In solids, crystalline formation for

example, is excellent for distributed sensing tasks, to create a virtual antennae or synthetic

aperture radar. For such tasks it is important to maintain connectivity and a lattice geometry.

Liquids are good for obstacle avoidance or narrow passage traversal tasks, while moving

towards a goal, since fluids easily manoeuvre around obstacles while retaining connectivity.

Gases are useful for coverage, sweeping and exploration. For these tasks it is necessary that

coverage can be maintained, even if with individual robot failures. Gas-like behaviours are

created using purely repulsive forces.

16

Cheng et al. (2005) proposed an algorithm for coordinating a swarm of homogenous mobile

agents to spatially self-aggregate into arbitrary shape using only local interactions, which they

called SHAPEBUGS. SHAPEBUGS consists of two main processes; trilateration and gas

expansion movement. A trilateration process allows an agent to find its perceived position on

the consensus coordinate system, and subsequently adjust it; while gas expansion movement

model will force agents to disperse within the defined 2-D shape. The advantage of the

algorithms are that; agents can easily aggregate into any user-specified shapes, using a

formation process that is independent of the number of agents within formation; and secondly

agents can automatically adapt to increase and decrease of agents, as well as accidental

displacement.

Zarzhitsky et al. (2005) introduced a chemical plume tracing (CPT) method based on

computational fluid dynamics. The algorithm itself is divided into three subtasks; starting from

finding the chemical, then tracing it to the source using CPT method, and finally identifying the

source. In finding the chemical, agent uses a method called casting, which consists of zigzag or

spiralling motion to increase exploration coverage. In tracing the plume, first, the agents use

gravitational forces (artificial physics) to arrange themselves into a hexagonal formation and

form a mobile adaptive sensor network, so that agents could share real flow-field parameters of

fluid dynamics with six of their closest neighbours. These flow-field parameters or variables

are use to calculate the next navigational decision using the proposed technique called

fluxotaxis. Fluxotaxis uses the concept of mass flux, which can be written in a differential

equation form as: —̂ £.= 'U .(0 y) where p is the mass density of the plume, y is the
d t

fluid's velocity, and the product of p V is called the mass flux, or the rate of change of mass

flow per unit area. With fluxotaxis, each agent in the robotic lattice computes the amount of

local chemical flux p V , passing through virtual surfaces formed by neighbouring swarm

agent. In addition, fluxotaxis is designed to maximise the use of available sensor data by

combining the fluid velocity and chemical velocity (Spears et al. 2005b). The final subtask is to

17

identify the source of the chemical. They (Zarzhitsky et al. 2005) showed that their fluxotaxis

algorithm is able to demonstrate statistically and practically significant gains in performance

over other two most popular alternatives, i.e. chemotaxis and anemotaxis, even in an

environment with obstacles. Even though their current results look promising, they have yet to

include a more advanced turbulence model, learning the threshold of the plume / chemical, and

increasing the number of obstacles.

By using what is described as social potentials techniques, Balch and Hybinette (2000)

achieved large scale multi-agent formations. The technique was inspired by the crystal

generation process. Each agent had local attachment sites attracted to other agents. When the

swarm encounters obstacle, agents are able to avoid obstacle depending on the behaviour based

rule combining the concept of an attractive and repulsive forces; i.e. repulsion from obstacles

with attraction to the goal. The technique seems easy to implement however, the parameters

need effort to adjust to perform successful flocking.

Spears and Gordon (1999) showed how to control swarm robot systems using a

physicomimetics framework. Their initial application on solids based pattern formation,

required that a swarm of micro-air vehicles (MAVs) self organise into a hexagonal lattice,

creating a distributed sensing grid with a fixed spacing between MAVs (Kellogg et al. 2002). In

liquids-based formation, they use the same approach as solids-based pattern formation only by

changing the parameter that balances the attractive and repulsive components (Gordon-Spears

& Spears 2002). The switch between the two behaviours (solid and liquid) acts very much like

phase transition. In gas-based formations which are good for sweeping the arena, swarm robots

must not only avoid obstacles but they must also sweep behind the obstacles to minimise holes

in the coverage. In this case, the swarm robots must not move too quickly since it may cause a

failure to sweep behind the obstacle, and they must not to move too slow. To achieve this, the

optimum speed of the swarm robots has to be found (Spears & Gordon 1999).

18

2.1.2 Organised Formations

Organised formations problem in a group of robots can be described as the coordination of the

robots to form and maintain a formation of a certain shape, such as forming a line (Bahceci et

al. 2003). Solutions for this problem are currently being used in search and rescue operations,

space explorations and remote terrain, landmine removal, unmanned aerial vehicles (UAVs),

control of satellites etc.

Various animal species also exhibit organised formation of patterns as a result of collective and

cooperative behaviours amongst individual. Couzin and Krause (2003) state that, organised

formations occurred when each entity in a group maintains a specific distance and orientation to

each other while in motion. Examples of such organised formations include birds flocking, fish

schooling and wildebeests migrating as shown in Figure 2.4.

The works/studies in organised formation can be broadly separated into two distinct categories:

centralised and decentralised formation. Centralised formation is where there exists an entity or

more, acting as a supervisor or controller which can oversee the whole group and command

each individual in the group accordingly. A well known biological example of the centralised

organised formation is that of the sheepdog in which the system acts as a controller that

controls and guards the movement of the sheep herd.

The second category is decentralised organised formations. In this category, there is no

controller or supervisor to control the organisation and coordination of each individual. Each

individual in the group reactively plans its next movement usually according to physical cues

within its local neighbourhood. These physical cues can be anything in the environment; such

as obstacles, other individuals in the neighbourhood range, or may be the intensity of the light.

Examples in this category include line formation by ants, flocking of birds and schooling of

fish.

19

Figure 2.4: Example of biological swarms, (a) Wildebeest herd grazing across Savannah Kenya (reproduced with
permission from the Planet Earth Productions), (b) Wild parrots, wheeling in the sky, in Edgewater New Jersey,
USA (reproduced with permission from Stephen C. Baldwin, brooklynparrots.com). (c) School o f Silverside fish

(reproduced with permission from R. Kent Wenger)

2.1.2.1 Centralised

In centralised organised formation techniques, a computational unit can oversee the whole

group of agents and plans the action of the group individuals accordingly (De La Cruz &

Carelli 2006)(Tanner & Kumar 2005). The action that should be taken by each agent is then

transmitted to the agent via some kind of communication methods. There are not many works

done in this category, after all it will defeat the purpose of swarm robotics which emphasises

decentralised control.

De La Cruz and Carelli (2006) proposed a controller for positioning and tracking the desired

agent formation. It operates in a centralised way and consists of two stages. At first a complete

dynamic of a unicycle-like mobile agent and its linear parameterisation is modelled. Then the

input-output feedback linearisation of the model is performed. On the second stage, the model

of multi-agent systems is obtained by arranging all the feedback linearised agent models into a

single equation. This multi-agent model is expressed in terms of formation states by applying a

coordinate transformation. Finally the inverse dynamics technique is then applied to design a

centralised formation control; which can be applied both to positioning and tracking the desired

agent formations. They proved their method by using physical agents where, the agent

formation errors for distance and angle errors are 0.05m and 0.03rad respectively after 17.5

seconds.

Tanner and Kumar (2005) introduced a navigation function through which a group of mobile

agents can be coordinated such that they can form a particular formation, while moving in a

group and avoiding collisions in the environment. In this approach, graph theory is used, where

the properties associated with the interconnection graph are shown to affect the shape of the

navigation function. The potential field produced by the function ensures that almost global

asymptotic convergence of the agents to a particular oriented formation shape, while

guaranteeing collision avoidance in the process. Although the proposed scheme is centralised,

the potential function was constructed in a way that facilitates complete decentralisation.

21

Other centralised methods commonly used for mobile agents can also be used for multi-agent

systems. Such methods include the many path planning algorithms. In path planning, there are

many algorithms that have already been proposed. The efficiency of an algorithm can usually

be evaluated in 4 different ways (Russell & Norvig 1995):

1. Completeness: Does the search can find a solution?

2. Optimality: Does the search can find the optimal solution?

3. Time complexity: How long is the time taken to complete the solution?

4. Space complexity: How large memory is needed to perform the search?

Path planning searches can be divided into two distinct categories, heuristics and stochastic

searches. Heuristic search strategies use problem specific knowledge beyond the definition of

the problem itself, thus can find solutions more quicker more efficient compare to stochastic

search strategies. The are many well known heuristics search algorithms, which include the A*

search (A-star search), Greedy best-first search, Memory-bounded heuristic search, Recursive

best-first search (RBFS), and so on. However in this thesis, only the A* search will be

introduced briefly, as it will be used as one of the basis for comparisons in one of the three

contributions presented.

The A* search is one of the most widely used search algorithms. It is a best-first, graph search

algorithm that calculates the least-cost path from a given initial node to another node. The

nodes are evaluated by:

f(n) = g(n) + h(n) (2.1)

where g(n) is the cost to reach the goal, and h(n) is the cost to get from the node to the goal.

Since g(n) gives the path cost from the start node to node n, and h{n) is the estimated cost of the

optimum (cheapest) path from node n to the goal, then tht fin) is the estimated cost of the

cheapest solution through node n. For that reason, the optimum local solution is the node with

the lowest value of g(ri) + h{n)\ provided that the heuristic function h{n) satisfies certain

conditions.

22

It uses a distance-plus-cost heuristic function (usually denoted f(x)) to determine the order in

which the search visits nodes in the tree. The distance-plus-cost heuristic is a sum of two

functions: the path-cost function (usually denoted g(x), which may or may not be a heuristic)

and an admissible "heuristic estimate" of the distance to the goal (usually denoted h(x)). The

path-cost function g(x) is the cost from the starting node to the current node.

2.1.2.2 Decentralised

Studies on organised pattern formations in a decentralised way are receiving increased attention

in recent years. There are two distinct approaches to the coordination and organisation of multi­

agent systems reported in the literatures; the first is the behaviour based approach, and the

second is the leader-following approach.

Behaviour based approach

In.the Behaviour based control approach, the systems often use relatively little internal variable

state to model the macroscopic behaviour. The controllers consist of a selection of behaviours

that maintain and/or achieve goals (Mataric 1999). For example, “collision-avoidance” will

maintain the goal of preventing collisions and “homing” will achieve the goal of reaching some

home destination. In more complex behaviours, some primitive behaviours of agents such as

“collision-avoidance” and “goal seeking” are predefined, and the final formation control of

agent is derived from a weighting of the relative importance of each behaviour. The advantage

of the approach is that the group dynamics contain formation feedback by coupling the

weightings of the actions taken. The disadvantages are that the group behaviour cannot

explicitly defined, and the dynamics of the group are unpredictable making it hard to guarantee

the stability of the whole systems (Takahashi et al. 2004),

Freeman et al. (2006) proposed an algorithm called the “distributed estimation algorithms”

which allow agents in a communication network (or neighbourhood) to maintain the estimates

of summary statistics describing the shape of. the current swarm. In this study, each agent is

able to control and organise its velocity and acceleration and also sense its own position, and

exchange information with other agents within its neighbourhood. As a result, the agents form a

23

communication graph with changing topology as the agents move. Each agent implements an

estimator that maintains an estimate of the current swarm formation statistics, based on its own

sensed data and information received from neighbours, and a nonlinear motion control

algorithm.

Nouyan et al. (2006) introduced the concept of chains with cyclic directional patterns; CDP-

chains in short. CDP-chains are a method in robotic exploration of unknown environments.

These chains are serve to explore the arena and establish a path between two points; food and

home. Furthermore, the CDP-chains are also recruiting other agents to the food along formed

path, and guide them to transport the food back to the home.

Desai (2002) proposed a graph-theoretical framework to control a team of agents moving in an

arena with obstacles while maintaining a specific formation. The framework uses control

graphs to define each agent behaviour or movement in the formation. The framework can also

handle transitions between any two of ‘the control graphs while avoiding obstacles. The

complexity of computations for control graphs increases with the number of agents in the arena,

however due to the facts that computations are decentralised, the framework described is

scalable to a large group of agents.

Fierro and Das (2002) proposed another graph-based technique to tackle moving formations of

a group of agents. They proposed a four-layer modular architecture for formation control

namely, group control, formation control, kinematic control and dynamic control. Above all,

group control layer is the highest layer which generates desired trajectories for the whole group

to move. Formation control of a team of agents is built from three different networks namely

physical network, communication network and computational network. It maintains the

formation by using local communication and relative position information.

The kinematics control layer computes the required and angular velocities of agents. The

dynamic control layer will finally deal with the task of realising the necessary speeds given by

the kinematics control layer. The four-layer architecture represents an abstraction amongst tasks

24

required at different levels. For instance, agents with different dynamics such as mass, inertia

and friction, can be used by changing the dynamics control layer on-the-fly, which in the end

will promote reusability of the architecture. The reusability property makes the architecture

very attractive for formal control applications, and will promote robustness to the systems.

Kaminka and Glick (2006) designed a multi-graph monitor framework for organised formation

controllers that optimises the desired properties, for instance sensor usage for robustness..The

framework consisted of two main strategies: cost optimal formation control graphs and

dynamic switching of control graphs. Cost optimal formation control uses graph theoretics

techniques that can be used to compute sensing policies that maintain a given organised

formation, whilst dynamic switching of control graphs is a protocol allowing controllers to be

switched on-line, to allow agents to adapt to sensory failures. Their results show that the use of

dynamic protocol will allow formations of physical agents to move significantly faster and with

greater precision whilst reducing the number of formation failures.

Yang et al. (2007) described an approach for controlling organised formations of multiple

wheeled agents with parametric uncertainties and actuator saturations in the environment with

obstacles. In this approach described, firstly, a collision-free trajectory is generated by

introducing a non-con vex optimisation problem. If the agents following the trajectory find that

they are moving close to an obstacle, a new trajectory will then be generated by solving the

optimisation problem under convex, obstacle assumption. Secondly, to keep the agents tracking

the reference trajectories or formations, a distributed moving horizon control scheme is used.

Under this scheme, the whole optimisation problem is divided into several simple optimisation

problems according to the number of cooperative agents, thus reducing complexity of the

computation. Furthermore, close-loop properties inclusive of stability and robustness are

guaranteed.

Pavone and Frazzoli (2007) developed a distributed control policy that allows agents to achieve

different symmetric formations. The proposed scheme is inspired by the cyclic pursuit strategy,

which is an attractive approach since it is decentralised and requires a minimum number of

25

communication links between agents to achieve organised formations. The proposed control

policy generalises the notion of a classic cyclic pursuit algorithm by letting each of the agents

pursue its leading neighbour along the line of sight rotated by a common offset angle. The key

features with this method are stability of the systems and the possibility to achieve many

different formations with the same simple control law.

Mastellone et a l (2007) introduced a control scheme that achieves dynamic formation control

and collision avoidance for a group of nonholonomic agents. At first, for collision avoidance

and tracking of a reference trajectory for a single agent, a feedback law using Lyapunov-type

analysis needs to be derived. Secondly, by extending the derived result to the case of multiple

nonholonomic agents, different classes of multi-agent problems involving an interacting group

of nonholonomic agents such as formation control can be addressed. Finally, by combining the

previous results, the problem of driving a group of agents according to a given trajectory while

maintaining a specific formation can be addressed.

Cohen and Peleg (2006), studied and proposed a local spreading algorithm for mobile agents in

1-D and 2-D. In the study, oblivious or memory-less agents are used. The goal in this study is

to spread N agents evenly within the perimeter of a given region. The algorithm for local

spreading states that:

• first, each agent must first move to somewhere or some point so that it is at an equal

distance with neighbours;

• secondly, the agents must move until there is no visible neighbour in the range.

For both 1-D and 2-D, at every time step it will calculate the average over all agents of the

minimum distance to the nearest “object” (agent); (d„v) is defined as follow:

d„ = (2.2)
N i j* i

where the object considered in taking the minimum are all other agents and all points of the

perimeter of the region. The next task is to move the agent to a point so that the agent will not

perceive others within its vicinity.

26

In 1-D local spreading, agents are refer to according to their order on the line, and denote the

position of each agent as i , 0 < / < N — 1, at time t, in the global coordinate systems by Ri[t].

The spread algorithm for agent in 1-D spreading is as follow:

• If no other agents are in sight, then do nothing.

• Otherwise, move to the point ------ ------- .

In 2-D of local spreading the algorithm becomes a bit complicated. The algorithm is based on

each agent i, dividing space into four quadrants Qo to Q3, according the orientation as shown in

the Figure 2.5. The spread algorithm for agents in 2-D spreading is given as follows:

• For j = 0 ,..., 3 do:

(a) nij <- coordinate of nearest agent or perimeter point in quadrant Qj.

(b) dj ■*- dist(i, nij)

• q < -argmmj {dj}-,dmm = mrnj {dj}\ dopp = d3.n

^ ^
• Move away from the current location by ——— — m .

(I ■“ mm

111

Figure 2.5: The four quadrants o f agent's view. (Taken from Cohen and Peleg 2006)

Sun and Wang (2007) described a synchronous control approach to swarms of mobile agents in

switching between different organised formations. At first, a position synchronisation error is

defined as differential position error between every pair of two neighbouring agents; and it is

derived according to the desired formation. Then a decentralised trajectory tracking controller

is developed with feedback of position and synchronisation error. The developed trajectory

27

tracking controller is proven and guarantees that asymptotic convergence towards zero of both

position and synchronisation errors. From their simulation, the results demonstrate the

effectiveness of the proposed synchronous control design for the formation control.

Antonelli et al. (2005) proposed a technique for formation control of multi-agent systems. The

proposed technique which they named Null-Space-Based Behavioural Control, is a behaviour

based technique which aimed at coordinating a group of mobile agents while performing

different missions. The missions are firstly decomposed into several elementary tasks and, for

each of the task; a motion reference command for each agent is elaborated referring to a

kinematic approach. The technique is then combined with the output required by each task in

order to obtain the final motion command for each agent. In properly handling multiple,

eventually conflicting tasks, it uses a hierarchy-based approach that uses the null-space

projection. From their simulation results, they showed that null-space-based behaviour control

offers the advantage to ensure the achievement of the output of the higher-priority task without

being affected by the output of lower-priority task (Antonelli et a l 2006, 2007). However, due

to its analytical nature, the proposed technique needs the definition of a suitable task function

that admits computation of a proper Jacobian, which may be obvious for some tasks.

Nguyen and Do (2006) proposed a constructive method to design cooperative controllers based

on local potential functions. The cooperative controllers are the controllers that force a group of

mobile agents to achieve organised formation while avoiding collisions with other agents.

Firstly, simple point-mass agents are considered to clarify the design philosophy. The technique

is then extended to non-holonomic agents, and finally local potential functions are constructed

to design gradient based cooperative controllers. This cooperative controller is designed to

achieve almost global asymptotic convergence of a group of mobile agents to a particular

formation in term of both shape and orientation, with a guaranteed of no collision between

agents.

Avrutin et al. (2007) introduced the concept of connecting objects via random growing trees

(RGT) in swarms of agents. In the working arena, there are at least two objects in addition to

swarm agents. One of the object is labelled the base and the others is the target objects. The

goal is to “bridge” or connect the base and target objects by using the swarm agents. At the

beginning, agents are uniformly distributed over the arena. The bridging task consists of finding

every object, encircling the objects, and connecting them (goal-target) by lines of agents that

should be as short as possible. The RGT approach can be split into three main phases:

• Exploration: Agents explore the arena, looking for objects (goal or target) and encircle

the object.

• Formation of trees: Position one chain at the circle around the object and begin to build

a tree out of chains using open end of this first chain as the root.

• Reduction of the tree: After all objects have connected to every other object, unneeded

chains have to leave the tree. By doing this, the remaining lines of agents should be

reduced to the minimal necessary number of agents needed to connect the objects.

As an addition, the formation of a first tree may already begun at one object whilst another one

(object) has not been found yet.

Leader-follower approach

In the leader-Tollowing approach, some agents will act as leaders while others as followers. The

leader agents track predefined reference trajectories, and the followers track transformed

versions of the states of their nearest neighbours according to some given methods or schemes.

The advantage of this approach is that it is easy to control multiple agents in a desired

formation using only two different controllers and it is suitable for describing the formation of

robots (Takahashi et al. 2004). Furthermore it is easy to understand and implement; even if the

leader is perturbed by disturbances, the formation can still be maintained (Nguyen & Do 2006).

The disadvantages in this approach includes the difficulty to consider the ability gap of an agent

(Takahashi et a l 2004), there is no explicit feedback to the formations and if the follower is

perturbed, the formation cannot be maintained (Nguyen & Do 2006).

Das et al. (2002) studied and proposed a vision-based framework for the development of non­

holonomic multi-agent systems by composing simple sensing, estimation, control, and

29

coordination blocks in a bottom-up approach. The framework allows the designers to build

complex multi-agent systems especially for leader-following structure algorithms from simple

controllers and estimators. The main key. features of the approach are a suite of control and

estimation algorithms, and a model for switching that allows a group of agents to maintain a

prescribed formation. The switching model will also allow the agent to change its formation in

the presence of obstacles.

Takahashi et al. (2004) proposed a controller which is based on the ability of agents to use the

leader-following strategy organised formation. The proposed scheme consists of three steps.

First, a performance index for each agent, such as maximum acceleration, maximum velocity.

and maximum torque of a motor, is quantified. Secondly, based on the performance index or

based on the ability of the agent, a new controller is then proposed. Finally, for collision

avoidance, a compliance controller using virtual repulsion was proposed. Takahashi also

showed that by using the proposed scheme, agents in leader-following formation can keep the

formation even if the leader is changed.

Javaid et al. (2004) proposed a distributed control algorithm where organised formation of

agents can be grown dynamically by using local sensing and minimal communication. In this

algorithm, the controller on each agent consists of four different behaviours namely, leader,

wanderer, member and candidate. The leader agent is predefined whenever the system is

initialised. The leader will maintain the formation and heading, where only the leader knows

the goal information. For the wanderer, the agent is programmed with the behaviour where its

task is to look for the formation. The member agent, is programmed with the behaviour when

the agent is part of the formation; when this behaviour is active, the agent will follow its

immediate leader and maintain a fixed distance to it. Candidate, is the behaviour when an agent

finds the formation and communicates with the other group members that it is going to attach

with in the formation. The communication between a candidate and its neighbour or immediate

leader is used for information exchange that consists of the type or shape of the formation, the

number of agents currently in the formation, maximum number of agents allowed for the

30

formation, and any other formation parameters (radius of the circle for instance). Once all the

necessary information is obtained, the agent will calculate its pan angle to keep in view of its

neighbour and the distance from it. The formation of agents grows from a single agent to a

maximum possible number of agents while in motion. The first agent, i.e. the leader, are

predefined as mentioned previously. Others will try to join or make formation with the leader.

Whilst in the formation, agents will try to maintain a regular polygon shape and hence make a

virtual circle if the number of agents in the formation is adequate. The control algorithm is

minimal but lacks the ability to maintain formation in the existence of obstacles.

Gustavi and Hu (2005) proposed control algorithms for multi-agent systems with limited sensor

information. The proposed control algorithms are only based on agents with local information

and without global knowledge. In the first algorithm, vertical tracking is designed such that the

follower agent follows the leader agent's trajectory while maintaining the distance towards the

leader. In the second algorithm, horizontal tracking is designed to make the follower agent

move side by side with the leader agent at some predefined distance while maintaining same

orientation as the leader agent. The third control algorithm is combination of vertical and

horizontal tracking; in this algorithm Gustavi and Hu showed that by combining the first two

algorithms, more complex multi-agent organised formation can be formed. However, the

stability of the systems which can be affected by switching between the first two different

algorithms yet remain to be shown.

Li et al. (2006) focused on the leader-follower type of organised formation control algorithm of

multiple differential-driven wheeled mobile agents. The proposed control strategy is derived

from the dynamics of the agent directly. The control strategy takes the acceleration ability of

the agent into account and uses only its local sensing data and small data communication to

achieve organised formation control. From the experiments shown, whenever the leader agent

tracks different trajectories, the follower agents can always adjust itself to form the desired

formation as quickly as possible, and it will maintain the formation stably over time. From the

extensive experiment done by Li et a l, it shown that the method is quite effective for formation

31

establishing and stable for the formation within their abilities.

Chen et a l (2007) proposed a decentralised formation control system based on dynamic

regulations and scheduling scheme. From the simulations of a typical leader-following triangle

formation (or V-formation), the trajectory of the group dan be calculated in advance or can be

planned in real time by the leader. The leader approaches its desired goal in an arc-type

trajectory, therefore the real trajectory, being piecewise-smooth, can be obtained. Furthermore,

the followers adjust and maintain the formation shape with the piecewise-smooth arc trajectory

as well. While maintaining the formation shape, the control regulation switches internally

between OTR (Offset regulation) and SDR (Spacing distance regulation) depending on the

dynamic formation framework of the formation. Thus it promotes adaptability which is very

attractive in the multi-agent systems.

Sorensen and Ren (2007) introduced a unified formation control scheme using the leader-

follower approach with consensus-based formation control. In this scheme, an agent requires

only local neighbour-to-neighbour information exchange. In addition, an extended consensus

algorithm is applied to estimate the time varying group trajectory information in a distributed

manner. A consensus-based distributed formation control strategy is then applied to each agent

based on the estimated group trajectory information. Sorensen and Ren also studied the effect

of the multiple group leader and found that by increasing the number of group leaders within

the formation, agent estimate of the formation state is improved and the system is robust

against single point failure.

Fredslund and Mataric (2002) used a neighbour referenced method, where each of the follower

agent keeps a single “friend” at a desired angle 0, using some appropriate sensor. The angle 0 is

predetermined in a particular type of geometric pattern. When agents flock, a leader will

navigate a path while the follower agents maintain the angle and distance to their neighbours.

Parker et a l (2004) proposed a tightly-coupled cooperation in heterogeneous agents performed

by two different types of agents, namely leader and simple, agents. In this strategy, leader

32

agents which have rich sensing capabilities assist simple agents with limited capabilities for

navigation and obstacle avoidance. But such a strategy makes the leader more costly and the

team becomes less robust to the failure of the leader.

2.2 Definitions

2.2.1 Intelligence

Kennedy et al. (2001), in their book, stated that:

“Intelligence is a word usually used to describe the mental abilities o f

humans, though it can be applied to other organisms and even to inanimate

objects like computers and computer programs. There is very little

agreement amongst psychologists and amongst computer scientists about

what this word means, and almost no agreement between these two

groups

Fogel (1995) claims that a good definition of intelligence should apply both to humans and

machines equally well, and believes that the concept should apply to evolution as well as to

behaviours perceptible on the human time scale. Fogel concluded in his paper that intelligence,

whether in an animate or inanimate context, can be defined as the “ability of a system to adapt

its behaviour to meet its goal in a range of environment”.

The discussion of intelligence in computer science is often intertwined with the Turing Test

(Turing 1950). Turing gave intelligence a simple definition:

“intelligence is fundamentally the ability to solve problems, particularly

unusual or new problems

The Turing test itself sounds simple enough where a subject is placed in a room with a

keyboard and a monitor, while in another room there is a computer and a person. The subject

will then type questions into the keyboard and receives a reply from the other side of the room.

A summary of the test is: if the subject is unable to tell if the computer's responses were

33

generated by human or the machine, then the machine is considered intelligent (Kennedy et al.

2001). This test has been subject to different kinds of criticism and has been at the heart of

many discussions in AI, philosophy and cognitive science communities for the past 50 years.

Beni (2005) commented on an example of a manufacturing plant, in which a manufacturing

machine which produces a mechanical piece for a car in an ordered manner but in a predictable

way is not considered as intelligent. Likewise, even the rolling of dice where the outcome is

unpredictable and does not produce order is not considered as intelligent. He then concluded

that, the main characteristics of intelligent behaviour is the production of something ordered

and the outcome should not be predictable, i.e. emergent intelligent behaviour.

Dorigo and Schnepf (1993) believe that intelligent behaviour cannot be created in artificial

systems without the ability to interact with a dynamically changing unstructured environment.

They added that cognition of the robot emerges only when autonomous systems try to impose

structure on the perceived environment in order to survive. These structures in turn provide the

ground work for more intelligent behaviour such as; the skills to learn, the emergence of goal-

directed behaviour and the development of problem-solving methodologies. These basic

cognitive skills have been developed as part of the evolutionary process, and unlikely to have

been present in biological systems from the beginning of the life.

The research in this thesis address the problem of pattern formation of robot swarms or swarm

systems. Earliest work on Swarms comes from the research on social insects. Biologists have

been inspired by cooperative behaviours of insects like ants and bees, which led to intense

research on their behaviours. The central to the swarm systems are decentralisation and self­

organisation which promote the emergence behaviour.

To date, there many definitions of intelligence have been defined by several groups. The work

in this thesis is related to robot swarms or swarm systems. As this thesis is related to swarm

systems, this thesis defines brief definition of intelligence as:

“the ability to solve problems in unpredicted w ay”.

34

2.2.2 Swarm Intelligence

Insects that live in colonies such as ants, bees termites and wasps have been living on earth for

millions of years, building nests, organising production and foraging for foods. It has been

known that they care about order and cleanliness. They have a simple communication

mechanism and warning system, maintain an army and divide labour. In addition, they are very

flexible and can adapt well in the changing environment. This flexibility makes the colonies

robust (Bonabeau et al. 1999).

In 1989 when Beni and Wang were investigating the properties of simulated, self-organising

agents in the framework of cellular robotic systems, they introduced the concept of Swarm

Intelligence (SI). SI is an artificial intelligence technique based around the study of collective

behaviour in decentralised, self-organised systems. It is composed of unintelligent individuals,

but the group demonstrates complex behaviours (Bonabeau et al. 1999). Such systems are

typically made up of a population of simple individuals which interact locally with one another

and with their environment which lead to the emergence of global behaviour.

The main feature of self-organisation is that a system's organisation or movement does not

explicitly depend on external control factors. In other words, the organisation emerges solely

due to the local interactions between individuals and their environment (Camazine et al. 2001).

The organisation can evolve dynamically either in time or space and can maintain some kind of

stable form or can show transient phenomena. An example of such a system is that of a colony

of ants sorting eggs without any particular ant knowing the sorting algorithm itself (Bonabeau

et al. 1999).

Like the word intelligence, the definition of emergence (or emergent behaviour) has attracted

the attention of some researchers'. Taylor (1990) asserts that the emergent properties are

collections of units at a lower level of organisation and, through their interaction, often give rise

to properties that are not the mere superposition of their individual contributions.

35

Steels (1991) describes “emergent functionality” as a function that is not achieved directly by a

component or hierarchical system of components, but indirectly by the interactions of more

primitive components amongst themselves and with the world. Mataric (1993) defines

emergent behaviour for swarm intelligence as follows:

“emergent behaviours is apparent by global states which are not explicitly

programmed in, but it results from local interactions amongst individuals. It

is considered interesting based on some metric established by the

observer”.

Despite several differences in the definition of emergence, one common theme connects all

these definitions in the Al (Artificial Intelligence) community, i.e. emergent behaviour occurs

as a result of local interactions amongst individuals and between individuals and their

environment.

Many social insect societies exhibit interesting complex behaviours in organising themselves to

perform specific activities such as foraging and nest building. Cooperation amongst individuals

arises through an indirect communication mechanism, called stigmergy and by interacting

through their environment (Holland & Melhuish 1999).

Stigmergy is a word coined by the biologist Grasse in the 1950s. The word itself was used to

explain the task coordination and regulation in the context of nest building by termites. In

termites nest building activities, Grasse showed that the activities do not depend on the

individual workers themselves but mainly are achieved by the current nest structure. The

current local nest configuration is of course was configured by the previous termite activity in

which will trigger the current activity or configuration of the local area of the nest. The

configuration will then again stimulate the response of a same termite or a different one in the

colony.

Although there is normally no centralised control structure dictating how individual agents

should behave, local interactions between such agents often lead to the emergence of collective

36

behaviour. Such systems can be found in nature and include ant colonies, bird flocking, fish

schooling, animal herding, bacteria moulding etc.

Interactions between individual insects in social insect colonies have been well documented.

Some examples of such behaviours are bee dancing and ants' pheromone trail-laying during

food foraging. These simple communication systems between insects lead to the collective

intelligence of social insect colonies.

Take ants as an example. First, an ant takes a bite from a food source and then wanders off.

After a short while, lots of ants will begin to queue in neat lines to and fro, following what

seems like the shortest route between the food and the nest. It seems like ants have some kind

of higher intelligence, and yet ants only have several hundred neurons to help them consider

what to do next. In fact, ants do not plan, they just react to their environment (Bonabeau et al.

1999).

Many ant species have trail-laying and trail-following behaviour when foraging. When an ant

stumbles across a piece of food, it does not remember where it is, it just deposits a chemical

trail using pheromones as it moves from food source to its nest. To find food, others will follow

these trails (Franks et al. 1991). At first, ants choose between a long and short path at random,

but because more ants travel the shorter path in a given time, the pheromone trail reinforces the

pheromone signal. This will become the favoured path. This method of using the world as a

memory bank is the aforementioned stigmergy. The process where an ant is influenced towards

a food source by another ant or by a chemical trail is called recruitment. Recruitment based

solely on pheromone trails is called mass-recruitment (Franks et al. 1991).

As with ants, the self-organisation in honeybees is also based on relatively simple rules of

individual insect behaviour. The rules specify that the interactions amongst the system's

constituent units are executed on the basis of purely local information, without reference to the

global pattern. This is an emergent property of the system rather than a property imposed upon

the system by an external ordering influence.

37

Self-organisation of honeybees is based on simple rules of individual insect behaviour (Von-

Frisch 1968). When a bee finds a nectar source, it then goes back to the hive and relinquishes

its nectar to a hive bee. Each hive has a so-called dance floor area in which the bees that

discover nectar sources dance in a way to recruit and convince their hive-mates to follow them.

After the nectar is exhausted, the bee can either:

• abandon the food source and become an uncommitted follower again, or

• continue to forage at the food source without recruiting hive-mates, or

• dance and thus recruit the hive-mates before it returns to the nectar source.

The dance is a communication mechanism used for recruitment in honeybees, in which the

information about distance, location and quality of a nectar source is also transmitted.

Within the dance area, the bee dancers “advertise” different food areas. The mechanism by

which a bee decides to follow a specific dancer are yet to be well understood, but it is always

considered that the recruitment amongst bees is always a function of the quality of the food

source (Camazine & Sneyd 1991). From the experiments conducted by Camazine and Sneyd

(1991), they confirm that not all bees start foraging simultaneously, but begin foraging at a rate

proportional to the difference between the eventual total and the number presently foraging.

By writing programs that model the natural behaviours of swarming animals or insects,

programmers in the field of Computer Science can solve many complex problems. In swarm

applications, the agents working on the problem usually have no knowledge that a problem

even exists, they are in fact just continuing with their “natural” behaviour, and it is that

behaviour that helps solve the problem.

In recent times, many researchers have shown an increasing interest in building multi-robot

systems or, on a much larger scale, robot swarms. Unlike other studies on multi-robot systems

in general, swarm robotics emphasises self-organisation and emergent behaviour in a large

number of agents whilst promoting scalability, flexibility and robustness of the system by only

using limited local capabilities. This also requires the use of relatively simple robots, equipped

with limited communication mechanisms, localised sensing capabilities and the exploration of

decentralised control strategies.

2.3 Swarm Robotics
Swarm robotics is a new approach for the coordination of multi-robot systems which consist of

large numbers of relatively simple physical robots. The goal of this approach is to study how

relatively simple physical embodied agents can be constructed to collectively accomplish tasks

that are beyond the capabilities of a single agent. Sahin (2005) gave a formal definition of

swarm robotics as follows:

“Swarm robotics is the study o f how a large number o f relatively simple

physically embodied agents can be designed such that a desired collective

behaviour emerges from the local interactions amongst agents and between

the agents and the environment".

Cao et al. (1997) suggest that the earliest study on swarm robotics was started in the early

1970s, although there was limited interest in the area. At the time, coordination and interaction

of multiple agents were being focused in the field of distributed artificial intelligence, DAI for

short (Cao et al. 1997). However the investigations were limited to the problems involving

software agents. This tendency remained until the late 1980s, when roboticists began to explore

cooperative robotic systems (Arai et al. 2002).

One of the earliest studies in the cooperative robotics field was related to cellular robotics

systems. Cellular robotic systems such as CEBOT (CEllular roBOT) was initially studied by

Fukuda et al. (1989). The CEBOT system is a robotics system which consists of several

homogenous agents in the system. The agents, which they refer to as “cells” can make

connections and separations between them, which in turn will reconfigure the structure of their

systems. Moreover, the system is able to reconfigure itself into an optimal structure depending

on purpose and environment.

39

Unlike other studies on distributed robotic systems, in general, swarm robotics emphasises self­

organisation and emergence in large numbers of robots and promotes scalability and robustness

by using only local communication. These emphases promote the use of relatively simple

robots, equipped with scalable communication mechanisms, localised sensing abilities and the

exploration of decentralised control strategies.

Moshtagh et al. (2006) developed vision-based control laws for flocking on non-holonomic

swarm agents. In this approach, agents are fixed with a camera that has a fish-eye lens capable

of seeing the entire surrounding of the agent (with a field of view of 360°) for visual

measurements of velocity alignment. The controller will need the values of bearing, optical

flow and time-to-collision, all of which can be measured from images taken from the camera.

From their simulation results, there are visible differences on the convergence rates between the

noise free and noisy environments. For the noisy environment, a Gaussian random noise was

added to the measurements of bearing.

Esposito and Dunbar (2006) controlled the coordination of swarm agents towards multiple sub­

goals while maintaining some range of wireless connectivity with a line-of-sight constraint

between agents in the presence of obstacles. To solve the problem, they proposed a method for

composing multiple potential functions, which indicate a set of possible input directions into a

single feasible movement direction from the condition that the state vector of the agent

approaches the minima of the potential function.

The first potential function is the Navigation Function. The Navigation Function is the basis for

ensuring the goal completion portion of the problem (g-></) is at least achieved. Generally,

Navigation Functions are artificial potential fields that simultaneously provide obstacle

avoidance, and almost always, convergence to a goal configuration. The Navigation Function

for agent i is define as follow:

[S„„,.., _ d2{qj,q{)
ldt (q„q()+n%0d(q:,Oj)]' (2-3)

Where Oj is obstacle j, Oo is the boundary of the workspace, d(qu qj) denotes distance of agent

40

qi and agent qj, and k is a parameter. The parameter k must be selected to be high enough so that

all local minima, except at qf disappear.

The second potential field is the range. The range between agent g, and qj is define as follows:

0 \i d (q i , q j) < p max
(2.4)

d 2{q j) —p 2max otherwise

Where p max is the maximum range of agent qt and agent qj. The potential only possesses

minima at configurations where the constraints are satisfied, but is not strictly a navigation

function.

The third potential is the Line-of-Sight (L.O.S.). If two agents qi and qj are in danger of loosing

sight of each other, it means that one of them (e.g. agent qi) is occluded from the other's (e.g.

agent qj) view by an obstacle. The line connecting the two agents at the last time when L.O.S.

was satisfied is referred to as the occlusion line, OL. The line of sight constraint is enforced by

a following potential:

0 m l o .s .
(2.5)

d 2(q- ,OL) otherwise

Where d2(qt, OL) denotes the distance from agent qt to the occlusion line. The potential only

possesses minima at configurations where the line-of-sight constraint is satisfied, but does not

serve as a proper Navigation Function.

In the technique described above, all the agents must pass on the same side of an obstacle for

the agents to remain connected. In order for all the agents to remain connected, the swarm must

either have a leader of some sort, or some on-line method for achieving consensus on which

path to take. Another consequence of this technique is that due to the existence of saddle points,

the swarm is occasionally unconnected.

With the recent technological advances, the development of swarm robotics is becoming more

and more feasible. There are already a number of on-going and completed projects that aim to

41 .

develop and/or control large numbers of physically embodied agents. Such projects are

discussed herewith.

2.3.1 The Autonomous Nano-Technology Swarm (ANTS)

The Autonomous Nano-Technology Swarm (ANTS) is a project funded by NASA (National

Aeronautics and Space Administration, USA) (Curtis et al. 2000). In this project, the mission is

to develop a swarm of autonomous satellite agents that will search the asteroid belt for asteroids

with specific characteristics. There will be around 1000 agents involved. Each agent will have a

high degree of total or near total autonomy. The social structure of agents is based on hierarchy

by using heuristic approaches. Agents also have the ability to modify their operation

autonomously. This is crucial for agents to reflect the changing nature of the mission, the

distance, and the low bandwidth communication back to earth.

In the mission, agents are divided into three categories which is based on the agent's ability:

• Leaders: the leader will have rules and goals for the mission; the leader will also

coordinate the work effort of the worker agents.

• Workers: the workers will perform tasks given by the leader and follows the rules for

the mission.

• Messengers: messengers will relay and coordinate communications and information

between leaders, workers and the Earth. .

Leader agents are equipped with models of the types of science they want to perform. Parts of

the model include the ability to communicate with messenger agents that then relay the

information to the worker agents. Teams of agents will carry out the work together to form

models of asteroids as well as form virtual instruments.

2.3.2 The Swarm-bots project

The Swarm-bots project funded by the European Community (Dorigo et al. 200.4b). The project

lasted for 42 months and completed in March 2005. The main objective of the project is to seek

new approaches to the design and implementation of self-organising and self-assembling

42

mobile agents. The agents are composed of a number, of simpler, insect-like agents (called s-

bots), which are capable of self-assembling and self-organising to adapt to its environment.

There are three sets of objectives in the Swarm-bots project:

• dynamic shape formations,

• navigation on rough terrain, and

• scaling up.

In the dynamic shape formation, the s-bots are able to self-assemble into a number of different

planar and 3-D geometric configurations, for instance like those formation found in ant

colonies and in patterns of differential adhesion by developing cells.

In navigation on rough terrain, the s-bots will be able to move across the terrain arena guided

by sensory information gathered by the individual s-bots. There are three sub-objectives that

have been defined:

• S-bots should be able to maintain the original or current shape configuration while

following light.

• S-bots should be able to reconfigure automatically while following light through

narrow passages and tunnels.

• S-bots should be able to reconfigure their shape to pass over a hole or through a steep

concave region that could not be passed by a single s-bot.

• S-bots should be able to move from point A to B on rough terrain on a shortest possible

trajectory.

Finally, the objective in the scaling up is to study the impact to the swarm-bots robotic systems

when the user increases the number of the s-bots in both categories as described previously.

2.3.3 The Pheromones robotics project

The Pheromones robotics project funded by DARPA (Defence Advanced Research Projects

Agency, USA). This project seeks approaches to the design and implementation of self-

43

organising and decentralised control of the robots (Payton et al. 2004).

In this project, Payton et a l (2004) developed a realistic model of the pheromone based

communication of ants by using eight directional infrared transmitter-receiver pairs attached to

the top of the agents. The pheromones are assumed to be transferred between the agents as 10-

bit messages by using the infrared transmitter-receiver. Each agent then retransmits the

message it gets by reducing the intensity of the pheromone and decrements the hop count in the

opposite direction. This method is used mainly to generate the path between two points in an

unknown area by a swarm of agents.

2.3.4 The GUARDIANS project

The GUARDIANS (Group of Unmanned Assistant Robots Deployed In Aggregative

Navigation supported by Scent detection) project is a three year programme funded by the

European Community and started in January 2007. The objective of the project is to develop a

swarm of autonomous robots that consists of several robots that will navigate through an

industrial warehouse in smoke or on fire. Amongst the possible tasks that agents should be able

to perform are: searching the warehouse to explore the environments and gather information for

map building, and supporting the firemen to move around in the environment while avoiding

obstacles (Penders et al. 2007).

2.4 Robot Architecture
Many works in the swarm robotics field are inspired by the behaviour based control

architecture (Brooks 1986)(Arkin 1998)(Balch & Arkin 1998). One of the pioneers in the

behaviour based field was Braitenberg (1984). He describes a series of thought experiments in

which “vehicles” with simple internal structure, where sensors are directly coupled to the

motors, behave in unexpectedly complex ways. He developed simple control architectures and

created a wide range of vehicles producing sophisticated emergent behaviour, which he then

labelled with terms such as aggression, cowardice, fear, foresight, love and even optimism.

Braitenberg gives this as evidence for the "law of uphill analysis and downhill invention”.

44

However, these systems were inflexible and were not reprogrammable. A possible example of

Braitenberg vehicle is illustrated as in Figure 2.6.

Figure 2.6: Artist impressions o f Braitenberg vehicle.

In 1986 Brooks introduced the subsumption architecture (see Figure 2.7), where each task-

achieving behaviours are represented in separate layers. Individual layers work on individual

goals concurrently and asynchronously. At the lowest level, each behaviour is represented using

a finite state machine model, and higher levels are allowed to subsume the activity of the lower

ones but not the other way around.

■►ActuatorsSensors

Level 1

Level 2

Level 0

Level 3

Figure 2.7: The Brook's subsumption architecture.

Brooks (1991b) also stated that, in order for an autonomous mobile agent to be considered

intelligent, the agent must be robust and extensible, and have multiple goals and sensors. In this

architecture, although the robot has multiple goals, not all sensors reading are adopted. Only the

45

ones with perception processing identified as extremely reliable are to be used. An advantage of

the system is that it is inherently modular from a software design perspective, and it enables the

robotics system designer to expand the agent competency by adding new behaviours without

redesigning the old ones. Brooks (1991a) later suggested that researchers should focus on

highly simplified intelligent systems rather than having an unrealistic goal of replicating the

level of human intelligence.

Although the subsumption architecture has many good characteristics, in many cases, multiple

and possibly conflicting goals cannot be achieved (Rosenblatt & Payton 1989)(Barnes et al.

1997). As the name subsumption implies, conflicting goals are often resolved by having one

behaviour's commands completely override the other's. Even though it may be highly desirable

for the systems to act simultaneously, to accommodate the needs of both behaviours there is no

way to arrive at a balanced solution.

Another early behaviour based mobile agent control architecture is known as the motor

schema-based architecture (Arkin 1989). Schemas are a methodology used to describe the

interaction between perception and action. It can be adapted to yield a mobile agent system that

is highly sensitive to its currently perceived world. Motor schemas operate in a concurrent,

independent and communicating manner, which can produce paths that reflect the uncertainty

in the detection of the objects and yet, can cope with conflicting data arising from diverse

sensor modalities and strategies.

Up to the mid 1990s, many researchers were of the opinion that behavioural agents were

incapable of achieving more complex tasks than simple can collecting, box pushing, herding or

moving in formation. Problems such as behaviour conflict resolution, behaviour adaptation and

behaviour scheduling had been identified as the main issues for multiple mobile agents to co­

operatively perform a complex task.

Several approaches have been developed to address these issues. One of the approaches is

known as the Behaviour Synthesis Architecture (BSA) (Barnes et al. 1997). BSA has four

46

different behaviour levels called: self, environment, species and task. Sensory stimuli (in BSA)

provide the appropriate internal and external state information needed for the various behaviour

levels and from each relevant level, appropriate motion responses are generated that relate to

the desired actuation. In any behaviour level, there are a number of behaviour patterns (bp's),

where it defines what a robot's motion response should be for a given sensor input, and also

provides a measure as to how the relative importance of the response varies with respect to the

same sensor input.

2.5 Artificial Life
Conventional artificial systems are usually designed strictly in a top-down manner. In this

approach, the systems are designed to function precisely and effectively for special purposes

and specifically under closed domain. Thus, these systems fail to respond appropriately to

unexpected situations. On the other hand, for natural systems as well as their entire behaviours

emerge through bottom-up processes. These natural systems do adapt themselves quite well in

their environment that exhibit dynamic and unpredictable characteristics. Moreover, they also

can cope with a variety of difficulties.

2.5.1 Inspirations from Natural Systems

In the field of Artificial Life (Alife), where models are based on the natural systems, generally a

bottom-up approach is used (Bedau 2003). The work in Alife can be loosely divided into three

categories: soft, hard and wet, where soft is software based, hard is hardware based, and wet is

biochemistry based. The essential features of Alife models were given by Langton (1988) as

follows:

• they consist of populations of simple agents;

• there is no single agent that directs any of the other agents;

• each agent's specifications (program) details the way in which it reacts to local

situations within its environment, including encounters with other agents;

• there are no rules in the system which dictate global behaviour, therefore

47

• any behaviour at levels higher than the individual agents must be emergent.

One of the earliest models of Alife was modelled by Newmann (1966). Newmann designed the

Alife model when he created his well known self-reproducing, computational-universal cellular

automata. Newmann was first intended to built physical self-rebuilding robots and the design

was known as the kinematic model. As the work progressed, he realised that the huge cost of

providing the robot with parts of which to build its replicants. Because of this huge cost, he

then developed his design around mathematical abstraction, thus creating the first

implementation of cellular automata.

Another early example of Alife was created by Walter in 1950. He constructed two mobile

autonomous robots using valves and light sensors, named Elmer and Elsie. Elmer and Elsie

were programmed to search for a set level of light intensity. Upon seeing light, they will move

towards the light; if the intensity of the light is too strong, they will move away from it.

Whenever the power is running low, they will return to the hutch to recharge their power. Next,

Walter fixed a light on both of them. At first, they moved towards each other and engaged in

the fascinating dance which he described in his book, “The Living Brain’’ (Walter 1963).

However when the light in the hutch is switched on, Elmer and Elsie will stop “dancing’’,

ignore each other and head towards the hutch.

There are many works and developments in Alife which are relevant to this thesis, one of them

is the artificial fishes in a 3-D virtual physical world which was developed by Terzdpoulos et

al. (1994). They emulate the individual fish's locomotion, behaviour and appearance as an

autonomous agent situated in its simulated physical domain. Moreover, the fish can learn how

to control their internal muscles to move hydrodynamically. They also emulate the complex

group behaviours in a certain physical domain.

Figure 2.8 shows the functional overview of the artificial fish. The body of the fish houses a

brain or mind with motor, perception and learning centre. The motor system consists of

actuators and a set of motor controllers, which drive the dynamic model of the fish. They

48

(Terzopoulos et al. 1994) built the motor controllers unit by gleaning information from the fish

biomechanics literatures, thus their fishes can swim realistically. In the perception centre, the

perception of the fish relies on a set of on-board virtual sensors to provide sensory information

about the dynamic environment. In the brain part of the perception centre there is a perceptual

attention mechanism which allow the fish to train its sensors at the world in a task-specific way,

which will then filter out sensory information that is unnecessary to its current behavioural

needs.

Brain / MindH abits .*"■

Learning

B ehaviorPercep tion

Motor

V /V

Figure 2.8: Control and information flow in artificial fish. (Taken from Terzopoulos e t al. 1994)

The behaviour centre of the artificial fish acts as a medium between its perception system and

its motor system. The intention generator in the behaviour system is the fish's cognitive faculty

which harnesses the dynamics of the perception-action cycle. Finally, the learning centre

enables the artificial fish to learn how to locomote through practice and sensory information.

The learning centre also enables the fishes to train themselves to accomplish higher levels of

sensorimotor tasks, e.g. manoeuvring to reach a visible target.

49

Schmickl and Crailsheim (2007a) developed an algorithm for swarm robotics navigation based

on a technique of signal propagation seen in slime mould as in Figure 2.9. In this technique,

agents will wander and search randomly in an arena. When a target is found by an agent, the

agent will then send out a signal using LED flashes notifying other agents about the location of

the target. The signal is detected by the others, who will then forward or re-transmit the signal

using the same method. The process will go on and on, resulting in a wave-like signal

propagation such as that exhibited by slime mould.

Figure 2.9: Example o f slime moulds aggregation wave patterns. Each step o f the transition from top left
to top right and then to the centre takes about 30 minutes. Images courtesy o f P. C. Newell.

Schmickl and Crailsheim (2007b) proposed a new method for communication and navigation

within swarms of agents inspired by trophallactic behaviour exhibited by honeybees. In their

method however, the receiver agent can query about the “nutritional” or fitness value of the

local surrounding agents. From the nutritional value, the agent knows the gradient and can

decide whether to go up-hill or down-hill.

Gamier et al. (2005) modelled a control algorithm of collective decision such can be seen

performed by group of cockroaches. The control algorithm itself is based on small simple set of

behavioural rules as follows:

• Random walk behaviour in the centre of arena, with constant rate of changing direction

50

and forward oriented distribution of turning angles.

• Wall following behaviour when reaching the periphery of the arena, with constant rate

to leave the edge and come back towards the centre of arena.

• Stop at any moment under the shelter (dark place), stay motionless for some time and

then move again.

• Stop for some time if perceive any other agent within perception range, stay motionless

for some time and then move again.

They (Gamier et al. 2005) successfully implemented their control algorithm on the Alice

micro-robots, with two shelters (dark place) placed in the arena. Based on their observations,

the behaviours of the agents were similar to the behaviour exhibited by cockroaches, in which

the cockroaches tend to aggregate in the dark area. Moreover, if there are more than one shelter

available in the arena, cockroaches will usually collectively choose one of the shelters to be the

aggregation location.

Kodati et al. (2007) designed and fabricated a micro underwater robot, named MARCO.

MARCO gains inspiration from the boxfish (see Figure 2.10), this being is highly stable and

fairly manoeuvrable. With multiple fins, the boxfish can manoeuvre in confined spaces with

near zero turning radius. Furthermore, it has been found that the boxy shape is responsible for

self correcting mechanism that makes its trajectories immune to water disturbances. It is

believed that MARCO will be able to be used in many applications such as environmental

monitoring, ship wreck exploration, inline pipe inspection, forming network sensor and so on.

Zhang et al. (2007) constructed another biologically inspired fish-like robot. They designed the

robot to be able of propelling itself through oscillations of a flexible caudal fin, like a real

underwater fish. The caudal fin is driven by a unique actuator called electrostatic film motor. At

the current state, their robot achieves fish-like manoeuvring and approximate velocity of 0.018

m/s in dielectric liquid.

51

Figure 2. JO: A boxfish. MARCO (Kodati et a l 2007) the under water robot gains
inspiration from boxfish.(Image courtesy o f divegallery.com)

Shao et al. (2006) introduced situation-based action selection mechanism for multiple fish-like

agents to achieve cooperative transportation task. In this approach, each agent has an ID and the

agent will do the task if and only if the conditions are met. The only problem with this approach

is that, there is no overlap in the rules of the conditions. If one of the agents fails, the

cooperative task will not be succeeded.

2.5.2 L-Systems

Lindenmayer Systems (L-Systems) is one of the many branches of Alife. Traditionally L-

Systems have been widely used in the modelling of branching structures and the growth

process of biological objects such as plants and micro-organisms. As technology advances, L-

Systems have attracted more and more researchers from many diverse fields. Most researches

on L-Systems concentrate on the modelling of plant growth or modelling the growth of multi-

cellular organisms. However, in the following we review some works in other fields.

Hornby and Pollack (2001) used L-Systems and evolutionary algorithms to create a variety of

virtual creatures. Their system made use of L-Systems to encode the creature and an

evolutionary algorithm engine to evolve the creature. The creatures evolved by the system

consisted of hundreds of parts. The end-product are “natural looking” creatures. The

52

components that make up the creatures include bar structure, every single type of joint, chain

structures etc. Once a set of creatures are created, they will be evaluated by the evolutionary

algorithm engine to find “fittest” creature. The fitness of the creature is evaluated based on the

distance moved by the creature's centre gravity. Rolling and stepping are permitted but

dragging imposes a penalty. Their results show that, over half of the simulation runs are able to

generate interesting results and the most common creature movement involves rolling

sideways. Another interesting movement is that of an undulating sea-serpent, like an inch-

worm.

Zamir (2001) formulated parametric L-Systems to generate branching structures that can

embody the physiological laws of arterial branching. He gives an example by showing that a

complete cast of the arterial system of a rat can be modelled using parametric L-Systems as in

Figure 2.11. From the results, it was suggested that the parametric L-Systems can be used to

produce fractal like tree structures. However, the branching structures' parameters generated

differ slightly with the variability in branching parameters observed in arterial trees. The

parameters include the asymmetry ratio, the area ratio, branch diameters, and branching angles.

The main issue in generating branching structures of arterial branching is that the source of

variability in those parameters is not known, thus, it cannot be accurately reproduced in a

model. Finally, he concludes that the L-Systems with a random choice of parameters can be

made to mimic some degree of the observed variability, but the legitimacy of that choice is not

clear.

Mariano et a l (1995) used L-Systems to generate large instances of the Euclidean Travelling

Salesman Problem (ETSP). They gave 4 examples and successfully showed how L-Systems

can generate patterns or paths for the ETSP. The patterns used in their work are MNPeano,

MPeano, Koch and David's star. However, the method has a drawback where the distance

between each of the two cities has to be the same.

53

Figure 2.11: A complete cast o f the arterial system o f a rat.
M odelled by parametric L-Systems (Zamir 2001).

Salvador et al. (2002) proposed the multi-fractal network traffic model based stochastic L-

Systems. Their work consisted of an alphabet of arrival (packet) rates which is defined by:

A = (A j , A 2 , . . . , A j , A ,.e lR o + , f = l , ... , L (2.6)

and with production rules that randomly generate two arrival rates from a previous one.

Without loss of generality, they made an assumption that Ai < A 2 < . . . < A L . From the real data

observed, the L-Systems parameters are fit by the fitting procedure. It starts by fixing a

sampling interval A and considers the time series representing the total number of packet

arrivals in each sampling interval. The inference process in this model can be divided into three

steps:

• determination of the L-System alphabet and axiom,

• • identification of the time scale ranges, and

• inference of the L-System production rules.

From their numerical results, that include applying the fitting procedure to real observed data

with multi-fractal scaling behaviour showed that, L-System based models achieved an excellent

fitting performance.

54

Kokai et al. (1999) used parametric L-Systems in the GREDEA (Grammatical Retina

Description with Evolutionary Algorithms) system. GREDEA is a system to develop patient

specific monitoring programs for examining the blood circulation of the retina, which can be

used on patients with diabetes who need to be monitored over long periods. At the beginning,

the retina of a patient is scanned with laser ophthalmoscope (SLO). Then a parametric L-

System is developed in which will create the pattern closest to the vascular tree of the patient's

retina. The main reason for the L-Systems used here is because the L-Systems needs less

storage than storing a picture.

Other examples of the Alife have been described in the Organised Formations section in this

Chapter.

2.6 Swarm Modelling
In modelling swarms, many mathematical models were proposed by biologists to gain insights

into the nature of swarming behaviour (Parrish et al. 2002). Most of the models proposed are

focused on the spatial model, where space is directly or indirectly considered within the model

(Gazi & Passino 2004). In the spatial model, Parrish et al. (2002) suggested that there are three

distinctly different approaches that have been used to model the swarm dynamics; namely

Eularian, Lagrangian and behaviour-based model (Reynolds 1987)(Grunbaum & Okubo

1999).

2.6.1 Eularian model

The first model is based on the statistical model and uses the Eularian framework to describe

the mean-field density of swarm. In this approach, Edelstein-Keshet (2001) modelled the

swarm as a density in spatial space by a partial differential equation that is based on a diffusion

approximation of the random motion. Mogilner and Edelstein-Keshet (1999) extended the

model by integrating non-local interactions, such as visual or auditory sensing. Although the

model invites many analytical results that can be produced, the model is however limited to

large and dense swarms with no big discontinuities (Parrish et al. 2002).

55

2.6.2 Lagrangian model

The second model is based on individual-based path generation, where Lagrangian equations

are used to describe the motion of each individual member in the swarm (Gazi & Passino

2004). In this model, all attractions amongst individuals are modelled as attraction and

repulsion forces. Furthermore, all attractions between individuals in the swarm can be modelled

as potential functions, and the motion of each individual follows the negative gradient of the

potential surface, which in turns serves as an attractive feature o f this model. Moreover, by

constructing a Lyapunov function which is associated with the potential force, the minimiser

corresponding to the stable state of the swarm can easily been shown. Although the form of

attraction / repulsion functions in this model are varied, it is understood that the aggregation is

caused by the long-range attraction and the short-range repulsion (Couzin & Krause

2003)(Mogilner et al. 2003). For instance, Mogilner et a l (2003) proposed a model where

attraction and repulsion terms were exponential with different magnitudes. With the model,

they derived the individual distance of a large group, which in the end revealed a condition on

the attraction and repulsion to avoid dispersion of swarm.

2.6.3 Behaviour-based model

The third spatial approach uses a behaviour-based model. In this approach, no explicit

mathematical equations are proposed, and all interactions amongst individual agents are

described by some behaviour rules. In the field of swarm engineering, Reynolds (1987) was

one of the first to simulate behavioural control animation. He developed a system to model

flocking behaviour and coordinated movements seen in birds and fish in which he named the

creatures as boids. The basic Reynolds' flocking model is based on three simple steering

behaviours, namely cohesion, separation and alignment, which describes how an individual

boid should change its heading or direction and velocity based on the positions and velocities of

its nearby neighbours or flockmates. It is worth noting that in some literatures, the rules are also

known as flock centring, collision avoidance and velocity matching which refer to cohesion,

separation and alignment respectively.

56

Figure 2.12 shows three basic strategies of Reynolds' flocking rules. The circles indicate

sensing range for the boids in the centre. This means that the boid in the centre of the circle can

see or senses other boids within the circle. From the left is the cohesion, separation and

alignment strategies respectively. Cohesion strategy as shown by the red boid on the left in the

Figure 2.12, the boid feels the urge to steer towards the average position of its flockmates in its

vicinity, resulting in the boids staying close to one another.

4

Figure 2.12: Reynolds's basic flocking steering strategies. The circle indicates the neighbourhood range
o f the agent's in the centre o f the circle. The left shows cohesion, the centre shows separation, and the

right shows alignment strategy respectively.

The green boid in the centre of Figure 2.12 exhibits the separation strategy; this strategy is to

ensure that the boid is maintaining a safe distance from its flockmates and encourages the boid

population to avoid crowding the neighbourhood. Finally, the blue boid on the right of Figure

2.12 demonstrates the alignment strategy which sometimes is referred to as the velocity

matching strategy. This rule encourages the boid to move with a similar heading and velocity as

its flockmates.

By using Reynolds's model of boids, Tanner et al. (2003a, 2003b) investigated the algebraic

graph theoretical properties of underlying interconnection graph between agents. They also

showed the relationship between the graph connectivity and stability of the flocking behaviour

in fixed and dynamic topology.

There is one other similar work to Reynolds's flocking model, which was developed by Viscek

et al. (1995). Viscek proposed a simple model in which each agent's heading is updated at

every time step as the average of headings of the agent itself and its nearest neighbour plus

some additive noise. By comparing Viscek's model with Reynolds's model, it can be concluded

that Viscek's model is a special case of Reynolds' model, where all agents move with same

velocity, only following an alignment rule and only considering the nearest neighbour as a

flockmate. From the results of their simulations, they (Viscek et al. 1995) showed that their

agents move in a coherent manner, in which the headings of all agents converge towards a

common value.

Folino and Spezzano (2002) adopted Reynolds's flocking rules and proposed a parallel spatial

clustering algorithm for swarm agents called SPARROW (SPAtial ClusteRing AlgoRithm

ThrOugh SWarm Intelligence). The algorithm combined a smart exploratory method based on

a flock of birds with a density-based cluster algorithm to discover clusters of arbitrary shape

and size in spatial data.

The motion of each agent follows the Reynolds's flocking model. Furthermore, SPARROW

considers types of agents, grouped on the basis of the density of data in their neighbourhood.

To differentiate the different types of agents, different colours are used as shows in Figure 2.13

below; red, showing a high density of pattern in the data, green a medium one, yellow a low

one, and white indicates a total absence of patterns. The main idea of SPARROW is to take

advantage of the coloured agents in order to explore more accurately in the tight cluster regions

and avoid the ones without clusters. In simulation, the red and white agent will stop moving in

order to signal out the type of regions, whilst the green and yellow agents will flock and move

toward dense cluster. In this algorithm, the agents behave like hunters with a foraging

behaviour that allow each agent to explore the spatial data while searching for cluster with

different sizes, shapes in noise data (Folino & Spezzano 2002); cluster with different densities

(Folino et al. 2003) in 2-D space. Moreover the algorithm also works in multidimensional

space (Augimeri et al. 2006).

58

ignore it

centroid

resultant

</ White

< Yellow

<1 Green

<J Red

Figure 2.13: Cohesion strategy in SPARROW, taken from Folino and Spezzano (2002). In this strategy, the
green agent in the centre fee l the attraction towards red agents, and repulsion against white agent.

Olfati-Saber and Murray (2003) modelled a net flocking framework in the presence of multiple

obstacles in the arena. Net-flocking is where agents in the flock will have the “bonds” between

them when they come within close proximity of each other. Agents will keep this bond and stay

close to each other. The bond will break if bonded agents move apart more than the allowed

distance. The easy way to view net-flocking is to think the agents as the “atoms” and these

atoms are connected to each other with these “bonds”. They showed that the flocking behaviour

is achieved by dissipation of energy according to a protocol that only requires the use of local

information. The three basic flocking rules of Reynolds' are hidden inside this protocol. They

defined three types of agents which are called alpha, beta and gamma. These agents are then

used to create, what they call, net-flocking. They (Olfati-Saber & Murray 2003) also showed

that by using their framework, the split, rejoin and squeezing manoeuvres flocking while

avoiding obstacles can be done.

Some other works on swarm modelling that are worth mentioning were researched by Levine et

al. (2000), Toner and Tu (1998) and Shimoyama et al. (1996). Levine et al. (2000) created

rotating swarm agents known as circular ant mills using a self-propelled particles based model

in which each agent can interact with all other agents in the arena. They modelled the flock in

one- and in 2-D, and showed that the density of the flock drops to zero at the edge, or the

density of the flock has a sharp edge confirming the work done by Mogilner and Edelstein-

59

Keshet (1999). Toner and Tu (1998) analysed Viscek's model and used a continuum mechanics

approach to model flocking behaviour. Shimoyama et al. (1996) proposed a mathematical

model of flocking and clustering motion such as collective rotation, chaos and wandering. They

also categorised the behaviours and characterised the transitions of the models.

2.7 Simulation Tools
In developing and simulating multi-agent systems or swarm robotic systems, there are a

number of purposely built computer programs available and ready for use. In this thesis three

different software packages have been used to simulate our swarming algorithms; these are the

Breve, Netlogo and MATLAB simulation tools.

2.7.1 Breve

The Breve toolkit (Klein 2002) was developed by Jon Klein during his year at Hampshire

College, USA as a thesis project, and was developed further into a Master's thesis at Chalmers

University of Technology, Sweden. Breve is also actively being developed as a platform for a

project building large scale simulations of evolutionary dynamics, and many other applications.

Breve is a free simulation environment distributed as an open-source software with

contributions from researchers from all over the world. It is designed for the simulation of

multiragent, 3D spatial and physical systems. It allows users to observe the interactions of

predefined behaviours of autonomous agents in a continuous 3D world.

The world in Breve is represented as a 3D space and is able to facilitate 3D spatial simulations

as shows in Figure 2.14 below. Agents in the simulation can occupy this 3D space to move

around and about and interact in the 3D space. Breve allows the agents to be spatially aware

and to comply with physical laws, therefore making the simulations closer to the real world.

60

Figure 2.14: Example o f Breve simulation world; showing the simulation o f Braitenberg vehicle written by
Klein (2002).

By enabling Breve's main feature of physical laws, one can simulate breve agents to behave just

as real objects do, according to the laws of physics. For example, if an agent is defined as a ball

and placed in the air above the floor, the physical simulation engine will make the ball

realistically fall towards the floor and bounce back, subject to gravitational forces and Newton's

Third Law. Amongst other things, the physical simulation engine in Breve can be used for

realistic simulation of robots, vehicles and animals as well.

Breve simulations are usually written in an object-oriented and easy to use language called

STEVE. The language borrows many features such as in C, Perl and Java. Breve also features

extensible plugin architecture which allows programmers to write plugins and interact with pre­

existing code and projects. In the simulations, all aspects including object and memory

management, communication between agents, and integration are automatically handled by the

Breve engine (Spector et al. 2005b).

Another main feature of Breve is the fact that Breve supports the Push programming language.

Push was developed specifically for genetic programming and other evolutionary

computational applications. Push is designed to avoid most of the complications that can arise

when writing evolutionary codes. The two main characters of Push programming are that it has

very unusual simple syntax and the ability to work flexibly with multiple datatypes (Spector et

Spector and Klein have used Breve in many of their works, including their most notable work

where they demonstrate the evolution of a form of multicellular organisation, and altruistic food

sharing for flying agents (Spector et al. 2005b).

2.7.2 NetLogo

NetLogo was created in the spirit of the Logo programming language which is easy to learn, to

use and to read, but also powerful enough to deal with complex concurrent problems. Logo was

developed by a mathematician Seymour Papert in mid 1960s. At that time Seymour was

working with the team from BBN (formerly known as Bolt, Baranek and Newman), led by

Wallace Feurzeig. The first implementation of Logo was written in LISP (List Processing

language) and released in 1967.

Logo was originally designed to introduce children to programming concepts and thus develop

better thinking skills that could be transferred into other contexts. It was aimed to be enable

easy entry by novices and yet meet the needs of high power users.

The most well-known Logo environments have involved the turtle. The turtle is originally a

virtual creature that sits on the floor and could be directed to move around by receiving

commands from a user or programmer. The turtle is used to draw shapes, designs and pictures.

62

Figure 2.15: Example o f NetLogo simulation world, showing the simulation o f the ant foraging model
written by Wilensky (1999).

NetLogo (Figure 2.15) was written and released by Wilensky in 1999. It was originally

developed at the Centre for Connected Learning and Computer-Based Modelling at

Northwestern University and is in continuous development at the Center for Connected

Learning and Computer-Based Modelling at the same university.

NetLogo is well suited for modelling time-dependent complex systems and literally allows

users to give instructions to hundreds or thousands of independent agents operating

concurrently. This makes.it possible to explore the connection between micro-level individual

behaviour and macro-level patterns that emerge from the interactions of individuals.

NetLogo is specifically designed for deployment of models over the Internet and is written in

Java so the model can be run on all major operating systems (NetLogo 2008). After five years

of development, NetLogo is a mature simulation tool which is stable and fast (Tisue &

Wilensky 2004).

Extensive documentation, tutorials and demonstrations are available on the package's website.

NetLogo comes with a Models Library which contains a large collection of more than 140 pre­

written simulations code that can be used and modified. These pre-written code in models

library includes wide range of disciplines and education levels; from natural to social sciences,

mathematics and computer sciences.

Even though NetLogo is distributed as a freeware, the functionality in NetLogo can easily be

extended through an Application Programming Interfaces (APIs).

There has been a considerable amount of work completed on multi-agent systems modelling

using NetLogo. One of them is the work done by Momen et al. (2007). In this work, they have

modelled two species of “birds” and studied the effect of multi-species flocking. These two

species of birds will attract to each other depending on the heterospecific-attraction parameter.

From the results, they showed that as the heterospecific-attraction increases, the flocking

efficiency also increases. Another model using NetLogo is the work by Veeraswamy et al.

(2006), where they promoted the use of path planning with the ant foraging technique. Results

of their simulations showed that the performance of the ant foraging problem can be improved

dramatically by combining the regular ant foraging algorithm with the A* path planning

algorithm.

2.7.3 Other Simulation Tools

A number of other simulation tools exist that are used by the swarming community.

MASON, the Multi-Agent Simulator of Neighbourhood was developed by a joint effort of

Evolutionary Computation Laboratory (ECLab) and Center for Social Complexity of George

Mason University, USA (MASON 2008). MASON is written in JAVA to take advantage of its

portability, operating system independence, object serialisation and strict math and type

definitions (Luke et al. 2005). It is designed to be used for a wide range of simple simulation

with emphasis on swarm multi-agent simulations.

64

MASON is released as an open-source in which users are free to use and modify the source

code. At present, there is little documentation and it has a relatively small user group. However,

some of the documentation detailing of how-to use and some of the publications detailing the

implementation or application of MASON are available for a prospective user to evaluate

further (MASON 2008).

Webots™ is a proprietary software and developed by Cyberbotics Ltd.. Cyberbotics Ltd. is a

limited company derived from Swiss Federal Institute of Technology in Lausanne (EPFL) and

was founded in 1998.

Webots™ provides a rapid prototyping environment for modelling, programming and

simulating mobile robots. The robot libraries enable users to transfer control programs to many

commercially available real mobile robots such as Khepera™ , Aibo™ and the LEGO™

Mindstorms™ robots. Webots™ offers numerous features to make the simulation tool easy to

use and able to do complex computations (Michel 2004). The features include:

• allowing the user to model and simulate any mobile robot, including legged, wheeled

and flying robots

• allowing the user to program the robots in C or C++ or JAVA, or from third party

software through TCP/IP

• using the Open Dynamic Engine (ODE) library for more accurate physics simulation

• many examples with controller source code and models of commercially available

robots

• creating AVI or MPEG simulation video file for online or public presentations.

Many other multi-agent simulators exist, such as Gazebo, Player / Stage, Repast and so on. A

more comprehensive review on multi-agent simulators can be found in Castle & Andrew

(2006) and Railsback et al. (2.006) and the references therein.

65

2.8 Summary
The pretext of this Chapter is aimed at trying to understand the conceptual and natural roots

surrounding pattern formation in swarms. Various state of the arts methods related to the

subject have been reviewed. This lays out the ground work for the original contributions that

will be presented in the following Chapters.

A number of popular robotics control architectures were reviewed and described in detail.

These include the well known Brooks's subsumption architecture (1986) and Reynolds'

flocking algorithms (1987). Research work in autonomous mobile agents or robotics field has

since the early days suffered from difficulties associated with centralised planning.

A review of control algorithms for distributed pattern formation for robot swarms have shown

that the agents are more complex. In Particular, agents need communication modules (such in

Avrutin et al. 2007, Payton et al. 2004, Nouyan et a l 2006, Freeman et al. 2006, Desai 2002,

Fierro & Das 2002, Kaminka & Glick’2006, Pavone & Frazzoli 2007, etc.), or the ability to

perform complex calculations (such in Yang et al. 2007, Desai 2002, Takahashi 2004,

Mastellone et al. 2007, etc.), or the requirement for vision based sensors (such in Das et al.

2002). in order to carry out pattern formation tasks. With these levels of complexity, the

(hardware) cost of building swarm agents increases significantly. In addition complex agents

have a higher probability of failure to due to the integration of multiple crucial components. In

keeping complexity down, agents will have minimal sensors and onboard processing power.

The problem now becomes determining how relatively simple agents can be controlled. Thus it

is a challenge to design pattern formation control algorithms on such a simple swarm agent.

In the review on the swarming behaviour, most of the work in the literature reported involving

repelling and attracting factors or “repulsion and attraction forces” (such in Tanner 2003,

Hanada 2007, Olfati-Saber & Murray 2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai

2002, Mastelone et al. 2007, Yang et al. 2007, etc.). These repelling factors are used in agent-

to-object and/or agent-to-agent interactions so that agents will not collide with each other

and/or with another object (obstacle avoidance strategy). On the other hand however, the

66

attracting factor only accounts for agent-to-agent attractions which is usually used in a strategy

such that agents will remain close to each other, for example the cohesion strategy as in

(Reynolds 1987). The problem of the attracting factor for agent-to-object interaction still needs

to be examined. It will be interesting to investigate how agent-to-object attraction forces will

affect the behaviours of swarming agents.

With regard to the bridge formation connecting two objects or two locations (such as in Avrutin

et a l 2007, Nouyan et a l 2006) an important issue is that to be able to connect the two

locations, the proposed algorithms require a large number of agents. A particular problem arises

when only the minimal number of agents that are required to make a bridge formation are

present in the arena. For example, if there are twenty agents in the arena and a minimum of

twenty agents are needed to form a certain bridging formation in the arena, the proposed

algorithms might take a long time to find a solution without additional agents. Worst still it

might not be able to find the solution at all within the permissible time frame. It is then useful

to devise an alternative algorithm even if it is not fully automated or self organising for the

reason that self-organisation is not always the best solution for every problem.

The next three Chapters describe the overall methodology by which the research was carried

out including developing areas identified in this Chapter.

67

Chapter 3 State Based Models

The aim of swarm engineering is to design multi-robot platforms that are able to mimic

biological robot swarms in performing tasks where a group of robots, each of which has limited

capability, can perform better than just the one. In simulating large scale swarms,

computational cost plays an important role, thus limiting and stagnating development. Many

studies have been undertaken using a practical approach to swarm construction. Amongst these

are studies investigating navigation and exploration tasks, task allocation, elementary

construction, and communication.

In this Chapter, two control algorithms using the Finite State Machine (FSM) approach are

developed to support simple swarm robots in swarm robotics pattern formation, where complex

behaviours can emerge from interactions between agents and each agent with the environment.

This Chapter proposes that by alternatively switching on and off a combination of transmitters

and sensors of agents, different variety of agent behaviours can be achieved. The work here is

loosely motivated by ants which have limited memory and limited ability and yet they are able

to form a line to and fro from their nest to a food source. In the first algorithm the agents are

tested with forming chains or lines, and in the second they are tested with forming a cluster. In

both cases agents have very little memory, limited sensing capabilities and processing power,

there is no explicit communication between agents and the formations are formed based solely

on environment cues.

68

3.1 Introduction
The ability to self-organise in a predicted way is important for the accomplishment of a wide

range of tasks in the swarm robotics domain, thus many different approaches have been

proposed (such as in Avrutin et al. 2007, Payton et al. 2004, Nouyan et al. 2006, Freeman et al.

2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.).

Each agent in the swarm system is capable of performing very simple tasks, but when these

agents aggregate, they are able to act as a larger entity which is able to perform more complex

tasks. To achieve this, initial studies have to be undertaken in order to understand the act of

swarming by biological systems and inferring rules that govern the swarm movement.

The research in this Chapter was conceived during the initial development phase of the EU FP6

I-SWARM project. Several initiatives have been undertaken to create, understand and simulate

swarming behaviours. Due to the limited capability of the I-SWARM agents, which directly

affects the number of sensors that can be mounted on them, and their limited processing

capabilities, novel methods for encoding and processing information have to be developed.

Moreover, due to the size of the agent and to reduce the manufacturing costs, communication

modules are not present on the agents, thus excluding the ability to communicate explicitly like

agents in multi-robot systems. Agents have very little memory and limited sensing capabilities

which are used to detect obstacles and other agents.

In this piece of research, the main interest is in studying and implementing rules that lead to

basic swarming behaviour on very simple agents. In the field of swarm robotics, which

emphasises the cooperation and collectivity of groups of agents, individual agents are usually

controlled by simple strategies. Complex behaviours are often achieved at the group or colony

level by exploiting local interactions amongst agents, and its environment. In designing control

algorithms for swarm agents, often complex strategies are avoided. Instead, simpler principles

such as homogeneity of agents and distributiveness of control algorithms are preferred.

There are many related works in swarming that are already mentioned in Chapter 2 (Section

2.6, page 54). However, the control algorithms proposed in these works require high agent

complexity in term of hardware (such in Das et al. 2002, Yang et al. 2007, Desai 2002,

Takahashi 2004, Mastellone et al. 2007, Avrutin et al. 2007, Payton et al. 2004, Nouyan et al.

2006, Freeman et al. 2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone &

Frazzoli 2007, etc.), which is the luxury that the agents within this research do not have. For

examples, agents in (Das et al. 2002) need vision-based sensor; in (Yang et al. 2007, Desai

2002, Takahashi 2004, Mastellone et al. 2007, etc.) need to perform complex calculations

hence requiring large amounts of memory and processing power; and in (Avrutin et al. 2007,

Payton et al. 2004, Nouyan et al. 2006, Freeman et al. 2006, Desai 2002, Fierro & Das 2002,

Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.) the agents require a fairly complex

communications module installed, thus defeating the aim of swarm intelligence.

With the aforementioned constraints, two particular pattern formation tasks that have been

addressed in this research are how swarm agents can be coaxed into forming a line or chain and

how agents can be programmed to cluster in a bounded arena under the constraint that agents

have a limited memory, sensing ability and processing power. This work is loosely inspired by

the observation of ant colonies, but unlike ants these agents do not release pheromones in order

to attract other ants. Rather agents use infra-red transmitters to attract other agents to

themselves.

3.2 Tasks and Approaches
With the limitation of agents as previously mentioned, the FSM approach has been chosen in

this part of the research. The tasks that have been chosen for the collection of relatively simple

agents to perform are line formation and cluster formation. The agents do not have any prior

knowledge about the dimensions of the working arena or how many other agents are present in

the arena. These other agents can also be viewed as dynamic obstacles in the environment. The

sensing range is small relative to the working arena. In this research, a reactive decentralised

control algorithm has been investigated and used to perform the abovementioned tasks. The

mission is to complete the specific task while avoiding collisions with other agents and the

wall.

70

In the following section, the simulated world is first described, followed by the agent design

and its dynamics. Next the control mechanisms will be described at both low and high levels.

The results of the simulations are then presented and discussed.

3.3 Simulation Environment

3.3.1 Simulator and agent designs

The experiments presented in this Chapter have been conducted in a physical simulation engine

called Breve (Klein 2002), first introduced in Chapter 2. Breve is specifically designed for the

simulation of multi-agent, 3-D spatial and physical systems. Hence agents will be subjected to

normal Newtonic laws. As shown in Figure 3.1, the working arena consists of a floor which is

defined as a cube of 70 by 70 patches with thickness of 5 units in the Breve world. Along the

perimeter of the floor, the wall has a thickness and height of 4 units. The wall is included to

prevent agents from falling off the end of floor.

Figure 3.1: Simulation world; showing floor, wall with seven agents in the
arena.

Swarm systems can either be homogeneous or heterogeneous systems. In a homogeneous

swarm system, agents usually consist of physically identical agents with exactly the same

hardware and software capabilities. Whilst on the other hand, in a heterogeneous swarm

system, the agents may be different, such as at the hardware or software levels. Even if the

71

agents have exactly the same hardware configurations and control software, if each agent has a

unique identifier, the swarm system is considered as a heterogeneous swarm system. Hence in a

homogeneous swarm system, each agent is identical in all respects.

Within this study, several homogeneous physical embodied agents with homogeneous and

heterogeneous control have been designed to examine a number of swarming algorithms. As

shown in Figure 3.2, each agent is installed with a ring of 8 equally spaced infrared transmitter-

receiver pairs around its turret, that enables the agent to attract and detect other agents from its

local environment. In addition to transmitter-receiver pairs, the agent has two driving wheels

and two omnidirectional wheels, which allow the agent to move in any arbitrary direction and

step once it is commanded to do so.

The agent has been defined as a mobile multibody object. The body of the agent, which has

been labelled as RoboBody has been defined as a root body or root link. The RoboBody then has

been connected to other parts of the agent, such as wheels and sensors. The RoboBody has been

constructed using a PolygonDisk object and has been defined with a radius of 2 units with

thickness of 0.75 units and with sides of 40 units. The wheels have been created using the

PolygonDisk object as well with a radius of 0.60 units, thickness of 0.21 units and sides of 40

units. The wheels are referred to as leftWheel and rightWheel to differentiate the left and right

wheel of the agent.

3 A

Omnidirectional

wheel Ir
Infra-red

receiverInfra-red \

transmitter Driving

wheel

Figure 3.2: Simulated agent

72

The leftWheel and rightWheel are then assembled to the left and right side of the undercarriage

of RoboBody. To be exact, the leftWheel is connected to RoboBody at the point of (0, -0.30,

-1.20), and the rightWheel is at (0, -0.3, 1.20) as shown in Table 3.1.

The joints between the wheels and RoboBody has been defined as a revolute joint so that the

wheels can be controlled to roll backward and forward just like a physical wheel. The

omnidirectional wheel supports have been constructed using spheres with radii of 0.20 units.

The supports have been placed at the front and the back of RoboBody. The front support,

frontSupport is connected to RoboBody at the point of (1.5, -0.68, 0), and the back,

backSupport support is at (-1.5, -0.68, 0) as shown in Table 3.1. The joints between

omnidirectional wheel and RoboBody has been defined as a ball joint so that the wheel can

rotate freely in 360 degrees.

Eight pairs of infra-red transmitters and receivers have been created. The transmitters and

receivers have been defined as spheres. The pairs are then assembled at the top and near the end

side of the RoboBody spaced at 45 degrees apart as shown in Figure 3.2. The transmitters and

receivers faces outward and are perpendicular to the side of the RoboBody.

Table 3.1: Agent's parts

A gent's parts Shape L ink Joint type C on nected to
R o b o B o d y at

RoboBody PolygonDisk with:
sides = 40, thickness

= 0.75, radius = 2

Primary None Not available

leftW heel PolygonDisk with:
sides = 40, thickness
= 0.21, radius = 0.60

Secondary Revolute joint (0, -0.3, -1.2)

rightWheel PolygonDisk with:
sides = 40, thickness
= 0.21, radius = 0.60

Secondary Revolute joint (0 ,-0 .3 , 1.2)

frontSupport Sphere with: radius =
0.2

Secondary Ball joint (1.5, 0.6, 0)

backSupport Sphere with: radius =
0.2

Secondary Ball joint (-1.5, 0.6, 0)

transmitters Sphere with: radius =
0.3

Secondary Fixed joint various

receivers Sphere with: radius =
0.15

Secondary Fixed joint various

73

These infra-red transmitter and receiver pairs are labelled 1 through 8 in the clockwise manner

from the front position of the agent to differentiate which one which. These pairs are used for

attracting and locating other agents in the environment. The transmitters can be switched on

and off individually.

The lime, blue and red colours of the transmitters as in Figure 3.2, are used to indicate that

those transmitters are switched on. When the transmitter is switched off, white is used. The

chosen colours are also used to assist the observer to recognise in which direction the agent is

facing. As indicated in Figure 3.2, red is on the left and right side and lime is at the front and.

back side of the agent. For each pair, the infra-red receivers are placed in front of the

transmitters, this is to avoid the receiver from receiving the signal transmitted by its own pair.

The transmission and detection range of transmitters and receivers has been set to twice the

radius of RoboBody, i.e. 4.0 units. The transmission angle for transmitter is set to 25 degrees,

whilst the detection angle is 45 degrees.

The collision sensor is located at the front of the RoboBody just below the infra-red receiver

number 1. The sensor range is set to 4.0 units and the detection angle is set to 60 degrees.

3.3.2 Agents dynamics

The locomotion of the agents are non-holonomic, where there is a restriction on the maximum

possible turning angle of the agents. Turning is achieved through two driving wheels located

just below transmitters 3 and 7. The movement of wheels are governed by the input receivers.

At the beginning of the simulations, the natural velocity of wheels have been set to 2.50 rad/s.

The natural velocity is the speed at which the wheels turn in the absence of sensors or receivers

input. Each wheel can be controlled individually by changing the value of left and / or right

wheel velocity, namely leftSpeed and rightSpeed respectively.

74

In this study, several flags for the agent's movement have been defined. These include speedUp,

slowDown, speedNorm, speedStop, turnRight and tumLeft as shown in pseudo codes in Table

3.2. At any one time, only one or none of the flags will be set to true while the others are set to

false.

From Table 3.2, when speedUp is switched to logic true, both leftSpeed and rightSpeed will

increase their value based on their current value by 1.3 times. The speedUp method will be

activated if the distance between the agents is greater than 3 unit. The increment of leftSpeed

and rightSpeed values will stop when either the current value of leftSpeed or rightSpeed is

reached or is greater than 3.0, or the speedUp flag is set to false. The speedUp method is useful

when an agent is far from the other agents and is trying to keep close to the others within the

allowed distance.

The slowDown method is the opposite of speedUp. The slowDown method will be activated if

the distance between agents is less than 2 unit and greater than 1 unit. Whenever the slowDown

flag is set to true, the leftSpeed and rightSpeed parameters will be reduced by half until it

reaches the value of zero or the flag is set to false, whichever comes first. The slowDown

method has been used in the simulations whenever the agent comes to close contact to other

agent(s) or obstacle1 before comes into a halt.

Whenever an agent needs to turn to the right or left, the flag turnRight or tumLeft will be set to

true accordingly. As shown in the Table 3.2, during the turnRight method, the rightWheel will

turn to the opposite direction of leftWheel, resulting in a negative value of the rightSpeed. The

tumLeft method on the other hand, will set the leftWheel turning in the opposite direction.

The movement of an agent can be stopped by setting the speedStop flag to true. This will set the

leftSpeed and rightSpeed to zero, resulting in the agent coming to a halt. The speedStop method

will be activated if the distance between agents is less than 1 unit. The last elementary flag as

shown in Table 3.2 is called speedNorm, this method will be activated if the distance between

1 In this Chapter, ev en though there no ob stacle has been d efin ed , agents treat the perim eter w a ll as
“o b sta c le” .

agents within 2 and 3 unit. In this method, both wheels will be set to naturalVelocity, resulting

the agent will move on to straights line forward.

Table 3.2: Pseudo code fo r agents dynamics

while speedUp do
if leftSpeed < 3.0 and rightSpeed < 3.0 then

leftSpeed = leftSpeed * 1.3
rightSpeed = rightSpeed * 1.3

end if
end while

while slowDown do
if leftSpeed > 0 and rightSpeed > 0 then

leftSpeed = leftSpeed * 0.3
rightSpeed = rightSpeed * 0.3

end if
end while

if turnRight then
leftSpeed = leftSpeed* 1.0
rightSpeed = rightSpeed * -1.0

end if

if tumLeft then
leftSpeed = leftSpeed * -1.0
rightSpeed - rightSpeed * 1.0

end if

if speedStop then
leftSpeed = 0
rightSpeed = 0

end if

if speedNorm then
leftSpeed = naturalVelocity
rightSpeed = naturalVelocity

end if

76

3.4 Encoding of Rules
Within this research, since agents in the final I-SWARM agents have a limited amount of

memory, the rules governing the motion of each agent (in this Chapter) are based on a

behaviour based architecture, consisting of three states represented by finite state automatons as

shown in the state diagram of Figure 3.3. Each state corresponds to a different behaviour. At

each simulation time step only one behaviour is active. The transitions between agents are

dependent on the sensory inputs which is represented by s in the Figure 3.3; where 5 = 0 means

there is no sensory input whilst s > 0 means there is at least one of the agent's sensor gives a

positive reading.

To test the hypotheses of pattern formations of robotic swarm using state models, two control

algorithms have been proposed, namely line formation and clustering. In line formation, all

agents have been controlled homogeneously, whilst in clustering, agents have been controlled

heterogeneously. For clustering, two types of agents are defined, that is attractor and searcher

agents which use different control sets.

s > 0

s > 0s = 0

followingrandomWalk

s = 0 s > 0
s = 0

wait

Figure 3.3: State diagram fo r line and cluster formation. States are shown as labelled circles while
transitions are depicted as arrows. Each transition is labelled as e v e n t which triggers the transitions.
Letter s represents se n so ry in p u t to the agent; where s = 0 depicts no sensory input, while s > 0 means

there at least one o f the sensor gives a reading.

.77

The approaches for line formation and clustering are thus described. First the behaviours are

described, followed by the conditions that trigger the transition between behaviours for all

agents, i.e. in line formation and searcher agents in clustering, and finally a high-level

descriptions for line formation and clustering control algorithms is provided.

The three behaviours designed into the agent are:

• randomWalk: agent performs a random walk in the arena looking for others within its

vicinity. All infra-red transmitters are switched on for line formation and all are off for

clustering.

• following: move towards the agent in front. Back three infra-red transmitters

(numbered 3, 4 and 5) are switched on, others are off for line formation', front three

(numbered 1, 2 and 8) are off while others are on for clustering.

• wait: moves with the current wheel speed. On-off arrangement for infra-red

transmitters are same as in the following behaviour.

The behavioural transitions are:

• randomWalk —*■ following: if agent perceived another agent. Note that an agent only

can be perceived by other agent if and only if its infra-red signal is detected by the

other agent.

• following —*■ wait: if an agent lost the infra-red signal that has been detected before.

• wait —» randomWalk: if an agent perceived the agent that was iost previously.

• wait —► randomWalk: if an agent could not detect the lost infra-red signal within

permitted time frame.

3.4.1 Line formation

At the beginning of the simulation, agents are placed at the predefined location as shown in

Figure 3.4. Typically, an agent will not detect any other agents in its vicinity and is in the

random walk state. The movement of the agent while in randomWalk state is that at every

simulation time step the agent will have a small probability of 0.005, or one in 200 chances to

78

turn its direction of heading. This is to avoid agents moving in a Brownian motion; moreover it

will give agents the ability to scan a wider area in a shorter period of time. When the agent

needs to change its direction, it will choose randomly either to turn left or right by either 45 or

90 degrees.

(a)

r

(b)

Figure 3.4: Agents start position in the arena for; (a) line formation, (b) clustering.

While in the randomWalk state, the agent will switch on all its transmitters as shown by the

agent on the right in Figure 3.5 to attract others to its positions. At the same time, the agent will

look around and tries to find for external infra-red signals from another agent through its

receivers and within its sensitivity range.

forward direction

m

i ̂1 following

m

* randomWalk(‘iw*

m
Figure 3.5: Transmitters’ on-off arrangement fo r line formation. Agent on the left is in the
following state where three transmitters a t the back is switched on. On the right is in the

randomWalk state where all transmitters are on.

79

As shown in Table 3.3 algorithm 1, during the randomWalk state, the agent will read each of

the receiver values until it gives the logic true, i.e. the agent perceives another agent. Reading

the values of the receivers is done sequentially, from the front to the rear and from right to left.

In other words, the value from the receivers will be read by the following order of receiver’s

number: 1, 2, 8, 3, 7, 4, 6 and finally 5. The sequential reading of sensors is in line with the

limited processing capability of the on-board microcontroller of many swarm robots.

Table 3.3: Pseudo codes fo r three states in line formation algorithm.

Algorithm 1. randomWalk() Algorithm 2. following() Algorithm 3. wait()

switch-on all transmitters switch-on transmitters (4,5,6) while (counter < 50) do

for (each receiver) do switch-off transmitters for (each receiver) do

if (any receiver) (1,2,3,7,8) if (any receiver)

following() for (each receiver) do following()

end if if (any receiver) else

end for following() counter ++

end if end if

if (all receivers == false) end for

reset counter end while

wait()

end if if (counter >= 50)

end for randomWalk()

end if

As soon as one of the receivers detects the existence of another agent within its neighbourhood,

it will fall into the following state and make the necessary turn towards the agent. The agent

will also ignore the receivers that are reading while turning or changing its heading. For

example, if the receiver numbered 7 detects the signal, the agent will turn 90 degrees to the left

and ignore the reading from receivers until the turning task is done. Likewise for receiver

number 3, it will turn to the right by 90 degrees and ignore the readings from receivers until

80

completed the turning task.

In the following state, the agent switches off all its transmitters except the three to the rear,

numbered 4, 5 and 6, as the agent on the left shown in Figure 3.5. The reason behind this is to

attract another agent to its rear in order to form a line.

There is no explicit communication taking place between the agents. Agents rely solely on their

receivers to control the movement. This kind of behaviour is known as cue based behaviour

where agents react to stimuli in its environment. As shown in Table 3.3 algorithm 2, during the

following state, as in the randomWalk state the agent will read each of its receivers values

sequentially from the front to the rear and from right to left until one of the receivers detects the

infra red signal from the agent in front. If the signal is detected, the agent will remain in the

following state.

Due to the fact that infra-red transmitters and receivers have a limited effective transmission

and detection range and angles, a wait state has been introduced. This is to prevent the agent

from moving to the randomWalk state from the following state directly it loses the signal by a

few degrees. This can happen when the agent in front is turning or changing its heading by a

few degrees. During this wait state, the agent will keep moving forward without turning left or

right with its current wheel speed. As in the following state the agent will only switch on the

rear three transmitters, numbered 4, 5 and 6

As can be seen in the algorithm 2 of Table 3.3, the counter is reset to zero every time the agent

exits the following state and enters the wait state. In the wait state, the agent will read each of

its receivers values sequentially as in following and randomWalk state.

While in the wait state (algorithm 3 of Table 3.3), if the agent detects any infra-red signal from

any other agent, it will change its state to the following state, and make a necessary turn

towards the front agent. If the agent does not detect any signal, it will increase the counter by

one and continue to read the receivers values.

81

This continues until the agent detects the wanted signal or the counter reaches (or exceeds) the

value of 50, whichever comes first. If the agent detects the signal, it will change its state to the

following state, otherwise it will return to the randomWalk state.

3.4.2 Cluster formation

For cluster formation amongst agents, two types of agents namely attractors and searchers

have been predefined. The attractor agent will act as a leader and will try to attract searcher

agents to its position. The pseudo codes and state diagram that govern the searcher agents

movement are shown in Table 3.4 and Figure 3.3 (in page 77) respectively.

During the simulation, the attractor agent switches on all its transmitters permanently in order

to attract searchers to gather around its position. It also moves randomly in the arena until it

bumps into other agents several times, and it will stop at that position.

Table 3.4: Pseudo codes fo r three states in cluster formation algorithm.

Algorithm 1. randomWalk() Algorithm 2 .following() Algorithm 3. wait()

switch-on all transmitters switch-on transmitters while (counter < 50) do

for (each receiver) do (3,4,5,6,7) for (each receiver) do

if (any receiver) switch-off transmitters (1,2,8) if (any receiver)

following() for (each receiver) do following()

end if if (any receiver) else

end for following() counter ++

end if end if

if (all receivers == false) end for

reset counter end while

wait()

end if if (counter >= 50)

end for randomWalk()

end if

82

As shown in the state diagram in Figure 3.3 (in page 77), the searcher will begin the simulation

in the randomWalk state. While in randomWalk state, the searcher agent will switch off all its

transmitters and it will move randomly in the arena while looking for others.

At every simulation time step, searchers in the randomWalk state and the attractor will have a

small chance with a probability of 0.005 to turn its direction of heading. When turning, the

agent will choose randomly either to turn 45 or 90 degrees to the left or right.

As shown in Table 3.4 algorithm 1, during the randomWalk state, the searcher will read each of

its receivers until any infra-red signal from any other agent is detected. Reading is done

sequentially from front to rear and from right to the left as in the line formations method

discussed earlier.

Once the searcher detects any infra-red signal, the searcher will move into the following state

and turns towards the detected signal. While in the following state, the searcher will switch on

all its transmitters except the three at the front as shown by the agent on the left in the Figure

3.6. By doing so, it will attract other searchers to its back or side in which will form a cluster of

agents in the end.

During the following state (Table 3.4, algorithm 2); as in the randomWalk state the agent will

read each of its receivers values sequentially from front to the rear and from the right to the left

until one of the receivers detects the infra red signal from the agent in front. If the signal is

detected, the agent will remain in the following state. Otherwise the agent will move to the wait

state and reset the wait counter to zero.

In the wait state (Table 3.4 algorithm 3), the searcher agent will keep on moving forward with

its current wheel speed and on-off arrangement of its transmitters. The searcher agent will also

read its receivers value as before. If any of the receivers detects any infra-red signal, it will

move back to the following state and make the necessary turn as in the line formation.

83

forward
direction

searcher < a ttractor

m

following

Figure 3.6: On-off arrangement o f transmitters fo r cluster formation. On the left is the s e a rc h e r
agent in the following state switching on all the transmitters except the front three. Agent on the

right is the a ttra c to r switching on all its transmitters.

If the searcher agent is not able to detect the wanted signal, it will increase the counter by one

and will search again for the signal. The process will loop until the searcher detected the signal

or the counter reaches the value of 50 or greater, whichever comes first. If the signal has been

found, the searcher will move back to the following state, otherwise it will move to the

randomWalk state.

3.5 Experiments

3.5.1 Simulations setup

As previously mentioned, the research in this Chapter has been undertaken in conjunction with

the I-SWARM project; where agents have little memory, limited sensing capabilities and no

communications module installed on them. The goal of the simulations was to evaluate the

controllers under the most basic conditions. In particular, we placed no obstacle in the working

environment and agents are placed at the same position and orientation at the start of each

simulations as shown in Figure 3.4 (page 79). In these simulations, seven agents have been

used. We employ a bounded arena of size 70x70 units in the Breve world, as mentioned

previously, for all the simulations. Fifty one runs are made for each cpntrol algorithms. The

performance was evaluated at the end of the simulations and all runs for line formation and

clustering were executed for 300 and 200 simulation seconds respectively to provide enough

time for all agents to complete the task. The simulations were recorded into a movie format,

and the data for analysis were recorded at every 20 simulation seconds.

3.5.2 Evaluating line formation

In evaluating each control algorithm, first the number of agents that are in the randomWalk

state are counted. As the number of agents in the simulations was fixed at seven, the number of

agents in the randomWalk state towards the end of the simulation is ideally one. When this

happens, the agent which is in the randomWalk state will act as a leader for other agents. In

other words, agents in the working arena will follow the agent ahead of itself, in the end will

result a moving queue.

The reason for counting the number of agents in the randomWalk state is that if we suppose that

each of the agents in randomWalk state acts as a leader for line formation, then the number of

leaders in the environment will represents the number of lines or chains that formed in the

arena. In this study this number should be minimal i.e. one; this will show that in the arena

there is only one leader and one line or chain amongst the agents have been established.

Figure 3.7 shows the plot of the mean number of agents that are in the randomWalk state

against time over 51 simulations run. As can be observed from the plot, the number of agents in

the randomWalk state decreases over the first 100 seconds, and then stabilises afterwards. This

shows that agents are able to form a line or two within the first 100 seconds. The low variation

of the standard deviations demonstrates the consistency of the algorithms.

Line formation

6
w
.ucQ).o>
rtf 4

4-40
Ld)

1 2

0
0 30 60 90 120 150 180 210 240 270 300

time [seconds]
Figure 3.7: Number o f agents in the randomWalk state in line formation against time.

i r i r

J _____________L

85

In order to further understand how the agents converge, Table 3.5 shows the percentage of the

number of agents in the randomWalk state over 51 simulations run. As the simulations began,

all the agents fall into the randomWalk state which amounts to 100% if there are seven agents.

At t = 20 seconds, only 1.96% or in other words, only once in the entire simulations run that

one of the agent was not in the randomWalk state. Towards the end of the simulations,

specifically from 150 to 300 seconds as we can see from the plot and the data provided, around

90% of the simulation runs have managed to form two lines or less, in which more than half of

the time only one agent is in the randomWalk state and acts as a leader for the entire agents.

From the observations during the simulations, there are a number of times where agents were

successfully formed a single line and then split into two lines due to the limited angle of

transmissions and receivers. We believe that this can be avoided by increasing the counter for

the wait state.

Table 3.5: Percentage o f number o f agents in the ra n d o m W a lk state over 51 simulations run fo r line
formation.

A g e n t s \ ^ 0 2 0 4 0 60 80 100 120 150 180 2 1 0 2 4 0 2 7 0 30 0

1. 0 0 0 7 .8 4 2 1 .57 4 9 .0 2 54 .9 4 9 .0 2 3 9 .2 2 5 2 .9 4 5 2 .9 4 5 8 .8 2 62 .75

2 0 0 0 31 .37 45.1 3 9 .2 2 37 .25 3 9 .22 5 4 .9 3 9 .2 2 4 3 .1 4 35 .29 35 .29

3 0 0 9 .8 37 .25 19.61 9 .8 7 .84 9.8 5 .8 8 7 .8 4 3 .9 2 5 .8 8 1.96

4 0 0 4 7 .0 6 17.65 11.76 1.96 0 1.96 0 0 0 0 0

5 0 0 31 .37 5 .88 1.96 0 0 0 0 0 0 0 0

6 0 1.96 11.76 0 0 0 0 0 0 0 0 0 0

7 100 9 8 .0 4 0 0 0 0 0 0 0 0 0 0 0

Consider the snapshots taken during one of the simulation runs for line formation in Figure 3.8

at 40, 100, 190 and 240 seconds respectively. In Figure 3.8(a) and (b), three of the agents have

detected other agents hence have moved into the following state. Other agents which are in the

randomWalk state will remain in the state until it detects another agent which they can follow.

Figure 3.8(c) shows two of the agents are in the the randomWalk state and as can be seen that

the agents have formed two lines; one with two agents and the other with five agents. Figure

3.8(d) shows that towards the end stage of the simulation which shows the agents have

successfully formed a line.

86

(C) (d)

Figure 3.8: Stages in line formations: (a) a t t = 40[s]; (b) at t = 100[s]; (c) a t t - 190[s], and(d) at t =
2401s].

3.5.3 Evaluating cluster formation

In cluster formation, as mentioned previously two types of agents namely searcher and

attractor agents have been defined. The evaluation process is similar to those in the line

formation, but this time we take searcher agents into account and counted the number of

searchers that fall into the following or wait state. In the simulation, we have a total of seven

agents, six of them are searchers and one is an attractor. As cluster formation implies, the task

for the searcher agents is to roam in the working arena and look for and gather around the

attractor. As the number of searchers is fixed to six, ideally towards the end of the simulation

all searchers found the attractor and the number of searcher agents in the following state is six.

87

Figure 3.9 is the plot of mean number of searcher agents that are in the following or wait state

against time over 51 simulations run. As can be seen from the plot, from the start of simulations

up to around 70 seconds, the number of agents changes rapidly. The rate of convergence seems

to slow down after approximately 70 seconds and stabilises after 140 seconds.

Cluster formation

6

4

2

0
80 140 160 180 20060 100 1200 20 40
time [seconds]

Figure 3.9: Number o f searcher agents in the following state in cluster formation against time.

Table 3.6 gives an overview of the percentage of the number of searchers in the following or

wait state over 51 simulations run. At the beginning of the simulations, none of the searchers

are in the following or wait state, giving 100% to number of searchers 0. At 40 seconds, the

number of searchers increases, but for most of the simulation runs only three or less of the

searchers were in the following or wait state. Also at 40 seconds, only once from the entire

simulation runs that all the searchers are already in the following or wait state, or have already

completed the task of clustering. From 140 seconds, at least five of the searchers are in the

following or wait state and more than 80% of the simulations run the task has been completed.

88

Table 3.6: Percentage o f number o f agents in the r a n d o m W a lk state over 51 simulations run fo r cluster
formation.

^ \ ^ T i m e

A g e n t s " " ^ . 0 2 0 4 0 60 80 100 120 140 160 180 20 0

0 100 64.71 5 .8 8 0 0 0 0 0 0 0 0

1 0 33 .33 19.61 3.92 0 0 0 0 0 0 0

2 0 1.96 23 .53 7 .8 4 3 .92 1.96 0 0 0 0 0

3 0 0 29.41 13.73 1.96 1.96 0 0 0 0 0

4 0 0 15.69 33 .33 17.65 13.73 3 .9 2 0 0 0 0

5 0 0 3 .9 2 23 .5 3 3 9 .2 2 29.41 29 .41 17.65 13.73 11.76 9 .8

6 0 0 1.96 17.65 37 .25 5 2 .9 4 6 6 .67 82 .35 86 .27 8 8 .24 90 .2

Figure 3.10 shows the snapshots taken during one of the simulations runs for cluster formation

at different time stages. Figure 3.10(a) shows that at the beginning of the simulation, all agents

were in the randomWalk state. The attractor permanently switches on all the transmitters,

whilst the searchers switch off all the transmitters during the randomWalk state. Figure 3.10(b),

shows that two of the searches have already encountered the attractor resulting in the

searchers switching on the transmitters to its side and back. Figure 3.10(c) and (d) show the

simulation runtime at 100 and 160 seconds respectively. At these times most of the searchers

have perceived the attractor or other agent with the transmitters turned on. Finally Figure

3.10(d) shows towards the end of the simulation which shows all the agents successfully

forming a cluster.

The strategy of the agent in the cluster formation simulation is the same as in the line formation

algorithm, where the agent does not use any kind of explicit communication and relies only on

its sensors or receivers to control its motion. Moreover, it is an auto-catalytic process, the more

there are agents in the cluster, the larger the cluster becomes and the more likely other agents

are to discover the cluster, thus reinforcing the growth of the. cluster.

89

(C) (d)

Figure 3.10: Stages in cluster formations in one o f the simulation runs: (a) a t t = 0[s]; (b) a t t = 40[s]; (c)
at t = lOOfs], and (d) at t = 160[s].

3.6 Discussions
An experimental study of two simple control algorithms for pattern formation in robot swarms,

using state-based and rule-based systems, have been presented. The agents are designed to be

homogeneous in hardware which have constraints in processing power, little memory and

limited ability, and it has been shown how the simple agents can be controlled in a

homogeneous and heterogeneous way such that basic organisation can be achieved.

90

From the results, it is shown that by automatically switching on and off a combination of

transmitters and sensors, a variety of agent behaviours can be achieved. It is also shown that

simple pattern formation of mobile robot swarms can be obtained by using only simple rule sets

without the need for any direct communication between agents.

The overall aim of this research was to investigate two different, but crucial problems in robot

swarm. Firstly, the problem of self-organising in a robot swarm into an interesting pattern is a

challenging task that has been studied by several research groups. Secondly, the potential for a

swarm of robots to generate solutions that can meet real world constraint still remains to be

achieved.

During this study, the major constraint that was identifies was the processing power and the on­

board sensing capability of the robots. With limited capabilities, it might look that nothing

substantial could be achieved by each individual agent. Hence, a way need to be found to

overcome this issue.

The work discussed in this Chapter is related to achieving interesting and coherent behaviour

from a number of simple agents. These simple agents only have little memory, limited sensing

capabilities and processing power.

It is a much simpler task to design a controller for a robot that maximises its own sensing

abilities, but the result is likely to be a very deterministic behaviour. By using the local

interactions between robots, other information can be harnessed within the environment that is

not necessarily directly available to all robots. This requires the agents to have the ability to

perform localised signalling to their nearest neighbours. In this scenario, aggregation patterns

are important for the flow of information within the robot swarm.

By having certain patterns encoded in the robot swarm, complex tasks can be more easily

performed. Such patterns for example; line formation or a moving queue, can be useful in

cleaning-type tasks, search and rescue tasks, optimal path finding between two points etc.

91

Another example is clustering, where the pattern will be useful for information sharing within

the working arena, or to do some complex processing which could not be achieved by single

agents due to limited local sensing and computational capabilities.

Another important area of investigation is the composition of several behaviours to produce

more solutions in more complex scenarios. This way, a robot must use the limited sensing

capabilities with some degree of context in order to “understand” its situation. This will give it

the information it needs to make a decision on switching between rule sets. For example, using

only its IR sensors, a robot can differentiate between an obstacle and another robot. If a robot

picks up an IR signal, it can determine if it is reflected by an object by switching off its

transmitters. Using this simple method, a robot can be part of a moving queue formation until

discovering an object before taking action based on this information.

By combining localised signalling and context within a scenario, this work provides a step

towards robot swarms being able to emulate complex dynamical pattern formations such as

those present in nature, in social insects for example.

In this Chapter it has been shown how simple agents can be given simple rule sets to produce

interesting behaviours. As each state within the state diagram is governed by rules to perform

that automaton, so the resulting aggregated behaviour can be built upon to produce even higher

levels of coordination. Ultimately what looks like a massive cooperation emerges from what are

essentially local interactions.

From a practical approach, the work developed in this chapter has been used by Fernandez et

al. (2005) to construct SHUBOTS at Sheffield Hallam University. The SHUBOT agents are

shown in Figure 3.11. Each SHUBOT robot has low complexity and is low-cost, and so works

ideally as swarm-capable agents to complement the work carried out in this Chapter. The

SHUBOT consists of three modular platforms, namely: the microcontroller module, the sensor

module, and the locomotion and powering module. The modular design approach was taken to

allow for future possibilities of either expanding the platform or changing the sensor

92

configurations.

Fernandez et al. (2005) designed and studied various sensor combinations and presented three

of the behaviours. The first behaviour is achieved when all transmitters / receivers

combinations are switched on. In this behaviour, agents transmit its location and detects other

agents at the same time. The behaviour is not deterministic due to:

• indefinite obstacle avoidance lock, due to the fact that since all transmitters are

switched on, and when the agent encounters an obstacle and avoids it, it may again

perceive the empty space as an obstacle, thus turning into the obstacle again.

• the breaking of robot chains, due to the fact that when an agent is following another

agent in the vicinity the robot will rotate through by 180° when it gets too close.

The second behaviour is the leader-follower (line formation) behaviour as shown in Figure

3.11. In this behaviour an agent acts as the leader and other as followers, allowing for long

chains to be formed. The leader switches off the back three receivers, so that it does not detect

any follower. The leader roams and avoids obstacles. The followers on the other hand have all

it's receivers and transmitters switched on, which allows it to detect a leader, or another

follower agent that it can follow.

microcontroller

module

sensor module

locomotion

and

powering

module

L j..
Figure 3.11: The SHUBOT and four SHUBOTs performing line formation (Fernandez et al. 2005)

93

The third behaviour is a clustering behaviour. In this behaviour, agents switch on the three

frontal receivers, so other agent can be detected towards the front. When an agent is detected it

follows it. Due to the fact that all transmitters are switched on, lateral following also occurs

which results in a clustering behaviour.

Furthermore, their results (Fernandez et al. 2005) showed that the agents (SHUBOT) were able

to distinguish between obstacles and other partner agents in the working environment. The

method for doing so was to use a triple check approach as shown in Figure 3.12. It was also

found that the agents encountered some difficulty due to multiple reflection from boundaries

and a variety of infra-red sources, which has been ignored during the simulations. Nevertheless

it was found that the simulations did provide a useful Study in developing the physical agents.

Yes Is the front sensor
activated?

No
Is the front sensor

still activated?

Yes

Yes Is the front sensor
still activated?

No

Switch off the
front transmitter

Obstacle
present

Switch on the
front transmitter

No obstacle
present

Figure 3.12: Obstacle avoidance on SHUBOT. The triple check is due to the fa c t that the robot's own
infra-red transmitter may affect sensing.

94

To sum up, in this Chapter, two control algorithms using the FSM approach for pattern

formation have been devised to support relatively simple swarm agents that have very little

memory, limited sensing capabilities and processing power. It has been shown that even with

relatively simple swarm agents, simple pattern formation of mobile swarm agents can be

obtained by using only simple rule sets without the need of any direct communication between

agents. In this work, different variety of agents behaviours are achieved by switching on and off

a combinations of transmitters and sensors.

95

Chapter 4 Modelling of Collective Movement

Self-organising systems usually comprise a large number of autonomous and reactive agents

where aggregations or collective, movements are determined mainly by their neighbourhood

influences. Generally these systems have been used to simulate and study natural and biological

phenomena. With recent technological advances, the realisation of deploying hundreds (if not

thousands) of swarm agents is becoming more viable. This Chapter examines how an artificial

potential field affects the collective movement of swarm robots. In the next two sections the

history and background of the flocking algorithms and collective movement in robotics are

provided. Thereafter the simulation methodology and its implementation will be described. The

results are evaluated and conclusions are drawn.

4.1 Introduction
In nature, there are countless examples where animals or insects gather in a large groups,

displaying collective movement and self organise in a coherent fashion. These patterns are

evident in numerous other examples of animal or insect migration behaviours such as the great

herds of antelopes and wildebeest thundering across the Savannah in Africa, and Monarch

butterflies migrating south from North America into remote mountain tops in central Mexico

towards the end of summer days. The way that these appear coordinated and synchronised

according to local rules is fascinating to discover.

It is hard to believe that for such a large group there does not exist a single entity or a leader to

control the group's behaviour. For example, in the case of the birds flocking or fish schooling,

the bird or fish at the front of the flock seems to lead, and the others to follow. On the contrary,

most bird flocks and fish schools are leaderless. In fact the movements of the flocks and

schools are determined by instantaneous decisions of individual bird or fish.

Orderly flock patterns arise when each agent in the flock follows simple rules in response to

dynamic interactions within neighbourhood. Such movements are a prime example of self

organisation in swarms. Camazine et al. (2001) state that the main feature of self organisation is

that a system's organisation or movement does not explicitly depend on external control factors:

In other words, the organisation emerges solely due to the local interactions between

individuals and their environment. The organisation also can evolve in either space or time and

can maintain some kind of stable form or can show in transient phenomena. An example of

such a system is that of a colony of ants sorting eggs without knowing any particular sorting

algorithm (Bonabeau et a l 1999).

An example of self organisation in a swarm is the flocking of birds. As previously mentioned in

Chapter 2 (page 57), Reynolds (1987) was one of the first to simulate flocking behaviours of

birds. The basic Reynolds' flocking algorithm is based on steering behaviours of which he

labelled as Separation, Alignment and Cohesion. The result of the simulations was a movement

model that mimics various swarms in nature, a school of fish for instance. Since the flocking

work of Reynolds (1987), there are many works which are related to and extended from the

flocking or swarming algorithms. Wilensky (1999) for example, further developed the

simulation inspired by the boids algorithm. The algorithm presented by Wilensky (1999)

(described in the next section) is very similar to the original boids algorithm but not entirely the

same.

Other works which were inspired by the Reynolds' include the work of Tanner (2003), Hanada

(2007), Olfati-Saber & Murray (2003), Desai (2002), Mastelone et al. (2007) etc. Most of the

works reported in articles involve “repel” and “attract” factor (such in Tanner 2003, Hanada

2007, Olfati-Saber & Murray 2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002,

Mastelone et al. 2007, Yang et al. 2007, etc.). These repel factors are used in the agent-agent

and/or agent-object obstacle avoidance strategy, meanwhile the attract factor is only used in the

97

agent-agent cohesion-like strategy. The work in this Chapter investigates and examines the

problem of agent-object attraction factors by extending the flocking algorithm of Wilensky

(1999). This will lay groundwork of how agent-object attraction factors affect swarms

behaviour in performing an aggregation task.

4.2 Collective Movement in Robotics
Movements in mobile agents can be classified into two categories, holonomic and non-

holonomic motion. Holonomicity in mobile agent refers to the relationship between

controllable movement DOF (degree of freedom) and the total DOF of a given agent. If the

controllable movement DOF is larger than total DOF, the agent is considered to be a holonomic

agent.

For example, let us consider a mobile agent with two wheels, one on each side of the agent's

body. Each wheel has two DOF which can be controlled to turn either clock- or anti-clock­

wise, independently, and thus the agent has 4 controllable DOF. By having different directions

(clock- or anti-clock-wise) and/or speed of the wheels, the agent can freely move on a planar

surface with 3 physical DOF; hence the agent is a holonomic agent.

In multi-agent systems, each agent has to control its motion in order to form some degree of

cohesive motion with other agents within the group. Methods for achieving collective and

coordinated motion are dependent on the sensing and processing capabilities of the agent.

Generally, the movement of agents are mainly reactive which is completely determined by

reflexive movement dynamics. Interactions between agents and its dynamic environment will

result in “complex” macroscopic behaviour and promote self organisation in the end.

In swarm robotics, collective movement is a very important aspect of many tasks. Often, agents

have a limited sensing range and it is important for agents to stay close to each other while

moving in the arena. One example of collective movements is the formation movement, where

agents are required to keep a fixed distance and angle relative to other agents within their

98

neighbourhood. Applications of collective movement include search and rescue, tasks

distributed sensing grid, lawn-mowing, vacuum cleaning, box pushing (Kube & Zhang 1992),

foraging (Jones & Mataric 2003), etc.

In this Chapter, the research is focused on analysing the aggregation behaviour of large groups

of agents that follow swarm robotics control paradigms. In particular, we model how a large

group of agents would behave in the existence of an artificial attractor while flocking in the

arena. This work is inspired by the observation of phototactic organisms, such as moths which

fly towards a light source. In the simulations carried out in this chapter the light source is

modelled as an Artificial Potential Field (APF) to attract agents.

The remainder of this Chapter is organised as follows. In the next section, the simulation

approach will be described. The simulation methodologies are then explained and some

snapshots of pre-simulation runs are offered. After that the evaluations of each model are

shown, and this is followed with discussions.

4.3 Simulation Approach
In this study, a freeware simulation tool called NetLogo (2008) has been used. In NetLogo, the

2-D world is made up of turtles, patches and an observer. Turtles or turtle breeds can be used to

define mobile objects. The patches will define the floor or ground in which turtles can move

around on. The patches can also be used to define any other visible or invisible objects in the

arena. Turtles and patches can have individual variables and characteristics and can follow

some set of predefined rules. The observer in the model will be able to oversee everything that

is going on in the world.

The model for simulation is based upon its participants, we name them as agents, arena and the

object', and sets of rules. The object, in our case is a static object which we define as turtle

“breed”. The rules determine the behaviour of each individual participants, and also specify the

way in which these participants will interact with each other.

99

As mentioned above, the arena has been defined based on patches. In these simulations a

spherical or wrapped around working arena size of 201 by 201 patches was chosen. The size is

sufficiently large to accommodate the large number of agents that we intend to simulate. At the

centre of the arena as shown in the Figure 4.1, patch coordinate of (0, 0), an object called

attractor has been defined and placed. The attractor releases an APF in the arena.

Figure 4.1: Example o f a working arena with 300 agents.

Agents are declared as a turtle breed, which are mobile agents. In NetLogo, agents can

concurrently carry out some instructions and interact with other agents. Breeds are groups of

mobile agents that have same characteristics and follow the same set of rules. The agent has

been modelled such that each agent can sense or perceive others around its neighbourhood in

360-degrees within its visibility range, as shown in Figure 4.2. Visibility range is the variable

where we define how far each agent can see or sense from its position; while the movement

span is a set of maximum angles that are available for the agent to change its direction either to

the left or right for its very next movement step.

100

movement
span /

movement
span

' /visib ility
y range

Figure 4.2: Representation o f an individual agent

In this Chapter, Wilensky's (1998) flocking model has been used and extended. The model is an

attempt to model and mimic the flocking of birds which is inspired by the Reynolds' flocking

model (Reynolds 1987). As in Reynolds' model, Wilensky's model does not have any

predefined leader and all agents follow the three strategies of flocking, i.e. separation,

alignment and cohesion. For these strategies, Wilensky limits the turning angle of each

strategies using variables called max-separate-turn, max-align-tum and max-cohere-tum. As

the names of the variables imply, max-separate-turn represents the maximum angle an agent

can take during separation strategy; max-align-tum is for alignment and max-cohere-tum is for

the cohesion strategy respectively.

Even though the cohesion and alignment strategies in the Wilensky's model are similar to the

Reynolds' model, the separation strategy is slightly different. In Reynolds' model, the

separation strategy takes into consideration a number of agents in the neighbourhood of which

a distance is maintained. On the other hand, in Wilensky's model, only the closest agent to itself

is considered. In this strategy, the agent uses max-separate-turn angle and turns away from the

closest agent.

4.4 Methodology and Implementation

4.4.1 Simulation methodology

As mentioned in the previous section, for this study, Wilensky's (1998) flocking model has

been adopted and adapted. The attractor in the centre of the arena releases an APF from its

101

position as defined by equation (4.1) below.

1

field =
fieldRadius

distance

if distanced fieldRadius

otherwise
(4.1)

The strength of the APF's field is dependent on the patch's distance from its origin, which in our

case is represented by the attractor; The circular area of the field is subject to a variable,

fieldRadius which has been set to 63. As shown in Figure 4.1, the white background represents

the area which is not affected by the applied field.

The number of agents in the simulations are varied between 100 and 500, with 100 increments.

At the beginning of all the simulations, agents are randomly distributed in the arena, which are

represented as small black dots as shown in the Figure 4.1.

Within this study, three different movement models have been modelled, namely fish-like,

mosquito-like and firefly-like. Note that we are not modelling the movement of fish, mosquito

or firefly; the name simply implies the type of observed collective movement of agents in the

arena under the different parameter sets. The differences between each movement models are

due to the movement span and visibility range of each agent respectively. As shown in Table

4.1, visibility range and movement span for the fish-like model have been set to 10 unit-patches

and 10-degrees; for the mosquito-like model 7 unit-patches and 45-degrees, while for the

firefly-like model they are 5 unit-patches and 90-degrees, respectively.

Table 4.1: Variables fo r movement models

m o v e m e n t m o d e l movement span visibility range

Fish-like 10 10

M osquito-like 45 1

Firefly-like 90 5

102

As Wilensky's model of flocking (1998) is being extended, three more variables from the

original model needed to be introduced; max-align-tum, max-cohere-tum and max-separate-

tum. These variables are the maximum angles that each agent can turn through during the

alignment, cohesion and separation rules respectively.

For these simulations, those three angles rely on the movement span angle; which is the

maximum turning angle of each agent for its next movement or time step. As shown in Table

4.2, the value for max-align-tum is set to half of the movement span angle, and max-cohere-

tum and max-separate-turndo one-third of the movement span respectively. These values have

been chosen based on our observations during the pre-simulations run such that each movement

model exhibit “realistic” flocking. In “realistic” flocking agents are free to leave and enter the

flock, just as biological organism do.

Table 4.2: Flocking variables fo r each movement model

m o vem en t m odel movement span max-align-turn max-cohere-tum max-separate-turn

Fish-like 10 10/2 10/3 10/3

M osquito-like 45 45/2 45/3 45/3

Firefly-like 90 90/2 90/3 10/3

Throughout this Chapter, the agent's velocity is fixed to one unit displacement, whilst the

agent's heading H, varies over time. The separation between agents (minimum separation) has

been set to two units of displacement, which seems a reasonable figure considering that the

velocity is one unit of displacement for each time step. The change of heading (H) is subject to

the APF and flocking rules which consist of separation, alignment and cohesion strategy as

previously mentioned. In the separation strategy, the agent only considers the nearest agent, the

heading for separation {Hseparation) is defined as follows:

H current + max—separate —turn

H current ~ mQx — separate—turn

whert Hcunent is the agent's current heading and Hnearest neighbour is the nearest neighbour's current

heading. In this strategy the agent will turn away from its nearest agent by max-separate-tum.

103

H separation

j-C T J J J > Q
J current nearest neighbour —

otherwise
(4.2)

17
“ alignm ent

In the alignment strategy, the agent will change its heading with a similar heading or the

average heading of its neighbours. The heading for alignment (Halignment) is defined as follows:

H align \H c u r r e n t H a lign] ^ mOX ~ a l i g n ~tUm

H current+ max — align—turn else if H current < H align (4.3)

H current—max — align—turn else

where H„usn is the average heading of neighbour(s) within neighbourhood area. H angn is defined

as the following equation:

1 n°
^ a l ig n ^ n e ig h b o u r (4*4)

a neighbour= 1

where n„ is the number of neighbours within the visibility range and Hneighbour is the heading of a

particular neighbour.

In the cohesion strategy, the agents will try to stay close to its neighbours. The heading for

cohesion (Hcohesion) is defined as:

H cohere f IH current ~ H cohen\ ~ Cohere - tU H l

H coh esion = H current + m a x - cohere-turn else if H current < H cohere (4.5)

H current—max — cohere—turn else

where Hcohere is the heading towards the centroid of agents in the neighbourhood and defined as:

■
H = H I— y x — T vcohere I l —t neighbour ’ Z —t J neighbour

\ n a ne ig h b o u r=1 n e ig h b o u r=1

(4.6)

where na denotes the number of agents within neighbourhood range; xneiShbour and yneighbour are the

neighbour's x-coordinate and y-coordinate respectively; and H(x, y) means set the heading

towards the coordinate of (x, y). As previously mentioned, we have set the maximum turning

angle for each strategy as in Table 4.2. If the computed turning angle (|H CUrrent - H COhere\ or |H c u rre n t

- H a iign\) is larger than the turning limit (max-cohere-tum, max-align-tum), then the maximum

turning angle will be used, such shown in the equations (4.3) and (4.5).

The movement models in this Chapter are governed by rules as represented in the flowchart in

104

Figure 4.3. From the flowchart, it is clear that in the movement models we have four different

phases or four behaviours which are represented by the rectangular boxes, i.e. wander, wander

inside field, flock and flock inside field. In the wander state, the heading of each agent (H wonder> is

determined by the following way:

Hwander ~ Hcurrent + random (movement span) (4.7)

where HCurrem is the current heading; and “random (<movement span)” generates a random

number which is between -movement span and +movement span. During the wander phase,

agents randomly change their heading either to the right or left depending on the positive or

negative sign of the generated movement span. If it is positive, it will turn to the right whilst

negative for the left.

For the flock behaviour, agents will first compute the distance of their nearest neighbour. The

distance is then compared with a variable called minimum separation. If the computed distance

is smaller or equal to the minimum separation, agents will use Hseparate (eq. 4.2) as the next

heading. The heading of the agent during flock phase (Hji0Ck) is decided in the following manner:

H separation if distancenearest neighb()ur < minimum separation
H flo c k (4.8)

H alignmentCohesion O t h e r w i s e

where Haugnmentcohesion is the average heading of Haiignmem and HCOhesion and given as follow:

H 4- Hr j alignment cohesion / a q\
alignmentCohesion ̂ ̂ '

For the primitive heading inside the field of APF {Hfieu) which represents as the attraction

towards and repulsion against the centre of the APF has been computed in the following way

H field

I T —
** a ttractor '

90 + if field > 10

(4.10)

- 10H attractor + 90 - — — otherwise
\ field j

where field is the strength of the APF (as in eq. 4.1), Hamaaor is the heading towards the centre of

APF or attractor. Whenever the agent is close to the attractor or the field of the patch that the

105

agent is at is greater than 10, the agent will repulse or turn away from the attractor. Beyond

that, the agent will be attracted towards the attractor. In the above equation (4.10), there are

two operators in the equations, these operators are dependent on the which side the attractor is

at relative to the agent in question. If the attractor is on the right side of the agent, the top

operator will be used; if the attractor is on the left, the bottom operator will be used otherwise.

For wander inside field and flock inside field behaviours, the heading of agents are determined

by averaging the headings of the respected strategies, with the primitive heading inside the field

(Hfieid). The headings for these behaviours are defined as the following equation:

H wander 4* H field .r H wander 4” H fieid ---- ■— if --------- ------ !— < movement span

wanderField TT i 7 •/* t j - Hwander~^~ H fwid (4-11)H curren, + movement span else if .H current < ------ ----------

Hcurrent ~ movement span otherwise

H flock 4* H fleid . H fjock 4" H fiei(i
— — o— — lf — — ^— — < movement span

H flockField
H cu rren t 4- movement span else if H current <

H flock 4~ H fldd (4.12)

Hcunem ~ movement span otherwise

where HwanderFieid is the agent's heading while in the wander inside field state; and Hjiockneid is the

heading for flock inside field.

As the simulation starts, each agent enters either the wander or wander inside field state

depending on the agent's current position as shown in the flowchart in Figure 4.3. If the agent's

position is not affected by the APF, it will fall into the wander phase, otherwise it will be the

wander inside field. While in the wander or wander inside field phase, at each simulation time

step agents will have a chance to change its heading randomly, but within the constraints of the

movement span limit. Each agent then examines the position where they were at; if that

particular position is affected by the APF, or having a field value of larger than one (field >1) ,

106

the agent is then attracted to the centre of the field.

The agent then looks around, within its vicinity or visibility range, for flockmates. If any mate

is found, the agent flocks with the flockmates, otherwise it continues roaming. While inside the

field , the aforementioned rules were used with added attraction to the centre of the field, so that

agents will not leave the field.

start

nono

found
field ?

no y e s vicinity ?vicinity ?

y e s

w an d er

flock

w an d er in sid e
field

flock in sid e
field

Figure 4.3: Flowchart o f movement models

Figure 4.4 and Figure 4.5 show some sample trajectories and turning angle plots for each model

after we apply each different movement span respectively. From Figure 4.4 and Figure 4.5 we

can clearly see the differences between the trajectories and the plot of turning angle against

time of each movement model. Figure 4.4(a) shows fish-like motion where the movement is

like fish motion with a “calm” turning angle. Fish-like motion is useful for scanning large areas

of the arena in a short time period. Figure 4.4(b) and (c) show the trajectories of the mosquito­

107

like and the firefly-like movement model, respectively. As we can see from the trajectories, the

firefly-like motion allows the agent to move around scanning in a small local area, and this can

be useful for searching for small objects in a small area, while the mosquito-like movement

appears to scan a wider area in the arena as well as its own neighborhood area.

4.4.2 Pre-simulation runs

In the pre-simulation runs, each movement model was assessed without the attractor which

releases the APF to see how the the agents would behave in the arena. We started the

simulations with 200 agents randomly distributed in the arena and allowed the simulations to

execute for 1,000 time steps.

Figure 4.6(a), (b) and (c) show the aggregation of fish-like, mosquito-like and firefly-like

swarms movement models, respectively. From Figure 4.6(a) for the fish-like movement model,

the aggregation pattern that emerges shows that the agents congregate in large numbers in

several groups. The firefly-like movement model (Figure 4.6(c)), on the other hand, shows that

agents formed several clusters with a smaller number of agents in each cluster.

In the mosquito-like movement model, Figure 4.6(b), the agents aggregate in several large and

small groups. This behaviour is similar to what Ikawa and Okabe (1997) suggested, that

mosquitoes do not remain at a single swarming site but repeatedly enter and leave the sites. For

this reason, in nature mosquitoes aggregate with large and small numbers in each group; hence,

the name mosquito-like movement model.

108

(c)
Figure 4.4: Agents motion trajectories fo r each movement model: (a) fish-like, (b) mosquito-like, (c)

firefly-like

109

Tu
rn
in
g

an
gl
e

[d
eg
re
e]

Tu
rn
in
g

an
gl
e

[d
eg
re
es
]

Tu
rn
in
g

an
gl
e

[d
eg
re
es
]

Fish-like movement model's turning angle
100

50

-50

- 1 0 0
180 20060 100 120 140 16020 40 800

Time [s]
(a)

Mosquito-like movement model's turning angle
100

50

-50

- 1 0 0
200140 160 18060 80 100 12020 400

Time [s]
(b)

100

50

-50

- 1 0 0

Firefly-like movement model's turning angle
— i-------- n----------r

j ___________ I___________ |___________ i___________ |___________ i___________ |___________ L

0 20 40 60 80 100 120 140 160 180 200
Time [s]
(c)

Figure 4.5: Agents motion trajectories fo r each movement model: (a) fish-like, (b) mosquito-like, (c)
firefly-like

110

(c)

Figure 4.6: Agents position a t t = 1000 time steps o f three movement models: (a) fish-like, (b) mosquito­
like, (c) firefly-like.

4.5 Evaluation
As stated previously, several different numbers of agents were used in these simulations; i.e.

100, 200, 300, 400, and 500 number of agents were used. All simulations used a torus-wrapped

square arena of size 201 by 201 patches, such as the one shown in Figure 4.1. Thirty runs are

made for each movement model and each different number of agents with random initial

placement of the agents in the arena. The fieldRadius for the APF has been set to 63 (page 102).

This is to give sufficient space for all 500 agents to reside in the APF's field considering the

111

minimum separation of 2 units of displacement (page 103) between agent.

The performance was evaluated at the end of the simulation and all runs were executed for

7,000 simulation time steps to provide enough time for all agents to aggregate towards the

attractor which releases APF. The data for analysis was recorded at every 200 time steps

during these simulations.

4.5.1 Evaluating the fish-like movement model

In evaluating each movement model, the number of agents within the circular area of the

attractor is first counted, or the circular area starting from the centre of the field, in our case,

from the patch at (0,0). As the number of agents in the simulations was fixed (varies from 100

to 500 with increment of 100 agents), and the working arena at 201 by 201 patches, increases

from zero, we can expect that the number of agents should reach a maximum number when the

radius of the circular area originating from the the centre of field reaches 141, as it would

completely cover the arena. The reason for counting the number of agents within the circular

area was to pre-determine how close these agents are to the attractor.

As mentioned previously, for the fish-like movement model, the movement span is set to 10-

degrees and visibility range to 10 patches. Figure 4.7 shows the agent's location from one of the

simulations with 300 agents at three different simulation time steps of 150, 330 and 500 time

steps, respectively. From the figure, it is clear that as early as 150 time steps, more than half the

number of agents have already converged towards the centre of the arena or towards the

attractor.

During the flock inside field phase, the flocking agents exhibited a smooth circling behaviour

concentrated on the origin of the APF; in this case, the centre of the arena or the attractor. The

overall direction of the flow appears to be random, sometimes clockwise and sometimes anti­

clockwise. The reason for this is because as soon as an agent enters the field it will search

around for flockmates. If any is found, it will change its direction to match the majority of its

flockmates in either a clockwise or anti-clockwise direction, resulting in the aforementioned

112

emergent behaviour inside the field.

. * * .

Vv ..

(a) (b)

V * > w -

(C)

Figure 4.7: Positions o f 300 agents in the arena a t different time steps fo r the fish-like movement model
from one o f the simulation runs; (a) at t=150, (b) at t=330, (c) a t t= 500 time steps.

Table 4.3 provides a summary of the number of agents within the 60-patch radius from the

centre of the APF; Figure 4.8(a) and (b) are the plots of the number of agents within the circular

area from the centre of the APF for the fish-like movement model, at simulation time steps of

200 and 600, respectively. The results show that, at t = 200 simulation time step, about 85% of

the agents that are participating in the simulations are already inside the field; in other words,

about 85% of the agents in the particular simulations have already converged towards the

113

attractor, with a standard deviation of less than 5%. The highest standard deviation is observed

in the simulation consisting of 100 agents; this can be explained by the fact that the lesser the

number of agents in the arena, the more time the agents need to scan through arena. At t = 600

simulation time step, almost all the agents in the arena are already aggregated near the attractor

with standard deviations of 1.5% for 100 agents, and less than 1% for 200 and more agents.

Table 4.3: Fish-like movement model

T im e t = 2 0 0 r = 6 0 0

T o ta l n u m b e r o f a g en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f agents
w ithin 60-patch radius
from the centre o f A PF

84.7 173.2 262.1 347.7 432.8 99.0 198.9 297.9 394.7 •484.5

% o f agents w ithin 60-
patch radius from centre
o f A PF

84.7 86.6 87.4 86.9 86.6 99.0 99.5 99.3 98.7 96.9

standard deviation 4.6 6.9 7.9 8.8 12.7 1.5 1.6 2.4 3.0 4.7

% o f standard deviation 4.6 3.4 2.6 2.2 2.5 1.5 0.8 0.8 0.7 0.9

Figure 4.9 shows the simulation plots with 100 agents; the number of agents within the circular

area from the attractor at 200, 400 and 600 simulation time step respectively. From the plots, it

can be clearly seen that the curves differ. At t = 200, the number of agents increases gradually

with noticeably large standard deviation; while at t - 400 and t - 600, the standard deviations

decrease, showing that the agents movement have stabilised.

114

Nu
mb
er

of
ag
en
ts

Nu
mb

er

of
ag

en
ts

fish-like movement model at t = 200

.100 agents
-200 agents
300 agents
400 agents
500 agents

500

400

300
...j.— i-— -I— -4 — i— ■ ■ ■

200

100

0 20 40 60 80 100
Radius

fish-like movement model at t = 600

100 agents
-200 agents
300 agents
400 agents
500 agents

500

400

300

200

100

0
0 20 40 60 10080

Radius
(b)

Figure 4.8: Number o f agents fo r the fish-like movement model within circular area from the
attractor; (a) at t = 200, (b) at t = 600 simulation time steps.

115

fish-like movement model for 100 agents
120

100

M4JCd)tn(0
80

60
0)

40
Ss

• 20 t=2 00
t=400
t=600

10040 8020 600
Radius

Figure 4.9: Number o f agents fo r the fish-like movement model within circular area from the centre
o f APF at different simulation time steps.

4.5.2 Evaluating the mosquito-like movement model

As mentioned previously, for the mosquito-like movement model, visibility range and

movement span have been set to 7 patches and 45-degrees, respectively. In this movement

model, without the attractor in the arena, agents appear to be form several clusters of varying

sizes as shown in Figure 4.6(b).

Figure 4.10 shows the snapshots of one of the simulation runs for the mosquito-like movement

model with 300 agents at three different time steps: 500, 1000 and 1500 time steps respectively.

At t = 500, we notice that more than two-third of the agents have already converged towards

the centre of arena, at t = 1000, the number of agents is increasing, and at t = 1500 almost all

the agents have found the APF releases by the attractor, resulting the agents aggregate near the

centre of the arena.

116

(c) (Cl)

Figure 4.10: Positions o f 300 agents in the arena at different time steps fo r the mosquito-like movement
model; (a) at t=0, (b) at t=500, (c) a tt= 1000 , (d) a t t=1500 time steps.

During the flock inside field phase, the agents appear to move in a circulating motion around

the origin of the APF, but not as smoothly as that exhibited by the fish-like movement model.

In this case the agents tend to stay a little closer to their flockmates, thus limiting the circulating

movement. The emerged motion is brought about by the need for the agents to move, but the

direction, whether clockwise or counterclockwise is indeterminate.

Table 4.4, Figure 4.11(a) and (b) are the selected data and plots of the results for the mosquito­

like movement model's simulations. Table 4.4 shows the number of agents within the 60-patch

radius from the attractor at the simulation time steps of 400 and 1200.

Table 4.4: Mosquito-like movement model

T im e t = 4 0 0 t = 120 0

T o ta l n u m b e r o f ag en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f agents
w ithin 60-patch radius
from the centre o f A PF

85.5 169.3 237.8 327.6 381.4 98.2 196.5 294.1 394.3 488.1

% o f agents w ithin 60-
patch radius from centre
o f A PF

85.5 84.7 79.3 81.9 76.3 98.2 98.2 98.0 98.6 97.6

standard deviation 4.8 7.1 7.2 12.0 17.4 1.6 3.7 2.1 3.1 3.9

% o f standard deviation 4.8 3.6 2.4 3.0 3.5 1.6 1.8 0.7 0.8 0.8

From the results, at t = 400 simulation time steps, about 80% of the agents are within 60 patch

radius from the attractor. For simulations with 100 agents, there are 85.5% of the agents

converged toward the attractor compare to only 76.5% with 500 agents; with standard deviation

of 4.8% and 3.5% respectively.

At t - 1200 simulation time steps on the other hand showed that almost all the agents in the

simulations are within 60 patch radius from the attractor, or inside the APF's field which was

released by the attractor. At this time the standard deviations are rather small with all of it

being less than 2%, and less than 1% for 300 and more agents.

Figure 4.12 is the plot for simulations with 300 agents; the number of agents within circular

area from the attractor at 400, 600 and 1200 simulation time step respectively. From the plot, it

can be clearly seen that the curve differs at each different time steps. As the time increases from

200 to 400, and 600, the number of agents within the APF's field increased accordingly; and the

standard deviations show to decrease.

118

Nu
mb
er

of
ag
en
ts

Nu
mb
er

of
ag

en
ts

mosquito-like movement model at t = 400

100.agents -
-200 agents -
300 agents —
400 agents -
500 agents -

500

400

300

200

100

20 10080
Radius

(a)

mosquito-like movement model at t = 1200

100 agents
-200 agents
300 agents
400 agents
500 agents

500

400

300

200

100

0 20 40 60 10080
Radius

(b)

Figure 4.11: Number o f agents fo r the mosquito-like movement model within circular area from the
attractor; (a) at t = 400, (b) at t = 1200 simulation time steps.

119

mosquito-like movement model f o r -300 agents

300
■I-—

■i ?----- 1 ____i —
 f250

w
4J -l 200
(0
4-1
0 150
<u
t
S 100

50 t=400
t=500

t=12 00
10020 40 60 800

Radius
Figure 4.12: Number o f agents fo r the mosquito-like movement model within circular area from the

centre o f APF a t several different simulation time steps.

4.5.3 Evaluating the firefly-like movement model

For the firefly-like movement, the visibility range and movement span are set to 5 patches and

90 degrees respectively. Figure 4.13 shows one of the simulation runs snapshots for the firefly­

like movement model at t = 1000, 2000 and 3000 time steps, respectively. At t = 1000, even

though some of the agents have already converged towards the attractor, we can clearly see

that a great number of agents are still in the wander or flock phase; in other words, agents are

roaming in the arena looking for flockmates or flocking outside the APF's field. At t = 2000, the

number of agents outside the field seems to decrease significantly compared to t = 1000. At t =

3000, almost all the agents are in the wander inside field phase or have already converged

towards the field.

120

(C) (d)
Figure 4.13: Positions o f 300 agents in the arena at different time steps fo r the firefly-like movement model

at: (a) t=0, (b) t=1000, (c) t=2000, (d) t=3000 simulation time steps.

During the flock inside field phase, unlike the previous two movement models, instead of

agents circulating the origin of the APF, the agents seem to only converge to the centre of the

APF's field and move around only within their small local area.

Table 4.5 shows the number of agents within 60-patch radius from the attractor, Figure 4.14(a)

and (b) are the plots of the number of agents within the circular area from the attractor for the

firefly-like movement model, at simulation time steps of 1000 and 3000, respectively. Results

show that at t = 1000 time steps, about 85% of the agents are already inside the APF's field

which has been set to 63 patch radius; in other words, about 85% of the agents have already

converged near the attractor, with standard deviations between 3.7% (for 400 agents) and 5.9%

(for 300 agents). At t = 3000 simulation time steps, nearly all the agents in the arena already

• aggregated near the attractor with standard deviations of less than 2%.

Table 4.5: Firefly-like movement model

T im e

oooII ll u> o o o

T o ta l n u m b e r o f ag en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f agents
w ithin 60-patch radius
from the centre o f APF

83.8 172.4 251.7 343.0 421.0 97.3 196.4 294.5 393.1 490.0

% o f agents w ithin 60-
patch radius from centre
o f APF

83.8 86.2 83.9 85.8 . 84.2 97.3 98.2 98.2 98.3 98.0

Standard deviation 5.8 8.1 17.8 14.9 25.3 1.6 2.0 2.8 2.9 5.7

% o f standard deviation 5.8 4.1 5.9 3.7 5.1 1.6 1.0 0.9 1.0 1.1

Figure 4.15 shows the plot for simulations with 300 agents; the number of agents within the

circular area from the attractor at three different time steps of 600, 2000 and 5000. From the

plot it can be clearly seen that at t = 600, more than two-third of agents are already converged

toward the attractor, or within 60 patch radius from the attractor. At t = 2000 and t = 5000, the

number of agents within the APF's field increases, and the standard deviations decreases

accordingly.

122

Nu
mb
er

of
ag
en
ts

Nu
mb
er

of
ag

en
ts

firefly-like movement model at t = 1000

500

400

300

2 0 0

100

’100 agents
200 agents — ;---
300 agents -----
400 agents
500 agents H I T 1 I j H -i

.] - i i - f - f - : i - f - t - ^

 1 i " " 1 "

I— 1— i — i — i — i — i — j — i — i — f — * — i

20 . 4 0 60
Radius

(a)

firefly-like movement model at t = 3000

80 100

500 ~100 agents
200 agents
300 agents
400 agents

'500 agents400

300

2 0 0

100

0 20 40 60 80 100
Radius

' (b) .
Figure 4.14: Number o f agents fo r the firefly-like movement model within circular area from the

attractor; (a) a t t — 1000, (b) at t = 3000 simulation time steps.

123

firefly-like movement model for 3 00 agents

300

w

t=600
t=2000
t=5000

10020 40 600 80
Radius

Figure 4.15: Number o f agents fo r the firefly-like movement model within circular area from the
centre o f APF at different simulation time steps.

4.5.4 Mean distance

In order to further understand the convergence of the swarm, the mean distance, D of each

agent towards the attractor at each time step during the simulations as in (4.13) has been

computed; where xa and y„ are the x-coordinate and y-coordinate of agent a , and n is the number

of agents in the simulation.

D _ „?i ^ (4.13)
n

The value of the mean distance D, combines two observations from the swarm. First, it will

give us an insight on how well spread the agents are around the attractor, and the second is how

tight the agents or how close the agents are to each other in the cluster.

Figure 4.16(a)-(c) are the plots of mean distance D , against time for the fish-like, mosquito-like

and firefly-like movement models, respectively. Table 4.6 and Table 4.7 shows the mean

distance D, for each movement model at t = 400. and t = 5000 simulation time steps. Results

show that prior to.convergence, the firefly-like movement model exhibit a considerably large

variance or standard deviation; as shown in Table 4.6 and the error bars in the Figure 4.16(c).

For all the movement models as in the plots of Figure 4.16, when the system reached

convergence, the mean distance D increases as the number of agents in the simulation

124

increased. For the firefly-like movement model as shown in the plots of Figure 4.16(c) and

Table 4.7 when the system converged, the mean distance D for 300 and 400 agents seems to

share the same value of 19.

For ease of comparison, Figure 4.17(a) and (b) show the plots of mean distance D, against time

for each movement model with total number of agents of 300 and 500, respectively. As can be

observed from the plots, for the fish-like and the mosquito-like movement models, prior to

convergence the standard deviations of over 30 runs reaches to about 5; while for firefly-like

movement model has a higher standard deviation of around 10 prior to convergence.

Figure 4.17 also shows the significant difference in convergence rates between the three

movement models. The graphs clearly show that the fish-like movement model converges

faster than the other two; while the firefly-like movement model is the slowest. This can be

explained by the fact that for the fish-like movement model, with a small movement span of 10

degrees, agents can cover a wide area in a shorter time; whilst in the firefly-like movement

model, with a wider movement span of 90 degrees, the agents are more likely to scan within

their local area.

From the Figure 4.17(a), it can be seen that the mean distance, D, when the system reached

convergence, for the firefly-like movement model is the smallest at around 18 units; while the

fish-like model in Figure 4.17(a), has the largest at around 27 units.

From Figure 4.7(c) for fish-like, Figure 4.10(c) for mosquito-like and Figure 4.13(c) for firefly­

like movement models, it can be seen that when the systems converged, they form loose,

medium and tight clusters, respectively. It is the innate tendency to form these kinds of clusters

that affects the mean distance D values in the plot of Figure 4.17.

125

me
an

di
st

an
ce

me
an

di
st

an
ce

me
an

di
st

an
ce

mean distance for fish-like movement model
90

100 agents
200 agents
300 agents
400 agents
500 agents

80

70

60

50

30 • ^ . --
20

10

500045003500 40001500 2000 2500 300010000 500
time

(a)

■ mean distance for mosquito-like movement model
90

100 agents
200 agents.
300 agents
400 agents
500 agents

80

70

60

50

30

20

10

500045002000 2500 3000 3500 40001500500 10000
time

(b)

mean distance for firefly-like movement model
90

100 agents
200 agents
300 agents
400 agents
500 agents

80

70

60

50

30

20

10

5000450040002 0 0 0 2500 3000 35001500500 10000
time

(c

Figure 4.16: Convergence o f mean distance, D for (a) fish-like, (b) mosquito-like, (c) firefly-like

126

me
an

di
st

an
ce

me
an

di
st

an
ce

mean distance for 300 agents

fish-like
mosquito-like
firefly-like

80

70

50

40

30 "i-i

20

500045001000 3500 40002000 2500 300015000 500
time

(a)

mean distance for 500 agents

fish-like —
mosquito-like —
firefly-like —

80

60

50

40
-5 -

30

20

10

5000450040002 0 0 0 2500 ' 3000 35Q01500500 10000
time

' (b)
Figure 4.17: Convergence o f mean distance, D f o r (a) 300, (b) 500 agents

127

Table 4.6: Mean distance, D at t = 400 simulation time steps

T o ta l a g e n ts F ish - lik e M o sq u ito - lik e F ire f ly - lik e

m ean distance standard
deviation

m ean distance standard
deviation

m ean distance standard
deviation

100 19.59 1.96 27.26 5.56 44.14 7.94

200 23.81 1.28 30.49 3.31 43.95 8.5

300 27.52 0.95 37.62 1.77 51.26 7.89

400 30.54 0.91 37.06 2.83 49.94 7.88

500 33.07 0.79 42.55 2.39 53.72 6.56

Table 4.7: Mean distance, D at t = 5000 simulation time steps

T o ta l a g e n ts F ish - lik e M o sq u ito - lik e F ire f ly - lik e

m ean distance standard
deviation

m ean distance standard
deviation

m ean distance standard
deviation

100 16.67 0.73 13.09 1.17 11.70 1.00

200 21.90 0.50 16.90 0.71 14.93 0.82

300 25.73 0.52 20.93 0.41 19.83 0.58

400 29.04 0.49 23.13 0.77 19.94 0.74

500 31.70 0.49 26.25 0.40 22,75 1.60

4.6 Summary
The aim of the research in this Chapter was to investigate how a swarm of flocking agents will

behave in the presence of an attractive force field in the arena. Many previous studies have

concentrated on a repulsive force field. Such works include that of Borenstein and Koren

(1989), Kim and Khosla (1992), Khosla and Volpe (1988), and Simmons (1996). These works

tend to focus on the same problem in robotics, that of obstacle avoidance. There are also many

studies on attractive forces such as that in (Tanner 2003, Hanada 2007, Olfati-Saber & Murray

2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002, Mastelone et al. 2007, Yang et

al. 2007, etc.). However the attractive forces are only available in the agent-agent cohesion-like

strategy. In contrast, the research in this Chapter has examined the agent-object attractive force.

Within this Chapter, Wilensky's (1999) flocking algorithm has been extended and several

individual behaviours have been selected in terms of single-agent movement models. An object

128

which releases an APF is then placed in the centre of the arena and the effect of the APF to the

flocking behaviours is studied at a macroscopic level. From the results, it has been shown that

by changing the limits of the angle through which an agent can turn, in our case case the

movement span, various swarming behaviours can be achieved. Several convergence

behaviours are also achieved and these behaviours affect the convergence rate in performing an

aggregation task.

The flocking model has many applications in the area of robotics and beyond. For example, a

group of flocking agents moving together can act as a sensor array, allowing them to locate a

desired source in a more effective way. In this Chapter, we have identified, developed and

analysed a model for collective movement or flocking in the existence of APF in the arena.

Flocking towards an attractor could be useful in information sharing or relay whilst on the

move. It is clear that the data from simulations conclude that:

• teams of collective moving agents with a smaller movement span are more effective in

finding the target (i.e. APF) than the larger movement span. With collectively moving

agents, whenever the APF (field > 1.0) is discovered by an agent, the heading of the

agent will then be affected by the APF in which it will turn its heading towards the

APF slightly. When the agent changes its heading, numerous other agent within its

neighbourhood are “pulled in” by local inter-agent influences so that it stays close to

the each other.

• collectively moving agents with a larger movement span tend to stay close to each other

regardless of the APF. Whenever an agent finds a neighbour, it will try to change its

heading towards the neighbour (obeying the cohesion strategy). The larger the

movement span is, the larger the max-cohere-tum becomes; resulting in the agents

having larger permissible turning angles and allowing the agent to turn towards its

neighbour quicker.

129

Chapter 5 L-Systems for Formation Tasks

One of the main problems in swarm robot systems is that of communication, which requires

high bandwidth due to the many-to-many communication between agents. This directly impacts

on the ability to form complex patterns. Many previous studies in the field of robot swarms

have concentrated on two simple tasks: aggregation and coordinated motion. However, to date,

these robots are not able to move and form patterns in a complex way.

The research in this Chapter proposes that by using evolutionary L-Systems, more complex

pattern formations in robot swarms can be achieved, provided each agent has the ability to

interpret short strings of L-Systems that form the basic DNA of the formation. L-Systems has

been studied extensively in the field of computer graphics and so this research presents the first

introduction of the use of L-Systems into the area of robot swarm formation. By using L-

systems the path between two locations can be represented which can later be used by mobile

agents to form an arrangement along the path. In addition, the technique can also be expanded

into a path planning algorithm.

5.1 Introduction
The beauty of natural patterns has, for decades, attracted the attention of many researchers.

With technological advances, particularly in computer graphics, computer simulations can play

an important role for researchers to understand these formations and structures of these

patterns. In the field of biological systems, Prusinkiewicz (Prusinkiewicz & Lindenmayer 1990)

is believed to be one of the first to model and visualise the growth of tree-like structures.

130

In nature, many ants species lay trails of pheromones in order to attract other ants while

foraging. Laying pheromones is a good strategy in finding the shortest path between the nest

and the food source (Bonabeau et al. 1999).

When designing large scale multi-agent systems, or swarm systems, an inherent question that

needs to be addressed is one of organisation. Agents in the system should be able to form and

organise themselves around complex patterns which are generally required to perform specific

tasks in a complex arena.

Many previous studies in the field of swarm robotics have concentrated around two tasks:

aggregation (Dorigo et a l 2004a) and coordinated motion (such as leader-follower)(Othman et

al. 2005). These robots are not able to move and organise in a complex way. We postulate that

this is due to the fact that there is insufficient complexity in the representation of the systems

themselves. However, previous representation methods such as graph schemes (Bayazit et al.

2002), defeat the challenge of swarm organisation by requiring high communication bandwidth..

One of the requirements of of mobile agents in a swarm is the need to form an arrangement

along a path or bridging formations that connect multiple locations. Here, the many path

planning algorithms can be used as well, where agents are needed to form an arrangement along

the specific path. In this case, the representation of the path is needed to be fed to the agents.

One of the methods in representing paths is by using strings in a Logo-style (Abelson &

deSessa 1982) format. However this research proposes that the same paths can also also be

represented by Lindenmayer Systems (Lindenmayer 1968) with shorter string length, which in

the end will save the communication bandwidth between the controller and mobile agents.

Many self-organised path formations algorithms are readily available for multi-agent systems

and these have been discussed in Chapter 2, such as Random Growing Tree (RGT) (Avrutin et

al. 2007), Cyclic Directional Pattern (CDP) (Nouyan et al. 2006) and Virtual Pheromones

(Payton et al. 2004). However, self-organisation is not always the best answer for every

problem. In some cases, an alternative method might be preferable. For example, consider that

131

in an arena a minimum number of agents that are needed to form an arrangement along the path

between two locations are present. The self-organised algorithms (RGT, CDP, Virtual

Pheromones) might take forever to form an arrangement along the path, and it might not be

able to complete the task within the permissible period at all. For that reason it is useful to

devise an alternative algorithm even if it is not fully automated or self-organise.

The technique developed in this Chapter proposes that for more complex pattern formations,

the level of agent complexity should be increased, albeit marginally. In doing so, one of the

basic themes of swarming, i.e. limited communication should be retained, is still adhered to. In

order to achieve this, the agent should have the capability to transfer information consisting of

short bitstrings to its immediate neighbours. It should also have the processing capability to

interpret these bitstrings that form the basic DNA of the formation. The transference of short

pieces of information is analogous to trophallaxis as a means of communication amongst

insects like bees and ants.

The. technique developed within this Chapter is to assist multi-agent systems to form an

arrangement along the path of two locations, as a communication bridge between two separated

points for example. In this instance, agents are needed to make a formation along the path and

the information is then transmitted from one end to another using the agents in-between as a

medium. Furthermore, as the technique developed within this Chapter uses L-Systems (which

uses Logo-style representations), it can also be used as a new approach to path planning

algorithms.

In this Chapter we shall fuse ideas developed in the area of computer graphics with that of

robotics systems. We introduce a general model for organisation based on Lindenmayer

Systems (Lindenmayer 1968), with the addition of an evolutionary algorithm for pattern

optimisation. Lindenmayer Systems, or L-Systems for short, provide a symbolic representation

of complex dynamic patterns, which were originally used to model biological growth.

Evolutionary adaptation of L-Systems alone is not a new idea but we shall show how we can

evolve specific formations that can be used to guide the multi-agent system into performing

132

complex formation-type tasks.

In the following section, the background surrounding the proposed technique is first described,

followed by the methodologies and implementations. Next the evaluation of the technique will

be described. The results of the simulations are then presented and discussed.

5.2 Background

5.2.1 L-Systems

In 1968, the theoretical biologist Aristid Lindenmayer (1968) proposed L-Systems; a

mathematical formalism as a foundation for an axiomatic theory of biological development. As

a biologist who studied the growth pattern of various types of multi-cellular microorganisms,

Lindenmayer at first, devised the L-Systems to provide a formal description of the development

of the microorganisms, and also to illustrate the neighbourhood relationship between cells. The

system was then extended to describe bigger and higher order plants with complex branching

structures. Later in the 1980's, L-Systems found several applications in computer graphics; the

two main areas of application are the generation of the fractals (Smith 1984) and the realistic

modelling of plants (Prusinkiewicz & Lindenmayer 1990).

L-Systems are considered as one of the “generative grammars” from the “formal grammar”

family or sometimes simply referred as a “grammar family”. A formal grammar in computer

science is a description of a formal language which has a set of strings. Formal grammar can be

divided into two main categories; analytic grammar and generative grammar. An analytic

grammar contains sets of rules of how a string can be analysed to determine whether or not it is

a member of a particular language, while on the other hand generative grammar contains sets of

rules that annotate how strings in a language can be generated.

133

(a)

«

Figure 5.1: Example o f patterns generated by L-Systems. (a) Outline o f Koch island or snowflake fractal
after five iterations o f rewriting, (b) Realistic modelling o f Fall trees (image copyright ofSvetlin (Alex)

Bostandjiev o f University o f California in Santa Barbara)

In the same manner of (Chomsky type) formal grammars, L-Systems generate strings of

symbols by repetitively substituting predecessors of given productions by their successors. The

basic idea of these grammars is to define complex objects or words by replacing parts of a

simple object through a set of rewriting rules or productions. These rewriting process can be

carried out recursively. However the main difference between (Chomsky type) formal

grammars and L-Systems is that, in Chomsky grammars, productions are applied sequentially,

134

i.e. one at a time. Meanwhile in the case of L-Systems, productions are applied concurrently to

all symbols in a given string. This difference reflects the biological motivation of L-Systems

where productions are intended to capture cell divisions in multi-cellular organisms in which

many divisions may occur at the same time.

L-Systems can be classified in many different ways, such as:

• Context sensitive (IL-Systems) and context free (OL-Systems).

O Rules in context free L-System depends only on a single symbol.

O Rules in context sensitive L-Systems depends on a single symbol and its

neighbours.

• Deterministic (DL-Systems) and non-deterministic L-Systems.

O The L-System is consider as deterministic if there is exactly one production for one

symbol, otherwise it is non-deterministic.

• Propagative (PL-Systems) and non-propagative L-Systems.

O There are at least two symbols needed for the successor of a L-System to be

considered as a propagative L-System, if there is only one symbol for the

successor, then it will be considered as non-propagative L-System.

• Parametric L-Systems.

. O Parametric L-System operates on parametric words, which are strings of modules

consisting of their symbolic names with associated parameters.

These types of L-Systems can be combined. For example a DOL-System (where 'O' stands for

“0-sided” or “0 context”) is a deterministic context free L-System; a PIL-System is a context

sensitive with propagation; and so forth. Above all, DOL-Systems are the simplest type of the

L-Systems.

135

The processes in an L-System can simply be divided into two parts: a generative and an

interpretative process. The main idea behind the generative process is the string rewriting

process.

The generative process

Consider a DOL-System, which can be defined as a triplet G = (S, P, a), where S is a general

symbol (a finite non-empty set of symbols); a is the initial start word which usually referred to

as the axiom or seed and it is an element of S; P is a set of production rules of the form of A -+

x (predecessors -* successors), where A E S is a symbol in the alphabet and xeS * is a

(possibly empty) string or word of symbols in the alphabet. Every symbol appears exactly once

at the left of a production rule and this makes the system deterministic. As an example, let us

consider the following DOL-System:

G = (S, P, a)

S = { F, R, Lj

a : F

p i : F -*■ FRF

P2 : R -*• FL

P31 L -*■ -L

The DOL-System is represented by F, R and L with the axiom represented by the letter F. For

each letter we specify a rewriting rule or production rule. The rule F FRF means that the

predecessor letter F is to be replaced by the successor string FRF, the rule R -* FL means that'

the predecessor letter R is to be replaced by the successor string FL, and the L -*• L means that

the letter L will remain as it is. The rewriting process starts from a string called the axiom, in

our case it consist of a single letter F. In the first generative process, the axiom F is replaced by

FRF using the production F -> FRF. In the second step, the word FRF consist of two letters,

both of which are simultaneously replaced in the next generative process. Thus F is replaced by

FRF, R is replaced by FL, and the string FRFFLFRF results. In a similar way, the simultaneous

replacement of all the letters will generate the following sequence of words:

136

a : F

? \a):F R F

P2(a) : FRFFLFRF

P3(a) : FRFFLFRFFRFLFRFFLFRF

P4(a) : FRFFLFRFFRFLFRFFLFRFFRFFLFRFLFRFFLFRFFRFLFRFFLFRF

The interpretive process

In the second part of the L-System, the symbols from one or multiple iterations of string are

interpreted and visualised. There are several ways to visualise the L-Systems, one of them is by

using the Turtle graphics method.

The Turtle graphic system was created by Seymour Papert in 1960's (Abelson and deSessa

1982). The graphic is the trail left by a moving invisible “turtle”, with a state defined by its

position and direction. The state of the turtle may change as it moves a step forward, or as it

turns at a given angle in the same position. A state of the turtle is defined as a triplet as follows:

where x and y represent Cartesian coordinates of the turtle's position, and the angle (p is the

heading or the direction that the turtle is facing. Given the step size d and angle increment 0,

now let us reconsider the previous example of the DOL-System which consists of the three

following symbols:

S = { F , R, L).

Given the step size d and angle increment 0, now the turtle can respond to the following

interpretive rules:

• F The turtle moves one step forward in the current direction it is facing leaving a

visible trail on the ground by length of d. The state of the turtle changes to (x', y', (p)\

where x' = x + d cos (p and y' = y + d sin (p.

• R The turtle will turn or rotate to the right by angle 0 . The state of the turtle

changes to (x, y, where (p' - <p - 0 .

137

• L The turtle turns to the left by angle of 0 . The next state of the turtle changes to

(x, y, (p1)',; where (pf = (p + 0.

There are many other rules which can complicate the turtle's graphics and make it possible to

generate more complicated pattern. Amongst the most widely used are::

• Upper case letters other than F, R and L have no graphic representation and the state of

the turtle remains unchanged. These letters known as non-graphical symbols.

• Lower case of letter/ , makes the turtle move a step forward by displacement d without

drawing a visible trail. By using this rule, it makes possible to construct fractal patterns

with unconnected sections. The lower case of letter/is usually known as the “moving”

symbol.

• An open parenthesis [pushes the current state of the turtle onto a LIFO stack; while a

close parenthesis] pops the top of stack and restores the turtle state. This extension

makes branching possible.

• Braces { } indicate that the area that are enclosed in the braces must be filled.

The production rules in DOL-Systems are context free; in other words, the production rules are

applicable regardless of the context in which the predecessor appears. In context-sensitive L-

Systems, the production rules are dependent on the predecessor's context. For example in 2L-

Systems or two-sided L-Systems, the productions will be in the form of cl < a > cr -*■ z, where

the strict predecessor letter a can produce string z if and only if the letter a is preceded by

letters (or string) cL and followed by cr. Thus, letters (or string) cL and cr are the left and right

context of the predecessor letter a. In lL-Systems, the productions have one-sided context only;

the productions can either be in the form of cL < a -+ z or a > cr -*■ z. OL-Systems, lL-Systems

and 2L-Systems belong to a wider class of IL-Systems, sometimes called (&,/)-systems. In a

(k,l)-system, the left and right context is a word of length k and I letters respectively.

Suppose that we have a new sample of a context-sensitive L-System which has the following

axiom, a and productions, P:

a : abbaacc

pi : b < a -+ b

P2 : a ■ -+ c

P3 \b < b > a ^ c

P4: b > a a

p s: a < c -* a

p6: c -> b

The first few strings generated by the L-System are given below:

a : abbaacc

P ^ a): cbcbcab

P2(a) : bbbbbcb

P3(a) : bbbbbbb

P4(a) : bbbbbbb

P5(aJ: bbbbbbb

A context-sensitive L-System (CSL-System) requires that if the neighbours of a symbol match

a particular context, then, that symbol should be replaced by the successor symbol. If two

rewriting rules apply for a certain symbol, i.e one with one-sided context and another with two-

sided context, then the one with two-sided context is used. For instance, consider the third

symbol from the left in the axiom from the example above. The symbol b, is matched with

production rules of p3 and p4, in this case the production p3 was used. In general, the rewriting

rule that is more specific will overrule the one that is less specific. However, it is possible to

encounter conflicts between several rules that can be applied to the same symbol.

5.2.2 Evolutionary algorithms

Genetic algorithms (GA) were first introduced in 1975 by John Holland (Davis 1991). GAs are

a class o f stochastic search and optimisation techniques based on the evolutionary ideas of

natural selection and genetics. The basic ideas of the GA are designed to simulate natural

systems processes that are necessary for evolution especially those that follow Charles Darwin's

principles of “survival of the fittest”. Like in nature, if there is competition amongst individuals

139

for limited resources, it will result in the fittest individuals dominating over the weaker ones.

The Genetic Algorithm

1. Initialise a population of individuals (chromosomes).

2. Evaluate each individual in the population based on the fitness.

3. Create new individuals by mating current individuals; apply mutation and
recombination as the parent individuals mate.

4. Delete members of the population to make room for the new individuals.

5. Evaluate the new individuals and insert them in to the population's pool.

6. If the maximum number of generations is reached, stop and return the best
individual; if not, go to step 3.

Figure 5.2: Top-level description o f a genetic algorithm

Figure 5.2 shows the anatomy of a general genetic algorithms. The first step of the evolutionary

process usually starts from a randomly generated initial population of possible solutions.

Members in this population (called chromosomes or genomes) of abstract representations are

use to contribute towards the next generation. In each generation (step 2 in Figure 5.2), the

fitness for each individual is calculated and evaluated in some way by a fitness function. After

the evaluation process has taken place, (step 3 in Figure 5.2) the selection of multiple parent

chromosomes for crossover and mutation is performed by randomly selecting from the

population, but it is usually influenced by their fitness scores. Some of the old individuals in the

population are then replaced with the newly constructed individuals (step 4 and 5 in Figure

5.2). A GA maintains a set of candidate solutions from which it performs a search by iteratively

replacing members with poor fitness in the population, with individuals generated by applying

variation to fitter members of the population. The GA commonly terminates when either a

maximum number of generations has been reached, or a satisfactory fitness level has been

produced. If the GA has terminated due to a maximum number of generations, a satisfactory

solution may or may not have been reached.

140

5.2.2.1 Parent selection

The purpose of parent selection in GAs is to increase the reproductive chances of fitter

individuals in the hopes that they will produce even fitter offsprings. Many methods for

selection exists however in this section we will only give a brief description of Holland's

original parent selection method, i.e. roulette wheel selection method as described in Figure

5.3. Each individual is assigned with a slice of a circular “roulette wheel”, which is

proportional to the individual's fitness. The wheel is then spun N times, where N is the total

number of individuals in the population. On each spin, the individual which is under the wheel's

marker is selected to be in the pool of parents for the next generation. This method can be

implemented as in Figure 5.4.

Roulette Wheel Algorithm

1. Calculate the total fitness of all population members; call the result as total
fitness.

2. Generate n, a random number between 0 and total fitness.

3. Select the individual whose fitness, added to the fitnesses of the preceding
population individuals is greater than or equal to n.

Figure 5.3: The roulette wheel selection algorithm.

Roulette wheel selection example

Individual 1 2 3 4 . 5 6 7

Fitness score 8 2 17 7 2 12 11
Running total 8 10 27 34 36 48 59

Random number n 28 2 13 41 31 57 ■ 23

Individual chosen 4 1 3 6 4 7 3

Figure 5.4: The roulette wheel selection example. The top table shows the fitness o f seven individuals
and the running total o f fitness. The bottom table shows the individual that would be chosen by the

roulette wheel method using these fitness values fo r each o f six randomly generated numbers.

141

In Figure 5.4, the population consists of seven individuals with a total fitness of 59. The first

row in the Figure 5.4 depicts the index of each individual, the second shows the individual's

fitness, and the third contains the running total of fitness. Figure 5.4 also shows seven numbers

randomly generated between 1 and 59, together with the index of individual that would be

selected by roulette wheel parent selection for each of these numbers. In these cases, the

selected individual is the first one at which the running total is greater than or equal to the

random number n. The effect of the roulette wheel selection scheme is to return a set of

randomly chosen parents. Although the selection scheme seems to be random, each individual's

chance to be selected is proportional to its fitness. After a number of generations, the selection

scheme will sideline the least fit individuals and contribute to the spread of the fitter

individuals.

5.2.2.2 Crossover

After the selection of parents have taken place, the GA will use the parents to create new

individuals or offsprings. Although there are many techniques in creating new offsprings

described in the literature, only the traditional methods are described, i.e. crossover and

mutation operations.

In crossover operations as in Figure 5.5, two individuals are selected as parents. One-point or

single-point crossover is the simplest form of crossover operation. The crossover point is

chosen randomly. After the crossover point is selected, the parts of two parents after the

crossover position are exchanged to form two new offsprings. Crossover operation in GA is

extremely important. Many GA practitioners believe that if we remove the crossover operation

in GA, the result is no longer a GA (Mitchell 1996).

5.2.2.3 Mutation

Mutation is a GA operator that changes one or more gene value in an individual from its parent,

which will result in entirely new gene values being added to the individual. With these new

genes, the GA may be able to obtain a better solution. Mutation, as with the crossover operation

is an important operation in GA which helps the GA to prevent the population from stagnating

142

at any local optima. Mutation usually occurs according to a mutation probability, which is

always set to a fairly low value. If the mutation probability is set too high, the search will turn

into a primitive random search. Figure 5.6 shows an example of the mutation operation. In this

example the genes of the parent has been mutated to form a new individual.

1 1 1 1 1 1 0 0 0 0 0 Parentl

0 0 0 0 0 0 1 1 1 1 1 Parent2

1 1 1 1 : 0 0 1 1 1 1 1 Offspringl

0 0 o o | 1 1 0 0 0 0 0 Offspring2

Crossover point

Figure 5.5: Example o f one-point crossover. The offsprings are made by cutting the parents at the point
denoted by the vertical dotted line and exchanging parental genetic m aterial after the cut.

1 1 1 1 1 1 0 0 0 0 0 Parentl

1 0 1 1 1 1 0 0 : T 0 0 Offspringl

Figure 5.6: Example o f mutation operation. Offspring 1 is made by mutating the Parent 1 at 2nd and 9,h
bits from left.

5.3 Methodologies and Implementations
As mentioned previously, the proposed system for organised formation of mobile agents

consists of:

• an algorithm for pattern formation,

• an algorithm for optimising pattern formation and

• an encoding to represent each agent's position in the arena.

143

In this thesis, a set of pattern construction commands have been used. These pattern

construction commands are used as the input character string for the L-System so that the

strings produced by the evolved L-System are a sequence of commands for producing complex

patterns.

Once a set of pattern construction commands are generated by the system, it will be passed on

to an encoding agent to represent each agent's position (in the arena) for evaluation. After

building the pattern, it is evaluated using a multi-part fitness function for how well it fits in the

arena and these scores are passed back to the GA engine.

5.3.1 Pattern construction

The pattern construction commands comprises the generative and interpretive module of the L-

System as shown in Figure 5.7 and Figure 5.8 respectively. In the generative module, it will

take as input an axiom (or seed) a, a set of productions P and a set o f symbols S as inputs. In .

this work, five symbols namely F, R, L, [and] as elements of S were used to construct the L-

System strings, as shown in Figure 5.7 and Table 5.1. F represents a forward movement of the

turtle in the current direction by 5 units of displacement. R and L will turn the turtle to the right

and to the left respectively, by 25-degrees. Symbols [and] are the push and pop operators and

are used to store and retrieve the state of the current location and direction in the LIFO stack. In

the generative module as shown in Figure 5.7, P incorporates productions pi and p2. The

production pi (pi: F -> FRF) means that in the rewriting process, F will be replaced by FRF,

whilst in the production p2 (P2: R -* FL), R will be replaced by FL. In the rewriting process, the

iteration zero represents the axiom a. In the first iteration of the rewriting process, the axiom F

has been replaced by FRF using production pi. In the second iteration of rewriting process, the

product of the first iteration of rewriting process (FRF) becomes the subject of the rewriting.

The F and R symbols are replaced with the productions of pi and p2 simultaneously, resulting in

the string FRFFLFRF after the second iteration of the rewriting process is completed.

144

Table 5.1: Design symbols and descriptions

Command Description

[1 Push / pop orientation to stack

F Move forward 5 unit displacement

R Rotate heading clockwise for 25°

L Rotate heading counter-clockwise for 25°

Input:

Axiom, a = F

Elements, S: { F, R, L, f,] }

Productions, P: {pi, p2}

pi: F -> FRF

p2: R -*■ FL

Rewriting process:

0) F

1) FRF

2) FRFFLFRF

3) FRFFLFRFFRFLFRFFLFRF

Figure 5.7: Generative module o f pattern construction command.

The interpretive module as shown in Figure 5.8 then constructs patterns by generating a

sequence of construction commands that specify how and where the next mobile agent's

position would be in the arena relative to itself. This sequence of commands is based on the

instruction language for a Logo-style turtle (Abelson and deSessa 1982). A stack is also

maintained through the use of 'push' and 'pop' operators. A visualisation of the L-System is also

shown in the figure. The module takes a string and a set of interpretation rules as inputs. In this

example (Figure 5.8), the string is taken from the previous rewriting process after the 3rd

iteration of the rewriting process, and the interpretation rules consist of F, R and L. Here, F

means move forward; R means turn to the right for 90°; and L means turn to the left for 90°. For

demonstration purposes, in the figure, only the first 15 letters from the string have been

145

visualised.

Input:

• string: FRFFLFRFFRFLFRFFLFRF

interpretation rules:

F: go forward

R: turn right 90°

L: turn Left 90°

Visual interpretation:

(rXf̂
©

©
©©■* { r)

0
(f)

(. . .)

Figure 5.8: Interpretive module o f pattern construction command.

In Figure 5.9, the intermediary steps of building a pattern are shown; where red dots indicate

the location of agents, and blue lines indicate the parent-child connection of the agents. Figure

5.9(a) is the axiom pattern which has been built from the string FFRFRFLFLLFF, while Figure

5.9(b) is the rule string pattern from the string RFLF. Figure 5.9(c) is the pattern formed after

the first iteration of rewriting the aforementioned axiom and rule using production rule of

F^RFLF.

146

J

10 20 30 40

(b)

70

60

50

40

30

20

10

°0 10 20 30 40 50 60 70

(c)

Figure 5.9: Visualisation of L-System: (a) the axiom; (b) the rule string, (c) formed pattern after the first iteration
of rewriting process

5.3.2 Representation methodologies

Within this research, two systems; DOL-Systems and CSL-Systems have been designed to

represent the patterns formed by the robot swarms. For both systems, the same predecessor is

used, i.e. the symbol F. For DOL-Systems there is one production rule pi, whilst for CSL-

Systems four production rules are used (pi, p2, p3 and p4). The arrangement of the production

rules used in this work is given below: .

p i : predecessor -► succi

p2 : cl < predecessor -> succ2

147

p3 : predecessor > cR -*■ sued

p4 : c l < predecessor > cR -»• succ4

where pi, p2, p3 and p4 are the production rules P, succi, succ2, succ3, and succ4 are the

successors, while cL and cR are the context for the left and the right side of the predecessor

respectively. As mentioned in the previous section, during the rewriting process in the

generative module, the predecessor will be replaced with a successor accordingly. Let us

consider p2, the predecessor in this case will be replaced with succ2 if the left context (cL) is

met. In p3, the predecessor will be replaced with succ3 if the right context (cR) of the predecessor

is met. Finally in p4, the predecessor will be replaced with succ4 if and only if the right context

(cR) and the left context (cl) of the predecessor are met. However, based on the priority, the

more specific rewriting rule or production rule will overrule. For instance, if the conditions for

p4 are met, the generative module will use p4 and will ignore pi, p2 and p3.

5.3.3 Evolutionary algorithms

5.3.3.1 Encoding

An individual L-System is optimised by using an evolutionary algorithm. The initial population

of L-Systems is created by randomly creating axioms, successors and contexts. The successor

will then replace all the symbols F in an axiom string during the rewriting process. The

evolutionary process then proceeds by selecting a collection of highly fit individuals as parents

and then using them to create a new population by mutation and crossover operations.

An initial L-System (axiom, successors and contexts) is created randomly using a blank

template with an arbitrary number of symbols (consisting of F, L, R, [and]) to be included in

the string. For DOL-Systems, the axiom string is between 8 and 12 symbols in length, and the

successor string is between 10 and 12 symbols in length. For CSL-Systems, the length of the

axiom and successors strings are between 8 and 12 symbols, and between 1 and 3 symbols for

the both contexts (c l and cR). The reason for limiting it to 12 symbols in length for axioms and

successors is that, if the length of an axiom is too long it might defeat the purpose of the

rewriting process of L-Systems (where the rewriting process is the core business), if after the

148

first iteration of the rewriting process, the formed pattern has achieved the goal. Another reason

is the intention to “grow” the formation. If the string becomes too long then there is insufficient

room to grow the formation. For the contexts (cL and cR) where we limit the length for up to 3

symbols is simply that, the longer the context is the harder the condition (for the context) will

be met. During any time step of the simulation, the number of symbols F in an axiom string and

rule string have been predefined to have a minimum of two and one respectively. This way all

the L-Systems will generate patterns after they have been interpreted or visualised.

In using evolutionary algorithms, first the L-Systems are encoded to be a chromosome-like

structure. Chromosomes for DOL-Systems are made up of two genes or two parts. The first

gene is the axiom (a) and the second is the successor {succi). While for CSL-Systems, each

chromosome are made up from seven elements or genes; an axiom (a), two contexts (cl and cR)

and four successors (succi, succ2, SUCC3 and succ4). The .chromosome-like structure for DOL-

System, G and CSL-System, H are as shown below:

• G : [a succ]],

• H : [a cl cR succi SUCC2 SUCC3 succ4].

After the L-Systems are created, the rewriting process will be executed for up to 10 iterations or

until the number of symbol F reaches 100 or more, whichever comes first. From these

solutions, the fitness will be calculated and evaluated once, and the number of rewriting

iterations of the fittest individual will be recorded along with other fitness scores. If the fitness

of an L-System scores above a preset threshold, the L-System will be passed onto the GA pool

which consists of 50 individuals; otherwise it will be discarded, and a new L-System will be

created to replace it. By doing this, the initial population of L-Systems will have a variety of

solutions with individual fitness values above the preset threshold, thus maintaining a healthy

population.

5.3.3.2 Selection method

In this research, as there are several fitness functions which lead to several fitness scores,

Goldberg's (1989) Pareto ranking method to rank the L-Systems population with added

149

modification has been used. Goldberg (1989) suggested non-dominated sorting to'rank the

population according to Pareto optimality. In this scheme, the currently non-dominated

chromosomes or individuals in the population are given rank one and removed from the

population. Then the population is ranked again, the newly non-dominated individuals in the

reduced population are assigned rank two and removed from the population. The process

continues until all the members of the original population are ranked.

In this case, different priorities have been set for each goal. For instance, in attempting to meet

the goals, g = {gi, g2, g3 }, where the priority of the former is higher than the latter, e.g.

priority(gi) > priority(g2) and priority(g2) > priority(g3). In the first step of ranking process, the

procedure suggested by Goldberg is followed by using the non-dominated sorting method for

all goals g.

In the second step of the sorting process, firstly all the individuals that have been given rank

one in the previous step are gathered, and then the group using the same process of non-

dominated sorting for goals gi and g2 are ranked, until all the selected individuals have been

ranked. Then the second ranked individuals from the previous step are gathered and these are

sorted and ranked again for gi and g2 and so forth. In the third step, after all the individuals have

been ranked into gi and g2, the population will then be sorted and ranked again into gi following

the second step procedure.

The next procedure is to decide which individuals in the population will be used to create

offsprings for the next generation, and how many offsprings will be created. The purpose of

selection is to emphasise the fitter individuals in the population in the hope that their offspring

will in turn have an even higher fitness. Mitchell (1996) stated that, selection has to be balanced

with variation from mutation and crossover: a selection process that is too strong will result in a

suboptimal but highly fit individual that will take over the population; whilst too weak and the

selection will result in slow evolution.

150

Tournament Selection with Elitism methods was used in this work. In the Tournament Selection

method, two individuals are first chosen randomly from the population. Then a random number

m, between 0.0 and 1.0 is generated. If the number m is smaller than n (m < n) (where n is a

parameter, in our case n = 0.8), than the fitter individual will be selected as a parent, otherwise

the less fit one is selected. The two individuals will then be returned to the population and can

be re-selected again (Goldberg & Deb 1991).

Elitism (De Jong 1975) is a method to force the GA to retain some number of best individuals

at each current generation and pass them on to the next generation. The best individuals could

be lost if they are not selected to reproduce or if they are destroyed by mutation and / or

crossover operations. In this work, we retained 5 individuals as elitists and passed them to the

next generation without going through GA operations, such as mutation and crossover.

5.3.3*3 Genetic operators

Mutation (Figure 5.10) and blending (Figure 5.11) are used to create new individuals. In

blending, parents will be selected randomly. Blending then takes place either in axiom strings

or rule strings between two parents and will produce two new individuals.

A x io m , a S u c c e s s o r , succ
F L R F [R F F R F] L R F L R F L R F L F [R L F L R F] F P a r e n t

F L R F\R F R [R F F R F] L R F L R F L R F L F [R L F L R F 1 F O f f s p r in g l

F L R F [R F F R F] \ j L R F L R F L F [R L F L R F] F O f f s p r in g 2

F L R F [R F F R F] L R F L R FW T'"RllF f R L F L R F 1 F O f f s p r in g 3

Figure 5.10: Mutation operation. From the Parent, Offspringl commits insertions o f new 3 symbols;
Offspring2 deletes 3 symbols in the axiom string; Offspring3 replaces 4 symbols in the successor string.

In mutation, after selecting the parent, the axiom or any successor will be mutated in a

predefined way. Changes in mutation that can occur include:

• inserting one or more symbols in random locations of the string, or

• deleting one or more symbols in the selected string, or

151

• replacing one or more symbols with random symbols.

For instance, let us consider the DOL-System as in Figure 5.10; if the L-System LI (axiom

string LiOt, successor string lisucci) is selected to be mutated,

Hoc: FLRF [RFFRFJ LRF

lis u c a : LRF LRFL F [RLFLRF] F

Some of possible mutations are,

• insert new symbol in the string, offspringl

t.iOC : FLRF RFR [RFRFRFRF1 LRF

li s u c c i : LRF LRFL F [RLFLRF] F

• delete random symbols, offspring2

u a:FLRF[RFFRF]___

l is u c c i : LRF LRFL F [RLFLRF] F

• replace symbols, offspring3

LiOt: FLRF [RFFRF] LRF

Llsu cc : LRF FF RLF [RLFLRF] F

For an example in blending, as shown in Figure 5.11 let us consider DOL-Systems; two parents,

L2 (l 2(x, l 2su cc i) and L3 (^ a , L■ssucci) were selected randomly and be used to create two

offsprings, LC2 (lc2(x, lc2 su cc i) and LC3 (lc3 0 c, ucisucci). First, LC2 will make a copy of L2, and

it will then insert a small part of L3 into it. This is done by replacing several symbols either

from axiom string or successor string from L3, to either axiom string or successor string of L2

to become LC2.

152

A x io m , a
F L R F [R F F L L] L R F

S u c c e s s o r , succ
L R F L L R L R F R L F L R F P a r e n t l

W F L L R R F i i F / L R F L R F j l \ft R L F L L R S F L L R F U P a r e n t 2

F L R f F F T T L R F L R F L L R L R F k L F L k F O f f s p r in g 2

F L'R F [R F F L L] L R F O f f s p r in g 1

F L R F [R F F L L] L R F L R F L L R L R f \l R F l\ O f f s p r in g 3

Figure 5.11: Some o f possible blending operations. At first, all the offsprings makes a copy o f Parentl.
Offspringl replaces the successor string taken from Parent2; Offspring2 replaces some o f its symbols in

the axiom string and replaces with some symbols taken from Parent2's axiom string; Offspring3 takes
and replaces some symbols in its successor string with some symbols taken from Parent2's successor

string.

For example if the parent L2 with the following axiom l 2(x and successor Lisuccns given by:

and the parent L3 with the following axiom l 3ot and successor usucci, are selected, i.e.

then the possible blending results of LC2 (Lc2(x, uzzsuca) are as follow:

• replace entire in successor string lc2.smcc/with l 3-smcc/:

Lc20C: FLRF [RFFLL] LRF

LC2 SUCCi : RRLF LLRRF LLRFLF.

• replace several symbols in axiom lc2(x taken from uot:

lc2(x : FLRF FFLL LRF

lc2succi : LRFL LRLRF RLFLRF

• replace several symbols in successor string lc2succi taken from u su cc i:

lc2(X : FLRF [RFFLL] LRF

uxisucci : LRFL LRLRF LRFL.

Another operation of evolutionary algorithms used in this work is the crossover operation. We

perform crossover operations in two different ways as follow:

L2(x : FLRF [RFFLL] LRF

izsucci: LRFL LRLRF RLFLRF

L3a : FFLL RRFRF [LRFLRF]

L3succi : RRLF LLRRF LLRFLF

153

• one is by swapping the gene(s) or element(s) in the L-Systems chromosomes as

shown in Figure 5.12,

• another is by swapping symbol(s) from the specific gene(s) o f two different parents

as shown in Figure 5.13.

For example in Figure 5.12, let us consider two parents from CSL-Systems, namely L4 and L5

with the following chromosomes:

L4 : [L4(X l4C l iaC r ia s u c c i l4s u c c 2 1A S U C C 3 l 4S U C C 4]

L5 : [L5 OC L5 C l L5Cr lsSUCCi 15S U C C 2 U5S U C C 3 L5S U C C 4]

are selected to create two children o f LC4 and LC5. Then the possible crossover results are as

follow:

• one gene swapping,

LC4 : [mOCi la C l L4Cr j .e S U C C j \aSUCC2 IA SU C C3 IA SU C C 4]

LC5 : [L5OC1 l5C l l 5C r ^a S U C C i l 5S U C C 2 l 5S U C C 3 \j5s u c c 4]

• two genes swapping,

LC4 : [uOCi l s C l l4c r i a s u c c i \ a s u c c 2 ia S U C C i \ a s u c c A

LC5 : [L50tl L & u L5CR L5s u c c } L5S U C C 2 Ts S U C C i L5S U C C 4]

uO(i uCi. iaCr usucci 1ASUCC2 1ASUCC3 iaSUCCa Parentl

taCXi isCi isCr issucci issucci issucc.< issucca I Parent2

1JX1 uCi. iaC r [LfSUCCi. iaSuccz iasucc3 iaSUCCa Offspringl

uOh uCt. isCr 8 usucci ! 1SSUCC2 issucc* uSIWCa i Offspring2

laOIi r Ci ; iaCr iasucci usucci f issucci , uSucca Offspring3

lsCKi ; uCi. I LfCR n s u c c 1 15SUCC2 \ iaSUCCs I uSUCCa Offspring4

Figure 5.12: Crossover operation by swapping element(s) or gene(s). Offspringl and OjfspirngZ depict
one gene swapping, and Ojfspring3 and Offsping4 show 2 genes swapping take place.

154

The second way of the crossover operation is by swapping symbols from two genes of two

different parents. For instance in Figure 5.13, if we have two parents of CSL-Systems, namely

L6 and L7, and chosen succi genes from both parents as follow:

L6SUCC2 : LRFL RFLF [RLFLRJ FRRF

L1succ2 : FLRF [RFFLL] LRFR LFLRF

to perform a crossover operation. Some of possible solutions are as follow:

• one-point crossover,

UZ6SUCC2 : LRFL RFLF LRFR LFLRF

U21SUCC2 : FLRF [RFFLL1 [RLFLR1 FRRF

• two-point crossover,

LC6$MCC2 • LRFL [RFFLL1 LRFR FRRF

LC7S U C C 2 : FLRF RFLF [RLFLRJ LFLRF.

L R F L R F L F [R L F L R] F R R F P a r e n t l

P a r e n t2

l r f l r f l f W r T r l T T r f i O f f s p r in g l

F L R F [R F F L L f [R L F L R] F R R F O f f s p r in g 2

L R F L [R F F L L] L R F R ' F R R F O f f s p r in g 3

W ' L R F iR F L F [R L F L R] L F L R F\ O f f s p r in g 4

Figure 5.13: Crossover operation by swapping symbols. Offspirngl and Offspirng2 show example o f
one-point crossover; Ojfspring3 and Offsprig4 show the example o f two-point crossover.

5.3.4 Evolving the patterns - pre-runs

With all the ingredients described above, pattern formation of robot swarms can be modelled by

using the L-System evolution process. In order to evolve patterns, the first thing that needs to

be done is to define a task and the fitness functions. The simplest pattern formation for multi­

agent systems is the exploration task. In this case, agents are expected to fan out along some

criteria. Figure 5.14 shows an example of an L-System that has been evolved for exploration in

155

an open arena, i.e. an arena without any obstacles. The arena size in this example has been set

to 100 by 100 unit square. Red dots indicate the location of agents, and blue lines indicate the

parent-child connection of the agents. In this example, the population size of the GA is 50. Two

production schemes are used. In the first reproduction module, elite parents are selected for

crossover at rate of 33%. In the second reproduction module, random parents are selected with

a crossover rate of 60%.

At first glance it may seem that the pattern is somewhat random. However in reality, the

evolved string, i.e. the chromosome that represents the pattern, is regular and assumes the shape

shown after iterating through three times, with a preset axiom.

100

. \ . fA

t L A

1 / +..

V..<

100

Figure 5.14: Example evolution o f an L-System that maximises spread fo r exploration purposes. Each red
point indicates the location o f an agent, and the blue lines indicate parent-child relationship.

156

5 .4 E v a l u a t i o n / S i m u la t io n

A series of simulations have been carried out to evaluate our pattern formation algorithm

approach under different experimental conditions, i.e. the arrangement of the obstacles, and to

compare them. In particular, we considered the working arena to be in multiple levels of

difficulty, obtained by the various standard obstacle(s) arrangements in the arena. In the

following sub-sections, the evaluation procedure is specified. The simulation methodology is

briefly described and finally the results will be presented and discussed.

5.4.1 Task and procedure

In this research, the topic of interest is how the pattern formations of robotic swarm can be

represented by (evolved) L-Systems. With all the basic ingredients in hand, the tasks and the

working arena need to be defined. Simulations have been done using a proprietary software

from MathWorks Inc. called MATLAB. Three different working arenas, as shown in Figure

5.15, have been defined; namely open, cross and scatter, with a bounded arena of size 200 by

200 units. As their names imply,

• the “open” arena refers to an arena without obstacles. This is often used to test the

minimum requirement to connect two points, and to analyse the complexity in path

planning research.

• “cross” refers to an arena where there is an obstacle with a cross shape present in the

centre arena - the cross serves as a major obstacle between the two points that are to be

connected.

• “scatter” refers to an arena where there are obstacles randomly scattered around the

arena - this essentially serves to test algorithms in a maze like environment.

157

F "■ I I J
1 H
m i x L i

Figure 5.15: Working arenas where the black colour box(es) indicate(s) the obstacle(s): (a) open, (b)
cross, (c) scatter. The blue square on the bottom left depicts the start location and the red square on the

top left o f the arena shows the goal location.

5.4.1.1 Evolutionary process

To evolve patterns, several fitness functions have been defined. The objective is to evolve a

formation that connects two locations, i.e. start and goal as shown in Figure 5.15, while

avoiding obstacles (if they exist) in the arena. The start point is at the bottom left comer with

the coordinate of (10,10), and the goal location is defined as a square box of 10 unit sides with

the centre coordinate of (180, 180).

The fitness of each individual is based on three elements, as follows,

fitness = { nOut, coverage, d2goal } (6.1)

The first element is the number of agents that reside in the restricted areas such as inside the

area of an obstacle or outside of the the arena (nOut). For this element, we seek the number of

agents to be minimal or zero. The second element is the agent's coverage in the arena

(coverage). The agent's coverage is defined by a measure of rectangular area required to

enclose or bound all the agents, and we seek to maximise its value. The final element is based

on the nearest distance of any agent in the formation to the goal location (d2goal), For this

element, the closer the individual gets to the goal, the fitter the individual is.

For an L-System to be selected as one of the individuals for the initial population, the L-System

has to have a certain degree of healthiness or score above a preset threshold. In this work, the

initial threshold is set to five, i.e. a maximum of five agents are allowed in the prohibited area

such as inside the obstacle or outside the arena perimeter. If the individual scores six in this

instance, the individual will be discarded and the new individual will be recreated. This value

of five will be optimised downwards to zero as the simulation executes.

5.4.1.2 Piece-wise solutions

As mentioned previously, the evolutionary algorithm has been configured to run with an initial

population of 50 individuals with a preset fitness threshold and with a maximum of 100

generations. The evolutionary process will end if either:

• it reaches the maximum number of generation, i.e. 100, or

• the fittest individual's fitness scores have been stagnant for some generations.

In this Chapter, the abovementioned stagnancy number has been set to 20. This means that if

the fitness scores of the fittest individual stalls for the last 20 generations, the evolutionary

process will cease.

If any of the above conditions have been met, but the pattern formed has not reached the goal,

the evolutionary engine will then select one of the agents (points) according to some criteria as

a next start point. This essentially is used to create a non-continuous solution made up of

multiple segments which offers more flexibility. The criteria for an agent (or point) to be

selected as a next start position are:

• the agent should be the nearest agent to the goal, and

159

• the agent is not too close to the obstacles.

In this work, the parameter that measures closeness to an obstacle is defined as 5 units

displacement.

After a next start point has been selected, the evolutionary engine will start evolving the next

piece or segment of the L-System until one of the agents reaches the goal, or until it has

reached the maximum number of generations.

The aforementioned method has been tested with DOL-Systems and CSL-Systems. The method

can be summarised as follow:

1. randomly generate 50 L-Systems,

2. evaluate and evolve the L-Sy stems for up to 100 generations,

3. if the formation has not reach the goal, then do the piece-wise solutions.

In the next subsection, the results from the simulations are presented, and the output is

discussed.

5.4.2 Results

The following results are collated by simulating the task of generating a formation connecting

two locations, namely start and goal as previously described. All simulations uses a square

arena of size 200 by 200 units with three different obstacles arrangement in the arena. Fifty one

runs are made for each model (DOL-Systems and CSL-Systems) and each arena. The fittest

individuals' data for analysis were recorded at every generation during the simulation.

Figure 5.16, Figure 5.17 and Table 5.2 provides an overview of the overall performance of the

proposed model. Figure 5.16 and Figure 5.17 show the graphs from 51 runs in the each one of

the arena arrangements for DOL-Systems and CSL-Systems respectively. From the graphs and

data (Table 5.2) obtained, the overall performance of DOL-Systems is better, in the sense that

the number of non-continuos segments of the L-Systems are lower compared to the one

exhibited by the CSL-Systems. For DOL-Systems, more than 50% of the simulation runs,

regardless of the arena arrangement, evolves into 2 or less segments for the formed pattern. For

160

the CSL-Systems however, even in the open arena, around 50% of the simulation runs ended up

with having one segment for the L-Systems.

Table 5.3 and Table 5.4 are the tabulated data for the average of the total number of agents that

formed the pattern and its standard deviations for DOL-Systems and CSL-Systems respectively

with regard to the number of segments of the L-Systems. The results clearly show that as the

number of segments increases, the number of agents increases accordingly. The difference

between the DOL-Systems and the CSL-Systems is small, when considering the total number of

agents in the formations.

Figure 5.18, Figure 5.19 and Figure 5.20 show the the plot of the number of agents, coverage

and the nearest distance to the goal respectively against generations during the evolutionary

process from one of the DOL-Systems samples in the scatter arena. The plots are based on the

fittest individual of every generation. In this instance, the DOL-System successfully formed the

pattern by connecting two locations with only one segment, at the point that the simulation

ended at 100th generation. From the plot in Figure 5.19, it clearly shows that the coverage

(rectangular area required to enclosed or bound all the agents) increases as the number of

generations increases where the goal is to maximise the area coverage in order to “grow” the

formation. Figure 5.20 is the plot of the nearest distance to the goal. As the number of

generation increases, the nearest distance of one of the agent to the goal decreases. From the

plot we can see that the formation reaches the goal at around the 85th generation of the

evolutionary process.

161

Si
m

ul
at

io
n

ru
ns

Si

m
ul

at
io

n
ru

ns

Deterministic 0 L-Systems
45

40

35

30

25

20

15

10

5 .

0
1 2 3 4 5 6 7 8

Segments

Figure 5.16: Distribution o f number o f successful simulations fo r DOL-Systems in each arena
arrangement

Contex Sensitive L-Systems
30

25

20

15

10

5

0
1 2 . 3 4 5 6 7 8

Segments
Figure 5.17: Distribution o f number o f simulations fo r CSL-Systems in each arena arrangement

i i i i i i ; i r
■ open

h □ cross _
H □ scatter

i I 1 i wm

i i i i r
| open
O cross
H scatter

I

162

Table 5.2: Distribution o f number o f simulations fo r each model o f L-Systems in each arena
arrangement.

O p e n a r e n a C r o s s a r e n a S c a t t e r a r e n a

S e g m e n ts DOL C S L DOL C S L DOL C S L

1 42 25 11 1 8 -

2 ' 8 26 25 15 31 4

3 1 - 9 19 12 17

4 - - ' 5 3 - 15

5 - 1 13 - 12

6 - - - . - - 2

7 - - - - - 1

8 - - - - - -

Table 5.3: Average total number o f agents fo r Deterministic OL-Systems after 51 simulation runs,
with regard number o f segments.

D O L O p e n a r e n a C r o s s a r e n a S c a t t e r a r e n a

S e g m e n ts A v e r a g e S t. d e v . A v e r a g e S t. d e v . A v e r a g e S t. d e v .

1 58.1 7 .4 4 64 .55 2.5 5 6 0

2 5 9 .2 5 .55 7 5 .0 4 16.41 64 .9 11.76

3 7 0 0 108 .22 28 .35 7 2 .5 8 14.34

4 - - 118.4 14.15 - -

5 - - 141 0 - -

6 - - - - -

7 - - - - -

8 - - - - -

Table 5.4: Average total number o f agents fo r Context-sensitive L-Systems after 51 simulation runs
with regard number o f segments

CSL Open arena Cross arena Scatter arena
Segments Average St. dev. Average St. dev. Average St. dev.

1 60.04 5.63 60 0 - -
2 69.56 10.24 78.87 11.72 65.5 8.58
3 - - 90.89 .20.11 85.53 12.35
4 - - 119.33 25.15 111.93 22.8
5 - - 127.08 18.5 141 26.8
6 - - - -• 148 46.67
7 - - - - - 160 0
8 - - - - - -

163

D O L -s y s te m in s c a t t e r a r e n a
100

O)

100
G enerations

Figure 5.18: Number o f agents against generations during the evolutionary process from
one o f the DOL-System samples in the scatter arena

DO L-system in scatter arena
600

500

400
Cl)O)
CO
g> 300
oO

200

100

40 50 70 80 90 10030 600 10 20
G enerations

Figure 5.19: Coverage against generations during the evolutionary process from one o f the
DOL-System samples in the scatter arena

DO L-system in scatter arena
250

200

150
a)o
& 100to
b

10040 50 60 70 80 9010 300 20
G enerations

Figure 5.20: Nearest distance to goal against generations during the evolutionary process
from one o f the DOL-System samples in the scatter arena

164

The plots in Figure 5.21 are snapshots taken during the evolutionary process o f a formed

pattern by the DOL-Systems from one of the simulation runs in the open arena. In this instance,

Figure 5.21(a)-(e) show the development of the first piece (or segment) of the DOL-System, and

Figure 5.21(f) shows the final formed pattern. In Figure 5.21(a)-(c), it is clearly visible that the

L-Systems evolved into “Y” shaped pattern. This is due to the the axioms (a) for the L-Systems

that consist of the bracket symbols, [and], which contribute to the branching structure in the

formation. The axioms a, successors, succ and the number of iterations for the formations are

summarised as follow:

• Figure 5.21(a): RF[LLLF]FL, RFRFFLLF, 2

• Figure 5.21(b): F[LLLF]FL, RFRFFLLF, 2

• Figure 5.21(c): LF[LLF]FL, RFRFFFLLF, 2

• Figure 5.21(d): LF[LLJFL, RFRFFFLLF, 2

• Figure 5.21(e): RFLF, FFRFFFL, 2

• Figure 5.21(f): FLLF, LLLLFFL, 2

In Figure 5.21(d), even though the axiom (LF[LL]FL) for the formation contains the bracket

symbols for the branching structure, the evolved formation does not have a visible branch. The

reason for this is that in order to have a visible branching structure in the formation, at least one

F symbol needs to reside inside the bracket symbols, as such the axioms for Figure 5.21(a)-(c).

Figure 5.21(e) shows the final formation for the first segment at generation 48.

Figure 5.21(f) shows the final formation that reached the goal; in this formation, the second

segment of the L-System was grown from the nearest agent to the goal from the first segment

of formation. The total number of agents that are required to construct the formation between

the start and goal locations in this instance is 58, consisting of 50 agents in the first segment

and 8 agents in the second.

165

200
180

160

140

120
100

2000 50 100 150

200
180

160

140

120
100
80

60

40

20
0 200100 1500 50

(a) first segment, generation 2 (b) f irs t segment, generation 4

200
180

160

140

120
100

80

40

20

20050 1500 100

200
180

160

140

120
100
80

60

40

20
0 200100 1500 50

(c) f irs t segment, generation 6 (d) f irs t segment, generation 12

200
180

160

140

120
100

2000 50 100 150

200
180

160

140

120
100
80

60

40

20
0 20050 100 1500

(e) first segment, generation 48 (f) second segment, generation 28

Figure 5.21: Evolving pattern formation o f DOL-Systems in the open arena. The fittest L-System
for first segment in the: (a) 2nd, (b) 4th,(c) 6th, (d) 12th, (e) 48th generation; second segment in

the: (f) 28th generation, o f the evolutionary process.

166

Figure 5.22 is the collection of snapshots showing the evolution of the DOL-Systems in the

cross arena from one of the simulation results. Figure 5.22(a)-(d) show the growth of the

pattern for the first segment of the pattern in the 5th, 10th, 35th and 70th generation, and Figure

5.22(e)-(f) for the second segment in the 10th and 30th generation respectively. The axioms a,

successors succ, the number of iteration and the number of agents that made the formations are

summarised as follow:

• Figure 5.22(a): RFLFRF, FRFL, 2, 12

• Figure 5.22(b): FFFRFFRR, FRFL, 2, 20

• Figure 5.22(c): LFFFRFRF, FRFFL, 2, . 45

• Figure 5.22(d): LFFFFRRFFRFF, FRFL, 3, 64

• Figure 5.22(e): R[RFFLLJ, RRFRF, 2, 8

• Figure 5.22(f): R[LFL]RF, RRFRF, 2, 8

Figure 5.22(d) shows the final formation for the first segment of the L-System. In this instance

however, the formation has not reached the target yet, and the second segment needs to be

grown. Figure 5.22(e)-(f) show the growth of the second segment. Even though the number of

agents and the successor strings in these two are the same, the the evolved formations are made

up from different axioms. The total number of agents in this formation is 72, consisting of 64

agents in the first segment and 8 in the second.

167

200
180
160
140
120
100

20050 100 1500

200
180
160
140
120
100

60

20

2000 50 100 150

(a) first segment, generation 5 (b) first segment, generation 10

200
180
160
140
120
100

20050 100 1500

200
180
160
140
120
100

20

2000 50 100 150

(c) first segment, generation 35 (d) f irs t segment, generation 70

200
180
160
140
120
100

50 2000 100 150

200
180
160
140
120
100

20

2000 50 100 150

(e) second segment, generation 10 (f) second segment, generation 30

Figure 5.22: Evolving pattern formation o f DOL-Systems in the cross arena. The fittest L-System
for the first segment at the: (a) 5th, (b) 10th,(c) 30th, (d) 70th generation; second segment at the:

(e) 5th, (f) 30thgeneration, o f evolutionary process.

Figure 5.23 shows the growth of DOL-Systems in the scatter arena from one of the simulation

results. The axioms a, successors succ, the number of iteration and the number of agents that

made the formations are summarised as follows:

• Figure 5.23(a): FLFFFFFF, FFRR, 2, 12

• Figure 5.23(b): RFLFFRFFFF, RFLF, 3, 24

• Figure 5.23(c): FFFFRF, RFLF, 3, 40

• Figure 5.23(d): RR[FLFL], RFR[LL[LF]R]FL, 2, 18

• Figure 5.23(e): F[LLFFL], FRFLLLFRRR, 2, 27

• Figure 5.23(f): FL[F]L, FRFLLLFRRFR, 2, 32

Figure 5.23(a)-(c) show the evolution of the first segment at 5th, 25th and 60th generation, whilst

Figure 5.23(d)-(f) show the evolution of the second segment at 5th, 10th and 40th generation

respectively. Figure 5.23(d) clearly shows the interesting branching formation which is due to

the stacks (and represented by the square bracket symbols) in both the axiom and the successor.

Figure 5.23(f) shows the final formation connecting start and goal location with 2 segments of

the L-Systems, in this instance the total number of agents that is able to produce the formation

is 72, consisting of 40 agents for the first segment and 32 for the second.

Figure 5.24, Figure 5.25 and Figure 5.26 show the evolution of the CSL-Systems in the open,

cross and scatter arena respectively. Figure 5.24(a)-(d) show the evolution of the first segment

of the CSL-Systems at 2nd, 6th, 8th and 12th generation respectively. From the snapshots, it is

obvious in the growth of the CSL-Systems that as the number of generations increases the

nearer the closest agent to the goal location becomes. Figure 5.24(e)-(f) depict the evolution of

the second segment of the formation with the number of agents at the 2nd generation is 17, and

decrease to 12 at generation 32. Figure 5.24(f) shows the final formation which connects the

start and goal location that is made up of 2 segments of CSL-Systems; with the number o f

agents is 50 for the first segment and 12 for the second segment, making the total of 72 number

of agents in the formation.

169

200 L J
180
160

□140
120

100

60

0 100 150 20050

(a) first segment, generation 5

200

180
160
140
120

100

60

1500 100 20050

(c) f irs t segment, generation 60

200

180
160
140
120

100

0 100 15050 200

(e) second segment, generation 10

200
180
160
140
120

100

0 150 20050 100

(b) first segment, generation 25

200

180
160
140
120

100

2000 50 100 150

(d) second segment, generation 5

200

180
160
140
120

100

2000 15050 100

(f) second segment, generation 40

Figure 5.23: Evolving pattern formation of DOL-Systems in the scatter arena. The fittest L-System for first
segment in the: (a) 10th, (b) 25th, (c) 60th generation; second segment in the: (d) 5th, (e) 10th, (f) 35th

generation, of evolutionary process.

200
180
160
140
120
100

80
60
40
20

00 50 100 150 200

200
180
160

120

100

40

0 50 100 150 200

(a) f irs t segment, generation 2 (b) f irs t segment, generation 6

200

180
160
140
120

100

2000 50 100 150

200

180
160
140
120

100
80
60
40
20

0
1000 50 150 200

(c) f irs t segment, generation 8 (d) f irs t segment, generation 12

180
160
140
120

100

0 • 150 20050 100

200

180
160
140
120

100

80
60
40
20

00 100 150 20050

(e) second segment, generation 2 (f) second segment, generation 32

Figure 5.24: Evolving pattern formation of CSL-Systems in the open arena. The fittest L-System for first
segment in the: (a) 2nd, (b) 6th, (c) 8th, (d) 12th generation; second segment in the: (e) 2nd, (f) 32nd

generation, of the evolutionary process.

171

200
180
160
140
120

100

40
20

20050 100 1500

200

160
140
120

100

0 50 100 200150

(a) first segment, generation 25 (b) second segment, generation 5

200

180
160
140
120

100

40

2000 50 100 150

200

180
160
140
120

100

200100 1500 50

(c) second segment, generation 15 (d) second segment, generation 50

200

180

140
120

100

40

2000 50 100 150

200

180
160
140
120

100

20050 100 1500

(e) third segment, generation 5 (f) third segment, generation 30

Figure 5.25: Evolving pattern formation o f CSL-Systems in the cross arena. The fittest L-System
fo r the first segment at the: (a) 25th generation; second segment at the: (b)5th generation, (c) 15th

generation, (d) 50th generation; third segment: (e) 5th generation, (f) 30thgeneration, o f
evolutionary process.

172

200
180
160
140
120

100

60
40

20050 1500 100

200
180

□140
120

100

40

100 150 2000 50

(a) first segment, generation 5 (b) f irs t segment, generation 25

200

180
160
140
120

.100

80

c £

100 20050 1500

200

180
160
140
120

100

200100 150

(c) second segment, generation 10 (d) second segment, generation 30

200

180
160
140
120

100

d 9
40

200500 100 150

200

180
160

□140
120

100

60

20

100 2000 50 150

(e) third segment, generation 15 (f) third segment, generation 45

Figure 5.26: Evolving pattern formation of CSL-Systems in the scatter arena. The fittest L-System for first
segment in the: (a) 5th, (b) 10th generation; second segment in: (c) 10th, (d) 30th generation; third

segment in the; (e) 15 th, (f) 45th generation, of evolutionary process.

173

Figure 5.25(a) depicts the formation of the first segment of the CSL-System at generation 25

with 20 agents. Figure 5.25(b)-(d) show the growth for the second segments; where in Figure

5.25(b) and (c), the formations seem to make a “U-turn” towards the start location. Figure

5.25(d) shows the last generation for the second segment with 44 agents required to construct

the formation. Figure 5.25(e)-(f) show the evolution of the third segment at generations 5 and

30 respectively. Figure 5.25(f) shows the final formation, in this instance the formation is made

up of three segments of CSL-Systems with total number of agents of 88, from which 20 agents

are required for the first segment, 44 agents for the second segment and the remainder are for

the third segment.

Figure 5.26(a)-(b) show the formation of the first segment at generation of 5 and 25, which

requires 30 and 40 agents to form respectively. Figure 5.26(c)-(d) depict the formation growth

for the second segment. Figure 5.26(c) shows that the evolved formation is moves further away

from the goal location, whilst in Figure 5.26(d) the formed pattern seems to grow towards the

goal location. Figure 5.26(e)-(f) show the evolution of the third segment at 15th and 45th

generation. Figure 5.26(f) is the final formation that connects the start and goal location. The

total number of agents in the formation is 81, from which 40 is required for the first segment,

21 for the second segment and 20 for the third segment.

Table 5.5 is the tabulated data for the average, standard deviation, median and minimum

number of agents for DOL-Systems and CSL-Systems in each arena respectively. From the

data, for overall performance which is based on the average total number of agents, the DOL-

Systems seem to outperform the CSL-Systems in every arena arrangement. The open arena

ends up with the smallest number of agents, followed by the scatter arena and the cross arena.

The minimum number of agents for each arena arrangement between DOL- and CSL-Systems

does not differ significantly. For the open arena, the minimum number of agents recorded for

DOL- and CSL-Systems are 50 and 52; for the scatter arena they are 53 and 56; and for the

cross arena both require 60 agents respectively.

174

5.4.3 Comparison with RGT and A* search algorithms

Comparative studies of the formed formation between the two locations of evolutionary L-

Systems with RGT (Random Growing Tree) and A* search algorithms have also been carried

out in this Chapter. For the theoretical background on RGT and A* search algorithms, readers

are advised to refer to Chapter 2, where background descriptions and technical aspects of the

algorithms are mentioned.

A note that the A* algorithm is a path finding algorithm unlike the evolutionary L-System

algorithm proposed in this chapter which is essentially a pattern formation algorithm. However

the final arrangement of both algorithms can be compared.

The comparison that has been done is based on the total number of agents that are needed to

form an arrangement connecting start and goal locations. The simulations for both RGT and

A* search have been been carried out using the NetLogo (Wilensky 1999) simulation tool.

For the A* search models, 4-directional search and 8 directional search have been used. The

search begins at the start location, i.e. near the bottom left comer in the Figure 5.15 (page 158),

and ends when any of the A* node reaches the goal location, i.e. the red box near the top right

comer in the Figure 5.15.

For RGT models, agents with nonholonomic motion and having a 7 unit perspective range have

been used. The 7 unit perspective range seems to be reasonable as the separations between the

centre of agents is set to be 5. In the simulations, to avoid over crowding in the arena, the

maximum number of agents was set to 250. This figure is acceptable due to the size of the

arena being 200 by 200. At the beginning of the simulation, agents are placed randomly in the

arena. Agents are then allowed to wander in the arena in search of the two locations (start and

goal) and will finally arrange into a formation connecting the two locations by obeying the

rules of the RGT algorithm.

The following results are obtained using the same arena arrangements (open, cross and scatter)

175

as previously used. As before, 51 runs are made for each algorithm (4-directional A* search, 8-

directional A* search and RGT) against each arena arrangement. In the A* search algorithms,

the total number of agents that are needed to form the path along the route computed by the A*

algorithm is defined by the route length divided by 5. This is due to the fact that in the

evolutionarily L-Systems method, the symbol F represents 5 units of displacement. Figure 5.27

and Figure 5.28 show the snapshots from one of the simulation run for RGT, A* 4-directional

and A* 8-directional methodologies.

Table 5.6 shows the tabulated data for average total number of agents that are needed to form

the arrangement between the start and goal locations, its standard deviations, medians and

minimums for RGT, 4-directional A* search and 8-directional A* search respectively. From the

data (Table 5.6), for overall performance which is based on the average total number of agents,

8-directional A* search outperform others in every arena arrangement. The number of agents in

the open arena is the smallest (for each method) compared to any other arena.

Table 5.5: Average, median and minimum total number o f agents fo r Deterministic 0L- and
Context-sensitive L-Systems after 51 simulation runs in each arena arrangement.

Open arena Scatter arena Cross arena
DOL CSL DOL CSL DOL CSL

Average 58.51 64.71 65.31 108.69 84.18 97.65
Std. Deviation 7.25 9.45 12.44 33.17 26.22 26.39
Median 56 63 60 109 72 90
Minimum 50 52 53 56 60 60

Table 5.6: Average, median and minimum total number o f agents fo r Random Growing Tree
(RGT), A * search with 4 directions (A* (4)) and A * search with 8 directions (A* (8)) methods over
51 simulation runs in each arena arrangement.

Open arena Scatter arena Cross arena
RGT A* (4) A* (8) RGT A* (4) A* (8) RGT A* (4) A* (8)

Average 69.45 68 48 80.1 72 53 79.41 88 61
Std. Deviation 8.6 0 0 17.09 0 0 10.45 0 0
Median 69 68 48 75 72 53 75 88 61
Minimum 54 68 48 59 72 53 66 88 61

From Table 5.5 and Table 5.6, shows the overall performances over 51 simulation runs based

on the average number of agents. It shows that in the open arena the evolutionary L-Systems

176

methods performs better than RGT and 4-directional A* search; in the scatter arena, the DOL-

Systems performs better than RGT and 4-directional A* search, whilst the CSL-Systems

performs the worst. Finally in the cross arena both DOL- and CSL-Systems perform worse than

other methods.

Focus on the last row of Table 5.5 and Table 5.6, i.e. the smallest number of agents or the best

result recorded over 51 simulation runs that is needed to form a connection between the start

and goal locations. The smallest number of agents is considered to be best as it contributes to

the shortest formation between the two locations. From the results, it is shown that the

evolutionary L-Systems methods are able to perform better than RGT and 4-directional A*

search techniques. With regards to the 8-directional A* search technique, there is little

difference between it and the best results from the evolutionary L-Systems. For the open arena,

the DOL- and CSL-System needs 50 and 52 agents, while 8-directional A* search needs 48. For

the scatter arena, the DOL-Systems and 8-directional A* are on a par with 53 agents, whilst the

CSL-Systems needs 56. Finally for the cross arena, DOL- and CSL-Systems perform better with

60 agents than the 8-directional A* search which needs 61 agents to connect between the start

and goal locations.

Figure 5.29(a)-(c) show the snapshots of the best result for the DOL- and Figure 5.29(d)-(f) for

CSL-Systems in the open, cross and scatter arena respectively. In this Chapter, what we define

as the best result is the bridging formation between start and goal location with the least

number of agents required. For the best formation, it does not necessarily comes from one-piece

or one-segment of the L-System. Figure 5.29(b),(c) and (f) show that, the formed arrangements

are made up of two segments of the L-Systems.

177

(a)61 agents
ft if m

(b)71 agents

« ■ *

m »** **

j 1 i i i ,
■I H I«

* ■ ■ *

H ^ i
ft

J T L
- 1 ■-

f c)<59 agents
Figure 5.27: Example o f form ed pattern using RGT method. Small coloured squares represent agents

position, (a) in open arena with total o f 61 agents, (b) in cross arena with 71 agents, (c) in scatter arena
with 69 agents.

178

(a) A* 4-direction (b) A* 4-direction

(d) A * 8-direction(c) A* 4-direction

(f) A * 8-direction

tZJ

(e) A* 8-direction

Figure 5.28: Formed pattern using (a)-(c) A* 4-direction and (d)-(e) 8-direction methods, in the
open (a)(d), scatter (b)(e), and cross (c)(f) arena respectively.

179

200
180
160
140
120

80
60
40
20

150 2000 50 100

200
180
160
140
120

80
60

100 150 2000 50

(a) DOL-open arena (b) DOL-cross arena

200

180
160
140
120

100

80

100 150 2000 50

200

180
160
140
120

100

60
40

2001500 50 100

(b) DOL- scatter arena (cl) CSL- open arena

200

180
160.
140
120

100

40
20

200150100

200

180
160
140
120

100

1000 50 150 200

(e) CSL- cross arena (f) CSL- scatter arena

Figure 5.29: Evolved L-Systems robot swarms formation. Each figure show the “bes t” generated
results for: DOL-Systems in (a) open, (b) cross, (c) scatter arena; and fo r CSL-Systems in (d) open,

(e) cross, (f) scatter arena, respectively.

180

5.5 Summary Remarks
Due to the limited amount of communication bandwidth in swarm systems, there is a need to

design algorithms that require minimum transfer of information. This Chapter has introduced a

new and original method for organised formation along a path in large scale multi-agent

systems which can also be used as a path planning algorithm. The method however, requires

the pre-evolution of patterns that are represented by L-Systems. By developing this L-Systems

method, complex pattern formation information can be stored as short bitstrings that can be

communicated to neighbouring agents, thus fulfilling the requirement for minimum

communication. Through the use of L-Systems, complex formations need not be explicitly

encoded. Instead, these formations can be evolved by specifying objectives in the form of

fitness functions that are fed into a evolutionary engine.

From the tabulated data in Table 5.5 and Table 5.6 (page 176), the overall results based on the

average of the total number of agents that are needed to form the formation along the path, do

not favour L-Systems. However, based on the least number of agents needed to form the

arrangements, and by altering the stop condition of the evolutionary process of the L-Systems,

the overall results can be improved. The alteration in this case can be done by:

• increasing the maximum number of generations, and / or

• increasing the limit for stagnancy.

The aim of this Chapter was to investigate an alternative way for swarm agents to form an

arrangement along a path between two locations. In order to be able to form the formations,

agents are required to have the ability to interpret short strings of the L-Systems that form the

basic DNA of the formation.

The goal in this Chapter was to achieve interesting and complex pattern formations of robot

swarms by evolving L-Systems. What makes the L-System attractive is the way the

representation of pattern takes place. Consider the formation of the evolved DOL-System in the

open arena as in Figure 5.29(a) (page 180). Such pattern formation can be presented in the

181

Logo-style string format as follows:

• RRRFFLFFFRFFLFFFFFLFFFRFFLFFFRFFLFFFRRFFLFFFRFFLFFFFFLF

FFRFFLFFFRFFLFFF

However, the same pattern formation can be represented by the L-Systems with a shorter string

in the format of “axiom > successor > number o f rewriting operation” as follows:

• RFF > RFFLFFF > 2

where the “>” symbol is use to separate between different parts of the L-Systems parameters.

Due to the Logo-style format, these movement can be fed directly to the robots.

The technique in this Chapter was mainly developed for the use of forming a formation along

the path between locations. As already mentioned previously, L-Systems use Logo-style format

to represent the formation, thus the developed technique in this Chapter can also be used as a

new path planning algorithms.

Furthermore, the ability to represent branching structure or pattern makes L-Systems more

appealing. This ability is particularly useful when formations of agents in connecting three or

more locations are needed. For example, the result in Figure 5.21(c) (page 166) which shows

the branching structure of the pattern. Assume that agents are needed to form a bridging

formation connecting three locations, and the three locations are in fact at the edge of every

branch of Figure 5.21(c) formation. By using the proposed technique, the representation of the

pattern (as in Figure 5.21(c)) which uses L-Systems and Logo-style format only takes minimal

string length, as follows:

• LF[LLF]FL > RFRFFFLLF > 2

The results on the different arena arrangements provided the basis for the study of the formed

patterns by the evolutionary L-Systems. From the two models (DOL- and CSL-Systems)

simulated, it was obvious that the DOL-Systems model produced better results with the least

number of agents to form the bridging formation between the start and the goal locations.

Furthermore, representing the DOL-Systems can be done by only using three sets of strings

182

(axiom, successor, number of rewriting) compared to CSL-Systems which needed eight (axiom,

2 contexts, 4 successors and a number of rewriting). However, the patterns formed by the DOL-

System models lacks what we shall term complexity compared to the CSL-Systems model. In

this case, the patterns from the DOL-Systems are somewhat symmetrical. But in CSL-Systems

model, the patterns appear to be more random. For this reason, it is believed that to some extent

the evolutionary CSL-Systems model will outperform the DOL-Systems model given the right

conditions. However this could be conducted as future work, as this thesis is mainly aimed at

laying a new paradigm for the topic of formation.

183

Chapter 6 Conclusions and Future Work

6.1 Overview
The research presented in this thesis provides an important early contribution to researchers

currently working on various different themes that fall into the domain of applied swarming,

namely swarm engineering, swarm robotics, swarm intelligence, multi-agent systems, and so on

and so forth. In general, work in these fields refers to approaches of developing swarms of

relatively simple and independent agents which are capable of completing specific global tasks,

either through task allocation or emergent behaviour.

Swarm robotics has a strong link with multi-agent (robotics) systems, where problem solving is

done at a macroscopic level. In one sense, designing microscopic rule sets for homogenous

agents to achieve macroscopic goal(s) may seem to be a simple task, as all the agents will have

the same rules and conditions. One could strive to design these rules and conditions by hand.

Moreover, the generation of an analytical solution to the problem might not be required2,

although in some cases analytical and exact solutions are a must. Any behaviour (of agents)

which satisfies the macroscopic goal can be thought of as a solution to the problem.

The field of multi-agent mobile systems is still young, hence the current lack of physical

swarms. Many current problems on swarming have been addressed by analysing and

understanding biological swarms, and many problems on swarm robotics have been solved in

the wider context of artificial intelligence and robotics. In both respects, ideas are borrowed and

adapted. However there remain many more issues that are yet to be solved. Such issues include

2 T h is is b a se d o n th e au th o r 's o b se rv a tio n o n m a n y o th e r w o rk s o f re se a rc h

184

the issue of how to control agents which have very limited memory and ability to form

interesting patterns; the issue of bridging formation amongst agents connecting multiple

objects; and the issue of flocking behaviours with the existence of an attractor in the arena.

In this thesis, three different pieces of research that are related to centralised and decentralised

pattern formation have been studied. The three systems were different in the inherent nature of

the problem and in the type of solution. The first piece of research is based on the state based

model (Chapter 3). In this research, homogenous agents with very little memory, limited

sensing capabilities and processing power were designed and modelled for two types of swarm

behaviours, i.e. line formation and cluster formation, using the well-known Finite State

Machine approach.

The second piece of research addresses the problem of collective movement modelling

(Chapter 4). In this work, the macroscopic behaviour of swarm agents in the presence of an

attractant (artificial potential field) is studied.

The third piece of research (Chapter 5) studies complex formation of agents in a task that

requires the bridging connection of two locations. In this work, it has been shown that

propagatable patterns can be represented by using L-Systems, provided each robot has the

ability to interpret short strings of L-Systems that form the basic DNA of the formation.

6.2 Original Contributions to Knowledge
The contributions to knowledge of the three pieces of research above is thus presented.

6.2.1 State based models

The goals of state based models (Chapter 3) were:

• to design relatively simple homogenous swarm agents with very little memory and

limited sensing capabilities, and

• to devise algorithms for the agents so that agents will self-organise into patterns in a

185

decentralised manner.

The tasks that have been chosen in this work are that the agents have to perform line and cluster

formation. As the agents have very little memory, limited sensing capabilities and processing

power the agents themselves do not have any knowledge of the arena and how many other

agents are present in the environment. Due to the constraints, an FSM approach has been

chosen and applied. Using FSM as an approach is not a new idea, after all behaviour-based

systems have used FSM as their backbone.

There are many similar works have been reported on distributed pattern formation control

algorithms of robot swarms. However, these agents have capabilities that are vastly more

complex than the requirement of simple agents in swarm systems. For example, in Avrutin et

al. (2007), Payton et al. (2004), Nouyan et al. (2006), Freeman et al. (2006), Desai (2002),

Fierro & Das (2002), Kaminka & Glick (2006), Pavone & Frazzoli (2007), etc. agents require a

communication module; in Yang et al. (2007), Desai (2002), Takahashi (2004), Mastellone et

al. (2007), etc. agents need a large amount of memory and processing power for complex

calculations; in Das et al. (2002) agents require vision based sensors.

In this work, each agent is fitted with a ring of eight equally spaced infrared transmitter-

receiver pairs. These infrared pairs are merely used for signalling and obstacle detection rather

than full-blown communication.

The main contributions of this research are:

• decentralised line formation algorithm and

• cluster formation algorithm

This is achieved by alternatively switching on and off a combination of transmitters and sensors

of relatively simple agents which have very little memory, limited sensing capabilities and

processing power.

186

The line formation algorithm is one in which all agents possesses the same control algorithm.

In this algorithm, the agents wander randomly in the arena until it stumbles upon another agent

that it can follow. This process promotes autocatalytic behaviour, where in the end, agents

would likely end up forming a single long line.

In the cluster formation algorithm, there are two different agent control algorithms. One is for

the single attractor agent and another is for the searcher agents. In this algorithm, the attractor

agent will wander randomly in the arena, whilst the searchers will look for the attractor and

once found, the searchers will follow the attractor.

The control algorithm for searcher agents (in cluster formation) and for agents in line formation

algorithm are very similar. They only differ in the on-off configuration of the infra-red

transmitters and the receivers.

6.2.2 Collective movements model

The aim of the research on collective movement models (Chapter 4) was to analyse the

aggregation behaviour of a large number of agents in a swarm that follows the swarm robotics

control paradigm, i.e. Reynolds' flocking rules (1987), in the existence of an attractor field.

Within this research, Wilensky's (1999) flocking algorithm has been extended and several

individual behaviours have been selected in terms of single-agent movement models. Three

different microscopic behaviours have been modelled and a study of the system at a

macroscopic level have been conducted. The difference between the microscopic behaviours is

the maximum turning angle of each agent. Based on the observation of the movement model,

the three behaviours have been labelled as fish-like, mosquito-like and firefly-like.

To summarise, the contributions of this research are:

• Exploration of how flocking agents behave in the existence of an APF.

• The analysis of each movement behaviour in the existence of an APF.

187

Based on the performances and observation of the movement models, the following conclusion

is drawn:

-• Teams of collective moving agents with a smaller maximum turning angle are more

effective in finding targets than the larger maximum turning angle. Collectively moving

agents with a larger maximum turning angle tend to stay close to each other regardless

of the APF.

6.2.3 L-Systems for formation tasks

The main objectives of the evolutionary L-System models for formations tasks, as presented in

Chapter 5, was to develop a novel theory to support swarm agents for complex pattern

formation, where swarm agents are able to form complex patterns between two locations;

In this thesis it is proposed that for more complex pattern formations of swarm agents, the level

of agent complexity should be marginally increased. It is thus proposed that to be able to form

complex patterns, L-Systems offer one solution, with the assumption that agents will be able to

interpret the short L-Systems bit strings.

The tasks that we have chosen are that the agents have to connects two locations in three

different arenas in an organised formation. The L-Systems are then generated and evolved by

an evolutionary engine that finds for a solution (which is the formation between the two

locations). This thesis claims first use of L-systems in the swarm robotics domain.

To summarise, the contributions of this work are:

• the proposal of a pattern construction methodology for swarm robots using L-Systems.

• the proposal of a representation methodology for swarm robot using L-Systems.

• the provision of an empirical study for the use of evolutionary L-Systems for pattern

formation in swarm robots.

• the provision of a comparative study of evolutionary L-Systems with other methods

(RGT and A* search algorithm).

• explore the approach of a new path planning algorithm.

. 1 8 8

6.3 Recommendation for Future Works
A number of avenues are available for extending the research in this thesis. They are as follows.

6.3.1 State based models

Currently, the algorithms presented in the research of Chapter 3 are solely based on behaviour-

based systems which mimic the line formed by ants and does not deal with any specialised

“knowledge”. However, in order to deal with more complex behaviour, i.e. cooperation

amongst agents, each agent has to be aware of its current situation. For that reason, some kind

of “knowledge” representation system should be added to each agent. Gershenson (2002)

shows how a behaviour-based system is able to abstract knowledge from its environment and

exploit this knowledge for performing within its environment by introducing behaviour-based

knowledge systems (BBKS). One approach is by using Hidden Markov Models (HMM)

(Rabiner & Juang 1996).

In order for each of the agents to sense and understand the world around itself, another area

worth investigating is distributed path planning. With path planning, each agent will have part

of a “world map” which collectively represents the world. Algorithms need to be developed to

account for gaps in the representation by each agent, and to recover when this information

becomes available.

6.3.2 Collective movements model

In the work of Chapter 4, there are many areas that can be investigated. These include:

• an investigation into how the population density in the arena affects the swarms'

performance and the convergence rate.

• scenarios with more than one attraction field with varying strengths and the effects this

will have on an agent's trajectories and the group behaviour of the swarm.

• the modelling of several types of obstacles and an investigation into the emergent

behaviours that obstructions may produce.

• the introduction of a moving attractor or several attractors to analyse their effects to

189

the swarm.

6.3.3 L-Systems for formation tasks

Future directions of the L-Systems work in Chapter 5 may include:

• Improving the evolutionary engine and the systems. By improving the evolutionary

engine, more complex agent formations in a complex arena could be achieved.

• Exploring formation representation connecting three or more locations.

• Evolving a more complex L-Systems model, such as Parametric L-Systems. In a

parametric L-Systems model, the representation of the code is more compact than the

simple L-Systems.

6.4 Summary
Swarm robotics is a relatively new field which has been investigated in the last decade, having

been triggered by Reynolds' (1987) seminal paper on flocking of boids. There has not yet been

a single “real world application” of the swarm agents with real physical embodied agents of

everyday tasks. This is due to the fact that the early groundwork is still being laid and many

problems and tasks exist that will need to be addressed. This thesis has provided an early

example of a global approach to pattern formation of swarm agents. The techniques discussed

in this thesis may be extended to a wide variety of possible future swarm applications.

190

References

1. Abelson, H. and deSessa, A. A. (1982). “Turtle Geometry: The Computer as a Medium

for Exploring Mathematics”. MIT Press, Cambridge, MA. (ISBN: 0262010631).

2. Antonelli, G., Arrichiello, F. and Chiaverini, S. (2005). “The. Null-Space-Based

Behavioral Control for Mobile Robots”. In Proceedings of IEEE International

Symposium on Computational Intelligence in Robotics and Automation (CIRA 2005,

Finland), pp. 15-20.

3. Antonelli, G., Arrichiello, F. and Chiaverini, S. (2006). “Experiments of Formation

Control with Collisions Avoidance Using the Null-Space-Based Behavioral”. In

Proceedings of 14th Mediterranean Conference on Control and Automation (MED 2006,

Italy), pp. 1-6.

4. Antonelli, G., Arrichiello, F., Chakraborti, S. and Chiaverini, S. (2007). “Experiences of

Formation Control of Multi-Robot Systems with the NulI-Space-based Behavioral

Control”. In Proceedings of IEEE International Conference on Robotics and Automation

(ICRA 2007, Italy), pp. 1068-1073.

5. Arai, T., Pagello, E. and Parker, L.E. (2002). “Guest Editorial: Advances in Multirobot

Systems”. IEEE Transactions on Robotics and Automation, 18(5), pp. 655-661.

6. Arkin R.C. (1989). “Motor Schema-Based Mobile Robot Navigation”. The International

Journal of Robotics Research, 8(4), pp. 92-112.

7. Arkin, R.C. (1998). “Behavior-Based Robotics”. MIT Press, Cambridge, MA. (ISBN:

0262011654)

8. Augimeri, A., Folino, G., Forestiero, A. and Spezzano, A. (2006). “A Multidimensional

Flocking Algorithm for Clustering Spatial Data”. In Proceedings of the 7th Workshop

From Objects to Agents (WOA 2006, Italy), pp 16-20.

191

9. Avrutin, V. et a l (2007). “I-SWARM, Deliverable N:6.1, Algorithms and Simulations

for Collective Perception”. I-SWARM internal report, 22nd January 2007, pp. 31-53.

10. Bahceci, E., Soysal, O. and Sahin, E. (2003). “A Review: Pattern Formation and

Adaptation in Multi-Robot Systems”. Technical Report CMU-RI-TR-03-43, Robotics

Institute - Carnegie Mellon University, Pittsburgh, USA.

11. Balch, T. and Arkin, R.C. (1998). “Behavior-Based Formation Control for Multirobot

Systems”. IEEE Transactions on Robotics and Automation, 14(12), pp. 926-939.

12. Balch, T. and Hybinette, M. (2000). “Social Potentials for Scalable Multi-Robot

Formations”. In Proceedings of IEEE International Conference on Robotics and

Automation (ICRA 2000, San Francisco, USA), pp. 73-80.

13. Barnes, D. P., Ghanea-Hercock, R. A., Aylett, R. S. and Coddington, A. M. (1997).

“Many Hands Make Light Work? An Investigation into Behaviourally Controlled Co-

Operant Autonomous Mobile Robots”. In Proceedings of First International Conference,

on Autonomous Agents (Marina del Rey), pp. 413-420.

14. Bayazit, O.B., Lien, J.-M. and Amato, N.M. (2002). “Better Group Behaviors in

Complex Environments using Global Roadmaps”. In Proceedings of the 8th International

Conference on Artificial Life (Alife 2002, Sydney, Australia), pp 362-370.

15. Bayazit, O.B., Lien, J.M. and Amato, N.M. (2004). “Swarming Behaviour Using

Probabilistic Roadmap Technique”. In Proceedings of International Workshop on Swarm

Robotics (SAB 2004, Santa Monica, USA, revised selected paper), Lecture Notes in

Computer Science 3342, pp. 143-152.

16. Bedau, M.A. (2003). “Artificial Life: Organization, Adaptation and Complexity from the

Bottom Up”. TRENDS in Cognitive Sciences, 7(11) pp. 505-512.

17. Beni, G. (2005). “From Swarm Intelligence to Swarm Robotics”. International Workshop

on Swarm Robotics (SAB 2004, Santa Monica, USA, revised selected paper), Lecture

Notes in Computer Science 3343, Swarm Robotics, pp. 1-9.

18. Beni G. and Wang J. (1989). “Swarm Intelligence”. In Proceedings of the Seventh

Annual Meeting of the Robotics Society of Japan (Tokyo, Japan), pp. 425-428.

19. Bonabeau, E., Dorigo, M. and Theraulaz E. (1999). “Swarm Intelligence: From Natural

to Artificial Systems”. Santa Fe Institute Studies on the Sciences of Complexity, Oxford

192

Press University. (ISBN: 0195131592).

20. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., and Camazine, S. (1997).

“Self-Organization in Social Insects”. TRENDS in Ecology and Evolution, 12, pp. 188-

193.

21. Braitenberg, V. (1984). “Vehicle: Experiments in Synthetic Psychology”. MIT Press,

Cambridge, MA.

22. Brooks, R. (1986). “A Robust Layered Control System for a Mobile Robot”. IEEE

Journal of Robotics and Automation, 2(1), pp. 14-23.

23. Brooks, R.A. (1991a). “Intelligence without Reason”. In Proceedings of the 12th

International Joint Conference on Artificial Intelligence (IJCAI 1991, Sydney, Australia),

pp. 569-595.

24. Brooks, R.A. (1991b). “Intelligence without Representation”. Journal of Artificial

Intelligence, 47, pp. 139-159.

25. Camazine, S., Doneubourg, J.L., Nigel, R.F., Sneyd, J., Theraulaz, G. and Bonabeau, E.

(2001). “Self-Organization in Biological System”. Princeton Studies in Complexity,

Princeton University Press.

26. Camazine, S. and Sneyd, J. (1991). “A Model of Collective Nectar Source by Honey

Bees: Self-Organization Through Simple Rules”. Journal of Theoretical Biology, 149,

pp. 547-571.

27. Cao, Y., Fukunaga, A. and Kahng, A. (1997). “Cooperative Mobile Robotics:

Antecedents and Directions”. Autonomous Robots, 4, pp. 1-23.

28. Castle, C.J.E. and Andrew T.C. (2006). “Principles and Concepts of Agent-Based

Modelling for Developing Geospatial Simulations”. Working Paper Series, Paper 1 1 0 -

Sep 2006, Centre for Advanced Spatial Analysis, University College London.

29. Chen, Y-Q., Zhuang, Y. and Wang, W. (2007). “A Dynamic Regulation and Scheduling

Scheme for Formation Control”. ACTA AUTOMATICA SINICA 33(6), pp. 623-634.

30. Cheng, J., Cheng, W. and Nagpal, R. (2005). “Robust and Self-Repairing Formation

Control for Swarms of Mobile Agents”. In Proceedings of The Twentieth National

Conference on Artificial Intelligence (AAAI 2005, Pennsylvania, USA), pp 59-64.

193

31. Cohen, R. and Peleg, D. (2006). “Local Algorithms for Autonomous Robots Systems”.

In Proceedings of Structural Information and Communication Complexity Conference

(SIROCCO 2006, Chester, UK), Lecture Notes in Computer Science, 4056, pp. 29-43.

32. Couzin, I.D. And Krause, J. (2003). “Self-Organization and Collective Behavior in

Vertebrates”. Advances in the Study of Behavior 2003, 32, pp. 1-79.

33. Curtis, S.A., Mica, J., Nuth, J., Mar, G., Rilee, M., and Bhat, M. (2000). “ANTS

(Autonomous Nano-Technology Swarm): An Artificial Intelligence Approach to

Asteroid Belt Resource Exploration”. In Proceedings of International Astronomical

Federation 51st Congress, International Astronautical Federation, 2000.

34. Cresswell, W. (1994). “Flocking is an Effective Anti-Predation Strategy in Redshanks

(Tringa Tetanus)”. Animal Behaviour, 47, pp. 433-442.

35. Das, A., Fierro, A., Kumar, V., Ostrowski, J., Spletzer, J. and Taylor, C. (2002). “A

Vision-Based Formation Control Framework”. IEEE Transactions on Robotics and

Automation, 18(5), pp. 813-825.

36. Davis, L. (1991). “Handbook of Genetic Algorithms”. VNR Computer Library, New

York. (ISBN 0-442-00173-8).

37. De Jong, K.A. (1975). “An Analysis of the Behavior of a Class of Genetic Adaptive

Systems”. Ph.D. Thesis, University of Michigan, Ann Arbor, USA.

38. De La Cruz, C. and Carelli, I. (2006). “Dynamic Modeling and Centralized Formation

Control of Mobile Robots”. In Proceeding of 32nd Annual Conference on IEEE Industrial

Electronics (IECON 2006, Paris, France), pp. 3880-3885.

39. Deneubourg, J.-L., Pasteels, J.M., and Verhaeghe, J. C. (1983). “Probabilistic Behaviour

in Ants: A Strategy of Errors?”. Journal of Theoretical Biology, 105, pp. 259-271.

40. Desai, J.P. (2002). “A Graph Theoretic Approach for Modeling Mobile Robot Team

Formations”. Journal of Robotic Systems, 19(11), pp. 511-525.

.41. Dorigo, M., Trianni, V., Sahin, E., GroB, R., Labella, T.H., Baldassarre, G., Nolfi, S.,

Deneubourg, J.-L., Mondada, F., Floreano, D. and Gambardella, F. (2004). “Evolving

Self-Organizing Behaviors for a Swarm-bot”. Autonomous Robots, 17(2-3), pp. 223-245.

42. Dorigo, M., Tuci, E., GroB, R., Trianni, V., Labella, T.H., Nouyan, S., Deneubourg, J.-

L., Baldassarre, G., Nolfi, S., Mondada, F., Floreano, D., Gambardella, L.M. et al.

194

(2004). “The SWARM-BOTS Project”. International Workshop on Swarm Robotics

(SAB 2004, Santa Monica, USA, revised selected paper), Lecture Notes in Computer

Science 3342, pp. 31-44.

43. Dorigo, M. and Schnepf, U. (1993). “Genetic-Based Machine Learning and Behaviour-

Based Robotics: A New Synthesis”. IEEE Transactions on Systems, Man and

Cybernetics, 23(1), pp. 141-154.

44. Edelstein-Keshet, L. (2001). “Mathematical Models of Swarming and Social

Aggregation”. In Proceedings of the 2001 International Symposium on Nonlinear Theory

and its Applications (NOLTA 2001, Miyago, Japan), pp. 159-164.

45. Franks N.R., Gomez N„ Goss S. & Deneubourg J.L. (1991). “The Blind Leading the

Blind in Army Ant Raid Patterns: Testing a Model of Self-Organization”, Journal of

Insect Behavior, 4, pp. 583-607.

46. Esposito, J.M. and Dunbar, T.W. (2006). “Maintaining Wireless Connectivity

Constraints for Swarms in the Presence of Obstacles”. In Proceedings of IEEE

International Conference on Robotics and Automation (ICRA 2006, Florida, USA), pp.

946-951.

47. Fierro, R. and Das, A.K (2002). “A Modular Architecture for Formation Control”. In

Proceedings of IEEE the Third International Workshop on Robot Motion and Control

(RoMoCo 2002, Poland), pp. 285-290.

48. Fogel, D.B. (1999). “Evolutionary Computation: Toward a New Philosophy of Machine

' Intelligence”. Wiley-IEEE Press, Second Edition (ISBN: 078035379X).

49. Folino, G. and Spezzano, G. (2002). “An Adaptive Flocking Algorithm for Spatial

Clustering”. In Proceedings of Parallel Problem Solving from Nature (PPSN VII,

Granada, Spain), Lecture Notes in Computer Science, 2439, pp.924-933.

50. Folino, G., Forestiero, A. and Spezzano, G. (2003). “Swarming Agents for Discovering

Clusters in Spatial Data”. In Proceedings of Second International Symposium on Parallel

and Distributed Computing (ISPDC 2003, Ljubljana, Slovenia), pp 72-79.

51. Fredlunds, J. and Mataric, M.J. (2002). “A General Algorithm for Robot Formations

using Local Sensing and Minimal Communication.” IEEE Transactions on Robotics and

Automation, 18(5), pp 837-846.

195

52. Freeman, R.A., Yang, P. and Lynch, K.M. (2006). “Distributed Estimation and Control

of Swarm Formation Statistics”. In Proceedings of the IEEE 2006 American Control

Conference (Minneapolis, USA), pp. 749-755.

53. Fukada, T., Nakaggawa, S., Kawauchi, Y. and Buss, M. (1989). “Structure Decision

Method for Self-Organizing Robots Based on Cell Structure - CEBOT”. In Proceedings

. of the 1989 IEEE International Conference on Robotics and Automation (Los Alamitos,

USA), pp. 695-700.

54. Gamier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G. and Theraulaz,

G. (2005). “Collective Decision-Making by a Group of Cockroach-Like Robots”. In

Proceedings of IEEE Swarm Intelligence Symposium (SIS 2005, California, USA), pp.

233-240.

55. Gazi, V. and Passino, K.M. (2004). “Stability Analysis of Social Foraging Swarms”.

IEEE Transactions on Systems, Man and Cybemetics-Part B Cybernetics, 34(1), pp. 539-

557.

56. Gershenson, C. (2002). “Behaviour-Based Knowledge Systems: An Epigenetic Path

from Behaviour to Knowledge”. In Proceedings of the Second Workshop on Epigenetic

Robotics (Edinburgh, UK).

57. Goldberg, D.E. (1989). “Genetic Algorithms in Search Optimization and Machine

Learning”. Addison-Wesley, Reading, MA, USA, (ISBN: 0201157675).

58. Goldberg, D.E. And Deb, K. (1991). “A Comparative Analysis of Selection Schemes

used in Genetic Algorithms”. In G. Rawlins (Ed.), Foundations of Genetic Algorithms.

Morgan Kaufmann, pp. 69-93.

59. Gordon-Spears, D.F. And Spears, W.M. (2002). “Analysis of a Phase Transition in a

Physics-Based Multiagent System”. Lecture Notes in Computer Science 2699, pp. 193-

207.

60. Gould L. L. and Heppner F. (1974). “The Vee Formation of Canada geese”. AUK 91(3),

pp. 494-506.

61. Grunbaum, D. and Okubo, A. (1999). “Modelling Social Animal Aggregations”. In

Levin, S.A. (Ed.), Frontiers in Theoretical Biology, Lecture Notes in Biomathematics,

100, Springer-Verlag, Berlin, pp. 296-325.

196

62. Gustavi, T. and Hu, X. (2005). “Formation Control for Mobile Robots with Limited

Sensor Information”. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation (ICRA 2005, Barcelona, Spain), pp. 1791-1796.

63. Hamilton, W.D. (1971). “Geometry for Selfish Herd”. Journal of Theoretical Biology, 3,

pp. 295-311.

64. Hanada, Y., Lee G. and Chong, N.Y. (2007). “Adaptive Flocking of a Swarm of Robots

Based on Local Interactions”. In Proceedings of IEEE Swarm Intelligence Symposium

(SIS 2007, Hawaii) pp. 340-347. ' <

65. Holland, J.H. (1975). “Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control, and Artificial Intelligence”. University

of Michigan Press (2nd ed.: MIT Press ,1992), Ann Harbor (ISBN: 0262581116).

66. Holland, O. and Melhuish, C. (1999). “Stigmergy, Self Organization, and Sorting in

Collective Robotics”, Artificial Life 5(2), pp 173-202.

67. Hornby G.S. and Pollack J.B. (2001). “Evolving L-systems to Generate Virtual

Creatures”. Computers and Graphics, Elsevier, 25(6), pp. 1041-1048.

68. Howard, H.E. (1929). “An Introduction to the Study of Bird Behaviour”. The

Geographical Journal 74(5), pp. 504. Cambridge University Press.

69. Ikawa, T. and Okabe, H. (1997). “Three-Dimensional Measurements of Swarming

Mosquitoes: a Probabilistic Model, Measuring Systems, and Example Results”. In

Animal Groups in Three Dimensions (Ed. Parrish, J.K. And Harmer, W.M.), Cambridge

University Press, pp. 90-104.

70. Javaid, K., Hong, B.R. and Gao, Q.J. (2004). “Dynamic Growth of Robot Formation

Using Only Local Sensing and Minimal Communication”. In Proceedings of IEEE Eigth

International Conference on Control, Automation, Robotics and Vision (ICARCV 2004,

Kunming, China), pp. 283-288.

71. Jones, C. and Mataric, M. (2003). “Adaptive Division of Lab or in Large Scale

Minimalist Multi-Robot Systems”. In Proceedings of IEEE International Conference on

Intelligent Robots and Systems (IROS 2003, Las Vegas, USA), pp. 1969-1974.

72. Kaminka, G.A. and Glick R., (2006). “Towards Robust Multi-Robot Formations”. In

Proceedings of IEEE International Conference on Robotics and Automation. (ICRA

197

2006, Florida, USA), pp. 582-588.

73. Kellogg, J., Bovais, C., Foch, R., McFarlane, H., Sullivan, C. and Dahlburg, J. (2002).

“The NRL Micro Tactical Expandable (MITE) Vehicle”. The Aeronautical Journal, 106.

74. Kennedy, J. and Eberhart, R.C. (1995). “Particle Swarm Optimization”. In Proceedings

of IEEE International Conference on Neural Networks (Piscataway, NJ. USA), pp. 1942-

1948.

75. Kennedy, J., Eberhart R.C. and Shi, Y. (2001). “Swarm Intelligence”. The Morgan

. Kaufmann Series in Artificial Intelligence (ISBN: 1558605959).

76. Klein, J. (2002). “Breve: A 3D Environment for the Simulation of Decentralized Systems

and Art”. In Proceeding of Artificial Life VIII, the Eight International Conference on the

Simulation and Synthesis of Living Systems, The MIT Press, pp. 329-334.

77. Kodati, P., Hinkle, J. and Deng, X. (2007). “Micro Autonomous Robotic Ostraciiform

(MARCO): Design and Fabrication”. In Proceedings of IEEE International Conference

on Robotics and Automation (ICRA 2007, Italy), pp. 960-965.

78. Kokai, G., Vanyi, R. and Toth, Z. (1999). “Parametric L-System Description of the

Retina with Combined Evolutionary Operators”. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO 1999, Florida, USA), 2, pp. 1588-1595.

79. Krause, J. (1994). “Differential Fitness Returns in Relation to Spatial Position in

Groups”. Biological Reviews, Cambridge Philosophical Society, 69(2), pp. 187-206.

80. Kube, C. and Zhang, H. (1992). “Collective Robotic Intelligence”. In Proceedings of

Second International Conference on Simulation of Adaptive Behaviour (SAB 1992,

Hawaii, USA), MIT Press, pp.460-468.

81. Langton, C. (1988). “Artificial Life”. In Artificial Life, 6. Sante Fe Institute Studies in

the Sciences of Complexity, Addison Wesley.

82. Lee, D. and Yannakakis, M. (1996). “Principles and Methods of Testing Finite State

Machines - A Survey”. In the Proceeding of IEEE, 84(8), pp. 1089-1123.

83. Levine, H., Rappel, W-J. And Cohen, I. (2000). “Self-Organization in Systems of Self-

Propelled Particles”. Physical Review E, 6, p. 017101.

84. Li, Y, Yuan, K. and Zou, W. (2006). “Nonholonomic Mobile Robot Formation Control

198

with Kinodynamic Constraints”. In Proceedings of the 2006 International Symposium on

Practical Cognitive Agents and Robots (PCAR 2006, Perth, Australia), pp. 200-211.

85. Lindenmayer, A. (1968). “Mathematical Models for Cellular Interaction in Development,

Part I and Part II”. Journal of Theoretical Biology, 18, pp. 280-315.

86. Lissaman P.B., Shollenberger C.A. (1970). “Formation Flight of Birds”. Science

168(3934), pp. 1003-1005.

87. Liu Y, Passino K.M. (2000). “Swarm Intelligence: Literature Overview”. Department of

Electrical Engineering, The Ohio State University, March 2000, http://www.ece.osu.

Edu/~passino/swarms.pdf

88. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G. (2005). “MASON: A

• Multiagent Simulation Environtment”. Simulation 81(7), pp. 517-527.

89. Maes, P. (1995). “Modelling Adaptive Autonomous Agents”. Artificial Life 1(1-2), The

MIT Press, pp. 135-162.

90. Mariano, A., Moscato, P. and Norman, M.G. (1995). “Using L-Systems to Generate

Arbitrarily Large Instances of the Euclidean Traveling Salesman Problem with Known

Optimal Tours”. Anales del XXVII Simposio Brasileiro de Pesquisa Operacional,

Vitoria, Brasil.

91. Mastellone, S., Stipanovic, D.M. and Spong, M.W. (2007). “Remote Formation Control

and Collision Avoidance for Multi-Agent Nonholonomic Systems”. In Proceedings of

IEEE International Conference on Robotics and Automation (ICRA 2007, Italy), pp.

1062-1067.

92. Mataric, MJ. (1999). "Behavior-Based Robotics". MIT Encyclopedia of Cognitive

Sciences, Robert A. Wilson and Frank C. Keil, eds., MIT Press, pp. 74-77,

93. Mataric, M.J. (1993). “Designing Emergent Behaviors: From Local Interactions to

Collective Intelligence”. In Proceedings, From Animal to Animats, Second International

Conference on Simulation of Adaptive Behavior (SAB 1992, Hawaii), MIT Press, pp

432-441.

94. MASON (2007). “MASON: Multiagent Simulation Environment”, [online]. Last

accessed on 18 April 2007 at http://www.cs.gmu.edu/~eclab/projects/mason/

95. Mealy, G. H. (1955). “A Method to Synthesizing Sequential Circuits”. Bell System

199

http://www.ece.osu
http://www.cs.gmu.edu/~eclab/projects/mason/

Technical J, pp. 1045-1079.

96. Michel, O. (2004). “Cyberbotics Ltd. Webots™: Professional Mobile Robot Simulation”.

International Journal of Advanced Robotic Systems 1(1), pp. 39-42.

97. Mitchell, M. (1996). “An Introduction to Genetic Algorithms”. MIT Press, Cambridge,

MA, USA (ISBN: 0262631857).

98. Mogilner, A. and Edelstein-Keshet, L (1999). “A Non-Local Model for a Swarm”.

Journal of Mathematical Biology 38(6), pp. 534-570.

99. Mogilner, A., Edelstein-Keshet, L., Bent, L. and Spiros, A. (2003). “Mutual Interactions,

Potentials, and Individual Distance in a Social Aggregation”. Journal of Mathematical

Biology, 47(4), pp. 353-389.

100. Momen, S., Amavasai, B.P. and Siddique, N.H. (2007). “Mixed Species Flocking for

Heterogeneous Robotic Swarms”. In Proceeding of The International Conference on

Computer as a Tool (EUROCON 2007, Poland), pp: 2329-2336.

101. Moore, E.F. (1956). “Gedanken-Experiments on Sequential Machines”. Automata

Studies, Annals of Mathematical Studies, 34, Princeton University Press, Princeton, N.J.,

pp. 129-153.

102. Moshtagh, N., Jadbabaie, A. and Daniilidis, K. (2006). “Vision-Based Control Laws for

Distributed Flocking of Nonholonomic Agents”. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA 2006, Florida, USA), pp. 2769- 2774.

103. NetLogo (2007). “NetLogo: Multi-Agent Programmable Modelling Environment”,

[online]. Last accessed on 15 April 2007 at http://ccl.northwestem.edu/netlogo/

104. Newmann, V. (1966). “Theory of Self-Reproducing Automata”. (Edited & Completed by

Burks, A.W.) University of Illinois Press.

105. Nguyen, A.D., Ha, Q.P., Huang, S. and Trinh, H. (2004). “Observer-Based Decentralized

Approach to Robotic Formation Control”. In Proceedings of Australasian Conference on

Robotics and Automation (ACRA 2004, Canberra, Australia).

106. Nguyen, D.B. and Do, K.D. (2006). “Formation Control of Mobile Robots”.

International Journal of Computers, Communications & Control, 1(3), pp.41-59.

107. Nouyan, S., GroB, R., Bonani, M., Mondada, F., Dorigo, M. (2006). “Group Transport

200

http://ccl.northwestem.edu/netlogo/

Along a Robot Chain in a Self-Organised Robot Colony”. In Proceeding of the Ninth

International Conference on Intelligent Autonomous Systems, IOS Press, Amsterdam,

The Netherlands, pp. 433-442.

108. Olfati-Saber, R., Murray, R.M. (2003). “Flocking with Obstacle Avoidance: Cooperation

with Limited Communication in Mobile Networks”. In Proceedings of the 42nd IEEE

Conference on Decision and Control (Hawaii, USA), 2, pp.2022-2028.

109. Othman, W.F.W., McKibbin, S.P., Caparrelli, F., Travis, J.R. and Amavasai, B.P.

(2005). “Pattern Formation and Organisation in Robot Swarms”. In Proceedings of the

IEEE SMC UK-RI Chapter Conference on Applied Cybernetics (London, UK), pp. 135-

140,

110. Parker, L.E., Kannan, B., Tang, F. and Bailey, M. (2004). “Tightly-Coupled Navigation

Assistance in Heterogeneous Multi-Robot Team”. In Proceedings of IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS 2004, Sendai, Japan),

pp. 1016-1022.

111. Parrish, J.K. and Edelstein-Keshet, L. (1999). “Complexity, Pattern, and Evolutionary

Trade-Offs in Animal Aggregation”. Science, 284, pp. 99-101.

112. Parrish, J.K., Viscido, S.V. And Grunbaum, D. (2002). “Self-Organized Fish Schools:

An Examination of Emergent Properties”. Biological Bulletin, 202, pp. 296-305.

113. Pavone, M. and Frazzoli, E. (2007). “Decentralized Policies for Geometric Pattern

Formation”. In Proceedings of the 2007 American Control Conference (ACC 2007, New

York, USA), pp.3949-3954.

114. Payton, D., Estkowski, R. and Howard, M. (2004). “Pheromone Robotics and the Logic

of Virtual Pheromones”. International Workshop on Swarm Robotics (SAB 2004, Santa

Monica, USA, revised selected paper), Lecture Notes in Computer Science 3342, pp. 45-

57.

115. Penders, J., Alboul, L., Roast, C. and Cervera, E. (2007). “Robot Swarming in the

Guardians Project”. In Proceeding of European Conference on Complex Systems 2007

(ECCS 2007, Dresden, Germany).

116. Powell, G.V.N. (1974). “Experimental Analysis of the Social Value of Flocking by

Starlings (Stumus vulgaris) in Relation to Predation and Foraging”. Animal Behaviour,

22, pp. 501-505.

201

117. Prusinkiewicz, P. and Lindenmayer, A. (1990). “The Algorithmic Beauty of Plants”.

Springer-Verlag.

118. Rabiner, L., Juang, B. (1996). “An introduction to Hidden Markov Models”. ASSP .

Magazine, IEEE, Jan 1986, 3(1), pp. 4-16.

119. Railsback, S. F., Lytinen, S.L. and Jackson, S.K. (2006). “Agent-Based Simulation

Platforms: Review and Development Recommendations”. Simulation 82(9), pp. 609-623.

120. Reynolds, C. (1987). “Flocks, Herds and Schools: A Distributed Behavioral Model”.

ACM SIGGRAPH Computer Graphics 6(4), pp. 25-34.

121. Rune, V., Npttestad, L. (1997). “An Individual Based Model of Fish School Reactions:

Predicting Antipredator”. Fisheries Oceanography 6(3) pp. 155-171.

122. Russell, S. and Norvig, P. (1995). “Artificial Intelligence: A Modem Approach”. Pearson

Education Inc., ISBN (0-131-03805-2).

123. Sahin, E. (2005). “Swarm Robotics: From Sources of Inspiration to Domains of

Application”. In Proceedings of International Workshop on Swarm Robotics (SAB 2004,

Santa Monica, USA, revised selected paper), Lecture Notes in Computer Science, Swarm

Robotics, 3342, pp. 10-20.

124. Salvador, P., Nogueira, A. and Valadas, R. (2002). “Modeling Multifractal Traffic with

Stochastic L- Systems”. In: Proceedings of IEEE Global Telecommunication Conference

2002 (GLOBECOM 2002, Taipei, Taiwan), 3, pp. 2518-2522.

125. Schmickl, T. and Crailsheim, K. (2007a). “A Navigation Algorithm for Swarm Robotics

Inspired by Slime Mold Aggregation”. Second International Workshop on Swarm

Robotics (SAB 2006, Rome, Italy), Lecture Notes in Computer Science 4433, pp. 1-13.

126. Schmickl, T. and Crailsheim, K. (2007b). “Trophallaxis within a Robotic Swarm: Bio-

Inspired Communication among Robots in a Swarm”. Autonomous Robot, Springer

Netherlands, 25(1-2), pp. 171-188.

127. Shao, J., Wang, L. and Yu, J. (2006). “Underwater Transportation of Multiple Fish-like

Robots using Situation Based Action Selection”. In Proceedings of IEEE International

Conference on Robotics and Automation (ICRA 2006,, Florida, USA), pp. 3208- 3213.

128. Shaw, E. (1962). “The Schooling of Fishes”. Scientific American, 206, pp. 128-138.

202

129. Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa, Y. and Sano, M. (1996).

“Collective Motion in a System of Motile Elements”. Physical Review Letters 76(20),

pp. 3870-3873.

130. Smith, A. (1984). “Plants, Fractals, and Formal Languages”. ACM SIGGRAPH

Computer Graphics, 18(4), pp. 1-10.

131. Sorensen, N. and Ren, W. (2007). “A Unified Formation Control Scheme with a Single

or Multiple Leaders”. In Proceedings of the 2007 American Control Conference (ACC

2007, New York, USA), pp. 5412-5418.

132. Spears, W. and Gordon, D. (1999). “Using Artificial Physics to Control Agents”. In

Proceedings of IEEE International Conference on Information, Intelligence, and Systems

(Maryland, USA), pp. 281-288.

133. Spears, W.M., Spears, D.F., Heil, R., Kerr, W. and Hettiarachchi, S. (2005). “An

Overview of Physicomimetics”. International Workshop on Swarm Robotics (SAB 2004,

Santa Monica, USA, revised selected paper), Lecture Notes in Computer Science 3342,

pp. 84-97.

134. Spears, D., Zarzhitsky, D. and Thayer, D. (2005). “Multi-Robot Chemical Plume

Tracing”. In proceedings of the 2005 International Workshop on Multi-Robot Systems,

From Swarms to Intelligent Automata Volume III (Washington DC, USA), Springer

Netherlands, pp. 211-221.

135. Spector, L., Klein, J. and Keijzer, M.. (2005a). “The Push3 Execution Stack and the

Evolution of Control”. In proceeding of the Genetic and Evolutionary Computation

Conference (GECCO 2005, Washington DC, USA), Springer-Verlag, pp. 1689-1696.

136. Spector, L., Klein, J., Perry C. and Feinstein, M. (2005b). “Emergence of Collective

Behavior in Evolving Populations of Flying Agents”. Genetic Programming and

Evolvable Machine 6(1), pp. 111-125.

137. Steels, L. (1991). “Towards a Theory of Emergent Functionality”. In Proceedings of the

First International Conference on Simulation of Adaptive Behaviour: From Animal to

Animats (SAB 1991, Paris, France), MIT Press, pp. 451-461. '

138. Sun, D. and Wang, C. (2007). “Controlling Swarms of Mobile Robots for Switching

between Formations Using Synchronization Concept”. In Proceedings of IEEE

International Conference on Robotics and Automation (ICRA 2007, Italy), pp. 2300-

203

2305.

139. Takahashi, H., Nishi, H. and Onishi, K. (2004). “Autonomous Decentralized Control for

Formation of Multiple Mobile-Robots Considering Ability of Robot”. IEEE Transactions

on Industrial Electronics 51(6), pp. 1272-1279.

140. Tanner, H. G., Jadbabaie, A. and Pappas G. J. (2003a). “Stable Flocking of Mobile

Agents, Part I: Fixed Topology”. In Proceedings of the 42nd IEEE Conference on

Decision and Control (CDC 2003, Maui, Hawaii), pp. 2010-2015.

141. Tanner, H. G., Jadbabaie, A. and Pappas G. J. (2003b). “Stable Flocking of Mobile

Agents, Part II: Dynamic Topology”. Proceedings of the 42nd IEEE Conference on

Decision and Control (CDC 2003, Maui, Hawaii), pp. 2016-2021.

142. Tanner, H.G. and Kumar, A. (2005). “Towards Decentralization of Multi-robot

Navigation Functions”. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation (ICRA 2005, Barcelona, Spain), pp. 4132-4137.

143. Taylor, C.E. (1990). “Fleshing Out”. Artificial Life II: Proceedings of the Workshop on

Artificial Life II, Addison-Wesley Press, pp. 25-38.

144. Terzopoulos, D., Tu, X. and Grzeszczuk, R. (1994). “Artificial Fishes with Autonomous

Locomotion, Perception, Behaviour, and Learning in a Simulated Physical World”.

Artificial Life, 1(4), pp. 327-351.

145. Tisue, S. and Wilensky, U. (2004). “NetLogo: A Simple Environment for Modelling

Complexity”. In Proceeding of International Conference on Complex Systems (ICCS

2004, Boston, MA, USA).

146. Toner, J. and Tu, Y. (1998). “Flocks, Herds, and Schools: A Quantitative Theory of

Flocking”. Physical Review E, 58(4), pp. 4859-4864.

147. Turing, A.M. (1950). “Computing Machinery and Intelligence”. Mind: A Quarterly

Review of Psychology and Philosophy, 59(236), pp.433-460.

148. Vab0, R. and Npttestad, L. (1997). “An Individual Based Model of Fish School

Reactions: Predicting Antipredator”. Fisheries Oceanography, 6(3), pp. 155-171.

149. Veeraswamy, A., Amavasai, B.P. And Meikle, S. (2006). “Optimal Path Planning

Applied to Ant Foraging”. In Proceedings of the IEEE Systems, Man and Cybernetics

UK-RI Chapter Conference on Advances in Cybernetic Systems, pp. 300-305.

204

150. Viscek, T., Czirok, A., Ben-Jacob, E., Cohen, I. and Shochet, O. (1995). “Novel Type of

Phase Transition in a System of Self-Driven Particles”. Physical Review Letters 75(6),

pp. 1226-1229.

151. Von-Frisch, K. (1968). “The Dance Language and Orientation of .Bees”. Harvard

University Press, (ISBN: 0674190513).

152. Walter, W.G. (1950). “An Imitation of Life”. Scientific American, 182(5), May 1950,

pp. 42-45.

153. Walter, W.G. (1963). “The Living Brain”. W. W. Norton & Company, Inc. (ISBN:

0393001539)

154. Wilensky, U. (1999). NetLogo. http://ccl.northwestem.edu/netlogo/. Center for

Connected Learning and Computer-Based Modeling, Northwestern University,

Evanston, IL.

155. Wilensky, U. (1998). “NetLogo Flocking Model”.

http://ccl.northwestem.edu/netlogo/models/Flocking, Center for Connected Learning and

Computer Based Modelling, Northwestern University, Evanston IL, 1998.

156. Woem, H., Szymanski, M. and Seyfried, J. (2006). “The I-SWARM Project”. In

Proceedings of The 15th IEEE International Symposium on Robot and Human

Interactive Communication, (ROMAN 2006, United Kingdom), pp. 493-496.

157. Yang, T., Liu, Z., Chen, H. and Pei, R. (2007). “Robust Tracking Control of Mobile

Robot Formation with Obstacle Avoidance”. Journal of Control Science and Engineering

2007 (ID 51841), Hindawi Publishing Corporation, DOI: 10.1155/2007/51841.

158. Zamir, M (2001). “Arterial Branching within the Confines of Fractal L-System

Formalism”. The Journal of General Physiology, 118(3), pp. 267-276.

159. Zarzhitsky, D., Spears, D.F. and Spears, W.M. (2005). “Distributed Robotics Approach

to Chemical Plume Tracing”. In Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2005, Canada), pp. 4034- 4039.

160. Zhang, Z.G., Gondo, M., Yamashita, N., Yamamoto, A. and Higuchi, T. (2007). “Design

and Control of a Fish-like Robot Using an Electrostatic Motor”. In Proceedings of IEEE

International Conference on Robotics and Automation (ICRA 2007, Italy), pp. 974-979.

205

http://ccl.northwestem.edu/netlogo/
http://ccl.northwestem.edu/netlogo/models/Flocking

Publications

1. McKibbin, S.P., Amavasai, B., Selvan, A.N., Caparrelli, F., Othman, W.A.F.W. (2008).

“The Role Of Sensory-Motor Coordination: Identifying Environmental Motion Dynamics

with Dynamic Neural Networks”. In Proceedings of the 5th International Conference on

Informatics in Control, Automation and Robotics (ICINCO 2008, Madeira, Portugal).

2. McKibbin, S.P., Amavasai, B., Selvan, A.N., Caparrelli, F., Othman, W.A.F.W. (2007)

“Recurrent Neural Robot Controllers: Feedback Mechanisms for Identifying

Environmental Motion Dynamics”. AIRE, 2-3(27), pp. 113-130.

3. McKibbin, S.P., Amavasai, B.P., Caparrelli, F., Othman, W.A.F.W. and Travis, J.R.

(2007). “Using PSO to Exploit Movement as a Sensory Cue in Autonomous Mobile

Robots”. In Proceedings of the 2007 IEEE SMC UK-RI 6th Chapter Conference on

Cybernetic Systems (CS 2007, Dublin, Ireland), pp. 152-157.

4. Othman, W.A.F.W., Amavasai, B.P., McKibbin, S.P. & Caparrelli, F. (2007). “An

Analysis of Collective Movement Models for Robotic Swarms”. In Proceeding of The

International Conference on Computer as a Tool (EUROCON 2007, Poland), pp. 2373-

2380.

5. McKibbin, S.P., Caparrelli, F., Othman, W.F.W., Amavasai, B.P, & Travis, J.R. (2006).

“Complexity in Evolving Neural Robot Controllers”. In Proceedings of the 2006 IEEE

SMC UK-RI 5th Chapter Conference on Advances in Cybernetic Systems (AICS 2006,

Sheffield, UK).

6. Othman, W.F.W., Amavasai, B.P., McKibbin, S.P., Caparrelli, F. & Travis, J.R. (2006).

“Evolutionary L-Systems for Large Scale Multi-Robot Formation”. In Proceedings of the

2006 IEEE SMC UK-RI 5th Chapter Conference on Advances in Cybernetic Systems

(AICS 2006, Sheffield, UK), pp. 199-204.

7. Fernandez, J.M., Amavasai, B.P., Othman, W.F.W., McKibbin, S.P., Caparrelli, F. &

206

Travis, J.R. (2005). “Development of Physical Agents for Robot Swarms”. In Proceedings

of the 2005 IEEE SMC UK-RI Chapter Conference on Applied Cybernetics (London, UK),

pp. 123-128.

8. Othman, W.F.W., McKibbin, S.P., Caparrelli, F., Travis, J.R. & Amavasai, B.P. (2005).

“Pattern Formation and Organisation in Robot Swarms”. In Proceedings of the 2005 IEEE

SMC UK-RI Chapter Conference on Applied Cybernetics (London, UK), pp. 135-140.

9. McKibbin, S.P., Othman, W.F.W., Amavasai, B.P., Caparrelli, F. & Travis, J.R. (2004).

“Designing Microrobot Swarms - Issues and Constraints”. In Proceedings of the 2004

IEEE SMC yK-RI 3rd Chapter Conference on Intelligent Cybernetic Systems (ICS 2004,

Londonderry, UK), pp. 80-84. ' *

207

