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Abstract

A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents 

operating in a common environment and seemingly acting in a coherent and coordinated manner. 

Swarm architectures promote decentralisation and self-organisation which often leads to emergent 

behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its 

environment (or fellow agents), but not as a direct result of design. The creation of artificially 

simulated swarms or practical robot swarms has become an interesting topic of research in the last 

decade. Even though many studies have been undertaken using a practical approach to swarm 

construction, there are still many problems need to be addressed. Such problems include the 

problem of how to control very simple agents to form patterns; the problem of how an attractor will 

affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting 

multiple locations. The central goal of this thesis is to develop early novel theories and algorithms 

to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for 

understanding how to model, design and control individual units have to be developed. This thesis 

consists of three independent pieces of research work that address the problem of pattern formation 

of robot swarms in both a centralised and a decentralised way.

The first research contribution proposes algorithms of line formation and cluster formation in a 

decentralised way for relatively simple homogenous agents with very little memory, limited sensing 

capabilities and processing power. This research utilises the Finite State Machine approach.

In the second research contribution, by extending Wilensky's (1999) work on flocking, three 

different movement models are modelled by changing the maximum viewing angle each agent 

possesses during the course of changing its direction. An object which releases an artificial potential 

field is then introduced in the centre of the arena and the behaviours of the collective movement 

model are studied.

The third research contribution studies the complex formation of agents in a task that requires a 

formation of agents between two locations. This novel research proposes the use Of L-Systems that 

are evolved using genetic algorithms so that more complex pattern formations can be represented 

and achieved. Agents will need to have the ability to interpret short strings of rules that form the 

basic DNA of the formation.
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Chapter 1 Thesis Overview

1.1 Motivation
Since the dawn of time, humans have observed a variety o f interesting and intriguing patterns 

found in nature due to the natural movements of animals and insects. A flock of birds in 

formation in the sky, a school of fish which turns and flees in perfect coordination (Shaw 

1962), a group of eusocial insects (e.g. ants) foraging cooperatively for food. These kind of 

behaviours that lead to organised formation is termed as “swarm behaviour” (Liu & Passino 

2000). In recent times, researchers from many diverse fields have converged to study the 

interaction in biological swarms and how to model them, through the observation of 

organisation and evolution in the swarm agents. Researchers in the- applied sciences, for 

instance, have shown an even greater interest in swarm behaviour since the understanding of 

these behaviours can lead to new optimisation techniques such as the Particle Swarm 

Optimisation (Kennedy & Eberhart 1995) and Ant Colony Optimisation (Bonabeau et al. 

1999). These behaviour inspired algorithms can be applied in many fields, such as in networks 

and telecommunication systems (Bonabeau et al. 1999), robotics (Beni 2005, Cao et al. 1997) 

etc.

Recent advances in robotics in general and electronics in particular have started to make the 

deployment o f large numbers of inexpensive agents or robots for many practical applications 

more feasible. Such applications include for example search and rescue type tasks where these 

inexpensive agents are tasked with looking for survivors in collapsed buildings after a natural 

disaster like the aftermath of an earthquake. Agents in this instance have to perform dangerous 

or explorative tasks in hazardous, unknown and remote environments. In deploying these

1



agents, the number of autonomous agents involved can be very large, ranging from hundreds to 

thousands.

When dealing with large numbers o f agents, many problems need to be addressed. Such 

problems include the agent's design and architecture, task allocations, control strategy, 

localisation and so forth. Another important question that needs to be addressed is one of 

organisation. Agents in the system should be able to form and organise themselves around 

complex patterns which are generally required to perform specific tasks in a complex arena. 

This thesis focuses on the latter problem, i.e. the organisation of the robot swarms.

Although many approaches and solutions have been proposed to address the organisation 

issues, as swarm robotics is relatively a new field, there are still many aspects that can be 

investigated. With a fuller understanding, researchers may find solutions that lead to better 

algorithms.

In this thesis, the wide range of techniques and algorithms currently being developed or 

available is examined and studied in-depth. With this new understanding this thesis

•  proposes algorithms of line formation and cluster formation for relatively simple multi­

robot system using existing state based model,

•  studies the impact o f collective movement model behaviours in the presence o f an 

attractor unit (artificial potential field), and

•  proposes a novel method of robots formation connecting two locations by using 

Lindenmayer Systems in conjunction with evolutionary algorithms.

Original contributions are offered in the three key areas above through the study and analysis of 

existing algorithms, improvements of these algorithms and finally and most importantly the 

contribution o f new algorithms.

In this Chapter, a brief introduction to self organisation, research context and outline o f the 

thesis is presented. Firstly an overview of self organisation systems including some definitions
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is presented and some of the main ingredients that make up these swarm systems are explained. 

The research in this thesis is then put into context. Finally, the outline o f this thesis is presented 

in Section 1.4.

1.2 Self Organisation
Self organisation in swarm systems refers to a broad range o f pattern-formation processes in 

nature. These include sand grains forming rippled dunes (Figure 1.1), orderly rows of clouds in 

the sky, flocking behaviours in birds and so on. Camazine et al. (2001) in their book (p.8) 

provided an “open” definition on self organisation as reproduced below:

"Self-organisation is a process in which patterns at the global level o f a 

system emerge solely from numerous interactions among the lower-level 

components o f the system. Moreover, the rules specifying interactions 

among the system's components are executed using only local information, 

without reference to the global pattern ”.

Figure 1.1: An example o f  pattern  formation in nature, showing sand dunes.
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Bonabeau et al. (1997) who worked closely on insects gave another definition on self 

organisation which focuses more on ethological aspect as follows:

"Self organisation does not rely on individual complexity to account fo r  

complex spatiotemporal features that emerge at the colony level, but rather 

assumes that interactions amongst simple individuals can produce highly 

structured collective behaviours”.

This thesis proposes the following summary definition

"In self-organised swarming systems, pattern formation usually occurs 

through local interactions o f agents in the system without intervention by 

external directing influences ”.

There are four basic ingredients that may contribute to the self-organising systems:

•  multiple interactions

•  amplification o f fluctuation and randomness

•  positive feedback

•  negative feedback

Interaction is the main ingredient and it is a basic requirement for self-organising systems. In 

nature, interaction is needed to allow an agent to obtain information which is used to determine 

a response. Obtaining information from an interaction is a result of some kind of 

communication with the nearest neighbours or its environment. In the simplest case of flocking 

birds for example, the local information acquired in the interaction is simply the relative 

position o f other birds in the neighbourhood. This information is gathered directly without the 

need of direct communication, e.g.. bird to bird communication. It is also unnecessary for birds 

to leave some sort o f “marker” in the environment to communicate with the others in the flock. 

In the case o f foraging ants, ants also do not require direct communication with other 

individuals. However, ants leave behind in their tracks a type o f chemical substance called 

pheromones as an environment marker to communicate with other ants (Bonabeau et al. 1997). 

In cases like these (ants foraging and birds flocking), it demonstrates that only by having



indirect communication during an interaction is sufficient to produce complex behaviour. In 

many other cases, information usually transfers by direct communication. A well known 

example o f this type o f interaction is the dancing performance by some species o f bees. When a 

bee returns from foraging to the hive, the bee will perform a dance that conveys information 

about the approximate location of the nectar source (Bonabeau et al. 1999).

In biological. systems, random fluctuation is a common ingredient in boosting up self 

organisation performance. Many of these systems do actually rely on certain stochastic 

elements to some degree for behavioural flexibility. The amplification of fluctuation and 

randomness often leads to the discovery of new solutions. Moreover, these fluctuations will 

also act as seeds in which new solutions and structures can grow. A popular example of the 

random fluctuation is caused by stochastic trail following in ant colonies. In the beginning, the 

ants will follow trails imperfectly due to the low concentrations o f pheromone on the ground 

(Deneubourg 1983). But when an ant loses the trail and is lost in the environment, this ant has 

the potential to find an undiscovered food source. The newly found food could be a better food 

source than the currently being utilised by the colony. From this example, it shows that random 

fluctuations are also vital to the swarm systems.

Another common ingredient in self-organising systems is positive feedback or cumulative 

causation. Positive feedback promotes radical changes in the system by reinforcing it in the 

same direction. A commonly observed example o f positive feedback can be found again in the 

trail-laying in ants. When an ant finds food, it will leave behind a pheromone trail while 

returning to the nest. Others who find this trail will follow the trail to the food source, and they 

will reinforce the initial trail as they return to the nest. As the result o f positive feedback, the 

more ants that use the trail, the stronger the pheromone concentration will be.

Negative feedback in the self organising systems acts as a balancing mechanism o f the effect of 

positive feedback. In nature, the autocatalytic process usually requires an opposing force in 

most cases, otherwise the system will use huge amounts o f resources for a single particular 

activity. Negative feedback usually occurs due to the depletion o f limited individual or



resources. In swarm systems, the negative feedback can be in the form of saturation, exhaustion 

overcrowding, and even competition within individuals. In the case o f foraging ants, the 

negative feedback will come from the exhaustion of the food, overcrowding at the food source, 

competition between two or more food sources, limited number of available ants, and so on and 

so forth.

As there is no unique or satisfactory definition of self organisation, the summary above serves 

as a set o f heuristic rules to design or discover a self organising system.

In systems that lack self organisation, order or organisation can be imposed on them in many 

different ways. The order not only can come through the presence o f a supervisory team but 

through various directives such as pre-existing patterns in the environment as well.

1.3 Context
The origin o f the work that is presented in this thesis is intimately related to and emerges from 

the development o f the I-SWARM project (Intelligent Small World Autonomous Robots for 

Micro-manipulation), funded by European Union Information Society Technologies (1ST) 6th 

framework programme (FP6-IST project 507006) which began in January 2004 and completed 

at the end of 2008 (Woem et al. 2006). The project aims to take a leap forward in robotics 

research by bringing together experts and combining expertise in micro-robotics, in distributed 

and adaptive systems, and in self-organising biological swarm systems. The project also seeks 

to produce technological advances to facilitate the mass production of micro-robots, which can 

then be employed as a “real” swarm consisting o f up to 1000 robot agents. The agents that form 

the swarm will each be equipped with limited pre-rational on-board intelligence. The swarm 

will consist of a huge number of heterogeneous robots, differing in the type o f sensors, 

manipulators and computational power. Such a robot swarm is expected to perform a variety of  

applications in the not too distant future, including micro assembly, biological, medical or 

cleaning tasks.
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The main challenge in the I-SWARM project is to build a micro robot with the initial aim of 

achieving a size of 4mm3 (2mm x 2mm x 1mm) complete with sensors and manipulators. The 

work in the first phase was a joint effort of the partners in the Consortium to define the 

minimum capabilities of a micro robots which are able to self organise and able to have 

emergent behaviours. As the size is the main issue in the project, based on the robot hardware 

conceived, the behaviour of the robot is designed by using a bottom-up approach.

Figure 1.2: Artist impression o f  cooperation between I-SWARM m icrorobots

Each of the I-SWARM robot has three “legs” (two at the front and one at the back) made from 

special materials (electro-active polymers) as a locomotion unit. As the swarm needs a 

continuous supply of energy, micro solar cells and a thin film battery that acts as a buffer have 

been mounted onto the main platform. The onboard electronics consists of an 8051 micro 

controller core, analogue circuitry (for the power drivers for the actuators), and the A/D 

converters (for communication and sensor modules and power management). Optical 

communication using custom fabricated infra-red LEDs and photodiodes technology has been 

chosen as the communication mod for the I-SWARM robots. The communication range is set 

to about 2-4 times the size of the robot in four directions (front, right, back and left relative to 

the robot).
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At the time of writing, the I-SWARM robots have been manufactured as shown in Figure 1.3, 

with the final size of 27mm3 (3mm x 3mm x 3mm). The remaining tasks now are to program 

the robots so that they can exhibit some sort of intelligence and show some kind of emergence 

behaviours.

Figure 1.3: The final I-SWARM robot with dimension o f  3x3x3 mm3.

1.4 Structure of the Thesis
This rest of the thesis is organised as follows:

•  Chapter 2 gives background information and provides a literature review surrounding 

other research related to this thesis. These include some background studies in the 

biological, artificial intelligence and robotics field. An overview of the current state of 

the art in the field is also presented.

•  Chapter 3 introduces two robot swarm control algorithms which are used for 

distributed pattern formations. In these control algorithms, there is no explicit 

communication between agents and the pattern formations are formed based solely on 

reactivity of the agents towards its environments. Agents in this study have very little 

memory, limited sensor capabilities and processing power.
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Chapter 4 models collective movements or aggregations of robots swarms using simple 

flocking rules. From the' model, aggregation behaviours that emerge from the different 

movement models of relatively simple agents, which differ only in the maximum 

turning angle and sensing range, are examined.

Chapter 5 presents an original contribution on complex pattern formations of robots 

swarms by combining Lindenmayer Systems (or L-Systems in short) and genetic 

algorithms. In this study, it is shown that the pattern that is formed when connecting 

two locations can be achieved and represented using simply evolved L-Systems, 

provided each robot has the ability to interpret short strings of L-Systems that form the 

basic DNA of the formation.

Finally in Chapter 6, conclusions are drawn. The results and the performance of the 

algorithms are discussed. Additionally the contributions of the research are summarised 

and recommendations and directions for possible future research are proposed.
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Chapter 2 Literature Survey

2.1 Pattern Formations
Since the dawn of time, humans have been fascinated with the regular natural patterns that 

emerge around them -  social insects foraging, birds flocking, shepherding, not to mention, 

countless examples from physical systems such as the orderly rows of clouds and the 

washboard pattern of sand ripples in deserts.

In biological systems, groups of the same species of animals seem to move as a single unit, 

changing direction in a split second which has led some researchers to believe that some kind 

of communication or even “thought transference” must be involved as argued by Parrish & 

Edelstein-Keshet (1999). In reality this behaviour is less mysterious.

Many believe that birds must have leaders, e.g. the bird at the front of the flock leads and the 

others follow. But, in fact, most bird flocks do not have a leader at all. There is no overall 

control. Instead, the flock movements are determined by the instantaneous decisions of 

individual birds.

Birds follow simple rules in response to interactions with their neighbours in the flock. Orderly 

flock patterns arise from these simple rules, reacting to the movements of its neighbours. None 

of the birds have a sense of the overall flock pattern. The flock is coordinated without a 

coordinator and organised without an organiser.
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There are many reasons to believe why animals aggregate in numbers. The most common 

reason seems to be that it serves as a defence against predators. Having many eyes together 

ensures that at least some will spot a predator while the others are feeding, resting, or looking in 

the opposite directions (Vab0 & N0ttestad 1997)(Howard 1929). Parrish and Edelstein-Keshet 

(1999) pointed out that aggregation is actually an evolutionarily advantageous state: where it is 

believed that aggregation may increase the chances of survival of newborns and juveniles from 

being killed by predators, such that the reproduction of the species can be continued. Secondly, 

the aggregation also helps in the search for food; where a large number of individuals has more 

capability to sense and search than a single one.

In 1975, Powell conducted experiments on bird aggregation where he took a number of 

Starlings (a species of bird) and put them in an aviary. He then separated some of the birds on 

their own and some in a group of around ten. He made an artificial hawk and flew it over the 

Starlings and noticed that birds on their own took a longer time to react than in the groups. He 

concluded that even though it might be advantageous in some aspect for the Starlings to forage 

on their own, it is better for them to forage as a group and take turns in looking out for 

predators as they will be able to react more quickly in danger.

A number of the anti-predator strategies in schools of fish, such as split, join  and vacuole 

(Figure 2.1), performed by schools during predator attack are some of the most interesting 

behaviours in a swarm (Vab0 & Npttestad 1997). Another benefit of moving in formation is the 

dilution effect. The dilution effect is simply that the bigger the group size, the smaller the 

probability that each individual is attacked. Krause (1994) stressed that odd individuals are 

attacked first; however that does not mean that each individual is fighting to gain access to the 

safest location in the swarm. In 1994, Cress well observed and studied the behaviour of a 

species of bird called Redshanks. He found that once the group of the birds reaches a certain 

number, vigilance no longer has such a crucial effect on the group. He also realised that it 

actually became harder for an individual to be singled out by a predator for attack and some 

times by staying together it would even deter a predator.
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Figure 2.1: Schematic presentation o f  several anti-predator strategies in a school offish. (Taken from
Vab0 & N0ttestad 1997)

In the special case of flying in a V-formation by large birds such as geese and pelicans, there is 

an energy benefit (Lissaman & Shollenberger 1970), since following birds can take advantage 

of vortexes in the air produced by the ones ahead of them (Gould & Heppner 1974). Although 

such formations clearly have leaders, these are temporary ones. Because a leading bird does not 

gain any energetic advantage from its position, it will drop back after some time while another 

takes the lead. It is not known if flock members do this on a rotation basis, although it is 

possible that larger and stronger birds are in the lead a greater percentage of the time. 

Alternatively, the V-form may reflect a mechanism by which birds avoid collisions with other 

birds and stay in visual contact all the time (Gould & Heppner 1974). Additional background 

on biological swarms and why they aggregate can be found in (Parrish et al. 2002)(Hamilton 

1971) and references there in.
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2.1.1 Pattern Forming Paradigms

In designing artificial swarms, a variety of approaches have been proposed to create global 

behaviour or pattern formation of a group of mobile robots. Spears et al. (2005a) divided the 

approaches in to two significant paradigms; Biomimetics and Physicomimetics.

2.1.1.1 Biomimetics

Biomimetics is a general description for an engineering process or system that mimics 

(imitating, copying, or learning from) biological systems. The term emerged from biochemistry 

and applies to an infinite range of chemical and mechanical phenomena, from cellular processes 

to whole-organism functions. As an early example, the Wright brothers are said to have built 

their aeroplane structure based on observations and analysis of bird flight. However, 

researchers diverge in precisely how to define biomimetics. “Biomimetics” is often a vague 

term, much like the “intelligent” term.

In the field of swarm engineering, Reynolds was one of the first researcher to investigate 

behavioural control animation (1987). He developed a system to model flocking characteristics 

of birds and fishes. It was based on three dimensional computational geometry of the sort 

normally used in computer animation or computer aided design. He called the generic 

simulated flocking creatures as boids. The basic flocking model consists of three simple 

steering behaviours which describe how an individual boid manoeuvres based on the positions 

and velocities to its nearby flockmates. More detail about Reynolds's flocking algorithm will be 

described later on in the next section.

Based on the schooling behaviour of a group of tuna, Hanada et al. (2007) proposed an 

adaptive flocking algorithm. In this algorithm, an agent first dynamically selects two of the 

neighbouring agents within its perception range and maintains a uniform distance with them, 

resulting in three neighbouring agents form a regular triangle. As the number of agents grow, 

the group of agents will form an equilateral triangle lattice. Secondly, in the presence of 

obstacles, the swarm of agents is required to be divided into multiple smaller group in order to 

avoid the obstacles. The split takes place by the relative degree of attractive force termed
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favourite force, which is similar to Newton's law of Universal Gravitation, that helps agents to 

decide their direction in various environmental conditions. Based on the magnitude of favourite

vector /  , each agent decides where to move. A favourite vector / .  for the passageway sj

is defined by |/J  =  w Jd f  where wj is the width of the passageway and dj is the distance

to the passageway, as shown in the Figure 2.2. A set of favourite vectors { /  .| 1 < j< n \  is 

the representation of the passageways, and the agent will select the maximum magnitude of

/ .  denotes by | / 7|mrw:- By combining the above methods, the swarm agents are enable to 

split into multiple groups, and also can rejoin as a big group according to the environmental 

conditions.

Figure 2.2: Illustration o f  a direction decision according to an environment 
computation o f  magnitudes fo r  each favourite vector. (Taken from  Hanada et al.

2007).

Another recent example of research in this category is the “pherobots” or pheromone robot 

developed by Payton et al. (2004). Pherobots mimic chemical pheromones released by insects 

to produce sophisticated organised group activity that emerges out of the simple interactions 

between individuals. The key concept of pherobots is “Virtual Pheromones” which provide a 

diffusive local-neighbourhood interaction mechanism by which the robots communicate and 

coordinate. Unlike chemical pheromones released by insects in the environment, virtual 

pheromones are tied to the robots themselves. In addition, virtual pheromones.are propagated as 

symbolic messages and are received only by nearby neighbours. More detail about pherobots 

will be described later on in the next section (Swarm Robotics section).
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Bayazit et al. (2002) proposed using rule-based roadmaps to achieve better group behaviour. In 

this technique, first a roadmap as in Figure 2 3  is built. A roadmap is simply a connectivity 

graph encoding representation of feasible paths in the environment. Each node of the graph is a 

configuration of the robot that satisfies certain requirements, collision-free for instance. 

Connections between nodes of the roadmap graph represent feasible paths. Secondly, rules at 

each node are added. The rules may be as simple as “Go to next node in your path”; or can be 

as complex as “wait for others to arrive, then select a leader, follow the leader”. Their results 

show that the the performance of agents using rule-based roadmap behaviours is very close as if 

the agents have complete global knowledge of the arena.

O bstacle

O bstacle

bstacle

Figure 2 3 :  A roadmap. Black dots represent nodes; connections between nodes represent 
feasible paths, (taken from  Bayazit et al. 2002)

Bayazit et al. (2004) then extended their model to achieve different behaviours from their 

swarm robots. One of the interesting behaviours presented is shepherding between a dog and a 

flock of sheep. The dog agent tries to move the flock toward a goal, the dog steers the flock 

from the rear and if any subgroup separates out, it is the dog's job to move the subgroup back to 

the flock. Their work showed that complex group behaviours can be generated if some global 

information of the environment is available which can not be modelled with local information 

alone.
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In the European SWARM-BOTS project, the agents behaviours are directly inspired by the 

collective behaviour of social insects colonies and other social animal societies (Dorigo et al. 

2004a). In particular the project focuses on the study of the mechanisms which govern the 

processes of self-organisation and self-assembling in artificial autonomous agents.

2.1.1.2 Physicomimetics

Another approach to creating global behaviour of a group of mobile robots is called 

“physicomimetics” or “artificial physics” (Spears et al. 2005a). Physicomimetics is a general 

description for engineering processes or systems which gain inspiration from physical systems 

such as fluid flow analyses, Newtonian analyses and kinetic analyses. The key points in 

physicomimetics are:

•  Any aggregate behaviour seen in classical physics is potentially reproducible with 

collections of mobile robots.

•  Any design is not restricted to copying physical systems precisely, i.e. modifications 

can be made.

•  Understanding of classical physics can be used to synthesise the emerged collective 

behaviour.

In physicomimetics, the research is focused on robotics behaviours that are similar to those 

shown by solids, liquids and gases (Spears et al. 2005a). In solids, crystalline formation for 

example, is excellent for distributed sensing tasks, to create a virtual antennae or synthetic 

aperture radar. For such tasks it is important to maintain connectivity and a lattice geometry.

Liquids are good for obstacle avoidance or narrow passage traversal tasks, while moving 

towards a goal, since fluids easily manoeuvre around obstacles while retaining connectivity. 

Gases are useful for coverage, sweeping and exploration. For these tasks it is necessary that 

coverage can be maintained, even if with individual robot failures. Gas-like behaviours are 

created using purely repulsive forces.
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Cheng et al. (2005) proposed an algorithm for coordinating a swarm of homogenous mobile 

agents to spatially self-aggregate into arbitrary shape using only local interactions, which they 

called SHAPEBUGS. SHAPEBUGS consists of two main processes; trilateration and gas 

expansion movement. A trilateration process allows an agent to find its perceived position on 

the consensus coordinate system, and subsequently adjust it; while gas expansion movement 

model will force agents to disperse within the defined 2-D shape. The advantage of the 

algorithms are that; agents can easily aggregate into any user-specified shapes, using a 

formation process that is independent of the number of agents within formation; and secondly 

agents can automatically adapt to increase and decrease of agents, as well as accidental 

displacement.

Zarzhitsky et al. (2005) introduced a chemical plume tracing (CPT) method based on 

computational fluid dynamics. The algorithm itself is divided into three subtasks; starting from 

finding the chemical, then tracing it to the source using CPT method, and finally identifying the 

source. In finding the chemical, agent uses a method called casting, which consists of zigzag or 

spiralling motion to increase exploration coverage. In tracing the plume, first, the agents use 

gravitational forces (artificial physics) to arrange themselves into a hexagonal formation and 

form a mobile adaptive sensor network, so that agents could share real flow-field parameters of 

fluid dynamics with six of their closest neighbours. These flow-field parameters or variables 

are use to calculate the next navigational decision using the proposed technique called 

fluxotaxis. Fluxotaxis uses the concept of mass flux, which can be written in a differential

equation form as: —̂ £.= 'U .(0 y )  where p is the mass density of the plume, y  is the 
d t

fluid's velocity, and the product of p V is called the mass flux, or the rate of change of mass 

flow per unit area. With fluxotaxis, each agent in the robotic lattice computes the amount of 

local chemical flux p V  , passing through virtual surfaces formed by neighbouring swarm 

agent. In addition, fluxotaxis is designed to maximise the use of available sensor data by 

combining the fluid velocity and chemical velocity (Spears et al. 2005b). The final subtask is to
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identify the source of the chemical. They (Zarzhitsky et al. 2005) showed that their fluxotaxis 

algorithm is able to demonstrate statistically and practically significant gains in performance 

over other two most popular alternatives, i.e. chemotaxis and anemotaxis, even in an 

environment with obstacles. Even though their current results look promising, they have yet to 

include a more advanced turbulence model, learning the threshold of the plume / chemical, and 

increasing the number of obstacles.

By using what is described as social potentials techniques, Balch and Hybinette (2000) 

achieved large scale multi-agent formations. The technique was inspired by the crystal 

generation process. Each agent had local attachment sites attracted to other agents. When the 

swarm encounters obstacle, agents are able to avoid obstacle depending on the behaviour based 

rule combining the concept of an attractive and repulsive forces; i.e. repulsion from obstacles 

with attraction to the goal. The technique seems easy to implement however, the parameters 

need effort to adjust to perform successful flocking.

Spears and Gordon (1999) showed how to control swarm robot systems using a 

physicomimetics framework. Their initial application on solids based pattern formation, 

required that a swarm of micro-air vehicles (MAVs) self organise into a hexagonal lattice, 

creating a distributed sensing grid with a fixed spacing between MAVs (Kellogg et al. 2002). In 

liquids-based formation, they use the same approach as solids-based pattern formation only by 

changing the parameter that balances the attractive and repulsive components (Gordon-Spears 

& Spears 2002). The switch between the two behaviours (solid and liquid) acts very much like 

phase transition. In gas-based formations which are good for sweeping the arena, swarm robots 

must not only avoid obstacles but they must also sweep behind the obstacles to minimise holes 

in the coverage. In this case, the swarm robots must not move too quickly since it may cause a 

failure to sweep behind the obstacle, and they must not to move too slow. To achieve this, the 

optimum speed of the swarm robots has to be found (Spears & Gordon 1999).
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2.1.2 Organised Formations

Organised formations problem in a group of robots can be described as the coordination of the 

robots to form and maintain a formation of a certain shape, such as forming a line (Bahceci et 

al. 2003). Solutions for this problem are currently being used in search and rescue operations, 

space explorations and remote terrain, landmine removal, unmanned aerial vehicles (UAVs), 

control of satellites etc.

Various animal species also exhibit organised formation of patterns as a result of collective and 

cooperative behaviours amongst individual. Couzin and Krause (2003) state that, organised 

formations occurred when each entity in a group maintains a specific distance and orientation to 

each other while in motion. Examples of such organised formations include birds flocking, fish 

schooling and wildebeests migrating as shown in Figure 2.4.

The works/studies in organised formation can be broadly separated into two distinct categories: 

centralised and decentralised formation. Centralised formation is where there exists an entity or 

more, acting as a supervisor or controller which can oversee the whole group and command 

each individual in the group accordingly. A well known biological example of the centralised 

organised formation is that of the sheepdog in which the system acts as a controller that 

controls and guards the movement of the sheep herd.

The second category is decentralised organised formations. In this category, there is no 

controller or supervisor to control the organisation and coordination of each individual. Each 

individual in the group reactively plans its next movement usually according to physical cues 

within its local neighbourhood. These physical cues can be anything in the environment; such 

as obstacles, other individuals in the neighbourhood range, or may be the intensity of the light. 

Examples in this category include line formation by ants, flocking of birds and schooling of 

fish.
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Figure 2.4: Example of biological swarms, (a) Wildebeest herd grazing across Savannah Kenya (reproduced with 
permission from the Planet Earth Productions), (b) Wild parrots, wheeling in the sky, in Edgewater New Jersey, 
USA (reproduced with permission from Stephen C. Baldwin, brooklynparrots.com). (c) School o f Silverside fish 

(reproduced with permission from R. Kent Wenger)



2.1.2.1 Centralised

In centralised organised formation techniques, a computational unit can oversee the whole 

group of agents and plans the action of the group individuals accordingly (De La Cruz & 

Carelli 2006)(Tanner & Kumar 2005). The action that should be taken by each agent is then 

transmitted to the agent via some kind of communication methods. There are not many works 

done in this category, after all it will defeat the purpose of swarm robotics which emphasises 

decentralised control.

De La Cruz and Carelli (2006) proposed a controller for positioning and tracking the desired 

agent formation. It operates in a centralised way and consists of two stages. At first a complete 

dynamic of a unicycle-like mobile agent and its linear parameterisation is modelled. Then the 

input-output feedback linearisation of the model is performed. On the second stage, the model 

of multi-agent systems is obtained by arranging all the feedback linearised agent models into a 

single equation. This multi-agent model is expressed in terms of formation states by applying a 

coordinate transformation. Finally the inverse dynamics technique is then applied to design a 

centralised formation control; which can be applied both to positioning and tracking the desired 

agent formations. They proved their method by using physical agents where, the agent 

formation errors for distance and angle errors are 0.05m and 0.03rad respectively after 17.5 

seconds.

Tanner and Kumar (2005) introduced a navigation function through which a group of mobile 

agents can be coordinated such that they can form a particular formation, while moving in a 

group and avoiding collisions in the environment. In this approach, graph theory is used, where 

the properties associated with the interconnection graph are shown to affect the shape of the 

navigation function. The potential field produced by the function ensures that almost global 

asymptotic convergence of the agents to a particular oriented formation shape, while 

guaranteeing collision avoidance in the process. Although the proposed scheme is centralised, 

the potential function was constructed in a way that facilitates complete decentralisation.
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Other centralised methods commonly used for mobile agents can also be used for multi-agent 

systems. Such methods include the many path planning algorithms. In path planning, there are 

many algorithms that have already been proposed. The efficiency of an algorithm can usually 

be evaluated in 4 different ways (Russell & Norvig 1995):

1. Completeness: Does the search can find a solution?

2. Optimality: Does the search can find the optimal solution?

3. Time complexity: How long is the time taken to complete the solution?

4. Space complexity: How large memory is needed to perform the search?

Path planning searches can be divided into two distinct categories, heuristics and stochastic 

searches. Heuristic search strategies use problem specific knowledge beyond the definition of 

the problem itself, thus can find solutions more quicker more efficient compare to stochastic 

search strategies. The are many well known heuristics search algorithms, which include the A* 

search (A-star search), Greedy best-first search, Memory-bounded heuristic search, Recursive 

best-first search (RBFS), and so on. However in this thesis, only the A* search will be 

introduced briefly, as it will be used as one of the basis for comparisons in one of the three 

contributions presented.

The A* search is one of the most widely used search algorithms. It is a best-first, graph search 

algorithm that calculates the least-cost path from a given initial node to another node. The 

nodes are evaluated by:

f(n) = g(n) + h(n) (2.1)

where g(n) is the cost to reach the goal, and h(n) is the cost to get from the node to the goal. 

Since g(n) gives the path cost from the start node to node n, and h{n) is the estimated cost of the 

optimum (cheapest) path from node n to the goal, then tht  fin) is the estimated cost of the 

cheapest solution through node n. For that reason, the optimum local solution is the node with 

the lowest value of g(ri) + h{n)\ provided that the heuristic function h{n) satisfies certain 

conditions.
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It uses a distance-plus-cost heuristic function (usually denoted f(x)) to determine the order in 

which the search visits nodes in the tree. The distance-plus-cost heuristic is a sum of two 

functions: the path-cost function (usually denoted g(x), which may or may not be a heuristic) 

and an admissible "heuristic estimate" of the distance to the goal (usually denoted h(x)). The 

path-cost function g(x) is the cost from the starting node to the current node.

2.1.2.2 Decentralised

Studies on organised pattern formations in a decentralised way are receiving increased attention 

in recent years. There are two distinct approaches to the coordination and organisation of multi­

agent systems reported in the literatures; the first is the behaviour based approach, and the 

second is the leader-following approach.

Behaviour based approach

In.the Behaviour based control approach, the systems often use relatively little internal variable 

state to model the macroscopic behaviour. The controllers consist of a selection of behaviours 

that maintain and/or achieve goals (Mataric 1999). For example, “collision-avoidance” will 

maintain the goal of preventing collisions and “homing” will achieve the goal of reaching some 

home destination. In more complex behaviours, some primitive behaviours of agents such as 

“collision-avoidance” and “goal seeking” are predefined, and the final formation control of 

agent is derived from a weighting of the relative importance of each behaviour. The advantage 

of the approach is that the group dynamics contain formation feedback by coupling the 

weightings of the actions taken. The disadvantages are that the group behaviour cannot 

explicitly defined, and the dynamics of the group are unpredictable making it hard to guarantee 

the stability of the whole systems (Takahashi et al. 2004),

Freeman et al. (2006) proposed an algorithm called the “distributed estimation algorithms” 

which allow agents in a communication network (or neighbourhood) to maintain the estimates 

of summary statistics describing the shape of. the current swarm. In this study, each agent is 

able to control and organise its velocity and acceleration and also sense its own position, and 

exchange information with other agents within its neighbourhood. As a result, the agents form a
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communication graph with changing topology as the agents move. Each agent implements an 

estimator that maintains an estimate of the current swarm formation statistics, based on its own 

sensed data and information received from neighbours, and a nonlinear motion control 

algorithm.

Nouyan et al. (2006) introduced the concept of chains with cyclic directional patterns; CDP- 

chains in short. CDP-chains are a method in robotic exploration of unknown environments. 

These chains are serve to explore the arena and establish a path between two points; food and 

home. Furthermore, the CDP-chains are also recruiting other agents to the food along formed 

path, and guide them to transport the food back to the home.

Desai (2002) proposed a graph-theoretical framework to control a team of agents moving in an 

arena with obstacles while maintaining a specific formation. The framework uses control 

graphs to define each agent behaviour or movement in the formation. The framework can also 

handle transitions between any two of ‘the control graphs while avoiding obstacles. The 

complexity of computations for control graphs increases with the number of agents in the arena, 

however due to the facts that computations are decentralised, the framework described is 

scalable to a large group of agents.

Fierro and Das (2002) proposed another graph-based technique to tackle moving formations of 

a group of agents. They proposed a four-layer modular architecture for formation control 

namely, group control, formation control, kinematic control and dynamic control. Above all, 

group control layer is the highest layer which generates desired trajectories for the whole group 

to move. Formation control of a team of agents is built from three different networks namely 

physical network, communication network and computational network. It maintains the 

formation by using local communication and relative position information.

The kinematics control layer computes the required and angular velocities of agents. The 

dynamic control layer will finally deal with the task of realising the necessary speeds given by 

the kinematics control layer. The four-layer architecture represents an abstraction amongst tasks
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required at different levels. For instance, agents with different dynamics such as mass, inertia 

and friction, can be used by changing the dynamics control layer on-the-fly, which in the end 

will promote reusability of the architecture. The reusability property makes the architecture 

very attractive for formal control applications, and will promote robustness to the systems.

Kaminka and Glick (2006) designed a multi-graph monitor framework for organised formation 

controllers that optimises the desired properties, for instance sensor usage for robustness..The 

framework consisted of two main strategies: cost optimal formation control graphs and 

dynamic switching of control graphs. Cost optimal formation control uses graph theoretics 

techniques that can be used to compute sensing policies that maintain a given organised 

formation, whilst dynamic switching of control graphs is a protocol allowing controllers to be 

switched on-line, to allow agents to adapt to sensory failures. Their results show that the use of 

dynamic protocol will allow formations of physical agents to move significantly faster and with 

greater precision whilst reducing the number of formation failures.

Yang et al. (2007) described an approach for controlling organised formations of multiple 

wheeled agents with parametric uncertainties and actuator saturations in the environment with 

obstacles. In this approach described, firstly, a collision-free trajectory is generated by 

introducing a non-con vex optimisation problem. If the agents following the trajectory find that 

they are moving close to an obstacle, a new trajectory will then be generated by solving the 

optimisation problem under convex, obstacle assumption. Secondly, to keep the agents tracking 

the reference trajectories or formations, a distributed moving horizon control scheme is used. 

Under this scheme, the whole optimisation problem is divided into several simple optimisation 

problems according to the number of cooperative agents, thus reducing complexity of the 

computation. Furthermore, close-loop properties inclusive of stability and robustness are 

guaranteed.

Pavone and Frazzoli (2007) developed a distributed control policy that allows agents to achieve 

different symmetric formations. The proposed scheme is inspired by the cyclic pursuit strategy, 

which is an attractive approach since it is decentralised and requires a minimum number of
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communication links between agents to achieve organised formations. The proposed control 

policy generalises the notion of a classic cyclic pursuit algorithm by letting each of the agents 

pursue its leading neighbour along the line of sight rotated by a common offset angle. The key 

features with this method are stability of the systems and the possibility to achieve many 

different formations with the same simple control law.

Mastellone et a l  (2007) introduced a control scheme that achieves dynamic formation control 

and collision avoidance for a group of nonholonomic agents. At first, for collision avoidance 

and tracking of a reference trajectory for a single agent, a feedback law using Lyapunov-type 

analysis needs to be derived. Secondly, by extending the derived result to the case of multiple 

nonholonomic agents, different classes of multi-agent problems involving an interacting group 

of nonholonomic agents such as formation control can be addressed. Finally, by combining the 

previous results, the problem of driving a group of agents according to a given trajectory while 

maintaining a specific formation can be addressed.

Cohen and Peleg (2006), studied and proposed a local spreading algorithm for mobile agents in 

1-D and 2-D. In the study, oblivious or memory-less agents are used. The goal in this study is 

to spread N  agents evenly within the perimeter of a given region. The algorithm for local 

spreading states that:

•  first, each agent must first move to somewhere or some point so that it is at an equal 

distance with neighbours;

•  secondly, the agents must move until there is no visible neighbour in the range.

For both 1-D and 2-D, at every time step it will calculate the average over all agents of the 

minimum distance to the nearest “object” (agent); (d„v) is defined as follow:

d„ = (2.2)
N  i j* i

where the object considered in taking the minimum are all other agents and all points of the 

perimeter of the region. The next task is to move the agent to a point so that the agent will not 

perceive others within its vicinity.
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In 1-D local spreading, agents are refer to according to their order on the line, and denote the 

position of each agent as i , 0 < / < N — 1, at time t, in the global coordinate systems by Ri[t]. 

The spread algorithm for agent in 1-D spreading is as follow:

•  If no other agents are in sight, then do nothing.

•  Otherwise, move to the point ------ ------- .

In 2-D of local spreading the algorithm becomes a bit complicated. The algorithm is based on 

each agent i, dividing space into four quadrants Qo to Q3, according the orientation as shown in 

the Figure 2.5. The spread algorithm for agents in 2-D spreading is given as follows:

•  For j  =  0 ,..., 3 do:

(a) nij <- coordinate of nearest agent or perimeter point in quadrant Qj.

(b) dj ■*- dist(i, nij)

•  q < -argmmj {dj}-,dmm = mrnj {dj}\ dopp = d3.n

^ ^
•  Move away from the current location by ——— — m .

(I ■“ mm

111

Figure 2.5: The four quadrants o f  agent's view. (Taken from  Cohen and Peleg 2006)

Sun and Wang (2007) described a synchronous control approach to swarms of mobile agents in 

switching between different organised formations. At first, a position synchronisation error is 

defined as differential position error between every pair of two neighbouring agents; and it is 

derived according to the desired formation. Then a decentralised trajectory tracking controller 

is developed with feedback of position and synchronisation error. The developed trajectory
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tracking controller is proven and guarantees that asymptotic convergence towards zero of both 

position and synchronisation errors. From their simulation, the results demonstrate the 

effectiveness of the proposed synchronous control design for the formation control.

Antonelli et al. (2005) proposed a technique for formation control of multi-agent systems. The 

proposed technique which they named Null-Space-Based Behavioural Control, is a behaviour 

based technique which aimed at coordinating a group of mobile agents while performing 

different missions. The missions are firstly decomposed into several elementary tasks and, for 

each of the task; a motion reference command for each agent is elaborated referring to a 

kinematic approach. The technique is then combined with the output required by each task in 

order to obtain the final motion command for each agent. In properly handling multiple, 

eventually conflicting tasks, it uses a hierarchy-based approach that uses the null-space 

projection. From their simulation results, they showed that null-space-based behaviour control 

offers the advantage to ensure the achievement of the output of the higher-priority task without 

being affected by the output of lower-priority task (Antonelli et a l 2006, 2007). However, due 

to its analytical nature, the proposed technique needs the definition of a suitable task function 

that admits computation of a proper Jacobian, which may be obvious for some tasks.

Nguyen and Do (2006) proposed a constructive method to design cooperative controllers based 

on local potential functions. The cooperative controllers are the controllers that force a group of 

mobile agents to achieve organised formation while avoiding collisions with other agents. 

Firstly, simple point-mass agents are considered to clarify the design philosophy. The technique 

is then extended to non-holonomic agents, and finally local potential functions are constructed 

to design gradient based cooperative controllers. This cooperative controller is designed to 

achieve almost global asymptotic convergence of a group of mobile agents to a particular 

formation in term of both shape and orientation, with a guaranteed of no collision between 

agents.

Avrutin et al. (2007) introduced the concept of connecting objects via random growing trees 

(RGT) in swarms of agents. In the working arena, there are at least two objects in addition to



swarm agents. One of the object is labelled the base and the others is the target objects. The 

goal is to “bridge” or connect the base and target objects by using the swarm agents. At the 

beginning, agents are uniformly distributed over the arena. The bridging task consists of finding 

every object, encircling the objects, and connecting them (goal-target) by lines of agents that 

should be as short as possible. The RGT approach can be split into three main phases:

•  Exploration: Agents explore the arena, looking for objects (goal or target) and encircle 

the object.

•  Formation of trees: Position one chain at the circle around the object and begin to build 

a tree out of chains using open end of this first chain as the root.

•  Reduction of the tree: After all objects have connected to every other object, unneeded 

chains have to leave the tree. By doing this, the remaining lines of agents should be 

reduced to the minimal necessary number of agents needed to connect the objects.

As an addition, the formation of a first tree may already begun at one object whilst another one 

(object) has not been found yet.

Leader-follower approach

In the leader-Tollowing approach, some agents will act as leaders while others as followers. The 

leader agents track predefined reference trajectories, and the followers track transformed 

versions of the states of their nearest neighbours according to some given methods or schemes. 

The advantage of this approach is that it is easy to control multiple agents in a desired 

formation using only two different controllers and it is suitable for describing the formation of 

robots (Takahashi et al. 2004). Furthermore it is easy to understand and implement; even if the 

leader is perturbed by disturbances, the formation can still be maintained (Nguyen & Do 2006). 

The disadvantages in this approach includes the difficulty to consider the ability gap of an agent 

(Takahashi et a l  2004), there is no explicit feedback to the formations and if the follower is 

perturbed, the formation cannot be maintained (Nguyen & Do 2006).

Das et al. (2002) studied and proposed a vision-based framework for the development of non­

holonomic multi-agent systems by composing simple sensing, estimation, control, and
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coordination blocks in a bottom-up approach. The framework allows the designers to build 

complex multi-agent systems especially for leader-following structure algorithms from simple 

controllers and estimators. The main key. features of the approach are a suite of control and 

estimation algorithms, and a model for switching that allows a group of agents to maintain a 

prescribed formation. The switching model will also allow the agent to change its formation in 

the presence of obstacles.

Takahashi et al. (2004) proposed a controller which is based on the ability of agents to use the 

leader-following strategy organised formation. The proposed scheme consists of three steps. 

First, a performance index for each agent, such as maximum acceleration, maximum velocity. 

and maximum torque of a motor, is quantified. Secondly, based on the performance index or 

based on the ability of the agent, a new controller is then proposed. Finally, for collision 

avoidance, a compliance controller using virtual repulsion was proposed. Takahashi also 

showed that by using the proposed scheme, agents in leader-following formation can keep the 

formation even if the leader is changed.

Javaid et al. (2004) proposed a distributed control algorithm where organised formation of 

agents can be grown dynamically by using local sensing and minimal communication. In this 

algorithm, the controller on each agent consists of four different behaviours namely, leader, 

wanderer, member and candidate. The leader agent is predefined whenever the system is 

initialised. The leader will maintain the formation and heading, where only the leader knows 

the goal information. For the wanderer, the agent is programmed with the behaviour where its 

task is to look for the formation. The member agent, is programmed with the behaviour when 

the agent is part of the formation; when this behaviour is active, the agent will follow its 

immediate leader and maintain a fixed distance to it. Candidate, is the behaviour when an agent 

finds the formation and communicates with the other group members that it is going to attach 

with in the formation. The communication between a candidate and its neighbour or immediate 

leader is used for information exchange that consists of the type or shape of the formation, the 

number of agents currently in the formation, maximum number of agents allowed for the
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formation, and any other formation parameters (radius of the circle for instance). Once all the 

necessary information is obtained, the agent will calculate its pan angle to keep in view of its 

neighbour and the distance from it. The formation of agents grows from a single agent to a 

maximum possible number of agents while in motion. The first agent, i.e. the leader, are 

predefined as mentioned previously. Others will try to join or make formation with the leader. 

Whilst in the formation, agents will try to maintain a regular polygon shape and hence make a 

virtual circle if the number of agents in the formation is adequate. The control algorithm is 

minimal but lacks the ability to maintain formation in the existence of obstacles.

Gustavi and Hu (2005) proposed control algorithms for multi-agent systems with limited sensor 

information. The proposed control algorithms are only based on agents with local information 

and without global knowledge. In the first algorithm, vertical tracking is designed such that the 

follower agent follows the leader agent's trajectory while maintaining the distance towards the 

leader. In the second algorithm, horizontal tracking is designed to make the follower agent 

move side by side with the leader agent at some predefined distance while maintaining same 

orientation as the leader agent. The third control algorithm is combination of vertical and 

horizontal tracking; in this algorithm Gustavi and Hu showed that by combining the first two 

algorithms, more complex multi-agent organised formation can be formed. However, the 

stability of the systems which can be affected by switching between the first two different 

algorithms yet remain to be shown.

Li et al. (2006) focused on the leader-follower type of organised formation control algorithm of 

multiple differential-driven wheeled mobile agents. The proposed control strategy is derived 

from the dynamics of the agent directly. The control strategy takes the acceleration ability of 

the agent into account and uses only its local sensing data and small data communication to 

achieve organised formation control. From the experiments shown, whenever the leader agent 

tracks different trajectories, the follower agents can always adjust itself to form the desired 

formation as quickly as possible, and it will maintain the formation stably over time. From the 

extensive experiment done by Li et a l, it shown that the method is quite effective for formation
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establishing and stable for the formation within their abilities.

Chen et a l  (2007) proposed a decentralised formation control system based on dynamic 

regulations and scheduling scheme. From the simulations of a typical leader-following triangle 

formation (or V-formation), the trajectory of the group dan be calculated in advance or can be 

planned in real time by the leader. The leader approaches its desired goal in an arc-type 

trajectory, therefore the real trajectory, being piecewise-smooth, can be obtained. Furthermore, 

the followers adjust and maintain the formation shape with the piecewise-smooth arc trajectory 

as well. While maintaining the formation shape, the control regulation switches internally 

between OTR (Offset regulation) and SDR (Spacing distance regulation) depending on the 

dynamic formation framework of the formation. Thus it promotes adaptability which is very 

attractive in the multi-agent systems.

Sorensen and Ren (2007) introduced a unified formation control scheme using the leader- 

follower approach with consensus-based formation control. In this scheme, an agent requires 

only local neighbour-to-neighbour information exchange. In addition, an extended consensus 

algorithm is applied to estimate the time varying group trajectory information in a distributed 

manner. A consensus-based distributed formation control strategy is then applied to each agent 

based on the estimated group trajectory information. Sorensen and Ren also studied the effect 

of the multiple group leader and found that by increasing the number of group leaders within 

the formation, agent estimate of the formation state is improved and the system is robust 

against single point failure.

Fredslund and Mataric (2002) used a neighbour referenced method, where each of the follower 

agent keeps a single “friend” at a desired angle 0, using some appropriate sensor. The angle 0 is 

predetermined in a particular type of geometric pattern. When agents flock, a leader will 

navigate a path while the follower agents maintain the angle and distance to their neighbours.

Parker et a l  (2004) proposed a tightly-coupled cooperation in heterogeneous agents performed 

by two different types of agents, namely leader and simple, agents. In this strategy, leader

32



agents which have rich sensing capabilities assist simple agents with limited capabilities for 

navigation and obstacle avoidance. But such a strategy makes the leader more costly and the 

team becomes less robust to the failure of the leader.

2.2 Definitions

2.2.1 Intelligence

Kennedy et al. (2001), in their book, stated that:

“Intelligence is a word usually used to describe the mental abilities o f  

humans, though it can be applied to other organisms and even to inanimate 

objects like computers and computer programs. There is very little 

agreement amongst psychologists and amongst computer scientists about 

what this word means, and almost no agreement between these two 

groups

Fogel (1995) claims that a good definition of intelligence should apply both to humans and 

machines equally well, and believes that the concept should apply to evolution as well as to 

behaviours perceptible on the human time scale. Fogel concluded in his paper that intelligence, 

whether in an animate or inanimate context, can be defined as the “ability of a system to adapt 

its behaviour to meet its goal in a range of environment”.

The discussion of intelligence in computer science is often intertwined with the Turing Test 

(Turing 1950). Turing gave intelligence a simple definition:

“intelligence is fundamentally the ability to solve problems, particularly 

unusual or new problems

The Turing test itself sounds simple enough where a subject is placed in a room with a 

keyboard and a monitor, while in another room there is a computer and a person. The subject 

will then type questions into the keyboard and receives a reply from the other side of the room. 

A summary of the test is: if the subject is unable to tell if the computer's responses were
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generated by human or the machine, then the machine is considered intelligent (Kennedy et al. 

2001). This test has been subject to different kinds of criticism and has been at the heart of 

many discussions in AI, philosophy and cognitive science communities for the past 50 years.

Beni (2005) commented on an example of a manufacturing plant, in which a manufacturing 

machine which produces a mechanical piece for a car in an ordered manner but in a predictable 

way is not considered as intelligent. Likewise, even the rolling of dice where the outcome is 

unpredictable and does not produce order is not considered as intelligent. He then concluded 

that, the main characteristics of intelligent behaviour is the production of something ordered 

and the outcome should not be predictable, i.e. emergent intelligent behaviour.

Dorigo and Schnepf (1993) believe that intelligent behaviour cannot be created in artificial 

systems without the ability to interact with a dynamically changing unstructured environment. 

They added that cognition of the robot emerges only when autonomous systems try to impose 

structure on the perceived environment in order to survive. These structures in turn provide the 

ground work for more intelligent behaviour such as; the skills to learn, the emergence of goal- 

directed behaviour and the development of problem-solving methodologies. These basic 

cognitive skills have been developed as part of the evolutionary process, and unlikely to have 

been present in biological systems from the beginning of the life.

The research in this thesis address the problem of pattern formation of robot swarms or swarm 

systems. Earliest work on Swarms comes from the research on social insects. Biologists have 

been inspired by cooperative behaviours of insects like ants and bees, which led to intense 

research on their behaviours. The central to the swarm systems are decentralisation and self­

organisation which promote the emergence behaviour.

To date, there many definitions of intelligence have been defined by several groups. The work 

in this thesis is related to robot swarms or swarm systems. As this thesis is related to swarm 

systems, this thesis defines brief definition of intelligence as:

“the ability to solve problems in unpredicted w ay”.
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2.2.2 Swarm Intelligence

Insects that live in colonies such as ants, bees termites and wasps have been living on earth for 

millions of years, building nests, organising production and foraging for foods. It has been 

known that they care about order and cleanliness. They have a simple communication 

mechanism and warning system, maintain an army and divide labour. In addition, they are very 

flexible and can adapt well in the changing environment. This flexibility makes the colonies 

robust (Bonabeau et al. 1999).

In 1989 when Beni and Wang were investigating the properties of simulated, self-organising 

agents in the framework of cellular robotic systems, they introduced the concept of Swarm 

Intelligence (SI). SI is an artificial intelligence technique based around the study of collective 

behaviour in decentralised, self-organised systems. It is composed of unintelligent individuals, 

but the group demonstrates complex behaviours (Bonabeau et al. 1999). Such systems are 

typically made up of a population of simple individuals which interact locally with one another 

and with their environment which lead to the emergence of global behaviour.

The main feature of self-organisation is that a system's organisation or movement does not 

explicitly depend on external control factors. In other words, the organisation emerges solely 

due to the local interactions between individuals and their environment (Camazine et al. 2001). 

The organisation can evolve dynamically either in time or space and can maintain some kind of 

stable form or can show transient phenomena. An example of such a system is that of a colony 

of ants sorting eggs without any particular ant knowing the sorting algorithm itself (Bonabeau 

et al. 1999).

Like the word intelligence, the definition of emergence (or emergent behaviour) has attracted 

the attention of some researchers'. Taylor (1990) asserts that the emergent properties are 

collections of units at a lower level of organisation and, through their interaction, often give rise 

to properties that are not the mere superposition of their individual contributions.
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Steels (1991) describes “emergent functionality” as a function that is not achieved directly by a 

component or hierarchical system of components, but indirectly by the interactions of more 

primitive components amongst themselves and with the world. Mataric (1993) defines 

emergent behaviour for swarm intelligence as follows:

“emergent behaviours is apparent by global states which are not explicitly 

programmed in, but it results from local interactions amongst individuals. It 

is considered interesting based on some metric established by the 

observer”.

Despite several differences in the definition of emergence, one common theme connects all 

these definitions in the Al (Artificial Intelligence) community, i.e. emergent behaviour occurs 

as a result of local interactions amongst individuals and between individuals and their 

environment.

Many social insect societies exhibit interesting complex behaviours in organising themselves to 

perform specific activities such as foraging and nest building. Cooperation amongst individuals 

arises through an indirect communication mechanism, called stigmergy and by interacting 

through their environment (Holland & Melhuish 1999).

Stigmergy is a word coined by the biologist Grasse in the 1950s. The word itself was used to 

explain the task coordination and regulation in the context of nest building by termites. In 

termites nest building activities, Grasse showed that the activities do not depend on the 

individual workers themselves but mainly are achieved by the current nest structure. The 

current local nest configuration is of course was configured by the previous termite activity in 

which will trigger the current activity or configuration of the local area of the nest. The 

configuration will then again stimulate the response of a same termite or a different one in the 

colony.

Although there is normally no centralised control structure dictating how individual agents 

should behave, local interactions between such agents often lead to the emergence of collective
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behaviour. Such systems can be found in nature and include ant colonies, bird flocking, fish 

schooling, animal herding, bacteria moulding etc.

Interactions between individual insects in social insect colonies have been well documented. 

Some examples of such behaviours are bee dancing and ants' pheromone trail-laying during 

food foraging. These simple communication systems between insects lead to the collective 

intelligence of social insect colonies.

Take ants as an example. First, an ant takes a bite from a food source and then wanders off. 

After a short while, lots of ants will begin to queue in neat lines to and fro, following what 

seems like the shortest route between the food and the nest. It seems like ants have some kind 

of higher intelligence, and yet ants only have several hundred neurons to help them consider 

what to do next. In fact, ants do not plan, they just react to their environment (Bonabeau et al. 

1999).

Many ant species have trail-laying and trail-following behaviour when foraging. When an ant 

stumbles across a piece of food, it does not remember where it is, it just deposits a chemical 

trail using pheromones as it moves from food source to its nest. To find food, others will follow 

these trails (Franks et al. 1991). At first, ants choose between a long and short path at random, 

but because more ants travel the shorter path in a given time, the pheromone trail reinforces the 

pheromone signal. This will become the favoured path. This method of using the world as a 

memory bank is the aforementioned stigmergy. The process where an ant is influenced towards 

a food source by another ant or by a chemical trail is called recruitment. Recruitment based 

solely on pheromone trails is called mass-recruitment (Franks et al. 1991).

As with ants, the self-organisation in honeybees is also based on relatively simple rules of 

individual insect behaviour. The rules specify that the interactions amongst the system's 

constituent units are executed on the basis of purely local information, without reference to the 

global pattern. This is an emergent property of the system rather than a property imposed upon 

the system by an external ordering influence.
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Self-organisation of honeybees is based on simple rules of individual insect behaviour (Von- 

Frisch 1968). When a bee finds a nectar source, it then goes back to the hive and relinquishes 

its nectar to a hive bee. Each hive has a so-called dance floor area in which the bees that 

discover nectar sources dance in a way to recruit and convince their hive-mates to follow them. 

After the nectar is exhausted, the bee can either:

•  abandon the food source and become an uncommitted follower again, or

•  continue to forage at the food source without recruiting hive-mates, or

•  dance and thus recruit the hive-mates before it returns to the nectar source.

The dance is a communication mechanism used for recruitment in honeybees, in which the 

information about distance, location and quality of a nectar source is also transmitted.

Within the dance area, the bee dancers “advertise” different food areas. The mechanism by 

which a bee decides to follow a specific dancer are yet to be well understood, but it is always 

considered that the recruitment amongst bees is always a function of the quality of the food 

source (Camazine & Sneyd 1991). From the experiments conducted by Camazine and Sneyd 

(1991), they confirm that not all bees start foraging simultaneously, but begin foraging at a rate 

proportional to the difference between the eventual total and the number presently foraging.

By writing programs that model the natural behaviours of swarming animals or insects, 

programmers in the field of Computer Science can solve many complex problems. In swarm 

applications, the agents working on the problem usually have no knowledge that a problem 

even exists, they are in fact just continuing with their “natural” behaviour, and it is that 

behaviour that helps solve the problem.

In recent times, many researchers have shown an increasing interest in building multi-robot 

systems or, on a much larger scale, robot swarms. Unlike other studies on multi-robot systems 

in general, swarm robotics emphasises self-organisation and emergent behaviour in a large 

number of agents whilst promoting scalability, flexibility and robustness of the system by only 

using limited local capabilities. This also requires the use of relatively simple robots, equipped 

with limited communication mechanisms, localised sensing capabilities and the exploration of



decentralised control strategies.

2.3 Swarm Robotics
Swarm robotics is a new approach for the coordination of multi-robot systems which consist of 

large numbers of relatively simple physical robots. The goal of this approach is to study how 

relatively simple physical embodied agents can be constructed to collectively accomplish tasks 

that are beyond the capabilities of a single agent. Sahin (2005) gave a formal definition of 

swarm robotics as follows:

“Swarm robotics is the study o f how a large number o f relatively simple 

physically embodied agents can be designed such that a desired collective 

behaviour emerges from the local interactions amongst agents and between 

the agents and the environment".

Cao et al. (1997) suggest that the earliest study on swarm robotics was started in the early 

1970s, although there was limited interest in the area. At the time, coordination and interaction 

of multiple agents were being focused in the field of distributed artificial intelligence, DAI for 

short (Cao et al. 1997). However the investigations were limited to the problems involving 

software agents. This tendency remained until the late 1980s, when roboticists began to explore 

cooperative robotic systems (Arai et al. 2002).

One of the earliest studies in the cooperative robotics field was related to cellular robotics 

systems. Cellular robotic systems such as CEBOT (CEllular roBOT) was initially studied by 

Fukuda et al. (1989). The CEBOT system is a robotics system which consists of several 

homogenous agents in the system. The agents, which they refer to as “cells” can make 

connections and separations between them, which in turn will reconfigure the structure of their 

systems. Moreover, the system is able to reconfigure itself into an optimal structure depending 

on purpose and environment.
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Unlike other studies on distributed robotic systems, in general, swarm robotics emphasises self­

organisation and emergence in large numbers of robots and promotes scalability and robustness 

by using only local communication. These emphases promote the use of relatively simple 

robots, equipped with scalable communication mechanisms, localised sensing abilities and the 

exploration of decentralised control strategies.

Moshtagh et al. (2006) developed vision-based control laws for flocking on non-holonomic 

swarm agents. In this approach, agents are fixed with a camera that has a fish-eye lens capable 

of seeing the entire surrounding of the agent (with a field of view of 360°) for visual 

measurements of velocity alignment. The controller will need the values of bearing, optical 

flow and time-to-collision, all of which can be measured from images taken from the camera. 

From their simulation results, there are visible differences on the convergence rates between the 

noise free and noisy environments. For the noisy environment, a Gaussian random noise was 

added to the measurements of bearing.

Esposito and Dunbar (2006) controlled the coordination of swarm agents towards multiple sub­

goals while maintaining some range of wireless connectivity with a line-of-sight constraint 

between agents in the presence of obstacles. To solve the problem, they proposed a method for 

composing multiple potential functions, which indicate a set of possible input directions into a 

single feasible movement direction from the condition that the state vector of the agent 

approaches the minima of the potential function.

The first potential function is the Navigation Function. The Navigation Function is the basis for 

ensuring the goal completion portion of the problem (g-></) is at least achieved. Generally, 

Navigation Functions are artificial potential fields that simultaneously provide obstacle 

avoidance, and almost always, convergence to a goal configuration. The Navigation Function 

for agent i is define as follow:

[S„„,.., _ d2{qj,q{)
ldt ( q„q( )+n%0d(q:,Oj )]' (2-3)

Where Oj is obstacle j, Oo is the boundary of the workspace, d(qu qj) denotes distance of agent
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qi and agent qj, and k is a parameter. The parameter k must be selected to be high enough so that 

all local minima, except at qf  disappear.

The second potential field is the range. The range between agent g, and qj is define as follows:

0 \i d ( q i , q j ) < p max
(2.4)

d 2{<li>q j ) —p 2max otherwise

Where p max is the maximum range of agent qt and agent qj. The potential only possesses 

minima at configurations where the constraints are satisfied, but is not strictly a navigation 

function.

The third potential is the Line-of-Sight (L.O.S.). If two agents qi and qj are in danger of loosing 

sight of each other, it means that one of them (e.g. agent qi) is occluded from the other's (e.g. 

agent qj) view by an obstacle. The line connecting the two agents at the last time when L.O.S. 

was satisfied is referred to as the occlusion line, OL. The line of sight constraint is enforced by 

a following potential:

0 m l o .s .
(2.5)

d 2(q- ,OL) otherwise

Where d2(qt, OL) denotes the distance from agent qt to the occlusion line. The potential only 

possesses minima at configurations where the line-of-sight constraint is satisfied, but does not 

serve as a proper Navigation Function.

In the technique described above, all the agents must pass on the same side of an obstacle for 

the agents to remain connected. In order for all the agents to remain connected, the swarm must 

either have a leader of some sort, or some on-line method for achieving consensus on which 

path to take. Another consequence of this technique is that due to the existence of saddle points, 

the swarm is occasionally unconnected.

With the recent technological advances, the development of swarm robotics is becoming more 

and more feasible. There are already a number of on-going and completed projects that aim to
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develop and/or control large numbers of physically embodied agents. Such projects are 

discussed herewith.

2.3.1 The Autonomous Nano-Technology Swarm (ANTS)

The Autonomous Nano-Technology Swarm (ANTS) is a project funded by NASA (National 

Aeronautics and Space Administration, USA) (Curtis et al. 2000). In this project, the mission is 

to develop a swarm of autonomous satellite agents that will search the asteroid belt for asteroids 

with specific characteristics. There will be around 1000 agents involved. Each agent will have a 

high degree of total or near total autonomy. The social structure of agents is based on hierarchy 

by using heuristic approaches. Agents also have the ability to modify their operation 

autonomously. This is crucial for agents to reflect the changing nature of the mission, the 

distance, and the low bandwidth communication back to earth.

In the mission, agents are divided into three categories which is based on the agent's ability:

•  Leaders: the leader will have rules and goals for the mission; the leader will also 

coordinate the work effort of the worker agents.

•  Workers: the workers will perform tasks given by the leader and follows the rules for 

the mission.

•  Messengers: messengers will relay and coordinate communications and information 

between leaders, workers and the Earth. .

Leader agents are equipped with models of the types of science they want to perform. Parts of 

the model include the ability to communicate with messenger agents that then relay the 

information to the worker agents. Teams of agents will carry out the work together to form 

models of asteroids as well as form virtual instruments.

2.3.2 The Swarm-bots project

The Swarm-bots project funded by the European Community (Dorigo et al. 200.4b). The project 

lasted for 42 months and completed in March 2005. The main objective of the project is to seek 

new approaches to the design and implementation of self-organising and self-assembling
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mobile agents. The agents are composed of a number, of simpler, insect-like agents (called s- 

bots), which are capable of self-assembling and self-organising to adapt to its environment.

There are three sets of objectives in the Swarm-bots project:

•  dynamic shape formations,

•  navigation on rough terrain, and

•  scaling up.

In the dynamic shape formation, the s-bots are able to self-assemble into a number of different 

planar and 3-D geometric configurations, for instance like those formation found in ant 

colonies and in patterns of differential adhesion by developing cells.

In navigation on rough terrain, the s-bots will be able to move across the terrain arena guided 

by sensory information gathered by the individual s-bots. There are three sub-objectives that 

have been defined:

•  S-bots should be able to maintain the original or current shape configuration while 

following light.

•  S-bots should be able to reconfigure automatically while following light through 

narrow passages and tunnels.

•  S-bots should be able to reconfigure their shape to pass over a hole or through a steep 

concave region that could not be passed by a single s-bot.

•  S-bots should be able to move from point A to B on rough terrain on a shortest possible 

trajectory.

Finally, the objective in the scaling up is to study the impact to the swarm-bots robotic systems 

when the user increases the number of the s-bots in both categories as described previously.

2.3.3 The Pheromones robotics project

The Pheromones robotics project funded by DARPA (Defence Advanced Research Projects 

Agency, USA). This project seeks approaches to the design and implementation of self-

43



organising and decentralised control of the robots (Payton et al. 2004).

In this project, Payton et a l  (2004) developed a realistic model of the pheromone based 

communication of ants by using eight directional infrared transmitter-receiver pairs attached to 

the top of the agents. The pheromones are assumed to be transferred between the agents as 10- 

bit messages by using the infrared transmitter-receiver. Each agent then retransmits the 

message it gets by reducing the intensity of the pheromone and decrements the hop count in the 

opposite direction. This method is used mainly to generate the path between two points in an 

unknown area by a swarm of agents.

2.3.4 The GUARDIANS project

The GUARDIANS (Group of Unmanned Assistant Robots Deployed In Aggregative 

Navigation supported by Scent detection) project is a three year programme funded by the 

European Community and started in January 2007. The objective of the project is to develop a 

swarm of autonomous robots that consists of several robots that will navigate through an 

industrial warehouse in smoke or on fire. Amongst the possible tasks that agents should be able 

to perform are: searching the warehouse to explore the environments and gather information for 

map building, and supporting the firemen to move around in the environment while avoiding 

obstacles (Penders et al. 2007).

2.4 Robot Architecture
Many works in the swarm robotics field are inspired by the behaviour based control 

architecture (Brooks 1986)(Arkin 1998)(Balch & Arkin 1998). One of the pioneers in the 

behaviour based field was Braitenberg (1984). He describes a series of thought experiments in 

which “vehicles” with simple internal structure, where sensors are directly coupled to the 

motors, behave in unexpectedly complex ways. He developed simple control architectures and 

created a wide range of vehicles producing sophisticated emergent behaviour, which he then 

labelled with terms such as aggression, cowardice, fear, foresight, love and even optimism. 

Braitenberg gives this as evidence for the "law of uphill analysis and downhill invention”.
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However, these systems were inflexible and were not reprogrammable. A possible example of 

Braitenberg vehicle is illustrated as in Figure 2.6.

Figure 2.6: Artist impressions o f  Braitenberg vehicle.

In 1986 Brooks introduced the subsumption architecture (see Figure 2.7), where each task- 

achieving behaviours are represented in separate layers. Individual layers work on individual 

goals concurrently and asynchronously. At the lowest level, each behaviour is represented using 

a finite state machine model, and higher levels are allowed to subsume the activity of the lower 

ones but not the other way around.

■►ActuatorsSensors

Level 1

Level 2

Level 0

Level 3

Figure 2.7: The Brook's subsumption architecture.

Brooks (1991b) also stated that, in order for an autonomous mobile agent to be considered 

intelligent, the agent must be robust and extensible, and have multiple goals and sensors. In this 

architecture, although the robot has multiple goals, not all sensors reading are adopted. Only the
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ones with perception processing identified as extremely reliable are to be used. An advantage of 

the system is that it is inherently modular from a software design perspective, and it enables the 

robotics system designer to expand the agent competency by adding new behaviours without 

redesigning the old ones. Brooks (1991a) later suggested that researchers should focus on 

highly simplified intelligent systems rather than having an unrealistic goal of replicating the 

level of human intelligence.

Although the subsumption architecture has many good characteristics, in many cases, multiple 

and possibly conflicting goals cannot be achieved (Rosenblatt & Payton 1989)(Barnes et al. 

1997). As the name subsumption implies, conflicting goals are often resolved by having one 

behaviour's commands completely override the other's. Even though it may be highly desirable 

for the systems to act simultaneously, to accommodate the needs of both behaviours there is no 

way to arrive at a balanced solution.

Another early behaviour based mobile agent control architecture is known as the motor 

schema-based architecture (Arkin 1989). Schemas are a methodology used to describe the 

interaction between perception and action. It can be adapted to yield a mobile agent system that 

is highly sensitive to its currently perceived world. Motor schemas operate in a concurrent, 

independent and communicating manner, which can produce paths that reflect the uncertainty 

in the detection of the objects and yet, can cope with conflicting data arising from diverse 

sensor modalities and strategies.

Up to the mid 1990s, many researchers were of the opinion that behavioural agents were 

incapable of achieving more complex tasks than simple can collecting, box pushing, herding or 

moving in formation. Problems such as behaviour conflict resolution, behaviour adaptation and 

behaviour scheduling had been identified as the main issues for multiple mobile agents to co­

operatively perform a complex task.

Several approaches have been developed to address these issues. One of the approaches is 

known as the Behaviour Synthesis Architecture (BSA) (Barnes et al. 1997). BSA has four
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different behaviour levels called: self, environment, species and task. Sensory stimuli (in BSA) 

provide the appropriate internal and external state information needed for the various behaviour 

levels and from each relevant level, appropriate motion responses are generated that relate to 

the desired actuation. In any behaviour level, there are a number of behaviour patterns (bp's), 

where it defines what a robot's motion response should be for a given sensor input, and also 

provides a measure as to how the relative importance of the response varies with respect to the 

same sensor input.

2.5 Artificial Life
Conventional artificial systems are usually designed strictly in a top-down manner. In this 

approach, the systems are designed to function precisely and effectively for special purposes 

and specifically under closed domain. Thus, these systems fail to respond appropriately to 

unexpected situations. On the other hand, for natural systems as well as their entire behaviours 

emerge through bottom-up processes. These natural systems do adapt themselves quite well in 

their environment that exhibit dynamic and unpredictable characteristics. Moreover, they also 

can cope with a variety of difficulties.

2.5.1 Inspirations from Natural Systems

In the field of Artificial Life (Alife), where models are based on the natural systems, generally a 

bottom-up approach is used (Bedau 2003). The work in Alife can be loosely divided into three 

categories: soft, hard and wet, where soft is software based, hard is hardware based, and wet is 

biochemistry based. The essential features of Alife models were given by Langton (1988) as 

follows:

•  they consist of populations of simple agents;

•  there is no single agent that directs any of the other agents;

•  each agent's specifications (program) details the way in which it reacts to local 

situations within its environment, including encounters with other agents;

•  there are no rules in the system which dictate global behaviour, therefore
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•  any behaviour at levels higher than the individual agents must be emergent.

One of the earliest models of Alife was modelled by Newmann (1966). Newmann designed the 

Alife model when he created his well known self-reproducing, computational-universal cellular 

automata. Newmann was first intended to built physical self-rebuilding robots and the design 

was known as the kinematic model. As the work progressed, he realised that the huge cost of 

providing the robot with parts of which to build its replicants. Because of this huge cost, he 

then developed his design around mathematical abstraction, thus creating the first 

implementation of cellular automata.

Another early example of Alife was created by Walter in 1950. He constructed two mobile 

autonomous robots using valves and light sensors, named Elmer and Elsie. Elmer and Elsie 

were programmed to search for a set level of light intensity. Upon seeing light, they will move 

towards the light; if the intensity of the light is too strong, they will move away from it. 

Whenever the power is running low, they will return to the hutch to recharge their power. Next, 

Walter fixed a light on both of them. At first, they moved towards each other and engaged in 

the fascinating dance which he described in his book, “The Living Brain’’ (Walter 1963). 

However when the light in the hutch is switched on, Elmer and Elsie will stop “dancing’’, 

ignore each other and head towards the hutch.

There are many works and developments in Alife which are relevant to this thesis, one of them 

is the artificial fishes in a 3-D virtual physical world which was developed by Terzdpoulos et 

al. (1994). They emulate the individual fish's locomotion, behaviour and appearance as an 

autonomous agent situated in its simulated physical domain. Moreover, the fish can learn how 

to control their internal muscles to move hydrodynamically. They also emulate the complex 

group behaviours in a certain physical domain.

Figure 2.8 shows the functional overview of the artificial fish. The body of the fish houses a 

brain or mind with motor, perception and learning centre. The motor system consists of 

actuators and a set of motor controllers, which drive the dynamic model of the fish. They
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(Terzopoulos et al. 1994) built the motor controllers unit by gleaning information from the fish 

biomechanics literatures, thus their fishes can swim realistically. In the perception centre, the 

perception of the fish relies on a set of on-board virtual sensors to provide sensory information 

about the dynamic environment. In the brain part of the perception centre there is a perceptual 

attention mechanism which allow the fish to train its sensors at the world in a task-specific way, 

which will then filter out sensory information that is unnecessary to its current behavioural 

needs.

Brain / MindH abits .*"■

Learning

B ehaviorPercep tion

Motor

V /V

Figure 2.8: Control and information flow  in artificial fish. (Taken from  Terzopoulos e t  al. 1994)

The behaviour centre of the artificial fish acts as a medium between its perception system and 

its motor system. The intention generator in the behaviour system is the fish's cognitive faculty 

which harnesses the dynamics of the perception-action cycle. Finally, the learning centre 

enables the artificial fish to learn how to locomote through practice and sensory information. 

The learning centre also enables the fishes to train themselves to accomplish higher levels of 

sensorimotor tasks, e.g. manoeuvring to reach a visible target.
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Schmickl and Crailsheim (2007a) developed an algorithm for swarm robotics navigation based 

on a technique of signal propagation seen in slime mould as in Figure 2.9. In this technique, 

agents will wander and search randomly in an arena. When a target is found by an agent, the 

agent will then send out a signal using LED flashes notifying other agents about the location of 

the target. The signal is detected by the others, who will then forward or re-transmit the signal 

using the same method. The process will go on and on, resulting in a wave-like signal 

propagation such as that exhibited by slime mould.

Figure 2.9: Example o f  slime moulds aggregation wave patterns. Each step o f  the transition from  top left 
to top right and then to the centre takes about 30  minutes. Images courtesy o f  P. C. Newell.

Schmickl and Crailsheim (2007b) proposed a new method for communication and navigation 

within swarms of agents inspired by trophallactic behaviour exhibited by honeybees. In their 

method however, the receiver agent can query about the “nutritional” or fitness value of the 

local surrounding agents. From the nutritional value, the agent knows the gradient and can 

decide whether to go up-hill or down-hill.

Gamier et al. (2005) modelled a control algorithm of collective decision such can be seen 

performed by group of cockroaches. The control algorithm itself is based on small simple set of 

behavioural rules as follows:

•  Random walk behaviour in the centre of arena, with constant rate of changing direction
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and forward oriented distribution of turning angles.

•  Wall following behaviour when reaching the periphery of the arena, with constant rate 

to leave the edge and come back towards the centre of arena.

•  Stop at any moment under the shelter (dark place), stay motionless for some time and 

then move again.

•  Stop for some time if perceive any other agent within perception range, stay motionless 

for some time and then move again.

They (Gamier et al. 2005) successfully implemented their control algorithm on the Alice 

micro-robots, with two shelters (dark place) placed in the arena. Based on their observations, 

the behaviours of the agents were similar to the behaviour exhibited by cockroaches, in which 

the cockroaches tend to aggregate in the dark area. Moreover, if there are more than one shelter 

available in the arena, cockroaches will usually collectively choose one of the shelters to be the 

aggregation location.

Kodati et al. (2007) designed and fabricated a micro underwater robot, named MARCO. 

MARCO gains inspiration from the boxfish (see Figure 2.10), this being is highly stable and 

fairly manoeuvrable. With multiple fins, the boxfish can manoeuvre in confined spaces with 

near zero turning radius. Furthermore, it has been found that the boxy shape is responsible for 

self correcting mechanism that makes its trajectories immune to water disturbances. It is 

believed that MARCO will be able to be used in many applications such as environmental 

monitoring, ship wreck exploration, inline pipe inspection, forming network sensor and so on.

Zhang et al. (2007) constructed another biologically inspired fish-like robot. They designed the 

robot to be able of propelling itself through oscillations of a flexible caudal fin, like a real 

underwater fish. The caudal fin is driven by a unique actuator called electrostatic film motor. At 

the current state, their robot achieves fish-like manoeuvring and approximate velocity of 0.018 

m/s in dielectric liquid.
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Figure 2. JO: A boxfish. MARCO (Kodati et a l  2007) the under water robot gains 
inspiration from  boxfish.( Image courtesy o f  divegallery.com)

Shao et al. (2006) introduced situation-based action selection mechanism for multiple fish-like 

agents to achieve cooperative transportation task. In this approach, each agent has an ID and the 

agent will do the task if and only if the conditions are met. The only problem with this approach 

is that, there is no overlap in the rules of the conditions. If one of the agents fails, the 

cooperative task will not be succeeded.

2.5.2 L-Systems

Lindenmayer Systems (L-Systems) is one of the many branches of Alife. Traditionally L- 

Systems have been widely used in the modelling of branching structures and the growth 

process of biological objects such as plants and micro-organisms. As technology advances, L- 

Systems have attracted more and more researchers from many diverse fields. Most researches 

on L-Systems concentrate on the modelling of plant growth or modelling the growth of multi- 

cellular organisms. However, in the following we review some works in other fields.

Hornby and Pollack (2001) used L-Systems and evolutionary algorithms to create a variety of 

virtual creatures. Their system made use of L-Systems to encode the creature and an 

evolutionary algorithm engine to evolve the creature. The creatures evolved by the system 

consisted of hundreds of parts. The end-product are “natural looking” creatures. The
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components that make up the creatures include bar structure, every single type of joint, chain 

structures etc. Once a set of creatures are created, they will be evaluated by the evolutionary 

algorithm engine to find “fittest” creature. The fitness of the creature is evaluated based on the 

distance moved by the creature's centre gravity. Rolling and stepping are permitted but 

dragging imposes a penalty. Their results show that, over half of the simulation runs are able to 

generate interesting results and the most common creature movement involves rolling 

sideways. Another interesting movement is that of an undulating sea-serpent, like an inch- 

worm.

Zamir (2001) formulated parametric L-Systems to generate branching structures that can 

embody the physiological laws of arterial branching. He gives an example by showing that a 

complete cast of the arterial system of a rat can be modelled using parametric L-Systems as in 

Figure 2.11. From the results, it was suggested that the parametric L-Systems can be used to 

produce fractal like tree structures. However, the branching structures' parameters generated 

differ slightly with the variability in branching parameters observed in arterial trees. The

parameters include the asymmetry ratio, the area ratio, branch diameters, and branching angles. 

The main issue in generating branching structures of arterial branching is that the source of

variability in those parameters is not known, thus, it cannot be accurately reproduced in a

model. Finally, he concludes that the L-Systems with a random choice of parameters can be

made to mimic some degree of the observed variability, but the legitimacy of that choice is not 

clear.

Mariano et a l  (1995) used L-Systems to generate large instances of the Euclidean Travelling 

Salesman Problem (ETSP). They gave 4 examples and successfully showed how L-Systems 

can generate patterns or paths for the ETSP. The patterns used in their work are MNPeano, 

MPeano, Koch and David's star. However, the method has a drawback where the distance 

between each of the two cities has to be the same.
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Figure 2.11: A complete cast o f  the arterial system o f  a rat.
M odelled by parametric L-Systems (Zamir 2001).

Salvador et al. (2002) proposed the multi-fractal network traffic model based stochastic L- 

Systems. Their work consisted of an alphabet of arrival (packet) rates which is defined by:

A  = ( A j , A 2 , . . . , A j ,  A ,.e lR o +  , f =  l , ... , L  (2.6)

and with production rules that randomly generate two arrival rates from a previous one.

Without loss of generality, they made an assumption that Ai  < A 2 < . . .  < A L . From the real data 

observed, the L-Systems parameters are fit by the fitting procedure. It starts by fixing a 

sampling interval A and considers the time series representing the total number of packet 

arrivals in each sampling interval. The inference process in this model can be divided into three 

steps:

•  determination of the L-System alphabet and axiom,

• •  identification of the time scale ranges, and

•  inference of the L-System production rules.

From their numerical results, that include applying the fitting procedure to real observed data 

with multi-fractal scaling behaviour showed that, L-System based models achieved an excellent 

fitting performance.
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Kokai et al. (1999) used parametric L-Systems in the GREDEA (Grammatical Retina 

Description with Evolutionary Algorithms) system. GREDEA is a system to develop patient 

specific monitoring programs for examining the blood circulation of the retina, which can be 

used on patients with diabetes who need to be monitored over long periods. At the beginning, 

the retina of a patient is scanned with laser ophthalmoscope (SLO). Then a parametric L- 

System is developed in which will create the pattern closest to the vascular tree of the patient's 

retina. The main reason for the L-Systems used here is because the L-Systems needs less 

storage than storing a picture.

Other examples of the Alife have been described in the Organised Formations section in this 

Chapter.

2.6 Swarm Modelling
In modelling swarms, many mathematical models were proposed by biologists to gain insights 

into the nature of swarming behaviour (Parrish et al. 2002). Most of the models proposed are 

focused on the spatial model, where space is directly or indirectly considered within the model 

(Gazi & Passino 2004). In the spatial model, Parrish et al. (2002) suggested that there are three 

distinctly different approaches that have been used to model the swarm dynamics; namely 

Eularian, Lagrangian and behaviour-based model (Reynolds 1987)(Grunbaum & Okubo 

1999).

2.6.1 Eularian model

The first model is based on the statistical model and uses the Eularian framework to describe 

the mean-field density of swarm. In this approach, Edelstein-Keshet (2001) modelled the 

swarm as a density in spatial space by a partial differential equation that is based on a diffusion 

approximation of the random motion. Mogilner and Edelstein-Keshet (1999) extended the 

model by integrating non-local interactions, such as visual or auditory sensing. Although the 

model invites many analytical results that can be produced, the model is however limited to 

large and dense swarms with no big discontinuities (Parrish et al. 2002).
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2.6.2 Lagrangian model

The second model is based on individual-based path generation, where Lagrangian equations 

are used to describe the motion of each individual member in the swarm (Gazi & Passino 

2004). In this model, all attractions amongst individuals are modelled as attraction and 

repulsion forces. Furthermore, all attractions between individuals in the swarm can be modelled 

as potential functions, and the motion of each individual follows the negative gradient of the 

potential surface, which in turns serves as an attractive feature o f this model. Moreover, by 

constructing a Lyapunov function which is associated with the potential force, the minimiser 

corresponding to the stable state of the swarm can easily been shown. Although the form of 

attraction / repulsion functions in this model are varied, it is understood that the aggregation is 

caused by the long-range attraction and the short-range repulsion (Couzin & Krause 

2003)(Mogilner et al. 2003). For instance, Mogilner et a l  (2003) proposed a model where 

attraction and repulsion terms were exponential with different magnitudes. With the model, 

they derived the individual distance of a large group, which in the end revealed a condition on 

the attraction and repulsion to avoid dispersion of swarm.

2.6.3 Behaviour-based model

The third spatial approach uses a behaviour-based model. In this approach, no explicit 

mathematical equations are proposed, and all interactions amongst individual agents are 

described by some behaviour rules. In the field of swarm engineering, Reynolds (1987) was 

one of the first to simulate behavioural control animation. He developed a system to model 

flocking behaviour and coordinated movements seen in birds and fish in which he named the 

creatures as boids. The basic Reynolds' flocking model is based on three simple steering 

behaviours, namely cohesion, separation and alignment, which describes how an individual 

boid should change its heading or direction and velocity based on the positions and velocities of 

its nearby neighbours or flockmates. It is worth noting that in some literatures, the rules are also 

known as flock centring, collision avoidance and velocity matching which refer to cohesion, 

separation and alignment respectively.
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Figure 2.12 shows three basic strategies of Reynolds' flocking rules. The circles indicate 

sensing range for the boids in the centre. This means that the boid in the centre of the circle can 

see or senses other boids within the circle. From the left is the cohesion, separation and 

alignment strategies respectively. Cohesion strategy as shown by the red boid on the left in the 

Figure 2.12, the boid feels the urge to steer towards the average position of its flockmates in its 

vicinity, resulting in the boids staying close to one another.

4

Figure 2.12: Reynolds's basic flocking steering strategies. The circle indicates the neighbourhood range 
o f  the agent's in the centre o f  the circle. The left shows cohesion, the centre shows separation, and the

right shows alignment strategy respectively.

The green boid in the centre of Figure 2.12 exhibits the separation strategy; this strategy is to 

ensure that the boid is maintaining a safe distance from its flockmates and encourages the boid 

population to avoid crowding the neighbourhood. Finally, the blue boid on the right of Figure 

2.12 demonstrates the alignment strategy which sometimes is referred to as the velocity 

matching strategy. This rule encourages the boid to move with a similar heading and velocity as 

its flockmates.

By using Reynolds's model of boids, Tanner et al. (2003a, 2003b) investigated the algebraic 

graph theoretical properties of underlying interconnection graph between agents. They also 

showed the relationship between the graph connectivity and stability of the flocking behaviour 

in fixed and dynamic topology.

There is one other similar work to Reynolds's flocking model, which was developed by Viscek 

et al. (1995). Viscek proposed a simple model in which each agent's heading is updated at



every time step as the average of headings of the agent itself and its nearest neighbour plus 

some additive noise. By comparing Viscek's model with Reynolds's model, it can be concluded 

that Viscek's model is a special case of Reynolds' model, where all agents move with same 

velocity, only following an alignment rule and only considering the nearest neighbour as a 

flockmate. From the results of their simulations, they (Viscek et al. 1995) showed that their 

agents move in a coherent manner, in which the headings of all agents converge towards a 

common value.

Folino and Spezzano (2002) adopted Reynolds's flocking rules and proposed a parallel spatial 

clustering algorithm for swarm agents called SPARROW (SPAtial ClusteRing AlgoRithm 

ThrOugh SWarm Intelligence). The algorithm combined a smart exploratory method based on 

a flock of birds with a density-based cluster algorithm to discover clusters of arbitrary shape 

and size in spatial data.

The motion of each agent follows the Reynolds's flocking model. Furthermore, SPARROW 

considers types of agents, grouped on the basis of the density of data in their neighbourhood. 

To differentiate the different types of agents, different colours are used as shows in Figure 2.13 

below; red, showing a high density of pattern in the data, green a medium one, yellow a low 

one, and white indicates a total absence of patterns. The main idea of SPARROW is to take 

advantage of the coloured agents in order to explore more accurately in the tight cluster regions 

and avoid the ones without clusters. In simulation, the red and white agent will stop moving in 

order to signal out the type of regions, whilst the green and yellow agents will flock and move 

toward dense cluster. In this algorithm, the agents behave like hunters with a foraging 

behaviour that allow each agent to explore the spatial data while searching for cluster with 

different sizes, shapes in noise data (Folino & Spezzano 2002); cluster with different densities 

(Folino et al. 2003) in 2-D space. Moreover the algorithm also works in multidimensional 

space (Augimeri et al. 2006).
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Figure 2.13: Cohesion strategy in SPARROW, taken from  Folino and Spezzano (2002). In this strategy, the 
green agent in the centre fee l the attraction towards red agents, and repulsion against white agent.

Olfati-Saber and Murray (2003) modelled a net flocking framework in the presence of multiple 

obstacles in the arena. Net-flocking is where agents in the flock will have the “bonds” between 

them when they come within close proximity of each other. Agents will keep this bond and stay 

close to each other. The bond will break if  bonded agents move apart more than the allowed 

distance. The easy way to view net-flocking is to think the agents as the “atoms” and these 

atoms are connected to each other with these “bonds”. They showed that the flocking behaviour 

is achieved by dissipation of energy according to a protocol that only requires the use of local 

information. The three basic flocking rules of Reynolds' are hidden inside this protocol. They 

defined three types of agents which are called alpha, beta and gamma. These agents are then 

used to create, what they call, net-flocking. They (Olfati-Saber & Murray 2003) also showed 

that by using their framework, the split, rejoin and squeezing manoeuvres flocking while 

avoiding obstacles can be done.

Some other works on swarm modelling that are worth mentioning were researched by Levine et 

al. (2000), Toner and Tu (1998) and Shimoyama et al. (1996). Levine et al. (2000) created 

rotating swarm agents known as circular ant mills using a self-propelled particles based model 

in which each agent can interact with all other agents in the arena. They modelled the flock in 

one- and in 2-D, and showed that the density of the flock drops to zero at the edge, or the 

density of the flock has a sharp edge confirming the work done by Mogilner and Edelstein-
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Keshet (1999). Toner and Tu (1998) analysed Viscek's model and used a continuum mechanics 

approach to model flocking behaviour. Shimoyama et al. (1996) proposed a mathematical 

model of flocking and clustering motion such as collective rotation, chaos and wandering. They 

also categorised the behaviours and characterised the transitions of the models.

2.7 Simulation Tools
In developing and simulating multi-agent systems or swarm robotic systems, there are a 

number of purposely built computer programs available and ready for use. In this thesis three 

different software packages have been used to simulate our swarming algorithms; these are the 

Breve, Netlogo and MATLAB simulation tools.

2.7.1 Breve

The Breve toolkit (Klein 2002) was developed by Jon Klein during his year at Hampshire 

College, USA as a thesis project, and was developed further into a Master's thesis at Chalmers 

University of Technology, Sweden. Breve is also actively being developed as a platform for a 

project building large scale simulations of evolutionary dynamics, and many other applications.

Breve is a free simulation environment distributed as an open-source software with 

contributions from researchers from all over the world. It is designed for the simulation of 

multiragent, 3D spatial and physical systems. It allows users to observe the interactions of 

predefined behaviours of autonomous agents in a continuous 3D world.

The world in Breve is represented as a 3D space and is able to facilitate 3D spatial simulations 

as shows in Figure 2.14 below. Agents in the simulation can occupy this 3D space to move 

around and about and interact in the 3D space. Breve allows the agents to be spatially aware 

and to comply with physical laws, therefore making the simulations closer to the real world.
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Figure 2.14: Example o f  Breve simulation world; showing the simulation o f  Braitenberg vehicle written by
Klein (2002).

By enabling Breve's main feature of physical laws, one can simulate breve agents to behave just 

as real objects do, according to the laws of physics. For example, if an agent is defined as a ball 

and placed in the air above the floor, the physical simulation engine will make the ball 

realistically fall towards the floor and bounce back, subject to gravitational forces and Newton's 

Third Law. Amongst other things, the physical simulation engine in Breve can be used for 

realistic simulation of robots, vehicles and animals as well.

Breve simulations are usually written in an object-oriented and easy to use language called 

STEVE. The language borrows many features such as in C, Perl and Java. Breve also features 

extensible plugin architecture which allows programmers to write plugins and interact with pre­

existing code and projects. In the simulations, all aspects including object and memory 

management, communication between agents, and integration are automatically handled by the 

Breve engine (Spector et al. 2005b).

Another main feature of Breve is the fact that Breve supports the Push programming language. 

Push was developed specifically for genetic programming and other evolutionary 

computational applications. Push is designed to avoid most of the complications that can arise 

when writing evolutionary codes. The two main characters of Push programming are that it has 

very unusual simple syntax and the ability to work flexibly with multiple datatypes (Spector et



Spector and Klein have used Breve in many of their works, including their most notable work 

where they demonstrate the evolution of a form of multicellular organisation, and altruistic food 

sharing for flying agents (Spector et al. 2005b).

2.7.2 NetLogo

NetLogo was created in the spirit of the Logo programming language which is easy to learn, to 

use and to read, but also powerful enough to deal with complex concurrent problems. Logo was 

developed by a mathematician Seymour Papert in mid 1960s. At that time Seymour was 

working with the team from BBN (formerly known as Bolt, Baranek and Newman), led by 

Wallace Feurzeig. The first implementation of Logo was written in LISP (List Processing 

language) and released in 1967.

Logo was originally designed to introduce children to programming concepts and thus develop 

better thinking skills that could be transferred into other contexts. It was aimed to be enable 

easy entry by novices and yet meet the needs of high power users.

The most well-known Logo environments have involved the turtle. The turtle is originally a 

virtual creature that sits on the floor and could be directed to move around by receiving 

commands from a user or programmer. The turtle is used to draw shapes, designs and pictures.
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Figure 2.15: Example o f  NetLogo simulation world, showing the simulation o f  the ant foraging model
written by Wilensky (1999).

NetLogo (Figure 2.15) was written and released by Wilensky in 1999. It was originally 

developed at the Centre for Connected Learning and Computer-Based Modelling at 

Northwestern University and is in continuous development at the Center for Connected 

Learning and Computer-Based Modelling at the same university.

NetLogo is well suited for modelling time-dependent complex systems and literally allows 

users to give instructions to hundreds or thousands of independent agents operating 

concurrently. This makes.it possible to explore the connection between micro-level individual 

behaviour and macro-level patterns that emerge from the interactions of individuals.

NetLogo is specifically designed for deployment of models over the Internet and is written in 

Java so the model can be run on all major operating systems (NetLogo 2008). After five years 

of development, NetLogo is a mature simulation tool which is stable and fast (Tisue & 

Wilensky 2004).



Extensive documentation, tutorials and demonstrations are available on the package's website. 

NetLogo comes with a Models Library which contains a large collection of more than 140 pre­

written simulations code that can be used and modified. These pre-written code in models 

library includes wide range of disciplines and education levels; from natural to social sciences, 

mathematics and computer sciences.

Even though NetLogo is distributed as a freeware, the functionality in NetLogo can easily be 

extended through an Application Programming Interfaces (APIs).

There has been a considerable amount of work completed on multi-agent systems modelling 

using NetLogo. One of them is the work done by Momen et al. (2007). In this work, they have 

modelled two species of “birds” and studied the effect of multi-species flocking. These two 

species of birds will attract to each other depending on the heterospecific-attraction parameter. 

From the results, they showed that as the heterospecific-attraction increases, the flocking 

efficiency also increases. Another model using NetLogo is the work by Veeraswamy et al. 

(2006), where they promoted the use of path planning with the ant foraging technique. Results 

of their simulations showed that the performance of the ant foraging problem can be improved 

dramatically by combining the regular ant foraging algorithm with the A* path planning 

algorithm.

2.7.3 Other Simulation Tools

A number of other simulation tools exist that are used by the swarming community.

MASON, the Multi-Agent Simulator of Neighbourhood was developed by a joint effort of 

Evolutionary Computation Laboratory (ECLab) and Center for Social Complexity of George 

Mason University, USA (MASON 2008). MASON is written in JAVA to take advantage of its 

portability, operating system independence, object serialisation and strict math and type 

definitions (Luke et al. 2005). It is designed to be used for a wide range of simple simulation 

with emphasis on swarm multi-agent simulations.
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MASON is released as an open-source in which users are free to use and modify the source 

code. At present, there is little documentation and it has a relatively small user group. However, 

some of the documentation detailing of how-to use and some of the publications detailing the 

implementation or application of MASON are available for a prospective user to evaluate 

further (MASON 2008).

Webots™ is a proprietary software and developed by Cyberbotics Ltd.. Cyberbotics Ltd. is a 

limited company derived from Swiss Federal Institute of Technology in Lausanne (EPFL) and 

was founded in 1998.

Webots™ provides a rapid prototyping environment for modelling, programming and 

simulating mobile robots. The robot libraries enable users to transfer control programs to many 

commercially available real mobile robots such as Khepera™ , Aibo™ and the LEGO™ 

Mindstorms™ robots. Webots™ offers numerous features to make the simulation tool easy to 

use and able to do complex computations (Michel 2004). The features include:

•  allowing the user to model and simulate any mobile robot, including legged, wheeled 

and flying robots

•  allowing the user to program the robots in C or C++ or JAVA, or from third party 

software through TCP/IP

•  using the Open Dynamic Engine (ODE) library for more accurate physics simulation

•  many examples with controller source code and models of commercially available 

robots

•  creating AVI or MPEG simulation video file for online or public presentations.

Many other multi-agent simulators exist, such as Gazebo, Player / Stage, Repast and so on. A 

more comprehensive review on multi-agent simulators can be found in Castle & Andrew 

(2006) and Railsback et al. (2.006) and the references therein.
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2.8 Summary
The pretext of this Chapter is aimed at trying to understand the conceptual and natural roots 

surrounding pattern formation in swarms. Various state of the arts methods related to the 

subject have been reviewed. This lays out the ground work for the original contributions that 

will be presented in the following Chapters.

A number of popular robotics control architectures were reviewed and described in detail. 

These include the well known Brooks's subsumption architecture (1986) and Reynolds' 

flocking algorithms (1987). Research work in autonomous mobile agents or robotics field has 

since the early days suffered from difficulties associated with centralised planning.

A review of control algorithms for distributed pattern formation for robot swarms have shown 

that the agents are more complex. In Particular, agents need communication modules (such in 

Avrutin et al. 2007, Payton et al. 2004, Nouyan et a l  2006, Freeman et al. 2006, Desai 2002, 

Fierro & Das 2002, Kaminka & Glick’2006, Pavone & Frazzoli 2007, etc.), or the ability to 

perform complex calculations (such in Yang et al. 2007, Desai 2002, Takahashi 2004, 

Mastellone et al. 2007, etc.), or the requirement for vision based sensors (such in Das et al. 

2002). in order to carry out pattern formation tasks. With these levels of complexity, the 

(hardware) cost of building swarm agents increases significantly. In addition complex agents 

have a higher probability of failure to due to the integration of multiple crucial components. In 

keeping complexity down, agents will have minimal sensors and onboard processing power. 

The problem now becomes determining how relatively simple agents can be controlled. Thus it 

is a challenge to design pattern formation control algorithms on such a simple swarm agent.

In the review on the swarming behaviour, most of the work in the literature reported involving 

repelling and attracting factors or “repulsion and attraction forces” (such in Tanner 2003, 

Hanada 2007, Olfati-Saber & Murray 2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 

2002, Mastelone et al. 2007, Yang et al. 2007, etc.). These repelling factors are used in agent- 

to-object and/or agent-to-agent interactions so that agents will not collide with each other 

and/or with another object (obstacle avoidance strategy). On the other hand however, the
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attracting factor only accounts for agent-to-agent attractions which is usually used in a strategy 

such that agents will remain close to each other, for example the cohesion strategy as in 

(Reynolds 1987). The problem of the attracting factor for agent-to-object interaction still needs 

to be examined. It will be interesting to investigate how agent-to-object attraction forces will 

affect the behaviours of swarming agents.

With regard to the bridge formation connecting two objects or two locations (such as in Avrutin 

et a l  2007, Nouyan et a l  2006) an important issue is that to be able to connect the two 

locations, the proposed algorithms require a large number of agents. A particular problem arises 

when only the minimal number of agents that are required to make a bridge formation are 

present in the arena. For example, if there are twenty agents in the arena and a minimum of 

twenty agents are needed to form a certain bridging formation in the arena, the proposed 

algorithms might take a long time to find a solution without additional agents. Worst still it 

might not be able to find the solution at all within the permissible time frame. It is then useful 

to devise an alternative algorithm even if it is not fully automated or self organising for the 

reason that self-organisation is not always the best solution for every problem.

The next three Chapters describe the overall methodology by which the research was carried 

out including developing areas identified in this Chapter.
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Chapter 3 State Based Models

The aim of swarm engineering is to design multi-robot platforms that are able to mimic 

biological robot swarms in performing tasks where a group of robots, each of which has limited 

capability, can perform better than just the one. In simulating large scale swarms, 

computational cost plays an important role, thus limiting and stagnating development. Many 

studies have been undertaken using a practical approach to swarm construction. Amongst these 

are studies investigating navigation and exploration tasks, task allocation, elementary 

construction, and communication.

In this Chapter, two control algorithms using the Finite State Machine (FSM) approach are 

developed to support simple swarm robots in swarm robotics pattern formation, where complex 

behaviours can emerge from interactions between agents and each agent with the environment. 

This Chapter proposes that by alternatively switching on and off a combination of transmitters 

and sensors of agents, different variety of agent behaviours can be achieved. The work here is 

loosely motivated by ants which have limited memory and limited ability and yet they are able 

to form a line to and fro from their nest to a food source. In the first algorithm the agents are 

tested with forming chains or lines, and in the second they are tested with forming a cluster. In 

both cases agents have very little memory, limited sensing capabilities and processing power, 

there is no explicit communication between agents and the formations are formed based solely 

on environment cues.
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3.1 Introduction
The ability to self-organise in a predicted way is important for the accomplishment of a wide 

range of tasks in the swarm robotics domain, thus many different approaches have been 

proposed (such as in Avrutin et al. 2007, Payton et al. 2004, Nouyan et al. 2006, Freeman et al. 

2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.). 

Each agent in the swarm system is capable of performing very simple tasks, but when these 

agents aggregate, they are able to act as a larger entity which is able to perform more complex 

tasks. To achieve this, initial studies have to be undertaken in order to understand the act of 

swarming by biological systems and inferring rules that govern the swarm movement.

The research in this Chapter was conceived during the initial development phase of the EU FP6 

I-SWARM project. Several initiatives have been undertaken to create, understand and simulate 

swarming behaviours. Due to the limited capability of the I-SWARM agents, which directly 

affects the number of sensors that can be mounted on them, and their limited processing 

capabilities, novel methods for encoding and processing information have to be developed. 

Moreover, due to the size of the agent and to reduce the manufacturing costs, communication 

modules are not present on the agents, thus excluding the ability to communicate explicitly like 

agents in multi-robot systems. Agents have very little memory and limited sensing capabilities 

which are used to detect obstacles and other agents.

In this piece of research, the main interest is in studying and implementing rules that lead to 

basic swarming behaviour on very simple agents. In the field of swarm robotics, which 

emphasises the cooperation and collectivity of groups of agents, individual agents are usually 

controlled by simple strategies. Complex behaviours are often achieved at the group or colony 

level by exploiting local interactions amongst agents, and its environment. In designing control 

algorithms for swarm agents, often complex strategies are avoided. Instead, simpler principles 

such as homogeneity of agents and distributiveness of control algorithms are preferred.

There are many related works in swarming that are already mentioned in Chapter 2 (Section

2.6, page 54). However, the control algorithms proposed in these works require high agent



complexity in term of hardware (such in Das et al. 2002, Yang et al. 2007, Desai 2002, 

Takahashi 2004, Mastellone et al. 2007, Avrutin et al. 2007, Payton et al. 2004, Nouyan et al. 

2006, Freeman et al. 2006, Desai 2002, Fierro & Das 2002, Kaminka & Glick 2006, Pavone & 

Frazzoli 2007, etc.), which is the luxury that the agents within this research do not have. For 

examples, agents in (Das et al. 2002) need vision-based sensor; in (Yang et al. 2007, Desai 

2002, Takahashi 2004, Mastellone et al. 2007, etc.) need to perform complex calculations 

hence requiring large amounts of memory and processing power; and in (Avrutin et al. 2007, 

Payton et al. 2004, Nouyan et al. 2006, Freeman et al. 2006, Desai 2002, Fierro & Das 2002, 

Kaminka & Glick 2006, Pavone & Frazzoli 2007, etc.) the agents require a fairly complex 

communications module installed, thus defeating the aim of swarm intelligence.

With the aforementioned constraints, two particular pattern formation tasks that have been 

addressed in this research are how swarm agents can be coaxed into forming a line or chain and 

how agents can be programmed to cluster in a bounded arena under the constraint that agents 

have a limited memory, sensing ability and processing power. This work is loosely inspired by 

the observation of ant colonies, but unlike ants these agents do not release pheromones in order 

to attract other ants. Rather agents use infra-red transmitters to attract other agents to 

themselves.

3.2 Tasks and Approaches
With the limitation of agents as previously mentioned, the FSM approach has been chosen in 

this part of the research. The tasks that have been chosen for the collection of relatively simple 

agents to perform are line formation and cluster formation. The agents do not have any prior 

knowledge about the dimensions of the working arena or how many other agents are present in 

the arena. These other agents can also be viewed as dynamic obstacles in the environment. The 

sensing range is small relative to the working arena. In this research, a reactive decentralised 

control algorithm has been investigated and used to perform the abovementioned tasks. The 

mission is to complete the specific task while avoiding collisions with other agents and the 

wall.
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In the following section, the simulated world is first described, followed by the agent design 

and its dynamics. Next the control mechanisms will be described at both low and high levels. 

The results of the simulations are then presented and discussed.

3.3 Simulation Environment

3.3.1 Simulator and agent designs

The experiments presented in this Chapter have been conducted in a physical simulation engine 

called Breve (Klein 2002), first introduced in Chapter 2. Breve is specifically designed for the 

simulation of multi-agent, 3-D spatial and physical systems. Hence agents will be subjected to 

normal Newtonic laws. As shown in Figure 3.1, the working arena consists of a floor  which is 

defined as a cube of 70 by 70 patches with thickness of 5 units in the Breve world. Along the 

perimeter of the floor, the wall has a thickness and height of 4 units. The wall is included to 

prevent agents from falling off the end of floor.

Figure 3.1: Simulation world; showing floor, wall with seven agents in the
arena.

Swarm systems can either be homogeneous or heterogeneous systems. In a homogeneous 

swarm system, agents usually consist of physically identical agents with exactly the same 

hardware and software capabilities. Whilst on the other hand, in a heterogeneous swarm 

system, the agents may be different, such as at the hardware or software levels. Even if the
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agents have exactly the same hardware configurations and control software, if each agent has a 

unique identifier, the swarm system is considered as a heterogeneous swarm system. Hence in a 

homogeneous swarm system, each agent is identical in all respects.

Within this study, several homogeneous physical embodied agents with homogeneous and 

heterogeneous control have been designed to examine a number of swarming algorithms. As 

shown in Figure 3.2, each agent is installed with a ring of 8 equally spaced infrared transmitter- 

receiver pairs around its turret, that enables the agent to attract and detect other agents from its 

local environment. In addition to transmitter-receiver pairs, the agent has two driving wheels 

and two omnidirectional wheels, which allow the agent to move in any arbitrary direction and 

step once it is commanded to do so.

The agent has been defined as a mobile multibody object. The body of the agent, which has 

been labelled as RoboBody has been defined as a root body or root link. The RoboBody then has 

been connected to other parts of the agent, such as wheels and sensors. The RoboBody has been 

constructed using a PolygonDisk object and has been defined with a radius of 2 units with 

thickness of 0.75 units and with sides of 40 units. The wheels have been created using the 

PolygonDisk object as well with a radius of 0.60 units, thickness of 0.21 units and sides of 40 

units. The wheels are referred to as leftWheel and rightWheel to differentiate the left and right 

wheel of the agent.

3 A

Omnidirectional 

wheel Ir
Infra-red

receiverInfra-red \

transmitter Driving 

wheel

Figure 3.2: Simulated agent
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The leftWheel and rightWheel are then assembled to the left and right side of the undercarriage 

of RoboBody. To be exact, the leftWheel is connected to RoboBody at the point of (0, -0.30, 

-1.20), and the rightWheel is at (0, -0.3, 1.20) as shown in Table 3.1.

The joints between the wheels and RoboBody has been defined as a revolute joint so that the 

wheels can be controlled to roll backward and forward just like a physical wheel. The 

omnidirectional wheel supports have been constructed using spheres with radii of 0.20 units. 

The supports have been placed at the front and the back of RoboBody. The front support, 

frontSupport is connected to RoboBody at the point of (1.5, -0.68, 0), and the back, 

backSupport support is at (-1.5, -0.68, 0) as shown in Table 3.1. The joints between 

omnidirectional wheel and RoboBody has been defined as a ball joint so that the wheel can 

rotate freely in 360 degrees.

Eight pairs of infra-red transmitters and receivers have been created. The transmitters and 

receivers have been defined as spheres. The pairs are then assembled at the top and near the end 

side of the RoboBody spaced at 45 degrees apart as shown in Figure 3.2. The transmitters and 

receivers faces outward and are perpendicular to the side of the RoboBody.

Table 3.1: Agent's parts

A gent's parts Shape L ink Joint type C on nected  to 
R o b o B o d y  at

RoboBody PolygonDisk with: 
sides = 40, thickness 

= 0.75, radius = 2

Primary None Not available

leftW heel PolygonDisk with: 
sides = 40, thickness 
= 0.21, radius = 0.60

Secondary Revolute joint (0, -0.3, -1.2)

rightWheel PolygonDisk with: 
sides = 40, thickness 
= 0.21, radius = 0.60

Secondary Revolute joint (0 ,-0 .3 , 1.2)

frontSupport Sphere with: radius =  
0.2

Secondary Ball joint (1.5, 0.6, 0)

backSupport Sphere with: radius = 
0.2

Secondary Ball joint (-1.5, 0.6, 0)

transmitters Sphere with: radius = 
0.3

Secondary Fixed joint various

receivers Sphere with: radius =  
0.15

Secondary Fixed joint various
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These infra-red transmitter and receiver pairs are labelled 1 through 8 in the clockwise manner 

from the front position of the agent to differentiate which one which. These pairs are used for 

attracting and locating other agents in the environment. The transmitters can be switched on 

and off individually.

The lime, blue and red colours of the transmitters as in Figure 3.2, are used to indicate that 

those transmitters are switched on. When the transmitter is switched off, white is used. The 

chosen colours are also used to assist the observer to recognise in which direction the agent is 

facing. As indicated in Figure 3.2, red is on the left and right side and lime is at the front and. 

back side of the agent. For each pair, the infra-red receivers are placed in front of the 

transmitters, this is to avoid the receiver from receiving the signal transmitted by its own pair.

The transmission and detection range of transmitters and receivers has been set to twice the 

radius of RoboBody, i.e. 4.0 units. The transmission angle for transmitter is set to 25 degrees, 

whilst the detection angle is 45 degrees.

The collision sensor is located at the front of the RoboBody just below the infra-red receiver 

number 1. The sensor range is set to 4.0 units and the detection angle is set to 60 degrees.

3.3.2 Agents dynamics

The locomotion of the agents are non-holonomic, where there is a restriction on the maximum 

possible turning angle of the agents. Turning is achieved through two driving wheels located 

just below transmitters 3 and 7. The movement of wheels are governed by the input receivers.

At the beginning of the simulations, the natural velocity of wheels have been set to 2.50 rad/s. 

The natural velocity is the speed at which the wheels turn in the absence of sensors or receivers 

input. Each wheel can be controlled individually by changing the value of left and / or right 

wheel velocity, namely leftSpeed and rightSpeed respectively.
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In this study, several flags for the agent's movement have been defined. These include speedUp, 

slowDown, speedNorm, speedStop, turnRight and tumLeft as shown in pseudo codes in Table 

3.2. At any one time, only one or none of the flags will be set to true while the others are set to 

false.

From Table 3.2, when speedUp is switched to logic true, both leftSpeed and rightSpeed will 

increase their value based on their current value by 1.3 times. The speedUp method will be 

activated if the distance between the agents is greater than 3 unit. The increment of leftSpeed 

and rightSpeed values will stop when either the current value of leftSpeed or rightSpeed is 

reached or is greater than 3.0, or the speedUp flag is set to false. The speedUp method is useful 

when an agent is far from the other agents and is trying to keep close to the others within the 

allowed distance.

The slowDown method is the opposite of speedUp. The slowDown method will be activated if 

the distance between agents is less than 2 unit and greater than 1 unit. Whenever the slowDown 

flag is set to true, the leftSpeed and rightSpeed parameters will be reduced by half until it 

reaches the value of zero or the flag is set to false, whichever comes first. The slowDown 

method has been used in the simulations whenever the agent comes to close contact to other 

agent(s) or obstacle1 before comes into a halt.

Whenever an agent needs to turn to the right or left, the flag turnRight or tumLeft will be set to 

true accordingly. As shown in the Table 3.2, during the turnRight method, the rightWheel will 

turn to the opposite direction of leftWheel, resulting in a negative value of the rightSpeed. The 

tumLeft method on the other hand, will set the leftWheel turning in the opposite direction.

The movement of an agent can be stopped by setting the speedStop flag to true. This will set the

leftSpeed and rightSpeed to zero, resulting in the agent coming to a halt. The speedStop method

will be activated if the distance between agents is less than 1 unit. The last elementary flag as

shown in Table 3.2 is called speedNorm, this method will be activated if the distance between

1 In this Chapter, ev en  though there no ob stacle  has been  d efin ed , agents treat the perim eter w a ll as 
“o b sta c le” .



agents within 2 and 3 unit. In this method, both wheels will be set to naturalVelocity, resulting 

the agent will move on to straights line forward.

Table 3.2: Pseudo code fo r  agents dynamics

while speedUp do
if leftSpeed < 3.0 and rightSpeed < 3.0 then 

leftSpeed = leftSpeed * 1.3 
rightSpeed = rightSpeed * 1.3

end if  
end while

while slowDown do
if leftSpeed > 0 and rightSpeed > 0 then 

leftSpeed = leftSpeed * 0.3 
rightSpeed = rightSpeed * 0.3

end if 
end while

if turnRight then
leftSpeed = leftSpeed* 1.0 
rightSpeed = rightSpeed * -1.0

end if

if tumLeft then
leftSpeed = leftSpeed * -1.0 
rightSpeed -  rightSpeed * 1.0

end if

if speedStop then
leftSpeed = 0 
rightSpeed = 0

end if

if speedNorm then
leftSpeed = naturalVelocity 
rightSpeed = naturalVelocity

end if
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3.4 Encoding of Rules
Within this research, since agents in the final I-SWARM agents have a limited amount of 

memory, the rules governing the motion of each agent (in this Chapter) are based on a 

behaviour based architecture, consisting of three states represented by finite state automatons as 

shown in the state diagram of Figure 3.3. Each state corresponds to a different behaviour. At 

each simulation time step only one behaviour is active. The transitions between agents are 

dependent on the sensory inputs which is represented by s in the Figure 3.3; where 5 = 0 means 

there is no sensory input whilst s > 0 means there is at least one of the agent's sensor gives a 

positive reading.

To test the hypotheses of pattern formations of robotic swarm using state models, two control 

algorithms have been proposed, namely line formation and clustering. In line formation, all 

agents have been controlled homogeneously, whilst in clustering, agents have been controlled 

heterogeneously. For clustering, two types of agents are defined, that is attractor and searcher 

agents which use different control sets.

s > 0

s > 0s = 0

followingrandomWalk

s = 0 s > 0
s = 0

wait

Figure 3.3: State diagram fo r  line and cluster formation. States are shown as labelled circles while 
transitions are depicted as arrows. Each transition is labelled as e v e n t  which triggers the transitions. 
Letter s represents se n so ry  in p u t to the agent; where s =  0  depicts no sensory input, while s >  0  means 

there at least one o f  the sensor gives a reading.
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The approaches for line formation and clustering are thus described. First the behaviours are 

described, followed by the conditions that trigger the transition between behaviours for all 

agents, i.e. in line formation and searcher agents in clustering, and finally a high-level 

descriptions for line formation and clustering control algorithms is provided.

The three behaviours designed into the agent are:

•  randomWalk: agent performs a random walk in the arena looking for others within its 

vicinity. All infra-red transmitters are switched on for line formation and all are off for 

clustering.

•  following: move towards the agent in front. Back three infra-red transmitters 

(numbered 3, 4 and 5) are switched on, others are off for line formation', front three 

(numbered 1, 2 and 8) are off while others are on for clustering.

•  wait: moves with the current wheel speed. On-off arrangement for infra-red 

transmitters are same as in the following behaviour.

The behavioural transitions are:

•  randomWalk —*■ following: if agent perceived another agent. Note that an agent only 

can be perceived by other agent if and only if its infra-red signal is detected by the 

other agent.

•  following —*■ wait: if an agent lost the infra-red signal that has been detected before.

•  wait —» randomWalk: if an agent perceived the agent that was iost previously.

•  wait —► randomWalk: if an agent could not detect the lost infra-red signal within 

permitted time frame.

3.4.1 Line formation

At the beginning of the simulation, agents are placed at the predefined location as shown in 

Figure 3.4. Typically, an agent will not detect any other agents in its vicinity and is in the 

random walk state. The movement of the agent while in randomWalk state is that at every 

simulation time step the agent will have a small probability of 0.005, or one in 200 chances to
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turn its direction of heading. This is to avoid agents moving in a Brownian motion; moreover it 

will give agents the ability to scan a wider area in a shorter period of time. When the agent 

needs to change its direction, it will choose randomly either to turn left or right by either 45 or 

90 degrees.

( a )

r

(b)

Figure 3.4: Agents start position in the arena for; (a) line formation, (b) clustering.

While in the randomWalk state, the agent will switch on all its transmitters as shown by the 

agent on the right in Figure 3.5 to attract others to its positions. At the same time, the agent will 

look around and tries to find for external infra-red signals from another agent through its 

receivers and within its sensitivity range.

forward direction

m

i   ̂1 following

m

* randomWalk( ‘iw*

m
Figure 3.5: Transmitters’ on-off arrangement fo r  line formation. Agent on the left is in the 
following state where three transmitters a t the back is switched on. On the right is in the 

randomWalk state where all transmitters are on.
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As shown in Table 3.3 algorithm 1, during the randomWalk state, the agent will read each of 

the receiver values until it gives the logic true, i.e. the agent perceives another agent. Reading 

the values of the receivers is done sequentially, from the front to the rear and from right to left. 

In other words, the value from the receivers will be read by the following order of receiver’s 

number: 1, 2, 8, 3, 7, 4, 6 and finally 5. The sequential reading of sensors is in line with the 

limited processing capability of the on-board microcontroller of many swarm robots.

Table 3.3: Pseudo codes fo r  three states in line formation algorithm.

Algorithm 1. randomWalk() Algorithm 2. following() Algorithm 3. wait()

switch-on all transmitters switch-on transmitters (4,5,6) while (counter < 50) do

for (each receiver) do switch-off transmitters for (each receiver) do

if (any receiver) (1,2,3,7,8) if (any receiver)

following() for (each receiver) do following()

end if if (any receiver) else

end for following() counter ++

end if end if

if (all receivers == false) end for

reset counter end while

wait()

end if if (counter >= 50)

end for randomWalk( ) 

end if

As soon as one of the receivers detects the existence of another agent within its neighbourhood, 

it will fall into the following state and make the necessary turn towards the agent. The agent 

will also ignore the receivers that are reading while turning or changing its heading. For 

example, if the receiver numbered 7 detects the signal, the agent will turn 90 degrees to the left 

and ignore the reading from receivers until the turning task is done. Likewise for receiver 

number 3, it will turn to the right by 90 degrees and ignore the readings from receivers until
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completed the turning task.

In the following state, the agent switches off all its transmitters except the three to the rear, 

numbered 4, 5 and 6, as the agent on the left shown in Figure 3.5. The reason behind this is to 

attract another agent to its rear in order to form a line.

There is no explicit communication taking place between the agents. Agents rely solely on their 

receivers to control the movement. This kind of behaviour is known as cue based behaviour 

where agents react to stimuli in its environment. As shown in Table 3.3 algorithm 2, during the 

following state, as in the randomWalk state the agent will read each of its receivers values 

sequentially from the front to the rear and from right to left until one of the receivers detects the 

infra red signal from the agent in front. If the signal is detected, the agent will remain in the 

following state.

Due to the fact that infra-red transmitters and receivers have a limited effective transmission 

and detection range and angles, a wait state has been introduced. This is to prevent the agent 

from moving to the randomWalk state from the following state directly it loses the signal by a 

few degrees. This can happen when the agent in front is turning or changing its heading by a 

few degrees. During this wait state, the agent will keep moving forward without turning left or 

right with its current wheel speed. As in the following state the agent will only switch on the 

rear three transmitters, numbered 4, 5 and 6

As can be seen in the algorithm 2 of Table 3.3, the counter is reset to zero every time the agent 

exits the following state and enters the wait state. In the wait state, the agent will read each of 

its receivers values sequentially as in following and randomWalk state.

While in the wait state (algorithm 3 of Table 3.3), if the agent detects any infra-red signal from 

any other agent, it will change its state to the following state, and make a necessary turn 

towards the front agent. If the agent does not detect any signal, it will increase the counter by 

one and continue to read the receivers values.
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This continues until the agent detects the wanted signal or the counter reaches (or exceeds) the 

value of 50, whichever comes first. If the agent detects the signal, it will change its state to the 

following state, otherwise it will return to the randomWalk state.

3.4.2 Cluster formation

For cluster formation amongst agents, two types of agents namely attractors and searchers 

have been predefined. The attractor agent will act as a leader and will try to attract searcher 

agents to its position. The pseudo codes and state diagram that govern the searcher agents 

movement are shown in Table 3.4 and Figure 3.3 (in page 77) respectively.

During the simulation, the attractor agent switches on all its transmitters permanently in order 

to attract searchers to gather around its position. It also moves randomly in the arena until it 

bumps into other agents several times, and it will stop at that position.

Table 3.4: Pseudo codes fo r  three states in cluster formation algorithm.

Algorithm 1. randomWalk() Algorithm 2 .following() Algorithm 3. wait()

switch-on all transmitters switch-on transmitters while (counter < 50) do

for (each receiver) do (3,4,5,6,7) for (each receiver) do

if (any receiver) switch-off transmitters (1,2,8) if (any receiver)

following() for (each receiver) do following()

end if if (any receiver) else

end for following() counter ++

end if end if

if (all receivers == false) end for

reset counter end while

wait()

end if if (counter >= 50)

end for randomWalk( )

end if
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As shown in the state diagram in Figure 3.3 (in page 77), the searcher will begin the simulation 

in the randomWalk state. While in randomWalk state, the searcher agent will switch off all its 

transmitters and it will move randomly in the arena while looking for others.

At every simulation time step, searchers in the randomWalk state and the attractor will have a 

small chance with a probability of 0.005 to turn its direction of heading. When turning, the 

agent will choose randomly either to turn 45 or 90 degrees to the left or right.

As shown in Table 3.4 algorithm 1, during the randomWalk state, the searcher will read each of 

its receivers until any infra-red signal from any other agent is detected. Reading is done 

sequentially from front to rear and from right to the left as in the line formations method 

discussed earlier.

Once the searcher detects any infra-red signal, the searcher will move into the following state 

and turns towards the detected signal. While in the following state, the searcher will switch on 

all its transmitters except the three at the front as shown by the agent on the left in the Figure

3.6. By doing so, it will attract other searchers to its back or side in which will form a cluster of 

agents in the end.

During the following state (Table 3.4, algorithm 2); as in the randomWalk state the agent will 

read each of its receivers values sequentially from front to the rear and from the right to the left 

until one of the receivers detects the infra red signal from the agent in front. If the signal is 

detected, the agent will remain in the following state. Otherwise the agent will move to the wait 

state and reset the wait counter to zero.

In the wait state (Table 3.4 algorithm 3), the searcher agent will keep on moving forward with 

its current wheel speed and on-off arrangement of its transmitters. The searcher agent will also 

read its receivers value as before. If any of the receivers detects any infra-red signal, it will 

move back to the following state and make the necessary turn as in the line formation.
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forward
direction

searcher < a ttractor

m

following

Figure 3.6: On-off arrangement o f  transmitters fo r  cluster formation. On the left is the s e a rc h e r  
agent in the following state switching on all the transmitters except the front three. Agent on the 

right is the a ttra c to r  switching on all its transmitters.

If the searcher agent is not able to detect the wanted signal, it will increase the counter by one

and will search again for the signal. The process will loop until the searcher detected the signal

or the counter reaches the value of 50 or greater, whichever comes first. If the signal has been 

found, the searcher will move back to the following state, otherwise it will move to the 

randomWalk state.

3.5 Experiments

3.5.1 Simulations setup

As previously mentioned, the research in this Chapter has been undertaken in conjunction with 

the I-SWARM project; where agents have little memory, limited sensing capabilities and no 

communications module installed on them. The goal of the simulations was to evaluate the 

controllers under the most basic conditions. In particular, we placed no obstacle in the working 

environment and agents are placed at the same position and orientation at the start of each 

simulations as shown in Figure 3.4 (page 79). In these simulations, seven agents have been 

used. We employ a bounded arena of size 70x70 units in the Breve world, as mentioned 

previously, for all the simulations. Fifty one runs are made for each cpntrol algorithms. The 

performance was evaluated at the end of the simulations and all runs for line formation and 

clustering were executed for 300 and 200 simulation seconds respectively to provide enough 

time for all agents to complete the task. The simulations were recorded into a movie format, 

and the data for analysis were recorded at every 20 simulation seconds.



3.5.2 Evaluating line formation

In evaluating each control algorithm, first the number of agents that are in the randomWalk 

state are counted. As the number of agents in the simulations was fixed at seven, the number of 

agents in the randomWalk state towards the end of the simulation is ideally one. When this 

happens, the agent which is in the randomWalk state will act as a leader for other agents. In 

other words, agents in the working arena will follow the agent ahead of itself, in the end will 

result a moving queue.

The reason for counting the number of agents in the randomWalk state is that if we suppose that 

each of the agents in randomWalk state acts as a leader for line formation, then the number of 

leaders in the environment will represents the number of lines or chains that formed in the 

arena. In this study this number should be minimal i.e. one; this will show that in the arena 

there is only one leader and one line or chain amongst the agents have been established.

Figure 3.7 shows the plot of the mean number of agents that are in the randomWalk state 

against time over 51 simulations run. As can be observed from the plot, the number of agents in 

the randomWalk state decreases over the first 100 seconds, and then stabilises afterwards. This 

shows that agents are able to form a line or two within the first 100 seconds. The low variation 

of the standard deviations demonstrates the consistency of the algorithms.
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Figure 3.7: Number o f  agents in the randomWalk state in line formation against time.
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In order to further understand how the agents converge, Table 3.5 shows the percentage of the 

number of agents in the randomWalk state over 51 simulations run. As the simulations began, 

all the agents fall into the randomWalk state which amounts to 100% if there are seven agents. 

At t = 20 seconds, only 1.96% or in other words, only once in the entire simulations run that 

one of the agent was not in the randomWalk state. Towards the end of the simulations, 

specifically from 150 to 300 seconds as we can see from the plot and the data provided, around 

90% of the simulation runs have managed to form two lines or less, in which more than half of 

the time only one agent is in the randomWalk state and acts as a leader for the entire agents. 

From the observations during the simulations, there are a number of times where agents were 

successfully formed a single line and then split into two lines due to the limited angle of 

transmissions and receivers. We believe that this can be avoided by increasing the counter for 

the wait state.

Table 3.5: Percentage o f  number o f  agents in the ra n d o m W a lk  state over 51 simulations run fo r  line 
formation.

A g e n t s \ ^ 0 2 0 4 0 60 80 100 120 150 180 2 1 0 2 4 0 2 7 0 30 0

1. 0 0 0 7 .8 4 2 1 .57 4 9 .0 2 54 .9 4 9 .0 2 3 9 .2 2 5 2 .9 4 5 2 .9 4 5 8 .8 2 62 .75

2 0 0 0 31 .37 45.1 3 9 .2 2 37 .25 3 9 .22 5 4 .9 3 9 .2 2 4 3 .1 4 35 .29 35 .29

3 0 0 9 .8 37 .25 19.61 9 .8 7 .84 9.8 5 .8 8 7 .8 4 3 .9 2 5 .8 8 1.96

4 0 0 4 7 .0 6 17.65 11.76 1.96 0 1.96 0 0 0 0 0

5 0 0 31 .37 5 .88 1.96 0 0 0 0 0 0 0 0

6 0 1.96 11.76 0 0 0 0 0 0 0 0 0 0

7 100 9 8 .0 4 0 0 0 0 0 0 0 0 0 0 0

Consider the snapshots taken during one of the simulation runs for line formation in Figure 3.8 

at 40, 100, 190 and 240 seconds respectively. In Figure 3.8(a) and (b), three of the agents have 

detected other agents hence have moved into the following state. Other agents which are in the 

randomWalk state will remain in the state until it detects another agent which they can follow. 

Figure 3.8(c) shows two of the agents are in the the randomWalk state and as can be seen that 

the agents have formed two lines; one with two agents and the other with five agents. Figure 

3.8(d) shows that towards the end stage of the simulation which shows the agents have 

successfully formed a line.
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(C) (d)

Figure 3.8: Stages in line formations: ( a ) a t t  = 40[s]; (b) at t =  100[s]; (c) a t t -  190[s], and(d)  at t =
2401s].

3.5.3 Evaluating cluster formation

In cluster formation, as mentioned previously two types of agents namely searcher and 

attractor agents have been defined. The evaluation process is similar to those in the line 

formation, but this time we take searcher agents into account and counted the number of 

searchers that fall into the following or wait state. In the simulation, we have a total of seven 

agents, six of them are searchers and one is an attractor. As cluster formation implies, the task 

for the searcher agents is to roam in the working arena and look for and gather around the 

attractor. As the number of searchers is fixed to six, ideally towards the end of the simulation 

all searchers found the attractor and the number of searcher agents in the following state is six.
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Figure 3.9 is the plot of mean number of searcher agents that are in the following or wait state 

against time over 51 simulations run. As can be seen from the plot, from the start of simulations 

up to around 70 seconds, the number of agents changes rapidly. The rate of convergence seems 

to slow down after approximately 70 seconds and stabilises after 140 seconds.

Cluster formation
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Figure 3.9: Number o f  searcher agents in the following state in cluster formation against time.

Table 3.6 gives an overview of the percentage of the number of searchers in the following or 

wait state over 51 simulations run. At the beginning of the simulations, none of the searchers 

are in the following or wait state, giving 100% to number of searchers 0. At 40 seconds, the 

number of searchers increases, but for most of the simulation runs only three or less of the 

searchers were in the following or wait state. Also at 40 seconds, only once from the entire 

simulation runs that all the searchers are already in the following or wait state, or have already 

completed the task of clustering. From 140 seconds, at least five of the searchers are in the 

following or wait state and more than 80% of the simulations run the task has been completed.
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Table 3.6: Percentage o f  number o f  agents in the r a n d o m W a lk  state over 51 simulations run fo r  cluster 
formation.

^ \ ^ T i m e

A g e n t s " " ^ . 0 2 0 4 0 60 80 100 120 140 160 180 20 0

0 100 64.71 5 .8 8 0 0 0 0 0 0 0 0

1 0 33 .33 19.61 3.92 0 0 0 0 0 0 0

2 0 1.96 23 .53 7 .8 4 3 .92 1.96 0 0 0 0 0

3 0 0 29.41 13.73 1.96 1.96 0 0 0 0 0

4 0 0 15.69 33 .33 17.65 13.73 3 .9 2 0 0 0 0

5 0 0 3 .9 2 23 .5 3 3 9 .2 2 29.41 29 .41 17.65 13.73 11.76 9 .8

6 0 0 1.96 17.65 37 .25 5 2 .9 4 6 6 .67 82 .35 86 .27 8 8 .24 90 .2

Figure 3.10 shows the snapshots taken during one of the simulations runs for cluster formation 

at different time stages. Figure 3.10(a) shows that at the beginning of the simulation, all agents 

were in the randomWalk state. The attractor permanently switches on all the transmitters, 

whilst the searchers switch off all the transmitters during the randomWalk state. Figure 3.10(b), 

shows that two of the searches have already encountered the attractor resulting in the 

searchers switching on the transmitters to its side and back. Figure 3.10(c) and (d) show the 

simulation runtime at 100 and 160 seconds respectively. At these times most of the searchers 

have perceived the attractor or other agent with the transmitters turned on. Finally Figure 

3.10(d) shows towards the end of the simulation which shows all the agents successfully 

forming a cluster.

The strategy of the agent in the cluster formation simulation is the same as in the line formation 

algorithm, where the agent does not use any kind of explicit communication and relies only on 

its sensors or receivers to control its motion. Moreover, it is an auto-catalytic process, the more 

there are agents in the cluster, the larger the cluster becomes and the more likely other agents 

are to discover the cluster, thus reinforcing the growth of the. cluster.
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(C) (d)

Figure 3.10: Stages in cluster formations in one o f  the simulation runs: (a) a t t  =  0[s]; ( b ) a t t  = 40[s]; (c)
at t = lOOfs], and (d) at t = 160[s].

3.6 Discussions
An experimental study of two simple control algorithms for pattern formation in robot swarms, 

using state-based and rule-based systems, have been presented. The agents are designed to be 

homogeneous in hardware which have constraints in processing power, little memory and 

limited ability, and it has been shown how the simple agents can be controlled in a 

homogeneous and heterogeneous way such that basic organisation can be achieved.
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From the results, it is shown that by automatically switching on and off a combination of 

transmitters and sensors, a variety of agent behaviours can be achieved. It is also shown that 

simple pattern formation of mobile robot swarms can be obtained by using only simple rule sets 

without the need for any direct communication between agents.

The overall aim of this research was to investigate two different, but crucial problems in robot 

swarm. Firstly, the problem of self-organising in a robot swarm into an interesting pattern is a 

challenging task that has been studied by several research groups. Secondly, the potential for a 

swarm of robots to generate solutions that can meet real world constraint still remains to be 

achieved.

During this study, the major constraint that was identifies was the processing power and the on­

board sensing capability of the robots. With limited capabilities, it might look that nothing 

substantial could be achieved by each individual agent. Hence, a way need to be found to 

overcome this issue.

The work discussed in this Chapter is related to achieving interesting and coherent behaviour 

from a number of simple agents. These simple agents only have little memory, limited sensing 

capabilities and processing power.

It is a much simpler task to design a controller for a robot that maximises its own sensing 

abilities, but the result is likely to be a very deterministic behaviour. By using the local 

interactions between robots, other information can be harnessed within the environment that is 

not necessarily directly available to all robots. This requires the agents to have the ability to 

perform localised signalling to their nearest neighbours. In this scenario, aggregation patterns 

are important for the flow of information within the robot swarm.

By having certain patterns encoded in the robot swarm, complex tasks can be more easily 

performed. Such patterns for example; line formation or a moving queue, can be useful in 

cleaning-type tasks, search and rescue tasks, optimal path finding between two points etc.
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Another example is clustering, where the pattern will be useful for information sharing within 

the working arena, or to do some complex processing which could not be achieved by single 

agents due to limited local sensing and computational capabilities.

Another important area of investigation is the composition of several behaviours to produce 

more solutions in more complex scenarios. This way, a robot must use the limited sensing 

capabilities with some degree of context in order to “understand” its situation. This will give it 

the information it needs to make a decision on switching between rule sets. For example, using 

only its IR sensors, a robot can differentiate between an obstacle and another robot. If a robot 

picks up an IR signal, it can determine if it is reflected by an object by switching off its 

transmitters. Using this simple method, a robot can be part of a moving queue formation until 

discovering an object before taking action based on this information.

By combining localised signalling and context within a scenario, this work provides a step 

towards robot swarms being able to emulate complex dynamical pattern formations such as 

those present in nature, in social insects for example.

In this Chapter it has been shown how simple agents can be given simple rule sets to produce 

interesting behaviours. As each state within the state diagram is governed by rules to perform 

that automaton, so the resulting aggregated behaviour can be built upon to produce even higher 

levels of coordination. Ultimately what looks like a massive cooperation emerges from what are 

essentially local interactions.

From a practical approach, the work developed in this chapter has been used by Fernandez et 

al. (2005) to construct SHUBOTS at Sheffield Hallam University. The SHUBOT agents are 

shown in Figure 3.11. Each SHUBOT robot has low complexity and is low-cost, and so works 

ideally as swarm-capable agents to complement the work carried out in this Chapter. The 

SHUBOT consists of three modular platforms, namely: the microcontroller module, the sensor 

module, and the locomotion and powering module. The modular design approach was taken to 

allow for future possibilities of either expanding the platform or changing the sensor
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configurations.

Fernandez et al. (2005) designed and studied various sensor combinations and presented three 

of the behaviours. The first behaviour is achieved when all transmitters / receivers 

combinations are switched on. In this behaviour, agents transmit its location and detects other 

agents at the same time. The behaviour is not deterministic due to:

•  indefinite obstacle avoidance lock, due to the fact that since all transmitters are 

switched on, and when the agent encounters an obstacle and avoids it, it may again 

perceive the empty space as an obstacle, thus turning into the obstacle again.

•  the breaking of robot chains, due to the fact that when an agent is following another 

agent in the vicinity the robot will rotate through by 180° when it gets too close.

The second behaviour is the leader-follower (line formation) behaviour as shown in Figure 

3.11. In this behaviour an agent acts as the leader and other as followers, allowing for long 

chains to be formed. The leader switches off the back three receivers, so that it does not detect 

any follower. The leader roams and avoids obstacles. The followers on the other hand have all 

it's receivers and transmitters switched on, which allows it to detect a leader, or another 

follower agent that it can follow.

microcontroller

module

sensor module

locomotion

and

powering

module

L j..
Figure 3.11: The SHUBOT and four SHUBOTs performing line formation (Fernandez et al. 2005)
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The third behaviour is a clustering behaviour. In this behaviour, agents switch on the three 

frontal receivers, so other agent can be detected towards the front. When an agent is detected it 

follows it. Due to the fact that all transmitters are switched on, lateral following also occurs 

which results in a clustering behaviour.

Furthermore, their results (Fernandez et al. 2005) showed that the agents (SHUBOT) were able 

to distinguish between obstacles and other partner agents in the working environment. The 

method for doing so was to use a triple check approach as shown in Figure 3.12. It was also 

found that the agents encountered some difficulty due to multiple reflection from boundaries 

and a variety of infra-red sources, which has been ignored during the simulations. Nevertheless 

it was found that the simulations did provide a useful Study in developing the physical agents.

Yes Is the front sensor 
activated?

No
Is the front sensor 

still activated?

Yes

Yes Is the front sensor 
still activated?

No

Switch off the 
front transmitter

Obstacle
present

Switch on the 
front transmitter

No obstacle 
present

Figure 3.12: Obstacle avoidance on SHUBOT. The triple check is due to the fa c t that the robot's own
infra-red transmitter may affect sensing.
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To sum up, in this Chapter, two control algorithms using the FSM approach for pattern 

formation have been devised to support relatively simple swarm agents that have very little 

memory, limited sensing capabilities and processing power. It has been shown that even with 

relatively simple swarm agents, simple pattern formation of mobile swarm agents can be 

obtained by using only simple rule sets without the need of any direct communication between 

agents. In this work, different variety of agents behaviours are achieved by switching on and off 

a combinations of transmitters and sensors.
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Chapter 4 Modelling of Collective Movement

Self-organising systems usually comprise a large number of autonomous and reactive agents 

where aggregations or collective, movements are determined mainly by their neighbourhood 

influences. Generally these systems have been used to simulate and study natural and biological 

phenomena. With recent technological advances, the realisation of deploying hundreds (if not 

thousands) of swarm agents is becoming more viable. This Chapter examines how an artificial 

potential field affects the collective movement of swarm robots. In the next two sections the 

history and background of the flocking algorithms and collective movement in robotics are 

provided. Thereafter the simulation methodology and its implementation will be described. The 

results are evaluated and conclusions are drawn.

4.1 Introduction
In nature, there are countless examples where animals or insects gather in a large groups, 

displaying collective movement and self organise in a coherent fashion. These patterns are 

evident in numerous other examples of animal or insect migration behaviours such as the great 

herds of antelopes and wildebeest thundering across the Savannah in Africa, and Monarch 

butterflies migrating south from North America into remote mountain tops in central Mexico 

towards the end of summer days. The way that these appear coordinated and synchronised 

according to local rules is fascinating to discover.

It is hard to believe that for such a large group there does not exist a single entity or a leader to 

control the group's behaviour. For example, in the case of the birds flocking or fish schooling, 

the bird or fish at the front of the flock seems to lead, and the others to follow. On the contrary,



most bird flocks and fish schools are leaderless. In fact the movements of the flocks and 

schools are determined by instantaneous decisions of individual bird or fish.

Orderly flock patterns arise when each agent in the flock follows simple rules in response to 

dynamic interactions within neighbourhood. Such movements are a prime example of self 

organisation in swarms. Camazine et al. (2001) state that the main feature of self organisation is 

that a system's organisation or movement does not explicitly depend on external control factors: 

In other words, the organisation emerges solely due to the local interactions between 

individuals and their environment. The organisation also can evolve in either space or time and 

can maintain some kind of stable form or can show in transient phenomena. An example of 

such a system is that of a colony of ants sorting eggs without knowing any particular sorting 

algorithm (Bonabeau et a l  1999).

An example of self organisation in a swarm is the flocking of birds. As previously mentioned in 

Chapter 2 (page 57), Reynolds (1987) was one of the first to simulate flocking behaviours of 

birds. The basic Reynolds' flocking algorithm is based on steering behaviours of which he 

labelled as Separation, Alignment and Cohesion. The result of the simulations was a movement 

model that mimics various swarms in nature, a school of fish for instance. Since the flocking 

work of Reynolds (1987), there are many works which are related to and extended from the 

flocking or swarming algorithms. Wilensky (1999) for example, further developed the 

simulation inspired by the boids algorithm. The algorithm presented by Wilensky (1999) 

(described in the next section) is very similar to the original boids algorithm but not entirely the 

same.

Other works which were inspired by the Reynolds' include the work of Tanner (2003), Hanada 

(2007), Olfati-Saber & Murray (2003), Desai (2002), Mastelone et al. (2007) etc. Most of the 

works reported in articles involve “repel” and “attract” factor (such in Tanner 2003, Hanada 

2007, Olfati-Saber & Murray 2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002, 

Mastelone et al. 2007, Yang et al. 2007, etc.). These repel factors are used in the agent-agent 

and/or agent-object obstacle avoidance strategy, meanwhile the attract factor is only used in the
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agent-agent cohesion-like strategy. The work in this Chapter investigates and examines the 

problem of agent-object attraction factors by extending the flocking algorithm of Wilensky 

(1999). This will lay groundwork of how agent-object attraction factors affect swarms 

behaviour in performing an aggregation task.

4.2 Collective Movement in Robotics
Movements in mobile agents can be classified into two categories, holonomic and non- 

holonomic motion. Holonomicity in mobile agent refers to the relationship between 

controllable movement DOF (degree of freedom) and the total DOF of a given agent. If the 

controllable movement DOF is larger than total DOF, the agent is considered to be a holonomic 

agent.

For example, let us consider a mobile agent with two wheels, one on each side of the agent's 

body. Each wheel has two DOF which can be controlled to turn either clock- or anti-clock­

wise, independently, and thus the agent has 4 controllable DOF. By having different directions 

(clock- or anti-clock-wise) and/or speed of the wheels, the agent can freely move on a planar 

surface with 3 physical DOF; hence the agent is a holonomic agent.

In multi-agent systems, each agent has to control its motion in order to form some degree of 

cohesive motion with other agents within the group. Methods for achieving collective and 

coordinated motion are dependent on the sensing and processing capabilities of the agent. 

Generally, the movement of agents are mainly reactive which is completely determined by 

reflexive movement dynamics. Interactions between agents and its dynamic environment will 

result in “complex” macroscopic behaviour and promote self organisation in the end.

In swarm robotics, collective movement is a very important aspect of many tasks. Often, agents 

have a limited sensing range and it is important for agents to stay close to each other while 

moving in the arena. One example of collective movements is the formation movement, where 

agents are required to keep a fixed distance and angle relative to other agents within their
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neighbourhood. Applications of collective movement include search and rescue, tasks 

distributed sensing grid, lawn-mowing, vacuum cleaning, box pushing (Kube & Zhang 1992), 

foraging (Jones & Mataric 2003), etc.

In this Chapter, the research is focused on analysing the aggregation behaviour of large groups 

of agents that follow swarm robotics control paradigms. In particular, we model how a large 

group of agents would behave in the existence of an artificial attractor while flocking in the 

arena. This work is inspired by the observation of phototactic organisms, such as moths which 

fly towards a light source. In the simulations carried out in this chapter the light source is 

modelled as an Artificial Potential Field (APF) to attract agents.

The remainder of this Chapter is organised as follows. In the next section, the simulation 

approach will be described. The simulation methodologies are then explained and some 

snapshots of pre-simulation runs are offered. After that the evaluations of each model are 

shown, and this is followed with discussions.

4.3 Simulation Approach
In this study, a freeware simulation tool called NetLogo (2008) has been used. In NetLogo, the 

2-D world is made up of turtles, patches and an observer. Turtles or turtle breeds can be used to 

define mobile objects. The patches will define the floor or ground in which turtles can move 

around on. The patches can also be used to define any other visible or invisible objects in the 

arena. Turtles and patches can have individual variables and characteristics and can follow 

some set of predefined rules. The observer in the model will be able to oversee everything that 

is going on in the world.

The model for simulation is based upon its participants, we name them as agents, arena and the 

object', and sets of rules. The object, in our case is a static object which we define as turtle 

“breed”. The rules determine the behaviour of each individual participants, and also specify the 

way in which these participants will interact with each other.
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As mentioned above, the arena has been defined based on patches. In these simulations a 

spherical or wrapped around working arena size of 201 by 201 patches was chosen. The size is 

sufficiently large to accommodate the large number of agents that we intend to simulate. At the 

centre of the arena as shown in the Figure 4.1, patch coordinate of (0, 0), an object called 

attractor has been defined and placed. The attractor releases an APF in the arena.

Figure 4.1: Example o f  a working arena with 300 agents.

Agents are declared as a turtle breed, which are mobile agents. In NetLogo, agents can 

concurrently carry out some instructions and interact with other agents. Breeds are groups of 

mobile agents that have same characteristics and follow the same set of rules. The agent has 

been modelled such that each agent can sense or perceive others around its neighbourhood in 

360-degrees within its visibility range, as shown in Figure 4.2. Visibility range is the variable 

where we define how far each agent can see or sense from its position; while the movement 

span is a set of maximum angles that are available for the agent to change its direction either to 

the left or right for its very next movement step.
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Figure 4.2: Representation o f  an individual agent

In this Chapter, Wilensky's (1998) flocking model has been used and extended. The model is an 

attempt to model and mimic the flocking of birds which is inspired by the Reynolds' flocking 

model (Reynolds 1987). As in Reynolds' model, Wilensky's model does not have any 

predefined leader and all agents follow the three strategies of flocking, i.e. separation, 

alignment and cohesion. For these strategies, Wilensky limits the turning angle of each 

strategies using variables called max-separate-turn, max-align-tum and max-cohere-tum. As 

the names of the variables imply, max-separate-turn represents the maximum angle an agent 

can take during separation strategy; max-align-tum is for alignment and max-cohere-tum is for 

the cohesion strategy respectively.

Even though the cohesion and alignment strategies in the Wilensky's model are similar to the 

Reynolds' model, the separation strategy is slightly different. In Reynolds' model, the 

separation strategy takes into consideration a number of agents in the neighbourhood of which 

a distance is maintained. On the other hand, in Wilensky's model, only the closest agent to itself 

is considered. In this strategy, the agent uses max-separate-turn angle and turns away from the 

closest agent.

4.4 Methodology and Implementation

4.4.1 Simulation methodology

As mentioned in the previous section, for this study, Wilensky's (1998) flocking model has 

been adopted and adapted. The attractor in the centre of the arena releases an APF from its
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position as defined by equation (4.1) below.

1

field  =
fieldRadius

distance

if distanced fieldRadius 

otherwise
(4.1)

The strength of the APF's field  is dependent on the patch's distance from its origin, which in our 

case is represented by the attractor; The circular area of the field is subject to a variable, 

fieldRadius which has been set to 63. As shown in Figure 4.1, the white background represents 

the area which is not affected by the applied field.

The number of agents in the simulations are varied between 100 and 500, with 100 increments. 

At the beginning of all the simulations, agents are randomly distributed in the arena, which are 

represented as small black dots as shown in the Figure 4.1.

Within this study, three different movement models have been modelled, namely fish-like, 

mosquito-like and firefly-like. Note that we are not modelling the movement of fish, mosquito 

or firefly; the name simply implies the type of observed collective movement of agents in the 

arena under the different parameter sets. The differences between each movement models are 

due to the movement span and visibility range of each agent respectively. As shown in Table 

4.1, visibility range and movement span for the fish-like model have been set to 10 unit-patches 

and 10-degrees; for the mosquito-like model 7 unit-patches and 45-degrees, while for the 

firefly-like model they are 5 unit-patches and 90-degrees, respectively.

Table 4.1: Variables fo r  movement models

m o v e m e n t m o d e l movement span visibility range

Fish-like 10 10

M osquito-like 45 1

Firefly-like 90 5

102



As Wilensky's model of flocking (1998) is being extended, three more variables from the 

original model needed to be introduced; max-align-tum, max-cohere-tum and max-separate- 

tum. These variables are the maximum angles that each agent can turn through during the 

alignment, cohesion and separation rules respectively.

For these simulations, those three angles rely on the movement span angle; which is the 

maximum turning angle of each agent for its next movement or time step. As shown in Table 

4.2, the value for max-align-tum is set to half of the movement span angle, and max-cohere- 

tum and max-separate-turndo one-third of the movement span respectively. These values have 

been chosen based on our observations during the pre-simulations run such that each movement 

model exhibit “realistic” flocking. In “realistic” flocking agents are free to leave and enter the 

flock, just as biological organism do.

Table 4.2: Flocking variables fo r  each movement model

m o vem en t m odel movement span max-align-turn max-cohere-tum max-separate-turn

Fish-like 10 10/2 10/3 10/3

M osquito-like 45 45/2 45/3 45/3

Firefly-like 90 90/2 90/3 10/3

Throughout this Chapter, the agent's velocity is fixed to one unit displacement, whilst the 

agent's heading H, varies over time. The separation between agents (minimum separation) has 

been set to two units of displacement, which seems a reasonable figure considering that the 

velocity is one unit of displacement for each time step. The change of heading (H) is subject to 

the APF and flocking rules which consist of separation, alignment and cohesion strategy as 

previously mentioned. In the separation strategy, the agent only considers the nearest agent, the 

heading for separation {Hseparation) is defined as follows:

H current +  max—separate —turn

H current ~ mQx  — separate—turn

whert  Hcunent is the agent's current heading and Hnearest neighbour is the nearest neighbour's current 

heading. In this strategy the agent will turn away from its nearest agent by max-separate-tum.
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In the alignment strategy, the agent will change its heading with a similar heading or the 

average heading of its neighbours. The heading for alignment (Halignment) is defined as follows:

H  align \H c u r r e n t  H a lign ] ^  mOX ~  a l i g n  ~tUm

H current+ max — align—turn else if H current < H align (4.3)

H  current—max — align—turn else

where H„usn is the average heading of neighbour(s) within neighbourhood area. H angn is defined 

as the following equation:

1 n°
^ a l ig n  ^ n e ig h b o u r (4*4)

a neighbour= 1

where n„ is the number of neighbours within the visibility range and Hneighbour is the heading of a 

particular neighbour.

In the cohesion strategy, the agents will try to stay close to its neighbours. The heading for 

cohesion (Hcohesion) is defined as:

H  cohere f  IH  current ~  H  cohen\ ~  Cohere -  tU H l

H coh esion  =  H current + m a x - cohere-turn else if H current < H cohere (4.5)

H current—max — cohere—turn else

where Hcohere is the heading towards the centroid of agents in the neighbourhood and defined as:

■
H =  H I—  y  x — T vcohere  I l —t  neighbour ’ Z —t  J  neighbour

\  n a ne ig h b o u r=1 n e ig h b o u r=1

(4.6)

where na denotes the number of agents within neighbourhood range; xneiShbour and yneighbour are the 

neighbour's x-coordinate and y-coordinate respectively; and H(x, y) means set the heading 

towards the coordinate of (x, y). As previously mentioned, we have set the maximum turning 

angle for each strategy as in Table 4.2. If the computed turning angle (|H CUrrent - H COhere\ or |H c u rre n t  

-  H a iign\) is larger than the turning limit (max-cohere-tum, max-align-tum), then the maximum 

turning angle will be used, such shown in the equations (4.3) and (4.5).

The movement models in this Chapter are governed by rules as represented in the flowchart in
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Figure 4.3. From the flowchart, it is clear that in the movement models we have four different 

phases or four behaviours which are represented by the rectangular boxes, i.e. wander, wander 

inside field, flock and flock inside field. In the wander state, the heading of each agent (H wonder> is 

determined by the following way:

Hwander ~  Hcurrent +  random (movement span) (4.7)

where HCurrem is the current heading; and “random (<movement span)” generates a random 

number which is between -movement span and +movement span. During the wander phase, 

agents randomly change their heading either to the right or left depending on the positive or 

negative sign of the generated movement span. If it is positive, it will turn to the right whilst 

negative for the left.

For the flock behaviour, agents will first compute the distance of their nearest neighbour. The 

distance is then compared with a variable called minimum separation. If the computed distance 

is smaller or equal to the minimum separation, agents will use Hseparate (eq. 4.2) as the next 

heading. The heading of the agent during flock phase (Hji0Ck) is decided in the following manner:

H separation if distancenearest neighb()ur < minimum separation
H flo c k (4.8)

H  alignmentCohesion O t h e r w i s e

where Haugnmentcohesion is the average heading of Haiignmem and HCOhesion and given as follow:

H 4- Hr j    alignment cohesion / a q\
alignmentCohesion  ̂  ̂ '

For the primitive heading inside the field of APF {Hfieu) which represents as the attraction 

towards and repulsion against the centre of the APF has been computed in the following way

H  field

I T  —
** a ttractor  '

90 +  if field  > 10

(4.10)

-  10H attractor + 90 -  — —  otherwise
\ field j

where field  is the strength of the APF (as in eq. 4.1), Hamaaor is the heading towards the centre of 

APF or attractor. Whenever the agent is close to the attractor or the field  of the patch that the
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agent is at is greater than 10, the agent will repulse or turn away from the attractor. Beyond 

that, the agent will be attracted towards the attractor. In the above equation (4.10), there are 

two operators in the equations, these operators are dependent on the which side the attractor is 

at relative to the agent in question. If the attractor is on the right side of the agent, the top 

operator will be used; if the attractor is on the left, the bottom operator will be used otherwise.

For wander inside field  and flock inside field  behaviours, the heading of agents are determined 

by averaging the headings of the respected strategies, with the primitive heading inside the field  

(Hfieid). The headings for these behaviours are defined as the following equation:

H  wander 4* H  field .r  H  wander 4” H  fieid  ---- ■—  if --------- ------ !—  < movement span

wanderField TT i 7 •/* t j - Hwander~^~ H  fwid (4-11)H curren, +  movement span else if .H current < ------ ----------

Hcurrent ~  movement span otherwise

H  flock 4* H  fleid . H  fjock 4" H  fiei(i
—  — o— —  lf  — — ^— —  < movement span

H  flockField
H cu rren t 4- movement span else if H current <

H flock 4~ H fldd (4.12)

Hcunem ~  movement span otherwise

where HwanderFieid is the agent's heading while in the wander inside field  state; and Hjiockneid is the 

heading for flock inside field.

As the simulation starts, each agent enters either the wander or wander inside field  state 

depending on the agent's current position as shown in the flowchart in Figure 4.3. If the agent's 

position is not affected by the APF, it will fall into the wander phase, otherwise it will be the 

wander inside field. While in the wander or wander inside field  phase, at each simulation time 

step agents will have a chance to change its heading randomly, but within the constraints of the 

movement span limit. Each agent then examines the position where they were at; if that 

particular position is affected by the APF, or having a field  value of larger than one (field >1) ,
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the agent is then attracted to the centre of the field.

The agent then looks around, within its vicinity or visibility range, for flockmates. If any mate 

is found, the agent flocks with the flockmates, otherwise it continues roaming. While inside the 

field , the aforementioned rules were used with added attraction to the centre of the field, so that 

agents will not leave the field.

start

nono

found  
field ?

no y e s vicinity ?vicinity ?

y e s

w an d er

flock

w an d er in sid e  
field

flock in sid e  
field

Figure 4.3: Flowchart o f  movement models

Figure 4.4 and Figure 4.5 show some sample trajectories and turning angle plots for each model 

after we apply each different movement span respectively. From Figure 4.4 and Figure 4.5 we 

can clearly see the differences between the trajectories and the plot of turning angle against 

time of each movement model. Figure 4.4(a) shows fish-like motion where the movement is 

like fish motion with a “calm” turning angle. Fish-like motion is useful for scanning large areas 

of the arena in a short time period. Figure 4.4(b) and (c) show the trajectories of the mosquito­
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like and the firefly-like movement model, respectively. As we can see from the trajectories, the 

firefly-like motion allows the agent to move around scanning in a small local area, and this can 

be useful for searching for small objects in a small area, while the mosquito-like movement 

appears to scan a wider area in the arena as well as its own neighborhood area.

4.4.2 Pre-simulation runs

In the pre-simulation runs, each movement model was assessed without the attractor which 

releases the APF to see how the the agents would behave in the arena. We started the 

simulations with 200 agents randomly distributed in the arena and allowed the simulations to 

execute for 1,000 time steps.

Figure 4.6(a), (b) and (c) show the aggregation of fish-like, mosquito-like and firefly-like 

swarms movement models, respectively. From Figure 4.6(a) for the fish-like movement model, 

the aggregation pattern that emerges shows that the agents congregate in large numbers in 

several groups. The firefly-like movement model (Figure 4.6(c)), on the other hand, shows that 

agents formed several clusters with a smaller number of agents in each cluster.

In the mosquito-like movement model, Figure 4.6(b), the agents aggregate in several large and 

small groups. This behaviour is similar to what Ikawa and Okabe (1997) suggested, that 

mosquitoes do not remain at a single swarming site but repeatedly enter and leave the sites. For 

this reason, in nature mosquitoes aggregate with large and small numbers in each group; hence, 

the name mosquito-like movement model.
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(c)
Figure 4.4: Agents motion trajectories fo r  each movement model: (a) fish-like, (b) mosquito-like, (c)

firefly-like
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Figure 4.5: Agents motion trajectories fo r  each movement model: (a) fish-like, (b) mosquito-like, (c)
firefly-like
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(c)

Figure 4.6: Agents position a t t  = 1000 time steps o f  three movement models: (a) fish-like, (b) mosquito­
like, (c) firefly-like.

4.5 Evaluation
As stated previously, several different numbers of agents were used in these simulations; i.e. 

100, 200, 300, 400, and 500 number of agents were used. All simulations used a torus-wrapped 

square arena of size 201 by 201 patches, such as the one shown in Figure 4.1. Thirty runs are 

made for each movement model and each different number of agents with random initial 

placement of the agents in the arena. The fieldRadius for the APF has been set to 63 (page 102). 

This is to give sufficient space for all 500 agents to reside in the APF's field considering the
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minimum separation of 2 units of displacement (page 103) between agent.

The performance was evaluated at the end of the simulation and all runs were executed for 

7,000 simulation time steps to provide enough time for all agents to aggregate towards the 

attractor which releases APF. The data for analysis was recorded at every 200 time steps 

during these simulations.

4.5.1 Evaluating the fish-like movement model

In evaluating each movement model, the number of agents within the circular area of the 

attractor is first counted, or the circular area starting from the centre of the field, in our case, 

from the patch at (0,0). As the number of agents in the simulations was fixed (varies from 100 

to 500 with increment of 100 agents), and the working arena at 201 by 201 patches, increases 

from zero, we can expect that the number of agents should reach a maximum number when the 

radius of the circular area originating from the the centre of field  reaches 141, as it would 

completely cover the arena. The reason for counting the number of agents within the circular 

area was to pre-determine how close these agents are to the attractor.

As mentioned previously, for the fish-like movement model, the movement span is set to 10- 

degrees and visibility range to 10 patches. Figure 4.7 shows the agent's location from one of the 

simulations with 300 agents at three different simulation time steps of 150, 330 and 500 time 

steps, respectively. From the figure, it is clear that as early as 150 time steps, more than half the 

number of agents have already converged towards the centre of the arena or towards the 

attractor.

During the flock inside field  phase, the flocking agents exhibited a smooth circling behaviour 

concentrated on the origin of the APF; in this case, the centre of the arena or the attractor. The 

overall direction of the flow appears to be random, sometimes clockwise and sometimes anti­

clockwise. The reason for this is because as soon as an agent enters the field  it will search 

around for flockmates. If any is found, it will change its direction to match the majority of its 

flockmates in either a clockwise or anti-clockwise direction, resulting in the aforementioned
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emergent behaviour inside the field.

. * * .

Vv ..

(a) (b)

V * > w -

(C)

Figure 4.7: Positions o f 300 agents in the arena a t different time steps fo r  the fish-like movement model 
from  one o f  the simulation runs; (a) at t=150, (b) at t=330, (c) a t t= 500  time steps.

Table 4.3 provides a summary of the number of agents within the 60-patch radius from the 

centre of the APF; Figure 4.8(a) and (b) are the plots of the number of agents within the circular 

area from the centre of the APF for the fish-like movement model, at simulation time steps of 

200 and 600, respectively. The results show that, at t = 200 simulation time step, about 85% of 

the agents that are participating in the simulations are already inside the field; in other words, 

about 85% of the agents in the particular simulations have already converged towards the
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attractor, with a standard deviation of less than 5%. The highest standard deviation is observed 

in the simulation consisting of 100 agents; this can be explained by the fact that the lesser the 

number of agents in the arena, the more time the agents need to scan through arena. At t = 600 

simulation time step, almost all the agents in the arena are already aggregated near the attractor 

with standard deviations of 1.5% for 100 agents, and less than 1% for 200 and more agents.

Table 4.3: Fish-like movement model

T im e t = 2 0 0 r =  6 0 0

T o ta l n u m b e r  o f  a g en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f  agents 
w ithin 60-patch radius 
from  the centre o f  A PF

84.7 173.2 262.1 347.7 432.8 99.0 198.9 297.9 394.7 •484.5

% o f agents w ithin 60- 
patch  radius from  centre 
o f  A PF

84.7 86.6 87.4 86.9 86.6 99.0 99.5 99.3 98.7 96.9

standard deviation 4.6 6.9 7.9 8.8 12.7 1.5 1.6 2.4 3.0 4.7

% o f standard deviation 4.6 3.4 2.6 2.2 2.5 1.5 0.8 0.8 0.7 0.9

Figure 4.9 shows the simulation plots with 100 agents; the number of agents within the circular 

area from the attractor at 200, 400 and 600 simulation time step respectively. From the plots, it 

can be clearly seen that the curves differ. At t = 200, the number of agents increases gradually 

with noticeably large standard deviation; while at t -  400 and t -  600, the standard deviations 

decrease, showing that the agents movement have stabilised.
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Figure 4.8: Number o f  agents fo r  the fish-like movement model within circular area from  the 
attractor; (a) at t = 200, (b) at t = 600 simulation time steps.
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Figure 4.9: Number o f  agents fo r  the fish-like movement model within circular area from  the centre
o f  APF at different simulation time steps.

4.5.2 Evaluating the mosquito-like movement model

As mentioned previously, for the mosquito-like movement model, visibility range and 

movement span have been set to 7 patches and 45-degrees, respectively. In this movement 

model, without the attractor in the arena, agents appear to be form several clusters of varying 

sizes as shown in Figure 4.6(b).

Figure 4.10 shows the snapshots of one of the simulation runs for the mosquito-like movement 

model with 300 agents at three different time steps: 500, 1000 and 1500 time steps respectively. 

At t = 500, we notice that more than two-third of the agents have already converged towards 

the centre of arena, at t = 1000, the number of agents is increasing, and at t = 1500 almost all 

the agents have found the APF releases by the attractor, resulting the agents aggregate near the 

centre of the arena.
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(c)  (Cl)

Figure 4.10: Positions o f 300 agents in the arena at different time steps fo r  the mosquito-like movement 
model; (a) at t=0, (b) at t=500, (c) a tt= 1000 , (d) a t t=1500 time steps.

During the flock inside field  phase, the agents appear to move in a circulating motion around 

the origin of the APF, but not as smoothly as that exhibited by the fish-like movement model. 

In this case the agents tend to stay a little closer to their flockmates, thus limiting the circulating 

movement. The emerged motion is brought about by the need for the agents to move, but the 

direction, whether clockwise or counterclockwise is indeterminate.

Table 4.4, Figure 4.11(a) and (b) are the selected data and plots of the results for the mosquito­

like movement model's simulations. Table 4.4 shows the number of agents within the 60-patch 

radius from the attractor at the simulation time steps of 400 and 1200.



Table 4.4: Mosquito-like movement model

T im e t =  4 0 0 t =  120 0

T o ta l n u m b e r  o f  ag en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f  agents 
w ithin 60-patch radius 
from  the centre o f  A PF

85.5 169.3 237.8 327.6 381.4 98.2 196.5 294.1 394.3 488.1

% o f  agents w ithin 60- 
patch  radius from  centre 
o f  A PF

85.5 84.7 79.3 81.9 76.3 98.2 98.2 98.0 98.6 97.6

standard deviation 4.8 7.1 7.2 12.0 17.4 1.6 3.7 2.1 3.1 3.9

% o f  standard deviation 4.8 3.6 2.4 3.0 3.5 1.6 1.8 0.7 0.8 0.8

From the results, at t = 400 simulation time steps, about 80% of the agents are within 60 patch 

radius from the attractor. For simulations with 100 agents, there are 85.5% of the agents 

converged toward the attractor compare to only 76.5% with 500 agents; with standard deviation 

of 4.8% and 3.5% respectively.

At t -  1200 simulation time steps on the other hand showed that almost all the agents in the 

simulations are within 60 patch radius from the attractor, or inside the APF's field which was 

released by the attractor. At this time the standard deviations are rather small with all of it 

being less than 2%, and less than 1% for 300 and more agents.

Figure 4.12 is the plot for simulations with 300 agents; the number of agents within circular 

area from the attractor at 400, 600 and 1200 simulation time step respectively. From the plot, it 

can be clearly seen that the curve differs at each different time steps. As the time increases from 

200 to 400, and 600, the number of agents within the APF's field increased accordingly; and the 

standard deviations show to decrease.
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Figure 4.11: Number o f  agents fo r  the mosquito-like movement model within circular area from  the 
attractor; (a) at t = 400, (b) at t =  1200 simulation time steps.
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Figure 4.12: Number o f  agents fo r  the mosquito-like movement model within circular area from  the 

centre o f  APF a t several different simulation time steps.

4.5.3 Evaluating the firefly-like movement model

For the firefly-like movement, the visibility range and movement span are set to 5 patches and 

90 degrees respectively. Figure 4.13 shows one of the simulation runs snapshots for the firefly­

like movement model at t = 1000, 2000 and 3000 time steps, respectively. At t = 1000, even 

though some of the agents have already converged towards the attractor, we can clearly see 

that a great number of agents are still in the wander or flock  phase; in other words, agents are 

roaming in the arena looking for flockmates or flocking outside the APF's field. At t = 2000, the 

number of agents outside the field  seems to decrease significantly compared to t = 1000. At t = 

3000, almost all the agents are in the wander inside field  phase or have already converged 

towards the field.

120



(C) (d )
Figure 4.13: Positions o f 300 agents in the arena at different time steps fo r  the firefly-like movement model 

at: (a) t=0, (b) t=1000, (c) t=2000, (d) t=3000 simulation time steps.

During the flock inside field  phase, unlike the previous two movement models, instead of 

agents circulating the origin of the APF, the agents seem to only converge to the centre of the 

APF's field  and move around only within their small local area.

Table 4.5 shows the number of agents within 60-patch radius from the attractor, Figure 4.14(a) 

and (b) are the plots of the number of agents within the circular area from the attractor for the 

firefly-like movement model, at simulation time steps of 1000 and 3000, respectively. Results 

show that at t = 1000 time steps, about 85% of the agents are already inside the APF's field 

which has been set to 63 patch radius; in other words, about 85% of the agents have already



converged near the attractor, with standard deviations between 3.7% (for 400 agents) and 5.9% 

(for 300 agents). At t = 3000 simulation time steps, nearly all the agents in the arena already 

• aggregated near the attractor with standard deviations of less than 2%.

Table 4.5: Firefly-like movement model

T im e

oooII ll u> o o o

T o ta l n u m b e r  o f  ag en ts 100 200 300 400 500 100 200 300 400 500

M ean num ber o f  agents 
w ithin 60-patch radius 
from  the centre o f  APF

83.8 172.4 251.7 343.0 421.0 97.3 196.4 294.5 393.1 490.0

% o f  agents w ithin 60- 
patch radius from  centre 
o f APF

83.8 86.2 83.9 85.8 . 84.2 97.3 98.2 98.2 98.3 98.0

Standard deviation 5.8 8.1 17.8 14.9 25.3 1.6 2.0 2.8 2.9 5.7

% o f standard deviation 5.8 4.1 5.9 3.7 5.1 1.6 1.0 0.9 1.0 1.1

Figure 4.15 shows the plot for simulations with 300 agents; the number of agents within the 

circular area from the attractor at three different time steps of 600, 2000 and 5000. From the 

plot it can be clearly seen that at t = 600, more than two-third of agents are already converged 

toward the attractor, or within 60 patch radius from the attractor. At t = 2000 and t = 5000, the 

number of agents within the APF's field increases, and the standard deviations decreases 

accordingly.

122



Nu
mb
er
 

of 
ag
en
ts
 

Nu
mb
er
 

of 
ag

en
ts

firefly-like movement model at t = 1000

500

400

300

2 0 0

100

’100 agents ......
200 agents — ;---
300 agents -----
400 agents 
500 agents H  I T 1 I j H -i

. ]  - i i - f  -  f -  : i -  f - t -  ^

  1  i " " 1 "

I— 1— i — i — i — i — i — j — i — i — f — * — i

20 . 4 0  60
Radius 

(a)

firefly-like movement model at t = 3000
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Figure 4.14: Number o f  agents fo r  the firefly-like movement model within circular area from  the 

attractor; (a) a t t — 1000, (b) at t  =  3000 simulation time steps.
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Figure 4.15: Number o f  agents fo r  the firefly-like movement model within circular area from  the 
centre o f  APF at different simulation time steps.

4.5.4 Mean distance

In order to further understand the convergence of the swarm, the mean distance, D of each 

agent towards the attractor at each time step during the simulations as in (4.13) has been 

computed; where xa and y„ are the x-coordinate and y-coordinate of agent a , and n is the number 

of agents in the simulation.

D  _  „?i ^ (4.13)
n

The value of the mean distance D, combines two observations from the swarm. First, it will 

give us an insight on how well spread the agents are around the attractor, and the second is how 

tight the agents or how close the agents are to each other in the cluster.

Figure 4.16(a)-(c) are the plots of mean distance D , against time for the fish-like, mosquito-like 

and firefly-like movement models, respectively. Table 4.6 and Table 4.7 shows the mean 

distance D, for each movement model at t = 400. and t = 5000 simulation time steps. Results 

show that prior to.convergence, the firefly-like movement model exhibit a considerably large 

variance or standard deviation; as shown in Table 4.6 and the error bars in the Figure 4.16(c). 

For all the movement models as in the plots of Figure 4.16, when the system reached 

convergence, the mean distance D increases as the number of agents in the simulation
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increased. For the firefly-like movement model as shown in the plots of Figure 4.16(c) and 

Table 4.7 when the system converged, the mean distance D for 300 and 400 agents seems to 

share the same value of 19.

For ease of comparison, Figure 4.17(a) and (b) show the plots of mean distance D, against time 

for each movement model with total number of agents of 300 and 500, respectively. As can be 

observed from the plots, for the fish-like and the mosquito-like movement models, prior to 

convergence the standard deviations of over 30 runs reaches to about 5; while for firefly-like 

movement model has a higher standard deviation of around 10 prior to convergence.

Figure 4.17 also shows the significant difference in convergence rates between the three 

movement models. The graphs clearly show that the fish-like movement model converges 

faster than the other two; while the firefly-like movement model is the slowest. This can be 

explained by the fact that for the fish-like movement model, with a small movement span of 10 

degrees, agents can cover a wide area in a shorter time; whilst in the firefly-like movement 

model, with a wider movement span of 90 degrees, the agents are more likely to scan within 

their local area.

From the Figure 4.17(a), it can be seen that the mean distance, D, when the system reached 

convergence, for the firefly-like movement model is the smallest at around 18 units; while the 

fish-like model in Figure 4.17(a), has the largest at around 27 units.

From Figure 4.7(c) for fish-like, Figure 4.10(c) for mosquito-like and Figure 4.13(c) for firefly­

like movement models, it can be seen that when the systems converged, they form loose, 

medium and tight clusters, respectively. It is the innate tendency to form these kinds of clusters 

that affects the mean distance D values in the plot of Figure 4.17.
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Figure 4.16: Convergence o f mean distance, D for (a) fish-like, (b) mosquito-like, (c) firefly-like
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Table 4.6: Mean distance, D at t =  400 simulation time steps

T o ta l a g e n ts F ish - lik e M o sq u ito - lik e F ire f ly - lik e

m ean distance standard
deviation

m ean distance standard
deviation

m ean distance standard
deviation

100 19.59 1.96 27.26 5.56 44.14 7.94

200 23.81 1.28 30.49 3.31 43.95 8.5

300 27.52 0.95 37.62 1.77 51.26 7.89

400 30.54 0.91 37.06 2.83 49.94 7.88

500 33.07 0.79 42.55 2.39 53.72 6.56

Table 4.7: Mean distance, D at t = 5000 simulation time steps

T o ta l a g e n ts F ish - lik e M o sq u ito - lik e F ire f ly - lik e

m ean distance standard
deviation

m ean distance standard
deviation

m ean distance standard
deviation

100 16.67 0.73 13.09 1.17 11.70 1.00

200 21.90 0.50 16.90 0.71 14.93 0.82

300 25.73 0.52 20.93 0.41 19.83 0.58

400 29.04 0.49 23.13 0.77 19.94 0.74

500 31.70 0.49 26.25 0.40 22,75 1.60

4.6 Summary
The aim of the research in this Chapter was to investigate how a swarm of flocking agents will 

behave in the presence of an attractive force field in the arena. Many previous studies have 

concentrated on a repulsive force field. Such works include that of Borenstein and Koren 

(1989), Kim and Khosla (1992), Khosla and Volpe (1988), and Simmons (1996). These works 

tend to focus on the same problem in robotics, that of obstacle avoidance. There are also many 

studies on attractive forces such as that in (Tanner 2003, Hanada 2007, Olfati-Saber & Murray 

2003, Esposito & Dunbar 2006, Chen et al. 2007, Desai 2002, Mastelone et al. 2007, Yang et 

al. 2007, etc.). However the attractive forces are only available in the agent-agent cohesion-like 

strategy. In contrast, the research in this Chapter has examined the agent-object attractive force.

Within this Chapter, Wilensky's (1999) flocking algorithm has been extended and several 

individual behaviours have been selected in terms of single-agent movement models. An object
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which releases an APF is then placed in the centre of the arena and the effect of the APF to the 

flocking behaviours is studied at a macroscopic level. From the results, it has been shown that 

by changing the limits of the angle through which an agent can turn, in our case case the 

movement span, various swarming behaviours can be achieved. Several convergence 

behaviours are also achieved and these behaviours affect the convergence rate in performing an 

aggregation task.

The flocking model has many applications in the area of robotics and beyond. For example, a 

group of flocking agents moving together can act as a sensor array, allowing them to locate a 

desired source in a more effective way. In this Chapter, we have identified, developed and 

analysed a model for collective movement or flocking in the existence of APF in the arena. 

Flocking towards an attractor could be useful in information sharing or relay whilst on the 

move. It is clear that the data from simulations conclude that:

•  teams of collective moving agents with a smaller movement span are more effective in 

finding the target (i.e. APF) than the larger movement span. With collectively moving 

agents, whenever the APF (field > 1.0) is discovered by an agent, the heading of the 

agent will then be affected by the APF in which it will turn its heading towards the 

APF slightly. When the agent changes its heading, numerous other agent within its 

neighbourhood are “pulled in” by local inter-agent influences so that it stays close to 

the each other.

•  collectively moving agents with a larger movement span tend to stay close to each other 

regardless of the APF. Whenever an agent finds a neighbour, it will try to change its 

heading towards the neighbour (obeying the cohesion strategy). The larger the 

movement span is, the larger the max-cohere-tum becomes; resulting in the agents 

having larger permissible turning angles and allowing the agent to turn towards its 

neighbour quicker.
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Chapter 5 L-Systems for Formation Tasks

One of the main problems in swarm robot systems is that of communication, which requires 

high bandwidth due to the many-to-many communication between agents. This directly impacts 

on the ability to form complex patterns. Many previous studies in the field of robot swarms 

have concentrated on two simple tasks: aggregation and coordinated motion. However, to date, 

these robots are not able to move and form patterns in a complex way.

The research in this Chapter proposes that by using evolutionary L-Systems, more complex 

pattern formations in robot swarms can be achieved, provided each agent has the ability to 

interpret short strings of L-Systems that form the basic DNA of the formation. L-Systems has 

been studied extensively in the field of computer graphics and so this research presents the first 

introduction of the use of L-Systems into the area of robot swarm formation. By using L- 

systems the path between two locations can be represented which can later be used by mobile 

agents to form an arrangement along the path. In addition, the technique can also be expanded 

into a path planning algorithm.

5.1 Introduction
The beauty of natural patterns has, for decades, attracted the attention of many researchers. 

With technological advances, particularly in computer graphics, computer simulations can play 

an important role for researchers to understand these formations and structures of these 

patterns. In the field of biological systems, Prusinkiewicz (Prusinkiewicz & Lindenmayer 1990) 

is believed to be one of the first to model and visualise the growth of tree-like structures.
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In nature, many ants species lay trails of pheromones in order to attract other ants while 

foraging. Laying pheromones is a good strategy in finding the shortest path between the nest 

and the food source (Bonabeau et al. 1999).

When designing large scale multi-agent systems, or swarm systems, an inherent question that 

needs to be addressed is one of organisation. Agents in the system should be able to form and 

organise themselves around complex patterns which are generally required to perform specific 

tasks in a complex arena.

Many previous studies in the field of swarm robotics have concentrated around two tasks: 

aggregation (Dorigo et a l  2004a) and coordinated motion (such as leader-follower)(Othman et 

al. 2005). These robots are not able to move and organise in a complex way. We postulate that 

this is due to the fact that there is insufficient complexity in the representation of the systems 

themselves. However, previous representation methods such as graph schemes (Bayazit et al. 

2002), defeat the challenge of swarm organisation by requiring high communication bandwidth..

One of the requirements of of mobile agents in a swarm is the need to form an arrangement 

along a path or bridging formations that connect multiple locations. Here, the many path 

planning algorithms can be used as well, where agents are needed to form an arrangement along 

the specific path. In this case, the representation of the path is needed to be fed to the agents. 

One of the methods in representing paths is by using strings in a Logo-style (Abelson & 

deSessa 1982) format. However this research proposes that the same paths can also also be 

represented by Lindenmayer Systems (Lindenmayer 1968) with shorter string length, which in 

the end will save the communication bandwidth between the controller and mobile agents.

Many self-organised path formations algorithms are readily available for multi-agent systems 

and these have been discussed in Chapter 2, such as Random Growing Tree (RGT) (Avrutin et 

al. 2007), Cyclic Directional Pattern (CDP) (Nouyan et al. 2006) and Virtual Pheromones 

(Payton et al. 2004). However, self-organisation is not always the best answer for every 

problem. In some cases, an alternative method might be preferable. For example, consider that
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in an arena a minimum number of agents that are needed to form an arrangement along the path 

between two locations are present. The self-organised algorithms (RGT, CDP, Virtual 

Pheromones) might take forever to form an arrangement along the path, and it might not be 

able to complete the task within the permissible period at all. For that reason it is useful to 

devise an alternative algorithm even if it is not fully automated or self-organise.

The technique developed in this Chapter proposes that for more complex pattern formations, 

the level of agent complexity should be increased, albeit marginally. In doing so, one of the 

basic themes of swarming, i.e. limited communication should be retained, is still adhered to. In 

order to achieve this, the agent should have the capability to transfer information consisting of 

short bitstrings to its immediate neighbours. It should also have the processing capability to 

interpret these bitstrings that form the basic DNA of the formation. The transference of short 

pieces of information is analogous to trophallaxis as a means of communication amongst 

insects like bees and ants.

The. technique developed within this Chapter is to assist multi-agent systems to form an 

arrangement along the path of two locations, as a communication bridge between two separated 

points for example. In this instance, agents are needed to make a formation along the path and 

the information is then transmitted from one end to another using the agents in-between as a 

medium. Furthermore, as the technique developed within this Chapter uses L-Systems (which 

uses Logo-style representations), it can also be used as a new approach to path planning 

algorithms.

In this Chapter we shall fuse ideas developed in the area of computer graphics with that of 

robotics systems. We introduce a general model for organisation based on Lindenmayer 

Systems (Lindenmayer 1968), with the addition of an evolutionary algorithm for pattern 

optimisation. Lindenmayer Systems, or L-Systems for short, provide a symbolic representation 

of complex dynamic patterns, which were originally used to model biological growth. 

Evolutionary adaptation of L-Systems alone is not a new idea but we shall show how we can 

evolve specific formations that can be used to guide the multi-agent system into performing
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complex formation-type tasks.

In the following section, the background surrounding the proposed technique is first described, 

followed by the methodologies and implementations. Next the evaluation of the technique will 

be described. The results of the simulations are then presented and discussed.

5.2 Background

5.2.1 L-Systems

In 1968, the theoretical biologist Aristid Lindenmayer (1968) proposed L-Systems; a 

mathematical formalism as a foundation for an axiomatic theory of biological development. As 

a biologist who studied the growth pattern of various types of multi-cellular microorganisms, 

Lindenmayer at first, devised the L-Systems to provide a formal description of the development 

of the microorganisms, and also to illustrate the neighbourhood relationship between cells. The 

system was then extended to describe bigger and higher order plants with complex branching 

structures. Later in the 1980's, L-Systems found several applications in computer graphics; the 

two main areas of application are the generation of the fractals (Smith 1984) and the realistic 

modelling of plants (Prusinkiewicz & Lindenmayer 1990).

L-Systems are considered as one of the “generative grammars” from the “formal grammar” 

family or sometimes simply referred as a “grammar family”. A formal grammar in computer 

science is a description of a formal language which has a set of strings. Formal grammar can be 

divided into two main categories; analytic grammar and generative grammar. An analytic 

grammar contains sets of rules of how a string can be analysed to determine whether or not it is 

a member of a particular language, while on the other hand generative grammar contains sets of 

rules that annotate how strings in a language can be generated.
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(a)

«

Figure 5.1: Example o f  patterns generated by L-Systems. (a) Outline o f  Koch island or snowflake fractal 
after five  iterations o f  rewriting, (b) Realistic modelling o f  Fall trees (image copyright ofSvetlin  (Alex) 

Bostandjiev o f  University o f  California in Santa Barbara)

In the same manner of (Chomsky type) formal grammars, L-Systems generate strings of 

symbols by repetitively substituting predecessors of given productions by their successors. The 

basic idea of these grammars is to define complex objects or words by replacing parts of a 

simple object through a set of rewriting rules or productions. These rewriting process can be 

carried out recursively. However the main difference between (Chomsky type) formal 

grammars and L-Systems is that, in Chomsky grammars, productions are applied sequentially,
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i.e. one at a time. Meanwhile in the case of L-Systems, productions are applied concurrently to 

all symbols in a given string. This difference reflects the biological motivation of L-Systems 

where productions are intended to capture cell divisions in multi-cellular organisms in which 

many divisions may occur at the same time.

L-Systems can be classified in many different ways, such as:

•  Context sensitive (IL-Systems) and context free (OL-Systems).

O Rules in context free L-System depends only on a single symbol.

O Rules in context sensitive L-Systems depends on a single symbol and its

neighbours.

•  Deterministic (DL-Systems) and non-deterministic L-Systems.

O The L-System is consider as deterministic if there is exactly one production for one 

symbol, otherwise it is non-deterministic.

•  Propagative (PL-Systems) and non-propagative L-Systems.

O There are at least two symbols needed for the successor of a L-System to be

considered as a propagative L-System, if there is only one symbol for the

successor, then it will be considered as non-propagative L-System.

•  Parametric L-Systems.

. O Parametric L-System operates on parametric words, which are strings of modules 

consisting of their symbolic names with associated parameters.

These types of L-Systems can be combined. For example a DOL-System (where 'O' stands for 

“0-sided” or “0 context”) is a deterministic context free L-System; a PIL-System is a context 

sensitive with propagation; and so forth. Above all, DOL-Systems are the simplest type of the 

L-Systems.
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The processes in an L-System can simply be divided into two parts: a generative and an 

interpretative process. The main idea behind the generative process is the string rewriting 

process.

The generative process

Consider a DOL-System, which can be defined as a triplet G = (S, P, a), where S is a general 

symbol (a finite non-empty set of symbols); a is the initial start word which usually referred to 

as the axiom or seed and it is an element of S; P is a set of production rules of the form of A -+ 

x (predecessors -* successors), where A E S is a symbol in the alphabet and xeS *  is a 

(possibly empty) string or word of symbols in the alphabet. Every symbol appears exactly once 

at the left of a production rule and this makes the system deterministic. As an example, let us 

consider the following DOL-System:

G = (S, P, a)

S = { F, R, Lj  

a : F

p i : F -*■ FRF 

P2 : R -*• FL 

P31 L -*■ -L

The DOL-System is represented by F, R and L with the axiom represented by the letter F. For 

each letter we specify a rewriting rule or production rule. The rule F FRF means that the 

predecessor letter F is to be replaced by the successor string FRF, the rule R -* FL means that' 

the predecessor letter R is to be replaced by the successor string FL, and the L -*• L means that 

the letter L will remain as it is. The rewriting process starts from a string called the axiom, in 

our case it consist of a single letter F. In the first generative process, the axiom F  is replaced by 

FRF using the production F -> FRF. In the second step, the word FRF consist of two letters, 

both of which are simultaneously replaced in the next generative process. Thus F is replaced by 

FRF, R is replaced by FL, and the string FRFFLFRF results. In a similar way, the simultaneous 

replacement of all the letters will generate the following sequence of words:
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a : F

? \a ):F R F

P2( a ) : FRFFLFRF

P3(a) : FRFFLFRFFRFLFRFFLFRF

P4( a ) : FRFFLFRFFRFLFRFFLFRFFRFFLFRFLFRFFLFRFFRFLFRFFLFRF 

The interpretive process

In the second part of the L-System, the symbols from one or multiple iterations of string are 

interpreted and visualised. There are several ways to visualise the L-Systems, one of them is by 

using the Turtle graphics method.

The Turtle graphic system was created by Seymour Papert in 1960's (Abelson and deSessa 

1982). The graphic is the trail left by a moving invisible “turtle”, with a state defined by its 

position and direction. The state of the turtle may change as it moves a step forward, or as it 

turns at a given angle in the same position. A state of the turtle is defined as a triplet as follows:

where x and y  represent Cartesian coordinates of the turtle's position, and the angle (p is the 

heading or the direction that the turtle is facing. Given the step size d  and angle increment 0, 

now let us reconsider the previous example of the DOL-System which consists of the three 

following symbols:

S = { F ,  R, L).

Given the step size d  and angle increment 0, now the turtle can respond to the following 

interpretive rules:

•  F The turtle moves one step forward in the current direction it is facing leaving a 

visible trail on the ground by length of d. The state of the turtle changes to (x', y', (p)\ 

where x' = x + d  cos (p and y' = y  + d  sin (p.

•  R The turtle will turn or rotate to the right by angle 0 . The state of the turtle 

changes to (x, y, where (p' -  <p - 0 .
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•  L The turtle turns to the left by angle of 0 . The next state of the turtle changes to 

(x, y, (p1)',; where (pf = (p + 0.

There are many other rules which can complicate the turtle's graphics and make it possible to 

generate more complicated pattern. Amongst the most widely used are::

•  Upper case letters other than F, R  and L have no graphic representation and the state of 

the turtle remains unchanged. These letters known as non-graphical symbols.

•  Lower case of letter/ ,  makes the turtle move a step forward by displacement d  without 

drawing a visible trail. By using this rule, it makes possible to construct fractal patterns 

with unconnected sections. The lower case of letter/is usually known as the “moving” 

symbol.

•  An open parenthesis [  pushes the current state of the turtle onto a LIFO stack; while a 

close parenthesis ]  pops the top of stack and restores the turtle state. This extension 

makes branching possible.

•  Braces { } indicate that the area that are enclosed in the braces must be filled.

The production rules in DOL-Systems are context free; in other words, the production rules are 

applicable regardless of the context in which the predecessor appears. In context-sensitive L- 

Systems, the production rules are dependent on the predecessor's context. For example in 2L- 

Systems or two-sided L-Systems, the productions will be in the form of cl < a > cr -*■ z, where 

the strict predecessor letter a can produce string z  if and only if the letter a is preceded by 

letters (or string) cL and followed by cr. Thus, letters (or string) cL and cr are the left and right 

context of the predecessor letter a. In lL-Systems, the productions have one-sided context only; 

the productions can either be in the form of cL < a -+ z  or a > cr -*■ z. OL-Systems, lL-Systems 

and 2L-Systems belong to a wider class of IL-Systems, sometimes called (&,/)-systems. In a 

(k,l)-system, the left and right context is a word of length k and I letters respectively.

Suppose that we have a new sample of a context-sensitive L-System which has the following 

axiom, a  and productions, P: 

a : abbaacc



pi : b < a  -+ b 

P2 : a ■ -+ c 

P3 \b  < b >  a ^  c 

P4: b >  a a 

p s: a < c -* a 

p6: c -> b

The first few strings generated by the L-System are given below: 

a : abbaacc 

P ^ a ): cbcbcab 

P2(a ) : bbbbbcb 

P3( a ) : bbbbbbb 

P4( a ) : bbbbbbb 

P5(aJ: bbbbbbb

A context-sensitive L-System (CSL-System) requires that if the neighbours of a symbol match 

a particular context, then, that symbol should be replaced by the successor symbol. If two 

rewriting rules apply for a certain symbol, i.e one with one-sided context and another with two- 

sided context, then the one with two-sided context is used. For instance, consider the third 

symbol from the left in the axiom from the example above. The symbol b, is matched with 

production rules of p3 and p4, in this case the production p3 was used. In general, the rewriting 

rule that is more specific will overrule the one that is less specific. However, it is possible to 

encounter conflicts between several rules that can be applied to the same symbol.

5.2.2 Evolutionary algorithms

Genetic algorithms (GA) were first introduced in 1975 by John Holland (Davis 1991). GAs are 

a class o f stochastic search and optimisation techniques based on the evolutionary ideas of 

natural selection and genetics. The basic ideas of the GA are designed to simulate natural 

systems processes that are necessary for evolution especially those that follow Charles Darwin's 

principles of “survival of the fittest”. Like in nature, if there is competition amongst individuals
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for limited resources, it will result in the fittest individuals dominating over the weaker ones.

The Genetic Algorithm

1. Initialise a population of individuals (chromosomes).

2. Evaluate each individual in the population based on the fitness.

3. Create new individuals by mating current individuals; apply mutation and 
recombination as the parent individuals mate.

4. Delete members of the population to make room for the new individuals.

5. Evaluate the new individuals and insert them in to the population's pool.

6. If the maximum number of generations is reached, stop and return the best 
individual; if not, go to step 3.

Figure 5.2: Top-level description o f  a genetic algorithm

Figure 5.2 shows the anatomy of a general genetic algorithms. The first step of the evolutionary 

process usually starts from a randomly generated initial population of possible solutions. 

Members in this population (called chromosomes or genomes) of abstract representations are 

use to contribute towards the next generation. In each generation (step 2 in Figure 5.2), the 

fitness for each individual is calculated and evaluated in some way by a fitness function. After 

the evaluation process has taken place, (step 3 in Figure 5.2) the selection of multiple parent 

chromosomes for crossover and mutation is performed by randomly selecting from the 

population, but it is usually influenced by their fitness scores. Some of the old individuals in the 

population are then replaced with the newly constructed individuals (step 4 and 5 in Figure 

5.2). A GA maintains a set of candidate solutions from which it performs a search by iteratively 

replacing members with poor fitness in the population, with individuals generated by applying 

variation to fitter members of the population. The GA commonly terminates when either a 

maximum number of generations has been reached, or a satisfactory fitness level has been 

produced. If the GA has terminated due to a maximum number of generations, a satisfactory 

solution may or may not have been reached.
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5.2.2.1 Parent selection

The purpose of parent selection in GAs is to increase the reproductive chances of fitter 

individuals in the hopes that they will produce even fitter offsprings. Many methods for 

selection exists however in this section we will only give a brief description of Holland's 

original parent selection method, i.e. roulette wheel selection method as described in Figure 

5.3. Each individual is assigned with a slice of a circular “roulette wheel”, which is 

proportional to the individual's fitness. The wheel is then spun N  times, where N  is the total 

number of individuals in the population. On each spin, the individual which is under the wheel's 

marker is selected to be in the pool of parents for the next generation. This method can be 

implemented as in Figure 5.4.

Roulette Wheel Algorithm

1. Calculate the total fitness of all population members; call the result as total 
fitness.

2. Generate n, a random number between 0 and total fitness.

3. Select the individual whose fitness, added to the fitnesses of the preceding 
population individuals is greater than or equal to n.

Figure 5.3: The roulette wheel selection algorithm.

Roulette wheel selection example

Individual 1 2 3 4 . 5 6 7

Fitness score 8 2 17 7 2 12 11
Running total 8 10 27 34 36 48 59

Random number n 28 2 13 41 31 57 ■ 23

Individual chosen 4 1 3 6 4 7 3

Figure 5.4: The roulette wheel selection example. The top table shows the fitness o f  seven individuals 
and the running total o f  fitness. The bottom table shows the individual that would be chosen by the 

roulette wheel method using these fitness values fo r  each o f  six randomly generated numbers.
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In Figure 5.4, the population consists of seven individuals with a total fitness of 59. The first 

row in the Figure 5.4 depicts the index of each individual, the second shows the individual's 

fitness, and the third contains the running total of fitness. Figure 5.4 also shows seven numbers 

randomly generated between 1 and 59, together with the index of individual that would be 

selected by roulette wheel parent selection for each of these numbers. In these cases, the 

selected individual is the first one at which the running total is greater than or equal to the 

random number n. The effect of the roulette wheel selection scheme is to return a set of 

randomly chosen parents. Although the selection scheme seems to be random, each individual's 

chance to be selected is proportional to its fitness. After a number of generations, the selection 

scheme will sideline the least fit individuals and contribute to the spread of the fitter 

individuals.

5.2.2.2 Crossover

After the selection of parents have taken place, the GA will use the parents to create new 

individuals or offsprings. Although there are many techniques in creating new offsprings 

described in the literature, only the traditional methods are described, i.e. crossover and 

mutation operations.

In crossover operations as in Figure 5.5, two individuals are selected as parents. One-point or 

single-point crossover is the simplest form of crossover operation. The crossover point is 

chosen randomly. After the crossover point is selected, the parts of two parents after the 

crossover position are exchanged to form two new offsprings. Crossover operation in GA is 

extremely important. Many GA practitioners believe that if we remove the crossover operation 

in GA, the result is no longer a GA (Mitchell 1996).

5.2.2.3 Mutation

Mutation is a GA operator that changes one or more gene value in an individual from its parent, 

which will result in entirely new gene values being added to the individual. With these new 

genes, the GA may be able to obtain a better solution. Mutation, as with the crossover operation 

is an important operation in GA which helps the GA to prevent the population from stagnating
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at any local optima. Mutation usually occurs according to a mutation probability, which is 

always set to a fairly low value. If the mutation probability is set too high, the search will turn 

into a primitive random search. Figure 5.6 shows an example of the mutation operation. In this 

example the genes of the parent has been mutated to form a new individual.

1 1 1 1 1 1 0 0 0 0 0 Parentl

0 0 0 0 0 0 1 1 1 1 1 Parent2

1 1 1 1 : 0  0 1 1 1 1  1 Offspringl

0 0 o o | 1 1 0 0 0 0 0 Offspring2

Crossover point

Figure 5.5: Example o f  one-point crossover. The offsprings are made by cutting the parents at the point 
denoted by the vertical dotted line and exchanging parental genetic m aterial after the cut.

1 1 1 1 1 1 0 0 0 0 0 Parentl

1 0  1 1 1 1 0  0 : T  0 0 Offspringl

Figure 5.6: Example o f  mutation operation. Offspring 1 is made by mutating the Parent 1 at 2nd and 9,h
bits from  left.

5.3 Methodologies and Implementations
As mentioned previously, the proposed system for organised formation of mobile agents 

consists of:

•  an algorithm for pattern formation,

•  an algorithm for optimising pattern formation and

•  an encoding to represent each agent's position in the arena.
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In this thesis, a set of pattern construction commands have been used. These pattern 

construction commands are used as the input character string for the L-System so that the 

strings produced by the evolved L-System are a sequence of commands for producing complex 

patterns.

Once a set of pattern construction commands are generated by the system, it will be passed on 

to an encoding agent to represent each agent's position (in the arena) for evaluation. After 

building the pattern, it is evaluated using a multi-part fitness function for how well it fits in the 

arena and these scores are passed back to the GA engine.

5.3.1 Pattern construction

The pattern construction commands comprises the generative and interpretive module of the L- 

System as shown in Figure 5.7 and Figure 5.8 respectively. In the generative module, it will 

take as input an axiom (or seed) a, a set of productions P and a set o f symbols S as inputs. In . 

this work, five symbols namely F, R, L, [  and ]  as elements of S were used to construct the L- 

System strings, as shown in Figure 5.7 and Table 5.1. F represents a forward movement of the 

turtle in the current direction by 5 units of displacement. R and L will turn the turtle to the right 

and to the left respectively, by 25-degrees. Symbols [  and ]  are the push and pop operators and 

are used to store and retrieve the state of the current location and direction in the LIFO stack. In 

the generative module as shown in Figure 5.7, P incorporates productions pi and p2. The 

production pi (pi: F -> FRF) means that in the rewriting process, F will be replaced by FRF, 

whilst in the production p2 (P2: R -* FL), R will be replaced by FL. In the rewriting process, the 

iteration zero represents the axiom a. In the first iteration of the rewriting process, the axiom F 

has been replaced by FRF using production pi. In the second iteration of rewriting process, the 

product of the first iteration of rewriting process (FRF) becomes the subject of the rewriting. 

The F and R symbols are replaced with the productions of pi and p2 simultaneously, resulting in 

the string FRFFLFRF after the second iteration of the rewriting process is completed.
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Table 5.1: Design symbols and descriptions

Command Description

[  1 Push / pop orientation to stack

F Move forward 5 unit displacement

R Rotate heading clockwise for 25°

L Rotate heading counter-clockwise for 25°

Input:

Axiom, a = F

Elements, S: { F, R, L, f, ] }

Productions, P: {pi, p2} 

pi: F -> FRF 

p2: R -*■ FL

Rewriting process:

0) F

1) FRF

2) FRFFLFRF

3) FRFFLFRFFRFLFRFFLFRF

Figure 5.7: Generative module o f  pattern construction command.

The interpretive module as shown in Figure 5.8 then constructs patterns by generating a 

sequence of construction commands that specify how and where the next mobile agent's 

position would be in the arena relative to itself. This sequence of commands is based on the 

instruction language for a Logo-style turtle (Abelson and deSessa 1982). A stack is also 

maintained through the use of 'push' and 'pop' operators. A visualisation of the L-System is also 

shown in the figure. The module takes a string and a set of interpretation rules as inputs. In this 

example (Figure 5.8), the string is taken from the previous rewriting process after the 3rd 

iteration of the rewriting process, and the interpretation rules consist of F, R and L. Here, F 

means move forward; R means turn to the right for 90°; and L means turn to the left for 90°. For 

demonstration purposes, in the figure, only the first 15 letters from the string have been
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visualised.

Input:

• string: FRFFLFRFFRFLFRFFLFRF

interpretation rules:

F: go forward

R: turn right 90°

L: turn Left 90°

Visual interpretation:

(rXf̂
©

©
©©■* { r )

0
( f )

( . . . )

Figure 5.8: Interpretive module o f  pattern construction command.

In Figure 5.9, the intermediary steps of building a pattern are shown; where red dots indicate 

the location of agents, and blue lines indicate the parent-child connection of the agents. Figure 

5.9(a) is the axiom pattern which has been built from the string FFRFRFLFLLFF, while Figure 

5.9(b) is the rule string pattern from the string RFLF. Figure 5.9(c) is the pattern formed after 

the first iteration of rewriting the aforementioned axiom and rule using production rule of 

F^RFLF.

146



J

10 20 30 40

(b)

70 

60 

50 

40 

30 

20 

10

°0 10 20 30 40 50 60 70

(c)

Figure 5.9: Visualisation of L-System: (a) the axiom; (b) the rule string, (c) formed pattern after the first iteration
of rewriting process

5.3.2 Representation methodologies

Within this research, two systems; DOL-Systems and CSL-Systems have been designed to 

represent the patterns formed by the robot swarms. For both systems, the same predecessor is 

used, i.e. the symbol F. For DOL-Systems there is one production rule pi, whilst for CSL- 

Systems four production rules are used (pi, p2, p3 and p4). The arrangement of the production 

rules used in this work is given below: .

p i : predecessor -► succi 

p2 : cl < predecessor -> succ2
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p3 : predecessor > cR -*■ sued  

p4 : c l <  predecessor > cR -»• succ4 

where pi, p2, p3 and p4 are the production rules P, succi, succ2, succ3, and succ4 are the 

successors, while cL and cR are the context for the left and the right side of the predecessor 

respectively. As mentioned in the previous section, during the rewriting process in the 

generative module, the predecessor will be replaced with a successor accordingly. Let us 

consider p2, the predecessor in this case will be replaced with succ2 if the left context (cL) is 

met. In p3, the predecessor will be replaced with succ3 if the right context (cR) of the predecessor 

is met. Finally in p4, the predecessor will be replaced with succ4 if and only if the right context 

(cR) and the left context (cl) of the predecessor are met. However, based on the priority, the 

more specific rewriting rule or production rule will overrule. For instance, if the conditions for 

p4 are met, the generative module will use p4 and will ignore pi, p2 and p3.

5.3.3 Evolutionary algorithms

5.3.3.1 Encoding

An individual L-System is optimised by using an evolutionary algorithm. The initial population 

of L-Systems is created by randomly creating axioms, successors and contexts. The successor 

will then replace all the symbols F in an axiom string during the rewriting process. The 

evolutionary process then proceeds by selecting a collection of highly fit individuals as parents 

and then using them to create a new population by mutation and crossover operations.

An initial L-System (axiom, successors and contexts) is created randomly using a blank 

template with an arbitrary number of symbols (consisting of F, L, R, [  and ]) to be included in 

the string. For DOL-Systems, the axiom string is between 8 and 12 symbols in length, and the 

successor string is between 10 and 12 symbols in length. For CSL-Systems, the length of the 

axiom and successors strings are between 8 and 12 symbols, and between 1 and 3 symbols for 

the both contexts ( c l and cR). The reason for limiting it to 12 symbols in length for axioms and 

successors is that, if the length of an axiom is too long it might defeat the purpose of the 

rewriting process of L-Systems (where the rewriting process is the core business), if after the
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first iteration of the rewriting process, the formed pattern has achieved the goal. Another reason 

is the intention to “grow” the formation. If the string becomes too long then there is insufficient 

room to grow the formation. For the contexts (cL and cR) where we limit the length for up to 3 

symbols is simply that, the longer the context is the harder the condition (for the context) will 

be met. During any time step of the simulation, the number of symbols F  in an axiom string and 

rule string have been predefined to have a minimum of two and one respectively. This way all 

the L-Systems will generate patterns after they have been interpreted or visualised.

In using evolutionary algorithms, first the L-Systems are encoded to be a chromosome-like 

structure. Chromosomes for DOL-Systems are made up of two genes or two parts. The first 

gene is the axiom (a) and the second is the successor {succi). While for CSL-Systems, each 

chromosome are made up from seven elements or genes; an axiom (a), two contexts ( cl and cR) 

and four successors (succi, succ2, SUCC3 and succ4). The .chromosome-like structure for DOL- 

System, G and CSL-System, H are as shown below:

•  G : [ a succ] ],

•  H : [ a  cl cR succi SUCC2 SUCC3 succ4].

After the L-Systems are created, the rewriting process will be executed for up to 10 iterations or 

until the number of symbol F reaches 100 or more, whichever comes first. From these 

solutions, the fitness will be calculated and evaluated once, and the number of rewriting 

iterations of the fittest individual will be recorded along with other fitness scores. If the fitness 

of an L-System scores above a preset threshold, the L-System will be passed onto the GA pool 

which consists of 50 individuals; otherwise it will be discarded, and a new L-System will be 

created to replace it. By doing this, the initial population of L-Systems will have a variety of 

solutions with individual fitness values above the preset threshold, thus maintaining a healthy 

population.

5.3.3.2 Selection method

In this research, as there are several fitness functions which lead to several fitness scores, 

Goldberg's (1989) Pareto ranking method to rank the L-Systems population with added
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modification has been used. Goldberg (1989) suggested non-dominated sorting to'rank the 

population according to Pareto optimality. In this scheme, the currently non-dominated 

chromosomes or individuals in the population are given rank one and removed from the 

population. Then the population is ranked again, the newly non-dominated individuals in the 

reduced population are assigned rank two and removed from the population. The process 

continues until all the members of the original population are ranked.

In this case, different priorities have been set for each goal. For instance, in attempting to meet 

the goals, g = {gi, g2, g3 }, where the priority of the former is higher than the latter, e.g. 

priority(gi) > priority(g2) and priority(g2) > priority(g3). In the first step of ranking process, the 

procedure suggested by Goldberg is followed by using the non-dominated sorting method for 

all goals g.

In the second step of the sorting process, firstly all the individuals that have been given rank 

one in the previous step are gathered, and then the group using the same process of non- 

dominated sorting for goals gi and g2 are ranked, until all the selected individuals have been 

ranked. Then the second ranked individuals from the previous step are gathered and these are 

sorted and ranked again for gi and g2 and so forth. In the third step, after all the individuals have 

been ranked into gi and g2, the population will then be sorted and ranked again into gi following 

the second step procedure.

The next procedure is to decide which individuals in the population will be used to create 

offsprings for the next generation, and how many offsprings will be created. The purpose of 

selection is to emphasise the fitter individuals in the population in the hope that their offspring 

will in turn have an even higher fitness. Mitchell (1996) stated that, selection has to be balanced 

with variation from mutation and crossover: a selection process that is too strong will result in a 

suboptimal but highly fit individual that will take over the population; whilst too weak and the 

selection will result in slow evolution.
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Tournament Selection with Elitism methods was used in this work. In the Tournament Selection 

method, two individuals are first chosen randomly from the population. Then a random number 

m, between 0.0 and 1.0 is generated. If the number m is smaller than n (m < n) (where n is a 

parameter, in our case n = 0.8), than the fitter individual will be selected as a parent, otherwise 

the less fit one is selected. The two individuals will then be returned to the population and can 

be re-selected again (Goldberg & Deb 1991).

Elitism (De Jong 1975) is a method to force the GA to retain some number of best individuals 

at each current generation and pass them on to the next generation. The best individuals could 

be lost if they are not selected to reproduce or if they are destroyed by mutation and / or 

crossover operations. In this work, we retained 5 individuals as elitists and passed them to the 

next generation without going through GA operations, such as mutation and crossover.

5.3.3*3 Genetic operators

Mutation (Figure 5.10) and blending (Figure 5.11) are used to create new individuals. In 

blending, parents will be selected randomly. Blending then takes place either in axiom strings 

or rule strings between two parents and will produce two new individuals.

A x io m , a S u c c e s s o r ,  succ
F L R F  [ R F F R F ] L R F L R F  L R F L F [ R L F  L R F ] F P a r e n t

F L R F\R F R [ R F F R F ] L R F L R F  L R F  L F [ R L F  L R F 1 F O f f s p r in g l

F L R F  [ R F  F R F  ] \  j L R F L R F L F [ R L F L R F ] F O f f s p r in g  2

F L R F [ R F F R F ] L R F L R FW T'"RllF f R L F  L R F  1 F O f f s p r in g 3

Figure 5.10: Mutation operation. From the Parent, Offspringl commits insertions o f  new 3 symbols; 
Offspring2 deletes 3 symbols in the axiom string; Offspring3 replaces 4 symbols in the successor string.

In mutation, after selecting the parent, the axiom or any successor will be mutated in a 

predefined way. Changes in mutation that can occur include:

•  inserting one or more symbols in random locations of the string, or

•  deleting one or more symbols in the selected string, or
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•  replacing one or more symbols with random symbols.

For instance, let us consider the DOL-System as in Figure 5.10; if the L-System LI (axiom 

string LiOt, successor string lisucci) is selected to be mutated,

Hoc: FLRF [RFFRFJ LRF 

lis u c a  : LRF LRFL F [RLFLRF] F 

Some of possible mutations are,

•  insert new symbol in the string, offspringl

t.iOC : FLRF RFR [RFRFRFRF1 LRF 

li s u c c i : LRF LRFL F [RLFLRF] F

•  delete random symbols, offspring2

u a:FLRF[RFFRF]___

l is u c c i : LRF LRFL F [RLFLRF] F

•  replace symbols, offspring3

LiOt: FLRF [RFFRF] LRF 

Llsu cc  : LRF FF RLF [RLFLRF] F

For an example in blending, as shown in Figure 5.11 let us consider DOL-Systems; two parents, 

L2 ( l 2(x, l 2su cc i)  and L3 ( ^ a ,  L■ssucci) were selected randomly and be used to create two 

offsprings, LC2 (lc2(x, lc2 su cc i)  and LC3 (lc3 0 c, ucisucci). First, LC2 will make a copy of L2, and 

it will then insert a small part of L3 into it. This is done by replacing several symbols either 

from axiom string or successor string from L3, to either axiom string or successor string of L2 

to become LC2.
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A x io m , a  
F L R F  [ R F F L L ]  L R F

S u c c e s s o r ,  succ  
L R F  L L R  L R F  R L F  L R F  P a r e n t l

W F L L R R F i i F  /  L R F L R F j l  \ft R L F  L L R  S  F L L R F U  P a r e n t  2
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F L R F  [ R F F L L ]  L R F  L R F L L R L R  f \l R F l\ O f f s p r in g 3

Figure 5.11: Some o f  possible blending operations. At first, all the offsprings makes a copy o f  Parentl. 
Offspringl replaces the successor string taken from  Parent2; Offspring2 replaces some o f  its symbols in 

the axiom string and replaces with some symbols taken from  Parent2's axiom string; Offspring3 takes 
and replaces some symbols in its successor string with some symbols taken from  Parent2's successor

string.

For example if the parent L2 with the following axiom l 2(x and successor Lisuccns given by:

and the parent L3 with the following axiom l 3ot and successor usucci, are selected, i.e.

then the possible blending results of LC2 ( Lc2(x, uzzsuca) are as follow:

•  replace entire in successor string lc2.smcc/with l 3-smcc/:

Lc20C: FLRF [RFFLL] LRF

LC2 SUCCi : RRLF LLRRF LLRFLF.

•  replace several symbols in axiom lc2(x taken from uot:

lc2(x : FLRF FFLL LRF

lc2succi : LRFL LRLRF RLFLRF

•  replace several symbols in successor string lc2succi taken from u su cc i:

lc2(X : FLRF [RFFLL] LRF 

uxisucci : LRFL LRLRF LRFL.

Another operation of evolutionary algorithms used in this work is the crossover operation. We 

perform crossover operations in two different ways as follow:

L2(x : FLRF [RFFLL] LRF

izsucci: LRFL LRLRF RLFLRF

L3a : FFLL RRFRF [LRFLRF]

L3succi : RRLF LLRRF LLRFLF
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•  one is by swapping the gene(s) or element(s) in the L-Systems chromosomes as 

shown in Figure 5.12,

•  another is by swapping symbol(s) from the specific gene(s) o f two different parents 

as shown in Figure 5.13.

For example in Figure 5.12, let us consider two parents from CSL-Systems, namely L4 and L5 

with the following chromosomes:

L4 : [ L4(X l4C l iaC r ia s u c c i  l4s u c c 2 1A S U C C 3 l 4S U C C 4 ]

L5 : [  L5 OC L5 C l L5Cr lsSUCCi 15S U C C 2 U5S U C C 3 L5S U C C 4 ]

are selected to create two children o f LC4 and LC5. Then the possible crossover results are as

follow:

•  one gene swapping,

LC4 : [ mOCi la C l L4Cr j .e S U C C j \aSUCC2 IA SU C C3 IA SU C C 4 ]

LC5 : [ L5OC1 l5C l l 5C r  ^a S U C C i l 5S U C C 2 l 5S U C C 3 \j5s u c c 4 ]

•  two genes swapping,

LC4 : [uOCi l s C l  l4c r  i a s u c c i  \ a s u c c 2 ia S U C C i \ a s u c c A

LC5 : [ L50tl L & u  L5CR L5s u c c } L5S U C C 2 Ts S U C C i L5S U C C 4 ]

uO(i uCi. iaCr usucci 1ASUCC2 1ASUCC3 iaSUCCa Parentl

taCXi isCi isCr issucci issucci issucc.< issucca I Parent2

1JX1 uCi. iaC r [ LfSUCCi. iaSuccz iasucc3 iaSUCCa Offspringl

uOh uCt. isCr 8 usucci ! 1SSUCC2 issucc* uSIWCa i Offspring2

laOIi r Ci ; iaCr iasucci usucci f issucci , uSucca Offspring3

lsCKi ; uCi. I LfCR n s u c c  1 15SUCC2 \ iaSUCCs I uSUCCa Offspring4

Figure 5.12: Crossover operation by swapping element(s) or gene(s). Offspringl and OjfspirngZ depict 
one gene swapping, and Ojfspring3 and Offsping4 show 2 genes swapping take place.
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The second way of the crossover operation is by swapping symbols from two genes of two 

different parents. For instance in Figure 5.13, if we have two parents of CSL-Systems, namely 

L6 and L7, and chosen succi genes from both parents as follow:

L6SUCC2 : LRFL RFLF [RLFLRJ FRRF 

L1succ2 : FLRF [RFFLL] LRFR LFLRF 

to perform a crossover operation. Some of possible solutions are as follow:

•  one-point crossover,

UZ6SUCC2 : LRFL RFLF LRFR LFLRF 

U21SUCC2 : FLRF [RFFLL1 [RLFLR1 FRRF

•  two-point crossover,

LC6$MCC2 • LRFL [RFFLL1 LRFR FRRF 

LC7S U C C 2  : FLRF RFLF [RLFLRJ LFLRF.

L R F L R F L F [ R L F L R ] F R R F P a r e n t l

P a r e n t2

l r f l r f l f W r T r l T T r f i O f f s p r in g l

F L R F [ R F F L L f [ R L F L R ] F R R F O f f s p r in g  2

L R F L  [ R F F L L ]  L R F R ' F R R F O f f s p r in g  3

W ' L R F iR F L F  [  R L F L R  ]  L F L R  F\ O f f s p r in g 4

Figure 5.13: Crossover operation by swapping symbols. Offspirngl and Offspirng2 show example o f  
one-point crossover; Ojfspring3 and Offsprig4 show the example o f  two-point crossover.

5.3.4 Evolving the patterns - pre-runs

With all the ingredients described above, pattern formation of robot swarms can be modelled by 

using the L-System evolution process. In order to evolve patterns, the first thing that needs to 

be done is to define a task and the fitness functions. The simplest pattern formation for multi­

agent systems is the exploration task. In this case, agents are expected to fan out along some 

criteria. Figure 5.14 shows an example of an L-System that has been evolved for exploration in
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an open arena, i.e. an arena without any obstacles. The arena size in this example has been set 

to 100 by 100 unit square. Red dots indicate the location of agents, and blue lines indicate the 

parent-child connection of the agents. In this example, the population size of the GA is 50. Two 

production schemes are used. In the first reproduction module, elite parents are selected for 

crossover at rate of 33%. In the second reproduction module, random parents are selected with 

a crossover rate of 60%.

At first glance it may seem that the pattern is somewhat random. However in reality, the 

evolved string, i.e. the chromosome that represents the pattern, is regular and assumes the shape 

shown after iterating through three times, with a preset axiom.

100

. \  . fA

t  L A

1 /  +..

V..<

100

Figure 5.14: Example evolution o f  an L-System that maximises spread fo r  exploration purposes. Each red  
point indicates the location o f  an agent, and the blue lines indicate parent-child relationship.
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5 .4  E v a l u a t i o n  /  S i m u la t io n

A series of simulations have been carried out to evaluate our pattern formation algorithm 

approach under different experimental conditions, i.e. the arrangement of the obstacles, and to 

compare them. In particular, we considered the working arena to be in multiple levels of 

difficulty, obtained by the various standard obstacle(s) arrangements in the arena. In the 

following sub-sections, the evaluation procedure is specified. The simulation methodology is 

briefly described and finally the results will be presented and discussed.

5.4.1 Task and procedure

In this research, the topic of interest is how the pattern formations of robotic swarm can be 

represented by (evolved) L-Systems. With all the basic ingredients in hand, the tasks and the 

working arena need to be defined. Simulations have been done using a proprietary software 

from MathWorks Inc. called MATLAB. Three different working arenas, as shown in Figure 

5.15, have been defined; namely open, cross and scatter, with a bounded arena of size 200 by 

200 units. As their names imply,

•  the “open” arena refers to an arena without obstacles. This is often used to test the 

minimum requirement to connect two points, and to analyse the complexity in path 

planning research.

•  “cross” refers to an arena where there is an obstacle with a cross shape present in the 

centre arena -  the cross serves as a major obstacle between the two points that are to be 

connected.

•  “scatter” refers to an arena where there are obstacles randomly scattered around the 

arena -  this essentially serves to test algorithms in a maze like environment.
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1  H 
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Figure 5.15: Working arenas where the black colour box(es) indicate(s) the obstacle(s): (a) open, (b) 
cross, (c) scatter. The blue square on the bottom left depicts the start location and the red square on the

top left o f  the arena shows the goal location.

5.4.1.1 Evolutionary process

To evolve patterns, several fitness functions have been defined. The objective is to evolve a 

formation that connects two locations, i.e. start and goal as shown in Figure 5.15, while 

avoiding obstacles (if they exist) in the arena. The start point is at the bottom left comer with 

the coordinate of (10,10), and the goal location is defined as a square box of 10 unit sides with 

the centre coordinate of (180, 180).

The fitness of each individual is based on three elements, as follows,

fitness = { nOut, coverage, d2goal } (6.1)

The first element is the number of agents that reside in the restricted areas such as inside the



area of an obstacle or outside of the the arena (nOut). For this element, we seek the number of 

agents to be minimal or zero. The second element is the agent's coverage in the arena 

(coverage). The agent's coverage is defined by a measure of rectangular area required to 

enclose or bound all the agents, and we seek to maximise its value. The final element is based 

on the nearest distance of any agent in the formation to the goal location (d2goal), For this 

element, the closer the individual gets to the goal, the fitter the individual is.

For an L-System to be selected as one of the individuals for the initial population, the L-System 

has to have a certain degree of healthiness or score above a preset threshold. In this work, the 

initial threshold is set to five, i.e. a maximum of five agents are allowed in the prohibited area 

such as inside the obstacle or outside the arena perimeter. If the individual scores six in this 

instance, the individual will be discarded and the new individual will be recreated. This value 

of five will be optimised downwards to zero as the simulation executes.

5.4.1.2 Piece-wise solutions

As mentioned previously, the evolutionary algorithm has been configured to run with an initial 

population of 50 individuals with a preset fitness threshold and with a maximum of 100 

generations. The evolutionary process will end if either:

•  it reaches the maximum number of generation, i.e. 100, or

•  the fittest individual's fitness scores have been stagnant for some generations.

In this Chapter, the abovementioned stagnancy number has been set to 20. This means that if 

the fitness scores of the fittest individual stalls for the last 20 generations, the evolutionary 

process will cease.

If any of the above conditions have been met, but the pattern formed has not reached the goal, 

the evolutionary engine will then select one of the agents (points) according to some criteria as 

a next start point. This essentially is used to create a non-continuous solution made up of 

multiple segments which offers more flexibility. The criteria for an agent (or point) to be 

selected as a next start position are:

•  the agent should be the nearest agent to the goal, and
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•  the agent is not too close to the obstacles.

In this work, the parameter that measures closeness to an obstacle is defined as 5 units 

displacement.

After a next start point has been selected, the evolutionary engine will start evolving the next

piece or segment of the L-System until one of the agents reaches the goal, or until it has

reached the maximum number of generations.

The aforementioned method has been tested with DOL-Systems and CSL-Systems. The method 

can be summarised as follow:

1. randomly generate 50 L-Systems,

2. evaluate and evolve the L-Sy stems for up to 100 generations,

3. if the formation has not reach the goal, then do the piece-wise solutions.

In the next subsection, the results from the simulations are presented, and the output is 

discussed.

5.4.2 Results

The following results are collated by simulating the task of generating a formation connecting 

two locations, namely start and goal as previously described. All simulations uses a square 

arena of size 200 by 200 units with three different obstacles arrangement in the arena. Fifty one 

runs are made for each model (DOL-Systems and CSL-Systems) and each arena. The fittest 

individuals' data for analysis were recorded at every generation during the simulation.

Figure 5.16, Figure 5.17 and Table 5.2 provides an overview of the overall performance of the 

proposed model. Figure 5.16 and Figure 5.17 show the graphs from 51 runs in the each one of 

the arena arrangements for DOL-Systems and CSL-Systems respectively. From the graphs and 

data (Table 5.2) obtained, the overall performance of DOL-Systems is better, in the sense that 

the number of non-continuos segments of the L-Systems are lower compared to the one 

exhibited by the CSL-Systems. For DOL-Systems, more than 50% of the simulation runs, 

regardless of the arena arrangement, evolves into 2 or less segments for the formed pattern. For
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the CSL-Systems however, even in the open arena, around 50% of the simulation runs ended up 

with having one segment for the L-Systems.

Table 5.3 and Table 5.4 are the tabulated data for the average of the total number of agents that 

formed the pattern and its standard deviations for DOL-Systems and CSL-Systems respectively 

with regard to the number of segments of the L-Systems. The results clearly show that as the 

number of segments increases, the number of agents increases accordingly. The difference 

between the DOL-Systems and the CSL-Systems is small, when considering the total number of 

agents in the formations.

Figure 5.18, Figure 5.19 and Figure 5.20 show the the plot of the number of agents, coverage 

and the nearest distance to the goal respectively against generations during the evolutionary 

process from one of the DOL-Systems samples in the scatter arena. The plots are based on the 

fittest individual of every generation. In this instance, the DOL-System successfully formed the 

pattern by connecting two locations with only one segment, at the point that the simulation 

ended at 100th generation. From the plot in Figure 5.19, it clearly shows that the coverage 

(rectangular area required to enclosed or bound all the agents) increases as the number of 

generations increases where the goal is to maximise the area coverage in order to “grow” the 

formation. Figure 5.20 is the plot of the nearest distance to the goal. As the number of 

generation increases, the nearest distance of one of the agent to the goal decreases. From the 

plot we can see that the formation reaches the goal at around the 85th generation of the 

evolutionary process.
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Figure 5.16: Distribution o f  number o f  successful simulations fo r  DOL-Systems in each arena
arrangement
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Table 5.2: Distribution o f  number o f  simulations fo r  each model o f  L-Systems in each arena 
arrangement.

O p e n  a r e n a C r o s s  a r e n a S c a t t e r  a r e n a

S e g m e n ts DOL C S L DOL C S L DOL C S L

1 42 25 11 1 8 -

2  ' 8 26 25 15 31 4

3 1 - 9 19 12 17

4 - - ' 5 3 - 15

5 - 1 13 - 12

6 - - - . - - 2

7 - - - - - 1

8 - - - - - -

Table 5.3: Average total number o f  agents fo r  Deterministic OL-Systems after 51 simulation runs, 
with regard number o f  segments.

D O L O p e n  a r e n a C r o s s  a r e n a S c a t t e r  a r e n a

S e g m e n ts A v e r a g e S t. d e v . A v e r a g e S t. d e v . A v e r a g e S t. d e v .

1 58.1 7 .4 4 64 .55 2.5 5 6 0

2 5 9 .2 5 .55 7 5 .0 4 16.41 64 .9 11.76

3 7 0 0 108 .22 28 .35 7 2 .5 8 14.34

4 - - 118.4 14.15 - -

5 - - 141 0 - -

6 - - - - -

7 - - - - -

8 - - - - -

Table 5.4: Average total number o f  agents fo r  Context-sensitive L-Systems after 51 simulation runs 
with regard number o f  segments

CSL Open arena Cross arena Scatter arena
Segments Average St. dev. Average St. dev. Average St. dev.

1 60.04 5.63 60 0 - -
2 69.56 10.24 78.87 11.72 65.5 8.58
3 - - 90.89 .20.11 85.53 12.35
4 - - 119.33 25.15 111.93 22.8
5 - - 127.08 18.5 141 26.8
6 - - - -• 148 46.67
7 - - - - - 160 0
8 - - - - - -
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Figure 5.18: Number o f  agents against generations during the evolutionary process from  
one o f  the DOL-System samples in the scatter arena
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Figure 5.19: Coverage against generations during the evolutionary process from  one o f  the 
DOL-System samples in the scatter arena
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Figure 5.20: Nearest distance to goal against generations during the evolutionary process  
from  one o f  the DOL-System samples in the scatter arena
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The plots in Figure 5.21 are snapshots taken during the evolutionary process o f a formed 

pattern by the DOL-Systems from one of the simulation runs in the open arena. In this instance, 

Figure 5.21(a)-(e) show the development of the first piece (or segment) of the DOL-System, and 

Figure 5.21(f) shows the final formed pattern. In Figure 5.21(a)-(c), it is clearly visible that the 

L-Systems evolved into “Y” shaped pattern. This is due to the the axioms (a) for the L-Systems 

that consist of the bracket symbols, [  and ], which contribute to the branching structure in the 

formation. The axioms a, successors, succ and the number of iterations for the formations are 

summarised as follow:

•  Figure 5.21(a): RF[LLLF]FL, RFRFFLLF, 2

•  Figure 5.21(b): F[LLLF]FL, RFRFFLLF, 2

•  Figure 5.21(c): LF[LLF]FL, RFRFFFLLF, 2

•  Figure 5.21(d): LF[LLJFL, RFRFFFLLF, 2

•  Figure 5.21(e): RFLF, FFRFFFL, 2

•  Figure 5.21(f): FLLF, LLLLFFL, 2

In Figure 5.21(d), even though the axiom (LF[LL]FL) for the formation contains the bracket 

symbols for the branching structure, the evolved formation does not have a visible branch. The 

reason for this is that in order to have a visible branching structure in the formation, at least one 

F symbol needs to reside inside the bracket symbols, as such the axioms for Figure 5.21(a)-(c). 

Figure 5.21(e) shows the final formation for the first segment at generation 48.

Figure 5.21(f) shows the final formation that reached the goal; in this formation, the second 

segment of the L-System was grown from the nearest agent to the goal from the first segment 

of formation. The total number of agents that are required to construct the formation between 

the start and goal locations in this instance is 58, consisting of 50 agents in the first segment 

and 8 agents in the second.
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Figure 5.21: Evolving pattern formation o f DOL-Systems in the open arena. The fittest L-System
for first segment in the: (a) 2nd, (b) 4th,(c) 6th, (d) 12th, (e) 48th generation; second segment in

the: (f) 28th generation, o f the evolutionary process.
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Figure 5.22 is the collection of snapshots showing the evolution of the DOL-Systems in the 

cross arena from one of the simulation results. Figure 5.22(a)-(d) show the growth of the 

pattern for the first segment of the pattern in the 5th, 10th, 35th and 70th generation, and Figure 

5.22(e)-(f) for the second segment in the 10th and 30th generation respectively. The axioms a, 

successors succ, the number of iteration and the number of agents that made the formations are 

summarised as follow:

• Figure 5.22(a): RFLFRF, FRFL, 2, 12

• Figure 5.22(b): FFFRFFRR, FRFL, 2, 20

• Figure 5.22(c): LFFFRFRF, FRFFL, 2, . 45

• Figure 5.22(d): LFFFFRRFFRFF, FRFL, 3, 64

• Figure 5.22(e): R[RFFLLJ, RRFRF, 2, 8

• Figure 5.22(f): R[LFL]RF, RRFRF, 2, 8

Figure 5.22(d) shows the final formation for the first segment of the L-System. In this instance 

however, the formation has not reached the target yet, and the second segment needs to be 

grown. Figure 5.22(e)-(f) show the growth of the second segment. Even though the number of 

agents and the successor strings in these two are the same, the the evolved formations are made 

up from different axioms. The total number of agents in this formation is 72, consisting of 64 

agents in the first segment and 8 in the second.

167



200
180
160
140
120
100

20050 100 1500

200
180
160
140
120
100

60

20

2000 50 100 150

(a) first segment, generation 5  (b) first segment, generation 10

200
180
160
140
120
100

20050 100 1500

200
180
160
140
120
100

20

2000 50 100 150

(c) first segment, generation 35 (d) f irs t segment, generation 70

200
180
160
140
120
100

50 2000 100 150

200
180
160
140
120
100

20

2000 50 100 150

(e) second segment, generation 10 (f) second segment, generation 30

Figure 5.22: Evolving pattern formation o f DOL-Systems in the cross arena. The fittest L-System
for the first segment at the: (a) 5th, (b) 10th,(c) 30th, (d) 70th generation; second segment at the:

(e) 5th, (f) 30thgeneration, o f evolutionary process.



Figure 5.23 shows the growth of DOL-Systems in the scatter arena from one of the simulation 

results. The axioms a, successors succ, the number of iteration and the number of agents that 

made the formations are summarised as follows:

• Figure 5.23(a): FLFFFFFF, FFRR, 2, 12

• Figure 5.23(b): RFLFFRFFFF, RFLF, 3, 24

• Figure 5.23(c): FFFFRF, RFLF, 3, 40

• Figure 5.23(d): RR[FLFL], RFR[LL[LF]R]FL, 2, 18

• Figure 5.23(e): F[LLFFL], FRFLLLFRRR, 2, 27

• Figure 5.23(f): FL[F]L, FRFLLLFRRFR, 2, 32

Figure 5.23(a)-(c) show the evolution of the first segment at 5th, 25th and 60th generation, whilst 

Figure 5.23(d)-(f) show the evolution of the second segment at 5th, 10th and 40th generation 

respectively. Figure 5.23(d) clearly shows the interesting branching formation which is due to 

the stacks (and represented by the square bracket symbols) in both the axiom and the successor. 

Figure 5.23(f) shows the final formation connecting start and goal location with 2 segments of 

the L-Systems, in this instance the total number of agents that is able to produce the formation 

is 72, consisting of 40 agents for the first segment and 32 for the second.

Figure 5.24, Figure 5.25 and Figure 5.26 show the evolution of the CSL-Systems in the open, 

cross and scatter arena respectively. Figure 5.24(a)-(d) show the evolution of the first segment 

of the CSL-Systems at 2nd, 6th, 8th and 12th generation respectively. From the snapshots, it is 

obvious in the growth of the CSL-Systems that as the number of generations increases the 

nearer the closest agent to the goal location becomes. Figure 5.24(e)-(f) depict the evolution of 

the second segment of the formation with the number of agents at the 2nd generation is 17, and 

decrease to 12 at generation 32. Figure 5.24(f) shows the final formation which connects the 

start and goal location that is made up of 2 segments of CSL-Systems; with the number o f  

agents is 50 for the first segment and 12 for the second segment, making the total of 72 number 

of agents in the formation.
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Figure 5.23: Evolving pattern formation of DOL-Systems in the scatter arena. The fittest L-System for first
segment in the: (a) 10th, (b) 25th, (c) 60th generation; second segment in the: (d) 5th, (e) 10th, (f) 35th

generation, of evolutionary process.
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Figure 5.24: Evolving pattern formation of CSL-Systems in the open arena. The fittest L-System for first
segment in the: (a) 2nd, (b) 6th, (c) 8th, (d) 12th generation; second segment in the: (e) 2nd, (f) 32nd

generation, of the evolutionary process.
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Figure 5.25: Evolving pattern formation o f  CSL-Systems in the cross arena. The fittest L-System  
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Figure 5.25(a) depicts the formation of the first segment of the CSL-System at generation 25 

with 20 agents. Figure 5.25(b)-(d) show the growth for the second segments; where in Figure 

5.25(b) and (c), the formations seem to make a “U-turn” towards the start location. Figure 

5.25(d) shows the last generation for the second segment with 44 agents required to construct 

the formation. Figure 5.25(e)-(f) show the evolution of the third segment at generations 5 and 

30 respectively. Figure 5.25(f) shows the final formation, in this instance the formation is made 

up of three segments of CSL-Systems with total number of agents of 88, from which 20 agents 

are required for the first segment, 44 agents for the second segment and the remainder are for 

the third segment.

Figure 5.26(a)-(b) show the formation of the first segment at generation of 5 and 25, which 

requires 30 and 40 agents to form respectively. Figure 5.26(c)-(d) depict the formation growth 

for the second segment. Figure 5.26(c) shows that the evolved formation is moves further away 

from the goal location, whilst in Figure 5.26(d) the formed pattern seems to grow towards the 

goal location. Figure 5.26(e)-(f) show the evolution of the third segment at 15th and 45th 

generation. Figure 5.26(f) is the final formation that connects the start and goal location. The 

total number of agents in the formation is 81, from which 40 is required for the first segment, 

21 for the second segment and 20 for the third segment.

Table 5.5 is the tabulated data for the average, standard deviation, median and minimum 

number of agents for DOL-Systems and CSL-Systems in each arena respectively. From the 

data, for overall performance which is based on the average total number of agents, the DOL- 

Systems seem to outperform the CSL-Systems in every arena arrangement. The open arena 

ends up with the smallest number of agents, followed by the scatter arena and the cross arena. 

The minimum number of agents for each arena arrangement between DOL- and CSL-Systems 

does not differ significantly. For the open arena, the minimum number of agents recorded for 

DOL- and CSL-Systems are 50 and 52; for the scatter arena they are 53 and 56; and for the 

cross arena both require 60 agents respectively.
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5.4.3 Comparison with RGT and A* search algorithms

Comparative studies of the formed formation between the two locations of evolutionary L- 

Systems with RGT (Random Growing Tree) and A* search algorithms have also been carried 

out in this Chapter. For the theoretical background on RGT and A* search algorithms, readers 

are advised to refer to Chapter 2, where background descriptions and technical aspects of the 

algorithms are mentioned.

A note that the A* algorithm is a path finding algorithm unlike the evolutionary L-System 

algorithm proposed in this chapter which is essentially a pattern formation algorithm. However 

the final arrangement of both algorithms can be compared.

The comparison that has been done is based on the total number of agents that are needed to 

form an arrangement connecting start and goal locations. The simulations for both RGT and 

A* search have been been carried out using the NetLogo (Wilensky 1999) simulation tool.

For the A* search models, 4-directional search and 8 directional search have been used. The 

search begins at the start location, i.e. near the bottom left comer in the Figure 5.15 (page 158), 

and ends when any of the A* node reaches the goal location, i.e. the red box near the top right 

comer in the Figure 5.15.

For RGT models, agents with nonholonomic motion and having a 7 unit perspective range have 

been used. The 7 unit perspective range seems to be reasonable as the separations between the 

centre of agents is set to be 5. In the simulations, to avoid over crowding in the arena, the 

maximum number of agents was set to 250. This figure is acceptable due to the size of the 

arena being 200 by 200. At the beginning of the simulation, agents are placed randomly in the 

arena. Agents are then allowed to wander in the arena in search of the two locations (start and 

goal) and will finally arrange into a formation connecting the two locations by obeying the 

rules of the RGT algorithm.

The following results are obtained using the same arena arrangements (open, cross and scatter)

175



as previously used. As before, 51 runs are made for each algorithm (4-directional A* search, 8- 

directional A* search and RGT) against each arena arrangement. In the A* search algorithms, 

the total number of agents that are needed to form the path along the route computed by the A* 

algorithm is defined by the route length divided by 5. This is due to the fact that in the 

evolutionarily L-Systems method, the symbol F represents 5 units of displacement. Figure 5.27 

and Figure 5.28 show the snapshots from one of the simulation run for RGT, A* 4-directional 

and A* 8-directional methodologies.

Table 5.6 shows the tabulated data for average total number of agents that are needed to form 

the arrangement between the start and goal locations, its standard deviations, medians and 

minimums for RGT, 4-directional A* search and 8-directional A* search respectively. From the 

data (Table 5.6), for overall performance which is based on the average total number of agents, 

8-directional A* search outperform others in every arena arrangement. The number of agents in 

the open arena is the smallest (for each method) compared to any other arena.

Table 5.5: Average, median and minimum total number o f  agents fo r  Deterministic 0L- and 
Context-sensitive L-Systems after 51 simulation runs in each arena arrangement.

Open arena Scatter arena Cross arena
DOL CSL DOL CSL DOL CSL

Average 58.51 64.71 65.31 108.69 84.18 97.65
Std. Deviation 7.25 9.45 12.44 33.17 26.22 26.39
Median 56 63 60 109 72 90
Minimum 50 52 53 56 60 60

Table 5.6: Average, median and minimum total number o f  agents fo r  Random Growing Tree 
(RGT), A * search with 4 directions (A* (4)) and A * search with 8 directions (A* (8)) methods over 
51 simulation runs in each arena arrangement.

Open arena Scatter arena Cross arena
RGT A* (4) A* (8) RGT A* (4) A* (8) RGT A* (4) A* (8)

Average 69.45 68 48 80.1 72 53 79.41 88 61
Std. Deviation 8.6 0 0 17.09 0 0 10.45 0 0
Median 69 68 48 75 72 53 75 88 61
Minimum 54 68 48 59 72 53 66 88 61

From Table 5.5 and Table 5.6, shows the overall performances over 51 simulation runs based 

on the average number of agents. It shows that in the open arena the evolutionary L-Systems
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methods performs better than RGT and 4-directional A* search; in the scatter arena, the DOL- 

Systems performs better than RGT and 4-directional A* search, whilst the CSL-Systems 

performs the worst. Finally in the cross arena both DOL- and CSL-Systems perform worse than 

other methods.

Focus on the last row of Table 5.5 and Table 5.6, i.e. the smallest number of agents or the best 

result recorded over 51 simulation runs that is needed to form a connection between the start 

and goal locations. The smallest number of agents is considered to be best as it contributes to 

the shortest formation between the two locations. From the results, it is shown that the 

evolutionary L-Systems methods are able to perform better than RGT and 4-directional A* 

search techniques. With regards to the 8-directional A* search technique, there is little 

difference between it and the best results from the evolutionary L-Systems. For the open arena, 

the DOL- and CSL-System needs 50 and 52 agents, while 8-directional A* search needs 48. For 

the scatter arena, the DOL-Systems and 8-directional A* are on a par with 53 agents, whilst the 

CSL-Systems needs 56. Finally for the cross arena, DOL- and CSL-Systems perform better with 

60 agents than the 8-directional A* search which needs 61 agents to connect between the start 

and goal locations.

Figure 5.29(a)-(c) show the snapshots of the best result for the DOL- and Figure 5.29(d)-(f) for 

CSL-Systems in the open, cross and scatter arena respectively. In this Chapter, what we define 

as the best result is the bridging formation between start and goal location with the least 

number of agents required. For the best formation, it does not necessarily comes from one-piece 

or one-segment of the L-System. Figure 5.29(b),(c) and (f) show that, the formed arrangements 

are made up of two segments of the L-Systems.
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(a) A* 4-direction (b) A* 4-direction

(d) A * 8-direction(c) A* 4-direction
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Figure 5.28: Formed pattern using (a)-(c) A* 4-direction and (d)-(e) 8-direction methods, in the 
open (a)(d), scatter (b)(e), and cross (c)(f) arena respectively.
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5.5 Summary Remarks
Due to the limited amount of communication bandwidth in swarm systems, there is a need to 

design algorithms that require minimum transfer of information. This Chapter has introduced a 

new and original method for organised formation along a path in large scale multi-agent 

systems which can also be used as a path planning algorithm. The method however, requires 

the pre-evolution of patterns that are represented by L-Systems. By developing this L-Systems 

method, complex pattern formation information can be stored as short bitstrings that can be 

communicated to neighbouring agents, thus fulfilling the requirement for minimum 

communication. Through the use of L-Systems, complex formations need not be explicitly 

encoded. Instead, these formations can be evolved by specifying objectives in the form of 

fitness functions that are fed into a evolutionary engine.

From the tabulated data in Table 5.5 and Table 5.6 (page 176), the overall results based on the 

average of the total number of agents that are needed to form the formation along the path, do 

not favour L-Systems. However, based on the least number of agents needed to form the 

arrangements, and by altering the stop condition of the evolutionary process of the L-Systems, 

the overall results can be improved. The alteration in this case can be done by:

•  increasing the maximum number of generations, and / or

•  increasing the limit for stagnancy.

The aim of this Chapter was to investigate an alternative way for swarm agents to form an 

arrangement along a path between two locations. In order to be able to form the formations, 

agents are required to have the ability to interpret short strings of the L-Systems that form the 

basic DNA of the formation.

The goal in this Chapter was to achieve interesting and complex pattern formations of robot 

swarms by evolving L-Systems. What makes the L-System attractive is the way the 

representation of pattern takes place. Consider the formation of the evolved DOL-System in the 

open arena as in Figure 5.29(a) (page 180). Such pattern formation can be presented in the
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Logo-style string format as follows:

•  RRRFFLFFFRFFLFFFFFLFFFRFFLFFFRFFLFFFRRFFLFFFRFFLFFFFFLF 

FFRFFLFFFRFFLFFF

However, the same pattern formation can be represented by the L-Systems with a shorter string 

in the format of “axiom > successor > number o f rewriting operation” as follows:

•  RFF > RFFLFFF > 2

where the “>” symbol is use to separate between different parts of the L-Systems parameters. 

Due to the Logo-style format, these movement can be fed directly to the robots.

The technique in this Chapter was mainly developed for the use of forming a formation along 

the path between locations. As already mentioned previously, L-Systems use Logo-style format 

to represent the formation, thus the developed technique in this Chapter can also be used as a 

new path planning algorithms.

Furthermore, the ability to represent branching structure or pattern makes L-Systems more 

appealing. This ability is particularly useful when formations of agents in connecting three or 

more locations are needed. For example, the result in Figure 5.21(c) (page 166) which shows 

the branching structure of the pattern. Assume that agents are needed to form a bridging 

formation connecting three locations, and the three locations are in fact at the edge of every 

branch of Figure 5.21(c) formation. By using the proposed technique, the representation of the 

pattern (as in Figure 5.21(c)) which uses L-Systems and Logo-style format only takes minimal 

string length, as follows:

•  LF[LLF]FL > RFRFFFLLF > 2

The results on the different arena arrangements provided the basis for the study of the formed 

patterns by the evolutionary L-Systems. From the two models (DOL- and CSL-Systems) 

simulated, it was obvious that the DOL-Systems model produced better results with the least 

number of agents to form the bridging formation between the start and the goal locations. 

Furthermore, representing the DOL-Systems can be done by only using three sets of strings
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(axiom, successor, number of rewriting) compared to CSL-Systems which needed eight (axiom, 

2 contexts, 4 successors and a number of rewriting). However, the patterns formed by the DOL- 

System models lacks what we shall term complexity compared to the CSL-Systems model. In 

this case, the patterns from the DOL-Systems are somewhat symmetrical. But in CSL-Systems 

model, the patterns appear to be more random. For this reason, it is believed that to some extent 

the evolutionary CSL-Systems model will outperform the DOL-Systems model given the right 

conditions. However this could be conducted as future work, as this thesis is mainly aimed at 

laying a new paradigm for the topic of formation.
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Chapter 6 Conclusions and Future Work

6.1 Overview
The research presented in this thesis provides an important early contribution to researchers 

currently working on various different themes that fall into the domain of applied swarming, 

namely swarm engineering, swarm robotics, swarm intelligence, multi-agent systems, and so on 

and so forth. In general, work in these fields refers to approaches of developing swarms of 

relatively simple and independent agents which are capable of completing specific global tasks, 

either through task allocation or emergent behaviour.

Swarm robotics has a strong link with multi-agent (robotics) systems, where problem solving is 

done at a macroscopic level. In one sense, designing microscopic rule sets for homogenous 

agents to achieve macroscopic goal(s) may seem to be a simple task, as all the agents will have 

the same rules and conditions. One could strive to design these rules and conditions by hand. 

Moreover, the generation of an analytical solution to the problem might not be required2, 

although in some cases analytical and exact solutions are a must. Any behaviour (of agents) 

which satisfies the macroscopic goal can be thought of as a solution to the problem.

The field of multi-agent mobile systems is still young, hence the current lack of physical 

swarms. Many current problems on swarming have been addressed by analysing and 

understanding biological swarms, and many problems on swarm robotics have been solved in 

the wider context of artificial intelligence and robotics. In both respects, ideas are borrowed and 

adapted. However there remain many more issues that are yet to be solved. Such issues include

2  T h is  is b a se d  o n  th e  au th o r 's  o b se rv a tio n  o n  m a n y  o th e r  w o rk s  o f  re se a rc h
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the issue of how to control agents which have very limited memory and ability to form 

interesting patterns; the issue of bridging formation amongst agents connecting multiple 

objects; and the issue of flocking behaviours with the existence of an attractor in the arena.

In this thesis, three different pieces of research that are related to centralised and decentralised 

pattern formation have been studied. The three systems were different in the inherent nature of 

the problem and in the type of solution. The first piece of research is based on the state based 

model (Chapter 3). In this research, homogenous agents with very little memory, limited 

sensing capabilities and processing power were designed and modelled for two types of swarm 

behaviours, i.e. line formation and cluster formation, using the well-known Finite State 

Machine approach.

The second piece of research addresses the problem of collective movement modelling 

(Chapter 4). In this work, the macroscopic behaviour of swarm agents in the presence of an 

attractant (artificial potential field) is studied.

The third piece of research (Chapter 5) studies complex formation of agents in a task that 

requires the bridging connection of two locations. In this work, it has been shown that 

propagatable patterns can be represented by using L-Systems, provided each robot has the 

ability to interpret short strings of L-Systems that form the basic DNA of the formation.

6.2 Original Contributions to Knowledge
The contributions to knowledge of the three pieces of research above is thus presented.

6.2.1 State based models

The goals of state based models (Chapter 3) were:

•  to design relatively simple homogenous swarm agents with very little memory and 

limited sensing capabilities, and

•  to devise algorithms for the agents so that agents will self-organise into patterns in a
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decentralised manner.

The tasks that have been chosen in this work are that the agents have to perform line and cluster 

formation. As the agents have very little memory, limited sensing capabilities and processing 

power the agents themselves do not have any knowledge of the arena and how many other 

agents are present in the environment. Due to the constraints, an FSM approach has been 

chosen and applied. Using FSM as an approach is not a new idea, after all behaviour-based 

systems have used FSM as their backbone.

There are many similar works have been reported on distributed pattern formation control 

algorithms of robot swarms. However, these agents have capabilities that are vastly more 

complex than the requirement of simple agents in swarm systems. For example, in Avrutin et 

al. (2007), Payton et al. (2004), Nouyan et al. (2006), Freeman et al. (2006), Desai (2002), 

Fierro & Das (2002), Kaminka & Glick (2006), Pavone & Frazzoli (2007), etc. agents require a 

communication module; in Yang et al. (2007), Desai (2002), Takahashi (2004), Mastellone et 

al. (2007), etc. agents need a large amount of memory and processing power for complex 

calculations; in Das et al. (2002) agents require vision based sensors.

In this work, each agent is fitted with a ring of eight equally spaced infrared transmitter- 

receiver pairs. These infrared pairs are merely used for signalling and obstacle detection rather 

than full-blown communication.

The main contributions of this research are:

•  decentralised line formation algorithm and

•  cluster formation algorithm

This is achieved by alternatively switching on and off a combination of transmitters and sensors 

of relatively simple agents which have very little memory, limited sensing capabilities and 

processing power.
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The line formation algorithm is one in which all agents possesses the same control algorithm. 

In this algorithm, the agents wander randomly in the arena until it stumbles upon another agent 

that it can follow. This process promotes autocatalytic behaviour, where in the end, agents 

would likely end up forming a single long line.

In the cluster formation algorithm, there are two different agent control algorithms. One is for 

the single attractor agent and another is for the searcher agents. In this algorithm, the attractor 

agent will wander randomly in the arena, whilst the searchers will look for the attractor and 

once found, the searchers will follow the attractor.

The control algorithm for searcher agents (in cluster formation) and for agents in line formation 

algorithm are very similar. They only differ in the on-off configuration of the infra-red 

transmitters and the receivers.

6.2.2 Collective movements model

The aim of the research on collective movement models (Chapter 4) was to analyse the 

aggregation behaviour of a large number of agents in a swarm that follows the swarm robotics 

control paradigm, i.e. Reynolds' flocking rules (1987), in the existence of an attractor field.

Within this research, Wilensky's (1999) flocking algorithm has been extended and several 

individual behaviours have been selected in terms of single-agent movement models. Three 

different microscopic behaviours have been modelled and a study of the system at a 

macroscopic level have been conducted. The difference between the microscopic behaviours is 

the maximum turning angle of each agent. Based on the observation of the movement model, 

the three behaviours have been labelled as fish-like, mosquito-like and firefly-like.

To summarise, the contributions of this research are:

•  Exploration of how flocking agents behave in the existence of an APF.

•  The analysis of each movement behaviour in the existence of an APF.
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Based on the performances and observation of the movement models, the following conclusion 

is drawn:

-• Teams of collective moving agents with a smaller maximum turning angle are more 

effective in finding targets than the larger maximum turning angle. Collectively moving 

agents with a larger maximum turning angle tend to stay close to each other regardless 

of the APF.

6.2.3 L-Systems for formation tasks

The main objectives of the evolutionary L-System models for formations tasks, as presented in 

Chapter 5, was to develop a novel theory to support swarm agents for complex pattern 

formation, where swarm agents are able to form complex patterns between two locations;

In this thesis it is proposed that for more complex pattern formations of swarm agents, the level 

of agent complexity should be marginally increased. It is thus proposed that to be able to form 

complex patterns, L-Systems offer one solution, with the assumption that agents will be able to 

interpret the short L-Systems bit strings.

The tasks that we have chosen are that the agents have to connects two locations in three 

different arenas in an organised formation. The L-Systems are then generated and evolved by 

an evolutionary engine that finds for a solution (which is the formation between the two 

locations). This thesis claims first use of L-systems in the swarm robotics domain.

To summarise, the contributions of this work are:

•  the proposal of a pattern construction methodology for swarm robots using L-Systems.

•  the proposal of a representation methodology for swarm robot using L-Systems.

•  the provision of an empirical study for the use of evolutionary L-Systems for pattern 

formation in swarm robots.

•  the provision of a comparative study of evolutionary L-Systems with other methods 

(RGT and A* search algorithm).

•  explore the approach of a new path planning algorithm.
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6.3 Recommendation for Future Works
A number of avenues are available for extending the research in this thesis. They are as follows.

6.3.1 State based models

Currently, the algorithms presented in the research of Chapter 3 are solely based on behaviour- 

based systems which mimic the line formed by ants and does not deal with any specialised 

“knowledge”. However, in order to deal with more complex behaviour, i.e. cooperation 

amongst agents, each agent has to be aware of its current situation. For that reason, some kind 

of “knowledge” representation system should be added to each agent. Gershenson (2002) 

shows how a behaviour-based system is able to abstract knowledge from its environment and 

exploit this knowledge for performing within its environment by introducing behaviour-based 

knowledge systems (BBKS). One approach is by using Hidden Markov Models (HMM) 

(Rabiner & Juang 1996).

In order for each of the agents to sense and understand the world around itself, another area 

worth investigating is distributed path planning. With path planning, each agent will have part 

of a “world map” which collectively represents the world. Algorithms need to be developed to 

account for gaps in the representation by each agent, and to recover when this information 

becomes available.

6.3.2 Collective movements model

In the work of Chapter 4, there are many areas that can be investigated. These include:

•  an investigation into how the population density in the arena affects the swarms' 

performance and the convergence rate.

•  scenarios with more than one attraction field with varying strengths and the effects this 

will have on an agent's trajectories and the group behaviour of the swarm.

•  the modelling of several types of obstacles and an investigation into the emergent 

behaviours that obstructions may produce.

•  the introduction of a moving attractor or several attractors to analyse their effects to
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the swarm.

6.3.3 L-Systems for formation tasks

Future directions of the L-Systems work in Chapter 5 may include:

•  Improving the evolutionary engine and the systems. By improving the evolutionary 

engine, more complex agent formations in a complex arena could be achieved.

•  Exploring formation representation connecting three or more locations.

•  Evolving a more complex L-Systems model, such as Parametric L-Systems. In a 

parametric L-Systems model, the representation of the code is more compact than the 

simple L-Systems.

6.4 Summary
Swarm robotics is a relatively new field which has been investigated in the last decade, having 

been triggered by Reynolds' (1987) seminal paper on flocking of boids. There has not yet been 

a single “real world application” of the swarm agents with real physical embodied agents of 

everyday tasks. This is due to the fact that the early groundwork is still being laid and many 

problems and tasks exist that will need to be addressed. This thesis has provided an early 

example of a global approach to pattern formation of swarm agents. The techniques discussed 

in this thesis may be extended to a wide variety of possible future swarm applications.
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