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Abstract

A swarm is defined as a large and independent collection of heterogeneous or homogeneous agents
operating in a common environment and seemingly acting in a coherent and coordinated manner.
Swarm architectures promote decentralisation and self-organisaition which often leads to emergent
behaviour. The emergent behaviour of the swarm results from the interactions of the swarm with its
environment (or fellow agents), but not as a direct result of design. The creation’ of artificially
simulated swarms or practical robot swarms has become an interesting topic of research in the last
decade. Even though many studies have been undertaken using a practical approach to swarm

) construction, there are still many problems need to be addressed. Such problems include the

problem of how to control very simple agents to form patterns; the problem of how an attractor will

affect flocking behaviour; and the problem of bridging formation of multiple agents in connecting
multiple locations. The central goal of this thesis is to develop early novel theories and algorithms
to support swarm robots in. pattern formation tasks. To achieve this, appropriate tools for
understanding how to model, design and control individual units have to be developed. This thesis
consists of three independent pieces of research work that address the problem of pattern formation

of robot swarms in both a centralised and a decentralised way.

The first research contribution proposes algorithms of line formation and cluster formation in a
decentralised way for relatively simple homogenous agents with very little memory, limited sensing

capabilities and processing power. This research utilises the Finite State Machine approach.

In the second research eontribution,‘by extending Wilensky's. (1999) work on flocking, three
different movement models are modelled by changing the maximum viewing angle each agent
possesses during the course of changing its direction. An object which releases zin artificial potential ‘
field is then introduced in the centre of the arena and the behaviours of the collective movement

model are studied.

The third research contribution studies the complex formation of agents in a task that requires a
formation of agents between two locations. This novel research proposes the use of L-Systems that
are evolved using genetic algorithms so that more complex pattern formations can be represented
and achieved. Agents will need to have the ability to interpret short strings of rules that form the

basic DNA of the formation,
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Chapter 1  Thesis Overview

1.1 Motivation

Since the dawn of time, humans have observed a variety of interesting and intriguing patterns

found in nature dee to the natural movements of anirpals and insects. A flock of birds in

formation in the sky, a school of fish which turns and flees in perfect coordination (Shaw

1962), a groﬁp of eusocial insects (e.g. ants) foraging cooperatively for food. These kind of
behaviours that lead to organised formation is termed as “swarm behaviour” (Lie & Passino
2000). In recent times, researchers ffom many diverse fields have converged to study the
interaction in biological swarms and how to mede] them, through the observation of
organisation and evolution in the swarm agents. Researchers in the applied sciences, for

instance, have shown an even greater interest in swarm behaviour since the understanding of
these behaviours can lead to new optimisation techniques such as the Particle Swarm

Optimieation (Kennedy & Eberhart -1995) and Ant Colony dptimisation (Bonabeau et. al.

1999). These behaviour inspired algorithms can be applied in many fields, such as in networks

and telecommunication systems (Bonabeau et al. 1999), robotics (Beni 2005, Cao et al. 1997)

etc.

Recent advances in robotics in general and electronics in particular have started to make the
deployment of large numbers of inexpensive agents or robots for many practical applications
more vfeasi»ble. Such applications include for example search and reseue type tasks where these
inexpensive agents are tasked with looking for survivors in collaesed buildings after a natural
_ disaster like the aftermath of an earthquake. Agents in this instance have to perform dangerous
or»explofative tasks in .hazardous, unknown and remote environments. In deploying these
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agents, the number of autonomous agents involved can be very large, ranging from hundreds to -

thousands.

When dealihg with large numbers of agents, many problems need to be -addressed; Such
prdblems include the agent's design and architecture, task allocations, control strategy,
llocvalisatiori and sQ forth.‘ Another important question that needs to be addressed is one of
organisation. Agents in the system should be able to form and organise themselves aroﬁnd
complgk patterns which are generally required to perform specific tasks ina complex areﬁa.

This thesis focuses on the latter problem, i.e. the organisation of the robot swarms.

Although many approaches and solutions have been proposed to address the: organisation
issues, as swarm robotics is relatively a new field, there are still many aspects that can be -
investigated. With a fuller understanding, researchers may find solutions that lead to better

algorithms.

In this thgsis, the wide range of techhiques and .algorithmé currently being devéloped or
available is examined and studied in-depth. With this new understanding this thesis
e ‘proposes algorithms of line formation and c]uste; formation for relatively simple multi-
robot system using exisiing‘state based model, -
e studies the impact of 'collective movemeht model behéviburs in the presence of an
attractor unit (artificial potential field), and
® proposes a novel niethod ‘of robots formation connecting two- locations by using

'Lindenmayer Systems in conjunction with evolutibnary algorithms.

Original contributions are offered in the three kvey areas above through the study and analysis of
existing algorithms, improvements of these algorithms and finally and most importantly the

contribution of new algorithms.

In this Chapter, a brief introduction to self organisation, research context and outline of the

thesis is presented. Firstly an overview of self organisation systems including some definitions



is presented and some of the main ingredients that make up these swarm systems are explained.
The research in this thesis is then put into context. Finally, the outline of this thesis is presented

in Section 1.4.

1.2 Self Organisation
Self organisation in swarm systems refers to a broad range of patte‘mA-fonnation processes in
nature. Thése include sand grains forming rippled dunes (Figﬁre 1.1), orderly rows of clouds in
the sky, flocking behaviours in birds and so on. Camézine et al. (2001) in their book (p.8)
provided an “open” definition on self organisation as reproduced below:

“Self-organisation is a process in which pattérns at the global level of a

system emerge solely from numerous interactions among. the lower-level

components of the system. Moreover,. the rules specifying interactions

among the Sj/stem fs components are executed using only local inqumation, _

without reference to the global pattern”,

Figure 1 1: An example of pattern formation in nature, showing sand dunes.



Bonabeau et al. (1997) who worked closely on insects gave another definition on self
organisation which focuses more on ethological aspect as follows: |

“Self organisation does not rely on individual complexity to,dccount for

complex spatiotenlporal Sfeatures thaf emerge at the colony level, but rather

assumes that internctions amongst simple individuals can produce highly

structured collective behaviours”.

This thesis proposes the following summary definition
“In self-organised 'Swarming systems, pattern formation usually occurs
through local interactions of agents in the system without intervention by

external directing influences”.

There ére four basic ingredients that may contribute to the self-organising systems:
e multiple interactions |
° vampliﬁcation of fluctuation and randomnesn
® positive feedback .’

e negative feedback

Interaction is the main ingredient and it is a basic requirement for self-organising systems. In
- nature, interaction is needed to allow an agent to obtain information which is used to determine
a response. Obtaining information from an interactinn is a result of someA kind of
" communication with the nearest neighbburs or its environment. In the simplest case of flocking
birds for exalnple, the local information acquired in the interaction is simply the relative
position of other birds in the neighbourhood. This information is gathered directly. without the
need of direct communication, e.g.. bird to bird communication. It is also unnecessary for birds |
to leave some sort of “marker” in tne environment to communicate with the others in the flock.
In the case of foraging ants, ants also do not require direct communication with other
individuals, However, ants leave behind in their tracks Aa type’v of chemical substance called
pheromones as an environment marker to communicate with other ants (Bonabeau et al. 1997).
In cases like these (ants foraging and birds ﬂock{ng), it demonstrates that only by having
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indirect communication during an interaction is sufficient to produce complex behavioﬁr. In
many other cases, information usually transfers by direct communication. A wéll known
example of this type of interaction is the dancing performance by some species of bees. Whén a
bee returns from foraging to .the hive, the bee will perform a»dance that convéys information

about the approximate location of the nectar source (Bonabeau et al. 1999).

In biological .‘ systems, random fluctuation is a common ingredient in boosting up self
organisation perfonﬁance. Many of these systems do actually rely on certain .stochastic
elements to some degree for behavioural ﬂexibilfty. The amplification of ﬂuctuati‘on and
randomness often leads to the discovery of new solutions. Moreover, these fluctuations will
v also act as seeds in which new solutions énd‘s‘tructures can grow. A popular example of the -
random fluctuation fs caused by stochastic trail following in ant colonies. In the beginning, the
-ants will follow trails imperfectly due to the low concentrations of pheromone on the ground
(Deneubburg 1983). But when an ant loses the trail énd is lost in the environment, this ant has
the potential to find an undiscovered food source. Tﬁe newly found food could be a better food
source than the» currently being utilised by the colony. From this example, it shows that random

fluctuations are also vital to the swarm systems.

Another commoﬁ ingredient in self-organising systems is positive feedback or cumulative
causétion. Positive feedback promotes radical changes in the system by reinforcing it in the
same direction. A commonly observed example of positive feedback can be found again in the
trail-laying in ants. When an .ant finds food, it will leave behind a pherombne trail while
refuming to the nest. Others who find this trail will foll_ow the trail to the food source, and they
* will reinforce the initial trail as they return to the nest. As the resﬁlt of positive feedbaék, the

more ants that use the trail, the stronger the pheromone concentration will be.

Negative feedback in the self organising systems acts as a balancing mechanism of the effect of
~positive feedback. In nature, the autocatalytic process usually requires an opposing force in
- most cases, otherwise the system will use huge amounts of resources for a single particular

activity. Negative feedback usually occurs due to the depletion of limited individual or
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resources. In swarm systems, the negative feedback can be in the form of saturation, exhaustion
' overcrowding, and even competition within individuals. In the ‘case of foraging ants, the
negative feedback will cdme from the exhaustion of the food, 6vercrowding at the food source,
corﬁpetition between two or more food sources, limxited number of available ants, and so on and

so forth.

As there is no unique or satisfactory definition of self organisation, the summary above serves

as a set of heuristic rules to design or discover a self organising system.

In systems that lack self organisation, order or organisation can be imposed on them in many
different ways. The order not only can come through the presence of a supervisory team but

" through various directives such as pre-existing patterns in the environment as well.

1.3 Context

The origin of the work that is presented in this thesis is intimately related to and emerges from
the development of the -SWARM projeét (Intelligent Small World Autonomoﬁs Robots for
Micro-manipulation), funded by European Union Information Society Technologies (IST) 6th
framework programme (FP6-IST project 507006) which began in January 2004 and completed
at the end of 2008 (Woermn et al. 2006.)‘. The project 'aims to take a leap forward in robotics
research by bringing together experts and 'combining expertise in micro-robotics, in distributed
and adaptive systems, and in self-organising biological éwann systems. The project also seeks
to produce technological advances to facilitate the mass production of micro-robots, which can -
then be emi)loyed as a “real” swarm bonsisting of up to 1000 robot agents. The agents that form
the swarm will each be equipped with limited pre-rational on-bqard intelligehce. 'I:‘he swarm
will consist of a huge number of 4heterogeneous robots, differing‘ in the 'type of sensors,
manipulators and compu'tatidnal power. Such a robot swarm is expected to perform' a variety of
abplications in the not too distant future, including micro assembly, biological, medical or

cleaning tasks.



The‘ main challenge in t_he I-SWARM project is to build a micro robot with the initial aim of
achieving a size of 4mm? (2mm x 2m x 1lmm) cbmplete with sensors and manipulators. The
work in the first phase wa§ a joint effort of the partners in the Consortium to define the
minimum capabilitiés of a micro r;)bots which are able to self organise and able to have
emergent behaviours. As the size is the main issue in the project, based on the robot hardware

conéeived, the behaviour of the robot is designed by using a bottom-up approach.

Figure 1.2: Artist impression of cooperation befvv'eeh I-SWARM nﬁcrofobbts

Eéch of the I-SWARM robot has three “legs” (tWo at the‘ front and one at the back) made from
special materials (electro-active polymers) as a locbmotion unit. As the éwarm needs a
continuous supply of energy, micro solar cells and a thin film battery that acts as a buffer have
been mounted onto the main platform. The onboard electronics consists of an 8051 micro
controller core, analogue circhitry (for the power drivers for the actuators), and the A/D
converters (for communication and sensdr -modules and power management). Optical
communication using custom fabricated infra-red LEDs and photodiodes fechnol'ogy has Been
chosen as the communication mod for the -SWARM robots. The communication range is set
to about 2-4 times the size of the robot in four direétions (front, right, back and left relative to

the robot).



At the time of writing, the I-SWARM robots have been manufactured as shown in Figure 1.3,
with the final size of 27mm® (3mm x 3mm x 3mm). The remaining tasks now are to program
the robots so that they can exhibit some sort of intelligence and show some kind of emergence

behaviours.

" Figure 1.3 The ﬁnal I-SWARM robot with dimension of3x3)&3 mnt’.

14 Structure'of the Thesis -

This rest of the thesis is organised as follows: -

e Chapter 2 gives background information and provides a literature review surrounding
other research related to this thesis. These include some baékground studies in the
biological, artificial intelligence and robotics field. An overview of the current state of

the art in the field is also presented.

e Chapter 3 introduces two robot swarm control algorithms which are used for .
distributed pattern formétions. In these control algorithms, there is no explicit
communication between agents and the pattern formations are formed based solely on
reactivity of the agents towards ité environments. Agents in this study have very little

memory, limited sensor capabilities and processing power.



° Chap;ter 4 models collective movements or aggregations of robots swarms using simple
flocking rules. From the model, aggregation behaviours that emerge from the different
movement models of relatively simple agents, which differ only in the maximum

turning angle and sensing range, are examined.

e Chapter 5 presents an orig'inal contribution on complex pattern formations of robots
swarms by combining Lindenmayér Systems (or L-Systems in short) and genetic
‘algorithms. In this study, it is shown that the pattern that is formed when connecting
two locations- can be échieved and represented. using simply evolved L-Systems,
-provided each robot has the ability to interpret short strings of L-Systems that forml the

basic DNA of the formation.

e Finally in Chapter 6, conclusions are drawn. The results and the performance of the
algorithms are discussed. Additionally the contributions of the research are summarised

and recommendations and directions for possible future research are proposed.



Chapter 2 - Literature Survey

‘2.1 Pattern Formations

~ Since the dawn of time, humans have been fascinated with the regular natural patterns that
emerge around them - soéial insecfs foraging, birds flocking, shepherding, not to mention.
countiess examples from physical systerhs such és. the orderly row§ of clouds and the

washboard pattern of sand ripples in deserts.

In biological systéms, groups of the same species of animals seem to move as a single unit,
changing direction in a split second which has led some researchers to believe that some kind
of communication or even “thought transference” must be involved as argued by Parrish &

Edelstein-Keshet (1999). In reality this behaviour is less mysterious.

Many believe that birds must have leaders, e.g. the bird at the front of the flock leads and the
others follow. But, in fact, most bird flocks do not have a leader. at all. There is no overall
control. Instead, the flock movements are determined by the instantaneous decisions of

individual birds.

Birds follow simple rules in response to interactions with their neighbours in the flock. Orderly
flock patterns arise from these simple rules, reacting to the movements of its neighbours. None
of the birds have a sense of the overall flock pattern. The flock is coordinated without a

cooidinator and organised without an organiser.
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There are many reasons to believe why animals aggregate in numbers. The most common
reason seems to be tha; it serves as a defence against predators. Having many eyes together
ensures that at least some will spot a predator while the qthers are feeding, resting, or looking in
the opposite directions (Vabg & Ngttestad 19v97)(Howard 1929). ‘Parrish and Edeistein-Keshet
(1999) pointed out that aggregation is actually an evolutionarily advantageous state: where it is
believed that aggregation may increase the chances of survival of newborns and juveniles from
being killéd by predators, such that the reproduction of the species can be continued. Secondly,
the aggregation also helps in. the search for food; where a large number of individuals has more

capability to sense and search than a single one.

In 1975, Powell conducted experiments on bird aggregation where he took a numbef of
Starlings (a species 6f bird) and put them in an aViafy. He then separated some of the birds oh ‘
their own and some in a group Qf around ten. He made an artificial hawk and flew it over the
Starlings énd noticed that birds 6n their own took a longer time to react than in the groups. He
- concluded that eyen though it Ihight be advantageous in some aspect for the Starlings to forage
on their own, it is better for them to forage as a group and take turns in looking out for .

- predators as they will be able to react more quickly in'danger.

A number of the anti-predator strategies in schools of fish, such as split, join aﬁd vacuole.
(Figure 2.1), performed by schools during predator attack are some of the most inferésting
behaviours in a swarm (Vabg & Ngttestad 1997). Another benefit of moving in formation is the .
dilution effect. The dilution effect is simply that the bigger the" group size, the sﬁlaller the
probability that each individual is attacked. Krause (1994) stressed that odd individuals are
attacked first; however that does not. mean that each indiyidual is fighting to gain accesé to the
safest location in the swarm. In 1994, Cresswell ol;served and Studied the behaviour of a
species ‘of bird called Redshanks. He found that once the group of the birds reaches a certain
number, vigilance no longer has such a crucial effect on the group. He also realised that it
actually became harder for an individual to be singled-oﬁt by a predator for attack and some

times by staying together it would even deter a predator.
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Figure 2.1: Schematic presentation of several anti-predator strategies in a school of fish. (Taken from
" Vabg & Ngttestad 1997) '

In the special case of ﬂying in a V-formation by large. birds such as geese and pelicans, there is
an energy béneﬁt (Lissaman & Shollenberger 197 0), since following birds can take advantage
of vortexes in the air produced ‘b.y the ones ahead of them (Gouid & Heppner 1974). Although
such formations élearly have leaders, these are temporary ones. Because a leading bird does not
gain aﬁy energetic ad\/antage from its position, it will drop back after some time whiie'ahother
takes the lead. It is not known if ﬂock members do this on a rotation basis, alfhough it is
possible that larger and stronger birds are in the lead a greater percentage of the time.
Alternatively, the V-fonﬁ may reflect a mechanism by which birds avoid collisions with other
birds and stay in visﬁal contact all the time (Goﬁid & Heppner 1974). Additional background
'oﬁ biological swarms.and why they aggregéte can be found in (Parrish et al. 2002)(Hamilton

1971) and references there in.
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2.1.1 Pattern Forming Paradigms
In designing artificial swarms, a variety of approacﬁes have been proposed to create global
behaviour or pattern formation of a group of mobile robots. Spears et al. (2005a) divided the

approaches in to two significant paradigms; Biomimetics and Physicomimetics.

2.1.1.1 Biomimetics

Biomimetics is a general description for an engineering proeess or system ‘that mimics
(imitating, copying, or learning from) biological systems. The term emerged frem biochemistry
and applies to an infinite range of chemical and mechanieal phenomena, from cellular processes v
to whole-organism functions. As an early example, the Wright brothers are said to have built
their aeroplane structure based on observations and analysis of bird flight. However,
researchers diverge in precisely hoW to deﬁne biomimetics. “Biomimetics” is often a vague

term, much like the “intelligent” term.

In the field of swarm engineering, Reynolds was one of the first researcher to investigate
behavioufal control animation (1987). He developed a system to model flocking characteristics
“of birds and fishes. It was based on three dimensional computational geometry of the sort
norreally used in cor_nputer_ animation or computer aided design. He called the generic
simulated flocking creatures as boids. The‘basic flocking model consists of three simple
steering behaviours which describe how an individual boid manoeuvres based on the positions
and velocities to its nearby flockmates. More detail about Reynolds's flocking algorithm will be

described later on in the next section.

Based on the schooling behaviour of ‘a group of tuna, Hanada "et al. (2007) proposed an
adaptive flocking algorithm. In this algorithm, an agent first dynarhically selects two of tlile.
neighbouring agents within its perception range and maintains a uniform distance with them,
resulting in three neighbouring agents form a regular triangle. As the numbef of agents grow,
the group of agents will form an equilateral trianglellattice. Secondly, in the presence of
obstacles, the swarm of agents is required to be divided into rﬁultiple smaller group in order to

avoid the obstacles. The split takes place by the relative degree of attractive force termed
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JSavourite force, which is similar to Newton's law of Universal Gravitation, that helps agents to

decide their direction in various environmental conditions. Based on the magnitude of favourite
vector }‘" , each agent decides where to move. A favourite vector ;’: for the passageway s;
_is defined by | f J.| = w,ld jz. where wj; is the width of the passageway and d; is the distance

to the passageway, as shown in the Figure 2.2. A set of favourite vectors [?jl 1<j<n} is

the representation of the passageways, and the agént will select the maximum magnitude of .

T,- denotes by ITJ e By combining the above methods, the swarm agents are enable to

split into multiple groups, and also can rejoin as a big group according to the environmental

conditions.

Figure 2.2: Illustration of a direction decision according to an eivironment
computation of magnitudes for each favourite vector. (Taken from Hanada et al.
2007). '

Another recent example of research in this category is the “pherobots” or pheromone robot
developed by Payton et al. (2004). Pherobots mimic chemical pheromones released by insects
to produce sophisticvate.d organised group activity that emerges out of the simple interactions
Abetween iﬁdi_viduals.‘ The key concept of pherobots ié, “Virtual Pheromones” which provide a
diffusive local-neighbourhood iﬁteraction mechanism by which the robots éommunicate and
coordinate. Unlike chemical pheromones releaSed by insects in “the environment, vinual
pheromones are tied to the rdbots thgmselves.' In addition, virtual pheromohes_are propagated as
- symbolic messages and aré received only by nearby neighbours. More detail about pherobots

will be described later on in the next section (Swarm Robotics section).
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Bayazit et al. (2002) pfoposed using rule-_based_roadmaps to achieve better group behaviour. In
this technique, first a roadmap as in Figure 2.3 is built. A roadmap is simply a connectivity
gfaph encoding representation of feasible paths in the environment. Each node of the graph is é
- configuration of the robbt that satisfies certain requirements, collision-free for' iﬁstance.
Cohnectioﬁs between nodes of the roadmap graph represent feasible paths. Secondly, rules at
each node are added. The rules may be as simple ;as “Go to next node in your path”; or can be
as complex as .“wait for others to arrive, then select a leader, follow the leader”. Their results
show that the the performance of agents using rule-based roadmap behaviours is very close as if

the agents have complete global knowledge of the arena.
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Figure 2.3: A roadmap. Black dots represent nodes; connections between nodes represent
feasible paths. (taken from Bayazit et al. 2002)

Bayazit et al. (2004) then extended their model to achieve different behavi_ours from their
swarm robots. One of the interesting beh‘aviours presented is shepherding between adoganda
ﬁock of sheep. The dog. agent tries to move the ﬂéck toward a goal, the dog steers the flock
‘from the rear and if ‘any subgroup separates ouf, it is the dog's job to move the subgroup back to
the flock. ‘Their work ShoWed that complex group behaviours can be generated if some global
information of the environment is available which can not be modelled wiﬁh local information

alone.
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- In the European SWARM-BOTS project, the agents behaviours are directly inspired by the
collective behaviour of social insects colonies and other social animal societies (Dorigo et al.
2004a).> In particular the project focuses on the study of the mechanisms which govern the

processes of self-organisation and self-assembling in artificial autonomous agents.

2.1.1.2 Physicomimetics

Another approach to creating global behaviour of a group of mobile robots is called '
“phyéicomim'etics” or “artificial physics” (Spears et al. 20052). Physicomimetics is a-general
description for engineering' processes or systems which gain inspiration from physical systems
" such as fluid flow analyses,.Newtonian analyses and kinetic analysés. The key points in
physicomimetics are:
® Any aggregate behaviour seen in classical physics is‘ potentially reproducible with
collections of mobile robots. |
® Any design is not restricted to copying physical systems precisely, i.e. modifications
can be made. |
e Understanding qf classical physics can be used to synthesise the emerged collectiQe

behaviour.

In physicomimetics, the research is focused on robotics behaviours that are similar to those
shown by solids, liquids and gases (Spears et al. 2005a). In solids, crystalline formation for
example, is excellent for distributed sensing tasks, to create a virtual antennae or synthetic

aperture radar. For such tasks it is important to maintain connectivity and a lattice geometry.

Liquids are good fbr obstacle avoidance or narrow passage traversal tasks, while moving

towards a goél, since fluids easily manoeuvre varound obstacle_s while retaining connectjvity.
Gases are useful for coverage, sweeping and exploration. For these tasks it is neCessary that
covérage can be maintained, even if with individual robot failures. Gag-like behéviours are

created using purely repulsive forces.
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.Chgng et al. :(2005) proposed an algorithm for coordinating a swarm 6f homogenous mobile
agents to spatially self-aggregate into arbitrary shape using only local interactions, which they
called SHAPEBUGS. SHAPEBUGS consists of two main processes; trilateration and gas
expansion movement. A trilateration process allows an agent to find its perceived position on
the“consénsus coordinate system, and éubsequently adjust it; while gaé expansion movement -
~ model will force agents to disperse within the defined 2-D shape. T.he advantagerf the
- algorithms are that; agents can easify aggregate into any user-specified shapes, using a
formation procéss' that is independent of the number of agents within formation; and secondly
'.agents can automaticaliy adapt to increase and decrease of agents, as well as accidental

displacement.

Zarzhitsky et al. (2005) introduced a cherhi'cal plume tracing (CPT) method based on
computational fluid dynamics. The algorithm itself is divided into three subtasks; starting from
finding the _chemicaL then tracing it to the source using CPT methdd, and finally identifying the
soﬁrce. Iq finding the cheinical, agent ﬁses a method called casting, which consists of zigzag or
spiralling motion to increase exploration-coverage. In tracingthe plume; first, the agents use
gravifational forces (artiﬁciél physics) to arrange thellnselves into a hexagohal formation and
~form a mobile adaptivé sensor network, so that agents could share real flow-field parameters of‘ :
ﬂuid dynémics with six Of, their closest neighbours. These flow-field parameters or variables
are use to -calculate the next navigational decision using the pfoposéd technique called

fluxotaxis. Fluxotaxis uses the concept of mass flux, which can be ‘written in a differential
equation form as: __a_p=v.( pf/’) where [ is the mass density of the plume, y is the
ot 4
fluid's velocity, and the product of pV is called the mass flux, or the rate of change of mass
flow per unit area. With fluxotaxis, each agent in the robotic lattice computes the amount of
local chemical flux pV , passing through virtual ‘su'rfac_es formed by neighbouring swarm
agent. In addition, fluxotaxis is designed to maximise the use of available sensor data by

combining the fluid Velocity and chemical velocity (Spears et al. 2005b). The final subtask is to
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»i'dentify the sohrce of the chemical. They (Zzirzhitsky et al. 2005) showed that their fluxotaxis
algorithm is able to demonstrate statistically and practically significant gains in performance
over other two most popular .altematives, i.e. chemotaxis and anemotaxis, even in an
environment with obstacles. Even though their current results look promising, they have yet to
include a more advanced turbulence model, learning the threshold of the plume/ chemical, and -

increasing the number of obstacles. -

By using what is described as social . potentials techniques, Balch end Hybinette (2000)
achieved large scale multi-agent formations. The tecltnique was inspired by the crystal |
generation process. Each agent had local attachment sites attracted to other agents. When the
swarm encounters obstacle, agents are able to avoid obstacle depending on the behaviour based
rule combinirtg the concept of an attractive and repulsive forces; i.e. repulsion from obstacles
with attraction to the goal. The technique seems easy to implement however, the parameters

need effort to adjust to perform successful flocking.

' Speers and Gordon (1999) showed how to control swarm robot systems using a
' phyéicbmimetics frameWork. Their initial application on solids based pattern formation,
required that a swarm of micro-air vehicles (MAVs) self organise into a he)tagonal lattice,
creating 5 distributed sensing grid with a fixed spacing between MAVs (Kellogg et al. 2002). In
liquids-based formation, they use the same approach as solids-based pattern formation only by
changing the parameter that balances the attractive and repulsive components (Gordort-Spears
& Spears 2002). The switch between the two behaviours (solid and liquid) acts very muclt like
phase transition. In gas-based formations which are good for sweeping the arena, swarm robots
must not ohly avoid obstacles but they must also sweep. behind the obstacles to minimise'holes
in the covera