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ABSTRACT

In recent years, the number of reinforced concrete structures requiring repair and 
rehabilitation has increased considerably. This is due mainly to the corrosion of the 
reinforcing steel within the concrete which has become contaminated with a highly 
corrosive environment containing chlorides and carbon dioxide. Specification of 
repair materials at present, in accordance with BD 27/86 m , is based on an 
inadequate understanding of the interaction between the substrate concrete and repair 
material. Cracking may occur in the early ages after application of the repair material 
due to the restraint to shrinkage provided by the substrate concrete and steel 
reinforcement. This would have serious durability consequences which would aid the 
onset of further corrosion. Furthermore, it is not clear at present if  an efficient 
composite interaction is developed between the repair patch and substrate concrete in 
the long term to enable the repair patch to carry external load, or if  the repair patch 
just acts as a barrier to protect the steel reinforcement from further corrosion.

This research relates the basic properties of repair materials (elastic modulus, 
shrinkage and creep) to the long term performance of repair materials applied to actual 
concrete highway structures and simulated laboratory repairs. The research forms part 
of a LINK project sponsored by three companies and the Department of Transport. 
Three deteriorating highway structures were selected for concrete repairs. The repairs 
were monitored over the long term to gain an understanding of the interaction 
between the repair material, substrate concrete and steel reinforcement. These were 
Gunthorpe Bridge, a three span reinforced concrete arch bridge, crossing the River 
Trent to the east of Nottingham, Lawns Lane Bridge, carrying part of the M l near 
Wakefield in West Yorkshire, and finally, Sutherland Street Bridge, carrying the 
B6080 in Sheffield, South Yorkshire.

In order to gain information on the effectiveness of the repair materials in developing 
an efficient composite action with the substrate concrete, vibrating wire strain gauges 
were attached to the substrate concrete and steel reinforcement after the deteriorated 
concrete was removed. Embedment and surface gauges were installed in the repair 
patches either during or after repair material was applied.

Laboratory investigations consisted of repairs to simply supported reinforced concrete 
beams. Repair patches were applied centrally at mid-span to beams which were 
subjected to two point loading at one-third span points. The interaction between the 
repair materials, steel reinforcement and concrete substrates were monitored by a 
combination of a demec extensometer and electrical resistance strain gauges.

A theory is presented which predicts the long term interaction between the concrete 
substrate and repair materials to unpropped compression members. The analysis is 
divided into two stages. The first part deals with the distribution of shrinkage strain 
within the repair patch; the second part deals with the redistribution of external load 
from the substrate concrete into the repair patch. The distribution of shrinkage strain 
in the repair patch is based on the analogy of a bi-metallic strip contracting due to a



drop in temperature (similar to a repair material contracting due to shrinkage). It has 
been observed that a repair material with an elastic modulus greater than the elastic 
modulus of the substrate concrete is able to transfer some shrinkage strain to the 
substrate concrete. This analysis, therefore, enables the tensile stress in the repair 
material, due to the partial restraint to shrinkage provided by the substrate concrete, to 
be predicted. Similarly, the restrained shrinkage strain that is transferred to the 
substrate concrete is also predicted as an increase in compressive stress in the 
substrate concrete. The transfer of external load into the repair patch is based on 
analysing the distribution of stress in a compound member when subjected to an axial 
force. The compound member consists of two different materials - the substrate 
concrete and repair material. The analytical expressions require basic properties of 
the repair material (elastic modulus, shrinkage and creep) and substrate concrete 
(elastic modulus) to enable a prediction of the stress across the repair patch in the long 
term to be made. The validity of the model is verified on the basis of the field data 
from the spray applied repair materials on two of the highway structures (Lawns Lane 
Bridge and Gunthorpe Bridge).
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NOTATION

Arm is the cross sectional area of the repair material

Arm(trans) is the transformed area of the repair material

— Arm + WlstAst

Ast is the area of the steel reinforcement in the repair patch

Asub is the cross sectional area of the zone of influence in the substrate

concrete

= bmdrm

b is the breadth of the repair patch or zone of influence in the substrate

concrete

drm is the depth of the repair material

drm(trans) is the transformed depth of the repair material

dsub is the depth of the zone of influence in the substrate concrete

Erm is the 28 day elastic modulus of the repair material

Em,(eff) is the effective elastic modulus of the repair material after creep in the

repair material has taken place 

= Erm/( l+4>)

Esub is the elastic modulus of the substrate concrete

F  is the virtual force in the repair material causing a displacement

equivalent to ( zShr{free)L)

Frm(ELT) is the compressive force in the repair material after external load

transfer from the substrate concrete 

Frm(shr) is the virtual tensile force in the repair patch due to the restraint to

shrinkage provided by the substrate concrete 

Frm(u) is the virtual compressive force applied to the repair material to cause a

strain equivalent to Srm(shr) , the dissipated strain energy 

Fshr is the virtual force in the substrate concrete, due to transfer of

shrinkage from the repair material, or in the repair material due to 

restraint to shrinkage provided by the substrate concrete

= Fsub(shr) Or Frm(shr)
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Notation

Fsub(ELT) is the compressive force in the substrate concrete after external load

transfer to the repair patch 

Fsub(ext) is the compressive force in the zone of influence in the substrate

concrete due to external loading 

Fsub(shr) is the virtual compressive force in the substrate concrete due to

distribution of shrinkage strain from the repair material 

Fsub(u) is the virtual compressive force in the substrate concrete due to transfer

of dissipated strain energy from the repair material 

fco is the core strength of the substrate concrete

feu is the cube strength of the substrate concrete

frm(shr) is the bending stress in the repair patch due to shrinkage in the repair

material

fsub(shr) is the bending stress in the substrate concrete due to transfer of

shrinkage strain from the repair material 

/ 1 is the datum frequency of the vibrating wire strain gauge (in Hertz)

f  2 is the frequency of subsequent readings of the vibrating wire strain

gauge (in Hertz)

Irm is the second moment of area of the repair material

= b ( d r m f / 1 2

hub is the second moment of area of the zone of influence in the substrate

concrete

= b (  ds„:, f / 1 2

k  is the vibrating wire strain gauge constant

k\ is a constant for volume/surface correction of the laboratory shrinkage

data

ki is a constant for temperature correction of the laboratory shrinkage data

ki is a constant for relative humidity correction of the laboratory

shrinkage data

&4 is a constant for the efficiency of the curing compounds on the

shrinkage of the repair materials in the field
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isolation

L is the length of the repair patch or zone of influence in the substrate

concrete

Mrm(shr) is the moment in the repair material due to bending caused by restraint

to shrinkage in the repair material 

Mrm(u) is the virtual moment applied to the repair material to cause a

strain equivalent to Ssub(shr), the dissipated strain energy 

Msub(shr) is the moment in the substrate concrete due to bending caused by

transfer of shrinkage from the repair material 

Msub(u) is the moment in the substrate concrete due to transfer of dissipated

strain energy from the repair material 

m is the modular ratio between the repair material and the substrate

concrete

= Erm / Esub

mst is the modular ratio between the steel reinforcement and repair material

= Est / Erm
R is the radius of curvature of the repair patch and substrate concrete due

to distribution of shrinkage strain in the repair material 

Urm(axiai) is the strain energy in the repair material due to the application of a

virtual force

Urm(bend) is the strain energy in the repair material due to the application of a

virtual moment

Urm(totai) is the total strain energy in the repair material due to the application of

a virtual force and moment

= Urm(axial) + Urm(bend)

Usub(totai) is the total strain energy transferred to the substrate concrete due to the

dissipation of strain energy in the repair material 

y rm is the distance from the centroidal axis in the repair material to the

point under consideration 

y SUb is the distance from the centroidal axis in the zone of influence, in the

substrate concrete, to the point under consideration 

a  is the ratio of the stress in the substrate concrete to the ultimate

strength of the substrate concrete

XX



Srm(bend)

Erm(creep)

Srm(elast)

Brm(ELT)

Erm(shr)

Erm(tens)

Eshr(frce)

Eshr(lab)

Esub(bend)

Ssub(ELT)

Bsub(shr)

X

( Jrm(ELT)

isoianon

is the displacement due to dissipation of strain energy in the repair 

material

=  Srm(sbr)JL

is the strain in the repair material due to bending caused by restraint to 

shrinkage

is the strain due to creep in the repair material

is the instantaneous elastic strain in the repair material immediately

after loading

is the strain in the repair material due to external load transfer from the 

substrate concrete

is the restrained shrinkage strain in the repair material 

= Esub(shr) at the interface

is the virtual tensile strain in the repair material due to restraint to 

shrinkage provided by the substrate concrete or steel reinforcement 

is the modified free shrinkage strain in the repair material

= kxklhzkA^Eshrilab))

is the shrinkage of the repair materials measured in the laboratory 

is the strain due to bending in the substrate concrete due to transfer of 

shrinkage strain from the repair material

is the strain in the substrate concrete after external load transfer to the 

repair material

is the strain in the substrate concrete due to distribution of shrinkage

strain from the repair material

= srm(shr) at the interface (strain compatibility)

is the percentage of shrinkage strain transferred to the substrate

concrete, divided by the free shrinkage of the repair material

Esub(shr)

Eshr(free)

is the creep coefficient of the repair material

— 8rm(creep) /  8 rm(elast)

is the stress in the repair material due to external load transfer from the 

substrate concrete

xxi



Grm(U)

(Jrm(wk60)

(Jsub(ELT)

Gsub(ext)

Gsub(shr)

Gsub(wk 60)

notation

is the stress in the repair material due to application of an axial force 

and moment equivalent to the dissipated strain Srm(shr) 

is the total stress in the repair material at the end of the monitoring 

period (week 60)

is the stress in the substrate concrete after external load transfer to the 

repair material

is the stress in the substrate concrete due to external loading

is the stress in the substrate concrete due to transfer of shrinkage from

the repair patch

is the total stress in the substrate concrete at the end of the monitoring 

period (week 60)
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

In recent years, concrete deterioration due to corrosion of the steel reinforcement has 

become a major problem world-wide. Undoubtedly, prevention is the best cure for the 

problem, but a large number of structures which are already contaminated with 

chlorides or have undergone carbonation require urgent repair. The most common form 

of rehabilitation for a deteriorated structure is to remove the damaged concrete and 

replace it with a new material, thus increasing the design life of the structure. At 

present, numerous repair materials exist for this purpose, each one possessing different 

mechanical properties.

The current standard for repair of concrete highway structures in the UK [1] does not 

take into account, in any significant quantitative manner, the mismatch in basic material 

properties such as elastic modulus, shrinkage and creep and particularly the effect of this 

mismatch on long term performance. Emphasis is normally given to short term 

properties such as 28 day cube strength, bond and early age shrinkage/expansion etc. 

Early age material properties, even though important in their own right, do not give a 

reliable indication of the long term performance of the repair with respect to the 

durability and efficiency of the composite action between the repair material and 

substrate concrete. The mechanics of concrete repair needs to be fully understood 

before a durable repair can be specified.
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1.2 SCOPE OF RESEARCH

Patch repairs are an effective way of restoring the integrity of a structure damaged by 

reinforcement corrosion. Over £500 million is spent annually in the UK on 

refurbishment [2] as the tendency is to repair a structure to increase its design life rather 

than demolish and replace. There is widespread research in the broad area of concrete 

repair, but very little information exists on the long term effects that shrinkage and creep 

of the repair material will have on the in-service performance of the repair patch. 

Mismatching the elastic modulus of the repair material and substrate concrete may 

affect the performance of the repair, especially in the long term when the mismatch 

becomes more pronounced due to the effects of creep in the repair material. As a result, 

there is a need to evaluate the long term redistribution of shrinkage and creep strains in 

the repair patch and determine the effect of mismatching material properties on the 

performance of the repair. Also, the transfer of service load from the substrate concrete 

to the repair patch in the long term and its relationship to property mismatch i.e. elastic 

modulus, shrinkage and creep needs to be investigated.

Understanding the interaction between the repair material and substrate concrete and 

combining the knowledge with the basic material properties will allow more durable 

repairs to be specified. At present, there is an inadequate understanding of this 

interaction. Analytical models which determine this interaction and predict the long 

term performance of a patch repair are required.

2
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1.3 SCOPE OF PRESENT INVESTIGATION

The long term structural interaction between a repair patch and substrate concrete as 

introduced in Section 1.2 was investigated in this project in order to determine the in- 

service performance of a number of generic repair systems currently employed on 

repairs to highway structures. Repair and maintenance methods and strategies used in 

current practice for the restoration and improvement of structural capacity were 

considered. Analytical derivations based on experimental and field data were used to 

correlate the long term structural interaction between the repair patch and substrate 

concrete to basic material properties such as elastic modulus, shrinkage and creep. The 

research project was funded by the LINK TIO Programme. The project team comprised 

three industrial partners (Flexcrete Ltd., V.A. Crookes (Contracts) Ltd., and M.J. 

Gleeson Group PLC) and the research team from Sheffield Hallam University which 

conducted all the scientific research.

Three highway bridge structures were selected for repair as part of the project, namely 

Gunthorpe Bridge in Nottinghamshire, Lawns Lane Bridge in West Yorkshire and 

Sutherland Street Bridge in Sheffield. Deteriorated concrete was removed from each 

bridge and replaced with commercially available generic repair materials. The main 

variables of the properties of repair materials were elastic modulus, shrinkage and creep. 

Three repair application techniques were used: hand applied, sprayed and flowing. Both 

hand and spray applied repair materials were used at Gunthorpe Bridge. Spray applied 

repair materials were used at Lawns Lane Bridge due to the large volume of repair 

patch. Flowing repair materials were applied at Sutherland Street Bridge.

3
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The interaction between the repair patch and the substrate concrete, in the field studies 

was monitored by placing vibrating wire strain gauges within the repair patch. Gauges 

were attached to the cut-back substrate concrete, steel reinforcement and embedded in 

the repair material to monitor long term strains. As a result, the redistribution of strain 

in repair patches and the efficiency of composite action between repair and substrate 

concrete as affected by their material properties were determined.

The in-service performance of concrete repair to simply supported reinforced concrete 

beams was also investigated in the laboratory. Different repair materials were hand 

applied in patches in the tensile zone of the beams. Strain measuring instrumentation, 

such as electrical resistance and demec gauges were used to monitor the distribution of 

strain within the repair patch. The performance of the repair was related to the repair 

material properties.

The overall aims of the research reported in this thesis, therefore were:

• to determine the long term structural performance and efficiency of composite action 

between the repair material and substrate concrete after repair has been carried out.

• to investigate the mechanical and deformation properties of different repair materials, 

which are responsible for the interaction between the repair materials and substrate 

concrete.

• to relate the long term structural interaction between the substrate concrete and repair 

material to basic properties such as elastic modulus, shrinkage and creep of the repair 

material.
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• to derive analytical models which predict the redistribution of strain between the 

repair material, substrate concrete and steel reinforcement.

• develop guidelines for the selection of optimum repair materials which lead to 

satisfactory long term structural performance of repair

• lead to innovation resulting in improved repair materials

1.4 THESIS LAYOUT

The thesis is divided into 13 chapters. It presents a comprehensive literature review on 

the subject in chapters 8, 9 and 11. An introduction to the thesis is given in Chapter 1.

Details of the experimental programme are given in Chapter 2. The methodology 

adopted to monitor the performance of concrete repairs in three field structures 

(highway bridges) and in the laboratory investigations is outlined.

The equipment and instrumentation used to monitor the distribution of strain within the 

repair patches in both the field and laboratory studies are detailed in Chapter 3. It 

consists of vibrating wire, electrical resistance and demec strain gauges. Details of 

strain recording devices used to monitor the strain gauges (data loggers and digital strain 

indicator) are also given in Chapter 3.

A description of the repair methods used and the installation of the equipment to 

monitor the distribution of strain within the repair patches in the field studies is 

presented in Chapter 4 (Gunthorpe Bridge), Chapter 5 (Lawns Lane Bridge) and

5
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Chapter 6 (Sutherland Street Bridge). Information on the properties of repair materials 

used in each bridge is given in the chapters. The location of repair patches on each 

bridge and position of strain gauges within the repair patches are also detailed.

Details of repairs applied to simply supported reinforced concrete beams in the 

laboratory are given in Chapter 7. Repair material patches were applied to both propped 

and unpropped beams and the distribution of strain within the repair patch was 

monitored with strain gauges. The performance of the materials was also monitored 

when the depth of repair patch behind the steel reinforcement was increased. The 

repaired beams were stored in a controlled environment (20°C and 55% RH) throughout 

the monitoring period.

Chapter 8 deals with the properties of repair materials which influence the long term 

performance of concrete repair (shrinkage, creep and elastic modulus). Shrinkage was 

determined on specimens which were stored in controlled environments (in air at 20°C 

and 55% RH and in water at 20°C for the first 28 days) throughout the duration of the 

tests. Shrinkage tests were carried out on 500 x 100 x 100mm prism specimens and 

strains were measured from the age of 24 hours to 100 days for specimens stored in air, 

and from 28 days for specimens initially stored in water. Creep was determined on 

specimens which were cured in water for the first 28 days and then loaded in 

compression in custom built creep rigs. Creep of the repair materials was obtained by 

applying a constant load (30% stress/strength ratio) to a pair of specimens in series for 

70 days. The creep recovery upon unloading was subsequently monitored for 30 days.

6
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The elastic modulus of the repair materials was obtained by testing 200 x 100mm 

diameter cylinders in accordance with BS 1881 Part 121 [3] at 28 days of age.

Extensive field data which describes the in-service performance of the concrete repairs 

to the three highway bridges and the laboratory data on repaired beams is given in 

Chapter 9. The monitoring period lasted for approximately 60 weeks. The in-service 

performance of the repairs is related to the basic properties (shrinkage, creep and elastic 

modulus) of the repair materials.

Chapter 10 presents the stress distribution across the repaired section for spray applied 

repair materials to unpropped compression members. Stresses occur as a result of the 

restraint to shrinkage in the early ages (tensile) and as a result of external load transfer 

into the repair patch (compressive). These stresses are related to material properties.

Analytical models are derived in Chapter 11, which predict the long term in-service 

performance of concrete repair in highway structures. Basic properties such as elastic 

modulus, shrinkage and creep of the repair material and elastic modulus of the substrate 

concrete (shrinkage and creep will be negligible in the substrate concrete at the time of 

repair) are the main variables of the analytical models.

Conclusions and recommendations for future research are given in Chapter 12. 

Previous research referred to in this thesis is listed in Chapter 13. Publications to date 

arising from the results of this research programme are given at the end of the thesis.



CHAPTER 2

EXPERIMENT AT, PROGRAMME

2.1 TNTRODTICTTON

In recent years, deterioration of reinforced concrete in highway structures has led to the 

premature failure of many structural elements. This is mainly due to the corrosion of 

the steel reinforcement within the concrete which has become subjected to a very harsh 

environment containing chlorides and carbon dioxide. Restoration of structural 

performance is achieved by removing the damaged concrete to arrest the deterioration 

and replacing it with a new material. Specification of repair materials at present is 

based on an inadequate understanding of the interaction between the substrate concrete 

and repair material. Basic material properties such as elastic modulus, shrinkage and 

creep are primarily responsible for this interaction. A mismatch in stiffness between the 

repair material and substrate concrete can effect the distribution of stress between the 

two mediums. Drying shrinkage may induce tensile stress in the repair material which 

could have serious durability consequences if  the material cracks. Compressive creep of 

the material under sustained stress may render the load sharing capabilities of the 

material less effective, although tensile creep may have an advantageous role in helping 

to alleviate the tensile stress induced due to restrained shrinkage.



The aim of the experimental programme was to determine the in-service performance of

different repair materials and different techniques of repair application in actual

highway structures and in laboratory based concrete repairs.

2.2 OBJECTIVES OF THE INVESTIGATION

The main objectives of the investigation were:

1. To select monitoring equipment which could be used to measure the 

redistribution of strain within a repair patch both in field structures and in 

structural elements in the laboratory.

2. To carry out repairs to actual highway bridges using different repair techniques 

and different repair materials representing a range of material properties. To 

monitor these repairs in order to gain an understanding of the efficiency of the 

composite action between the substrate and repair material under service 

conditions.

3. To simulate repaired structural elements (beams) in the laboratory. To monitor 

the in-service performance of the repair patch in order to gain an understanding 

of the structural interaction between the repair material and substrate concrete.

4. To investigate the properties of repair materials which influence the long term 

performance of concrete repair i.e. elastic modulus, shrinkage and creep.

9



2.3 DETAILS OF THE EXPERIMENTAL

PROGRAMME

2.3.1 Strain monitoring equipment

Vibrating wire strain gauges were used for measuring strains in the field structures due 

to their long term reliability and ease of application. Two different types of strain 

gauges were used, type TSR/SWP/5.5 for surface mounting and type TES/SWP/5.5 for 

embedding in the repair materials. The strains from these gauges were automatically 

recorded and stored on site in a data logger which was compatible with vibrating wire 

strain gauges.

Strain distribution within the repair patches in the laboratory based investigation was 

measured with foil-backed electrical resistance strain gauges which were attached to the 

steel reinforcement and with electrical resistance strain gauges protected in a polyester 

mould which were embedded in the repair material. A digital strain indicator was used 

to monitor and record deformation in the gauges.

Demec extensometer gauges, with a gauge length of 100mm, were used in the study to 

monitor surface strains.

Details of the monitoring equipment used in the investigation are given in Chapter 3.

10
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2.3.2 Highway structures

Three deteriorating highway structures of different forms of construction were used to 

monitor the performance of concrete repairs. These were Gunthorpe Bridge carrying the 

A6097 in Nottinghamshire, Lawns Lane Bridge, near Wakefield, in West Yorkshire 

carrying part of the Ml just south of junction 42, and Sutherland Street Bridge carrying 

the B6080 in Sheffield.

Gunthorpe Bridge is a three span, reinforced concrete arch bridge spanning the River 

Trent at Gunthorpe, Nottinghamshire. It was built in 1927 to replace an old iron toll- 

bridge due to an increase in heavy traffic using the bridge. The central arch in the 

bridge spans 38.1m, while the two side arches span 30.9m. Each of these three arches 

contain four ribs.

Two different repair application techniques were employed at Gunthorpe Bridge, 

namely hand applied and spray applied. Three generic repair materials were hand 

applied to the lateral beams spanning the arch ribs. Three spray applied repair materials 

were used in parts of the south abutment.

Lawns Lane Bridge is a three span reinforced concrete bridge which carries part of the 

M l between junctions 41 and 42 in West Yorkshire. It was built in the mid 1960's and 

consists of in-situ deck panels supported by prestressed beams, all of which are carried 

by reinforced concrete piers and abutments. Five different repair materials were 

monitored at Lawns Lane Bridge. Repairs were applied to the concrete piers and 

abutments by the dry spray process due to the large volume of the repair patches.
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Sutherland Street Bridge in Bumgreave, Sheffield, carries the B6080 over an access 

road which once linked steel industries together. The superstructure of this bridge 

consists of an in-situ bridge deck supported by prestressed beams. The prestressed 

beams are supported on a reinforced concrete substructure which has a portal frame 

configuration. Repairs were applied to the portal frame substructure using the flowing 

technique of repair and suitable materials for this technique. Four different repair 

materials were monitored at Sutherland Street Bridge.

Details of the field studies on each bridge are given in Chapter 4 (Gunthorpe Bridge), 

Chapter 5 (Lawns Lane Bridge) and Chapter 6 (Sutherland Street Bridge).

2.3.3 Laboratory investigation

Eight reinforced concrete beams measuring 2700mm x 100mm x 200mm were repaired 

with different repair materials. The beams were reinforced in the tension zone with two 

16mm diameter high yield steel bars. Shear reinforcement consisted of 6mm diameter 

mild steel links at 110 mm centres in the shear zones. The shear reinforcement links 

were supported by 6mm diameter mild steel hanger bars in the compression zone.

Voids were inserted in the beams at the casting stage which were later filled with 

different hand applied repair materials. The strains in the longitudinal steel 

reinforcement were monitored by means of foil-backed electrical resistance strain 

gauges (type CEA-06-250UN-120). The strain in the repair material was monitored by 

means of embedded electrical resistance strain gauges which were protected by a
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polyester mould (type PML-30). Demec points were attached across a gauge length of 

100mm on opposite faces of the beam at different depths from the soffit to determine 

the strain diagram and the depth of the neutral axis. The beams were loaded under four- 

point bending to monitor deformation under long term service loading. Two service 

loads were applied at one-third of the span. This loading arrangement provided a pure 

bending moment zone (with zero shear force) in the middle third of the beam where the 

repair patch was applied. The laboratory tests investigated the long term distribution of 

strain in the substrate concrete and repair patches comprising of different repair 

materials. The depth of repair material behind the steel reinforcement was extended 

incrementally to study the effect of increased depth on structural interaction. The effect 

of carrying out repair on the beams in a propped and unpropped state on long term 

structural interaction (strain redistribution) was also studied.

Details of this series of experiments are given in Chapter 7

2.3.4 Properties of repair materials

The properties of repair materials which govern interaction of repair patches with the 

substrate concrete, such as elastic modulus, shrinkage and creep, were determined for all 

the repair materials used in the research. The elastic modulus of the concrete substrates 

from the three highway bridges and the laboratory beams was also determined.

The elastic modulus was determined for both the repair materials and concrete 

substrates using cylinders/cores of similar size (approximately 200mm x 100mm



diameter). Cylindrical specimens were cast in the laboratory for each repair material 

whereas cores of similar size were extracted from areas of sound substrate concrete on 

site.

Drying shrinkage of the repair materials was determined from prism specimens of 

dimensions 500 x 100 x 100mm. Deformation was monitored by means of a demec 

extensometer over a gauge length of 200mm. Datum readings for air cured specimens 

were taken 24 hours after casting and monitoring continued for 100 days. Datum 

readings for water cured specimens were taken at 28 days and monitoring continued for 

100 days. Air cured specimens were stored in a temperature controlled environment 

(20°C and 55% RH) throughout the duration of the test. Water cured specimens were 

initially submerged for 28 days and subsequently stored in a temperature controlled 

environment (20°C and 55% RH) for the remainder of the test.

Creep tests on each repair material were based on two 500mm x 100mm x 100mm 

prism specimens which were cured in water at 20°C for 28 days prior to loading. Two 

prisms of each repair material were loaded in series in a standard creep rig for a period 

of 70 days to determine the creep characteristics. A stress/strength ratio of 0.30 was 

applied. Upon unloading, the creep recovery in each repair material was monitored for 

a period of 30 days. Shrinkage was monitored on two identical prisms which were 

cured and stored under the same conditions. Shrinkage strains were subtracted from the 

total strain measured on the prisms in the creep rigs in order to determine the net creep 

strain.

14



The results show that the shrinkage of the different generic repair materials varied from 

325 to 1311 microstrain at 100 days. Shrinkage of a basic sand/cement mortar, which 

can be used as a control material to compare the shrinkage of the repair materials, was 

717 microstrain. Creep of the repair materials varied from 421 to 1411 microstrain at 70 

days. In comparison, creep of the sand/cement material was 938 microstrain.

Details of this series of experiments are given in Chapter 8.

2.3.5 In-service performance of repair materials

The long term performance of repair patches loaded under service conditions was 

determined from repairs to Gunthorpe Bridge, Lawns Lane Bridge and Sutherland Street 

Bridge and to structural elements in the laboratory. The application of repair was made 

using three methods: spray applied (Gunthorpe Bridge and Lawns Lane Bridge), hand 

applied (Gunthorpe Bridge and laboratory elements) and flowing repair (Sutherland 

Street Bridge).

The performance of the repair was related to the basic properties of the repair materials 

(elastic modulus, shrinkage and creep). The results show that for optimal repair, the 

elastic modulus of the repair material should be greater than the elastic modulus of the 

substrate concrete to enable distribution of shrinkage strains from the repair material to 

the substrate concrete and steel reinforcement. This results in a lower restrained 

shrinkage stress in the repair material. Also, the results show that a repair material that
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is stiffer than the substrate concrete will attract external applied load more effectively 

into the repair patch.

Full details of the in-service performance of repair patches are given in Chapter 9.

2.3.6 Stress distribution across a repaired section

In the early ages after application, the repair material is prevented from shrinking freely 

due to the partial restraint provided to shrinkage by the substrate concrete and steel 

reinforcement. Although a repair material with a high elastic modulus will transfer a 

portion of the shrinkage strain to the less stiff substrate concrete, nevertheless tensile 

stress is induced in the repair material during the shrinkage period (weeks 0 to 11) due 

to the restraint. The magnitude of the tensile stress varies from material to material 

since it is dependant upon the properties of the repair material (elastic modulus, 

shrinkage and creep) and substrate concrete (elastic modulus). In the long term (weeks 

25 to 47), it is shown that external load is attracted into the repair patch. This induces 

compressive stress in the repair material. This compressive stress reduces or neutralises 

the tensile stress that remains in the repair material from the shrinkage period. This is 

crucial for the long term performance of the repair material, as it is shown that the 

tensile strength of the repair material reduces with time.

Full details of the stresses in the repaired sections are given in Chapter 10.

16
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2.3.7 Long term structural interaction

An analytical model to predict the structural interaction between the repair material and 

substrate concrete is derived from elementary structural analysis. The analytical model 

consists of two parts - the first part predicts the transfer of shrinkage strain from the 

repair material to the substrate concrete, the second part predicts the transfer of external 

load from the substrate concrete into the repair material. Prediction of the transfer of 

shrinkage strain from the repair material to the substrate concrete is based on the 

analogy of a bi-metallic strip undergoing contraction due to a drop in temperature. 

When the temperature of the bi-metallic strip is decreased, contraction will occur and 

both metals will exhibit the same strain at their interface even though their coefficients 

of thermal expansion will be different. As a result, compression will be forced on one 

of the metals and tension will be induced in the other. A similar situation occurs when a 

shrinking repair material is applied to the substrate concrete. Some shrinkage strain is 

transferred from the stiffer repair material to the weaker substrate concrete (giving strain 

compatibility at the interface due to interfacial bond). This transfer of shrinkage strain 

will induce a compressive stress in the substrate concrete. The partial restraint to 

shrinkage provided by the substrate concrete will induce tension in the repair material.

Prediction of the transfer of external stress from the substrate concrete into the repair 

patch is based on the distribution of stress across a compound section. The compound 

section consists of two different materials - substrate concrete and repair material. The 

substrate concrete is assumed to exhibit a permissible stress due to external loading. 

Since the repair material is stiffer than the substrate concrete, the repair material attracts 

a portion of the external stress from the substrate concrete. The proportion of stress

17



attracted into the repair patch is calculated from compatibility equations involving 

properties of the substrate concrete and repair material.

Details of the analytical models are given in Chapter 11.

2.4 MATERIALS

2.4.1 Introduction

Information on the different repair materials used at Gunthorpe Bridge, Lawns Lane 

Bridge, Sutherland Street Bridge and in the laboratory investigation is given in Chapters 

4, 5, 6 and 7 respectively. This chapter outlines details of only the concrete materials 

which were used in the laboratory investigation.

2.4.2 Cement

Ordinary Portland cement was supplied by Castle Cement Ltd., Stamford, Lincolnshire. 

The chemical composition of the cement, tested in accordance with BS 12 [4] is given 

in Table 2.1.

2.4.3 Aggregates

The aggregates used in the laboratory tests were supplied by Tarmac Roadstone Ltd., 

Nottingham. Coarse aggregates consisted of 20-5 mm graded quartzite whereas the fine 

aggregate consisted of a medium grade sand. Grading curves of the aggregates are 

given in Figures 2.1 and 2.2. These were determined in accordance with BS 882 [5].

18



Table 2.1 Chemical composition of Portland cement

%

CaO 64.50

Si02 21.00

A120 3 5.00

Fe20 3 3.00

S 03 3.10

MgO 1.10

K20  0.67

Na20  0.13

Cl 0.03

Loss on ignition 1.00

Non detected 0.47

Total 100.00

Cement compounds

Tricalcium Silicate (C3S) 52.00

Dicalcium Silicate (C2S) 21.00

T etracalcium Aluminoferrite (C4 AF) 8.10

Tricalcium Aluminate (C3 A) 9.10

2.4.4 Steel reinforcement

Deformed high yield steel bars of grade 460 were used as reinforcement in the 

experimental investigation described in Chapter 7. The steel was supplied by Derim

Steels Ltd., Chesterfield, Derbyshire. The yield point, obtained from laboratory tests,

2 2 was 492 N/mm . The elastic modulus was 194 kN/mm . A graph showing the

stress/strain curve of the steel reinforcement to yield point is given in Figure 2.3.
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CHAPTER 3

PETA LS OF MONITORING EQUIPMENT

3.1 INTRODUCTION

The effectiveness of a repair patch in developing an efficient composite action with the 

original concrete can be determined by measuring the redistribution of stress between 

the repair material, steel reinforcement and substrate concrete. The redistribution of 

stress in a repair situation is primarily due to the deformation (shrinkage) of the repair 

material. Redistribution of externally applied loads may also be evident. Stress 

redistribution to either the repair material, steel reinforcement or concrete substrate can 

be obtained by measuring the strain and applying Hooke’s Law to find the stress. Strain 

can be measured by one of the many types of strain gauges available - vibrating wire, 

electrical resistance and demec extensometer gauges were employed in this study.

Vibrating wire strain gauges, even though more expensive than the other conventional 

strain measuring devices, were selected for site monitoring because of their reliability 

over a long period, ease of application and their ability to yield results from even the 

remotest locations. Readings can be taken automatically with a logging device or 

manually with a hand held instrument. In this instance, readings were stored in a data 

logger on site.

23
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Two types of electrical resistance gauges were employed in laboratory tests to monitor 

the deformation in steel reinforcement and repair materials. The performance of the 

electrical resistance gauges installed under laboratory conditions could be guaranteed as 

opposed to the uncertainty which surrounds installation under field conditions. 

Electrical resistance strain gauges must be clinically clean at installation; this would be 

impossible to achieve in the field. Strain readings from the gauges were taken by a 

digital strain indicator.

Demec extensometer gauges were employed in the laboratory to measure surface strain 

only.

3.2 DETAILS OF FIELD MONITORING

EQUIPMENT

3.2.1 Introduction to vibrating wire strain gauges

An introduction to the vibrating wire strain gauge is given by Hornby [6]. The vibrating 

wire principle of strain measurement has been known for many years and reports of its 

use have appeared as far back as 1928 in a paper by Davidenkoff [7]. This was 

followed by papers in France, Germany and the UK. The initial experiences in the UK 

were gained at the Building Research Station (BRS) [8, 9] and then later by the Road 

Research Laboratories [10].

The vibrating wire strain gauge consists of a thin steel wire held in tension between two 

anchorages (Figure 3.1, [6]). The wire is set into transverse vibration by exciting it with
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a short pulse of current passed through the coil of an electromagnet positioned near the 

mid point of the wire. The same coil is then used to detect the frequency of the 

vibrating wire. When the distance between the anchorages changes, the tension of the 

wire and consequently its natural frequency also change. This form of gauge has been 

shown to be stable over periods exceeding 15 years and it has the advantage that its 

frequency is not changed by the resistance or length of the leads [6]. Gauges of this 

design are used for measuring strain from a variety of materials and structures but it has 

been found ideally suited to casting or embedding into concrete.

3.2.2 Details of vibrating wire strain gauges used in this

study

The vibrating wire strain gauges which were used on the three bridges under 

observation were supplied by Gage Technique Ltd., a company which specialises in the 

design of monitoring equipment for structural assessment. Waterproof vibrating wire 

strain gauges, type TSR/5.5/SWP for surface mounting and TES/5.5AVP for embedment 

were used for strain monitoring. Types TSR/5.5/SWP/T and TES/5.5/T accommodate 

both strain and temperature measurements. The gauges were of all metal construction 

and have been developed from the standard strain gauges designed by the Transport and 

Road Research Laboratory since 1969. Gauges were supplied with cable attached which 

could easily be extended or shortened as required.

The surface gauges (type TSR/5.5/SWP) are tensioned to a datum frequency of 

approximately 800 Hertz at installation. The embedment gauges (type TES/5.5/SWP)

26
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are delivered pre-tensioned to approximately the same frequency. When the tension of 

the wire is increased in a vibrating wire strain gauge (i.e. as on a member with an 

increasing tensile stress), the frequency of the wire increases; alternatively it decreases 

in compression. Hence the change in strain can be calculated using the gauge equation:

5s = k (f12 - f 22)

Equation 3. 1

where 5s is the strain change

k is the gauge constant (3 x 10"3)

fj is the datum frequency in Hertz

f2 is the frequency of subsequent readings in Hertz

(Note: Positive sign indicates compressive strain: negative sign indicate tensile strain)

3.2.2.1 Measurement of substrate concrete strain in the field

In order to facilitate the measuring of strain in the concrete substrate, a vibrating wire 

surface strain gauge, type TSR/5.5/SWP, was attached to the cut back substrate as 

shown in Figure 3.2. The “bolted mounted plate” method of installation was used to 

securely fasten the gauge to the concrete surface. This method is for long term fixing of 

surface gauges to concrete. A pair of small mounting plates were screwed and bonded 

to the structure. The gauge was then bolted to the mounting plates. A description of 

this method is as follows:
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Mounting plate

3M ounting p la te  b o lted  

to  s e t t in g  jig

Mounting pla te  bo lted  
to  c o n c r e t e  s u b s t r a t e

(a)

Coil H o u s e /b a r r e l  a s s e m b l yCable

Mounting screw A dhes ive

End block

Mounting plate

Figu re  3 . 2  V ib ra t i n g  wire s u r f a c e  g a u g e  ( t y p e  T S R / 5 . 5 / S W P )  with b o l t e d  

c o n n e c t i o n s  ( a )  Se t t i n g  jig (b)  G a u g e  in p o s i t i o n
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(i) The position and orientation of the gauge was marked on the substrate concrete. 

A scabbling bit was used to remove the irregularities on the substrate concrete to 

give a smooth surface onto which the mounting plates were attached.

(ii) The position of one hole was marked on the substrate concrete and a 6mm 

diameter hole was drilled to a depth of 25mm. A wall plug was then inserted in 

the drilled hole and a drilling jig was fixed securely by means of a woodscrew. 

The drilling jig was used to accurately locate the position of the second drilled 

hole.

(iii) A second hole was then drilled through the bushed hole in the free end of the 

drilling jig.

(iv) The drilling jig was removed and a wall plug was inserted into the second hole.

(v) A pair of mounting plates was fitted to a setting jig [see Figure 3.2 (a)] with M5 

screws. The plates were cleaned and degreased. An adhesive was then applied 

to the surface of the plates and around the wall plugs in the substrate concrete.

(vi) The mounting plates were then fixed to the substrate with two stainless screws. 

Once the adhesive had cured, the setting jig was removed.

(vii) The vibrating wire surface gauge was then removed from its transport plate and 

loosely fixed to the mounting plates. The gauge cable was attached to a portable 

strain meter to monitor the gauge throughout the fixing operation. Both cap 

screws in one end block were progressively tightened, ensuring that the gauge 

barrel assembly rotates freely in the end blocks.

(viii) The second end block was gently pulled and set to the required datum reading. 

The second two mounting screws were then tightened, again ensuring that the 

gauge barrel assembly is free to rotate in the end blocks. It was important that

29
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the tone of the vibrating wire was pure and sustained at this stage and the gauge 

reading returned to an acceptable datum reading [see Figure 3.2 (b)].

(ix) The gauge cable was then protected with armoured trunking to enable the cable 

to safely exit the repair patch without the risk of damage. The cable was then 

carried along the main trunking to the data logger which scanned the gauges at 

regular intervals and stored the readings in the field.

(x) The substrate gauge was then covered with a stiff polystyrene cover to isolate 

the substrate concrete gauge from the repair material. Polystyrene was used 

since a stiffer material would restrict the substrate concrete from deforming 

freely.

3.22.2 Measurement of steel reinforcement strain in the field

The redistribution of strain to the steel reinforcement was also monitored by means of a 

surface strain gauge, type TSR/5.5/SWP, securely fastened to the reinforcement by 

welding custom made mounting plates to the reinforcement, as shown in Figures 3.3 (a) 

and (b).

The gauge was tensioned to a datum frequency during the bolting operation to the 

mounting plates, as shown in Figure 3.3 (c). Any deformation in the steel reinforcement 

results in a change in the frequency of the wire thus enabling the strain in the steel to be 

obtained. An end view of a typical gauge attached to the steel reinforcement is given in 

Figure 3.3 (d). A full description of this procedure is as follows:
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(i) The steel was cleaned and the position of the gauge was marked on the 

reinforcement

(ii) Two custom made mounting plates were bolted to a welded jig [see Figure 3.3 

(a)] which accurately spaces the plates apart. The welding jig was then securely 

fastened to the steel reinforcement by means of some cable ties.

(iii) The mounting plates were then spot welded to the steel reinforcement. The 

cable ties and welding jig were then removed.

(iv) The gauge was then fitted to the mounting plates as described in section 3.2.2.1

(vii) to (ix) [see Figure 3.3 (c) and (d)].

3.2.2.3 Measurement of repair material strain in the field

The strain in the repair material was measured by means of an embedment gauge, type 

TES/5.5/SWP. Gauges of this description are supplied pre-tensioned, hence they do not 

need to be set to the datum frequency at installation. These gauges were located in the 

body of the repair material between the steel reinforcement. As before, any deformation 

in the repair material resulted in a change in the pre-set frequency of the gauge wire, 

therefore, the strain can be obtained from Equation 3. 1. A full description of 

application technique is as follows:

(i) The position and orientation of the gauge was marked on the adjacent steel 

reinforcement

(ii) Two support bars were tied to the steel reinforcement parallel to each other and 

spaced approximately 85mm apart (see Figure 3.4). These support bars were
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placed at right angles to the gauge to support it in the correct position and 

orientation

(iii) The gauge was then placed against the support bars. The flanges at each end of 

the gauges were kept clear of obstructions.

(iv) Masking tape was then wrapped around the support bars where the gauge barrel 

touches. The gauge barrel itself was fitted with silicone rubber to cushion the 

gauge barrel when it was tied to the support bars.

(v) The gauge was then securely fixed to the support bars by means of soft tying 

wire so that it could not alter during application of the repair material. The 

gauge reading was monitored throughout the fixing operation by means of a 

portable strain meter.

(vi) The gauge cables within the repair patch were fastened parallel with the steel 

reinforcement for protection. Armoured cable was then attached to the cable to 

protect it at the exit point of the repair patch.

3.2.3 Details of the data logging equipment in the field

Strain readings from the vibrating wire strain gauges were automatically recorded in the 

field at a central location. This was achieved using a GT1192 Universal Data Logger, 

supplied by Gage Technique Ltd. This instrument can monitor and store data from a 

wide range of transducers including the vibrating wire strain gauge. Data was stored in 

the internal memory of the logger, or in optional (or backup) replaceable memory cards.
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A compatible PC was used to program the data logger, after which the computer link 

was removed. The logger then monitored the gauges and stored the data in the field, 

with power being supplied by an external 12 volt battery. The logger could 

accommodate up to ten differential connections, i.e. strain and temperature 

measurements, or thirty single ended connections (strain measurements only), or a 

combination of both. The number of gauges being recorded could be increased by 

attaching a maximum of three expansion modules to the data logger, each expansion 

module having the same capacity as the data logger (ten differential or thirty single 

ended connections). The data logger, expansion module and accessories in position in 

the field are shown in Figure 3.5. The downloading of stored data from the data logger 

is shown in Figure 3.6.

The logger could record data at any time by programming the frequency of monitoring, 

the channel and the sensor to be read. Scan rates and channel selection could be altered 

automatically during periods of particular interest. The internal memory capacity was

11.000 readings, but was expanded using a memory card, allowing up to a further

256.000 readings to be stored. The readings were downloaded to a computer and 

analysed, as the data logger is compatible with spreadsheet and graphical application 

packages. The logger was housed in a steel container to protect it from the 

environment. Extra protective covers were provided in locations where the logger was 

particularly vulnerable.
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Figure 3.5 View of (from top) expansion module, data logger and 12 volt battery
installed in a protective container on site (Location: Lawns Lane Bridge)

Figure 3.6 Downloading of stored information from data logger using a laptop 
computer (Location: Sutherland Street Bridge)
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3.3 DETAILS OF LABORATORY MONITORING

EQUIPMENT

3.3.1 Electrical resistance strain gauges

A brief history of the electrical resistance strain gauge is given by Chalmers [11]. In 

1856 it was first discovered that the resistance of an electrical conductor changed when 

it was stretched, but it was not until the late 1930’s that the principle was applied by 

using a grid of fine wire bonded to a test surface as a means of measuring strain. 

Electrically conductive materials posses a strain/resistance relationship defined as the 

relative electrical resistance change of the conductor to the relative change in its length. 

This strain sensitivity is a function of the dimensional changes which take place when 

the conductor is deformed elastically.

Two different types of electrical resistance gauges were employed in the laboratory on 

repaired reinforced concrete beams. The strain in the steel reinforcement was measured 

by means of a 6mm long foil backed strain gauge which was attached to the steel 

reinforcement with an adhesive. The strain in the repair material was measured by 

means of an 30mm gauge embedded in the material (see Chapter 7). The deformation in 

both of these gauges was measured by means of a digital strain indicator.

3.3.1.1 Measurement of strain in steel reinforcement

Type CEA-06-250UN-120 electrical resistance strain gauges, supplied by Micro 

Measurements Group, USA, were used to monitor the redistribution of stress to the steel 

reinforcement. These are general purpose strain gauges which are particularly suited to
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long term installation. A full description of the installation procedures is given below

[12].

(i) The position of the gauges on the steel was marked and any irregularities on the 

surface of the steel were removed with a smooth file. The final finish was then 

achieved by use of 220-400 grit emery paper.

(ii) The position of the gauge was accurately marked and the gauged area was 

clinically cleaned with cotton tipped applicators and a degreaser.

(iii) The gauge to be installed was placed on a clean glass surface. Cellophane tape 

was tacked to the glass behind the gauge and wiped forward onto the gauge.

The tape was then lifted at a shallow angle (about 45 degrees to the glass 

surface) bringing the gauge with it.

(iv) The gauge/tape assembly was positioned so that the alignment marks on the 

gauge were over the layout lines. Once alignment was correct, one end of the 

tape was firmly fixed down.

(v) The free end of the tape was then lifted at a shallow angle until the gauge was 

free of the surface. Both the gauging area and back of gauge were coated with 

an adhesive.

(vi) The gauge/tape assembly was then wiped over the adhesive in a single stroke, 

with care being taken exude as much of the adhesive as possible.

(vii) A silicone gum pad was placed over the gauge and a clamping pressure of 

approximately 85 kN/m2 was applied for 24 hours.
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(viii) The lead wires were then soldered to the gauge terminals and the resistance of 

the gauge monitored to ensure full contact. A protective coating was then 

applied to the gauge.

The location of the gauges on the steel reinforcement within the repair patch (along with 

the abbreviations used) are given in Chapter 7, Section 7.2.3.1.

3.3.1.2 Measurement of repair material strain

Type PML-30 electrical resistance strain gauges, supplied by Tokyo Sokki Kenkyujo 

Co., Japan, were used to monitor the strain within the repair materials. This gauge has 

been especially designed for the measurement of interior strains in concrete (or repair 

materials) by simply embedding the gauge. It consists of a standard wire gauge, to 

which 2 metres of vinyl lead wires are attached. The gauge and lead wires are 

hermetically sealed between thin resin plates, completely waterproofing the unit. The 

gauge is coated with a coarse grit to eliminate bond failure with the repair material [13]. 

The gauge length is 30mm and the gauge factor (or strain sensitivity) is approximately 

2 .10.

The gauges were placed centrally at mid-span in the repair patch as the work progressed 

at three levels - (i) at the concrete substrate/repair material interface, (ii) at the steel 

reinforcement level and (iii) at the soffit of the repair.
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Full details of these gauges along with the abbreviations used are given in Chapter 7, 

Section 7.2.3.2.

3.3.2 Digital strain indicator

The digital strain indicator (Model P-3500) supplied by Micro Measurements Group, 

USA is a portable, battery-powered precision instrument for use with electrical 

resistance strain gauges. The P-3500 accepts full, half and quarter bridge inputs. The 

digital strain indicator was connected to an SB-10 switch and balance unit which 

provided an output from ten channels of strain gauge information from one digital strain 

indicator. This equipment allowed strain readings to be obtained from both types of 

electrical resistance strain gauges used in the laboratory study, type CEA-06-250UN- 

120 on the steel reinforcement and type PML-30 embedded in the repair material.

These gauges were monitored on quarter bridge inputs. The output was directly in 

microstrain.

3.3.3 Extensometer gauges

Demec extensometer of gauge length 100mm was used to measure the surface strain on 

the substrate concrete. Demec points were accurately positioned on both faces of the 

beam by means of a 100mm setting bar.

Full details of this monitoring equipment are given in Chapter 7, Section 7.2.3.3.
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CHAPTER 4

REPAIR AND INSTRUMENTATION OF 

GUNTHORPE BRIDGE

4.1 INTRODUCTION

Gunthorpe Bridge is a three span, reinforced concrete arch bridge spanning the River 

Trent at Gunthorpe, Nottinghamshire. It was built in 1927 to replace an old iron toll- 

bridge due to an increase in heavy traffic using the bridge. The central arch in the 

bridge spans 38.1m, while the two side arches spans 30.9m. Each of these three arches 

contain four ribs. A view of Gunthorpe Bridge is shown in Figure 4.1.

Over the past number of years, the lateral beams spanning between the arch ribs began 

to show considerable signs of reinforcement corrosion (see Figure 4.2). The scale of 

deterioration made this bridge suitable for the LINK project, hence permission was 

obtained from Nottinghamshire County Council to use Gunthorpe Bridge for research 

purposes. Repairs carried out at this site were confined to half of the south span (flood 

plain side) and the south abutment (Figure 4.3). Attention was concentrated on the 

deteriorating beams and the south abutment; no repairs were carried out on the bridge 

deck and arch ribs.
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Figure 4.1 Gunthorpe Bridge, Nottinghamshire

Figure 4.2 Typical deteriorating lateral beam at Gunthorpe Bridge
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4.2 DETAILS OF CONCRETE REPATRS AT

GUNTHORPE BRIDGE

4.2.1 Initial surveys

A photographic survey of typical deteriorated elements was taken prior to any work 

starting on the bridge, to record the state of the bridge before repair. Other initial 

surveys which were carried out by UK Analytical Ltd. included a half cell potential 

survey and a visual defects survey on the elements selected for detailed investigations. 

Drilling of the same elements for chloride analysis was carried out by V.A. Crookes 

(Contracts) Ltd. and analysed by UK Analytical Ltd. A specialist coring company, D 

Drill Ltd., was employed for coring of selected elements. The cores were tested in the 

laboratory to determine the elastic modulus of the substrate concrete.

4.2.2 Installation of monitoring equipment and

application of repair in the south abutment

4.2.2.1 Preparation of the south abutment

Three similar areas on the abutment were selected for repair, as shown in Figure 4.4. 

Each repair area was approximately 2.3m x 1.8m in elevation. Repairs were carried out 

in these locations to determine the long term performance of different spray applied 

repair materials to unpropped compression members.

The extent of each area was determined from the results of the half cell survey and 

marked with a saw cut on the abutment. Removal of deteriorated concrete was carried 

out by V.A. Crookes (Contracts) Ltd. using mechanical equipment. The average depth
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of each repair was 140mm. Depth of carbonation was also monitored as the work 

progressed.

Two of the repair materials applied on the south abutment at Gunthorpe Bridge were 

supplied by SBD Ltd. and Flexcrete Ltd., whereas the third material consisted of a 

conventional sand and cement mixture (see Section 4.3.1 for a full description).

All exposed steel was grit blasted to remove any loose rust before a primer was applied. 

A steel reinforcement protector supplied by Flexcrete Ltd. was used as primer. This was 

a two component material consisting of a cementitious powder and a polymer dispersion 

which react together to passivate the steel. All the grit blasted steel received two coats 

of the primer.

The vibrating wire strain gauges were then installed as shown in Figure 4.5. Mounting 

plates, onto which the gauges would be fixed, were attached to the cut-back substrate 

surface and the adjacent concrete surface as described in Section 3.2.2.1. Mounting 

plates were also welded to the steel reinforcement to accommodate gauges for 

measuring steel reinforcement strain, as described in Section 3.2.2.2. Finally, the 

support bars required to attach the embedment gauge were also installed, as described in 

Section 3.2.2.3.
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4.2.2.2 Details of instrumentation and repair patches in the south 

abutment

Three vibrating wire strain gauges were installed in each of the repair material patches 

in the south abutment. One gauge each was attached on the cut-back substrate surface, 

steel reinforcement and repair material, as described in the previous section. The repairs 

were instrumented in such a way that information could be obtained on the 

redistribution of stress within the repair patch. A fourth gauge was installed on the 

surface of the adjacent concrete to monitor any redistribution of strain which may occur 

to that area. Figure 4.5 (a) shows a cross section through a typical repair indicating the 

location of the gauges within the repair. Each gauge (for reference purposes) was 

identified by an abbreviation of the position of the gauge in or adjacent to the repair 

patch, i.e. the gauge on the cut back concrete substrate surface was identified as “subs”, 

the gauge on the steel reinforcement was identified as “steel”, the gauge embedded 

within the repair material was identified as “emb” and finally, the gauge on the adjacent 

concrete was identified as “adj con”. Figure 4.5 (b) shows an elevation of the repair, 

again showing the position of the gauges within the repair and on the adjacent concrete. 

The three internal gauges (i.e. attached to the substrate concrete, steel reinforcement and 

eventually embedded in the repair patch after application of the repair material) are also 

shown in Figure 4.6.

Application of sprayed (gunite) repairs on the abutment were carried out by Axiom Ltd., 

an independent specialist in the application of sprayed materials, as shown in Figure 4.7. 

The concrete substrate was saturated before the repairs were applied to reduce the
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Figure 4.6 Configuration of vibrating wire strain gauges within a typical spray
applied repair patch at Gunthorpe Bridge: (a) gauge attached to substrate 
concrete; (b) gauge attached to steel reinforcement; (c) gauge embedded 
in repair material (still to be permanently fixed)

Figure 4.7 Application of a spray applied repair patch (material G l) on the south 
abutment at Gunthorpe Bridge
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absorption of free water from the repair material into the substrate. In order to minimise 

the risk of trapping rebound material, the spray was applied upwards starting from the 

bottom of the repair patch. The repair was built steadily in incremental thickness to the 

final required depth. A flash coat, which is the final coat with increased water content 

to increase workability, was then applied to assist with the finishing operations.

Repair materials G1 and G3 (see Section 4.3.1) were finished by levelling the flash coat 

with a wooden float and smoothening with a damp sponge. Floating was not possible

for material G2 (see Section 4.3.1) due to its very low workability immediately after

application. Material G2 was trimmed instead using a wooden float to obtain a level 

surface.

The abutment was kept in an unpropped state during the application of repairs.

4.2.3 Installation of monitoring equipment and

application of repair in the lateral beams

4.2.3.1 Preparation of the lateral beams

Figure 4.3 shows the locations of the lateral beams spanning between the arch ribs at 

Gunthorpe Bridge. Five beams were repaired with hand applied materials to enable data 

on the long term performance of hand applied repairs to unpropped flexural members to 

be obtained.
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Breaking out of deteriorated concrete on the lateral beams was again carried out by V. A. 

Crookes (Contracts) Ltd. using mechanical means. Deteriorated concrete was removed 

along the full length of the beams under test and to a depth of at least 25mm behind the 

steel (130-140mm total depth). The exposed steel was grit blasted to remove any loose 

rust and then primed as described in Section 4.2.2.1.

Custom-made mounting plates were welded to one steel reinforcing bar in each of the 

repair patches, as described in Section 3.2.2.2. Where applicable, support bars were also 

placed to assist in the installation of an embedment gauge, as described in section 

3.2.2.3. Preparation and drilling for other gauges on the web of the beams and for 

protective covers to the gauges was also done at this stage. The majority of the strain 

gauges, however, were applied on the surface (web) of the beams, these were installed 

after the repairs were carried out.

4.2.3.2 Details of instrumentation and repair patches on the

lateral beams

The location of the monitored beams on the south span at Gunthorpe Bridge is shown 

in Figure 4.3. A total of seven lateral beams were instrumented with vibrating wire 

strain gauges. They were classified into two groups; group one consisted of four 

monitored beams [a control (unrepaired) beam and three repaired beams]. Group 2 

consisted of three monitored beams [one control (unrepaired) beam and two repaired 

beams]. Group 2 was restricted to three monitored beams due to a limit of 20 channels 

on the data logger/expansion module. Generic repair materials from the Flexcrete range
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of hand applied repair products were used on the lateral beams at Gunthorpe Bridge 

(details of the repair materials are given in Section 4.3.2).

The selected positions of the strain gauges on the beams were influenced by the shape of 

the bending moment diagram of an encastre beam. Strains were measured centrally on 

the web and soffit of the beam together with the steel reinforcement in the tension zone 

of the beam. Figure 4.8 shows an enlarged elevation and section through one of the 

beams. Four surface gauges (type TSR/5.5/SWP) were installed along the web of the 

beams to give a strain profile. One of the gauges also monitored the atmospheric 

temperature. Two of the surface gauges were strategically positioned at the 

substrate/repair material interface to record the strain at that point. A fifth strain gauge 

(type TSR/5.5/SWP) was positioned on the soffit of the beams to measure the extreme 

fibre strains. The steel reinforcement strain was measured on one reinforcing bar only 

(again due to a maximum of twenty channels being available). Strain gauges of similar 

construction to those used for surface mounting were used.

The patch repairs on the lateral beams were carried out by V.A. Crookes (Contracts) 

Ltd. Repair materials G4-G6 (see section 4.3.2) were mixed on site using a Pennine 

barrel mixer until the required consistency was obtained. These materials were then 

applied by hand (see Figure 4.9) to a depth of approximately 10mm from the finished 

surface. The final coat was applied a few hours later when the original material had set 

slightly. The finished surface was obtained by levelling with a wooden float and 

screeding with a damp sponge. Shuttering was only used along the soffit o f the beams, 

thus making these repairs very economical for small volume patches. Figure 4.10
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Figure 4.9 Application of hand applied repair material G4 on beam A 11 at 
Gunthorpe Bridge

Figure 4.10 View of completed repairs to lateral beams, monitoring equipment and 
protective covers: (a) material G5, (b) material G4
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shows a view of the repairs complete with monitoring equipment, trunking and 

protective covers. PVC trunking carried the gauge cables to the central logging system 

where the gauges were automatically scanned at regular intervals.

4.3 DETAILS OF REPATR MATERIALS

4.3.1 Spray applied repair materials

Three materials (labelled G l, G2 and G3) for spray repairs were used at Gunthorpe 

Bridge. All materials vary in composition. Two of the materials (Gl and G2) are 

commercially available, whereas material G3 is a mixture of conventional sand and 

cement, also applied by the dry spray process. Spray repairs were applied by an 

independent specialist contractor. A detailed description of the materials is given 

below.

Material Gl is a single component polymer modified cement based concrete mix, 

supplied by SBD Ltd [14]. It contains inert limestone aggregates and dust suppressants. 

The formulation has been designed specially for dry process spray application to give 

high early strength, reduce rebound and maximise application thickness. The material 

consists of rapid hardening Portland cement [4] (minimum cement content of 400 

kg/m3) and 5mm maximum sized graded limestone aggregate (clause 1702 of DoT 

Specification for Highway Works, Part 5). Microsilica and a copolymer are also 

incorporated in the mix.
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This material achieves a 28 day compressive strength of 60 N/mm2. It has a dry density 

of 2250 kg/m3 and modulus of elasticity of 31.1 kN/mm2.

M aterial G2. supplied by Flexcrete Ltd. [15], is a special blend of rapid hardening 

Portland cement [4], microsilica, fibres, chloride-free admixtures and the latest 

generation spray dried styrene acrylic copolymer which, when blended with a sharp 

washed medium grade concrete sand in accordance with BS 882 (1984) [5] produces a 

gunite for machine application using the dry process with physical characteristics 

similar to the base concrete.

Based on a gunite:sand ratio of 1:4 by weight and a water:cement ratio of 0.35-0.40, a 

compressive strength of 56.5 N/mm2 is obtained at 28 days. The modulus of elasticity is 

17.6 kN/mm2. The density lies in the range 2200-2300 kg/m3.

M aterial G3 is a laboratory designed mix comprising of ordinary Portland cement in 

accordance with BS 12 [4] and a medium grade sand in accordance with BS 882 (1984) 

[5]. It is used solely for the purpose of research to compare the performance of ordinary 

mortar mixes with commercial repair materials. The material was applied using the dry 

spray process, the waterxement ratio being controlled at the nozzle by an experienced 

operator.
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4.3.2 Hand applied repair materials

Three different hand applied repair materials, all supplied by Flexcrete Ltd, were 

instrumented at Gunthorpe Bridge to determine their long term service performance in 

highway structures. Material G4 is a pre-packed three component system which only 

requires mixing on site. The other two materials (G5 and G6) are supplied as single 

component materials. These require only the addition of clean water on site. Details of 

these hand applied materials are as follows:

M aterial G4 is a three component heavy duty repair mortar. Part A comprises of a 

liquid dispersion of a styrene acrylic copolymer and admixtures (including a 

waterproofing agent). Part B, the powder constituent, is made up of ordinary Portland 

cement, fibres and 6mm down graded aggregate. Part C comprises of a 10mm size 

granite aggregate. The material achieves a compressive strength of 50 N/mm2 and a 

modulus of elasticity of 24 kN/mm2 at 28 days. The fresh density of the mixture is 2100 

kg/m3 [15].

M aterial G5 is a single component cementitious mortar - the powder being mixed with 

water on site. It consists of a spray dried styrene acrylic copolymer which complies 

with the Department Of Transport standard BD 27/86 [1] for the repair of highway 

structures. It incorporates the latest cement chemistry and consists of finely ground 

Portland cement with inclusions of sulphoaluminate cement, microsilica, fibres and 

other pozzolanic materials. It is, therefore, shrinkage compensated whilst the density is 

substantially lower than traditional concrete (approximately 1750 kg/m3) at a 

recommended water:powder ratio is 0.14. It is a structural repair material achieving a
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28 day compressive strength of 50 N/mm2. The modulus of elasticity is 19.6 kN/mm2 

[15].

M aterial G6 is a single component, cementitious mortar requiring only the addition of 

clean water on site. It incorporates advanced cement chemistry, microsilica, fibre and 

styrene acrylic copolymer technology. This results in a rapid hardening mortar with 

enhanced polymeric properties. It has a low density of approximately 1250 kg/m3 at a 

recommended water:powder ratio of 0.16. Material G6 has a compressive strength of 

30 N/mm2 and a modulus of elasticity of 11.5 kN/mm2 at 28 days [15]
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CHAPTER 5

REPATR AND INSTRUMENTATION OF 

FAWNS CANE RRIDCE

5.1 INTRODUCTION

Lawns Lane Bridge is a three span reinforced concrete bridge which carries part of the 

M l between junctions 41 and 42 in West Yorkshire. It was built in the mid 1960's and 

consists of insitu deck panels supported by prestressed beams, all of which are carried 

by reinforced concrete piers and abutments. Views of Lawns Lane Bridge are given in 

Figure 5.1.

A detailed investigation carried out by Harry Stanger, Consulting Materials Engineers, 

on behalf of the client, The Highways Agency, revealed that Lawns Lane Bridge was in 

need of substantial concrete repairs. The south piers needed to be demolished and were 

reconstructed, whereas the south and north abutments and the north piers required 

repair. This repair contract was awarded to M.J. Gleeson Group pic. The repairs were 

instrumented and monitored to gain an understanding of the interaction between the 

repair material and substrate as part of the LINK project.

A total of five different repair materials were applied at Lawns Lane Bridge using the 

dry spray process. The materials were applied by a specialist contractor.
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(b)

Figure 5.1 Views of Lawns Lane Bridge, West Yorkshire: (a) east elevation and (b) 
south east elevation
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5.2 DETAILS OF CONCRETE REPAIRS AT LAWNS

LANE BRIDGE

5.2.1 Initial surveys

Lawns Lane Bridge underwent a full durability survey as part of the M l Bridges 

Investigation commissioned by the Highways Agency. Among the surveys completed 

was a visual defects survey, a half-cell potential survey, depth of cover survey and depth 

of carbonation measurements. Chloride ion content in the concrete and electrical 

resistance of the concrete were also determined. 100mm diameter cores were also 

extracted from areas of sound concrete to enable the stiffness of the substrate concrete to 

be determined.

The results of these surveys were used to determine the areas of the bridge that needed 

repairs.

5.2.2 Installation of monitoring equipment and

application of repair in the north piers and north

ahutment

5.2.2.1 Preparation of repair areas on the north piers and north

abutment

Figure 5.2 and Figure 5.3 show the locations of the repair patches on the north piers and

north abutment at Lawns Lane Bridge. These repairs were instrumented to
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determine the long term performance of spray applied repair materials to unpropped 

compression members. The extent of the deteriorated concrete determined from the 

results of the half cell survey was marked on the structure. A saw cut was then applied 

along the marked lines to envelope the repair areas. Removal of the deteriorated 

concrete was by pressurised water jet. Exposed steel was grit blasted to remove any 

loose rust and primed using Flexcrete FCR 841 steel reinforcement protector. The 

average depth of repair was approximately 140mm.

Two repair materials were applied to the north east and north west piers as shown 

Figure 5.2. Material LI was applied mainly to the north east pier whereas material L2 

was applied to the north west pier. Material LI was selected by the Resident Engineer 

since it conformed fully with the Highways Agency specifications. This forms the main 

material for repair at Lawns Lane Bridge. Material L2 was selected by the research 

team, although it did not meet the specifications of the Highways Agency (details of 

repair materials are given in Section 5.3.1).

Figure 5.3 shows the position of the repair areas on the north abutment at Lawns Lane 

Bridge. Three different repair materials were applied and monitored at this location, 

namely L3, L4 and L5.
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5.2.2.2 Details of instrumentation and repair patches in the north piers 

and north abutment

The position of the gauges in the repair materials at Lawns Lane Bridge followed a 

similar pattern to the gauges in the spray applied materials in the abutment at Gunthorpe 

Bridge (i.e. a gauge on the cut back substrate, one welded to the steel reinforcement and 

one embedded in the body of the repair material, as described in Sections 3.2.2.1,

3.2.2.2 and 3.2.2.3. respectively).

Due to the large volume of material LI applied at Lawns Lane Bridge, four sets of 

gauges were installed in the material, labelled #1 to #4 in Figure 5.2.

Figure 5.4 (a) shows a section through a typical repair and the position of the gauges 

within the repair at Lawns Lane Bridge. Figure 5.4 (b) shows the elevation of a typical 

repair, again showing the position of the gauges within the repair. In some instances, a 

gauge was attached to the adjacent concrete to monitor the redistribution of stress to that 

area from the repair patch. Figure 5.5 shows a set of gauges in material L5 on the north 

abutment at Lawns Lane Bridge, whereas Figure 5.6 shows the three sets of gauges in 

position before material L3, L4 and L5 were applied at the north abutment.

The substrate was saturated before the repairs were applied, to minimise the absorption 

of free water from the repair materials. The dry spray process was used for all 

materials. The materials were applied starting at the bottom of the repair patch and 

gradually moving upwards to reduce the risk of trapping rebound material. A flash coat 

was applied to the surface to aid the finishing operations. This was then removed with a
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Figure 5.5 View of vibrating wire strain gauges within material L5 at Lawns Lane 
Bridge (north abutment), from left, steel reinforcement, substrate 
concrete and embedment gauges

Figure 5.6 View of instrumented north abutment at Lawns Lane Bridge before
application of repair materials: (a) material L5, (b) material L4 and (c) 
material L3

67



*/ i v c ^ / u t /  JsUVVfl'J JJf luge

wooden screeding board. The final surface was obtained by floating with a steel float. 

Figure 5.7 shows material L4 being applied to the north abutment at Lawns Lane 

Bridge. Figure 5.8 shows materials L3, L4 and L5 in the north abutment after 

application with strain gauges attached to the surface of the repair materials and adjacent 

concrete. A curing compound was applied to the surface of all the materials. This was 

further complimented by covering the repair with polythene sheeting. The gauge on the 

new surface was installed on the day after the application of the repair. The surface 

gauges were covered with steel boxes to protect them from damage.

Trunking was installed on the bridge to protect the cables running from the gauges to 

the data logger. This consisted of 50mm square uPVC bolted to the concrete and the 

cables were placed inside through an open face. A cover was then fitted to keep the 

cables in place. In locations where the trunking (and the steel boxes covering the 

gauges) were particularly vulnerable to vandalism, extra protection was supplied in the 

form of solid mild steel covers

The gauge cables were threaded through the 50mm trunking to a central location where 

the data logger was stored. Cables were attached to the various channels on the data 

logger which was programmed to scan at pre-set intervals using a laptop computer.
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Figure 5.7 Application of a repair patch (material L4) on the north abutment at 
Lawns Lane Bridge using the dry spray process

Figure 5.8 Completed repairs on the north abutment at Lawns Lane Bridge with
strain gauges attached to the surface of the repair materials and adjacent 
concrete
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5.3 DETAILS OF REPAIR MATERIALS

5.3.1 Spray applied repair materials

Five repair materials (labelled L1-L5) were instrumented at Lawns Lane Bridge. Spray 

applied materials were used due to the large volume of repairs. All the materials were 

applied by Concrete Repairs Ltd., who are part of M J. Gleeson Group pic. Material LI 

was the only material which fully complied with the requirements of the Highways 

Agency Repair Specification, BD 27/86 [1]. A detailed description of the repair 

materials is given below.

Material L I was supplied by Proton Group Limited [16]. It is a blend of low alkali 

Portland cements, microsilica and high purity limestone aggregates together with a 

system of compatible admixtures. This powder, when mixed with water, produces a 

non-shrink (according to manufacturers literature), homogeneous microconcrete that 

produces no-slump, has excellent adhesion and very low permeability. It is designed to 

meet the Department of Transport requirements for sprayed concrete as detailed in BD 

27/86 [1] and clause 29F (Midlands Links Specification). The maximum aggregate size 

is 3mm. This material was selected by the Resident Engineer as the main material at 

Lawns Lane Bridge since it fully complied with the current repair specification, BD 

27/86 [1].

When mixed at a water.powder ratio of 0.12, material LI has a density of 2210 kg/m3, 

modulus of elasticity of 22.7 kN/mm2 and a 28 day compressive strength of 60 N/mm2.
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M aterial L2 was supplied by Nufins Limited [17]. It is a prepacked, single component 

polymer modified repair mortar, requiring only the addition of clean water on site. It 

has been designed for machine applications using the dry spray process and is 

particularly suitable on large repairs to reinforced concrete structures which have been 

damaged due to reinforcement corrosion or frost attack.

Typical properties of material L2 include a 28 day compressive strength of 60-65 

N/mm2 and a density of between 2050-2150 kg/m3. The modulus of elasticity is 30.3 

kN/mm2.

M aterial L3 was supplied by Fosroc Expandite Limited [18]. It is a ready to use blend 

of dry powders which requires only the addition of clean water on site to produce a 

highly consistent, shrinkage compensated medium-weight repair mortar for general 

purpose use. It can be applied by the wet or dry spray process. The material is based on 

Portland cement [4], graded aggregates [5], special fillers and chemical additives to 

provide a mortar with good handling characteristics, while minimising water demand. 

The product exhibits excellent thermal compatibility with concrete and good water 

repellent properties. The low water requirement ensures fast strength gain and long

term durability.

At a typical watericement ratio of 0.18, material L3 obtains a 28 day compressive 

strength of 28 N/mm2. The fresh wet density is approximately 1850 kg/m3. The elastic 

modulus of this material is 27.4 kN/mm2.
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Material L4. supplied by Pozament Limited [19], is a factory blended dry spray gunite 

for the repair, strengthening or new construction of concrete structures. It consists of an 

intimate blend of Portland cement [4], silica sand and admixtures including plastic 

fibres. The maximum aggregate size of the sand is 5mm. The inclusion of suitable 

additives gives reduced rebound characteristics.

This material is designed to give a minimum 28 day compressive strength of 40 N/mm2 

when sprayed at a maximum water to cement ratio of 0.35. The modulus of elasticity, 

when tested in accordance with BS1881:Part 121:1983 [3] was 29.1 kN/mm2.

Material L5. supplied by Pozament Limited [19], is a factory blended fibrous dry spray 

gunite for repair, strengthening or new construction of concrete structures. The 

inclusion of fibres controls early age shrinkage cracking and gives additional benefits 

particularly with respect to flexural strength, abrasion resistance and impact resistance. 

The properties of material L5 are very similar to those of material L4.
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CHAPTER 6

REPATR AND INSTRUMENTATION OF 

SUTHERLAND STREET RRTDCF

6.1 INTRODUCTION

Sutherland Street Bridge in Bumgreave, Sheffield, carries the B6080 over an access 

road which once linked steel industries together. The superstructure of this bridge 

consists of an in situ bridge deck supported by prestressed beams. The substructure 

consists of reinforced concrete beams, supporting the prestressed beams, and columns in 

a portal frame (trestle) configuration. Elevations of Sutherland Street Bridge are given 

in Figures 6.1 and 6.2.

The bridge was substantially rebuilt in 1963. The decks were renewed along with new 

trestle piers. A capping beam was also provided on the existing masonry abutments.

Repairs at Sutherland Street Bridge were confined to the beams and columns of the 

north and south frames (see Figure 6.1). A total of four different repair materials were 

applied using the flowing method of application.

6.2 DETAILS OF CONCRETE REPAIRS AT 

SUTHERLAND STREET BRIDGE

6.2.1 Initial surveys

The substructure of Sutherland Street Bridge underwent a frill durability survey,

including a half-cell potential and covermeter surveys. 100mm diameter cores (see

Figure 6.3) were extracted from selected parts of the bridge to determine the elastic
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Figure 6.2 East elevation of Sutherland Street Bridge, Sheffield.

Figure 6.3 Coring at Sutherland Street Bridge to determine the elastic modulus of 
the substrate concrete
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modulus of the substrate concrete. Concrete dust samples were taken for chloride ion 

analysis.

6.2.2 Installation of the monitoring equipment and

application of repair on the north and south frames

6.2.2.1 Preparation of the repair areas on the north and south

frames

Figure 6.4 shows the positions of the repair patches on the substructure at Sutherland 

Street Bridge. These repairs were carried out to investigate five different parameters at 

Sutherland Street Bridge. These are (i) performance of repair patches in compression 

members, (ii) performance of the repair patches in tension zones, (iii) effect of the 

volume of the repair patches on the structural interaction with the substrate, (iv) 

performance of the repair when the depth of concrete removed behind the steel is 

increased and (v) propped and unpropped repairs, to establish the effect of propping 

prior to applying the repair on structural interaction.

Propping of the south frame and half of the north frame, to enable comparisons between 

propped and unpropped repairs, was carried out by Mabey Support Systems Ltd. Every 

second prestressed beam which make up the bridge deck was supported by steel props.

Removal of deteriorated concrete was achieved by using both water jetting equipment 

and mechanical means by V.A. Crookes (Contracts) Ltd. Concrete was removed to a 

depth of 25mm behind the steel, except in some instances when it was removed to a
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depth of 60mm when information on the performance of the repair with increased depth 

was required. All the exposed steel was grit blasted and primed using Flexcrete Steel 

Reinforcement Protector (FCR 841). This is a two component material consisting of 

cementitious powder and a polymer dispersion which react together to passivate the 

steel.

The configuration of the gauges in the repair materials at Sutherland Street Bridge was 

similar to that applied in the other bridges. Mounting plates were attached to the cut 

back substrate and welded to the steel reinforcement. Support bars, onto which the 

embedment gauge would be attached with tying wire, were also fitted across the main 

steel reinforcement.

6.22.2 Details of instrumentation and repair patches on the north 

and south frames

The positions of the gauges are shown in Figure 6.5 (a and b) for the columns at 

Sutherland Street Bridge. Figure 6.5 (a) shows the cross section through a typical 

column repair whereas Figure 6.5 (b) shows an elevation of a column repair. Gauges 

are installed on the substrate surface, steel surface, embedded in the repair material and 

on the surface of the repair material. A similar configuration was employed on the 

soffits of the beams at Sutherland Street Bridge, as shown in Figure 6.5 (c and d). 

Figure 6.5 (c) shows a cross section through a beam repair whereas Figure 6.5 (d) shows 

the soffit of a typical beam repair. The gauges were installed as described in Sections

3.2.2.1 (substrate concrete gauge), 3.2.2.2 (steel reinforcement gauge) and 3.2.2.3
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(embedded in the repair material). A view of the vibrating wire strain gauges (attached 

to substrate concrete, steel reinforcement and embedded in the repair material) in 

position on one of the columns at Sutherland Street Bridge is given in Figure 6.6

Shuttering for the flowing repairs consisted of plywood faced timber formwork, custom 

made for the repairs at Sutherland Street. The repetitiveness of the repairs allowed the 

column formwork and the soffit formwork to be used more than once.

The substrate concrete was saturated by filling the shuttering with water and leaving in 

place overnight. This was to reduce the absorption of water from the repair material 

into the substrate concrete.

The repair materials were mixed in accordance with the manufacturers instructions in a 

Pennine barrel mixer. The materials were either pumped into the shuttering or poured 

from a bucket (see Figure 6.7). Compaction of the flowing material was provided by 

firmly tapping the shuttering with a hammer at regular frequency, as the material was 

placed by pouring.

Shuttering was left in place for at least three days after the pour to assist with curing. 

When the shuttering was removed, some of the materials received a thin coat of 

cementitious material when the original surface finish was poor. Surface strain gauges 

were subsequently attached together with steel covers for protection (see Figure 6.8). 

The gauge cables travelled via 50mm uPVC trunking to the south frame where they 

were attached to the data logger (see Figure 6.9).

80



Figure 6.6 Position of gauges within a typical column repair at Sutherland Street 
Bridge, from left, substrate concrete gauge, embedment gauge and steel 
reinforcement gauge

Figure 6.7 Application of material S2 by pouring into a compression member repair 
at Sutherland Street Bridge
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Figure 6.8 View of the completed repairs on the north frame at Sutherland Street 
Bridge and the protective steel covers on the surface strain gauges 
(columns on the left and second from left).

Figure 6.9 Positioning the gauge cables in the trunking which travel to the data 
logger on the south frame at Sutherland Street Bridge.
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Propping to the south frame and half of the north frame remained in place until the 

repair materials had cured sufficiently. Upon completion of the curing period, the load 

was reapplied to the structure. This occurred when the repair materials reached the 

design strength of the bridge members, or were in situ for 28 days.

6.3 DETAILS OF REPAIR MATERIALS

6.3.1 Flowing repair materials

Repairs to Sutherland Street Bridge incorporated flowing materials as a repair 

technique. Four materials are monitored in total, three of which are commercially 

available materials, labelled SI-S3. The fourth material, S4, is a laboratory designed 

conventional flowing concrete, used solely for the purpose of research to compare the 

performance of conventional materials with commercial repair products. A detailed 

description of the materials is given below.

M aterial S I. supplied by SBD Limited [15], is a single component, pre-blended 

cementitious repair material simply requiring the addition of clean water on site to 

produce a repair concrete which complies with the model requirements for replacement 

concrete as outlined in BD 27/86 Part 4 [1]. This material contains 5mm maximum 

sized graded aggregate, additives and shrinkage compensating agents. The cement 

content is 500 kg/m3.
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At the recommended water/cement ratio of 0.37, this material has a density of 2250 

kg/m3, compressive strength of 65 N/mm2 at 28 days and a flow of 750mm when tested 

using the DoT flow trough [1]. The modulus of elasticity is 24.2 kN/mm2.

M aterial S2 from Fosroc Expandite Limited [18] comprises of a blend of dry powders 

which require only the addition of clean water on site. It is based on Portland cement 

[4], graded aggregates [5] and additives which produce a free flowing, shrinkage 

compensated concrete for large volume concrete repairs. The recommended 

water:powder ratio of 0.13 achieves a compressive strength of 60 N/mm2 (BS 1881 Pt 

116 - restrained [20]), a fresh density of 2270 kg m3 and a flow of 750mm within 10 

seconds. The modulus of elasticity is 32.2 kN/mm2 at 28 days (BS 1881 Pt 121 [3]).

Material S3, supplied by Flexcrete Limited [14], is a rapid hardening, high strength, 

non-shrink material which incorporates the most advanced cement chemistry, 

microsilica, shrinkage compensating admixtures and styrene acrylic copolymer 

technology. It is supplied as a single component material for on-site mixing with clean 

water. This material also includes a 6mm aggregate for depths of repairs greater than 

50mm. Typical properties are a compressive strength in excess of 70 N/mm2 at 28 days 

and a fresh density of 2250 kg/m3. The modulus of elasticity is 31.9 kN/mm2.

Material S4 comprises of conventional concrete materials to produce a flowing 

concrete. It consists of Portland Cement, complying with BS 12 [4], 10mm rounded 

aggregate and a medium grade sand complying with BS 882 [5], pulverised fuel ash, 

complying with BS 3892 Pt 1 [21], superplasticiser, complying with BS 5075 Pt 3 [22]
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and polypropylene fibres to control shrinkage cracks. A water:cement ratio of 0.48 is 

used, which results in a compressive strength of 45-50 N/mm2 at 28 days. The mix 

proportions are given in Table 6.1.

Table 6.1 Mix proportions for material S4

Constituent Quantity

(kg/m3)

Type/source

Total cementitious 400

Cement 340 Portland

PFA 60 Pozzolan Ltd.

Total aggregate 1820

Coarse 1092 10mm rounded

Fine 728 Grade M sand

W ater 180 Yorkshire Water

Superplasticiser 2.25% / weight 

of cementitious

MelmentFlO

Fibres 910 g/m3 Polypropylene

Mix ratios:

Cementitious: sandraggregate 1:1.8:2.7

Water: cementitious 0.45
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CHAPTER 7

CABORATORY INVESTIGATION: REPATR AND 

INSTRUMENTATTON OF REINFORCED 

CONCRETE BEAMS

7.1 INTRODUCTION

A hand-applied patch repair is an effective restoration technique when a structural 

element, such as a reinforced concrete beam, requires low volume repairs. This is due 

to the fact that most of the deterioration will have taken place in the tensile cover zone 

only due to the corrosion of the main steel reinforcement and stirrup reinforcement. To 

enable the member to return to its original strength, a repair material must be selected 

that will enable the full tensile moment of resistance to be developed. Therefore, the 

applied repair material must posses adequate tensile properties. The material must first 

be able to withstand the tensile stress induced due to restrained shrinkage and then 

interact with the steel reinforcement and the substrate concrete to redevelop the tensile 

moment of resistance

A laboratory investigation was carried out to determine the in-service performance of 

different hand-applied repair materials. Eight reinforced concrete beams (see Table 7.1) 

with deterioration simulating actual field conditions were repaired in the laboratory with 

a total of four different hand applied materials [L3(L), G4(L), G5(L) and G6(L) - see
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Table 7.1] with varying mechanical properties. The investigation examined the 

performance of the different repair materials when repairs were applied to the beams. 

The repaired beams were kept under serviceability flexural load over a long period of 

time. The following parameters of beam repair were considered in the investigation:

• repairs to unpropped flexural members (the load remained in place during 

application of the repair patch, Table 7.1)

• repairs to propped flexural members (the load was removed during application of the 

repair patch, Table 7.1)

• an incremental increase in depth of repair [patches extended 25mm (total patch 

depth: 71mm) and 50mm (total patch depth: 96mm) behind the steel reinforcement, 

Table 7.1]

Table 7.1 Laboratory repairs to reinforced concrete beams

Beam Number Repair

material

State o f loading 

during repair

Depth behind steel 

reinforcement (mm)

1 G6(L) Unpropped 25

2 G4(L) Unpropped 25

3 G5(L) Unpropped 25

4 G5(L) Unpropped 50

5 L3(L) Unpropped 25

6 G5(L) Propped 25

7 L3(L) Propped 25

8 L3(L) Unpropped 50
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DETAILS OF LABORATORY CONCRETE

REPAIRS

7.2.1 Reinforced concrete beams

A total of eight reinforced concrete beams measuring 2740 x 100 x 200mm were cast in 

steel moulds in the laboratory. Two 100 x 100 x 100mm cube specimens and two 200 x 

100mm diameter cylinder specimens were cast simultaneously for each beam to enable 

the compressive strength and elastic modulus of the concrete in each beam to be 

obtained.

All concrete beams were reinforced with two 16mm diameter high tensile steel bars. 

The cover to each bar was 30mm based on the very severe condition of exposure from 

Table 3.4, BS 8110 [23]. 6mm diameter mild steel links at 110mm centres were 

provided in the shear zones and they were supported with 6mm diameter mild steel 

hanger bars in the compression zone [see Figure 7.1 (a)].

To simulate a repair situation where deteriorated concrete has been removed, voids

measuring 640mm long by 71 or 96mm deep (depending on which parameter was being 

investigated) were inserted centrally at the casting stage, as shown in Figure 7.1 (b).

Sections through a typical beam are given in Figures 7.1 (c) and (d).

The loading arrangement on a typical beam is given in Figure 7.2 (a). A two point 

loading configuration at third span intervals was used. This loading arrangement was 

employed so as to simplify the stresses induced in the repair material. This negated the 

need for shear reinforcement in the central third due to the absence of shear stresses [see
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L o a d  L o a d

R e i n f o r c e d -  c o n c r e t e  b e a n

R e p a i r  p a t c h

( a )
813 813 813

2440

<ta)

( c )

Figure 7,2 Schematic r e p r e s e n t a t i o n  o f  s t r e s s  due t o  e x t e r n a l  loading

(a) loading configura t ion  (b) s h e a r  f o r c e  diagram and 
(c) bending moment diagram
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Figure 7.2 (b)] and ensured that the material was in the constant bending moment zone, 

as shown in Figure 7.2 (c).

7.2.2 Creep rig

Custom built creep rigs, as shown in Figure 7.3 (a), were used to apply a constant load 

on the repaired reinforced concrete beams. The rig consists of a 203 x 102 x 23 kg/m 

universal beam and a loading arrangement which applies the load at one-third span 

points along the beam. A service load of 22 kN (2 x 11 kN at one-third span points), 

approximately 40% of the ultimate load, was applied on the reinforced concrete beam.

The loading apparatus was designed so as to allow the service load to be applied without 

having to incorporate a load cell in each rig. This was done by calibrating a torque 

wrench to 22 kN (accuracy +/- 3%) for this purpose and applying the load via a loading 

bolt in the top platen of the rig [see Figure 7.3 (b)]. The calibration of the torque 

wrench was frequently re-checked throughout the loading operations.

7.2.3 Strain measurement

7.2.3.1 Strain gauges on the steel reinforcement

To facilitate the measuring of the steel reinforcement strain, three CEA-06-250UN-120 

electrical resistance strain gauges were attached to one steel reinforcing bar as described 

in section 3.3.1.1. Figure 7.4 (a) shows an elevation of a typical beam under load along.
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Repair  p a t c h

640
cn

S te e l  3

RM 2S te e l  2

Repair P a t c hS te e l  1 RM 3

2T1 6 m m

( b )

S te e l  3

RM 2_Steel 2
Repa ir  P a t c hRM 3St ee l

2T1 6 m m

(c)

F i g u r e  7 . 4  P o s i t i o n  o f  e l e c t r i c a l  r e s i s t a n c e  g a u g e s  wi t h i n  t h e  r e p a i r

( a )  E l e v a t i o n  o f  r e p a i r e d  b e a m  u n d e r  l o a d

( b )  P o s i t i o n  o f  g a u g e s  wi t h i n  a  7 1 m m  d e e p  r e p a i r

( c )  P o s i t i o n  o f  g a u g e s  wi t h i n  a  9 6 m m  d e e p  r e p a i r
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with the position of the repair patch. Figure 7.4 (b) shows an enlarged elevation of the 

steel reinforcement within the repair patch and the positions of the gauges on the steel 

Gauge “Steel 1” [see Figure 7.4 (b)] is positioned centrally on the steel reinforcement

(at mid-span) whereas “Steel 2” and “Steel 3” are positioned on either side of the repair

material/substrate interface. The strain data from these gauges are obtained by attaching 

them to a digital strain indicator, as described in Section 3.3.2.

1.23.2 Strain gauges in the repair materials

Three PML-30 electrical resistance strain gauges were embedded in the repair material 

during repair of the beam, as described in Section 3.3.1.2. The position of the repair 

material in the beam is shown in Figure 7.4 (a). A gauge length of 40mm is used. The 

gauges were protected by 85 x 14 x 4mm resin plates, which were hermetically sealed to 

waterproof the gauge. The gauges, positioned at mid-span, are shown in Figure 7.4 (b) 

and (c). Gauge “RM 1” is placed at the repair material/substrate interface level, gauge 

“RM 2” is placed at the steel reinforcement level whereas “RM 3” is placed at the soffit 

of the repair. The strain from the PML-30 strain gauges is obtained by connecting to a 

digital strain indicator, as described in Section 3.3.2.

7.2.3.3 Strain gauges on the substrate concrete

Figure 7.5 (a) shows an elevation of a typical beam under load along with the position 

of the repair patch on the beam. The strain in the substrate concrete was measured by 

attaching demec points (gauge length 100mm) to the vertical faces at mid-span of the
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R e p a ir  p a t c h

6 40

R ep ai r  P a t c h

(b)

R e p a i r  P a t c h

(c)

F ig ur e  7 . 5  Pos i t ion  of d e m e c  po in t s  on  t h e  f a c e  of a r e p a i r e d  b e a m

(a)  Elevat ion of r ep a i r e d  b e a n  u n d e r  load

(b)  Pos i t ion of d e m e c  po in t s  on t h e  f a c e  of a 7 1 m m  d e e p  r e p a i r

( c)  Posi t ion  of d e m e c  po in t s  on  t h e  f a c e  of a  9 6 m m  d e e p  r e p a i r
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beam as shown in Figure 7.5 (b) and (c). Demecs 1, 2 and 3 were positioned along both 

vertical faces of the substrate concrete whereas demecs 4, 5 and 6 were positioned on 

both vertical faces of the repair material. A demec extensometer of gauge length 

100mm was used to measure the deformation.

7.2.4 Details of concrete mix and repair materials

Details of the concrete mix, which formed the substrate beam, and the repair materials 

are given in Table 7.2. Concrete mix proportions (by weight) of 1:1.8:2.9 with a 

water:cementitious ratio of 0.45 were used throughout. The cementitious content was 

400 kg/m3 which included 15% (60 kg/m3) pulverised fuel ash. The mix was designed 

to give a 28 day cube strength of 45 N/mm and a slump of 30-60mm.

Three of the four repair materials used in the laboratory [G4(L), G5(L) and G6(L)] were 

the same as the three hand applied materials used at Gunthorpe Bridge [G4, G5 and G6 

respectively], whereas material L3(L) in the laboratory was the same as material L3 at 

Lawns Lane Bridge, except that it was applied by hand instead of spray application. A 

full description of the materials is given is Sections 4.3.2 and 5.3.1.

7.2.5 Casting and curing

In order to simulate a repair situation where deteriorated concrete has been removed due 

to steel reinforcement corrosion, pieces of stiff polystyrene were inserted centrally 

around the reinforcement cage to create a void measuring 640 x 100 x 71 or 96 mm
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deep. All joints were then sealed with silicone rubber to stop moisture from the 

concrete mix entering the void.

Prior to casting, the moulds were lightly oiled with mould oil to ensure easy removal of

Table 7.2 Details of concrete mix and repair materials

Mix Materials and 

Description

Quantity

(kg/m3)

Water/Cementitious

Ratio

Concrete Portland Cement 

PFA

340

60

Fine aggregate 

(grade M)

Coarse aggregate 

(20-5mm graded)

720

1160

0.45

Repair Material Description Density o f  

fresh material

Water

Content

L3(L) Single component, medium 

weight cementitious mortar

1850 4.5 litres 

per 25 kg 

pack

G4(L) Three component, 

fibre reinforced, polymer 

modified cementitious 

mortar

2100 Pre-packed

polymer

G5(L) Single component, polymer 1725 3.5 litres

modified cementitious mortar per 25kg 

pack

G6(L) Lightweight, single 

component cementitious 

mortar

5.0 litres 

per 30 kg 

pack
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the concrete beam. The reinforcement cage was then positioned in the mould, care 

being taken not to damage the wires from the gauges on the steel reinforcement. 

Concrete was mixed dry in a forced action pan mixer for 2 minutes before the water was 

added. Mixing continued until the concrete was mixed thoroughly. All beams were 

cast horizontally in three layers, each layer was adequately compacted with a poker 

vibrator. The top surface of the concrete was levelled off and covered with polythene 

sheeting. The beams remained in the mould under laboratory conditions of temperature 

and humidity for four days before demoulding. Afterwards, they were stored under 

laboratory conditions of temperature and humidity for 28 days before loading. Prior to 

loading, the polystyrene was removed from the beam, leaving a void which would be 

repaired at a later stage. The surfaces of the void which would later form the 

substrate/repair material interface were roughened by a hammer and chisel to simulate 

actual site conditions for enhancing bond.

7.2.6 Repair of reinforced concrete beams

Deterioration processes in reinforced concrete structures are long term phenomena 

and the need for repair normally occurs after a structure has been in service for many 

years. As a result, the creep and shrinkage effects on the concrete have stabilised and 

reached negligible levels when repairs normally take place. In order to simulate field 

conditions where shrinkage and creep of the parent concrete is negligible at the time of 

repair application, the reinforced concrete beams with the void as described above were 

loaded for approximately 6-8 weeks prior to the application of repair to eliminate the 

effects of creep. A load of 22 kN (2 x 11 kN at one-third span points) was applied to
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each beam as described in section 7.2.2 and loaded members were stored at 20°C and 

55% RH in an environmentally controlled room. During this loading period, the load 

was frequently topped-up to allow for any drop-off in load due to the creep of concrete.

Repair of the reinforced concrete beams was then carried out while still under load 

(unpropped state) by placing timber formwork on the soffit of the beam and supporting 

it with packing/wedges built up from the top flange of the creep rig. This allowed the 

repair material to be inserted from either side (vertical face) of the beam. Embedment 

gauges within the repair material were also inserted as the repair progressed (see Figure 

7.6). Each material used for repair was mixed in accordance with the manufacturers’ 

instructions. The material was built to within 10mm of the finished surface before a 

final coat was applied and smoothened with a steel float. The repair operation was 

carried out under laboratory conditions of temperature and humidity. Upon completion 

of the repair, the fresh material was covered with polythene sheeting. After 24 hours of 

curing, demec points were attached to the surface of the repair patch at a gauge length of 

100mm in order to measure longitudinal strain at different sections parallel to the 

neutral axis of the beam. After three days, the polythene sheeting and formwork were 

removed (see Figure 7.7).

Out of a total of eight beams, six were repaired in an unpropped state as described 

above. The remaining two beams were repaired in a propped state. The repair of the 

propped beams differed from the repair of the unpropped beams in that the service load 

on the latter beam was released during repair (see Figure 7.8). The load was reapplied 

when the cube strength of the repair material reached the cube strength of the reinforced 

concrete beam or at 28 days, whichever was sooner (see Figure 7.9).
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Figure 7.6 Application of a hand applied repair material and installation of 
embedment strain gauges to an unpropped flexural member in the 
laboratory

Figure 7.7 View of completed hand applied repair to an unpropped flexural member 
in the laboratory
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Figure 7.8 Application of a hand applied repair material to a propped flexural 
member in the laboratory

Figure 7.9 Reloading a beam at 28 days after the application of the repair patch 
(the load was removed during application of the repair)
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Upon completion of the repairs, the flexural members were stored under load in a 

controlled environment throughout the duration of the monitoring period (20°C and 55% 

RH, see Figure 7.10), Strain readings from the steel reinforcement, repair material and 

substrate concrete were taken every day for the first 6 days after repair and once a week 

thereafter (a view of the digital strain indicator which monitors the electrical resistance 

strain gauges is given in Figure 7.11).
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Figure 7.10 Repaired reinforced concrete beams under load in a controlled 
environment (20°C and 55% RH)

lUJTSfiMlwrS EKYIMOB

Figure 7.11 Digital strain indicator (left) and switch and balance unit (right) which 
were used to monitor the electrical resistance strain gauges
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CHAPTER 8

PROPERTIES OF REPAIR MATERIALS 

WHICH IN FI /PENCE THE TONG TERM 

PEREORMANCE OF CONCRETE REPAIR

8.1 INTRODUCTION

When a concrete structure exhibits signs of distress, such as spalling of concrete cover, 

delaminations or rust staining, the service life can be extended by the application of a 

new material in place of the damaged concrete. This method of rehabilitation can only 

prove to be successful if the new material interacts well with the parent concrete and 

forms a durable barrier against ingress of carbon dioxide and chlorides. Problems may 

arise since a dimensionally unstable repair material is placed against a dimensionally 

stable substrate concrete, as any significant drying shrinkage and creep will no longer 

exist in the substrate concrete due to its long term exposure to the environment and the 

service loading. Internal stresses will be generated due to shrinkage and creep in the 

repair material which need to be evaluated before a durable repair can be specified.

Tensile shrinkage stress will be induced in the repair patch due to the restraint provided 

by the substrate concrete. To reduce the restrained tensile stress in the material, it is 

best to specify a repair material with low shrinkage characteristics. Moreover, a repair 

material with a high tensile strain capacity will be very beneficial if the tensile stress is
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high. Furthermore, a repair material which expands slightly in the early stages may 

cancel or reduce the final net shrinkage strain in the material.

Creep is a phenomenon which occurs in cement based materials when subjected to a 

sustained stress, either in compression or tension. The magnitude of creep varies in 

different materials and is dependant upon the magnitude of load applied and the 

different constituents and composition of the material. Compressive creep may render 

the load sharing capacity of a repair patch less effective with time, whereas tensile creep 

may help alleviate the high tension induced due to restrained shrinkage [24].

The stiffness (elastic modulus) of the repair material is also an important material 

property, as a material which is stiffer than the substrate concrete is able to attract more 

stress into the repair patch, whereas the opposite is true for a material which is less stiff 

than the concrete substrate [25]

The results of the shrinkage, creep, elastic modulus and modulus of rupture tests carried 

out on the repair materials used in the research will be presented in this chapter, but first 

a brief literature review will be presented.

Over the past number of years, the number of researchers investigating the properties of 

repair materials has increased considerably. Arguably the most frequently investigated

105

8.2 LITERATURE REVIEW

8.2.1 Shrinkage deformation

8 .2 . 1.1 Free shrinkage
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repair material property is drying shrinkage, or more correctly, volume change, as some 

repair materials have a tendency to expand as well as shrink. Emmons et al [26] report 

that shrinkage in the repair material can effect the durability of the repair patch along 

with the load carrying capacity of the repair patch. Shrinkage cracking on the surface of 

a repair material greatly affects the appearance of the repair patch. When cracking 

occurs in a repair material, remedial works may be required to seal the cracks to restrict 

the ingress of chlorides and carbon dioxide to the steel reinforcement level. This 

occurred with some repair materials monitored in the field studies of the present 

investigation.

The results of shrinkage tests carried out on 46 different proprietary repair materials in 

Canada [27] are presented by Morgan [28]. The tests were carried out using the ASTM 

Cl 57 test method. One of the materials showed a slight expansion at 30 days, whereas 

the rest exhibited varying amounts of free shrinkage. A typical structural concrete 

tested in the same manner displayed a drying shrinkage of 0.05%. Only 15% of the 

materials tested displayed a shrinkage which was less than this figure. Over 50% of the 

materials had shrinkage strains twice as great as the plain concrete, despite the 

manufacturers’ claims that they were expansive, non-shrinking or shrinkage 

compensated. The free shrinkage of a structural concrete tested in a previous study at 

Sheffield Hallam University [24] was 450 microstrain at 90 days (storage conditions: 

20°C and 55% RH). Only two of the thirteen commercially available repair materials 

(i.e. 15%, similar to the ratio presented by Morgan [28]) tested for shrinkage in the 

current research exhibited shrinkage strains lower than 450 microstrain, again despite 

the manufacturers’ claims that they were shrinkage compensated (storage conditions and
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specimen size were identical to the previous study [24]). 23% of the repair materials (as 

opposed to 50% presented by Morgan [28]) had shrinkage strains twice as great as the 

structural concrete. High shrinkage strains in repair materials were also found by 

Mangat and Limbachiya [29, 30]

Dector and Lambe [31] report on the Hong Kong Housing Authority (HKHA) 

specifications for repair mortars. Mortars are classified on the basis of their 

compressive strength, but other material properties which are equally important are also 

specified (see Table 8.1) [31]. The drying shrinkage, as shown in TM8 (Test Method 8) 

Table 8.1, is limited to 300 microstrain at 7 days for each class of mortar. The specimen 

size is 25 x 25 x 285mm (surface/volume ratio = 0.17) and storage conditions are 27°C 

and 55% RH - the effect of specimen size and curing conditions on free shrinkage is 

considered in section 8.2.1.4. Another requirement is that no cracks shall be evident at 

28 days when the repair material is cast in the Coutinho ring (the Coutinho ring made of 

steel restrains mortar from shrinkage which induces tension in the repair material - see 

Section 8.2.1.2).

The strict requirements of the specifications in Table 8.1 have undergone amendments 

and the four main classes have now been reduced to three broader classes (see Table 

8.2). TM8, for drying shrinkage, is also temporarily removed from the revised 

specification in Table 8.2 and is under review as few materials were found to have 

drying shrinkage less than 300 microstrain at 7 days as specified in Table 8.1. 50% of 

the materials tested in the current study exhibited free shrinkage which was less than
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Table 8.1 Technical specifications for repair mortars* [31]

1. Characteristics of repair mortar

Characteristics Mortar class

60 40 25 15

TM1 Range of compressive 

strength at 28 days, N/mm2

40-80 25-55 15-35 10-20

TM2 Flexural strength no specific requirements

TM3 Minimum tensile strength 

at 7 days, N/mm

2.5 2.0 1.5 1.0

TM4 Range of modulus of

elasticity at 28 days, kN/mm2 20-30 13-20 8-13 5-8

TM5 Minimum bond strength

at 7 days, N/mm2 2.5 2.0 1.5 1.0

TM6 Cracking in Coutinho Ring

test at 28 days nil nil nil nil

TM7 Minimum Figg air

permeability, seconds 250 200 150 100

TM8 Maximum drying shrinkage

at 7 days, microstrain 300 300 300 300

Minimum pull off stress at 1/4 x minimum bond strength

7 days, N/mm at 7 days
* Taken from Hong Kong Housing Department Manual o f  Structural Maintenance

300 microstrain at 7 days, but the larger specimen size of 100 x 100 x 500mm (which 

gives a lower surface/volume ratio of 0.04) and storage conditions of 20°C and 55% RH 

differ to the HKHA (Hong Kong Housing Authority) test conditions. These would 

result in lower free shrinkage in the repair materials compared with tests carried out 

according to HKHA conditions (surface/volume ratio 0.17, 27°C and 55% RH).
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Table 8.2 Amended version of Hong Kong Housing Authority specification,

April 1991 [31]

1. Characteristics of repair mortar

Characteristics

Class 40

Required Values 

Class 25 Class 15

TM1 Range of compressive

strength at 28 days, N/mm2

30-60 20-40 10-30

TM3 Minimum tensile strength 

at 7 days, N/mm2

2.0 1.5 1.0

TM4 Range of modulus of

elasticity at 28 days, kN/mm2

15-25 9-15 5-9

TM5 Minimum bond strength 

at 7 days,

2.0 1.5 1.0

TM6 Cracking in Coutinho Ring 

test at 28 days 

TM7 Minimum Figg air

0 0 0

permeability, seconds 200 150 100

The Australian standard for testing concrete, AS 1012, Part 3 [32] also takes an interest 

in drying shrinkage [31]. A drying shrinkage of not greater than 450 microstrain at 28 

days has been put forward. The specimen size is 75 x 75 x 285mm (surface/volume 

ratio = 0.06) and storage conditions are 23°C and 50% RH. 33% of the repair materials 

tested in the current study exhibited free shrinkage which was less than 450 micro strain 

at 28 days. The surface/volume ratio of 0.06 was similar to the Australian standard, but 

the storage conditions of 20°C and 55% RH would result in lower free shrinkage in the 

repair materials compared to tests carried out according to Australian conditions (23°C 

and 50% RH).
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The UK Department of Transport’s 1987/88 maintenance programme included the use 

of shrinkage-compensated flowable concretes on two concurrent trial repair contracts on 

the Midland Links Motorway viaducts. The repair materials were based on their 

specifications document, BD 27/86 [1]. With regards to the shrinkage of the repair 

materials, the New Civil Engineer [33] argues that these materials should show no sign 

of cracking after 56 days. This is a stringent requirement of a repair material. However, 

it is helped by the fact that most of the total shrinkage in a flowing repair material 

occurs in the first 24 hours (see Section 8.2.1.3, Table 8.4) when the degree of restraint 

is low. Nevertheless, only 25% of the repair patches at Sutherland Street Bridge 

(flowing repairs) were crack-free at 56 days, but other influences such as steel covers on 

the surface of the repair patches to protect the gauges contributed significantly to the 

short-term performance of the repair materials (full details are given in Chapter 9).

8.2.1.2 Restrained shrinkage

Test methods used to examine the effect of restrained shrinkage in a repair material 

generally rely on cracking to occur in the mortar within a given time period [31]. The 

most widely used test method for restrained shrinkage is to cast a repair material in the 

Coutinho Ring [34] (steel ring) and monitor the performance of the repair material over 

28 days. The Coutinho Ring serves a restraint for the shrinking mortar, therefore, 

tension is induced into the sample as the repair material tries to shrink. The repair 

material is assumed to have passed the restrained shrinkage test if  no cracks are evident 

at 28 days. This test is included in the draft Department of Transport standard, BD /94 

[35], which aims to supersede the current repair specification, BD 27/86 [1].
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The German BAM Trough Test [36] also evaluates the performance of a mortar under 

restrained shrinkage conditions. The mortar is cast in a 1 metre long grit blasted steel 

trough which provides a restraint to shrinkage. The appearance of cracks (in this case, 

cracks which are greater than 0.02mm) are monitored for 90 days.

Figure 8.1 [37] shows the difference between unrestrained and restrained shrinkage for 

two concretes modified with Acrylic and SBR latexes. The ratio of the acrylic modified 

concrete was 10 : 0.45 : 0.85 : 5 [mortar powder : admixture : water : aggregate 

(10mm)] whereas the ratio of the SBR modified concrete was 10 : 1.8 : 5 [mortar 

powder : admixture : aggregate (10mm)].

The free shrinkage during the first 24 hours was measured in a mould made of perspex 

[38] and subsequently the change in length of the hardened mortars was measured for up 

to 28 days in accordance to the recommendations given by Brull et al [38]. The 

restrained shrinkage in the repair material was measured from two repaired sections 

(repairs were carried out on reinforced concrete beams measuring 5200 x 150 x 250mm 

deep). The repairs were in the tensile zone. Restrained shrinkage measurements were 

taken by means of a demec extensometer gauge 10mm above the soffit of the repair. It 

is clear from Figure 8.1 [37] that the repair mortars are restrained against shrinkage by 

the substrate concrete and steel reinforcement within the repair patch. The free 

shrinkage for both repair materials is higher than the restrained shrinkage, although the 

restrained expansion in the early ages in the SBR material is unusually higher than the 

free expansion (Figure 8.1). The 14 day restrained shrinkage of the acrylic modified 

repair material is approximately 48% of the free shrinkage; similarly, the 14 day
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restrained shrinkage of the SBR modified repair material is approximately 78% of the 

free shrinkage (Figure 8.1).

8.2.1.3 Comparison between hardened and plastic shrinkage

Repair material manufacturers’ generally quote the 28 day drying shrinkage in their 

product brochures. Possibly equally important is the short term drying shrinkage, i.e. 

when the materials are in a plastic state. This occurs when the material has a negligible 

elastic modulus and strength, hence the induced stress due to restraint will be lower but 

may be significant to cause cracking due to the lower shrinkage. This short term 

shrinkage may in fact make up a considerable part of the longer term shrinkage. Both of 

these properties were evaluated by Emberson and Mays [25]. One material from each of 

the categories listed in Table 8.3 was selected for monitoring. The early (0-24 hours) 

and long term shrinkage (24 hours-16 months) was evaluated for all the repair materials. 

An apparatus which was first developed by Staynes [37] was used to measure the early 

age shrinkage. The long term free shrinkage (24 hours to 16 months) was measured 

using unrestrained prisms of 40mm square by 160mm in length. Vibrating wire strain 

gauges were attached to two opposite faces of each specimen for this purpose. The 

results of these tests are given in Table 8.4.

Table 8.3 Categories of systems for concrete patch repair [25]

Resinous Polymer modified Cementitious

materials cementitious materials materials

A: Epoxy mortar D : SBR modified G: OPC/sand mortar

B : Polyester mortar E : Vinyl acetate modified H: HAC mortar

C: Acrylic mortar F: Magnesium phosphate modified I: Flowing concrete
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Table 8.4 Shrinkage strain results [25]
Repair

material

Category

0-24h

Shrinkage 

24h-16 mths 0-16 mths 0 - 2 4  hours
/o

0-\6m onths
A Epoxy 170 50 220 77

B Polyester 4680 280 4960 94

C Acrylic 80 360 440 18

D SBR 920 740 1660 55

E Vinyl acetate 2400 1060 3460 69

F Mag. phosphate -830 -700 -1530 54 (expansion)

G OPC/sand 710 1140 1850 38

H HAC 350 760 1110 32

I Flowing 1120 650 1770 69

Note: Shrinkage strain (positive); expansion strain (negative)

A comparison of the early age shrinkage against the long term shrinkage is also given in 

Table 8.4. The modified repair mortars C, D & E, and the unmodified repair mortars G, 

H & I, show an early age shrinkage of between 18% and 69% of the total long term 

shrinkage. These mortars are similar to some of the repair materials tested in the current 

project. If most of the shrinkage occurs within the first 24 hours when the elastic 

modulus of the repair material is low and full bond to the substrate concrete and steel 

reinforcement is not yet achieved, the degree of restraint provided by the substrate 

concrete and steel reinforcement will be negligible. The repair material will therefore 

have some freedom of movement which will result in a low restrained shrinkage stress. 

Consequently, cracking in the repair material may be avoided. Repair materials most 

suitable for repair applications are likely to be the ones with low overall shrinkage and 

maximum proportion of the shrinkage occurring in the first 24 hours. On this basis the 

epoxy based material A is best (see Table 8.4). Material C is also suitable for repair



\snupivt o r r  uper uj tepuu inuiti wrucn injiuence uie lung lerrn perjurmance uj concrete repair

applications, since the long term shrinkage is relatively low (440 microstrain) even 

though the proportion of shrinkage occurring in the first 24 hours is also low (18% - see 

Table 8.4).

8.2.1.4 Influence of material constituents on shrinkage

8.2.1.4.1 Aggregates and cement

The material constituents that make up the mixture greatly affect the shrinkage in the 

repair material. Schrader [40] reports that shrinkage can be very different for various 

concretes and repair materials and pinpoints aggregate type as a major factor for 

influencing shrinkage. Mixtures with highly absorptive aggregates tend to shrink more 

and those with dense low absorptive aggregates tend to shrink less. Shrinkage increases 

whenever the cement content is increased, even if the water content is kept constant. 

Comparisons are also made between two commercial repair materials and typical 

concrete. Shrinkage was found to be greatest in the repair materials (2500 and 1000 

microstrain versus 300 microstrain in the plain concrete) The only essential difference 

between the two repair materials was that the material with the lower shrinkage (1000 

microstrain) contained more and larger aggregate. Consequently, it had less cement, 

less water and less shrinkage. A similar situation occurred in the present study, as repair 

materials with coarse aggregates in the mix exhibited lower free shrinkage than repair 

materials with fine aggregates. Elsewhere, investigations into the free shrinkage of 

commercially available repair materials [29, 30] also found that repair materials which 

contain coarse aggregate particles had less shrinkage than repair materials which did not 

contain coarse aggregate particles.
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Tests were conducted by Lea [41] on plain concretes in which the aggregate/cement 

ratio and the water/cement ratio was varied to determine the effect of these parameters 

had on the shrinkage of mortar and concrete. The results (see Table 8.5) show that 

increasing the aggregate/cement ratio reduces the shrinkage of the mortar and concrete. 

However, an increase in water/cement ratio increases the shrinkage.

Another paper [42] recommended the use of higher strength concrete with low water- 

cement ratio and superplasticisers or the use expansive cements in order to reduce 

shrinkage in repair materials. Emmons et at [26], on the other hand, argued that high 

strength is achieved with high cement contents and consequently, these materials will 

have high drying shrinkage.

8.2.1.4.2 Admixtures

The effect that polymers have on the shrinkage of repair materials is studied by Pinelle 

[43]. His results showed that the free drying shrinkage of an acrylic copolymer

Table 8.5 Shrinkage of mortar and concrete, 127mm square in cross-section, 

stored at a relative humidity of 50% and 21°C [41]

Shrinkage after 6 months (microstrain) 

Aggregate/cement ratio fo r  water/cement ratio of:

0.4 0.5 0.6 0.7

3 800 1200 - -

4 550 850 1050 -

5 400 600 750 850

6 300 400 550 650

7 200 300 400 500
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modified mortar was reduced by approximately 20% compared to an unmodified 

mortar. However, a vinyl acetate modified mortar did not have a significantly different 

free drying shrinkage compared to the unmodified sample. In tests carried out by 

Mangat and Limbachiya [29,30] where three commercially available repair materials 

were tested for shrinkage, it was found that shrinkage was greatest in polymer modified 

repair materials despite the presence of some fibre additives. It was difficult to isolate 

the effect that polymers had on the free shrinkage of the repair materials in the present 

study, since the free shrinkage of the modified repair materials varied between 325 

microstrain and 1311 microstrain, but it was generally found that the inclusion of coarse 

aggregates was more effective in reducing the shrinkage than the inclusion of polymers.

Dector and Lambe [31] compare the shrinkage of basic sand and cement mortar to 

cementitious repair materials to quantify the magnitude of drying shrinkage that repair 

materials exhibit (Figure 8.2). They report that technology has developed significantly 

which has led to a reduction in drying shrinkage of repair materials. Referring to Figure

8.2 [31], the free shrinkage of a basic sandxement mortar is given along with the free 

shrinkage of typical repair materials manufactured in 1989 and 1992 with the advances 

in cement chemistry and copolymer technology of that era. Clearly, the repair materials 

manufactured in 1989 and 1992 exhibit lower free shrinkage than the sandxement 

mortar, see Figure 8.2 [31]. This does not agree with the results of the current study and 

other studies [29, 30], as the results show that of the thirteen commercially available 

repair materials tested for free shrinkage, seven repair materials exhibited higher free 

shrinkage than a basic sand/cement mortar (ratio 3:1), whereas the other six exhibited 

free shrinkage that was lower than the reference sand/cement mortar.
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8.2.1.5 Influence of specimen size on the shrinkage of repair

materials

Shrinkage of a repair material can be obtained by preparing samples and monitoring the 

deformation which occurs over a period of time. There are various standards world

wide for measuring shrinkage strains in concrete/repair materials, a list of some are 

given in Table 8.6 [31]. It can be seen from Table 8.6 that the specimen size and curing 

conditions vary from standard to standard. Shrinkage is very much affected by the 

specimen size and shape and storage conditions [29-31]. Figure 8.3 [31] shows the 

drying shrinkage results for a repair material tested under UK conditions (20°C, 65% 

RH), cast as a large prism (75 x 75 x 270mm, surface/volume ratio = 0.06) and HKHA 

conditions (27°C, 55% RH) cast as a small prism (25 x 25 x 285mm, surface/volume 

ratio = 0.17). The smaller prism specified by HKHA gives a much greater surface area 

to volume ratio (0.17 versus 0.06) which encourages more rapid drying of the specimen. 

Consequently, greater drying shrinkage occurs in both the early ages, which offsets the 

expansion in the repair material, and in the long term (see Figure 8.3). On the other 

hand, the lower surface/volume ratio of the UK specimens results in lower free 

shrinkage, hence, the benefit of having expansion in the repair material in the early ages 

is not lost. This is shown by comparing the initial expansion in the repair material 

tested under UK conditions (surface/volume = 0.06) with the shrinkage in the repair 

material tested under HKHA conditions (surface/volume = 0.17, Figure 8.3). Similarly, 

greater surface/volume ratios are also evident in USA (ASTM) and German (DIN) 

standards (see Table 8.6) Higher drying shrinkage will also be evident in repair 

materials which comply with the Hong Kong standard since the storage conditions of
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Table 8.6: Drying shrinkage - Length change measurements [31]

Specification/ Conditions Prism Dimensions
Surface
Volume

standard (mm) ratio

HKHA 27°C, 55% RH 25 x 25 x 285 0.17

Australian

AS 1012 Part 3-1970 23°C, 50% RH 75 x 75 x 285 0.06

USA

ASTM C157 - 1989 23°C, 50% RH 25 x 25 x 285 0.17

UK

BS 1881 Part 5-1970 This standard does 

not relate to drying 

shrinkage therefore 

test conditions are 

not included here

75 x 75 x 270 0.06

Germany

DIN 52450 - 1985 Various: 20°C,65%RH 

23°C, 50% RH 

20°C, 45% RH

40 x 40 x 60 0.13

20°C, 95% RH min

20°C, Wet

relatively higher temperature (27°C) and lower relative humidity (55%) will increase the 

shrinkage in these specimens. In the current study, the test specimens measured 100 x 

100 x 500mm (surface/volume ratio = 0.04) and were cured at 20°C and 55% RH. 

Therefore, this specimen size and curing condition will lead to lower free shrinkage 

compared with those tested under specifications listed in Table 8.6.
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8.2.2 Creep deformation

The effect that creep will have on the performance of a repair patch is widely reported 

[29, 30]. Cusson et al [44] report that creep is the continuous deformation of a member 

subjected to a sustained stress. It can result in reduced load bearing effectiveness in the 

repair material and also result in load transfer from the repair material to the substrate 

concrete. In the case of structural repairs loaded in compression, the repair material 

must posses very low creep potential in order to effectively attract load. On the other 

hand, in the case of repair patches which are in tension, creep can be beneficial, as it can 

reduce or cancel the adverse effect of shrinkage in the repair material [45]

8.2.2.1 Compressive creep

Compressive creep occurs in cementitious materials when subjected to a sustained stress 

in compression. The compressive creep strain can be divided conveniently into three 

components: elastic, delayed elastic and flow creep [46], as defined graphically in 

Figure 8.4 [46] for concrete under load between time tx and t2. Immediately after 

application of the load at tl9 an instantaneous elastic strain is evident in the concrete. 

The concrete remains under load between tx and t2, and exhibits a creep strain in the 

process, which includes a delayed elastic component. Upon removal of the load at t2, an 

immediate elastic recovery is evident in the concrete. Creep recovery then occurs over a 

period of time which has two phases: rapid initially and slow in the later stages. The 

creep recovery is also evident as the delayed elastic creep. Creep strain can be defined 

as the sum of the flow and delayed elastic components (see Figure 8.4).
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8.2.2.1.1 Influence o f material constituents on creep

Emberson and Mays [25] tested nine different repair material categories, as listed in 

Table 8.3, to obtain information on the compressive creep characteristics of repair 

materials. The repair materials were loaded to a compressive stress of 10 N/mm at an 

age of 28 days. The initial strain on loading and subsequent increases of strain were 

monitored using a pair of vibrating wire strain gauges attached to opposite faces of each 

specimen. Table 8.7 shows the gross and net creep strains in the repair materials. The 

net creep strains are obtained by subtracting the free shrinkage measured over the same 

time period on identical specimens from the gross creep strains. The net creep strains 

only are of interest in this section and these are discussed below.

The conclusions drawn from these results (net creep strains) are:

• material C, the acrylic resin mortar, has a very high creep strain (4110 microstrain) 

after 15 months

Table 8.7 Compressive creep strain results (microstrain) [25]

Repair Category Shrinkage Gross creep Net creep

material 1-16 months 1-16 months 1-16 months

A Epoxy 0 720 720

B Polyester 10 1380 1370

C Acrylic 100 4210 4110

D SBR 200 430 230

E Vinyl Acetate 420 2020 1600

F Mag. Phosphate 320 330 10

G OPC/Sand 440 840 400

H HAC 280 1240 960

I Flowing 210 790 580
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• the vinyl acetate modified system (material E) also has a high creep strain (1600 

microstrain)

• the lowest creep strains were exhibited by SBR modified and magnesium phosphate 

systems (materials D and F) (230 and 10 microstrain respectively)

• the net creep of the flowing system (material I, 580 microstrain) resembles more 

closely that of sand-cement mortar (400 microstrain).

Mangat and Limbachiya [29, 30] also found that compressive creep strains were greatest 

for repair materials which contained styrene acrylic copolymer, compared to other repair 

materials. Similar observations were encountered in the present study, as the repair 

materials with the highest creep strains were those modified with styrene acrylic. The 

creep strains of the sand/cement mortar and flowing materials resembled the creep 

strains of similar materials tested by Emberson and Mays [25].

8.2.2.1.2 Creep coefficient

Table 8.8 summarises the creep coefficient, <|) (creep strain divided by instantaneous 

elastic strain) as observed by Emberson and Mays [25] for repair materials subjected to 

a sustained compressive stress. The net creep coefficient for materials C-E and G-I 

(similar to those tested in the current project) ranged from 0.9 to 8.6 (0.9 to 3.3 if the 

unusually high creep coefficient of material C is omitted). The range of creep 

coefficients of the repair materials tested in the current project ranged between 0.54 and 

3.29 which are marginally lower to those tested previously [25] (with the exception of 

material C). The difference in creep coefficients between the study conducted by
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Table 8.8 Creep coefficient, (|), at age 16 months (age of loading 28 days, stress 10 

(N/nun2) [25]

Repair Material A B C D E F G H I

Net creep factor 1.4 3.3 8.6 0.9 2.8 0.1 1.1 3.1 2.2

Stress/strength 0.14 0.10 0.14 0.13 0.17 0.13 0.12 0.13 0.09

Emberson and Mays [25] and the present study may be due to factors such as (i) 

different repair material constituents, such as cement content and aggregate 

type/content, (ii) a constant stress of 10 N/mm was applied to the repair materials tested 

previously whereas a stress/strength of 0.30 was applied to the repair materials in the 

present study, (iii) the curing and storage conditions may have differed to those of the 

present study (information on this is absent in the previous study) and (iv) the specimen 

size was 40 x 40 x 160mm previously compared to the specimen size of 100 x 100 x 

500mm in the current investigation which may have an influence on the results.

Figure 8.5 [37] shows the development of creep coefficient of three repair concretes 

which were modified with acrylic, SBR and styrene acrylic. All concretes were loaded 

14 days after casting. No information was given on the curing regimes adopted. 

Referring to Figure 8.5, the creep coefficient of the acrylic, SBR and styrene acrylic 

modified concretes was approximately 2.17, 1.73 and 1.2 respectively at 14 days. The 

creep coefficients of the acrylic and SBR modified mortars tested by Emberson and 

Mays [25] was 8.6 and 0.9 respectively, which differed significantly to the values 

obtained by Yuan and Marosszeky [37]. The differences were possibly due to the 

material constituents: Emberson and Mays [25] tested mortars whereas Yuan and 

Marosszeky [37] tested modified concretes. The styrene acrylic modified repair
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materials in the current project exhibited creep coefficients ranging between 1.25 and 

3.29, which encompass the coefficient of 1.73 found by Yuan and Marosszeky [37].

A high creep coefficient will result in a low effective elastic modulus, which will reduce 

the load bearing effectiveness of the repair material. On the other hand, it will allow 

significant stress relaxation which may prevent cracking in the repair material when 

high tensile stresses are induced due to restrained shrinkage.

Figure 8.6 [37] shows the development of creep coefficient of an SBR modified 

concrete for different ages of loading. The repair concrete was loaded at an age of 2, 4, 

7, 14, and 28 days after casting. The creep coefficients up to 14 days are presented. A 

summary is given in Table 8.9. It is clear from Figure 8.6 that the creep coefficient is 

higher for materials loaded at earlier ages (compare the creep coefficient for t = 2 days 

with the creep coefficient for t = 28 days in Figure 8.6). The creep coefficient of the 

repair concrete loaded at 2 days after casting is 2.18 times greater than the creep 

coefficient of the repair concrete loaded 28 days after casting. This ratio decreases to

Table 8.9 Ratio of early age creep coefficient to 28 day creep coefficient for SBR 

modified concrete (from Figure 8.6 [37])

2

Age t: (days) 

4 7 14 28

Creep coefficient 2.49 2.10 1.81 1.19 1.14

Ratio t(days) 
28 (days) 2.18 1.84 1.59 1.04 1.00
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1.84, 1.59 and 1.04 for repair concretes loaded 4, 7 and 14 days respectively after 

casting. Based on the data given in Table 8.9, repair concretes loaded at early ages 

exhibit higher rates of creep.

8.2.2.2 Tensile creep

Most of the work on the creep of concrete (or repair materials) has been concerned with 

specimens under uniaxial compression [46]. However, it has also been recognised that 

time-dependent tensile deformations [47-51] are of great importance when the 

possibility of cracking has to be considered. This is particularly relevant to the 

performance of repair materials, as restrained shrinkage will induce tensile stress in the 

repair material. This will undoubtedly bring the durability of the repair material into 

question, but cracking may be avoided if stress relaxation occurs due to tensile creep in 

the repair material.

8.2.2.2.1 Mechanics o f tensile creep

In an actual repair situation, shrinkage is restrained by the bond to the substrate concrete 

and steel reinforcement [43]. Under these restrained conditions, shrinkage of the 

material results in tensile stress. If the unrestrained shrinkage and tensile modulus of 

elasticity are known, then the resultant stress is calculable by: [43]

((7<)f =  ( £ s h ) t ( E  mod)<

Equation 8. 1
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where

<jt = tensile stress, MPa 

Esh = free shrinkage strain, mm/mm 

E  mod = tensile modulus of elasticity, MPa 

( )t = value at time t, days

Equation 8. 1 assumes that the repair material is fully restrained from shrinking by the 

substrate concrete, therefore the tensile stress induced is a product of the free shrinkage 

strain and the tensile elastic modulus of the repair material. The current research has 

shown that this is not always the case, as stiffer repair materials are able to transfer 

some of the shrinkage strain to the less stiff substrate concrete, thus reducing the tensile 

stress induced [52].

When shrinkage occurs under restrained conditions, the strain can be absorbed by two 

mechanisms before the materials cracks [43]. These are elastic strain and creep strain in 

the repair patch in tension. Equation 8. 1 allows only for the elastic strain. However, 

the creep of the material must be taken into account to better represent the actual 

conditions [53-56]. When repair mortars are in a state of tension, tension creep serves 

as a kind of “relief valve” permitting restrained shrinkage to occur with a lower resultant 

stress [43] (also known as stress relaxation). This contribution of tensile creep may be 

substantial, and further, it is not necessarily predictable based on compressive creep data 

[57]. Assuming the drying shrinkage is completely restrained (current research has 

shown that this occurs when the elastic modulus of the repair material is less then the
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elastic modulus of the substrate concrete), the tensile creep, when known, can be 

accounted for in general terms, by modifying Equation 8. 1 as follows: [43]

(C J / ) /  =  (Gsh  — S c r ) / ( .Z ?  m od)/

Equation 8. 2

where

scr = tensile creep at time, t, mm/mm

The existence of tensile creep, therefore, serves to reduce the tensile stress in the repair 

material. Cracking may be avoided as a result.

8.2.2.2.2 Influence o f material constituents on tensile creep

Data on tensile creep of three repair mortars was obtained by Pinelle [43]. The test was 

first conducted on an unmodified mortar (cementdime:sand = 1:0.14:1.7). The 

water:cement ratio was 0.45. A second sample was prepared by modifying the original 

mixture with an acrylic copolymer at a polymerxement ratio of 0.10. A third sample 

was prepared by modifying the original mixture with a vinyl acetate/butyl acrylate 

combination, again at a polymer/cement ratio of 0.10. The waterxement ratios for the 

second and third mixtures also remained constant at 0.45.

A section through a typical briquette used in the tensile creep tests is given in Figure 8.7 

[43]. The specimens (250 x 25 x 13mm) were cured in moulds for the first 24 hours at 

20°C and 50% RH. Upon demoulding, 11.34 kg weights were applied to the briquettes,
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as shown in Figure 8.7 [43]. The stress/strength ratio was not given. Under the constant 

tensile load, the length change over time was measured using a mechanical strain gauge. 

Specimens of identical geometry were cast at the same time and the free shrinkage was 

monitored over the same time period. The shrinkage readings were then compared with 

the readings from the specimen under load. All specimens were stored at laboratory 

ambient conditions of 20°C and 50% RH during the duration of the study. The creep 

strain was calculated by

where

ALloaded 

tsLunloaded

ALelast

L

Figure 8.8 [43] shows a plot of specific tensile creep strain versus time for the three 

repair mortars. It shows that the acrylic copolymer lowered the tensile creep by 

approximately 35% relative to the unmodified mortar, whereas the vinyl acetate 

increased the tensile creep by approximately 60% compared to the tensile creep of the 

unmodified mortar.

. ( A Lloaded —  A Lunloaded^t —  ( A Lelast^t =  1
( 8  c r ) t  — -------------------------------------------------------------------------------------------

L
Equation 8. 3

= length change at time t of loaded specimens,

= length change at time t of specimens allowed to shrink 

freely,

= elastic length change at time of loading (t = 1 day),

= gauge length, mm
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8.2.2.3 Relationship between compressive and tensile creep

It is normally assumed that specific creep (of concrete) in tension is similar to the 

specific creep in compression [46, 58, 59]. However, research has also shown that 

specific compressive and tensile creep in cementitious materials may not be the same 

[60, 61]. Brooks et al [47] summarise a review into the creep of concrete which was 

carried out by Neville [62]. They state that for young concrete under numerically equal 

stresses and in the same environment, creep in tension is equal to or greater than creep 

in compression (the difference in percentage terms was not given). For example, with 

sealed concrete, there is little difference in the magnitude of tensile and compressive 

creep but, under saturated and drying conditions, tensile creep is greater than 

compressive creep. For older concrete stored in a drying environment, Illston [46] 

suggests that tensile creep may become less than compressive creep.

Based on the results of tests on the strain of concrete under sustained axial stress [46], it 

is reported that the strain of concrete in tension is similar to that in compression in the 

following respects:

• at stress greater than about 50% of ultimate, large plastic strains occur which are 

attributed to microcracking in the concrete

• creep reduces as the age of the concrete increases

Applying the above conclusions to the results obtained from the repair patches in the 

field, it is reasonable to assume that the compressive stress in the repair material will not 

exceed 50% of the ultimate compressive stress. However, the results of this project 

show that high tensile stresses do exist as a result of the restraint to shrinkage provided
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by the substrate concrete and steel reinforcement which may in fact be greater than 50% 

of the ultimate tensile stress. Therefore, based on Elstons’ conclusions [46], the creep in 

compression may not be the same as creep in tension for a repair material in situ.

Since the rate of creep diminishes with increasing age [46], it is an advantage, if 

possible, to delay the transfer of compressive stress to a repair material (i.e. application 

of an external compressive load). This would allow the repair material to mature and 

would result in lower creep when stressed. This conclusion was also observed by Yuan 

and Marosszeky (see Figure 8.6 [37]).

Differences between compressive and tensile strains also exist [46]:

• The initial rate of creep is higher in tension than in compression, but this position 

may be reversed later.

Finally, the strains under a cycle of compression stress are unaffected by a previous 

cycle of tensile stress [46]. This conclusion is very relevant to a repair material applied 

to an unpropped member in compression. A repair material will exhibit a tensile stress 

in the early stages after application due to the restraint to shrinkage provided by the 

substrate concrete. Assuming the repair material remains uncracked throughout this 

period (and the elastic modulus of the repair material is greater than that of the substrate 

concrete to begin with), the repair material will attract external load from the substrate 

concrete. This compressive load may not only neutralise the tensile stress in the repair 

patch, but may also cause a compressive stress to occur in the repair material. 

Therefore, although both tensile and compressive stresses may occur in a repair material
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in the field, creep properties of a repair material can be related to the results without 

concern for the stress history of the repair material.

Creep tests in both compression and tension were also carried out by Brooks and 

Neville [47]. A single type of concrete (proportions by weight 1:2:4) was used 

throughout the tests. The water:cement ratio was 0.5. From the age of one day to 28 

days, the specimens were stored in water at 22°C, and thereafter either stored 

continuously in water or in air at a relative humidity of 60%. Creep was determined

from the ages of 28 days for periods up to 84 days. The applied stresses were 14.0

2 2 N/mm in compression and 0.93 N/mm in tension (the stress/strength ratios were not

given). Also, at 56 days, the specimens were unloaded and allowed to recover. Results

show [47] that at 28 days, the initial rates of basic creep in tension and in compression

are similar but at a later age (approximately 30 days after loading), the rate of

compressive creep diminishes whereas the rate of tensile creep does not diminish with

time. However, the initial rate of total creep (basic + drying) in tension is greater than

the rate of total creep in compression, although later in the test, the rates are similar.

8.2.2.3.1 Compressive and tensile creep recovery

Creep recovery of concrete specimens loaded in tension and compression was also 

studied by Brooks and Neville [47]. Specimens were unloaded after 28 days under load. 

The final values are given in Table 8.10 [47]. Table 8.10 indicates that creep recovery 

differs for both tensile and compression states of stress. Concentrating on the 

specimens which were cured in water (Table 8.10), 40% of the basic creep in
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Table 8.10 Creep recovery [47]

Creep recovery ( % o f  final creep)

Storage After After

compression tension

In water 40.0 -8.7

In water then air 16.3 22.4

compression was recovered whereas the tensile creep recovery showed a negative 

recovery (this is possibly associated with additional swelling over and above that given 

by the average of the control specimen). Nevertheless, a small recovery is still indicated 

if the negative recovery is ignored, which implies that tensile basic creep is mainly 

irrecoverable for specimens stored in water [47]. For specimens stored in air from 28 

days onwards, the compression recovery is 16.3% of the final creep as opposed to the 

higher 22.4% recorded for tensile creep recovery. Illston [46] reported that there is no 

rapid delayed elastic strain in tension and that concrete in tension shows slow delayed 

elastic strain

To summarise, the experimental difficulties of testing concrete in tension, as reported by 

Illston [46], are such that it is perhaps too much to hope that full agreement can be 

reached between the results of different researchers. Therefore, based on this and on the 

contradicting results of the literature review, unless tensile and compressive creep 

properties of a specific repair material are fully investigated for use in the design of a 

repair patch, the tensile creep properties can be assumed to be similar to the 

compressive creep properties.
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8.2.3 Elastic modulus of repair materials

8.2.3.1 Influence of material constituents

All repair materials under observation in this research are based on a cementitious 

binder, with or without polymer modification. Polymers are normally added to the 

mixture to give superior mechanical properties, but this is not always the case. 

Kuhlman [63] states that one of the many properties of hardened concrete which 

changes due to the addition of latex is the elastic modulus. This may result in an 

increase in the elastic modulus if a hard film is added, conversely, the elastic modulus 

may be reduced by approximately 15% to that of normal concrete if  a soft film is used. 

Repair materials with polymer modifications (and coarse aggregates) in the current 

project generally exhibited higher elastic modulii than those without modification.

Figure 8.9 [43] shows the development of tensile elastic modulus versus time for the 

three repair materials as described in Section 8.2.2.2.2. All data points in Figure 8.9 

[43] are at least the average of three specimens. The tensile elastic modulus of the vinyl 

acetate modified mortar was approximately 69% of the tensile elastic modulus of the 

unmodified mortar at 100 days, whereas the tensile elastic modulus of the acrylic 

modified mortar was only 34% of the 100 day value of the unmodified mortar.

The development of tensile elastic modulus is very important in the early stages of a 

repair material after application. Tensile stress will be evident in the repair patch due to 

the restraint to shrinkage provided by the substrate concrete. The magnitude of this 

stress will be directly related to the virtual tensile strain due to the restraint to shrinkage 

and the tensile elastic modulus of the repair material. Most of the shrinkage in the
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repair material occurs within the first 28 days after application, the same period it takes 

the tensile elastic modulus to develop (see Figure 8.9). A summary of Figure 8.9 is 

given in Table 8.11. Referring to Table 8.11, the average 7 day tensile elastic modulus 

is approximately 65% of the 28 day value. This average increases to 85% and 96% at 

14 and 21 days respectively. Therefore, in order to calculate a more accurate tensile 

stress in a repair material in the early ages, the tensile modulus of elasticity should be 

appropriately reduced as shown in Table 8.11.

8.2.3.2 Relationship between compression and tension elastic

modulus

The relationship between compression and tension elastic modulus of concrete (both 

static and secant) is given by Brooks and Neville [47]. The mix proportions by weight 

(cement:sand:coarse aggregate) of the concrete used in the tests was 1:2:4. The 

waterxement ratio was 0.50. Referring to Table 8.12 [47], the static modulus of 

elasticity in tension, obtained under low stress, is slightly lower than the static elastic 

modulus of elasticity in compression obtained under high stress. This applies to

Table 8.11 Development of tensile elastic modulus (from Figure 8.9 [43])

Percentage o f 28 day tensile elastic modulus at:

Material 7 days 14 days 21 days

(%) (%) (%)

Unmodified 60 83 95

Vinyl Acetate 59 81 94

Acrylic 75 92 98

Average: 65 85 96
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Table 8.12 Static modulus of elasticity at the age of 84 days [47]

Static modulus o f elasticity

Storage (GN/m2)

Compression Compression Tension % difference

(high stressj * (low stress) * (low stress) [ tens v comp (high)]

In water 36.8 33.5 33.6 10

In air from the 35.7 32.4 33.2 8

age of 28 days

Average: 9

Note: * High stress refers to a maximum stress equal to 0.3 x 28 day compressive
strength
Low stress refers to a maximum stress equal to 0.3 x 28 day tensile strength

specimens cured in water and in air from the age of 28 days (Table 8.12). This 

difference is attributed to the standard method for obtaining the elastic modulus of 

cylindrical specimens (BS 1881, Part 121 [3]). The static elastic modulus is measured 

by means of a test in which a cylinder is loaded to just above one-third of a 

corresponding cube stress and then cycled back to zero stress [64]. This preloading 

cycle is repeated at least three times [3]. This removes the effect of initial “bedding in” 

and minor stress redistribution in the concrete under load. Load is then reapplied and 

the stress-strain curve exhibits negligible curvature at high stresses. On the other hand, 

when low stresses are applied, the curve is concave to the stress axis due to microcracks 

which are capable of opening and closing with load. As a result, when low stresses are 

applied to both compression and tension tests, the static modulus in compression is 

similar to that in tension (see Table 8.12) [47].

Table 8.13 [47] shows that the secant modulus in tension is greater than the secant 

modulus in compression for concrete (the secant modulus, obtained from BS 1881 [3],
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Table 8.13 Secant modulus of elasticity in compression and in tension [47]

Secant modulus at loading 

Storage (GN/rn)

Compression Tension

Stored in water throughout, loaded at 28 days, unloaded at 56 days 29.0 34.3

Stored in air from 28 days onwards, loaded at 28 days, unloaded at 56 days - -

Stored in water throughout, loaded at 28 days, unloaded at 84 days 29.0 34.3

Stored in air from 28 days onwards, loaded at 28 days, unloaded at 84 days - -

Stored in water throughout, loaded at 56 days, unloaded at 84 days 35.4 36.7

Stored in air from 28 days onwards, loaded at 56 days, unloaded at 84 days 32.9 35.4

% increase in elastic modulus when stored in water 8% 4%

2
is the stress divided by strain obtained from a basic loading level of 0.5 N/mm and an 

upper loading level of one-third of the compressive strength of the concrete). The 

reason for this is again attributed to the shape of the stress-strain curve. The secant 

modulus decreases with an increase in stress [65] because, at low stresses, the stress- 

strain curve, as before, is concave to the stress axis owing to the closing of microcracks. 

At high stresses, the stress-strain curve is convex owing to the opening of microcracks 

and creep. Hence, since secant modulus in tension is determined at low stress, a higher 

value is recorded [47]. Table 8.13 [47] also shows that the secant modulus of elasticity, 

for both compression and tension, increases with age [47]. The increase is greater for 

specimens stored in water. Brooks and Neville [47] attribute this increase in elastic 

modulus to adsorbed water in the saturated specimens. Applying this conclusion to 

repair materials in the field, enhanced curing techniques will not only reduce the 

shrinkage strain in the repair material, but also increase the elastic modulus of the repair 

material by approximately 8% in compression and 4% in tension.
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Since the modulus of elasticity for repair materials will be obtained in accordance with 

BS 1881 [3], the static modulus of elasticity is more important than the secant modulus 

of elasticity. Although Brooks and Neville [47] differentiates between high stress (0.3 x 

28 day compressive strength) and low stress (0.3 x 28 day tensile strength) to account 

for the difference in compressive and tensile elastic modulus, nevertheless, stresses 

equal to j  of the compressive and tensile strength would be used to determine the 

elastic modulus as specified in BS 1881 [3]. These are similar to the stresses used 

previously [47] (i.e. “high” stress for compressive testing and “low” stress for tensile 

testing). Therefore, based on previous investigations into the modulus of elasticity for 

concrete [47], the tensile modulus of elasticity is approximately 9% lower than the 

compressive modulus of elasticity (see Table 8.12).

8.2.3.3 Selection of repair material

The Hong Kong Housing Authority requirements for acceptable repair mortars is set out 

in Table 8.14 [66]. The mortar is classified into one of three groups based on its 

compressive strength. The correct material is then selected for repair based on the 

relationship between the mortar strength and elastic modulus, and the compressive 

strength of the concrete substrate (see Table 8.14 [66]). For example, a repair mortar in 

Mortar Class 40 would exhibit a 28 day compressive strength of between 30-60 N/mm 

and a 28 day elastic modulus of between 15-25 kN/mm . This repair material would 

then be suitable for repairing a deteriorated member with a substrate concrete 

compressive strength of between 12-31 N/mm . Based on this criteria, mortar selection 

is based on a knowledge of the repair material and concrete substrate strengths rather 

than the elastic modulus of the two materials. Since the HKHA requirements do not
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Table 8.14 Relationship between mortar and concrete properties [66]

Mortar Class 40 25 15

Range of (28 days) compressive strength of mortar (MPa) 30-60 20-40 10-30

Range of (28 days) modulus of elasticity of mortar (GPa) 15-25 9-15 5-9

Applicable range of concrete substrate strengths (MPa)* 12-31 7-19 4-12

Modulus o f elasticity o f substrate concrete [23] <24-26 - -

* based on actual strengths fo r  whole blocks, derived from random core tests [67]

require the elastic modulus of the substrate concrete to be known, Table 8.14, 

nevertheless, shows the equivalent modulus of elasticity of the substrate concrete based 

on the relationship between compressive strength and modulus of elasticity [23]. The 

lowest substrate concrete strength in Table 8.14 is 12 N/mm , but the minimum strength 

specified in the compressive strength/elastic modulus relationship is 20 N/mm [23]. A 

substrate concrete with a strength of 20 N/mm will exhibit a mean elastic modulus of 

approximately 24 kN/mm . Similarly, the modulus of elasticity of a concrete with a 

strength of 31 N/mm2 will exhibit a mean elastic modulus of approximately 26 kN/mm2. 

These values are shown in Table 8.14. Comparing the elastic modulus of the substrate 

concrete (<24-26 kN/mm ) with the elastic modulus of the repair material (<15-25 

kN/mm ), the elastic modulus of the substrate concrete is greater than the elastic 

modulus of the repair material. Results from the current research show that this would 

have an adverse influence on the performance of the repair, since the elastic modulus of 

the repair material should be greater than the elastic modulus of the substrate concrete 

[52]. This would enable a portion of the shrinkage strain to be distributed to the 

substrate concrete, hence reducing the tension induced in the repair material due to 

restraint. It will also allow external load to be transferred into the repair patch in the 

long term.
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8.2.4 Tensile strength of materials

To determine the direct tensile strength of a repair material, a uniaxial test is needed 

which is simple, economic and truly uniaxial [68]. The most successful methods have 

been those in which the tensile loads have been applied to the concrete through friction- 

grip systems [69-72], through bars embedded in the concrete [68, 73-75] or through 

plates stuck onto the end of the specimens [76].

Due to the problems associated with direct tensile testing, Domone [77] reports that 

several indirect methods of tensile testing have been developed over a period of years, 

notably the modulus of rupture and cylinder-splitting tests [78]. In order to determine 

the relationship between direct tension, cylinder splitting and modulus of rupture, a 

series of uniaxial tensile tests were carried out on concrete [77] using an uniaxial test 

method developed by Elvery and Haroun [79]. The results of the uniaxial tests were 

compared to the results of cylinder splitting and modulus of rupture tests. The ratio of 

direct tension:cyclinder-splitting:modulus of rupture was found to be 1:1.5:2.2.

Brooks and Neville [47] investigated the relationship between direct tension and cube 

strength, cylinder splitting and modulus of rupture and found these properties to be 

related. The relationship between modulus of rupture and direct tension for concrete is 

given in Figure 8.10 [47], Two relationships are given; one for dry stored specimens 

and the other for wet stored specimens. The equations for the regression lines are also 

given. Figure 8.10 also shows the relationship between direct tension and modulus of 

rupture for concrete as presented by Neville [65]. This relationship is linear and results 

in a ratio of direct tension to modulus of rupture of approximately 1:1.7.
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This ratio will give different tensile strengths compared with the estimation given by 

Brooks and Neville (see Figure 8.10 [47]), but relationships involving modulus of 

rupture are dependent upon storage conditions [47] and properties of the mix [65]. 

Neville’s relationship also gives a higher direct tension strength compared with the 

findings of Domone [77].

Figure 8.11 combines the findings of two researchers [28, 37] into the tensile strength of 

repair materials. Referring to Figure 8.11 [37], the development of tensile strength for 

three repair concretes which were modified with styrene acrylic, SBR and acrylic are 

given (details of these concretes are given in Section 8.2.1.2). The strengths were

determined using a direct tensile test [76]. The tensile strengths ranged between .

2 2 
approximately 1.87 N/mm for the acrylic modified concrete and 4.7 N/mm for the

styrene acrylic modified concrete at 28 days. The strength of the SBR modified

concrete was approximately 4 N/mm at 28 days. High tensile strengths in the early

ages (0 to 28 days) are also important so that cracking due to the restraint to shrinkage is

avoided. Referring to Table 8.15, the acrylic modified concrete achieved the highest

proportion of the 28 day strength at 7 days (86%) while this value for the SBR and

styrene acrylic modified concretes was 67% and 70% respectively [37]. The results of

direct tensile strength tests on SBR modified Portland cement mortars are also shown in

Figure 8.11 [28]. The mortar was cured at 23°C and 50% RH - this information about

curing conditions was not available for the previous tensile tests [37]. The 28 day

tensile strength is 5.62 N/mm , higher than the value presented by Yuan and

Marosszeky [37] of 4.7 N/mm2 for SBR modified concrete (see Figure 8.11 and Table

8.15). The 7 day value of 5.69 N/mm2 was in fact marginally higher than the 28 day
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Table 8.15 Direct tensile strengths of polymer modified repair materials [28, 37]

Repair

material

Exposure

conditions

Direct tensile

strength at: (MPa)

7 days 28 days

Iday 
28 day

(%)

Acrylic concrete [37] NA 1.61 1.87 86

SBR concrete [37] NA 2.71 4.05 67

Styrene acrylic NA 3.28 4.68 70

concrete [37]

SBR mortar [28] 23°C, 50% RH 5.69 5.62 -100

value (see Table 8.15), indicating rapid tensile strength gain in the early stages for this 

repair material (see Figure 8.11 and Table 8.15).

8.3 EXPERIMENTAL PROGRAMME

An experimental study was carried out to establish the free shrinkage, creep and 

modulus of rupture properties of all the repair materials used in the project, along with 

the elastic modulus of both the repair materials and substrate concretes. This will allow 

the structural interaction between the repair patch and the substrate concrete to be 

related to the basic material properties.

8.3.1 Details of repair materials

Details of the repair materials used in the experimental programme are given in Table 

8.16. These include fifteen repair materials which were used on site, four of which were
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TABLE 8.16 Details of repair materials

Material Density o f fresh 

material (kg/m3)

Method o f repair 

application

Water

content

G1 2250 spray 3.1 litres per 25kg bag

G2 2250 spray water: cement ratio = 0.38

G3 2200 spray water:cement ratio = 0.39

G4 2100 hand 3.5 litres polymer per 30kg pack

G5 1725 hand 3.5 litres per 30kg bag

G6 1250 hand 5.0 litres per 25kg bag

LI 2210 spray 2.9 litres per 25kg bag

L2 2100 spray 2.8 litres per 25kg bag

L3 1850 spray 4.5 litres per 25kg bag

L4 2270 spray 2.91 litres per 25kg bag

L5 2270 spray 2.91 litres per 25kg bag

SI 2250 flow 2.8 litres per 25kg bag

S2 2270 flow 3.8 litres per 30kg bag

S3 2270 flow 4.0 litres per 30kg bag

S4 2290 flow water/cement ratio = 0.48

L3(L) 1850 hand 4.5 litres per 25kg bag

G4(L) 2100 hand 3.5 litres polymer per 30kg pack

G5(L) 1725 hand 3.5 litres per 30kg bag

G6(L) 1250 hand 5.0 litres per 25kg bag

also used in the laboratory investigation of repaired concrete beams. The range covers 

all materials used for hand applied, sprayed and flowing repairs. Detailed descriptions 

of these repair materials are given in sections 4.3.1 and 4.3.2 (Gunthorpe Bridge), 5.3.1 

(Lawns Lane Bridge) and 6.3.1 (Sutherland Street Bridge).
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8.3.2 Casting and curing

100 x 100 x 500mm prism specimens of repair materials were used for shrinkage, creep 

and modulus of rupture tests. 100mm diameter x 200mm high cylinders were used for 

elastic modulus tests. These are standard specimen sizes for testing concrete [80] rather 

than the smaller sizes allowable for testing repair materials [81]. The larger specimens 

which are standard for testing concrete were used so that the properties of repair 

materials determined in the tests could be meaningfully used with those of the substrate 

concrete when analysing theoretically the structural interaction between the repair patch 

and concrete substrate. It is important that in any such analysis all material properties 

are derived from common specimen sizes in order to exclude the influence of size effect 

on the results.

Mixing was carried out in accordance with the manufacturers’ instructions. A forced 

action pan mixer was used for the purpose. A total of six prisms and two cylinders were 

cast for each material according to standard procedures [82]. Two prisms were used for 

free shrinkage and four for creep tests (two for creep measurements and two for 

corresponding shrinkage strains). The two prisms for free shrinkage were later tested 

for modulus of rupture data of the repair materials.

Repair materials were cast in three layers and each layer was compacted in a manner 

similar to that used on site. Hand applied repair materials were compacted by hand 

without the use of a tamping bar. Compaction of the flowing materials was provided by 

firmly tapping the moulds with a hammer at regular frequency. Materials which were 

spray applied on site were cast by hand in the laboratory. They were cast in three layers
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and compacted by applying 25 strokes of a tamping bar on each layer. The top surface 

(as cast) of the specimens of all the materials was trowelled using a steel float and 

covered with polythene sheeting before being transferred to a mist curing room (RH = 

95%) for 24 hours.

After 24 hours, the prisms and cylinders were transferred from the mist curing room to 

the laboratory and demoulded. After demoulding, demec points were attached with an 

adhesive (Chemical Metal) to the specimens. A warm air drier was used to dry the 

surface of the specimen to ensure good bond between the adhesive and the specimen. 

This operation took approximately 30 minutes. Demec points were attached in 

accordance with BS 1881 Part 121 [3] at a gauge length of either 50mm (cylinders) or 

200mm (prisms). Prisms for shrinkage tests were transferred to a controlled 

environment room at 20°C and 55% RH for the duration of the tests [83]. Prisms for 

creep tests were cured in a water tank at 20°C prior to loading - the total curing period 

was 28 days (including one day in the mist curing room). Creep specimens were 

accompanied by identical shrinkage specimens so that net creep strain could be obtained 

by subtracting the free shrinkage strain from the gross strain measured under load. The 

two prisms that were initially used for the shrinkage measurements up to 100 days age, 

were subsequently tested at ages between 14 and 36 months for modulus of rupture data. 

These prisms were stored in a controlled environment throughout (20°C and 55% RH).
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8.4 TESTING

8.4.1 Shrinkage deformation

8.4.1.1 Air cured specimens

Datum readings were taken at 24 hours after casting (immediately after the application 

of demec points). Specimens were stored in a controlled environment (20°C and 55% 

RH). Subsequent readings were taken every day for the first three days, every three 

days for the next sixty days and once a week thereafter to a total of 100 days (see Figure 

8.12). The shrinkage presented is the average of eight readings from all the longitudinal 

faces of two prisms.

8.4.1.2 Water cured specimens

Specimens were initially mist cured for 24 hours and cured in water at 20°C for a further 

27 days. Datum strain readings across a gauge length of 200mm (demec gauges) were 

taken at 28 days. Subsequently, specimens were transferred to a controlled environment 

(20°C and 55% RH) for the remainder of the test period for shrinkage and creep tests. 

Subsequent readings were taken every day for the first three days, every three days for 

the next sixty days and once a week thereafter to a total of 100 days. The shrinkage 

presented is the average of eight readings from all the longitudinal faces of two prisms. 

The shrinkage obtained from these prisms was also used to obtain the net creep of the 

repair materials under load.
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Figure 8.13 Creep specimens loaded in series in a standard creep rig (20°C, 55% RH)

Figure 8.12 Shrinkage specimens stored in a controlled environment (20°C, 55% RH)
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8.4.2 Creep deformation

Two prisms of each material were loaded together (in series) in a standard creep rig (see 

Figure 8.13). Creep tests were carried out in accordance with standard procedures [83]. 

Each rig consisted of four steel end platens supported by nuts on four 36mm diameter 

high yield steel rods. The load was applied by means of a 25 ton capacity hydraulic jack 

(manufactured by Tangye) via the top platens. A ball-joint was incorporated in the rig 

to ensure concentric loading. The jack remained in place throughout the duration of 

each test (Figure 8.13). The sustained axial load on the specimens was achieved by 

regular loading and tightening the nuts against the end platens. To ensure that the 

specimens were loaded concentrically, a datum load (about 20% of the applied load) 

was first applied to ensure similar strains on all four faces of both prisms before the total 

load was applied. Throughout the duration of the creep study, the specimens were 

stored at 20°C and 55% RH. Each creep deformation recorded was the average of 

readings of eight faces of two prisms. The net creep strain was obtained by subtracting 

the shrinkage strain, measured on identical specimens, from the gross strain measured 

on the specimens under load in the rig.

8.4.3 Elastic modulus

200mm long x 100mm diameter capped specimens of each repair material were tested in 

an Avery Dennison Compression Testing Machine (model 7226-3000kN) in accordance 

with BS 1881:Part 121 [3]. An extensometer of gauge length 50mm was used to 

measure the strain. A minimum of two and a maximum of three cylinders were tested 

to determine the elastic modulus of each repair material. The elastic modulus of the
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substrate concrete in the bridges, Gunthorpe Bridge, Lawns Lane Bridge and Sutherland 

Street Bridge, was obtained from cylindrical cores taken from these bridges. 180mm 

(approx) x 100mm diameter cores from Gunthorpe, Lawns Lane and Sutherland Street 

Bridges were capped in the laboratory and tested in an Avery Dennison Compression 

Testing Machine (model 7226-3000kN) in accordance with BS 1881:Part 121 [3]. A 

minimum of two cylinders and a maximum of three were tested to determine the elastic 

modulus of each substrate concrete.

No correction factor was applied to the measured elastic modulus values of the substrate 

cores since the l/d (length/diameter) ratio of the cylindrical specimens cast in the 

laboratory and cores obtained from site was within the range 2 to 5. This complied with 

the requirements of Clause 4 in BS 1881:Part 121 [3].

8.4.4 Modulus of rupture

100 x 100 x 500mm long specimens of each repair material were tested in an Avery 

Dennison Transverse Testing Machine (model 7123-100 kN) in accordance with BS 

1881: Part 118. Two specimens of each repair material were also tested to determine 

the long term modulus of rupture of each repair material.
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8.5 RESULTS AND DISCUSSION

8.5.1 Free shrinkage of repair materials

8.5.1.1 Air cured specimens

The free shrinkage of repair materials used at Gunthorpe Bridge, Lawns Lane Bridge 

and Sutherland Street Bridge are given in Figures 8.14 to 8.16 respectively. A summary 

of the results is also given in Table 8.17.

The free shrinkage of the repair materials used at Gunthorpe Bridge is shown in Figure 

8.14 and Table 8.17. Materials G1-G3 are spray applied materials, whereas G4-G6 are 

hand applied materials. Material G3 is a conventional cement and sand mortar, without 

polymer modifications (mix proportions 1:3), and as a result, it can be used as a 

reference for all other commercially available repair materials under test. The 

waterxement ratio was 0.45. Material G3 has a 100 day shrinkage of 717 microstrain, 

which is greater than the shrinkage recorded for material G4 but less than the shrinkage 

recorded for all the other materials (Gl, G2, G5 and G6).

Materials G2, G5 and G6 show rapid shrinkage for the first 15-20 days, followed by a 

negligible increase thereafter to reach a 100 day value of 1311, 1087 and 1100 

microstrain respectively (Figure 8.14). Materials Gl and G4 show a lower rate of free 

shrinkage in the early stages which ultimately leads to a lower overall shrinkage 

deformation of 751 and 401 microstrain respectively at 100 days (Figure 8.14).

Figure 8.15 and Table 8.17 show the free shrinkage in the laboratory of the repair 

materials which were spray applied at Lawns Lane Bridge. Material L3 shows initial
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TABLE 8.17 Shrinkage deformation at 100 days (dry cured specimens)

Material Shrinkage at 100 Aggregate 

days (microstrain)

Main admixtures 

(from supplier’s literature)

G1 751 5mm graded Copolymers

G2 1311 Grade M sand Styrene acrylic + fibres

G3 717 Grade M sand None

G4 401 10mm graded Styrene acrylic + fibres

G5 1087 Fine* Styrene acrylic + fibres

G6 1100 Fine* Styrene acrylic

LI 620 3mm graded Admixtures

L2 325 graded* Copolymers

L3 710 graded* Shrinkage compensating agents

L4 782 5mm graded Admixtures

L5 680 5mm graded Admixtures + fibres

SI 740 5mm graded Shrinkage compensating agents

S2 791 graded* Shrinkage compensating agents

S3 580 6mm graded Copolymers

S4 388 10mm rounded Fibres

Note: * indicates that no specific information was supplied on aggregate size

expansion for the first 7-8 days, possibly due to the fact that it is shrinkage compensated 

and may contain expansive cements (see Table 8.17) followed by a gradual contraction 

over the remaining monitoring period resulting in a shrinkage of 710 microstrain. 

Materials LI, L4 and L5 all show lower rates of free shrinkage in the early stages to 

reach a shrinkage strain of 620, 782 and 680 microstrain respectively at 100 days. All 

these values are similar to the shrinkage strain of 717 microstrain for the sand and 

cement mortar (material G3) used at Gunthorpe Bridge. Material L2 exhibits the lowest 

free shrinkage strain of 325 microstrain at 100 days.
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Free shrinkage deformation of the pourable materials used at Sutherland Street Bridge is 

given in Figure 8.16 and Table 8.17. All the materials exhibit relatively slow rates of 

shrinkage in the early stages to reach 100 days shrinkage values of between 388 and 791 

microstrain. Materials SI and S2 exhibit shrinkage strains of 740 and 791 microstrain 

respectively, which are similar to the shrinkage strains in the sand and cement mortar 

(material G3, Figure 8.14). The shrinkage of material S3 is slightly lower (580 

microstrain). Material S4, a flowing concrete which was designed in the laboratory with 

conventional concrete constituents and admixtures to give a high flow material with 

relatively large aggregate and low cement content, displays the lowest shrinkage (388 

microstrain) of the four materials. This material also contains the largest aggregate 

particles (10mm rounded).

8.5.1.1.1 Discussion

Free shrinkage in normal concrete can be restricted by keeping the water:cement ratio 

and cement contents low [84]. The same practice applies to repair materials. 

Unfortunately, cement contents of repair materials are rarely given in manufacturers’ 

literature and determination of cement contents by analysis was outside the scope of this 

project. Consequently, it is not possible to comment on the free shrinkage of the 

materials with respect to the waterrcement ratio or cement content. Repair materials 

which comply with the current Highways Agency standard (clause 1702 of DoT 

Specifications for Highway Works, Part 5) [1] must have a minimum cement content of 

400 kg/m3. Therefore, assuming the cement contents are similar for all repair materials 

conforming to the standard, the variation in shrinkage of repair materials represented in
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Figures 8.14 to 8.16 must be due to other material constituents. The inclusion of 

different aggregate sizes and/or admixtures may affect the shrinkage of the material. 

Referring to Table 8.17, materials G4 and G5 (hand applied materials from the same 

manufacturer which both comply with BD 27/86 [1]) includes a styrene acrylic 

copolymer along with polypropylene fibres within the mix constituents. Figure 8.14 

and Table 8.17 shows that there is a massive difference in the free shrinkage of 

materials G4 and G5 at 100 days (401 versus 1087 microstrain respectively). Both 

materials contain the same polymers and fibres. The reason for this difference is the 

fact that material G5 contains a fine aggregate only whereas material G4 has a 10mm 

graded coarse aggregate which provide restraint to shrinkage. The same conclusions are 

given by Mangat and Limbachiya [29, 30], Schrader [40] and Lea [41] who conclude 

that the type and quantity of coarse aggregate have an enormous effect on the free 

shrinkage of repair materials.

When high volume repairs are required, the most economical method of application is 

either by spraying or by pouring. Materials which belong to these categories of 

application methods normally contain coarse aggregates (up to 10mm size) to make the 

material more economical. Materials used in high volume repairs are therefore expected 

to show less shrinkage than materials used in low volume repairs due to the fact that 

larger aggregates (quantity and size) are contained within the mix. This is evident in the 

results shown in Figures 8.14 to 8.16, where the spray applied and poured materials in 

Figures 8.14 to 8.16 generally have lower shrinkage than the hand applied materials in 

Figure 8.14. Exceptions to this rule are the spray applied material G2 and hand applied 

material G4 (see Figure 8.14). The explanation for this reversal in trend is that the spray
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applied material G2 uses a medium grade sand as aggregate whereas the hand applied 

material G4 contains 10mm nominal size graded aggregate. Hence, the shrinkage is 

lower in material G4 due to the inclusion of the coarser aggregate in the mixture.

Finally, regardless of the manufacturers’ literature stating that their material is shrinkage 

free or shrinkage compensated (materials G4, G5, G6, LI, L3, L5, SI, S2 and S3 are 

described as such in manufacturers’ literature), all the materials tested in this 

investigation showed considerable free shrinkage (see Figures 8.14 to 8.16 and Table

8.17). The same conclusion was also reported by Morgan [28].

8.5.1.2 Water cured specimens

Deformation of repair materials used at Gunthorpe Bridge, Lawns Lane Bridge and 

Sutherland Street Bridge, which were initially mist cured for 24 hours and cured in 

water for a further 27 days at 20°C, is given in Figures 8.17 to 8.19. A summary of the 

results and comparisons with the air cured specimens is also given in Table 8.18.

The free shrinkage of the water cured repair materials used at Gunthorpe Bridge is 

shown in Figure 8.17 and Table 8.18. Repair materials G1-G3 are spray applied 

materials whereas materials G4-G6 are hand applied materials. All the repair materials 

in Figure 8.17 exhibit relatively low shrinkage in the early stages under test which 

ultimately results in lower free shrinkage at 100 days (between 184 and 649 

microstrain). Referring to Table 8.18, the 100 day shrinkage of these specimens is
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Table 8.18 Deformation from 28 to 100 days (water cured specimens)

Material Shrinkage at 100 

days, microstrain 

(Dry cured)

Deformation at 100 

days, microstrain 

(Wet cured)

Wet/Dry cured 

%

G1 751 330 44

G2 1311 649 50

G3 111 429 60

G4 401 184 46

G5 1087 539 50

G6 1100 565 51

Ll 620 395 64

L2 325 NA NA

L3 710 640 90

L4 782 342 44

L5 680 325 48

SI 740 350 47

S2 791 657 83

S3 580 286 49

S4 388 285 73

Average: 57

approximately between 44% and 60% of the 100 day shrinkage of specimens air cured 

in a controlled environment (20°C and 55% RH).

Figure 8.18 and Table 8.18 show the 100 day free shrinkage of the water cured materials 

used at Lawns Lane Bridge. Materials Ll and L3-L5 are spray applied materials. 

Referring to Table 8.18, the 100 day shrinkage of these specimens is between 325 and 

640 microstrain. This is approximately between 44% and 90% of the 100 day shrinkage 

of air cured specimens.
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Figure 8.19 and Table 8.18 show the 100 day shrinkage of the water cured repair 

materials used at Sutherland Street Bridge (between 285 and 657 microstrain). Referring 

to Table 8.18, the 100 day shrinkage of these specimens is approximately between 47% 

and 83% of the 100 day shrinkage of specimens cured in a controlled environment 

(20°C and 55% RH).

8.5.1.2.1 Discussion

Material G3, a cement and sand spray applied mortar (ratio 1:3) can be used as a 

reference for all other materials under test since the mortar is not polymer modified and 

consists of basic constituents. The ratio of wet cured shrinkage to dry cured shrinkage 

for this material is 60%. Four of the repair materials have ratios greater than this value 

(materials L l, L3, S2 and S4). Repair materials L3, a spray applied material, and S2, a 

flowing material, exhibit the highest ratios of 90% and 83% respectively. Both 

materials are supplied by the same manufacturer. The high shrinkage ratios of these 

repair materials indicate that significant shrinkage will occur regardless of the curing 

techniques adopted.

The overall ratio of the shrinkage of specimens cured in water to the shrinkage of 

specimens cured in air is 57%, as shown in Table 8.18. Therefore, curing the repair 

materials in water for the first 28 days substantially reduces the free shrinkage. 

Consequently, if proper curing techniques are implemented after the new repair 

materials are applied in the field, such as applying curing membranes and/or covering 

the repair patch with polythene to restrict the moisture loss from the repair patch, the
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free shrinkage can be drastically reduced for most repair materials. Application of 

curing membranes and/or polythene may not reduce shrinkage to the same level as 

curing in water, but nevertheless, shrinkage will be lowered. This will reduce the risk of 

cracking in the repair material, since the tension induced in the repair material due to the 

restraint to shrinkage provided by the substrate concrete will be less.

8.5.2 Creep deformation of repair materials

Creep of repair materials was determined by subjecting prism specimens to a sustained 

compressive stress of 30% of their cube strength. Two specimens were loaded in series 

in a creep rig for 70 days. The gross strain was measured at regular intervals on the 

eight longitudinal faces of two prisms. Creep recovery was monitored for 30 days once 

the load was removed from the specimens. Net creep strains were calculated by 

subtracting the shrinkage strain measured on identical specimens from the gross strain

The creep curves of the materials are given in Figures 8.20 to 8.22, which includes the 

instantaneous elastic strain upon loading, the creep of the material whilst under 

sustained stress and the creep recovery upon unloading. Table 8.19 gives the repair 

material abbreviation and 28 day cube strength (columns 1 and 2), plus a summary of 

the instantaneous elastic strains upon loading (column 3), the 70 day creep strains 

(column 4) and the value of § , the creep coefficient (column 5). The delayed elastic 

strain and flow creep for each repair material is given in column 6 and 7 respectively. 

The delayed elastic strain is also given as a percentage of the 70 day creep strain in
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TABLE 8.19 Creep properties and 28 day cube strength

1 2 3
Column 

4 5 6 7 8

Repair 28 day cube Inst, elast 70 day creep

Mat. strength strain strain 
(N/mm) (pstrain) (pstrain)

+
elasticcreep

Del. elast

strain
(pstrain)(%)

Del+ flow 
Flow Total
creep

(pstrain) (factor)
G1 50 519 421 0.81 56 (13) 411 1.11

G2 44 647 809 1.25 169 (21) 685 1.06

G3 46 469 938 2.00 92 (10) 829 0.98

G4 46 557 745 1.34 49 (7) 751 1.07

G5 40 429 1411 3.29 180 (13) 1185 0.97

G6 31 767 1188 1.55 184 (15) 1162 1.13

Ll 69 791 783 0.99 113 (14) 639 0.96

L2§ 60 NA NA NA NA ( - ) NA NA

L3 35 502 748 1.49 113 (15) 574 0.92

L4 73 570 510 0.89 114 (22) 435 1.08

L5 80 643 534 0.83 121 (23) 430 1.03

SI 79 818 445 0.54 154 (35) 410 1.27

S2 65 569 438 0.77 100 (23) 340 1.00

S3 68 502 667 1.33 120 (18) 611 1.10

S4 39 337 454 1.35 38 (8) 448 1.07

Note: §  indicates that a creep test was not conducted on this material

brackets in column 6. The ratio of the sum of the delayed elastic and flow creep strains 

to the total (70 day) creep strains is given in column 8.

8.5.2.1 70 day creep strains

Referring to Figure 8.20 and Table 8.19, the total creep strains of the materials used at 

Gunthorpe Bridge (materials G1-G6) range from 421 to 1411 microstrain. Materials
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Gl, G2 and G4 exhibit creep strains of 421, 809 and 745 microstrain respectively, 

which are less than the creep strain of the conventional repair mortar G3 (938 

microstrain). Materials G5 and G6 have creep strains (1411 and 1188 microstrain 

respectively) which are greater than the reference material, G3.

All materials used at Lawns Lane Bridge which were tested for creep (Figure 8.21) 

exhibited creep strains which were less than those of the reference material G3 (510 to 

783 microstrain compared with 938 microstrain for G3, Figure 8.20 and Table 8.19). 

Material L2 was not tested for creep due to difficulty in obtaining material samples from 

the manufacturer.

The total creep of the materials used at Sutherland Street Bridge ranged between 438 to 

667 microstrain, as shown in Figure 8.22 and Table 8.19. These values are less than the 

creep of the reference material (938 microstrain). Material SI, S2 and S4 exhibited 

similar creep strains (438 to 454 microstrain) whereas material S3 had a slightly higher 

creep strain of 667 microstrain.

Referring to Table 8.17, materials G2, G4 and G5 are all polymer modified materials 

with fibres included in the mix. The 70 day creep strains of these three materials (from 

Table 8.20) are 809, 745 and 1188 microstrain respectively. Materials G2 and G5 both 

contain fine aggregates whereas G4 contains 10mm graded coarse aggregate (see Table

8.17). It is therefore evident that the aggregate size influences the magnitude of creep in 

the repair materials, as the material with the larger aggregate, G4, exhibits lower creep 

than materials with finer aggregates. The same can be said for material S4 which

177



L,napier o rropern es o j repair materials wnicn mjiuence m e long term perjorm ance o j concrete repair

includes 10mm single sized aggregate. The 70 day creep in this instance was 388 

microstrain. Other researchers have also found lower compressive creep in repair 

materials which contain coarse aggregate [29] An explanation to this is given by 

Neville et al [85], who state that the quantity and modulus of aggregate contributes to 

resisting the creep of cement paste.

Repair materials used in high volume repairs (sprayed and flowable materials) exhibited 

lower creep since such materials generally contain larger aggregates to make their use in 

large volume repair more economical (materials G l, L1-L5, S1-S4, Tables 8.17 and 

8.19).

Other researchers [25, 29, 30] report high creep strains of polymer modified repair 

materials. Some of the materials tested in the current study have polymer modifications 

(Gl, G2, G4-G6, L2, S3, see Table 8.17). The creep values for these materials cover a 

wide range, from 421 to 1036 microstrain. Therefore, it is difficult to isolate the 

influence that polymers have on the creep of these materials.

8.5.2.1.1 Creep coefficient

The values of § , the creep coefficient, which is the ratio of creep strain to the 

instantaneous elastic strain upon loading are also given in Table 8.19, column 5. This 

coefficient is used to allow for the effect that creep will have on the elastic modulus of 

the material by calculating an effective elastic modulus, Em w >, as follows [64]:
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E rm (ejf) =  E r  / (l + (j> )

Equation 8. 4

where E r  is the instantaneous elastic modulus of the repair material. According to 

Equation 8. 4, a high creep coefficient will result in a low effective modulus (for 

example, material G5, Table 8.19). Creep will have a significant effect on the 

redistribution of stresses within a repair. For example, a material with an elastic 

modulus that was initially greater than that of the substrate concrete may in time have an 

effective elastic modulus less than that of the substrate concrete. As a result, the repair 

material may be ineffective in sharing load with the substrate concrete.

8.5.2.2 Creep recovery

The creep recovery, or delayed elastic strain of the repair materials used at Gunthorpe 

Bridge, Lawns Lane Bridge and Sutherland Street Bridge is given in Table 8.19 (column 

6). The creep recovery is also presented as a percentage of the 70 day creep strain 

(shown in brackets in column 6, Table 8.19). The flow creep of the repair materials is 

also listed in Table 8.19, column 7.

Referring to Table 8.19, repair materials G4 and S4 exhibit the lowest creep recovery 

strains of 49 and 38 microstrain respectively. This corresponds to 7% and 8% 

respectively of the 70 day creep strain. These repair materials (G4 and S4) both contain 

10mm sized coarse aggregate as shown in Table 8.17. Neville et al [85] state that creep 

recovery has been shown to be proportional to the cement paste content of the mix
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(or inversely proportional to the aggregate content) [86]. Therefore, applying the 

conclusions found previously to repair materials [86], a repair material which contains 

coarse aggregate will tend to show less creep recovery as opposed to a repair material 

which contains fine aggregate. The results of this experiment did not prove that repair 

materials with fine aggregate exhibited higher creep recovery than repair materials with 

coarse aggregate (materials G5 and G6, Table 8.19). The creep recovery of the 

reference material, G3, also exhibited a low creep recovery (10%) despite the fact that a 

medium grade sand was used as aggregate (see Table 8.17). Material SI showed the 

highest creep recovery of 35%, but it is thought that experimental error may be to 

blame, as the sum of the delayed elastic strain and the flow creep strain totalled 564 

microstrain, which was far greater than the 70 day creep strain of 445 microstrain, see 

Table 8.19, (the relationship between creep, delayed elastic and flow creep strain is 

studied in the next section). The remainder of the repair materials exhibited creep 

recovery in the range of 13 to 23% of the 70 day creep.

8.5.2.3 Relationship between creep, delayed elastic and flow

creep strain

Creep of concrete is normally the sum of the flow and delayed elastic components [46], 

therefore, for the repair materials under observation, Table 8.19 also lists the ratio of 

delayed elastic strain and flow creep strain to the 70 day total creep strain (column 8). 

Referring to Table 8.19, column 8, the ratio of the sum of delayed elastic strain and flow 

creep strain to the 70 day creep strain ranges between 0.92 and 1.27 (although 

experimental error may be at fault for the high ratio of 1.27 for material SI, as stated in
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the previous section). Neglecting the 1.27 ratio, the range is between 0.96 and 1.13, 

giving an average of 1.04. This ratio can be considered similar to the ratio expected 

when testing concrete for creep (i.e. 1.00).

Both repair materials which contain large aggregates (G4 and S4) exhibit a ratio of 1.07. 

The ratios of repair materials with fine aggregates (G5 and G6) exhibit ratios of 0.97 

and 1.13 respectively. Styrene acrylic, fibres and fine aggregate are included in the mix 

of materials G2 and G5, but the ratios of these materials are 1.06 and 0.97 respectively. 

Based on these observations, it is concluded that these small variations are due to 

experimental factors and that repair material constituents do not have an influence.

8.5.3 Elastic modulus of repair materials

Elastic modulus results obtained form 100mm diameter x 180mm deep cores of 

substrate concrete and 100mm diameter x 200mm long cylinders of repair material are 

given in Table 8.20.

The results in Table 8.20 show that material Gl is the only material used at Gunthorpe 

Bridge which is stiffer than the substrate concrete. Four of the five materials (L2-L5) 

used at Lawns Lane Bridge have elastic modulii greater than the elastic modulus of the 

substrate. All the materials used at Sutherland Street Bridge are stiffer than the concrete 

substrate. In laboratory concrete repairs, two of the materials, G4(L) and L3(L) are 

stiffer than the concrete substrate at 28 days whereas the other two materials [G5(L) and 

G6(L)] are less stiff than the substrate concrete at 28 days.
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Table 8.20 Elastic modulus of repair materials and substrate concrete

Location Material Elastic modulus 

(kN/mm2)

Gl 31.1

Gunthorpe G2 17.6

Bridge G3 23.8

G4 24.0

G5 19.6

G6 11.5

substrate 28.1

Ll 22.7

Lawns L2 30.3

Lane L3 27.4

Bridge L4 29.1

L5 29.1

substrate 23.8

SI 24.2

Sutherland S2 32.2

Street S3 31.9

Bridge S4 27.4

substrate 23.2

L3(L) 27.4

Laboratory G4(L) 24.0

Repairs G5(L) 19.6

G6(L) 11.5

substrate 20.5

Referring to Tables 8.17 and 8.20, materials with contain both coarse aggregate and 

polymer additions generally exhibit higher elastic modulus values (see materials G l, L2, 

L4 and S3 in Tables 8.17 and 8.20). Kuhlman [63] found that the elastic modulus of a
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repair material increased with the addition of a hard film latex. Mangat and Limbachiya 

[30] observed higher elastic modulus in repair materials that contained aggregate 

particles. Materials which contain fine aggregates with or without polymer additions 

generally have lower elastic modulii (materials G2, G5 and G6 in Tables 8.17 and 8.20).

8.5.4 Modulus of rupture

Figure 8.23 and Table 8.21 gives the 28 day modulus of rupture for some of the repair 

materials (obtained from the manufacturers’ literature) along with the long term 

modulus of rupture of all the repair materials used in the project. The long term 

modulus of rupture was obtained by testing specimens in the laboratory approximately 

14-36 months after casting (figure in brackets, Table 8.21). These specimens were 

tested in accordance with BS 1881, Part 118 [87]. This standard was also used to obtain 

the 28 day modulus of rupture of materials Gl and G2 (Table 8.21). Repair materials 

G4, G5 and G6 were tested at 28 days in accordance with BS 4551 [88], whereas 

material L3 was tested at 28 days in accordance with BS 6319 Part 3 [89]. No 

information was given on the test method used to obtain the modulus of rupture of 

material L5 at 28 days. The tensile strength of the repair materials at 28 days is also 

given in Table 8.21. This was obtained using the relationship between modulus of 

rupture and direct tensile strength for concrete found by Brooks and Neville [47] for dry 

stored specimens.

Referring to Table 8.21 and Figure 8.23, the modulus of rupture of the repair materials

2 2at 28 days varies from 4.1 N/mm to 13.5 N/mm . The spray applied repair materials 

(Gl and G2) at Gunthorpe Bridge exhibit a modulus of rupture of 8.0 and 4.1 N/mm2 at
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Table 8.21 Modulus of rupture of repair materials

Location Material Modulus o f rupture 

(N/mm)

Literature Laboratory 

28 days (age in months)

Tensile Strength [47] 

(N/mm)

28 days

Gl 8.0* 2.2 (20) 4.2

Gunthorpe G2 4.1* 3.7 (20) 2.5

Bridge G3 NA 3.4 (20) NA

G4 13.5** 8.8 (21) 6.2

G5 8.0** 4.7 (21) 4.2

G6 5.1** 3.3 (21) 2.9

Ll NA 6.1 (16) NA

Lawns L2 NA 7.0 (36) NA

Lane L3 7.0# 1.9 (18) 3.9

Bridge L4 NA 4.7 (18) NA

L5 10.9na 4.0 (16) 5.3

SI NA 6.5 (14) NA

Sutherland S2 NA 3.3 (21) NA

Street S3 NA 5.7 (21) NA

Bridge S4 NA 4.3 (21) NA

^Tested to BS 1881, Part 118 **Tested to BS 4551 #Tested to BS 6319, Part 3

28 days respectively. The three hand applied materials at Gunthorpe Bridge show a 

modulus of rupture of 13.5, 8.0 and 5.1 N/mm respectively at 28 days. Spray applied 

materials L3 and L5 at Lawns Lane Bridge exhibit a 28 day modulus of rupture of 7.0 

and 10.9 N/mm2 respectively. The long term modulus of rupture of all the repair 

materials used in the project is also given in Table 8.21 and Figure 8.23. The spray 

applied repair materials at Gunthorpe Bridge (G1-G3) show a modulus of rupture of 

between 2.2 and 3.7 N/mm2. The spray applied materials at Gunthorpe Bridge exhibit a
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2
long term modulus of rupture of between 3.3 and 13.5 N/mm . The long term modulus 

of rupture of the spray applied materials at Lawns Lane Bridge varies between 1.9 and 

7.0 N/mm2. Finally, the long term modulus of rupture of the flow applied repair 

materials at Sutherland Street Bridge varies between 3.3 and 6.5 N/mm2.

Referring to Figure 8.23 and Table 8.17, the materials that generally exhibit the largest 

modulus of rupture at 28 days are the repair materials that contain coarse or graded 

aggregate in the mixture (materials G l, G4, G5, L3 and L5). Material G5 also exhibits 

quite a high modulus of rupture (8.0 N/mm2 at 28 days, Figure 8.23) even though the 

repair material contains fine aggregate. This repair material also contains styrene 

acrylic and fibres which may be responsible for the high modulus of rupture. On the 

other hand, material G2 also contains fine aggregate with styrene acrylic and fibres 

added to the mixture, but the modulus of rupture of this repair material is relatively low 

(4.1 N/mm2 at 28 days, Figure 8.23). Therefore, based on these two results, it is not 

possible to comment on the influence that styrene acrylic and fibres have on the 

modulus of rupture of the repair materials.

Comparing the 28 day modulus of rupture results to the long term modulus of rupture 

results, it is clear that the modulus of rupture decreases with time (see repair materials 

G l, G2, G5, G6, L3 and L5, Figure 8.23). The curing regimes adopted by the different 

manufacturers’ may have differed to the curing regime adopted in the laboratory (20°C 

and 55% RH). For example, BS 1881 Part 118 [87] states that the specimens should be 

cured and stored in either the wet or dry condition prior to testing. BS 6319 Part 3 states
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that specimens should be prepared in accordance with BS. 6319 Part 1 [90]. This allows 

either wet or dry specimens to be tested. Finally BS 4551 [89] allows for either 

hydraulic or moist air curing prior to testing. Assuming that all specimens were cured 

under similar conditions, the difference between the 28 day modulus of rupture is 

significantly greater than the modulus of rupture of specimens tested in the long term. 

This will cause the repair material to become more brittle with time. Therefore, a repair 

material which carries a constant tensile stress may in fact crack in the long term since 

the modulus of rupture, and consequently, the direct tensile strength, may become less 

than the applied tensile stress. This, in fact, occurred with material L4 at Lawns Lane 

Bridge, where cracks appeared approximately 15 months after application of the repair 

material (full details are given in Chapter 9).

8.6 CONCLUSIONS

The following conclusions are based on the results of the materials tests carried out in 

the laboratory to determine the basic properties of the repair materials:

• Repair materials which contain coarse aggregate exhibit lower free shrinkage and 

creep compared with repair materials which contain fine aggregate only.

• Spray applied and flowable repair materials shrink and creep less than repair 

materials which are hand applied due to the inclusion of coarse aggregates in the 

spray applied and flowing repair materials.
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• All the cementitious repair materials tested in this project exhibited significant free 

shrinkage regardless of some manufacturers’ claims that their materials were 

shrinkage compensated or non-shrinking repair materials

• The free shrinkage of repair materials is reduced when the specimens are initially 

cured in water for 28 days after casting as opposed to curing in air from the age of 24 

hours onwards.

• Repair materials which contain coarse aggregates exhibit lower creep recovery than 

repair materials with fine aggregates

• The addition of polymers and coarse aggregates generally increases the elastic 

modulus of a repair material.

• Repair materials with fine aggregates, with or without polymer additives, generally 

have lower elastic modulus.

• Repair materials which contain coarse aggregates generally exhibit higher modulus 

of rupture than repair materials with fine aggregate.

• The modulus of rupture of repair materials decreases with time
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CHAPTER 9

TN-SERVTCE PERFORMANCE OF 

REINFORCED CONCRETE REPAIR

9.1 INTRODUCTION

Reinforced concrete is used widely in construction due to its versatility and durability 

when properly designed and placed. However, deterioration occurs due to exposure to 

aggressive environments such as those containing chlorides and carbon dioxide. The 

deterioration can be arrested by removing the damaged concrete and replacing it with a 

new material. The assumption is made that the new repair material will restore the 

structural integrity of the member, but despite the extensive amount of research done in 

the general area of concrete repair, very little information exists on the in-service 

performance of repair materials. As a result, deteriorated structures are currently being 

repaired with inadequate knowledge of the structural interaction which occurs between 

the substrate concrete and repair material under in-service conditions.

This chapter presents the long term performance of different repair materials under 

service conditions from both field and laboratory studies. Recommendations for 

enhanced long term performance are given at the end of the chapter. A brief literature 

review is given on the subject at the beginning of the chapter.
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9.2 LITERATURE REVTEW

9.2.1 Requirements of repair materials

Morgan [28] states that there is no such thing as the ideal repair material. Different 

types of repair materials will be required for different repair applications. In other 

words, the repair materials must be selected so that a durable and load sharing repair is 

provided. Selection of the correct material for a repair project is of utmost importance. 

Rizzo and Sobelman [91] report that repair to a structure should fulfil three basic 

requirements. First, the repair must arrest the deterioration of the structure, particularly 

by preventing further corrosion of reinforcement steel. This can be done by preventing 

access of oxygen, water and aggressive ions to the steel [92] or providing an 

environment that chemically passivates the steel reinforcement. This highlights the 

need for a material to be impermeable, but this property is meaningless if  cracks occur 

in the material due to the restraint to shrinkage provided by the substrate concrete. A 

few cracks in the repair material drastically offset the benefit of having a low 

permeability repair material [49]. Therefore, it is vital that repair materials used to 

repair deteriorated concrete have low shrinkage deformation and/or a high tensile strain 

capacity.

The second requirement is restoration of structural integrity. It is reported [91] that 

there is some controversy as to how much load a patch repair carries. It is generally 

accepted that for all but purely cosmetic repairs the material used should have strength 

properties similar to those of the substrate concrete. Results from the current research 

show that strength is a relatively unimportant parameter. The elastic modulus of the 

repair material has a major influence on the distribution of strain between the repair
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material and substrate concrete. A repair material that has an elastic modulus greater 

than that of the substrate concrete is able to distribute a proportion of the shrinkage 

strain to the substrate, thus reducing the magnitude of shrinkage that is restrained by the 

substrate concrete. It is also shown that a stiffer repair material will attract external load 

into the repair patch. A repair material with a high strain capacity will also show more 

resistance to cracking.

The final requirement of a successful repair is that it provides an aesthetically acceptable 

finish. It is stated that [91] a coating should be applied over the whole of the structure 

to give a uniform appearance which will also provide additional protection to both the 

repair and to areas not yet showing signs of distress. More importantly, the appearance 

of the material should not be affected by the presence of cracks. This would reduce the 

ability of the repair to carry load, aid the onset of further corrosion as well as being 

unsightly. It has been observed in the present research that a cracked repair material is 

unable to attract load into the repair patch.

Plum [93] states that the function performed by a repair will vary from one situation to 

another and may be required to satisfy several functions at once. The two principal 

functions may be defined as:

(a) structural, in which a stress carrying function is intended,

(b) cosmetic, in which restoration of structural appearance is a priority.

Furthermore, the properties required of a material to fulfil the requirements of a 

structural or cosmetic repair are clearly quite different [93] and may in some instances 

be completely opposite. The problem of choice of suitable properties is not solved by
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seeking those closest to the values for the base concrete. This was evident in the current 

research, as a repair material with an elastic modulus which was similar to the substrate 

concrete performed as a cosmetic repair, whereas a repair material which was stiffer 

than the substrate concrete acted as a structural (load-sharing) repair.

9.2.2 Properties of repair materials which influence

performance

Traditionally, specification of concrete repair mortars has been based on compressive 

strength, bond and shrinkage characteristics. While these properties form a useful 

guide, there are a number of other properties, such as elastic modulus, tensile strength 

and cracking characteristics, which are of greater importance for successful concrete 

repair [31]. The results from this research project show that material properties such as 

the elastic modulus, shrinkage and creep are primarily responsible for the structural 

interaction between the repair material and substrate concrete. Also, a repair material 

with a very high tensile strain capacity is less likely to crack when tensile stress is 

induced due to the restraint to shrinkage provided by the substrate concrete.

Compatibility between the repair material and substrate concrete is affected by 

volumetric deformation (i.e. dimensional), along with physical, chemical and 

electrochemical properties, see Figure 9.1 [95]. All these factors are responsible for 

ensuring that a repair will withstand all stresses induced by volume changes, and 

chemical and electrochemical effects without distress and deterioration [95]. 

Dimensional compatibility is responsible for the structural interaction between the
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Figure 9.1 Factors affecting compatibility of repair materials [95]

repair material and substrate concrete. The material properties which are responsible for 

dimensional compatibility are given in Figure 9.1. Among these properties are drying 

shrinkage, creep and elastic modulus. Current research agrees that these properties have 

a significant contribution to the design of a durable repair. If  high shrinkage occurs in a 

repair material, significant levels of tensile stress will be evident in the repair patch due 

to the restraint provided to shrinkage by the substrate concrete. However, if  the repair 

material exhibits an elastic modulus which is greater than that of the substrate concrete, 

then the stiffer repair material will transfer a portion of the shrinkage strain to the 

substrate concrete. Nevertheless, a tensile stress will still be evident in the repair 

material, but this stress will be reduced by stress relaxation caused by creep in the repair 

material.
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An important point to make is that the properties of a repair system change with time 

[49] (e.g. creep will lower the elastic modulus of the repair material which will render 

the load sharing ability of the repair patch less effective). Therefore, to successfully 

perform in a particular service environment, the specification of a repair patch needs 

careful considerations rather than simplistic approaches currently being used.

Investigations into the performance of concrete repair carried out elsewhere [95] 

highlights the modulus of elasticity, tensile strength coefficient of thermal expansion, 

early curing shrinkage strain and creep strain as important properties of a repair 

material. Materials with a low elastic modulus may generate relatively high stresses in 

the substrate concrete compared with those in the repair material. On the other hand, 

materials with a high elastic modulus tend to attract load away from the concrete and 

hence may place higher demands on interfacial adhesion. It was recommended that the 

modulus of elasticity of the repair material should lie within the range +/-10 kN/mm2 of 

that of the substrate concrete. A recommendation of this nature will not ensure a 

durable and load sharing repair, as the findings of this project show that the elastic 

modulus of the repair material must be higher than the elastic modulus of the substrate 

concrete to enable an efficient composite action to be developed.

9.2.2.1 Cracking in repair patches

Specification of a durable concrete repair includes the consideration of compatibility of 

properties. Studies show [94] that compatibility between the repair material and 

substrate concrete with respect to volume changes (dimensional compatibility) is



^napier y  m -service perjorm ance o j reinjorcea concrete repair

fundamentally important for ensuring freedom from cracking [49]. Volume changes 

must be controlled in concrete repairs to minimise cracking. When repair materials 

undergoing volume changes are restrained, tensile strains are induced. If these strains 

are greater than the tensile strain capacity of the material, cracking will occur. It is well 

known that cement based materials are weak in tension but strong in compression. The 

inherent weakness in tension and low strain capacity results in rapid propagation of 

cracks under tensile stress. If appropriate measures are to be taken to control cracking 

in repair materials, then an indication of the magnitude of tensile strains in the repair 

material due to the restraint to shrinkage, plus a knowledge of the tensile strain capacity 

of the repair material are essential.

The ability of cement based materials to resist cracking is dependent upon several 

factors [49]:

• the degree of restraint

• the magnitude of shrinkage

• the stress state

• the amount of stress relief due to creep

• the tensile strength of the material

Finally, to have good resistance to cracking [49], the material should have drying 

shrinkage, coefficient of thermal expansion and sustained modulus of elasticity as low 

as possible and a tensile strength and creep as high as possible. The results from the 

current research indicate that the modulus of elasticity of the repair material should be 

high to allow distribution of shrinkage strain to the substrate concrete, as will be

195



l m apter y  m -service perjorm ance o j reinjorcea concrete repair

shown later in the chapter. This will help reduce the tensile stress induced in the repair 

material due to the restraint to shrinkage provided by the substrate concrete. On the 

other hand, since creep will lower the elastic modulus of the repair material, this 

property will be disadvantageous. Besides, high creep will not be required for tensile 

stress relaxation if the shrinkage of the repair material is low to begin with.

9.3 RESULTS AND DISCUSSION

9.3.1 Repairs to unpropped compression members

9.3.1.1 Spray applied repair patches

9.3.1.1.1 Repair material stiffer than substrate concrete

A number of spray applied repairs to Lawns Lane Bridge and Gunthorpe Bridge without 

propping the structure before the application of repair is considered. Figures 9.2 to 9.4 

show the strains from the gauges in the repair materials at Lawns Lane Bridge for 

materials L4, L2 and L3 respectively. These repair materials do not comply with the 

current standard for material specification, BD 27/86, of the Highways Agency. Figure 

9.5 shows the strains at Gunthorpe Bridge (material G l) which does conform with the 

current standard. The data are plotted at weekly intervals. Datum readings were taken 

24 hours after the application of repair (week 0 on the graph). On occasions where the 

automatic logging device was not installed within the first few weeks, strains were 

linearly interpolated from the time of application of repair (origin on the graph) to the 

installation of the data logger (approximately week 3).



\ap
ter

 9 
In 

se
rv

ice
 p

er
fo

rm
an

ce
 

of 
re

in
fo

rc
ed

 
co

nc
re

te 
re

pa
ir

Q>mT3
‘SI
CO
0
C0
</>
C
£
CO

(diuoo+) u;ej)soj3!i/\| (suaj.-)

igu
re 

9.2
 

St
ra

in 
dis

tri
bu

tio
n 

in 
re

pa
ir 

pa
tch

 
of 

m
at

er
ia

l 
L4 

at 
La

wn
s 

La
ne

 
Br

idg
e 

(U
np

ro
pp

ed
 

co
m

pr
es

sio
n 

m
em

be
r)



Ch
ap

ter
 9 

In 
se

rv
ice

 p
er

fo
rm

an
ce

 
of 

re
in

fo
rc

ed
 

co
nc

re
te 

re
pa

ir

CD

c  03E 0.O 0
c  oo
■g co a) cm 

a >  o .  „  
o >  q .  11 

■ O  o  W  "Cm  CL Z5
o  3  LU

|  . g o
CO o

E ^
T3
5> CD

2  £a
co

V)CDOcCDi_CD
>4—

£
CDO)3
CO
0

CO
Q .CDi_

J Z
CD3O

CDCD
V) \I

C/> JO_Q3 Ecn

I
CD

1

Fig
ur

e 
9.3

 
St

ra
in 

di
st

rib
ut

io
n 

in 
re

pa
ir 

pa
tch

 
of 

m
at

er
ia

l 
L3 

at 
La

wn
s 

La
ne

 
Br

idg
e 

(U
np

ro
pp

ed
 

co
m

pr
es

sio
n 

m
em

be
r) 

19
8



Ch
ap

ter
 9 

In 
se

rv
ice

 p
er

fo
rm

an
ce

 
of 

re
in

fo
rc

ed
 

co
nc

re
te 

re
pa

ir
Q.

0 5
3O
£

0 5

T  0 9

-  8 S

9 S

OS

S vu
CL O 0
°0 

~o CO
0) CM

-  w

<D Q . 
O )  CL - 88

CM_l
oe

CO
o
CO

8 3

103

ooo
LO

ooooo
CM

ooCO
o
LO
CM

o
LO
CO

Fig
ur

e 
9.4

 
St

ra
in 

di
st

rib
ut

io
n 

in 
re

pa
ir 

pa
tch

 
of 

m
at

er
ia

l 
L2 

at 
La

wn
s 

La
ne

 
Br

idg
e 

(U
np

ro
pp

ed
 

co
m

pr
es

sio
n 

m
em

be
r)



Ch
ap

ter
 

9 
In 

se
rv

ice
 p

er
fo

rm
an

ce
 

of 
re

in
fo

rc
ed

 
co

nc
re

te 
re

pa
ir

o.

O)

o>

T  0 9 -

JZ

CO

■Oa>

-  8

o
LO

ooo
LO

ooooo
CM

ooCO
o
LO
CM

o
LO
CO

vn
CD
o
?5T—ITt
52
00
a>
(0
©
©

(diuoo+) uiBiisojofyy (suaj.-)

Fig
ur

e 
9.5

 
St

ra
in 

di
st

rib
ut

io
n 

in 
re

pa
ir 

pa
tch

 
of 

m
at

er
ia

l 
G1

 
at 

Gu
nt

ho
rp

e 
Br

idg
e 

(U
np

ro
pp

ed
 

co
m

pr
es

sio
n 

m
em

be
r) 

20
0



^riupier y  i r ise r  vice perjorm ance o j reinjorcea concrete repair

The strains presented in Figures 9.2 to 9.5 are obtained from the vibrating wire strain 

gauges installed in the repairs, as described in Chapter 4 (Gunthorpe Bridge) and 

Chapter 5 (Lawns Lane Bridge). Vibrating wire strain gauges were attached to the cut

back substrate concrete surface, abbreviated to “subs” in Figures 9.2 to 9.5, steel 

reinforcement, abbreviated to “steel” and embedded in the repair material, abbreviated 

to “emb” (the embedment gauges are at the same level as the steel reinforcement but 

positioned centrally between two reinforcing bars). Locating the strain gauges in these 

positions allowed the distribution of shrinkage and external load transfer strains at prime 

locations within the repair patch to be determined.

Referring to Figures 9.2 to 9.5, the strain in the substrate concrete increases rapidly 

during approximately the first 11 weeks after application of the repair material. The 

substrate concrete strain then remains relatively constant between approximately week 

11 and week 25 (Figures 9.2 to 9.5). After 25 weeks, an increase in strain is again 

observed in the substrate concrete until approximately week 47 (see Figures 9.2 to 9.5). 

From approximately week 47 onwards, the strain in the substrate concrete remains 

relatively constant until the end of the monitoring period (week 60, Figures 9.2 to 9.5). 

The strain in the steel reinforcement and repair material (gauge “emb”) within this 

period (week 0 to week 60, Figures 9.2 to 9.4) show a fairly similar pattern to the strain 

in the substrate concrete (Figure 9.2 to 9.4), but the magnitude of strain is lower in the 

steel reinforcement and repair material. In Figure 9.5, however, the strains in the steel 

reinforcement and repair material remain relatively constant throughout.
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9.3.1.1.1.1 Discussion

The spray applied materials represented in Figure 9.2 to 9.5 have elastic modulii which 

are greater than the elastic modulii of the substrate concrete (see Table 9.1). The 

compressive strengths of the repair materials and substrate concretes from both Lawns 

Lane Bridge and Gunthorpe Bridge are also listed in Table 9.1. As the stiffer repair 

materials exhibit shortening due to shrinkage (see Table 9.2), compressive strain is 

transferred into the less stiff substrate, which results in the high compressive strain in 

the substrate concrete, see Figures 9.2 to 9.5, week 0 to week 11. This occurs after the 

repair material has hardened and attained its full elastic modulus (i.e. the repair material 

becomes stiffer than the substrate concrete). It was reported in Chapter 8 (Figure 8.9 

and Table 8.11) that on average, 96% of the 28 day elastic modulus of a repair material 

is achieved at 21 days. Therefore, it can be stated that the repair material reaches almost 

its full elastic modulus after three weeks. Since the automatic logging device was not 

installed until approximately 2-3 weeks after application of the repair patch, the 

measured strains within the first three weeks are unavailable, and as a result, the strains

Table 9.1 Elastic modulus and strength of substrate concrete and repair materials

represented in Figures 9.2 to 9.5

Material Elastic Modulus 

(kN/mm2)

Lawns Lane Gunthorpe

Strength

(N/mm)

Lawns Lane Gunthorpe

L4 29.1 73.0

L2 30.3 60.0

L3 27.4 35.0

G1 31.1 50.0

substrate 23.8 28.1 34.1 36.2
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Table 9.2 Free shrinkage* and creep strains of materials represented in Figures 9.2 

to 9.5

Material 100 day free shrinkage (pstrain) 

(stored at 20°C, 55%RH)

70 day compressive creep (ps train) 

(30% stress/strength)

L4 782 510

L2 325 Not available

L3 710 748

G1 751 421

G3 (Reference) 717 938

Note: * indicates that a correction fo r  volume/surface ratio has not been applied

in Figures 9.2 to 9.5 are linearly interpolated within the first three weeks (except for the 

datum readings which were taken manually 24 hours after application of the repair 

patch). Compressive strain is also transferred to the steel reinforcement during this 

period, but is less than the strain transferred to the concrete substrate since the steel 

reinforcement is much stiffer than the substrate concrete. There will be a virtual tensile 

strain in the repair material which is caused by the restraint to shrinkage provided by the 

substrate concrete and the steel reinforcement. This tension will be equivalent to the 

free shrinkage strain of the repair material minus the compressive strain measured by 

the substrate concrete gauge. The virtual tensile strain will be greater at the steel 

reinforcement/repair material interface due to the greater shrinkage restraint provided by 

the relatively much stiffer reinforcement. In the case of the substrate concrete/repair 

material interface, the elastic modulus of the substrate concrete is marginally lower than 

that of the repair material (Table 9.1). The large surface area of contact, however, 

assists with the strain transfer from repair material to substrate concrete. The rate of the 

substrate strain increase in the first 11 weeks (see Figures 9.2 to 9.5) is steep after which 

it reaches a stable state when shrinkage in the repair material has reached negligible
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levels (refer to Figures 8.14 to 8.16 for shrinkage data). This stable period lasts from 

approximately week 11 to week 25 (see Figures 9.2 to 9.5). This is the period when 

shrinkage reached negligible levels in the repair material but before external load is 

transferred into the repair patch.

A diagrammatic representation of the long term strain distribution in repair and 

substrate materials is made in Figure 9.6 (a) to (e), which is based on the observations 

from Figures 9.2 to 9.5. The effect of the steel reinforcement on the distribution of 

shrinkage strain is omitted for simplicity and to aid clarity. Figure 9.6 (a) shows a 

cross-section through an unpropped substrate concrete before the deteriorated concrete 

was removed. The same cross-section is shown in Figure 9.6 (b) after the deteriorated 

concrete was removed. Figure 9.6 (c) shows the cross-section upon application of the 

repair material. Figure 9.6 (c) considers a repair material stiffer than the substrate 

concrete and represents the shrinkage period from weeks 0 to 11 as identified in Figures

9.2 to 9.5 (the repair material is assumed to be stiffer than the substrate concrete 

throughout the first 11 weeks; this is of course untrue since the repair material will not 

attain its full elastic modulus until approximately 2-3 weeks after application). As the 

stiffer repair material shrinks, it transfers the equivalent of its restrained shrinkage strain 

to the less stiff substrate. The resulting idealised distribution of the shrinkage strain 

between the repair material and substrate concrete is shown in Figure 9.6 (d). The 

strains plotted in Figure 9.6 (c) onwards are exaggerated for clarity. The free shrinkage 

of the repair material is restrained by the substrate resulting in a net restrained shrinkage 

at the interface. The effect of the substrate restraint will be less at the free face of the 

repair, thereby resulting in slightly higher restrained shrinkage strains. Since Ej-m > Esub> 

the shrinking repair material will deform a zone (referred to as zone of influence)
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of the substrate concrete in the proximity of the interface as shown in Figure 9.6 (d). 

Therefore, the compressive strain transferred to the substrate by restrained shrinkage of 

the repair material will be maximum at the interface, gradually reducing to zero at the 

end of the affected zone of the substrate concrete.

The restraint to the free shrinkage of the repair provided by the substrate will result in 

tensile stress in the repair material. The stress will be maximum at the interface, 

reducing gradually towards the free face of the repair patch. The shrinkage strains 

transferred to the substrate concrete will result in compressive stress which will be of 

much lower magnitude relative to the compressive strength of the substrate concrete. 

For example, an increase in strain of 150 microstrain in the substrate concrete at Lawns 

Lane Bridge (Esubs=23.8 kN/mm2) would result in a maximum stress of 3.57 N/mm2 at 

the interface between the repair material and substrate concrete. It is shown in Chapter 

11 that the core strength of the substrate concrete at Lawns Lane Bridge is 34.1 N/mm . 

The profile of restrained shrinkage in the repair patch and resulting tensile stress is 

shown in Figure 9.6 (d). The tensile stress in the repair material leads to tensile creep in 

the long term and a consequent relaxation of the tensile stress [see Figure 9.6 (e)]. The 

degree of relaxation will depend on the creep properties of the repair materials (Table

9.2) and the magnitude of tensile stress/strength ratio. Material L3 has particularly high 

creep characteristics (refer to Figure 8.21) and will show maximum stress relaxation due 

to creep. Sufficiently high levels of creep can ultimately reduce the effective modulus 

of elasticity of the repair material to less than that of the substrate concrete. This will 

result in less transfer of compressive strain to the substrate concrete due to shrinkage of 

the repair material. Refer to Figure 9.3 for material L3 which shows lower transfer of
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strain to the substrate after 11 weeks compared with the other repairs represented in 

Figures 9.2 to 9.5. The advantage of having a higher elastic modulus is lost in this case 

due to the effects of high creep (Table 9.2) in the repair material.

The restraint to shrinkage provided by the substrate concrete causes a virtual tensile 

strain in the repair material. This virtual tensile strain will be the difference between the 

free shrinkage strain of the repair material and the restrained shrinkage in it [which 

equals the strain measured in the substrate concrete, Figures 9.2 to 9.5 and Figure 9.6 

(d)]. This is also discussed in more detail in Chapter 10. Obviously, the repair material 

will crack if the virtual tensile strain due to restraint to shrinkage is greater than the 

tensile strain capacity of the material.

The next stage of redistribution of strain occurs from approximately week 25 to week 47 

(see Figures 9.2 to 9.4). The increase in strain in the steel reinforcement (“steel”) and 

repair material (“emb”) which occurs in this period for the spray applied materials L4, 

L2, L3 (see Figures 9.2 to 9.4) is more pronounced than in spray applied material G1 

(Figure 9.5). The compressive strain increases in the repair material (“emb” gauge) and 

consequently, due to strain compatibility, in the steel reinforcement (“steel” gauge) as 

externally applied load is attracted into the relatively stiffer repair material from the 

substrate concrete. The transfer of external load from the substrate concrete to the repair 

patch does not decrease the strain in the substrate concrete but in fact increases the 

compressive strain, see Figures 9.2 to 9.5, weeks 25 to 47. This is due to the restraint 

provided by the interfacial bond between the substrate concrete and stiffer repair 

material which helps to maintain strain compatibility. The fully bonded, stiffer repair
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material prevents the substrate concrete from recovering. The transfer of the external 

compression from the substrate concrete may ultimately neutralise the tensile stress in 

the repair material caused by differential shrinkage (which is reduced to some extent by 

stress relaxation due to tensile creep). Figure 9.6 (f) and (g) shows schematically the 

strain distribution in Figures 9.2 to 9.4 between weeks 25 to 47. Figure 9.6 (f) shows 

that externally applied load is attracted into the repair patch at the end of the steady state 

period (week 25). This transfer of compressive force to the repair material may 

neutralise the residual tensile stress caused by the restraint to shrinkage, as shown in 

Figure 9.6 (g). The net compressive stress transfer to the repair patch from the external 

loading would cause creep of the repair patch. However, the compressive stress is 

found to be small and compressive creep strains are expected to be minimal. For 

example, the increase in compressive strain between weeks 25 and 47 (22 weeks) at the 

substrate concrete of material L4 repair patch (Figure 9.2) is 143 microstrain. Assuming 

strain compatibility at the interface between repair and substrate materials, the 

compressive stress in the repair is 143 microstrain multiplied by the elastic modulus of 

repair material L4 (29.1 kN/mm2), which gives 4.2 N/mm2. The compressive strength 

of the repair material is 73 N/mm and therefore, the maximum stress-strength ratio 

applied on the repair patch at the interface is 5.8%. The average value across the repair 

patch cross-section would be even less due to the strain gradient up to the free surface of 

the repair. Consequently, the compression creep in the repair patch is expected to be 

negligible.
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9.3.1.1.1.2 Further discussion

9.3.1.1.1.2.1 Serviceability performance o f  repair

The repair materials represented in Figures 9.2 to 9.5 performed well under service 

conditions in the 60 week monitoring period despite the fact that some of them (L2, L3 

and L4) do not comply with the current repair standard of the Highways Agency, BD 

27/86. In order to comply with the current standard, the criteria include, for example, 

limitations to the maximum aggregate size and type of fibre to be included in the 

mixture. The characteristic strength of the repair material is also specified (e.g. 40 

N/mm for sprayed concrete). In the current project, these properties did not influence 

repair material selection; the primary properties considered were the elastic modulus, 

shrinkage and creep. Referring to Table 9.1, the elastic modulus and compressive 

strength is given for repair materials L2, L3, L4 and Gl. It is clear from Table 9.1 that 

the elastic modulus of each repair material is greater than the elastic modulus of the 

corresponding substrates, and as a result, these repair materials performed well in 

service. For example, in the 60 week monitoring period shown in Figures 9.2 to 9.5, 

repair materials L2, L3, L4 and Gl were able to transfer a portion of the shrinkage to the 

substrate concrete which reduced the risk of cracking, and also attracted external stress 

into the repair patch to reduce/neutralise the residual tensile stress in the repair patch. 

On the other hand, the compressive strength of material L3 is 35 N/mm2, which is less 

than the requirement of 40 N/mm2 as specified in BD 27/86. Nevertheless, this material 

performed well under service conditions. The fact that three non-standard materials 

(L2, L3 and L4) performed satisfactorily within the monitoring period indicates that the 

key properties required for satisfactory long term performance are the elastic modulus, 

shrinkage and creep of the repair material. These properties should, therefore, be the
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most important criteria for material specification, but these are not considered by the 

standard, BD 27/86, of the Highways Agency.

Material L4 performed well within the monitoring period (60 weeks) but cracked soon 

afterwards (see Figure 9.7). A possible explanation for this is that the material became 

weaker in tension with time. There is evidence based on experimental data given in 

Chapter 8 (Section 8.5.4) which shows that some repair materials suffer serious 

reductions in flexural strength with time. For example, material L5, a repair mortar 

which consists of the same mixture constituents as material L4, except that fibres were 

added to the mixture of material L5, exhibited a 28 day modulus of rupture of 10.9 

N/mm2. The long term modulus of rupture of this repair material was only 4.0 N/mm2. 

The long term modulus of rupture of material L4 was 4.7 N/mm . A 28 day modulus of 

rupture of this repair material was not available. The tensile stress in the repair material 

due to the restraint to shrinkage [Figure 9.6 (d)], may not have been fully neutralised 

during the external load transfer. Therefore, in the long term, the tensile strength of the 

repair material became less than the residual tensile stress in the repair material, and as a 

result, cracking occurred in the repair patch. This phenomena is further discussed in 

Chapter 10.

9.3.1.1.1.2.2 Schematic strain distribution-time relationship

Figure 9.8 shows a simplified schematic distribution with time of strain in the substrate 

concrete and the repair patch for a combination of repair and substrate materials where 

Erm > Esub. It is valid for spray applied materials to an unpropped compression
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(b)

Figure 9.7 Cracking in the repair patch of material L4 at Lawns Lane Bridge:
(a) cracks in material L4 approximately 60 weeks after application
(b) close-up of cracking in material L4
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member. Figure 9.8 is based on Figures 9.2 to 9.4 which provide repetitive 

experimental data of strain distribution with time of a similar profile as Figure 9.8. The 

strains in the steel reinforcement and repair material at a common level in the cross- 

section are assumed to be equal due to strain compatibility (Figure 9.8). This is an 

approximation of the experimental strains plotted in Figures 9.2 to 9.4 for steel and 

repair material (“emb” gauge). Four stages of distribution of strain can be identified in 

Figure 9.8, namely:

(i) shrinkage stage, where compressive strain is transferred into the substrate (and 

steel reinforcement) due to shrinkage in the repair material

(ii) steady state #1, caused by relaxation of the repair material due to tensile creep

(iii) external load transfer, where the repair material attracts externally applied load 

into the repair patch. Compressive strains are simultaneously transferred to the 

substrate concrete in the contact zone via interfacial bond.

(iv) steady state #2, when the transfer of the external load into the repair patch has 

ceased.

9.3.1.1.2 Substrate concrete stiffer than repair material

Two repairs to Gunthorpe Bridge carried out without propping the structure before the 

application of spray applied materials are considered. Two repair materials labelled G2 

and G3 were used and their strains with time are presented in Figures 9.9 and 9.10. 

Material G2 conforms with the current repair specification, BD 27/86, whereas material 

G3 is a conventional sand/cement mortar which does not meet the requirements of the
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specification The data are plotted at weekly intervals. Datum readings (origin on the 

graphs) were taken 24 hours after the application of repair. The elastic modulus and 

compressive strength of the repair materials are given in Table 9.3. Both materials have 

elastic modulii which are less than the elastic modulus of the substrate concrete (Table

9.3). The compressive strength of these repair materials (Table 9.3) are greater than the 

minimum specified (40 N/mm2) in BD 27/86 [1].

The strains presented in Figures 9.9 and 9.10 are obtained from the vibrating wire strain 

gauges installed in the repairs, as described in Chapter 4. Vibrating wire strain gauges 

were attached to the cut-back substrate concrete surface, abbreviated to “subs” in 

Figures 9.9 and 9.10, steel reinforcement, abbreviated to “steel” and embedded in the 

repair material, abbreviated to “emb”. The embedment gauges were at the same level as 

the steel reinforcement but positioned centrally between two reinforcing bars. Locating 

the strain gauges in these positions allowed the distribution of shrinkage and external 

load transfer strains within the repair patch to be determined.

Table 9.3 Elastic modulus and strength of substrate concrete and repair materials

represented in Figures 9.9, 9.10 and 9.12

Material Elastic Modulus Strength

(kN/mm2) (N/mm2)

Gunthorpe Lawns Lane Gunthorpe Lawns Lane

G2 17.6 44.0

G3 23.8 46.0

LI 22.7 69.0

Substrate 28.1 23.8 39.0 45.0
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9.3.1.1.2.1 Discussion

The data presented in Figures 9.9 and 9.10 show the strains from the gauges in two 

repair materials (G2 and G3) at Gunthorpe Bridge. Materials G2 and G3, having elastic 

modulii which are less than the elastic modulus of the substrate concrete (see Table 9.3), 

performed differently to materials which are stiffer than the concrete substrate (compare 

Figures 9.9 and 9.10 with Figure 9.8). In this instance, the less stiff repair materials are 

unable to transfer shrinkage strain into the stiffer substrate, as indicated by the 

negligible strains in the substrate concrete and steel reinforcement during the 

“shrinkage” period (approximately week 0 to week 11), in Figures 9.9 and 9.10. 

Further, negligible strains are observed in the repair materials (gauge “emb”) in Figures 

9.9 and 9.10 despite the high free shrinkage property of repair materials G2 and G3 - 

1311 and 717 microstrain respectively (Table 9.4). This is due to the stiffer substrate 

concrete effectively restraining the repair material from shrinking and not undergoing 

any significant compressive deformation itself due to the force exerted at the interface 

by the shrinking repair material. The firm restraint to shrinkage will induce a tensile 

stress in the repair material and if this tensile stress is greater than the tensile strength of

Table 9.4 Free shrinkage* and creep strains of materials represented in Figures 9.9, 

9.10 and 9.12

Material 100 day free shrinkage (pstrain) 70 day compressive creep (ps train)

(stored at 20°C, 55%RH) (30% stress/strength)

G2 1311 809

G3 (reference) 111 938

LI 620 783

Note: * indicates that a correction fo r  volume/surface ratio has not been applied
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the repair material, then the repair material will crack. Nevertheless, cracking was 

absent in materials G2 and G3. The tensile stress in the repair material at early ages 

after application will be reduced due to low elastic modulus of the repair material. On 

average, the tensile elastic modulus of the repair material at 7 days will be 

approximately 65% of the 28 day tensile elastic modulus (an indication of the 

development of elastic modulus with time is give in Figure 8.9 and Table 8.11). This 

will serve to reduce the tensile stress in the repair material. Furthermore, the repair 

material will not attain a sufficient bond strength until the repair material hardens 

(possibly 1-2 weeks after application) and as a result, some slip at the interface between 

the repair material and substrate concrete and the repair material and steel reinforcement 

will accommodate some shrinkage without causing tension in the repair. Once full bond 

and full elastic modulus had been achieved (approximately 2 weeks after application - 

see Table 8.11), tensile stress relaxation will occur as a result of tensile creep. Stress 

relaxation in the repair material is taken into account in more detail in the next chapter. 

Since the tensile stress in the repair material may be close to the tensile strength of the 

repair material (which will be shown in Chapter 10), then a very high tensile 

stress/strength ratio will result. Referring to Table 9.4, both materials exhibit relatively 

high creep (809 and 938 microstrain respectively), therefore, because of the high 

stress/strength ratio, high creep will occur. It is also evident in Figures 9.9 and 9.10 that 

the less stiff repair material is unable to attract any significant external load into the 

repair patch in the long term (weeks 25 to 47). This is shown by the negligible strains in 

the substrate concrete, steel reinforcement and repair material in the “external load 

transfer” period (week 25 to week 47, Figure 9.10). In material G2 (Figure 9.9), the 

substrate concrete does show an inexplicable decrease in compression (negative strain)
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within this period. The steel reinforcement and repair material, on the other hand, both 

exhibit a slight increase in compression in the latter stages of the monitoring period 

(Figure 9.9).

Figure 9.11 diagrammatically illustrates the effect of a spray applied repair material to a 

stiffer substrate concrete of a compression member. A section through the unpropped 

substrate concrete member both before and after the deteriorated concrete is removed is 

shown in Figures 9.11 (a) and (b). The repair patch is applied in Figure 9.11 (c). As the 

repair material tries to shrink (shrinkage period assumed as week 0 to week 11, see 

Figure 9.8), the stiffer substrate concrete fully restrains the repair material [Figure 9.11 

(c)]. Hence, the free shrinkage strain in the repair material [see Figure 9.11 (c)] 

translates into a tensile stress, shown idealised in Figure 9.11 (d). The strains plotted 

from Figure 9.11 (c) onwards are shown exaggerated for clarity. At early ages after 

application when the repair material is in a soft state, the tensile stress will be low in the 

repair material for two reasons. Firstly, the bond between the repair material and the 

substrate concrete/steel reinforcement will not have developed, hence, interfacial slip 

will allow deformation in the repair material to occur freely. Secondly, the elastic 

modulus of the repair material will be low, therefore, the tensile stress will be low. On 

the other hand, the tensile strength of the repair material will also be very low at early 

ages after repair application Hence, cracking may, nevertheless, occur as a result of the 

restraint to shrinkage as shown in Figure 9.11 (e). If repair material characteristics are 

suitable to prevent such early cracking, it will reach maturity and develop full tensile 

stress due to restrained shrinkage. Therefore, if  the repair material exhibits high creep
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External Loading
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characteristics, then tensile stress relaxation will help alleviate the tensile stress [Figure 

9.11 (f)] and cracking may be avoided (this is further studied in Chapter 10, albeit for 

repair materials that are stiffer than the substrate concrete). The less stiff repair material 

was unable to attract externally applied stress into the repair patch as shown by the data 

in Figures 9.9 and 9.10. This fact is represented in Figure 9.11 (g). As a consequence, a 

residual tensile stress may remain in the repair material. The final distribution of stress 

across the repaired section is given in Figure 9.11 (h).

9.3.1.1.2.2 Further discussion

If the tensile strain induced is greater than the tensile strain capacity of the repair 

material, then the material will crack [see Figure 9.11 (e)]. This phenomenon occurred 

with material LI at Lawns Lane Bridge. Material LI complies with the current standard 

BD 27/86 [1] and its compressive strength exceeds the minimum requirement of 40 

N/mm2 in BD 27/86 (see Table 9.3). The fact that this material suffered extensive 

cracking confirms that compressive strength of a repair material is a relatively 

unimportant parameter for its specification. The data from the strain gauges in material 

LI is shown in Figure 9.12. The strain in the substrate concrete ("subs") remains 

approximately between -50 microstrain and +50 throughout the monitoring period 

(weeks 0 to 60). The strain in the steel reinforcement and repair material increase 

rapidly in tension to approximately 275 microstrain and 375 microstrain at week 9, 

Figure 9.12. These strain subsequently remain relatively constant until the end of the 

monitoring period (week 60). The 100 day shrinkage strain of material LI was 620 

microstrain, as shown in Table 9.4 [which is less than the free shrinkage of repair 

materials G2 and G3 (1311 and 717 microstrain respectively)].
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The marginally stiffer substrate concrete (Esub=23.8 kN/mm2, Bm=22.1 kN/mm2, see 

Table 9.3) remains unaffected by shrinkage in the less stiff repair material, and as a 

result, there is little strain in it. This results in a strain in the substrate concrete of 

between +/- 50 microstrain (Figure 9.12). The restraint provided by the stiffer substrate 

concrete to the shrinking repair material led to a high tensile strain in the repair material 

(see emb gauge, Figure 9.12) which caused catastrophic cracking to occur in the repair 

material. The tensile strain in the repair material is 375 microstrain at week 9, but this 

would also include the crack width. Nevertheless, the tensile strain capacity of the 

repair material was exceeded and cracking occurred. A high tensile strain is also 

evident in the steel reinforcement as shown in Figure 9.12. This is approximately 275 

microstrain at week 9. This could be as a result of a faulty gauge, since it is 

inconceivable that a cracked repair material could transfer such a high tensile strain to 

the steel reinforcement. Nevertheless, if this was the case, it would reduce the 

compressive stress in the steel reinforcement by approximately 57 N/mm .

Figure 9.13 shows the cracking in two of the repair patches of material LI on the north 

abutment at Lawns Lane Bridge. Figure 9.14 diagrammatically shows the development 

of the cracks in the repair patch of the same repair material. Figure 9.14 (a) shows an 

elevation of the north abutment at Lawns Lane Bridge and the position of the repair 

patches (including material LI, L3, L4, and L5). Figures 9.14 (b) through (e) shows the 

cracks at approximately 1, 2, 8 and 16 months after application of repair. It is clear 

from Figure 9.14 that the repair material exhibited new cracks up to 16 months after 

repair application. The cracks in the early stages after application of repair were due to 

the high tensile stress in the repair material caused by restraint to shrinkage provided by
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(a)

(b)

Figure 9.13 Cracking in repair patch of material LI at Lawns Lane Bridge: 
(a) and (b) repair patches on north abutment
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Repair m ateria ls:  

L1 L5 | L4 L32000

N o te  all c r a c k  w id th s  < 0  1 m m  u n le s s  s t a t e d
( b )

0.1

Noie: all crack  widths < 0.1m m  un less s ta te d

(d> Note: all crack  widths < D J m m  un less s la te d

Note; oil crack  widths < 0 .1 m m  u n less  s ta te d

(N ot to  s c a le )

F ig u re  9 . 1 4  C r a c k i n g  in m a t e r i a l  L1 a t  L a wn s  L a n e  Br id ge :

( a )  e l e v a t i o n  o f  n o r t h  a b u t m e n t  ( b )  1 m o n t h  a f t e r  a p p l i c a t i o n  

( c )  2  m o n t h s  a f t e r  a p p l i c a t i o n  ( d )  8  m o n t h s  a f t e r  a p p l i c a t i o n  

( e )  1 6  m o n t h s  a f t e r  a p p l i c a t i o n

M e t h o d  o f  repair :  s p r a y  a p p l i e d  S u p p o r t  d u r i n g  r e p ai r :  u n p r o p p e d  

P r o p e r t i e s :  s u b s t r a t e  c o n c r e t e  s t i f f e r  t h a n  r e p a i r  m a t e r i a l
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the marginally stiffer substrate concrete. Cracking occurred before tensile creep could 

relieve the stress in the repair material. The long term modulus of rupture of this repair 

material was 6.1 N/mm , the 28 day modulus of rupture was not available. Material LI 

exhibits lower creep than repair materials G2 and G3 (Table 9.4), indicating that stress 

relaxation due to creep will be lower and possibly explaining why material LI cracked 

but repair materials G2 and G3 remained uncracked, despite the fact that the modulus of 

rupture of material LI was greater than the modulus of rupture for both materials G2 

and G3 (Table 8.23). Cracking in the long term in material LI at Lawns Lane Bridge is 

possibly due to a decrease in tensile strength with time in the repair material. This was 

discussed in detail in Section 8.5.4, where the modulus of rupture of the repair 

materials, obtained from the manufacturers’ literature, was greater than the modulus of 

rupture of repair materials obtained from laboratory tests approximately 14-36 months 

after casting. Therefore, since the tensile strength of the repair material changes with 

time, this may decrease to a value that is less than the residual tensile strength in the 

repair material and cracking could still occur in the long term. Referring to Figure 9.14, 

the cracking pattern in the repair patches of material LI is fairly regular (predominantly 

vertical and horizontal cracks). Therefore, when the tensile stress exceeds the tensile 

strength of the repair material, the material is no longer able to resist the tensile stress 

and cracking occurs. This process is repeated until the repair material cracks into 

smaller sections that can accommodate the tensile stress (i.e. cracking in the repair 

material relieves tensile stress). Such a regular pattern, it has been observed, is 

synonymous with cracking caused by unsuitable repair material properties (compare 

Figure 9.13 with Figure 9.7). For instance, the majority of the cracking in material LI 

at Lawns Lane Bridge is due to the fact that the elastic modulus of the repair material
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was less than the elastic modulus of the substrate concrete at application of repair. High 

tensile stress was evident in the repair patch as a result of the restraint to shrinkage 

provided by the stiffer substrate concrete and steel reinforcement. Consequently, cracks 

occurred in the repair material which were predominately horizontal and vertical, as 

shown in Figure 9.13. On the other hand, the properties of material L4 were suitable for 

concrete to begin with, i.e. high elastic modulus, medium shrinkage and creep. Over a 

long period of time (+60 weeks), the tensile strength of the repair material decreased. 

Consequently, the residual tensile stress in the repair material due to the restraint to 

shrinkage provided by the substrate concrete and steel reinforcement became greater 

than the tensile strength of the repair material. As a result, a cracking pattern which 

resembles the predominantly horizontal and vertical cracks, as shown in Figure 9.13 for 

material LI, was also evident in material L4 (Figure 9.7).

9.3.1.2 Flow applied repair patches

9.3.1.2.1 Repair material stiffer than substrate concrete

Two repairs to Sutherland Street Bridge without propping the structure before the 

application of (flowing) repair are considered (see Figure 6.4). Figures 9.15 and 9.16 

show the strains monitored over time from the gauges in the repair for materials S2 and 

SI respectively. Both these repair materials complied with the current standard, BD 

27/86 [1]. The data are plotted at weekly intervals. Datum readings were taken 24 

hours after the application of repair. The strains presented in Figures 9.15 and 9.16 are 

obtained from the vibrating wire strain gauges installed in the repairs, as described in 

Chapter 6. Vibrating wire strain gauges were attached to the cut-back substrate
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concrete surface, abbreviated to “subs” in Figures 9.15 and 9.16, steel reinforcement, 

abbreviated to “steel” and embedded in the repair material, abbreviated to “emb”. The 

embedment gauges are at the same level as the steel reinforcement, but positioned 

centrally between two reinforcing bars.

The strains in the substrate concrete, repair material and steel reinforcement in Figure 

9.15 (material S2), all show increasing values (in tension) with time soon after 

application of the repair (within the first two weeks). Thereafter, the strains in the 

substrate concrete, repair material and steel reinforcement increase in compression 

(between weeks 2 and 16) to reach approximately 175, 120 and 100 microstrain 

respectively. These strains remain relatively constant thereafter to the end of the 

monitoring period at week 60. The gauges in the same locations (substrate concrete, 

repair material and steel reinforcement) in Figure 9.16 (material SI) all show increasing 

tensile strains within the first 4 weeks of monitoring (-80, -60 and -50 microstrain 

respectively). The strains in the substrate concrete and repair material start increasing 

from week 4 to reach about 100 microstrain (compression) at week 18 (Figure 9.16). 

These strains remain relatively constant for the remainder of the monitoring period. The 

strain in the steel reinforcement starts to increase from -50 microstrain at week 4 to 

reach 0 microstrain at week 27. The steel reinforcement strain remains relatively 

constant from week 27 until the end of the monitoring period (week 60).

9.3.1.2.1.1 Discussion

The tensile strains in the repair patch of material S2 within the first week after 

application are due to the fact that the shuttering was removed after approximately three
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days which tended to induce tension in the repair patch. From this age onwards, the 

repair patch would have to fully support its own weight. The repair materials were 

applied to unpropped compression members, but nevertheless, the shuttering formed a 

partial support in the early stages after repair application (see Figures 6.4 and 6.7). The 

shuttering was left in place for approximately three days after application to assist with 

curing. When the shuttering was removed, the repair patch had a tendency to pull away 

from the substrate concrete, thereby inducing slight tensile strains in the substrate 

concrete, steel reinforcement and repair material. These early age tensile strains were 

evident in nearly all the repair materials under test at Sutherland Street Bridge [see 

Figures 9.15 (S2), 9.16 (SI), 9.18 (SI), 9.20 (S3), and 9.21 (S4)]. Shortly after striking 

the shuttering (from week 1 onwards), the strains in the substrate concrete [Figure 9.15 

(material S2)] start changing to compressive strains as the stiffer repair material begins 

to develop its stiffness (Table 8.11) and transfers shrinkage strain to the less stiff 

substrate concrete (see Tables 9.5 and 9.6). Compressive strain is also transferred to the 

steel reinforcement during this period, but is less than the strain transferred to the 

substrate concrete since the steel is much stiffer than the substrate concrete. There will 

be a virtual tensile strain in the repair material which is caused by the partial restraint to

Table 9.5 Comparison of elastic modulus between substrate concrete and repair 

materials represented in Figures 9.15 and 9.16

Material Elastic Modulus (kN/min)

Sutherland Street Bridge

SI 24.2

S2 32.2

substrate 23.2
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Table 9.6 Free shrinkage* and creep strains of materials represented in Figures 

9.15 and 9.16

Material 100 day free shrinkage (fistrain) 70 day compressive creep (ps train)

(stored at 20°C, 55%RH) (30% stress/strength)

SI 740 445

S2 791 438

G3 (Reference) 111 938

Note: * indicates that a correction fo r  volume/surface ratio has not been applied

shrinkage provided by the substrate concrete and steel reinforcement (equivalent to the 

free shrinkage of the repair material minus the compressive strain measured by the 

substrate concrete gauge). The shrinkage restraint will be greatest at the steel 

reinforcement/repair material interface as the steel reinforcement has a much larger 

stiffness. The slope of the strain versus time graph in Figure 9.15 is steep between 

weeks 1 and 16 after which it reaches a stable state when shrinkage in the repair 

material has reached negligible levels. The strains in the substrate concrete, steel 

reinforcement and repair material remain constant thereafter. Material S2 does not 

attract externally applied stress into the repair patch, as indicated by the constant strains 

in the substrate concrete, steel reinforcement and repair material strains from week 27 

(Figure 9.15). This may be due to minor cracking which is visible in the repair material, 

as shown in Figure 9.17. It has been observed in many other instances in this project 

that a cracked material is unable to attract externally applied load into the repair patch. 

Figure 9.17 (a) shows an elevation of the north face of the north frame at Sutherland 

Street Bridge, including the positions of the repair patches of repair materials (S1-S4)
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S u p p o r t  dur ing  repa ir :  u n p r o p p e d  

P ro p e r t i e s :  r e p a i r  m a t e r i a l  s t i f f e r  t h a n  

s u b s t r a t e  c o n c r e t e
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on the frame. Figure 9.17 (b) shows the cracks in the repair patch of material S2. In 

this instance, a mismatch in repair material properties is not responsible for cracking in 

the repair material, since the repair material exhibits properties that are deemed 

acceptable for concrete repair (i.e. relatively higher elastic modulus compared to the 

substrate concrete elastic modulus, and medium shrinkage, see Tables 9.5 and 9.6). 

Referring to Figure 9.17 (b), mild steel covers were placed over the strain gauges and 

gauge cables to protect them from the threat of vandalism (views of these steel covers 

are also shown in Figure 6.8). These steel covers were intermittently bolted to the 

surface of the repair material. It is, therefore, evident that the bolted steel covers 

provided a restraint which induces localised tensile stress in the repair material. This 

results in localised cracking in the area around the steel covers, as shown in Figure 9.17

(b).

Material SI, as shown in Figure 9.16, performs differently to material S2 (Figure 9.15). 

The strains in the steel reinforcement, substrate concrete and repair material show 

tensile strains in the first 4 weeks. Removal of the shuttering after three days again 

induces tension in the repair patch, since from this age onwards the repair patch would 

have to fully support its own weight. There is a marginal difference in elastic modulus 

between the repair material and substrate concrete (Table 9.5), hence the degree of 

restraint will be high. The material also exhibits relatively high shrinkage (740 

microstrain, Table 9.6). From week 4 onwards, the substrate concrete and repair 

material (Figure 9.16) starts deforming compressively and after about 15 weeks exhibit 

compressive strain of approximately 100 microstrain. This compression in the substrate 

concrete is due to net shrinkage in the repair material. The strains in the substrate 

concrete and repair material remain relatively constant thereafter. The strain in the steel
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reinforcement, however, returns to approximately zero at week 29 and remains there 

until week 54, as shrinkage strain is slowly transferred to the steel reinforcement to 

neutralise the initial tensile strain in the steel reinforcement caused by the removal of 

shuttering. It is clear that from approximately week 29 onwards no external load is 

attracted into the repair material [indicated by the almost constant strains in the substrate 

concrete, steel reinforcement and repair material (“emb” gauge)]. Again, this is due to 

the cracking which occurred in the repair patch. Referring to Figure 9.17 (c), cracking 

is evident in the vicinity of the steel protective covers due to the restraint provided by 

the holding bolts.

Comparing Figure 9.17 (b) and (c) with the cracking observed in Figure 9.7 (material L4 

at Lawns Lane Bridge) and Figure 9.13 (material LI at Lawns Lane Bridge), the 

cracking pattern in materials SI and S2 is much more irregular than the cracking pattern 

in material L4 and LI (Figures 9.7 and 9.13). The majority of the cracks in materials S2 

and SI [Figure 9.17 (b) and (c) respectively] originate in the area around the holding 

bolts of the steel covers. Therefore, it is evident that the restraint provided by the bolted 

steel covers is responsible for the cracking in materials S2 and SI at Sutherland Street 

Bridge, as opposed to the cracking due to inadequate properties of materials L4 and LI 

at Lawns Lane Bridge.

9.3.1.2.1.2 Further discussion

It is clear from Figures 9.15 and 9.16 that both flowing repair materials performed 

differently to each other. Material S2 [Figure 9.17 (b)] exhibited more cracking than
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material SI [Figure 9.17 (c)], but this is mainly due to the restraint to shrinkage 

provided by the connections of the steel covers. Nevertheless, there is only a marginal 

difference in elastic modulus between the repair material SI and the substrate concrete 

(Table 9.5). This will result in higher shrinkage restraint in the material since repair 

material SI will not be able to transfer as much shrinkage strain to the substrate concrete 

and steel reinforcement as material S2. This is shown with reference to Figures 9.15 

and 9.16. The initial tension in the repair patches of materials S2 and SI in Figures 9.15 

and 9.16 respectively, is due to the removal of the shuttering. From this point onwards, 

the initial tensile strain in the substrate concrete, steel reinforcement and repair material 

in material S2 (Figure 9.15) is neutralised at approximately week 2. This is because the 

stiffer repair material is shrinking and transferring shrinkage strain to the substrate 

concrete and steel reinforcement. This is also the case for material SI (Figure 9.16), but 

the transfer of shrinkage strain is slower since there is only a marginal difference in 

stiffness between the repair material and substrate concrete. Therefore, this repair 

material will have to attain its full elastic modulus before distribution of shrinkage strain 

can take place. The initial tensile strains in the substrate concrete, steel reinforcement 

and repair material are neutralised at approximately weeks 9, 7 and 27 respectively due 

to shrinkage in the repair material. The much stiffer repair material (S2, Figure 9.15) 

transfers approximately 230 microstrain of shrinkage strain to the substrate concrete (- 

30 microstrain to +200 microstrain). This value is approximately 160 microstrain in 

material SI (-80 microstrain to +80 microstrain, Figure 9.16). Similarly, the stiffer 

repair material S2 (Figure 9.15) transfers approximately 150 microstrain of shrinkage to 

the steel reinforcement (-25 microstrain to +125 microstrain), as opposed to 

approximately 40 microstrain to the steel reinforcement in repair patch of material SI (-
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50 microstrain to -10 microstrain, Figure 9.16). The free shrinkage of both repair 

materials SI and S2 are similar (Table 9.6).

It is also possible that the flowing technique of repair may have an influence on the 

performance of the material. The distribution of strain in the repair patch of a spray 

applied materials could be categorised into four distinct stages i.e. Shrinkage, Steady 

state #1, External load transfer and Steady state #2 (see Figure 9.8). The distribution of 

strain in the repair patch of a flowing repair material was different to the distribution of 

strain in a spray applied material (compare Figures 9.15 and 9.16 with Figure 9.8), even 

though the relative properties of the flowing materials were similar to the relative 

properties of the spray applied materials (i.e. high elastic modulus, medium shrinkage, 

low creep). For example, the flowing repair materials did not attract externally applied 

stress into the repair patch (see Figures 9.15 and 9.16, weeks 25 to 47). It is therefore 

possibly that spray applied repair perform better than flowing repairs when applied to 

unpropped members in compression.

9.3.2 Repairs to propped compression members

9.3.2.1 Flow applied repair patches

9.3.2.1.1 Repair material stiffer than substrate concrete

Repairs to propped members were carried out at Sutherland Street Bridge in Sheffield. 

The load was removed from the bridge during the application of the repair patches. 

Details of the propping procedure are given in Chapter 6. A total of four different repair 

materials were monitored, which were applied using the flowing technique. Three of the
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materials were commercially available (SI-S3), whereas S4 was a laboratory designed 

flowing concrete mix. Repair materials S I-S3 complied with the current standard, BD 

27/86 [1], whereas material S4 did not.

Vibrating wire strain gauges were attached to the cut-back substrate (“subs”), steel 

reinforcement (“steel”) and embedded in the repair material (“emb”). Data from these 

strain gauges in a number of the propped compression members (materials S1-S4) at 

Sutherland Street Bridge are presented in Figures 9.18 to 9.21. Datum readings were 

taken 24 hours after the application of the repair patch. Depropping occurred 

approximately three weeks after the application of the repair when the cube strength of 

the repair material reached the design strength of the substrate concrete. Strains are 

plotted at weekly intervals.

Referring to material SI in Figure 9.18, tensile strains are evident in the substrate 

concrete, steel reinforcement and repair material in the first 3 weeks of monitoring. The 

load was removed from the member during this period by propping. These strains 

return to approximately zero before depropping occurs at approximately week 4 (Figure 

9.18). After depropping, the strains in the embedment, steel and substrate gauges 

increase steadily to reach approximately 170, 50 and 40 microstrain respectively at 17 

weeks. From week 17 onwards, the strains remain relatively constant (Figure 9.18).

The strains from the substrate concrete, steel reinforcement and repair material gauges 

in material S2 are shown in Figure 9.19. The substrate concrete strain increases rapidly 

to reach approximately 240 microstrain at week 29, but remains relatively constant
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thereafter. The substrate concrete strains undergo no sudden change due to depropping 

at week 3. The strain in the repair material (gauge: emb) reaches approximately 90 

microstrain at week 3 but decreases sharply to approximately 30 microstrain soon after 

depropping (Figure 9.19). This strain remains relatively constant thereafter. The strain 

in the steel reinforcement decreases sharply to approximately 70 microstrain (tension) 

between weeks 2 and 5. There is no sudden change upon depropping at week 3. This 

strain remains relatively constant from week 5 to the end of the monitoring period (week 

60, Figure 9.19)

The strains from material S3 are shown in Figure 9.20. The substrate concrete strain 

increases in tension to approximately 60 microstrain at week 1 before rapidly changing 

to approximately 100 microstrain before depropping at week 4. Thereafter, this strain 

remains relatively constant until week 12. A gradual increase then occurs until week 22, 

where the strain reaches approximately 175 microstrain (compression). From week 22 

onwards, this strain remains relatively constant (Figure 9.20). The steel reinforcement 

and repair material show slight tensile strains (approximately -25 and -10 microstrain) 

until week 3 before returning to 0 microstrain at week 4. They then show negligible 

strains until week 14 when a slight increase in compression is observed. This increase 

in strain continues until week 41, after which a steady state is reached (Figure 9.20).

The distribution of strain in repair patch of material S4 is given in Figure 9.21. The 

substrate concrete strain increases to reach a maximum of approximately 210 

microstrain (compressive) at week 8 and remains relatively constant thereafter. The 

substrate concrete strain remains unaffected by depropping at week 3. The steel
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reinforcement shows an initial tensile strain (week 1) before gradually changes to a 

compressive strain reading 50 microstrain at week 10. This strain remains relatively 

constant throughout the remainder of the monitoring period (Figure 9.21). The repair 

material (gauge: emb) also exhibits an initial tensile strain (week 1, Figure 9.21) but 

returns to 0 microstrain at week 3. After depropping at week 3, the strain in the repair 

material gradually increases to approximately 30 microstrain (tensile) and remains 

relatively constant thereafter (Figure 9.21).

9.3.2.1.1.1 Discussion

The tensile strains in the steel reinforcement, substrate concrete and repair material in 

repair materials SI and S3, and in the steel reinforcement and repair material of S4 

(Figures 9.18, 9.20 and 9.21 respectively) is as a result of removing the shuttering 

within the first week after application of the repair material. A similar tensile strain is 

evident in the steel reinforcement within the repair patch of material S2 (Figure 9.19). 

Similar tensile strains were also observed in repairs to unpropped compression members 

within the early stages after application (Figures 9.15 and 9.16, materials SI and S2). 

Since the shuttering provides a support to the repair material in the early stages, this 

support is lost when the shuttering is removed. Consequently, the repair material will 

then have to fully support its own weight resulting in a tendency to pull away from the 

substrate concrete and steel reinforcement. This induces tension in the steel 

reinforcement, substrate concrete and repair material due to the bond at the interface and 

steel reinforcement. The subsequent high compressive strains in the substrate concrete 

with materials S2, S3 and S4 (Figures 9.19 to 9.21) are due to the stiffer repair material
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Table 9.7 Comparison of elastic modulus between substrate concrete and repair

materials represented in Figures 9.18 to 9.21

Material Elastic Modulus (kN/mm )  

Sutherland Street Bridge

SI 24.2

S2 32.2

S3 31.9

S4 27.4

substrate 23.2

transferring shrinkage strain to the substrate concrete during the shrinkage period, 

assumed as week 0 to week 11 from Figure 9.8 (see Tables 9.7 and 9.8). Conversely, 

the relatively low compressive strain developed in the substrate concrete of the repair 

patch of material SI (Figure 9.18) is due to a lower transfer of shrinkage strain to the 

substrate concrete from material SI since there is only a marginal difference in elastic 

modulus between material SI and the substrate concrete (see Table 9.7). Hence, the 

restraint to shrinkage in this material will be higher and less shrinkage strain is 

transferred to the substrate concrete. Depropping the bridge slows the rate of shrinkage

Table 9.8 Free shrinkage* and creep strains of materials represented in Figures 

9.18 to 9.21

Material 100 day free shrinkage ({is train) 

(stored at 20°C, 55%RH)

70 day compressive creep (nstrain) 

(30% stress/strength)

SI 740 445

S2 791 438

S3 580 667

S4 388 454

G3 (Reference) 111 938

Note: * indicates that a correction fo r  volume/surface ratio has not been applied
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strain transfer to the steel reinforcement, substrate concrete and repair material in 

material SI between weeks 4 and 8 (Figure 9.18), but from week 8 to week 17, 

shrinkage strain is distributed within the repair patch (Figure 9.18). A similar restraint 

is visible (Figure 9.20) in the substrate concrete, steel reinforcement and repair material 

strains of the repair patch of material S3; upon depropping at week 3 (Figure 9.20), the 

substrate concrete, steel reinforcement and repair material strains remain relatively 

constant until week 13. Thereafter, some increase in compression is observed, as 

shrinkage strain is distributed within the repair patch. Depropping the bridge did not 

significantly alter the rate of strain increase in the substrate concrete in materials S2 and 

S4 (Figures 9.19 and 9.21). On the other hand, depropping reduced the compressive 

strain in the repair material in the repair patch of material S2 (Figure 9.19), and to a 

lesser extent, the repair material strain in the repair patch of material S4 (Figure 9.21). 

Referring to Figure 9.18, external load is not attracted into the repair patch of material 

SI, indicated by the almost horizontal strains from week 17 onwards. This effect is also 

clearly evident in the other three flow applied repair materials (materials S2-S4, see 

Figures 9.19 to 9.21).

9.3.2.1.1.2 Further discussion

9.3.2.1.1.2.1 Cracking in repair patches

A visual survey was carried out on the repair patches whose strains are presented in

Figures 9.18 to 9.21 a few months after the application of the repair materials. The

results of the visual survey are given in Figure 9.22. An elevation of the south frame

(south face) is given in Figure 9.22 (a), along with the position of the repair patches on

this frame. The whole of the south frame was propped during application o f the repair
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patches. Figures 9.22 (b) and (c) show an enlarged elevation of the repair patches of 

materials SI and S3. No cracking was visible in these repair materials. Figure 9.22 (d) 

shows an elevation of the north frame (south face) at Sutherland Street Bridge along 

with the position of the repair patches. Half of the north frame was propped during 

application of the repair materials. Figure 9.22 (e) shows an enlarged elevation of the 

repair patch of material S4, which was applied to the propped part of the frame. Again, 

no cracking was evident. Referring to Tables 9.7 and 9.8, the properties of the repair 

materials were considered appropriate for concrete repair (i.e. high elastic modulus, 

medium shrinkage, low creep). As a result, cracking was absent from these repair 

materials. Figure 9.22 (f) shows an elevation of the north frame (north face) at 

Sutherland Street Bridge and the position of the repair patch of material S2 (the bridge 

was propped during application of the repair patch). An enlarged elevation of the repair 

patch of material S2 is given in Figure 9.22 (g). Some cracking was evident in this 

material [Figure 9.22 (g)], even though the properties of the material (high elastic 

modulus, medium shrinkage and low creep, see Tables 9.7 and 9.8) are considered 

appropriate for concrete repair. Referring to Figure 9.22 (g), the cracks in the repair 

patch mostly originate around the steel covers which protect the gauges and gauge 

cables. Similar cracking was also observed in materials SI and S2 when applied to an 

unpropped bridge [see Figure 9.17 (b) and (c)]. Therefore, it is thought that the steel 

bolts for connecting the steel covers to the repair materials act as a restraint which 

causes localised cracking in the repair patch. This restraint did not cause cracking in

repair materials SI, S3 and S4, but the modulus of rupture of these repair materials (6.5

2 2 2 N/mm , 5.7 N/mm and 4.3 N/mm respectively, albeit in the long term) was greater
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than the modulus of rupture of material S2 (3.3 N/mm2 in the long term, see Figure 

8.23).

9.3.2.1.1.2.2 Comparison between repairs to propped and unpropped

members

Similarities exist in the performance of flowing repairs to propped compressive 

members (Figures 9.18 to 9.21) with the performance of flowing repairs to unpropped 

compressive members (Figures 9.16 and 9.15). In the early ages after application, 

tension is induced in the repair patch when the shuttering is removed after 

approximately 3 days (see Figures 9.15, 9.16, 9.18, 9.20 and 9.21). Shrinkage strain is 

transferred to the substrate concrete, and to a lesser extent, to the steel reinforcement in 

flowing repairs to both unpropped (Figures 9.15 and 9.16) and propped members 

(Figures 9.18 to 9.21). This is shown by the increase in strain in the substrate concrete 

and steel reinforcement in Figures 9.15 to 9.21. In both cases (flowing repairs to 

unpropped and propped members), external load is not transferred from the substrate 

concrete into the repair patch. This is evident in Figures 9.15 to 9.21 as the strain in the 

in the steel reinforcement, repair material and substrate concrete remain relatively 

constant during the external load transfer stage (assumed as week 25 to 47 from Figure 

9.8). Cracking is evident in some of the flow applied repairs to both the propped and 

unpropped members (Figures 9.17 and 9.22), but this is due to the restraint to shrinkage 

that the protective steel covers provide.
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9.3.2.1.1.2.3 Comparisons with spray applied repair materials

The distribution of strain to the substrate concrete, steel reinforcement and repair 

material in repair patches of flowing materials, applied to members in compression 

when the external load was removed (i.e. propped, represented in Figures 9.18 to 9.21), 

show some similarities with the distribution of strain in spray applied materials to 

members in compression when the external load remained in place (unpropped, 

represented in Figure 9.8). Comparing Figures 9.18 to 9.21 with Figure 9.8, the stiffer 

repair materials transfer some shrinkage strain to the less stiff substrate concrete, shown 

by the increase in strain in the substrate concrete in Figures 9.8, and Figures 9.18 to 

9.21. On the other hand, differences exist since the flowing repair materials do not 

attract external load in the repair patch (compare Figures 9.18 to 9.21 with Figure 9.8, 

weeks 25 to 47). This is shown by the relatively constant strain in the steel 

reinforcement, substrate concrete and repair material. Flow applied repair materials 

have a disadvantage in this respect, since a tensile stress in the repair material due to the 

restraint to shrinkage provided by the substrate concrete will remain in the repair patch 

in the long term due to no transfer of external compressive load. It has been shown that 

the tensile stress in the repair patch of a spray applied repair material decreases when 

compressive stress is attracted into the repair patch during the “external load transfer” 

stage (Figure 9.8, Zone 3). Therefore, a tensile stress may remain in the repair patch of 

a flow applied repair material in the long term. This could cause durability problems, as 

it has been shown that the tensile strength of some repair materials decreases with time, 

hence, cracking could occur (see Section 9.3.1.1.1.2). Since the properties (elastic 

modulus, shrinkage and creep) of both sprayed and flowing material are similar for both 

the sprayed and flowing repairs under observation, it seems that spray applied repair
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materials will attract external load into the repair patch (see Figure 9.8) whereas the 

flowing repair materials do not attract external load into the repair patch (see Figures 

9.18 to 9.21). This was evident in the flowing repairs to both propped and unpropped 

members.

The basic properties of the flowing materials (high elastic modulus, low to medium 

shrinkage and creep - see Tables 9.7 and 9.8 respectively) are similar to the properties of 

the spray applied materials which performed satisfactorily at Lawns Lane Bridge (L4, 

L2 and L3) and Gunthorpe Bridges (Gl), shown in Tables 9.1 and 9.2. Materials SI, S3 

and S4 (Figures 9.15, 9.17 and 9.18) performed satisfactorily with respect to cracking at 

Sutherland Street Bridge. Material S2 (Figure 9.16), however, exhibited some cracking 

due to the restraint provided by the bolts used to connect the steel covers. Therefore, the 

recommendation of specifying repair materials with basic properties such as high elastic 

modulus (relative to the substrate concrete), medium shrinkage and low creep is valid 

for both sprayed and flowing repair materials. Low creep is desirable to ensure that the 

elastic modulus of the repair material does not decrease with time and become less than 

that of the substrate concrete. It should, however, be noted that higher creep is 

beneficial in causing tensile stress reduction due to the restraint to shrinkage provided 

by the substrate concrete and steel reinforcement. Therefore, a balance is desirable.
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9.3.3 Repairs to unpropped flexural members

9.3.3.1 Hand applied repair patches extending 25mm behind 

steel reinforcement

9.3.3.1.1 Repair material stiffer than substrate concrete

Repairs were carried out to unpropped flexural members both in the field (Gunthorpe 

Bridge) and in the laboratory. The unpropped flexural repairs at Gunthorpe Bridge did 

not yield consistent results, and consequently, will not be presented at this stage. 

Deterioration due to corrosion was simulated in reinforced concrete beams 

manufactured in the laboratory and repair was subsequently applied using different 

generic repair materials. The beam size was 2740 x 100 x 200mm. Repair patches, 

measuring 640mm long x 100mm wide x 71mm deep (extending 25mm behind steel 

reinforcement) were applied symmetrically at mid-span. In order to simulate actual 

field conditions, each simply supported reinforced concrete beam was loaded for 

approximately 6 weeks prior to application of repair in order to eliminate the effects of 

creep in the substrate concrete. Custom built creep rigs, shown in Figure 7.3 (a) 

(Chapter 7), were used to apply a constant load on the repaired reinforced concrete 

beams. The rig consists of a 203 x 102 x 23 kg/m universal beam. Two-point bending 

loads ( 2 x 1 1  kN, approximately 40% of the maximum capacity) were applied to the 

beam in order to introduce a constant bending moment zone in the middle-third portion 

of the beam.

A combination of demec points and electrical resistance gauges was used to monitor the 

distribution of strain along the depth of the beam section. Strains were measured at 

mid-span on the beams in the constant bending moment zone (see Figures 7.2, 7.4 and
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7.5). The strain in the substrate (denoted “Dem 1”, “Dem 2”, and “Dem 3”) was 

obtained from a demec extensometer of 100mm gauge length. Each strain value is the 

average of readings on two faces, as shown in Figure 7.5). The strain in the steel 

reinforcement was monitored from an electrical resistance gauge attached to the steel 

reinforcement, shown as “Steel 1” in Figure 7.4. The strain in the repair material was 

obtained from embedded electrical resistance gauges denoted “RM 1”, “RM 2” and 

“RM 3”, as shown in Figure 7.4.

The strain-time relationship for beams repaired with materials G4(L) and L3(L) [the 

letter in brackets denotes Laboratory investigation] are plotted in Figures 9.23 and 9.24. 

Em of each repair material was significantly greater than Esub (see Table 9.9). Datum 

readings of strain for repair materials G4(L) and L3(L) (Figures 9.23 and 9.24) were 

taken 24 hours after the application of the repair patch (represented by week 0 in Figures 

9.23 and 9.24). Residual strains in the substrate concrete and steel reinforcement were 

present at week 0, since the beam had been loaded at approximately week -6 to 

eliminate the effects of creep in the substrate concrete (see Figures 9.23 and 9.24). After 

casting, beams were cured for 4 weeks prior to the creep loading. This curing period

Table 9.9 Elastic modulus of substrate concrete and repair materials represented in

Figures 9.23, 9.24, 9.27 and 9.28

Beam Material Elastic Modulus (kN/mmL)

2,5 substrate 20.5|

2 G4(L) 24.0

5 L3(L) 27.4

f  Does not take into account the effects o f  creep in the pre-loaded substrate concrete
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is shown as approximately weeks -10 to -6 in Figures 9.23 and 9.24. Strain readings 

after the application of the repair patch, in Figures 9.23 and 9.24, are plotted at weekly 

intervals, except for the demec gauge readings after approximately week 25 being 

plotted more intermittently.

Figure 9.23 shows the strain distribution in the beam (beam 2) which was patch repaired 

with material G4(L). The elastic modulus of repair material G4(L) is greater than the 

elastic modulus of the substrate concrete (see Table 9.9). The free shrinkage and creep 

of this material is presented in Table 9.10. This was the only beam repaired in the 

laboratory which did not exhibit any visible cracking during the monitoring period. 

Figure 9.25 (a) shows an elevation of a typical beam under load and the position of the 

repair patch on the beam. Figure 9.25 (b) shows an enlarged elevation of the repair 

patch of material G4(L). Cracking is not visible in this repair material. Cracking in the 

shrinkage period (assumed as week 0 to week 11 from the spray applied materials to 

unpropped members, Figure 9.8) was absent due a combination of high stiffness (Table 

9.9) and low shrinkage (Table 9.10) in the material. This material also exhibited the 

highest modulus of rupture (13.5 N/mm2 at 28 days from Table 8.21) of all the repair

Table 9.10 Free shrinkage* and creep strains of materials represented in Figures

9.23, 9.24, 9.27 and 9.28

Material 100 day free shrinkage (ps train) 70 day compressive creep (pstrain)

(stored at 20°C, 55%RH) (30% stress/strength)

G4(L) 401 745

L3(L) 710 748

G3 (Reference) 717 938

Note: * indicates that a correction for volume/surface ratio has not been applied
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R ep air p a tc h

6 4 0

(a )

( b )

(c)

(d)

(e)

(0

N o  c r a c k s  v i s i b l e

Crack widths <0 .1m m  unless otherwise stated

F ig ur e  9 . 2 5  C r a c k i n g  p a t t e r n s  in r e p a i r  p a t c h e s  in t h e  l a b o r a t o r y

( a )  E l ev a t i o n  of  r e p a i r e d  b e a m  u n d e r  load

(b )  Mate r ia l  G4(L)  ( u n p r o p p e d )

( c )  Ma t e r i a l  L3(L)  ( u n p r o p p e d )

( d )  Ma t e r i a l  G6 ( L)  ( u n p r o p p e d )

(e )  Mater ia l  L3(L) ( u n p r o p p e d )
(f)  Mater ial  L3(L) ( p r o p p e d )
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materials under test. The material shows slight contraction (positive strain) in the early 

stages from week 0 to week 5 (see “RM 1”, “RM 2” and “RM 3”, Figure 9.23). The 

contraction is less in “RM 1” compared with “RM 2” and “RM 3” due to the higher 

restraint provided at the repair material/substrate concrete interface (Figure 9.23). From 

week 5 onwards, it is noticeable that the tensile strain in the repair material gradually 

increases (see “RM 1”, “RM 2” and “RM 3” in Figure 9.23). The tensile strain in the 

steel reinforcement simultaneously decreases during this period (see “Steel 1”, Figure

9.23). The steel reinforcement is clearly shedding tensile load to the repair material. 

The tensile strains in “RM 2” and “RM 3” approach 1300 microstrain towards the end 

of the monitoring period with no visible sign of cracking. The high modulus of rupture 

of this repair material (see Table 8.21) combined with the fact that there is some creep 

relaxation is the reason for no visible cracking at the surface. Furthermore, the 

compressive strain in the substrate concrete (“Dem 1”, “Dem 2” and “Dem 2”, Figure

9.23) remains relatively constant throughout, except for some variation between weeks 

16 to 20 due an operational fault in the controlled environment room which affected the 

surface strains “Dem 1”, “Dem 2” and “Dem 3”. As far as the effect of repair is 

concerned, redistribution of strain is therefore taking place within the repair patch only 

and does not have an appreciable effect on the strain in the substrate concrete. This 

repair material represents the ideal flexural repair situation, as the repair material is 

alleviating (tensile) load from the steel reinforcement but is not showing signs of 

cracking.

A similar situation occurs in the repair material L3(L) (beam 5) as shown in Figure 9.24, 

even though the material exhibits some cracking. The repair material is stiffer than the
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substrate concrete, as shown in Table 9.9. The free shrinkage and creep of the material 

is given in Table 9.10 - shrinkage is much higher than material G4(L) but creep is 

similar. In this beam, cracking occurred at mid-span in the substrate concrete (within 

the gauge length of “Dem 3”, see Figure 9.24) during the loading operation at week -6. 

This is indicated by “Dem 3” showing instantaneous “tension” of over 500 microstrain 

(Figure 9.24).

In the early weeks immediately after the application of the repair (weeks 0 to 5), the 

repair patch exhibits slight contraction due to shrinkage in material L3(L) (see “RM 1”, 

“RM 2” and “RM 3”, Figure 9.24). “RM 1” shows the lowest contraction in this period 

since it is adjacent to the substrate concrete which restrains its shrinkage through the 

interfacial bond with the substrate concrete. Subsequently, the strains increase in 

tension in “RM 1”, “RM 2” and “RM 3”, Figure 9.24. The transition from compression 

to tension of “RM 1”, “RM 2” and “RM 3” in material L3(L) (week 5 to week 19) is 

more irregular than the same transition in G4(L) (Figure 9.23) because cracking 

occurred in the material L3(L) within this period. Referring to Table 9.10, the shrinkage 

of repair material L3(L) is much higher than the shrinkage of material G4(L). 

Therefore, a higher tensile stress will occur in material L3(L) due to the restraint to 

shrinkage provided by the substrate concrete. Furthermore, material L3(L) has a lower 

modulus of rupture than material G4(L) (7.0 N/mm2 versus 13.5 N/mm2 at 28 days, see 

Figure 8.23). Consequently, cracking in material L3(L) has effected the redistribution 

of strain (see “RM 1” and “RM 2” at week 19, “RM 3” at week 5 and 18, Figure 9.24).
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There is a decrease in the strain in the steel reinforcement, as shown in “Steel 1”, Figure

9.24, but due to cracking in the material, the effect of redistribution is not as pronounced 

as the redistribution in material G4(L) (Figure 9.23). Referring to Figure 9.23, the 

reduction in tensile strain in the steel reinforcement in the repair patch of material G4(L) 

was approximately 280 microstrain over the 50 week monitoring. The reduction in 

tensile strain in the steel reinforcement in the repair patch of material L3(L) was only 

approximately 200 microstrain. Figure 9.25 (c) shows the cracking pattern in the repair 

patch of material L3(L). Cracking was monitored approximately 2 months after 

application of the repair material. Two cracks were evident in the repair patch, which 

had a crack width of less than 0.1mm [Figure 9.25 (c)].

9 3 3 .1 .2  Substrate concrete stiffer than repair material

The elastic modulus of material G6(L) was approximately half that of the substrate 

concrete (Table 9.11). Data for the beam repaired with G6(L) are plotted in Figure 

9.26. The free shrinkage and creep of this material are given in Table 9.12. Both 

properties are very high relative to other repair materials (see Table 9.10). In the early 

weeks immediately after the application of the repair patch (weeks 0 to 5), gauges “RM 

2” and “RM 3” (Figure 9.26) show increasing compressive strains due to shrinkage in 

the repair material. The compressive strain is lowest in “RM 1” compared to “RM 2” 

and “RM 3” since it is adjacent to the substrate concrete which restrains the shrinkage 

through interfacial bond (see Figure 9.26). The restraint due to interfacial bond 

decreases as the distance from the interface increases. The shrinkage strains measured 

at "RM2" and "RM3" are much higher than the corresponding values recorded in

260



£
s:oo
“35so
so
Ss

so
0  
a; 3
1

50.Sj
|50

0\
V.50
I
6

9 t7  03

CD
C \l

CM CO
CM CO

O  Q  Q  C/) 01 Ql Qi

( I I

. . .  N

00  z

<D T 3  CO

o oo oLO o
T— CM

(duioo+) ujKJisojojjAj (suajL-)

Fig
ur

e 
9.2

6 
St

ra
in 

di
st

rib
ut

io
n 

in 
be

am
 

1 
re

pa
ire

d 
wit

h 
m

at
er

ia
l 

G6
(L

) 
in 

the
 

lab
or

at
or

y 
(U

np
ro

pp
ed

 
fle

xu
ra

l 
m

em
be

r)



K^riUJSlV/ 7 i i i - z v i  y e i ju r in u n u e  u j r e m ju r c e u  c u n w e ic  r e p a ir

Table 9.11 Elastic modulus of substrate concrete and repair materials represented in

Figure 9.26

Beam Material Elastic Modulus (kN/mm2)

1 substrate 20.5f

1 G6(L) 11.5

f  Does not take into account the effects o f  creep in the pre-loaded substrate concrete

materials G4(L) and L3(L) (Figures 9.23 and 9.24). This is due to the greater free 

shrinkage of material G6(L) (1100 microstrain) compared with 401 microstrain and 710 

microstrain for materials G4(L) and L3(L) respectively. The virtual tensile strain in the 

repair material at this stage will be the free shrinkage of the repair material (1100 

microstrain) minus the strain reading in the gauges (“RM 1”, “RM 2” or “RM 3”). As 

material G6(L) has a relatively high creep (Table 9.12), tensile stress relaxation will 

occur due to tensile creep in the repair material. This contributed towards alleviating 

the tensile stress in the repair patch between week 0 to week 5. At week 5, the 

compressive strains abruptly change to tensile (see “RM 1”, “RM 2” and “RM 3”, 

Figure 9.26). This is due to cracking occurring in the material, as the virtual tensile 

strain due to shrinkage restraint has obviously exceeded the tensile strain capacity of the 

repair material. The cracking pattern in this repair material is shown in Figure 9.25 (d).

Table 9.12 Free shrinkage* and creep strains of materials represented in Figure 9.26

Material 100 day free shrinkage (ps train) 70 day compressive creep (pstrain)

(stored at 20°C, 55%RH) (30% stress/strength)

G6(L) 1100 1188

G3 (Reference) 717 938

Note: * indicates that a correction fo r  volume/surface ratio has not been applied
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Three cracks were evident in the repair patch due to a combination of low stiffness 

(which will increase the level of restraint by the substrate concrete) and high shrinkage. 

These cracks were less than 0.1mm in width.

The strain in the steel reinforcement (see “Steel 1”, Figure 9.26) remains virtually 

constant from the time of repair, as the low stiffness and cracked repair material is 

unable to transfer stress from the steel reinforcement. The strain gauges on the substrate 

concrete ("Dem 1", "Dem 2" and "Dem 3") remain relatively constant throughout, 

except for some variation between weeks 14 to 18, again due to the operational fault in 

the controlled environment which affected the surface strains. This is similar to the 

distribution of strain in materials G4(L) and L3(L) (Figures 9.23 and 9.24), where 

distribution of strain in the tension zone had a negligible effect on the strain in the 

compression zone. It can be concluded that repair materials with low elastic modulus 

would be unsuitable for concrete repair, since the repair material is unable to attract load 

from the steel reinforcement in a similar manner to a stiffer repair material (compare 

“Steel 1” in Figure 9.26 with “Steel 1” in Figures 9.23 and 9.25). Furthermore, the 

restraint provided by the stiffer substrate concrete will inevitably cause cracking in the 

repair material. The very high shrinkage strains will aggravate the cracking. This will 

result in even more insignificant transfer of strain from the steel reinforcement to the 

repair patch, hence the repair patch would be non-load sharing.
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9.3.3.2 Hand applied repair patches extending 50mm behind

steel reinforcement

9.3.3.2.1 Repair material stiffer than substrate concrete

When the depth of repair material is increased to 50mm behind the steel reinforcement 

for material L3(L) (beam 8), as shown in Figure 9.27, the effect on performance is 

similar to that of 25mm behind the steel reinforcement, as shown in Figure 9.24. 

Material L3(L) properties are given in Tables 9.9 and 9.10. “RM 1” at the repair 

material/substrate concrete interface goes into tension immediately after the application 

of the repair material (Figure 9.27). “RM 2” and “RM 3” show slight expansion in the 

early stages (see Figure 9.27) as the effect of the interfacial restraint is less at these 

locations than at “RM 1”. The strain in the repair material (“RM 2” and “RM 3”, Figure

9.27) changes from compression to tension over a 6 week period (week 2 to 8, Figure

9.27). Although a gradual change takes place from compression to tension within 

weeks 2 to 8, Figure 9.27, as opposed to the sudden change which occurred in Figure

9.24, nevertheless, cracking occurred. The cracking pattern is shown in Figure 9.25 (e). 

Two cracks are evident in this repair material, similar to the cracking which was 

observed in the same material when the depth of repair material behind the steel 

reinforcement was 25mm [see Figure 9.25 (c)]. The crack widths were less than 0.1mm. 

The strain in the steel reinforcement decreases slightly over the monitoring period (week 

0 to week 50, Figure 9.27), similar to the decrease in strain in when the depth behind the 

steel reinforcement is 25mm (see Figure 9.24). The strain in the substrate concrete 

("Dem 1", "Dem 2" and "Dem 3") remain relatively constant throughout, again similar 

to the distribution of strain in the substrate concretes in Figures 9.23, 9.24 and 9.26). 

This again indicates that the distribution in the tension zone has a negligible effect on
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the strain in the compression zone. Overall, the long term performance of material 

L3(L), with a depth of 50mm behind the steel reinforcement, is similar to the 

performance when the depth is 25mm behind the steel (compare Figure 9.27 with Figure

9.24) Therefore, increasing the depth of repair does not influence the performance of 

the repair. In fact, a deeper repair will be uneconomical due to an increase in concrete 

removal time and an increase in the cost of the repair material.

9.3.4 Repairs to propped flexural members

9.3.4.1 Hand applied repair patches extending 25mm behind

steel reinforcement

9.3.4.1.1 Repair material stiffer than substrate concrete

Repairs to propped flexural members were carried out both in the field (Sutherland 

Street Bridge) and in the laboratory. The laboratory repairs consisted of beam 

specimens as described in previous sections. Two generic repair materials L3(L) and 

G5(L) were applied to simulated deteriorated reinforced concrete beams in the 

laboratory. The reinforced concrete beams were loaded for approximately 9 weeks prior 

to application of repair in order to eliminate the effects of creep in the substrate 

concrete. The load was removed during application of the repair material. When the 

cube strength of the repair material reached the design strength of the beam, or the 

repair was cured for 28 days, whichever was sooner, the load was reapplied. The results 

of one of these repairs is given in Figure 9.28. The field repairs consisted o f repairs to 

propped reinforced concrete beams. The results from two of the repairs are presented in
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this section (materials SI and S4, Figures 9.29 and 9.30). The load was removed from 

the members during application of the repair materials. When the cube strength of the 

repair materials reached the design strength of the bridge, the external load was 

reapplied to the member by removing the propping.

9.3.4.1.1.1 Laboratory repairs

The strain versus time graphs of the beam repaired with material L3(L) in the laboratory 

are plotted in Figure 9.28. Datum readings were taken 24 hours after the application of 

the repair patch (represented as week 0 in Figure 9.28). Residual strains in the substrate 

concrete and steel reinforcement were present at week 0, as the beam had been loaded at 

approximately week -9 to eliminate the effects of creep in the substrate concrete (see 

Figure 9.28). The beams were cured for 4 weeks prior to loading, shown as 

approximately weeks -9 to -13 in Figure 9.28. Strain readings after the application of 

the repair patch in Figure 9.28 are plotted at weekly intervals, except for the demec 

gauge readings after approximately week 20 being plotted more intermittently

The difference in elastic modulus between the stiffer repair material L3(L) and the 

substrate concrete is given in Table 9.9. The free shrinkage and creep of the material is 

given in Table 9.10. Referring to Figure 9.28, the beam is loaded at week -9 and 

remains under load for approximately 9 weeks. Upon propping at week 0, it can be seen 

that compressive strain remain in the substrate concrete ("Dem 1" and "Dem 2" in 

Figure 9.28, weeks 0 to 4) due to the effects of creep in the substrate concrete. A small 

tensile strain is also evident in the steel reinforcement at week 0, but this decreases 

towards 0 at week 4 as shrinkage strain is transferred to the steel reinforcement whilst
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the beam remains in an unpropped state. In the first week after application of the repair 

material, a tensile strain is evident in "RM3", possibly due to removal of the shuttering 

at approximately 3 days after application. This strain decreases towards 0 at week 4 due 

to shrinkage in the repair material. Upon reapplication of the load at week 4, "Dem 1" 

and "Dem 2" show high compressive strains in the compressive zone. "Dem 3" is 

obviously near the neutral axis since a negligible strain is evident in this part of the 

beam. "Dem 1", "Dem 2" and "Dem 3" all remain relatively constant for the remainder 

of the monitoring period (Figure 9.28). Tensile strain is induced in the steel 

reinforcement (“Steel 1”) and "RM2" and "RM3" upon reloading (“RM 1” is excluded 

from Figure 9.28 due to suspected damage in the gauge). These strains, again, remain 

relatively constant throughout the remainder of the monitoring period. Very little 

redistribution of strain took place in this repair patch as indicated by the almost constant 

strains in the steel reinforcement (“Steel 1”) and repair material (“RM 2” and “RM 3”) 

in Figures 9.28, weeks 4 to week 50. The reason for the limited redistribution of strain 

was due to the fact that severe cracking occurred in the repair material during the 

reloading operation at week 4 (sudden large tensile strain in "RM 3", Figure 9.28). The 

maximum bending stress was 15 N/mm2, obtained from transforming the section to an 

equivalent concrete section and applying the theory of simple bending to obtain the 

stress. The applied stress was much greater than the flexural strength of the repair 

material of 7 N/mm at 28 days, obtained from the manufacturers’ literature. The 

cracking pattern in this repair patch is shown in Figure 9.25 (f). This repair patch 

exhibited the worst cracking of the repair materials under test, but the cracking was 

mainly due to reapplication of the load after repair. Some of the crack widths were 

greater than 0.1 mm. Comparing the performance of this repair patch with the
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performance of a similar repair patch applied to an unpropped member (Figure 9.24), it 

is clear that removal of the load during application of the repair material and subsequent 

reloading greatly increases the tensile strains in the repair patch (compare "RM2" in 

Figure 9.24 with "RM2" in Figure 9.28). The cracking in material L3(L) applied to an 

unpropped member [Figure 9.25 (c)] is less than the cracking in material L3(L) applied 

to a propped member [Figure 9.25 (f)]. Therefore, in this instance, the poor 

performance of the repair material was attributed to the effects of propping during repair 

rather than mismatch of material properties.

9.3.4.1.1.2 Field repairs

The strain versus time graph for materials SI and S4 are presented in Figures 9.29 and 

9.30. Only two strain gauges were installed in the repair patch of these materials due to 

limitations on the data logger. One gauge was attached to the cut back substrate, 

labelled "subs" in Figures 9.29 and 9.30, and one gauge was attached to the steel 

reinforcement, labelled “steel” in Figures 9.29 and 9.30. Datum readings were taken 24 

hours after the application of the repair patch (origin on the graphs).

Referring to Figure 9.29, material SI, the member was depropped at week 1. This 

induces instantaneous tensile strains in the substrate concrete and steel reinforcement 

(approximately 75 microstrain) at depropping. The strain in the substrate concrete 

decreases to approximately 40 microstrain in tension at week 12 (Figure 9.29). From 

week 12 onwards, the strain in the substrate concrete shows a negligible increase in 

tension (approximately 20 microstrain) to the end of the monitoring period (week 60).
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After depropping, the strain in the steel reinforcement rapidly increases to 

approximately 220 microstrain in tension at week 18 (Figure 9.29). From week 18 

onwards, the strain in the steel reinforcement remains relatively constant until the end of 

the monitoring period. The strain versus time graph material S4 is given in Figure 9.30. 

There are negligible strains in the substrate concrete and steel reinforcement in weeks 0 

to 2, Figure 9.30. Upon depropping at week 3, the strains in the substrate concrete and 

steel reinforcement increase to approximately 25 microstrain in compression. The strain 

in the substrate concrete increases slowly to reach approximately 45 microstrain at week 

21. Thereafter, the strain in the substrate concrete decreases over the next 7 weeks to 

reach a tensile strain of approximately 10 microstrain in tension at week 28. From week 

28 onwards, the strain in the substrate concrete remain relatively constant. Meanwhile, 

the strain in the steel reinforcement shows a slight increase in compression until week 5 

(Figure 9.30). From week 5 onwards, the strain rapidly decreases to reach a tensile 

strain of approximately 90 microstrain at week 28. Thereafter, the strain in the steel 

reinforcement remains relatively constant until the end of the monitoring period.

Referring to Figure 9.29, it is obvious that tension is induced into the steel 

reinforcement and substrate concrete due to a combination of removing the shuttering 

(day 3) and depropping the member. The strain then decreases in tension in the 

substrate concrete as the slightly stiffer repair material (see Table 9.7) transfers some 

shrinkage strain to the substrate concrete (the free shrinkage of the repair material is 

given in Table 9.8). Since the repair material is only marginally stiffer than the 

substrate concrete, the restraint provided by the substrate concrete will be high and 

therefore, virtual tensile strain will be evident in the repair material at the interface with 

the substrate concrete will also be high. On the other hand, the strain in the steel

273



y^nupier y  m -serviceperform ance o j reinforced concrete repair

reinforcement increases rapidly until week 18. This is because cracking occurs in the 

repair patch at the steel reinforcement level due to two reasons: (i) there is a high 

restraint to shrinkage provided by the much stiffer steel reinforcement. It has been 

observed in many instances in the project that the degree of restraint is much higher at 

the steel reinforcement level than at the substrate concrete interface and (ii), the 

externally applied load at depropping induces tension in the repair patch. Consequently, 

the steel reinforcement has to take more of the applied load as the repair material cracks 

in the tension zone. The cracking pattern in this repair patch is given in Figure 9.31 (a) 

and (b). Figure 9.31 (a) shows an elevation of the south frame (south face) and the 

position of the repair patches on the frame. An enlarged view of the soffit of the beam 

is shown in Figure 9.31 (b) showing the cracking patterns in the repair patch. The 

cracking pattern consists of predominantly equally spaced cracks except for minor 

irregularities around the protective steel covering. The cracks around the protective 

covers are due to the localised restraint to shrinkage provided by the bolts of the steel 

covers. Overall, the regular cracking in material SI at Sutherland Street Bridge is 

similar to the fairly regular cracking patterns observed in material L4 (Figure 9.7) and 

material LI (9.14). It has been observed that the cracking pattern will be regular when 

the properties of the repair material are insufficient to offset cracking. For example, the 

tensile strength of repair material SI was obviously less than the tensile stress applied in 

the repair patch. The tensile stress will consist of stress due to the restraint due to 

shrinkage and stress due to the applied load. When material SI was applied to a 

propped member in compression (Figure 9.18), cracking was absent in the repair patch 

[see Figure 9.22 (b)]. It is therefore evident that material SI cracked when applied to a 

propped member in flexure due to a combination of tensile stress induced due to
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external loading and tensile stress induced due to the restraint to shrinkage provided by 

the steel reinforcement. From week 18 onwards, there is very little redistribution of 

strain taking place since the load has already been applied to the repair patch and this 

contributed to cracks occurring in the repair material (Figure 9.29).

Referring to Figure 9.30, the strains in the substrate concrete and steel reinforcement 

remain relatively stable between weeks 0 and 2. Possible tensile strains that occurred 

due to removal of the shuttering could have been neutralised by the stiffer repair 

material (Table 9.7) transferring shrinkage strain (Table 9.8) to the substrate concrete. 

Depropping the member inexplicably increases the strain in both the substrate concrete 

and steel reinforcement at week 3. From week 3 until week 21, the strain in the 

substrate concrete increases due to transfer of shrinkage strain from the stiffer repair 

material. On the other hand, the strain in the steel reinforcement increases in tension 

over the same period as presumably more load is being taken by the steel reinforcement. 

The increase in strain in the steel reinforcement in material S4 is not as sudden as the 

increase in strain in material SI as the repair material remains uncracked [as shown in 

Figure 9.31 (c) to (d)]. Figure 9.31 (c) shows the elevation of the north frame (south 

face) and the position of the repair patches on the frame. Figure 9.31 (d) shows an 

enlarged view of the soffit of the repair patch. No cracks are evident. When material S4 

was applied to a propped member in compression (Figure 9.21), a similar crack-free 

repair patch was evident [Figure 9.22 (e)]. Therefore, since the elastic modulus of repair 

material S4 was greater than the elastic modulus of repair material SI (Table 9.7), plus 

the fact that material S4 exhibited lower shrinkage than material SI (Figure 9.8), the 

virtual tensile strain in material S4 due to the restraint to shrinkage provided by the
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substrate concrete was less than that induced in material S I. Therefore, the tensile strain 

capacity of the repair material was not reached, and consequently, a further increase in 

tensile strain due to external loading was not sufficient to cause cracking in the repair 

material (even though the long term modulus of rupture of material S4 (4.3 N/mm2, 

Figure 8.23) was less than the long term modulus of rupture of material SI (6.5 N/mm , 

Figure 8.23). From approximately week 21 onwards, little redistribution of strain takes 

place, as was commonly observed in repair patches of flow applied materials, whether 

cracked or uncracked.

9.4 FURTHER DISCUSSION

9.4.1 Influence of material properties on long term

performance

The results of the field and laboratory repairs presented in this chapter indicate that the 

basic material properties elastic modulus, shrinkage and creep of the repair materials 

have an enormous effect on the in-service performance of concrete repair. Compressive 

strength is relatively unimportant. Flexural strength in itself is of secondary importance 

but the relationship with the tensile strain capacity of a repair material will be of great 

significance.

General requirements for repair materials as given by Emberson and Mays [25] are 

listed in Table 9.13. It is stated that the elastic modulus of the repair materials should be 

similar to the elastic modulus of the substrate concrete. Other researchers have also
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Table 9.13 General requirements of patch repair materials for structural

compatibility [25]

Property Relationship o f repair mortar (R) 

to concrete substrate (C)

Strength in compression, tension and flexure R>C

Modulus in compression, tension and flexure R ~  C

Poisson’s ratio Dependent on modulus

and type of repair

Coefficient of thermal expansion R ~  C

Adhesion in tension and shear R >  C

Curing and long term shrinkage R <  C

Strain Capacity R >  C

Creep Dependent on whether creep

causes desirable or

undesirable effects

Fatigue performance R >  C

stated this in the past [31, 96]. Findings of this research, however, show that if  the 

elastic modulus of the repair material is similar to that of the substrate concrete, the 

repair material is unable to transfer shrinkage strains to the substrate concrete. This will 

induce relatively high tensile stress in the material since the substrate concrete will 

provide a fuller restraint to shrinkage. Cracking may occur in the repair material as a 

result. Therefore, the elastic modulus of the repair material should be greater than the 

elastic modulus of the substrate concrete to allow more distribution of shrinkage strain 

to the substrate concrete. However, the effect of applying a repair material with a 

relatively low elastic modulii becomes less pronounced if a repair material is specified 

with low shrinkage. Consequently, the possibility of cracking is decreased.
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Table 9.13 [25] also states that the long term shrinkage of the repair material should be 

less than the long term shrinkage of the substrate concrete (i.e. R<C). Similarly, the 

creep of the repair material is also related to the creep of the substrate concrete. Based 

on the fact that the substrate concrete in the field will be much older than the repair 

material (the substrate concrete at Gunthorpe Bridge in the current project was 67 years 

in service at the time of repair), the substrate concrete will be dimensionally stable (i.e. 

shrinkage and creep will be insignificant). Therefore, it is impossible to have the 

shrinkage of the repair material less than the shrinkage of the substrate concrete. 

Likewise, since the substrate concrete is stressed for a long period of time due to 

external loading, creep in the substrate concrete will have reached negligible levels. On 

the other hand, the repair material will still have to undergo creep, especially in the 

shrinkage stage (Figure 9.8, Zone 1) as tensile stress is induced in the repair material 

due to the restraint to shrinkage provided by the substrate concrete.

9.4.1.1 Compression members

When repairs are carried out on deteriorated reinforced concrete members, the aim of 

the repair is to restore the structural integrity of the member and provide a durable repair 

which will protect the steel reinforcement from further corrosion. Selecting a repair 

material in conjunction with the recommendations given in this thesis will provide such 

a repair. Normally, the cross-sectional area of a repair patch is insignificant to the cross- 

sectional of the repaired member, especially in compression members. Therefore, 

regardless of whether or not the repair patch is load sharing, the reinforced concrete 

member will still continue to function in-service. This was obviously the case for
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unpropped repairs in the current project. The bridges remained in service whilst the 

repairs were carried out, hence the cross-sectional area lost when the deteriorated 

concrete was removed did not substantially affect the in-service performance of the 

member during repair. Therefore, since the repair patch has insignificant load sharing 

responsibilities compared with the overall load carrying capacity of the original 

member, it could be argued that the most important criterion of a repair patch is to 

protect the steel reinforcement from further corrosion (i.e. become a durable repair). It 

is, therefore, important that the repair material remains crack free. In order to limit the 

tensile stress due to shrinkage restraint, it is obvious that the free shrinkage in the repair 

material should be as low as possible, as restraint provided by the substrate concrete will 

induce tensile stress in the repair patch. A very low tensile stress is unlikely to cause 

cracking in the repair patch. If cracking in the repair patch is absent, then it is likely that 

durability will be satisfied. The results of the current project found that the magnitude 

of shrinkage in repair materials is likely to induce enough tensile stress to cause 

cracking, irrespective of the manufacturers’ claims that the repair materials had low 

shrinkage or were shrinkage compensated. Therefore, relying on the shrinkage 

characteristics of the repair material to be low is not enough to ensure good durability. 

It was observed in the current project that a portion of the shrinkage strain is transferred 

to the substrate concrete when the elastic modulus of the repair material was greater 

than the elastic modulus of the substrate concrete (spray applied materials L4, L2, L3 

and G l, Figures 9.2 to 9.5 respectively; flow applied materials S1-S4, Figures 9.15, 

9.16, 9.18 to 9.21). Consequently, this reduced the tensile stress in the repair material 

which attributed to crack free repair materials in many instances. Creep, on the other 

hand, proved to be beneficial when the tensile stress in the repair material was high,

280



^nujjiei y  m -service perjorm ance o j reinjorceci concrete repair

since tensile creep reduced the tensile stress through stress relaxation (materials G2 and 

G3, Figures 9.9, 9.10). On the other hand, creep also lowered the elastic modulus of the 

repair material, therefore the advantage of having a repair material with a high elastic 

modulus was lost. Overall, if  the shrinkage in the repair material is low and the elastic 

modulus of the repair material is high, then tensile stress in the repair material will be of 

an insignificant magnitude such that stress relaxation is not required. Therefore, in this 

instance, high creep characteristics are definitely a disadvantage since they would 

reduce the elastic modulus. It was also observed that the spray applied materials L4, L2 

and L3 (Figures 9.2 to 9.4) which were stiffer than the substrate concrete attracted 

external applied stress into the repair patch. This not only made the repair patch load 

sharing, but also served to reduce or neutralise the tensile stress that remained in the 

repair patch due to the restraint to shrinkage provided by the substrate concrete. Hence, 

when specifying a durable and load sharing repair patch, the repair material should 

exhibit low shrinkage, high elastic modulus and low creep.

9.4.1.2 Flexural members

Repair of a flexural member with a repair material that has a high elastic modulus 

allows more redistribution of externally applied stress to the repair material. The stress 

due to external load in the steel reinforcement reduced with time whereas the stress in 

the repair patch increased over the same time period. Thus, assuming that the repair 

material remains uncracked, the steel reinforcement is able to redistribute load to the 

repair material. This is clearly evident in repair material G4(L) (Figure 9.23), where 

the stiffness of the repair material is substantially greater than the stiffness of the
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substrate concrete. Tensile stress in the repair material due to shrinkage restraint was 

also low since the free shrinkage in the material was relatively low. This contributed 

enormously to the performance of the repair, as cracking due to restrained shrinkage 

stress was absent, so redistribution of strain was able to occur resulting in effective load 

sharing by the repair.

It was obvious in both the laboratory and field repairs that the repairs to propped 

flexural members have the highest risk of cracking due to the tensile stresses induced 

upon depropping. Material L3(L) cracked upon reapplication of the external load 

(depropped) in the laboratory. Material SI at Sutherland Street Bridge cracked due to a 

combination of tensile stress induced by shrinkage restraint and tensile stress induced by 

reapplication of external load on depropping. Therefore, it is better for long term 

performance, that flexural repairs are carried out on unpropped members, assuming of 

course that the unpropped members can safely continue to perform in service whilst the 

repair materials are being applied.

9.5 CONCLUSIONS

The following conclusions are based on the results of the in-service monitoring carried 

out on repairs which were applied in the field and in the laboratory:

General

•  Recommendations given in the current repair specification, BD 27/86, are not 

suitable for all concrete repairs. The specification does not adequately take into
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account the potential mismatch in key properties which may occur between the repair 

material and substrate concrete. It also gives emphasis to some properties of repair 

materials which are of secondary importance.

•  The long term performance of a repair is superior when the repair is applied to an 

unpropped member as opposed to a propped member.

•  The risk of cracking in the repair patch is greatly increased when the repair material 

is applied to a propped flexural member.

•  Spray applied repair materials to unpropped members perform better than flowing 

repair materials applied to unpropped members.

•  Four stages of distribution of strain (and consequently stress) are evident in spray 

applied repairs to unpropped compression members:

(i) shrinkage stage (weeks 0 to 11)

(ii) steady state #1 (weeks 11 to 25)

(iii) external load transfer (weeks 25 to 47)

(iv) steady state #2 (weeks 47 to 60)

•  Increasing the depth of repair behind the steel reinforcement in repairs to flexural 

members does not significantly influence the performance of the repair.

Properties of materials

•  The elastic modulus is a vitally important property to be considered when selecting a 

repair material for concrete repairs. The elastic modulus of the repair material should 

be greater than the elastic modulus of the substrate concrete.

•  The possibility of cracking in the repair patch is greatly increased when the repair 

material exhibits high shrinkage.
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•  High creep repair materials exhibit stress relaxation when subjected to a tensile stress 

caused by restraint to shrinkage by the substrate concrete.

•  If the elastic modulus of the repair material is greater than the elastic modulus of the 

substrate in a compression member repaired in the unpropped state, the stiffer repair 

is able to transfer shrinkage strain to the concrete substrate.

•  A spray applied material of > Esub, when applied to an unpropped member in 

compression, will attract externally applied load into the repair patch in the long 

term.

•  A spray applied material of Em < Esub, when applied to an unpropped member in 

compression, will not attract externally applied load into the repair patch in the long 

term.

•  A flowing repair material of Em > Esub, when applied to a propped member in 

compression, will not attract externally applied load into the repair patch.

•  Repair materials for both flexural and compression members should have low 

shrinkage and creep characteristics.

• Cracking will occur in a repair material when the virtual tensile strain due to restraint 

to shrinkage is greater than the tensile strain capacity of the repair material (including 

creep effects).

• Repairs to flexural members carried out with high modulus materials (Em > Esub) 

attract tensile load from the steel reinforcement.
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CHAPTER 10

T ONG TERM STRUCTURAL INTERACTION IN 

REPAIRED RETNEORCED CONCRETE MEMBERS

10.1 INTRODUCTION

Deterioration of reinforced concrete structures is a problem that is demanding increasing 

attention world-wide. As a result, concrete repair has recently become the growth sector 

of the construction industry. Within that sector, the issue of durability has replaced 

concerns about strength as the most pressing problem [26], since a repair material must 

not only restore the structural integrity of the member, it must also serve as a durable 

barrier against the ingress of chlorides and carbon dioxide to arrest the deterioration of 

the steel reinforcement. To ensure that the repair system will function properly, a basic 

understanding of the interaction between the repair material and the concrete substrate 

must be known. This will allow repairs to be specified on scientific evidence rather than 

on the ad hoc approaches currently being used.

In order to be able to design a durable repair that will last indefinitely, it is important 

that the mechanics of concrete repair is fully understood. This involves having an 

adequate understanding of the interaction between the repair material and the concrete 

substrate. The basic repair material properties, such as elastic modulus, shrinkage and 

creep are primarily responsible for this interaction. It was determined in the
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previous chapter that spray applied repair materials that have an elastic modulus greater 

than the elastic modulus of the substrate concrete (E ^  > Esub) will perform satisfactorily 

in the long term when applied to unpropped members in compression. The aim of this 

chapter, therefore, is to relate the basic material properties to the performance of the 

spray applied repair materials under service loading. This will enable a prediction of the 

stress distribution within a repair patch to be determined.

10.2 RESULTS AND DISCUSSION

10.2.1 Spray applied repairs to unpropped compression

members. Em >

It was observed in Chapter 9 that spray applied repair materials that have an elastic 

modulus greater than that of the substrate concrete perform better than spray applied 

repair materials that exhibit an elastic modulus that is less than that of the substrate 

concrete. This is because the stiffer repair material is able to transfer a portion of the 

shrinkage strain to the substrate concrete which helps to reduce the tension induced in 

the repair due to the shrinkage restraint provided by the substrate concrete and steel 

reinforcement. Consequently, this chapter concentrates on repair materials that have an 

elastic modulus greater than the elastic modulus of the substrate concrete. These are 

materials L2, L3 and L4 from Lawns Lane Bridge and material G1 from Gunthorpe 

Bridge.
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10.2.1.1 Actual distribution of strain

Figures 10.1 to 10.4 show the actual distribution of strain, as obtained in field trials, in 

the repair patches of materials L4, L3, and L2 at Lawns Lane Bridge and material G1 at 

Gunthorpe Bridge. The strains in the repair patch were measured from the age of 24 

hours after application of repair to 60 weeks, by means of vibrating wire strain gauges. 

These gauges were attached to the cut back substrate concrete (labelled “subs” in 

Figures 10.1 to 10.4), welded to the steel reinforcement (“steel”) and embedded in the 

repair material ("emb"). Strain readings are plotted at weekly intervals. A detailed 

explanation of the distribution of strain in these repair materials was given in Chapter 9, 

Section 9.3.1.1.1.

10.2.1.2 Simplified distribution of strain

Figures 10.5 to 10.8 show simplified schematic distribution of strain for materials L4, 

L3, L2 and G1 respectively based on the actual distribution of strain in Figures 10.1 to 

10.4. The repair material and steel reinforcement strains are averaged (due to strain 

compatibility) and are presented as one in Figures 10.5 to 10.8. The distribution of 

strains in Figures 10.5 to 10.8 are represented as a series of straight lines within four 

zones, namely shrinkage (Zone 1), steady state #1 (Zone 2), external load transfer (Zone 

3) and steady state #2 (Zone 4). The cumulative strains for each zone obtained from 

Figures 10.5 to 10.8 are given in Table 10.1. Table 10.1 is divided into four Zones (as 

in Figures 10.5 to 10.8) and presents the cumulative strains at the end of each zone.
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Table 10.1 Cumulative shrinkage and external load transfer strains

Material Location

Zone 1 

(week 11)

Strain at end of: (microstrain)

Zone 2 Zone 3 Zone 4 

(week 25) (week 47) (week 60)

L4 subs +154 +154 +297 +297

steel/emb + 42 + 42 +142 +142

L3 subs +107 +107 +137 +137

steel/emb + 45 + 45 +108 +108

L2 subs +120 +120 +300 +300

steel/emb + 7 + 7 + 54 + 54

G1 subs + 92 + 92 +183 +183

steel/emb - 9 - 9 - 4 - 4

Note: Negative values indicate tensile strains

Referring to Figure 10.5 and Table 10.1 (material L4), the strain in the substrate 

concrete after transfer of shrinkage strain from the repair material is 154 microstrain at 

the end of Zone 1. This strain is assumed to remain constant throughout Zone 2 (Figure

10.5 and Table 10.1). The strain in the substrate concrete then increases to 297 

microstrain by the end of the external load transfer stage (Zone 3), and remains constant 

thereafter until the end of the monitoring period (Zone 4, week 60, Figure 10.5 and 

Table 10.1). The strain in the steel reinforcement/repair material at the end of the 

shrinkage stage for material L4 (Figure 10.5) is 42 microstrain. A similar strain is 

assumed at the end of Zone 2. The strain in the steel reinforcement/repair material 

increases to 142 microstrain by the end of Zone 3 after external load is attracted into the
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repair patch. It is assumed to remain constant thereafter until the end of Zone 4 (week 

60, Figure 10.5 and Table 10.1).

The simplified distribution of strain in the repair patch of material L3 is shown in Figure

10.6 and Table 10.1. The strain in the substrate concrete at the end of Zone 1 is 107 

microstrain. A similar strain is assumed at the end of Zone 2, the steady state #1 stage 

(Figure 10.6 and Table 10.1). External load is attracted into the repair patch in Zone 3, 

and this increases the strain in the substrate concrete to 137 microstrain. This strain 

subsequently remains constant in Zone 4. The strain in the steel reinforcement/repair 

material in the shrinkage stage for material L3 is 45 microstrain. This strain is assumed 

to remain constant in Zone 2. The strain in the steel reinforcement/repair material 

increases to 108 microstrain after transfer of externally applied load into the repair 

patch. The strain in Zone 4 again remains constant (Figure 10.6 and Table 10.1).

Figure 10.7 and Table 10.1 shows the simplified strain in the substrate concrete in the 

repair patch of material L2 (120 microstrain at week 11). A constant strain of 120 

microstrain remains in the substrate concrete at the end of Zone 2, the steady state #1 

stage. After external load is attracted into the repair patch, the strain in the substrate 

concrete increases to 300 microstrain (Zone 3). This strain is assumed to remain 

constant throughout Zone 4 (Figure 10.7 and Table 10.1). The strain in the steel 

reinforcement/repair material at the end of the shrinkage stage (Zone 1) and during 

steady state #1 stage (Zone 2) for material L2 is 7 microstrain. This increases to 54 

microstrain at the end of Zone 3 and is assumed to remain constant until the end of the 

monitoring period (week 60, Figure 10.7 and Table 10.1).
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Referring to Figure 10.8 and Table 10.1, the simplified strain in the substrate concrete in 

the repair patch of material G1 at Gunthorpe Bridge is 92 microstrain at the end of Zone 

1 and Zone 2. An increase to 183 microstrain is observed in the substrate concrete after 

transfer of external load into the repair patch at the end of Zone 3. This strain is 

assumed to remain constant until week 60 (Zone 4, Figure 10.8 and Table 10.1). The 

strain in the steel reinforcement/repair material show a loss in compression of -9 

microstrain (tension) at the end of the shrinkage period for material G1 (Figure 10.8 and 

Table 10.1). This is assumed constant throughout Zone 2. A negligible increase in 

compression is observed at the end of Zone 3 for the steel reinforcement/repair material 

in the repair patch of material Gl. This reduces the strain to -4 microstrain. This strain 

is assumed constant throughout Zone 4 (Figure 10.8 and Table 10.1)

10.2.1.2.1 Discussion

Zone 1 (Figures 10.5 to 10.8) represents the shrinkage stage (weeks 0 to 11), where the 

repair material shrinks and transfers a portion of the shrinkage strain to the substrate 

concrete and steel reinforcement. The strain in the substrate concrete and steel 

reinforcement is assumed to increase linearly within Zone 1 to reach a maximum at 

week 11, the end of the shrinkage period (Figures 10.5 to 10.8). The strain in the steel 

reinforcement is lower in magnitude due to the much higher elastic modulus of the steel 

reinforcement. Zone 2 represents the first of two steady states, as shrinkage in the repair 

material has virtually ceased and as a result, strains remain constant in the substrate 

concrete and the steel reinforcement (Figures 10.5 to 10.8, weeks 11 to 25). Zone 3 is 

referred to as the external load transfer stage, as the stiffer repair attracts external load
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into the repair patch. The repair material deforms due to the increase in compressive 

stress and since the repair material is fully bonded to the steel reinforcement, the steel 

reinforcement also shows an increase in compression (Figures 10.5 to 10.8). The strain 

in the substrate concrete, at the interface with the repair, also increases within the 

external load transfer stage due to full bond between the repair material and the 

substrate concrete of lower elastic modulus (Figures 10.5 to 10.8, weeks 25 to 47). 

Zone 4 represents the second steady state period, since by this time the transfer of 

external load into the repair patch has ceased (Figures 10.5 to 10.8, weeks 47 to 60)

Table 10.2 gives the magnitude of the shrinkage strains developed in Zone 1 (from week 

0 to 11) and external load transfer strains developed in Zone 3 (from weeks 25 to 47) for 

the same four repair materials L4, L2, L3 and G1 (Figures 10.5 to 10.8). The values 

given in Table 10.2 are the maximum shrinkage strains in the substrate concrete and 

steel reinforcement/repair material at the end of Zone 1 (week 11). The external load 

transfer strains in Table 10.2 are the maximum values transferred to the substrate 

concrete and steel reinforcement/repair material during Zone 3, from week 25 to 47.

Referring to Table 10.2, the strain in the substrate concrete in the repair patches of 

materials L4, L3, L2 and Gl, after end of Zone 1 (after transfer of shrinkage from the 

repair material) are 154, 107, 120 and 92 microstrain respectively. The average strains 

in the repair material/steel reinforcement at the end of Zone 1 (Table 10.2) are 

considerably lower since the steel reinforcement has a much higher elastic modulus than 

the substrate concrete (42, 45, 7 and -9 respectively). At the end of Zone 3, the external 

load transfer stage, the strain in the substrate concrete is 143, 30,180 and 91 microstrain
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Table 10.2 Average distributed shrinkage and external load transfer strains

Material Location Strain in:

Zone 1 

(weeks 0 to 11)

(microstrain)

Zone 3 

(weeks 25 to 47)

L4 subs +154 +143

steel/emb + 42 +100

L3 subs +107 + 30

steel/emb + 45 + 63

L2 subs +120 +180

steel/emb + 7 + 47

G1 subs + 92 + 91

steel/emb - 9 + 5

vVo/e; N egative values indicate tensile strains

for repair materials L4, L3, L2 and G1 respectively. The strains in the steel 

reinforcement/repair material are 100, 63, 47 and 5 microstrain for materials L4, L3, L2 

and G1 respectively.

10.2.1.3 Tension due to restraint to shrinkage

Figures 10.9 to 10.12 show the simplified distribution of strain in the substrate concrete 

and steel reinforcement/repair material for materials L4, L3, L2 and G1 along with the 

modified free shrinkage curve for the same repair materials between weeks 0 to 11 (i.e. 

shrinkage stage, Zone 1, see Figures 10.5 to 10.8). The free shrinkage curve is
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modified to take into account differences that exist between laboratory and field 

measurements. For instance, prisms in the laboratory will have a different 

surface/volume ratio to the field repair patches (external surfaces only were used to 

calculate the surface area of the repair patches in the field). A higher surface/volume 

ratio will contribute towards higher shrinkage in the repair material [29-31]. Prisms 

stored under a higher laboratory temperature of 20°C will exhibit more shrinkage than 

the repair patches in the field which were exposed to a lower temperature (averaged at 

10°C over the eleven week shrinkage period). Finally, a curing membrane was applied 

to the surfaces of the repair patches at Lawns Lane Bridge to assist with curing of the 

repair material (see Section 10.2.1.5.3). Therefore, depending on the efficiency of the 

membrane, a repair material treated with a curing membrane would shrink less than an 

untreated repair patch. A correction for relative humidity was not applied, since the 

relative humidity in the laboratory (55%) was similar to the field average over the 

eleven week shrinkage period.

The magnitude of virtual tensile strain due to the shrinkage restraint provided by the 

substrate concrete and steel reinforcement is also shown in Figures 10.9 to 10.12 and 

Table 10.3. The virtual tension is defined as the difference between the modified free 

shrinkage of the repair material, and the compressive strain in either the substrate 

concrete or steel reinforcement. Strain compatibility is assumed between the repair 

material and the substrate concrete at the interface, and between the repair material and 

steel reinforcement at the steel reinforcement level. The restraint to shrinkage strain is 

greater at the steel reinforcement level than at the interface between the repair material 

and substrate concrete (Figures 10.9 to 10.12). This is due to the higher stiffness of the
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Table 10.3 Virtual tensile strain in the repair materials

Material Location Modified free 

shrinkage 

(microstrain)

Elastic modulus 

repair (substrate) 

(kN/mm2)

Strain at Virtual 

week 11 tension 

(microstrain) (microstrain)

L4 238 29.1 (23.8)

subs 154 - 84

steel/emb 42 -196

L3 210 27.4 (23.8)

subs 107 -103

steel/emb 45 -165

L2 136 30.3 (23.8)

subs 120 - 16

steel/emb 7 -129

G1 329 31.1 (28.1)

subs 92 -237

steel/emb -9 -338

steel reinforcement which provides a higher restraint to shrinkage. Consequently, less 

shrinkage strain is transferred to the steel reinforcement resulting in a higher virtual 

tensile strain in the repair material (Figures 10.9 to 10.12).

Referring to Figure 10.9 and Table 10.3, the modified free shrinkage of material L4 is 

238 microstrain at week 11. The maximum strain transferred to the substrate concrete 

and steel reinforcement at week 11 (Figure 10.9) is 154 and 42 microstrain respectively. 

This gives a virtual tensile strain in the repair material of 84 and 196 microstrain at the 

interface between the substrate concrete/repair material and steel reinforcement level
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respectively. The modified free shrinkage for material L3 is given in Figure 10.10 and 

Table 10.3. Also shown is the compressive strain in the substrate concrete and steel 

reinforcement at week 11, the end of the shrinkage period. This gives a virtual tensile 

strain of 103 microstrain in the repair material at the substrate concrete/repair material 

interface and a virtual tensile strain of 165 microstrain in the repair material at the steel 

reinforcement level at week 11. Figure 10.11 and Table 10.3 show that the modified 

free shrinkage in material L2 at week 11 was 136 microstrain. The shrinkage strain 

transferred to the substrate concrete was 120 microstrain, whereas the shrinkage strain 

transferred to the steel reinforcement was 7 microstrain at the end of week 11. This 

gives a virtual tensile strain in the repair material of 16 microstrain at the interface and 

129 microstrain at the steel reinforcement level. Referring to Figure 10.12 and Table 

10.3, the modified free shrinkage of material G1 at Gunthorpe Bridge is 329 

microstrain. This is higher than the modified free shrinkage of the materials used at 

Lawns Lane Bridge (see Table 10.3), mainly because a curing membrane was not 

applied to the repair materials at Gunthorpe Bridge. The shrinkage strain transferred to 

the substrate concrete in the repair patch of material G1 was 92 microstrain. The steel 

reinforcement showed tensile strain of 9 microstrain. This gave a virtual tensile strain 

of 237 microstrain in the repair material at the interface and a virtual tensile strain of 

338 microstrain in the repair material at the steel reinforcement level.

10.2.1.3.1 Discussion

It has already been established in Chapter 9 that if  the elastic modulus of the substrate 

concrete is greater than the elastic modulus of the repair material, then the substrate
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concrete and steel reinforcement would provide a full restraint to shrinkage in the repair 

material. Thus, the (modified) free shrinkage strain in the repair material would in fact 

become a virtual tensile strain. This would increase the likelihood of cracking in the 

repair material. Referring to Table 10.3, materials L4, L3, L2 and G1 all have an elastic 

modulus that is greater than the elastic modulus of the substrate concrete. 

Consequently, the repair materials are able to transfer a portion of the shrinkage strain to 

the substrate concrete, and to a lesser extent, to the steel reinforcement. The steel 

reinforcement is much stiffer than the repair material, but since the cross-sectional area 

of the steel reinforcement is negligible compared with the cross-sectional area of the 

repair patch, the repair material is able to transfer some of the large virtual force due to 

shrinkage to the steel reinforcement. This reduces the virtual tensile strain in the repair 

material at the interface with the substrate concrete and at the level of the steel 

reinforcement. Furthermore, if the elastic modulus of the repair material is substantially 

greater than the elastic modulus of the substrate concrete, then more of the shrinkage 

strain will be transferred to the substrate concrete. This is clearly evident in material L2 

(Figure 10.11 and Table 10.3). The modified free shrinkage strain in this material is 

136 microstrain. The strain transferred to the substrate concrete in this instance is 120 

microstrain. Therefore, the virtual tensile strain in the repair material at the substrate 

concrete/repair material interface is only 16 microstrain. It is highly unlikely that a 

tensile strain of this magnitude would cause cracking. Materials L4 and L3 also show 

considerable transfer of shrinkage strain to the substrate concrete and steel 

reinforcement (Table 10.3), thereby reducing the virtual tensile strains in the repair 

material. The highest virtual tensile strain occurs in material G1 at Gunthorpe Bridge. 

This repair material does not transfer any shrinkage strain to the steel reinforcement, and
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as a result, a relatively high virtual tensile strain is evident in the repair material at week 

11. Cracking, nevertheless, was absent in the repair patch since this repair material 

exhibited a relatively high modulus of rupture and consequently a high tensile strain 

capacity (see Chapter 8, Figure 8.23).

10.2.1.4 Stress in the repaired section

10.2.1.4.1 Substrate concrete and steel reinforcement

Figures 10.13 to 10.16 show the stress in the repair patch throughout the monitoring 

period (weeks 0 to 60) for repair materials L4, L3, L2 and G1 respectively. The stress 

locations within the repair patches are illustrated in Figures 10.13 to 10.16. The stress 

in the substrate concrete ("subs") is at the substrate concrete/repair material interface. 

Therefore, the strain measured on the surface of the substrate concrete by the vibrating 

wire strain gauge (see Figures 10.1 to 10.4) is converted to a stress by multiplying the 

strain by the elastic modulus of the substrate concrete. The elastic modulus was 

obtained by testing cores in the laboratory in accordance with BS 1881, Part 121 [3], to 

determine the elastic modulus of the substrate concrete. It is assumed that creep is 

negligible in the substrate concrete due to the age of the bridge and, therefore, the elastic 

modulus of the substrate concrete was taken as a constant throughout the monitoring 

period (weeks 0 to 60). The stress in the steel reinforcement (weeks 0 to 60, Figures 

10.13 to 10.16) was obtained by multiplying the measured strain in the steel 

reinforcement by the elastic modulus of steel reinforcement (the strain in the steel 

reinforcement was taken as the average of the embedment and steel reinforcement gauge
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due to strain compatibility - see Figures 10.1 to 10.4). The elastic modulus of the steel

2
reinforcement was assumed as 210 kN/mm throughout.

10.2.1.4.2 Repair material

With regards to the stress in the repair material, two locations are represented in Figures

10.13 to 10.16, namely at the interface between the substrate concrete and repair 

material, and at the steel reinforcement level. Strain compatibility at the interface 

between the substrate concrete and repair material was assumed, and consequently, the 

restrained shrinkage strain of the repair material was considered to be the same as the 

compressive strain transferred to the substrate concrete. Consequently, the virtual 

tensile strain in the repair material at the interface was obtained by subtracting the strain 

measured in the substrate concrete from the modified free shrinkage strain in the repair 

material (see Figures 10.9 to 10.12). This strain was then converted to an equivalent 

repair material stress by multiplying initially by the 28 day elastic modulus of the repair 

material (weeks 0 to 11, Figures 10.13 to 10.16). The elastic modulus of the repair 

material was obtained by casting cylinders in the laboratory and testing in accordance 

with BS 1881, Part 121 [3] (details are given in Sections 8.3.2 and 8.4.3). Similarly, the 

average strain recorded from the steel reinforcement and embedment gauges in the 

repair material at the steel reinforcement level (see Figures 10.1 to 10.4) was also 

subtracted from the modified free shrinkage strain in the repair material to give a virtual 

tensile strain in the repair material at the steel reinforcement level (Figures 10.1 to 10.4). 

Subsequently, a tensile stress in the repair material at this location was obtained by
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multiplying by the elastic modulus of the repair material (weeks 0 to 11, Figures 10.13 

to 10.16).

In order to represent the stress in the repair material from Zone 2 onwards (i.e. steady 

state #1, external load transfer and steady state #2), the strains in the repair material at 

the substrate concrete/repair material interface, and at the steel reinforcement level at the 

end of the shrinkage stage (week 11, Figures 10.13 to 10.16) were considered as a new 

datum at week 11 (i.e. no further increase in virtual tensile strain since the shrinkage is 

assumed to have ceased, see Figures 10.9 to 10.12). Therefore, the new datum strain at 

week 11 was subtracted from subsequent strains in Zones 2, 3 and 4 (weeks 11 to 60) 

and converted to a stress by multiplying by the 28 day elastic modulus of the repair 

material. This stress was then algebraically added to the tensile stress at week 11 which 

gave the stress in the repaired sections in Zones 2, 3 and 4 as shown in Figures 10.13 to 

10.16.

10.2.1.4.3 Discussion

Figures 10.13 to 10.16 show that the compressive stress in the substrate concrete 

increases within Zone 1, the shrinkage period. This compressive stress in the substrate 

concrete remains relatively constant in Zone 2, Figures 10.13 to 10.16. In Zone 3 

(weeks 25 to 47), the external load transfer stage, an increase in compressive stress in 

the substrate concrete is observed. Finally, the compressive stress in the substrate 

concrete again reaches a steady state (Figures 10.13 to 10.16, Zone 4) between weeks 47 

and 60. The compressive stress in the steel reinforcement generally follows a similar 

pattern to the compressive stress in the substrate concrete (Figures 10.13 to 10.15,
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Zones 1-4). An increase in compressive stress is observed in Zones 1 and 3 whereas the 

compressive stress remains relatively constant in Zones 2 and 4. On the other hand, the 

stress in the repair material at both the interface (“RM @ interface”) and at the steel 

reinforcement level (“RM @ steel”) is quite different to the stress in the substrate 

concrete and steel reinforcement. The stress in the repair material increases in tension in 

Zone 1 (weeks 0 to 11), for both "RM @ interface" and "RM @ steel". The tensile 

stress in the repair material remains relatively constant in Zone 2. A slight decrease in 

tension occurs in the repair material in Zone 3. In fact, the tensile strain in material L2 

at the interface ("RM @ interface", Figure 10.15) changes from tension to compression. 

In Zone 4, the stress in the repair material exhibits a relatively constant behaviour.

10.2.1.4.4 Further discussion

Referring to Figures 10.13 to 10.16, the compressive stress in the substrate concrete 

increases steadily within the shrinkage stage, Zone 1. This is because the stiffer repair 

material is transferring shrinkage strain, and consequently compressive stress, to the less 

stiff repair material. The compressive stress reaches a maximum at approximately week 

11, the end of the shrinkage period. The compressive stress in the substrate concrete 

remains relatively constant within Zone 2, (steady state #1), since shrinkage in the repair 

material will have reached negligible levels (Figures 10.13 to 10.16, Zone 2). An 

increase in compressive stress in the substrate concrete (at the interface) is again 

observed in Zone 3, the external load transfer stage. External stress is attracted into the 

repair patch, and due to strain compatibility at the interface, the interfacial zone of the 

substrate concrete is also affected (Figures 10.13 to 10.16) The compressive stress in
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the substrate concrete remains relatively constant in Zone 4, Figures 10.13 to 10.16, 

since external load transfer in the repair material has virtually ceased and compression is 

no longer forced into the substrate concrete through strain compatibility at the interface. 

The compressive stress in the steel reinforcement broadly follows a similar pattern to 

the compressive stress in the substrate concrete (Figures 10.13 to 10.16, Zones 1-4), but 

the magnitude of stress is higher in the steel reinforcement in most cases. Referring to 

Figures 10.1 to 10.4, the shrinkage strain transferred to the steel reinforcement is lower 

than the strain transferred to the substrate concrete. This is because the steel 

reinforcement is much stiffer than the substrate concrete and therefore, provides more 

restraint to shrinkage. However, when the strains are converted to an equivalent stress, 

the stress in the steel reinforcement may in fact be higher than the stress in the substrate 

concrete due to the higher elastic modulus of steel. This was clearly evident in materials 

L4 and L3 (Figures 10.13 and 10.14).

The tensile stress in the repair material increases rapidly in Zone 1, the shrinkage stage 

(Figures 10.13 to 10.16), for both the repair material at the substrate concrete interface 

(“RM @ interface”) and the repair material at the steel reinforcement level (“RM @ 

steel”). This is due to the rapid shrinkage of the repair materials during this stage, 

which is restrained by the substrate concrete and steel reinforcement. The tensile stress 

in the repair material reaches a maximum value at approximately week 11 (end of Zone

1), since the shrinkage in the repair materials will have stabilised at this stage. From 

week 12 until approximately week 25, the tensile stress in the repair material (both at 

the interface and at the steel reinforcement level) remains relatively constant since the 

free shrinkage curve of the repair material would generally exhibit asymptotic behaviour
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at this stage (Figures 10.13 to 10.16). Compressive stress is subsequently attracted into 

the repair patch from the substrate concrete, and this is shown by the reduction in tensile 

stress in the repair material at both the interface and steel reinforcement level (Zone 3, 

Figures 10.13 to 10.15). The stress in Zone 4 remains relatively constant since the 

transfer of external load into the repair patch has ceased by this stage.

10.2.1.5 Modifications to repair material properties

Figures 10.13 to 10.16 assumes a steel reinforcement elastic modulus (stiffness) of 210 

kN/mm2 and a substrate concrete elastic modulus equivalent to that obtained from 

testing cores extracted from field structures. The assumption that creep will have ceased 

in the substrate concrete is made on the basis that the substrate concrete in the bridges 

was under load for over 30 years. Figures 10.13 to 10.16 also assume that the stiffness 

of the repair material remains constant at the value determined under compression at 28 

days age. However, this does not truly represent the actual distribution of stress with 

time across the repair patch since, for example, tensile creep would reduce the elastic 

modulus and consequently the tensile stress in the repair material. Also, at early ages, 

the elastic modulus of the repair material will be less than the 28 day value since time is 

needed for the repair material to develop its properties. Consequently, adjustments 

should be made to the properties of the repair materials represented in Figures 10.13 to

10.16 to better represent the actual situation.
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10.2.1.5.1 Elastic modulus

The assumption is made that for repair materials, the tensile modulus of elasticity is the 

same as the compressive modulus of elasticity. The literature review in Chapter 8 

shows that the static modulus of elasticity of concrete in tension is approximately 9% 

less than that in compression. By applying this conclusion to the stiffness of the repair 

material, a lower elastic modulus, and consequently a lower tensile stress will be evident 

in the repair material. This will result in a tensile stress reduction of about 9% in the 

repair materials in Figures 10.13 to 10.16. Furthermore, the elastic modulus of the 

repair material was taken as the 28 day value throughout in calculating the stresses 

plotted in Figures 10.13 to 10.16. The elastic modulus of the repair material at earlier 

ages will invariably be less than the 28 day elastic modulus, since the repair material 

will need time to develop its full properties. Table 10.4 [43] shows the elastic modulus 

of three repair materials at 7, 14 and 21 days in relation to the 28 day value. The 7, 14, 

and 21 day elastic modulii are approximately 65%, 85% and 96% of the 28 day elastic 

modulus value.

Table 10.4 Development with age of tensile elastic modulus of repair materials (from 

Figure 8.9 [43])

Percentage o f 28 day tensile elastic modulus at: 

Material 7 days 14 days 21 days

(%) (%) <%)

Unmodified 60 83 95

Vinyl Acetate 59 81 94

Acrylic 75 92 98

Average: 65 85 96
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The 28 day elastic modulus should therefore be reduced to values similar to those listed 

in Table 10.4 to better represent the tensile stress in the repair patch at early ages after 

application of repair, since the strains and subsequently the stresses in the repair 

materials were plotted form the age of 24 hours in Figure 10.2 onwards. A lower elastic 

modulus will result in lower tensile stress in the repair material.

10.2.1.5.2 Creep

The allowance for stress relaxation in the repair material was also unaccounted for in 

Figures 10.13 to 10.16. A repair material that exhibits tensile stress due to the restraint 

to shrinkage provided by the substrate concrete will undergo tensile creep. This will 

reduce the elastic modulus of the repair material which will consequently reduce the 

tensile stress. Therefore, an effective elastic modulus should be employed to account 

for tensile creep in the repair material within the shrinkage period (weeks 0 to 11, 

Figures 10.13 to 10.16). The value of <|), the creep coefficient, which is the ratio of 

creep strain to the instantaneous elastic strain upon loading has been obtained for the 

repair materials under investigation (see Table 8.19). This coefficient is used to allow 

for the effect that creep will have on the elastic modulus of the repair material by 

calculating its effective elastic modulus, Erm(eff), as follows [62]:

Erm {eff) =  E rm  / ( ! + * )

Equation 10. 1

where E m  is the 28 day elastic modulus of the repair material.
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Although the creep coefficient has been obtained (Table 8.19) for the repair materials 

under a compressive stress, the same coefficient can equally be applied to repair 

materials in tension [46, 58, 59], based on the findings of the literature review in 

Chapter 8. The creep coefficient, however, was obtained for repair materials under 

investigation in this project (Table 8.19) that were loaded at 28 days age. It is well 

established that concrete (and similarly repair materials ) loaded at later ages will show 

less creep than materials loaded at early ages. Table 10.5 shows the relationship 

between creep coefficients for a repair material loaded at 2, 4, 7 and 14 days after 

casting, to the creep coefficient of a repair material loaded 28 days after casting. The 

creep coefficient is higher for repair materials loaded at earlier ages. Hence, the creep 

coefficient obtained in the laboratory (Table 8.19) should be increased by ratios similar 

to those given in Table 10.5 to better represent the in situ creep of the repair materials at 

early ages. A lower effective elastic modulus, and consequently a lower tensile stress 

will result.

Table 10.5 Ratio of early age creep coefficient to 28 day creep coefficient for SBR 

modified concrete (From Figure 8.6 [37])

t=: 2

Age (days) 

4 7 14 28

Creep coefficient 2.49 2.10 1.81 1.19 1.14

Ratio (t)day 
28 day 2.18 1.84 1.59 1.04 1.00
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10.2.1.5.3 Shrinkage

The final correction to be made to the tensile stress in the repair material is the effect 

that the curing membrane will have on the shrinkage of the repair material. This is 

relevant to the repairs applied at Lawns Lane Bridge where a curing membrane was 

used. The literature review undertaken in this study was unable to determine accurately 

the effectiveness of curing membranes in reducing the shrinkage in concrete/repair 

materials. The only information that was obtained related to the efficiency of curing 

compounds, to BS 7542 [97], which determined the effectiveness of curing membranes 

in preventing moisture loss from a sample of concrete. Other researchers have also 

tested the efficiency of curing compounds with respect to moisture loss [98, 99, 100]. 

Russell [101] reports tests which show that a cunng membrane applied at a rate of 5m 

per litre on a reasonably smooth concrete surface will provide the equivalent of 

continuous moist curing. In Chapter 8, it was reported that the 100 day shrinkage of the 

Lawns Lane Bridge repair materials stored in water for the first 28 days was between 

44% and 90% of the shrinkage of the air cured specimens. The average was 62%. 

Although water curing will control shrinkage better than moist curing, nevertheless it 

will be assumed, for the purpose of better representing the tensile stress in the repair 

materials, that the curing membrane reduces the shrinkage of the repair materials to 62% 

of the free shrinkage of untreated repair materials.

10.2.1.6 Modified stress in the repaired section

Figures 10.17 to 10.19 show the stress in the repair patch of materials L4, L3 and G1

after modifying the properties of the repair materials as described in the previous section
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i.e. the effect of tensile creep and lower elastic modulus in the early ages, the difference 

between compression and tension elastic modulus and correction to shrinkage data for 

curing membrane application. The stress in repair material L2 was not modified since 

creep data was not available for this repair material. The compressive stress in the 

substrate concrete and steel reinforcement did not alter form that presented in Figures

10.13 to 10.16. The results in Figures 10.17 to 10.19 show that the tensile stress in the 

repair material is lowered considerably as a result of applying the adjustments to the 

properties of the repair materials as outlined above (compare Figures 10.17 to 10.19 

with Figures 10.13 to 10.16). The tensile stress in the repair material in both "RM @ 

interface" and "RM @ steel" (Figures 10.17 to 10.19) still increases within Zone 1, but 

the magnitude of stress is less than that of Figures 10.13 to 10.16. Furthermore, the 

tensile stresses in the repair material at the interface and steel reinforcement level ("RM 

@ interface" and "RM @ steel") show a negligible difference (compare "RM @ 

interface" and "RM @ steel" in Figures 10.17 to 10.19 with the equivalent in Figures 

10.13, 10.14 and 10.16) In Zone 2, the stress again remains relatively constant since 

shrinkage had virtually ceased in the repair material (Figures 10.17 to 10.19). In the 

external load transfer stage (Zone 3, Figures 10.17 to 10.19), the tensile stress remaining 

in the repair material is reduced since external stress is attracted into the repair patch 

from the substrate concrete. The external compressive stress transfer neutralises the 

tensile stress at the interface ("RM @ interface") in material L4 at week 40 (Figure 

10.17). In Zone 4 (Figures 10.17 to 10.19), the stress in the repair material remains 

relatively constant as before.
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10.2.1.6.1 Further discussion

It is clear from the results presented in Figures 10.17 to 10.19 that the repair material 

exhibits a relatively high tensile stress in the shrinkage period (Zone 1), but this tensile 

stress in reduced or even completely neutralised through the transfer of external stress 

into the repair patch (Zone 3, Figures 10.17 to 10.19). It is vitally important that the 

stress in the repair material in Zone 1 (weeks 0 to 11) does not exceed the tensile 

strength of the repair material, otherwise cracking will occur and durability will become 

a problem. Obviously, the only way to ensure that the tensile stress in the repair 

material is low is to specify a repair material with low shrinkage characteristics. This is 

not a straight forward task, since virtually all of the repair materials tested in the current 

project exhibited considerable shrinkage, despite the claims from the manufacturers’ 

that they were low shrinkage repair materials or were shrinkage compensated. 

Therefore, assuming that the material specified for a particular repair will undergo 

considerable shrinkage, is essential that the repair material exhibits an elastic modulus 

that is greater than the elastic modulus of the substrate concrete. In these instances, 

some of the shrinkage strain is transferred to the substrate concrete and steel 

reinforcement (see Figures 10.9 to 10.12). Hence, the virtual tensile strain in the repair 

material will be lower than its tensile strain capacity and consequently, the tensile stress 

could be reduced to acceptable levels. Clearly, cracking would be absent in the repair 

material. It has been observed in many instances in this project that a cracked repair 

material will not attract load into the repair patch. The benefit of a stiffer repair material 

attracting load into the repair patch is clear to see in the spray applied materials (Figures

10.17 to 10.19). The tensile stress in the repair material is reduced in the external load 

transfer stage (Zone 3, weeks 25 to 47). It was concluded in Chapter 8 that the modulus
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of rupture of some repair materials decrease with time (see Section 8.5.4). Since the 

modulus of rupture is related to the direct tensile strength, the tensile strength of the 

repair material will also decrease with time. Consequently, if significant tensile stress is 

still evident in the repair patch even after a year of application, then cracking can occur 

due to a decrease of tensile strength in the repair material with time. This situation 

occurred with material L4 at Lawns Lane Bridge, where significant cracking occurred 

outside the monitoring period (see Figure 9.4). Referring to Figure 10.17, Zone 4, a 

small tensile stress is evident in the repair material in the repair patch of repair material 

L4 (see "RM @ steel", weeks 47 to 60). Obviously, the tensile strength of the repair 

material has decreased below this level and as a result, cracking occurred in the repair 

material.

10.2.1.7 Simplified stress distribution in the repaired section

Figures 10.20 to 10.23 show a simplified distribution of stress in the repair patch of 

materials L4, L3 and L2 at Lawns Lane Bridge and G1 at Gunthorpe Bridge. On 

occasions where the stresses plotted in Figures 10.17 to 10.19 exhibit irregular 

behaviour with time, an average stress is assumed in Figures 10.20 to 10.23. The stress 

distribution in the repair material in material L2 is omitted from Figure 10.22 since no 

data was available on the creep of this repair material, hence the modified stress could 

not be obtained. A summary of the stresses is also given in Table 10.6. Referring to 

Figures 10.20 to 10.23, the stress in the substrate concrete and steel reinforcement in 

Zone 1 increases linearly to reach a maximum at week 11. The stress in the substrate 

concrete and steel reinforcement is compressive, whereas the stress in the repair material
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Table 10.6 Cumulative shrinkage and external load transfer stress in the repair patch

Material Location Cumulative stress at end of: (N/mm2)

Zone 1 Zone 2 Zone 3 Zone 4

(week 11) (week 25) (week 47) (week 60)

L4 subs +3.7 +3.7 + 7.1 + 7.1

steel +8.8 +8.8 +29.8 +29.8

RM @ interface -2.2 -2.2 + 1.4 + 1.4

RM @ steel -4.2 -4.2 - 0.6 - 0.6

L3 subs +2.5 +2.5 + 3.3 + 3.3

steel +9.5 +9.5 +22.7 +22.7

RM @ interface -1.7 -1.7 - 0.8 - 0.8

RM @ steel -2.7 -2.7 - 1.1 - 1.1

L2 subs +2.8 +2.8 + 7.1 + 7.1

steel +1.5 +1.5 +11.3 +11.3

RM @ interface NA NA NA NA

RM @ steel NA NA NA NA

G1 subs +2.6 +2.6 + 5.1 + 5.1

steel -1.9 -1.9 - 0.8 - 0.8

RM @ interface -3.8 -3.8 - 3.3 - 3.3

RM @ steel -4.9 -4.9 - 4.6 - 4.6

Note: Positive values indicate compressive stress; negative values indicate tensile stress (or
loss in compression)

is tensile. The stress in steady state #1 remains constant for the substrate concrete, steel 

reinforcement and repair material from weeks 11 to 25 (Figures 10.20 to 10.23). In the 

external load transfer stage (Zone 3, Figures 10.20 to 10.23), the compressive stress 

increases linearly in the substrate concrete and steel reinforcement whereas the tensile

333



v^rtupiet i v  l^urig term ztrueturut truerucuurt trt repuireu retnjurceu concrete memuers

stress decreases in the repair material. In Zone 4, the steady state #2 period, the stress in 

the substrate concrete, steel reinforcement and repair material remain constant for the 

remainder of the monitoring period, weeks 47 to 60.

Referring to Figure 10.20 and Table 10.6, the stress in the substrate concrete at the end 

of Zone 1 is 3.7 N/mm . This stress is assumed to remain constant throughout Zone 2. 

The stress in the substrate concrete at the end of Zone 3, the external load transfer stage, 

increases to 7.1 N/mm (compression). From week 47 onwards (Zone 4), the stress in 

the substrate concrete remains constant. The stress in the steel reinforcement also 

increases in compression throughout the monitoring period. The stress at the end of the 

shrinkage period, week 11, is 8.8 N/mm . This stress remains steady in Zone 2, before 

an increase is again observed in Zone 3 to 29.8 N/mm . The stress in the steel 

reinforcement remains constant in Zone 4. The tensile stress in the repair material at the 

substrate concrete/repair patch interface ("RM @ interface") and at the steel 

reinforcement level ("RM @ steel") is 2.2 and 4.2 N/mm2 respectively at week 11. This 

stress remains constant in Zone 2 (weeks 11 to 25). The stress in "RM @ interface" 

changes to 1.4 N/mm (compression) in Zone 3, whereas the stress in "RM @ steel" 

decreases to 0.6 N/mm (tension). The stress in the repair material subsequently 

remains constant in Zone 4.

The simplified distribution of stress in the repair patch of material L3 is shown in Figure 

10.21 and Table 10.6. The stress in the substrate concrete and steel reinforcement

2 2
increases in compression to reach 2.5 N/mm and 9.5 N/mm respectively at week 11. 

These stresses remain constant in Zone 2, but an increase in compression is again
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2 2observed in Zone 3, the external load transfer stage to 3.3 N/mm and 22.7 N/mm 

respectively. From week 47 onwards, the stress in the substrate concrete and steel

reinforcement remain constant. The stress in the repair material ("RM @ interface" and

2 2"RM @ steel") in Zone 1 is 1.7 N/mm and 2.7 N/mm (tension) respectively. These 

stresses remain constant in Zone 2 before a slight decrease in tension is observed in 

Zone 3 to 0.8 and 1.1 N/mm respectively. The stresses in the repair material at the end 

of Zone 3 remain constant in Zone 4.

The stress in the substrate concrete and steel reinforcement for material L2 is given in 

Figure 10.22 and Table 10.6. The stress in the repair material was not obtained since

data on creep was not available for this material. The compressive stress in the substrate

• • 2 concrete and steel reinforcement increase linearly to 2.8 and 1.5 N/mm respectively at

the end of the shrinkage period, week 11. These stresses remain constant until the end

of Zone 2. The stress in the substrate concrete and steel reinforcement increase to 7.1

and 11.3 N/mm by the end of Zone 3 when external load is transferred into the repair

patch. The stresses are constant throughout Zone 4.

Figure 10.23 and Table 10.6 show the stresses in the substrate concrete and steel 

reinforcement in the shrinkage period for material G1 at Gunthorpe Bridge. The stress 

in the substrate concrete at the end of the shrinkage period (week 11) is 2.6 N/mm . 

This stress is assumed to remain constant in Zone 2 but increases to 5.1 N/mm2 by the 

end of Zone 3. This stress remains constant throughout Zone 4. The stress in the steel 

reinforcement in the repair patch of material G1 exhibits a different stress pattern to 

previous cases. It shows a reduction in compression in the shrinkage period (-1.9
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2
N/mm ) and remains constant throughout Zone 2. The stress decreases in tension to - 

0.8 N/mm2 by the end of Zone 3 and remains constant in Zone 4. The tensile stress in

the repair material ("RM @ interface" and "RM @ steel") at the end of Zone 1 (week

2 211) is 3.8 N/mm and 4.9 N/mm respectively. These stresses remain constant in Zone

2. A very slight reduction in tensile stress is observed in Zone 3, as external stress is 

attracted into the repair patch (3.3 N/mm2 and 4.6 N/mm2 in tension respectively). As 

before, these stresses remain constant in Zone 4.

Table 10.7 shows the stress developed in the substrate concrete, steel reinforcement and 

repair material in Zone 1 and Zone 3 from Figures 10.20 to 10.23. Tensile stress is 

apparent in the repair material in Zone 1. In Zone 3, the repair materials go into 

compression along with the substrate concrete steel reinforcement. Referring to Table

10.7, Zone 1, the compressive stress in the substrate concrete for materials L4, L3, L2

2 2and G1 ranges between 2.5 N/mm and 3.7 N/mm . This variation is due to the varying 

differences in the elastic modulii of repair materials and substrate concretes, and also 

due to the different shrinkage of the repair materials (see Table 10.3). The stress in the 

steel reinforcement ranges from a loss in compression of 1.9 N/mm to a gain in 

compression of 9.5 N/mm . Again, repair material properties (elastic modulus and 

shrinkage) are responsible for these variations. Repair material properties are not 

responsible for the loss in compression of the steel reinforcement in material G1 - this 

loss of compressive stress is probably attributed to experimental error (i.e. the strain 

gauge may have malfunctioned in the repair patch). The stresses in the repair materials 

during the shrinkage stage are all tensile, since the substrate concrete and steel 

reinforcement provide a partial restraint to shrinkage. The highest tensile stress is
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Table 10.7 Average stress due to restraint to shrinkage and external load transfer

Material Location Stress in: (N/mm )

Zone 1 Zone 3 

(weeks 0 to 11) (weeks 25 to 47)

L4 subs +3.7 +3.4

steel +8.8 +21.0

RM @ interface -2.2 +3.6

RM @ steel -4.2 +3.6

L3 subs +2.5 +0.8

steel +9.5 +13.2

RM @ interface -1.7 +0.9

RM @ steel -2.7 +1.6

L2 subs +2.8 +4.3

steel +1.5 +9.8

RM @ interface NA NA

RM @ steel NA NA

Gl

subs +2.6 +2.5

steel -1.9 +1.1

RM @ interface -3.8 +0.5

RM @ steel -4.9 +0.3

Note: Positive values indicate compressive stress; negative values indicate tensile stress

2
in material G1 (4.9 N/mm ) at the steel reinforcement level. This is because repair 

material G1 has the highest modified free shrinkage and lowest transfer of shrinkage to 

the steel reinforcement (see Table 10.3). In the External load transfer stage (Zone 3, 

Table 10.7), the substrate concrete for all materials (L4, L3, L2 and Gl) exhibits varying

2 2
compressive stress (0.8 N/mm to 3.4 N/mm ). This is because different levels of
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external stress is attracted into the repair patches. For instance, material L3 has the 

lowest elastic modulus (Table 10.3) of the four materials under observation, and as a 

result, attracts the lowest magnitude of stress. The stress in the steel reinforcement after 

transfer of external stress also shows a wide variation for the repair materials (1.1 to

21.0 N/mm2), again due to a variation in repair material properties. The stress attracted

2 2 
into the repair materials varies from 0.3 N/mm (material Gl) to 3.6 N/mm (material

L4). The difference in elastic modulus between the substrate concrete and repair

material L4 is greater than the corresponding difference between the substrate concrete

and repair material Gl (Table 10.3). As a result, material L4 attracts more external

stress into the repair patch (see Table 10.7).

10.3 CONCLUSIONS

The following conclusions are based on the information presented in this chapter:

• Four stages of stress are evident in spray applied repairs to unpropped compression 

members:

(i) shrinkage stage (Zone 1, weeks 0 to 11)

(ii) steady state #1 (Zone 2, weeks 11 to 25)

(iii) external load transfer (Zone 3, weeks 25 to 47)

(iv) steady state #2 (Zone 4, weeks 47 to 60)

•  Tensile stress is evident in the repair material in Zone 1 (weeks 0 to 11) due to the 

partial restraint to shrinkage provided by the substrate concrete and steel 

reinforcement.
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•  Compressive stress is transferred to the substrate concrete and steel reinforcement 

during shrinkage (contraction) of the repair material within Zone 1.

• Stresses in the repair material, substrate concrete and steel reinforcement remain 

constant in Zone 2 (weeks 11 to 25) since shrinkage in the repair material had 

reached negligible levels.

•  Tensile stress in the repair material is reduced (or changes to compression) after 

external (compressive) load is transferred from the substrate concrete in Zone 3 

(weeks 25 to 47).

• Stresses in the repair material, substrate concrete and steel reinforcement at the end 

of Zone 3 remain constant in Zone 4 (weeks 47 to 60) since the transfer of external 

load transfer from the substrate concrete has ceased.

• Tensile stress may be evident in the repair material in the long term if insufficient 

external load is attracted into the repair material to neutralise the tensile stress.

•  Stress relaxation due to tensile creep in the repair material reduces the tensile stress 

caused by the restraint to shrinkage provided by the substrate concrete and steel 

reinforcement.
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CHAPTER 11

A THEORY FOR REPAIR MATERIAL 

INTERACTION TN COMPRESSION MEMBERS

11.1 INTRODUCTION

Reinforced concrete is the most widely used construction material in the world due to its 

relatively low cost and ease of placing. It gives excellent durability when designed, 

constructed and maintained correctly, justifying the design lives of 60 or 120 years 

[102]. However, when the effects of inadequate detailing, poor workmanship or severe 

exposure to harsh environments are experienced, the steel reinforcement corrodes which 

leads to spalling of the concrete. The design life of the structure can be extended by 

replacing the damaged concrete with a new material. This process can prove to be 

successful if the repair material is selected on the basis of an adequate understanding of 

the interaction between the substrate concrete and repair material. Too often, this is not 

the case and materials are applied with little knowledge of their long term performance 

under service conditions. Therefore, information is required that will allow repair 

materials to be used that will restore the integrity of the structure.

In this chapter, simple mathematical expressions to predict the distribution of stress 

across the repair patch due to shrinkage in the repair material and redistribution of 

external load into the repair patch are derived. A brief review is also given on the

340



so a p ie r  11 a  in eoryjor repair material interaction in compression members

current literature on predictive procedures for the performance of repair patches under 

service conditions.

11.2 LITERATURE REVIEW

11.2.1 Analytical models for concrete repair

Previous research into the performance of reinforced concrete repair carried out at 

Sheffield Hallam University [24] involved deriving a mathematical expression to 

predict the total strain ratio between the repair material and substrate concrete at any 

time, t. Column specimens measuring 150mm x 150mm x 750mm long were used in 

the investigation and reinforced with four 12mm diameter high yield steel bars.

The specimens were loaded in compression 28 days after casting and the deformation 

due to shrinkage and creep was monitored for 120 days. To simulate deterioration due 

to reinforcement corrosion, centrally located voids on two opposite faces of the columns 

were cut to a depth of 55mm and length 220mm and patch repaired. A simple 

mathematical expression to determine the total strain ratio, (sR/ec)t, between the repair 

material and concrete substrate was derived as [24]:

V:

C
GR(t)—GR(t0)

(Jc(fo,/)— (7C(io)
x[l + %C(to, f)(J)C(/o, /)]+ KlZshcoo, O

10,1)

Equation 11.1
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where

eR = total strain on repair patch

sc = total strain on substrate concrete, at any time t, in terms of the

creep properties and modulus of elasticity of the materials, and 

the varying sustained stress applied on the concrete and repair 

cross-section.

t0 = age at first application of load

Ec = modulus of elasticity of concrete substrate

Er = modulus of elasticity of repair material

<j) = creep coefficient

X = ageing coefficient

Kj ,K2 = constants for volume/surface correction

A comparison between the experimental and theoretical total strain (including elastic, 

creep and shrinkage strain) of the repair patch and substrate concrete at different ages 

under load showed close agreement. Equation 11.1 relates to the performance of repair 

to a propped compression member (column) under serviceability conditions.

Yuan and Marosszeky [103] reported on long term tests to investigate the performance 

of structural concrete repair. Reinforced concrete beams with repair patches in both the 

tension and compression zones were repaired using three types of polymer-cement 

concrete. These repair concretes were formed by modifying concrete with acrylic, SBR 

and styrene-acrylic. A lever-arm load system (lever arm ratio 1:9) was used for the long 

term tests. Their results show that the major factors which influence the performance of
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structural repair include free shrinkage, creep coefficient and tensile strength. The 

ultimate tensile strain at early ages was also shown to be very important. An analytical 

method for predicting the strain in a repair patch was developed [103] and compared 

with the results of the test beams. The effect of free shrinkage, tensile creep, tensile 

strength and modulus of elasticity of the repair material on restrained shrinkage were 

included in the analytical method. The strain in the repair concrete obtained from 

laboratory tests showed good correlation with values obtained from the analytical 

method (see Figure 11.1 [103]).

Yuan and Marosszeky [103] found that a tensile strain of 109 microstrain occurred in 

the substrate concrete near the repair interface on the first day after repair. This tensile 

strain was reportedly due to the expansion of the SBR modified concrete within 24 

hours. Based on the results from the current project, a repair material with an elastic 

modulus greater than that of the substrate concrete is able to transfer some strain to the 

substrate concrete. It is unlikely, however, that the elastic modulus of the repair 

concrete in the previous research [103] was sufficient to transfer shrinkage strain to the 

substrate concrete after 24 hours, hence, the increase in strain on the substrate concrete 

must be due to other effects. No information was given on the elastic modulus of the 

repair concrete.
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11.3 A THEORY TO PREDICT THE STRUCTURAL

INTERACTION IN REPAIRED MEMBERS

In this section, a theory is presented that predicts the structural interaction in repaired 

reinforced concrete structures. The theory is applicable to all repair techniques, but the 

field data from the spray applied repair materials to unpropped members in compression 

is used to verify the validity of the analysis. It also assumes that the elastic modulus of 

the repair material is greater than the elastic modulus of the substrate concrete.

It has been stated previously that a repair material with an elastic modulus greater than 

the elastic modulus of the substrate concrete will transfer a portion of the shrinkage 

strain to the substrate concrete. The amount of shrinkage strain that is transferred to the 

substrate concrete depends on the difference in elastic modulus between the repair 

material and substrate concrete (i.e. the modular ratio). The higher the modular ratio, 

the higher the shrinkage transfer to the substrate concrete. This is shown with reference 

to Figure 11.2. The relationship between m, the modular ratio {Em / Esub), and X, the 

percentage of free shrinkage strain transferred to the substrate concrete, is given for the 

four spray applied materials to unpropped members in compression. X is obtained by 

dividing the strain in the substrate concrete at the end of the shrinkage period at week 

11, Ssub(shr) (Table 10.2 and Figures 10.5 to 10.8, week 11) by the free shrinkage strain 

in the repair material at the same age, Table 10.3. The strain in the substrate concrete, 

Ssub(shr) , was measured by means of a vibrating wire strain gauge attached to the cut

back substrate in the abutments/columns of the bridges investigated (see Figure 5.5). 

The free shrinkage of the repair materials, 8shr(free) , was obtained by casting prisms in 

the laboratory and monitoring the shrinkage deformation that occurred over a period of
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100 days (curing conditions: 20°C and 55% RH - full details are given in Chapter 8, 

Sections 8.3 and 8.4). These free shrinkage readings were then modified to take into 

account differences that existed between laboratory and field specimens. For instance, 

the surface/volume ratio differed for both laboratory and field materials (a higher 

surface/volume ratio would contribute to higher free shrinkage), therefore an allowance 

was made for this. Corrections, where applicable, were made to take into account the 

difference in temperature and relative humidity between laboratory and field materials. 

Finally, a correction for the efficiency of the curing compounds that were applied to the 

surface of the repair materials at Lawns Lane Bridge was also made. A summary of 

Figure 11.2 is also given in Table 11.1. Referring to Table 11.1, the abbreviations of the 

four repair materials under observation are given in column 1. The modular ratio 

between the repair material and substrate concrete ( E™ / Esub) is given in column 2. 

The deformation in the substrate concrete, ssub(shr), after transfer of shrinkage strain from 

the repair material at week 11 is shown in column 3. The free shrinkage of the repair 

materials, sshr(free), at the end of the shrinkage period, week 11, is shown in column 4. 

Finally, X, the ratio of transferred shrinkage strain to the free shrinkage strain, is given 

in column 5.

Figure 11.2 shows a strong linear relationship between m and X, even though data from 

only four repair materials were available on different bridges (materials L4, L3 and L2 

from Lawns Lane Bridge, and material Gl from Gunthorpe Bridge). The coefficient of 

variation (R2) is 0.968. Referring to Figure 11.2, when the elastic modulus of the repair 

material is equal (or less) than the elastic modulus of the substrate concrete (m =1), then 

the repair material is fully restrained by the substrate concrete and, therefore, it is
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Table 11.1 Percentage of free shrinkage strain transferred to substrate concrete, X

Column

1 2 3 4 5
Repair material m Bsub(shr) Sshr(free) X

f  Erin'| 
\ EsubJ

(microstrain) (microstrain) (%)

L4 1.22 154 238 65

L3 1.15 107 210 51

L2 1.27 120 136 88

Gl 1.10 92 329 28

unable to transfer shrinkage strain to the substrate concrete (X = 0%). On the other 

hand, full shrinkage strain transfer will occur (X = 100%) when the modular ratio 

between the repair material and substrate concrete is approximately 1.32 (see Figure 

11.2). For example, the elastic modulus of the substrate concrete at Lawns Lane Bridge 

is 23.8 kN/mm2. A repair material with an elastic modulus of 31.4 kN/mm2 (Emt x

I.32) would then theoretically transfer all free shrinkage to the substrate concrete.

II.3.1 Spring analogy to represent interaction between

repair material and substrate concrete

Figure 11.3 (a) shows an oblique view of a compression member repaired in the 

unpropped state. The repair material has an elastic modulus that is greater than the 

elastic modulus of the substrate concrete, and as a result, transfers shrinkage strain to the 

substrate concrete in the shrinkage stage, week 0 to week 11, see Figures 10.5 to 10.8. 

The influence of the steel reinforcement on the transfer of shrinkage strain is omitted for 

simplification and clarity. Since the substrate concrete has an infinite thickness
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Figure 11 .3  Spring analogy to represent th e interaction between the 
the repair material and substrate concrete  
Method of repair: spray applied
Properties: repair material stiffer than substrate concrete
Support during repair: unpropped 
Steel reinforcem ent om itted for clarity
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compared with the thickness of repair material, it is impossible for the repair material to 

transfer strain across the full depth of the substrate concrete. Therefore, the shrinking 

repair material is assumed only to influence an area adjacent to the interface between the 

repair material and substrate concrete. This zone of influence, as shown in Figure 11.3

(b), is assumed to have a depth of dsub. Knowing that the repair material is 

dimensionally unstable (i.e. shrinkage will cause contraction of the repair material), 

compression will be forced into the substrate concrete as the stiffer repair material 

deforms. Consequently, deformation is evident in both the repair material and substrate 

concrete, since full bond exists between both materials. The simultaneous deformation 

of the repair material and substrate concrete in the shrinkage period (Zone 1, Figure 10.5 

to 10.8), can be represented by the analogy of two deforming springs connected in 

parallel, as shown in Figure 11.3 (c). The repair material is represented by a spring with 

a high stiffness whereas the substrate concrete is represented by a spring with a lower 

stiffness. Both springs are assumed to be fully bonded at the interface. When the stiffer 

spring deforms due to shrinkage (in the repair material), the less stiff spring will provide 

partial restraint to deformation in the stiffer spring. Nevertheless, net deformation will 

occur in the stiffer spring (repair material), and as a result, compression will be forced 

into the less stiff spring (substrate concrete). Both springs will exhibit similar strains at 

the interface due to strain compatibility. The free surface of the stiffer spring will 

undergo greater compressive strain (equivalent to the net shrinkage of the repair 

material) than the interface with the substrate concrete due to shrinkage restraint. This 

will result in a bending effect in the spring system, as shown in Figure 11.3 (d). This 

bending effect is used as a basis to predict the distribution of shrinkage strain across the 

repair patch as described in the next section.
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11.3.2 Distribution of shrinkage strain using analogy of bi

metallic strip

Referring to Section 11.3, the eccentric effects resulting on the spring system in Figure

11.3 (d) causes bending in the system which represents the repair material and the ‘zone 

of influence’ of the substrate concrete. Therefore, the deformation in the spring system, 

and consequently in the repair patch, can be compared to the analogy of a bi-metallic 

strip undergoing differential contraction. A bi-metallic strip consists of two dissimilar 

materials which are perfectly joined at the interface so that they deform together when 

the temperature is raised or decreased. The coefficients of thermal expansion are 

different for both metals, therefore, one metal has the tendency to deform more than the 

other metal when the temperature is decreased (or raised). An elevation of a bi-metallic 

strip is shown in Figure 11.4 (a). The strip consists of two dissimilar materials, labelled 

A and B, which exhibit different coefficients of expansion (or in the context of the 

research, shrinkage strain). Figure 11.4 (b) shows an enlarged elevation of a portion of 

the bi-metallic strip at the datum temperature. Assuming that the materials are not 

joined at their common interface, both materials would contract freely as shown in 

Figure 11.4 (c) when the temperature is decreased, since the coefficient of expansion is 

different for both materials. The contraction shown from Figure 11.4 (c) onwards is 

exaggerated for clarity. Material A contracts from the datum position (Level 0) to Level

1. On the other hand, material B contracts from Level 0 to Level 2. In reality, due to 

perfect bond at the interface, both materials contract equally at the interface (Level 0 to 

Level 3) under a drop in temperature, as shown in Figure 11.4 (d), although a strain 

gradient will be evident across the strip. Referring to Figure 11.4 (d), material A will be 

forced to contract more due to the action of the bi-metallic strip. Therefore,
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compression is forced into material A to deform it from Level 1 to Level 3 [Figure 11.4 

(d)] at the interface. Material B, however, is restrained by material A and is prevented 

from undergoing its full free contraction. As a result, tension is induced in material B 

equivalent to the material being stretched from Level 2 to Level 3 at the interface 

[Figure 11.4 (d)]. The tension is less at the free surface of material B. The differential 

strains in the bi-metallic strip lead to circular arc bending as shown in Figure 11.4 (e). 

The radius of curvature of the deflection curve, R, is so large compared to the cross 

sectional dimensions of the strip that it may be taken as the same for both materials A 

and B. The internal force system for materials A and B can be reduced to a longitudinal 

force, Fa and Fb respectively, and bending moment, Ma and Mb respectively, as 

shown in Figure 11.4 (f). Therefore, material A compresses under the longitudinal 

force, Fa and bends under the action of the moment Ma (compression will be induced 

at the common interface for material A). Material B will exhibit tension under the 

action of the central force, Fb and also exhibit tension at the interface with material A 

due to the action of the moment, Mb [see Figure 11.4 (f)].

11.3.2.1 Analysis of shrinkage stress in a repair patch

The analogy of a bi-metallic strip contracting due to a drop in temperature can be used 

to represent the distribution of shrinkage strain in a repair patch. The two materials of 

the bi-metallic strip are represented by the “zone of influence” of the substrate concrete 

and repair material. Both the substrate concrete and repair material undergo 

deformation when shrinkage strain is transferred from the stiffer repair material to the
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less stiff substrate concrete (see Zone 1, Figures 10.5 to 10.8). Figure 11.5 (a) shows a 

cross-section through an unpropped member in compression, repaired with a spray 

applied material that is stiffer than the substrate concrete. The external load remained in 

place throughout the application of the repair material. Immediately after application of 

the repair material and before shrinkage begins in the repair patch, the repair material 

extends the full length of the repair patch, labelled Level 0 to Level 1 in Figure 11.5 (b). 

Assuming the substrate concrete has a negligible elastic modulus (E™ « 0), the repair 

material could shrink freely from Level 0 to Level 2 in Figure 11.5 (b), displaying a free 

shrinkage strain, Sshr(free) [the strains shown from Figure 11.5 (b) onwards are 

exaggerated for clarity]. In an actual repair situation, the substrate concrete has a 

stiffness which in the case being considered is less than the stiffness of the repair 

material (Esub < E J .  The repair material, therefore, is prevented from deforming freely 

due to the partial restraint provided by the substrate concrete (the influence of the steel 

reinforcement on the restraint to shrinkage is omitted for simplicity and to aid clarity). 

This restraint will be maximum at the substrate concrete/repair material interface, but 

will gradually reduce as the distance from the interface increases. Nevertheless, since 

the repair material has an elastic modulus which is greater than the elastic modulus of 

the substrate concrete, it is able to transfer a portion of its shrinkage strain to the 

substrate concrete during the shrinkage period (Figures 10.5 to 10.8, Zone 1). Due to 

the restraint at the interface, deformation in the form of a circular arc [see Figure 11.5

(c)] will occur similar to deformation of the bi-metallic strip [Figure 11.4 (e)]. This will 

cause bending in the zone of the substrate concrete that is influenced by the shrinking 

repair material. The repair material is, therefore, assumed to contract from Level 0 to 

Level 3 at the interface [see Figure 11.5 (d)] due to the restraint provided by the
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substrate concrete. Due to the interfacial bond between the substrate concrete and repair 

material (assuming no slip), the substrate concrete also deforms from Level 0 to Level 3 

at the interface due to the shrinkage of the stiffer repair material [see Figure 11.5 (d)]. A 

strain gradient will be evident across the repair material and zone of influence in the 

substrate concrete, since the restraint decreases as the distance form the interface 

increases. This is similar to the strain gradient across the bi-metallic strip in Figure 11.4 

(d). This deformation will induce compression in the substrate concrete which can be 

related to a compressive force, Fsub(shr) [Figure 11.5 (d)]. On the other hand, the stiffer 

repair material is prevented from deforming freely from Level 0 to Level 2 [Figure 11.5 

(d)]. It can therefore be assumed that at the interface, the repair material is stretched 

from Level 2, the free shrinkage depth, to Level 3 [see Figure 11.5 (d)]. This induces a 

tensile strain in the repair material which can be related to a tensile force, Frm(shr) , in the 

repair material. The internal force system for both the repair material and substrate 

concrete can be reduced to a central force acting along the centre line plus a bending 

moment [see Figure 11.5 (d)]. The central force in the substrate concrete will be 

compressive, whereas the central force in the repair material is tensile. The bending 

moment in the substrate concrete will induce compression in the substrate concrete at 

the interface, while the bending moment in the repair material will induce tension in the 

repair material at the interface [Figure 11.5 (d)].

The distribution of stress across the repair patch as a result of the loading in Figure 11.5

(d) is shown in Figure 11.5 (e). The stress in the substrate concrete at the interface is 

compressive, whereas the stress in the repair material, due to the restraint to shrinkage 

provided by the substrate concrete, is tensile. These stresses reduce in magnitude as the
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distance form the interface increases, since the level of restraint to shrinkage decreases. 

The stresses at the free face of the repair material, and at the face furthest from the 

interface in the zone of influence of the substrate, may change from compression to 

tension, or vice versa, due to the bending effects as shown in Figure 11.5 (e).

11.3.2.2 Depth of substrate concrete affected by shrinkage

of the repair material (zone of influence)

The magnitude of dsub, the depth of the substrate concrete (zone of influence) affected 

through transfer of shrinkage strain from the repair material can be calculated by 

applying the concepts of conservation of strain energy to the repair patch [106], When a 

tensile force is applied to a material, it will cause an increase in strain in the material. 

This force, therefore, does work on the material. When the force is removed, the strain 

disappears (assuming deformation occurred within the elastic range) and the material 

returns to its original position. Therefore, the energy stored in the material when 

subjected to such a force is called strain energy. For example, a spring is an elastic 

component which absorbs energy when compressed under a load. This energy is stored 

as recoverable strain energy in the spring which disappears when the load is removed 

[104].

Strain energy can be used to estimate the depth of substrate concrete, dsub, influenced 

through transfer of shrinkage strain from the repair material. Referring to Figure 11.6 

(a), the repair material extends the full depth of the repair patch immediately after 

application (Level 0 to Level 1). Upon completion of shrinkage (and assuming the
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repair material was allowed to shrink freely), it would deform by 8jm/«*) , the free 

shrinkage strain. Hence, the free shrinkage can be considered as stored energy in the 

repair material which is released through shrinkage. The repair, therefore, can be 

considered as a material upon which a tensile force, F, acts to extend it by s^m/^) 

[Level 2 to Level 0, Figure 11.6 (a)]. Upon partial removal of this force in the repair 

material, some of the stored strain in the repair material is lost and the repair material 

deforms by Srm(shr) at the interface [Level 0 to Level 3, Figure 11.6 (b)]. This release in 

stored energy, U, is equal to the restrained shrinkage strain in the repair material. Since 

the repair material is stiffer than the substrate concrete, and fully bonded at the interface, 

the substrate concrete also deforms a similar amount when the virtual tensile load on the 

repair material is decreased. The repair material deforms more at the free face due to 

the lower restraint [Figure 11.6 (b)] causing bending to occur in the repair material. 

Therefore, an axial load, Frm(u), and bending moment, Mrm(u>, can be considered to act 

on the repair material to deform it to Level 3 [Figure 11.6 (c)]. Concentrating on the 

axial force, strain energy equals the average load times the extension. Hence, the energy 

due to the axial force in the repair material can be estimated from [105]:

Urm(axial) =  —  F rm (U )  A 
2

Equation 11. 2

where Frm(u) is the imaginary force in the repair material to cause a displacement, A 

[ A is equal to (srm(shr))(L) which is common to both the repair material and substrate 

concrete at the interface after shrinkage has occurred in the repair material]. The force 

in the repair material can be written as:
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Frm(u) —
A A rm E r

Substituting Equation 11.3 into Equation 11.2 gives:

1 A rm E rm  k 2  
Urm(axial) = ----------- A

2 L

Equation 11.4 can be expanded to give:

1 A rm Erm  /  r  2
Urm(axial) = - - - - - - - - - - - - - - - - - - - [ ( S r / n ( s A r ) ( L ) J

2 L

But since

Arm — drmb

Equation 11.5 can be written as:

Equation 11.3

Equation 11. 4

Equation 11.5

Equation 11.6

Urm(axial) —
(s rm(shr))2 ErmbdrmL

Equation 11.7
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Similarly, the release of stored energy in the repair material due to bending can be 

estimated from [106]:

Urm(bend) —
1 M rm (U )2 L

2  Ermlrm

But since

M rm (U )  =
(Jrm(U)Irm  

yrm

and

Grm(U) =  E rm (  £  rm (shr))

Equation 11. 8

Equation 11.9

Equation 11. 10

Equation 11.9 and Equation 11.10 can be substituted into Equation 11. 8 to give:

Urm(bend) —
1 (Srm(shr) ) ErmlrmL

V  yrm  /

Equation 11.11

Similarly, since
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drm
Vrm — ------

2
Equation 11. 12

and

T _  bdrm 3
lrm  — - - - - - - - - - - -

12
Equation 11. 13

Equation 11.12 and Equation 11.13 can be substituted into Equation 11. 11 to give:

T T ( £rm(shr) ) ErmbdrmL
Urm(bend) = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

6
Equation 11. 14

The total strain energy lost in the repair material due to shrinkage can be calculated by 

adding Equation 11. 14 to Equation 11.7 and simplifying to give:

Urm(total) = 0.67Erm (Srm (shr)  )bdrmL

Equation 11. 15

The strain lost due to release of strain energy in the repair material (shrinkage) is equal 

to the strain energy gained by the substrate concrete at the interface. This increase in 

strain can be estimated in terms of a direct force, Fsub(U),  and bending moment, 

Msub(u),  in the substrate concrete to deform it by srm(shr) at the interface [Figure 11.6

(c)]. Therefore, the total strain gained by the substrate concrete due to transfer of 

shrinkage from the repair material can be shown to be:
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Usub(total) —  0.67 Esub(Srm (shr)  ) b d su b L

Equation 11. 16

Equating Equation 11.15 and Equation 11.16 and simplifying gives:

j Ermdrm =  Esubdsub

Equation 11. 17

Since the modular ratio, m, equals Erm /  Esub, Equation 11.17 can be simplified to give:

dsub — Jfldrm

Equation 11. 18

Therefore, the depth of substrate concrete influenced through transfer of shrinkage strain 

from the repair material is equal to the depth of repair material times the modular ratio 

between the repair material and substrate concrete. Hence, the depth of substrate 

concrete influenced through transfer of shrinkage strain increases as the modular ratio 

increases. The distribution of stress in the repair patch can now be determined by 

applying the principles of a bi-metallic strip [106] to the repair material/substrate 

concrete section [see Figure 11.5 (d)]. Two compatibility equations are derived which 

allow the force in the repair patch due to shrinkage, Fshr, and the radius of curvature due 

to bending, R ,  to be determined.
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11.3.2.3 E quilibrium  o f  forces in  the repaired  section

Considering the equilibrium of forces in Figure 11.5 (e), it can be stated that:

Frm(shr) =  Fsub(shr) =  Fshr

Equation 11. 19

The normal distance between forces [Figure 11.4 (e)] is j  (dm + dsub). The couple 

produced by these forces must, for equilibrium, balance the sum of the moments of 

resistance of the repair and substrate materials. Thus:

^ ^ lr~ (dsub +  drm)  =  Kdsub{shr) +  Mrm{shr)

Equation 11. 20

The elastic theory of bending gives the following relationship for the substrate concrete:

Msub(shr) _  fsub(shr) _  J?sub
hub ~ ysub ~ R

Equation 11. 21

Similarly, the general expression for simple bending in the repair material is defined as:

Adrm(shr) jrm(shr) Erm

Irm yrm R

Equation 11. 22
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f

Excluding the y  term from Equation 11.21 and Equation 11. 22 and rearranging gives:

Msub(shr) =  -EsubEub

Equation 11. 23

and

ErnJrm
Mrm(shr) =

R

Equation 11. 24

Therefore substituting Equation 11. 23 and Equation 11. 24 into Equation 11. 20 gives:

Fshr ( ^  . i ,1 \    Esublsub i ErmIrm— i y -  yClsub ■+■ Urm)  — ----- ^ -- - - - - - - 1- - - - - - - ^ - - - - -

Equation 11. 25

Rearranging Equation 11. 25 gives:

Fshr = 2 Esublsub +  Ermlrt 

dsub +  drm

Equation 11. 26

The only unknowns in Equation 11. 26 are the force due to shrinkage, Fshr, and the 

radius of curvature due to bending, R.
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11.3.2.4 Strain compatibility at the interface

A second relationship can be obtained by considering the strain compatibility of the two 

materials (repair and substrate) at the interface. These strains are made up of three 

components, (i) the free shrinkage of the repair material Sshr(free) , (ii) the strains due to 

the bending moments, Msub(shr) and Mm(shr), and (iii) the strain due to the longitudinal 

forces, Fshr.

(i) Strains due to free shrinkage, Sshr(free)

The free shrinkage strains of the repair materials under observation, sshr(free), were 

determined in the laboratory, and are given in Table 11.1, column 2.

(ii) Strains due to bending, Ssub(bend) and 8 rm(bend)

Excluding the term in Equation 11.21 and Equation 11. 22 and transposing gives:

fsub{shr) ysub 
Esub R

Equation 11. 27

and

jrm(shr) yrm

Erm R

Equation 11.28
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Assuming the centroidal axis of the individual materials in Figure 11.5 (e) to be at half 

the depth (ignoring the effects of the steel reinforcement), the distance to the interface 

is:

, ,  ,   dsubysub — 2

Equation 11. 29

and

, ,    drm
y rm ~

Equation 11. 30

Substituting Equation 11. 29 into Equation 11. 27 and Equation 11. 30 into Equation 11. 

28 and rearranging gives the following expressions for stress at the interface between 

repair and substrate materials:

, ,  , .   dsubEsub
Jsub(shr) — 2*R

Equation 11.31

and

_  drmEr, 
frm(shr) — ---------
7 2 R

Equation 11.32
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Dividing Equation 11. 31 by the elastic modulus of the substrate concrete gives the 

strain at the interface due to bending in the substrate concrete, hence:

Ssub(bend) —

Equation 11. 33

Similarly, the strain at the interface of the repair material, due to bending, can be 

obtained from Equation 11. 32 to give:

drm
Srm(bend) — ------

2 R

Equation 11.34

(iii) Strains due to longitudinal force, ssub(shr) and Grm(tens)

The strain due to axial force, Fshr, in the substrate concrete is given by:

Fshr
Gsub(shr) —

AsubEsub

where

Asub  =  mArm

Equation 11. 35

Similarly, the strain due to the axial force, Fshr, in the repair material is given by:
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Fshr
Erm(tens) —

ArmErm

Equation 11. 36

where Arm is obtained from Equation 11.6.

(iv) Net Strain

At the common interface between the repair material and substrate concrete, the net 

strain for the substrate concrete is equal to net strain for the repair material. Therefore:

Fshr

dsubbEsub
+  f f p  — Sshr(free) —

Fshr

drmbEr
drm
2  R

Equation 11. 37

(direct strain) + (bending strain) = (free shrinkage strain) - (direct strain) - (bending strain)

Rearranging Equation 11. 37 gives

Fshr 1 + 1
dsubEsub drmEr

4* 2^  [dsub +  drm] — Sshr(free)

Equation 11. 38

Equation 11.38 can also be rearranged to give Fshr in terms of R :

Fshr  =
Sshr(free) (  dsub +  drm) J  b

2 R
1

+
1

v  dsubEsub drmErm

Equation 11. 39
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The only unknowns in Equation 11. 39 are again the force due to shrinkage, F shr, and 

the radius of curvature, R .  Therefore, simultaneous equations (Equation 11. 26 and 

Equation 11. 39) can be solved to determine the values Fshr and R .  Knowing the value 

of R ,  the moment due to bending in both the substrate concrete, Msub(shr) , and repair 

material, Mrm(shr), can be obtained by substituting the value of R into Equation 11. 23 

and Equation 11. 24. Therefore, the compressive stress in the substrate concrete due to 

a transfer of shrinkage strain from the stiffer repair material at the end of Zone 1 

(Figures 10.20 to 10.23, week 11) can be determined from the sum of the direct stress 

and bending stress as follows:

_  _  Fshr +  Msub(shr)ysub
Osub(shr) — ■ /  ~ H -------- j —-------

S i  sub Isub

Equation 11. 40

Equation 11. 40 can be simplified by substituting Equation 11. 23 for the moment term 

as follows:

Fshr Esubysub
(Jsub(shr) = ------- i --------------

Asub R

Equation 11. 41

The tensile stress in the repair material due to the restraint to shrinkage provided by the 

substrate concrete at the end of Zone 1 (Figures 10.20 to 10.23, week 11) can be 

determined from the sum of the stress due to the direct stress and bending stress as 

follows:
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Fshr Mrm(shr)yrm
(Jrm(shr) = ---------- i --------------------

Arm Irm

Equation 11. 42

Equation 11. 42 can be simplified by substituting Equation 11. 24 for the moment term 

as follows:

Fshr Ermyi
(Jrm(shr) — -----------X

R

Equation 11. 43

Therefore, Equation 11. 41 and Equation 11. 43 and can be used to predict the stress in 

the repair material and substrate concrete after transfer of shrinkage strain from a stiffer, 

spray applied repair material to an unpropped compression member.

11.3.3 External load transfer

11.3.3.1 Stress in the repaired section

Shrinkage in the repair material is considered to have ceased at the end of Zone 1 

followed by a steady state period (Zone 2). External load is then transferred from the 

substrate concrete to the repair patch in Zone 3 (see Figures 10.5 to 10.8). Table 11.2 

gives a summary of the strains (and corresponding stresses) in the repair materials at the 

end of the external load transfer stage (materials L4, L3, L2 and Gl). These strains in
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Table 11.2 External load transfer strains and stresses in the repair material

1 2

Column

3 4 5

Repair material/ 

location

Strain

(microstrain)

Elastic

modulus

(kN/mm2)

Stress

(N/mrn)

Cube

strength

(N/mrn)

stress
strength

(%)

L4 29.1 73

RM @ interface +143 4.2 5.8

RM @ steel +100 2.9 4.0

L3 27.4 35

RM @ interface + 30 0.8 2.3

RM @ steel + 63 1.7 4.9

L2 30.3 60

RM @ interface + 18 0.5 0.8

RM @ steel + 47 1.4 2.3

G1 31.1 50

RM @ interface + 82 2.6 5.2

RM @ steel + 5 0.2 0.4

the repair material are at the repair material/substrate concrete interface (denoted “RM 

@ interface” in Table 11.2) and the strains in the repair material at the steel 

reinforcement level (denoted “RM @ steel” in Table 11.2). The 28 day elastic modulus 

of the repair material is given in column 2. The resulting stress given in column 3, due 

to external load transfer, is obtained by multiplying the strain by the 28 day elastic 

modulus of the repair material. The cube strengths of the repair materials are given in
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column 4. The resulting maximum stress/strength ratios on the repair materials under 

load are given in column 5. Referring to Table 11.2, the highest stress/strength ratio 

was observed in material L4 at the interface between the substrate concrete and repair 

material (5.8%). A stress/strength ratio of this magnitude, which was obtained over a 

period of 22 weeks (Figure 10.20 to 10.23, weeks 25 to 47), would induce negligible 

compressive creep in the repair material. As a result, the effects of creep can be ignored 

and analysis of the external load transfer stage can be based on elastic analysis. The 

substrate concrete is stressed as a result of external service loading, as shown in Figure

11.7 (a), before repair work is carried out on the abutment. The external load remains 

on the substrate concrete during removal of the deteriorated concrete, as shown in 

Figure 11.7 (b). Therefore, the stress in the damaged concrete before removal can be 

considered to be taken by the existing substrate concrete throughout the repair period 

and Zones 1 and 2 until this stress is transferred back into the repaired section of the 

abutment. During the load transfer stage to the repair material (Zone 3), an area of 

adjacent substrate concrete, similar to the zone of influence as described in Section 

11.3.2.2, is assumed to shed load to the repair patch, as shown in Figure 11.7 (c) (this 

assumption is substantiated later in the chapter). The depth of this zone is taken as 

m drm , as established earlier (Equation 11. 18). It is virtually impossible to calculate 

accurately the stress in the substrate concrete due to external load during the service life 

of a structure since the precise loading and material properties are not known. 

Therefore, Figure 11.7 (c) shows that the substrate concrete in the zone of influence is 

stressed to a feu, where a  is the ratio of the 28 day design cube strength of the substrate 

concrete. This stress can be related to a force due to external loading in the zone of
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influence, Fsub(ext). An approximate estimation of the maximum substrate concrete 

stress, and subsequently maximum substrate concrete force, is made by adopting the 

Campaign for Practical Codes o f Practice (CPCP) [107] recommendation that the 

permissible stress in a member in direct compression should not exceed 0.275 f e u , where 

feu  is the cube strength. Assuming that the in-service stress in the compression 

member, Osub(ext), equals the permissible (maximum) stress:

(Jsub(ext) — 0.275feu

Equation 11. 44

The compressive strength of the substrate concrete, fiu , can be obtained by extracting 

cores and testing to failure in the laboratory. In this investigation, cores of dimensions 

200 x 100mm diameter were extracted from the substrate concretes and their 

compressive strength determined. Kong and Evans [82] report that the cylinder (or 

core) strength of concrete is approximately 70-90% of the cube strength. Assuming the 

core strength of concrete to be 80% of the cube strength, therefore,

Equation 11. 45

where fio is the core strength. Therefore, the maximum in-service stress in the 

substrate concrete can be obtained by substituting Equation 11. 45 into Equation 11. 44 

as follows:
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( J s u b ( e x l )  —  0.34/Co

Equation 11. 46

Therefore, Equation 11. 46 gives an estimation of the permissible stress in the substrate 

concrete in terms of the core strength, fio .

Since the abutment is now a composite member with three different materials (i.e. 

concrete, steel reinforcement and repair material), Figure 11.7 (d) shows the stiffer 

repair material attracting stress from the zone of influence of the substrate concrete. The 

repair patch now assists in carrying external load resulting in stress paths similar to 

those which existed before repair as shown in Figure 11.7 (a) (i.e. the abutment has 

returned to distributing the load as before repair). Steel reinforcement also provides 

continuity between the substrate concrete and repair material which assists in the 

transfer of load from the substrate concrete. It has been observed in many instances in 

the project that a repair material that has an elastic modulus greater than the elastic 

modulus of the substrate concrete will attract load from the adjacent substrate concrete 

in the long term (Figures 10.5 to 10.7, weeks 25 to 47). This will cause a force, Frmmr), 

in the repair material as shown in Figure 11.7 (e). For equilibrium, this force, plus the 

force remaining in the substrate concrete after transfer of external load, FsuHeld , should 

equal the original force in the substrate concrete due to external loading, Fsub(ext) . 

Therefore,

F s u b ( e x t )  —  F su b (E L T )  +  F rm (E L T )

Equation 11. 47
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The force in the zone of influence in the substrate concrete, Fsub(ext), can be calculated 

by multiplying the stress by the cross-sectional area of the zone of influence:

Fsub(ext) — ((X fcu)(jlidrin)(b)

Equation 11. 48

where a  can be assumed to equal the maximum permissible value (0.275). The 

transferred stress will cause elastic deformation in the repair material (creep effects can 

be neglected due to the low stress/strength ratios involved as described earlier). 

Referring to Figures 10.20 to 10.23, Zone 3, the stress in the substrate concrete interface 

(with the repair material) also increases as external load is transferred into the repair 

material. This is opposite to what might be expected. This can be explained with 

reference to concepts that were described earlier. Referring to Section 11.3, it was 

stated that when the elastic modulus of the repair material was greater than the elastic 

modulus of the substrate concrete, the deforming repair material was able to transfer a 

portion of the shrinkage strain to the substrate concrete. A similar phenomenon occurs 

when external load is attracted into the repair material. When the repair material 

deforms elastically due to the increase in external stress, the stiffer repair material, due 

to full bond at the interface, also causes deformation in the substrate concrete interface. 

Therefore, the substrate concrete interface shows similar deformation as the repair 

material (strain compatibility at the interface). Hence an increased compressive strain 

will also be evident in the substrate concrete after transfer of external load into the repair 

material. Since the increase in strain in the repair material is similar to the increase in 

strain in the substrate concrete, the concept of conservation of strain energy, as

377



L,napier 11 a  in eory jor repair material interaction in compression memoers

described earlier in Section 11.3.2.2, can be used to predict the depth of substrate 

concrete shedding load to the repair patch. The strain deformation in the repair material 

can be considered as a loss in strain energy (similar to the loss in stored energy due to 

shrinkage). Therefore, this strain energy can be related to an axial force (similar to 

Equation 11. 4). Likewise, the increase in strain in the substrate concrete can also be 

related to an axial force (the substrate concrete can be assumed to gain the dissipated 

strain from the repair material). Therefore, by equating these forces, it can be shown 

that dsub =  rndrm (similar to Equation 11. 18).

For simplicity, strain compatibility is assumed to occur across the full depth of the 

repair patch and zone of influence of the substrate concrete (see also the increase in 

strain in the substrate concrete in Figures 10.5 to 10.8, Zone 3). Therefore, referring to 

Figure 11.7 (f), the deformation in the substrate concrete and repair material can be 

estimated from analysis of a compound member. A compound member is made up of 

two (or more) components of different materials and constructed in such a way that the 

components deform equally under axial loading [105]. The axial load in this instance is 

assumed as Fsub(ext>, since this is the force in the zone of influence of the substrate 

concrete due to external loading, and is responsible for deforming both materials. 

Figure 11.7 (f) shows that the thickness of the substrate concrete is rndrm , as derived 

earlier (see Equation 11. 18). Since most of the steel reinforcement in the 

abutments/columns in the highways structures investigated in this project was near the 

surface of the repair, the area of the repair material, therefore, is modified to take into 

account the area of the steel reinforcement. Therefore:
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Arm(trans) — Arm +  JflstAst

Equation 11. 49

where A rm a n s)  is the transformed area of the repair material, Arm is the area of the 

repair material, m st is the modular ratio of the steel reinforcement and repair material 

and A st is the area of the steel reinforcement. Since Arm(tmns) = bdrm(trans), and 

Arm =  bdrm , Equation 11. 49 can be simplified to give the transformed depth of repair 

material:

j  , _______j  mstAst
C lrm (tra n s )  —  U r m  H- - - - - - - - - - - -

b

Equation 11. 50

Referring to Figure 11.7 (f), the deformation in the substrate concrete and repair 

material, e (elt) , due to external load transfer, can be estimated from:

F s u b ( E L T )  F r m ( E L T )

AsubEsub Arm(trans)Erm

Equation 11.51

Transposing Equation 11. 47 and inserting into Equation 11.51 gives:

F s u b ( e x t )  —  F r m ( E L T )  F r m ( E L T )

AsubEsub Arm(trans)Erm

Equation 11. 52
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The only unknown in Equation 11. 52 is the portion of load that is transferred into the 

repair material, Frm(ELT). Since:

Asub — Ttldrmb

Equation 11. 53

and Fsub(ext) and Arm(trans) are obtained from Equation 11. 48 and Equation 11. 49 

respectively, Equation 11. 52 can be transposed to give the force in the repair material 

after transfer of external load:

a  bmdrmfcu(bdrm + m A st)
F r m ( E L T )  =

(2 bdrm 4* TTlsAst)

Equation 11.54

Therefore, Equation 11. 54 gives the force in the repair material due to the portion of 

external load attracted into the repair patch. Dividing this force by the transformed area 

of the repair patch (Equation 11. 49) gives the maximum stress in the repair patch after 

external load transfer (Figures 10.20 to 10.23, week 47), thus:

_  F r m ( E L T )(Jrm(ELT) — a ----JL rm(trans)

Equation 11. 55

The deformation in the repair material in Zone 3 (Figures 10.20 to 10.23) also causes 

deformation in the substrate concrete, since the stiffer repair material is fully bonded to
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the substrate concrete. Assuming strain compatibility at the interface between the repair 

material and substrate concrete, the increase in strain in the substrate concrete can be 

determined by dividing the predicted stress in the repair patch (Equation 11. 55) by the 

elastic modulus of the repair patch. This strain is then multiplied by the elastic modulus 

of the substrate concrete to give the increase in stress in the substrate concrete:

Frm(ELT)
( J s u b ( E L T )  = - - - - - - - - - - - - - - - - - - - - h s u b

ErmArm(trans)

Equation 11. 56

Equation 11. 56 can be simplified by replacing the elastic modulus terms by the 

reciprocal of m, the modular ratio:

1  F r m ( E L T )
( J s u b (E L T )  = - - - - - - - - - - - - - - - - - -

TH A.rm{trans)

Equation 11. 57

Therefore, Equation 11. 55 can be used to predict the increase in stress in the repair 

material after transfer of external load from the substrate concrete. Similarly, Equation 

11. 57 can be used to predict the increase in compressive stress in the substrate concrete 

after deformation occurs due to full bond with the repair material.
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11.3.4 Cumulative stress in the repaired section

The total stress in the substrate concrete at the end of the 60 week monitoring period, 

<3sub(wk60) (Figures 10.20 to 10.23) is the sum of stresses obtained from the analysis in 

the shrinkage period (Equation 11. 41) and the external load transfer period (Equation 

11.57), i.e.

F shr Ksubysub  1  F r m ( E L T )
( 3  s u b ( w k  6 0 )  —  -- - - - - - - i - - - - - - - - - - - - -  H- - - - - - - - - - - - - - - - - - - -

A sub R  TYl Arm(trans)

Equation 11. 58

The maximum stress in the substrate concrete will be at the interface between the 

substrate concrete and the repair material. This stress will gradually decrease within the 

‘zone of influence’, as the distance from the interface increases.

The stress in the repair material at the end of the 60 week monitoring period, Gm(w*60) , 

(Figure 10.20 to 10.23), is the sum of the stresses predicted from the shrinkage period 

(Equation 11. 43) and the stress predicted through analysis of the external load transfer 

(Equation 11. 55) i.e.

F shr  ^  Erm yrm  _ Frm(ELT)
G r m ( w k  6 0 )  = - - - - - - - - - - ± - - - - - - - - - - - - - - - h

Arm(trans)

Equation 11. 59
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Equation 11. 58 and Equation 11. 59 assumes that the elastic modulus of the repair 

material is greater than the elastic modulus of the substrate concrete and that the repair 

material remains crack free. The equations are based on the performance of spray 

applied repair materials to unpropped members in compression.

11.3.5 Comparison between experimental and predicted

stresses

Table 11.3 gives the key repair material properties, repair patch dimensions and 

calculated values which are needed for determining the stress across the repair patches 

of materials L4, L3, L2 and G1 (Equation 11. 58 and Equation 11. 59). The repair 

material reference is given in column 1. The elastic modulus of both the repair material 

and substrate concrete, E m  and E sub, is given in columns 2 and 3 respectively. The 

modified free shrinkage of the repair materials, s , is given in column 4. The 

equivalent cube strength of the substrate concrete, f i u ,  obtained from Equation 11. 45, 

at both Lawns Lane Bridge and Gunthorpe Bridge is given column 5. The transformed 

depth of the repair patch, drm(trans), is given in column 6. The depth of the zone of 

influence in the substrate concrete, ( dsub, Equation 11. 18) is given shown in column 7. 

The breadth of the repair patch, b, is given in column 8 and the amount of longitudinal 

steel in the repair patches is given in column 9. The calculated force in the repair 

patch/substrate concrete due to shrinkage in the repair material, Fshr, is given in column 

10 (Equation 11. 26 and Equation 11. 39). The resulting radius of curvature of the 

substrate concrete/repair patch, R , due to shrinkage in the repair material is given in
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Table 11.3 Properties of repair materials, patch dimensions and other key values for

calculating stresses in the substrate concrete and repair materials

Column

1 2 3 4 5 6 7 8 9 10 11 12

R epair E r m E s u b S s h r ( f r e e ) f e u d r m ( t r a n s ) d s u b b Longitud. F s h r R F rm (E L T )

p a tch stee l (xlO3)  (a=0.275)

(GPa) (GPa) I 1 (mm) (mm) (mm) (0mm) (kN) (mm) (kN)

L4 29.1 23.8 238 42.6 148 171 1500 5x20 184.5 861 1540

L3 27.4 23.8 210 42.6 148 161 1500 5x20 151.5 957 1452

L2 30.3 23.8 136 42.6 148 178 1035 5x20 77.5 1522 1119

Gl 31.1 28.1 329 45.1 148 155 2300 5x20 249.8 520 2228

column 11 (Equation 11. 26 and Equation 11. 39). Finally, the calculated force 

transferred to the repair patch from the substrate, Frm(ELT) , concrete is given in column 

12 [Equation 11. 54]

Referring to Table 11.3, column 7, it is evident that the depth of substrate concrete 

affected by transfer of shrinkage strain from the repair patch increase as the difference in 

elastic modulus between the substrate concrete and repair material increases (compare 

dmb for material L2 with dsub for material Gl, Table 11.3). The high modular ratio 

between the repair material and substrate concrete is responsible for this (Equation 11. 

18). Referring to column 10, the virtual force in the repair patch due to shrinkage in the 

repair material ranges between 77.5 kN to 249.8 kN. This virtual force is high when the 

free shrinkage (column 4) of the repair material is high (compare material L2 with 

material Gl, Table 11.3). The radius of curvature of the deflection curve of the repair 

patch/substrate concrete due to the restraint to shrinkage in the repair material ranges 

between 520 x 103 and 1522 x 103 mm. It is noticeable that this radius increases as the
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virtual force due to shrinkage decreases (compare material L2 with material Gl). This 

is since a lower shrinkage force will cause less deformation, and as a result, the bending 

effects in the repair patch will be reduced accordingly. With regards to the virtual force 

that is attracted into the repair patch (column 12), it is evident that the cross sectional 

area of the repair patch has an influence on the magnitude of the force. The larger the 

cross-sectional area of the repair patch, the larger the virtual force (compare the force in 

the repair patch of material Gl with the force in the repair patch of material L2).

Figures 11.8 to 11.11 show the comparison between the actual interfacial stress in the 

substrate concrete and repair material, with the predicted stresses in the substrate 

concrete and repair material at the same location obtained from the analytical models 

(Equation 11.58 and Equation 11. 59). A summary of the comparisons are also given in 

Table 11.4. Initially, when calculating the portion of the load that is transferred to the 

repair material in the long term, the value of a  = 0.275 is used which is the maximum 

allowed by the CPCP design recommendations [107]. Referring to Figure 11.8 and 

Table 11.4, the comparisons between the stress in the repair material and substrate 

concrete at the end of the shrinkage stage (week 11) are given for repair material L4. 

Referring to Zone 1 (Figure 11.8 and Table 11.8), the actual compressive stress in the 

substrate concrete after transfer of shrinkage from the repair material is 3.7 N/mm . The 

predicted compressive stress from the analysis in the shrinkage period is slightly less at

3.1 N/mm2 (at week 11). The actual tensile stress in repair material L4 at the end of the 

Zone 1 is 2.2 N/mm (Figure 11.8 and Table 11.4). The predicted tensile stress in the 

repair material is higher at 3.2 N/mm . Therefore, comparing the actual stresses with
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Table 11.4 Comparison between actual and predicted cumulative stress in the 

repair patch

Cumulative stress at end of: (MPa)

Zone 1 Zone 2 Zone 3 Zone 4

(week 11) (week 25) (week 47) (week 60)

Actual/Predicted Actual/Predicted Actual/Predicted Actual/Predicted

L4

subs

RM @ interface

+3.7/+3.1 

-2.2 / -3.2

+3.7/+3.1 

-2.2/ -3.2

+ 7 .1 /+  8.8 

+ 1.4/+  3.7

+7.1/+8.8 

+ 1.4/+3.7

L3

subs

RM @ interface

+2.5/+2.6 

-1.7/-2.6

+ 2.5/+2.6 

-1.7/-2.6

+3.3 /+8.3 

-0.8 / +3.9

+3.3/+8.3 

-0.8/+3.9

L2

subs

RM @ interface

+2.8/+1.8 

NA/ -1.6

+2.8/+1.8 

NA / -1.6

+7.1/+ 7.6 

NA / + 5.7

+7.1 /+  7.6 

N A / + 5.7

G1

subs

RM @ interface

+2.6 / +4.8 

-3.8/-4.9

+2.6/+4.8 

-3.8/-4.9

+5.1/+10.8 

-3.3/+  1.6

+5.1 / + 10.8 

-3 .3 /+  1.6

N ote: P o sitive  values indicate com pressive stress; negative values indicate tensile  s tress

the predicted stresses, the shrinkage model reasonably predicts the stresses in the repair 

patch of material L4. The actual and predicted stresses at the end of Zone 1 (Figure

11.8 and Table 11.4) are assumed to remain constant in Zone 2 (Figure 11.8 and Table

11.4), therefore, the same differences exist between the actual and predicted stresses at 

the end of Zone 2 for repair material L4. At the end of Zone 3, Figure 11.8, the actual 

stress in the substrate concrete is 7.1 N/mm . The cumulative predicted stress in the

Material/

location

390



s^n u fJ ie i 11 s i  i n j u r y  j u t  i v j ju n  u iu iv i  iu i  irner u u n u n  in  uurrijsr e z z iu r i fnerriuer a

•y
substrate concrete at the end of Zone 3 is slightly higher at 8.8 N/mm (the predicted 

cumulative stress in the substrate concrete is the sum of the predicted stress from

Equation 11. 58). The actual stress in the repair material at the end of Zone 3 is 1.4

2 2 N/mm (compression), whereas the predicted cumulative stress is 3.7 N/mm

(compression). Therefore, the analytical model slightly overestimates the cumulative

stress in the repair material and substrate concrete at the end of Zone 3. The stress in

the substrate concrete and repair material in Zone 4 is again assumed equal to the stress

at the end of Zone 3 (Figure 11.8), therefore the differences are again similar.

Referring to Figure 11.9 and Table 11.4, the actual and predicted stresses are given for 

material L3. In the shrinkage stage (weeks 0 to 11), the actual compressive stress in the 

substrate concrete at the end of Zone 1 is 2.5 N/mm . The predicted compressive stress 

in the substrate concrete is very close to the actual at 2.6 N/mm . At the end of the same 

period (Zone 1), the actual tensile stress m the repair material is 1.7 N/mm . The 

predicted tensile stress is slightly higher at 2.6 N/mm . Hence, for repair material L3, 

the shrinkage model accurately predicts the stress in the substrate concrete, but slightly 

overestimates the tensile stress in the repair material. The stress values in the substrate 

concrete and repair material at the end of Zone 1 are considered to be the same at the 

end of Zone 2 (Figure 11.9, weeks 11 to 25). The compressive stress in the substrate 

concrete at the end of Zone 3, after external load transfer has taken place, is 3.3 N/mm . 

The cumulative predicted stress in the substrate concrete at the end of the same period 

(Zone 3) is well overestimated at 8.3 N/mm . The actual stress in the repair material at 

the end of Zone 3 is 0.8 N/mm2 (tensile), but the cumulative predicted stress in the 

repair material at the end of the same period is 3.9 N/mm (compressive). Therefore,
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the shrinkage and external load transfer models overestimate the stress in the repair 

patch at the end of Zone 3. As before, the stress at the end of Zone 4 is assumed to be 

similar to the stress in the repair material and substrate concrete at the end of Zone 3 

(see Figure 11.9).

In Figure 11.10 and Table 11.4, a comparison is made between the actual and predicted 

stress in the substrate concrete in the repair patch of material L2. The predicted stress in 

the repair material is also given (the actual stress in repair material L2 is unavailable 

since data was unavailable on the creep of this repair material). Referring to Zone 1 

(Figure 11.10 and Table 11.4), the actual compressive stress in the substrate concrete at 

week 11 is 2.8 N/mm2. The predicted stress from the shrinkage model is slightly lower 

at 1.8 N/mm . At the end of the same period, the predicted stress in the repair material 

is 1.6 N/mm (tensile). The same stresses are evident in the substrate concrete and 

repair material at the end of Zone 2 (Figure 11.10, week 25). At the end of Zone 3, the 

actual stress in the substrate concrete is 7.1 N/mm . The cumulative compressive stress

from the analytical model is 7.6 N/mm , marginally higher than actual stress. The

* 2predicted stress in the repair material is 5.7 N/mm in compression at the end of Zone 3 

(Figure 11.10, week 47). Therefore, the shrinkage and external load transfer models 

reasonably predicts the stress in the substrate concrete for material L2. Finally, the 

stresses at the end of Zone 4 are the same as the stresses at the end of Zone 3 in the 

substrate concrete and repair material (Figure 11.10).

Figure 11.11 and Table 11.4 show the comparison between the actual and predicted 

stresses in the repair patch of material Gl. Referring to Zone 1 (Figure 11.11 and Table
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11.4), the actual stress in the substrate concrete at week 11 is 2.6 N/mm (compressive). 

The predicted stress in the substrate concrete at the end of the same period is higher at 

4.8 N/mm2 (compressive). With regards to the stress in the repair material at the end of 

Zone 1, the actual stress is 3.8 N/mm (tension), whereas the predicted tensile stress is 

marginally higher at 4.9 N/mm . Hence, the shrinkage model overestimates the stress in 

the substrate concrete for material Gl. The substrate concrete and repair material are 

assumed to be stressed to the same level at the end of Zone 2 (Figure 11.11 and Table

11.4). At the end of Zone 3 in repair material Gl, there is poor correlation between the

actual and predicted stress in the substrate concrete and repair material (Figure 11.11

and Table 11.4). The actual stress in the substrate concrete at week 47, Figure 11.11

and Table 11.4, is 5.1 N/mm (compression). The cumulative predicted stress in the

substrate concrete at the end of the same period 10.8 N/mm . The actual stress in the

repair material at the end of Zone 3 is 3.3 N/mm in tension. The analytical models

2 •predicts an cumulative value of 1.6 N/mm in compression. The stresses in the substrate 

concrete and repair material at the end of Zone 4 is again similar to the stresses in the 

repair patch at the end of Zone 3 (Figure 11.11).

11.3.5.1 Discussion

Referring to Figures 11.8 to 11.11, and Table 11.4, the shrinkage model used to predict 

the stress in the substrate concrete and repair material shows a reasonable comparison 

with the actual values in the substrate concrete and repair material. In three of the four 

materials (L4, L3 and L2, Figures 11.8 to 11.11), the predicted stress in the substrate 

concrete at the end of Zone 1 is very similar to the actual stress in the substrate concrete.
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On the other hand, the predicted compressive stress in the substrate concrete for material 

Gl is higher than the actual stress (4.8 N/mm2 versus 2.6 N/mm2). Overall, this 

analytical model can be used to reasonably predict the stress in the substrate concrete 

due to transfer of shrinkage from a spray applied repair material to an unpropped 

compression member.

Referring to Figures 11.8 to 11.11, and Table 11.4, the comparison between the actual 

and predicted stresses in the substrate concrete and repair material at the end of Zone 3 

(external load transfer) show varying accuracy. The analytical models show reasonable 

accuracy for predicting the stress in the substrate concrete and repair material at the end 

of Zone 3 for materials L4 and L2, Figures 11.8 and 11.10 respectively, although the 

predicted stresses in the repair patch of material L4 are marginally higher than the actual 

stresses. In materials L3 and Gl (Figures 11.9 to 11.11 respectively), the predicted 

stresses in the substrate concrete and repair material do not have the same accuracy as 

the predicted stresses in materials L4 and L2 (compare Figures 11.9 and 11.11 with 

Figures 11.8 and 11.10). This could be due to the fact that these repair materials did not 

attract as much externally applied stress into the repair patch as materials L4 and L2. 

Furthermore, the predicted stress in the substrate concrete and repair material at the end 

of Zone 3 is higher for all materials, see Table 11.4 (with the exception of the substrate 

concrete stress for material L2, Figure 11.10). This could be due to the assumption that 

the stress in the substrate concrete in the zone of influence was 27.5% (a = 0.275) of the 

cube strength (Equation 11. 44), the maximum permissible stress. In reality, the 

substrate concrete may not be stressed to this extent which would not only reduce the 

force in the substrate concrete due to external loading, but also reduce the proportion of
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this force that is transferred to the repair material (Equation 11. 54). Furthermore, a  

from the design recommendations is based on the 28 day cube strength. Since the 

abutments in the field have been in service for many years, the cube strength obtained 

from core testing will be higher than the 28 day value. Therefore, the cores extracted 

from the substrate concretes in the field will have a higher strength, which will mean 

that the long term equivalent cube strength will be higher. A higher stress will, 

therefore, be calculated in the zone of influence, and subsequently, the load transferred 

to the repair material will be greater than indicated by field monitoring. Therefore, if a 

lower a  is used in the analysis, the predicted compressive stress in the repair material 

and substrate concrete would be lower than those presented Table 11.4. This would 

yield better comparisons between some of the actual and predicted stresses in the 

substrate concrete and repair material at the end of Zone 3. Each highway structure is 

unique so it is impossible to obtain one a  that satisifies all conditions. For example, 

Gunthorpe Bridge was built in 1927 and Lawns Lane Bridge in 1965, therefore, the 

design codes would vary for these bridges. Gunthorpe Bridge, which is highly over- 

designed, would rely less on the repair patch to carry some of the external load since the 

area of the repair patch is insignificant compared to the area of the substrate concrete. 

Nevertheless, the results presented when using the maximum permissible stress in the 

substrate concrete are sufficiently accurate since the relatively low (compressive) 

stresses in the repair material and substrate concrete at week 60 are unlikely to cause 

overstressing. Problems may occur if insufficient external stress is attracted into the 

repair patch to neutralise the tensile stress due to the restraint to shrinkage (materials L3 

and Gl, Figures 11.9 and 11.11). The analytical models show compressive stress in the 

repair materials at week 60. In reality, this may not always be the case as tensile stress
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may still be evident in the repair patch. It was observed that the modulus of rupture, and 

consequently, the tensile strength, decrease with time in repair materials. Therefore, if 

the tensile strength of the repair material drops below the residual tensile stress in the 

repair material, then cracking will occur (see material L4, Section 9.3.1.1.1.2). The 

theoretical model is not able to predict the effects of cracking on stress distribution.

Overall, the difficulties associated with correlating field data with properties of repair 

materials obtained under laboratory conditions are such that it is perhaps too much to 

expect close agreement between theoretical and actual results. Various modifications 

had to be made to apply laboratory data to field studies. For example, the influence of 

surface/volume ratio on shrinkage of the repair materials, measured on prisms in the 

laboratory, was determined before applying to field monitoring. Compressive creep 

only was studied in the laboratory - an estimate of tensile creep was obtained from this 

and applied to the results from the field. Likewise, the compressive elastic modulus was 

determined in the laboratory. From this, the tensile elastic modulus was estimated and 

applied to the field data. Differences in temperature and humidity also existed between 

laboratory and field data and was accounted for in the analysis. Curing compounds 

were applied to the repair materials at Lawns Lane Bridge. Their effect on shrinkage 

could only be provided with considerable approximation. An estimation of the external 

load that was attracted into the repair patch was obtained from assumed service stresses 

since precise loading and design data for the substrate concretes was not available. 

Since the laboratory data was substantially modified to represent field conditions, the 

likelihood of cumulative error is high. Therefore, the predicted results are satisfactory 

under the circumstances.
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11.3.5.2 Limitations of the analytical models

This model only takes into account the stress in the substrate concrete and the stress in 

the repair material at the interface between the substrate concrete and repair material. 

Referring to Figure 11.5 (e), the tensile stress in the repair material at the steel 

reinforcement level (centre of repair patch), due to the restraint to shrinkage, is less than 

the tensile stress in the repair material at the interface under simplified modelling 

conditions. In practice, this was not the case, since the steel reinforcement provided a 

higher restraint to shrinkage, and therefore, the tensile stress in the repair material 

should be greater at this point (see Figures 10.20 to 10.22). The model, therefore, is not 

sensitive enough to predict the tensile stress in the repair material at the steel 

reinforcement level at the end of the shrinkage period. Besides, the stress in the repair 

material at the interface and at the steel reinforcement level is relatively similar after 

modifications were made to the properties of the repair materials to compensate for the 

effects of tensile creep and different surface/volume ratios etc. (see Figures 10.20, 10.21 

and 10.23). Therefore, for simplicity, the stress calculated in the repair material at the 

interface due to the restraint to shrinkage can be considered similar to the stress in the 

repair material at the steel reinforcement level.

The stress in the steel reinforcement due to transfer of shrinkage strain is also omitted 

from Figures 11.8 to 11.11. This is since the stress predicted by the model at the steel 

reinforcement level is a tensile stress [i.e. the stress in the repair material - see Figure 

11.5 (e)]. The stress in the steel reinforcement is compressive due to the transfer of 

shrinkage from the repair material (see Figures 10.20 to 10.22). However, the restrained 

shrinkage that was transferred to the steel reinforcement could be estimated from the
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tensile stress predicted in the repair material at steel reinforcement level. The virtual 

tensile strain in the repair material at the steel reinforcement level could be obtained 

from the tensile stress in the repair material [i.e. by dividing the tensile stress as 

calculated by the analytical model (Equation 11. 59) by the elastic modulus of the repair 

material]. This virtual tensile strain could then be subtracted from the modified free 

shrinkage strain in the repair material to give the contraction in the repair material at the 

steel reinforcement level. This strain, due to strain compatibility between the repair 

material and steel reinforcement, could then be converted to a compressive stress in the 

steel reinforcement by multiplying by the elastic modulus of the steel reinforcement. 

The stress transferred to the steel reinforcement was found to be negligible compared 

with the ultimate strength of the steel reinforcement. Therefore, overstressing will not 

be a problem in the steel reinforcement, and consequently, prediction of this stress is not 

crucial.

11.4 DISCUSSION

The aim of this chapter is to present simple theoretical models which describe the 

mechanics of concrete repair. Consequently, the material properties used in the models 

were limited to basic properties such modulus of elasticity, shrinkage and creep, all of 

which can easily be determined in the laboratory. An interaction between the repair 

material and the substrate concrete can only occur if there is a full bond between the two 

mediums. This is assumed to be true in all cases considered in this project.
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Specification of repair materials at present is based on short term properties such as 

compressive strength, bond and early age plastic-shrinkage/expansion etc. [24]. Basic 

repair material properties such as elastic modulus, shrinkage and creep which control 

the long term performance of the repair material are glaring omissions from the current 

repair specification, BD 27/86 [1]. More often than not, repair materials exhibit 

significant shrinkage characteristics, regardless of the manufacturers literature stating 

otherwise. When this occurs, the shrinkage strain that is not transferred to the substrate 

concrete will cause tensile stress in the repair material. Furthermore, a material with 

high tensile creep characteristics will relieve some of the tensile stress induced (compare 

Figures 10.13, 10.14 and 10.16 with 10.20, 10.21 and 10.23).

If the difference in elastic modulus between the repair material and substrate concrete is 

significant (i.e. the repair material is much stiffer than the substrate concrete), then the 

repair material is able to transfer more of the shrinkage strain to the substrate, thus 

reducing the tensile strain induced in the repair material (see Figure 10.2 and Figures

10.9 to 10.12). Obviously, the tensile strain in the repair material due to the restraint to 

shrinkage provided by the substrate concrete and steel reinforcement will be low if the 

free shrinkage in the repair material is low. Therefore, a crack free repair material can 

be virtually guaranteed if the elastic modulus of the repair material is high (m > 1.32) 

and the free shrinkage of the repair material is low. An uncracked material, one which 

is able to withstand the tensile stresses induced, will attract externally applied stress 

from the substrate concrete to become a load sharing repair (it has been observed that a 

cracked material will not attract stress into the material). This externally applied load 

will also serve to reduce the tensile stress remaining in the repair material from the
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shrinkage stage, zone 1 (see Figure 10.21) or even completely neutralise the tensile 

stress in the repair material (see Figure 10.20, "RM @ interface", week 39).

11.5 CONCLUSIONS

The following conclusions are based on the results obtained from the various repair

materials under test:

• A spray applied repair material that has an elastic modulus which greeter than the 

elastic modulus of the substrate concrete will:

(i) transfer a portion of the shrinkage strain to the substrate concrete

(ii) attract external applied stress into the repair patch

• Four stages of stress are evident in spray applied repairs to unpropped compression 

members:

(i) shrinkage stage (weeks 0 to 11)

(ii) steady state #2 (weeks 11 to 25)

(iii) external load transfer (weeks 25 to 47)

(iv) steady state #2 (weeks 47 to 60)

• Stress relaxation due to creep reduces the tensile stress in the repair material caused 

by the restraint to shrinkage provided by the substrate concrete and steel 

reinforcement

• The depth of substrate concrete affected by transfer of shrinkage strain from the 

repair material can be calculated from:

dsub — IT l(drm )
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• The virtual force in the substrate concrete and repair patch due to shrinkage in the 

repair material, F s h r , and the radius of curvature caused by bending of the substrate 

concrete and repair patch, R ,  can be obtained from the following simultaneous 

equations:

F shr — 2
Esublsub 4* E rm lri 

dsub 4* drm

1

F shr =

\
Sshr(free) — ~  ( dsub 4" drm )

~ ~ r ~ l 1
4-

b

V drm Erm  dsubEsubs

• The bending moment in the substrate concrete caused by the restraint to shrinkage in 

the repair material can be determined from:

M sub(shr) =  E ^ llb

• The bending moment in the repair patch caused by the restraint to shrinkage provided 

by the substrate concrete can be determined from:

\/T , , , _  Erm lrmlVlrm(shr) —  ^

• The compressive stress across the zone of influence of the substrate concrete due to 

transfer of shrinkage from the repair material can be determined from:

F shr Esubysub
(Jsub(shr) —  - - - - - - - - - -  X -- - - - - - - - - - - - - - - -

Asub R

• The tensile stress across the repair patch due to the restraint to shrinkage provided be 

the substrate concrete can be determined from:

Fshr Erm yrm
Grm(shr) = - - - - - - - - - - - - - i - - - - - - - - - - - - - -

A rm  R

• The force in the repair material due to transfer of external load from the substrate 

concrete can be estimated from

401



si incruey ju t  t vyuit tnuiz/ tut itiitzt uuuun m  uuinjji Cddiuri /nctnuct o

abmdrmfcu(bdrm + TYlstAst), -  , W L / I  # r i v i  ’ *i t U I  (_/ V'*'/ /•  » I I

Frm(ELT) =  ------------------------------------------
(2 ,bdrm  + WlstAst)

• The stress in the repair patch due to transfer of external load from the substrate 

concrete can be estimated from

• The stress in the substrate concrete due to deformation in the repair patch after 

transfer of external load can be calculated from

1 Frm(ELT)
Gsub(ELT) = ------------------

772 Arm(trans)

• The total stress in the substrate concrete at week 60, the end of the monitoring period, 

after transfer of shrinkage from the repair material and transfer of external load into 

the repair patch can be estimated from

• The total stress in the repair material at week 60, the end of the monitoring period, 

can be estimated from

r  rm(ELT) 
Arm(trans)

(Jrm(ELT)

(3sub(wk 60) —
Arm(trans)

Fshr Esubysub Frm(ELT)

rm(ELT)G  rm(wk 60)  X ------------T —t
Arm R  A rm(trans)
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CHAPTER 12

CONCTJISTONS AND RECOMMEND A TTONS 

FOR EIIRTHER WORK

12.1 CONCLUSIONS

The following conclusions are based on the theoretical and experimental work reported

in this thesis:

Properties of repair materials

1. Repair materials which contain coarse aggregate exhibit lower free shrinkage and 

creep compared with repair materials which contain fine aggregate only.

2. Spray applied and flowable repair materials shrink and creep less than repair 

materials which are hand applied due to the inclusion of coarse aggregates in the 

spray applied and flowing repair materials.

3. All the cementitious repair materials tested in this project exhibited significant free 

shrinkage regardless of some manufacturers’ claims that their materials were 

shrinkage compensated or non-shrinking repair materials.

4. The free shrinkage of repair materials is reduced when the specimens are initially 

cured in water for 28 days after casting as opposed to curing in air from the age of 24 

hours onwards.
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5. Repair materials which contain coarse aggregates exhibit lower creep recovery than 

repair materials with fine aggregates.

6. The addition of polymers and coarse aggregates generally increases the elastic 

modulus of a repair material.

7. Repair materials with fine aggregates, with or without polymer additives, generally 

have lower elastic modulus.

8. Repair materials which contain coarse aggregates generally exhibit higher modulus 

of rupture than repair materials with fine aggregate.

9. The modulus of rupture of some repair materials decreases with time.

Performance of repair materials

1. Recommendations given in the current repair specification, BD 27/86 [1], are not 

suitable for all concrete repairs. The specification does not adequately take into 

account the potential mismatch in key properties which may occur between the 

repair material and substrate concrete. It also gives emphasis to some properties of 

repair materials which are of secondary importance.

2. The long term performance of a repair is superior when the repair is applied to an 

unpropped member as opposed to a propped member.

3. The risk of cracking in the repair patch is greatly increased when the repair material 

is applied to a propped flexural member.

4. Spray applied repair materials to unpropped members perform better than flowing 

repair materials applied to unpropped members.

5. Increasing the depth of repair behind the steel reinforcement in repairs to flexural 

members does not significantly influence the performance of the repair.
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6. The elastic modulus is a vitally important property to be considered when selecting a 

repair material for concrete repairs. The elastic modulus of the repair material 

should be 32% (or more) greater than the elastic modulus of the substrate concrete 

(m = 1.32) to provide optimum performance

7. The possibility of cracking in the repair patch is greatly increased when the repair 

material exhibits high shrinkage.

8. If the elastic modulus of the repair material is greater than the elastic modulus of the 

substrate in a compression member repaired in the unpropped state, the stiffer repair 

is able to transfer shrinkage strain to the concrete substrate.

9. A spray applied repair material of > Esub, when applied to an unpropped member 

in compression, will attract externally applied load into the repair patch in the long 

term.

10. A spray applied repair material of Em < Esub, when applied to an unpropped member 

in compression, will not attract externally applied load into the repair patch in the 

long term.

11. A flowing repair material of E ^  > Esub, when applied to a propped member in 

compression, will not attract externally applied load into the repair patch.

12. Repair materials for both flexural and compression members should have low 

shrinkage and creep characteristics.

13. Cracking will occur in a repair material when the tensile strain due to restraint to 

shrinkage is greater than the tensile strain capacity of the repair material (including 

creep effects).

14. Repairs to flexural members carried out with high modulus materials (E m  > E sub) 

attract tensile load from the steel reinforcement.

405



ia  k̂ uu^iu^iuh  ̂ unu / euurnrnenuuaunxjur curicreie repuir

15. Four stages (or zones) of distribution of strain (and consequently stress) are evident 

in spray applied repairs to unpropped compression members:

(i) shrinkage stage (zone 1, weeks 0 to 11)

(ii) steady state #1 (zone 2, weeks 11 to 25)

(iii) external load transfer (zone 3, weeks 25 to 47)

(iv) steady state #2 (zone 4, weeks 47 to 60)

16. Tensile stress is evident in the repair material in stage 1 (zone 1, weeks 0 to 11) due 

to the partial restraint to shrinkage provided by the substrate concrete and steel 

reinforcement.

17. Compressive stress is transferred to the substrate concrete and steel reinforcement 

during the shrinkage (contraction) of the repair material within stage 1.

18. Stresses in the repair material, substrate concrete and steel reinforcement remain 

constant in stage 2 (zone 2, weeks 11 to 25) since the shrinkage in the repair 

material reaches negligible levels.

19. Tensile stress in the repair material is reduced (or changes to compression), after 

external (compressive) load is transferred from the substrate concrete in stage 3 

(zone 3, weeks 25 to 47).

20. Stresses in the repair material, substrate concrete and steel reinforcement at the end 

of stage 3 remain constant in stage 4 (zone 4, weeks 47 to 60) since the transfer of 

external load transfer from the substrate concrete has ceased.

21. Residual tensile stress may be evident in the repair material in the long term if 

insufficient compressive stress is attracted into the repair material to neutralise the 

tensile stress.
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22. Stress relaxation due to tensile creep in the repair material reduces the tensile stress 

caused by the restraint to shrinkage provided by the substrate concrete and steel 

reinforcement.

Properties of repaired section

1. The depth of substrate concrete (zone of influence) affected by transfer of shrinkage 

strain from the repair material can be calculated from:

dsub — TYl^drm)

2. The virtual force in the substrate concrete and repair patch due to shrinkage in the 

repair material, Fshr, and the radius of curvature caused by bending of the substrate 

concrete and repair patch, R, can be obtained from the following simultaneous 

equations:

F shr — 2 Esublsub 4* E rm ln  

dsub 4" drm

F shr =

(  1 ^
Sshr(free) ([dsub 4" drm )

V 2 J

( _ ! — ! _
V drm Erm  dsubEsub

b

3. The bending moment in the substrate concrete caused by the restraint to shrinkage in 

the repair material can be determined from:

M sub(shr) =

4. The bending moment in the repair patch caused by the restraint to shrinkage provided 

by the substrate concrete can be determined from:

M' , . . _  Erm lrmrm(shr) — ----^ ----
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5. The compressive stress across the zone of influence of the substrate concrete due to 

transfer of shrinkage from the repair material can be determined from:

Fshr Esubysub
(Jsub(shr) — i ---------

Asub R

6. The tensile stress across the repair patch due to the restraint to shrinkage provided be 

the substrate concrete can be determined from:

Fshr Erniyrm
(7rm(shr) — ------- i --------

Arm R

7. The force in the repair material due to transfer of external load from the substrate 

concrete can be estimated from:

QLblTldrinfcuiJbdrm 4* TYlstAst)
Frm(ELT) = ------------------------------------------

(2  bdrm +  JTlstAst)

8. The stress in the repair patch due to transfer of external load from the substrate 

concrete can be estimated from:

_ _________ __  F r m ( E L T )Urm(ELT) — ~i ------
Sirm(trans)

9. The stress in the substrate concrete due to deformation in the repair patch after 

transfer of external load can be calculated from:

1 Frm(ELT)
Gsub(ELT) = ------------------

TYl Arm(trans)

10. The total stress in the substrate concrete at week 60, the end of the monitoring 

period, after transfer of shrinkage from the repair material and transfer of external 

load into the repair patch can be estimated from:

Fshr Esubysub Frm(ELT)
(Jsub(wk60) —  i --------------  4*772---------------

Asub R  Arm(trans)

11. The total stress in the repair material at week 60, the end of the monitoring period, 

can be estimated from:
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-  . . .  -  Fshr Ermyrm L Frm(ELT)
CJ rm(wk 60) — ----------- j t ------------ "T —t

A rm  R  Arm(trans)

12.2 RECOMMENDATIONS FOR FURTHER WORK

The following points may be considered for future research in the investigation of long 

term performance of concrete repair in highway structures:

1 Determine the relationship between the modulus of rupture and direct tensile 

strength of repair materials

2 Determine the relationship between tensile and compressive creep of repair 

materials

3 Determine the influence of curing membranes on the free shrinkage of repair 

materials under field conditions
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