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Abstract

The Wet Air Oxidation process has considerable attractions for the disposal of toxic 
organic wastes. In this thesis, a fundamental study is made of the mechanism of 
oxidation under wet air and related conditions of a series of well-defined substances 
known to occur as components of industrial wastes, and which are known to present 
difficulties in the Wet Air Oxidation process. In the initial stages, the oxidation of a 
series of simple alkylpyridines, namely 2-, 3-, and 4-methylpyridines, has been studied 
under simulated Wet Air Oxidation plant conditions in a laboratory autoclave operating 
at 250°C and 250 atmospheres. The progress of the oxidation was followed by 
withdrawing samples at intervals and subjecting these to chromatographic analysis, 
using Gas Chromatography-Mass Spectrometry and High Performance Liquid 
Chromatography, so as to establish the nature of the oxidation products.

In the autoclave oxidation of 2-, and 4-methylpyridine, a wide range of oxidation 
products was detected, including a number of compounds which appeared to be 
derived from the reactions of pyridylalkyl radicals formed from the parent substance, 
implying that a free radical mechanism was occurring under Wet Air Oxidation 
conditions. Under these conditions, 3-methylpyridine appeared to be more resistant to 
oxidation, the only significant oxidation product being the related aldehyde. The 
literature suggests that the formation of the hydroxyl radical (*OH) under Wet Air 
Oxidation conditions may be responsible for the initiation of the above reactions, and 
thus the possibility of catalysis of the above systems by reagents known to generate 
hydroxyl radicals has been explored. The literature suggests that Fenton's reagent, 
which is a mixture of iron(ll) and hydrogen peroxide, provides a source of hydroxyl 
radicals. Thus, the oxidation of the methylpyridines using Fenton's reagent at ambient 
temperature and atmospheric pressure was carried out and it was also used as a 
catalyst in the autoclave oxidation reactions. The effectiveness of other metal 
ion/hydrogen peroxide mixtures was explored, e.g. involving iron(lll), copper(ll), 
copper(l), titanium(lll), and vanadium(IV), as there is considerable evidence from the 
literature of their involvement in oxidation chemistry. In all of the oxidation reactions 
investigated, both under autoclave conditions, and at room temperature, evidence of 
destructive oxidation of the heteroaromatic ring has been gained for all three 
methylpyridines. However, in addition to ring destruction products, a range of 
intermediate oxidation products was observed and similarities were found between 
those products formed in the autoclave and those reactions carried out in the 
laboratory.

However, recent literature has questioned the formation of hydroxyl radicals by 
Fenton and related reagents, and so the Fenton catalysed oxidation of each of the 
methylpyridines was explored further. This was done by the incorporation of 
appropriate radical trapping agents and complexing agents such as 2 ,2 ,6 ,6 - 
tetramethyl-1-piperidinyloxy (TEMPO) and ethylenediaminetetraacetic acid (EDTA) 
respectively.

In each of the oxidation reactions studied, attempts have been made to identify as 
many as possible of the products observed by comparison with known substances. 
However, it has been necessary to develop procedures for the preparation of some of 
these compounds, notably a range of dimeric structures derived from the simple 
alkylpyridines, e.g. dipyridylethenes, dipyridylethanes, and dipyridylmethanes.



Abbreviations

WAO - W et Air Oxidation 

COD - Chemical Oxygen Demand 

EPA - Environmental Protection Agency 

R - alkyl 

Ar - aryl

TBHP - terf-butyl hydroperoxide

GC - gas chromatography

GC/MS - gas chromatography/mass spectrometry

HPLC - high performance liquid chromatography

LC/MS - liquid chromatography/mass spectrometry

mol - mole

TEMPO - 2 ,2 ,6 ,6 -tetramethyM-piperidinyloxy, free radical

EDTA - ethylenediaminetetraacetic acid

tR - retention time

RSD - relative standard deviation

k - rate constant

dmg - dimethylglyoxime

1H NMR - Proton Nuclear Magnetic Resonance

TLC - thin layer chromatography

CDCU - deuterated chloroform
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Chapter 1 - Introduction

1.1. Hazardous Waste and Waste Management

Hazardous Waste is generated in vast quantities by industry and there are 

several methods of disposing of such materialO). The most common method 

involves the placement of the waste into drums for burial. Other methods 

include:-

- incineration

- pooling for evaporation

- placement into lined disposal sites

- spraying into the ground and then mixing with the soil.

However, research is ongoing into waste treatment to make it possible to deal 

with waste either so that useful components maybe retrieved from it and used 

again, or so that a threat is not posed to the environment when the waste is 

stored within it. Such research is therefore involved with the Deactivation of 

Hazardous Waste.

Hazardous chemical waste maybe either - toxic

reactive

corrosive

radioactive.

A toxic waste is harmful to the environment and to living organisms. It may be 

carcinogenic, mutagenic, or teratogenic and may ultimately cause death. A 

reactive hazardous waste may be explosive or it may form a dangerous mixture 

with water. It may also undergo chemical changes without addition of another 

substance to give rise to a toxic product. A waste is said to be corrosive if it is 

aqueous and has a pH<2 or a pH>12.

1



factorsOO), remembering that the fuel for the process is the aqueous toxic 

waste itself: -

• the fuel supply

• the air supply

• the water to fuel ratio because of the possible need for dilution of fuels of 

higher waste concentration

• the ratio of oxygen to nitrogen

• the amount and actual products of oxidation withdrawn, as they will affect 

the temperature and pressure of the WAO process.

The degree of oxidation in the WAO process is measured in terms of the 

reduction in the toxicity of the mixture as a result of changes in the chemical 

structure of toxic compounds. The toxicity of a resultant waste stream treated 

by WAO is measured in terms of its chemical oxygen demand (COD) 

v a lu e d ). The COD value represents the oxidisable organic content remaining 

in the mixture, and the more organics that remain, the higher the chemical 

oxygen demand is found to be. COD values are measured using an oxidimetric 

assay based on the consumption of potassium dichromate(^). Samples are 

mixed with potassium dichromate before and after WAO treatment, and the 

residual dichromate is determined by titration with standardised ferrous 

ammonium sulphate solution. Hence, the amount of potassium dichromate that 

is used up in the oxidation of the organics in the sample, after WAO treatment, 

provides an indication of the amount of oxidisable organic content that 

remains. Therefore, the aim of the WAO process is to reduce the COD value of 

a particular waste type.

5



1.2.1. Method for Deactivation by WAO

The WAO process is represented in the following diagram

High

RecoveryPump

Facility

— >
Waste

Compressor

Figure 1 - Simplified schematic of the Wet Air Oxidation P r o c e s s ( 2 )

An aqueous w a s t e d ) ,  containing organic compounds, is pumped from storage 

by a high pressure pump. It is then mixed with air before being passed through 

a heat exchanger on its way to the bottom of the reactor. The reactor is built to 

withstand high temperatures and pressures, and the corrosive attack of the 

intermediates and final products of the process.

The oxidation reaction which is occurring in the reactor helps to raise and 

maintain the temperature of the reactor to the desired maximum value. From 

the reactor, the mixture enters the separator as a gas and a liquid. The 

separated liquid, under the high pressure of the reactor, passes through 

another heat exchanger and then through a valve reducing it to atmospheric 

pressure. This effluent is then discharged for further purification using 

conventional biological treatment. The separated steam/gas mixture goes 

through a turbine expander which then supplies power to the air compressor.

The technology associated with the WAO process is continually being 

developed to improve the effectiveness of the system. From the literature,



however, there is evidence to illustrate the considerable effectiveness that the 

process already has. Work carried out by R a n d a l l ( ^ )  in 1981 illustrated that 

the toxicity of aqueous organic toxic and hazardous waste can be reduced 

significantly when subjected to WAO, and this was proved by using Daphnia 

Magna for toxicity testing. The Environmental Protection Agency, EPA, 

published a list of 65 priority compounds or classes of compounds that need to 

be eliminated from effluents. From this information Randall selected a variety 

of compounds and subjected them to the WAO process, in order to determine 

the effectiveness of the process at destroying them. The results indicate that 

for aqueous solutions of, for example, 2,4-dinitrotoluene, a destruction in 

excess of 99% of the original concentration can be achieved. From this study 

and an earlier study carried out by Randall and K n o p p O ^ )  and work done by 

Baillod et alO4), it was shown that low molecular weight acids such as formic 

and acetic acid are generated from the WAO of an organic waste stream. 

These compounds are then readily biodegradable by conventional treatment 

methods. However, no other attempts were made to identify intermediate 

oxidation products formed throughout the oxidation process itself.

The literature contains examples of the WAO of other organic systems 

suspended or dissolved in water05)>06), including examples of where the 

technology involved in the WAO process has been applied to a novel system 

e.g. the use of Wet Air Regeneration for the destruction of phenanthrene 

adsorbed onto powdered activated carbonO?) involves WAO technology. This 

work, carried out by Larson et aK1?), much later did, however, attempt to 

identify intermediates formed during the oxidation process, as also did work 

carried out by Joglekar et a l(^ )  who were considering the oxidation of phenols 

and substituted phenols using conventional WAO conditions.
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Such attempts to identify and characterise intermediate oxidation products lead 

to proposals for possible degradation mechanisms and to also provide a 

means of establishing the identity of the oxidation products that are 

responsible for the resultant toxicity of treated wastes. This enhanced 

understanding leads to improvements in technology by aiding the development 

of appropriate catalytic systems which would give rise to a greater degree of 

oxidation/destruction.

1.2.2. Catalytic WAO

The use of catalysts within the area of waste treatment technology has 

received some attention. The effectiveness of catalysts on the oxidation of 

organic contaminants is measured in terms of a greater reduction in COD 

values, compared with the uncatalysed WAO process. When trying to 

establish a catalyst the following variables have to be considered:-

• operating temperature

• pH of the system

• reaction time period

• catalyst loading

There are examples in the literature of the use of a variety of different catalytic 

systems that have been shown to enhance the effectiveness of the WAO  

process09 M 21). One example is involved with the WAO of oxygen- and 

nitrogen- containing organic compounds catalysed by the presence of 

cobalt(lll) oxideO9). The oxidation scheme that was proposed here for simple 

aliphatic alcohols and amines proceeds via the formation of alkyl radicals, R«. 

The mechanism for the oxidation process follows the general scheme shown 

below:-

8



With alcohols and amines, initial hydrogen atom abstraction occurs at the 

carbon atom to which the appropriate NH2  or OH functional groups are 

attached to form R«CHX where X=OH or NH2 . These radicals can then do one 

of two things.

They can undergo further elimination of another hydrogen atom from the NH2  

or OH group to give compounds of the following type -

CH3 OH - >  •CH 2OH - »  HCHO (1)

CH3 NH2  - >  •CH 2 NH2  - >  CH2=NH (2)

Alternatively, the radical can undergo p-scission cleavage of a C-C bond (or C- 

H bond if no C-C bond is present) to give another radical species and an 

unsaturated molecule.

RCH2*CHOH R* + CH2=CHOH (3)

RCH2 *CHNH2  - >  R* + CH2 =CHNH2  (4)

Oxidative degradation of the unsaturated species then occurs. For the oxygen- 

containing compound, the C=C double bond cleaves to give either formic acid 

or the aldehyde.

CH2=CHOH 2HCOOH (5)

or CH2=CHOH CH3 CHO (6 )

For the nitrogen-containing compound, the C=C double bond cleaves to give 

CO2  and NH3  in a two step process.

CH2 =CHNH2  - »  CH2 =C=NH (7)



then CH2 =C=NH - »  2 C 0 2  + NH3 (8)

The alkyl radicals generated in stages (3) and (4) can undergo oxidative 

degradation very quickly to give formic acid i.e.

R* —̂   ̂ ^ HCOOH (9)

The aldehydes that are formed in (1) and (6 ) from the oxidation of the alcohols 

are oxidised further to the corresponding acids as well as to carbon dioxide 

and further radical species.

RCHO—» RCOOH (10)

and RCHO—> R» + C 0 2  (11)

In this system, for larger carboxylic acids, hydrogen abstraction occurs initially

at either the acid functionality or at the CH2  group next to the COOH group.

The alkyl radical generated can then either decompose completely by a series 

of sequential oxidations to form formic acid

R« - >  - >  HCOOH (12)

or can promote degradation

via CH3«CHCOOH

CH3 CH2COOH CH3CHO + C 0 2  (13)

or gives rise to an aldehyde of smaller carbon number

via RCH2*CHCOOH

RCH2 CH2COOH RCHO + HCOOH + C 0 2  (14)

10



The reactions outlined above all have their own individual rates but the 

following general assumptions were made about each of them:-

• the paths are all first order with respect to the reactants and are 

independent of all other compounds present. This statement is very 

simplistic, especially if materials are present in high concentrations, as the 

surface area of the cobalt(lll) oxide catalyst may limit the rate as would be 

expected in heterogeneous catalysis. However, it should apply for low 

concentrations of materials such as intermediates.

• there is an excess of oxygen present.

The above is an example of a mechanistic scheme for the WAO of simple 

organic compounds containing oxygen and nitrogen heteroatoms, in the 

presence of a catalyst, cobalt(lll) oxide. The mechanism is radical in nature as 

is expected, in view of an earlier study by Baillod et al(^4)i that illustrated that 

the WAO process involves the formation of radicals, in particular, hydroxyl 

radicals *OH. This theory was also supported later by Joglekar et al during 

their investigation of the WAO of phenols and substituted phenolsO8).

An extensive study was carried out by Chowdbury and Ross that also dealt 

with the use of catalysts as a way of improving the effectiveness of the WAO  

p r o c e s s ( 2 2 ) .  They considered the effects of various mixtures of metal ions and 

hydrogen peroxide as catalysts. The metal ions that were deemed to be the 

most effective were iron(ll), iron(lll), and copper(ll). Iron salts in the presence 

of hydrogen peroxide produce free radicals according to the following two 

equations

Fe2+ + H2 O2  - >  Fe3+ + -OH + .O H

Fe3+ + H2 O2  - »  Fe2+ + H 0 2* + H+

(15)

(16)

11



In the presence of hydrogen peroxide, copper salts probably behave in the 

following way

The use of these catalysts is pH dependent and mixtures of catalysts appear to 

be more effective at reducing the percentage COD values for an aqueous 

waste mixture, but during the study no attempt was made to analyse the 

reaction intermediates or products in any detail. More specialised work, 

therefore, is required to determine how catalysts, in particular those that were 

investigated by Chowdbury and R o s s ( 2 2 ) j are actually involved in the oxidation 

of organic contaminants and what intermediates and products are actually 

being formed in the catalysed process.

Another example of the effectiveness of the use of catalysis in the WAO  

process was illustrated by Randall in his workO^). He showed that although 

the WAO process is efficient at deactivating hazardous waste, some 

compounds require more persuasive methods of deactivation e.g. PCB's, DDT, 

and pentachlorophenol, these being more environmentally persistent 

compounds. Such compounds were more difficult to deal with by the 

conventional WAO process. However, by the use of unspecified cocatalysts, 

the extent of their degradation could be improved e.g. 1 ,2 -dichlorobenzene 

undergoes WAO at 275°C to give a 30% yield of carbon dioxide and chloride 

ions. In the presence of a catalyst however, an 89% yield of carbon dioxide 

and 98% yield of chloride ions was produced. This provides further evidence, 

again, of the usefulness of catalysts in the area of WAO treatment for wastes 

and hence catalysed WAO is worthy of continued investigation.

Cu2+ + H2 O2  Cu3+ + "OH + .O H

Cu2+ + H2 0 2  - »  Cu+ + H0 2 » + H+

(17)

(18)

12



A detailed understanding of the mechanism of the oxidation processes 

occurring during WAO is therefore r e q u i r e d ( 2 3 ) .  The identification of products 

formed during the reaction will enable more effective post treatment of treated 

waste. Also, an understanding of the mechanism may enable the manipulation 

of the process, by the use of appropriate catalysts for example, to provide 

either a greater degree of destruction or perhaps the preferential formation of a 

particular product. As indicated earlier, the mechanism for the WAO process is 

thought to be radical in nature. This suggestion is not an unlikely scenario 

since at high temperatures under aqueous conditions, the dioxygen (O2 ) 

present may undergo some complex chemical reactions. The formation of 

oxygen radical atoms could occur at elevated temperatures and this radical 

species could then react with water and with further oxygen to form systems 

such as hydrogen peroxide (H2 O2 ) or ozone (O3 ). The reaction course that an 

oxygen molecule takes under such conditions is potentially extensive but the 

important fact is that the fate of the molecule gives rise to the generation of 

radical systems which are then themselves ultimately responsible for the 

oxidation reactions taking place. Therefore, the intermediate and final 

oxidation products formed during the WAO of organic systems are thought to 

be derived from radical reactions. This suggestion is to be considered and 

explored in the discussion that is to follow.

1.3. Oxidation Chemistry

This thesis is concerned with a detailed investigation into the mechanism of 

oxidation of organic compounds and classes of compounds under WAO  

conditions. A recent text(24) deals in detail with the chemistry associated with 

molecular oxygen, and is largely concerned with the reactivity of oxygen- 

containing reagents such as hydrogen peroxide and oxygen radicals e.g. 

hydroxyl radicals *OH. Also dealt with is the metal-induced activation of

13



dioxygen and its subsequent behaviour. From the literature, there is evidence 

that work has been carried out on the oxidation of organic compounds by the 

use of oxygen or oxygen-containing compounds. This revealed that the use of 

catalysts is commonly required, metal salts being particularly effective in this 

a r e a ( 2 5 ) - ( 3 9 )  However, considering the fact that dioxygen itself is a good 

oxidant, its reaction with organic compounds is energetically unfavourable^). 

Why is this? The answer to this is related to the electronic configuration of 

molecular oxygen.

Dioxygen, in its ground state, is a triplet with two unpaired electrons with 

parallel s p in s ( 4 1 ) .  The first two electronically excited states are both singlets 

and they are formed by either relocation and/or pairing of the unpaired 

electrons in the 2 p7i* antibonding molecular orbitals. The half-filled antibonding 

molecular orbitals of ^ 0 2  can accommodate two additional electrons. The 

addition of one electron produces the superoxide anion O2 " and the addition of 

two electrons gives the peroxide ion 0 2 2-. The direct reaction of 3 0 2  with 

singlet organic molecules to give singlet products is, however, a spin forbidden 

process with a very low rate. One way of overcoming the energy barrier, 

however, is to proceed via a free radical pathway:-

RH + 3 C>2 - »  R» + HC>2 » (19)

Here, the formation of two doublets i.e. free radicals is a 'spin allowed' 

process. However, this process is very endothermic and requires the use of 

highly reactive substrates.

Another way of overcoming the spin conversion obstacle is for ^ 02  to combine 

with a paramagnetic transition metal:-

14



Mn+ + 3 q 2  - *  Mn+1 -0 -0 »

where n = the formal oxidation state of the metal.

(20)

It is expected that this resulting metal-dioxygen complex will then react, in a 

selective manner, with organic molecules at more moderate temperatures than 

the free radical pathway, (19), above.

The following scheme illustrates the various possible oxygenated species that 

may play a role in metal-catalysed oxidations with dioxygen - Scheme 1

Scheme 1
Mn + O

M ^ l  OH H+ Mn+1 / 0 - Mn M ^ 1

\ 0 /  * ---------  \ ) '   ^  ' O '  \
hydroperoxo

M ii+ 3 _ 0H

oxo

H+y

M1+ 2  OH

\ o / -

superoxo

Mn+2
/ \

O  O

peroxo

Mn±£=o
H+ o

dioxo

Mn+1

p -peroxo

v

2 Mn+2

O
0 X0

Mn+1 Mn+1

p-oxo
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As indicated above in 1.2.2., the interaction of molecular oxygen with water at 

elevated temperatures and pressures generates hydrogen peroxide and ozone 

via the formation of oxygen radicals. The presence of transition metal ions will, 

however, extend this picture and the activation of molecular oxygen can occur 

as shown in Scheme 1. In effect, the reduction of molecular oxygen is 

occurring in the following way as shown in Scheme 2(40), vja the intermediacy 

of a metal species, as shown above (Scheme 1).

All of the oxygen species generated then play an important role in the 

oxidation of organic compounds. The scheme shown above occurs in nature. 

This four electron reduction to form water is catalysed by the presence of 

Cytochrome ox/cfase(42) which is the terminal oxidase of the electron transport 

chain.

The chemistry in Schemes 1 and 2 is mimicked in the laboratory by using 

mixtures of metal ions and molecular oxygen. For example, the oxidation of 

aldehydes to carboxylic acids using molecular oxygen is facilitated in the 

presence of a cobalt(ll) catalyst(34). This is an example of where the activation 

of molecular oxygen occurs via complexation with the metal to give oxygen- 

cobalt complexes. Further literature provides examples of the use of copper 

salts as catalysts, in the form of both copper(l)(32) and c o p p e r ( l l ) ( 3 0 ) , ( 3 1 )  it 

has been suggested that copper(ll) is similar to cobalt(ll) in that they both 

posses an unpaired electron which can interact with ground state dioxygen, in

Scheme 2

h o 2- O'
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an electron transfer mode i.e. M2 ++0 2 ->M 3 +-0 2 ". The system formed is a 

metallo-superoxo entity. The co-ordinated superoxide radical anion is then 

assumed to interact with organic substances present.

1.3.1. Fenton's Reagent

Fenton's Reagent is a mixture of iron(ll) and hydrogen peroxide and it was first 

recognised as an oxidising agent by H.J.H. Fenton in 1 8 9 4 ( 4 3 ) .  Since then, 

subsequent studies have shown that this mixture is an effective oxidant for a 

variety of organic c o m p o u n d s ( 4 4 ) f and the oxidation process involves the 

following generalised steps:-

The radicals formed, R'*, R"*, R"'*, either undergo oxidation, and therefore 

give rise to the reformation of Fe2+(24), dimerisation(25), or reduction(26) 

respectively.

Fe2+ + H2 C>2 - >  Fe3+ + "OH + •OH

Fe2+ + HO* - >  Fe3+ + ‘OH

(21)

(22)

HO* + R'H - >  H20  + R'*

HO* + R"H H20  + R"*

HO* + R'"H H20  + R,n* (23)

R'* + Fe3+ —> Fe2+ + product

2R"* - »  product (dimer)

R'% + Fe2+ Fe3+ + R"'H

(24)

(25)

(26)

Recent papers have documented the use of Fenton's reagent as an oxidant of 

organic c o m p o u n d s ( 4 5 ) - ( 5 7 ) f ancj how \{ has proved to be an efficient oxidising
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system. Aromatic systems such as benzene(56)> (5$) have been oxidised 

using Fenton's reagent to produce phenol, and the mechanism^®) for the 

process highlights the fact that the oxidising system is a source of hydroxyl 

radicals, as was previously sugg ested^) _ Scheme 3.

Scheme 3
polyoxygenated products 

*

,OH

\

QHH, OH

Cu(ll)
•OH

Fe(ll)

.0 -► main reaction

Fe(ll)
deactivation reaction 

side reaction

D .

The hydroxyl radicals add to the aromatic system and the resulting 

hydroxycyclohexadienyl radicals A are either oxidised to the phenol or they 

dimerize, or collapse to give radical cations.
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Many transition metal ions are known to exhibit oxidative features similar to the 

traditional Fenton r e a g e n t ( 5 9 ) .  Therefore, mixtures of these metal ions and 

hydrogen peroxide were named 'Fenton-like reagents'. Metals that were shown 

to behave in this way included Cu(l), Ti(lll), Cr(ll), and Co(ll), to name but a 

few. However in the literature there are publications that are concerned with a 

more thorough investigation of the nature of the actual oxidising species 

generated in a Fenton Type system.

A recent publication by S a w y e r ( 6 ° )  has suggested that Fenton's reagent does 

not lead predominantly to the generation of hydroxyl radicals, in contrast to 

established o p in io n (4 4 ) , (58) studies carried out implied that reactions of 

substrates with a hydroxyl radical generated by other means, such as pulse 

radiolysis, did not behave in the same way when the substrate was exposed to 

Fenton's reagent. It is thought that no free carbon radicals R« are formed 

under Fenton conditions and that the formation of free «OH is supposedly not 

the dominant reactant. It was proposed by Sawyer that the iron(ll) is 

complexed and that it is a complex of the type Fel_4 0 0 H which reacts with the 

organic substrate present. Thus, Sawyer suggests that Fenton's reagent does 

not produce

i) free •OH

ii) free carbon radicals (R*)

iii) aryl radical adducts (HO-Ar«)

However, Sawyer was not the first to question the formation of free •OH  

radicals in a typical Fenton system. Groves et al(57) in 1974 investigated the 

stereospecific hydroxylation of aliphatic compounds. They found evidence to 

support the presence of a metal bound oxidant and it was this that was 

responsible for the oxidation reaction occurring and not free hydroxyl radicals.
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Walling first published work in 1975(44) that suggested that Fenton's reagent 

did produce free hydroxyl radicals by a series of reactions, (2 1  )-(26), that was 

indicated earlier in 1.3.1. More recent work carried out by him, however, has 

investigated this suggestion further by considering the oxidation of mandelic 

acid using Fenton's re a g e n t^ ). The work was aimed at trying to establish the 

'primary oxidant' responsible for the reactions taking place. From his earlier 

work, the evidence generated pointed to the fact that simple hydroxyl radicals, 

•OH, were responsible. However, in biological systems, those oxidations 

taking place that involve iron-containing enzymes are thought to involve the 

formation of high valence iron or iron-oxygen complexes and it is these that are 

then the 'primary oxidants'(41).

Walling deduced from his work that mandelic acid is oxidised by either 'free' 

hydroxyl radicals, or an untrappable intermediate formed from a 'cage' reaction 

between MA*FelH and *OH which forms products too quickly to be intercepted 

by an added substrate, S. The reactions that are postulated by him are as 

shown below:-

H2 O2  + Fe^*MA —» X —» products + Fe^ (27)

H2C>2 + Felf*MA Fem*MA + HO* (28)
F e " '

HO* + MA —> R* - »  products + Fe^ (29)
F e»

HO* + S —> S* —> products + FeUI (30)

X represents the untrappable intermediate, MA the total mandelic acid present,

and S the added substrate. He found that the addition of a substrate, S,

interferes with the oxidation of mandelic acid. Such a substrate will react

effectively with hydroxyl radicals but not the intermediate X. An amount of

mandelic acid is still oxidised, however, in the presence of the substrate S, and
20



this apparently represents a 'cage reaction' of newly formed hydroxyl radicals 

and not an oxidation reaction involving a high oxidation state species such as 

ferryl F e*V .

However, Mahapatro et al(62) also considered the oxidation of mandelic acid 

but they concluded that the Fenton oxidation does proceed via the formation of 

an Fe'V species, due to the observation of significant amounts of 

phenylglyoxylic acid in the product mixture. In their studies, they used a radical 

trap e.g. acetone. A two electron pathway occurs in the Fenton catalysed 

oxidation of mandelic acid even in the presence of a radical trap (Scheme 4). 

This was proved by the fact that the yield of phenylglyoxlic acid remained 

unchanged in the presence of the trapping agent.
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Scheme 4

CHOHCOOH

Fe  ̂ + H2O2

Q

COO

'CHO

/ H
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H

2 e-

COCOOH

Fell 0  ̂
phenylglyoxylic acid

.0.

'CHOH
+ COo + FelH

HO

The literature contains other examples of work relevant to this investigation 

regarding the species actually responsible for the oxidising capabilities of 

Fenton's r e a g e n t ( 6 ^ ) - ( 6 6 )  |n some cases the arguments are conflicting and 

they all revolve around the formation of hydroxyl radicals, and whether or not it 

is this which is responsible for the subsequent oxidation reactions that take 

place. Sutton et al(65) suggested that the species generated in a Fenton 

system has properties that represent both a hydroxyl radical and also the 

participation of a higher oxidation state of the transition metal e.g. ferryl iron 

Fe(IV). However, work carried out by Eberhardt et al(6 ?) suggests that a 

mixture of hydrogen peroxide and transition metal ions, in this case Cu+, does 

form hydroxyl radicals, •OH, in what they term a Fenton-like fashion. They
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have investigated this theory by considering the course of hydroxylation of a 

number of aromatic compounds using both Cu+-H2 0 2  and the radiolysis of 

dilute aqueous solutions. The isomer distributions formed were compared in 

each case. The isomer distributions formed from the Cu+-H2 0 2  oxidation of 

fluorobenzene, anisole and nitrobenzene were found to be almost identical to 

that formed under radiation-induced hydroxylation, Therefore, they conclude 

that the hydroxyl radical is the major oxidising species in the following general 

reactions:-

Cu+ + H2 O2

ArH + -OH ------■

1.3.2. 'Gif Chemistry

The discussion so far has highlighted the fact that the oxidation of organic 

compounds using oxygen-containing reagents, catalysed by a variety of 

transition metals, is an important aim of recent oxidation chemistry. An 

example of the importance of this aim is found in the development of 'Gif 

Chemistry. Barton developed Gif chemistry to provide a means of selectively 

generating functionalised systems from saturated hydrocarbons. The direct 

functionalisation of saturated hydrocarbons would usually require quite drastic 

conditions of high temperatures and p r e s s u r e s ^ ) ,  jh e  introduction of 

functional groups via an oxidative mechanism is therefore an industrially 

important objective. In order to be able to understand and attempt such an 

objective, a consideration of biological systems is required as, in Nature, the 

hydroxylation of non-activated carbon-hydrogen bonds commonly takes place 

under mild c o n d i t i o n s ^ ) .  Such a process is catalysed by the mono­

oxygenase enzymes, the best examples of which are the cytochrome P450
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mono-oxygenases. This group of mono-oxygenases is one of the most studied 

and it consists of a series of isozymes which are active in the oxidation of 

drugs, xenobiotics and endogenous compounds. The oxidation process 

involves, among many things, the hydroxylation of saturated hydrocarbons and 

this is represented in Scheme 5, where the cofactor, NADPH, is a source of 

electrons.

Scheme 5

2NAD P2 NADPH

The active site of the enzymes responsible for the oxidation processes 

consists of an iron porphyrin system. Barton points out that the mechanism of 

the insertion of oxygen into the C-H bonds of the substrate is not understood 

but that there is evidence to support the presence of an FeV= 0  species.

The first work carried out on the functionalisation of hydrocarbons by Barton 

appeared in 1983(70) when it was found that it was possible for ketones to be 

formed from saturated hydrocarbons via an oxidative mechanism. Since this 

time, Barton has done much work which has involved the catalytic oxidation of 

organic compounds, specifically saturated hydrocarbons, using a set of 

systems which he has e s t a b l is h e d ( 7 1 ) .  These have been referred to as the Gif 

and GoAgg systems and are summarised in the Table 2. For each of these 

reactions, a solution of pyridine and acetic acid is required as the s o l v e n t ( 7 1 ) .
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Table 2

SYSTEM CATALYST ELECTRON

SOURCE

OXIDANT

Gif (III) Fe (II) Fe O2

Gif (IV) Fe (II) Zn O2

GO Fe (II) cathode 0 2

GoAgg (I) Fe (II) KO?/Ar

GoAgg (II) Fe (III) H2 O2 H?0?

GoAgg (III) Fe (lll)/picolinic 

acid

H2 O2 H2 O2

GoChAgg Cu (II) H2 0 2 H?0 ?

Cu/O? Cu (I) Cu o 2

The characteristics of these systems were investigated by determining their 

effect on the oxidation of a hydrocarbon such as adamantane.

Adamantane was selected as a suitable substrate as it is a spherically 

symmetrical hydrocarbon possessing four tertiary and twelve secondary 

carbon-hydrogen b o n d s (^ O ) .  The first effective Gif reagent established, Gif 

(III), involved the use of Fe (II) as a catalyst, Fe as an electron source and O2  

as the oxidant. This system was able to oxidise adamantane to give a mixture 

of adamantanone and 1- and 2-adamantanol. It was later discovered that the 

oxidation could be made more efficient by the use of zinc as an electron 

source i.e. the Gif (IV) system.
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Several other systems have been developed which differ from each other as 

shown in Table 2. In the GoAgg systems, Gif properties were mimicked by the 

use of Fe(ll) and a superoxide such as potassium superoxide or the use of 

Fe(lll) and hydrogen peroxide. Essentially, Gif catalysts react with alkanes 

giving rise to ketones, primarily, and small amounts of alcohols and other 

minor products, depending on the conditions adopted(72). The mechanism of 

oxidation occurring under Gif conditions is thought to proceed via the formation 

of an alkyl hydroperoxide and a catalytic cycle is thought to be involved. This 

cycle is represented in Scheme 6  which represents the catalytic cycle for 

GoAgg reactions.

Scheme 6
y O H

FeV

0 2+2 H+ H20 2

F e ll^ — £  Fe^O
A

OOFe111

Reducing
Agents P(OMe)3 Trapping Agent

0P(0)(0M e )2
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The Gif mechanism, shown in Scheme 6  does not involve the reaction of O2  

with a ferrous species in any of the important mechanistic steps. The oxygen 

does, however, oxidise the Fe(ll) precatalyst to give a (p-oxo)diiron (III) 

compound A and hydrogen peroxide. The Fev = 0  oxenoid that results from the 

interaction of Fe^^O  with H2 O2  in Scheme 6  is then formed, and it is this that 

then reacts with the C - H  bond to give an iron-carbon bond with the structure 

H O - F e - C ( 7 3 ) .  This pathway for a GoAgg system is equivalent to the widely 

accepted cytochrome P450 oxidation chemistry(7 <0.

Barton has done much work to support his theory of the mechanism of 

oxidation occurring when Gif systems are u s e d ( ^ ) - ( 8 1 )  j e . that the oxidation 

proceeds via the formation of the Fev = 0  species. Such a species is formed by 

using either a mixture of Fe (II) and superoxide or hydrogen peroxide and Fe 

(lll)(75i).

Fe11 + -0 2 * s Fem + H2 O2  - >  Fel11 0  0 H

- »  Fev = 0  (29)

The chemical reactivity of Gif systems can be summarised in the table shown 

below(7^a):-

Table 3

GIF CHEMISTRY KETONES

- order of reactivity of C-H bond is 

^ C H 2  ► ^ C = 0  sec>tert.> prim.

Barton suggests that Gif-type reactions do not involve radical chemistry, which 

is contrary to what might be expected from the use of iron salts in the presence
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of oxygen containing species. He suggests that the oxidation reactions 

proceed via the formation of alkyl hydroperoxides. Therefore, the general 

process for a Gif Type reaction is(?4)

Alkane —> Alkyl Hydroperoxide —» Ketone or Alcohol.

It has been established that the main features of all Gif systems a r e ( 8 2 ) ; -

i) the oxidation of sec. C-H bonds occurs mainly to ketones and that alcohols 

are not reaction intermediates

ii) the presence of an excess of alcohols or other easily oxidisable compounds 

does not suppress the oxidation of alkanes significantly

iii) cyclic olefins are not epoxidised under these conditions, but instead give 

rise to conjugated ketones

iv) the order of selectivity for the oxidation of C-H bonds is sec.>tert.>prim.

v) sec. alkyl radicals are not intermediates in the activation process as the 

reaction proceeds smoothly even in the presence of different radical trapping 

agents. Such agents do not interfere with the oxidation process but instead 

highly functionalised hydrocarbons are formed.

Barton has continued with his study of the oxidation of saturated hydrocarbons. 

The Gif systems discussed earlier were all based upon the use of an iron- 

containing catalyst. However, other systems have been developed which 

involve the use of copper-containing catalysts and such catalysts were also 

found to exhibit the Gif-type characteristics^). Such systems were referred to 

as GoChAgg as indicated in Table 2. Experiments carried out by Barton 

suggest that the Cu^-catalysed oxidation of saturated hydrocarbons by H2 O2  

is similar to the Fe^-catalysed process i.e. GoAgg reactions. Continued 

research into the use of both copper(ll) and iron(lll) as catalysts does, 

however, provide evidence to suggest that intermediates formed from each 

system were actually different. Therefore, Barton has suggested that Gif-type

28



reactivity is metal-dependent and involves two chemically different non-radical 

s p e c i e s ( 8 3 ) .  This study supported his view that the oxidation process does not 

involve activation by free •OH.

Barton also considered other primary oxidants instead of hydrogen 

p e r o x i d e ( 8 4 ) .  The use of terf-butyl hydroperoxide (TBHP) has been used in 

conjunction with F e^  in a mixture of pyridine and acetic acid and this system 

was referred to as GoAggW. The mechanistic pathway for an oxidation 

reaction involving GoAgglV is very similar to that seen for other systems in that 

a high valent FeV=0 species is also formed here - Scheme 7

Scheme 7 

Felll + (CH3)3COOH

X

X = OAc, OH etc

The FeV=0 species has been formed by a rearrangement process which is a 

plausible explanation as can be seen above in Scheme 7.

The use of TBHP is a development of the existing Gif systems as it provides a 

more powerful and selective way of forming the ketone from the oxidation of 

saturated hydrocarbons(84). The literature provides examples of the 

effectiveness of this and other new systems, e.g. GoAggV, developed by 

Barton et al(8 8 M 8 7).

► F e ' » ^  OC(CH3)3 ---------   F e V

A  'O C (C H 3 )3
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The work carried out by Barton clearly suggests the need for a greater 

understanding of the mechanism of the oxidation of organic compounds, with a 

view to achieving regio-selective oxidation of hydrocarbons.

Although Barton has suggested that the Gif mechanism of oxidation proceeds 

in a non-radical fashion, a publication in 1987 detailed an investigation carried 

out by his group that dealt with the observation of bipyridines and pyridine- 

hydrocarbon coupling products in Gif oxidation products(8 8 ) using GC/MS 

techniques.

Although Barton has shown that several organic acids may replace the acetic 

acid used in the solvent system for Gif reactions, pyridine is essential for the 

Gif-system oxidation to occur(^). During the oxidation of adamantane, the 

ketone derived from the hydrocarbon has been observed together with an 

equivalent amount of a coupling product formed between a te/t-adamantyl 

radical and a pyridyl radical. Several isomeric bipyridines were also observed.

Scheme 8

N
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Scheme 8  shows the formation of two possible pyridyl radicals. Scheme 9 then 

shows how the bipyridine structures are formed by either the coupling of the 

two radicals (A) to give three isomeric structures, or from the coupling of one of 

the pyridyl radicals and a protonated pyridine compound (B).

Scheme 9

A. Radical-Radical Coupling

1. Coupling 
 ►

2. Reoxidation
-4e', -4H®

B. Radical-Protonated Pyridine Coupling

H

+

H

H .I ©

H
H

-3e"
-4H®

N N-

Schemes 8  and 9 above illustrate the formation of 2,2'-, 4-4'-, and 2,4'- 

bipyridines, which are only a few of the bipyridyl structures that could be
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possibly formed. The schemes, however, do illustrate the radical nature of their 

formation. Radical reactions would also be responsible for the formation of the 

coupling product between the ferf-adamantyl radical and a pyridyl radical to 

give structures of the type shown below.

Such structures may also arise from the coupling of the pyridine in the 4- 

position and also where the radical coupling reaction takes place via the 

protonated pyridine as shown in Scheme 9 (B).

The investigation carried out by Barton went on to discuss the nature of the 

formation of other bipyridyl structures. Therefore, when using the Gif IV 

system, the evidence clearly points to a radical reaction occurring in 

conjunction with the formation of the appropriate ketone via a non-radical 

route, as discussed earlier in this section. It would seem appropriate to 

suggest that a Gif oxidation reaction involves two mechanistic routes even 

though the radical route is the result of a side reaction involving the solvent.

1.4. Other Treatments for Hazardous Waste

The treatment of hazardous waste using WAO technology has been 

considered in 1.2. However, there are many other ways of oxidising aqueous 

organic compounds which are commonly found in industrial wastes, with the 

aim of destroying them e.g. the use of potassium permanganate, chlorine 

dioxide and o z o n e ( 8 9 ) .  All of these processes involve the chemical oxidation of 

organic compounds in waste waters. Ozone is particularly effective for
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disinfection, odour and colour removal, and the destruction of cyanides and 

toxic organic compounds in water(^O).

Ozone, O3 , is an allotropic form of oxygen and its structure has been 

explained as a resonance hybrid of the following four canonical 

structures^ ):-

O' v '  O 0 _ /  ^ o + 0  0

The reaction of ozone depends strongly on pH, temperature and the rate of 

ozone decomposition. At lower pH values, the ozone molecule reacts directly 

with organic molecules. At higher pH values, however, the ozone decomposes 

to form hydroxyl radical intermediates. Such radicals are then themselves more 

reactive with certain organic compounds than ozone itself e.g. the reaction with 

benzene. Therefore, careful control of conditions is required for the effective 

ozonation of certain organic compounds.

Balloid et a l(^ )  in 1983 discussed the effectiveness of the use of ozonation for 

the oxidation of organic compounds in water. Ozone reacts with aromatic 

compounds to produce catechol and hydroquinone followed by muconic, 

maleic, glyoxylic, glycolic, oxalic and formic acids, with the corresponding 

aldehydes being frequently detected as precursors of these acids. The rate of 

total organic carbon removal, however, was found to decrease with time as the 

lower molecular weight acids react more slowly than their parent compounds. 

They went on to suggest that hydroxyl radicals play an important role in the 

ozonation of organic compounds.
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The interest in ozonation in the context of this discussion is due to this 

suggestion that hydroxyl radicals play an important role in the ozonation 

oxidation process, under certain conditions. Work carried out by Andreozzi et 

al(92) provides an example of this in the oxidation of pyridine involving the use 

of ozone as the oxidising reagent. They showed that the pyridine ring is 

destroyed in a stepwise fashion and that the process is initiated by the 

presence of hydroxyl radicals generated from the decomposition of ozone - 

Scheme 10. The mechanism shown in Scheme 10 is suggested due to the 

observation of N-formyloxamic acid among the ozonation products. This 

mechanism occurs if the ozone undergoes decomposition in the absence of 

any radical scavengers. If radical scavengers are present, then the ozone 

reacts directly with the pyridine, with the mechanism of attack being mostly 

directed towards the nitrogen atom - Scheme 11.

Scheme 10
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Scheme 11

The fact that ozone has a dual role during ozonation processes was also 

suggested by Hoigne et al(93). This study illustrated the effect pH has on the 

ozonation process and that, about a critical pH, the ozonation proceeds either 

via direct attack of ozone on the substrate, or by decomposition products of 

ozone such as the hydroxyl radical. This is summarised in Scheme 12, where 

S is the substrate.

Scheme 12
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A more recent example of the use of ozone as an oxidising system was carried 

out by Zheng et al in 1993(^4). Here the oxidation between ozone and cresols 

was investigated and the oxidation, with complete conversion to various 

intermediate products, was found to be very rapid. Further reactions of those
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intermediates resulted in the rupturing of the aromatic ring to produce carbon 

dioxide, acetic and other acids. A general scheme for the fate of cresols is 

illustrated in Scheme 13.

Scheme 13

OH OH

ch3 .COOH

o-cresol

OH
.COOH HOOC—CH =CH—COOH-----► HOOC—CH(OH)—CH(OH)—COOH

CH3CH2COOH + CH3COOH + HOCH2COOH +OHC—COOH 

+ HOOC-COOH + C02

The formation of the various acidic compounds via the rupturing of the 

aromatic ring is very similar to the fate of the pyridine in Scheme 10.

Essentially, the oxidising species responsible for the oxidation process 

occurring during ozonation is thought to be a hydroxyl radical, depending upon 

the conditions adopted for the process. Therefore the chemistry associated 

with ozonation could be related to Fenton chemistry and those radical 

reactions taking place in Gif chemistry.

1.5. Kinetic Studies of the Oxidation of Organic Compounds

In any oxidation reaction being considered, a kinetic study provides a means of 

investigating the process taking place in more detail. During a kinetic study, 

two aspects have to be considered
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1 ) molecular interactions involving the collision of two molecules to produce 

one or more species, which are called elementary reactions

2 ) the sequence of elementary reactions that constitutes the overall chemical

transform ation^).

The second aspect involves measurements of how the rate of a reaction 

depends on the concentrations of the reagents. Such results are then 

expressed in the form of a rate equation. This equation represents the 

dependence of the rate at a given temperature on the concentration of the 

reagents. Many reactions have rates that, at a given temperature, are 

proportional to the concentration of one or two of the reactants, with each of 

the reactant concentration terms raised to a small integral power, Therefore for 

the reaction

aA + bB —> cC + dD

the simple rate equations could be

Rate of reaction = /c[A] first order

Rate of reaction = /c[A]2  or k[A][B] second order.

In the rate equation, k is the rate constant, and by determining this value for 

any system, it is possible to investigate and ultimately improve a reaction 

process.

Kinetic studies of the WAO of some organic compounds have been carried 

out(96), (97) |n these studies, the rates of destruction of each of the organic 

compounds being considered were measured with respect to the reduction in 

substrate concentration and with respect to the reduction in COD values. In the 

studies carried out by Joglekar et a lO 8) and by Mishara et al(98), the WAO
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reaction was found to be first order with respect to substrate concentration. 

However, these studies only relate to specific substrates. There is an example 

in the literature, though, which deals with the development of a generalised 

kinetic model that is applicable to a variety of organic c o m p o u n d s ( 9 7 ) .  Again, 

the oxidation is found to be statistically first order with respect to the 

concentration of the substrate organic compounds.

The use of kinetic data enables the possibility of improving the conditions of 

the WAO process. The determination of rate constants for individual reactions 

provides a means of optimising the process, by establishing the limiting factors 

in the reaction. This is an essential requirement when considering reactions 

that are required to be efficient. For the treatment of wastes, the aim is to 

establish an efficient oxidising system as the quicker the destruction of the 

organic compounds occurs, the more economical the process is found to be.
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1.6. Purpose of the Present Study

WAO is the process adopted for the destruction of waste materials by Leigh 

Environmental Ltd. and others, and it was decided that a greater 

understanding of the chemistry of the process was required as earlier work 

does not provide sufficient detail. A more extensive study is necessary in order 

to optimise conditions for the process and to achieve better results with difficult 

contaminants.

The suggested initial approach involved taking a typical waste stream and 

analysing it to determine its contents. Having established the content of the 

sample, WAO followed by determination of the products of the oxidation 

process might have aided an understanding of degradation pathways. 

Improvements in the process, for example, as a result of introducing an 

appropriate catalyst might then follow. The major problem with this approach 

would be the determination of the exact content of a typical waste stream, even 

with the extensive analytical techniques that are to hand. A typical approach to 

the analysis of such samples is to study them by chromatography, in particular 

gas- and liquid-chromatography. With the samples proposed, however, the 

initial contents of a waste stream would be completely unknown and therefore 

appropriate conditions for the chromatographic determinations would be 

difficult to establish e.g. depending on whether the contaminants are volatile or 

involatile, polar or non-polar will have an effect on the analytical technique 

adopted.

Interactions between compounds in a typical waste stream have also to be 

considered. For example, the WAO of a compound may occur in the presence 

of acetic acid, a common product from the oxidation of organic compounds. 

However, in the absence of the acid the oxidation of that particular compound
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may not occur. This process is referred to as co-oxidation(98). Such 

interactions, between individual components of a typical multicomponent waste 

stream, may ultimately confuse our understanding of the basic chemistry that is 

occurring in the WAO process.

Thus, it was felt necessary to narrow the scope of the study by considering the 

fate of individual compounds under the conditions of WAO, thereby facilitating 

the analysis of the oxidation products formed. The study has therefore involved 

an investigation of the WAO of nitrogen-containing compounds, particularly 

aromatic nitrogen compounds such as the alkylpyridines, which are known to 

be difficult to oxidise, and which are commonly found in effluent streams from 

coking p lan ts(").

Oxidation reactions involving oxygen- or oxygen-containing compounds as the 

means of oxidation are extensive and, therefore, an understanding of the 

mechanism of the oxidation is required. Since WAO is a process that involves 

the use of oxygen as an oxidising system, the chemistry involved can be linked 

to that of other oxidising systems which involve the use of oxygen- or oxygen- 

containing compounds e.g. Fenton chemistry (1.3.1.) and Gif chemistry 

(1.3.2.). Also, the use of catalysis within WAO technology has involved the use 

of mixtures of metal salts and hydrogen peroxide i.e. Fenton-like reagents(89). 

Thus a detailed study of the oxidation of 2-, 3-, and 4-methylpyridine under 

WAO conditions, and also in the presence of other reagents of the Fenton- 

Type, will hopefully add to the information regarding the mechanism of 

oxidation using oxygen reagents. The background chemistry associated with 

Gif chemistry illustrates the extent of the need for a greater understanding of 

the course of the oxidation of organic compounds. However, the information 

already provided by Barton et al and others will help our understanding of the 

observations made in the study which is described in this thesis.
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1.6.1. Aims of the Research Study

The aims of the study were as follows:-

1. To investigate the oxidation of 2-, 3-, and 4-methylpyridines under 

simulated WAO conditions in the laboratory, under both uncatalysed and 

catalysed conditions.

2. To investigate and compare the oxidation of 2-, 3-, and 4-methylpyridine 

using some of the various oxidising systems of the Fenton-Type that have 

been discussed in this chapter.

3. To investigate the kinetics associated with the oxidation of 2-methylpyridine 

using Fenton's reagent as the oxidising system.

4. To synthesise and characterise some of the intermediate oxidation 

products formed during the oxidation of 2-, 3-, and 4-methylpyridines.
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CHAPTER 2 - The Oxidation of 2-. 3-. and 4-Methvlpyridines under 

Simulated Wet Air Oxidation (WAO) Conditions

The oxidation of 2-, 3-, and 4-methylpyridines was carried out under WAO  

conditions that were simulated by using a laboratory autoclave, both in the 

absence and presence of catalysts. All of the methylpyridines were supplied by 

Aldrich.

2.1. Experimental Conditions

Samples of 2-, 3-, and 4-methylpyridines were submitted to Leigh 

Environmental where they were subjected to WAO using a laboratory 

autoclave. The autoclave oxidation reactions were carried out by John 

Matthews at Leigh. The autoclave simulated those conditions that Leigh 

Environmental uses on site for the destruction of organic waste by the WAO  

process.

2.1.1.i) Uncatalvsed Autoclave Conditions

An aqueous solution of each of the methylpyridines (0.54 mol dm-3 , 1 dm3) 

was heated to an operating temperature of 250°C over a 1 hour period under 

an air pressure of 250 atmospheres. The autoclave was then maintained under 

these conditions for 2 hours and the reaction mixture was stirred. The pH of 

the oxidation reaction mixture was adjusted to an acidic pH by the addition of 

dilute sulphuric acid (1 mol dm'3), and it was maintained in the region of 3.5- 

5.5 during the course of the reaction.
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Samples of the aqueous mixture were taken at designated time intervals during 

the reaction. The initial reaction time, Tq, was the time at which the reaction 

mixture reached the desired operating temperature of 250°C. Samples were 

then taken at T-j, T2 , T3 , and T4 . At T-j, the reaction had been held at 250°C  

for 30 minutes, T2  for a further half hour and so on.

2.1.1 .ii) Catalysed Autoclave Conditions

Various individual catalysts have been used in the catalysed autoclave 

oxidation of 2-, 3-, and 4-methylpyridines, following suggestions regarding the 

effectiveness of certain systems in the WAO of organic compounds in waterCO. 

They included the following:-

Iron(ll) sulphate (3x10"3  mol)/hydrogen peroxide 

Iron(lll) sulphate (3x10- 3  mol)/hydrogen peroxide 

Copper(ll) sulphate (2x10"3  mol)

Copper(ll) sulphate (3x10"3  mol)/hydrogen peroxide 

Copper(l) chloride (3x10“3  mol).

The hydrogen peroxide used in the catalysed autoclave reactions was a 30%  

w/v solution of the peroxide in water, supplied by Aldrich.

The appropriate amount of metal salt was added to the aqueous mixture 

containing each of the methylpyridines (0.54 mol dm”3 , 1 dm3). This mixture 

was then stirred and the pH adjusted to and maintained in the region of 2-5, by 

the addition of dilute sulphuric acid (1 mol dm-3), during the course of the 

reaction. The reaction mixture was heated to 250°C over a 1 hour period under 

an air pressure of 250 atmospheres. The autoclave was then maintained under 

these conditions for 2  hours and during this time three aliquots of hydrogen 

peroxide were added. The first aliquot of 30 cm3  was added after the reaction
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mixture had been held at 250°C for 15 minutes; the second aliquot of 30 cm3  

was added after a further 45 minutes and the final aliquot of 35 cm3  was added 

after a 75 minute interval had elapsed at a temperature of 250°C. Samples of 

the reaction mixture were taken at regular time intervals from Tq to T4  in the 

same way as those taken in 2 .1 .1  .i above.

2.1.2 Sample Preparation

A 5 cm3  aliquot of each of the samples, taken from the above reaction 

mixtures, was extracted with 4 x 1 0  cm3  of either dichloromethane or diethyl 

ether, after first adjusting the pH of the aqueous mixture to approximately 7, by 

addition of sodium hydroxide (2 mol dm-3). After drying over magnesium 

sulphate, the extract was then evaporated to approximately 2  cm3  under 

reduced pressure. The dichloromethane/diethyl ether-insoluble products 

remaining in the aqueous phase were then isolated by removing the excess 

water on a rotary evaporator. The residue that remained was then extracted 

with methanol.

2.1.3 Sample Analysis

The literature provides examples of the analysis of organic compounds in 

water, involving the use of Gas Chromatography (GC) t e c h n i q u e s ^ ) .  (3) and, 

in particular, Gas Chromatography-Mass Spectrometry (GC-MS)(4)> (3) as the 

mass spectrometer detector provides a means of "fingerprinting" components 

of a sample mixture. Since 2-, 3-, and 4-methylpyridines are volatile enough to 

be detected by GC methods, the analysis of the oxidation products generated 

from these precursors initially involved GC techniques.
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GC-MS - the volatile oxidation products present in both the ethereal and 

methanolic extracts were analysed using GC-MS techniques. Two instruments 

were used, during the study, for the analysis of the volatile oxidation products 

formed in the autoclave reactions. Instrument 1 was a VG Trio 1 quadrupole 

MS system fitted with a Hewlett Packard 5890 gas chromatograph. This 

instrument was operated under the following conditions:-

Column 

Carrier gas

Temperature programme 1 

Temperature programme 2 

Injection volume 

Ion source 

Source current 

Source temperature 

Scan rate 

Scan range

50 m x 0.32 mm i.d. Supelcowax 

Helium

40-250°C at 10°C min" 1 

70-250°C at 10°C min" 1 

1 mm3 splitless 

Electron impact (70eV)

150 pA 

200°C  

1 s scan“1 

20-300 daltons.

Instrument 2 was a VG Micromass double focusing MS system coupled to a 

Carlo Erba 2150 gas chromatograph. The instrument was operated under the 

same conditions as instrument 1 above.

However, it could not be assumed that all of the oxidation products generated 

from the oxidation of each of the methylpyridines would be sufficiently volatile 

to be detected by GC. A method of analysis was required which would enable 

the detection of the less volatile components generated from the oxidation of 2 , 

3-, and 4-methylpyridines i.e. High Performance Liquid Chromatography 

(HPLC).
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HPLC - this method of analysis requires no sample preparation and provides a 

means of detecting the presence of involatile oxidation products. A literature 

method(6 ) was found which described the separation of pyridinecarboxylic 

acids by HPLC. The separation of 2-, 3-, and 4-pyridinecarboxylic acids was 

achieved using a Zipax SCZ column and an aqueous mobile phase which 

contained sodium nitrate (0.1 mol dm-3) and phosphoric acid (0.3 mol dm-3). 

This is an example of Cationic Exchange Chromatography and the conditions 

used in the analysis of oxidation products, formed from the autoclave oxidation 

reactions, were as follows:-

Injection volume 

Column type 

Detector 

Data collection 

Flow rate 

Wavelength 

Mobile Phase

2 0  pi (fixed injection loop)

Adsorbosphere SCX 5U

Philips Pye Unicam LC-UV detector

HP340 desk top integrator

1 ml min-1

254 nm

50:50 0.1 mol dm- 3  sodium nitrate/0.3 mol

dm- 3  phosphoric acid

(suggested in the literature for this column

type)

The suggested mobile phase for this column type contained a mixture of 

phosphoric acid and sodium nitrate. Since phosphoric acid is not amenable to 

use in conjunction with a detector such as a mass spectrometer, modification 

of the suggested mobile phase was required. A method was therefore 

developed to analyse, by HPLC, the oxidation products formed in the 

autoclave which could then be used to determine the identity of sample 

components using techniques such as Liquid Chromatography-Mass 

Spectrometry (LC-MS).
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An aqueous mixture containing ammonium acetate and acetic acid was initially 

considered as a possible mobile phase which would be suitable for analysis 

using LC-MS. Pyridine-2-carboxylic acid was then used as a reference 

compound, in order to compare the retention time of the acid on the column 

using each of the different mobile phases. This would indicate the 

effectiveness of the experimental mobile phase at carrying the samples of 

interest through the column.

Retention time values for pyridine-2-carboxylic acid:-

1) Suggested mobile phase - 5.50 minutes

(50:50 0.1 mol dnr3  sodium nitrate/0.3 mol dm"3  phosphoric acid)

2) Experimental mobile phase - 5.01 minutes

(50:50 0.1 mol dm- 3  ammonium acetate/0.1 mol dm- 3  acetic acid)

Since the retention time of pyridine-2-carboxylic acid is very similar using each 

of the different mobile phases, the use of the experimental mobile phase was 

adopted so that methods of separation, developed by HPLC, could be linked to 

other means of detection other than a UV detector.

2.1.4. Summary

In all of the autoclave oxidation reactions of the methylpyridines, unchanged 

starting material was observed at the end of the reaction, in different amounts. 

However, in each case, a variety of oxidation products was observed. Their 

structures were either identified, or possible structures were suggested from 

the molecular ions and fragmentation patterns observed in their mass spectra. 

The oxidation products formed in each reaction are summarised and discussed 

in the sections that follow in this chapter.
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It is also important to note at this point that different GC temperature 

programme ramps and different instruments were used to investigate these 

oxidation reactions, and aid in the determination of the nature of the oxidation 

products formed in each case. Therefore, any differences noted in retention 

time values for the same compounds have to be considered with reference to 

the precise analytical conditions used for each of the samples analysed. 

Hence, more accurate comparisons can be made between the products of 

oxidation of each of the methylpyridines in the various reactions investigated.

2.2. The Effect of WAO on 2-. 3-. and 4-Methvlpyridines

2.2.1. 2-Methvlpvridine

a) Analysis by GC-MS

The oxidation of 2-methyl pyridine led to the formation of a range of oxidation 

products - Appendix 1. Some of those species formed have been identified by 

comparison with authentic standards, and the structures of other species 

formed have been deduced from mass spectral and retention time ( tR )  data. 

Table 1 summarises those oxidation products formed, that were identified by 

GC-MS analysis using temperature programme 1 and instrument 1, and the 

possible pathway for their formation is summarised in Figure 1.
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Table 1 Oxidation products arising from the uncatalysed autoclave oxidation 

of 2 - methylpyridine

Comoonent RMM Prooosed structure

1 * 18.55 198 4 -(2 -pyridylmethyl)pyridine-2 -

carboxaldehyde

2 * 21.48 198 6 -(2 -pyridylmethyl)pyridine-2 -

carboxaldehyde

3* 31.01 184 2-methyl-5-(2-

pyridylmethyl)pyridine

4 22.18 182 c/s-1 ,2 -bis-(2 -pyridyl)ethene

5 31.12 182 trans-1 ,2 -bis-(2 -pyridyl)ethene

6* 22.82 123 5-hyd roxy methy I-2- 

methylpyridine

7* 13.68 1 2 1 6 -methyl py rid i ne-3- 

carboxaldehyde

8 21.49 109 2 -hyd roxy-6 -methy I py rid i ne

9 13.06 107 pyridine-2 -carboxaldehyde

10 7.53 79 pyridine

11 15.61 59 acetamide

* indicates that proposed structure has not been proved by comparison with 

the authentic substance
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Figure 1
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A wide range of oxidation products was observed. Components 1 and 2 were 

first observed at Tq but they were destroyed during the oxidation reaction and 

were not found at T4 . Their structures have still not been identified definitely 

but their mass spectra were similar to each other in that the same fragment 

ions were observed in each spectrum, but at different intensities, and both 

exhibited the same apparent molecular ion of 198. The mass spectrum for 

component 2 contained stable fragment ions at m/z 170, 120, and 92. 

Therefore its structure was thought to be that of 6-(2-pyridylmethyl)pyridine-2- 

carboxaldehyde as such a structure could fragment in two ways to give the 

following stable fragment ions:-
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m/z 1 2 0

CH CH

m/z 92

Component 2 would have arisen via a radical substitution reaction, as shown 

in Scheme 1, occurring between a 2-pyridylmethyl radical and pyridine-2- 

carboxaldehyde 9 which is itself an observed oxidation product.

Scheme 1

Scheme 1 also illustrates the formation of component 1, which is thought to be 

an isomeric form of component 2 , due to similarities observed in the 

fragmentation pattern of each of the mass spectra.
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The true identity of component 3 is also unknown, but this is also thought to 

arise as a result of a radical process. The observation of the apparent 

molecular ion of 184 implies the formation of a saturated dimeric structure, 

where either the coupling of two pyridylmethyl radicals has occurred, or a 

pyridylmethyl radical has undergone substitution in the pyridine ring of the 

parent substrate, 2-methylpyridine. The relative molecular mass of the product 

of such radical reactions is 184 and since the WAO process is thought to 

involve radical r e a c t i o n s ^ ) ,  then Scheme 2 is a possible scenario.

Scheme 2

Radical coupling

Q Q
'N CH2 N CH2

1 ,2 -bis-(2 -pyridyl)ethane 25

Radical substitution

Q Q
‘N CH2 "TsT X H 3

‘N X H 2̂  T \r  CH3 

2 -methyl-6 -(2 -pyridylmethyl)pyridine 24

N X H 2

CH,
2-methyl-4-(2-pyridylmethyl)pyrid i ne

All of the dimeric structures observed in Scheme 2 have been prepared as 

standard reference compounds and component 3 was not identified as any of 

them. However, in the above scheme, the radicals have been shown to couple,
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or undergo substitution reactions, in ways that are considered to be the most 

favourable.

It is known that pyridines, along with other nitrogen heterocycles such as 

quinolines, diazines and imidazoles, undergo reactions with nucleophilic 

radicals selectively at positions a- and y- to the nitrogen, resulting in 

replacement of a hydrogen atom(^). The radical reactions require an acidic 

medium as A/-protonation of the heterocycle is needed, as this promotes 

reactivity and regioselectivity towards a nucleophilic radical. These radical 

reactions are termed Minisci reactions. In the case of pyridine as the substrate, 

control of the reaction with nucleophilic radicals in a regioselective manner is 

difficult, considering the availability of more than one reactive position. In order 

to overcome this problem, regarding control of regioselectivity, radical 

substitution reactions need to be taken to full conversion and control of pH is 

important.

Since the structure of component 3 is not as indicated in Scheme 2, 

substitution reactions involving the pyridylmethyl radical must have occurred, 

at the pyridine ring of another methylpyridine molecule, at a position other than 

a- and y- to the nitrogen atom. This lack of regioselectivity could be related to 

the fact that a significant amount of starting material remains at the end of the 

autoclave oxidation reaction, possibly influencing the radical reactions taking 

place. Also the pH is not controlled in a precise manner, as the reaction 

mixtures are only maintained within an acidic range. Therefore, considering 

steric effects to be the next controlling factor on the structure of component 3, 

then a possible structure which would be favoured is 2-methyl-5-(2- 

pyridylmethyl)pyridine 3. Although it has not been possible to synthesise this 

compound as yet, it is this structure which is indicated in Table 1 as a possible 

oxidation product.
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Components 6  and 7 have been assigned structures that may have resulted 

from the oxidation of 2-methyl-5-(2-pyridylmethyl)pyridine 3. The oxidation of 

such a dimer would first result in the loss of the pyridine ring and the remaining 

structure could then undergo oxidation of the alkyl chain to give component 6  

followed by further oxidation to give 7 - Scheme 3.

The structures of components 6  and 7 are thought to be very similar as the 

mass spectra for both structures contains a base peak at m/z 79 indicating the 

formation of the stable ion shown below, forming as a result of loss of the 

branches on the pyridine ring.

Scheme 3

HOCH*

5-hydroxymethyl-2-5-hydroxymethyl-2-methylpyridine

f

► oxidation process 7
CH3

6-methylpyridine-3-carboxaldehyde

+

65



The observation of component 8  was very interesting as this compound 

compares very well in terms of the mass spectral fragmentation pattern with 

that of the synthetic standard 2 -hydroxy-6 -methylpyridine - Appendix 2. The 

mass spectrum for the standard has a base peak at m/z 80, and the apparent 

molecular ion was observed at m/z 109. This is identical with component 8 . 

The formation of this oxidation product could only have resulted from 

substitution at the pyridine ring by a hydroxyl radical *OH.

Scheme 4

2 -hyd roxy-6 -methylpyrid i ne

Component 9 was identified as pyridine-2-carboxaldehyde by comparison with 

the authentic standard. This component will have been formed by the oxidation 

of the methyl group, attached to the ring, in 2 -methylpyridine.

The formation of components 10 and 11 was an interesting observation. Both 

of these components were only observed at T4 , towards the end of the 

autoclave process. The formation of pyridine 10 was observed in significant 

amounts whereas the formation of acetamide 1 1  only occurred on a very small 

scale. The formation of pyridine from 2-methylpyridine is thought to be a 

significant observation - see (b) below.
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b) Analysis by HPLC

The identification of involatile oxidation products requires the use of HPLC 

techniques. An expected oxidation product from the oxidation of 2- 

methylpyridine is the related carboxylic acid shown below.

The autoclave sample, taken from the oxidation reaction at T4 , was analysed 

using the HPLC method outlined in 2.1.3. The chromatogram that was 

obtained identified the presence of a mixture of components, the largest of 

which was unchanged 2-methylpyridine. A large peak was observed at 

tR=12.51, but this component has not yet been identified. The presence of 

pyridine-2-carboxylic acid was not detected. As only the sample taken at T4  

was analysed, the carboxylic acid may have been formed earlier in the 

oxidation reaction and have undergone subsequent decarboxylation, 

considering the severity of the conditions imposed in the autoclave. This could 

account for the formation of pyridine 1 0  as an oxidation product, detected in 

the GC-MS analysis of the oxidation products.

None of the various peaks observed in this chromatogram, generated from the 

oxidation products present at T4 , have been identified. Due to the complexity 

of the mixture of components observed, the need for a detector such as a 

mass spectrometer is required in order to enable an attempt at the

COOH
pyridine-2 -carboxylic acid

N COOH
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identification of possible structures for the various components. Analysis of this 

reaction mixture has not yet been carried out by HPLC/MS, but it would be 

possible to use the method developed in section 2.1.3. in such circumstances.

2.2.2. 3-Methvlpvridine

The oxidation products generated from the autoclave oxidation of 3- 

methylpyridine were analysed using GC-MS techniques which involved the use 

of instrument 1 and temperature programme 1. In contrast to that of the 2- 

isomer, the oxidation reaction did not give rise to an extensive array of 

products. The only significant GC-volatile oxidation product formed was 

pyridine-3-carboxaldehyde 14, together with only trace amounts of other 

oxidation products. They are summarised in Table 2 and the possible pathway 

for their formation is represented in Figure 2 .

Table 2 Oxidation products arising from the uncatalysed autoclave oxidation of

3-methylpyridine

Component tR RMM Proposed structure

12 15.07 137 unknown

13* 15.90 121 5-methyl py rid ine-2-

carboxaldehyde

14 14.80 107 pyridine-3-carboxaldehyde

* indicates that proposed structure has not been proved by comparison with 

the authentic substance
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Figure 2
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On comparing the reaction stages Tg-^T^ the oxidation reaction appeared to 

have progressed. Evidence for this was provided by the formation of 

component 14 in larger quantities at T4  than at Tq, in comparison with the 

amount of unchanged 3-methylpyridine that remained. The structure of 

component 13 was deduced by analogy with those observations made in 2.2.1. 

above for the autoclave oxidation of 2-methylpyridine. Although no dimeric 

structures were observed as oxidation products in the autoclave oxidation of 3- 

methylpyridine, this is not necessarily evidence that they were not formed at 

some stage. Component 13 was only observed in trace amounts in relation to 

the amount of pyridine-3-carboxaldehyde that was formed. Therefore trace 

amounts of dimeric structures may have been formed, in a similar fashion to 

either the radical coupling or radical substitution reactions shown in Scheme 2, 

and destroyed immediately in the oxidation reaction. Component 13 could 

have been formed from the oxidation of a dimeric structure such as 3-methyl-6- 

(3-pyridylmethyl)pyridine, via the initial formation of 2-hydroxymethyl-5- 

methylpyridine - Scheme 5.
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Scheme 5

ch3

N CH2OH 
2-hyd roxymethyl-5-methylpyridi ne

-► oxidation process CH3

13
CHO

5-methylpyridine-2-carboxaldehyde

The mass spectrum generated for component 13 contains stable fragment ions 

at m/z 106 and m/z 78. Such stable fragment ions can be accounted for by 

considering the fragmentation of 13.

The structure of component 12 is unknown.

2 .2 .3 .4-Methvlpvridine

The autoclave oxidation of 4-methylpyridine produced a range of oxidation 

products very similar to that observed in 2 .2 .1 . for the autoclave oxidation of 2 - 

methylpyridine. The compounds formed have been analysed using GC-MS  

techniques involving the use of instrument 1 and temperature programme 1 , 

and they have then been identified by comparison with standards, where 

possible. The observations made are summarised in Table 3 and the possible
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pathway for the formation of each of the oxidation products is represented in 

Figure 3.

Table 3 Oxidation products arising from the uncatalysed autoclave oxidation of 

4-methylpyridine

Component RMM Proposed structure

15* 29.39 198 2-(4-pyridylmethyl)pyridine-4-

carboxaldehyde

16* 27.06 184 4-methyl-2-(4-

pyridylmethyl)pyridine

17 35.20 182 trans-1,2-bis(4-pyridyl)ethene

18 14.98 137 unknown

19* 26.25 123 2-hyd roxymethy 1-4-

methyl pyridine

20* 15.84 1 2 1 4-methylpyridine-2-

carboxaldehyde

21 24.28 109 2-hyd roxy-4-methy 1 py rid i ne

22 14.06 107 pyridine-4-carboxaldehyde

10 7.13 79 pyridine

23 10.84 60 acetic acid

indicates that proposed structure has not been proved by comparison with the

authentic substance
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Figure 3
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The structure of component 15 has not been identified by comparison with an 

authentic substance. However, its structure is thought to have been formed as 

a result of a radical substitution reaction between a 4-pyridylmethyl radical and 

pyridine-4-carboxaldehyde 22 which is itself an observed oxidation product - 

Scheme 6 .
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Scheme 6

CHo CHO CHO

N

This structure was suggested for component 15 as the mass spectrum of this 

component exhibited stable fragment ions at m/z 169, 106, and 78.

The structure of component 16 is thought to be a saturated dimer due to the 

observation of the apparent molecular ion at m/z 184 in its mass spectrum, and 

its formation could have occurred by either the coupling of 4 -pyridy I methyl 

radicals or radical substitution by the latter with 4-methylpyridine. The 

mechanism of the formation of 16 would be similar to those mechanisms seen 

in Scheme 2, which were involved with the formation of saturated dimeric 

structures in the autoclave oxidation of 2-methylpyridine. The dimeric

CHO

/77>fr 106

H

m/z 78m/z 169
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structures that are possible from the autoclave oxidation of 4 -methylpyridine 

are shown below - Scheme 7.

Scheme 7

CH2

Q

c h 2

a

CH2

a

1,2-bis-(4-pyridyl)ethane 50

4-methyl-2-(4-pyridylmethyl)pyridine 16

4-methyl-3-(4-pyridylmethyl)pyridine49

Component 16 is not 1,2-bis-(4-pyridyl)ethane since, when compared with the 

authentic standard, the mass spectral fragmentation patterns and tp  are 

different - Appendix 3. The standard exhibits a base peak at m/z 92 which 

could correspond to the formation of the following stable fragment

CH<

o
N'
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However, component 16 generated a base peak at m/z 106, indicating the 

possible formation of the fragment ion shown below.

CHq

CH2

Therefore, the structure of 16 is likely to be one of the other possible isomeric 

dimeric structures. Due to the expected regioselective attack at the pyridine 

ring occurring at the a- position to the nitrogen atom, the formation of 4-methyl- 

2-(4-pyridylmethyl)pyridine is indicated in Table 3. This structure appeared to 

be fairly resistant to oxidation as its presence was still detected in the reaction 

mixture at T4 .

Components 19 and 20 are thought to be generated from the destructive 

oxidation of 4-methyl-2-(4-pyridylmethyl)pyridine 16, the saturated dimeric 

structure. The course of destruction is similar to that seen in Scheme 3, and 

therefore the formation of 2-hydroxymethyl-4-methylpyridine 19 would occur 

first, followed by the formation of 4-methylpyridine-2-carboxaldehyde 20, after 

a pyridine ring has been lost from component 16.

The mass spectrum of component 20 exhibits stable fragment ions at m/z 106 

and 78 indicating loss of the methyl group followed by loss of -CO, and an 

apparent molecular ion at m/z 121. Component 19 also exhibits similar
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fragment ions, but the stability of these ions is different as they occur with 

different intensities relative to the intensity of the apparent molecular ion which 

is observed at m/z 123.

The mass spectrum of component 21 has been compared with standards. The 

mass spectra of authentic 2-hyd roxy-6 -methy I pyridine and 3-hydroxy-6- 

methylpyridine both exhibit a stable fragment ion at m/z 80, and the stable 

fragment in the region of the molecular ion is m/z 109. The mass spectrum for 

component 21 also exhibits two stable fragment peaks at m/z 80 and m/z 109 

therefore indicating that 2 1  has also been formed as a result of substitution at 

the pyridine ring by a hydroxyl radical. Scheme 8  shows that 21 has been 

formed as a result of substitution by a hydroxyl radical at the a- position to the 

nitrogen, which is the expected product, as this is the more reactive site in 

comparison with the available p- site.

Component 22 is pyridine-4-carboxaldehyde which is an expected oxidation 

intermediate, observed at Tq, as the oxidation of the methyl group would be 

relatively easy under such conditions imposed in the autoclave. The formation 

of pyridine, 1 0 , could have been formed from either the continued oxidative 

destruction of component 2 0  by loss of both the methyl and aldehyde groups, 

or the decarboxylation of the appropriate carboxylic acid, as illustrated in the 

autoclave oxidation of 2-methylpyridine. The formation of acetic acid,

Scheme 8

2-hyd roxy-4-methylpyrid i ne
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component 23, is also expected as WAO conditions are known to generate this 

substance from organic c o m p o u n d s ^ ) .  ( 9 ) .

The identity of component 18 is unknown but the mass spectrum and retention 

time of this component match that of component 1 2 , formed in the oxidation of

3-methylpyridine. Therefore, it appears that this component is an impurity in 

both reactions and is not related to the oxidation of each of the 

methylpyridines.

2.2.4. Summary

The autoclave oxidation, simulating WAO conditions, of both 2- and 4- 

methylpyridine generated an extensive range of oxidation products. In both 

cases there is evidence to support the involvement of radical chemistry, 

leading to the formation of dimeric structures and compounds such as 2 - 

hydroxy-6 -methylpyridine 8 . However, the formation of pyridine-4- 

carboxaldehyde, for example, also indicates that some other oxidation reaction 

has taken place. There is also evidence of destructive oxidation, as pyridine 

and acetamide are formed in the oxidation of 2 -methylpyridine, and pyridine 

and acetic acid in the oxidation of 4-methylpyridine.

In contrast, under WAO conditions, 3-methylpyridine appears to undergo much 

less change, which is consistent with the general lower reactivity of the 3- 

isomer relative to 2-, and 4-methylpyridines. This may be related to the ease of 

deprotonation of the alkyl group that is attached to the ring(8). The enhanced 

ease of deprotonation of the 2- and 4-isomers is due to the resonance 

stabilisation of the anion generated involving the ring nitrogen. This is not 

possible with the 3-isomer.
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2.3. The Effect of Catalysed WAO on 2-, 3-. and 4-Methvlpyridines

2.3.1. The use of iron-containing catalysts

The autoclave oxidation of 2-, 3-, and 4-methylpyridines was carried out in the 

presence of two types of iron-containing catalysts. The first was a mixture of 

iron(ll) sulphate and hydrogen peroxide i.e. Fenton's reagentOO), anc| the 

second was a mixture of iron(lll) sulphate and hydrogen peroxide i.e. Barton's 

GoAgg (II) systemO1).

2.3.1.1. 2-Methvlpyridine

An extensive array of oxidation products were formed from the use of both 

catalysts and they were analysed using GC-MS techniques, involving the use 

of instrument 1 and temperature programme 2. The observations made are 

summarised in Table 4 and a possible pathway for the formation of the 

oxidation products generated is shown in Figure 4.



Table 4 Oxidation products arising from the iron catalysed autoclave oxidation 

of 2 -methylpyridine

Component

Fe(ll) Fe(lll)

RMM ProDOsed structure

24 - 18.50 184 2 -methyl-6 -(2 -

pyridylmethyl)pyridine

25 - 19.32 184 1 ,2 -bis-(2 -pyridyl)ethane

26* - 19.98 184 2,2'-dimethyl-4,4'-

bipyridine

27* - 20.57 184 2 ,2 ,-dimethyl-6 ,6 '-

bipyridine

4 - 21.49 182 c/s-1 ,2 -bis-(2 - 

pyridyl)ethene

5 27.79 26.09 182 trans-1 ,2 -bis-(2 - 

pyridyl)ethene

28* “ 20.13 170 2 -(2 -pyridylmethyl)

pyridine

29* 18.50 18.76 123 2 -hydroxymethyl-6 -

methylpyridine

30* 10.96 9.96 1 2 1 2 -methylpyridine-6 -

carboxaldehyde

31 - 13.16 109 2 -hydroxymethylpyridine

32 - 16.50 109 2-methylpyridine-N-oxide

33* “ 17.55 109 4-hydroxy-2-

methylpyridine

8 19.96 18.79 109 2 -hyd roxy-6 - 

methylpyridine



9 10.30 9.35 107 pyridine-2-

carboxaldehyde

10 4.73 - 79 pyridine

23 8.58 7.74 60 acetic acid

indicates that proposed structure has not been proved by comparison with the 

authentic substance

Figure 4
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Components 24, 25, 26, and 27 are only produced in the oxidation of 2-

methylpyridine where iron(lll) is used as the catalyst, and their formation

provides evidence to support the fact that some form of radical chemistry is
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taking place. Components 24 and 25 have been identified by comparison with 

standard materials - Appendix 4. The standard 2-methyl-6-(2- 

pyridylmethyl)pyridine gives a mass spectrum which has a base peak at m/z 

183 indicating the possible formation of the stable ion shown below.

The other fragment ions are very small and this spectrum compares well with 

that of component 24, along with tp. The formation of 24 could only arise as a 

result of radical substitution of a pyridylmethyl radical at the pyridine ring of 2 - 

methylpyridine - Scheme 2. The formation of 25 also occurs as a result of a 

radical reaction, involving the coupling of radicals, as shown in Scheme 2. The 

standard 1 ,2 -bis-(2 -pyridyl)ethane gives a mass spectrum that shows a base 

peak at m/z 106 due to the formation of the stable fragment ion shown below.

This compares well with the mass spectrum generated by component 25.

Several other oxidation products were also observed that all possessed the 

same apparent molecular ion at m/z 184. From comparison with those 

standards prepared that have a relative molecular mass of 184 indicated in 

Scheme 2, no positive identification was possible on comparison of 26 and 27 

with them. However, the mass spectrum for the standard 4,4 '-dimethyl-2,2'- 

bipyridine was obtained and the base peak was found at m/z 184. No other 

stable fragments were observed in the spectrum, and this compares well with
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those spectra obtained for components 26 and 27 - Appendix 5. The formation 

of 2,2,-dimethyl-4,4,-bipyridine 26 and 2,2,-dimethyl-6J6'-bipyridine 27 could 

only occur as a result of initial radical formation as shown in Scheme 8  in 

Chapter 1. The coupling of the methylpyridyl radicals could then occur in a 

similar fashion to that shown in Chapter 1, Scheme 9, to produce the reaction 

shown in Scheme 9 here, which represents the formation of 2,2'-dimethyl-4,4'- 

bipyridine 26.

Scheme 9

r j

h , c ^ n P

©

H

HoC N'

H

+ e

HoC N'

H

jo
1 . radical coupling
2. [O]

h3c  c h 3

26

The 2-methylpyridine would be protonated under the autoclave oxidising 

conditions used and such a mechanism for the coupling of pyridine rings in this 

manner was suggested by Barton et a l02 ). By a similar mechanism to that 

shown in Scheme 9, it is also possible to generate component 27 via the 

formation of the radical shown below.

HoC*
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This range of dimeric structures was first observed at T-j but these compounds 

did not appear to be very stable under the oxidising conditions used, as they 

were not observed at the end of the reaction at T4 .

Component 28 is thought to be formed from the oxidation of either 2 -methyl-6 - 

(2-pyridylmethyl)pyridine 24, or any of the other saturated dimeric structures 

observed as oxidation products by loss of a methyl group. Scheme 10 

illustrates the formation of component 28 by loss of a methyl group from 

component 24.

Scheme 10

The oxidation of components 26 and 27 may also have occurred in a similar 

fashion, but only one oxidation product exhibiting an apparent molecular ion at 

m/z 170 was observed and that was represented as component 28. 

Component 28 could also have been formed via a radical substitution reaction 

occurring between a pyridylmethyl radical and pyridine which is itself observed 

as an oxidation product - Scheme 10a.

Scheme 10a
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Components 4 and 5 in Table 7 have been identified as the cis and trans forms 

of 1 ,2 -bis-(2 -pyridyl)ethene, and the trans form of this unsaturated dimeric 

structure was observed in the oxidation of 2 -methylpyridine in the presence of 

both iron containing catalysts. Components 29 and 30 were also identified in 

both of the iron-catalysed oxidation reactions considered here. The structures 

of these components have only been tentatively assigned as 2 -hyd roxymethyl- 

6 -methylpyridine 29 and 6-methylpyridine-2-carboxaldehyde 30, respectively. 

They are thought to be formed as a result of the oxidation of a dimeric 

structure that was observed at T-| in the iron(JII) catalysed reaction according 

to Scheme 11 below.

Scheme 11

2-methy^6-(2-pyridylmethyl)pyri d i ne 2-hyd roxymethyl-6-methylpyri d i ne

30
oxidation process

H3C N CHO 

6-methylpyridine-2-carboxaldehyde

Although no dimeric structures were observed as oxidation products in the 

iron(ll) catalysed oxidation of 2 -methylpyridine, this is not conclusive evidence 

that they were not formed. It may have been that, following their formation, 

they were destroyed quickly by the oxidising conditions imposed to give rise to 

the formation of first component 29 and then 30, as both of these components 

were observed at T-j.
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Various components all exhibiting the same apparent molecular ion of 109 

were observed as oxidation products. For the iron(lll)-catalysed oxidation 

reaction, both 2-hydroxymethylpyridine 31 and 2-methylpyridine-N-oxide 32 

were identified as oxidation products. Components 33 and 8  also exhibited 

apparent molecular ions at m/z 109 and they have been assigned structures 

that result from substitution occurring at the pyridine ring by a hydroxyl radical. 

Component 8  has been identified as 2 -hyd roxy-6 -methyI pyridine by 

comparison with the standard material. There were similarities in the mass 

spectra of components 33 and 8  as both exhibited a stable fragment ion at m/z 

80 and a base peak at m/z 109 - Appendix 2 & 6 . Therefore, the structure of 33 

is thought to be an isomer of 8  formed via a similar radical reaction - Scheme 

12.

Scheme 12

Component 8  was observed in both of the iron-catalysed oxidation reactions 

indicating the presence of hydroxyl radicals in both systems.

Other oxidation products observed included pyridine-2-carboxaldehyde 9 and 

acetic acid 23 and they were identified in both of the iron-catalysed reactions. 

Component 10, identified as pyridine, was only observed in the iron(ll) 

catalysed oxidation reaction. Its formation could have occurred via 

decarboxylation of pyridine-2 -carboxylic acid, which is itself an expected

OH

h r ^ C H ;

4-hyd roxy-2-methy I 
pyridine

2 -hyd roxy-6 -methy I 
pyridine
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oxidation product, as in the uncatalysed autoclave oxidation of 2 - 

methylpyridine discussed earlier in this chapter.

2.3.1.2. 3-Methvlpvridine

The autoclave oxidation of 3-methylpyridine was carried out in the presence of 

both iron(ll)- and iron(lll)-containing catalysts. The oxidation products were 

analysed using GC-MS techniques which involved the use of instrument 1 and 

temperature programme 1 for the iron(ll)-catalysed reactions and temperature 

programme 2 for the iron(lll)-catalysed reactions. The structures of the 

products that have been identified, together with those whose identity is, as 

yet, uncertain are summarised in Table 5, and Figure 5 illustrates a possible 

pathway for the formation of the oxidation products indicated in the table 

below.

Table 5 Oxidation products arising from the iron catalysed autoclave oxidation 

of 3-methylpyridine

Component tp  RMM Proposed structure

Feflh Feflin

34* 23.56 170 2-(3-pyridylmethyl)

pyridine

2-hyd roxymethyl-5- 

methylpyridine 

5-methy Ipy ridine-2- 

carboxaldehyde

3-hydroxymethy I pyridine

35* 22.50 123

13* 16.28 12.76 121

36 20.37 16.92 109
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37 23.16 19.67 109 2-hyd roxy-5-

methylpyridine

14 14.81 11.37 107 pyridine-3-

carboxaldehyde

23 10.74 7.54 60 acetic acid

indicates that proposed structure has not been proved by comparison with the 

authentic substance

Figure 5
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The oxidation of 3-methylpyridine in the autoclave, in the presence of iron- 

containing catalysts, produces a much more extensive array of oxidation 

products when compared with the uncatalysed oxidation reaction. The major



oxidation product observed in each of the iron catalysed autoclave reactions is 

pyridine-3-carboxaldehyde 14. This was observed at Tq, in each case, and the 

amount formed appeared to increase over the course of both of the oxidation 

reactions.

The formation of component 34 occurred at T2  and it appeared to be fairly 

resistant to oxidation as it was still detected at T4 . This component has a mass 

spectrum that is very similar to that generated for component 28, formed in the 

iron(III)-catalysed oxidation of 2-methylpyridine. The mass spectrum of 

component 28 exhibited a base peak at m/z 170. A similar picture was 

observed for 34, which also had an apparent molecular ion at m/z 170, but 

here the base peak was m/z 169 and no other stable fragments were 

observed. Thus, component 34 could have been formed in a similar way to 28 

via the destructive oxidation of a dimeric structure, involving loss of a methyl 

group (Scheme 10), or via a radical substitution reaction (Scheme 10a). Such 

a radical reaction would have required a 3-pyridylmethyl radical and pyridine 

which is not itself observed as an oxidation product here. No appropriate 

dimeric structures, such as 3-methyl-6-(3-methylpyridyl)pyridine were 

observed. This structure presumably arises from a radical substitution reaction 

occurring at the 6 -position of 3-methylpyridine with a 3-pyridylmethyl radical. 

However, this is not conclusive evidence that such dimeric structures have not 

been formed as intermediates in the reaction. Also, although pyridine was not 

observed as an oxidation product, this is not evidence that it was not formed at 

some stage in the oxidation reaction. The structure of 34 is suggested to be 2- 

(3-pyridylmethyl)pyridine and its possible formation is summarised in Scheme 

13 and Scheme 13a.
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Scheme 13

- c h 3

‘N CH2 .Q
N'

5-methyl-2-(3-methylpyridyl)pyridine

34

Scheme 13a

34

Components 35 and 13 are also thought to occur as a result of the destructive 

oxidation of a compound such as 5-methyl-2-(3-methylpyridyl)pyridine, to form 

2-hyd roxymethyl-5-methyl pyridine 35, followed by 5-methylpyridine-2- 

carboxaldehyde 13. The likely origin of their formation was shown earlier in 

Scheme 5. Component 35 was only observed in the oxidation of 3- 

methy I pyridine where an iron(ll)-containing catalyst was used and it was 

evident only at the end of the oxidation process at T4 . Component 13 was 

formed in both iron-catalysed oxidation reactions here but again it was not 

observed until T4 .

A structure exhibiting an apparent molecular ion at m/z 109 was formed in the 

oxidation of 3-methylpyridine using both iron(ll)- and iron(lll)-containing 

catalysts. Component 37 is thought to have been formed from hydroxyl radical 

substitution at the pyridine ring of the parent methylpyridine, to form 2 -hydroxy-

5-methylpyridine 37, as its mass spectral fragmentation pattern compares well
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with that of the known 2-hydroxy-6-methylpyridine 8 . The formation of 

component 37 is represented in Scheme 14.

Scheme 14

Component 37 was observed at the beginning of the process at Tq and T<| and 

it appeared to be very stable under the oxidising conditions imposed as it was 

still present a tT 4  in both of the oxidation reactions.

Component 36 was formed in both of the oxidation reactions, and was 

identified as 3-hydroxymethylpyridine by comparison with the standard 

material. The presence of acetic acid 23 was detected in both oxidation 

reactions, again an expected product of oxidation under the catalysed WAO  

conditions imposed.

2.3.1.3. 4-Methvlpvridine

The autoclave oxidation of 4-methylpyridine was also carried out in the 

presence of both iron(ll)- and iron(lll)-containing catalysts. The reaction 

mixtures were analysed by GC-MS techniques using instrument 1 and 

temperature programme 1 for the analysis of the iron(ll)-catalysed reaction 

mixtures, and temperature programme 2  for the analysis of the iron(lll)- 

catalysed reaction mixtures. The observations made, together with structural 

assignments, are summarised in Table 6 , and Figure 6  represents a possible
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pathway for the formation of the oxidation products indicated in the table 

below.

Table 6  Oxidation products arising from the iron catalysed autoclave oxidation 

of 4-methylpyridine

Component tR RMM Proposed structure

Fe(ll) Fedlh

16* 26.97 - 184 4-methyl-2-(4-

pyridylmethyl)pyridine

38 21.91 - 182 c/s-1,2-bis-(4-

pyridyl)ethene

17 35.35 30.80 182 trans- 1,2-bis(4-

pyridyl)ethene

19* 26.49 - 123 2-hyd roxymethyl-4-

methylpyridine

20* 15.79 12.38 121 4-methylpyridine-2-

carboxaldehyde

21* 24.13 - 109 2-hydroxy-4-

methy I pyridine

22 14.01 10.62 107 pyridine-4-

carboxaldehyde 

10 7.11 - 79 pyridine

23 10.76 7.85 60 acetic acid

39 - 7.70 45 formamide

indicates that proposed structure has not been proved by comparison with the 

authentic substance
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Figure 6
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The first observation to be made from Table 6  is that the range of oxidation 

products is more extensive when an iron(ll)-containing catalyst is used in the 

oxidation of 4-methylpyridine. This is in contrast to those observations made in 

the iron-catalysed autoclave oxidation of 2 -methylpyridine.

Component 16 was first observed as an oxidation product in the uncatalysed 

autoclave oxidation of 4-methylpyridine. The structure of this component was 

earlier suggested to be 4-methyl-2-(4-pyridylmethyl)pyridine> being formed as 

a result of a reaction involving radical substitution - Scheme 7. This component
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was fairly resistant to oxidation as it was observed at and was still present 

a tT 4 .

Components 38 and 17 were identified, by comparison with standards, as 

being the cis- and trans- forms of 1,2-bis-(4-pyridyl)ethene, respectively. 

Component 17 was identified in the oxidation reactions involving the use of 

each of the iron catalysts, but in both reactions, these compounds were 

destroyed in the course of the oxidation reaction as they were not identified at 

T4 .

The formation of components 19 and 20 was also noted in the uncatalysed 

process. As indicated in 2.2.2. earlier, these components are thought to be 

formed from the oxidation of a saturated dimeric structure, such as 4-methyl-2- 

(4-pyridylmethyl)pyridine 16. The oxidation of 16 could occur by initial loss of a 

pyridine ring and then the oxidation of the alkyl chain to generate 2 - 

hydroxymethyl-4-methy I pyridine 19 first, followed by the further oxidation of the 

alcohol to generate 4-methylpyridine-2-carboxaldehyde 20.

Component 21, with a relative molecular mass of 109, was observed in the 

oxidation reaction involving iron(ll). This component had also been observed in 

the uncatalysed autoclave oxidation reaction of 4-methylpyridine, and its 

structure was suggested as being 2-hydroxy-4-methylpyridine, arising via 

hydroxyl radical substitution at the pyridine ring of 4-methylpyridine, as seen in 

Scheme 8 .

Pyridine-4-carboxaldehyde 22 was observed as an oxidation product in both 

reactions during the initial stages. Acetic acid 23 was also formed in both 

cases and this is an expected oxidation product under such conditions. The 

oxidation of 4-methylpyridine, in the presence of iron(ll), generated pyridine 10



and this could have been formed by a decarboxylation process similar to that 

seen in the autoclave oxidation of 2-methylpyridine in 2.1.2. (b). The formation 

of formamide 39 was observed in the iron(lll)-catalysed reaction, indicating 

that destruction of the pyridine ring has occurred.

2.3.2. The use of copper containing catalysts

The autoclave oxidation of 2-, 3-, and 4-methylpyridine was carried out in the 

presence of three types of copper-containing catalysts. The first was copper(ll) 

sulphate (Cu(II)a ), the second was a mixture of copper(ll) sulphate and 

hydrogen peroxide (Cu(II)b ) which is presumed to behave in a similar fashion 

to Fenton's reagentO^), and the third was a mixture of copper(l) chloride and 

hydrogen peroxide, which is termed a Fenton-like reagent(^).

2.3.2.1. 2-Methvlpyridine

The autoclave oxidation of 2-methylpyridine in the presence of all three 

catalytic systems generated a wide range of oxidation products. They were 

investigated using GC-MS techniques and temperature programme 2 . The 

autoclave oxidation reactions involving copper(ll)/\ were analysed using 

instrument 1 and the other two copper catalysed reactions were analysed 

using instrument 2. The observations made are summarised in Table 7, and 

Figure 7 represents a possible pathway for the formation of those oxidation 

products indicated in the table below.
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Table 7 Oxidation products arising from the copper catalysed autoclave 

oxidation of 2 -methylpyridine

Component tR RMM Proposed structure

CumiACuMBCum

26 19.32 184 2 J2,-dimethyl-4,4'-

bipyridine

4 “ “ 23.09 182 c/s-1 ,2 -bis-(2 - 

pyridyl)ethene

5 26.03 26.17 182 trans-1 ,2 -bis-(2 - 

pyridyl)ethene

40* - 19.09 18.03 170 2-methyl-4-(4-pyridyl)

pyridine

28* - 20.43 19.06 170 2 -(2 -pyridylmethyl)

pyridine

41 - 16.16 - 156 2 ,2 '-bipyridine

42 19.75 19.24 18.17 156 4,4-bipyridine

29* 18.76 18.14 17.09 123 2 -hyd roxymethyl-6 - 

methylpyridine

30* 9.94 8.17 8.05 1 2 1 6 -methylpyridine-2 -

carboxaldehyde

31 13.20 11.56 - 109 2 -hyd roxymethy I pyridi ne

33* - 17.00 16.10 109 4-hydroxy-2- 

methy I pyridine

8 “ 18.31 17.28 109 2 -hyd roxy-6 - 

methylpyridine

9 9.35 7.42 7.31 107 pyridine-2 -

carboxaldehyde
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10 4.77 3.17 3.13 79 pyridine

23 7.50 6.34 6.52 60 acetic acid

indicates that proposed structure has not been proved by comparison with the 

authentic substance

Figure 7
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The first observation to be made from Table 7 concerns the extent of the

oxidation products formed in all of the copper catalysed reactions. The only

saturated dimeric structure observed of relative molecular mass 184 (26) was

formed in the copper(ll)B-catalysed autoclave oxidation at T q. 2,2'- Dimethyl-
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4,4'-bipyridine 26 was also observed in the iron(lll)-catalysed oxidation of 2- 

methylpyridine and therefore must have been formed via a similar process to 

that seen in Scheme 9. The formation of component 26 in the copper(ll)B- 

catalysed reaction is again an indication that some form of radical chemistry is 

taking place. Unsaturated dimeric structures in the form of cis- 4 and trans- 6

1 ,2 -bis-(2 -pyridyl)pyridine were observed both here and in the earlier iron 

catalysed autoclave oxidation reactions.

Components 40 and 28 were formed in both the copper(ll)B- and copper(l)- 

catalysed oxidation reactions and they were thought to arise as a result of the 

oxidation of related dimeric structures. For example, 2,2l-dimethyl-4l4'- 

bipyridine 26, which was observed as an oxidation product in the copper(ll)B- 

catalysed oxidation reaction, would account for the formation of 2-methyl-4-(4- 

pyridyl)pyridine 40 via loss of a methyl group.

Scheme 15

However, as observed earlier in the iron-catalysed oxidation of 2- 

methylpyridine, component 40 could have been formed via a radical 

substitution reaction occurring between the appropriate methylpyridyl radical 

and pyridine as shown in Scheme 15a.
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Scheme 15a
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The product 2-(2-pyridylmethyl)pyridine 28 could have been formed via similar 

processes to those seen in Scheme 15 and 15a. If a mechanism similar to that 

shown in Scheme 15 took place, then the loss of a methyl group from 2-methyl- 

6-(2-pyridylmethyl)pyridine 24 would have occurred. Component 24 was not 

observed as an oxidation intermediate here but may have been formed and 

destroyed under the oxidising conditions to give 28. If a mechanism similar to 

that shown in Scheme 15a took place involving radical reactions, then the 

radical substitution reaction would have been similar to that seen earlier in 

Scheme 10a.

Although components 28 and 40 possessed the same apparent molecular ion, 

their mass spectral fragmentation patterns were very different. The mass 

spectrum of 2-Methyl-4-(4-pyridyl)pyridine 40 exhibited a base peak at m/z 

156, indicating the formation of the stable fragment ion shown below.



The mass spectrum of 2-(2-pyridylmethyl)pyridine 28 exhibited a base peak at 

m/z 169 indicating the formation of a different stable fragment ion, represented 

below.

-i +

Both 28 and 40 were formed as oxidation intermediates during the initial 

stages of the reaction.

Two components 41 and 42 were formed during the oxidation reaction and 

both had the same apparent relative molecular mass of 156. Component 41 

was only formed in the copper(ll)B-catalysed reaction. The structure of 41 was 

identified as 2 ,2 '-bipyridine by comparison of mass spectral data and t r  with 

those of the standard material - Appendix 7; both exhibited a base peak at m/z 

156. This structure could have been formed via the destructive oxidation of a 

dimer such as 2,2,-dimethyl-6,6'-bipyridine 27. The latter is not observed as an 

oxidation intermediate in the copper catalysed reactions but, again, this is not 

evidence that it was not formed at an early stage.

2,2-Bipyridine could also have been formed via a radical coupling reaction 

occurring between two pyridyl radicals as shown in Scheme 16.
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Scheme 16
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4,4'-Bipyridine 42 was formed in all three copper-catalysed oxidation reactions 

and this could have been formed from the continued destructive oxidation of 40  

by loss of a further methyl group.

Scheme 16a

Component 42 could also have been formed via a radical coupling reaction 

taking place between pyridyl radicals, as shown above in Scheme 16. 

However, a coupling reaction between the radical indicated below would have 

been required in order to form 4,4-bipyridine.

H
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Components 29 and 30 were also observed as oxidation intermediates in all 

three copper catalysed autoclave oxidation reactions. 2-Hydroxymethyl-6- 

methylpyridine 29 and 6-methylpyridine-2-carboxaldehyde 30 were also 

formed in the iron catalysed oxidation of 2-methylpyridine. The mechanism of 

their formation is likely to be the same, arising from the oxidation of 2 -methyl-6 - 

(2-pyridylmethyl)pyridine 24 - Scheme 11. However, in all three copper 

catalysed reactions, component 24 was not observed as an intermediate.

Components 31, 33, and 8 all have the same relative molecular mass of 109. 

Component 31 was identified as 2 -hyd roxymethy I pyridine and was found in 

both copper(ll)-catalysed reactions. The other two components were thought to 

be related isomeric hydroxy(methyl)pyridines as they possessed similar mass 

spectral fragmentation patterns. 4-Hydroxy-2-methylpyridine 33 and 2-hydroxy-

6 -methylpyridine 8  were also observed in the iron-catalysed oxidation 

reactions, probably arising from hydroxyl radical substitution at the pyridine 

ring of 2-methylpyridine - Scheme 12.

Components 9, 10, and 23 were observed in all three copper-catalysed 

reactions and also in some of the iron catalysed reactions discussed earlier. 

Pyridine-2-carboxaldehyde 9 is an expected oxidation product due to the 

expected ease of oxidation of the methyl group attached to the pyridine ring. 

The formation of pyridine 10 has probably occurred as a result of the 

decarboxylation of pyridine-2 -carboxylic acid, another expected oxidation 

product. Acetic acid 23 is a common product under the WAO conditions 

imposed during the autoclave oxidation.

101



2.3.2.2. 3-Methvlpvridine

The autoclave oxidation of 3-methylpyridine was carried out in the presence of 

three copper-containing catalysts and the reaction mixtures were analysed 

using GC-MS techniques and temperature programme 2. The autoclave 

oxidation reactions involving copper(ll)A were analysed using instrument 1 and 

the other two copper catalysed reactions were analysed using instrument 2 . 

Those observations that were made are summarised in Table 8 , and Figure 8  

represents a possible pathway for the formation of those oxidation products 

indicated in the table below.

Table 8  Oxidation products arising from the copper catalysed autoclave 

oxidation of 3-methylpyridine

Component tp  RMM Proposed structure

CumjACuOllBCuffi

43*

44*

45*

34*

46*

36

23.50

29.25 -

21.09

22.51

23.10

17.38 -

184

184

170

170

170

109

S^'-dimethyl^^'-

bipyridine

5-methyl-2-(3-

pyridylmethyl)pyridine

5-methyl-2-(2-pyridyl)

pyridine

2-(3-pyridylmethyl) 

pyridine

4-(3-pyridylmethyl)

pyridine

3-hydroxymethylpyridine
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47* 19.56 - 109 3-hydroxy-5-

methy I pyridine

37* - 20.54 18.07 109 2-hydroxy-5-

methylpyridine

48* - 21.07 - 109 4-hydroxy-3-

methylpyridine

14 11.24 10.27 9.36 107 pyridine-3-

carboxaldehyde

10 - 3.41 3.18 79 pyridine

1 1  - 11.24 - 59 acetamide

‘ indicates that proposed structure has not been proved by comparison with the 

authentic substance
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Figure 8
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Compared with the uncatalysed and iron-catalysed oxidation reaction, a much 

greater variety of oxidation products was observed for the copper catalysed 

oxidation of 3-methylpyridine. Components 43, and 44 both represent the 

presence of saturated dimeric structures which were first observed at the 

beginning of the process at T-j, and they were also observed as oxidation 

products at T4 . None of these structures were observed in any of the other 

autoclave oxidation reactions studied involving 3-methylpyridine as the 

substrate. Both of these components exhibit very different mass spectra.
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Component 44 is thought to occur as a result of radical substitution reaction 

occurring at the pyridine ring of the parent substrate - Scheme 17.

Scheme 17

Component 44 was identified as 5-methyl-2-(3-pyridyl)pyridine (Appendix 8 ) 

since its mass spectrum exhibited a base peak at m/z 106, indicating the 

formation of the stable fragment below.

An alternative structure which would also be expected to give rise to a 

fragment ion at m/z 106 is 1 ,2-bis-(3-pyridyl)ethane - Appendix 8 .

However, the authentic substance gives rise to a stable fragment ion at m/z 92 

and the structure of this ion is shown below.

+

1,2-bis-(3-pyridyl)ethane
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Therefore the probable structure of component 44 is as indicated in Table 8 .

Component 43 is also thought to be formed by a radical reaction, but instead of 

radical substitution taking place, radical coupling could be responsible for this 

product. The formation of methylpyridyl radicals required for radical coupling 

reactions is very similar to the mechanism displayed earlier in Scheme 9. On 

the formation of such radicals, the production of S.S'-dimethyl^^'-bipyridine 

43 is possible - Scheme 18.

Scheme 18

1. rad ical coupling

I kxT

Components 45, 46, and 34 are possibly formed as a result of the oxidation of 

the saturated dimeric structures such as component 43 observed above in 

Scheme 18. Loss of a methyl group has occurred to generate the structures 

indicated below in Scheme 19, and all of these components exhibit the same 

apparent molecular ion at m/z 170 - Appendix 9.
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Scheme 19
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Although the precursor to component 46, 3 -methyl-4 -(3 -pyridylmethyl)pyridine, 

was not observed as an oxidation product, this is not conclusive evidence that 

it had not been formed at some stage during the oxidation reaction. Under 

those oxidising conditions adopted, the oxidation of such a structure may have 

occurred quickly to give component 46.

Components 34, 45, and 46 may also have been formed via radical reactions. 

Components 34, and 46 will have been formed by a mechanism similar to that 

seen in Scheme 13a. Component 45 will have required the formation of the 

radical shown below which could then itself undergo a radical substitution 

reaction with pyridine, as this is an observed oxidation product.

HoC.

‘ 1ST

Components 45 and 46 both possessed similar mass spectra in that the only 

stable fragment ion observed was in the region of the apparent molecular ion 

at m/z 170. However, component 34 had a mass spectrum which contained a
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stable fragment at m/z 169 indicating the formation of the stable fragment 

shown below.

All of the oxidation products discussed so far have only been observed in the 

oxidation of 3-methylpyridine where copper(ll)B was used as the catalyst. 

However, the oxidation reactions involving the other two catalytic systems did 

generate other oxidation products. Various components which all have the 

same relative molecular mass of 109 were observed. Component 36 was 

identified as 3-hydroxy methyl pyridine by comparison with the authentic 

substance, as both contained a stable fragment ion at m/z 108. The other 

structures were thought to be formed as a result of hydroxyl radical substitution 

occurring at the pyridine ring of the parent substrate, as indicated in Scheme 

14, to form 3-hydroxy-5-methy I pyridine 47, 2-hydroxy-5-methylpyridine 37, and 

4-hydroxy-3-methy I pyridine 48. Components 47, 37, and 48 all possessed 

similar mass spectra which exhibited apparent molecular ions at m/z 109 and a 

stable fragment ion at m/z 80.

An oxidation product common to all oxidation reactions was pyridine-3- 

carboxaldehyde 14, an expected oxidation product under these conditions. 

Pyridine 10 was formed in two of the catalysed oxidation reactions, copper(ll)B 

and copper(l), probably as a result of decarboxylation of pyridine-3-carboxylic 

acid, similar to that observation made earlier for the autoclave oxidation of 2 - 

methy I pyridine (2.2.1. (b)). For the copper(ll)B-catalysed reaction, acetamide 

11  was formed indicating that ring destruction may have taken place.
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2.3.2.3. 4-Methvlpyridine

The autoclave oxidation of 4-methylpyridine was carried out in the presence of 

just two of the copper containing catalysts, copper(ll)Aand copper(ll)B- The 

oxidation products were investigated using GC-MS techniques and 

temperature programme 2. The autoclave oxidation reaction catalysed by 

copper(ll)A was analysed using instrument 1 and the copper(ll)B catalysed 

reaction was analysed using instrument 2. The observations made are 

summarised in Table 9, and Figure 9 represents a possible pathway for the 

formation of the oxidation products indicated in the table below.

Table 9 Oxidation products arising 

oxidation of 4-methylpyridine

Component tp

Cu(I1)a  CuM b

49* - 21.27

16* 23.10 22.20

50 - 28.35

17 30.54

51* - 23.01

52* - 23.05

from the copper catalysed autoclave

RMM Proposed structure

184 4-methyl-3-(4-

pyridylmethyl)pyridine 

184 4-methyl-2-(4-

pyridylmethyl)pyridine 

184 1,2-bis-(4-pyridyl)ethane

182 frans-1,2-bis-(4-

pyridyl)ethene 

170 3-(4-pyridylmethyl)

pyridine

170 2-(4-pyridylmethyl)

pyridine
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19* 22.42 - 123 2-hyd roxymethyl-4-

methylpyridine

53 - 24.51 123 3-hydroxy methy 1-4-

methyl pyridine

20* 12.28 12.08 121 4-methylpyridine-2-

carboxaldehyde

21* - 20.14 109 2-hydroxy-4-

methylpyridine

54* - 23.03 109 3-hydroxy-4-

methylpyridine

22 10.54 10.06 107 pyridine-4-

carboxaldehyde

10 4.90 3.18 79 pyridine

23 7.65 6.32 60 acetic acid

11 - 10.24 59 acetamide

39 7.44 - 45 formamide

indicates that proposed structure has not been proved by comparison with the 

authentic substance
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Figure 9

H 17

CH, CH,
63 .c h 2o h

c h 3 /

62

O lN CH2

/

CH,
19

c h 2o h

20

“OH

QHO
22

CO OH

23

10
CH3 COOH

11
c h 3 c o n h 2

HCONH2 3 9

CHO

The copper(ll)B-catalysed autoclave oxidation of 4-methylpyridine generated a

more extensive range of oxidation products than the copper(ll)A-catalysed

reaction. Components 49, 16, and 50 were all identified as being dimeric in

structure due to the fact that they all exhibited apparent molecular ions at m/z

184. Component 50 was identified as 1,2-bis-(4-pyridyl)ethane as, on

comparison with the standard material, both exhibited base peaks at m/z 92 -

Appendix 3 & 10. This structure will have been formed by a radical coupling

reaction as seen earlier in Scheme 7. Component 16 was observed as an

oxidation intermediate in both of the copper-catalysed reactions studied. It was
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also observed as a product in the uncatalysed and iron-catalysed autoclave 

oxidation reaction of 4-methylpyridine. Its structure has therefore been 

suggested as being 4-methyl-2-(4-pyridylmethyl)pyridine and its formation 

would have occurred as a result of a reaction involving radical substitution as 

indicated in Scheme 7 also. Component 49 is thought to be another dimeric 

structure and due to the fact that 16 and 49 both have very similar mass 

spectra in that both exhibit stable fragment ions at m/z 106 and m/z 78, 49 is 

thought to be an isomer of 16, for example, 4-methyl-3-(4- 

pyridylmethyl)pyridine, as shown in Scheme 7. All of the saturated dimeric 

structures were observed as oxidation intermediates as early as Tg, and they 

were still present at T4  illustrating their stability under such conditions. In the 

copper(ll)A-catalysed reaction fra/?s-1,2-bis-(4-pyridyl)ethene 17 was observed 

at To but it was oxidised under the autoclave conditions as it was not detected 

amongst the oxidation products at T4 .

Components 61, and 52 were both detected as products in the copper(ll)B- 

catalysed oxidation reaction of 4-methylpyridine. Both of these structures could 

have been formed by the destructive oxidation of dimeric structures such as 

components 16 and 49 formed in the copper-catalysed oxidation of this 

methylpyridine. The structures of 51 and 52 can be accounted for by 

considering the destruction of 16 and 49 resulting in loss of a methyl group in 

the following way.
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Scheme 20
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However, both components 51 and 52 could have been formed via a radical 

substitution reaction occurring between methylpyridyl radicals and pyridine as 

pyridine was observed as an oxidation product. The mechanism for this 

possible reaction is represented in Scheme 20a.

Scheme 20a

Components 19 and 20 were observed in earlier reactions involving the 

oxidation of 4-methylpyridine and their structures are thought to be 2-hydroxy- 

4-methylpyridine 19 and 4-methyl-2-carboxaldehyde 20 respectively, formed

10
1 . ra d ic a l substitu tion
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as a result of the oxidation of dimeric structures such as 16. Their formation 

was illustrated earlier in 2.3.1.3. The oxidation process involves 4-methyl-2-(4- 

methylpyridyl)pyridine 16 undergoing destruction resulting in loss of a methyl 

group and the resulting alkyl chain undergoes further oxidation to give 

component 19 followed by further oxidation to form 20. These components 

were observed as oxidation products in both of the copper catalysed reactions 

being studied here. Component 63 had a similar mass spectrum to component 

19 but it had a different tR . Therefore this component could have arisen via the 

oxidation of component 49 as shown below in Scheme 21.

Scheme 21

4-Methyl-3-(4-methylpyridyl)pyridine has undergone destructive oxidation 

involving loss of a pyridine ring and then the subsequent oxidation of the alkyl 

chain to give component 53.

The copper(ll)B-catalysed oxidation reaction generated components 2-

hydroxy-4-methylpyridine 21 and 3-hydroxy-4-methylpyridine 64 and their
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formation was first observed at T^. Both of the components have the same 

relative molecular mass of 109 and exhibited similar mass spectra in that both 

showed stable fragment ions at m/z 80. Component 21 had been observed 

earlier as an oxidation product in the iron(ll)-catalysed oxidation reaction of 4- 

methy I pyridine. It was thought to be an intermediate formed as a result of 

hydroxyl substitution occurring at the pyridine ring of the substrate, as shown 

in Scheme 8. Component 54 is thought to be an isomer of 21 and its mode of 

formation is suggested in Scheme 22 below.

Scheme 22

Pyridine-4-carboxaldehyde 22, pyridine 10, and acetic acid 23 were formed in 

both of the copper catalysed reactions. Acetamide 11 and formamide 39 were 

also observed in each of the reaction mixtures being studied, and their 

formation is possible evidence of ring destruction.

2.3.2.4. Summary

The catalysed autoclave oxidation of 2-, 3-, and 4-methylpyridine has 

produced an extensive array of oxidation products. Some of these compounds 

are common to both uncatalysed and catalysed oxidation reactions, whereas 

others are formed as a direct result of the presence of the catalysts. A  general 

observation is that the presence of both the iron and the copper catalysts, in 

each of the reactions studied, generates an extensive array of oxidation 

products, in comparison with the uncatalysed reactions. The formation of
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dimeric structures indicates that, again, free radical chemistry is occurring in all 

of the catalysed oxidation reactions, as does the formation of structures such 

as 2-hydroxy-4-methylpyridine 21. This is also the case in the uncatalysed 

autoclave reactions carried out earlier. However, the formation of the 

appropriate pyridinecarboxaldehyde in each of the catalysed reactions is 

evidence that other types of oxidation reactions are taking place.

In contrast to the uncatalysed autoclave oxidation of 3 -methylpyridine, the 

catalysed reactions appear to have proceeded much further in all of the 

reactions studied as a greater array of oxidation products is observed in all 

cases.

2.4. Comparisons between the Uncatalvsed and Catalysed WAO of 2-. 3. 

and 4-Methvlpyridines

Each of the autoclave oxidation reactions studied has been discussed and the 

oxidation products observed have been summarised and comparisons, where 

possible, have been made. The measurement of the COD values for each of 

the reaction mixtures before and after WAO is, however, a standard method for 

identifying the degree of oxidation that has taken place in any reaction. It is 

therefore interesting to compare those COD values obtained after oxidation 

has taken place in order to establish the effect of the catalyst adopted, in terms 

of destroying the organic content, and how each catalyst compares with each 

other. COD data was provided by Leigh Environmental who carried out each of 

the autoclave oxidation reactions.
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Table 10 % COD reduction values for both the uncatalysed and catalysed 

autoclave oxidation reactions of 2-, 3-, and 4-methylpyridine

2-MethvlDvridine 3-MethvlDvridine 4-Methvlovridine
No catalyst 25.6 0 37.5

Fe(ll)/H?0? 28.6 40.5 25.8

Fe(lll)/H?0? - - -

Cu(ll) 49.4 16.3 47.5

Cu(ll)/H?0? 46.8 2 0 .0 50.0

Cu(l) 43.0 6 .0

On comparing those results obtained for the oxidation of 2-, and 4- 

methylpyridine, the presence of the copper(ll) containing catalysts achieved 

the best % COD reduction results. The data associated with 3 -methylpyridine, 

however, did not bear any resemblance to the other two substrates in this 

respect. The presence of a catalyst did improve the autoclave oxidation of this 

methylpyridine, but here the iron containing catalyst appeared to be more 

efficient than the copper ones.

Unfortunately, no COD data are available for any of the Fe(lll)/H202 catalysed 

autoclave reactions of each of the methylpyridines. However, from the results 

that are available, it would appear that in order to get an appreciable COD 

reduction for a simple mixture of 2-, 3-, and 4-methylpyridine, a mixture of 

iron(ll) and copper(ll) in the presence of hydrogen peroxide should be used. 

This compares well with the work reported by Chowdbury et al which 

established that under WAO conditions, a mixture of iron(ll) and copper(ll) in 

the presence of hydrogen peroxide produced an efficient catalytic systemO^) 

for the oxidation of various organic substances.
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2.5. Future work

The study so far has investigated each of the oxidation reactions using GC/MS 

techniques. However, it would appear that this analysis has not provided a full 

picture regarding the products of oxidation. Further investigation using LC/MS 

techniques, initially using the method developed for separation using HPLC 

(2 .1 .3.), would be appropriate to complete this study and identify the presence 

of involatile products formed in the oxidation process.

The WAO process is thought to proceed in a radical fashion with hydroxyl 

radicals initiating the process. Some of the products observed from the 

oxidation of 2-, 3-, and 4-methylpyridines support this theory. However, it may 

be of use to confirm this idea conclusively by allowing the autoclave oxidation 

reactions discussed to proceed in the presence of a radical trap (Chapter 3, 

section 3.5.6.). The effect of each of the catalytic systems has been 

considered with reference to COD values. This value represents the oxidisable 

organic content that remains after oxidation is complete. Quantitatively 

determining the amount of starting material i.e. the methylpyridines remaining 

after oxidation would also lend support to the investigation regarding the 

effectiveness, if any, of the oxidation process taking place (Chapter 3, section

3.3.).
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Chapter 3
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Oxidation Reactions of Methylpyridines 
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Atmospheric Pressure



Chapter 3 - Fenton and Related-Catalysed Oxidation Reactions of

Methylpyridines at Ambient Temperature and Atmospheric Pressure

The oxidation of 2-, 3-, and 4-methylpyridines was carried out at room 

temperature and atmospheric pressure using various catalyst systems. The 

catalyst systems were all metal-containing and related to the Fenton system, 

and to those that had been used in the autoclave oxidation reactions detailed 

in Chapter 2. The experimental conditions used in each of the cases studied 

were related to those used for the hydroxylation of benzene using Fenton's 

reagentO). Ito et al established optimum conditions for the effective formation 

of phenol from benzene and the criteria established were adopted in this study.

3.1. Experimental

All of the oxidation reactions considered in this chapter were carried out under 

aqueous conditions. Each catalyst system was prepared by first taking the 

appropriate amount of the metal salt (3.1.1.) and dissolving it in dilute sulphuric 

acid (25 cm3, 1 mol dm-3). The appropriate methylpyridine (0.01 mol) was then 

added to the aqueous acidic solution and the reaction vessel was purged with 

nitrogen by use of a nitrogen balloon. Then with ice cooling where necessary, 

a hydrogen peroxide mixture was added dropwise. The hydrogen peroxide 

mixture contained hydrogen peroxide (0.1 mol, 6  or 30% w/v solution in water) 

together with dilute sulphuric acid (25 cm3, 1 mol dm-3) and the volume of this 

mixture was made up to 85 cm3  by the addition of water. This was done since, 

initially, different concentrations of hydrogen peroxide in water, supplied by 

Aldrich, were used. The concentrations used included a 6 % w/v solution and a 

30% w/v solution of hydrogen peroxide in water. The aim was therefore to 

ensure that all reactions were carried out in the same volume so that results 

might be more comparable. Each of the oxidation reactions was allowed to
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continue for a period of time which ranged from 30 minutes to 24 hours, and 

the appropriate time was recorded accordingly.

3.1.1. Catalysed Oxidation Reactions

Various catalyst systems have been used in the study discussed in this 

chapter. They included mixtures that have been suggested in the literature®  

and which proved to be effective under the autoclave conditions discussed in 

Chapter 2. Other catalytic systems that had also been suggested in the 

literature as having oxidising capabilities were also s t u d i e d ® .  The catalyst 

systems that were used are indicated below: -

Iron(ll) sulphate (1x10"2  mol)/hydrogen peroxide

Iron(lll) sulphate (1 x1 0 "2  mol)/hydrogen peroxide

Copper(ll) sulphate (1x10"2  mol)/hydrogen peroxide

Iron (II) sulphate, copper(ll) sulphate (1x10- 2  mol)/hydrogen peroxide

Titanium(lll) chloride (1x10"2  mol)/hydrogen peroxide

Vanadium(IV) sulphate (1x10‘ 2  mol)/hydrogen peroxide

Iron(ll) sulphate (1x10"2  mol)/ ammonium persulphate

The oxidation of each of the methylpyridines was studied using each of these 

catalysts. The results, together with information from the literature, led to the 

investigation of other oxidation reactions. This included carrying out the 

Fenton catalysed oxidation reactions of 2-, 3-, and 4-methylpyridines in the 

presence of TEMPO, a radical trap, and EDTA, a complexing agent, 

respectively. The oxidation of each of the methylpyridines was also carried out 

using ozone as the oxidising system. The results of these latter reactions will 

be discussed, at the end of this chapter, but sample preparation and analysis 

was the same for all catalysed oxidation reactions considered.

122



3.1.2. Sample Preparation

After the reaction time was complete, sample preparation involved altering the 

pH of the reaction mixture, where required, to neutral by the addition of sodium 

hydroxide (2 mol dm-3). The insoluble metal salts that formed were filtered off 

and the remaining aqueous mixture was extracted with either dichloromethane 

or diethyl ether (4 x 100 cm3). The organic layers were combined and dried 

using magnesium sulphate, and the extract was evaporated to approximately 2  

cm3  under reduced pressure. The dichloromethane/diethyl ether-insoluble 

products remaining in the aqueous phase were then isolated by removing the 

excess water on a rotary evaporator. The residue that then remained was 

extracted with methanol.

3.1.3. Sample Analysis

The analysis of the oxidation products formed in all of the reactions considered 

in this chapter involved the use of both Gas Chromatography-Mass 

Spectrometry (GC-MS) and High Performance Liquid Chromatography (HPLC) 

techniques. The instruments and conditions that were used are identical to 

those found in Chapter 2, section 2.1.3.

3.1.4. Summary

All of the catalysed oxidation reactions considered in this chapter contain 

unchanged starting material at the end of each reaction, in different amounts. 

The amount remaining was determined quantitatively in some of the reactions 

considered, so that direct comparisons could be made between each of the 

catalysts used. Details concerning quantitative analysis procedures will 

appear, where appropriate, in this chapter.
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From GC/MS analysis, the oxidation products that were formed in each 

reaction were either identified by comparison with authentic substances, or 

possible structures were suggested from the molecular ions and fragmentation 

patterns observed in their mass spectra. The observations made for each of 

the reactions are summarised and discussed in the sections that follow in this 

chapter.

It is also important to note, at this point, that different GC temperature 

programme ramps and different instruments were used to investigate these 

oxidation reactions, and hence aid the determination of the nature of the 

oxidation products formed in each case. Therefore, any differences noted in 

retention time values for the same compounds have to be considered with 

reference to the precise analytical conditions used in the analysis of each of 

the samples. Hence, more reliable comparisons can be made between the 

products of oxidation formed by each of the methylpyridines in the various 

reactions investigated.

3.2. The Catalysed Oxidation of 2-, 3-. and 4-Methvlpyridines

3.2.1. Fenton's Reagent and Fenton-Related Reagents

3.2.1.1. 2-Methvlpvridine

a) Analysis by GC-MS

The initial study involved the oxidation of 2-methylpyridine using Fenton's 

reagent as the catalyst. The oxidation reactions were carried out over time 

periods of 30 minutes, 2 hours and 24 hours, respectively, and the oxidation 

products observed in each reaction are summarised in Table 1 below. Figure 1

124



represents a possible pathway for their formation. For the 2 hour and 24 hour 

reactions, instrument 1 was used for the analysis; for the 2  hour reaction 

temperature programme 2 was adopted and for the 24 hour reaction 

temperature programme 1 was used. The 30 minute reaction was analysed 

using temperature programme 2  on instrument 2 .

Table 1 - Oxidation products arising from the Fenton-catalysed oxidation of 2- 

methylpyridine

Component tp RMM Proposed Structure

0.5hr 2hr 24hr

1* 15.56 14.81 -

2 - 16.13 -

3 18.01 16.63 -

4* 18.35 17.07 -

5* 16.32 15.12 -

6 6.52 -

7 5.27 5.76 11.41

8 - - 15.54

* indicates that proposed structure 

the authentic substance

184 2 ^'-dimethy 1-2,4-

bipyridine 

184 2-methyl-6-(2-

pyridylmethyl)pyridine 

184 1,2-bis-(2-pyridyl)ethane

184 2,2,-dimethyl-4,4'-

bipyridine 

109 4-hydroxy-2-

methylpyridine 

107 pyridine-2-

carboxaldehyde 

60 acetic acid

59 acetamide

not been proved by comparison with
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Figure 1
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From the table it appears that allowing the reaction to continue for 24 hours 

takes the reaction almost to completion in that the only oxidation products 

observed were acetic acid and acetamide. Acetic acid is an expected oxidation 

product as attack on the acid by a hydroxyl radical *OH generates the radical 

•CH 2 COOH which is then reduced back to the starting compound by the 

iron(ll) present in the mixture(^).

Allowing the reaction to continue for only 30 minutes is sufficient time for the 

reaction to give an extensive range of oxidation products. This included 

several oxidation products that all exhibited an apparent molecular ion at m/z 

184 and some of these structures were still observed after a 2 hour period. 

Their formation would presumably occur via a similar process to that occurring 

in the catalysed autoclave reactions considered in Chapter 2 , as components 

2, 3 and 4 were all observed in the iron(lll) catalysed autoclave oxidation of 2- 

methylpyridine.
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Components 2 and 3 were identified as 2-methyl-6-(2-pyridylmethyl)pyridine 

and 1 ,2 -bis-(2 -pyridyl)ethane respectively by comparison with the authentic 

standards that had been previously prepared. Such structures will have been 

formed via radical reactions taking place which are represented in Scheme 1 

below.

Scheme 1 

Radical coupling

Q
‘N CH2

Q .N ^CH2

1,2-bis-(2-pyridyl)ethane 3

Radical substitution

2 -methyl-6 -(2 -pyridylmethyl)pyrid i ne 2

Components 1 and 4 will also have been formed via a radical process. The 

formation of 2,2'-dimethyl-4,4'-bipyridine 4 was represented in Scheme 9 in 

Chapter 2, where a radical coupling reaction was responsible for the formation 

of 4. The formation of component 1 will have occurred in a similar way to this, 

except that the radical coupling reaction will have occurred between two 

different radicals as shown below.
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Scheme 2

1

H3c

+
h3c ^ ^ n

[O ]

H H CH3

Component 5 was observed in both the 30 minute and 2 hour reactions. This 

component exhibited an apparent molecular ion at m/z 109 and it was also 

observed as an oxidation product in the iron- and copper-catalysed autoclave 

oxidation reactions. The formation of this component is evidence of the 

presence of hydroxyl radicals •OH as the structure of 5 indicates that this 

radical has undergone a substitution reaction at the pyridine ring of the 

substrate, 2-methylpyridine - Scheme 3.

Components 6 , 7, and 8  are expected oxidation products. Component 6  was 

identified as pyridine-2 -carboxaldehyde which has formed as a result of the 

oxidation of the methyl group attached to the pyridine ring in 2 -methylpyridine. 

Components 7 and 8  were identified as acetic acid and acetamide 

respectively. Their presence indicates that ring destruction has taken place 

and that the reaction is moving towards complete oxidation of the ring system.

Scheme 3

OH

4-hyd roxy-2-methyl 
pyridine
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b) Analysis bv HPLC

The identification of involatile oxidation products that may have been formed in 

the Fenton catalysed oxidation of 2-methylpyridine requires the use of HPLC 

techniques. As in the autoclave oxidation reactions studied in Chapter 2, an 

expected oxidation product is pyridine-2-carboxylic acid. Therefore, analysis of 

the oxidation reaction that had been left for 24 hours was carried out to 

determine if the acid was present as an oxidation product.

The HPLC method that is outlined in Chapter 2, section 2.1.3. was used to 

analyse the 24 hour reaction and no sample preparation was required. The 

chromatogram obtained only contained two large peaks (tp = 3.09 and 5.75 

mins), the latter being identified as the acid, pyridine-2-carboxylic acid 9 by 

spiking the sample with a small amount of the standard - Appendix 11.

9

N COOH

An extra peak was not observed in the chromatogram despite the addition of 

the standard, confirming that the peak at tp=5.75 is due to the presence of 

pyridine-2-carboxylic acid being formed as an oxidation product. The identity of 

the other significant component (tp = 3.09 mins) has not yet been determined.

The detection of pyridine-2-carboxylic acid as an oxidation product after a 24 

hour reaction time period is in contrast with the autoclave oxidation reaction. It 

would seem that under the Fenton oxidation conditions at room temperature, 

the carboxylic acid is not undergoing the decarboxylation process observed in 

the autoclave, which leads to the formation of pyridine. It is significant that 

pyridine was not detected as an oxidation product under the Fenton conditions
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and that a significant amount of the acid was detected at the end of the 

catalysed reaction.

3.2.1.2. 3-Methvlpyridine

a) Analysis by GC-MS

The oxidation of 3-methylpyridine was carried out using Fenton's reagent as 

the catalytic system and the reaction was monitored over time periods of 2  and 

24 hours, respectively. The oxidation reaction carried out for 24 hours was 

analysed using instrument 1 and temperature programme 1 , whereas the 2  

hour oxidation reaction was analysed using instrument 2  and temperature 

programme 2. The oxidation products observed have been assigned structures 

by comparison with either standard materials, or by consideration of mass 

spectral data and they are summarised in Table 2 below. Figure 2 represents a 

possible pathway for their formation.

Table 2 - Oxidation products arising from the Fenton-catalysed oxidation of 3- 

methylpyridine

Component tp RMM Proposed Structure

2hr 24 hr

10* 19.43 27.48 184 3-methyl-5-(3-

pyridylmethyl)pyridine 

11 19.73 27.93 184 1,2-bis-(3-pyridyl)ethane

12* 14.43 20.58 109 3-hydroxymethylpyridine

13* 17.00 23.38 109 2-hydroxy-5-methylpyridine

14 8.91 14.80 107 pyridine-3-carboxaldehyde
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7 5.67 60 acetic acid

8 15.37 59 acetamide

* indicates that proposed structure has not been proved by comparison with 

the authentic substance

The first observation to be made from the Fenton catalysed oxidation of 3- 

methylpyridine is that allowing the oxidation to proceed for 24 hours does not 

significantly affect the range of oxidation products formed. Components 10 and 

1 1  were observed in both reactions, exhibiting the same apparent molecular 

ion. Component 11 was identified by comparison with the standard as being 

1,2-bis-(3-pyridyl)ethane,

Figure 2

.c h 2o h

11

CH3 COOH
.COOH

CH3 CONH2

7
CH3 COOH

1,2-bis-(3-pyridyl)ethane 
131



since the mass spectrum of 11 contained a stable fragment ion at m/z 92 

shown below.

CH2
+

This compares with the standard material, and 11 is thought to be formed via a 

radical coupling reaction similar to that seen in Scheme 1, earlier in this 

chapter.

Component 10 also exhibited an apparent molecular ion at m/z 184 but this 

component possessed a different mass spectrum to that for component 1 1 , as 

here no stable fragment ion at m/z 92 was observed. The structure of this 

component was thought to arise as a result of a radical reaction also, but this 

time a radical substitution reaction is responsible for the formation of 3-methyl-

5-(3-pyridylmethyl)pyridine 10, as indicated in Scheme 4.

Components 12 and 13 both have a relative molecular mass of 109, but they 

have different mass spectra when compared with each other - Appendix 2 &

12. Component 12 was considered to be 3-hydroxymethylpyridine as its mass 

spectrum compared with that of the standard material, 2 - 

hydroxymethylpyridine, both exhibiting a stable fragment ion at m/z 108 and

Scheme 4
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the molecular ion at m/z 109. Component 13, however, was thought to be 2- 

hydroxy-5-methylpyridine, resulting from a substitution reaction occurring 

between the pyridine ring of 3-methylpyridine and a hydroxyl radical. The mass 

spectrum of this component contained a stable fragment ion at m/z 80 but, in 

this case, no stable fragment was observed at m/z 108. The molecular ion did, 

however, appear again at m/z 109. These components were also observed as 

oxidation products in the autoclave oxidation reactions of 3 -methylpyridine 

discussed in Chapter 2.

Pyridine-3-carboxaldehyde 14 was formed in both of the reactions being 

considered here, forming as a result of oxidation of the methyl group in the 

parent substrate. Ring destruction products were also generated in the form of 

acetamide 8  and acetic acid 7.

b) Analysis by HPLC

The identification of involatile oxidation products formed in the Fenton 

catalysed oxidation of 3-methylpyridine requires the use of HPLC techniques. 

The analysis was carried out using those conditions outlined in Chapter 2, 

section 2.1.3. and, as was the case for the oxidation of 2-methylpyridine using 

Fenton's reagent, pyridine-3-carboxylic acid 15 was detected as an oxidation 

product.

COOH

15
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3.2.1.3. 4-Methvlpyridine

a) Analysis by GC-MS

The Fenton-catalysed oxidation of 4-methylpyridine was carried out over two 

time periods of 2 and 24 hours, respectively. Both reactions were analysed 

using instrument 1 , with the two hour reaction having been analysed using 

temperature programme 1 and the 24 hour reaction having been analysed 

using temperature programme 2. The oxidation products have been assigned 

structures by comparison with the authentic standard or by consideration of 

mass spectral data and they are summarised in Table 3 below. Figure 3 

represents a possible pathway for their formation.

Table 3 - Oxidation products arising from the Fenton-catalysed oxidation of 4- 

methylpyridine

Component

2hr 24hr

RMM Proposed Structure

16 19.75 - 184 4,4'-dimethyl-2,2,-bipyridine

17 20.15 - 184 1,2-bis-(4-pyridyl)ethane

18* 14.70 16.73 109 4-hyd roxymethy I py rid i ne

19* 16.27 - 109 2-hydroxy-4-methyl pyridine

20 8.29 - 107 pyridine-4-carboxaldehyde

7 5.72 11.27 60 acetic acid

8 9.68 15.37 59 acetamide

* indicates that proposed structure has not been proved by comparison with

the authentic substance
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Figure 3
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From the table it can be seen that allowing the oxidation of 4-methylpyridine to 

proceed for only a short time period (2  hours) produces a greater range of 

oxidation products than is observed at the end of a 24 hour period. This 

includes components 16 and 17 which are dimeric structures, thought to arise 

as a result of radical reactions taking place. The structures of both components 

were identified by comparison with the authentic standard material. Component 

17 is thought to arise as a result of a radical coupling reaction to form 1,2-bis- 

(4-pyridyl)ethane as shown in Scheme 5.

Scheme 5



The mass spectrum for this component contained a stable fragment ion at m/z

92 due to the formation of the fragment ion indicated below,

CH2

and this compares with the standard material.

Component 16 is also thought to arise as a result of a radical coupling reaction 

but the coupling reaction occurs via radicals that are formed as shown in 

Scheme 6 . The radicals that are generated then couple together to form 4,4'- 

dimethyl-e.e'-bipyridine 16 and the mass spectrum of this component 

compares with that of the standard material as both exhibit a base peak at m/z 

184 and their retention times match also.

Scheme 6
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Components 18 and 19 both have the same relative molecular mass of 109 but 

both have different mass spectra when compared with each other, and 

therefore they have different structures. Component 18 has been identified as 

4 -hydroxymethylpyridine by comparison of the mass spectrum with that of 2 - 

hydroxymethylpyridine. Although the comparison substance is not identical to 

component 18, they are very similar and their mass spectra are alike in that 

both give rise to a base peak at m/z 108 and a stable fragment ion at m/z 80. 

Component 19 was thought to be 2-hydroxy-4-methylpyridine forming as a 

result of hydroxyl substitution occurring at the pyridine ring of the parent 

substrate, as shown in Scheme 8  in Chapter 2. This component was also 

observed as a product in the autoclave oxidation reactions involving 4- 

methylpyridine.

Components 20, 7, and 8  were identified as pyridine-4-carboxaldehyde, acetic 

acid, and acetamide, respectively, all of these being expected oxidation 

products.

b) Analysis by HPLC

The identification of any involatile oxidation products again requires the use of 

HPLC techniques. Using the experimental procedure outlined in Chapter 2, 

section 2.1.3. for analysis by HPLC, the 24 hour Fenton catalysed oxidation of

4-methylpyridine was analysed. Pyridine-4-carboxylic acid 21 was detected as 

an oxidation product as was the case for the Fenton catalysed oxidation of 2-, 

and 3-methylpyridines.
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The subsequent decarboxylation of the acid is not expected under the 

conditions of room temperature and atmospheric pressure used in this study. 

Pyridine was not observed in the GC/MS study of this system.

3.2.1.4. Summary

The oxidation of each of the methylpyridines using Fenton's reagent generates 

an extensive array of oxidation products. The structure of these products 

resembles those seen earlier in Chapter 2, which arose from the autoclave 

oxidation reactions. Since the structures of the products are very similar to 

those seen in Chapter 2, it would seem that the mechanisms for their formation 

must be similar i.e. there is some form of free radical chemistry occurring in the 

reactions where Fenton's reagent is used to oxidise each of the 

methylpyridines. This assumption is based largely on the formation of a range 

of dimeric structures in each of the reactions studied here. The Fenton- 

catalysed oxidation reactions do appear to be time dependent. This is 

apparent especially in the oxidation of 2-, and 4-methylpyridines, as allowing 

the reaction to proceed overnight produces a greater degree of destructive 

oxidation as fewer oxidation products are observed.

Other Fenton-like systems were considered in the oxidation of each of the 

methylpyridines e.g. a mixture of iron(lll) and hydrogen peroxide, copper(ll) 

and hydrogen peroxide, and a mixture of iron(ll), copper(ll) and hydrogen 

peroxide. All of these oxidising systems generated an extensive range of 

oxidation products very similar to those described above. However, in order to 

draw any comparisons between each of them, quantitative analysis was 

carried out using the decrease in concentration of the appropriate 

methylpyridine during each of the oxidation reactions as an indication of the 

effectiveness of the system used.
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3.3. Quantitative Analysis of the Fenton-Catalysed and Related Oxidation

Reactions of 2-, 3-, and 4-Methvlpyridine

Quantitative analysis was carried out using GC/MS techniques. The initial part 

of the study involved establishing if the GC/MS system responded to changes 

in concentration of 2-, 3-, and 4-methylpyridine in a linear fashion. To do this 

calibration graphs were plotted by use of appropriate standards. In the 

preparation of the standards, each of the methylpyridines was supplied by 

Aldrich, diethyl ether used for extraction was supplied by Prolabo and the 

water used was distilled.

3.3.1. 2-Methvlpvridine - Preparation and Analysis of Standards

Two stock solutions were prepared

Stock Solution A -1  cm^ of 2-methylpyridine in 100 cm^ of water 

Stock Solution B - 0.4 cm^ of 3-methylpyridine in 100 cm^ of water 

where stock solution B was the internal standard used.

The standards were then prepared by taking set quantities of each of the stock 

solutions, A and B, and adding them to water to give 10 cm^ aliquots. The 

volumes of solution A and B used are found in the table below.
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Table 4

Stock A/cm3 Stock B/cm3
0.1 1.0
0.2 1.0
0.4 1.0
0.6 1.0
0.8 1.0
1.0 1.0

Each of the standards was prepared in duplicate and extracted with 2 x 5  cm3  

of diethyl ether. The organic layers were combined and dried using magnesium 

sulphate and each of the extracts were analysed by GC/MS.

GC/MS Analysis

The conditions for analysis that were used here are detailed in Chapter 2, 

section 2.1.3. with instrument 1 being used for the analysis. The temperature 

programme adopted involved a ramp of 70°C to 90°C @ 2°C/min.

Results

Table 5

Cone, of 2- 
methvlDvridine x 
10-3 /mol dm3 - (A)

Ratio - 2-methvlDvridinefA) 
/3-methvlDvridine (B)

% RSD

1 .0 1 0.196 7.0

2.03 0.435 1 2 .0

4.06 0.869 7.8

6.08 1.236 4.7

8 .1 1 1.655 3.6

10.13 2.183 8 .8
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The values are represented graphically below and the graph is found to be a 

straight line with a correlation coefficient of 0.9987

Figure 4
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This shows that the GC/MS system does respond linearly to changes in the 

concentration of 2-methylpyridine.

3.3.2. 3-Methvlpyridine - Preparation and Analysis of Standards

The preparation and analysis of standards for 3-methyl pyridine was carried out 

in exactly the same way as for those in 3.3.1. above, except that here the 

internal standard (stock solution B) used was 2-methylpyridine.
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Results

Table 6

Cone, of 3- 
methvlDvridine x 

10"3/m oldm 3 -(A )

Ratio - 3-methvlovridine (A) 
/2-methvlovridine fB)

% RSD

1.03 0.266 4.4

2.06 0.490 5.8

4.12 1.044 4.3

6.17 1.498 5.4

8.11 2.033 3.4

10.30 2.499 1.2

The values are represented graphically below and the graph is found to be a 

straight line with a correlation coefficient of 0.9995

Figure 5
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This shows that the GC/MS system does respond linearly to changes in 

concentration of 3-methyl pyridine
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3.3.3. 4-Methvlpvridine - Preparation and Analysis of Standards

The preparation and analysis of standards was carried out again in exactly the 

same way as for those in 3.3.1. above, and again the internal standard (stock 

solution B) used was 2-methylpyridine.

Results

Table 7

Cone, of 4- 
methvlDvridine 
x 10"3 /mol dm3 - (A)

Ratio - 4-methvlovridine (A) 
/2-methvlDvridine (B)

% RSD

1.03 0.473 6.3

2.06 1.123 4.6

4.12 2.222 9.6

6.17 3.101 10.6

8.11 4.120 7.1

10.30 5.295 4.6

The values are represented graphically below and the graph is a straight line 

with a correlation coefficient of 0.9993.
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Figure 6
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This shows that the GC/MS system responds linearly to changes in the 

concentration of 4-methylpyridine.

3.3.4. Quantitative Analysis of the Fenton-Catalysed and Related Oxidation 

Reactions of 2-, 3-. and 4-Methvlpvridines - Experimental

The oxidation reactions were carried out exactly as outlined in 3.1. earlier in 

this chapter. Sample preparation for the quantitative analysis of each of the 

reaction mixtures involved taking 1 cm^ of the reaction mixture after a set time, 

spiking it with 1 cm3 of the internal standard stock solution B and then making 

up to 10 cm3 aliquots with water. The 10 cm3 aliquot was neutralised by the 

addition of sodium hydroxide (2 mol dnr^), extracted with 2 x 5  cm^ of diethyl 

ether, and dried using magnesium sulphate. Each of the samples was then 

analysed five times using GC/MS techniques and the GC conditions used for 

the analysis of the standards in 3.3.1. above were adopted.
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3.3.5. Results

The tables below list each of the different Fenton and related catalytic systems 

that were considered for the oxidation of 2-, 3-, and 4-methylpyridines over two 

different time periods. The tables include the ratio values observed between 

the remaining methyl pyridine and the appropriate internal standard used, that 

had both been extracted using diethyl ether ( 2 x 5  cm3). The associated 

methyl pyridine concentration values, indicating the amount of each of the 

methylpyridines remaining after the oxidation reaction was complete, were then 

determined from the appropriate calibration graph. These values are 

expressed as a percentage of the initial concentration in each of the tables 

below.

Table 8 - 2-Methvlpyridine

Catalvst Ratio
Values

% RSD Concentration of 
2-MethvlDvridine 
x 10-3/ mol dnrr3

2-Methvlovridine 
Remainina (%)

Fefin/HoOo 

30 minutes - 1.018 2.1 4.85 49.6
24 hours - 0.0556 5.1 0.33 3.3

Fefin/CufllVHoOo 
30 minutes 1.479 1.7 7.02 71.8
24 hours 0.162 4.2 0.83 8.5

CU(II)/H909 
30 minutes 1.264 3.1 6.01 61.5
24 hours 1.449 5.8 6.88 70.3

Fefllh/HoOo 

30 minutes 1.350 3.5 6.44 66.0
24 hours 0.0988 4.9 0.53 5.4
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Table 9 - 3-Methvlpyridine

Catalvst Ratio % RSD Concentration of 3-MethvlDvridine
Values 3-MethvlDvridine 

x 10"3/ mol dm"3
Remainina (%)

Fe(IIVHo09 

30 minutes - 1.528 3.1 6.21 63.5

24 hours - 0.675 3.0 2.72 27.8

Fefm/CudlVHoOo 

30 minutes 1.929 5.1 7.85 80.3

24 hours 0.985 4.0 3.99 40.8

Curm/HoCb 
30 minutes >2.375 5.1 >9.68 >99.0

24 hours 1.661 2.0 6.76 69.1

Feilll)/H?0 ? 

30 minutes >2.375 2.4 >9.68 >99.0

24 hours - - <0.1 <1.0

Table 10 - 4-Methvlpyridine

Catalyst Ratio % RSD Concentration of 4-MethvlDvridine
Values 4-MethvlDvridine 

x 10“3/mol dm"3
Remainina (%)

FeOD/HoOo 

30 minutes - 1.396 1.3 2.70 27.6
24 hours - - - <0.1 < 1.0

FefllVCufllVhbO

2 1.302 1.6 2.51 25.7
30 minutes - - <0.1 < 1.0
24 hours

CUOD/H9 O9  

30 minutes 2.066 1.9 4.01 41.0
24 hours 1.742 3.1 3.37 34.5

Fefim/FbCb 

30 minutes 1.629 3.9 3.15 32.2
24 hours 0.0799 7.3 0.11 1.2
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3.3.6. Summary

From the results in Tables 8, 9, and 10, it appears that under the oxidising 

conditions indicated 4-methylpyridine is the most easily oxidised, with the 

Fenton system and the iron(ll)/copper(ll)/hydrogen peroxide mixture being the 

most effective. As is expected, 3-methylpyridine is the least reactive of all the 

methylpyridines discussed here. However, the iron(lll)/hydrogen peroxide 

mixture seems to be an efficient catalyst when used to oxidise this substrate as 

using this catalyst gives rise to the destruction of more than 99% of the initial 

concentration of the 3-methylpyridine over a 24 hour period.

The oxidation of 2-methylpyridine was found to be efficient for all of the 

oxidising systems over a 24 hour period, except for the copper(ll)/hydrogen 

peroxide catalyst which did not produce a degree of destruction of more than 

90% of the initial 2-methylpyridine concentration over this time period. The 

copper(ll)/hydrogen peroxide catalyst system was also found to be the least 

efficient catalyst when used to oxidise both 3-, and 4-methylpyridines.

It seems, from the oxidation of 2-, 3-, and 4-methylpyridines, that both iron(ll) 

and iron(lll), in the presence of hydrogen peroxide, are efficient catalysts. 

However, copper(ll) has been shown to be less effective and in the presence 

of the Fenton catalyst, no improvement in the performance of the new catalyst 

(iron(ll)/copper(ll)/hydrogen peroxide) formed is obvious under the conditions 

used in this study.

The performance of each of the catalysts investigated here could be 

established further by investigating the kinetics associated with each system. A 

preliminary study was therefore carried out which involved a consideration of 

the kinetics associated with Fenton's reagent using 2-methylpyridine as the
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substrate. An understanding of the kinetics is an important way of optimising a 

system as further information is gained regarding the mechanism of the 

process.

3.4. A Kinetic Study of the Fenton-Catalvsed Oxidation of 2-Methvlpvridine

The course of oxidation of 2-, 3-, and 4-methylpyridines using Fenton's reagent 

as a catalyst has been discussed. This investigation has involved the analysis 

of oxidation products formed in the process in order to provide an insight into 

the mechanism of oxidation occurring under such conditions. From the 

literature, a limited range of kinetic studies has revealed that the wet air 

oxidation (WAO) of organics is found to be first order with respect to the 

substrate concentration(4)-(6).

Therefore, the study of the Fenton-catalysed oxidation reaction of 

methylpyridines has been extended to include a kinetic study, to establish if 

first order kinetics are being followed under the Fenton conditions used in the 

present study. An understanding of the kinetics of such reactions is important 

since it may provide a means of optimising the process. The rate-limiting 

factors in a reaction can be determined and hence more detailed mechanistic 

conclusions reached. Since Fenton's reagent was also considered as a 

catalyst in the WAO of each of the methylpyridines, it would seem appropriate 

that the kinetics associated with the use of this catalyst are investigated. 

Establishing the kinetic order for this reaction may provide information of 

significance with regard to the mechanism of the reaction, and ultimately lead 

to an improvement in the rate of the Fenton-catalysed oxidation under WAO  

conditions
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3.4.1. Experimental - Determination of the Rate Constant of the Fenton-

Catalysed Oxidation of 2-Methvlpyridine

In the initial study, the rate of the reaction was followed under pseudo first 

order conditions where the hydrogen peroxide and the metal salt were present 

in excess as follows.

A two fold excess of iron(ll) sulphate (0.02 mol) and a ten fold excess of 

hydrogen peroxide (0.1 mol) were used in the Fenton catalysed oxidation 

reaction which was followed over a 2 hour period (approx.). Several reactions 

were carried out, in order to determine the rate of the oxidation reaction, and 

this involved using different initial quantities of 2-methylpyridine in the range 

0.01 mol, 0.0097 mol, and 0.0086 mol of 2-methylpyridine. The observed rate 

constant for the Fenton-catalysed oxidation of 2-methylpyridine should remain 

constant irrespective of the initial concentration of the substrate if the correct 

rate law equation is established.

Each of the oxidation reactions was carried out in a thermostat bath held at 

25°C. The appropriate amount of 2-methylpyridine was dissolved in a mixture 

of dilute sulphuric acid (25 cm3, 1 mol dm-3) and iron(ll) sulphate (0.02 mol) 

and stirred by means of an overhead stirrer. The reaction mixture was 

suspended in the bath and allowed to reach 25°C. A hydrogen peroxide 

mixture was prepared which contained 0.1 mol of hydrogen peroxide (30% w/v 

solution in water), dilute sulphuric acid (25 cm3, 1 mol dm-3), and water (47 

cm3), and this was also suspended in the bath and allowed to reach the 

operating temperature of 25°C. After both mixtures had reached the constant 

temperature, the hydrogen peroxide mixture was added to the solution 

containing the 2-methylpyridine. The system was then immediately purged with 

nitrogen using a balloon, and the temperature of the reaction mixture quickly
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rose to approximately 35°C, but the heat was dissipated relatively quickly by 

the bath and the reaction mixture returned to a temperature of 25°C after 

approximately 7 minutes. The reaction was monitored by following the fate of 

2-methylpyridine, quantitatively, using GC/MS techniques.

3.4.1.1. Sample Preparation

At regular time intervals during the oxidation reaction, 1 cm3 samples of each 

of the reaction mixtures were taken and spiked with 1 cm3 of an internal 

standard stock solution, and made up to 10 cm3 aliquots with water. The 10 

cm3 aliquot was then extracted, after neutralisation with dilute sodium 

hydroxide (2 mol dm-3), with of diethyl ether ( 2 x 5  cm3) and the extracts were 

dried using magnesium sulphate. Each of the samples was then analysed 

using GC/MS techniques.

3.4.1.2. Sample Analysis

The analysis of each of the samples, taken from all of the oxidation reactions 

considered, involved using those GC conditions outlined in Chapter 3, section

3.3.1. and each of the samples was analysed 5 times.

3.4.1.3. Results

All of the results relate to the concentration of 2-methylpyridine remaining, 

after set time intervals, and these values were established from the use of the 

calibration graph that appeared in Chapter 3, section 3.3.1.
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3.4.1.3.1. Experiment 1 - Oxidation of 2-Methvlpyridine (0.01 moh using 

Fenton's Reagent at 25°C over the First 2 Hour Period

Table 1

Cone, of 2- 
methvlDvridine x

Time/minutes % RSD 2:
Methvlovridine

10“3 /mols dm"3 Remainina (%)
10.75 0 5.7 100.0

4.08 20 4.5 40.0

3.63 35 9.3 33.8

2.69 50 6.6 25.0

1.70 65 11.7 15.8

1.18 80 15.7 11.0

1.30 95 11.7 12.1

This table is represented graphically in Figure 1 below.

Figure 1

Time/minutes

cone
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The graph in Figure 1 shows a very sharp initial decrease in the concentration 

of 2-methylpyridine over the first 20 minutes followed by a much slower 

decrease in the concentration value over the remaining time of the reaction. 

The slight observed increase in the 2-methylpyridine concentration between 

the 8 0 ^  and 95^  minute cannot be classed as a real increase as a 10% error 

is allowed about each value. The concentration value obtained after 95 

minutes falls within the error band of the preceding value obtained after 80 

minutes. Therefore, it is assumed that the concentration of 2-methylpyridine 

does not change over this final time period i.e. the reaction has reached virtual 

completion.

The rate constant for this reaction was then determined by plotting a graph of 

ln(C0/C) against time, where C0 is the initial concentration of 2-methylpyridine 

used in the oxidation reaction and C is the concentration of the methylpyridine 

remaining after a set time. The values used to plot this graph can be found in 

Table 2.

Table 2

ln(C„/C) Time/minutes

0 0

0.97 20

1.09 35

1.39 50

1.84 65

2.21 80

2.12 95

This table of data is represented graphically in Figure 2.
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Figure 2
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The graph shown in Figure 2 gives an approximate straight line through the 

origin, allowing for the complexity of the mixture and experimental error, 

Therefore, it can be seen that the oxidation of 2-methylpyridine using Fenton's 

reagent as the catalyst is following a first order trend(^). Hence the rate of the 

reaction can be said to be proportional to the concentration of 2-methylpyridine 

to the first power.

Rate oc [2-methylpyridine]^

The rate constant, k, for this oxidation reaction can be determined from the 

gradient of the graph. The value for k in this case was found to be 0.0281 min-1.

The validity of this value was investigated by repeating the Fenton catalysed 

oxidation of 2-methylpyridine and keeping the concentration of all the reagents 

constant and in excess, except for the concentration of 2-methylpyridine. The 

same value for k should be obtained in each case.
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Hence, two more reactions were carried out where different initial 

concentrations of 2-methylpyridine were used, as discussed earlier in section

3.4.1.

3.4.1.3.2. Experiment 2 - Oxidation of 2-Methvlpvridine (0.00968 mol) 

using Fenton's Reagent at 25°C over the First 2 Hour Period

Table 3

Cone, of 2- 
methvlpvridine x 
10"3 /mol dm’3

Time/minutes % RSD 2-MethvlDvridine 
Remainina (%)

9.68 0 5.7 100

3.15 15 6.3 32.5

2.90 45 5.5 30.0

2.07 60 1.7 21.4

1.12 75 6.5 11.6

1.36 90 6.2 14.0

0.88 105 2.7 9.1

The data in this table are represented graphically in Figure 3 below.
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Figure 3
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The shape of this curve is very similar to that seen above in 3.4.1.3.1. as both 

contain the initial fall in the concentration of 2-methylpyridine. This is then 

followed by a more gradual decrease in concentration of the substrate over the 

remaining time of the reaction.

The rate constant for this reaction was calculated by determining the gradient 

of a plot of the ln(Co/C) against time, as in 3.4.1.3.1. above. The values used 

to plot this graph can be found in Table 4.
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Table 4

IniCnlC) Time/minutes

0 0

1.12 15

1.21 45

1.54 60

2.16 75

1.96 90

2.39 105

The data in this table are represented graphically in Figure 4.
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The graph shown in Figure 4 gives an approximate straight line through the 

origin, again allowing for the complexity of the mixture and experimental error. 

The oxidation reaction is still following first order kinetics and therefore the 

gradient of the graph corresponds to the rate constant for this reaction. The 

value for k was found to be 0.0250 min-^.
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3.4.1.3.3. Experiment 3 - Oxidation of 2-Methylpyridine (0.00860 mol)

using FentorTs Reagent at 25°C  over the First 2 Hour Period 

Table 5

Cone, of 2- 
methvlpvridine x 
10“3 /mol dm"3

Time/minutes % RSD 2-Methvlpvridine 
Remainina (%)

8.60 0 5.7 100

2.97 15 3.1 34.5

1.94 45 6.0 22.6

1.13 60 4.6 13.1

1.46 75 3.0 17.0

0.65 90 4.0 7.5

0.52 105 4.8 6.0

The data in this table are represented graphically in Figure 5.
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The shape of this graph is very similar to those graphs seen in Experiment 1 

(3.4.1.3.1.) and Experiment 2 (3.4.1.3.2.) above. Therefore, in order to
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determine the rate constant for this reaction, a plot of ln(C0/C) is again 

required. The data used to plot this graph can be found in Table 6.

Table 6

In(Co/Cl Time/minutes

0 0

1.06 15

1.48 45

2.03 60

1.77 75

2.58 90

2.81 105

These data are represented graphically in Figure 6 below. 
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This graph is following an approximate straight line, allowing for experimental 

error. Therefore the oxidation reaction is still following first order kinetics and

158



therefore the gradient of the graph corresponds to the rate of the rate constant 

for this reaction. The value for k was found to be 0.0286 min"1.

3 .4.1.3.4. Discussion

The three experiments above have dealt with the Fenton catalysed oxidation of 

2-methylpyridine. The data generated form each experiment were used to 

determine the rate constant for this reaction. The rate constants calculated 

from each experiment are listed below:- 

Experiment 1 - k = 0.0281 min"1 

Experiment 2 - k = 0.0250 min-1 

Experiment 3 - k = 0.0286 min~1

Therefore the pseudo first order rate constant value for the Fenton-catalysed 

oxidation of 2-methylpyridine was taken to be the average of these values and 

is therefore found to be 0.0272 min~1. Thus, under the conditions used, the 

rate determining step involves one molecule of 2-methylpyridine.

These experiments provided a rate constant value for the Fenton-catalysed 

oxidation of 2-methylpyridine. However, on considering Figures 1, 3, and 5, a 

constant observation was made from each plot concerning the initial fall in the 

concentration of 2-methylpyridine against time. Over the first 15-20 minutes of 

the reaction the 2-methylpyridine concentration falls by approximately half. 

However, over the remaining time of the reaction, the fall in concentration is 

more gradual. Hence, a study of the first 15-20 minutes of the Fenton- 

catalysed oxidation of 2-methylpyridine was required to provide some 

information as to the course of the oxidation reaction over this time period. The 

details of this study are highlighted in Experiment 4.
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3.4.1.3.5. Experiment 4 - Oxidation of 2-Methvlpyridine (0.01 moh using

Fenton's Reagent at 25°C over the First 30 Minute Period

This experiment was carried out by taking samples of the reaction mixture over 

shorter time intervals than those in experiments 1-3 above. This experiment 

used identical conditions to those used previously (section 3.4.1.) only here 

samples of the reaction mixture were taken at 2.5 minute intervals after 7.5 

minutes had elapsed. The samples were prepared for analysis, and GC/MS 

conditions used were the same as indicated earlier in section 3.4.1.1. and

3.4.1.2. respectively. The results from this experiment can be found in Table 7 

below.

Table 7

Cone, of 2- 
methvlpvridine x 10"3 
/mol dm“3

Time/minutes % RSD 2-MethvlDvridine 
Remainina (%)

10.75 0 5.7 100

5.29 7.5 5.6 49.2

4.51 10 9.0 42.0

4.57 12.5 7.2 42.5

4.87 15 3.3 45.3

4.45 20 9.8 41.4

4.46 22.5 5.1 41.5

3.93 27.5 6.0 36.6

3.11 30 4.4 28.9

These data are represented graphically below
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Figure 7
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The shape of this graph is very similar to those seen earlier in 3.4.1.3.1., 

3.4.1.3.2., and 3.4.1.3.3. in that the sharp initial decrease in the concentration 

of 2-methylpyridine is still apparent even though the first sample was taken 

after 7.5 minutes. It would seem that the Fenton catalysed oxidation of 2- 

methy I pyridine is half way to completion even after the first 7.5 minutes. A plot 

of ln(Co/C) was also carried out here and the data used to plot this graph can 

be found in Table 8.
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Table 8

ln(Cft/C) Time/minutes

0 0

0.71 j 7.5

0.87 10

0.86 12.5

0.79 15

0.88 20

0.88 22.5

1.01 27.5

1.24 30

These data are represented graphically in Figure 8 below.
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The observations made here prove that the initial stage (7 minutes) of the 

Fenton catalysed oxidation is very rapid and that the initial rise in temperature, 

over this time period, is probably aiding the rate of this oxidation. This would 

indicate that the Fenton-catalysed oxidation reactions are temperature
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dependent^). A rise in temperature of the reaction mixture would be expected 

to increase the rate of the Fenton-catalysed oxidation of 2-methylpyridine.

3.4.1.3.6. Summary

Thus, to summarise, the above kinetic study has shown a first order rate 

dependence of the oxidation of 2 -methylpyridine on the concentration of the 

heterocyclic substrate. In future studies, it will be necessary to establish the 

rate dependence of the reaction on the concentration of each of the other 

reagents used i.e. iron(ll) and hydrogen peroxide. Only then will a fuller picture 

of the rate determining step become clear.

3.5. Other Oxidising Systems

The oxidation reactions of each of the methylpyridines in this chapter has 

involved the use of both iron- and copper-containing catalysts. This is 

analogous to the autoclave oxidation reactions studied in Chapter 2 that 

involved the use of similar catalytic systems. However, there are several metal 

ions that are capable of interacting with hydrogen peroxide to produce a 

reagent that is capable of oxidising an organic system(^). They include 

vanadium (IV) and (V) and titanium (III) and all of these metal ions appear to 

form hydroxyl radicals in the presence of hydrogen peroxide.

The l i t e r a t u r e ( 3 )  also suggests other oxidising systems that involve radical 

chemistry. It has been postulated that the oxidising species in each of the 

metal ion/hydrogen peroxide catalysed oxidation reactions considered so far is 

the hydroxyl radical •OH. The action of a metal ion Mn+ on hydrogen peroxide 

gives rise to the «OH radical by loss of an electron from the metal ion. 

However, instead of using hydrogen peroxide as the source of oxygen, the use
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of ammonium persulphate was suggested as in the presence of a metal ion 

such as iron(ll), the following reaction is thought to occur:-

pe2+ + S2 O8 2- - »  Fe3+ + SO4 2- + *S 0 4- (1)

The sulphate radical anion •SO 4 " is supposed to initiate reactions in a very 

similar fashion to the hydroxyl radical *OH. It was therefore of interest to 

compare those observations made from reactions involving ammonium 

persulphate with those from a typical Fenton system.

Hence, the oxidation of 2-, 3-, and 4-methylpyridines was carried out using a 

mixture of vanadium (IV) sulphate and hydrogen peroxide, a mixture of 

titanium(lll) chloride and hydrogen peroxide, and a mixture of iron(ll) and 

ammonium persulphate, in amounts that were indicated earlier in 3.1.1. The 

experimental procedure for each of these oxidation reactions is outlined in 3.1. 

and the GC/MS conditions are discussed in Chapter 2, section 2.1.3.

3.5.1. Oxidation Reactions involving the use of Vanadium(IV)

3.5.1.1. 2-Methvlpvridine

The vanadium(IV) catalysed oxidation of 2-methylpyridine was carried out over 

time periods of 2 and 24 hours. Both reaction mixtures were analysed using 

instrument 1 and temperature programme 2. The oxidation products detected 

have been assigned structures by comparison with the authentic standard or 

by consideration of mass spectral data, and they are summarised in Table 11 

below. Figure 7 represents a possible pathway for their formation.
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Table 11 - Oxidation products arising from the vanadium(IV)-catalysed

oxidation of 2-methylpyridine

Component tR RMM Proposed Structure

2hr 24hr

1 * 14.70 14.73 184 2 I2'-dimethyl-2,4-bipyridine

2 16.03 - 184 2-methyl-6-(2-

pyridylmethyl)pyridine

22 10.68 - 109 2 -hydroxymethylpyridine

23 13.78 - 109 2-methylpyridine-N-oxide

6 * 15.05 15.25 109 4-hydroxy-2-methylpyridine

24 - 16.05 109 2-hydroxy-6-methylpyridine

25* - 16.34 109 5-hydroxy-2-methylpyridine

6  6.98 7.02 107 pyridine-2-carboxaldehyde

7 5.65 5.80 60 acetic acid

8  9.47 9.87 59 acetamide

* indicates that the proposed structure has not been proved by comparison 

with the authentic substance
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Figure 7
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The range of oxidation products formed is very similar to that formed in the 

Fenton-catalysed oxidation of 2-methylpyridine. Thus it is probable that the 

same mechanism of formation is occurring under both conditions i.e. some 

form of radical chemistry is taking place, probably as a result of the formation 

of hydroxyl radicals as the literature suggests(^). The oxidation process does 

not appear to be as efficient as the Fenton-catalysed reaction since, even after 

leaving the reaction for a 24 hour period, dimeric structures together with a 

range of hydroxy(methyl)pyridines are still observed.

Quantitative analysis was also carried out on this oxidation reaction using the 

experimental procedure outlined in 3.3. earlier in this chapter. The results from 

the analysis are indicated below. The ratio values observed between 2-
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methylpyridine and the internal standard were used to determine the 

concentration of 2 -methylpyridine remaining in each reaction by use of the 

appropriate calibration graph:-

Table 1 2

Catalvst Ratio
Values

% RSD Concentration of 
2 -MethviPvridine 

x 10"3/mol dm

2 -Methvlovridine 

Remainina (%)

V(IV)/H909  
30 minutes 0.919 1.3 4.39 44.9

24 hours 0.698 2 . 6 3.35 34.3

It would appear that the Vanadium(IV) catalysed oxidation reaction destroys 

approximately half of the 2-methylpyridine over the first 30 minutes of the 

reaction and that at this stage the reaction has almost reached completion. 

Over the remaining 23.5 hours, the concentration of 2 -methylpyridine 

remaining only falls from 4.39 x 10"3 to 3.35 x 10*3 mol dm_3.

3.5.1.2. 3-Methvlpyridine

The oxidation of 3-methylpyridine was also carried out using vanadium(IV) in 

the presence of hydrogen peroxide over time periods of 2 and 24 hours. Both 

reactions were analysed using instrument 1 and temperature programme 2  and 

the oxidation products formed were assigned structures which are summarised 

in Table 13 below. Figure 8  represents a possible pathway for their formation.
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Table 13 - Oxidation products arising from the vanadium(IV)-catalysed

oxidation of 3-methylpyridine

Component tp  RMM Proposed Structure

2hr 24hr

26* - 21.82 198 5-(3-pyridylmethyl)pyridine-2-

carboxaldehyde 

10* 19.45 19.38 184 3-methyl-5-(3-

pyridylmethyl)pyridine

11  - 19.57 184 1,2-bis-(3-pyridyl)ethane

12 14.36 14.27 109 3 -hydroxy methyl pyridine

13* - 17.07 109 3-hydroxy-5-methylpyridine

14 9.00 8.87 107 pyridine-3 -carboxaldehyde

7 5.56 5.48 60 acetic acid

8  - 9.58 59 acetamide

* indicates that the proposed structure has not been proved by comparison 

with the authentic substance
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Figure 8
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The range of oxidation products again resembles that seen earlier in the 

Fenton-catalysed oxidation of 3-methylpyridine. This would seem to indicate 

that they have been formed via the same mechanism, involving the 

intermediacy of hydroxyl radicals. However, an interesting observation was 

made in the formation of component 26 which was not detected in the Fenton- 

catalysed oxidation of 3-methylpyridine discussed earlier. This component is 

considered to be 6-(3-pyridylmethyl)pyridine-3-carboxaldehyde, on the basis of 

the mass spectral fragmentation pattern which exhibits stable fragment ions at 

m/z 120, 106, 92, and 78. This could imply that the molecule has fragmented 

according to the pathway indicated in Scheme 7.
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Scheme 7
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Component 26 could have formed as a result of radical substitution reaction 

occurring at the pyridine ring of pyridine-3-carboxaldehyde 14, also identified 

as an oxidation product. The radical required to undergo the substitution 

reaction is indicated below.

CH2

The oxidation of 3-methylpyridine, using vanadium(IV), does not appear to be 

as efficient as the 2 -methylpyridine oxidation using the same catalyst, as is 

expected. The range of oxidation products becomes more extensive when the 

oxidation of 3-methylpyridine is left for a longer time period.

Quantitative analysis was also carried out on both of the above reactions using 

the method outlined in 3.3. The results of this analysis are detailed in Table 14 

below where the ratio values observed between 3-methylpyridine and the
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internal standard were used to determine the concentration of 3-methylpyridine 

remaining. This was done by use of the appropriate calibration graph:-

Table 14

Catalyst Ratio
Values

% RSD Concentration of 
3-MethvlPvridine 
x 10-3/mol dm"3

3-Methvlovridine 
Remainina (%)

VHW HoOo  

30 minutes - 1.510 2.8 6.14 62.8
24 hours - 1.436 2.8 5.84 59.7

The vanadium(IV) catalysed oxidation reaction destroys approximately one 

third of the 3-methylpyridine initially present over the first thirty minutes of the 

reaction. However, it appears that at this stage the reaction has almost 

reached completion as over the remaining time of the oxidation process the 

concentration of 3-methylpyridine only falls from 6.14 x 10"3 to 5.84 x 10~3 mol 

dm-

3.5.1.3. 4-Methvlpyridine

The oxidation of 4-methylpyridine was carried out using vanadium(IV) and 

again the reaction was studied over time periods of 2 and 24 hours. The 

reaction mixtures were analysed using GC/MS techniques involving instrument 

1 and temperature programme 2. The oxidation products observed were 

assigned structures by comparison with the authentic substance or by 

consideration of mass spectral data, and they are summarised in Table 15 

below. Figure 9 represents a possible pathway for their formation.
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Table 15 - Oxidation products arising from the vanadium(IV)-catalysed

oxidation of 4-methyl pyridine

Component tR RMM Proposed Structure

2hr 24hr

16 19.64 - 184 4,4,-dimethyl-2,2'-bipyridine

18 14.58 - 109 4-hydroxymethylpyridine

19* 16.34 16.30 109 2-hydroxy-4-methylpyridine

20 8.23 8.22 107 pyridine-4-carboxaldehyde

7 5.50 60 acetic acid

8 9.48 9.48 59 acetamide

* indicates that proposed structure has not been proved by comparison with 

the authentic substance

Figure 9
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The range of oxidation products formed is, again, very similar to that formed in 

the Fenton-catalysed oxidation of 4-methylpyridine. The evidence for radical 

chemistry occurring when vanadium(IV) is present as a catalyst is provided by 

the formation of dimeric structures and hydroxy(methyl)pyridine components. 

The extent of oxidation of 4-methylpyridine seemed to have proceeded further 

over a 24 hour period than for 3-methylpyridine in that no dimeric structures 

were observed. This was confirmed by quantitative data on the amount of 4- 

methylpyridine remaining at various stages.

Quantitative analysis was carried out on this reaction mixture using the method 

outlined in 3.3. above. The results obtained are detailed below in Table 16, 

where the ratio values observed between 4-methylpyridine and the internal 

standard were used to determine the remaining 4-methylpyridine concentration 

values by use of the appropriate calibration graph:-

Table 16

Catalvst Ratio
Values

% RSD Concentration of 
4-Meth vl d vrid ine 
x 10"3/mol dm‘3

4-Methvlovridine 
Remaining (%)

V(IV}/H?Q? 

30 minutes 1.245 4.0 2.40 24.5
24 hours 1.016 3.0 1.95 19.9

The values indicated in this table show that the vanadium(IV)-catalysed 

oxidation of 4-methylpyridine is more efficient than the oxidation of both 2-, and 

3-methylpyridine using the same catalyst. However, on a similar note, the 

reaction appears to have reached completion after 30 minutes as leaving the 

reaction for a further 23.5 hours only results in the concentration of 4- 

methylpyridine falling from 2.40 x 10“3 to 1.95 x 10"3 mol dm"3.
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3.5.2. Oxidation Reactions involving the use of Titaniumflll)

The oxidation of 2-, 3-, and 4-methylpyridines was carried using titanium(lll) in 

the presence of hydrogen peroxide All of the reactions considered here were 

analysed using GC-MS techniques which involved the use of instrument 1 and 

temperature programme 2. The oxidation of 2-methylpyridine was considered 

first and this was carried out over time periods of 2 and 24 hours. The 

oxidation of the two other methylpyridines was investigated over a 24 hour 

period only.

The oxidation of 2-methylpyridine over a 24 hour period generated a mixture of 

oxidation products that included pyridine-2-carboxaldehyde 6, 2-

hydroxymethylpyridine 22, and acetic acid 7. No oxidation products were 

observed from the analysis of the 2 hour oxidation reaction. This is in contrast 

with all of the observations that have been made so far in connection with the 

catalysed oxidation of 2-methylpyridine. The oxidation of 3-methylpyridine over 

24 hours generated only 2-hydroxy-5-methy I pyridine 13 and the oxidation of 4- 

methylpyridine generated no oxidation products over the same time period. 

Thus, the titanium(lll)/hydrogen peroxide system would seem to be an 

inefficient catalyst system for the oxidation of alkylpyridines. This was 

confirmed by quantitative data on the amount of methylpyridine remaining at 

the various stages of the reaction.

Quantitative analysis was carried out on each of the titanium(lll)/hydrogen 

peroxide catalysed oxidation reactions involving 2-, 3-, and 4-methylpyridine 

as the substrate. The results are detailed below in Table 17, where the ratio 

values were used to determine the remaining methylpyridine concentration by 

use of the appropriate calibration graphs:-
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Table 17

Catalyst - 
Tiflll)/H909

Ratio
Values

% RSD Concentration
Values
x 10"3/mol dm"3

Methvlovridine 
Remainina (%)

2-Methvlovridine 

30 minutes 1.725 3.6 8.21 83.9

24 hours 1.660 4.5 7.90 80.8

3-MethvlDvridine 

30 minutes >2.375 2.4 >9.68 >99.0

24 hours 1.834 2.4 7.47 76.4

4-Methvlovridine 

30 minutes 1.931 3.8 3.75 38.3

24 hours 1.966 3.2 3.81 38.9

From this table it appears that 4-methylpyridine is destroyed in the presence of 

a titanium(lll)/hydrogen peroxide catalyst mixture, but allowing the oxidation 

reaction to proceed for the 24 hour period does not give rise to any further 

destruction of the methylpyridine. Also, on comparison of this data with all the 

other quantitative values obtained previously for the catalysed oxidation of 4- 

methylpyridine, the values obtained here for the titanium(lll)-catalysed 

oxidation indicate that this catalyst is not as efficient at destroying the 4- 

methylpyridine. The oxidation of both 2-, and 3-methylpyridine is not efficient 

either, when using a titanium(lll)/hydrogen peroxide mixture, as not even half 

of the initial concentration of the methylpyridines is destroyed in the oxidation 

reaction.

The analysis of the 4-methylpyridine reaction mixture did not identify the 

presence of any oxidation products. Although, from quantitative analysis, 4- 

methylpyridine appears to have undergone oxidation, the products formed, 

presumably the appropriate carboxylic acid, may not have been volatile 

enough for analysis using GC/MS techniques.
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3.5.3. Oxidation Reactions involving the use of Ammonium Persulphate

The oxidation of 2-, and 4-methylpyridine was carried out using iron(ll) 

sulphate in the presence of a ten-fold excess of ammonium persulphate. All of 

the reactions considered here were analysed using GC/MS techniques which 

involved the use of instrument 2 and temperature programme 2. The oxidation 

of these methylpyridines was considered over a 24 hour period only.

The analysis of the oxidation products generated from the oxidation of 2- 

methylpyridine revealed only pyridine-2-carboxaldehyde 6 and a significant 

amount of unchanged 2-methylpyridine. The oxidation of 4-methylpyridine 

under the same conditions generated no oxidation products that could be 

identified by GC/MS techniques.

Although no quantitative analysis was carried out here, it appears that using 

this catalyst system to oxidise both 2-, and 4-methylpyridine is inefficient as 

few oxidation products were observed. When a typical Fenton-catalyst was 

used for the oxidation of each of these methylpyridines, ring destruction 

products were observed after a 24 hour period and the relative amounts of 

these to unchanged starting material indicated that the reaction had proceeded 

significantly. This was not the case where ammonium persulphate was used 

instead of hydrogen peroxide. However, it may not be correct to assume that 

the oxidation of each of the methylpyridines will never be successful using 

such a system. The problem could be related to the relative amounts of each of 

the reagents used in the oxidation reaction, and further study may be 

necessary.

Chowdbury et al established in their work that certain concentrations of iron(ll) 

are required, in relation to the concentration of hydrogen peroxide used, in
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order to form free radicals at an effective rate(2). A similar scenario could 

therefore be possible in the oxidation reactions using ammonium persulphate. 

Although the Fenton's reagent used in the reactions discussed in this chapter 

has been shown to be effective at the concentrations adopted, a different 

concentration of reagents may be required in order to initiate an effective 

oxidation reaction when iron(ll) and ammonium persulphate are used as the 

catalyst. The reason for the inefficiency of this oxidation process may, 

however, be related to other factors and they are discussed in the summary 

below (3.5.4.).

3.5.4. Summary

There appear to be fundamental differences between the titanium(lll)/hydrogen 

peroxide, and iron(ll)/ammonium persulphate oxidising mixtures and other 

Fenton and related catalysed oxidation reactions. Sawyer et al(9) have 

suggested that the oxidising species generated by Fenton's reagent is not the 

hydroxyl radical •OH. The dominant reactant is said to be a complex involving 

the metal and therefore, in the systems discussed in this Thesis, this complex 

could be of the type LnFe^OOH(BH+). In the reactions studied in this Thesis, 

some of the methylpyridine can behave as a ligand (Ln) and the presence of 

acid will protonate some of the methylpyridine which can then behave as a 

base (BH+). If this is the case, then the differences which appear evident 

between titanium(lll) and other Fenton and related catalysed reactions maybe 

due to the formation of different types of complex. This argument may also be 

used to explain the different efficiencies that are evident from the quantitative 

analyses carried out on all of the catalysed oxidation reactions considered in 

this chapter.
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In order to contribute to the debate associated with the oxidising species 

responsible for the destruction of each of the methylpyridines, an investigation 

was carried out which involved the oxidation of 2-, 3-, and 4-methylpyridines in 

the presence of a complexing agent and a radical trap. The Fenton catalysed 

oxidation of 2-, 3-, and 4-methylpyridines was carried out first in the presence 

of ethylenediaminetetraacetic acid (EDTA), a complexing agent. The presence 

of EDTA will ensure that the iron(ll) present is complexedOO) and comparisons 

can therefore be made between the oxidation products that are formed with the 

complexing agent present and those formed in its absence. The Fenton 

catalysed oxidation of 2-, 3-, and 4-methylpyridines was then carried out in the 

presence of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), a radical trap.

Radicals, formed directly or indirectly from Fenton's reagent, will hopefully be 

trapped in the presence of this compound.

3.5.5. Catalysed Oxidation of 2-. 3-. and 4-Methvlpvridines using Fenton's 

Reagent in the presence of EDTA

The oxidation reactions were carried out using the same experimental 

procedure as that indicated in 3.1. The EDTA (0.01 mol) was added initially to 

the reaction mixture before the hydrogen peroxide solution and the appropriate 

methylpyridine. The oxidation reaction was investigated over time periods of 2 

and 24 hours, respectively, and the oxidation products detected have been 

assigned structures by comparison with the authentic standard or by

n 3u  in u m 3

O

TEMPO
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consideration of mass spectral data. The observations made have been 

summarised in the tables shown below.

Table 18 - Oxidation products arising from the Fenton-catalysed oxidation of 2- 

methylpyridine in the presence of EDTA

Component tR RMM Proposed Structure

2hr 24hr

27* 19.15 - 170 2-methyl-6-(2-pyridyl)pyridine

24 15.58 16.13 109 2-hydroxy-6-methylpyridine

25* - 17.15 109 5-hydroxy-2-methyl pyridine

22. 10.44 11.03 109 2-hydroxy methyl pyridine

6 6.32 6.40 107 pyridine-2-carboxaldehyde

7 5.13 7.19 60 acetic acid

8 9.25 9.31 59 acetamide

* indicates that proposed structure has not been proved by comparison with 

the authentic substance

Table 19 - Oxidation products arising as a result of the Fenton-catalysed 

oxidation of 3-methylpyridine in the presence of EDTA

Component tR RMM Proposed Structure

2hr 24hr

28 21.25 24.15 184 S.S'-dimethyl^^'-bipyridine

11 21.43 24.43 184 1,2-bis-(3-pyridyl)ethane

29* - 21.27 184 5-methyl-2-(3-pyridylmethyl)

pyridine
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30* - 23.49 123 2-hydroxymethyl-5-

methy I pyridine

12* 15.01 16.03 109 3-hydroxymethy I pyridine

13* - 20.02 109 2-hydroxy-5-methylpyridine

14 8.35 8.51 107 pyridine-3-carboxaldehyde

7 5.10 5.13 60 acetic acid

* indicates that the proposed structure has not been proved by comparison 

with the authentic substance

Table 20 - Oxidation products arising from the Fenton-catalysed oxidation of 4- 

methylpyridine in the presence of EDTA

Component tR RMM Proposed Structure

2hr 24hr

31* 21.17 - 123 2-hydroxy methyl-4-

methylpyridine

18 15.27 16.36 109 4-hydroxymethylpyridine

19* - 18.52 109 2-hydroxy-4-methylpyridine

20 7.51 8.14 109 pyridine-4-carboxaldehyde

7 4.59 - 60 acetic acid

* indicates that proposed structure has not been proved by comparison with 

the authentic substance

From the tables above it is apparent that there are similarities between the 

oxidation products formed here and those seen earlier in the Fenton-catalysed 

oxidation reaction in the absence of EDTA. The effect of complexing the iron 

only seems to be slowing down the oxidation process as a significant array of 

oxidation products are still observed after a 24 hour period for the oxidation
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reactions involving 2-, and 4-methylpyridines. This is in contrast to those 

Fenton catalysed oxidation reactions carried out in the absence of EDTA. 

Since there does not appear to be any effect on the mechanism of destruction 

of each of the methylpyridines with EDTA present, it would seem that the 

presence of complexed iron(ll) in a Fenton mixture is a possible scenario. The 

involvement of radical chemistry is still evident, however, as indicated by the 

formation of dimeric structures in the oxidation reaction involving 2- and 3- 

methylpyridine, and of hydroxy(methyl)pyridines in the oxidation of all of the 

substrates.

Quantitative analysis was carried out on the Fenton-catalysed oxidation of 

each of the methylpyridines in the presence of EDTA, over time periods of 30 

minutes and 24 hours. The results obtained are detailed below in Table 21, 

where the ratio values were used to determine the remaining concentration of 

each of the methylpyridines by use of the appropriate calibration graph:-

Table 21

Catalvst - 
FeflD/HoOo/EDT A

Ratio
Values

% RSD Concentration
Values
x 10'3/mol dm"3

Methvlovridine 
Remainina f%)

2-MethvlDvridine 

30 minutes - 0.981 1.7 4.70 48.1
24 hours - 0.938 2.7 4.49 45.9

3-Methvlovridine 

30 minutes - 1.545 2.1 6.28 64.2
24 hours - 1.314 4.0 5.33 54.5

4-Methvlovridine 

30 minutes - 1.031 4.3 1.98 20.2
24 hours - 1.071 3.2 2.06 21.1
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The presence of EDTA appears to bring the Fenton catalysed oxidation 

reaction to completion, in all of the cases studied, over the initial 30 minute 

period. Also, these results compare with those seen earlier in section 3.3.4. 

where the catalysed oxidation of 4-methylpyridine was seen to be the most 

efficient and the catalysed oxidation of 3-methylpyridine the least, when 

Fenton's reagent was used as the catalyst.

3.5.6. Catalysed Oxidation of 2-, 3-. and 4-Methvlpyridines using Fenton's 

Reagent in the Presence of TEMPO

The oxidation of 2-, 3-, and 4-methylpyridine was carried out in the presence of 

TEMPO and the oxidation of 2-methylpyridine was considered over time 

periods of 2 and 24 hours, respectively. The remaining methylpyridines were 

oxidised over a 24 hour period only. These oxidation reactions were carried 

out in the same way but on a smaller scale than the previous Fenton catalysed 

oxidation reactions discussed earlier in section 3.1.

3.5.6.1. Experimental

Each of the methylpyridines (0.001 mol) was added to a mixture containing 

iron(ll) sulphate (0.001 mol), TEMPO (0.0011 mol), and dilute sulphuric acid 

(2.5 cm3, 1 mol dm-3). A hydrogen peroxide mixture was then added, with 

stirring and ice bath cooling where necessary, under a nitrogen atmosphere. 

This mixture contained hydrogen peroxide (0.01 mol, 30% w/v solution in 

water), dilute sulphuric acid (2.5 cm3, 1 mol dm-3) and water (4 cm3). Sample 

preparation and analysis using GC/MS techniques were identical to those 

methods used in 3.1.2. earlier in this chapter and Chapter 2, section 2.1.3. 

respectively, except that for sample preparation, the extraction was carried out
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into diethyl ether (4 x 10 cm3). For GC/MS analysis, instrument 2 and 

temperature programme 2 were used.

3.5.6.2. Results

The products of oxidation of 2-methylpyridine over the two time periods (2 

hours and 24 hours) were analysed and, on comparison with those oxidation 

products detected in the Fenton-catalysed oxidation in the absence of TEMPO  

(3.2.1.1.) over a 2 hour period, a significant difference was observed. The 

oxidation reaction in the absence of TEMPO generated a range of oxidation 

products that included dimeric structures and hydroxy(methyl)pyridines which 

are all thought to arise via a free radical pathway. These structures are not 

detected in the oxidation reaction in which TEMPO has been introduced; 

instead a range of oxidation products is observed that have either apparent 

molecular ions of m/z 140 or mass spectra that contain stable fragment ions at 

m/z 140. The partial structure which has a relative molecular mass of 140 is 

shown below.

Hence, the components which contain a fragment ion at m/z 140 are thought to 

be structures where the TEMPO has combined with a radical species. It is 

important to note at this stage that the GC trace for those reactions, where 

TEMPO has been introduced, were very complex due to the presence of what 

are believed to be the TEMPO adducts. There was, however, evidence of ring 

destruction both in the presence and absence of TEMPO over a 24 hour period

h3CJ  L.CH3
H3C ' T y l X X H 3

TEMPO fragment
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which suggests that the process of oxidative ring destruction is possibly non­

radical in nature.

A similar picture was observed in the Fenton-catalysed oxidation of 3-, and 4- 

methylpyridines. The oxidation of 3-methylpyridine in the absence of TEMPO  

over a 24 hour period generated a range of oxidation products which have 

been discussed earlier in 3.2.1.2. Such products were not observed when 

TEMPO had been introduced into the reaction mixture. The only oxidation 

products that could be identified and compared with the previous reaction were 

pyridine-3-carboxaldehyde 14 and 3-hydroxymethylpyridine 12.

The oxidation of 4-methylpyridine over a 24 hour period in the absence of 

TEMPO gave rise to a mixture of oxidation products that did not include 

dimeric structures. Thus, it was not surprising to find that such compounds 

were also not present when the reaction was repeated in the presence of a 

radical trap such as TEMPO. The oxidation products that were detected 

included 4-hydroxymethylpyridine 18 and acetic acid 7, together with what 

again appear to be TEMPO adducts. This would again appear to suggest that 

the formation of products 18 and 7 could possibly be occurring via a non 

radical route.

3.5.6.3. Summary

The Fenton-catalysed oxidation of 2-, 3-, and 4-methylpyridines in the 

presence of a radical trap has generated some interesting points. The 

oxidation of 2-methylpyridine over a 2 hour period has been shown to form an 

interesting range of oxidation products thought to have been formed via radical 

reactions. This did not occur when TEMPO was present in the reaction
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mixture, which would seem to suggest that the presence of the radical trap was 

interfering with the usual radical-based oxidation process occurring.

The oxidation of 3-methylpyridine also provided interesting observations in that 

over a 24 hour period an extensive range of oxidation products is observed, 

some of which are thought to have been formed via radical reactions. The 

presence of TEMPO interfered with the formation of these products. The 

oxidation of 4-methylpyridine does not provide us with such a clear contrast in 

observations since the oxidation of 4-methylpyridine over a 24 hour period 

under Fenton conditions is very efficient and a significant degree of oxidation 

takes place. However, the observations made in the above study lend support 

to the proposal that free radical routes are significant in Fenton oxidation 

reactions of the methylpyridines, but also that non-radical pathways, 

analogous to Gif chemistry involving high oxidation state iron complexes, may 

be involved^1).

3.5.7. Oxidation of 2-. 3-. and 4-Methvlpvridine using Ozone

The use of ozone as an oxidising agent was discussed earlier in Chapter 1, 

section 1.4, where it was suggested that ozone was a source of hydroxyl 

radicals under certain conditions^). Andreozzi et a l(^ )  investigated the 

ozonation of pyridine and the products of ozonation indicated the likely 

involvement of hydroxyl radical chemistry - Chapter 1, Scheme 10. Hence, in 

the present study ozonation of the methylpyridines was carried out in order to 

investigate and compare the products formed with those formed in the metal­

ion catalysed oxidation reactions considered earlier in this chapter.
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3.5.7.1. Experimental

The ozonation procedure involved dissolving the methylpyridines (0.016 mol) 

in water (100 cm3) and then allowing ozone, generated by a B.O.C. Mark II 

Ozoniser, to bubble continuously through the reaction mixture for 3.5 hours. 

The workup of the reaction mixture involved extracting the products into 

dichloromethane (4 x 25 cm^) and the combined extracts were dried using 

magnesium sulphate. The dichloromethane was evaporated to 1 cm^ on a 

rotary evaporator prior to analysis by GC/MS. The aqueous phase was 

prepared for analysis by removing the excess water and extracting the residue 

with methanol.

Analysis of both the organic and aqueous extracts was carried out using 

GC/MS techniques as indicated in Chapter 2, section 2.1.3. For the analysis of 

the oxidation products formed in the ozonation reaction, instrument 1 and 

temperature programme 1 were used.

3.5.7.2. Results

The observations made in the ozonation of 2-methylpyridine indicated that a 

significant amount of unchanged substrate was still present at the end of the 

reaction. Two of the major oxidation products were pyridine-2-carboxaldehyde 

6 and 2-picoline-N-oxide 32. The only other oxidation product observed by 

analysis using GC/MS techniques was acetamide 8. Similar observations were 

made from the analysis of the ozonation reactions involving 3- and 4- 

methylpyridines, respectively. The latter also gave rise to acetic acid as an 

oxidation product.
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3.5.7.3. Summary

The pH of the reaction mixture was found to be » 4-5 and therefore, from the 

lite ra tu re^ ) jt is expected that the ozone will attack the organic compounds 

directly without the involvement of hydroxyl radicals - Chapter 1, Scheme 11. 

Since there appeared to be no evidence of radical chemistry occurring from 

those oxidation products observed, it would seem that the pH of the reaction 

has dictated the mechanism occurring. The formation of both the appropriate 

carboxaldehyde and N-oxide, observed as ozonation products, is expected to 

occur in a non-radical fashion. Since the formation of dimeric structures and 

hydroxy(methyl)pyridines did not occur in the ozonation reactions, this would 

suggest the absence of radicals, and hence supports the suggestion that the 

observed products have been formed via a non-radical route. The formation of 

acetamide and in the ozonation of 4-methylpyridine, acetic acid, would 

therefore suggest that the formation of ring destruction products does also not 

involve free-radical chemistry. Other oxidation products may have been formed 

in the ozonation of 2-, 3-, and 4-methylpyridine but they were not volatile 

enough to detected by GC methods.

Those observations made support the view that some of the oxidation products 

formed in the reactions studied earlier in this chapter are derived in a non­

radical fashion, whereas others are formed as a result of the involvement of 

free radical intermediates.
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3.6. Future Work

The metal ion-catalysed oxidation of 2-, 3-, and 4-methylpyridines has 

generated an extensive array of oxidation products which appear to suggest 

that two reaction pathways are taking place. One of the pathways indicates a 

non-radical route whereas the other indicates a free radical pathway. Attempts 

to investigate this have been carried out by allowing the Fenton-catalysed 

oxidation reaction to take place in the presence of a radical trap (TEMPO) and 

a complexing agent (EDTA). The oxidation reactions in the presence of EDTA 

have been followed in a quantitative manner (3.5.5.). Therefore, following the 

oxidation reactions in the presence of TEMPO, also in a quantitative manner, 

will enable comparisons between the efficiencies in both the presence and 

absence of a radical trap.

The oxidation of each of the methylpyridines using ozone was carried out at an 

acidic pH and the oxidation products observed have been reported (3.5.7.). 

However, at an alkaline pH the formation of hydroxyl radicals is supposed to 

be initiated. Thus, the ozonation of each of the methylpyridines at an alkaline 

pH will be interesting as comparisons can then be made between the oxidation 

products formed and those observed earlier ((3.5.7.2.). This investigation will 

hopefully lend support to the idea that the formation of some oxidation 

products, in particular the dimeric structures observed, are formed via the 

intermediacy of radicals.

All of the oxidation products observed so far from the oxidation of each of the 

methylpyridines, except for the appropriate carboxylic acid, have been 

identified using GC/MS techniques. Analysis of the product mixtures by HPLC, 

in particular LC/MS, may aid in the identification of other oxidation products. In 

particular, analysis of the oxidation reactions carried out using the
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titanium(lll)/hydrogen peroxide catalyst and the iron(!l)/ammonium persulphate 

catalyst will provide more insight into the mechanism of oxidation. The 

oxidation processes taking place using these catalysts are still unclear. 

Quantitative analysis has been carried out on the titanium(lll)-catalysed 

process, but not on the iron(ll)/persulphate system and such quantitative 

information will hopefully aid the understanding of the processes taking place. 

It is possible that the conditions under which these two oxidation reactions 

were conducted are unsuitable for these types of catalyst to be effective.

The kinetic study carried out in this chapter has shown that the Fenton- 

catalysed oxidation of 2-methylpyridine is a pseudo first order process and the 

rate constant for this process has been determined. By using this information, 

it is possible to extend the study further by investigating the effect that 

variation of the concentration of each of the reagents used i.e. iron(ll) 

sulphate, hydrogen peroxide and sulphuric acid has on the rate constant. By 

considering their effects, it will be possible to extend the understanding of the 

rate limiting steps in the overall Fenton process. An investigation of the 

kinetics associated with each of the catalysts discussed in this chapter would 

also be of interest, as comparisons of the rate of each of reaction would 

provide a more effective way of comparing the effectiveness of each of the 

processes.
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Chapter 4

Synthesis of a Range of Saturated 
Reference Dimeric Structures



Chapter 4 - Synthesis of a Range of Standard Reference Dimeric 

Structures

The study discussed in this chapter has targeted the synthesis of a variety of 

dimeric structures which were formed as oxidation products during the 

oxidation of 2-, 3-, and 4-methylpyridines. Typical structures that have been 

indicated as possible products in earlier chapters include the following:-

cis/trans 1,2-bis-(2-pyridyl)ethene 1 1,2-bis-(2-pyridyl)ethane 4

Dipyridylethene - A Dipyridylethane - B

2-methyl-6-(2-pyri dylmethyl)pyrid i ne 7 

Dipyridylmethane - C

The structures indicated above are all possible oxidation products formed from 

the oxidation of 2-methyl pyridine under certain conditions. However, the 

general structures A, B, and C are possible oxidation products formed from the 

oxidation of all of the three methylpyridines considered, again under certain 

conditions. Therefore attempts were made to synthesise the above structures 

and their isomers to use as reference compounds for identification purposes.

4.1. Dipyridvlethenes - A

Dipyridylethenes in both the cis and trans forms were observed in the 

autoclave oxidation reactions of 2-, and 4-methylpyridine, both in the presence
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and absence of catalysts. The appropriate dipyridylethenes were prepared, 

where required, to provide standard reference compounds, and also such 

structures were found to provide a starting material for the dipyridylethane 

isomers B that were also observed as oxidation products discussed in the 

earlier chapters.

4.1.1. Synthesis of cis/trans 1.2-bis-(2-pvridvl)ethene 1

This compound was prepared via a Wittig reaction^3) in which the alkyl 

halide, 2-chloromethylpyridine, was allowed to react with triphenylphosphine to 

give the appropriate phosphonium salt. The phosphonium salt can then 

interact with a suitable strong base such as n-butyllithium or sodium methoxide 

to give an ylide and the ylide that forms reacts rapidly with aldehydes and 

ketones to form the associated alkene and triphenylphosphine oxide - Scheme 

1.
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Scheme 1

Ph3P • H2(T  N
cl^

HoC N
I

PhsP® c ie

NaOMe

HC

CH— CH

e O jf  PPh3

■< ► HC

+ Ph3P = 0
CH=CH N

cis/trans
1

4.1.2. Discussion

All three possible symmetrical isomeric dipyridylethylene structures were 

prepared by this method, and the products of the reactions were analysed 

using GC/MS techniques which indicated the formation of both the cis and 

trans isomers in every case.

cisArans 1,2-bis-(3-pyridyl)ethene 2 cis/trans 1,2-bis-(4-pyridyl)ethene 3
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The three dipyridylethene isomers prepared are known compounds W  and 

their retention time (tp) and mass spectra were compared with those of 

oxidation products generated, which also exhibited apparent molecular ions at 

m/z 182. The dipyridylethylenes prepared here were also of use as precursors 

to the dipyridylethane structures which are also known compounds and were 

observed as oxidation products throughout the study of the catalysed oxidation 

of 2-, 3-, and 4-methylpyridines.

4.2. Dipyridvlethanes B

Dipyridylethane structures B were observed as oxidation products in the 

catalysed autoclave oxidation of 2-methylpyridine and the Fenton-catalysed 

and other catalysed oxidation reactions of all three methylpyridines. Such 

structures were therefore prepared, as standard reference compounds, to use 

to compare with those oxidation products formed in the reactions discussed in 

earlier chapters.

4.2.1. Synthesis of 1.2-bis-(2-pvridvhethane 4

This compound was prepared via the hydrogenation of the appropriate 

unsaturated dipyridylethene structure, cis/trans 1,2-bis-(2-pyridyl)ethene 1, 

using hydrogen in the presence of an appropriate catalyst such as platinum(IV) 

oxide.
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Scheme 2

cisArans
1

v

CH—CHi i
H----- H 4

cyclic fbur-membered transition state

This mechanism involving a four-membered transition state has a very high 

energy but such a process is possible in the presence of a metal catalyst with 

the actual process taking place at the surface of the catalyst^3).

4.2.2. Discussion

All three possible symmetrical isomeric dipyridylethane compounds, that could 

have been formed in the oxidation reactions studied, were prepared as 

standard reference compounds. They were all analysed by GC/MS to provide a 

"fingerprint" which could be compared with those oxidation products formed in 

our studies.

The three symmetrical dipyridylethane isomers are known compounds. The 

mass spectral fragmentation pathways exhibited by a series of dipyridylalkanes 

have been investigated by Osbourne(2). The presence of the alkyl bridge 

between the pyridyl rings is supposed to lower the molecular stability of the 

compound towards electron bombardment. In his studies, Osbourne
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interpreted the fragmentation of each of the isomers of interest in our study. 

For 1,2-bis-(2-pyridyl)ethane, the following fragmentation pathway is observed, 

where the fragment ion at m/z 106 is found to be the base peak.

N ' CH2— CH2 

M+, m/z 184

'CH:
c h 2

m/z 106

-H

- c 2h 4

/77/Z 183

r ^ \ i +

m /z78

- HCN
[ c 4h 3]  +

m/z 51

A very different behaviour was observed in the mass spectrum of 1,2-bis-(3- 

pyridyl)ethane and 1,2-bis-(4-pyridyl)ethane. For both of these, the 

fragmentation followed the pathway shown below.
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,CH2 CH; * - C l ,CH'

NT N'

M+, m/z 184

N
m/z 92

- HCN

[c 5h5] +

m/zG5

For these two structures, a base peak was found at m/z 92. Therefore, there 

are obvious differences in the fragmentation pathways between 1,2-bis-(2- 

pyridyljethane and the other two isomers prepared and discussed above.

Both 1,2-bis-(3-pyridyl)ethane and 1,2-bis-(4-pyridyl)ethane were also 

prepared by the same method used for the preparation of the 2-isomer. 

Analysis by GC/MS, using the same conditions, confirmed their structures. 

This was done by consideration of the mass spectra using the above 

information^).

1,2-bis-(3-pyridyl)ethane 5 1,2-bis-(4-pyridyl)ethane 6
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4.3.1. Preparation of 2-methvi-6-(2-pvridvlmethvDpyridine 7

4.3.1.1. Method 1

This method involved reacting 2,6-lutidine with n-butyllithium. The n- 

butyllithium removed one of the protons from one of the methyl groups 

attached to the pyridine ring. The anion that resulted was then allowed to react 

with 2-bromopyridine, via nucleophilic displacement, in an attempt to form the 

dipyridylmethane, 2-methyl-6(2-pyridylmethyl)pyridine 7, as shown in Scheme 

3 below.

Scheme 3

This method was successful for the preparation of 2-methyl-6-(2- 

pyridylmethyl)pyridine, whose presence in the reaction mixture was confirmed 

by GC/MS analysis. However, attempts to isolate and purify the compound 

failed due to the complexity of the mixture. The data produced here generated 

sufficient mass spectral evidence and retention time values for identification 

purposes. However, attempts continued to prepare a pure form of this

dryTHF H3C N CH2 Li

+ LiBr

7
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component so that a full structural characterisation could be carried out. 

Details of these attempts follow in this chapter.

4.3.1.2. Method 2

In this approach, the synthesis of the appropriate pyridylmethylcobaloxime 

complex was carried out. Such cobaloxime complexes are simple models of 

adenosylcobalamin, the active form of vitamin B1 2  which is essential for 

human health(^).

Adenosylcobalamin or Coenzyme B ^ .  contains a cobalt atom covalently 

bonded to carbon in the adensoyl moiety shown below.

In nature, reactions taking place involving the Coenzyme B1 2  generate the 

methylene radical of deoxyadenosine and a cobalt(ll) species. Therefore two 

assumptions are made regarding the Coenzyme B-|2:“

i) cobalt forms weak covalent bonds to carbon which nevertheless lead to 

relatively stable organocobalt compounds

ii) homolysis (using heat or light) of these organocobalt molecules provides a 

rich source of carbon radicals.

Alkylcobaloximes are found to behave in a similar way to the Coenzyme Bi2-

Alkylcobaloximes are known to undergo photolysis on irradiation with visible

light to form alkyl radicals which can be subsequently t r a p p e d W .  Therefore, in

our study, it was anticipated that a pyridylmethyl radical might be formed from
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the photolysis of a pyridylmethylcobaloxime complex and subsequently trapped 

by a protonated methylpyridine, present in the reaction mixture, to give the 

desired dipyridylmethanes. This is illustrated below in Scheme 4.

Scheme 4

In the pyridylmethylcobaloxime complex 9 indicated above, a stable transition 

metal-carbon bond can be found and such structures can be formed by 

following the general method discussed below(5).

4.3.1.2.1. Preparation of Pvridvlmethvlcobaloxime complexes

Pyridylmethylcobaloxime complexes are prepared by adding dimethylglyoxime, 

cobalt(ll) chloride, and pyridine together in the presence of a base such as 

sodium hydroxide. On the formation of the cobalt(l) species, the appropriate 

chloromethylpyridine was added to form the cobalt(lll) cobaloxime, as 

indicated in the Scheme 5 below.

CH2

p - H - 0

9
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Scheme 5
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The synthesis of the 2-pyridylmethylcobaloxime complex was achieved using 

this method. Difficulties were encountered, however, on preparing the other 

two isomeric compounds.

4.3.1.2.2. Generation and Trapping of Radicals

Brown et a lW  discussed in their work the formation of radicals via the 

photolysis of the appropriate cobaloxime. They demonstrated the formation of 

the radicals by trapping them with a radical trap such as TEMPO.

Scheme 6

O
CH2-Co(dmgH)2(pyridine)

+

TEMPO

X = H, Me, 2-CI, 3-CI, 3-F, 4-F, 4 -N 02

hv ethanol
u

H3C C H 3

In their work they also discussed other means of trapping the radical other 

than with TEMPO. Protonated heteroaromatic compounds have been reported 

as being good traps of alkyl and benzyl r a d i c a l s ^ ) .



Scheme 7

CHCH

+ e- from Co(ll) to Co(lll)
¥

CH

H

CH

Other workers have also demonstrated the ease of generating radicals by this 

a p p r o a c h ( 6 )>  ( 7 )  and thus this route was applied to the formation of 

dipyridylmethane structures.

4.3.1.2.3. Discussion

The synthesis of 2-pyridylmethylcobaloxime was successful but analysis of the 

products of the photolysis of 2-pyridylmethylcobaloxime in the presence of 

protonated 2-methylpyridine did not reveal the presence of the desired 

compound 2-methyl-6-(2-pyridylmethyl)pyridine 7. However, a 

dipyridylmethane product was thought to have been formed which could have 

had a structure similar to either 12 or 13 shown below.
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2-(2-pyridylmethyl)pyridine 12 4-(2-pyridylmethyl)pyridine 13

Such a structure was thought to have been formed, since the mass spectrum of 

this component contained an apparent molecular ion at m/z 170 and a base 

peak at m/z 169. This data suggests that a dipyridylmethane structure has 

been formed, as the stable fragment ion at m/z 169 could be due to the 

fragment ion shown below.

CH

®

The formation of a compound such as 12 or 13 would imply that the 

cobaloxime complex is falling apart upon photolysis and subsequently the 

pyridine ligand is undergoing protonation under the conditions imposed. It is 

this that then traps the radicals generated instead of the protonated 2- 

methylpyridine present. Pyridine was also observed upon GC/MS analysis of 

the reaction mixture.

The difficulties encountered on trying to prepare the compound of interest 7 

would seem to suggest that the cobaloxime complex falls apart quite easily 

under the conditions imposed during the photolysis reactions. The pyridine, 

which behaves as a ligand in the complex, is then free and is more effective at 

trapping the radicals formed. Attempts were therefore made to prepare the 

related alkylpyridylCo(dmgH)2(H20) complex, where the pyridine basal ligand 

is replaced by a water molecule. However, these attempts have so far been 

unsuccessful.
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As indicated earlier, the preparation of the 3-, and 4- 

pyridylmethylCo(dmgH)2 (pyridine) complexes was also attempted, but 

difficulties were encountered here due to the insolubility of the compounds 

formed. It was felt that that the problem with their synthesis was related to the 

nitrogen atom in the pyridine ring of the alkylpyridine substituent behaving as 

the pyridine ligand towards an adjacent complex, leading to the development 

of an insoluble polymeric structure. Due to these problems, a third approach 

was considered for the preparation of the pure isomeric dipyridylmethane 

structure, 2-methyl-6-(2-pyridylmethyl)pyridine 7.

4.3.1.3. Method 3

In this approach the synthesis of 2-methyl-6-(2-pyridylmethyl)pyridine 7 was 

attempted via a two step synthesis, which involved first preparing 2-pyridyl-6- 

(2-methylpyridyl)methanol 14. This was done by treating 2-bromobenzene with 

n-butyllithium and the 2-pyridyl anion that resulted was formed via a metal- 

halogen exchange reaction. This was then allowed to react with 6-methyl-2- 

pyridinecarboxaldehyde to form the appropriate methanol structure 14. The 

hydroxy group present in this compound was then reduced by first forming the 

chloro compound using thionyl chloride. This was then reduced to the 

hydrocarbon using zinc dust to form the desired compound 2-methyl-6-(2- 

pyridylmethyl)pyridine 7, as illustrated in Scheme 8 below.
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Scheme 8
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This approach was successful in preparing the dipyridylmethane isomer, 2- 

methyl-6-(2-pyridylmethyl)pyridine and the isomer was purified so that full 

structural characterisation was possible. The structure was first confirmed by 

analysis using NMR with the protons in the CH2  bridge being observed as a 

singlet at 5 4.30. MS analysis also confirmed the structure with a molecular ion 

being observed at m/z 184. A base peak was found at m/z 183 indicating the 

presence of the stable fragment ion shown below.
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4.3.2. Preparation of 2-methvl-4-(2-pvridvlmethvQpvridine 8

4.3.2.1. Method 1

This method involved a multistage reaction to first prepare 4-bromo-2- 

methy I pyridine 17 by nitrating 2-methylpyridine-N-oxide and then reducing it to 

form 4-nitro-2-methylpyridine 16. Acetyl bromide was then added to 4-nitro-2- 

methylpyridine and then, under the influence of heat, 4-bromo-2- 

methy I pyridine 17 was formed. The next stage of the synthesis involved the 

reaction of 2-methylpyridine with n-butyllithium to form the related 

organolithium intermediate. This was then allowed to undergo a nucleophilic 

displacement reaction with 4-bromo-2-methylpyridine to form the desired 

structure, 2-methyl-4-(2-pyridylmethyl)pyridine 8.
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Scheme 9
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This method was as sucessful at preparing 2-methyl-4-(2- 

pyridylmethyl)pyridine 8 as it was for preparing the isomer 2-methyl-6-(2- 

pyridylmethyl)pyridine 7. However, as in 4.3.1.1., attempts to purify this 

compound were unsuccessful due to the complexity of the mixture of products 

that resulted from the reaction. The data that was generated from the GC/MS  

analysis was used for identification purposes to compare with oxidation 

products that had been formed in the studies discussed in Chapters 2 and 3. 

However, a pure form of this compound was required so that structural 

characterisation could be carried out.
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From the study discussed in 4.3.1., method 3 was found to be sucessful at 

preparing the dipyridylmethane isomer, 2-methyl-6-(2-pyridylmethyl)pyridine 7. 

This approach was therefore used in an attempt to produce the isomer 2- 

methyl-4-(2-pyridylmethyl)pyridine 8.

4.3.2.2. Method 2

4-Bromo-2-methylpyridine 17 was prepared by using the method outlined in

4.3.2.1. above. This was then allowed to react with n-butyllithium in a metal 

exchange reaction to generate the 4-pyridyl anion which was then added to 

pyridine-2-carboxaldehyde to form 2-pyridyl-4-(2-methylpyridyl)methanol 19. 

The hydroxy group in this compound was then reduced to the hydrocarbon 

using thionyl chloride followed by zinc dust to form the desired compound, 2- 

methyl-4-(2-pyridylmethyl)pyridine 8, as illustrated in Scheme 10 below.
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Scheme 10
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Problems were encountered on purifying the intermediate 2-pyridyl-4-(2- 

methylpyridyl)methanol 19 shown above. Although NMR analysis supported 

the formation of this compound, impurities still remained after purification using 

flash column chromatography. The next stage of the synthesis involving 

reduction of the hydroxy group using thionyl chloride and zinc was attempted 

but this stage was unsuccessful at producing the target compound. The lack of 

success was thought to be related to the impurities that were contained in the 

intermediate 19.
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4.4. Summary

The synthesis of the possible isomeric forms of the dipyridylethene A and 

dipyridylethane B structures was successful. The compounds that were 

prepared are well known and some of the isomers are available commercially. 

However, attempts at preparing possible isomeric dipyridylmethane C 

structures were less successful. Such compounds are not available 

commercially and little was found in the literature regarding their preparation. 

Thus, attempts to prepare some of the possible isomeric dipyridylmethane 

structures were carried out. The synthesis of 2-methyl-6-(2- 

pyridylmethyl)pyridine 7 and 2-methyl-4-(2-pyridylmethyl)pyridine 8, was 

achieved using the methods found in 4.3.1.1. and 4.3.2.1. respectively. 

However, these methods were unsuccessful at preparing pure forms of 

isomers 7 and 8. Hence, other methods of preparing these compounds and 

purifying them were attempted and so far one method, shown in 4.3.1.3., has 

proved to be successful in the preparation and characterisation of 2-methyl-6- 

(2-pyridylmethyl)pyridine 7 in a pure state.

213



4.5. Experimental

4.5.1. a) Synthesis of 2-pvridvlmethvltriphenvlphosphonium chloride 1a

2-Picolyl chloride hydrochloride (0.0122 mol) was dissolved in a small amount 

of water (20 cm3). An aqueous solution of sodium hydroxide (0.0122 mol, 5 

cm3) was then added to this and a fairly vigorous reaction was observed. After 

the reaction had appeared to reach completion, the aqueous mixture was 

extracted with diethyl ether (4 x 25 cm3). The organic phases were combined 

and dried with magnesium sulphate and the excess organic solvent was 

removed under reduced pressure to leave approximately 10 cm3 of a pale 

green ethereal solution. This solution now contained the free picolyl chloride 

and it was this that was used in the next stage of the synthesis which involved 

adding it to triphenylphosphine (0.0122 mol) dissolved in diethyl ether (10 

cm3). The mixture was then refluxed overnight to form a white precipitate 

which, on cooling, was filtered to give 1.2g of a white powder (27.8% crude 

yield).

1h NMR (C D C I^  - 8 5.7 (d, 2H), 7.0-8.2 (m, 19H). The doublet at 8 5.7 in 1H 

NMR is characteristic of -CH2  next to a phosphorus atom, as phosphorus (as 

31p, 100% abundance) has a nuclear spin quantum number of 1/2, like a 

proton 1h.

4.5.1. b) Synthesis of cis/trans 1.2-bis-(2-pyridvhethene 1b

Pyridine-2-carboxaldehyde (0.001 mol) was added to dry methanol (3 cm3). 

Then, while stirring under a nitrogen atmosphere, sodium methoxide (0.001 

mol, 5 cm3) in methanol (2 cm3) was added dropwise from a pressure 

equalising funnel. After allowing the reaction to proceed for approximately 30
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minutes, the reaction mixture was extracted with diethyl ether (4 x 20 cm3). 

The combined organic extracts were dried with magnesium sulphate and the 

excess solvent was removed under reduced presure to give 0.54g of a yellow 

oil which contained a crystalline solid. The solid was thought to be 

triphenylphosphine oxide which is an expected side product of the reaction. 

Analysis by thin layer chromatography (TLC) (9:1 dichloromethane:methanol) 

identified the presence of two spots which reacted quickly with potassium 

permanganate indicator. This is indicative of the presence of easily oxidisable 

groups in the compounds of interest i.e. the double bonds.

No attempts were made to purify the mixture as the compounds of interest 

were well known compounds and only retention time and mass spectral data 

were required for comparison with oxidation products observed. For this 

reason, the reaction products were analysed using GC/MS techniques.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

the products of this reaction were analysed using GC/MS techniques. Two 

major peaks were observed in the GC trace at retention time (tp) 21.42 and 

27.13 minutes, both exhibiting an apparent molecular ion at m/z 182 - 

Appendix 13.
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4.5.2. Synthesis of cis/trans 1.2-bis-(3-pyridvl)ethene 2

The method used was identical to that outlined in 4.5.1., only the 3-isomeric 

reagents were used where appropriate.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

two major peaks were observed in the GC trace at tp  23.47 and 34.28 minutes, 

both exhibiting apparent molecular ions at m/z 182.

4.5.3. Synthesis of cis/trans 1.2-bis-(4-pvridvhethene 3

The method used was identical to that outlined in 4.5.1., only the 4-isomeric 

reagents were used where appropriate.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

two major peaks were observed at tp  21.44 and 29.06 minutes, both exhibiting 

apparent molecular ions at m/z 182.

4.5.4. Synthesis of 1.2-bis-(2-pvridvhethane 4

A mixture of cis/trans 1,2-bis-(2-pyridyl)ethene (0.0024 mol) was dissolved in 

methanol (10 cnv*) and to this a small catalytic amount of platinum(IV) oxide 

was added. The reaction was stirred under a positive pressure of hydrogen 

and the reaction was monitored by thin layer chromatography (TLC - 9:1 

dichloromethane:methanol). After several hours the spots of the cis/trans 1,2-
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bis-(2-pyridyl)ethene 1 disappeared and a new spot developed which did not 

react with potssium permanganate indicator. This observation indicated the 

absence of any easily oxidisable groups in the product of the reaction, which is 

expected. On completion of the reaction, the catalyst was filtered and the 

excess methanol was removed under reduced pressure to give 0.40g (90.4%  

crude yield) of a yellow oil.

1H NMR (C DC k) - 5 3.3 (s, 4H), 7.1-8.7 (m, 8H). The singlet observed at 8 3.3 

is due to the protons in the -CH2 -CH2 - bridge between the two pyridine rings. 

All of these protons are equivalent and therefore a singlet is expected to 

represent the presence of this bridge.

No attempts were made to purify 1,2-bis-(2-pyridyl)ethane as only retention 

time and mass spectral data were required for comparison purposes. 

Therefore GC/MS analysis was carried out on the crude product.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

the product of this reaction was analysed using GC/MS techniques. A major 

peak was observed at a tp  18.13 minutes and this compound exhibited an 

apparent molecular ion at m/z 184 - Appendix 4.
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4.5.5. Synthesis of 1.2-bis-(3-pvridvl)ethane 5

The method used here was identical to that outlined in 4.5.4., only the 3- 

iomeric reagents were used where appropriate.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

a major peak was observed at tR 21.22 minutes and this compound exhibited n 

apparent molecular ion at m/z 184 - Appendix 3.

4.5.6. Synthesis of 1.2-bis-(4-pvridvl)ethane 6

The method used here was identical to that outlined in 4.5.4., only the 4- 

isomeric reagents were used where appropriate.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

a major peak was observed at tp  25.11 minutes and this compound exhibited 

an apparent molecular ion at m/z 184 - Appendix 8.

4.5.7. Synthesis of 2-Methvl-6-(2-pyridvlmethvhpvridine 7 - Method 1

2,6-Lutidine (0.01 mol) was added to dry tetrahydrofuran (20 cm^). The 

reaction vessel was purged with nitrogen and n-butyl lithium (0.01 mol) was 

added dropwise from a syringe after the reaction mixture had been cooled to - 

78°C using a dry ice/acetone bath. After complete addition of the n-butyl 

lithium, the reaction remained stirring at -78°C for approximately 15 minutes. 2-
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Bromopyridine (0.01 mol) in dry tetrahydrofuran (10 cm3) was then added 

dropwise from a pressure equalising funnel. The reaction mixture was returned 

to room temperature and the system was left stirring overnight.

Upon the workup of the reaction, an excess of water was added initially to 

remove any anhydrous lithium salts that may have been formed in the reaction. 

The aqueous solution that remained was then extracted with dichloromethane 

(6 x 25 cm3). The extracts were combined and dried with magnesium sulphate 

and the excess solvent was removed under reduced pressure to give 2.35g of 

a brown liquid. Analysis by thin layer chromatography (50:50 

dichloromethane:petroleum ether) indicated a complex mixture which 

contained unreacted starting materials. For this reason, attempts to identify the 

component of interest involved analysis of the product mixture using GC/MS  

techniques.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

a GC trace was obtained which contained a mixture of components. They 

included 2,6-lutidine and 2-bromopyridine at tp  4.15 and 9.38 minutes, 

respectively. The component of interest, 2-methyl-6-(2-pyridylmethyl)pyridine 

was identified at tp  18.37 minutes exhibiting an apparent molecular ion of 184 

- Appendix 14. The base peak was observed at m/z 183 which may be due to 

the presence of the following fragment ion(2)
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4.5.8. Synthesis of 2-pvridvlmethvlCo(dmaH)?(pvridine) 9(3)~0 0)

Under a nitrogen atmosphere, dimethylglyoxime (0.02 mol), and cobalt(ll) 

chloride hexahydrate were added to degassed methanol (40 cm3) and stirred. 

Pyridine (0.011 mol) was then added to the flask via a syringe followed by a 

sodium hydroxide solution (0.04 mol, 5 cm3 water). After the blue/black colour 

of the cobalt(l) species had developed, 2-chloromethylpyridine (from the 

related hydrochloride, 0.005 mol together with 2.5 cm3 of 2M sodium 

hydroxide) in methanol (5 cm3) was then injected into the reaction mixture and 

immediately the orange/brown colour of the cobalt(lll) cobaloxime formed.

Upon workup, water (50 cm3) was added to the mixture and an extraction was 

carried out using dichloromethane (3 x 100 cm3). The extracts were combined 

and dried using magnesium sulphate. The excess dichloromethane was 

removed under reduced pressure to give 1.61g (35.0% crude yield) of a red 

solid. The solid smelt strongly of pyridine and therefore it was washed several 

times with petroleum ether (4 x 25 cm3) to give 1.3g (28.3% crude yield) of a 

red/brown solid.

1H NMR (C DC hl - 8 2.05 (s, 12H), 2.90 (s, 2H), 7.0-8.6 (m, 9H). The singlet at 

5 2.05 indicates the presence of the methyl groups in the cobaloxime planar 

structure which are all equivalent and the singlet at 8 2.90 indicates the -CH2  

group linking the pyridine ring to the cobaloxime complex. The aromatic 

multiplets indicate the presence of heteroaromatic rings(9). The NMR  

spectrum, however, also indicated the presence of impurities. Attempts were 

made to purity the complex using flash column chromatography (1 : 10 : 90, 

pyridine : methanol: dichloromethane) but this did not improve the purity of the 

complex as the NMR spectrum still exhibited extra peaks in the region of 8 2.5.
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4.5.9. Synthesis of 2-Methvl-6-(2-pvridvlmethvhpyridine 7 - Method 2

The cobaloxime complex (0.00037 mol), 2 -methylpyridylCo(dmgH)2 (pyridine), 

that had been prepared was added to ethanol (10 cm3) together with 2- 

methylpyridine (0.00037 mol) and camphor sulphonic acid (0.00037 mol). 

Under a nitrogen atmosphere, the system was stirred and irradiated with a 500 

watt light supply for 6 hours. After this time the mixture was allowed to cool and 

then analysed using GC/MS techniques.

GC/MS Analysis

Using instrument 2 and temperature programme 2 (Chapter 2, section 2.1.3.), 

the presence of a component exhibiting an apparent molecular ion at m/z 170 

and a base peak at m/z 169 was observed, consistent with the formation of a 

single dipyridylmethane rather than the desired compound 2-methyl-6-(2- 

pyridylmethyl)pyridine 7 - Appendix 15.

4.5.10. Synthesis of 2-Methvl-6-(2-pvridvlmethvl)pvridine 7 -Method 3

2-Bromopyridine (0.01 mol) was added to dry diethyl ether (10 cm3) and the 

reaction vessel was purged with nitrogen. After reducing the temperature of the 

reaction mixture to -78°C using a dry ice/acetone bath, n-butyllithium (0.01 

mol) was added dropwise via a syringe. On complete addition of the n- 

butyllitium, the reaction mixture was held at -78°C for approximately 15 

minutes. 6-Methyl-2-pyridinecarboxaldehyde (0.01 mol) in diethyl ether (10 

cm3) was then added dropwise to the reaction from a pressure equalising 

dropping funnel. The reaction mixture was then allowed to return to room 

temperature and the system was left stirring overnight.
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The workup of the reaction involved first adding dilute hydrochloric acid (-20  

cm3, 1 mol dm-3) and a clear orange solution resulted. The mixture was then 

neutralised using sodium hydroxide (2 mol dm-3) prior to extraction using 

dichloromethane (4 x 50 cm3). The extracts were combined and dried using 

magnesium sulphate and the excess solvent was removed under reduced 

pressure to give 3.27g of a yellow oil. Analysis by TLC (9.5:0.5 

dichloromethane:methanol) identified a complex mixture which contained a 

large spot which developed quickly using potassium permanganate as an 

indicator This spot was believed to be due to the formation of the intermediate 

2-pyridyl-6-(2-methylpyridyl)methanol 14. Purification using flash column 

chromatography and the solvent system used for TLC analysis produced 0.47g 

of a yellow oil (23.5% crude yield).

1h NMR fC D C I^ - 5 2.50 (s, 3H), 5.70 (s, 1H), 5.85 (s, 1H), 7.0-8.0 (m, 6H), 

8.75 (d, 1H). The presence of the hydroxy (OH) group in 14 formed in the 

reaction was confirmed by the presence of the broad peak in the region of 5 5, 

which disappeared when the deuterated chloroform mixture was shaken with 

deuterated water. The doublet observed at 5 8.75 indicated the presence of an 

ortho hydrogen on the pyridine ring which is present in the structure of 14. The 

NMR does support the formation of 2-pyridyl-6-(2-methylpyridyl)methanol 14 

and therefore the hydroxy group was then reduced to form a -CH2  bridge in a 

two step reaction to form 2-methyl-6-(2-pyridylmethyl)pyridine 15(10).

2-Methyl-6-(2-pyridylhydroxymethyl)pyridine 14 (0.0037 mol) was added to 

benzene and, with stirring and ice cooling, thionyl chloride (0.004 mol) was 

added dropwise(H). The reaction mixture was allowed to stir at room 

temperature for 1 hour. After this time, with ice cooling again, the system was 

made alkaline by the addition of sodium hydroxide (40% w/v aqueous solution) 

and two layers were formed. The layers were separated and the organic layer
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was washed with cold water and dried using magnesium sulphate The excess 

solvent was removed under reduced pressure to give 0.47g of a red oil (58.3%  

crude yield). This was then dissolved in glacial acetic acid (5 cm3) and to this 

stirred mixture, zinc dust (~1g) was added. The reaction was then heated 

overnight but not to reflux.

The workup involved allowing the reaction to cool and then adding it to water 

(20 cm3). The mixture was then made alkaline using sodium hydroxide (2 mol 

dm-3) prior to extraction with diethyl ether (4 x 25 cm3). The extracts were 

combined and dried using magnesium sulphate and the excess solvent was 

removed under reduced pressure to give 0.27g (39.7% crude yield) of a yellow 

oil.

1h  NMR (C DC hl - 6 2.60 (s, 3H), 4.30 (s, 2H), 7.0-8.70 (m, 7H), 8.6 (d, 1H). 

GC/MS Analysis

Instrument 1 and temperature programme 2 (Chapter 2, section 2.1.3.) 

identified the component of interest at tR 15.57 minutes exhibiting an apparent 

molecular ion at m/z 184.

Accurate Mass Analysis

This analysis confirmed the mass and molecular formula of the compound 

formed in this reaction. The expected mass of this compound was calculated to 

be 184.10012 and the experimentally observed mass was found to be 

184.10005.
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4.5.11. Synthesis of 4-Nitro-2-methvlpyrdine-N-oxide 15 (12)

To 2-Methylpyridine-N-oxide (0.05 mol) was added, with care, concentrated 

sulphuric acid (21.88 cm3). Then, with ice cooling, fuming nitric acid (17.25 

cm3) was added dropwise to the mixture while maintaining the reaction 

temperature below 20°C. Upon complete addition, the mixture was heated to 

100-105°C for 6 hours. After this time the reaction was allowed to cool to room 

temperature and was left stirring overnight.

The workup of the reaction involved adding the mixture to crushed ice. The 

system was then neutralised using sodium carbonate prior to extraction with 

dichloromethane (4 x 100 cm3). The extracts were combined, washed with a 

saturated sodium chloride solution, and then dried using magnesium sulphate. 

The excess solvent was removed under reduced pressure to give 6.49g of a 

yellow powder (84.3% crude yield) which had a melting point at 148-151 °C.

1H NMR (C DC k) - 5 2.55 (s, 3H), 8.0 (m, 2H), 8.4 (d, 1H). The NMR spectrum 

compares with that found in the literature^?) thus supporting the identity of the 

product as the desired compound.

4.5.12. Synthesis of 4-Nitro-2-methvlpvridine 16(12)

4-Nitro-2-methylpyridine-N-oxide (0.041 mol) was dissolved in 

dichloromethane (80 cm3). Phophorus trichloride (0.2 mol) dissolved in 

dichloromethane (80 cm3) was added to this solution dropwise, under a 

nitrogen atmosphere, while the system was cooled in an ice bath. Upon 

complete addition of the phosphorus trichloride, the reaction mixture was 

allowed to stir at room temperature overnight.
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The workup of the reaction involved pouring the mixture into crushed ice and 

then neutralising the system using aqueous ammonia prior to extraction with 

dichloromethane (4 x 100 cm3). The extracts were combined and washed with 

a saturated sodium chloride solution and then dried using magnesium 

sulphate. The excess solvent was removed under reduced pressure to give 

4.10g of a yellow solid (72.5% crude yield).

No analysis was carried out on the solid fomed in this reaction but it was 

assumed that the reaction had been successful and the solid formed was used 

in the next stage of the synthesis.

4.5.13. Synthesis of 4-Bromo-2-methvlpvridine 17(12)

Acetyl bromide (0.09 mol) was added, with care, to 4-nitro-2-methylpyridine 

(0.03 mol) and the mixture was stirred and refluxed overnight.

Upon workup, the mixture was first allowed to cool and was then added to 

crushed ice. The aqueous mixture was then neutralised using sodium 

carbonate prior to extraction with diethyl ether (4 x 50 cm3). The combined 

extracts were washed with a solution of saturated sodium chloride and then 

dried using magnesium sulphate. The excess solvent was removed under 

reduced pressure to give 5.54 g of a pale yellow oil (108% crude yield). 

Analysis by TLC identified a mixture of components which contained a 

predominant amount of one product. This product was isolated using flash 

column chromatography and the solvent system used in the TLC analysis to 

give 3.83g of a yellow oil (74.3% yield).

1H NMR (C D C k) - 5 2.5 (s, 3H), 7.4 (m, 2H), 8.3 (d, 1H). The data from this 

NMR compares with that obtained from the l i t e r a t u r e ( 1 2 ) .
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MS Analysis - The molecular envelope at m/z 171 was a 1:1 doublet at m/z 171 

and 173 confirming the synthesis of a bromine containing compound.

4.5.14. Synthesis of 2-Methvl-4-(2-pvridvlmethvl)pvridine 18 - Method 1

2-Methylpyridine (0.0052 mol) was added to dry tetrahydrofuran (20 cm3) and 

stirred under a nitrogen atmosphere. The temperature of the reaction mixture 

was then lowered to -78°C using a dry ice/acetone bath and n-butyllithium 

(0.0052 mol) was injected into the reaction mixture. After 15 minutes, 4-bromo- 

2-methy I pyridine in dry tetrahydrofuran (10 cm3) was added dropwise from a 

pressure equalising funnel while the reaction was still cold. The reaction was 

then allowed to return to room temperature and it was left stirring overnight.

The workup involved adding an excess of water to solvate any anhydrous 

lithium salts that may have formed and the aqueous mixture was then extracted 

with dichloromethane (6 x 25 cm3). The extracts were combined and dried 

using magnesium sulphate and the excess solvent was removed under 

reduced pressure to give 1.05g of an orange/brown oil. Analysis by TLC (50:50 

dichloromethane:petroleum ether) identified a complex mixture which indicated 

the presence of starting materials. Therefore, attempts were made to identify 

the component of interest by using GC/MS techniques.

GC/MS Analysis

Using instrument 1 and temperature programme 1, a GC trace was obtained 

which contained a mixture of components. They included 2-methylpyridine and 

4-bromo-2-methylpyridine at tR 7.72 and 12.32 minutes, respectively. The 

component of interest, 2-methyl-4-(2-pyridylmethyl)pyridine was identified at tR 

29.46 minutes exhibiting an apparent molecular ion at m/z 184 - Appendix 16.

226



4.5.15. Synthesis of 2-Methvl-4-(2-pvridvlmethvhpyridine 18 - Method 2

4-Bromo-2-methylpyridine (0.0076 mol) was added to dry diethyl ether (10 

cm3) and stirred under a nitrogen atmosphere. The temperature of the reaction 

mixture was then lowered to -78°C using a dry ice/acetone bath and n- 

butyllithium (0.0076 mol) was injected into the reaction mixture. After 15 

minutes, pyridine-2-carboxaldehyde (0.0076 mol) in dry diethyl ether (10 cm3) 

was added dropwise from a pressure equalising funnel while the reaction was 

still cold. The reaction was then allowed to return to room temperature and it 

was left stirring overnight.

The workup involved first adding dilute hydrochloric acid (-20  cm3, 1 mol dm" 

3) and the mixture was then neutralised using sodium hydroxide (2 mol dm"3) 

prior to extraction using dichlromethane (4 x 50 cm3). The extracts were 

combined and dried using magnesium sulphate and the excess solvent was 

removed under reduced pressure to give 0.91 g of a brown oil (59.9% crude 

yield). Analysis by TLC (9.5:0.5 dichloromethane:methanol) identified a 

complex mixture which contained a large spot which developed quickly using 

potassium permanganate as an indicator. Purification using flash column 

chromatography and the solvent system used for TLC analysis produced 0.25g 

of a brown oil (16.4% yield).

1h  NMR (CDChl - 8 4.1 (s, 1H), 4.8 (s, 3H), 5.4 (s, 1H), 7-8.7 (m, 7H). The 

NMR spectrum contains the peaks of interest, in particular that for the OH 

group at 8 5.4. The presence of the OH group was confirmed by shaking the 

deuterated chloroform mixture with deuterated water and observing the 

disappearance of the peak at 8 5.4. However, the NMR identified the presence 

of impurities but the next stage of the synthesis was still attempted to reduce 

the hydroxy group to give the dipyridylmethane isomer 8.
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2-Methyl-4-(2-methylpyridyl)methanol 19 (0.001 mol) was added to benzene 

and, with stirring and ice cooling, thionyl chloride (0.004 mol) was added 

dropwise(H). The reaction mixture was allowed to stir at room temperature for 

1 hour. After this time, with ice cooling again, the system was made alkaline by 

the addition of sodium hydroxide (40% w/v aqueous solution) and two layers 

were formed. The layers were separated and the organic layer was washed 

with cold water and dried using magnesium sulphate The excess solvent was 

removed under reduced pressure to give 0.06g of a red oil (27.5% crude yield). 

This was then dissolved in glacial acetic acid (5 cm3) and to this stirred 

mixture, zinc dust (~1g) was added. The reaction was then heated overnight 

but not to reflux.

The workup involved allowing the reaction to cool and then adding it to water 

(20 cm3). The mixture was then made alkaline using sodium hydroxide (2 mol 

dm-3) prior to extraction with diethyl ether (4 x 25 cm3). The extracts were 

combined and dried using magnesium sulphate and the excess solvent was 

removed under reduced pressure to give 0.07g (38.0% crude yield) of a yellow

oil.

GC/MS Analysis

Using instrument 1 and temperature programme 2, a GC trace was obtained 

which did not identify the presence of 2-methyl-4-(2-pyridylmethyl)pyridine.
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Appendix

1. Gas chromatogram of the uncatalysed autoclave oxidation of 2- 

methylpyridine

2. Mass spectra of 2-hydroxy-6-methy I pyridine formed in the uncatalysed 

autoclave oxidation of 2-methylpyridine and of the standard material, 2- 

hydroxy-6-methy I pyridine

3. Mass spectra of 4-methyl-2-(4-pyridylmethyl)pyridine formed in the 

uncatalysed autoclave oxidation of 4-methyl pyridine and of the standard 

material, 1,2-bis-(4-pyridyl)ethane

4. Mass spectra of 2-methyl-6-(2-pyridylmethyl)pyridine and 1,2-bis-(2- 

pyridyl)ethane formed in the iron(lll)/hydrogen peroxide catalysed autoclave 

oxidation of 2-methylpyridine and of the standard material 1,2-bis-(2- 

pyridyl)ethane

5. Mass spectra of 2,2'dimethyl-4,4,-bipyridine and 2,2'-dimethyl-6,6'-bipyridine 

formed in the iron(lll)/hydrogen peroxide catalysed autoclave oxidation of 2- 

methylpyridine and of the standard material, 4,4'-dimethyl-2,2'-bipyridine

6. Mass spectrum of 4-hydroxy-2-methy I pyridine formed in the 

iron(lll)/hydrogen peroxide catalysed autoclave oxidation of 2- 

methylpyridine

7. Mass spectra of 2,2-bipyridine formed in the copper(ll)/hydrogen peroxide 

catalysed autoclave oxidation of 2-methylpyridine and a mass spectra of the 

standard material, 2,2-bipyridine

8. Mass spectra of 5-methyl-2-(3-pyridylmethyl)pyridine formed in the 

copper(ll)/hydrogen peroxide catalysed autoclave oxidation of 3- 

methy I pyridine and of the standard material, 1,2-bis-(3-pyridyl)ethane

9. Mass spectra of 5-methyl-2-(2-pyridyl)pyridine, 2-(3-pyridylmethyl)pyridinel 

and 4-(3-pyridylmethyl)pyridine formed in the copper(ll)/hydrogen peroxide 

catalysed autoclave oxidation of 3-methylpyridine



10. Mass spectra of 1,2-bis-(4-pyridyl)ethane formed in the copper(ll)/hydrogen 

peroxide catalysed autoclave oxidation of 4-methylpyridine

11. Chromatogram of the Fenton-catalysed oxidation of 2-methylpyridine spiked 

with pyridine-2-carboxylic acid

12. Mass spectra of 3-hydroxymethylpyridine and 2-hydroxy-5-methylpyridine 

formed in the Fenton-catalysed oxidation of 3-methylpyridine and of the 

standard material, 2-hydroxymethylpyridine

13. Mass spectra of cis/trans 1,2-bis-(2-pyridyl)ethene

14. Gas chromatogram of the reaction mixture formed in the synthesis of 2- 

methyl-6-(2-pyridylmethyl)pyridine (Method 1) and a mass spectrum of this 

component

15. Gas chromatogram of the reaction mixture formed in the synthesis of 2- 

methyl-6-(2-pyridylmethyl)pyridine (Method 2) and a mass spectrum of the 

component exhibiting an apparent molecular ion at m/z 170

16. Gas chromatogram of the reaction mixture formed in the synthesis of 2- 

methyl-4-(2-pyridylmethyl)pyridine (Method 2) and a mass spectrum of this 

component.



Appendix 1

Gas chromatogram of the uncatalysed autoclave oxidation of 2-methylpyridine
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Appendix 2

Mass spectrum of 2-hydroxy-6-methylpyridine formed in the uncatalysed

autoclave oxidation of 2-methylpyridine

T3NCD614 (21.490) REFINE 
1001

XFS-

80 63232

39
109

28

2?
\

38
\ S3

m / z
a

20

29

fe j

42 52
5 0 N 

\

m .
40

81
/

54
/

64
tUllllliM II.U.II J L

60 80 100 I 5 l 140 160

Mass spectrum of the standard material 2-hydroxy-6-methylpyridine



Appendix 3

Mass spectrum of 4-methyl-2-(4-pyridylmethyl)pyridine formed in the

uncatalysed autoclave oxidation of 4-methylpyridine
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Appendix 4

Mass spectra of 2-methyl-6-(2-pyridylmethyl)pyridine (i) and 1,2-bis-(2-

pyridyl)ethane (ii) formed in the iron(lll)/hydrogen peroxide-catalysed autoclave

oxidation of 2-methylpyridine
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Appendix 5

Mass spectra of 2,2'-dimethyl-4>4'-bipyridine (i) and 2,2,-dimethyl-6>6'

bipyridine (ii) formed in the iron(lll)-catalysed autoclave oxidation of 2

methylpyridine

(i)

in . Oil

Mass spectra of the standard material 4,4,-dimethyl-2,2,-bipyridine



Appendix 6

Mass spectrum of 4-hydroxy-2-methy I pyridine formed in the iron(lll)/hydrogen

peroxide catalysed autoclave oxidation of 2-methylpyridine
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Appendix 7

Mass spectrum of 2,2-bipyridine formed in the copper(ll)/hydrogen peroxide- 

catalysed autoclave oxidation of 2-methylpyridine

Mass spectrum of the standard material 2,2-bipyridine



Appendix 8

Mass spectrum of 5-methyl-2-(3-pyridylmethyl)pyridine formed in the

copper(ll)/hydrogen peroxide-catalysed autoclave oxidation of 3-methylpyridine

Mass spectrum of the standard material 1,2-bis-(3-pyridyl)ethane



Appendix 9

Mass spectrum of2-(3-pyridylmethyl)pyrdine (i), 5-methyl-2-(2-pyridyl)pyridine

(ii), and 4-(3-pyridylmethyl)pyridine (iii) formed in the copper(ll)/hydrogen 

peroxide-catalysed autoclave oxidation of 3-methylpyridine

(iii)



Appendix 10

Mass spectrum of 1,2-bis-(4-pyridyl)ethane formed in the copper(ll)/hydrogen 

peroxide-catalysed autoclave oxidation of 4-methylpyridine
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Appendix 11

Chromatogram of the Fenton-catalysed oxidation of 2-methylpyridine
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Appendix 12

Mass spectra of 3-hydroxymethylpyridine (i) and 2-hydroxy-5-methylpyridine (ii) 

formed in the Fenton-catalysed oxidation of 3-methylpyridine
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Appendix 13

Mass spectra of cis/trans 1,2-bis-(2-pyridyl)ethane



Appendix 14

Gas chromatogram of the reaction mixture formed in the synthesis of 2-methyl-

6-(2-pyridylmethyl)pyridine - Method 1

Mass spectrum of 2-methyl-6-(2-pyridylmethyl)pyridine at retention time 18.37 

minutes



Appendix 15

Gas chromatogram of the reaction mixture formed in the synthesis of 2-methyl-

6-(2-pyridylmethyl)pyridine - Method 2

Mass spectrum of the component exhibiting an apparent molecular ion at m/z 

170 at retention time 19.16 minutes
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Appendix 16

Gas chromatogram of the reaction mixture formed in the synthesis of 2-methyl-

4-(2-pyridylmethyl)pyridine - Method 1
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Mass spectrum of 2-methyl-4-(2-pyridylmethyl)pyridine at retention time 29.46 
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Investigation of the Products of Oxidation of 
Methylpyridines Under Aqueous Conditions 
by Gas Chromatography-Mass Spectrometry

David W. Allen, Malcolm R. Clench* and Jacqueline Morris
Division o f  Chemistry, School o f  Science, Sheffield Hallam University, Pond 
Street, Sheffield, UK SI 1WB

Wet air oxidation is a waste treatment process known to 
break down organic compounds at elevated temperatures 
and pressures under aqueous conditions. We have 
investigated, by gas chromatography-mass spectrometry, the 
products arising from the wet air oxidation of 2-, 3- and 4- 
methylpyridines carried out in a laboratory autoclave. The 
results indicate that radical chemistry is responsible for the 
products. The oxidation of each of the methylpyridines by 
use of Fenton’s reagent was also studied, because this is 
known to generate hydroxyl radicals. Similarities were 
observed between products generated by Fenton-catalysed 
oxidations carried out in the laboratory and the uncatalysed 
autoclave reactions. Further experiments, where Fenton’s 
reagent was incorporated in the laboratory autoclave 
reactions, were carried out. An improved level of 
decomposition of the methylpyridines was achieved by the 
incorporation of a hydroxyl radical-producing catalyst.

Keywords: Wet-air oxidation; methylpyridines; Fenton 
oxidation; gas chromatography mass spectrometry

Introduction

A potential route for the disposal of hazardous waste streams 
is via complete oxidation to simple products such as carbon 
dioxide and w ater.1 Various commercial systems are available 
for this purpose,2 which involve heating the waste stream to a 
high tem perature (175-345 °C) while air is passed through the 
system under high pressure (20-200 atm) (1 atm = 101.325 
kPa). However, it has been observed3 that incomplete 
oxidation often occurs. This yields an effluent containing a 
mixture of products from the stepwise oxidation of organic 
compounds contained in the original waste stream.

We have become interested in examining the products 
formed from oxidation of specific compound classes under 
conditions that simulate commercial waste-treatment systems. 
H ere, we report the results of the analysis of products arising 
from the oxidation of picolines (methylpyridines) in a 
laboratory autoclave and the effects of catalysis of such 
systems by use of Fenton’s reagent.4 Andreozzi et al.5 have 
examined the ozonation of pyridine in aqueous solution and 
have proposed a mechanism for this process involving 
hydroxyl radicals, as shown in Scheme 1. Various studies have 
suggested that hydroxyl radicals play an important part in both 
wet air oxidation and ozonation reactions.6 Chowdbury and 
Ross7 have examined the use of catalysts in wet air oxidation; 
however, in that work the oxidation of specific compound 
classes was not studied. R ather, a general trend was noted that 
catalysis increases the extent of oxidation at low tem peratures 
and pressures, with copper(n) ion in the presence of hydrogen 
peroxide being particularly effective.

* To  whom correspondence should be addressed.

0 3 (aq) 'OH

+ OH + O
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COOH
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Scheme 1

Fenton’s reagent is a mixture of acidified aqueous hydrogen 
peroxide and a ferrous salt.8 It is well known as an effective 
oxidant for a range of organic substances. It has been 
proposed that the actual oxidant in Fenton chemistry is also 
the hydroxyl radical.4 Oxidation in Fenton chemistry is 
thought to follow the pathway shown in Scheme 2. In the
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presence of an organic substrate, Fenton's reagent can also 
give rise to radicals o ther than hydroxyl (i.e., RO- and H O O ) 
and these could contribute to the over-all oxidation process. In 
the presence of metal ions, m etal-oxygen complexes (e.g., 
F e 0 2+) could also be involved.

Hence, it was felt that an investigation of the products of 
these reactions might suggest suitable catalysts for use in 
commercial waste-treatm ent plants for the destruction of 
waste streams containing aromatic nitrogen-containing com­
pounds. These compounds are, for example, found in 
effluents from coal gasification and oil shale processing.9 The 
method chosen for the analysis of the resulting products of 
oxidation was gas chromatography-m ass spectrometry (G C - 
MS), as it was expected that complex mixtures would be 
produced.

Experimental 

Experiments at Ambient Temperatures and Pressures 

Uncatalysed reactions

2-, 3- or 4-Picoline (0.01 mol in 25 cm3 of 1 mol dm -3 H2S 0 4) 
was added to H2S 0 4 (25 cm3, 1 mol dm -3) followed by 
dropwise addition of hydrogen peroxide (30% m/v, 0.1 mol). 
The system was stirred overnight under nitrogen.

Fenton chemistry

2-, 3- or 4-picoline (0.01 mol in 25 cm3 of 1 mol dm -3 H2S 0 4) 
was added to a solution of H2S 0 4 (1 mol dm -3 , 25 cm3) 
containing iron(n) sulfate (0.01 mol) followed by dropwise 
addition of hydrogen peroxide (30% m/v, 0.1 mol). The 
system was stirred overnight under nitrogen.

Autoclave Reactions

Uncatalysed reactions

An aqueous solution of the appropriate picoline (5% m/v, 
1 dm3) was heated to 250 °C during approximately 1 h under 
air pressure (250 atm ). The autoclave was maintained under 
these conditions for 2.5 h.

Fenton chemistry

Iron(n) sulfate (0.003 mol) was added to the appropriate 
aqueous picoline solution (5% m/v, 1 dm3). This was heated to 
250 °C during approximately 1 h under air pressure (250 atm). 
The autoclave was m aintained under these conditions for 2.5 h 
with addition of three aliquots of hydrogen peroxide (30% 
m/v), 30 cm3 after 15 min, 30 cm3 after 45 min and 35 cm3 after 
75 min.

Product Isolation

An aliquot (5 cm3) of each sample was extracted, after 
adjusting the pH to approximately 7 by addition of NaOH (2 
mol dm -3), with diethyl ether (4 x  10 cm3). After drying (over 
M gS04), the extract was then evaporated to approximately 2 
cm3 under reduced pressure. The ether-insoluble products 
remaining in the aqueous phase were then isolated by 
removing the excess of water on a rotary evaporator. The 
residue was then dissolved in methanol.

GC-MS

Both ethereal and methanolic extracts were analysed by G C - 
MS. The instrument used was a VG (M anchester, UK) Trio 1

quadrupole MS system fitted with a Hewlett-Packard (A von­
dale, PA, USA) 5890 gas chromatograph. The instrument was 
operated under the following conditions:

Column 

Carrier gas
Tem perature programme 
Injection volume 
Ion source 
Source current 
Source temp.
Scan rate 
Scan range

50m  x  0 .32mm i.d.
Supelcowax

Helium
40-250 °C at 10°C m in-1 
1 mm3 splitless 
Electron impact (70 eV) 
150 pA 
200 °C 
1 s scan-1 
20-300 daltons

Results and Discussion

As anticipated, at ambient tem peratures and pressures in the 
laboratory, no oxidation products were observed in the 
absence of the iron(n) catalyst. Table 1 shows the percentage 
of unoxidized picoline remaining after each of the catalysed 
experiments and the uncatalysed autoclave experiments. This 
is an indication of the degree of oxidation taking place. As can 
be clearly seen, the presence of the catalyst leads to a marked 
increase in the amount of oxidation taking place over that of 
uncatalysed reactions. The apparent reduction in percentage 
of the starting material oxidized in the catalysed autoclave 
reactions over that of the ambient catalysed experiments is in 
fact a function of the lower molar am ounts of catalyst used in 
these experiments.

Representative data are shown as follows. Fig. 1 depicts the 
total ion current chromatogram (TIC) obtained from the

Table I Extent of oxidation of methylpyridines

Mcthylpyridine Conditions
Catalysed/
uncatalysed

Starting
material
oxidized
(mol%)

2-Mcthylpyridinc Autoclave Uncatalysed 71.4
Autoclave Catalysed 61.1
Ambient Catalysed 97.5

3-Mcthylpyridine Autoclave Uncatalysed 2.7
Autoclave Catalysed 75.7
Ambient Catalysed 96.8

4-Methylpyridine Autoclave Uncatalysed 87.8
Autoclave Catalysed 98.8
Ambient Catalysed 98.1

(a)

E 100
(b)

5.0 10.0 15.0 20.0 25.0
Time/min

Fig. 1 Total ion current chromatograms for the (a), methanolic and 
(b), ethereal extracts of products from the Fenton catalysed oxidation 
of 2-picoline under ambient conditions. A . 2-picoline
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ethereal extraction of the Fenton-catalysed laboratory oxida­
tion of 2-picoline; Fig. 2 the TIC from the corresponding 
uncatalysed autoclave sample; and Fig. 3 the TIC  from the 
catalysed autoclave sample. These reaction mixtures model 
potential aqueous waste streams after treatm ent of the initial 
waste via an oxidation process. As can be seen in Figs. 1-3, a 
mixture of products was observed in each instance.

Table 2(a-c) summarizes the products identified in the 
uncatalysed autoclave reaction mixtures from oxidation of 2-,
3- and 4-picoline, respectively. For 2-picoline, products have 
been identified as saturated and unsaturated dimers derived 
from the starting material, on the basis of their retention 
times, mass spectra and, as indicated in the table, by 
appropriate comparison of these with data for authentic 
samples. Representative mass spectra are shown in Fig. 4 [the 
mass spectrum of Component 2 (fR =  13.7 min)], in Fig. 5 [the 
mass spectrum of Component 3 (rR =  22.2 min)] and in Fig. 6 
[the mass spectrum of Component 4 (fR =  22.8 min)]. In Fig. 5 
the intense (M -H )+ ion at m/z 181 and fragmentation to yield 
m iz 104 is similar to that of an authentic sample of (E )-l ,2-bis- 
(2-pyridyl)ethene (Fig. 7). The formation of dimers is 
indicative of the radical chemistry proposed previously as the 
mechanism of oxidation of such aromatic systems.10 Also 
observed were simple oxidation products, e.g., the aldehyde

A

(a)

i
22.2

31.4
—

' I A

(b)

I _i— L — u —k i ....... .J------
5.0 10.0 15.0 20.0 25.0 30.0 35.0

Time/min
Fig. 2 Total ion current chromatograms for the (a), methanolic and 
(b). ethereal extracts of products from the uncatalysed autoclave 
oxidation of 2-picoline. A . 2-picoline X29

100

14.3

12.1 22.5

cr 100

12.1

30.025.015.0 20.010.05.0
Time/min

Fig. 3 Total ion current chromatograms for the (a), methanolic and 
(b). ethereal extracts of products from the Fenton catalysed autoclave 
oxidation of 2-picolinc

2-(2-pyridyl)ethanal [Component 2 (/R =  13.7 min] and the 
corresponding alcohol 2-(2-pyridylethanol) [Component 4 
(/R =  22.8 min].

Table 2 Principal products arising from the uncatalysed autoclave 
oxidation of alkylpyridines

Component fR/min RMM* Proposed structure
(a) 2-Methylpyridine—

1 7.5 79 Pyridine
2 13.7 121 2-(2-Pyridyl)ethanal
3 22.2 182 (E )-l ,2-Bis-(2-pyridyl)ethene
4 22.8 123 2-(2-Pyridyl)ethanol
5 31.4 184 2- or 4-(2-Pyridylmethyl)-6-

methylpyridine or 1,2-bis-
(2-pyridyl)ethane

(b) 3-Methylpyridine—
1 10.6 123

14.8
15.1

107
137

A hydroxylated pyridine-3- 
carboxaldehyde 
or pyridine-3-carboxaldehyde 

N- oxide
3-Pyridylmethanal
Unknown

(c) 4-Methylpyridine—
1 10.8 60
2 15.8 121
3 26.2 123
4 27.0 184

Acetic acid 
2-(4-Pyridyl)ethanol 
2-(4-Pyridyl)ethano!
1.2-Bis-(4-pyridyl)ethane 

or 2- or 4-(4-Pyridylmethyl)- 
4-methylpyridine

* RMM =  relative molecular mass.

100

121

106

80 100 120 
m/z

140

Fig. 4 Mass spectrum of component 2 (Fig. 2) /R =  13.7 min, 
identified as 2-(2-pyridyl)ethanal

Fig. 5 Mass spectrum of component 3 (Fig. 2) /R 
identified as an unsaturated dimer of 2-picolinc

22.2 min.
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In the example of 3-picoline [Table 2(b)], dimeric structures 
were not observed, the main products being simple oxidation 
products, with some evidence of hydroxyl attachm ent to the 
aromatic ring. For 4-picoline [Table 2(c)] the formation of 
dimeric structures was again a dominant feature, and forma­
tion of acetic acid provided evidence of oxidative ring 
cleavage.

Table 3(a-c) summarizes the products detected from the 
Fenton-catalysed oxidation of the picolines carried out under 
ambient tem perature and pressure. The presence of Fenton’s 
reagent, as expected, prom oted oxidation even under ambient 
conditions.8 From 2-picoline [Table 3(a)] the major products 
formed were acetic acid and acetamide, together with trace 
amounts o f many o ther as yet unidentified components. In the 
example of 3-picoline [Table 3(b)] a complex series of 
oxidation products was observed, including simple oxidation 
products, dimers and oxidative ring-cieavage products. For 4- 
picoline [Table 3(c)] the principal products observed were the 
unsaturated dimer, (E)-l,2-bis-(4-pyridyl)ethene [Com­
ponent 5 (fR =  23.6 min)], 4-pyridylmethanoI, formamide, 
acetamide and acetic acid.

Table 4(a-c) summarizes the results from the Fenton- 
catalysed autoclave oxidation of the picolines. In each 
instance the oxidation proceeded further than the above 
uncatalysed conditions, as shown by the presence of acetic 
acid in all of the reaction mixtures and by the reduced amount 
of the starting material remaining (Table 1).

The results from the incorporation of Fenton’s reagent into 
these experiments to oxidize picolines support proposals that 
free-radical chemistry is involved in the industrial wet air- 
oxidation waste-treatment processes. A comparison of pro­
ducts from the uncatalysed autoclave systems with the

100

C- 50

122
109

40 60 80 100 120
m/z

Fig. 6 Mass spectrum of component 4 (Fig. 2) fR = 22.8 min. 
identified as 2-(2-pyridyl)ethanol

181
100

154

104

127

60 100 160 18040 80 120 140
m/z

Fig. 7 Mass spectrum of an authentic unsaturated dimer of 
2-picolinc.-(E)-1.2-6«(2-pyridyl)ethene

ambient Fenton-catalysed systems shows similar products 
being formed in both systems. In particular, the formation of 
saturated dimers is most readily accounted for by invoking 
free-radical chemistry. Incorporation of Fenton’s reagent into 
the autoclave experiments does appear to prom ote oxidative 
ring-cleavage reactions over the uncatalysed systems. The 
mechanism for this is as yet unknown although it could be 
inferred from the results of these analyses that it is likely to be 
closely related to that proposed by Andreozzi et al.5 The key 
step, as described by Andreozzi et al. in the ring cleavage of 
pyridines, is the formation of a hydroxypyridine with its 
corresponding non-aromatic tautom er. This occurs via attack 
on the aromatic ring by a hydroxyl radical generated in 
aqueous ozonation experiments. A similar mechanism has 
been proposed for wet air oxidation of polycyclic aromatic 
hydrocarbons.3 The use of Fenton’s reagent, which is known 
to generate hydroxyl radicals, would be expected to prom ote 
this initial ring attack stage of the cleavage process in our

Table 3 Principal products arising from the oxidation of alkylpyridines
using Fenton’s reagent under ambient temperatures and pressures

Component fR/min RMM* Proposed structure
(a) 2-Methylpyridine—

1 11.41 60 Acetic acid
2 15.48 59 Acetamide

(b) 3-Methylpyridine—
1 14.8 107 3-Pyridylmethanal
2 15.4 59 Acetamide
3 23.4 109 3-Methylpyridine IV-oxide
4 23.5 182 (£ )- or (Z )-l ,2-Bis-(3-pyridyl) 

ethene
5 27.5 184 1,2-Bis-(3-pyridyl)ethane or

2- or 4- or 6-(3-Pyridylmethyl)
3-methylpyridine

6 27.9 184 As Component 5
7 32.0 198 (£ )- or (Z)-l-(3-pyridyI)-2- 

(3-pyridyl /V-oxide)ethene 
or a hydroxylated 1,2-bis- 
(3-pyridyl)ethene

(c) 4-Methylpyridine—
1 11.3 60 Acetic acid
2 15.4 59 Acetamide
3 15.7 45 Formamide
4 16.7 109 4-Pyridylmethanol
5 23.6 182 (£ )- l ,2-Bis-(4-pyridyl)ethene
* RMM =  relative molecular mass.

Table 4 Principal products arising from the autoclave oxidation of 
alkylpyridines using Fenton’s reagent

Component rR/min RMM* Proposed structure
(a) 2-Methylpyridine—

1 4.73 79 Pyridine
2 12.12 121 2-(2-Pyridyl)ethana!
3 14.33 59 Acetamide
4 22.54 123 2-(2-Pyridyl)ethanol

(b) 3-Methylpyridine—
1 10.7 60 Acetic acid
2 14.8 107 3-Pyridylmethanal
3 20.4 109 A hydroxylated 3-methylpyridine
4 22.6 109 As Component 3
5 23.2 109 3-Methylpyridine N-oxide
6 23.6 170 2-Pyridyl-(3-pyridyl)methane

(c) 4-Methylpyridine—
1 10.9 60 Acetic acid
2 14.0 107 4-Pyridylmethanal
* RMM = relative molecular mass.
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experiments. Pyridines are known to behave as radical- 
trapping systems, leading to the formation of 2- and 4-substi- 
tuted pyridines.11 Identification of acetamide and acetic acid 
in our reaction products is clearly evidence of an oxidative 
ring-cleavage process.

Conclusions

GC-M S has been used to identify products arising from the 
oxidation of picolines under a variety of conditions. Evidence 
for the involvement of hydroxyl radicals in the oxidation 
process has been adduced. Fenton’s reagent, a known source 
of hydroxyl radicals, has been shown to prom ote ring-cleavage 
processes in pyridine chemistry. The object of this work was to 
establish a system for the complete destructive oxidation of 
picolines. Towards this aim, radical-promoting catalysts seem 
worthy of further investigation.

We are grateful to Leigh Environmental L td., 1 Station Road, 
Four Ashes, W olverhampton, UK WV10 7DQ, for their 
financial support for this work.
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