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STATISTICAL MODELS FOR BIOLOGICAL GROWTH

G W Morgan

The problems of selecting and fitting models to data collected on the growth of 
an organism or population are considered.

The ways of identifying suitable models are reviewed and some suggestions
made using smoothe d  growth rates.

The problems in fitting non-linear models to growth data are considered. Use 
is made of measures of non-linearity and new methods developed to take into
account the effects of non-linearity and also the possible presence of auto
correlated errors.

Stochastic dynamic models for growth are examined and parameter estimators 
found. Extensive use is made of the Kalman filter.

For multivariate situations two methods by which phase plane solutions can be 
fitted in the bivariate case are developed. The use of the Kalman filter is also 
considered.

The study also considers the role of statistical modelling. A possible
methodology is presented.

Examples from two areas are presented:

plant growth and child growth.
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ABSTRACT

STATISTICAL MODELS FOR BIOLOGICAL GROWTH

G W Morgan

The problems of selecting and fitting models to data collected on the growth of 
an organism or population are considered.

The ways of identifying suitable models are reviewed and some suggestions 
made using smoothe d growth rates.

The problems in fitting non-linear models to growth data are considered. Use 
is made of measures of non-linearity and new methods developed to take into 
account the effects of non-linearity and also the possible presence of auto 
correlated errors.

Stochastic dynamic models for growth are examined and parameter estimators 
found. Extensive use is made of the Kalman filter.

For multivariate situations two methods by which phase plane solutions can be 
fitted in the bivariate case are developed. The use of the Kalman filter is also 
considered.

The study also considers the role of statistical modelling. A possible 
methodology is presented.

Examples from two areas are presented:

plant growth and child growth.
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1. Introduction

1.1 Growth Data

Data on the growth of part, whole or groups of organisms are collected in

many areas of Biological Science. In agriculture the growth of crops and

animals is studied, in Medicine it is the growth of individuals or the growth of 

tumors. In Botany, either the whole plant can be looked at or one can look at

a particular part, for example a leaf or a tiller.

The data collection can be classified into two types. The first is when a single 

entity is studied through time and measurements are taken at various times. 

The second is when a sample is taken from an experimental population at

various times in order to study the growth of the population as a whole. This 

is common in the study of crop growth when, for example, in studying grass

growth over a season a sample of grass given by a randomly placed quadrate

would be harvested and weighed every week.

One of the particular difficulties with this type of data, especially with the first 

type of collection, is that the observations will, in general, not be independent 

but correlated. Glasb$y(1979) considers five contributions to the errors of a

model of the growth of Ayrshire steer calves

(a) Variations in gut fill between weighings

(b) Seasonal variations and changes in diet

(c) Illness

(d) Errors in measuring procedure

(e) Choice of wrong parametric form of the curve.

-  1 -



Of these factors (b), (c) and (e) result in correlated errors.

In the case of sampling from an experimental population changes in the 

environment which would be common to the samples would also lead to the 

correlated error structure. Thus while standard regression modelling procedure 

involve the assumption of independent errors this will rarely be valid in the 

case of growth data.

Two detailed examples of the type of data that will be dealt with will be given 

later.

A second problem is that, over a reasonable time span, the data is not linear. 

The standard shape being that of a sigmoid curve, thus the most natural model 

form is a non-linear model.

1.2 Some Approaches to the Problem

There are three basic approaches to this problem. One is to consider functions 

of the observations, usually some form of difference, and assume that these are, 

approximately, independent. Some form of analysis is then carried out on these 

functions of the data (eg Radford (1967) Hunt (1978, 1982)).

Alternatively a second approach, which will be called the statistical approach, 

relies on approximating the growth curve by a low order polynomial. The 

advantage of using a polynomial is that it is statistically simpler to deal with 

and a procedure involving a general error structure can be arrived at which 

only involves linear computations. However, it is rarely possible to assign a 

biological meaning to the parameters of the f i t t e d  model, thus making 

interpretation difficult.
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The third approach is to fit non-linear models whose parameters have a

reasonable biological interpretation. Being non-linear these models involve 

greater problems in estimating the parameters than do the linear models. 

Numerical techniques have to be employed in order to minimise the resulting 

non-linear sums of squares function required by least squares procedures. Also 

very little work has been done on fitting non-linear models with dependent 

errors.

These two other approaches will now be reviewed in detail starting with the 

statistical approach, then looking at non-linear curves.

1.3 The Statistical Approach

One popular approach is to use a split-plot type analysis. Suppose there are r

individuals on each of p treatments with observations taken at y  times, a

possible model would be

Yi j k  “  M + a i + fJij + t k + (a t ) ik  + e i j k

i - 1 ......... P, i »j “ l  >•••»!*, k « l , . . . , y

o'] - treatment effect, E ot j = 0 

t^ - time effect, E t ^ = 0 

(at)ik - time x treatment interaction

E (ctft)jk *“ ^  "" ®
i k

- random individual effect

eijk " error term independent of 17

with

V a /’Jij) = cf\2 and V ^ e jj^ )  = a n 2

Now

Var(Y ijk) = n 2 + <*112

Cov(yjjk> yijk’) = cti 2
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Let

c  — Cj 2 + O’! i 2 and p <nz
c I  2 + O'} i 2

then

v ai<yijk) = o' 2 

Cov(yijk) = P ° ‘

So the variance - covariance matrix V j for the observations of an individual is 

cr2(I(l - p) + Jp) ie

V i

1 P

P 1

Rowell and Walters (1976) are critical of this approach. One of the main

criticisms is that the covariance matrix is of a definite and, possibly, unlikely

form since it implies that the correlation between two observations S time units 

apart is the same as that just one apart. In order to test this assumption, Wilks 

test is proposed (Wilks (1946)), see also Winer (1970) who uses a method based 

on Box (1950). Huynh and Feldt (1970) show that the F test is valid if Vj is 

of the form

[I + a J  + o 1 ' + 1 a ']  .

where a is a scalar, 1 is a column of l ’s and a  is such that or' 1 = 0.

The analysis of variance is
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Source df EMS

Treatment p-1 o - n 2 + tcrj2 + r t ( E  a 2/ p - l )

Error I p ( r - l ) °"112 + ter j 2

Time t - 1 ° n 2 + pr(E t 2/ t - l )

Time x Treatment ( t - l ) ( p - l > (rn 2 + r ( E E ( a t ) 2/ ( t - l ) ( p - l ) )

Error II p ( t - l ) ( r - 1 ) crn 2

Total  tpr  -  1

(See for example Cochran and Cox or Winer).

If a block structure is introduced then the following partition is used

Source df

Block r-1

Treatment p-1

Error I ( p - 1 ) ( r - 1 )

Time t -1

Time x Treatment ( t - 1 ) ( p - 1 )

Error 11 p ( t - l ) ( r - 1 )

Total tpr-1

It has also been suggested that the Error II be partitioned into 

Time x block - (t- l)(r- l)  df
and

Time x Treatment x Block ( t- l)(p - l)(r- l)  df

and use the 3-factor component to test the Time x Treatment interaction. This 

procedure is sometimes referred to as a split-block analysis. It gives the same 

test as would result from a blocks x treatments x times factorial experiment 

using significance tests appropriate to a mixed model in which blocks were
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regarded as a random effect and treatment and times as fixed effects.

The (t-1) df for time can be further partitioned into single degree components 

corresponding to orthogonal polynomials, ie linear, quadratic terms etc. Also 

the Time x Treatment interaction can be partitioned into linear x treatment, 

quadratic x treatment etc components.

Another approach to the analysis of this model is that of Fuller and Battese 

(1973) which is discussed by Grassia and DeBoer (1980). In this approach a 

transformation I is found such that e* = Te are independent errors and the 

regression of TY on TX is then performed. For this problem T is of the form

t FP

with

Ti -  
( t x t )

-o t / f

- a / t

- a / t
where a  -  1 -  [o‘n 2/ o ’n 2 + t(rj2] i

Estimating q j 2 and q 2 by

( T u 2 ”  Error II Mean square — s 112 

S i 2 - S n 2
& i2 — --------------    where S j 2 -  error I mean square

or more appropriately for this method using the method of ’fitting of constant’ 

(see for example Searle).

To estimate q j 2 fit the full model treating y jj as a fixed effect to yield a 

residual sum of square S$^r  

Then ; n 2 = SSfr /(p (t-l)(r-l))

To estimate q 2 regress y on all the fixed effects and obtain the residual sum 

of squares SSf then
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^1

where

S S f -  t p ( F - l ) c r i j
n*

rP
n* — tpr -  t r (X'X-1 E (xj* x j ) (rp)

where Xj is the (lxp) vector having kth element 

the mean of x^ for the ith individuals 

= t in this case

The advantage of the second method of estimating ctji2 and c j 2 is that it can 

easily be used in an unbalanced situation.

A second approach was suggested by Wishart (1938). He fitted linear and

quadratic orthogonal polynomials to the response over time of each individual. 

The estimated coefficients were then analysed using the analysis of variance

technique. This gave an analysis of linear growth and an analysis of rate of 

change of growth.

Hills (1968) used first and second order finite differences rather than orthogonal 

polynomials. Rao (1958) considered the first finite difference but used a

transformed time scale to improve the assumption of linear growth.

The two above mentioned methods involve a univariate approach, the use of

multivariate techniques has also been suggested (Box (1950), Cole and Grizzle

(1966)). Instead of treating time as a factor treat the observations on an

individual over time as a single multivariate observation with an arbitrary

variance - covariance matrix. The model is

E(Y) A g
nxt nxm mxt
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where

yi
( l x t )

has a multivariate normal distribution with variance - covariance matrix £  and 

rank (A) = m where m is the number of independent terms in the model.

To test the hypothesis H0 C£M = 0

C is sxm (s < m) and of rank s 

M is txu and rank u < t

Test statistics are based on the matrix ratio S j ' 1 where

SH -  M, YA(A, A)“ 1C, (0 ^ ,A )-1C, ) ' 1C(A, A )-1A,YM 

SE -  Mf Y' [ I -  A(A'A)“ 1 A' )YM

Three statistics have been proposed

Wilks likelihood ratio A = 1/ |S ^ jS£” 1 + I |

Product of non-zero characteristic roots

and

Xm
i ”+” x“  ŵ ere ” l a r g e s t  c h a r a c t e r i s t i c  root o f  S^jS^“ 1

For A tables are available for some cases. Also -(n-£(t+S+l)logA ~ x 2tS 

asymptotically.

For suitable choice of C and M the required test of hypotheses can be carried 

out. Test for the form of the response over time can be constructed using 

orthogonal polynomials (see Cole and Grizzle (1966)).

In a recent simulation investigation Schwertman et al (1985) compare split plot 

methods with the difference methods of Hills and Rao and a multivariate test

-  8 -



using Hotelling’s T square. They concluded that the split plot approach was 

b e s t  I for testing parallelism of growth when Geisser and Greenhouse’s (1958) 

method of adjusting the degrees of freedom is used.

A major advance in the analysis of growth curves come with the Potthoff and 

Roy (1964) paper. They introduced the idea of an extended MANOVA model 

E(Y) = A$P

where P is a (qxt) matrix of known coefficients, and £ is now (mxq). The P 

matrix allows a linear growth curve to be fitted, eg the ith row may be

1 f .  f .  2  f .  3  i ij ij ij ...

The analysis of the model is carried out by the use of a transformation of the 

form

z  -  Y G - ’ P ' ( P  G“ 1P ' ) _1 

where G is any symmetric positive definite matrix. This gives 

E(Z) -  A£

Cov(Z) -  [PG“ 1P ' ] “ 1PG“ 1 EG- 1P ' (PG“ 1P ' ) ~ 1 

(G may also be any non-singular matrix such that PG"nP is of full rank, this 

will slightly alter the var-cov matrix above). The transformed model can now 

be analysed as an ordinary MANOVA.

There are several possible choices for G

(i) G = I. The main advantage of this is the computational 

simplicity especially if orthogonal polynomials are used to 

construct P.

(ii) Among all estimators of the form

d '  Y W
( lx n ) (qx l)

b*C(A* A) -1 A'YE“ 1P ’ I P I ^ P ’ ^ M f  
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is the minimum unbiased estimator of b*C£Mf. Comparing this 

with the LS estimator from the transformed model 

(A'A) -1 A1 Z = (A'A) -1  A'YG“ 1P' (PG ^P ' 

suggests taking G = E. However, in general the value of E 

will not be known.

(iii) If a stochastically independent estimate of £ is available, Sj say,

then take G = Sj using the argument of (ii).

Rao (1965) discusses another extension of the MANOVA model \  

is considered to be random with 

m )  = X 

Cov(£) = A

Thus

Cov(Y) = (AAA* + E)

He suggests the following steps in the analysis of growth data

1. Replace observed values by orthogonal polynomial regression coefficients

(bj, j=0,...,t-l) for each individual, (cf Wisharts approach). These estimate

the true coefficients /3r .

2. Calculate the mean and corrected sums of squares and cross-products for

the above coefficients, b and S say.

3. Examine to see if a subset of the coefficients is inference sufficient. This

will depend on the degree of the polynomial of the growth curve and on

the structure of the true dispersion matrix of
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Suppose the polynomial with coefficients adequately represents the

curve, then a subset of the remaining coefficient bk+ i whose

expectation is zero may yield information of fa through their correlations

with b o , . . .^ .  Improved estimates of can be obtained by using

bk+1,...,t>k as concomitant variables to the main coefficients b 0 ^..jbfc in a 

covariance analysis.

In order to see if any of the b ^ +1 ,...,b t-1  are  required the form of the 

dispersion matrix A can be tested 

[Ak 0  l

IQ!2

where Â  is k+i x k+i matrix. This may be carried out using 

|S
“ |Sk+, |S , |

where

1 2

Si

0 . . .  k k+i . . .  t - i

0

k

k+i

t - i

and

________ |s,|
‘2 ak+ iak+ 2  a t _ ,SP -k- '

where aj = sum of squares of values of orthogonal polynomials

/ t - k - i  with S -  [Sj j ]
t - i

E S j j /d j
i-k+i

Then -(n - i)  log A is approximately x2 on ( t-k -1 )(k+i) df and - (n - i)  log is 

approximately x2 with i ( t -k -2)(t-k+i) df. The covariance approach is as 

follows. Let U be a nxq matrix of concomitant variables

-  11 -



E(u) -  0

E(Y |u) -  A$ + up 

Then

r A'A A'u” A’
A

P. u'A u 'u u '

and

A -  ( n - r - q ) -1 (Y'Y -  YgCg’Y)

the

c o v ( P ' 0  for  some P i s  g iven  by
♦

C o v ( P '0  -  (P' CmnjP)A 

Cmm being the first m rows and columns of C.

In this paper Rao is also critical of Potthoff and Roy’s method. He criticizes

it for ignoring information provided by concomitants and for the arbitrary 

choice of G if G does not equal E.

Katri (1966) showed that the maximum likelihood estimate of $ for Potthoff 

and Roy’s Model was obtained when G was replaced by S calculated from the 

same data. He also shows that the three test criteriq given above can be used. 

Grizzle and Allen (1969) developed Rao’s technique giving examples. They also 

point out that if G = S then the Potthoff and Roy method is equivalent to 

using all the possible concomitant variables in Rao’s method.

The relationship between the two methods was further examined by Lee (1974) 

and Bakealaxy, Corsten and Kala (1978). The latter shows that for any choice 

of a subset of concomitant variables there exists a value of G such that the 

two methods are equivalent. However, they recommend the use of Rao’s 

method when no information about the structure of E is known and Potthoff 

and Roy’s when there is some information. The structure can be examined

-  12 -



using the techniques given by Khatri (1973).

This model can be extended to cope with missing data. Kleinbaum (1973) 

introduced the extended model 

E(Yj) = AjSPBj j=l,...,u 

where Aj has dimensions (njxm) and B j  is an incidence matrix of 0’s and l ’s 

with dimensions (txtj). The data matrices 'Vj have dimensions (n j x tj ) that is 

there are nj individuals which have observations at the same tj times.

Kleinbaum shows that the best asymptotic normal estimate for £ is given by

u
E P B j ( B j ’E B j ) -1 B j ’P'  ® Aj Aj

j - 1

u
E

j - 1
P B j ( B j 'E  B j ) " 1 0 A j ’

E is any constant positive definite estimator of E.

Schwertman and Allen (1979) give a smoothed estimate for E. Leeper and

Woolson (1982) compare the method of Schwertman and Allen with two

estimators suggested by Kleinbaum, one using just complete data, the other 

pooling across all available data for each cell of E separately. They conclude 

that if a subset of complete data of moderate size is available then E from this

data should be used otherwise the smoothed estimate should be used.

An alternative approach to missing values is proposed by Liski (1984). He uses 

Bayesian methods to estimate the missing values, either via the linear model of 

Lindley and Smith (1972) or using Fearn’s model as described below.

A Bayesian approach to the analysis of these models has been given by Geisser 

(1970) and Fearn (1975). The model is based on a two-stage approach in
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which the regression coefficient for individuals come from a multivariate 

Normal distribution.

The ind iv idual model Y| N(X{/5j, cr21) i - l , . . . , n

with  second s tage  /Sj =: N(/t, C)

This g iv e s  Yf =: N (X ^ .XjCX' { + <r2I)

Using vague prior knowledge for the posterior distribution for 0 i is normal 

with

n - l n
mean 0 i *  -  wj0,  + (I-Wj) E Wj

j - i  .

r  ws(5j 
J - i  .

n -1
variance  - Wi + (I-Wj) E wj Wj cr2i (XjXj)

j - 1  .

Wi -  (cr’ iX’ jXi + a 21 (X’X | )

f t  -  (Xi Xi )Xi * yi  

For the second stage

n
/** “  n  E Pi 

i - 1

Var
n
E [<72i (Xi , Xi ) “ 1 + C]"1 

i - 1

If however, C is unknown, the problem is more complex. There is no solution 

to the required posterior integrals. Fearn suggests substituting estimates in the 

above expressions.

In a later paper Feam(1977) shows how a two stage model will lead to Rao’s 

model. This is obtained by giving /t the structure
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fl -

0

A similar approach is used by Hui (1984). He assumes that 

Vj = X{ C X' i + a 2 I 

is of the form

Vj = a 2i J  + <r 2 I 

ie the form from the split-plot approach. The weighted least squares estimate 

of \i is then

n n
ft “ M X < 1 X E Xj '  V i ’ i y i

i-=l i*=l

He shows how an iterative weighted procedure can be set up estimating o-j2 

and a 2 from the residuals.

The statistical aspects of the approaches described in the section have been 

subject to a considerable amount of investigation. In chapters 7 and 10 a more 

conceptual criticism of these models will be developed.

1.4 Non-linear Models

If we wish to consider more realistic models of growth, rather than the simple 

polynomial models, then these tend to be non-linear. Some of the most 

common are given below. They are derived from suitable differential equation 

models.
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Exponential

If W is the measurement under study then if the rate of growth of 

W is proportion to w, ie 

dw
d t ffW 

then W = ae^

This model assumes that there is no restriction on growth. This 

would be appropriate to certain stages in the growth of an organism 

before restrictions start to play a major role.

Monomolecular

Here there is a term indicating that there is an underlying steady 

growth rate and a term indicating a resistance to growth at a rate 

proportion to W \ iy

~  -  R(a -  W) a,  k > 0 at

giving

W = a -  be“kt 

dwAs t -» a>, w -» a,  ^  0, thus g iv i n g  the curve qn asymptote.

Logistic

This model gives an exponential growth with a resistance proportional 

to w 2

^  -  k(W - ( l /a )W *)

This could be considered as a second order Taylor’s series 

approximation to the model 

dw N
3F “ f(w)

The logistic model is



w  °
1 + be“kt

dWAs t oo, W -» a, 0, g iv in g  an asymptote,  now

£ ?  -  k ( l  -  2 /a  

so there  i s  a point  o f  i n f l e c t i o n  at w -  a / 2 ,  t =  ̂—
iv.

(iv) Gompertz

Starting from the exponential growth law

a? - «■(*)■

If r decreases with time, exponentially, so that

—  -  -  kr dt

then

f ( t )  -  b' e"kt

and

w -  exp(a  -  be”k t )

This is an asymetric curve with asymptote at w = exp a and point of 

inflection at t = (log b)/k.

(v) Richards or Generalised Logistic

A generalisation of the logistic function was proposed by Richards 

(1959, 1969). The differential equation is

which gives

UJ _  ________ A__________
[1 + e - (b + kt ) / 0 ] 0
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This curve contains many of the above functions 

0 = 1  - logistic

6 = -1 - monomolecular 

0 -» 0+ - exponential

6 oo and A a linear function of 8 - Gompertz

(vi) Cui Q ivu and Lawson (1982) consider a different generalisation of the 

logistic. Using adsorption theory of chemical kinetics they derive the 

equation

dW pW(l  -  W/Wm)
dt " 1 -  W/Wjjj1

with solution

lo g ( W / W 0) -  l o g « W m -  W)/ (Wm -  W0)

+  O V V )  l o g ( ( W m -  W)/ (Wm -  W0»  =  /*( t  -  t 0 ) 

using boundary conditions w = w 0 when t = t 0.

(vii) Turner et al (1976) and Pruitt et al (1979) consider the very general 

equation

“  ( t i t  w 1 _nP(Kn -  wn ) 1+P 

with solution

K
(1 + (1 + |3np(t  -  t 0) ) - V P } > / n  •

•fhis function includes the Richards function.

Comparison of Curves

Of the four basic curves, (i) to (iv), only the exponential does not possess an 

asymptote, hence its use will be different from the other three, being used for 

organisms which do not reach senescence. The monomolecular does not have a
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point of inflection where as both the logistic (at t = a/2) and the Gompertz

(at t = log b) do possess one. 
k

The main difference between the logistic and the Gompertz is that the logistic 

is symmetrical whereas the Gompertz is not. Stone (1980) gives a general 

review of sigmoid curves.

i

Fitting of Curves

An important decision in fitting these non-linear curves is that between an 

additive error structure and a multiplicative error structure, the latter not being 

uncommon for this type of data.

This section will consider some of the particular aspects related to the above 

curves. General points on the minimisation of non-linear sums of squares will 

be given in Appendix A.

(i) Exponential

Under a multiplicative error, taking a log transformation a linear 

form is obtained

log y = log a + kt + log e 

For the additive error the model can easily be fitted by say the 

Gauss-Newton method. Initial estimates may be obtained from the 

linear form.

(ii) Monomolecular

With an additive error this model can be fitted by standard methods 

but an additional approach is as follows 

If k were known to give a linear model 

w = a + bx where x = e- ^
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so for given k ,a  and b can be found by linear least squares. A 

linear search (see Appendix A) on k can thus be carried out which 

will at the same time yield the required estimates of a and b.

For monomoecular; model the log transformation only increases the 

non-linearity. It would therefore be better to use an iterative 

weighted procedure on the untransformed model using weight

^  = (1/Vi)2

This will lead to the same result provided the model gives a good fit 

to the data (ie | residual | < | y i | )•

(iii) Logistic

The fitting of the logistic curve has been studied extensively (eg 

Oliver (1964, 1966, 1982), Nelder (1961), Patton and Krause (1972), 

Vierra and Hoffmann (1977)). The correct parameterisation is 

important as it will improve the speed of convergence and lead to 

estimates which are not highly correlated.

Patton and Krause (1972) suggest a parameterisation which gives a 

diagonal asymptotic variance - covariance matrix for a true parameter 

model (a-known). He uses the two parameters 

R = a/4.k 

r  = log (b)/k 

This is for an additive error structure.

In discussing the logarithmic version of the Richards function, Davies 

and Ku (1977) suggest replacing b by e~c which is less non-linear 

than b.
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Using this parameterisation of the log transformed model is 

log w = log a - log(l + e“(c+kO)

For both error structures the model can be fitted by standard 

techniques. For initial estimates a has to be estimated from a plot 

of the data and then if

l ° g [ g ^ wj i s  p lo t t e d  aga in st  t

the initial values of C and k can be obtained from the intercept and 

slope respectively.

Gompertz

Much less attention has been paid to the Gompertz curve than to the 

logistic. Vierra and Hoffmann (1977) discuss the estimation under 

both multiplicative and additive error terms.

Under a multiplicative error structure the log transformation yields 

the following form

log W = a - be- ^  + log c 

this is the monomolecular function applied to log W, hence the 

discussion above is applicable.

Vierra and Hoffmann fit the model under an additive error by the 

Gauss-Newton method.

Richards Function

The fitting of the Richards Function has been considered by Nelder 

(1961, 1962), Causton (1969) and Davies and Ku (1977). Nelder fits 

the curve by the method of scoring while Causton uses 

Newton-Raphson. In both cases a multiplicative error is assumed.



In his second paper Nelder reparameterises to give

(1  + ^e -(b + k t ) ) i / p

In this form the Gompertz is found as <p 0. Causton (1969) uses 

the form

log w = log a + m log(l + Be^*)

this is criticised by Davies and Ku (1977) who suggest the form 

log w = log a + m log(l - e~(c+kt))

this being less non-linear.

No results have been published for fitting the curve using an additive

error.

Criticism of the above approach

While this approach provides more realistic models than does the statistical 

approach it has two major problems. First the problem of correlated errors is 

generally ignored. There have, however, been two investigations.

Finney (1958) proposed a monomolecular model with a particular form of 

correlated error structure. He provided estimates of the non-linear parameter

based on ratios of linear and quadratic functions of the observations. The 

covariance structure of the model can be written as

These approaches are only concerned with models in which the covariance 

structure is a function of the parameters of the deterministic part of the model 

and hence have limited flexibility.
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Glasbey (1979) considers the generalised logistic under an error structure with 

correlation

I t - t 1 1
Corr^wt i  wt 2J “  °"2P

In particular he looks at the situation of equally geared observations, then if 

e t -  wt -  f t i where f t  i s  the  fu n c tio n a l v a lu e ,

log l ik e l ih o o d  -  ( n / 2 ) lo g  a 2 + {( n - l ) / 2 ) lo g ( l - p 2)

+ {A + ( l+ p 2)B -  2pc}/{2cr2 ( l - p 2}

where

n - 1  n -1
A -  e , 2 + en 2, B -  E e t 2, C -  E e t e t+1

i - 2  i - 1

This function is maximised by a composite process of Newton-Raphson, steepest 

descent and the method of scoring.

When the time between observations is not a constant,

log lik e lih o o d  -. 1  E lo g ( l  -  p^*1] + (n /2 )logcr2 + 
1 i - 1

e , v [ l  -  P2X'] + en * ( l  * p2Xn- ’ ] t V  e i s ( l  -  p2x ‘ - ’ p2Xi] /
1-2

( l  -  p2x l - i ) [ l  -  p2* i ]
n
I  2e , . ,  (px »->) 

i - 2
/ 2 a :

where

xi “ *i+i ” li*

Other approaches to this problem and an extension of Glasbey’s results will be 

developed in chapter 4.

The recent work of Khatri and Shah (1982) helps to unite the approaches of 

sections 1.3 and this section. They consider a model of the form



Y = A$P(X) + e

similar to Potthoff and Ray’s model but P is a matrix of possible y non-linear 

known functions of the unknown parameters X. In particular they look at the 

form

e _Xi t i e ~X l t 2

e -Xkt  , e ^ k 1 2 r xkl t

This model would be different from Potthoff and Roy’s model even if the X j ’s 

were known for in this case £ will have structural zeros.

They estimate £ and X by Generalised Least Squares (GLS) and Maximum 

Likelihood (ML).

Xpj

LSt * ^ k  "  j  ° k j ^  "  Ck' ^k '

and Z -  YS_ 1P 1 (PS“ 1P 1) ~ 1 -  YQ

where S -  Y ' [ I-A(A'A)_ 1A' ] _1 

For GLS estimators

£ -  (P 'S*1 P)"‘ P»S’ 'Y

and

f k .A'Y[I -  QP]S-'Ck -  0 

For ML estimators

I -  (P»S“‘ P)”' P 'S ' 1 T

and

$k [ I - (A ’A ) ' 1A, Y(I -  QP) " 1 SY1 A] “ 1 A’Y[ I -  QPJS"1̂  -  0

This model is generalised to cover a number of distinct groups with entirely

different parameters, in this case S becomes a pooled estimate. Confidence

intervals were also found for the non-linear parameters.
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The second problem is to analyse sets of curves fitted to individuals in an 

experiment. Several possibilities are now considered.

(i) Analyse the fitted parameters in a series of one dimensional 

ANOVA’s. This is the extension of Wishart’s approach. The 

values could be weighted by their variances.

(ii) Analyse all the coefficients using a MANOVA. Again the 

variances of the estimates could be incorporated in the 

analysis.

(iii) Covariates could be incorporated into the parameters ie let

aj = exp(£ xjj |3j) for the jth  individual 

The analysis would then be based on a series of Log likelihood 

ratio statistics.

(iv) Krause, Seigel and Hurst (1962) examine a logistic curve in 

which the parameters a, b and log k have different independent 

log normal distributions. Structure representing the experimental 

design could be attached to the means of these distributions.

Further consideration of these problems will be given later.

1.5 Deterministic Approaches

A number of deterministic models for growth, particularly for populations, will 

be reviewed in this section.
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Discrete Time Models

A number of difference equation models for growth have been developed. 

These are considered particularly relevant for populations with non-overlapping 

generations eg for anthropods (Hassell (1981)). These models may also be of 

use in the study of general growth particularly when the observations are taken 

at equally spaced time intervals.

The basic model is 

Nt = X Nt_, 

with solution 

Nt -  Xt N 0 

Let r * log X

then Nt = N 0

Hence this is the discrete time equivalent to the exponential growth model.

A more general, density dependent form is given by 

Nt = Nt-1 f(Nt_ ,)

Various forms for f(Nt-1) are given by Pielou (1977), May et al (1974), May 

(1981)

(1 ) XN"b

(2) X e x p ( -  OfN)

(3 ) (1 + r ) / ( l  + r ( N / k ) )

W 1 + r ( l  -  N/k)

(6 )
(X1 -  X0)

0 1 + exp(S (N  -  J
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(3) is the discrete time equivalent of the logistic function.

Most interest in such models has been concerned with their behaviour. May 

(1976) gives a good account of the complex behaviour of models (4), (3) and 

(1). In this thesis we will be concerned with stochastic analogies of these 

models and in particular the problems of fitting and selecting such models.

These models can be extended to either multi-species populations or age 

structured populations by using the Leslie Matrix model (eg Usher (1972)). The 

basic model is 

^  = A

where A is pxp matrix and a *, a , are p dimensional vectors, there being p 

species/age classes.

Density dependence can be introduced to the elements of A (Leslie (1948), 

Pennywick, Compton and Beckingham (1969)). Williamson (1974) uses the idea 

of jumping between two m atrices A and A* depending on the value of a t -1  .

The stability of 2x2 density dependent models is considered by Cooke and Leon 

(1976).

Non-linear difference equation models for two species have also been proposed, 

they include

M Ni t - i  

(Pielou (1977))

O ) Ni t  -  i—r r m—  * -1 . 21 + Nl t _,  + 7i  N2 t . ,

-  27 -



(ii)

(iii)

( i v )

These models are combinations of models (2) and (3) for single species.

Most work on these models has been deterministic. In chapter 5 statistical 

aspects of difference equation models will be examined.

Continuous Time Population Models

The univariate models of section 1.4 can be extended to the multi-species 

situation.

The experimental growth model extended to p species gives 

x = A x(t)

where x(t) is the vector with elements x j  i=l,...,p

Leslie and Gower’s quoted Pielou (1977) Model 

X, N1 t _,
N , t  “  1 + 7 ,  Nz t _,  N'  i s  h o s t

m ^2 ^ 2t -1N2 1  -  m 7 m  N, i s  p a r a s i t e
2 t  1  +  7 2  2 1  — 1 /  1 t  — 1 2 F

The Nicholson-Bailey Model

Nl t  "  X Nl t -1 eXP (" a N2t - 1>

N21 "  c  Ni t -1 ( !  -  exP (-  a N2t ) )  

or its generalisation

Ni t  "  Ni t - i  e x p ( r ( l  -  N1 t _ , / k )  -  a  N2 t - 1 ) 

N2t  -  ol N1 t -1  (1 -  e x p ( -  a  N2 t ) )

(Both quoted May (198|)).
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dxj
x is the vector with elements -~rr- i=l,...,pat

and A is a pxp matrix of coefficients.

The solution can be formally written as 

x(t) = x 0 exp{A(t - t 0)}

Numerical evaluation can be evaluated in a number of ways (eg Patten (1971)).

The interaction between species is described by the coefficients ajj , the 

following are often used

I n t e r a c t i o n  i on j 

Commensal ism 

Amensalism 

Mutual ism /sym biosis 

Compet i t  ion 

P red a to r-P re y  

(eg May (1973 b))

May (1973 a) and Jeffries (1974) have examined conditions for qualitative 

stability of such a system.

May produced the conditions

ay < 0 W

ajj < 0 for at least one i

aijaji < f° r all i * j

aij ajk» —» ^gr a ri “ 0 f° r any sequence of 3 or more 

distinct indices i, j, k, ..., g, r 

Det(A) * 0

(i)

(ii) 

(in)

(iv)

(v)

Sign a j j  

+

Sign a j j  

0 

0 

+



The implications of these are

(i) No positive feedback

(ii) At l e a s t  one sp e c ie s  has a  s e l f  r e g u la t in g  e ffe c t*

(iii) Commensalism, amensalism and predictor-prey are qualitative stable.

(iv) No closed loops exist.

Jeffries produced sufficient conditions for stability in terms of digraphs. The 

system can also possess neighbourhood stability if

(i) all eigenvalues of A have negative real parts

and

(ii) some eigenvalues have zero real parts and one distinct and the 

remainder have negative real parts.

(May (1973 b), Kowal (1971)).

As with the single species case a more realistic description is provided by 

non-linear models. Most attention has been given to the two species case.

The most famous model is the Lotka-Volterra model 

dx.,
d f  "  a x , -  « x , x 2 

dx2
dt b x 2 + 0 x ,  x 2

where x2 is the predator. There are many criticisms of this model. It assumes 

unlimited population size for prey in the absence of the predator and the 

solution of the equations leads to an unrealistic neutrally stable cycle.
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A more realistic model is given by 

dx1
^  r  x , ( l  -  x , / k )  -  x 2 F ( x , , x 2)

dx2
-  X 2 G ( X ,  X 2 )

May (1981) lists a number of different forms for F and G. They include

By taking various combinations of F and G or using one of the original 

Lotka-Volterra system a wide range of models can be produced including the 

Leslie and Gower Models and Holling-Tanner Model (Pielou (1977)).

Stability of such systems can be shown by two theorems. Consider the system

(v) F, (0 , 0 ) > 0

and there exists A, B and C > 0 with B > C such that

(v i )  F , (0,  A) -  0 ( v i i )  F, (B,  0) -  0 ( v i i i )  F2 (C, 0) -  0

F G

a  x,

k x 1/ ( x 1 + D) 

k ( l  -  exp( -  C x , ))

-  b + 0 F ( x1, x 2) 

S(1 -  y  x 1/ x 2)

then Kolmogorov’s theorem (May (1973)) states that if

( i )  F 12 < 0 

( i l l )  F22 < 0

( i i )  Xj F „  + x 2 F22 < 0

( iv )  x,  F21 + x 2 F22 > 0

Then the system has either a stable limit cycle or a stable equilibrium point.
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Bulmer (1978) produced a set of more realistic conditions. These consist of

(a) F 21 > 0 (b) F 22 < 0 (c) F , , < 0 when x2 = 0

(d) the conditions (i), (vi), (vii) and (viii) above and (e) 

for constants a  and /t

x 2 F 2 < F , ( x , , 0) -  x, F , (x,  , x 2)] -  \l x 2

The term in square brackets is the number of prey consumed in unit time by 

the predators, a  is the maximum assimulation efficiency for conversion of prey 

into predator, and ji is the maximum value of a factor that includes the 

mortality of the predator and its energy requirements for maintenance activities.

These conditions lead to the same result.

Other models for two species interaction include competition models. May

(1981) presents the simple model 

dx,
g^- -  r, x,  (1 -  (x,  + a , 2 x 2) / k , ) 

dx2
^  r 2 x 2 (1 -  ( x 2 + a 21 x 1) / k 2)

where k, and k2 represent carrying acpacities of the environment as seen by 

species 1 and 2 respectively, 2 and ct, t are the competition coefficients.

As this brief review will have shown the main mathematical interest in these 

models has been the behaviour in relationship to stability. In chapter 6 

stochastic versions of the models will be considered and the problem of 

parameter estimation discussed.

Systems Dynamics

The system dynamics approach to modelling was popularised by Forrester’s 1961 

book Industrial Dynamics. One of the most famous (infamous?)applIcationBwas
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in The Limits to Growth (Meadows et al (1972)). The approach is based on 

linking various differential equation models to produce a model of the system. 

Such models can be simulated using numeric techniques. The popularity of 

such methods is in part due to the availability of computer packages eg 

DYNNAMO and DYSMAP.

A key idea in such modelling is feedback. In particular negative feedback. It 

is this that gives the models stability and, according to some schools of thought, 

makes them independent of parameter estimation problems.

An example of a system dynamic style model is given in fig 1.5(1). A 

discussion of the system dynamics approach will be given in chapter 7.

Fig 1.5(1)

A Forrester type diagram for the Lotka-Volterra Model

Prey 
Source

A
Prey b ir th  rate

Predator  
Source

Prey

r.i
V

Prey death rat<

d

  - > » <

> < H -

-Q=.
$  ^ \

Predator  
b ir th  ra te

Prey
sink

b

Predator  - > - <

Predator death rate
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1.6 Statistical Modelling

The idea of statistical modelling as a subject has grown considerably in the last 

few years. For instance the books of Shapiro and Gross (1981) and Gilchrist

(1984) and the Institute of Statisticians Conference on Statistical Modelling in 

1985. What is meant by statistical modelling will be discussed in more detail in

chapter 7, but to lay the foundation for chapters 2 to 6 the steps in statistical

modelling as given by Gilchrist will be presented here

1. Identification

This is selecting the most suitable model. The identification may be based 

on ideas about the situation (conceptual), the data (empirical) or a 

combination of both (eclectic).

2. Estimation and Fitting

The parameters of the model are estimated using suitable criteria and the

model fitted to the available data.

3. Validation

The validity of the model is considered, this can take place at various 

stages in model development.

4. Application

The use of the model, this will effect all stages of the modelling process.

5. Iteration

The above stages are not linear but the modeller will pass back and forth 

between them.
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1. 7 Aims of Study

The general aim is to produce a wide range of statistical models for growth 

suitable for application in many areas. In particular the problems of estimating 

and fitting the models will be considered along with identification, validation 

and sensitivity of the models.

First, several methods of model identification will be examined in chapter 2. 

The problems in fitting non-linear growth models will be considered in chapter 

3 and in particular the problem of auto correlated errors will be considered in 

chapter 4. Chapter 5 will look at dynamic models for growth rather than the

static models of chapter 3. These will include both difference and differential

equation models. Chapter 6 extends the work to the multivariate situation.

Chapter 7 considers what is meant by statistical modelling. In particular

approaches to modelling will be compared.

Two application areas will then be considered. Plant growth in chapter 8 and 

human growth in chapter 9.
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2. Empirical Identification

2.1 Introduction

Before considering the problems of model fitting the problem of deciding upon 

a suitable model for a given data set has to be considered. The identification 

in this chapter is essentially of the empirical type and consideration of the 

mechanisms that could lead to the models will not be considered.

The work is primarily concerned with the static models as considered in chapter

3. The consideration of the identifiction of suitable dynamic models can be 

tackled in two ways

(i) Identifying the deterministic solution to the problem specially using

the estimates of relative growth rates considered in section 2.3.

(ii) Identifying the density dependence in the growth model.

Both of these broad approaches are considered in this chapter.

Two basic approaches will be considered. The first, model dependent 

procedures are those in which the data is examined to see if one of a set of 

models is suitable. The second approach, model free procedures, attempts to 

present the data in a way that suitable models will be suggested.

Two other important aspects of model identification will also be considered. 

The testing for density independent growth as mentioned above, and the

estimation of the inherent variability of the data.
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2.2 Model Dependent Identification Procedures

One approach to identifying a model is to find a linearization and plot the 

transformed size against time. If w represents size then for the principal 

models considered in the introduction

Model Transformation

(a) Exponential

(b) Monomolecular

(c )  L o g is t ic

(d) Gompertz

(e )  Richards

log  a) 

log(co-a)

108 (3^ ]

1 og (1 og(co) -a )

hisN

a es t im a ted  from p lo t  
o f  co vs  time
A
a e s t im a ted  from p lo t  
o f  w vs  t ime
A

a es t im a ted  from a 
p lo t  o f  log  a) vs time
/v
a es t im a ted  from a 
p lo t  o f  (1) v s  time

In (e) an estimate of p  is required. One approach would be to try several 

values of p  to see which, if any, give a linear plot. Alternatively p  could be 

estimated using standard estimation and the plot used as a post estimation 

validation procedure.

A second approach is to look at the relative growth rates (Levenback and 

Reuter (1976)). If a growth rate estimator derived from a particular model is 

plotted against suitable functions it should give a linear plot. The following are 

suitable estimators for the above models.

(a) Exponent ia l
log  0 )* i+i -  log  wt .

*1+1 *1

This is plotted against time and should give a horizontal line.



(b) Monomolecular * y ( lo g (x )  -  l ° S ( y ) )
t  cot i ( x -y )

where  x -  , -  x t .l i+i l i

y -  " t j -  « t 1+l

T ~ * 1+1 -  *i 

This is plotted against 1 /<■> t •

(c )  L o g i s t i c  q s d o g ( q )  -  lo g ( s ) )
q -  s

where q -  -  ut l ] /  Tutj+1

s " [« t ,  -  “ t j . , ]  /  TOItj.,

and r is as above.

This is plotted against o> t

(d) Gompertz log

This is plotted against time.
i+i -  l i

(e) Richards

No corresponding plot is available since when fitting the curve to 

four points the resulting equations do not have a closed form 

solution.

Gregg et al (1964) devised a procedure based on quantities called slope 

characteristics. These are functions of slopes and moving averages.

The slope is estimated by linear orthogonal poloynomial and a moving average 

of similar extent is used to estimate the mean value. By suitable plots the 

different curves can be distinguished
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Curve P lo t v s  tim e Shape

Exponential s lope/m oving  average h o r iz o n ta l

Monomolecular lo g ( s lo p e )  s lo p in g  down to  r igh t

L o g i s t i c  lo g (s lo p e /(m o v in g  avera g e )2) s lo p in g  down to  r igh t

Gompertz lo g (s lo p e /m o v in g  average) s lo p in g  down to  r igh t

Holmes (1983) is critical of this method showing that even for error-free data 

the ability to distinguish between say the logistic and the Gompertz is slight.

Finally Holmes (1983) suggested the following procedure for data measured at 

equal intervals.

The data is divided into overlapping blocks each block consisting of a fixed 

number of consecutive data points (between 10 and 25). If there are 2m+l 

points the first being at t = k then the transformation 

Tk -  {( t - k ) / m)  -  1 

is used. Then within each block the model 

4
f(Tk) -  E a r W  gr  (Tk) 

r - 0

is fitted where

«r<k> are unknown paramters

gr(r) are known polynomials (see Holmes)

Plots of a 0 vs a ,  and a , vs aj are made, these should give the following 

configurations

(a) Exponential a 1 ol,

a. a ,
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(b) Monomolecular

“ i a o

(c ) Gompertz or 
L og is t  ic

2

a,

a,

This method would seem to be of limited use in the problems considered in 

this work as they require a long series of observations which are generally not 

available for growth situations.

2.3 Model-Free Identification

Scandland and McGilchrist suggest a method based on a cumulative sum (cusum) 

plot. They calculate and estimate J  the relative growth rate

lo g f« - t i+ l ] -  

* i +1 “

A cusum is then formed by calculating

s _  _  T - 
C -  E (Rj -  R) ; R -  E R:/T

j - 0  j - o

against S. These plots can indicate whether there is a smooth change in the 

relative growth rate, giving plots like
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cusum

0 S

or a phase change indicated by plots with a sharp peak

S

These plots would have to be used in conjunction with plots of Rj against 

time.

The cusum plots are useful for indicating if a multiphase model is required, but 

do not distinguish clearly between the standard growth models described earlier.

Another approach to the identification problem is to find a suitable smooth 

estimate of the relative growth rate and examine plots for that. A plot of the 

actual data can give some information eg whether there is a point of inflection

or if the curve is symmetrical, but the information is limited as all curves have

the same basic shape, whereas the underlying equations for the relative growth 

rate may be quite different.

Hershey, Zakin and Sinha (1967) investigate differentiating experimental data 

using orthogonal polynomials. An orthogonal polynomial is fitted locally to a 

series of points and an estimate of the derivative at the central point is given

by the derivative of the fitted polynomial. This leads to a series of
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coefficients for the derivative at time t. These can be calculated from tables 

of orthogonal polynomials (eg Fisher and Yates)

Number o f  Degree o f  C o e f f ic i e n t s  XD D
p o in ts  polynomial t - 3  t - 2  t -1  t t+1 t+2 t+3

5 2 - 2 -1 0 1 2 10

5 3 1 - 8 0 8 -1 12

7 2 -3 - 2 -1 0 1 2 3 28

7 3 22 -67 -58 0 58 67 - 2 2 252

Other sets of coefficients are available to provide estimates for end points. 

This method will only work for equally spaced observations. For data that is 

not equally spaced local polynomials could still be fitted and their derivatives 

calculated, but the calculations would be more laborious than with orthogonal 

polynomials. The computation would involve updating the regression at each 

point. (See Chambers (1971)).

The smoothed estimate of relative growth rate can then be plotted against either 

time or a smooth estimate of u. The latter would be obtained by use of a 

local polynomial in the same way as the slope is estimated. (See table 2.3(1) 

for the forms of the relative growth rates).

A more sophisticated approach to the problem would be the use of cubic 

splines (eg Reinsch (1967), Wold (1974)). Cubic splines are local cubic 

polynomials that are continuous for the first two derivatives. In order to fit 

such curves by least squares the B-spline representation is used.

m+2
S(x) -  E Xj 0 j ( x )  

t -1

i+2
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where (x) -  E (x - £ k ) 3 /  ($k-$ s )
k - i - 2  T 0s - i -2  

s^k
where

m = number of knots (or connections between polynomials)

£j i=l,...,m position of the knots

and

£ k  “  £1 “ ( £ i ~ x mi n ) k  < 0

£k ”  £m + (k-m) (xmax_ în) k  ̂ m+1

Computational considerations are considered by M G Cox (1972, 1975, 1978).

When fitting splines a balance between smoothness and accuracy of fit needs to 

be obtained for the greater the number of knots the greater the accuracy but 

the rougher the fitted curve. This problem is discussed by Wold (1974), Powell

(1967) and Woodford (1970). Wold gives the following rules of thumb

(1) Have 4 or 5 points per interval.

(2) Have not more than one extremum point and one inflection point per 

interval.

(3) Have extremum points centred in the intervals.

(4) Have inflection points close to knots.

Cubic splines may be fitted by algorithms in the Nog library, these are based 

on the work of Cox.

A comparison of results based on both the local orthogonal polynomials and the 

use of cubic splines indicated that the extra computation required in the use of 

splines was not justified.
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Although the use of splines and local polynomials has been suggested for the 

estimation of various growth rates (eg Hunt (1982)) their use in the 

identification of suitable growth functions has not been fully appreciated.

Model

Exponent ial 

Monomolecular

Gompertz

Logist ic

Richards

Table 2.3 (i) 

Relative Growth Rates

W - bekt 

W - A(l-be-kt)

W

W

r + 'b e - K r

A

bke-kt 
l ~  be“kc

W - Aexp(-be“kt) bke“kt

bke"kt 
1 + be“kl

{1 +

A-W]
W J

M*)N
As a result of experience with several data sets the following conclusions could 

be reached.

A simple method of model-free identification is to differentiate the logarithm 

of the observations using local polynomials. By applying different polynomials 

various compromises between smoothness and closeness of fit can be obtained. 

The order for decreasing smoothness is 

OP(7, 2)

OP(3, 2)

OP(7, 3)

OP(3, 3)

where OP(n, p) is a p’th degree polynomial fitted to n points.
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Plots of these against time and a smoothed value of the observations give a 

good indication of the type of model to be investigated. Further confirmation 

can be found by either the methods of section 2.2 or from a past model fitting 

examination.

These methods differ from those of Gregg et al in that a variety of different 

slope indicators are available and the aim is to give an insight into the situation 

rather than pick out a particular model from a particular plot.

2.4 Testing For Density Dependence

As was stated in the introduction the null model for growth is often the density 

independent exponential growth model 

y ( t )  -  y ( 0 ) e r t  

Thus if

x ( t )  -  log y ( t )

x ( t ) -  x ( t ' )  + r ( t - t ’ ) t > t '

So for equally spaced observation a plot of x(t) against x (t-l) should give a 

straight line with slope 1. This is known as a Morris plot. If density 

dependent growth is present then the slope of the line will be less than one. 

This suggests that a test of the regression coefficient of x(t) on x (t-l) to see if 

it equals 1 should test for density dependence. However, a number of authors 

have pointed out that such a test is biased (Eberhardt (1970), Maelzer (1970), St 

Amant (1970)). The problem being that for density independent growth the 

respected value of the slope is less than one as it is approximately the first 

order correlation coefficient.
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Several suggestions have been made to overcome this problem. Varley and 

Gradwell (1968) had suggested examining both the regression of x(t) and x(t-l) 

and x(t-l) on x(t) and only rejecting density independence if both were 

significantly different from 1. Other suggestions include using functional 

relationship methods (see chapter 6 ). These are reviewed by Slade (1977).

Bulmer (1975) suggested a test for density dependency based on the von 

Neumann ratio

N -l
2  <x (t+i> -  x ( t > ) 2

i - 1
W
E ( x ( t ) -  x ) 2 

i - 1

This test is only suitable in the absence of any trend and so is not of use for 

the situations considered in this project.

Two recent comparisons of the tests are those of Slade (1977) and Vickery and

Nudds (1984).

Slade compared the methods using three models

(i) x(t) = r + /Sx(t-l) + e(t)

(ii) x(t) = r + fflx(t-l) - o<t-l)] + o<t)

(iii) x(t) = r + 0[x(t-l) - o<t-l)] + w(t) + e(t)

where u(t) and e(t) are random errors. The latter two can best be understood 

in terms of state space models considered in chapters 5 and 6 . He concluded 

that Varley and Gradwell’s method was too conservative, Bulmer’s test did not

work when there was a population trend and in general the major axis methods



were better than standard regression when there is a trend.

Vickery and Nudds (1984) used the simulation model 

x(t) = x (t-l) + e(t)

where x(0) and e(t) were chosen to give the y = e x the same mean and 

variance as certain duck populations. Their conclusions were similar to Slade’s, 

except that they come out more strongly in favour of a major axis test rather 

than a standard major axis.

Vickery and Nudds also suggested the use of simulation tests based on the test 

statistics. In a similar approach Pollard and Lakhani (1986) have considered a 

randomization test using the regression slope as a test statistic.

In examining tests for independence the key aspects seem to be the choice of 

the null and alternate models. In the study of growing individuals or 

populations the basic null model will be 

x(t) = r + x (t-l) + u(t) 

where u(t) is the random error term which may be

(i) auto correlated

(ii) density dependent (ie var (u ^) is a function of x(t)).

The alternative model is usually of the form

x(t) = r + 0x(t-l) + u(t).

This is only one of several density dependent relationships and the form of u(t) 

has not been fully considered. There are two approaches which could be used
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(i) A simple test based on the basic null model

x(t) = r + x(t-l) + e(t) 

using either a simulation test (Vickery and Nudds (1984)) or a 

randomization test (Pollard and Lakhani (1986)) based on either the 

simple regression coefficient or the major axis estimate. The results 

for these tests is promising even if they are time consuming to 

perform.

(ii) A test based on a complete specification of the stochastic model for both

the null and alternate situations. Such models are considered in 

chapter 5.

The first approach along with plots would be most useful in the initial 

identification phase and would point the modeller towards density dependent 

models. The second approach could be used later when more specific ideas of 

the most suitable possible models have been obtained.

2.5 Estimating Inherent Variability

An important aspect of model selection in multiple regression is knowledge of 

the underlying variability as measured by the variance of the random 

component, a 2. Methods such as R 2 and plotting aim to find the model 

that has the residual sum of squares at the level of this inherent variability

with the smallest number of variables. In cases of repeated observation for

certain values of the independent variables the inherent variability is estimated 

by the pure error estimate (Draper and Smith (1981)). In non-linear regression 

the adequacy of a particular model would be indicated from the comparison of 

its residual sum of squares and the inherent variability if that were known. 

Methods of estimating inherent variability in situations without replication will 

be considered.
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In order to estimate the intrinsic variability a very flexible model has to be 

fitted to the data and then the residual sum of squares used as the basis of the 

estimate. Four possible types of flexible model could be used

(i) Moving averages

(ii) Cubic splines

(iii) Local independent polynomials

(iv) Higher order global polynomials.

Green (1971) for linear models and Breiman and Meisel (1976) for non-linear 

models have considered (iii). In order to use such an approach the following 

decisions have to be made

(a) How to split the data into segments.

(b) Selection of suitable model for each segment.

Breiman and Meisel use a first order polynomial and select the number of 

segments by means of an F-test. Green also recommends the use of a first 

order polynomial. From a simulation study Breiman and Meisel an indication 

of the number of segments needed can be obtained

Sample s i z e  Number o f segments

100 4 - 8

500 10 -  40

2000 25 -  100 (max)

that is about 25 points per segment. However in most growth situations a 

maximum of about 50 observations are available, often considerably less. In 

these situations a natural division of the growth period into three segments 

would be the most appealing approach. Breiman and Meisel estimate a 2 by
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the total residual sum of squares divided by the number of observations. This 

gives a better estimate than when the divisor is adjusted by the number of 

parameters estimated.

Method (ii) would probably be inferior to method (iii) as the additional 

restriction of smoothness on the model would make the estimate of variability 

larger than that for (iii) and the extra complication is not required.

A simple moving average may be reasonable for the growth curve situation 

when observations are often equally spaced. Using the various order moving

averages as used in section 2.3 an indication of the variability could be

obtained from the residuals.

For the relatively short series in which there are few observations in a plateau 

region (ie at maximum growth) then the higher order polynomial should give 

reasonable results. The order of the polynomial and the estimate of intrinsic

variability can be decided from a plot of the value of s 2 from the regression

against the order, this should level out at the intrinsic variability as the order

becomes large. In many growth situations it would be advisable to

logarithmically transform the data first.

Breiman and Meisel compare their method with methods (ii) and (iv) for two 

simulated models. Their method was superior but in consideration of their

results it has to be noted that they used very large sample sizes ( 100- 2000) and 

the polynomial had a highest order of only 3. It is unlikely that the method 

would be as superior with a smaller sample size. Further, only two models 

were considered. The only true way of evaluating these methods is how useful

they are in practice.
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2.6 Discussion

A number of technics to help the modeller to identify a suitable model have 

been considered in this chapter. They should be viewed not as rule producing 

formulae but as a guide for the modeller. They should help highlight aspects 

of the data which he can take into account alongside his conceptual knowledge 

of the situation.

The application of these methods will be illustrated in chapters 8 and 9.
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3. Static Models For Growth

3.1 Introduction

First what is meant by a static model needs to be discussed. A static model

does not explicitly describe the change of behaviour from one time point to the

next. When fitting such a model the order in which the observations (eg y, x) 

occur is unimportant.

In growth studies the observations will be of the form (y, t, x), where y is the 

measured growth, t the time of observation and x any explanatory variables. 

Using the usual regression terminology y is the dependent variable and x and t 

are the independent variables. The models considered will be based on dynamic 

deterministic models of the form

^  = g(77, t ,  x) (1)

However, the solution to the above differential equation will be assumed known 

ie

V -  f ( t ,  x) ( 2 )

and observations are then

y “  7) + e o r log y “  log  rj + e (3)

where e are independent errors.

As was discussed in chapter 1, one of the most common form of growth 

function, f(t, x) is the logistic. In this chapter a generalisation, the Richards 

function, will be examined in detail along with other generalisations of the 

logistic.
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3.2 Causton and Venus’ Work on Richards’ Function

A large proportion of Causton and Venus’ book, The Biometry of Plant Growth

(1981), is devoted to the -examination of the Richards’ function.

In biological growth it is usual for the variance to increase with the size of 

observation, therefore the logarithmic transformed data is considered eg 

log y = log 77 + e

Causton and Venus consider the log transformed Richards 

£ = log 77 = a -  — lo g ( l  ± eCb+kO)

The negative alternative being used when n is negative.

They fit the non-linear regression model

log y = 2 + e (2 )

using the Newton-Raphson method applied to the sum of squares 

s = E (log y - £)2

This method requires both the first and second derivatives of s with respect to 

the parameters. The weakness of the Newton-Raphson method is concerned 

with the matrix G such that

c u - | 5 J  ' <3>

where Q i=l,...,4 represent the parameters. G is known as the Hessian matrix. 

The iterations are given by

0k+i _ pk _ Gk- ’ gk (4)
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where

g is  th e  g ra d ie n t m a trix

and k indicates the kth iteration.

If a poor initial estimate of /S is- used then G will be numerically unstable. 

For sum of squares functions the Gauss-Newton method or a derivative such as 

Marquardts method are usually recommended (see Appendix A). One way of

2V'V « E(G) .

Hence it can be considered as an approximation if the residuals are small or as 

using the method of scoring.

The Gauss-Newton methods require less computation than the Newton-Raphson 

and Marquardts method, in particular, is numerically more stable.

Causton and Venus gave the variance of the estimates as

looking at the Gauss-Newton method is to see it as replacing G by 2V’V where

Vj j  = - in  th i s  c ase .

Now

So

Var (0) -  -  I “ 1
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where

I -  -  5 5 7  G . e * = v a r ( , e )

This is the asymptotic variance of maximum likelihood estimation which is 

equivalent to least squares under the normal model. The usual estimates of 

variance for non-linear regression models are given by 

Var<0) -  <V 'V )-V *

In the light of the previous discussion this can be considered as the expected 

Fisher information as compared with the observed as given above (Efron and 

Hinkley (1978)).

They investigate the properties of the estimates by means of a simulation 

experiment. Using models suitable for (a) sunflower (leaf weight) growth in 

harvests between days 8 and 34 inclusive, and (b) wheat (leaf area) growth with 

harvests between days 6 and 24 inclusive. The results of 200 simulations are 

given below

Sunflower Wheat

Param eter A ctual A lte rn a te  day A ctual D a ily  A lte rn a te  day
H arvests H arvests H arvests

a -1 .114 -1 .114 2.767 2.769 2.775

b 6.430 6.407 45.49 48.11 52.93

k -0.3898 -0 .3 8 9 0 - -2 .675 -2 .828 -3 .1 1 2

n 0.4395 0.4377 3.206 3.392 3.725

The simulations were based on 10 replicates per harvest and the standard 

deviation of the normal error was 0.2.
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The results show that for the sunflower the estimation is fine but the estimates 

are poor for the wheat data. They also investigated the distribution of the

estimates, for the sunflower they were approximately normal but showed positive

skew for the wheat.

They conclude that based on these' results and previous experience that if n is 

in the range

0.05 < n < 0.6

then there are rarely problems of estimation. This claim will be investigated 

later using a different approach.

Causton and Venus also consider the problem of heteroscedastic data. They 

carry out a simulation for the model with increasing error variance on the log

scale and a = -1.116, b = 6.442, k = -.3916 and n = 0.4417. The models were

fitted using both ordinary and weighted least squares.

The results show little difference in the average value of the estimates but the 

variances for the weighted least squares were lower. They conclude that there 

is little to choose between the two methods providing n is small.

Having examined the theoretical properties of the model and its fitting the 

authors proceed to show its usefulness in a variety of situations in the study of 

plant growth.
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3.3 Sensitivity of Richards’ Function

3.3.1 Sensitivity

The sensitivity of a model is the effect changes in variables, parameters and 

model structure have upon the behaviour of the model (Gilchrist (1984), Jeffers

(1982)).

For a model y = f(/3) + e

where /S are parameters. The sensitivity coefficient is defined as

C tf. =

The Elasticity of the Sensitivity is defined as 

ePi  -  °0 i T t f j  * i° o  

(Gilchrist (1984)).

The object of these indices is to gauge the effect of a small change in the 

parameter on the fitted value ( c /3 [ )  or the percentage change in fitted value 

for the percentage change in the parameter (^ 0} ). The sensitivity, as defined 

here, has to be considered alongside the confidence interval for the estimated 

parameter. That is the possible variation in the parameter due to estimation 

uncertainty indicates how critical sensitivity can be.

The effect of sensitivity on model fitting can be viewed in two ways

( 1 )

(2)

(i) High sensitivity will mean that the fitted model will have to be 

treated cautiously and its application under any slight change of 

circumstances would be a dubious process.
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(ii) If the model is sensitive to a parameter it would seem likely that the 

parameter will be accurately estimated by least squares since a slight 

change in the parameter will greatly effect the residual sum of 

squares.

In some ways (i) and (ii) counteract each other, the key to the effect will often 

be the data. If the data is of good quality and fully represents the area of 

application then the effects of sensitivity will be reduced. However if  poor 

data is used, eg possible outliers, poor range of values, then the model will be 

worthless.

In the case of the Richards function the effect of model form is not critical

due to the flexible nature of the model. This flexibility is most closely

connected with the parameter n, so a study of n will be important in the 

analysis of the sensitivity of the Richards function.

3.3.2 Evaluation of Sensitivity

Using the form 3.2(1) eg

2 « a -  i  lo g ( l  + eCb+kt))

the following are obtained 

l e t  A «=

ca -  1

cb -  -  ^  ( A /a  + A)>

ck -  -  ^  (A t/(1 + A)}

cn "  fj? lo S a  + A)

If the alternate form

-  58 -



£ — a -  m log (1 + 

is used then

cm -  log (1 + e O ^ O )  (4)

The most interesting elasticities are

"  100{lo g (r + A) -  l } "  - (5)

and

-  100{   -  l l
l lOE(l + A) J

Three ranees of values of t will now be considered, high. low and intermediate. 
I t  should be no ted  th a t  th e se  r e s u l t s  need to  be t r e a te d  w ith  some 
cau tio n  due to  th e  e f f e c t  o f th e  log  s c a le .

For high values of t the curve will tend to it 's  asymptote so with negative K 

A 0.

This means only 

ca = 1

and

£a = 1

are non zero. This is as would be expected.

For low values of t A -» e^. In both the wheat and sunflower models

discussed above e?3 » 1 so log(l + i>) = b and A /(l + A) & 1.

Hence

1 t
cb “  -  „  ck “  -  „

c ~ 5 _  and f  -  .  100n -  n 2 ana n -  ( a / b )n  _ i )

Evaluating Cq and £n for the sunflower data

cn — 33.3 ?n ~ ~ 92.9%
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For the wheat data

cn * 4 .43  £n -  " 124%

For intermediate values very approximately we can take A as 1 so 

A /( l  + A) a* i  and lo g ( l  + A) log 2

so

1 t
° b "  “ 2H " 2H

c „ log 2 100
n “  n  “  ~

log 2 '

Again evaluating for sunflower data

cn -  3 •6 £n -  67%

for wheat data

cn ^ 0 .07 en  -  8%

This shows that the wheat data appears less sensitive than the sunflower, the 

mid time points being about day 16.

Overall the sensitivity of the sunflower model seems marginally greater than the 

wheat model. When the models were fitted to different data the results 

presented by Causton and Venus show the following coefficients of variation for 

the parameters

Sunflower Wheat

a .47 “ .22

b .74 .83

k .49 .57

n .67 .96
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Showing that the inter-data variability of the two models is • similar, the 

sunflower being slightly lower.

Overall we can see in this case the situation which is more sensitive is also 

better estimated.

3.4 Measures of Non-Linearity

3.4.1 Background

For a linear model 

y -  E x j  + e
j

the properties of the estimators of the /3 j ’s are exact under the normal model. 

Further

C(?j =  Xj

so the sensitivity is only scale dependent.

For non-linear models the properties of estimates are only approximate. The 

approximation depends on how non-linear is the model. Various measures of 

non-linearity will be examined.

3.4.2 Beale’s Measures of Non-Linearity

B eak(1960) proposed two measures of non-linearity. Consider the model 

Yi = fi(0) + e

where 0 is parameter vector of length p. Using a Taylor’s series approximation

P P P
f i ( 0 )  S  f i ( 0 )  + E V j j  Ofj +  E E 0 > i j k  CXj 0!k

j -1  j-1  k-1
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where

i j ! £ i
&0i and orj -  »j -  «j

and

w
^ 2f i  

i Jk "  £0j Z6k

(1)

The usual properties of least squares estimates are based on the adequacy of a 

local linear approximation. That is the third term above is ignored. Intuitively 

the size of this term is a measure of the non-linearity of the model. Beale’s 

first measure is

N, p + 2

n p p p p
E E E E E Wjjk ^jk0m (2)

i= l j= l  k=l 0=1 m=l

where

^jk0m “  7 jk  70m + 7 j0  7km + 7jm 7k0 ant* 7 jk  

i s  th e  ( j , k ) t h  elem ent o f  th e  m a trix  (V’V)- 1 , the  elem ent o f V b e in g

v i j '

N# can be considered as the theoretical version of the measure

m n 
p s 2 E E 

0=1 i-1
f i ( 00) -  f i( f l)  -  E Vj d j

j-1
m
E

0=1

n
E ( f i ( Op) -  f i ( 0 ) ) 2 

i= l

where Op £=l,...,m are points in the neighbourhood of 0.

This measure is dependent of the parameterisation used. So a measure of 

intrinsic non linearity, N^,, was also suggested, this is parameter independent.

o-2 n p p p p ,*  *
"" d + 2 ^  ^ ^  ^  ^  ^ i j k  wi0m 5jk0mr  P + z i-1  j - i  k=l 0=1 m=l J J

(3)
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where

* P P n
wij k  " ^ i j k  *" E ^ ^ ^im 70m wo0 ^ojk

0=1 m=l o=l

The difference N# - gives a measure of the effect of parameterisation on 

non-linearity.

The non-linearity is disastrous if 

N e > 1/Fa(p,n) 

and the usual approximations are s a t i s f a c t o r y  i f  

Ne < .01/Fa(p,n)
A

where N# is the empirical version of hfy .

Guttman and Meeter (1965) examined Beale’s measures and concluded that for 

high non-linearity the empirical measures underestimated the amount of

non-linearity and for both theoretical and empirical the bound given above was

conservative.

Gillis and Ratkowsky (1978) tried using these measures but reported them to be 

unsatisfactory in that they did not detect problems found through simulation.

3.4.3 Box’s Measure of Bias

Related to the problem of the measure of non-linearity is the bias in estimates.

Box (1971) gave a measure of this bias.

Box shows that the expected bias is

V i l  (6)- r  M
-1 n

£
i= l

tr (M

(4)

(5)
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where Vj is the ith row of V and th® PXP matrix with elements cojjj, .

His measure of bias is given by

V1 V M -  b ' —4  bp(T2

and he shows that N# - ) M. _

Gillis and Ratkowsky (1978) reported favourable results for these measures in 

their study.

3.4.4 Bates and Watts Measures

Bates and Watts (1980) produce two measures of curvatures; the parameter 

effects curvature and the intrinsic curvature. For convenience they standardise 

with respect to a standard radius sJ p by dividing V and W by sV p.

They use the QR decomposition of V

pxp

n-pxp

setting L = R“ 1 they compute

U *= L' W L (nxpxp)

and hence

A — Q' U (nxpxp)

this is partitioned into -

A — At : An
(nxpxp) (pxpxp) : (n-pxpxp)

Their measures are then given by

(7)

( 8 )

(9)

( 10 )

Maximum I n t r i n s i c  cu rv a tu re  -  -  max £ d ' A^N d
d

(11)
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and

Maximum Param eter e f f e c t s  cu rv a tu re r T = max E d 1 d 
d

( 12)

They relate their measures to Beale’s measures. First they show that Beale’s 

measures can be written as

21 [1 2 P
N0 P(P + 2)

— E
4 i - i

E
J - 1

uj j i

N* - is as for Nfl but with

n P P
+ i  E E

i= l j= l

n
^ u i j k

k=l

replaced by p)

and

is as for N# but with U replaced by (the n summation replaced 

by n-1)

They then show that is a quarter of the mean square intrinsic curvature and 

Nfl - is a quarter of the mean square parameter effects curvature.

Bates and Watts suggest comparing their measures with

V j  F (p , n -p  .o s) (13)

which can be regarded as the radius of curvature of the 95% confidence region.

3.4.5 Comparison with Sensitive Measure

Both the measures of sensitivity given in 3.3.1 and the properties of the least 

squares estimates for a non-linear model are based on the adequacy of the 

approximation

p *ff ( 0  + 60) -  f (0 )  + E | i -  60.
j - i  J

Therefore both are only valid if the amount of non-linearity, as measured by 

the above measures, is low.
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3.4.6 Measures of Bias and Non-linearity for the Richards Function

A FORTRAN program was written to compute 

Beale’s measures of non-linearity 

Bates and Watts measures of non-linearity 

and

Box estimates of bias.

The program was validated by using results given by Bates and Watts (1980) 

and Gillis and Ratkowsky (1978).

The results for Causton and Venus’ sunflower and wheat models are given in 

table 3.4(1) .
The r e s u l t s  can now be compared w ith  the  s im u la tio n  r e s u l t s  o f C auston 
and Venus g iven  on page 55.

Bates and Watts comparison statistic 1 / j  p  is 0.42. Beale’s limits are (at 5%) 

.0017 and .17. The intrinsic measures (T N and 1^,) give a slight cause for 

concern in the daily wheat model only, is significant in all cases while

Nfl is only critical (> .17) for alternate day wheat but indicates inadequacy for 

the other two.

The bias estimates are accurate for the sunflower model, give a reasonable

indication for the daily wheat model and are inaccurate for the alternate day

wheat. T •
Both p  and N p ick  out the  poor perform ance o f a l t e r n a t iv e  day what

Te s tim a tio n  w hile  o n ly p 1 p ick s  ou t the  d a i ly  w heat.
The following tentative conclusions could be drawn. The Bates and Watts

measures are better at detecting medium non-linearity. Box’s measures of bias

are fine for low and medium non-linearity but poor for high non-linearity

(high value of f ^ ,  critical value of N#).
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Table 3 .4 (1 )

Sunflower Wheat

Daily Alternate Days

r N 0.0185 0.4797 0.4060

rT 1.3488 - 1.8123 7.3659

0.0003 0.0075 0.0049

0.0588 0.1487 1.9483

a bias 0.0006 0.0008 -0.0000

b bias 0.0289 4.9006 51.1667

k bias -0.0017 -0.2877 -3.0063

n bias 0.0025 0.3469 3.6147

The method was also applied to a series of models fitted by Causton and Venus

to leaf areas of sunflowers (table A5) and leaf weights and areas of wheat

(table A6). The alternate day harvest strategies as described before were used. 

The results for sunflowers are given in table 3.4(2) and for wheat in table

3.4.(3). As can be seen some values are extremely large. All values of

were significant and 9 values of N# were critical (marked with a c). There is 

no apparent relationship between the value of n and the values of and

Nfl. This must call into question Venus and Caustons statement on the validity 

of estimation if 0.05 < n < 0.6. What can be seen from table 3.4(3) is that the

strength of non-linearity is a property of the individual leaf ie the figures for

both weight and area are of the same order.

Having applied the measure of non-linearity to a range of fitted Richards

functions it can be seen that in nearly all cases there is significant non-linearity 

and the estimates should therefore be treated with great caution.
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Leaf Number 

1 

2

3

4

5

Leaf Number 

1 

2

We i ght 3

4

5

6

1

2

Area 3

4

5

6

Table 3.4(2) 

rT

.4026 

1.3720 

.6633 

.4261 

1.6672

Table 3.4(3)

n

.1740

.2963

2.2249

.5952

1.6993

.8367

-.2955

.5801

3.4076

.8265

1.9607

1.5667

1382.8625

1.3082

0.8932

1.4584

7.8215

1x10 7 

2489 

1.950 

.8217 

1.635 

2 . 688

2x10 8 

21318 

1.8133 

.8644 

2.0238 

1.146

59769.9727 c 

0.0638 

0.0271 

0.0677 

1.8827 c

7 x l0 12 c 

193703 c 

.1666 

.0236 

.1011  

.2254 c

1x1015 c 

1x107 c 

.1846 c 

.2773 c 

.1599 

.0408
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3.4.7 Further Results for Non-linear Models

Clarke (1980) examined the moments of the regression estimates for a non-linear 

model. As well as obtaining Box’s estimates of bias he also obtained an 

improved estimate of variance.

Adopting Clarke’s results to the notation used here, we need to define the 

pxpxpxp matrix C as the first p faces of 

Q' Z

where Z is obtained by multiplying each of the n(pxpxp) faces of the matrix of 

third derivatives of f  by L.

The variance is then given by

Var(|3) -  L((t2 I + cr4(VA + VB + VC))!/

where

n
V A — E (uu 2 -  u j ( t r a c e  U j))

i » l

E (A^j -  A ^ j(tra ce A ^ j)) 
i-1

and

where all matrices are in the unstandardised form.

It can be seen that if VA, VB and VC are ignored 

Var(/3) -  L L' a 2 -  (V 'V )"1 a 2
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However, as was seen in the case of the Richards function the bias estimate

starts to break down at medium non-linearity. This indicates that the variance

estimates will only be of use for low, but not negligible, non-linearity. Thus 

these results are of limited use.

Cook and Tsai (1985) examine thfe residuals from a non-linear model. They

show that the expected values of the residuals are given by

1 P
E(r )  = i  o-2 N E AN. .2 11 i*=l

where the (nxn-p) matrix N forms an orthonormal basis for the orthogonal 

complement of the column space of V.

Their results show that the residuals will be biased for models with a 

significant intrinsic non-linearity.

They also produce some projected residuals. However, as with linear regression,

the improved properties of the projected residuals are outweighed by their lack

of a 1-1 correspondence with the original observations (Masters (1975)).

3.5 Design of Experiments

3.5.1 Previous Work

The work of Box and Lucas (1959) and Box (1968) laid the foundation for the

extension of the ideas of optimal design from the linear case (eg Fedorov

(1972)) to the non-linear situation.

The optimal design for a model will be those x values that

maximise det  (V* V).
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Box (1968) showed that for a number of cases this is given by the design with 

n/p  observations and p points.

White (1973) produced a non-linear equivalent to K eifer and Wolfowitz’s 

General Equivalence Theorem.

As the designs are based on the local linear approximation they will only be 

valid in those situations without severe non-linearity. The problem of severe 

non-linearity will be compounded because V contains values of the unknown 

parameters. These values need to be estimated from previous experiments and 

will be biased, particularly in the situation of severe non-linearity.

3.5.2 Application to Richards Function

The situation envisaged is one in which harvests can be taken at any selected 

time and the number of harvests and number of individuals per harvest can be 

chosen subject to a constraint on the total number of observations. Let harvests 

take place between 1 0 and 1 3 . Then if we assume we take n / 4 

observations at 4 points for the 4 parameters it is reasonable to take two of the 

points as t 0 and t 3. Thus we need to find two points t0 < .t, < t2 < t3 such 

that

t lf  t 2 m inim ise d e t(V ’ V)” *

where V is the 4x4 matrix with elements 

' pj>

i j  SPj

where f  is the Richards function with parameters 0 , , (3 2 , /3 3 and /3 A .

This was ach ieved  by u sin g  the  Nelder-Mead a lg o rith m  (Appendix A).
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3.5.3 An Example

Using the parameter values given for the sunflower in section 3.2 the optimal 

design for a range of dates 8 days to 34 days was 

t 1 = 12.6 

t 2 = 18.4

The ratio of the determinants of this design to the alternate day strategy is 

3.11.

The values of (V’V)-1 for both designs are Alternate Day (14 time points)

a .0221

n

b

k

0185

0575

-.2288

.6892

8.3531

-.0119

.0324

.3964

.0190

Optimal Design

a .0294 -.0117  -.1464

n .0324 .4009

b 5.0082

k

(using 140 observations in each case).

- .0084

.0193

.2432

.00120

These show a considerable improvement in using an optimal design.

The effect on non-linearity was also considered. For the optimal design with 

140 observations and standard deviation .2 as before, the following values were

-  72 -



obtained

pN .12 x 10"13 a b ia s .0014

rT .9344 b b ia s .0156

N* .63 x 1 0 -29 k b ia s -.0009

N0 .0278 n -b ia s .0013

Again, these values show a considerable improvement. This indicates that the 

optimal design has improved bias properties as well as smaller variances.

3.6 Alternative Approaches to Estimation

3.6.1 Two Approaches

In this section two non-standard approaches to estimation will be considered. 

They involve balancing the usual criterion of minimising the sum of squared

residuals with criterion based on bias or a criterion based on the distance of

the estimates from ’reasonable’ values of the parameters.

3.6.2 Bayesian and Bayesian-like Methods

The standard Bayesian approach is to find the posterior distribution of the

estimates as

posterior oc likelihood x prior

The posterior can then be summarised in terms of either its mode (MPD -

maximum of posterior distribution) or in terms of regions of highest density 

(HPD regions) (Bard (1974), Box and Tiao (1973)).
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Fitting non-linear models has been considered by a number of authors eg Bard 

(1974), Box and Tiao (1973), Katz, Azen and Schumitsky (1981), Beal (1982) 

and Berkey (1982).

Consider the general non-linear model -

yj = fj(0) + ej - (1)

where Var(q) = a2 and 0 is the p dimensional vector of unknown parameters. 

Assuming errors to be independent and normal the logarithm of the likelihood 

will be '

const -  £  log a 2 -  £ (y j -  f ^ / S ) ) 2 (2)

If the prior distribution of /S is also normal with mean /30 and 

variance-covariance matrix E 0 and with a non informative prior density for 

a 2 p(cr2) proportion to Vo- 2 (Box and Tiao (1973)) then the logarithm of the 

posterior density is

const -  log  a 2 -  -  (0 -  0 o) f £~1 (0 -  0 O)

n , 1
2alog <r2 -  " E (y t -  f t (0))=

Maximising with respect to a2 we obtain a maximised log posterior for (5 as

const -  [2 + l ]  log Je  (y j -  f j ( 0 ) ) 2|  (4)

-  \ ( 0 -  0 O) '  E - ’ ( 0 -  0 O)

If cr2 is integrated out of (3) then the log posterior is

-  2  log  {£ (y j -  f ,(0 ) )* >  -  |  (0 -  0 O) '  (0  -  0 O) (5)

(O’Hagan (1976))

So to find the MPD estimates the minimum of

s *  -  exp { ^ - 1 -  (0 -  0 O) ' E - 1 (0 -  0 O) |  E (y j -  f j ( 0 ) ) 2 (5)

h = 0 or 1 as appropriate
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is found.

This could be considered as weighted least squares with a weight of 

exp { ir+^5 (/3 -  W  (|S -  <*o)} (7)

The minimisation can be achieved through iterative weighted least squares.

One purpose of the prior in non-linear estimation is to draw the estimates 

towards a more ’reasonable’ value. As can be seen with Causton’s data in 

section 8.2, the almost flat ridge in the sum of squares surface draws the

estimates to extremely large values with poor statistical properties. Information

from a range of fitted models could be used to construct a prior that would 

keep the estimates in sensible range even at the loss of some fit in terms of 

the residual sum of squares.

As the prior can be seen as a penalty function acting on the sum of squares 

minimisation other penalty functions could be considered. One such function is

SX "  [ f ] ((S '  P° y  Eo’ (P '  Po) + S (y i '  f i ((5))2 (8)

This function can be viewed in three ways

(i) As being similar to the use of a penalty function to convert a

constrained optimisation problem to an unconstrained problem 

(Walsh (1975)). In these cases the penalty function takes a low 

value inside the feasible region and an increasing value outside.

In the case the flexible region is ’fuzzy* but the basic concept

of using a penalty function to hold the minimum to a 

particular region is still valid.
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As a form of non-linear ridge regression. Ridge regression (eg 

Hoerl and Kennard (1970)) aims to overcome the problems of 

ill conditioned linear least squares by solving the adjusted 

normal equations

X' X + k l)  0 Y

These estimates can have improved mean squared error 

properties.

Marquardt (1970) showed that ridge regression is equivalent to 

augmenting the X and Y matrices with p extra rows ie

X- Y
X* - Y* =

H 0

such th a t  H1 H -* k l

Taking a simplified version of (8) with independent parameter 

penalties

S* -  Z a>2j(0j -  0 o j)2 + Z (y j -  f j ( /3 ) ) 2 (9)

which is equivalent to augmenting the data by 

yj -  0 i-=n+ l,. . .  ,n+p

f i-h j(0) -  &>j(0j -  0 O) j = l , . . . , p

The V' V  m atrix  w ill  become 

(V1 V + d iag  w2j ) )

As a non-linear version of the Goldberger-Theil estimators 

(Toutenburg (1982)). For a linear regression model 

Y — X 0 + e , v a r (e )  -  V 

Let other information concerning /3 be expressed as

0 O = 0 + e

where



var(e) = P 

Combining

Y * X e“
= 0 +

fin. I

var
el V 01 

0 P

0  + e ,

V, assuming independence

Then the BLUE estimate of /3 is

0 = (X ,' V ," 1 X )-i {X1 W-i y + P "1 0 O)

3.6.3 Using Bias in Estimation

As will be seen in the examination of Causton’s data in section 8.2 it was 

possible to find a value of n such that (and N q) was minimised. It would 

seem reasonable to use an estimation process that takes into account both fit 

and the bias of estimates. Using the residual sum of squares as a measure of 

fit and criteria of the form

F ( \)  = Xx(bias measure) + E(yj -  f j ( /3 ) ) 2 (10)

could be used.

Possible Bias Measures are

( i )  Box’s measure M = (b ' v ' v  b ) /  per2

(ii) As Box showed that M is bounded by N# - and in most

cases considered has been relatively small then N q could 

be used.

(iii) As Bates and Watts show that the bias can be calculated from the

matrix A^ which is the basis of then could also be

used as a measure.
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The value of X has to be chosen to balance the two parts of the criteria. In 

selecting X the following need to be considered

(i) The size of a 2 and hence the residual sum of squares.

(ii) The critical value fo r  the measure of bias. As it is the 

parameter effects ‘ bias which is of interest, the intrinsic 

non-linearity provides a lower bound for the measure of bias in 

cases (ii) and (iii). It should be possible to find a range of 

values for the bias measure that would indicate by how much 

we would like to decrease it.

3.6.4 Application of Methods

In order to illustrate the use of the methods considered above two sets of data 

were simulated. They both consisted of 140 observations using the sunflower 

alternate day harvesting design, with a standard deviation of 0.2 as described in 

section 3.2.

Set A used the sunflower parameter values considered before

a -  -1 .114  

b -  6.430

k -  -0 .3898 

n -  0.4395
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Set B used a different n value

a -  -1 .1 1 4  

b = 6.430

k -  -0 .3898 

n -  2.2753

To obtain suitable prior values for these parameters and suitable relative weights 

the means and variances from 5 leaves reported by Causton and Venus (1982) 

(Table A.5) were used. These gave

Parameter a b k n

Mean value (0O) -1.45 3.75 -.308 .327

Standard Deviation .69 2.79 .151 .219

Weight (wp .17 .14 .81 .56

Where the weights are inversely proportional to the variances, adjusted so that 

Ew2j = 1

The adjusted sum of squares was then minimised 

4 „ _ n
n E w2j  [0;  -  0 | ol + E [yj -  f i (0)1

j - 1  1 J i - 1  J
Sx -  X

for values of X = 0 .1, .2, 1, 2 using a SAS program.

The results were
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Data Set A

X .0 .1 .2 1 2

a -1 .1606 -1 .1604 -1.1606 -1.1609 -1 .1621

n 0.4494 0.4512 0.4517 0.4526 0.4555

0 6.5902 6.5846 6.5783 6.5676 6.5309

k -0 .4014 -0.3992 -0.3989 -0 .3984 -0.3966

Data set B

X 0 .1 .2 1 2

a -1 .0799 -1 .4 7 6 2 -1 .2 4 8 2 -1.1095 -1 .1533

n 1.9851 1.4762 1.2482 1.0281 0.8274

fi 4.6366 6.2531 5.8556 5.7967 4.9690

k -0.3229 -0.3716 -0.3713 -0.3427 -0.3276

In order to understand these results it is useful to consider 

(n/p)o)2j (/9j - 0j o) 2

A

evaluated at the value of /3 j , and also the residual sum of squares. 

Set A

(n/p)o)2j (/3j -  0 j o) 2 

a 0.0847

n 0.1644 Resid ss  — 5.0639

0 5.3790

k 0/2003

5.8284
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Set B

n

a 0.1385

n 30.1763 R esid  ss  -  10.1203

P 0.4916

k 0.0005

30.8069

For Set A starting from the least squares estimates, the largest value of the

penalty function of interest is obtained since any increase in the penalty 

function must also increase the residual sum of squares and hence the value of 

s ^ . This value is approximately the same as thei residual sum of squares. 

Further the sum of squares surface is sufficiently steep for any decrease in the 

value of the penalty function to be outweighted by the increase in residual sum 

of squares for any moderate value of X. Thus it can be seen that there is

little change in the value of the parameter estimates over the range of X 

considered.

For Set B the value of the penalty function is three times the residual sum of 

squares at the least squares estimate. Most of which occurs due to the 

difference between n and its prior value. This leads to h being pulled towards

the prior value for increasing values of X.

To examine the approach of using the bias in estimation data Set A was again

used. Rather than minimise a composite value of bias measure and residual

sum of squares (10) over all the parameters the bias measure was related to the

parameter n alone using the following procedure

(i) For fixed values of n over a suitable range the least squares

estimates of the remaining parameters, a p and k were obtained

-  81 -



and the residual sum of squares computed.

(ii) For each of the above fitted models the value of was

obtained.

(iii) Plots of residual sums of squares and P^ against n were drawn and 

the minimum of F(X) * Residual sum of squares + X found 

for a suitable value of X.

The results are shown in figures 3.6(1), (2) and (3) Figure 3.6(3) shows a plot 

of F against n taking X = 0.1. The value X = 0.1 was selected since the range 

of values of the residual sum of squares over .39 < n < .31 was 0.063 and the 

range for pT was 0.43 thus X = 0.1 gives a reasonable balance. From figure 

3.6(3) it can be seen that the minimum value is when n = 0.46. Using this 

value the fitted model has parameter values 

a = -1 .1638 

n — 0.46

0 = 6.7375

k -  -0 .4087

A further illustration of the ideas presented here will be given in chapter 8 .

3.7 Other Logistic Generalisations

3.7.1

In addition to the Richards function a number of generalisations of the basic 

logistic function have been considered in growth studies. This section will 

examine some that have been used in human growth.
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Fig. 5.6(1)
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Fig. 3.6(2)
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3.7.2 Logistic Mixtures

These models are of the form

y  -  E o j  f i ( t ,  » j )

where fj(t, is the unit logistic function ie

 1_____________
1 + e x p ( -  /S, (t  -  0 2))

and Zoj = A the asymptotic value of y. They have been used in modelling 

human growth as will be examined in chapter 9. Examples of this type of 

model are the double logistic (Bock et al (1973), Preece and Baines (1978)) and 

the triple logistic (Bock and Thissen (1976) EL Lozy (1978), Bock and Thissen 

(1979)).

Preece and Baines (1978) fitted the double logistic

y = ----------------    +  f ., ~„a______  (2)
 ̂ 1 + e x p ( -  b , ( t  -  c , ) )  1 + e x p ( -  b 2(t  -  c 2) )

to data on 35 boys and obtained the following estimates

Parameter

t

b i

Mean o f  Est im ates

174.1

148.1  

.3089

2.1435

1.0712

13.7324

Standard D e v ia t io n  

6 . 0  

5 .9  

.0619  

1.1070  

.1871  

.8373

The non-linearity measures were calculated based on 47 observations at times (in 

years)
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3 3 .5  4 4 .5  5 5 .5  6 6 .5  7 7 .5  8 8 .5  9 9 .5  10 10.5

10.75 11 11.25 11.5 11.75 12 12.25 12.5 12.75 13 13.25

13.5 13.75 14 14.25 14.5 14.75 15 15.25 15.5  15.75 16

16.25 16 .5  16.75 17 17.5 18 18.5 19 20

Such data set would represent a very good range of values. Taking an estimate

of a 2 as 0 .20 , which is again quite good, the following figures were obtained

Tn = .1876 Tt -  2.6990 = .0006 N# = .1209

Critical values for Ps is 0.52 and for N# the values are .27 and .0027. These

indicate that there is substantial non-linearity due to the parameter effects. The

estimated bias in the parameters are given below

Param eter B ias

f  .0676

a -.0285

b 1 .0007

c .j . 0 0 2 0

b 2 - . 0 0 2 0

c 2 .0065

Indicating that the bias is still reasonable compared with the variation between 

individuals.

Bock and Thissen (1979) fitted the triple logistic model

y "  &1 {l + e x p (- b ,(x  -  c , ) ) + 1 + ex p (- b 2(x -  c 2))}  ^

a ,
1 + ex p (- b 3(x -  c 3)) 

to 66 boys giving

-  87  -



Parameter Mean Estim ate Standard D ev ia t io n

a 1 155.32 5.45

b 1 .82 .52

C 1 - .4 7 .46

b 2 .41 .06

C 2 7.12* 1.41

a 2 25.28 4.31

b 3 1 .14 .2 2

C  3 13.75 1.07

was not given, but based on the diagram of i

value would be 0.39, this value should not be

bias calculations are concerned. This value corresponds to values given by EL 

Lozy (1978).

Using the design given above the following values were obtained

= .3482 Tt  = 1.9869 = .0012 N 0 * .0507

These show substantial non-linearity. The estimated bias were

Parameter Bias

a, .0350

b n .0006

c n .0014

b 2 - -.0002

c 2 .0034

a2 -.1524

b 3 -.0127

c 3 .0016

p .0012
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Again these are small relative to the size of the parameters.

3.7.3 Compound Logistics

Preece and Baines (1978) consider the logistic differential equation 

^  -  r  y ( l  -  y /k )

They observed that for data on child growth

dy 1 
dt k -  y

had a logistic shape, hence they formed the pair of equations 

g  -  S (k  -  y)

g f  -  7 ( s i '  s ) ( s -  s o)

Solving these they obtained

_________________(k  -  ye ) ________________________
y ” ( i  exP(Ys o(t -  *) + 4  e x p ( y s , ( t  -  0 ) ) } ' / 7

for y « yg  when t = 8.

They also considered two simplifications

(I) Take 7  = 1

(II) Take s = p + q with

H t  -  ( P i  ■  p X p  ■  P o >  a n d  5?  ”  q ( q i  -  q )

g iv in g  ( 6 )

4 (k  ”
y "  " {exp(p0( t  -  0 ))  + ex p (p 1 ( t  -  0 ) ) ) { 1  + ex p (q 1 ( t

note if p 0 = pn (I) is obtained.
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Both models I and II were fitted to data on 35 boys by Preece and Baines and 

gave estimates

Model I Model II

Mean - Mean
Param eter Est imate S td  Dev Param eter Est imate S td  Dev

k 176.6 6 . 0 k 174.0 5 .8

y 0 162.9 5 .6 y 0 164.0 5 .7

s o .1124 .0126 Po .0886 .0257

s i 1.2397 .1683 Pi .2245 .0795

e 14.60 .93 1.3676 .1743

e 14.75 .98

Using the same experimental design as in the previous section the following 

estimates of non-linearity were obtained

Model I Model II

pN .0378 .0459

rT .6049 .1766

NV> .00003 .00003

N* .0 0 1 0 .0009

These indicate that there is no significant non-linearity. Correspondingly the 

bias in the parameters was exceedingly small.

These models would appear to be useful, flexible generalisations of the logistic, 

superior to the logistic mixtures in terms of non-linearity and associated 

problems.

The general form of the equation was not considered as the presence of the y
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parameter would almost certainly lead to problems with non-linearity. If 

s 0 = 0 then the function reduces to a Richards function like formulation so it 

can be seen as a more complex form of the Richards function which has 

already been examined in detail and shown to suffer from problems with 

non-linearity.

3.8.4 Discussion of Logistic Generalisations

There are many generalisations of the logistic model. Others not discussed in 

this section include Cui Qiwu and Lawson’s model considered in the 

introduction and Turner et al’s generic growth model. This latter model which 

includes the Richards function would be too complex to be fitted meaningfully 

in the light of the problem encountered with the Richards function in this

chapter.

The Preece and Baines models look promising and would be worth exploring in 

a wider context. They do have one limitation in that there is no simple 

logarithmic form which is often of most use in the study of growth.

3.8 Conclusions

Several points need to be made in the light of the study reported in this

chapter.

1. Richards type functions, while they are flexible, are unreliable as far as 

the properties of the estimates are concerned.

2. The intrinsic non-linearity of the models was always considerably less than

the parameter effects non-linearity. This suggests that a different
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parameterisation should be used. Such a parameterisation has been found

for the simple logistic (Patton and Krause (1972)) but one important aspect 

of these non-linear models is the interpretation of the parameters.

Improved estimation of parameters of no interest to the biologist would be 

of little use.

3. A balance has to be achieved between the absolute fit of a model as

measured by the residual sum of squares and other considerations such as 

bias of the estimates. In non-linear regression a small decrease in residual 

sum of squares may be achieved only by a large step along the solution 

locus, thus creating problems, particularly in interpretation, but also in 

other aspects such as bias, variance etc. Is the decrease worth it?

4. Other generalised logistic models need to be considered instead of the

Richards.
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4. N on -L inear M odels w ith Auto Correlated Errors

4.1 Introduction

As was mentioned in 1.4 Glasbey (1979) has considered fitting logistic functions 

with auto correlated errors. He considers the two cases

(i) The error is an auto regressive process of order 1 ie

ei = + a i

where a j is independent normal zero mean and variance <r2 .

(ii) The error has the correlation structure given by

By constructing the likelihood he is able to find maximum likelihood estimates 

in both cases. In this chapter the two error models will be extended and 

alternative methods of estimation will be considered.

c o r r ( e t  e t 1) “

4.2 Auto Regressive Error Models

The exact likelihood for an auto regressive process is

fe 'E n - 'e ]
Like(i», <ra ) -  ( 2 *<7a 2) Ej,

(Box & Jenkins (1976) p 274) which can be written as

1 - " / ,  " i  [ -  s<v>)l
Like(y>, cra ) 4 .2  (1)

where

n
s ( p )  -  e , 1 £ p " 1 e p + E ( e j  -  . . .  -  ^ p e i - p ) 2

i-=p+l
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and

° a 2̂ p

To Ti 

Tt To

Tp-i

Tp- 2

Tp-i Tp- 2  •• •  To 

the “fi’s being the theoretical auto covariances

If

e i = y i “ f i<B)

ie the error for the model the log likelihood is given by 

!, <p a a ) = -  \  log  cra 2 -  \  log  |E p | -  ^L(B,
2^ a 2

+ const

Differentiating with respect to

c>L 
b(T »

n , s(<p)
~ -» ■ A s*2<ra 2 ' 2an 4

giving

cr2 -  s(<p) /n  

maximising likelihood with respect to aa 2 gives

L(0, <p/aa 2) -  const -  n log s(<p) + i  logjE pj 4 .2  (2)

In order to maximize 4.2(2) three approximations have been suggested.

4.2.1

Ignore the term 

ip\  log

this leads to least squares estimates. 

Let 

ie

Dij -  ejej + e j+1 e j +1 ... e n + i-j e n+ i-i

the sum Djj contains (n+ l-i-j) terms
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and

D u 
-  D1 2

0 , 2  

D2 2

-  D,3
-  D2 3

-  D 

D
i ,p+i 
2 ,p +1

-  D, ,p +1 ” D2 ,p +1 -  D3 . P + 1 Dp+i ,p+i .

then as

s (p )
n p n
^  ^  e i e j  | i — j  | + ^  ( e i
i-1 j-1

It can be shown that

s(tp) -  tp*' D <p* where <p*

(Box & Jenkins (1976) 275-6)

= ip 'D p  -  2<p'd + D11

where

= D*i,i+i

i=p+l
*P\e i - i  • • • ^pe i - p )

Thus the minimum of s(^) and hence maximum of - n log(s(^)) is given by 

Ip = D_1d

The approximation of ignoring £ log 12^ | may be reasonable if the series is 

long but is unlikely to be so in the growth curves considered which will be 

relatively short.

4.2.2

A second suggestion by Box and Jenkins is to replace D jj in equation by

D*j -  n D j j /{ n + l- i - j )  

this gives approximate maximum likelihood estimates. This method is considered 

by Glasbey (1980).
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4.2.3

The third approach is using the Yule-Walker equations 

p  = R-1r

R is pxp matrix R]j = r | i - j |

r o -  1 , r { -  ck/ c 0 i -  1 , . . .  ,p

n-k
nck ™ ^  e i e i+k 

n- 1

This is considered by Gallant and Goebel (1976).

4.2.4

All three methods can be incorporated in an iterative procedure to maximise the 

likelihood. Before considering that the exact likelihood will be developed.

Let

e j

.e i ” ••• ^pe i -p  i= p + l, .  . . ,n

then

s(co) = z ’EP_1z  where EP ■ 
n (nxn) 0

Let L be the Choleski decomposition of E Pn 

then if

La) — z

s (<p) -  Ec

so

L(/3, ^ K a 2) = const “ n 1°8 ^ i 2 - log |L | 

so maximum likelihood estimates are given by minimising

-  96 -



s — Ee*2 where 1
e *  -  L ' / n  Ui 1 1

This is the method given by Ansley (1979).

4.2.5

The approximate procedures would involve the following steps

(1) Find initial estimates for 0, 0 using OLS

(2) Calculate q  = yj - fj(0)

(3) Estimate <p by approximate method using € j ’s

(4) Use <p to calculate q ’s and L and hence e j ’s

(5) min s — E e * 2
by non-linear least-squares method with respect to 0  to give 0

(6) If 0  has not converged: goto 2

If 0  has converged: stop

As step 5 will involve an iterative procedure during which s will be evaluated

it would be possible to incorporate steps 2, 3 and 4 into each of these substeps.

The exact likelihood method would involve the following steps

1. Find initial values for 0 and <p

2. Minimise s using iterative procedure involving

(i) calculate' e j ’s

(ii) calculate z j*s L and hence e j ’s

(iii) calculate s = E e *

at each step.
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Suitable methods are Powell’s method and DuD (see Appendix A). Alternatively 

the minimisation could be split into two levels. This approach has been 

suggested by Richards (1961) and Ross (1970). The steps are

1. Find initial values for 0  and p

2. Minimise s with respect to 0  and p  by searching for min with respect

to p  and at each step

(i) calculate z y’s and L from current value of p  and hence e * ’s

(ii) minimise s = E q  2 with respect to 0

This procedure is similar to that for the approximate methods. The advantage 

of this approach is that in minimising with respect to 0 it is straightforward to 

use a method involving gradients eg Gauss-Newton or Morquandt’s method (see 

Appendix A) as

c>S

b0

bZ]

w

* Set
2i;e- __-  — 2ZiLei b0- Z

be j
b0

bej
*0

^e i - i

^ f  i - 1

i - 1 , . . . ,p

*e i-p
•• -  '“P i p y -

*f i-p
• • " ' “P i p —

i=p+...n

and

In these calculations as the calculation of coy’s the L matrix does not have to 

be formed and the calculations may be carried out iteratively. See appendix 4A 

for details of calculation of the Choleski decomposition of a band matrix.
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4.2.6

Comparing the methods of 4.2.1, 4.2.2 and 4.2.3 with the exact method given in 

4.2.4, there are two main differences

(i) The form of the L matrix this can be illustrated by looking at an 

AR(1) model.

From appendix 4A for maximum likelihood 

1
V l-p 2

0

0

I

For method of section 4.2.1 

n-1

L =

F e{  
i - 1
n-1 n

2F -  F 
i - 2  i =2

for method of section 4.2.2

n-1
^ 2 F e j

i - 2
n-1 0

Z e i -  [ £ t ]  E e i e i — i i - 2  1 J i - 2

and finally for method of section 4.2.3

n
V *F e.

L
i - 1
n n

2F ej -  F e i e i - i  
i - 1  i - 2
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(ii) The variables over which a non-linear optimisation takes place. For the

three approximate methods this is the number of parameters in the 

functional part of the model fj(|3) say m. These optimisation are 

repeated for updated values of Gallant and Goebel (1976) in fact 

suggest only two iterations. T he  maximum likelihood method requires 

optimising over all parameters ie m+p variables, but as has been 

suggested, this can be decomposed into two levels of m and p 

variables.

With current computing power there is no great advantage in using 

an approximate method to reduce the number of variables in the 

non-linear optimisation. Most methods are efficient for about 7 

dimensions which would allow the fitting of an AP(3) and AP(4) 

which is adequate for the type of data examined in this project. 

Neither are the calculations at each iteration significantly simpler. In 

view of these considerations only the maximum likelihood method will 

be developed further.

An examination of the properties of fitting models with auto regressive error 

structures was performed using simulated data sets.

(i) For 50 observations data was generated for the model 

y j — 10 -  lo g ( l  + e x p ( . l  + .1 X t ) )  + e j

t - 1 , 2 , . . . , 5 0
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w ith

I e j * = 0 . 5 e j _ 1 + a j  

I I  e{ -  0 .5  e j . ,  -  0 .5  e j _ 2 + a j

I I I  e j — 0 .5  ej..., + 0 .5  e j _ 2 + a j

where aj is a random observation from Normal d i s t r ib u t io n
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Table 4.2(1)

Model = .5 ^ . ,  + e

00 0 i 02 Pi Dev Sig

1 10.003 .0988 .0991 -318 .92
2 9.996 .0858 .1039 -343 .85
3 1 0 .0 0 1 .1168 .0982 -314 .06
4 9.997 .1107 .1014 -350 .72
5 9.998 .0923 .1029 -345 .56
6 9.998 .1003 .0998 -342 .63
7 10.003 .0943 .0983 -339 .49
8 10.006 .0929 .0980 -337 .35
9 1 0 .0 0 1 .0976 .1004 -332 .24

10 10.006 .0816 .0984 -301 .46

1 10.003 .0990 .0991 .0989 -319 .42 NS
2 9.996 .0854 .1038 .2700 -347 .80 s l g
3 1 0 .0 0 1 .1159 .0986 .4414 -325 .02 Sig
4 9.997 .1109 .1013 .1685 -352 .23 NS
5 9.998 .0935 .1028 .4337 -356 .44 Sig
6 9.998 .0986 .1 0 0 0 .3404 -348 .58 Sig
7 10.003 .0946 .0982 .3480 -346 .02 Sig
8 10.006 .0936 .0978 .3721 -345 .35 Sig
9 1 0 .0 0 1 .0977 .1004 .2362 -335 .24 Sig

10 10.007 .8924 .0964 .6814 -333 .22 Sig

1 10.003 .0985 .0991 .0684 -.1839 -320 .56 NS
2 9.996 .0867 .1038 .4054 -.4803 -359 .43 Sig
3 1 0 .0 0 1 .1163 .9085 .3659 .1234 -324 .52 NS *
4 9.996 .1115 .1016 .3267 -.9943 -336 .19 NS *
5 - - - - - - -

6 9.998 .0996 .0998 .3550 -.0725 -348 .85 NS
7 9.983 .0989 .8977 .4657 -.2497 -351 .80 Sig
8 10.006 .0913 .0981 .4469 -.2 2 9 9 -347 .02 NS
9 1 0 .0 0 1 .0961 .1006 .1993 .0807 -335 .17 NS

10 10.003 .0511 .1026 1 . 0 0 0 0* -.9704* -267 .74* NS *
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Table 4.2(2)

Model H = .5 ^ . ,  - .5^ 2 + e*

0o Bi 02 1 2 Dev Sig

1 1 0 .0 0 2 .0869 .1 0 1 2 -304.88 -

2 1 0 .0 0 0 .1044 .0991 -340.32
3 9.998 .0980 .1006 -298.86
4 1 0 .0 0 1 .1024 .0998 -311.82
5 1 0 .0 0 2 .1040 .0988 -291.08
6 9.999 .1014 .1006 -316.73
7 1 0 .0 0 0 .0989 .1 0 1 0 -330.48
8 1 0 .0 0 0 .1149 .0987 -325.95
9 1 0 .0 0 0 .1123 . .0996 -325.17

10 1 0 .0 0 2 .0999 .0993 -295 .92

1 1 0 .0 0 1 .0891 .1009 .4022 -315.67 Sig
2 1 0 .0 0 0 .1017 .0996 .2427 -343.33 NS
3 9.998 .0975 .1007 .3109 -304 .00 Sig
4 1 0 .0 0 1 .1007 .0999 .7280 -312.23 NS
5 1 0 .0 0 2 .1054 .0984 .2455 -294.06 NS
6 9.999 .0993 .1007 .2507 -319 .55 NS
7 1 0 .0 0 0 .1 0 1 1 .1008 .2821 -334.71 Sig
8 1 0 .0 0 0 .1150 .0988 .4281 -336.56 Sig
9 1 0 .0 0 1 .1116 .0995 .1899 -327.17 NS

10 1 0 .0 0 1 .0985 .0998 .2669 -299 .54 NS

1 1 0 .0 0 1 .0836 .1015 -.7031  -.5729 -336.91 Sig
2 1 0 .0 0 0 .1051 .0989 .3263 -.4074 -352 .42 Sig
3 1 0 .0 0 0 .0994 .1 0 0 2 .5215 -.6596 -331 .39 Sig
4 1 0 .0 0 0 .1034 .0999 .1880 -.5633 -333 .60 Sig
5 1 0 .0 0 1 .1055 .0990 .3954 -.6998 -327 .49 Sig
6 9.999 .1019 .1008 .3716 -.5467 -336 .89 S i g

7 1 0 .0 0 0 .0980 .1 0 1 1 .4811 -.6060 -360.91 Sig
8 1 0 .0 0 0 .1152 .0988 .6437 -.5031 -348.49 Sig
9 1 0 .0 0 0 .1 1 2 1 .0996 .3243 -.6075 -349 .42 Sig

10 1 0 .0 0 2 .1 0 0 1 .0991 .4285 -.5970 -319 .53 Sig
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Table 4.2(3)

Model = JP t + JP 1 ro + et

02 ^2 Dev Sig

1 9.997 .1336 .0945 -323.11
2 9.970 .1531 .1154 — -328 .23
3 10.007 .1036 .0960 -334 .13
4 9.989 .1070 .1041 -334 .90
5 9.964 .1602 .1 0 0 0 -342 .97
6 1 0 .0 1 2 .0925 .0978 -268.18
7 9.976 .1543 .1025 -347 .69
8 1 0 .0 0 2 .0478 .1045 -309 .87
9 9.990 .1 1 0 0 .0970 -327 .82

10 9.992 .1379 .1005 -339 .20

1 9.980 .1237 .0956 .6207 -343 .78 Sig
2 9.970 .1598 .1144 .5678 -347 .19 Sig
3 10.007 .1034 .0946 .3512 -3^0 .88 Sig
4 9.989 .1051 .1043 .4159 -343.46 Sig
5 9.965 .1608 .0998 .1437 -343 .96 NS
6 10.009 .1034 .0982 .8524 -330 .33 Sig
7 9.976 .1542 .1025 -.0604 -347 .89 NS
8 10.019 .0500 .1047 .6249 -333 .35 Sig
9 9.989 .1127 .0970 .3921 -335.41 Sig

10 9.992 .1376 .1005 .0717 -339 .46 NS

1 9.980 .1265 .0957 .4745 .2462 -345 .58 NS
2 9.970 .1607 .1138 .3503 .3558 -351 .80 Sig
3 10.007 .1029 .0946 .2687 .1619 -341 .26 NS
4 9.989 .1047 .1041 .3058 .2880 -347 .53 Sig
5 9.967 .1682 .0978 .6767 .5930 -359 .17 Sig
6 10.009 .1016 .0970 .5133 .3938 -336 .39 Sig
7 9.975 .1555 .1029 - . 1 0 2 1 .5212 -357 .54 Sig
8 10.019 .0520 .1047 .4199 .3037 -335 .97 NS
9 9.989 .1149 .0968 .2755 .3040 -338 .68 NS

10 9.912 .1381 .1003 -.0129 .4319 -349 .15 Sig
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Each set of conditions was replicated 10 times and the models fitted with 

A independent error

B AR(1) error

C AR(2) error

The results are shown in table 4.2.1 (1), (2) and (3).

The deviance is the maximised value of 

-  2n log s(/3, <p)

and the difference between the deviance in nested models is the - 2 log £ 

where £ is the likelihood ratio statistic and hence will approximately have a 

X2 distribution with df given by the difference in the number of fitted 

parameters. The sig column indicated whether the test with the simpler model 

is significant at the 5% level.

Table 4.2(1)

(i) The test for an AR(1) model vs random error model was significant 

8 out of 10 times.

(ii) When trying to fit an AR(2) model problems in convergence were 

encountered, all values marked * are suspect.

(iii) There are only small differences in the estimates of the /3 parameters 

between the three methods, the same pattern exists in each method.

Table 4.2(2)

(i) The AR(1) was significantly better than the random error model only 

4 out of 10 times but the AR(2) was better than the AR(1) 9 out of 

10 times.

(ii) Again the /3 values are only slightly affected by the chosen error structure.
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Table 4.2(3)

(i) The AR(1) is significantly better than the random error model in 7 

out of 10 cases and the AR(1) is significantly better than the AR(1) 

in 6 out of 10 cases.

(ii) The (3 estimates are again only slightly affected by the fitting method but 

there is a much higher "variation in the estimates with this structure 

than with the other two.

Two simulations were carried out to test the effect of fitting the wrong model.

Here the data was generated for the model

y j -  10 + 0 .5  lo g ( l  + exp(0 .1  + O . l t ) )  + e t

t - 1 , 2 , . . . , 5 0

with

I e t  -  a t 

I I  e t * 0 .5 e t _ 1 + a t

â  as before.

The results for 10 runs for each model of fitting the same models as before

are given in tables 4.2(4) and 4.2(5).

Table 4.2(4)

(i) In no cases is the AR(1) significantly better than the random model,

nor the AR(2).

(ii) The estimates give consistant results.

Table 4.2(5)

(i) 7 out of 10 times the AR(1) gives a better fit than the random

model, the AR(2) is never significantly better than the AR(1).

(ii) Again estimates are consistent for the (3 parameters.
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Table 4.2(4)

Random Error Incorrect Model

00 0i 02 <P i ¥>2 Sig Dev

10 .004 0.9352 .0890 -339 .98
10.003 .9619 .0890 -335 .49
10.002 .9277 .0951 -344 .25
10.002 .9457 .0917 -331 .13
10.002 .9466 .0915 -338 .49
10.004 .9461 .0892 -341 .69
10.000 .9477 .0930 -3 4 2 .2 0
10.000 .9652 .0897 -341 .62

9.999 .9459 .0960 -338 .7 3
10.003 .9533 .0890 -329 .27

10.004 .9354 .0888 - .1575 NS -3 4 1 .1 0
10.003 .9620 .0890 .0810 NS -335 .81
10.002 .9274 .0950 - .0 4 5 4 NS -3 4 4 .3 0
10.001 .9449 .0918 - .0083 NS -331 .11
10.001 .9447 .0919 - .2 4 1 2 NS -3 4 1 .1 5
10.004 .9463 .0892 - .1418 NS -342 .65
10.000 .9483 .0929 .1272 NS -343 .0 3
10.002 .9648 .0900 - .0996 NS -347 .0 2

9.999 .9449 .0962 - .1421 NS -339 .71
10.003 .9535 .0892 .0857 NS -329 .6 3

10.004 .9357 .0888 - .1987 - .0665 NS -341 .9 8
10.003 .9623 .0891 .0857 - .1 3 2 5 NS -3 3 6 .3 7
10.002 .9272 .0950 - .0707 - .2 1 5 6 NS -346 .6 3
10.002 .9439 .0919 .0015 - .0741 NS -3 3 1 .3 2
10.002 .9480 .0915 - .1873 - .04773 NS -340 .3 8
10.004 . 9457 .0892 - .0865 - .1 0 8 3 NS -342 .5 5
10.000 .9461 .0933 .1277 - .1 4 4 3 NS -3 4 3 .8 2
10.003 .9645 .0897 - .0959 - .0 2 4 0 NS -3 4 1 .9 0

9.999 .9458 .9603 - .1991 - .1541 NS -3 4 1 .6 2

10.003 .9524 .0891 .0687 - .1 2 7 7 NS -330 .1 7
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Table 4.2(5)

Model wt = .5ut + et Incorrect Model

0i 02 Pi P2 Dev Si,

1 10.002 .9861 .0885 -358 .20
2 9.996 .9331 .0985 ’ -342.41
3 10.003 .9138 .0958 -321.65
4 10.002 .9715 .0871 -311.72
5 10.007 .9360 .0903 -333.09
6 10.002 .9782 .0900 -326.29
7 10.000 .9105 .0967 -316.82
8 10.002 .9425 .0889 -314.05
9 10.000 .9174 .0941 -337.86

10 9.998 .9180 .0965 -321.47

1 10.002 .9871 .0885 .2137 -360 .64 NS
2 9.996 .9344 .0982 .2938 -346 .84 NS
3 10.005 .9171 .0940 .5190 -336.41 Sig
4 10.002 .9760 .0865 .2495 -314.76 NS
5 10.007 .938 .0900 .2406 -336 .69 NS
6 10.002 .942 .0895 .3125 -332 .42 Sig
7 10.000 .920 .0956 .5724 -335 .80 Sig
8 10.002 .9433 .0896 .4459 -324.41 Sig
9 10.000 .9118 .0942 .3380 -343 .70 Sig

10 9.998 .919 .0973 .4256 -331 .12 Sig

1 10.002 .9858 .0885 .1813 .0922 -360 .73 NS
2 9.996 .9302 .0990 .3341 -.2149 -348.67 NS
3 10.003 .9161 .0958 .5622 -.1 6 1 4 -336 .94 NS
4 10.002 .9686 .0873 .2279 .0408 -315.28 NS
5 10.006 .9324 .0907 .2401 .0360 -336 .70 NS
6 10.003 .9507 .0873 .7173 -.9884 -303 .70 NS
7 9.999 .9040 .0971 .4927 .0799 -336.03 NS
8 10.003 .9413 .0905 .96675 -1 .000* -328.43* NS
9 10.000 .9152 .0943 .4104 -.2660 -345 .84 NS

10 9.998 .9235 .0968 .4371 -.0495 -330.85 NS

Table 4.2(5)
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Further simulations were carried out for the true model and the estimates of <p

are displayed below for the model e j = 0.5ej_1 + aj

ie (p = 0.5

A

9

. 1 0  7 -

. 2 1 3 7 9

. 3 4 4 5 7

. 4 2 3 3 3 4 4 5

.5 9

.6 9 8

Mean = .3847 SD = .1580.

95% confidence interval for the mean is .31 to .46.

This shows that the estimate is biased, there is also a suggestion of skewness in

the distribution.

To investigate this further a sample of size 100 was used again with an AR(1) 

model with -  .5. The results were

A

9

.2 4 7

.3 1 6

.4  0 1 2 3 4 4 5 6 7 8 9

. 5 0 1 1 6

The results are better but there is still a small bias and evidence of a slight 

skew.

For a smaller sample size of twenty five the following estimates of <p were 

obtained
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9

- . 1  2 6

- . 0  0 2 3 3 5 5 9

+ . 0 2 3 3 4 5 6  

.1 0 1 1 3 4 5 7 7 8 9

. 2 0 0 1 1 1 3 3 4 4 4  5-5 6 7 9

. 3 0 0 2 2 2 2 3 4 4 4 4 5 6 6 8 8 8 8 9 9 9 9 9 9

. 4 0 0 1 1 1 1 1 1 1 1 1 2 2 3 3 3 4 5 6 6 6 8 9

. 5 0 0 3 4 5 5 5 5

.6 1 3  3 3 5

Mean .301 SD .186

95% confidence interval for mean is .265 to .337.

This shows an increasing bias with small sample size.

Finally an investigation of the situation when the sample size was only 10 was

carried out. In the situation the error model was again

et = 0.5et_, + a t

(i) The AR(1) was only significantly better than the random error model

in 4 out of 5 cases.

(ii) The estimate of was very poor as illustrated below.
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9  .

- .8  4

- .7  7 3

- .6  5 8

- .5  0 3 3

- . 4 0 5 7 8  

- . 3  0 1 2  3 5 9 9

- . 2 5 6 9

- . 1 0 1 3 6 6 8 9  

- .0  4 5 5 6 8

+. 0 3 6 8

.1 1 5  6 8

. 2  6 8

.-3 4

.4  1 4

.5 0

The estimates of /32 and (33 were also examined when fitted in model assuming 

random error structure when it was an AR(1) with = 0.5. These results were 

True va lu e  (32 — 0.1

0 3 "  0-5
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A

02

0.04  4

0.05 1 1 8

0.06 3 3 3 5 6

0.07 0 2 3 4 6 6 7 7 7 8

0.08 0 0 2 3 3 3 3 4 6 6 6 8 9

0.09 3 3 4' 4 4 4 5 6 7 8 9 9 9 9

0.10 0 0 2 2 2 2 3 6 6 6 8 9 9 9

0.11 0 2 3 4 4 5 5 6 7 8 9

0.12 0 1 2 2 2 4 6 7

0.13 0 2 3 3 4 5 6 8

0.14 0 1 1 1 2 3 7 9

0.15 2 5 5 8

0.16 0 4 4

A

03

.45 0 8

.46 1 2 3 7 9

.47 0 1 1 2 3 3 3 4 6 8 8 9

. 48 1 1 4 5 5 5 7 7 7 7 8 8 9 9 9

. 49 1 1 3 3 3 3 3 4 4 4 5  5 5 5 6 6 6 6 7 7 9 9 9 9

. 50 0 0 0 0 2 3 3 3 4 4 5 5 5 5 6 7 8 8 9 9

. 51 0 0 1 1 2 4 4 4 7 9

. 52 0 0 1 3  7

. 53 3 3 5 5 7 7 8

The asymptotic variances with random error would be 0.020 for ^  and 0.014 

for using the formula
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Var -  ( v 1 v ) ” V 2 where v j  i —J

As can be seen there is a reasonable correspondance between the observed 

distribution of 0 , and @2 and the expected using the above formulae.

The following conclusions can be drawn from the above simulations, allowing 

for an amount of uncertainty due to the limited number of simulations carried 

out

(i) The inclusion of an auto regressive term in the model does not

greatly affect the estimates of the parameters of the functional part 

of the model ie the /Ts. There will be a reduction in the estimated 

variance of the parameters (see Gallant and Goebel 1976) if the AR 

model is fitted since the estimated variance will be smaller (reduced 

residual sums of squares), but for small samples this will be 

unreliable (see (iii)). The observed variances of (3 correspond to what 

would be expected if the AR terms were ignored and so the fitting 

seems reasonably robust to auto correlated errors.

(ii) For medium size samples (about 50) the likelihood ratio test provides a

reasonable test for the inclusion of AR terms. For small samples 

(say 10) this test does not perform at all well.

(iii) The estimates of the AR parameters show small sample bias. It is only

with large samples (> 100) that the bias is sufficiently small, for 

small samples it is very bad. Indeed the estimates also have a very 

large variance.
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The simulations and hence the conclusions have concentrated on small samples 

as the samples used in biological growth tend to be at most 50. The poor 

performance of the method for these sample sizes however should not

discourage its use for larger samples where it looks more promising, but further

investigation would be needed.

4.3 Other Error Structures

In addition to AR models full ARMA models could be considered. There are 

several algorithms for calculating the likelihood for an ARMA model Newbold 

(1974), Dent (1977) and Pearlman (1980) have produced algorithms but Ansley’s 

(1979) method appears to be the most efficient (Pearlman (1980)) for smaller 

models. Anleys method was used in the previous chapter to fit non-linear

models with auto regressive errors it would also be used to fit MA and ARMA

models. The difference would be in the structure of the L matrix, the £ npq 

matrix for the covariance of the modified errors eg

ie a pxp matrix of the covariances of z j ,  i=l,...,p and a band matrix of width 

q where q is the number of MA parameters.

Details for individual model are given in appendix 4A.

This approach was not developed for the following reasons

i - 1 , . . . ,p

e i “ " ^pe i - p  i —p+1, . . .  ,n

would be of the form

where /5 i s  a banded matrix  o f  width q.
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(i) When attempting to fit such models problems with convergence w e re

encountered. It was important to obtain good initial values before 

starting the iterative phase. Pure auto regressive models seem more 

robust in their convergence to the initial values.

(ii) Considering the short series that will be modelled complex ARMA models

could not be considered therefore there would be less to gain by 

expanding from the simpler AR models.

(iii) The interpretaiton of an MA model would be less obvious than an AR

model, see later, although a case could be made for an ARMA(1,1) 

model treated as the sum of an AR(1) + random error.

4.4 Standard Errors of Parameter Estimates

The estimates of standard errors can be obtained by using

var(/3,3-2 ,£>, 6 ) ------- I"1

where I is the matrix of the second derivatives of the log likelihood given by 

4.2(1).

The main interest will be in the (3 parameters and so the variances could be 

approximated by conditioning on the estimated values of the nuisance parameters 

<p and 6. Given <p and 6 the problem of estimating (3 is a weighted least 

squares problem. The sum of squares 

s c -

is to be minimised with respect to 0. Let T be the nxn matrix such that 

z = Te

then

a) = L_1Te
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Thus using the result used in section 4.2.4, with v as the nxp matrix of 

derivatives of f with respect to 0 then 

var(j3) -  {v1 (T'L' “ 1)(L“ 1T)v]“ 1cr2

Investigation of the properties of these estimated variances is not within the 

scope of this project.

4.4 Models for Continuous Time

In this section the model

yt = W )  + et

where

E(et et+T) = p(t 0), 0 unknown parameters

is considered.

The log likelihood for the model is

nL(/30) = - 2 loS 2x - - log

where E a2 is the var-cov matrix of e

- ^ log a 2 - ^ a 2 e ’Z ‘‘e

now

1 P (t t) p (t 1+t 2)

P ( t ! ) 1 p ( r 2)

p ( r 1+ r 2) p (t 2) 1

p ( T , + T 2 . . . T n . , )

where rj - tj+1 - tj

P ( t , + t 2 . . .  r n . , )  

p(r2 ...

P ( T n - i >  

1

If p ( t + t ' )  **= p ( t ) . p ( t ' )
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P < r  n ) p (r  t+ t 2) . . .  pCt^+Tj . . .  r n_1) 

l - p ( 2 r , )

0 1-P<2t 2)

0 0 ’ l - p ( 2 r n_1)

-  ( l - p ( 2 r 1 »  -  -

i - 1

The cofactors of E are 

c n

c(,w "* a/ ( 1 “P(2t j- 'j) )

then |E|

For c i j

Ci j

i-1

i+1

J

J+l

i < j-1

1 P ( T , )

1

P(r i-2> 1 P(7 i-i)

p(T i) 1

P(7 i+l) 1

P(7 i-l> 
1
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i - 1

J

J+l

1 p ( r i )

1-P(2 t , )

1 " P ( 2 t i  _ 2 ) 

-  0

= 0 (ie zeros on diagonal of triangular matrix)

By symmetry c j j  = 0 i < j-1

i-1

C |i 1 pCr,

i+1

i-1

i+1

i-1

i+1

P ( r 1_2) 1 p C ri-T + rj)

1

0  1 - P ( 2 7 j )

l - p ( 2 r  i _ 2)

l - p ( 2 r i +27i

1

^ ( l - p ( 2 r j +2 t ) )  
( l - p ( 2 r i . 1) ) ( l - p ( 2 7 i )

1 - P ( 2 7 j _ 1 )

P (7 i+i> 

1

- i >

- p ( 2 7 i + i )
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c i i+ i

i-1

i+1

i+2

2 i - 1

P(T i )

i+2

i-1

i+1

1 P ( r i _ , )

p (t"i + r i _! ) p ( r i )

P (  ̂i+ 1 +^ i )

P (r i - i + r i+ i)

PC^i+l)

1

1 p ( r O

1 - P ( 2 r 2 )

l~ p (2 r j _ 2)

p ( 7 i )  -  p (27 j + 7 i + 1) 

l - p ( 2 7 i+1)

A p ( 2 7 i ) ( l - p ( 2 7 i _ 1) ^ p(27{)
" ( l - p ( 2 7 i _ 1) ( l - p ( 2 7 l ) “ l - p ( 2 7 i )

Hence E"1 is a tridiagonal matrix with ith row 

-  p ( 2 7 i _ 1) l - p ( 2 7 i + 2 7 j _ 1)
0 . . .  0 ,

-  P (2 7 i)
l - p ^ . , )  ’ ( l - p (2 7 i . 1) ( l - p ( 2 7 i ) ’ ( l - p ( 2 7 i ) , 0 . . . 0

Thus

L -  const - 1 ? i ,o nx <r2 f e ? . en
-  2 Z^ log  ( l - p ( 2 7 i ) )  -  2 ( 1_p (2 T i ) + 1 —p ( 2r ji—-1 )

n-1
+ E e \  ( l - p (2 7 i +27i _1) / ( l - p ( 2 7 i _1) ) ( l - p ( 2 7 i ))  

i-2

n
-  2 E e j e j_ 1 p (2 7 |„ 1) / ( l - p ( 2 7 j . 1)> 

i-2

If

P ( r i ) -  pTi

then this reduces to the model and likelihood discussed by Glasbey (1979).
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Other functions could be used for example 

p ( r )  -  exp(-X 1 | r |  -  X2 | r | 2)

However in the light of the previous discussions this approach will not be 

developed further.
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A ppendix 4A

Choleski decomposition of a band matrix

1. Band width 1

a i 1  a i 2 A , \£ £ c u  c 21

a 21  a  2 2 a 2 3 ^ 2 1  ^ 2 2 ^ 2 2  ^ 3 2
r= g-

a 3 2  a 3 3  a n - i , n - £ c 3 2

a n , n - 1 a n n £ £L C n , n -1  c n n . ^ n n .

^i i  “  a i i  "  ̂i , i — i i < 2 ; £yy -  a,  y

L' x “ b x, — b 1/^>l ,

x i = J T T ^ i  “ ^ i , i - i x i - i )  c 11

2. Band w idth  2

a n a i  2 a i  3 ' ^  1 1

a 2 1 a 2 2 a 2 3 a 2 4 ' 2 ,
Pc 22

a 3  1 a 3 2 a 3 3 a 3 4 a 3 5 ^ 3 1 ^ 3 2

COCO

a 4 2 a 4 3 a 4 4 a 4 5  a 4 6 ^ 4 2 £  £  c 43  c  44

£  £  c 1 1 c 1 2 CO

Pc 22 ^ 2  3 * 2 4

^ 3  3 ^ 3 4

^ 4 4

^ 1 1  “  a i 1  » ^ 2 1  “  a 2 i / ^ i i

^ 2 2  “  a 2 2  ”  ^ 2 1  * ^ 3 1  “  a 3 l / ^ 1 1  » ^ 3 2  == ~p ( a 3 2  “  ^ 1 2 ^ 3 1
c 2 2 I

^i i  " a i i  “ J ^ i , i - i  + ^ i , i — 2 J

i« ,  {&i ’ i_1 ~ ^ i »i “ 2 ^ i - i , i - 2 ]

^ i , i - 2  “ a-i, i — 2 / ^ i  — 2 , i — 2
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L 'x  -  b X1 “  b i / f i i  - x :
2 2

x i “  ?7T(b i '  f i , i - i x i

A R ( 1 )

SO

o)t  = s ^ t - 1  + a t

z i "  «i

z  i ® "" ^0)j .. ̂

To -  J 2̂ n -  [7o i ]

Jl-<p2

e i -  Zl /  'Vo ~ W1 7 1_^ : 

e i “  z i “  wi “ i-1

N  - T T =

A R ( 2 )

o),

CJ-2 2

Z j  -  0>j -  -  ^ 2 a)i - 2

To

Ti

n ■

[&]
1-^2 To Pi

p \  1

*  + i = i d To

To Ti 

Ti To

z i / 7 To " ^ i / 7 To

^ 1 1  “ 7 To 

^ 2  -  T1 / 7  : 

^*22 “ 7 To

e 2 -  ( z 2 -  < T i / 7 T 0 ) * ( z i / 7 T o) ) / 7 T o

( z 2 -  Ti /To z i ) / 7 To ” Ti/Tt

(b2 - ^2i ^ i )

- i  P i , i - 2x i - 2 )

T1 / T 0 

-  T?/To)
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e  i  =  z

MA(1)

To = ( l + e 2) a l  7 ,  = 6a 2a

f „  -  7 l+ e 2 f i i  -  U + e 2)_ -  , i_ ,

, i-1  = ^ /^ i+ i - i

e 1 = Ci) /̂J 1 + 0 2 

1e* =
t t (“ t " , t - i e t - i )

MA(2)

To -  (1 + <)• +

T 2 0 2a a

2 2 2 + 0?01 e ] ,  -  <i + + e \ )  ,
21 j  l  + e 2 + e 2 

2 2

2 2 2 ^l + 0201e 2 = i  + e 2 + " 2 1 2 122 • 2 i  + e 2 + e 2
1 2

e f t  -  ( l  + «? + e |)  -  C^i , i_,  + f i , i - 2)

0 i i - i  “  ( (0i  + 02 01 ) ” ^ i , i - 2 0 i - 1 , i - 2 ) / 0 i - 1 , i - 1  

0 i , i — 2 = 0 / 0 i - 2 , i - 2

e 1 “ <*>,/£„

e  2 “  ( w 2 “  0 2 1 e i ) / 0 2 2

e t ”  (Wt “ 0 t , t - 1 Xt-1 ” 0 t , t - 2 Xt - 2 ) / 0 t t
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ARMA (1, 1)

2 t

0), = (<pc»)0 + 0ao) + a,  

o)t  -  ^>cot  t  >  1

a* -  0a t - i

n cr.w 0

1+ 0 2

e

E ( z , z 2 ) = 0 v a r ( a )

-  6 a l

'c*>
1 + 2 8(p + 02

1  -  <p2

1  +  2  6<p +  0 2
1  -  <p2 21 « /* , i

1 1 i  +  02 -  e i , 1 - 1 0*i , i - i  “  ^ / ^ i - i  , i - i

e i  “  ^ i / ^ i 1

e t  “  ( z t  ”  , t - i e t - i ) / ^ t t
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5. Dynamic Models of Growth

5.1 Introduction

In this chapter models which describe -how the size of an organism is changing 

will be examined. Two classes of -model will be considered

(a) stochastic difference equations,

and

(b) stochastic differential equations.

The former can be considered as approximations to the latter formed in discrete 

time rather than continuous time. These difference models may be more 

tractable than the differential models and may also be more realistic at the level 

of complexity available. For example the growth of a plant is continuous in 

continuous time but over a short period of time will vary in a complex manner 

due to temperature and light fluctuations. These variations may well average 

out over a longer period of time thus making, say, weekly growth increments, 

in a sense, simpler to model. Also all measurements will be in discrete time 

and the model will directly match the observations.

The emphasis in this chapter will be on deriving results that will be useful in 

fitting and validating the models rather than the more usual concern of model 

behaviour.

5.2 Stochastic Difference Equation Models

Both linear and non-linear equations will be considered in this section. A key 

tool for the estimation is the Kalman Filter, this will be described in more 

detail and subsequently applied to both linear and non-linear models.
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5.2.1 Some Simple Linear Difference Models

The first order deterministic linear difference model is

xt = Xxt_, (1)

with solution

xt = = x 0ert with r = log X (2)

A simple stochastic version is

xt = x* t-i + et (3)

where ê  is an independent error with zero mean. This corresponds to an auto 

regressive model, but as X > 1 for growth, it is not stationary and so usual 

auto regressive time series results do not hold. The solution to 5.2 (3) is 

t -1
x t = x t x o + E x l e t - i  (4 >

i=0

(eg Bartlett (1978)).

Hence

E(xt ) = Xt x 0

t -1  t -1
v a r ( x t ) = E X* v a r ( e t _j|) = cr2 E X2* (5)

1=0 i=0

i f  v a r ( e t ) = cr2 k)t

= cr2(X2t -  1 ) / ( X 2 -  1) (6)

This shows the increase in variance usually observed with biological growth.

t ' - l
cov(xt xt . )  = cr2Xt “t ' E X2* = or2Xt _ t ' (X2 t ' - 1 ) / ( X 2 -  1) (2)

i-0

Using (6) and (7) a generalised least squares estimate of X could be obtained. 

However it is simpler to consider 

et = xt - Xxt_, 

and minimise
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Ee2 (8)

with respect to X and, if x0 is unknown, with respect to x0. In this use of 

the model the value of x0 is important since E(Xq ) ^ 0 as is the case in the 

stationary time series model Minimising 5.2 (8) with respect to X gives 

n
X -  E * t x t - i  + x i x o 

1=2

E x^_1 + x 20 
i=2

and £ 0 is found by minimising 

n
E (x t -  Xxt _ , ) 2 + (x , -  Xx0) 2 (10)

i= l

with respect to x0 via a non-linear minimisation algorithm (see Appendix A).

Alternative formulations for the stochastic version of (1) are

xt = Xxt_., + J xtet (11)

xt = Xxt_, + xt_ iet (12)

with var(et ) = a2.

The two formulations allow for the random effect to have variance proportion 

to size or standard deviation proportional to size. A general form of this 

model is

xt = Xxt- i  + g(xt)et (13)

where g( ) is a known function. The solution being

t -1
x t “ x t x o + 1 g (xt - i - i ) x l e t - i

i=0

Estimation of X and x0 can be obtained by minimising 

n
E (x t -  Xxt _1) 2/ g 2(xt _1) (14)

i-1
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with respect to x0 and X in an analogous way to the simpler model.

A parametric form of g( ) could be considered.

If

(1 5 )

then with 0 = 0, £, 1 models (3), (11) and (12) are obtained. Thus by 

minimising (14) with respect to x 0, X and 6 a form of automatic model 

selection is obtained, and by testing the value of 0 using approximate F or t 

tests a model test can be obtained.

A non independent error could also be considered eg

or a more complex auto regressive moving average model. Model (16) would 

give

This could be considered as a non stationary auto regressive moving average 

model. Estimation for such a model will be considered later.

As many difference models are non stationary version of the normal stationary 

time series ARMA models, they will be referred to as NSARMA models.]

Second order difference equation models are also of interest. These provide a 

more varied behaviour pattern than is possible with the first order equations. 

In particular the common decrease in growth rate eg

ut = pet-i + et (16)

x  ̂ = Xx̂ _ 1 + y>ê  + % (17)

[Notation
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t

The equation

Xt = X ^t-1  + X2Xt-2 + et 

has solution
/

r -2  „ i+ i _ „i+ i

(18)

t  t  " ~ fit
x t = A/i, + B fi2 +. E —  

i=0

m2
M, “ M2 e t - i (19)

where /i, and /^ are solutions of 

z 2 - X,z -  X2 = 0 

and A and B are given by initial conditions (Bartlett (1978)).

(20)

Again as this is a model for growth the general results for stationary models (ie 

auto regressive models of order 2) are not applicable.

Now

E (x t ) A/i* + B/i2 ( 21 )

and

r-2
v a r (x t ) -  cr2 E 

i=0

'i+ i _ „i+ i '1 M 2

(Mi -  M2)

®"t (Ml » M2)

Mi -  m2

/ * ? * - !  2 (MiM2)* -  1 [ v \ x -  1
Mi M2 " 1 Mj ~ 1

(22)

Estimation of X,, X2 and x_,, x 0 is carried out by minimising
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n
£ (xt -  -  X2xt _2) 2 (23) •

i= l

with respect to X1 X2 g x0 and x _ From these values estimates of A, B, 

/i, and /x2 could also be obtained. Again with this model x 0 and x _ , are 

important aspects and need to be fully estimated and not treated as nuisance 

parameters.

More complex error structures could be considered, but this will be left to

later.

A useful way of placing the above and more complex model in a compact

framework is to use the Kalman filter, this will now be discussed.

5.2.2 Kalman Filter

The Kalman Filter originates in the control engineering field eg Kalman (1960), 

Kalman and Bucy (1961). It is concerned with the following model 

Discrete Time Continuous Time

x t = f t<x t - i )  + S t ( x t - i > £t x t = f t ( xt> + S t ( x t > Et  ( 24>

y t -  h t (x t ) + e t y t -  h (x t ) + e t

The first equation is the relationship between the unobserved state-space through 

time, the second is the measurement equation between the observed y and the 

unobserved x. et and ef are independent errors, all variables may be vectors.

In this section we will look at the discrete time situation and when the 

functions are linear ie
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xt -  Ft -1 xt - l  + G t - l e t
(25)

yt = Ht. , x t + e,

F, G and H being matrices. Further

var(et ) = Qt var(ej = R* (26)

The problem is to estimate x t given y, ,...,y t_ 1 , the solution is given by the

following recursive formulae.

Now

*t- = F*t-i (27)

pt- = Ft - i p t - i Ft- i  + Gt - i Q t - i Gt-i  (2g)

and

£t = *t_ + K t ( y t - H t * t_ )  (29)

where

Kt = Pt_Ht(HtPt_Ht + R^)"1, the Kalman gain matrix (30)

Also

Pt = [I - K tHt]Pt_ is the variance of ic t (31)

(eg Gelb (1974) Maybeck (1979)).

It can be seen that the estimate is a weighted combination of the value

predicted from time t-1 using the state space equations, £ t_ and the residual 

from the observed and predicted values of y t . There are several ways of 

deriving the above estimates. As the procedure involves using prior information 

the natural setting is Bayesian. It can be shown that £ t is the mean of the 

posterior distribution if one assumes both errors and initial prior information are 

Normal. Harrison and Stevens (1976) use it as the core of the ’Bayesian 

Forecasting’.

Other interpretations of the Kalman Filter are also possible. Duncan and Horn 

(1972) consider it in terms of regression analysis. They start with the 

wide-sense random - /3 regression model ie
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y = x(3 + e (measurement equations)

/3 = + £ (state-space equations)

where e and £ have any distribution with zero mean and variance I! and Ijg 

respectively (ie wide-sense distribution). Further p is a known prior mean for 

p. The rest are as for standard regression. They show that the Kalman Filter 

estimate (= ± t in  previous notation) is the minimum mean square error 

estimate of 0.

A further interpretation can be given in terms of the Goldberger-Theil 

estimator for the linear model as discussed in chapter 3. Now as before

(32)
y x  • e'

= & +
r R*

. £,

Let r = Fft. 1 * R* = I,

0t = F^ t-i - e 

y = X/3 + e 

so the Goldberger-Theil estimator with 

w = Rt 

<J2 V = Pt_

is

- 0 - 1
X'R^’X + Pt : ’ j "  [X-Rj 'y +

-  F(5._ + X1Rt 1x + p t _1

X’Rt y + P , : 1 - [ x - R t ' x  + Pt _1j j F p t _ , I

-  F(3t _, + [ x ' R " ' x +  p t - 1] "  X ' Rt ’ [y -  XF<?t _ ,]  

Now pre multiplying

X'Rt ’X + Pt _1
-1

X' R- 1

and
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-  P t-X ' (XPt _X' + Rt ] " ’ by [ x 'R j’x  + Pt : ’ j

and post multiplying by (X P ^ X *  + R^) both give (X/Rt-1 XPt_ + I)X ’ as 

X 'R^1 (XPt _X' + Rt ) -  X'R^ 1XPt _X' + X‘

*t- = F f t . ,

This relationship between the two estimators has also recently been shown by 

Diderrich (1985).

The recursive regression estimator (Brown, Durbin and Evans (1974)) can also 

be put in Kalman Filter form as

and

(X 'R ^X  + P t l )P t - X ‘ = X'R^ 1XPt _XPt _X' + X'

Kt -= (X, R t1X+Pt l ) " 1X 'R t1

hence

fit = + K t (y - X fitJ (33)

where

fit = 6h  + (X jx t)- i(y t - xjfit-,)
t

with Ht = xt , R  = F = I and noting that

(34)

since

and

Pt .  -  I Pt _, I + Q -  Pt _,

(Xt Xt ) _1x t  -  Pt _ (I + I(H Pt _ Hj) -  H;Ht Pt . ) ( l  + Ht Pt _ H ; r 1H'
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-  pt _ H '( I + Ht Pt . H ; ) ' ’ -  Kt

as HPt H' is  a s c a l a r  so

( I(HPt -H) -  H;nt Pt _)H; = H;(Ht Pt .H i) -  H '(Ht Pt _H^)

-  0

So we have the Kalman-Filter result.

5.2.3 Further Properties

It can be shown that the quantities 

zt = yt - H&t_

under the Normal model are Independent Normal with zero mean and variance 

Ht Pt _H; + Rt (35)

(eg Maybeck (1979)).

This result can be used in two ways

(i) The validation of the model. The distribution of the standardised

residuals

z*t = yf - Hx«-_ , , . n .
J (Ht Pt Hj~+""Rt * ln  s c a l a r  y case ,  (36)

can be examined via time plots, Normal probability plots and the 

examination of the auto correlation of z t .

(ii) The likelihood can be formed.

Mehra (1972) and Maybeck (1979) review methods estimating the 

parameters of the model. The matrices 

F, G, H, Q and R
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may all contain unknown parameters. Using the property given

above it can be readily seen that the likelihood in the scalar y case 

can be written as

Log Like = const - ^  E log (Ht Pt _Ĥ . + Rt )

1 - ,  <37>-  -  E (y t -  Hxt _ ) 2/ ( H t Pt _H; + Rt )

This can be maximised using a derivative free non-linear 

minimisation function eg Nelder-Mead and the variance of the 

estimates obtained using

var(params,9 ) = - log like (38)

where the second derivatives may be obtained using numerical 

methods (see appendix A).

Other methods of estimation are available (Mehra (1972), Maybeck (1979)).

These are based on the correlation of the y’s/z’s and assume time invariant

parameters.

(i) Output Correlation Methods

Now

E(zt z t _k ) = r H E H ' + R  k = 0

H F I  H' k > 0

where E = E(xt x^_k ) t

Unless yt can be assumed to be stationary and equally I  is a 

function of k only satisfying 

E = F E F '+  Q
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then the complexity of the calculation of the E(z t z t_k ) would 

remove any advantage this method would have over maximum 

likelihood.

In the simpler stationary "case the theoretical and sample auto 

covariances/correlations 'can be equated and estimates of the 

parameters thus obtained.

However, in the growth situation the y’s are not stationary and hence 

this method would be of little use.

(ii) Innovation Correlation Method

As was stated above the sequence z t should be independent. If an 

incorrect filter is used z t will be auto correlated hence values of 

parameters may be found that give zero auto correlation. Again this 

is only efficient if the x t ’s are stationary.

(iii) Covariance Matching

In the case of vector yt the observed and expected values of the 

variance-covariance of y t can be compared. This is of limited use 

as only a small number of parameters could be estimated.

A further approach to estimating is by including the unknown parameters as 

states in an augmented state vector and include them in the filtering (Friedland 

(1969)). This method is suitable for on-line applications with a small number 

of unknown parameters. However in the uses presented here it is of little use, 

but the idea of the concept of the state space being both unknown values of 

physical states (ie as in engineering applications) and unknown parameters (ie as 

in the regression approach given above) may well be of use in certain
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applications.

Missing Values

The discrete Kalman Filter is appHed to a sequence of equally spaced 

observations. However, it is ea'sily adapted to the situation in which an 

observation in the sequence is missing.

Let yt+1 be missing then

*t+, = F *t + G et+i 

xt+ 2  = F xt , + G e(+2

— F.F xt + F G ftj+T + G ©t+2

Hence

^t+2 = ^ .F

var(xt+2) = F F  v a r ^ )  F* F ’ + F G Q G ' f ' + G Q G '

= F(F var (xt )F ' + G Q G)F ' + G Q G ’

So

Pt+1- = F P t F ' + G Q G ’

Pt+2_ = F Pt+1.  F ’ + G Q G ’

Thus the Kalman-Filter can ’jump’ a missing observation.

5.2.4 Applications of Kalman Filter to Growth Models

Many of the models discussed in section 5.2 can be considered as non stationary 

auto regressive moving average msodels. It is well known that an auto 

regressive moving average model can be expressed in the form ( 24 )

For an ARMA(p,q) model eg Harvey and Phillips (1979)

Let r = max(p,q+l) then
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V 1 1

2 I r - f
F - G -

•

and X>r 0 .* r- i .

xt ~ (xj, x l t , .... xr_ 1,t> -

(39)

x l t , xr_ l t being dummy state variables with 

h  = (i, R = 0.

This formulation does not require a stationary model and so can be used for 

growth models. The models can also be generalised by allowing non-zero R.

Models (12) etc cannot be included in this form as the terms ’x t_., e t ’ etc 

make the model non-linear, these models are covered by later results but will 

not be examined in detail in relation to the Kalman Filter.

In using the Kalman Filter we need values of Xq and P0 to start the recursions 

as stated before Xg has to be estimated as it represents parameters of interest. 

There are several approaches for obtaining values of P 0

(i)

(ii)

Use of information from the population from which the

individual came, eg if x0 represents the height of a plant one 

week after germination the variation in height of 1 week old 

plants from the same experiment could be used to give % .

Set P 0 = 0. As x 0 is to be estimated on the basis of all the 

data, it could be considered as ’known’ hence not contributing 

to the uncertainty of the true size at any time. If one is 

studying an organism that has considerable growth during the

study period the size of x0 compared with later values of x ^

will be small and consequently show small variation, this
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suggests that this would be a reasonable approximation.

(iii) Where x0 is estimated the variance of the estimate can also be

obtained, this could be used as P0 for a subsequent iteration of 

the estimation procedure. As this estimate of variation depends 

on all the data it will make the properties of the Kalman Filter 

only approximate.

Kalman Filter and Second Order Models

Model 1 NSAR(2)

Xt = Xl Xt-1 + X2Xt-2 + et 

Yt = xt 

Hence

H = [1 0] , G , R = 0 a n d

x t  ■ ■x, r
x t  - F -

x 1t . >2 °.

Let

'7ri t  7r2t ' 1
= h e n c e  Kt  =

7 f t  —■ t
L71 2 x 3 ■ .x 2t / x i t .

s o

■X,xt - ,  + x , t ‘ 1
— +

x 2t A i t .
(y - xt - i x t-T -  x u )

a n d

0 O’ 0 0

P t -

ii*->
a.  ̂ 2

- x 2t / x 1t 1 . 0 ( X3 ” X2 / X1 ) .

F i n a l  1y

r p t  + Q 0-
t  + i - w h e r e  P g t  = -  x 2 t  / r ^
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Thus 7T2  ̂+ 1 “ x 3  ̂+ 1 “ ® anĉ  X 1 t + 1 “ P 3  ̂ + Q
so

r 0 0-
^t + 1 p t+1 “

0 0 0
ie P 3t+1 = 0

and yt + 1 so z t+2 = yt + 2 X 2y t+1 ” x it+i

If we let P0 = 0 then

zt = yt - X 1yt_ 1 - X 2yt_ 2 for t=l,...,n

and

nlog Like = - 2  log Q “ 2 q ^ 2t 2 

ie the usual form for maximum likelihood/least squares estimation.

If we let

p o “
P Pr  1 2

P Pr  2 r  3 J

P! -  =
Q + X 12P 1 + 2 X ^ 2  + P 3 X 2(X1P 1 + P 2) 

X 2(X1P 1 + P 2) X 22P 1

giving

X 2(X1P 1 + P 2)/(Q + X,2p, + 2X,P2 + P 3)

P. -

0
(Xtp, + P 2)

1 Q + X,2P 1 + 2X,P2 + P 3

0

0 P.

but K. as before.

So z, « y 1 - ( X ^ o  + x 10)

yi

1 i ” X2x 10 + X 2(X1P 1 + P 2) _ (xiSc0 + x 10
Q + X, 2P, + 2X,P2 + P.
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z 2 -  y 2 -  ( x iy i + x , , )

x 2 = y 2

P,_
P 3' + Q 0
0 0

■1 2 x2yi

z 3 ■ y 3 ■ xy 2 -  x2y,

As HP,_H' - Q + X,2P, + 2X,Pj + p 3 -  QA

and H P 2H' - P 3' + Q = Q(X22(P, + (P,P3 - P 22)/Q2)/A + 1)

1 11Log Like - §  log Q - ^  I zt 22Q t=2

-  logA -  log(X22(P1 + (P1P3 - P22) /Q 2)/A + 1)

-  Z l 2/2AQ - z 22/(X2(P1 + (P, + (P1P3 - P 22) /Q ' ) /A + 1)Q.

Model 2 NSARMA (2, 1)

Xt = Xi xt —1 X2Xt-2  Et  ̂^t -1

yt -  xt

H 1 R 1 x t and F are as before but G =
n

so t+1 -
P 3t + Q 0Q 1 

0Q 02Q

-  Q
rP 3*t + 1

e 2
where Q P

and
l / d  + p 3*i>

If P Q is assumed to be zero P,
n  ^  

e e 2

T 0 0-
k 1 - Pi “

Q. 0 0.
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T ■l e ■
ie k 2 = P t -  = Q6 e e 2

So log l ik e l ih o o d  is

-  j  log Q - E z t 2 where

Z1 "  Yi -  M o  " Xio

*1 = yi

x ni = X2x 0 + 6z,  

z 2 = y 2 -  M i  -  * n

x 2 = y 2

x 12 = x 2yi + e z 2 

in general

Z t -  y t -  ^yt-i -  * u - i  

where

-  x 2y t - i  +

tp.
A l te r n a t iv e ly  i f  P,

lP2 3

P l-
■Q + X,2P t + 2X,P2 + P3 

Q(0 + X2(X1P1 + P2))

so K,

Q(e + x2( x1p 1 +

Q(02 + x .^ p , )

Q(0 + X2(X1P1 + P2) ) / (Q  + X12P1 + 2X ^2 +

0 0 

0 P '
where P3' -  Q(0 + X22P 1) -

( e  +  x
Q + X,

rP 'r  3 + q Qr • 1
p 2-  - and K2 — 0

,Q0 Q02 [Q + p 3 'J

P 2 ) ) *

p 3).

2(X,P, + P 2) ) 2Q2 
2P, + 2X,P2 + P3
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In g e n e r a l  Kt
;q 0 /( q + p 3t - i > 

HPt _H' -  P j 1- '  + Q

and

p 3t - e2(l - i/(P3t-> + q >) 

Letting Q P 3** = P 3* then

p*t-1
p 3* t = e 2

i  + p 3 1-1

0 / ( 1  + P 3* t"'')

and HPt_ H ’ = Q(1 + P 3* t_1)

Thus log likelihood is

const - ^  log Q - \  E log (1 + P * t-1)

-  5 q  e  * t V ( l  +  p / * - ' )

Model 3

X t " X 1X t-1 + X 2X t-2 + £t 

y t - xt + et

Here F, x t , H are as before G

So

and

and R ^ 0

Ti t / ( Ti t + R)' 

X2t / ( X1t + R)

'7r1tR/(7r1t + R) x 2tR/(x1* + R) V Pr 2
T 2tR/(ir1 1 + R) 7r3t " X 22/(^1t + R). R 2t P tr 3 .

t + 1 -
Q + \ , 2 P , X + 2X1P 2t + P 3t Q X 2(X1P 1t + P 2t ) 

Q X 2(X1P 1  ̂ + P 2t) q x 22Pi
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I f  Pn = 0  P

so

1 -

and P ,-

Q 01 

0 0 

Q R / ( Q  +  R )  0 ]
0 o

Q + X 12QR/(Q + R) 

X 2Q X 1QR/(Q + R)

X 2Q X 1QR/(Q + R)

Q x  2 2 Q R / ( Q  +  R )

So apart from the first iteration the full Kalman filter matrix operations are 

required. One simplification can be incorporated

Let

Thus

Q = qR and Pt_ = P t _/R

H P H' + R  - R U , * 1 + 1)

- R(q + 1 + X,2?,*1 + 2X,p 2* c + P 3*t)

The log likelihood becomes

- !  log E - 1  E log (x,*t + !) _ 1_ z Z 2t/(li*t + i)

and R can be estimated by 

i  E zt 2/(x,*t + 1)

and the likelihood maximised over R calculated as

const - ^  log ( X  z t 2/(x1* t + 1)) + j  I log ( x / 1 + 1)
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5.2.5 A Simulation Study

In order to gain insight into the behaviour of the above mentioned models a 

simulation study was carried out. The model was chosen so as to give data 

which approximated the observations given by Day (1966) on the weight gain of 

pregnant women. The basic parameters used were

X t = 0 . 8

X2 = .933

x 0 = HO

x_ t = 110

These were obtained by fitting the basic solution 

y = Ak* + Bct + e

to Day’s data using the non-linear regression procedure in SAS. Minor 

adjustments were made to give the desired behaviour for data simulated from 

the model.

For several formulations a 100 samples of 42 weeks data was simulated using 

Nag routines to generate the random normal deviates. The sample size is the 

maximum length of pregnancy usually recorded. The relatively small number of 

samples used is due to the complex calculations involved and the iterative 

nature of each fit making a large simulation (say 1000 samples) not practical on 

the available computer system.

Computer programmes were written to fit three variations on the chosen model

(a) Basic model (NSAR(2))

(b) Model with auto correlated errors, NSAEMA(2, 1)

(c) The full state-space model with measurement errors (NSAR(2)
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with ME)

Data was also simulated for the above three models.

Simulation Result

Basic Model (NSAR(2))

Using a standard deviation of 0.5 the simulations gave results that are 

summarised in table 5.2(1). The increase of variance with size can clearly 

be seen.

Fitting the correct model (a) the following results were obtained

Number of samples for which the converged solution to maximisation wras 

obtained = 92

Parameter Mean Standard Deviation

X1 .078 .011

X2 .935 .001

x 0 110.056 .579

x_i 109.921 .514

The standard deviations for \  and ^  were as high as they were because 

of 3 values in each case which were d ev ian t from th e  r e s t .
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 5.2(1)

Mean

111.388
111.587
112.855
113.120
114.288
114.682
115.758
116.210
117.287 
117.797 
118.845 
119.334
120.487
121.055
122.069 
122.661 
123.749 
124.364 
125.432 
125.778 
127.051 
127.756 
128.821 
127.502 
130.555 
131.311 
132.265
133.055 
134.153
134.853 
135.968 
136.661 
137.785 
138.470 
139.574 
140.459
141.424 
142.374 
143.379 
144.339
145.288 
146.323

Std Dev

.463 

.546 

.67 5 

.711 
‘.786 
.734 
.794 
.874 
.896 
.960 
.949 

1.065
1.055 
1.086
1.052 
1.203
1.053 
1.185 
1.032
1.210  
1.223 
1.273 
1.234 
1.272 
1.316 
1.351 
1.409 
1.462 
1.412 
1.520 
1.450 
1.557 
1.529 
1.611 
1.550 
1.610 
1.624 
1.730 
1.695 
1.827 
1.704 
1.910

Minimum

110.30
110.30
110.90
111.30
112.30
112.70
113.30
113.60
114.40
115.50
115.70
116.70
117.70 
118.10
119.10
119.20
121.40
120.90
123.10 
122.80
124.90
123.90
126.10
126.20
127.50
128.60
129.10
130.30
130.50 
131.80 
132.60
133.10
134.10 
135.00
135.40
136.90
136.90
138.30
140.10
139.50
141.50
141.30

Maximum

112.20
112.60
114.50
115.00 
116.10 
116.20
117.60 
118.10
119.00 
1 2 0 . 20  
120.80
122.30
122.90
123.90
124.70
125.80 
126.10
127.70
127.70
129.50
129.30 
131.20
131.60
132.70
133.40
134.70 
135.10
136.60
137.30
138.50
139.30
140.40
141.30
141.70
144.30
143.80
146.30
145.90
148.70
148.00
150.80
150.60
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Fitting model (b) gave the following results

Number of solutions = 94

Parameter Mean Standard Error

X .080 .010

X2 .933 .010

e .324 .177

x 0 111.382 .470

102.650 1.223

Again results for X,, X2 and 8 were affected by deviant values. For 0, 

35 samples gave values greater than two standard deviations, indicating the 

possibility of fitting an over complex model. There seems to have been 

some compensation for 8 by lowering 1 , but why this should happen is 

unclear.

Model with Auto correlated errors (NSARMA(2, 1))

Table 5.2(3) gives a summary of the simulated data for the case where 

8 = 0.4, standard deviation of error = 0.5.

Fitting the correct NSARMA(2, 1) model the results were 

Number of estimates = 93
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Table 5.2(3)

Week Mean Std Dev Minimum Maximum

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

111.314
111.348
112.818
112.941
114.313
114.570
115.901
116.110
117.167
117.930
118.774
119.422
120.472
121.070
122.185
122.538
123.777
124.369
125.549
126.109
127.176
127.783
128.884
129.360
130.520
131.222
132.358
132.764
134.064
134.462
135.831
136.632
137.530
138.407
139.494
140.260
141.398
142.141
143.247
144.198
145.180
146.249

1.368 
1.339 
1.852- 
1 . 686  
2-. 183 
1.740 
2.171 
1.993 
2.507 
2.471 
2.407 
2.412 
2.590 
2.493 
2 . 8 8 8  
2.838 
3.014 
2.621 
2.934 
2.823 
3.325 
3.066 
3.104 
3.192 
3.359 
3.251 
3.145 
3.500 
3.249 
3.281 
3.258 
3.742 
3.831 
3.542 
3.620 
3.680

501
935
719
121
762

3.926

107.70 
108.10
109.00
108.50 
108.20
110.70
109.60 
110.20
111.90
112.30
113.30
113.50
114.50
114.60
114.30
114.50
116.40
118.40
118.70
120.40
120.30 
122.10  
122.10
122.30
123.00
125.80
124.30
125.80 
126.20
127.90
128.40
130.10
127.80
131.90
131.10
132.60
134.10
133.60
134.20
136.20
138.20
138.70

114.90
115.40
116.90
117.40 
118.80
119.50
121.50
121.30
125.70
124.20
127.20
126.20 
127.60
129.30
130.10
129.80
132.50
132.00
134.40
133.10
136.40
135.10
138.10
138.40
140.30
140.70
142.00
143.80
145.00
143.20
146.10
146.20
151.10
147.20
152.40
149.80
156.70
151.20
154.80
157.30
158.10
156.70
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Parameter Mean Standard Deviation

.082 .001

X 2 .932 .001

e .346 .168

x o 111.402 “ .587

X-1 102.45' .542

This time in 36 cases 6 would not have been significant.

Fitting the simpler NSAR(2) model the results were 

Number of Estimates = 94

Parameter Mean Standard Deviation

X, .112 .088

X2 .901 .089

x q 109.934 .643

x_, 110.051 .702

Note the relatively poor estimation of \  and \  .

Measurement Error Model (NSAR(2) + me)

Two situations were simulated

(i) Q = R = 1.0, see table 5.2(3), (q = 1.0)

(ii) Q = 3 2, R = ,52, see table 5.2(4), (q = .36)
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 5.2(4)

Mean

111.475 
111.571 
112.887 
113.144
114.475 
114.766 
115.935 
116.381
117.487 
117.877 
118.951 
119.537 
120.605
121.163 
122.194 
122.830 
123.844 
124.451 
125.525
126.070
127.163 
127.773 
128.965 
129.551 
130.561 
131.354 
132.404 
132.962 
134.137
134.854 
135.921 
136.775 
137.812 
138.740 
139.598 
140.593 
141.548 
142.416
143.425 
144.435 
145.347 
146.309

Std Dev

.638

.593

.66a

.571
-.800
.642
.776
.725
. 866
.788
.804
.782
.897
.918

1.008
.911
.969
.912
.945

1.097
.885

1.178
1.023
1.147

.937
1.125
1.070 
1.170 
1.127 
1.208 
1.139 
1.216 
1.107 
1.305 
1.237
1.125 
1.227
1.210  
1.231 
1.321 
1.283 
1.244

Minimum

109.90
110.40 
110.80
111.40 
112.20
113.20
113.60
114.60
115.50
115.90
117.50 
118.00
118.40
119.20
119.40 
120.70
121.30
122.60
123.40
123.10
125.00
124.40
126.10
125.80
127.90
127.90
130.00
130.20
131.20
132.00
133.30
133.50
135.10
135.50
136.90
137.80 
138.60
139.50
140.80
141.10
142.40
143.80

Maximum

112.90
113.10
114.20
114.20
116.20
116.70
117.70
118.10
119.60
119.70 
12 1 . 0 0  
12 2 . 1 0
122.60
123.50
124.50
125.10
126.10
126.70 
128.10
128.70
129.30
130.40
131.70
131.90
132.90
134.90
135.40
136.10
136.80
137.80
138.50
139.90
141.00
142.00
143.20
143.00
144.10
145.30 
146.60
148.00
148.70
149.20
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In both cases there is a non-monotonic increase in variance with time due 

to the measurement error.

The results of fitting the correct model were

Simulation (i) Simulation (ii)

Number of Estimates 94 93

Parameter Mean Std Dev Mean Std Dev

.082 .001 .082 .001

X 2 .931 .002 .931 .001

q 1.363 .170 1.356 .090

x o 111.394 1.345 111.458 .520

X-1 102.264 1.300 102.487 .487

The estimation of \  , X2 was satisfactory but the estimation of q was poor 

in both cases.

Finally the NSAR(2) and NSARMA(2, 1) models were fitted to simulations

(ii) this gave

NSAR(2) NSARMA(2, 1)

No. of Estimates 94 94

Parameters Mean Std Dev Mean Std Dev

.107 .089 .086 .038

X2 .905 .089 .927 .038

e - - .022 .132

x o 109.785 .732 111.501 .629

x-i 110.166 .844 102.045 4.278
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The NSAR(2) model gives poor estimates of X, , \  the NSARMA(2, 1) is 

better although the 8 parameter is usually non-significant.

Conclusions

The selection of the correct‘ (or a more complex) model leads to good 

estimation of the growth parameters X, and \  . However, the estimation 

of the additional parameters themselves (8 and q) is poor. There is also a 

problem in the estimation of x_15 this has a mean of about 102 in the 

more complex models. The reason for this needs further investigation, but 

the parameter is not of general interest. There was no evidence of 

non-normality of parameter estimates.
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Table 5.2(2)

M ean Std D ev  M inimum M aximum

111.425 .589 109.80 113.00
111.542 .547 110.40 112.90
112.924 . 7 8 $ 111.10 114.60
113.095 .822 110.70 115.30
114.484 '.864 112.00 116.70
114.662 .962 112.10 117.10
116.069 1.003 113.40 118.60
116.392 1.062 113.90 118.80
117.677 1.233 114.50 120.20
118.086 1.256 114.80 120.60
119.327 1.358 115.60 122.00
119.669 1.381 115.90 122.30
120.950 1.401 117.50 124.10
121.325 1.537 117.00 124.50
122.465 1.582 118.20 126.20
123.048 1.617 118.20 126.70
124.153 1.591 120.00 127.80
124.836 1.730 119.30 128.90
125.927 1.672 121.40 130.40
126.558 1.841 121.30 130.90
127.620 1.795 122.90 132.10
128.311 1.909 123.40 132.30
129.351 1.945 123.80 134.30
130.011 1.999 124.20 134.10
131.033 2.141 124.50 136.10
131.819 2.113 126.10 136.70
132.865 2.306 127.00 137.50
133.593 2.198 128.20 138.10
134.664 2.368 129.10 139.80
135.387 2.291 129.40 140.60
136.449 2.359 130.80 141.70
137.258 2.359 131.10 142.80
138.329 2.410 131.80 144.00
139.174 2.427 132.40 144.80
140.197 2.529 133.00 145.80
141.003 2.613 134.20 147.30
142.093 2.634 134.70 148.00
142.867 '2.686 135.90 148.40
144.017 2.692 136.30 149.80
144.767 ' 2.727 137.40 150.20
145.972 2.785 138.80 152.00
146.749 2.924 138.50 152.50
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5.2.6 N on-Linear Models and the Kalman Filter

Little attention has been paid to the non-linear discrete time Kalman Filter. 

The model is (in scalar case)

xt = ft(xt - i )  + §t(xt - 1 ) ^

Yt = ht(xt) + et 

where ft , gt and h t may be non-linear functions.

(40)

The problem with non-linear filtering is that 

E(xt) * ft(E(xt. , ) )

and there is no simple relationship between the var (xt ) and var (xt-1 ).

The problem can be overcome using Taylor’s Series approximations (Kendall and 

Stuart (1969))

1 ^ 2f t (x)
E(xt ) -  f t (E(xt _1)) 4- i  ^ -------

va r (x t ) -
rdft (X)*| 2

dx: x = E(xt )

x = E ( x ^ ,  ) 

var (xt )

x v a r  (x t - 1 )

(41)

If the measurement equation is linear, say 

yt = xt + et 

then the following procedure can be used

1 ^ 2f t (x) 
x t -  “  + 2 ^x- X =  X t-1

P t - dx t-1 pt - i  + Qt

Kt * p t - / ( Rt + pt - )  

z t -  y t -  x t -  

x t ”= x t _ + Kt z t

(1 -  Rt ) p t -

t - i

(42)
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We will now look at three non-linear difference models

(i)
a xt _.

This model is considered by Nash (1977) and also May (1981), May et al 

(1974), Pielou (1977) and by letting a = e r and b = (e r - 1)/K the 

logistic model is obtained.

Using the stochastic model

The following Kalman filter equations are obtained

a xt _ i 1 2 a b
X t  ,-v.

1 + b xt _1
+

2 (1 + b xt ) ^

(1 + b xt _ , ) 4

the remaining equations are the same.

Estimation is simplified if

R Pt * = Pt , R P£_ = Pt and R q = Q

then (1 + b xt _ , ) 4

and P j -  (1 -  Kt )P t_  - P t - / ( P ? -  + 1)

The Log likelihood becomes
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-  I  E (yt -  xt _ ) 2/R t (P*_ + 1) 
t

Rt = R independent of time-

Log Like = const -  ^  log R -  £ log(P*_ + 1)

-  5 g  E  ( y t  -  y t - ) V ( p ? -  +  i )
t

g iv in g

R -  I  Z (yt -  xt . ) V ( P ? -  + 1)

and maximised log likelihood with respect to R as

log Like max = cost - ^  log (E (y t - x t _ ) / ( P t * + 1))

- |  1°8 (P?- + 1)

This can then be maximised with respect to a, b and X 1 .

The assumption behind the likelihood is that z t = y t - £ t_ has a 

normal distribution. This can be proved in the linear case but may only 

be approximate in the non-linear case. An alternative criterion would be

to use weighted least-square, ie

minimise E(yt -  x t _ ) 2/(P'£_ + 1) 

with respect to q, a and b.

A second formulation is to allow the variance of the random component to 

be related to the size, this gives



=  a  X t - 1  x t - 1  c_

X t  l + b x t _ 1 + l + b x t _ 1 t

This could also be interpreted as considering the ’a’ parameter to be

random with mean a and variance, Q.

In this case the equation for £ t_ is as before but

P  ( 1  +  *~2 )  P  , * t - i
( 1  +  b  S ^ ) 4  r t -  +  ( 1  +  b  k  }  2

( i i )  x t -  (1 + r ) x t _1 -  r / K x£_.,

This is considered by May (1981), May et al (1974), Nash (1977) and

Pielou (1977).

This equation can be seen as the discrete time version of the logistic

equation. As in (i) a constant or density dependent error could be 

included. However, as r represents a growth rate which could be random

due to environmental changes we will consider the random r model.

Let rt = p + et , p is mean rate

then

xt = xt- i  + Pxt- iO  - xt - i / K ) + xt - i ( ] “ Xt . 1/ K )et 

This gives rise to the approximate propagation equations of

P t - T
xt ~ xt - i  + Pxt - i C 1 " x t - i / K> " P—y ~

p t .  -  { l  + p [ i  -  2Xt- V K] } 2P t - ,  + { i  -  2x t - V K} 2 P t - ,

+ x t2_, (1 - xt _ , /K ) 2 Q
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The update equations are as before.

(iii) xt = xt_, exp(r(l - xt_.,/K))

This model is considered by May (1981), May et al (1974) and Pielou

(1972). Again r is a measure of growth rate.

The multiplicative nature of the model suggests considering a transformed

version with

Of- = log xt
and

yt = Of + et 

This gives the equation

o>t -  u t - i  + r [ l  -  e ^ - V i d  

Again using the random r model with rt = p + we obtain 

gjj = o3t_ i + p(l - e ^ /K )  + (1 - e<*/K)zt

To clarify the model let c = log K hence

«t " « t - i  + p ( 1 " eWt_1 ’  °] + [ l  “ e"1” 1 “ ° ]E t 

The propagation equations for this model are

“ t “  “ t - i  + p ( l  -  e“t_1 " °] -  \  e “ t _ ' ’  °  P t - i

Pt .  -  . { l  -  p e“t - i - c] 2Pt _, + e 2(“t - i - O p t i + [j  .  e“ t - , - c | 2Q

These three models illustrate the way stochastic non-linear difference 

equation models could be developed. The selection of a suitable model 

would be based on the techniques shown in chapter 2 and the validation of 

the model by considering the prediction errors

zt = yt -  xt-
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5.2.7 A Simulation Study

a x t
The model + i = •=— -— 7----1 + b xt

as studied with a = 1.100 and b = 0D01. Two forms of error structure were 

considered

( i )

(ii)

a Xi
‘t + i

kt + i

1 + b x,

a x t a x t
1 + b xt + 1 + b xt

In both cases the measurement equation 

yt = xt + et 

was used.

With x 0 = 1, 100 samples of 25 observations were generated with Q = R = .04. 

Summaries of the runs are given in tables 5.2(5) and 5.2(6) respectively.

For situation (i) the following results were obtained

Number of converged estimates = 87 (81*)

Parameter Mean Std Dev Mean* Std Dev*

a 1.098 .036 1.099 .036

b .002 .010 .002 .010

Q 7.649 43.683 .835 .604

x o 1.044 .236 1.046 .235
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The results were obtained when some of the more extreme values were 

omitted. This illustrates a weakness with a simulation approach with a 

non-linear minimisation process. In practice one would try several different 

starting values to check for global minimisation, this is not practical when 

carrying out 100 or more simulation. It may well be that more careful analysis 

of the extreme cases would lead to better estimates.

The residuals from the models were also examined, the results given in table 

5.2(7) showed no sign of departure from normality.

For situation (ii) the results were

Number of converged estimates = 71 (59*)

Parameter Mean Std Dev Mean* Std D

a 1.150 .145 1.125 .117

b .012 .025 .006 .012

q 703.556 3466.706 1.589 1.159

x o .952 .263 .977 .273
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Table 5.2(5)

Week Mean Std Dev

1 1.124 .266

2 1 .209 .396

3 11363 .434

4 1.526 .502

5 1.621 .573

6 1.802 .618

7 1.911 .735

8 2.130 .801

9 2.275 .860

10 2.535 .975

11 2.756 1.096

12 3.071 1.240

13 3.322 1.360

14 3.634 1.560

15 3.952 1.749

16 4.368 1.928

17 4.813 2.143

18 5.225 2.410

19 5.692 2.602

20 6.267 2.850

21 6.794 3.110

22 7.401 3.385

23 8.111 3.712

24 8.788 4.038

25 9.555 4.402
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Table 5.2(6)

Week Mean Std Dev

1 1.059 .288

2 1.260- .399

3 1:333 .480

4 1.501 .656

5 1.733 .843

6 1.903 1.127

7 2.123 1.167

8 2.249 1.501

9 2.575 1.839

10 2.868 2.214

11 3.067 2.487

12 3.291 2.592

13 3.574 2.768

14 3.929 3.311

15 4.439 3.781

16 4.655 3.781

17 4.800 3.644

18 5.219 4.152

19 5.919 5.276

20 6.635 6.121

21 7.170 7.033

22 7.915 7.670

23 8.171 8.373

24 8.689 8.718

25 9.340 9.679
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Again the problem of deviant results was encountered. The results for the

’better’ values are still poor compared with the model (i). This is partly to be 

expected due to the increased variance present in this model.

Analysis of the residuals showed that* even on eleminating the more extreme 

residuals (outside ± 4) there was' still evidence of non-normality, see table

5.2(8).

In both cases there was some evidence of non-normality in the parameter 

estimates. The sample size of 25 is, however, at the lower end of range at

which asymptotic results become valid.
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Table 5.2(7)

Count Midpoint One symbol equals approximately 8.00 occurrences

1

1

7
10

22

48
80

151

187
254

306

333
326

260

207
145

85

37
26

10

4

- 1. 1

- 1 . 0

- .9

- . 8

- .7
- . 6

- .5
- .4

- .3

- . 2

.1

.0

.1

. 2

.3

.4

.5

. 6

.7

. 8

.9

*
*

***

k k k k k k

k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k k k k k k k k

k k k k k k k k k k k

k k k k k

k k k

k

Histogram Frequency

Mean
Mode
Kurtosis 
SE Skew 
Max i mum

.001

.033

-.043

.049

.923

. I

80

Std Err 
Std Dev 
SE Kurt 
Range

. . I
160

.006

.301

.098
2.006

4-, .. i
240

. . I
320

. . I
400

Medi an 
Variance 
Skewness 
Mini mum

.007

.091

-.058

-.1083
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Table 5.2(8)

Count Midpoint One symbol equals approximately 16.00

2 -4 .1

13 -3 .7 *

9 -3 .3 *

14 -2 .9 *

8 -2 .5 *

26 -2 .1 **

54 -1 .7 ***

77 -1 .3 *****

144 - .9 *********

359 - .5 **********************

735 - .1 ***********************************

570 .3 ***********************************

229 .7 **************

85 1.1 *****

52 1.5 ***

23 1.9 *

22 2.3 *

13 2.7 *

6 3.1

11 3.5 *

4 3.9

0 160 320 480 640

Histogram Frequency

Mean - .026 Std Err .018 Medi an - .0 0 2
Mode .293 Std Dev .898 Variance .806
Kurtosis 4.062 SE Kurt .099 Skewness - .1 6 6
SE Skew .049 Range 7.855 Mini mum -3 .997
Maximum 3.857

Valid Cases 2456

. . I
800
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Conclusions

The results are encouraging. For the model with a simple additive error the 

estimates are reasonable. For the model with error variance related to size the 

results showed a certain amount of bias and quite seven problems with 

convergence to a reasonable value. But the variance involved with the 

simulation was high and the sample size low, relatively, so under more suitable 

conditions the results should be reasonable.

5.3 Stochastic Differential Equations

5.3.1 Introduction

Before examining stochastic differential growth models we need to consider the 

basics of stochastic calculus.

The random variable Y(t) is said to be mean square differentiable with 

differential coefficient Y(t) if

Lt E 

h 0

+ h ) -  Y(t) - Y ( t ) | 2} -  0

a condition for this is that ^(t,s) = E(Y(t)Y(s)) has partial derivatives 

b 2n
bt ’ bs ’ bt bs

(Bartlett 1978).

Further

E(Y(t)) - E(Y(t)) , E(Y( t  ) Y(s) ) - S>

a n d  ( 1 )

E(Y(t )Y(s)) - S>
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The mean square integral is

r b

f ( t )  Y ( t ) dt (2)

where f(t) is a real bounded function, piecewise continuous. A necessary and 

sufficient condition for this integral is -that 

/-b rb
f ( t )  f ( s )  f i (s ,  t )  ds dt

exists in the ordinary Riemann sense.

A Reimann-Stieltjes integral

rb
f ( t )  dY (t) 

may also be defined if and only if

r b  r b

f ( t )  f ( s )  d/i(s, t )  

exists as an ordinary Riemann-Stieltjes integral.

(3 )

(4)

(5)

Many applications of stochastic calculus especially in the engineering applications 

involve the use of a white noise process, o> t .

For the covariance is given by the dirac delta function.

So for such a process (5) and hence (4) does not exist.

Following Jaswinski (1970) white noise can be considered as the formal 

derivative of Brownian motion, then formally 

uj- ~ d/S(-/dt
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For a random function g^co) we need

r b

gt (o>) d/3t
. a

Two definitions of the integral are given in the literature.

(i) Ito Stochastic Integral

Partition the interval [a, b] into 

a = t 0 < t, < ... < tn = b 

and consider the step functions

0 t < t

g i(^ )  ‘•i  ̂  ̂ ^  m  + igtC^) “
0

o
t < t

n

( 6 )

where gjCco) is independent of t j < t ^ > < t j ^ < b

and E ( |gi(u ) |2) <
A

then the Ito integral is defined by

r b

gt (aO d/3t = Lt E gi(o>)(0t . + i
n -> co  i

- f i t ; )  (? )

This definition of the integral has the following properties

rb

gt (u) d/3t = 0 ( 8 )

and for a second random function g

-b rb rb
gt (w)d/3t gt*(o>)d0t a- E(gt gt*)dt (9)
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Further let <̂ (x) be a twice continuously differentiable real scalar 

function of the real variable x with

<px d
dt

d 2<p 
dx2

then

b rb
5 f  d0t._ p ((}b ) . pxx(/3t )d t  (10)

(ii) Stratonovich Stochastic Integral

With the interval [a, b] partitioned as above consider g t (co) as an

explicit function of denoted by g(/S{, t) then the Stratonovich

integral is defined by 

•b
4 t)d(3t -  Lt I g p M  ±  g t i + l , t i ] [ (3 t j  + i -  (3t . l  (11)

The Stratonovich calculus satisfies all the formal rules of calculus and 

is related to the Ito integral by

-b
f> g(/3t , t)d(St
. a

where

g p ( 0 , O  1

r b
a 4g (0 t , t)dj3t + 2 g0(0t» t ) dt (12)

(Jasw inski (1970))

Jaswinski prefers the Ito integral to the Stratonovich because

(a) It is easier to compute expectations of the Ito integral as (8) and (9) do 

not hold for the Stratonovich.

(b) The Ito integral has nicer mathematical properties (Doob (1959) ch IX).
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(c) The Ito integral is defined for a much broader class of functions.

(d) The Stratonovich is not applicable to non-linear filtering theory.

Smith and Tuckwell (1974) state that it is better to adopt the Stratonovich 

calculus if the stochastic equation represents a ’physical’ random process.

Turelli (1977) also discusses the selection of a stochastic calculus. The 

ambiguity presented by the two approaches can be overcome if

(a) The underlying differential equation is replaced by a difference equation 

or

(b) The white noise is replaced by auto correlated noise.

They consider the solutions that are given by the limits of the unambiguous 

situations.

When considering difference equations the limits tend to the Ito integral for a 

limited number of situations in which results are available. The auto correlated 

noise situation tends to either case depending on how the progression from auto 

correlated to white noise is made.

One method of finding the pdf of the solution to a stochastic differential 

equation is by using diffusion methods.

Jaswinski (1970) considers the equation

dxt = f(xt , t)dt + g(xt , t)d0t (13)

where d/^ is the formal derivative of a Weiner process. He shows that the 

Fokker-Plank equation for the model is
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bp_ _  ^(Mp) v  ^2 ( p g 2) n ,v

where (i) p is the transition probability density function

(ii) E(0t 2) = vdt

(iii) M = f for the. Ito calculus

v c>2M = f  + yr g^-2 fo r  the  S tra to n o v ich  c a lc u lu sZ aX

if g = constant then both calculi have the same solution.

If the model is time homogeneous ie

f(xt , t) = f(xt) and g(xt , t) = g(xt )

So reduces to

|E  _ (v ( g ’ 2 + g") -  M')p + (2vgg' -  M’ )p ' + j  g 2 f" (15) 

where prime indicates differentiation with respect to x.

Bailey (1964) shows that this equation can be solved either by taking Laplace

transforms or by forming a solution

p = E Ar xr (x) e - ^r t  
r

where Ar and \  are determined by boundary conditions.

The following common processes are described by their Fokker-Planfc. equations

(i) Weiner process

bp bP ^ (T2 ^ 2P
(16 )

with solution

P -  7 - 2 ^ 1  exp{- <17>

when starting at the origin with no boundaries.
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(ii) Limit of a branching process

aP _ „ a(xP) , 1„ a 2(xP)
at " 2>x 2 a x 2

with initial condition x = x0 t = t 0

P = 2a
^ c r t  - 1)

eat,

x .
* r-  2q exp{------

(3(eaJ- - 1) 

4 a (x 0 x ea t )%-

explzlSCXs,..* U 0 1
I  S(ea t  - 1 )  J

]|3(ea t  - 1) 

where I, is a Bessel function of first order.

(18)

(19)

(iii)

P =

A Weiner process starting at Xq with absorbing barrier at x = 0

J 2 iffira2t ( exp
(x -  x " ^ )  

2a 2! - exp -
2 px, (x -  x 0.wt) 2

2d2f - ^ J )  (20)

(iv) An Ornstein-Uhlenbeck process (OU)

* 2  = R <L(xP> + 1 0-2 i f P  
at p ax 2 a x 2

without barriers, starting from x0 gives solution

___________ 1 f ~ P f
J 2xd2(1 - e “ 2̂ t )/2jS exp[d 2( l  - e " 2^ t )P -

( 2 1 )

n ( 2 2 )

(v) An OU process with absorbing barrier at x = 0

- (3
7 2xcr2(1 - e - 2^ ) / 2 j8  i e x p ltr2( l  - e~20 t) x - x n e -0 t '

-  exp a 2( l  _ e - 2^ ) x + x 0 e ] 2} (23)

Associated with these processes is their differential equation models.

Using the Ito calculus
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(i) Weiner process dxf = jidt + d0t

(ii) Branching process dxj = oxdt + |3Vx d/Sj-

(iii) OU process dxt = -0xdt + d(\

(24)

(25)

(26)

Using the Stratonovich calculus the Weiner and OU processes are the same, the 

branching process becomes

dxt = (ax - 0 /u)dt + J(3/x d ^  (27)

A wider class of models can be transformed to the above simple forms. 

Tuckwell (1974) suggests the transformation

ft
y t = f ( x ) - 1 dx (28)

for the equation

dxt = f(xt)dt + f(xt)d/St (29)

Using the Stratonovich calculus 

dyt = dxt/f(xt) 

hence (29) reduces to 

dyt = dt + d0t

ie a Wiener process (24). However if the Ito calculus is used then following 

Jaswinski (1970)

- 1
dyt -  dxt / f ( x t ) + £ _ j f ( x t ) j  f a f  }— jd t

j  / r /  \  . ° ' 2  ^ f ( x t ) j .“ dxt / f ( x t ) + ^---------------dt

which gives

-  { i  -  r  i^ } dt + d®t (30)

which only leads to a Weiner process if f(x t ) = cx t . If 

f ( x t ) -  cx t 2 + x t
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then it would lead to an OU process.

If the transformation is applied to the model

rXi

dxt = ( f ( x t ) - (3 f (x )d x )d t  + f ( x t )d/3t , B > 0 (31)

then it gives an OU process (Tuckwell (1974)).

A further set of transformations could be used. If xt has been transformed to

give yt as above and

dyt = f(t)dt + g(t)d/3t (32)

where f(t) and g(t) are functions of t only, then using the transformation 

•t
z t = Yt " f ( r ) d r

zt has the diffusion equation

_ a 2 ^ 2pg2
2

with solution

P = T T ^ g exp 2 a 2G ( z t 2) -

where

r t
G = g 2( t ) d t

hence the equation

xt = f(t)ft(xt)dt + g(t)f(xt)d^t 

has solution, using the Stratonovich calculus

(34)

(35)

| f ( x t ) 1 rx t rt 2

p -  J 27r<r2G exP f t (x )~ 1 dx - f( r )d T ) / 2a 2G
XG

( 3 6 )

f (x )  1 dx > 0
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This is a generalisation of the result given by S anland and McGilchrist (1979).

This result can be used to form a likelihood, given a sample of n observation

Xj at times t j

log like — const - j  log a 22 _ E log |F(xi)| - i E  log G(t j)
i-1 i=l (32)

2 c2 .

n
E
i-1

f(x)dx -
1 - 1

ft (r) dr ^ ( t j )

This can be used to find estimates of the parameters of the functions f(x t ), 

ft(t) and g(t) and their variances.

If f(xt) is a known function of xt then a weighted non-linear sum of squares 

approach could be used ie

n fXi ft i 2
min s - E f(x)dx - ft (r)dr

i-1 x i-i

Further if g(t) = 1 then G = t hence

n fx i rt -j
s = E f(x)dx - f (r ) dr

i-1 X i-1 .

ie weighted least squares estimation for

fx i
f(x)dx with model

l - i
f(r)dr and weight t

(39)

The above results will now be applied to growth models.
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5.3.2 Linear Growth Model

Starting with the basic deterministic model

dx
dt rx

a stochastic component can be added in several ways

(i) Additive random component 

dx
dt = rx + w*

where wt is normal with variance a2 . This equation can be written in the 

form

dxt = rx dt + d/3t

and is the same for both the Stratonovich and ifo calculi. However using

(2) the solution is

xt = x 0 ert + et

where (A)

r t

er(t s) ds

As wt is normal ej will be normal and the integral can be interpreted in 

the mean square sense. So expectation and integration can be interchanged. 

Hence

-t
E(et) e r ( t  s) E(wq)ds - 0

d for t > r

E(et eT )
r

a-

ef(t s) er(r s') E(ws w s i)ds'ds

.r(t-s') er ( t - s ' )  d s
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<T
2r

, r ( ( t+ r ) _  e r ( t - T )

(j ‘v a r ( e t ) = 2 r t  _ 2

From (A) it can be seen that
*

yt . = x t - - x t . e L 11 *■1-1

form an independent sequence of normal variables

= x,

=  0

r t i -  e r t i - ,

where ^ = tj, - tj_,

var
J "

= a 2
r t

2r
2T5

e 2 r (t\rs )ds

-  1

Hence

log l ik e  = const - ^  log a 2 + ^  log r  -  ^ log r  5. n e l - l

’  2r 1 / te r °i -  l ]

Mitchell (1968) considers estimation in the related model with p;i‘ = e T .  She 

gives the maximum likelihood equation for and also considers estimates based

on ratios of linear and quadratic polynomials of the observations first suggested 

by Finney (1958).

(ii) Random r

Let r be a process with mean p and variance a 2 then 

dx
dt = r(t)x = px + xwt

where wt is a process with zero mean.
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Lewontin and Cohen (1969) gave the solution 

/•t
xt = x 0 exp r ( t ) d t

. o

Levins (1969) applied the central limit theorem to 

-t
r ( t ) d t

o

and hence deduced that ^/Xq has a lognormal distribution

f ( y  - S S T E F " * {- 2 T ^[ Ios(^ ]  - pt] 2}

The equation can be written as 

dxt = p x dt + x d/5t 

using the transformation y = log x, - co < y < co 

dyt = pdt + d£?t 

Hence yt is Weiner process and the solution is

(y  -  Yo -  p t ) 21f (y, t | y 0) -  Texp{-
2 a 2 t

transforming this gives

f ( x , t  | x 0) -

If instead of using the Stratonovich calculus the Ito calculus is used then 

the solution becomes

f ( x ' t  I x o> "  exp

2 2
( lo g ( x /x ) - (p - rr-) t )

2<j2t

As the observed x follow a log normal distribution this suggests using the 

log transformed observations 

yt . -  lo g (x t .)

F u r th e r  wt . *= yt . - y t . 1 w il l  be independent w ith

E(w t.) -  p ( t i - t j _ 1) -  p a i

var(wt . ) -  cr2( t 1 - t j ) « a 2
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Hence an estimate of p is

1 wt •
-  E V ,n 5 j

with variance

- £ l / s n 5 j

and will be normally distributed.

(iii) Levins (1969) proposed the model

dx—  = px + J v ( l  - v) e ( t )  J x

where e(t) is a random variable with unit variance,. Ufcing the 

transformation 

y = xi 

he shows that

and

E ( y )  =  y 0  e *  p t
var(y) = v(l - v)(ePt - 1)

E(x) = x 0ePt + ip v(l - v ) ( e P l  -  1)

Further as y will be approximately normal x wrill be approximately 

distributed as a non-central x2 • The term J v(l - v) is used to

reflect sampling variation when v is mean viability of an individual. 

The term J v(l - v) e(t) could be replaced by e(t) where £(t) has 

’variance’ a2 .

Writing the model in the form 

dx = px dt + J x d£>t 

and using the above transformation an OU process is obtained for y 

(Tuckwell (1974)). Now the OU has to lie in the range [0, co] with 

0 being an absorbing state hence the pdf is
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p ( x t . t lx o)
Xt* e - I P *

exp
2(7 xt e - i P t  _ 7 xQ) 2"

2 tc<j 2 [1 -  e -P M H [1 - e ‘ Pl ]
I p J J P J

- exp
2 (Xt ^e i P t + j  x 0) 2

T ^ i ^ p r (Tuckwe11 (1974))

g iv in g

E(xt ) = a exp |f 2xn p J) fxn ePt (ePt - 1)'
ler2 (1 - e “Pt) i I 2irr

+ {x0 ePt +
]} * [[

2xop  1 i0-2(1 _ e -p t) 1 1

Tuckwell points out that the difference between this result and Levins is 

due to Levins ignoring the problem of negative population. However if a 2

is small compared to p the above gives

E(xt ) -  x 0 ePl + ^ ( e P *  -  1)

- Levins result. This is the situation when the variation does not lead to a

negative growth rate.

Kiester and Barakat (1974) use the mean square calculus,assuming the e (t)’s 

are correlated. They show that y = 7 x has a normal distribution with 

mean = yn e^Pt

variance = (cr2/ 4)e Pr G(t,t)

where

f 2
G ( t 1 , t 2) = e -  E ( e ( s , ) e ( s 2))d s  1 ds

which reduces to

-  (1 -  e -P t)
P

when the errors tend to independence, ie Levins result.

In order to estimate p if we assume that d2 is small compared to p and
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that the probability of y being negative when considered as an unrestricted 

OU process is negligible then y has a Normal distribution with

£ ( y )  =  y 0  e P t
(X ^variance(y) = ^  ( e P t - 1) 

from above.

Thus the log likelihood is given by £ log f(yt.|ytj 1)

= const - ^ log o'2 + 7T log p - £ log(eP^i - 1)

(yti " y t i-! eP6i>2
a 2 e p6i  _ i

where 6j = tj - tj_1

This can be maximised using a non-linear optimisation technique.
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5.3.3 Density Dependent Models

These models are of the form

dX t-/ N
d F  ‘ r* F(x)

(i) F(x) = xb_1 0 < b < 1 

Using the transformation

r x  t
y  = : b dx = —

i -b
1 - b , y > o

the equation

dx = p xb dt + x^ dfy 

reduces to the Weiner model with absorbing state at x = 0.

,-b
f(xt ’ *1*0) - exp 1 (x ti -b  _ v i - b  _ p t)

2cr2t (1 -  b)

- exp
2pxj-b ' 1 i-b i-b

2 *|

cr2 (1-b) exp 2<r2t xt + x o " P*

(This result was given by Smith & Tuckwell (1974)).

As the transformation depends on the unknown parameter b the 

analysis of y is not helpful. The likelihood relating to x can be 

used for estimation but this is extremely complex. However its close 

relationship to the likelihood for a mixutre of two normal 

distribution. '

This model is of interest in that it is the alternate hypothesis for the 

density dependent tests discussed in section 2.4. The above shows 

the difficulty in setting up a test of b = 1.
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(ii) Gompertz F(x) = log(k/x)

This gives the equation

dxt = p x log(k/x)dt + x log(k/x)d|5t 

Smith and Tuckwell (1974) examine this model. The transformation 

to a Wiener process is 

y = - log(log(k/x))

giving

f ( x t > t | x 0) = [ - exp [“2 ^ r [ xl  og fk//xt ] " x o1° g ( k/ x 0] - P t ] ]

The log likelihood can be formed via 

E log f ( x t , 11xt _ i )

-  const -  j  log  a 2 -  E log  x t -  E l o g [ l o g [ k/ * t - i ] ]

-  2 ^  E ( x t  l o s ( k A t ]  -  Xt - 1  l o g [ k / x t _ J  -  p 8t ]  A i

where = tj - tj_, .

If k and x 0 are known and ^  = yt - yt_ 1 then the maximum

likelihood/weighted least squares estimate of p is given by

min E ( z t -  p 5 t ) 2/ t j

E z t 5t / t 
P " I  8t V t

(iii) Logistic F(x) = 1 - x/jc

This gives

dxt = pxt(l - xt/k)dt + xt(l - xt/k)d/3t 

Using the transformation

y t = log(xt/( l - xt/k))

It reduces to a Weiner process on ( -co, oo) giving

f ( x t ’ t lx ô  “ ( J 2xo-2t ) x t ( l  -  x t /k )  X
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(iv)

exp f -  —{ 2<r2t log
j-xt (k -  x q) 
x 0(k -  x t )

From this result the likelihood can be formed 

£ log(f(xt , 11 xt_ 1)

The above pdf was given by Tuckwell (1974), Kiester and Barakat

also consider the model. but with an auto correlated noise. In this

case yt has a normal distribution with

mean = pt + y 0

'tr t

variance = CT‘ corr(t1, t 2)dt1 dt

where corr(t1, t2) is the correlation function of r, applying the 

transformation the above is obtained except for the a 2 t term being 

replaced by the variance expression given.

Richards

dx

F -  £  I 1 - (* /A)"}

dt = r  x{l - (x/ A) n ) /n

Let oP = xn =*> dco = n xn_1 dx 

Hence

3F -  r «<1 -  a / An)

ie a logistic with K = An 

Hence solution is given by

P/ | N _ n x
U X t l X ° ;  ( b  2 7 T (J 2 t  ) X t  ( 1  -  ( X t / A ) n )

xn (An - xj)

n -1

exp 2 c2t log xn (An - xn )o
- pt

The likelihood being found in a similar way to that for the logistic.
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With the last three models instead of assuming a random rate of growth a

random carrying capacity K could be examined. Tunelli (1977) considers some

of the problems with random K models. The main object of this project is to 

consider the analysis of growth and hence only random r will be examined as 

we will assume that during the period of interest the carrying capacity is 

constant or can be modelled using environmental variables.

The distributions given above in general do not give a closed form for the 

moments, however, these may be obtained by numerical integration. the

complication is due to the non-linearity of the equations. Under the mean

square calculus

E(af] ■ t  -  « « » ■  ■>

However if f(x, t) is not linear then 

E(f(x, t)) * f(E(x), t)

A Taylors series expansion may be used to obtain

E(f(x, t)) & f(E(x), t) + - var(x)

Thus the approximate value for the mean is given by the solution to

d pt. . 1 ^2f , »
d? " f(^ ’ t) + 2 F  Var(x) x - „

This differential equation will, in general, not have an explicit solution.

5.3.4 Further Analysis

In most of the models the transformation y has lead to y t - y t_ 1 having a
1 I

normal distribution independent of \  = yt - yt-1 t * t. So 

z t - pt
St = — ' ■■ is approximately N(0,1)

O J  t
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Hence the suitability of the model can be examined by means of a Normal 

probability plot. In the general case

•x i rt
f x (x)dx - f t ( r ) dr

- x i - i is approximately N(0,1)
<r2 G(t j )

Standard errors of estimates may be obtained from the second derivative log 

likelihood matrix using either analytic or numerical derivatives.

5.3.5 Continuous Time Kalman Filter

We shall first consider the linear case. The situation of interest in when the 

underlying dynamics are in continuous time, ie differential equations, but we 

sample at discrete times. Maybeck (1979) points out that there are two 

approaches

(a) Use a continuous time Kalman-Filter and discretize the result

(b) Change the continuous time model to a discrete time model via

Continuous time model xt = f(t)xt + g(t)co(t)

Discrete time model X[+1 = pCt+l,t)xj.

•t + i
+ p ( t+ l  , r  )g ( r  )w(r )dr

where dt <p(t , t* ) -  f ( t ) p ( t  , t* )

and <^0, 0) = 1
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Maybeck gives two reasons for preferring (b) to (a)

(i) (b) is better behaved because the solution to (a) involves solving the

Riccati differential equations which are difficult (see later).

(ii) The discretization of a continuous filter is an approximation to an

optimal discrete time filter whereas a discrete time filter based on an 

equivalent discrete time model involves no approximations.

The continuous Kalman filter is described by the following equations (eg Gelb 

(1974)) in the scalar case

xt = f(t)xt + g(t)o>t - system equation 

where is white noise,

E(o^ c^’) = S(t - t')Q (40)

yt = h(t)xt + et - measurement equation 

var(et ) = R.

Then

*t = f(t)*t + K t [y t - h(t)St ] (41)

Pt -  2 f ( t ) P t + g 2(t)Q  - K( R (The R ic ca t i  Equation) (42)

w'here

K t = Pth(t)/R

if Wf and ej- are independent (43)

or K t = (Pt h(t) + g(t)c(t))/R 

if et*) = c(t) 5(t - t*)

The discretized version is given by using (41)

*t+1- = ^(t+1, t)x t

and

Pt+1- = p 2(t+l, t)Pt + Q (44)

where
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Q = v a r(e )  e 
e

t+i
^ (t+ 1 , r ) g ( r ) co(t ) dr (45)

also

Kt = Pt_ h(t)/(h2(t)Pt_ + R)

and

Pt = [1 - Kt h(t)]Pt_ 

giving

* *t(y “ h( t)^ t- )

(46)

The solution of the Riccati equation when both f  and g are time invariant is 

given by

Pt = (P0 +  g 2Q / 2 f ) e 2f t  .  g 2 Q / 2 f  (47)

In general time varying coefficients will require numerical solution to the 

equation.

Imbedding the continuous time in the discrete formulation for the constant 

coefficient case gives 

<e(t, t*) = ef(‘ - **)

and

p t+ i

p ( t+ l ,  r)g.c«)(r)dT *= g e ^ ( t+ 1 )
t+ i

e “^r a)(r)dr

and

v a r(e )  -  g 2 . (e 2f  -  1) from (40)

Thus from (45)

Pt- = P 2P t- i  + var(e)

P t - i  + g 2Q‘
2f 2f -  g 2Q /2f
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which is identical with (47) if t = 1, P0 = Pt_ 1. 

Hence the two methods will be identical in this case.

Applying either method to the model 

dx
as- -  rx  + “ t 

ie f = r and g = 1

Also take H(t) = 1 then

xt_ = xt-1 er5t where = time interval

z t  =  y t  -  x t _

Pt- = (Pt-, + Q/2r)e2r 5t - Q/2r

Kt “ pt- /(pt- + R)

and

xt = xt_ + Kt zt.
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5.3.6 Non-Linear Kalman Filter in Continuous Time

The general form of the equations will be 

Xt = f(x*, t )  + g(x t , t)0)t

or

dxt = f(xt , t)dt + g(xt, t)d(3t 

with measurement equation 

Yt = b(xt , t) + et

When developing the Kalman filter for such models the Ito calculus is used (eg 

Maybeck (1982)).

As with the non-linear difference equation, using a Taylor’s series expansion a 

truncated second order filter can be obtained (Maybeck (1982)).

The propagation equations are

<- \ , 1 ^ 2f rjX t  -  f ( X t , t ) t ! 5 ; P t

Pt - 2 |1 Pt + g 2(xt , t)Q + ---- ^ ---- P t Q (48)

^ 2g(xt , t)
+ g(*t. £) — 5^2----- pt Q

If the measurement equation is 

yt = xt + et

then

Kt = Pt-/(Pt- + Rt) (49)

*t = *t- + K t{yt - * t_ )

Pt = P,_ - K t Pt.

As in the non-linear discrete time case the residuals
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zt -  Vt - *t- 

will have variance, approximately equal to

Pt.  + Rt

but they may not be normal, so parameters may be estimated by minimising

(50)

with respect to the parameters.

5.3.7 Application to Growth Models

. . .  dx(O  ^  = rx  = px + x wt

f  = px g = X 

So

P t = 2pPt + x 2Q + PtQ = (2p + Q)Pt + x 2Q

p t -  “ p n + \ * i  Q ] 1 e ( 2P + Q)5 t  — .9.
t - ‘ I2p + QJJ 2p + (

xt -  

z t =

Kt =

xt “

P*- =

p5t“  Xt-1 e

= y t - x t -

pt - / ( p t -  + Rt )  

x t _ + Kt z t

(1 -  Kt )Pt _

(51)

In this model the non-linearity comes from the form of the 

state-space error term.

dxt
( i i )  L o g is t ic  -  r x ( l  - Xt / K) -  p x (l  -  Xt / K) + x ( l  -  x t / K)oJt

f = px(l - xt /K )Pt g = xt(l - Xt/K )
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so

Pt -  2p (l  - 2xt / K)Pt + x tJ (1 .  Xt / K) 2Q

+ (1 - 2xt / K)2pt Q 

+ x ( l  - Xt / K) ( l  -  2/ K)P t Q

-  (2 p ( l  - 2xt / K)/Q + (1 -  2xt / K)2 -  1^1(1 -  xt / K))QPt

+ X ((l  -  Xt / K) 2Q

-  AQPt + BQ (52)

However, Pt_ depends on % and the resulting equation could only be 

solved using numerical methods. If Pt_ is assumed fixed then

giving

with A and B as functions of x

Nowr

xt = pxt(l - Xt/K) - P/KPt-

xt = -  - K*t + pt - )

x 2 - Kx + Pt
V  L

= - p ( t  - t 0)/K
x

((K2 - 4Pt _ ) i  lo S (2x - (K -  (K2 - 4Pt _ ) i )fY = -  p ( t - t 0)/K

Let

and

2A = K + (K 2 - 4Pt_)i 

2B = K - (K 2 - 4Pt_)i 

C 2 = 1 - 4Pt_ /K 2

then
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If the usual logistic boundary conditions of x 0 = *s usec*

reduces to

- A + B e - W - t o )

X‘ "  1 +

Further if Pt_ = 0 then A = K, B = 0 and c = 1 

so this reduces to the usual logistic.

The results (53) and (54) can be combined in a number of ways

(a) Use the value of x at t-1 to evaluate P*_ and hence xt_

(b) Use the value of xt_ from (i) to give a value for Pt_ and hence a

modified estimate for x t_

(c) Use a weighted estimate of and x t_ from (i) to obtain value of

Pt_ and hence a further estimate of x t_ .

Given estimates of Pt_ and x t_ the equations can be used to perform the steps 

of the Kalman filter.

(iii) Logistic with density independent error ie

dxt
dt-  = - x/ k ) + “ t

f  = px(l - Xt /K ) g = 1

s °

Pt = 2p(l - 2xt /K )Pt + Q = APt + Q

giving



Pt- = (Pt_, + Q /A)eA6t - Q /a  (55)

This is then combined with (54) in the way described above.

Gompertz

d-x  ̂ v v
—  = r x t lo g (K/ x t ) -  P xt log (K/ Xt ) + x t lo S (K/ Xt> wt

f  = p xt log(K/x t) g = xt log(K /x t)

So
Pt.  = (P t-, + B/A)eAQ5t - B/a  (56)

where

A -  |^ ( I o g ( K/ x t ) -  1) + ( lo g (K/ x t ) - l ) 2 + xt lo g (K/ x t ) ( - 1 / x t ) 

-  ^ ( l o g ( KA t ) -  1) + lo g 2 (K/xt ) - 3 Iog(K /xt ) + 1

and

B  =  x ^  l o g 2 (K / x t)

Also

dxt -  „ , rK.„ 1 pt -
d t  P x t -  ' ° S  A t - j  * 2 s 7 I (57)

This equation can only be solved numerically. However, if the bias 

correction term is ignored then the Gompertz differential equation 

can, of course, be solved.

Richards



1 n + 1a, = -  - -----n n1
xt n

and

a, = -

Then

2
2 p 2 1 x t—  a, + a , + a 1 & 2  QPt + ^ 1 - K ut

= AQPt + BQ 

with solution as before. 

Also

(58)

dxt _
= ^  X. 1 _ rx ti n'

dt n Xt J- K
(n + l)x tn-i

2K (59)
n

Again the equation can only be solved numerically, however, if the 

bias correction term is ignored the equation can be solved to give

1
xt_ = k'jl + exp(£? - r5t ) } -n

where 0 = log 1 + fr]nllX0. J
(60)

The two solutions could be combined as considered previously.

This reduced form of the Kalman filter is known as the extended 

Kalman filter.

(vi) Further Models

In principle any growth model can be put in the above form. However, 

in general the equations for Pt_ and £ t_ will have to be solved by 

numerical methods.
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A Second Approach

In the above the measurement equation of the form 

yt = xt + et

was used and the non-linearity coming from the system equation.

We could consider a linear system equation for the rate of growth r ie 

rt = rt- i  + h
or

rt =

and have a non-linear measurement equation

yt = f(r, t) 4 %

However such a model would not maintain the continuity of the growth, but if 

instead of modelling the growth, the growth increment is modelled such a set 

up is feasible.

For the logistic model

1o g | —————j j  * 2 = -  r ( t 2 -  t } ) =  -  r  i f  a t  e q u a l  t i m e  i n t e r v a l s

w ritin g  as f t 1 (x 2 - x 1) = r 

(x 2 ~ x 1 ) = f(r)

so

yt = ft(r) + et as above.
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5.4 Discussion

This chapter has aimed to show the availability of models and techniques that 

allow a dynamic approach to growth. Such approaches often give greater 

insight than the more usual static models. They also allow changes in the 

environment to be incorporated into the models by simply changing parameter 

values at different points in time.

The use of the Kalman filter approach to modelling in biology would seem to 

have great potential.
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6. Multivariate Growth Models

6.1 Introduction

In this chapter the situation in which more than one measurement is made on a

growing organism or population is considered. Both dynamic and static models

have been used to describe such situations, some of the dynamic models for 

multi species populations have already been considered in the introduction. 

Static models for the relationship between parts of an organism will now be

reviewed.

6.1.1 The Allometric Relationship

The most common relationship between two parts ^ and is

V = a£0 - (1)

or

log T? = log a + (3 log £ (2)

hence this is known as the linear allometric relationship. An insight into the 

relationship can be gained by considering the relative growth rates R „ and 

R^. From 6 .1.1 (2) it can be seen that

R rj = (3 R | (3)

thus the relative growth rate of one aspect is a constant proportion of the 

relative growth rate of the other under this model.

This model has been found to give a reasonable fit for a wide range of 

different situations.
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6.1.2 Fitting the Linear Allometric Relationship

Let yj, Xj be the observed values of log 77 j and log £ j  for an independent 

sample with

Yi = log 77i + q  '  (4)

Xj = log £j +  6 j

with

log ?7j = a + (3 log £j 

Then the problem of estimating a  and (3 is that of fitting a functional

relationship. This is a well known problem (eg Sprent (1969), Kendall and

Stuart (1973), Causton and Venus (1981)). The solution requires some

knowledge of the variances of e j and e j . The usual assumption is that

v a r(e  j ) 
^ v a r ( e j )

is known in which case it can be shown that if e j and ej are independent

% _  s yy “ ^s xx +  ̂ 1 ^ y y  ” ̂ x x ) 2 + ^ s 2Xy} /cN
P 2Sxy (5)

where S.. represents the corrected sum of squares/cross products. If the errors 

are not independent but have variance - covariance matrix = W then Sprent 

(1969) shows that

% _ $xy  " ^ 1 2
P '  sxx -  X w ,,

where X is the smaller root of (6 )

I s  - X W |  =  0  

where 

Dxx 3xy 

Sxy s yy

This reduces to (5) if W7 2 = 0 and further if <p = 1 then to the first principal 

component of S.

-  2 0 1  -



6.1.2 Multivariate Generalisations

The above approach can be generalised to more than two dimensions. Jolicoeur 

(1963 and 1984) considers the first principal component of the variance - 

covariance matrix. He showed that if"all the proportions of the organism were 

to remain constant then the first principal component would be

. i 1 1 1
“  [ jp  Jp (7)

This hypothesis can be tested using standard tests (Anderson (1963), Morrison 

(1967))

a. S ex'
X2 ( p - 0  -  (N -  1) X ex’ S 1 a +

- 2I
( 8 )

Jolicoeur (1984) proposed an altern ative test

F ( p . 1> N_p) = (N -  p ) ( a  S a'  a  S " ’ ex’ -  l ) / ( p  -  1)  ( 9 )

An alternative approach suggested by Hopkins (1966) is to use a factor analysis 

type model

S = yj/ + n

where a is the variance - covariance matrix of the independent variations in 

each dimension. Various assumptions can be made about the form of ^  which 

are needed before inferences can take place.

Both approaches are reviewed by Sprent (1968 and 1972).
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6.1.3 Time Dependent Relationships

Hole et al (1984) propose a series of models for growing crops in which the 

relationship between parts varies in time. The particular interest is the 

shoot/storage root relationship in root crops. Their principal model is 

yj = a  - T (time) + /3 Xj 

They also consider polynomials in x. However, the problem of variation in 

both variables is ignored and ordinary regression analysis carried out.

6.2 Non-Linear Allometric Relationships and Phase Planes

6.2.1 Models

If the growth of two elements can be described by the model

then the phase plane portrait (Arrowsmith and Place (1982)) is the solution of

ie (S2 log y 1 - 0, log y 2 = const 

the linear allometric relationship.

The relationship 6.2 can be generalised in a number of different ways, for 

instance the Lotka-Volterra equations

(1)

0 2 dy 0i dy 2
y2

( 2 )
y,

(3)

these have phase plane portraits given by
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0 2 lo s  yi - 0 2 0l2  ̂ y-i -  0i lo s  y 2 + 0 2 “ 1 2  y 2 = const (4)

Turner (1978) considers further generalisations. First

f ( y i . y 2 O 'dy1 ft
a t  e ' y ’ 1  -  d.

2 L '  1 
1 y j

dy;
dt -  -  0 2 y 2

f ( y i . y 2 O
 ̂ -  ^ i 2 y 2 .

which will have the same phase portrait as (4).

(5)

Secondly

a r - _  0 i y> ( k ' * f ( y >• l ) )

dy2 
=  0 2 y 2 ^k 2 -  f ( y , > y 2 » O )

giving phase portraits

0 2  lo S y i  " 0 1  lo S y 2 =  0 1  0 2 < k i  “ k 2 ) 1 + const

( 6 )

(7)

Combining the ideas of (4) and (7) the general phase portrait of

£ jSj log y 2 + E Qj yj + 7 t = 1  ( 8 )

is derived for a multi-dimensional problem.

Using a general set of equations considered in the introduction

dy,
-  y, F, (y, , y 2)

dy 2

a r *  "  y * F2( y , . y 2)

( 9 )

Then phase portrait is obtained by solving

dy, = y, F i (y ,>  y 2) 
dy 2 = y 2 F2( y i * y 2)

( 1 0 )

If no analytic solution is available for (10) then a numerical method could be 

employed (eg Runge-Kutta method) checking for singularities given by
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F 2 ( y , ,  y 2 )  =  ° -

6.2.2 Model Fitting

Turner (1978) suggested fitting (8 ) using" least squares with the constant 1 as the 

dependent variable. This is criticised by Griffiths and Sandland (1982 and 

1984) because the independent variables are stochastic and that the regression is 

not location invarient. Further they point out that the inference procedure will 

be distorted by the high correlation between y j and log y j . In the 1984 

paper they considered alternate estimation procedures

(i) Using a generalised principal component approach. This requires 

solution of

This is based on a first order Taylor’s series approximation for the 

variance of log yj and a local correlation of unity between yj and 

log yj.

(ii) Their main approach is to consider

|S -  X -  0 ( 11 )

where S is the variance-covariance matrix for both y j ’s and log 

yj’s and ^ is a block diagonal matrix with 2 x2  elements

f1  v i
( 12)

F j  = o-j Vj + (3i log yj (13)

and to  assume F ( t j )  ~ N(0j ,  V) (14)

where

F'(tj) = (F t (tj) ... Fk (tj)), 0’j - (0jj ... 0k j )

and
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i=T

The assumption of normality is only justified on pragmatic grounds 

and the fact that both y j and log y j cannot be normal.

Three forms of v are considered

(a) Vjj = (04 yj j + (5j) 2 a 2

(b)  V jj = (o: 2 j y 2 j  j  + ( 3 2 i )  ( J 2 (15)

(c) v,j = v 2j = a 2

Assuming that 7 = 0  the log likelihood is in the case k=2

n
- n log 2 x - n log a 2 -  ^  £ l o g ^ j  v 2 j )

j - 1

" ( F^j '  * i j )2 -  ( F2i  " 1 + ei 0
2 a 2 + I 2J 1 J

j - 1 j - 1  V2J

n 2

+ I  £ log(cq + / 5 j / y j  j)
j - 1  i - 1

giving

(16)

1 n
= h  z

2n j - i

(F i j  - f l i p 2 (F2j - j 1 + * \ j ) 2
1 j V 2J

(17)

and

“ ,V2 j  Fl j  + V >j ( 1  -  F 2 j>>/<Vl j  + V2 j> 

noting that

(18)

(19)

These estimates can be substituted into (16) and the result maximised by a 

non-linear procedure.
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6.2.3 Alternate Estimation Procedures

Two alternate estimation procedures will now be proposed. The bivariate case 

only will be considered for simplicity and also as it represents the main 

practical situation.

(20)

Recall

0 2 ( l o s  y i  -  “ 21 y i )  -  0 i ( l o g  y 2 + y 2 )  =  c o n s t
Then given a 2 1  and a, 2 , letting 

= log y 1 - of21  y,
and

z 2  =  y 2  ~  2 y 2
the problem reduces to the linear functional relationship for the z’s as 

considered in section 6.1.2. In practice the transformation

zi = Yi + M yi was used. This can be considered as a linearising 

transformation analagous to say the Box-Cox transformations. In order to select 

a suitable value of \  the following procedure was used.

The values of X, and X2 were selected simultaneously so as to optimise a 

suitable linearity criterion. Such a criterion is given by Cox and Small (1978).

C(Xlf X2) = [Q2 1  q 12]
1 (2 -  3 r 2)' - 1 ■Q2r

r(2  - 3 r 2) 1 q , 2.
( 21 )

where^j is the student test statistic for the regression coefficient of Zj  on z 2j  

and r is the correlation coefficient for z 1 and z 2 .

The function C(XV X2) was minimised using the Nelder-Mead algorithm, the 

values of Qjj and r being calculated by Nog routines G02BAF and G02CGF. 

In finding the global minimum a contour plot of C was found useful.

Having found the suitable values of Xj hence z j the values of 0, and ^  were
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found from using (5).

The second approach was to consider the shortest distance from the observation 

in the (x,y) co-ordinates to the curve in the phase plane.

Considering model (9) we have

Y i _  f i ( Y h  y 2 )  
d y 2 ~  y 2  ’ F 2^ y 1 » y 2 )

Now let (y, 0, y 20) be the point on the curve given by the solution to (10) 

that is closest to the observed point (y /, y2). Then 0 , y20) must lie at the

foot of the perpendicular from the curve through (y,', y2’) as shown in the 

diagram

The equation of the perpendicular is

-1
( y 2  -  y 2 )  d y (yi -  y j)

dy  ̂ y 1 0 > y 2 0

y 1 0  F 1 ( y 1 0 . y 2 o > (y -  y ')  -  0 ( 2 2 )

Let P(y1, y 2) = 0 be the phase plane solution (ie the solution of (10) then in 

addition



Solving (22) and (23) y, 0 and y2 0 can be obtained for values of the parameters

of F tCyt, y 2), F 2(yn  y 2) and p(yn  y2)-

A generalised distance of the point (y;’ , %') from the model may be obtained

d 2 = <y ; -
1 v i~  v 2' 0 

£1

yio» y 2 -  y 20)
-V2 V 3- .y2 -  y 20.

here v1, v2 and v3 are chosen in relation to the variance - covariance of the

stochastic errors for y, and y2. Given d the parameters of the model are 

chosen so as to minimise 

n
S* -  I  df 

i-1

The solution curve P(y1, y 2) can in some cases be obtained by analytic 

methods. Failing this numerical methods could be used eg fourth order 

Runge-Kutta method ( Conte and DeBoor (1972), Patten (1971)). In addition 

the solution to (22) and (23) may require numerical methods although they will 

often reduce to a single non-linear equation.

6.2.4 Examples

The data to be used was considered by Turner (1978) and Griffiths and 

Sandland (1982, 1984). It is for the growth of mandibles of the stag-beetle, 

Cyclommatus tarandus. The data was originally collected by Dudich (1923) and 

was examined by Huxley (1927, 1932). The data is given in table 6.2(1). The 

model to be fitted is, using Griffiths and Sandland’s notation,

P,  log y 1 + P2 log y 2 + a , y , + o;2 y 2 = 1 

Using the transformation method, first the values of X, and that minimised 

(21) had to be found. The complexity of the C(X, , X2) surface is shown by 

figure 6.2(1). Further the transformation 

z = y + X log y
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is not monotonic for all values of X, y. Now

-  -  1 +  X/ ydy ' y

Therefore, for a monotonic transformation

X - y*

for any y* in the range of the data considered. This means that for the beetle 

data

XI > - 3.88 or X1 < - 34.5

and

X 2 > - 16.5 or X 2 < - 39.5 

as shown in figure 6.2(2), the non-monotonic region being shaded.

Table 6 .2 (1 )

M andibular Body
Length (mm) (y ,)  Length (mm) (y 2)

3.88 16.50
5.31 18.70
6.33 20.05
7.32 20.44
8.17 21.48
9.73 22.47

10.71 22.40
11.49 23.52
12.08 24.05
12.73 24.59
14.11 24.33
14.70 24.56
15.84 25.50
17.39 25.83
18.83 26.68
19.19 . 27.13
19.92 27.36
20.79 27.61
21.53 28.51
22.54 28.96
23.25 29.25
23.96 30.27
25.38 30.63
28.49 33.37
30.69 • 35.37
32.00 37.00
34.50 39.50
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Figure 6.2(1)
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Figure 6.2(2)
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Having used several starting values the minimum was found to be at 

X, = - 161.94675 X2 = - 44.80763

The functional relationship 

Z1 = 0 O + 01 Z2

was then fitted using (5) for values of <p = 0.5, 1.0, 1.5. The results were

<P 01 0 O

0 .5  22.15297 2222.813

1 .0  22.15265 2222.775

1.5 22.15233 2222.737

Indicating that, in this case, the result is not sensitive to the chosen value of <p.

Taking = 1.0 the fitted model becomes

- .07286 log y, + .44656 log y 2 + .00045 y 1 - .00997 y 2 = 1

Using the second approach, the generalised least squared distances it is useful to 

return to the original Lotka-Volterra type equations

a i y,  + a 2 yi y 2

dy 2
a j -  -  a 3 y 2 + a4 yi y 2

giving

dyj_ _ a, yi + a 2 yi y 2

dy2 a 3 y 2 + a4 yi y 2

with solution, taking the constant as 1 ,

a 3 log y 1 + a4  y, - a, log y2 - ^  y2 = 1 (I)

Thus comparing with Griffiths and Sandland’s model



Let the observed values be u 1 and o> 2 then the equation of the perpendicular

form (o)ls cj2) to the curve is, from (22)

/ n yi f*1 + a2 y21 . N O
(y * -  ^  + r ,  [” +~ ;  y ; ] (y ’

This gives

2 , y i ( y ,  -  *>,) i , a ,  y , , , „ , „ v
r»  + r»  1 ( a , T  a-;  y ;> -  "» j + a 3 -i  a 4 y , (y > ~ “ i> ~ 0 ( I I )

Solving the quadratic (II) for y2, the solution in terms of y, can then be 

substituted in (I) giving a single non-linear equation for y , . This equation was 

solved using the secant method (Conte and de Boor (1972)). Thus obtaining 

values of y, and, substituting this value back into the solution to (II), the value 

of y 2.

From these values 

r i = " Yi

r 2 = co2 - y 2 

were calculated. Assuming the form 

d 2 s  r, 2 + r 22 

I d 2 was minimised using the Nelder-Mead algorithm.

In order to solve (II) an initial value of y, = was chosen, this gave 

y 2 = o>2. In general (II) will have 1, 2 or 0 solutions. In the most common 

situation of 2 solutions the solution nearest the observed value was chosen. The 

case of no solution arises due to the shape of the fitted function and the value 

of y, at that point in the iterative process (see later). This situation can be 

overcome by starting from a new initial value.

In order to find the minimum of Ed2 for the beetle data several starting values 

were used, including the estimates given by Griffith and Sandland (1984), see
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table 6.2(2). The minimum of Ed2 was given by 

a , = -  .44451 

a 2 -  .01079

a 3 -  -  .06059

a .  -  -  .00018

Table 6.2(2)

Parameter

Fitting Procedure

Griffiths and Sandland
Principal Generalized

Transformation Generalized
Method least squared

Turner Component Eigenvalue 1 2 3 distances

°1 .00323 .00335 .00360 .00019 - .00047 - .00062 ..00045 - .00018

B1 - .07594 - .07582 - .08520 - .06056 - .06154 - .06433 - .07286 - .06059

°2 -.01527 - .01542 - .01838 - .01080 - .00945 - .00891 - .00997 - .01079

.47664 .47792 .49780 .44446 .43781 .47651 .44656 .44451
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Table 6.2(2) combines the results of Turner (1978), Griffiths and Sandland 

(1984) and those of this report. The generalised least squared distances gave a 

solution very similar to Griffiths and Sandland. The transformation method 

gives a result between the Griffiths and Sandland results and the others. There 

is, however, an important difference between the result that can be obtained by 

the transformation method and the other methods. As reported by Griffiths

and Sandland (1984) the phase plane solution can have several shapes, including

(A) A monotonic single branched trajectory

(B) A two branched non-monotonic function with asymptotes parallel to either

axis

(C) A closed loop.

Turner’s method gives solution of type B with asymptotes parallel to the body 

length axis. The generalised eigenvalue method also gives a solution of type B 

but with the asymptotes parallel to the manibular length axis.

The transformation method can only give solution of type A and this is the

type required for allometric modelling as with the beetle data.

It was the discontinuity in the solution of type B that can lead to the 

imaginary roots of equation (II). This will happen if

1 - “ i - 01 ' ° s  yi . 02y , =   and —  < 0
2 “ 2 “ 2

for some y 1 (y , , y2 > 1 )

for example in the generalised eigenvalue solution at y , =15 .

The generalised least squares approach can give the two branched solution but 

in this case does not.
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The advantages of the new methods are

(i) The transformation approach leads to the correct form of solution for 

the allometric problem and is conceptually simple to understand.

(ii) The generalised least squares approach minimises error on the

observed variables y, and y^ not on other, less obvious, functions.

6.3 Dynamic Models

6.3.1 Multivariate OU Processes

Cumberland and Rohde (1977) show how a Multivariate Ornstein-Uhlenbeck 

process can be used modelling multivariate populations. They consider two 

models

dyi
<*) —  «i<») y; ( i )

and

( i i )  ~ Ui ( t )  yi  (1 "

where Uj is a k-dimensional OU process. The interaction between populations 

is provided the correlations in the OU process. They provide conditions for the 

existance of such a process but no information on the behaviour of the models 

other than a simple simulation.

The OU process itself satisfies the equation

^  = — r U + (t) , (t) being white noise (4)

where as the random growth rates are normally modelled by

r = p + (t), p being constant (5 )

In view of this the approach using state space models and the Kalman filter for

single variable models will be developed for the multivariate situation.
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6.3.2 State Space M odels

For compactness only two dimensions will be considered but the results could 

be extended to higher dimensions.

The continuous time state space models are of the form 

xt = f(xt) + G(xt)t
(6) * 

y t =  h (x t ) +  et
where xt , yt , and e t may be vectors.

There are two ways in which these models could be used

(i) Use a single x to represent a growth factor. The functions h(x t )

would relate the size of the individual components to this factor. 

This could be seen as a dynamic non-linear factor analysis approach.

If x is used to model the logarithm of the growth factor then x t 

becomes the relative growth rate giving the equations (ignoring noise)

e x p o n e n t i a l  g row th  x  = r  

l o g i s t i c  g row th  x *= r  1 -  i  exj

The function, h(xt) could be assumed linear if the usual allometric

relationship is used.

If x is modelled using the non-linear equations considered in section

5.3, then if using the allometric relationship h(x t ) will be a

logarithmic function.
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A pplying the K alm an filter to these situations the non-linear

relationships in f( ) and h( ) will have to be approximated using

Taylor’s series expansions. As modelling the logarithms of the growth 

factor involves only one approximation this would seem better even if 

the differential equations are” more complex in some situations.

In this model there will be an arbitrary choice of one element of the 

linear function h( ) as the scale of the general growth factor could 

be chosen at will.

(ii) The second approach would be to use a full dynamic model for ail 

components and h( ) reduces to an identity relationship.

As in both cases a linear h( ) will be used a second order truncated filter can

be used. Representing h( ) by the matrix H then the up date equations are

K - Pt_ H' (H Pt_ H' + R)"1 

*t = ftt_ + K (yt - H *t_)

Pt = Pt. - k H pt_

(7)

The propagation equations will be
= f(kt) + bt

where

( 8 )

and

Pt - Ft Pt + PtFi + E(G Q G')
where

F is the nxn matrix with elements t—£x

and
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s s
E ( G  Q G)  i ; =  I  £

k=l e=i Gik  Qk^ G^j + t r
bG j bGp i

+ 2 t rt r P1
^x 2

> + 2 t r

^ G ik
^x2 QkS Ĝ j

(Maybeck (1982)) where S is the dimension of et

6.3.3 Example

To illustrate the use of the above technique the simple Lotka-Valterra model

will be used 

dx 1
= a , x, + o 2 x, x 2 + Xt o>.

dx.
d r = 0 :3 X3 + o 4  x , x 2 + x 2 a)

where is a single white noise term. The above formulation assumes the 

standard deviation is proportional to size. For this model (8 ) gives

b t = o 2 p 2

P2

where

Pt = Pi
IP2

P 2' 
P3J

F i s a i
“ 4

+ a 2 

x 2

x 2 o 2 Xt
o 3 + o 4

Hence

F P' + P F' =
'2 (Ot + o 2 x 2) Pl + a 2 X 1 P 2>

-
(a. + O 2 X 2 ) p 2 + o 2 Xt p 3 + o 4  x 2

2 (o 4  x 2 p 2 + ( a 3 + o 4  X t ) p 3

and
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T hese  are com b in ed  to g ive  the equation for  P.

This leads to 5 n o n - l in ea r  d if feren t ia l  equations to solve  

=  a ,  x ,  + o 2 x 2 + o 2 p 2

* 2 = o 3 x 2 + o 4 x ,  x 2 +  o 4 p 2

p n = ( X t 2 + P t) q + 2 ( ( O t +  o 2 x 2) P t + o 2 x ,  p 2)

p 2 = ( x n x 2 + p 2) q  + ( o ,  + o 2 x 2 + o 3 + o 4 x 4 ) p 2

+ o 2 Xt p 3 + o 4 x 2 P t

p 3 = ( x 2 2 + P 3) q + 2 ( o 4 x 2 p 2 + ( o 3 + o 4 X t ) p 3)

These equations can then be solved using a Runge-Kutta procedure (eg Nag 

routine D02BAF). A suitable measurement equation is needed, the simplest 

being

yi

y 2

giving 

H •

Xt + e ,

x 2 + e 2

v a r ( e t) = (T, 2 

v a r ( e 2) -  a 22

cov(eT e 2) = 0

and ro-T2
a. ■)

The parameters may then be found by minimising

E(yt - H i t . ) i  R " i ( y t - H x t _) 
t

there being 9 parameters (4 o’s, q, a; 2 , a , 2 and two initial values x , 0 and 

X2o)'
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6.4 Discussion

Two approaches to the analysis of multivariate growth have been presented

(i) A static model approach based on phase plane solutions to the system

of differential equations.'

(ii) A dynamic model approach using the Kalman filter.

The choice between the two approaches will take into consideration the

following points

(a) The availability of the time series data needed for the dynamic

approach. This may not always be available or the ages may only be

approximate. In the case of the beetle data considered earlier only

the static approach was available.

(b) The availability of a closed form for the phase plane solution. Such

a solution would simplify the static approach and if no closed form 

solution were available in the time domain this would justify the

exclusion of the time information from the modelling process.

Either of the approaches could be applied to both the growth of parts of a

single organism or the competition between species in a population dynamics

situation.
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7. Statistical M odelling

7.1 Introduction

The previous chapters have been concerned with the problems of identifying 

and fitting models to data. In this chapter the objectives of modelling and the 

various approaches to modelling will be considered. Questions such as 

Do I need a model?

What type of model do I need?

What approach to modelling shall I take?

What are the steps in modelling? 

need to be considered.

Models come in many different forms. This chapter will only deal with what 

can be termed Mathematical models. These can be considered as a subset of 

symbolic models in Ackoff and Sasceni (1968) categories of 

Conceptual Models 

Iconic Models 

Analogue Models 

Symbolic Models

The models considered in chapters 3 - 6  are only some of the many different 

mathematical models that could be considered, but along with those discussed in 

the introduction, provide' a cross-section of various approaches to modelling.
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7.2 Purpose and Types o f M odels

A list of reasons for using models could be that they 

Communicate fact and ideas 

Generate new ideas 

Predict behaviour 

Provide insight into the behaviour 

Clarify thinking

(Based on OU notes on Systems Behaviour)

Jeffers (1982) gives various reasons for using ecological models including 

providing

An orderly and logical representation of the underlying relationships.

A means of communication between different research w o rk e rs .

A synthesis of available information.

Thus there are three main themes in the purposes of models

(i) Communication

(ii) Prediction

(iii) Understanding

The emphasis placed on the three aspects will depend on the particular 

situation. A contrast between (i) and (ii) and (iii) is often set up. Curnow 

(1977) contrasted descriptive and explanatory models 

Descriptive

Summarising for consideration 

Decision Making

Isolation of important factors in above.
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Explanatory

Increased understanding leading to further advances (extrapolations) and 

improved decision making.

He associated static models with descriptive purposes and dynamic models 

with explanatory purposes.

Gilchrist (1984) describes a contrast between conceptual and empirical aspects. 

The conceptual approach uses "logical reasoning, ’known theory’, to obtain a 

model". Whereas the empirical uses only the empirical evidence, the data. In 

practice a mixture of the two approaches is used, what Gilchrist calls the 

eclectic approach.

A similar contrast is the mechanistic-empirical. The mechanistic model aims to 

describe how things happen.

The models considered in previous sections can be placed under the broad 

heading as follows

Descriptive/communicative/empirical 

Polynomial regression models 

Spline models 

Growth increment

Explanatory/conceptual/mechanistic 

Differential equation models 

Some of the difference equation models 

Systems dynamics models

Non-linear regression models derived from differential equations.
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In relation to the two aspects is the idea of ’biologically meaningful parameters’. 

That is the parameters involved in a model should have some biological 

interpretation. The problem with these parameters is that the statistical 

estimates of such parameters often do not have ’nice’ statistical properties, they 

are often complex non-linear functions of the natural mathematical 

parameterisation of the model (see Causton and Venus (1981)). Hunt (1982) 

argues caution on rejecting a model simply because its parameters cannot be

given any general biological significance. Information is often not supplied by

the parameters but through their derivatives. As Hunt states ’parameters are

messengers of reality, not reality itseir. Gilchrist also considers the problem of 

reality, ’a model is only a limited, and possibly distorted, picture of reality’. 

’A model can be seen as truth insofar as it makes '’unhidden" aspects of the 

situation being modelled that were previously hidden’. He goes on to say that 

the important aspect is the adequacy of the model to reveal some aspects of 

reality.

A further comment on the empirical-mechanistic distinction. Hunt is surely 

right when he says that this distinction hinges on the level of organisation. 

The population biologists mechanism may well be empirical to the organismal 

biologist (see Hunt (1982)).

When one looks at a flexible function such as the Richards function the 

empirical-mechanistic divide seem even fuzzier. It is a mechanistic model

because it comes from a certain differential equation model with possible 

mechanistic interpretations? Or is it just a useful empirical model? Obviously 

the fit of the model alone does not necessarily imply the underlying mechanism. 

There has to be an interpretation of the mechanism, but how satisfactory does 

it need to be? There are general ideas about growth behind the models 

considered but are these ideas good enough for any situation?
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There is a second problem with flexible models, that of falsification. The 

concept of a hypothesis or model being falsifiable is central to the standard 

scientific approach. If a model is very flexible then it becomes difficult to

falsify it, so it is always right. For some model such as splines this is not a

problem because no interpretation is placed on them, they are purely smoothing 

functions. For some of the generalised logistic models there is an implicit

mechanism behind them. How useful are these ’always right’ models. This

brings us to the next subject to examine, criteria for models.

7.3 Criteria for Models

What makes a good model? Randers (1980) listed the following desirable 

characteristics of a model

(a) Insight generating capacity

(b) Descriptive realism

(c) Mode reproduction ability

(e) Transparency

( 0 Relevance

(g) Ease of enrichment

(h) Fertility (of new ideas, experiments etc)

(i) Formal correspondence with data

(j) Point predictive ability.

These criteria were primarily set up from a systems dynamics viewpoint. The 

above can be used to set up some general criteria which may be more in 

sympathy with statistical modelling.
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(A) Data Correspondence

Does the model make use of all the available data? Is its use of data 

consistent, making use of pre selected criteria to judge closeness of fit. 

Have regions of inadequate data fit been shown to have no substantial 

effect on the overall model?

(B) Justifiability

Is the complexity of the model required? (Model parsimony). Can the 

model be falsified given the quantity of information available? If not, is 

the model sensitive to these conjectures?

(C) Applicability

Can model predict behaviour if required? Is it relevant to the end user?

D) Insight

Does the model increase understanding of the modelled system? Does it 

indicate areas of inadequate understanding?

These are general ideas and many problems are raised by them.

In (A) traditional model fit has been taken to be least squares or maximum 

likelihood. As in a previous section of the report the notion of an absolute 

minimum (maximum) of the selected critericmhas to be called into question with 

complex models. In some cases where near plateaux or ridges exist in the 

criterionsurface large changes in parameter values may have a very small effect 

on the criteria value. In these situations other aspects need to be taken into 

consideration. The fit in terms of say sum of squares needs to be a constraint 

(eg at least 99.9% of optimal) rather than, the objective. Other aspects of fit 

(eg X2 goodness of fit tests, residual plots) need to be taken into consideration.
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The problem is trying to quantify the different aspects so that an overall best 

model can be selected. I do not think such a procedure is practical, and not 

even desirable. Ultimately the selection will have to be subjective and this

subjectivity needs to be clearly stated. However one important aspect has to be 

the consistency in the use of data." In systems dynamics it is generally

considered that because of the negative feedback loops incorporated in the

models they are not sensitive to parameter estimation. (See Randers (1980) 

passim). This leads to the situation in which diverse sets of data are used in 

diverse ways to estimate parameters, there being little consistency between them. 

As has been shown in chapters 5 and 6 the Kalman filter permits the 

estimation of parameters in both linear and non-linear dynamics systems models. 

It seems reasonable that such a consistent method should be used.

The second criteria (B) is to stop parts of models being only justified in the 

mind of the modeller. Care should be taken over the arbitrary use of 

significance levels in the rejection of terms and that considered in (A) always 

has to be taken into account. In statistics there are two different aspects of 

the model that are tested. One is the need for extra terms in the model (eg

quadratic term in a polynomial regression). In these situations their non 

requirement is assumed until the data proves otherwise. The second aspects are 

normality, independence etc. These are assumed as part of the model until

proven otherwise (eg by a Durbin Watson test). A better attempt is needed to

put both these aspects on the same footing. This can be achieved in part by a 

more flexible attitude to significance tests and a more ac;:ute awareness of the 

basic assumptions of the model. In some circumstances it is important to 

realise if the assumptions have been justified or not, the actual situations will 

be related to the sensitivity of the model to these assumptions. Thus the model

sensitivity has to be taken into account at this stage.
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The use of the model must provide a criterion for its assessment (C) as is 

stated by Gilchrist the application will influence all stages. Obviously a model, 

if successful, will meet the objectives of the originator of the problem for 

which the model was constructed. However, this has to be considered alongside 

(D). There is an inherent conservativeness in (C) alone, in that it often seeks

to discover what it already feels to be true. The information, via a different

model perhaps, may have something new to say. One illustration of this is the 

statistical view of outliers. They are generally to be discarded so that the data 

then confirms the pre selected model form. In some cases the outlier can give 

new information about the situation or the model being used. Insight can be 

sacrificed for a ’good fitting simple model’.

In research, in particular, it is the insight generated by the model that is the

prime criterion for judging the model. This insight must be valid so the model 

has to be commensurate with the information available (primarily the data). 

Unfortunately there is no quantitative way of fully describing insight, therefore 

more qualitative comparisons are required.

In some situations the main interest is in comparing two groups, different 

treatments perhaps. The statistical methods using polynomial curves described in 

the introduction are an example of a type of model designed for this purpose. 

Such models are not adequate in terms of the insight of they generate in regards 

to the response over time of the groups. However, if they fit reasonably then 

they do compare the components of growth, linear, quadratic etc. The question 

these methods raise is how important are such summaries of a complex growth 

form? Are aspects that have been discarded by using such a model also 

important? More information may be obtained from such experiments if a 

more detailed modelling procedure were adopted and a careful comparison of 

meaningful parameters made given obvious caveats as regards the meaning of
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parameters.

7.4 Methodologies for Modelling

As was discussed in the introduction Gilchrist (1984) presents a methodology for 

statistical modelling. This is based on that used by Box and Jenkins (1976) for 

ARMA modelling. Recall that the steps are

1 Identification

2 Estimation

3 Validation Iteration

4 Application

This approach works well in areas such as linear regression modelling and time 

series modelling in which you are dealing with a well defined family of models 

and selecting the best from that family. If a broader view is taken and the 

subjective nature of the modelling process is to be fully considered then a 

modified methodology is required.

Several problem solving methodologies have been developed for soft systems ie 

systems involving qualitative variables and subjective judgement. One such 

methodology is due to Checkland (1972). The essential stages are

(i) Analysis

(ii) Root definition of relevant systems

(iii) Conceptualisation

(iv) Comparison of definitions of possible changes

(v) Selections

(vi) Design and implementation

(vii) Appraisal
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These stages can be seen as

(i) Obtaining information about current system

(ii) Reducing the system to its basic purposes

(iii) Constructing models

(iv) Comparing results o f"  models with the situation to suggest 

changes which can then be selected (v) and applied (vi) and

(vii) a p p ra ise d

Using the ideas of this methodology a new methodology for statistical modelling 

can be developed.

(1) Conceptual Analysis

The object of this phase is to produce a conceptual or ’ideas’ model of the 

situation to be examined. It will contain all possible relationships and their 

forms and the data available. The use of diagrams such as systems maps 

and influence diagram are an important tool at this stage.

(2) Model Type Generation

Using the insight gained from (1) a number of possible types of model to 

be used are considered (eg stochastic differential equation models, linear 

regression models, non linear regression models).

(3) Model Building

At this stage the models for each type are constructed. Within this stage 

Gilchrist’s methodology ( 1 - 3 )  can be used for each model type. A single 

model need not emerge from each type as there may be several competing 

models with little objective distinction between them. The model building 

will be controlled by the criteria (A) and (B) of section 7.3.
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(4) Comparison of Models

The models from (3) will be compared with respect to both direct 

application and generated insight. This comparison will primarily be a 

subjective comparison.

(5) Generation of Further Model Types

As a result of (4) improved models may be suggested.

6) Application and Appraisal

The results of the above model will be used and critically evaluated.

The above methodology can be placed within the modelling-data collection circle

and one of the applications may be data generation.

It is hoped that such a methodology will lead to a more flexible approach to 

statistical modelling.
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7.5 Statistical M odelling o f B iological Growth -  Some G uidelines

The aim of this section is to combine the general approach and methodology

developed in this Chapter with the models and techniques described and developed 

in Chapters 1 to 6. The steps suggested in Section 7.4 will be used as a 

framework for guidance as to the most appropriate model to use in different

circumstances.

(1) Conceptual Analysis

(i) The first aspect to be considered is the reasons for the investigation 

and what goals have been set. The goal might be as vague as ’to 

increase understanding of the growth of x’ or it might be more 

specific such as ’to compare the effects of treatments A and B on 

the growth of x \ The type of goal will effect the choice of model 

type as considered in (2).

(ii) Data structure and availability has also to be considered. The 

number of observations will effect the type of models that can be 

considered. If only a small number of observations are available 

then the fitting of complex Kalman filter type models would not be 

advisable. Model identification also becomes a problem with a 

small number of observations per growth series. While it is possible 

to fit, say, the Richards function to 4 data points, indeed the 

optimal design considered in Section 3.5 consists of repeated 

observations at 4 distinct points, this does not give any indication 

as to the fit of the model. Only if there were strong apriori 

reasons for using the model would it be reasonable so to do under
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these circumstances. In which case these reasons form an important 

aspect of the modelling process.

The correlated error structures considered in Chapters 1 and 4 will 

need to be considered in all growth studies. .While they will be of 

greatest importance when" an individual is followed through time, 

even in the situation of sampling from a growing population there 

is still the possibility of correlated errors due to correlations in the 

variation of the common environment. The form of the error

structure will be shown to be the key to the choice between certain

model types and careful consideration is needed at an early stage.

Prior knowledge forms an important aspect of the modelling process. 

Previously used model may effect the choice of model and the 

experimental design for data collection. However it is important

not to be too restricted by past models. For instance if the linear

models considered in Chapter 1 had been used in the past the 

design of an experiment suitable for such a model w^ould probably 

exclude the fitting of a Kalman filter type model. An openness to 

the broad range of models considered in this study is important at 

all stages.

In some situations if there is accurate knowledge of the value of 

some of the basic growth parameters this can be included in the 

fitting stage of the modelling process.

Other external variables eg temperature, nitrogen availability, may 

be required to be included in the model. This will also be the 

case when a comparison is to be made.



The variables to be examined and how these variables enter the 

model needs to be considered in detail. The simplest structure is to 

use a linear predictor

V = E Pi * i j  
i

where Xj’s are the external variables. The rj function can then be 

related to a simple model parameter through a link function eg 

a = exp(rj) o r  a: = or0 + 17.

The situation and the evidence given by the data will help to select

the appropriate model. It may also be required to relate the x’s to 

more than one parameter. Knowledge of the relationships from 

other studies is important here.

(vi) Finally the choice of growth variable to be modelled has to be

decided upon, also whether the possible variables are to be 

considered separately or jointly.

Having assembled the above ideas and information the modeller can then proceed to 

the next step.

2. Model Type Generation

The model types considered in this study are:

(a) Linear models (Section 1.3)

(b) Static models, or non-linear regression models, with or without correlated

errors (Chapters 3 and 4)

(c) Dynamic models in discrete time (Section 5.2)
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(d) Dynamic models in continuous time (Section 5.3)

(e) Multivariate models (Chapter 6).

In order to select one of these model types the following four questions need 

to be considered:

F igu re  7 .5  ( i )

L in ear

L in ea r models 
(Sec 1 .3 )

Mult iv a r ia te

Stat

N on-1inear

U n iv a ria te

nami c

N on-1inear Dynamic S ta t ic  / \  Dynamic
A 1lom etric Mult iv a r ia te
(Sec 6 .2 ) (Sec 6 .3 )

N on-1inear 
r e g re s s io n  
(Chs 3 + 4) Cont inuous 

t ime.
D is c re te

ime

S to ch ast ic S to ch as t ic
Di f f e r e n t  ia l Di f f e re n c e
Models Models
(Sec 5 .4 ) (Sec 5 .3 )
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(A) Linear or non-linear?

(B) Univariate or multivariate?

(C) Static or dynamic?

(D) Continuous time or discrete time?

These lead to the decision tree shown in-figure 7.5(i). Each of these decisions will 

now be considered.

A. Linear or non-linear?

The following points need to be considered.

(i) The amount of data available.

A small number of intervals in the recorded growth series, say less 

than 8 , would exclude the use of non-linear models unless there 

were other reasons for selecting a particular model. The situation 

in which one might consider a non-linear model is if at least 3 of 

the points were clearly close to the maximum growth eg

*

1

><
1

X 
1 1

T

•

X

X
X

Time

Here a polynomial model would give a poor fit. However the data 

could be split into two as shown in the diagram. The first part 

could then be analysed using a polynomial model, the second part
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by a constant model.

(ii) The purpose of modelling.

If the purpose is just to compare different groups then the 

polynomial model may be adequate. In these models linear and 

quadratic components of growth are compared. If such comparisons 

are what is required and are meaningful in the given situation then 

the relative simplicity of the linear models would favour their use. 

Higher order comparisons are also possible with the polynomial 

models but their interpretation is more problematic.

In the situation where a more detailed comparison involving more 

biologically meaningful parameters is required the linear polynomial 

may well be useful in an initial screening process giving a rough 

indication as to which curves are different. If the aim of the 

model is for it to be incorporated into a larger system model then 

there will probably be advantages in using the differential equation 

based non-linear models. For instance the differential equations on 

which the model is based could be used in a larger systems

dynamic model.

(iii) Statistical properties versus reality.

The main advantage of the linear polynomial models is in the well

known properties of the estimators. Also the models can

incorporate a general error structure giving a flexibility in that

respect that the non-linear models do not possess. However there is 

no straightforward understanding of these models in terms of growth 

dynamics. They also represent a dead end as far as model building 

is concerned since extensions and refinements to these models is
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limited.

The above show what needs to be considered in selecting between linear and 

non-linear models.

B. Univariate or Multivariate

In most situations interest is focussed on a particular dimension of growth thus 

the univariate models would be used. These may also help to identify suitable 

multivariate models.

The linear models can easily be adapted to a multivariate situation and the 

fitting of non-linear models has been considered in Chapter 6 . However in the 

latter case while it is possible to fit models to large dimensions this may prove 

difficult in practice due to the large number of possible parameters. Some of 

these problems would be overcome if a simplified structure was used in the 

model on apriori grounds. In two dimensions such modelling is reasonable as 

shown in Chapter 6 .

C. Static or dynamic?

In order to consider this choice the state space model as used in the Kalman 

filter modelling needs to be considered. (Using continuous time only for 

convenience)

~  -  g (x , t ) + e t ,v a r (e t ) -  Q

y -  h ( x , t )  + e t >v a r ( e t ) « R
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In particular the following measurement equation can be considered 

y = x + et

Now if Q is negligible and x = f(t) is the solution to the deterministic 

equation

d x  /  *  \  

d i  -  s ( x ’ c )

then

y = f(t) + et

ie a non-linear regression (static) model. If R is negligible then y = x so

5 ^ -  s ( y . t )  + £ t

ie the stochastic differential equation models considered in Chapter 5. So both 

can be seen as submodels of the Kalman filter type model. The choice 

between such models then reduces to the consideration of the two errors; the 

propogation error and the measurement error e t .

A further relationship between the non-linear models considered in this study 

can be seen by considering the simple discrete time model presented in Section

5.2.1

xt = Xxt_ , + e t , e t independent 

This has solution

t - i

x t -  \ t x D + I  
i - 0

combining with a measurement model 

yt = xt + et

gives

yt = xtx 0 + ut

where
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t - 1

U t  =  I  +  e t
i = 0

ie a non-linear regression model with an error that can be considered as an 

ARMA error. In a more general case the expected value solution to the

stochastic state space equation will not be the same as the solution to the

deterministic part of the equation. Approximate solutions can be obtained using 

Taylor’s series approximations as Considered in Chapter 5.

Thus for practical purposes many of the Kalman filter type models could be 

replaced by suitable static models with auto correlated errors. Given the above 

the choice between static and dynamic models on the following considerations.

(i) If the propogation error variance, Q, is negligible compared to the

size of the variable being considered and the measurement error 

variance, R, then a suitable non-linear regression model may be

used. This situation could partly be identified by the errors having 

the appearance of being independent and also by a consistency in 

the curves between individuals. Such observations chould be made

by the initial fitting of non-linear regression models as a guide to 

form and to provide an estimate of error. Alternatively spline 

curves, high order polynomials or moving average models may fulfil 

this role in certain cases.

(ii) If by considering the way the data was collected it can be assumed 

that the measurement error variance is negligible then a stochastic 

differential/difference equation models can be used.
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(iii) Otherwise the Kalman filter type model should be used or possibly

a non-linear model with ARMA errors.

D. Continuous time or discrete time?

The choice between continuous and discrete time formulations will generally 

only occur for dynamic models since the static difference models can be solved, 

analytically or numerically, and the solutions treated as an ordinary static 

model. As was discussed before, the discrete time models are most natural 

when considering populations with non-overlapping generations, but can be used 

for any growth situation in which observations are taken at equally spaced time 

points. The stochastic difference equation model is more easily understood than 

the differential equation model, the stochastic differential being a rather 

complex mathematical concept. Hence there may be some who will prefer to 

use such models rather than the more common differential equation based 

models. Models of at least approximately the same behaviour from both classes 

can be found so it reduces to a matter of personal preference.

The above provides guidelines by which classes of model should be investigated. 

At this stage more than one class of model may be investigated and, if 

required, final selection being made at stage (4).

(3) Model Building

Having selected suitable classes of model for further investigation the most 

appropriate model from each selected class has to be chosen.
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For linear models the order of the polynomial model can be selected by 

standard tests on additional terms in the model (eg test for cubic over 

quadratic).

{

For non-linear models the three stages of identification, fitting and validation 

need to be considered in more detail.”

(i) Identification

The identification of a suitable model can be assisted by the 

graphical method given in Section 2.3. This will indicate a suitable 

form for the growth rate equation or relative growth rate equation.

A second important aspect will be to acquire a knowledge of what 

is the intrinsic variation in the data. The methods of Section 2.5 

provide an aid. This will show when one has a reasonably fitting 

model.

(ii) Model fitting

Consideration of fitting has been covered in Chapters 3 to 6. Prior 

knowledge of approximate parameter values can be of considerable 

use and the method of Section 3.6.2 can then be used.

In Kalman filter type models it may be necessary to try to obtain a 

reasonable idea of the values of the variances Q and R in order to 

find satisfactory estimates of parameters of most interest. The 

fitting of the simpler non-linear regression models, perhaps with
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auto-correlated errors, will often be useful here as will the methods 

of Section 2.5 on estimating the inherent variability.

(iii) Validation

For simple non-linear growth models the methods described in

Section 2.2 provide both model identification and model validation 

techniques. Validation for the dynamic models can be carried out 

using the independent normal residuals considered in Chapter 5 and 

in particular for the Kalman filter on page 134.

One other important aspect of the validation of a non-linear model is to

examine the effect of non-linearity. It was shown in Section 3.3 that the 

examination of the sensitivity coefficients in the case of the Richards function 

was not very informative and higher order measures were needed (Section 

3.4.5). The measures of Bates and Watts discussed in Section 3.4 wrere seen to 

be reasonable when compared with the estimates of bias produced by Causton 

and Venus using simulation. The evaluation of the measures along with Box’s 

estimates of bias should be routine in the fitting of non-linear regression 

models. If the measures indicate more than low non-linear and bias it is 

doubtful if the model should be used. For this reason flexible but complex

models like the Richards which are vulnerable to high non-linearity should be 

treated with caution and may not prove as versatile as they may seem.

In theory it should be possible to evaluate such measures for the Kalman filter 

type models fitted by least squares. However, the required derivatives would 

have to be calculated numerically and the method may prove too complex in 

practice.

-  2 4 5  -



The above considerations may lead to more than one model of a particular 

type. In view of the problems that may be encountered with over complex 

models it may be better at this stage to have two different but relatively 

simple models of a particular type rather than one over complex model.

(4) Comparison of Models

If more than one model type has been considered or if as a result of the 

stages described in (3) more than one model of a particular type is under 

consideration then at this stage models are to be compared. The results from 

the different models have to be checked for consistency and any inconsistent 

results carefully checked and examined. The most appropriate model for the 

particular aim of each part of the investigation may then be selected.

(5) Generation of further models

If the models are felt to be inadequate further models may be considered and 

fitted. Models of a different type may need to be considered if those of the 

types considered either do not produce reasonable estimates or do not fit 

adequately. This may be due to being either over complex for the situation or 

of the wrong structure. If bias in the non-linear regression models has been 

found to be a problem then the methods of Section 3.6.3 could be used.

(6 ) Application and appraisal

The final critical evaluation of the modelling exercise is whether or not it has 

been helpful to the biologist. The biologist needs to be both open to the 

insights the models may generate and also critical of assumptions and intensions
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of the modeller who is helping him. It is important that the modelling is an 

integrated part of the whole problem situation and not seen as a pleasant 

pastime for statisticians.

-  2 4 7  -



8. Plant Growth Modelling

8.1 Introduction

There are many aspects of the growth of a plant which one would be interested 

in modelling. These include

(i) Plant height

(ii) Plant weight (usually dry matter)

(iii) Leaf size (weight or area)

(iv) Chemical content of plant eg nitrogen, carbon, protein etc.

The plant is a complex system and there are many ways in which it can be

broken down into various elements, some of the possible sub-systems are

(i) Roots/shoots

(ii) Structural dry weight/storage dry weight

(iii) Maintenance respiration/growth respiration

(iv) Carbon pool/Nitrogen pool

(v) Vegetative/reproductive

The plant can therefore be considered at various levels. One approach is to 

consider only one level and to model that independently of the other aspects of 

the plant. Another approach is to try to combine elements from different 

levels to produce a model for the system (or a particular sub-system). This 

approach will now be considered.
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8.1.2 M odelling the whole plant

There are several basic components of a model for a whole plant

(i) Uptake of nutrients

(ii) Production of assimilates (photosynthesis)

(iii) Partition of assimilate

(iv) Respiration

(v) Redistribution of plant resources in relation to reproductive

growth or leaf death

The uptake of nutrients is related to water availability, the soil structure and 

the form of the elements, and the root structure of the plant.

Models for photosynthesis vary in complexity from the simple rectangular 

hyperbola to complex chemical based models such as those of Charles-Edwards 

and Ludwig (1974 and 1975) and Hahn (1984). Total photosynthesis will be 

related to leaf area. One important aspect of the partition of the photosynthetic 

products is between shoot growth which will increase the leaf area, and hence 

the amount of photosynthesis, and the storage of materials in roots. This is of 

particular importance in crops like carrots and beet.

Respiration will contain a component dependent on size, concerned with the 

maintenance of metabolic activity. A second component is related to the 

growth of the plant.

The various parts of the model are connected to produce a model that simulates 

the behaviour of the whole plant though the individual parts will be based on 

data at the different levels indicated above.
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8.1.3 Examples

From the- vast range of possible examples the following have been chosen to 

illustrate both the techniques considered in earlier chapters and the different 

approaches available to the modeller. First, two examples of plant growth will 

be considered, then a discussion of modelling approaches will be undertaken, 

illustrated with reference to leaf growth.

8.2 Plant Growth - Barley

The data to be considered is given in table 8.2(1). It is the total dry weight 

per metre squared of ground for Proctor Barley measured at weekly intervals.

8.2.1 Model Identification

A plot of the data is given in figure 8.2(1) and smoothed estimates of the 

relative growth rate are shown plotted against time in figure 8.2(2). These 

were obtained by using the method of section 2.3. Local orthogonal 

polynomials of degrees 2 and 3 were fitted to either 7 or 5 running points 

[they will be referred to as OP(n,p) where n = number of points, p = degree 

of the polynomial].

Except for OP(5, 3) they give a fairly smooth downward curve. OP(5, 3) is 

less smooth as would be expected and shows a small local peak.

Figure 8.3(3)shows OP(5, 2) plotted against a smoothed estimate for weight, W. 

This was obtained using a 5 point moving average with end adjustment. The 

smoothed curve is also shown in figure 8.2(1). The relative growth rate in 

figure 8.2(3) shows an approximate linear decreasing trend. This indicates the
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use o f a logistic m odel

y = K /(l + exp(-(0 + rt))

Table 8.2(1)

Date Total Dry Weight (g n r2)

24 Apri 1 81

3 May 151

10 May 172

17 May 294

24 May 424

31 May 576

7 June 705

14 June 808

21 June 894

28 June 1017

5 July 1048

12 July 1189

19 July 1133

26 July 1203
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The intrinsic variability was estimated using polynomial models as suggested in 

section 2.5. Fitting a polynomial model to all the data the following result was 

obtained.

Degree of Polynomial 

0 

1 

2

3

4

5

suggesting a 7 ^  850 

If the final 3 observations are omitted

Degree of Polynomial Residual Sum of Squares

0 1278000

1 17600

2 17460

3 3182

4 • 2981

5 2811

suggesting cr2 ss 450

The variance of the last 3 points : i$  1372, thus indicating possible variance 

increase with size. Therefore, using a logarithmic scale for all the data

Residual Sum of Squares 

2169000 

57360 

36670 

11080 

8458 

8447
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Degree of Polynomial 

0 

1 

2

3

4

5

6

Residual Sum of Squares 

10 . 10  

1.322 

.07808 

.06163 

.05539 

.05414 

.05414

suggesting a 2 -  0.006

8.2.2 Fitting Static Models

Using SAS the logistic model was fitted to the data using the natural and 

logarithmic forms. This gave results

Parameter 

k ( lo g (k ))  

13

Natural

1223.24 (7.1093) 

-2.9401 

0.4540 

932.8936

Logarithmic 

1199.91 (7.0900) 

-3 .0616 

0.4823 

0.0050

Plots of the residuals from both models did not give any clear preference. 

However, in view of the results of the previous section and comparing estimates 

of a 2 the logarithmic version is to be preferred.

The logarithmic version was fitted with auto regressive errors as considered in 

chapter 3. With an AR(1) error the estimates are

-  2 5 6  -



Parameter Estimate

-0.5038

log k 7.0914 (k = 1201.59)

(3 -3 .047

r  0.4784

The change in deviance for the auto regressive term was 4.05 which -was 

significant at the 5% level.

When trying to fit an AR(2) model the estimates did not converge. Given the 

low significance of the AR(1) this indicates that the second term is not needed.

8.2.3 Dynamic Models

The difference equation model

a x t - i  Xt-T ^ ,
+ 1 4- k v t » v a r ( e t ) -At _ -  —  T"b_x ~ ;

w'as considered in section 5.2.6 and is related to the logistic with

a = & and b = (eT - l)/k

This was fitted using the Kalman filter as described in section 5.2.6 with 

measurement equation

yt = xt + et , varCej) = a2

writing q = X a 2 the following estimates were obtained



Param eter Estimate

a 1.6050 ( r  -  0.4731)

b 0.000498 (k -  1214.86)

X 0.5280

Xg 58.3396

cr2 560

The stochastic logistic model

dxt = pxt(l - xt/k)dt + xt(l - xt/k)d/3t 

was considered in section 5.3.3. The pdf can be written as

1f ( x t> t | x 0)
<J2*r2) x t ( l  -  x t /k )

rXt ( k  -  X g )f 1 f,  fx t (,K -  x 0; ^
exp .[-  5 ^  log  [Xo(k .  ) -  r t j  ]

and

log  l ik e l ih o o d  L = E log ( f ( x t , t | x t - 1 )
t

If the observations are equally spaced with time interval r then letting 

gt = log(xt/ ( l  - xt/k))

L = const -  —  log or2 + n log k + I  gt 

-  5 5 3 7  Z<St -  S t - 1  -  r  t )

Let

s = L(gt - i t - 1 “ r r ) 2

then

= S/ n r 

r = (gn g 0)/n r
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Substituting these results in L, x 0 and k can be obtained by maximising 

L* -  -  ^  log s + n log k + E gt

This was carried out using the Nelder-Mead algorithm (Appendix A).

The following estimates were obtained

Parameter Estimate

r  .3513

k 1408.70

o-2 .05741

Xq 57.7941

(Note estimate of a2 is similar to that obtained on the log scale)

A

As the value of r is highly dependent on the final observtion, the last two

observations were deleted and the results were

Parameter Estimate

r  .4156

k 1387.38

cr2 .03255

x n 54.5476

Finally the application of the Kalman filter to the logistic model was 

considered. This was examined in section 5.3.7. Problems were encountered in 

minimising 5.3(50) ie 

E zt 2/(pt'_ + R)
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over the 5 parameters of the model, r, k, ^  , Q and R. In the light of this, 

particularly with the small size of the data set, suitable values of Q and R 

were selected and 5.3(50) minimised over r, k and ^  only. Some of the 

results obtained using a single propogation step with P0 = 0 were

Parameter Estimates

R = 450 Q = 200 R = 450 Q = 300 R = 600 Q = 200 

k 1282 1308 1281

r .4767 .4670 .4781

x n 95 8 8  70

Similar results were obtained from more complex propogations. The value of

x 0 is greatly affected by the choice of R and Q, but this parameter is of little

interest. The r parameter appears to be reasonably stable.

A larger data set is needed for such a complex model.

8.2.4 Comparison of Results

Table 8.2(2) summarises the estimates of the parameters r and k using the 

different methods considered in this section.

There is little empirical evidence to choose between the different models. A 

test showed that (3) is to be preferred to (2) in spite of independent sampling.

The results from the Kalman filter depend on the values of Q and R, if Q was

negligible the results should be similar to the least squares estimate ( 1 ). 

However, more data is required for a successful use of this method. The

stochastic differential equation model fitted to all the data gave a result out of



line with the rest. When the final two observations were removed a more 

reasonable result was obtained. It would be reasonable to assume that the 

stochastic nature of the situation would change as the crop reaches senescence. 

The difference equation model was most compatible with the static models.

The distinction will have to be made between the models at a conceptual level 

rather than at an empirical level.

Table 8.2(2)

Numbe r Method
A

r k

1 Least Squares .4540 1223

2 Least Squares (lo g  model) .4823 1 2 0 0

3 AR(1) e r ro r  model .4784 1 2 0 2

4 D ifferen ce  Equation .4731 1215

5 S to c h a s tic  d i f f  eqn (14 obs) .3513 1409

6 S to c h a s tic  d i f f  eqn (12 obs) .4156 1387

7 Ka1 man F i l t e r  1 .4767 1282

8 Kalman F i l t e r  2 .4670 1308

9 Kalman F i l t e r  3 .4781 1281

8.3 Plant Growth - Sycamore

8.3.1 Introduction

The data to be examined was presented by Causton (1969). It illustrates the

problems in fitting the Richards function and motivated much of the work of 

chapter 3.
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The data was for the growth of first year seedlings of sycamore (Acer 

pseudoplatancis). Harvests were taken at 2-weekly intervals. The data is given 

in table 8.3(1).

Table 8.3(1)

Weight of seedling of sycamore

Week Weight.(gms)

2 0.3898

4 0.8110

6 1.293

8 1.840

10 2.590

12 3.770

14 5.610

16 9.698

18 12.56

20 21.85

22 23.72

24 20.03

8.3.2 Causton’s Original Work

Causton (1969) fitted the Richards function in the form 

logct) = a -  i  log  (1 + B e ^ )

which gave values
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Estimate 

3.0772

7.7020 x 104 5  

-5 .2460 

25.0180

The more usual parameterisation with 

P = log (B) 

would give

(3 = 105.6578

Also

m = — = 0.040 n

8.3.3 Davies and Ku’s Work

Davies and Ku (1977) examined the problem and showed that for a range of 

different starting values different minimums were obtained. Their results are 

reproduced in table 8.2(2). They concluded that

’The only stable parameter is a. There is an extensive, almost stationary 

ridge given by b/k = “ 20.1, mk = 0.309, b > 25 and any point on this 

ridge, depending on the starting point, could be reached on applying the 

Newton-Raphson method’.

Work carried out by Drajek (1985) partly confirms these results but showed that 

they were machine dependent, in that different results were obtained from 

different computers.

Parameter

a

0

k
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Table 8.2(2)

D avies and K u’s Results

Set
S ta r t in g  Values "Converged" Values

m
Res Sum 
o f  Squares

0 k 0 k

1 10 .0 -  0 .5 10 .14 -  0 .504 -0 .4341 3.200 0.167348

2 20.0 -  1 .0 20.17 -  1 .003 -0 .2119 3.108 0.135960

3 50.0 -  2 .5 50.18- -  2 .490 -0 .0844 3 .084 0.119630
4 100.0 -  5 .0 100.2 -  4 .975 -0 .0422 3.078 0.116020

5 200.0 -  10 .0 200.3 -  9.951 -0 .0211 3 .074 0.114818

6 500.0 -  25 .0 500.6 -  24.89 -0 .0 0 8 4 3.070 0.114399

7 1000.0 -  50 .0 1001 -  49.81 -0 .0042 3.069 0.114356
8 1500.0 -  75 .0 1502 -  74 .73 -0 .0028 3.069 0.114354
9 2000.0 -1 0 0 .0 2003 -  99.64 -0 .0021 3.069 0.114354

10 2500.0 -1 2 5 .0 2504 -124 .6 -0 .0017 3.069 0.114354

11 3000.0 -1 5 0 .0 3004 -1 4 9 .5 -0 .0014 3.069 0.114354

12 3500.0 -1 7 5 .0 3505 -1 7 4 .4 -0 .00120 3.069 0.114354

13 4000.0 -2 0 0 .0 4006 -199 .3 -0 .00105 3.069 0.114354

14 5000.0 -2 5 0 .0 5008 -2 4 9 .2 -0 .00084 3.069 0.114354
15 6000.0 -3 0 0 .0 6010 -2 9 9 .0 -0 .00070 3.069 0.114354

16 12000.0 - 6 0 0 .0 12020 -5 9 8 .0 -0 .00035 3.069 0.114354

8.3.3 Measures of Non-linearity

For a selected number of results from Davies and Ku the measures of 

non-linearity and bias estimates were calculated for the usual model with the 

parameter n and also the model with the m parameter. These results are given 

in tables 8.3(3) and 8.3(4) respectively. In all cases the measures of bias are 

highly significant and there is considerable bias. Beyond solution (4) the results 

show massive bias as one would expect. The results for both models show a 

similar bias.
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Table 8.3(3)

So Iut i on pN
7T "e Bias

a n b k
1 .8923 17 .8 779 9 . 9 1 8 4 .0255 . 0757 .8101 3 .3 94 8 .1709
2 1 .4 71 3 13 . 322 3 5 .9 11 2 .0751 .0439 5 . 2 3 7 22 .10 28 -  1 . 09 9
3 1 .47 32 17 .3 725 11 .90 79 .681 .0252 73 .5 383 310 .45 73 -  15 .3859
4 0 .1 0 78 32 .8041 4 8 . 6 0 9 2 .0004 .0021 711 .7800 3005 .9041 -1 4 9 .1 2 3 7
6 .7522 691 .73 68 21366 .0177 .0000 l x l O 6 6 x l 0 6 -312629
9 7x105 2 x i 0 6 2 x 1 0 1 i 2 x 1 0 ’ o .1743 2 x 1 0 13 9X1013 - 4 x 1 0 ’ 2
14 1x105 2x105 3x108 4 x l 0 8 .0000 9 x 1 0 ’ 1 4 x 1 0 12 - 2 x 1 0 11

Table 8.3(4)

Solution rN rT Nfl N̂ , a m b k

1 .8921 118.9 441.6 .0254 .0757 .0752 3.393 -.1708

4 .1079 6171 lx lO 6 .0004 .0021 .1771 3007.6 - .1 4 9 .2

6  .3753 1x10s 7 x l0 1 0  .0044 .0000 53.1847 6x10s -3 x l0 5

Can the bias be minimised? To attempt to minimise the bias fixed values of 

m were taken and the remaining parameters were estimated by least squares. 

Using all four parameters the bias and non-linearity measures were computed. 

The minimum non-linearity was when m = .568 this gave
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r T = 111.20 N 0 = 386.6

both very large, however the estimated bias was

Parameter Bias

a .1049

m -.1319

(3 1.9453

k -.0997

The large values of F^ and N# must be compared with the smallest values 

from table 8.3(4). The m parameterisation gives a much higher non-linearity

measure than the n parameterisation.

The above results suggest that the best of Davies and Ku’s solutions is 0 )  

which will have minimum bias. It is worth allowing the residual sum of

squares to increase from .1143, the minimum, to .1673, an increase of .053 for 

the superior properties of the estimates.

8.3.4 Using the Method of Section 3.6.2

Instead of minimising the residual sum of squares the function Sx (3.6(8)) was 

minimised. As the key to the fitting is the m (or n) parameter only this was 

considered. Hence

Sx = 12X(m - m 0 ) 2 + I(log co - f ( £ ) ) 2

The value of m 0 was selected as the value for minimum bias, m 0 = 0.568.

For a range of values of X the following results were obtained

- 266 -



X .1 .5 1

a 3.2503 3.2729 3.2756

P 8.5904 8.0492 7.9910

k -0.4263 -0.3991 -0.3962

m 0.5205 0.5591 0.5636

(It is interesting that for Davies and Ku’s set 1 results as starting values 

and X = 0 the SAS program did not converge).

The results illustrate that even for a low value of X the results are confined to 

a more acceptable region.

8.4 Modelling Leaf Growth

As was mentioned in chapter 3 Causton and Venus (1981) make extensive use 

of the Richards function as a model for the growth of a leaf both in terms of 

area and dry weight using the form

log y - log a  - - log i  + + k t >

Interpretations of these parameters are

(i) a is the maximum size of the leaf

(ii) n controls the shape of the growth curve (Causton and Venus

(1981) p 93)

(iii) (3 has no biological significance it only shifts the time axis

(iv) k is a growth rate constant but its meaning depends on the

value of n
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Several biologically relevant combinations of parameters have been suggested 

(Richards (1959), Causton and Venus (1981)). These include

(v) a weighted mean relative growth rate over the whole growth

period

R -  k /(n  + 1)

(vi) a weighted mean absolute growth rate

G = o?k/2(n + 2)

(vii) the time required for the major portion of growth, sometimes

called the duration of growth

d = 2 (n + 2 )/k

In addition to these parameters the relative growth rate as a function can be 

derived from the fitted Richards curve.

Instead of using a Richards function other statistical models have been 

suggested, these being fitted to the logarithm of size 

Polynomials

Segmented Polynomials 

Splines (cubic)

These will often provide a simpler estimation procedure for the estimation of 

growth rates (Nicholls and Calder (1973), Hunt and Parsons (1974), Elias and 

Causton (1976), Hunt and Parsons (1977), Parsons and Hunt (1981), Hunt (1982 

a, b)).

Venus and Causton (1979) and Causton and Venus (1981) defend the use of the 

Richards function on the grounds



(a) more biological meaningful parameters

(b) no problem with model choice

In agreement with (a) the Richards function (or other suitable asymptotic 

function) will provide an estimate of the maximum size. This is the major 

weakness with polynomial based models and only with careful placement of 

knots can a reasonable fit to the .asymptote be obtained. Given a measure of 

maximum size, useful indicators giving the time of growth to a given proportion 

of that size can be obtained. As was shown in chapter 3 log a is the most 

stable parameter of the Richards function to estimate, so this aspect is an 

advantage for the Richards function approach.

The other advantage the parameters of the Richards has is in giving a simple 

indicator of shape, which is not possible for the polynomial models. However 

as shape is given by the parameter n and this parameter is the one that causes 

all the estimation problems this advantage is less than it may at first seem. 

Any comparison of the values of n needs to be treated with great caution.

Although more choice is required for polynomial models, degree and/or position 

of knots, they as a consequence make the user think about his data. There is 

a great danger in using an automatic model like the Richards specially when it 

has severe estimation problems.

An alternative approach to leaf growth modelling is provided by 

Charles-Edwards (1979). He produces a mechanistic model. He aims to use 

information on the chemical components of leaves based on experiments using 

approaches such as 14c labelling. The structure of the model is given in figure 

8.4(1). There are a total of 11 variables in the model
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1 Mass of labile nitrogen

2 Mass of labile carbohydrate

3 Mass of tissue water

4 Mass of degradable

5 Mass of non-degradable structure

6  Leaf volume

7 Leaf area

8  Leaf thickness

9 Ambient C 0 2

10 Light flux'density

11 Time

(available ions)

These are related by a series of differential equations.

Figure 8.4(1)

T
r
a
n
s
1
0 
c 
a 
t
1 
o 
n

Photosvnthesis

Respiration
Labile
Nitrogen

Non-degradable
Structure

Degradable
Structure

Tissue Water

Labile
Carbohydrate

There are also a total of 16 parameters in the model. Charles-Edwards carries 

out simulations of the model for given values of the parameters, initial values 

of variables 1 to 8  and values of the exogenous variables 9  to 1 1 .
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Estimates of the 16 parameters would have to be obtained from a number of 

different experiments and it is open to question whether these can be combined 

in one model. There is no account for the inherent variation in the model but 

a stochastic differential equation analogue would be possible. As some of the 

differential equations are non-linear the expected value of the stochastic model 

would not be the same as the solution to the deterministic model.

Estimation of some of the parameters could be achieved by recording values of 

variables 6  to 11 and using the Kalman filter estimation procedures considered 

earlier. This would require a great amount of data. It may also be possible to 

record other variables such as leaf mass, photosynthetic rate etc which could be 

used to estimate parameters as such variables play an implicit role in the model

The mechanistic model and the empirical model both have a part to play in the 

understanding of the growth of a leaf. The mechanistic approach still has 

many statistical problems to overcome, indeed the Richards function is not free 

from them. The use of the simpler polynomial based models will often provide 

a useful check on any results or conclusions derived from a more sophisticated 

model.

8.5 Conclusions

This chapter illustrates the wray a wide range of stochastic models can be used. 

The different types of models will often have different levels of interpretation 

and these should be viewed as complementary rather than in conflict. The 

importance of the range of models to be considered needs to be emphasised at 

the data collection stage. Adequate data for mechanistic type stochastic models 

can then be obtained.
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It is to be hoped that complete systems models using the ideas considered in 

the first part of this chapter will one day be available to the statistical 

modeller.



9. Statistical Models for Human Growth

9.1 Introduction

There has alw-ays been a fascination with recording the growth of a child. 

Indeed one of the most famous sets of data was recorded by the Count de 

Montbeillard between 1759 and 1777.

One of the main features of the growth of an individual is the adolescent spurt. 

The peak growth velocities for girls is between 12 and 13 years of age and for 

boys between 14 and 15 years of age. In general for early maturers the 

growth process goes more quickly and more intensely so that a greater total 

growth is achieved. There is some evidence that economic privation may slow

the rate of skeletal development. There is also a seasonal effect to growth.

Growth in height being fastest in spring while growth in weight is fastest in 

autumn. The fundamental control of the rate of growth seems to be genetical

but malnutrition can have an enormous effect.

Many models for the growth of an individual have been proposed to reflect the

complex pattern that is observed. these will be reviewed in this chapter and

tw'o new models developed. These models will be applied to data on the 

growth of a child and the way in which dynamic models could be used will be 

considered.

9.2 Models for Grow-th

9.2.1 Pre-adolescent Growth Models

Two basic models have been used for pre-adolescent growth
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(i) The Count model

y  = @o + t + 0 2 log t + e 

(Count (1943), Guire and Howalski (1979), Berkey (1982))

(ii) The Jenss and Bayley model

y = (30 + 0, t - exp(02 + 03 t) + e 

(Jenss and Bayley (1937), Guire and Howalski (1979), Berkey (1982)).

These models may then be combined with a Gompertz curve for the adolescent 

period.

Berkey (1982) compared the two models using data from the Longitudinal

Studies of Child Health and Development at the Harvard School of Public

Health (Stuart and Reed (1959)). She concluded that the Count model does not 

adequately fit either weight o r length for the period three months to six years, 

but does discriminate reliably between individuals. The Jenss and Bayley model 

fitted well except for a minor problem near six months. The main advantage 

of the Count model over the Jenss and Bayley is that it is linear in the

parameters.

Models for the entire growth periods are the mixture of logistics or the

compounded logistics as considered in chapter 3.

9.2.2 Bock Models

Bock et al (1973) introduced the double logistic model

_  __________ f j________________ f  -  a i__________
^  1 + ex p (- b ^ t  -  c , ) )  1 + e x p (- b 2(t  -  c , ) )

where



-  upper l i m i t  o f  p r e p u b e r t a l  grow th

b -  i n i t i a l  RGR o f  p r e p u b e r t a l  g r o w t h

c -  l o c a t i o n  i n  t i m e  o f  p r e p u b e r t a l  g r o w t h

f m a t u r e  s i z e

a 2 = ( f  -  a , ) -  c o n t r i b u t i o n  o f  a d o l e s c e n t  g r o w t h

b 2 -  i n i t i a l  RGR o f  a d o l e s c e n t  g r o w t h

-  a g e  a t  maximum r a t e  o f  a d o l e s c e n t  g r o w t h

A development of this model is the triple logistic Bock and Thissen (1976)

a 1 - upper limit of prepubertal growth

b 1 - initial RGR of early childhood growth

c 1 - age at maximum rate of early childhood growth

b 2 - initial RGR of middle childhood growth

c 2 - age at maximum rate of middle childhood growth

p - proportion of prepubertal growth attributable to the middle childhood 

component

a 2 - contribution of the adolescent component to total size

b 3 - initial RGR of adolescent growth

c 3 - age at maximum rate of adolescent growth

Both these models and the Count/Jenss and Bayley-Gompertz combination try to 

model different parts of the growth period with basic growth models.

y  = a

1 + e x p ( -  b 3 ( t  -  c 3) )

where

z 7 5



9.2.3 Preece and Baines Models

Preece and Baines (1978) start by noting that plots of

=

dt ymax - y 

have a sigmoid shape and proposing the model 

ds—  = 7 ( s 1 -  s ) ( s  -  s 0) ie  lo g i s t i c  model

with

57 -  s (ymax -  y)

This leads to the model

ymax ■ y#
y = ymax r1 1 yl /

exp(7 s 0( t  -  6 )  + j  exp(7s,(t - 0))[ / 7

using boundary conditions y = y$ when t = 0 .

A simplified version being obtained when 7 = 1 . This simpler version can then 

be made more flexible by considering s to be the sum of two logistics 

s = p + q

—  = (Pt -  p )(p  - P0) ^  = (q , -  q )(q  - q 0)

setting q 0 = 0  did not seriously affect the generality so the model

^ (y ! - y 0)
y = y , - (exp(pQ(t - 0) + exp(p1(t - + exp(q,(t - 6 ) ) )

9.2.4

As was considered for plant growth the problem of biologically meaningful 

parameters has to be considered. The main parameters of interest are



Adult height

Age at start of adolescent growth spurt

Size at start of adolescent growth spurt

Growth rate at start of adolescent growth spurt

Age at peak growth rate

Peak growth rate

These values can be derived from the model parameters, sometimes via a closed 

form.

Other approaches include the use of polynomials (Joossens and Brems-Heyns 

(1975), Splines (Largo et al (1978) and Rao’s method of transforming the time 

scale (Wingard (1970)).

Discussion of these different models and approaches will be left until after the

examination of the data and suggested models of the next section.

All the models assume an additive error. Examination of residuals has shown 

no evidence of heteroscelasticity (eg Preece and Bains (1978)). The problem of 

non-independence seems to be more serious (Preece and Bains (1978), Bock and 

Thissen (1980)).-

9.2 Two New Models

Plots of the growth rate of children show a characteristic shape as shown in

figure 9.3(1). The shape suggests a mixture of two functions

e “kt and e “k t 2

at different origins. If r is the growth rate then two possible models are



Figure 9*3U)

SMOOTHED GROWTH RATj

/
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r = a e kt + p e -7(t-^)2 (A)

and

r  = o : e k t + / 3 t  e (B)

As

yt = r ( t ) d t

(A) gives

y = cx/k(l -  e _ k t) + (3 e y(t ^) 2dt

as t oo y -» a/ k + i  (5(x/ 7 )^

This suggests the reparameterisation

y == h 0 ( 1  - e k t ) + 2 h 1 j  2 - y ( t - e )

o

so that total growth is h 0 + h, where h, is the adolescent component.

Similarly for (B)

y == h 0( l  - e “k t ) + h., ( 1  - e ”7 ( t - ^ ) 2 

then replacing h0 + h1 by h.

The main difference between the two models is that (A) has a svmetric 

adolescent growth spurt while (B) is skewed. For (A) the peak velocity is at 

t = e Q while for (B) it is at

y j  2

The expression

2
J %

. —7 ( t - 6 ) 2dt
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does not have a closed form but as it is 

$<72 7 (t - 6)) - $<-72 y  e) 

where $ is the standard normal integral. Generally $>(-72 7  6) will be

negligible so the model can be written as 

y = h 0(l - e“kt) + 2h1 $<72 7 (t - 6))

There are many numerical approximations for $< ) (Abramowitz and Stegun 

(1965)).

One final variation can be considered, greater flexibility would be achieved by 

replacing

h 0( l  -  e - k t )

by

h 0 - exp(P - kt)

The models are now

(A) y = h 0 - exp(0 - kt) + 2h 1 $<72 y(t - 0))

(B) y = h - exp(/3 - kt) - h, exp(- y(t - 6)2)

h, h 0, h 15 k, 7 , 6 > 0

These can be seen as extensions of the Jenss and Bayley model.

9.3 Example

9.3.1 The Data

The data is given in table 9.3(1). It is 34 observations on the height of a boy 

from the age of 3£ to the age of 20. The observtions are not equally spaced. 

They are initially twice a year, then at the time of the adolescent spurt they 

are four times a year, finally the frequency reduces to yearly. The data was 

provided by Dr M Preece of the Department of Growth and Development, The
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Institute of Child Health.

9.3.2 Identification

As the data is not equally spaced it had to be adjusted before the orthogonal 

polynomial method of section 2.3 could be used. The quarterly observations 

were dropped and some half year observtions ’invented’ for the final part, 

though this was not vital. An example of the resulting smoothed growth rate is 

shown in figure 9.3(1). This shows the characteristic shape of a decline

followed by a peak centred on age 14.
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Table 9.3(1)

Age Height (cms)

3.501 92.5
4.033 97.3
4.501 100.9
5.096 104.2
5.499 107.4
6.052 1 1 0 . 2

6.510 112.7
7.047 115.6 '
7.510 118.6
8.044 1 2 1 . 2

8.485 123.9
9.041 126.4
9.501 129.1

10.038 131.5
10.496 133.7
11.033 136.9
11.312 139.0
12.030 M in
12.260 142.4
12.510 143.1
12.759 145.0
13.049 146.9
13.258 148.2
13.545 149.9
14.047 153.3
14.333 155.7
14.501 158.1
14.770 160.9
15.038 163.0
15.499 165.8
16.036 168.1
17.033 169.7
18.049 170.5
19.101 171.1
20.041 171.1

9.3.3 Static Models

A number of models were fitted using SAS.The results are given below
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(i) Model A

Parameter Estimate Std Error

h 0 167.3 6.04

h, 8.884 1.106

(3 4.725 0.03123

k 0.1145 0.01402

7  0.5717 0.04323

e 13.8629 0.04503

Resid ss = 34.7281

(ii) Model B

Parameter Estimate Std Error

h 179.42 13.21

log h, 3.1149 1.1034

(3 5.002 .1753

k .1702 .1537

7  .03540 .03251

e 9.5295 1.4556

Resid ss = 93.0888

The parameter transformation to log h 1 had to be used as the iterative 

procedure (Gauss-Newton or Mar quardt) gave negative values of h ,  in the

unrestricted minimisation.



(iii) Bock Double Logistic

Parameter Estimate

a 1 178.53

f 160.28

b 1 0.1781

b 2 -1 .3701

C1 -0 .1304

C2 19.1136

Resid ss = 20.7029

Preece and Baines Model 7

Parameter Estimate

ymax 171.3038

ye 158.64

s o 0.1029

s i 1.1716

e 14.5413

Resid ss = 10.1522

Std Error

2.0105

4.5500

0.0132

0.2282

0.04582

3.1851

Std Error 

0.3274 

0.2745 

0.001540 

.05085 

.05253
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(v) Preece and Baines Model 3

Parameter Estimate Std Error

yi 170.78 0.2003

y 0 160.66 0.3131

Po 0.06892 0.0009094

Pi 0.2438 0.01738

1.3957 0.07224

e 14.7895 0.04556

■n J  ̂ A A /* AResid ss = j .^uoz 

(Note all Std Errors are approximate).

Looking at the residual sum of squares as well as plots of the residuals the best 

fitting model is clearly Preece and Baines Model 3. The non-linearity of this 

model was then checked giving results

rT = .0746 Param eter Bi as

pN = .0049 y i .27 X 1 0 " 4

Ne = . 0 0 0 1 y 0 .73 X ►-* o
1 Xk

. 0 0 0 0 Po .23 X ID" 6

Pi - .2 3 X 1 0 “ 5

<ii .16 X 1 0 “ 5

e .31 X 1 0 " 4

As can be seen there is negligible non-linearity.

In order to fit this model with an ARMA error the data set was reduced to 24 

equally spaced observations. Fitting the model, assuming independent error, to



this reduced data set gave the results

Parameter Estimate Std Error

yi 169.90 0.8595

y 0 160.38 0.5142

Po 0.07118 0.002405

Pi 0.2680 0.02779

<11 1.5672 0.1618

e 14.7563 0.07755

showing slight differences from the model fitted to the complete data set.

Both an AR(1) and an MA(1) were considered as possible models for the error 

structure. Only the MA(1) showed any improvement and gave the following 

results

Parameter Estimate

MA .1883

y 1 169.93

y 0 160.34

p 0 0.07120

p, 0.2680

q 1 1.5587

6 14.7513

The change in deviance was only 0.34 so was not significant.

It can be concluded that for this reduced data set there is no evidence of

correlation in the errors about this model.
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9.3.4 Dynamic Models

Due to the complexity of the growth over the period considered it would not 

be possible to find a simple dynamic model to provide adequate fit. However, 

if time dependent parameters are used a suitable model may be found. This is 

what Preece and Baines used. To illustrate how a stochastic dynamic model 

with time dependent parameters could be used the following simple model was 

derived.

Using the basic linear growth model

dx w  x
ar “ X(t)x

here X(t) varies with time. This model can be recast in discrete form and a

stochastic error included as was considered in section 5.3.5 

•t
x t = exp X(u)du

t - r
kt - r

Now

. . .  1  dx d , , .X( t ) = — —— = —— log(x)
7 x dt dt 7

is the relative growth rate and can be estimated by the usual formula

-  l o g  y t -  l o g  y t _T 
A t  — *--------------------------------------------------------------

A simple approximation to the behaviour of X(t) for a child is a cubic 

polynomial, p(t). Fitting such a polynomial to the estimated relative growth 

rates for the data being considered, with the final twro observations removed 

gave

p(t) = 1.9087 - 0.5930t + .06547t2 - .0021136t3

The final two observations were removed because there was negligible growth at
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this stage and the observations were a year apart, thus removing them would 

give a better fit by the cubic polynomial.

If

•t
A (t) P(u)du

t - r

when the model can be written in .state space form as 

xt = exp(0 A(t) xt_T + e t 

yt = xt + et

with

var(ct ) = <j2 2 and var(ej-) = cre 2

The parameters, 0, a * and ( £ 2 , can be estimated by maximum likelihood using 

a linear discrete time Kalman filter as in sections 5.2.2 and 5.2.3. The function 

A(t) can be seen as transforming the time scale so as to allow the use of a 

linear model, a similar approach to Rao (1958).

The results were

Parameter Estimate

(3 1.001

a e 2.676

0.00046

The gz estimate being unstable.

A simulation from this model is shown in table 9.3(2) showing a not 

unreasonable result.
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Table 9.3(2)

95.1
97.8

100.4
103.1
105.8
108.5
111.2
113.9
116.6
119.3 
122.1
124.8
127.6
130.3
133.1
135.9
138.6
141.3
144.0
146.7
149.4
152.2
154.9
157.6
160.3
162.9
165.6
168.3
170.8
173.1
175.1

This model is only a simple attempt at a stochastic dynamic model for child 

growth.

A more suitable function for A(t) could be found. The fact that the 

observations are not equally spaced and that the relative growth rate is not 

constant should be incorporated in the variance of the error term. Finally any 

parameters of A(t) which have to be estimated from the data could be 

estimated at the Kalman filter stage, not separately as was carried out in this 

study.

The dynamic approach has potential but needs further development.
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9.4 Conclusions

This chapter has shown the wide range of models available to the modeller of 

child growth. New models have been introduced that illustrate howr the growth 

rate may be modelled using both static and dynamic models.
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10. Discussion

The aim of this study was to examine various models and modelling procedures 

for biological growth situations. One of the key reasons for modelling, as was 

discussed in chapter 7, is to give understanding of the situation being studied. 

In the introduction the statistical approach using linear models was considered in 

some detail. This approach has the advantage of closed form solutions and, 

often, known sampling distributions. However, the unrealistic form of the 

models do not generate much insight into the situation. In general one can 

only talk about linear growth and deviations from linear growth.

This study has concentrated on looking at two alternatives to the linear 

statistical models. First non-linear models derived from deterministic dynamic 

models. The problem of non-independent errors has been considered as well as 

the effects of non-linearity on the properties of the estimates. While doubts 

have been cast over the usefulness of the Richards function others, eg the 

Preece-Baines model, are very promising.

The second approach was stochastic dynamic models. In the use of these 

models the Kalman filter has proved most useful. It is to be hoped that there 

will be a greater use of such models in biology. This may happen as either 

statisticians start to use dynamic models rather than just static regression models 

or mathematical modellers, who often use dynamic models, start to -take the 

stochastic element seriously.

The three types of models: linear, non-linear and stochastic-dynamic, need not

be seen as separate alternatives but as complementary, each giving its own 

insight into the situation. This study has set out to begin to show how this is 

to be done.
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There is a great deal more work to be done. The properties of the estimates 

considered will have to be studied further. Also the properties of the standard 

errors of the estimates. The standard errors will often have to be obtained by 

using numerical differentiation of the log likelihood function. Methods exist for 

doing this (eg Lyness (1966, 1969)) but their properties need to be examined.

Aside from the pure statistical problems, any study of modelling needs to be 

firmly rooted in the situation being modelled. It should involve the interaction 

between the specialist, eg plant physiologist, and the statistical modeller. I have 

been aware that much of the work in this study has been ’back room’ work 

away from the application area. The next stage in development of any of the 

ideas should be in the field.
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APPENDIX A

In this appendix algorithms used to minimise non-linear functions will be 

considered. These have been used throughout this project.

A.l Linear Searches

It is often useful to minimise a function in a single given direction without 

using derivatives. These minimisations may form part of a more complex 

multi-dimensional minimisation procedure.

Powell’s method is based on fitting a cubic polynomial to three evaluations of 

the function and finding its minimum (Box et al (1969), Walsh (1975). It is 

used in his sum of squares procedure (see A.3).

A.2 General Search Methods

One of the most efficient methods to search in more than one direction is th, 

of Nelder and Mead (1965). This involves the use of a non-regular simplex,

whose shape can be changed depending on the change encountered.

Termination takes place when the standard deviation of the function values of

the vertices of the simplex are sufficiently small.

A FORTRAN subroutine was given by O’Neill (1971) with corrections by 

Chambers and Ertel (1974), Benyon (1976) and Hill (1978).
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This routine was used extensively when the derivatives of the functions would 

have been complex to evaluate thus making it preferable to derivative based 

methods such as the Newton-Raphson or Davidon-Fletcher-Powell methods 

(Walsh (1975)). An alternative would be to use these methods with finite 

differences instead of derivatives (eg Stewart (1967)). For the exploratory work 

of this project the Nelder-Mead algorithm was found to be simple and 

effective. For implementation of the methods it is likely that the most 

efficient may be the use of finite differences with the Davidon-Fletcher-Powell 

method (Stewart (1967), Himmelblau and Lindsay (1980)).

A.3 Minimising Sums of Squares

The standard routine for fitting a non-linear regression model is the 

Gauss-Newton method. This uses a local linear approximation to the non-linear 

function and the required updates are given by the least squares estimates of a 

linear regression model (eg Draper and Smith (1981), Bard (1974)). A related 

method is that of Marquardt (1963) which adjusts the Gauss-Newton directions 

by an amount in the direction of steepest decent of the sum of squares surface. 

Both these methods require the derivative of the function, but again these can 

be replaced by finite differences.

A derivative free method was given by Powell (1965). Based on the 

Gauss-Newton idea it maintains the orthogonality of the directions in which the 

finite difference approximations to the derivatives are evaluated. More recently 

Ralston and Jennrich (1978) produced their DUD algorithm which replaces the 

tangent approximation of the Gauss-Newton method by a secant approximation.
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It is generally true that a specialist sum of squares algorithm will be more 

efficient than a general minimisation method at minimising a sum of squares 

function.

A FORTRAN program for Powell’s method is given by Kuester and Mitse 

(1971) and was used in the project.

The SAS procedure Proc NLIN provides the Gauss-Newton, Mardquardt and 

DUD methods.

A Gauss-Newton method provided by Nag (E04GEF) was also used.



APPENDIX B

A number of FORTRAN programs were written in the course of this study. 

They were developmental programs and were not intended for general use.

However, a listing of the programs is available on request.

The programs are currently run under the FORTRAN 77 compiler but many 

were written for the FORTRAN 4 compiler and can be easily converted. Some 

of the more recent programs make use of FORTRAN 77 facilities.

All programs were run on the IBM Mainframe computer at the Polytechnic. 

Until very recently there was no batch facility on the machine so large

simulation runs were not possible.

Where suitable, the statistical package SAS was used, in particular the NLIN 

procedure. SAS programs for some of the methods of section 1.3 are given by

Allen (1983).
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