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A MACHINE COMPONENT MONITORING SYSTEM
USING AUDIO ACOUSTIC SIGNALS

Abstract

The main objective of this study is to develop a new type of machine-component 
monitoring system which is non-intrusive and non-contact in nature. Moreover, the 
design of the system to be developed must be robust enough for it to be implemented in 
an industrial environment. Therefore, this study was initiated to overcome some of the 
problems that were encountered using the well-established vibration method. For 
instance, vibration measurement of a machine component is dependent on the quality of 
contact between an accelerometer with a vibrating surface. Vibration measurement of a 
machine component is also affected by the vibration of other machine components near 
the vicinity, in addition to the presence of power-supply-line frequency and its 
harmonics. On the other hand, the application of a desirable non-intrusive and a non- 
contact nature of sound pressure measurement method is difficult to carry out if the 
background sound level is high. This is because sound pressure measurement is 
dependent on the characteristics of a sound field where a measurement is carried out. 
For these reasons, air-particle acceleration signals were utilised in the study. Air- 
particle acceleration is a vector quantity and measurement of vector property can 
improve the signal-to-noise ratio of the measured signal, even in a noisy environment.

A dedicated test rig was constructed to carry out the experiments and to test the 
hypothesis. Rolling element bearings were used for the experiment because of the many 
different types of defect that can develop in them, such as inner race, rolling element 
and outer race defects. Moreover, the dynamic behaviour of bearings are well 
understood and can be compared with experimental results obtained from the study. 
Several different methods of analysis were used in the study including statistical, 
spectral, cepstral and wavelet transform methods. The results from using air-particle 
acceleration signals were compared with results obtained from utilising sound pressure 
and vibration signals. These results showed that the performance from using air-particle 
acceleration signals were superior to the performance from using sound pressure signals. 
Results from the analysis of air-particle acceleration signals can clearly indicate the 
presence of a defective component in the test-bearing. This is so even when the overall 
background noise was 14dB higher than the overall noise level emitted by the test- 
bearing. Moreover, the sensitivity of the measurement of air-particle acceleration 
signal to indicate the presence of a defective bearing was similar to the sensitivity when 
using conventional vibration equipment.

Applications of artificial neural networks were also included for automatic identification 
of defect signals. The multilayer perceptron network was chosen and tested to classify 
the bearing signals because of the suitability of this type of network to be used for 
pattern recognition. Finally, a new type of machine-component monitoring system 
using air-particle acceleration signal was successfully developed and tested in industry.
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CHAPTER 1 

INTRODUCTION

1.1 An Overview

Maintenance of machinery in industry is carried out in several ways, namely, 

breakdown maintenance, preventive maintenance and predictive maintenance. In the 

first strategy the machine in operation will not be repaired until it fails. In the second 

approach a machine is scheduled for servicing at a specified time or interval of 

operation regardless whether the need is there or not. Because of economic reasons the 

third approach is becoming more popular nowadays whereby the health of a machine is 

continuously monitored to identify early warning of an incipient failure and appropriate 

maintenance action can be planned and carried out to minimise cost. This approach can 

also avoid catastrophic failure from occurring by scheduling remedial action at an 

appropriate time based on indications from the measured variables.

The need to monitor the health of machine components without degrading the 

performance of the machine being monitored has been established since late 1960's. In 

the early years, vibration signals were recorded and used to monitor the condition of 

machine components (Chapman 1967, Hanna 1974). The advantages of using non- 

contact and non-intrusive technique has encouraged the use of other types of signals for 

monitoring machine condition such as acoustic emission, sound pressure, temperature, 

eddy current, oil debris, etc.

With the development of sound intensity measurement technique sound intensity and 

acceleration noise signals can be used to monitor machine health. In addition to the 

non-contact and non-intrusive nature of the transducers, the signals measured using this 

technique are vector quantities which are necessary in order to achieve a high signal-to- 

noise ratio from the measurement. This method can be used as an alternative when and 

where the currently available methods fail to give good and economical solutions for 

monitoring machine conditions.
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1.2 Research Applicability

Recent studies have shown that sound signals can be used to detect incipient damage in 

machine components such as motors, pumps, gears, and bearings (Igarashi and Yabe 

1983, Sun et al 1991, Gargano and Bartolini 1991, Craggs 1991). In comparison 

sound signals are relatively easier to measure than vibration signals. Measurement of 

sound signals are not affected by the ground loop from the power line. In addition, the 

vibration measurements are also affected by the way the transducer is fixed to the 

measuring surface.

The variation of sound signals emitted by a machine can be detected by a person who 

always works with that machine. He knows if something is wrong with that machine 

just by listening to the sound emitted. For a more scientific approach, electronic 

instruments coupled with advance signal analysis methods must be used. The procedure 

may be a simple one such as the measurement of the overall dB level, it may also be a 

complex analysis such as the utilisation of simultaneous time-frequency domain 

analysis method. This will obviously depend on the characteristics of the sound signals 

to be measured.

It is only recently that the advancement in technology has made it possible to measure 

sound signal parameters such as sound intensity and air-particle acceleration. The 

advancement in computer processing power has also made it possible to analyse the 

signals using a more complex analysis method such as Fourier transform and wavelet 

transform. The advancement in computer hardware and software have also made it 

possible to include artificial intelligence namely, artificial neural networks in this study. 

This research will incorporate all these technologies to produce a robust and reliable 

method for detecting incipient damage in a machine component based on the 

measurement of audible acoustic signals.
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1.3 Machine Condition Monitoring in General

Vibration signals are already used extensively in machine condition monitoring field. In 

the initial stage a vibration analyser and graphic recorder were used to monitor the 

vibration of machines and if it is above the acceptance level remedial action was 

scheduled prior to catastrophic failure. The signature analysis is also used to identify 

different types of abnormalities such as imbalance, bent shaft, defective bearings, 

worn gears, mechanical looseness and eccentric journals (Chapman 1967, Hanna 1974, 

Bannister 1985).

Other methods used in machine condition monitoring include temperature monitoring, 

eddy current measurement, lubricant monitoring, wear particle analysis, visual data 

analysis (imaging), noise monitoring, pressure monitoring, moisture or dew point 

monitoring, acoustic emission measurement, and ultrasonic signal monitoring. Several 

analysis method are also available and utilised which include spectral analysis, 

statistical analysis, trend or regression analysis, relative comparison, test against limits 

or ranges, selective frequency band analysis, and high frequency resonance technique 

(Bannister 1985, Kim 1984, Cory 1991). The art of condition monitoring has been 

described as knowing what to look for, to measure it, and to correlate the results with 

known a failure mechanism. Failures in machine components may start to occur during 

manufacturing process, during delivery, during installation, and finally during the 

operation. Most papers discuss the virtues of condition monitoring and trending, and 

very few papers discuss accurate diagnosis of machinery problems (Taylor 1992, Fuchs 

et al 1991, Milne and Aylett 1991).

1.3.1 Types of Signal Used For Machine Condition Monitoring

The most widely used signals in machine condition monitoring is vibration, which is 

usually the first by-product of a defective machine component. A machine usually starts 

to operate with minimal vibration level and as wear or defect starts to occur the 

vibration level generally increases. This makes it possible to detect incipient damage in 

machine components by monitoring and trending the vibration levels.



Noise signals have also been used for monitoring and diagnosing machine components 

mainly gearboxes and bearings. It has been shown that sound pressure signals can 

provide useful information with regard to the condition of the machine components 

(Sun et al 1991, Professional Engineer 1994, Taylor 1992, Badi et al 1990, Wilhelm 

and Spessert 1992). However, in case of the bearing components the sound pressure 

signals resulting from a defect are not measurable below a specified minimum speed. 

This is a result of the physics which implies that a minimum oscillatory amplitude must 

first be reached before a vibrating mechanical object can emit audible sound (Smith 

1992). However the sound pressure signal analysis method is non-intrusive and non- 

contact in nature which are highly desirable features in machine condition monitoring 

application.

Lubricant analysis is one of the methods widely used in power generating plant. The 

analysis work is usually done to check that lubricants possess the proper specifications 

for viscosity, acid/base number, water content, and level of solid precipitates largely to 

prevent corrosion and abnormal wear (Nicholas 1991). Wear particle analysis involves 

the measurement of ferrous particles in lubricant. The relative comparison method is 

usually utilised to perform predictive maintenance tasks. Another method known as 

debris analysis provides important information about a system’s internal condition. 

Filters or full flow strainers are placed at a strategic position to collect and monitor 

abnormal debris in a plant (Smith 1992). Similar to sound analysis, visual data or the 

visual imaging method is non-intrusive and non-contact in nature. These data are also 

easily interpretable by personnel with very little training in the technology. Moisture or 

dew point monitoring method can be used to monitor changes in moisture level which 

might be an indicative of an abnormal operating condition. New types of pressure and 

temperature monitoring systems which use fibre optics are currently being developed 

which is capable of indicating pressure and temperature variations in a plant at a very 

high resolution.

Acoustic emission monitoring is usually employed to detect metal fatigue, it detects the 

breakage of a metal crystalline bond which is in lOOKHz to 500KHz frequency range. 

By trending the number of events per unit time, the indication of progressive
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deterioration in metal structure can be detected (Kannatay-Asibu 1982, Diniz et al 

1992, Trujillo et al 1994). The ultrasonic detection method utilises very high frequency 

acoustic signals usually in between 500KHz up to 5MHz. It can be used to detect crack 

and internal abnormalities in metals and in welded joints. Defects in the inner pipe 

walls due to erosion and corrosion can also be detected using this method.

1.3.2 Types of Analysis Method Used in Machine Condition Monitoring

Several analysis methods have been developed and applied to machine condition 

monitoring. Some of the analysis methods that are commonly encountered include 

monitoring of kurtosis and crest factor values, spectral analysis, cepstrum analysis, 

selective frequency band analysis, envelope analysis, correlation analysis, high 

frequency resonance technique, and wavelet transform analysis (Bannister 1985, Cory 

1991, Nicholas 1991, Konig et al 1992, Geng and Qu 1994, Li and Ma 1992, Deckert 

at al 1992).

Statistical analysis methods used on time domain signals are capable of indicating 

changes in the characteristics of the signals from variations of the probability density 

functions. The variables used in this method are Kurtosis and Crest Factor. Kurtosis is 

defined as the ratio of the fourth central moment of the amplitude distribution to the 

second power of the second central moment (Scheithe 1992) and for a zero-mean signal 

the second central moment is identical to the root-mean-square (rms) variable. The 

Crest Factor is obtained from the ratio of the maximum peak to the rms value of the 

measured signals.

Time history of sound and vibration signals can be transformed and manipulated in the 

frequency domain with the development of Fourier transform method. Fast Fourier 

transform (FFT) algorithm which has been discussed in detailed by Cooley et al (1969), 

is currently the standard method used to perform spectral analysis for digital acoustic 

and vibration data. The spectral analysis method is commonly used if the impact rates
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from the defect are predictable. These values can be calculated if all the required 

physical dimensions of the machine component are known. However, the frequency 

spectra obtained are dependent on the transfer function of the physical system. Direct 

comparison between the frequency spectrum coming from a defective component and 

the frequency spectrum from a normal component can indicate the presence of a defect 

in the machine component. If the signals are clear the impact rates are indicated from 

side-band and harmonic analysis of frequency peaks in the spectrum.

Cepstrum analysis is good at separating the excitation spectrum from the transfer 

function component. Cepstrum can also be considered as a spectrum of a logarithmic 

amplitude spectrum (Haddad and Parsons 1991). Therefore, it can detect any periodic 

component in a spectrum, such as the repetitive impact signals that have been recorded 

without the need to know the transfer function of the physical system.

The frequency enveloping technique exploits the ability of high frequency resonance 

signals from a transducer to act as an amplifier and a carrier for the low frequency defect 

signals. The product of this technique is a frequency spectrum of the defect signals with 

better signal-to-noise ratio.

In recent years, the wavelet transforms have been applied to various applications 

including speech, signal and image processing (Kadambe 1991, Grossman 1988, 

Mallat and Zhong 1989, Tuteur 1988). A wavelet transform projects a 1-D signal onto 

a 2-D time-scale representation which is useful for pattern identification and 

classification analysis (Kronland-Martinet et al 1987). Effectively, there are two 

variables that are used to represent the output from wavelet transform analysis namely: 

scale (or frequency) and position (or time). The results from wavelet transform of 

sound or vibration signals can be interpreted as a signature of the signals (Kronland- 

Martinet and Grossmann 1991) because it contains all the information carried by the 

signals. A more elaborate discussion on the application of wavelet transform in 

machine condition monitoring is presented in the next section.
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1.4 The Emanation of Simultaneous Time-Frequency Domain Analysis Method

The search for an analysis method that can capture the time-frequency characteristics of 

signals especially ones that contain non-stationary or transient components has resulted 

in the emergence of new field of study known as the time-frequency distributions. The 

basic idea of this method is to devise a time-frequency distribution that will describe the 

energy density of signal simultaneously in both time and frequency domains. The initial 

works of Wigner (1932) and Page (1952) have encouraged other researchers to develop 

the time-frequency distributions field even further. A comprehensive review on this 

topic has been given by Cohen (1989). Boashash (1991) reviewed the developments 

and applications of this method in recent years.

Two of the well known distributions that have been developed are the Wigner-Ville and 

the Choi-Williams distributions. But because of the cross-terms effects, together with 

some other theoretical difficulties, these time-frequency distributions have very limited 

applications (Dai et al 1994).

To overcome the above problems a new method called the Short-time Fourier transform 

(STFT) has evolved. It started with the work done by Gabor (1946) who used a window 

function and sliding it over the signal in time, and then computing the Fourier transform 

of every portion within each window. However, the performance of the STFT method 

is dependent on the size of the window function. It is difficult to find a constant size 

window function that can be applied to signals that contain short term as well as long 

term variations.

The next step in the development of time-frequency distribution is the introduction of 

the wavelet transform method in numerous fields of science and technology. The 

practical application of wavelet transform started to emerge in the early 1980's when a 

French geophysicist, Jean Morlet (1982) applied the wavelet transform method for 

modelling and processing sound waves travelling through the earth's crust. The Wavelet 

transform has been shown to be as powerful and versatile as the Fourier transform, yet 

without some of its limitations (Cody 1992). For analogy, the well known oscilloscope 

is used to display signal as a function of voltage versus time, then with the development



of spectrum analyser the signal can be displayed as a function of voltage versus 

frequency and now using wavelet analyser it is capable of doing simultaneous analysis 

of both time and frequency of a signal (Cody 1993). Some of the properties of the 

wavelet analysis which makes it very promising are:

(i) linearity,

(ii) conservation of energy, and

(iii) locality.

In contrast to the Fourier transform, the wavelet transform is very efficient in 

identifying and representing the presence of short duration transient components in 

signals. However, in wavelet transform analysis, a high frequency resolution is 

achieved at the expense of poor time resolution and vice-versa. Thus, simultaneous 

high resolution in frequency and time domain is not possible in the wavelet transform 

analysis method (Newland 1994a). However, the significant advantage of using the 

wavelet transform is that it is capable of representing the temporal aspect of signals at 

small scales and the frequency aspect at large scales. Basically, the wavelet transform 

is a linear transformation that can be used to decompose an arbitrary signal into 

elementary contributions called wavelets which are generated from dilation and 

translation of a mother function called the analysing wavelet (Kronland-Martinet and 

Grossmann 1991). Ultimately, the wavelet transform analysis method is capable of 

representing the local phenomena in a signal that map a time-domain function onto a 

representation that is localised in both time and frequency domain. This makes the 

wavelet transform method to be one of the most suitable methods that can be used to 

analyse signals with transient components. Furthermore, the computational operations 

in implementing wavelet transform analysis are in general smaller than Fast Fourier 

Transform (FFT).

1.4.1 Applications of Wavelet Transform

In machine condition monitoring, the transient (time-varying) signals are indications of 

the presence of faults, such as cracks in a structure, flakes in the bearing components or 

broken teeth of gears (Geng and Qu 1994). The wavelet transform method can be used



to analyse the presence of transient impulsive components in sound and vibration 

signals and to relate such signals with the condition of the physical system that causes it.

Lopez et al (1994) applied continuous wavelet transform coupled with neural networks 

to real-time fault detection and classification for helicopter gear-box and Navy 

shipboard pumps. Newland (1994b) discussed the concept of the dilation wavelets and 

harmonic wavelets for analysing vibration signals in a building. The wavelet transform 

method has also been applied to detect fault in spur gears, in roller bearings and in gear

boxes using vibration signals (Staszewski and Tomlinson 1994). In addition, the 

detection of tool failure in end milling with wavelet transform and neural networks were 

carried out by Ibrahim Nur Tansel et al (1993) using the cutting force or torque signals 

created in the process.

1.5 The Role of Artificial Intelligence in Machine Condition Monitoring

Artificial intelligence encompasses many different fields such as expert systems, 

artificial neural networks, and pattern recognition. Artificial intelligence provides 

powerful techniques to manipulate a large amount of information about a particular 

domain as well as the expert information (Milne 1988). In recent years, artificial neural 

networks have started to be applied in machine condition monitoring using vibration 

signals (James et al 1991, Liu and Mengel 1991, O’Brien et al 1992).

1.5.1 Artificial Neural Networks

The application of artificial neural networks in machine condition monitoring is 

concerned with monitoring a process or operation either continuously or at intervals by 

appropriate sensors. Processed data are used as input to a trained networks (Steele et al 

1992). The most popular neural network is the multi-layered perceptron, and the most 

popular algorithm to train a network is the back-propagation algorithm.
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Neural networks are ideal for complex pattern recognition problems whose solution 

requires knowledge which is difficult to specify but which is available in the form of 

examples. In a limited way, neural networks operate similar to the human brain, in 

which they learn from experience, they generalise from examples and extract important 

features from noisy data. Previous studies indicate that neural networks can be used 

successfully in machine condition monitoring using vibration signals (O’Brien et al 

1992, Harris 1993).

Another type of neural networks which has gained a lot of attention in recent years is the 

Kohonen Networks also known as the Kohonen Self-Organising Feature Maps 

(Lippman 1987). This algorithm was developed by Kohonen (1982) as a tool to 

transform a signal pattern of arbitrary dimension into a one- or two-dimensional discrete 

map, and to perform this transformation adaptively in a topological ordered fashion 

(Haykin 1994, Kohonen 1990). This is a very powerful algorithm that can be used to 

identify and to classify signal patterns from machinery noise and vibration, if no 

previous information is available.

1.6 Summary From Literature Review

From the literature review that has been done, a proposal for a new research study on the 

application of audible acoustic signals in machine condition monitoring is presented. 

This study is needed in order to capitalise on the strength of sound measurement for 

machine condition monitoring as mentioned in the previous sections. A detailed 

programme of study to explore the advantages and limitations of utilising audible 

acoustic signals would contribute towards the advancement of knowledge in this 

growing field.

The incorporation of other newly emerging fields such as the wavelet transform method 

and artificial neural networks is vital to enhance the diagnostic capability of the 

technique to be developed. The strength of this research is the combination of new 

technologies working together to produce practical and cost-effective solutions to real 

life problems.
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1.6.1 Utilisation of Audible Acoustic Signals in Condition Monitoring

Traditionally, noise measurements are carried out in industry to identify noisy 

equipment in order to provide safe acoustical environment for employees and for the 

nearby residents (Mohd Nor 1991, and 1992). Along with a hearing conservation 

programme, every company can implement comprehensive acoustic monitoring of 

machines which is a part of predictive maintenance programme (Pelton 1993).

This research study utilised all the available parameters that can be measured from the 

audible acoustical signals of machine components including; sound pressure, sound 

intensity, and air-particle acceleration. This is a new approach in this field whereby the 

unwanted noise from a machine is now useful for diagnosing the condition of the 

machine. The research activities start with the simple measurement of the overall noise 

level emitted by machines followed by more complex signal processing analysis 

methods including statistical analysis, spectral analysis, cepstrum analysis, wavelet 

analysis and the incorporation of artificial neural networks.

1.7 The Research and Thesis

Recent studies have shown that sound signals can provide numerous information that 

can be used to find out the condition of machine components (Kim 1984, Trmal and 

Johnson 1993). Little work has been recorded concerning the application of sound 

intensity measurement technique for machine condition monitoring and diagnostic 

purposes. Moreover, these studies utilised straight forward application of the well 

established spectral analysis method without exploring the usage of other newly 

developed methods that are available (Tandon and Nakra 1990). So far, no work has 

been found regarding the application of air-particle acceleration signals in machine 

condition monitoring field. Therefore, a research study is proposed to capitalise on the 

application of sound pressure, sound intensity, and air-particle acceleration signals in 

machine condition monitoring incorporating newly developed technologies such as the 

wavelet transform and artificial neural networks.
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1.7.1 Research Outline

In this study, the utilisation of air-particle acceleration signal in machine condition 

monitoring is implemented for the first time. The full potential and limitations of 

utilising this signal will be explored in detail. A comparitive study with the results 

obtained using vibration and sound pressure signals was also performed. On the signal 

processing aspect statistical, spectral, ceptral and wavelet transform methods were used 

to analyse the signals measured from experiments. Next, the application of artificial 

neural networks was included and the type of defect present in a bearing component was 

identified by the network. The overall scope of study is better illustrated by a schematic 

diagram as shown in Figure 1.1.

MACHINE CONDITION MONITORING USING
AUDIBLE ACOUSTIC SIGNALS

SOUND SIGNALS WAVELET TRANSFORM
VS VS

FOURIER TRANSFORMVIBRATION
SIGNALS

PhD
THESIS

A R T IFIC IA L  

INTELLIGENCE 

(NEURAL NETWORKS)

Figure 1.1 Schematic diagram indicating the scope of study.
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1.7.2 Research Strategies

A test-rig was constructed to test the hypothesis that has been set. The test-rig was 

capable of simulating the different types of defect encountered in rolling element 

bearing. A compartive study utilising sound, air-particle acceleration and vibration 

signals was carried out. In addition, comparison studies on the performance by 

statistical analysis, spectral analysis, and wavelet transform analysis methods were also 

performed.

A feature selection algorithm was developed to process the measured signals and was 

fed into the artificial neural networks for pattern recognition and diagnostic purposes. 

Finally, a robust and efficient machine condition monitoring method utilising air- 

particle acceleration signals was developed and tested in an industrial case study. The 

overview of the research programme is shown in Figure 1.2.
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ANALYSE THE DIFFERENT TYPES 

OF SIGNALS THAT CAN BE USED

FOR MACHINE CONDITION MONITORING: 
Vibration, Sound Pressure, Sound intensity, and 

air particle acceleration.

UTILISE THE DIFFERENT TYPES OF 

ANALYSIS METHOD

Time Domam Analysis:

Statistical Method 
Kurtosis, Crest Factor, and 

Beta Function Parameters 'a' & 'b'

Time-Frequency Domam 

Wavelet Transform

Frequency Domain:

Spectrum, Cepstrum, and 
Zoomed cepstrum

Artificial Intelligence: Neural Networks

Develop System to Diagnose and 

Identify Defects in Machine Components 

Based on Sound Intensity Measurement Technique

Figure 1.2 Overview of the research programme.
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1.7.3 Thesis Structure

Chapter 2 presents theoretical discussion on the fundamentals of sound pressure, 

sound intensity, and air-particle acceleration signals. The theoretical development of 

sound intensity measurement technique is presented because the scope of this thesis will 

capitalise on the advantages that can be derived from this technique. In addition, 

mathematical derivations on signal processing methods that were used in this study such 

as statistical analysis, spectral analysis, and wavelet transform analysis are also 

included. A basic foundation on artificial neural networks is described at the end of the 

chapter.

Chapter 3 describes the initial work that was carried out including the design, 

fabrication, and calibration of the test-rig and the associated instrument. A summary of 

the procedure for selecting rolling element bearings and their dynamic characteristics 

are also presented in this chapter.

Chapter 4 discusses the analysis of experimental data obtained from the test-rig. A 

comparative study using time-domain analysis is carried in this chapter. Analysis of 

results obtained from using air-particle acceleration, sound pressure and vibration 

signals are carried out at this stage. In addition, the results of a comparison study on 

the performance of Kurtosis and Crest Factor with beta function parameters a and b 

are also presented.

Chapter 5 compares the performance of using frequency domain and simultaneous 

time frequency domain analysis methods in analysing bearing signals. Spectral and 

cepstral analysis methods were used to diagnose the condition of a test-bearing. In 

addition, wavelet transform and wavelet packet transform methods used for 

simultaneous time-frequency analysis study are presented in this chapter.

Chapter 6 presents the advantages of using air-particle acceleration signals compared 

to using sound pressure and vibration signals. The effect of external background noise 

is investigated in this chapter. The subject of defect detectability is also discussed. This 

chapter also presents results from an industrial case study.



Chapter 7 develops feature selection algorithms that can be used to process the 

measured signals and use them as input to the artificial neural networks software. 

Coefficients from wavelet transform analysis method are used to calculate these features 

to be used for artificial neural networks applications.

Chapter 8 derives the conclusion from this research study and discusses of the 

achievements of the research works. A summary of the findings and contribution to 

knowledge from the work done are presented in this chapter. Finally, this chapter 

presents several recommendations that can be pursued in the future.
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CHAPTER 2 

THEORETICAL ANALYSIS

2.1 Introduction

Sound waves can travel through any elastic medium such as gas, liquid and solid. It is a 

transfer of kinetic energy between molecules in the medium. In gases, only compression 

waves can occur due to their low viscosity, and this is the basic mechanism that 

transport sound signals in this medium. The oscillation of particles about their mean 

position in gas such as in air, caused by a disturbance will create a pressure difference at 

that position which can be associated to the sound waves due to the disturbance. The 

amplitude of most sound waves are small and it can be described using linear 

propagation method. In this case, the speed of the sound waves is a constant value 

depending on the physical properties of the medium. In air the speed of sound is about 

340 m/sec and in water it is about 1500 m/sec. Audible acoustic signals are sound 

signals with frequencies ranging from 20Hz to 20KHz.

2.2 Fundamental of Sound Measurements

The most important parameter in sound waves is the sound pressure also known as the 

acoustic pressure. The sound pressure at a position in an acoustic field is the difference 

between the instantaneous pressure and the equilibrium pressure at that position. The 

variation in sound pressure can be measured using a transducer (microphone), and the 

parameter derived from this is called the sound pressure level (Lp). The other parameter 

used for measuring the strength of a sound wave is sound intensity level. In 1936 the 

American Standard Association proposed the following definition to explain this 

parameter, "the sound intensity of a sound field in a specified direction at a point is the 

sound energy transmitted per unit time in the specified direction through a unit area 

normal to this direction at the point". The unit of sound intensity is watts per square 

meter.
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The term acceleration noise is used to describe the type of sound generated by the 

sudden movement of rigid bodies (Anderson and Anderson 1993). If collision occurs 

between two rigid bodies the body that is subjected to the impact will continue to 

accelerate and the body that causes the impact will start to decelerate. In most cases, the 

time period of impact is very short and is usually measured in micro-seconds ( ps ). 

Therefore, the rate of change of velocity with respect to time, which is the acceleration 

is very big and can be measured to represent the acceleration noise. Thus, acceleration 

noise can be used to detect very short metal to metal contact which happens when there 

is impulsive contact in machine components such as in defective bearings and gears. 

The easiest way to detect the strength of acceleration noise is by measuring the air- 

particle acceleration signals caused by a sound source.

2.2.1 Sound Pressure Level

A logarithmic scale is used to represent the sound pressure level. This is because of the 

very big range in pressure amplitudes that can be associated with sound waves. The unit 

used to describe the sound pressure level is termed the decibel or dB as defined in 

equation (2.1).

Lp = 20 log10

f  \  
P mis

V P ref

dB (2.1)

where p rms is the root-mean-square value of the sound pressure signals, and p rej- is the 

reference sound pressure and its value is 20 pPa. The total pressure at any time in space 

can be written as

P(t) = P0 +p(t)  (2.2)

where p(t) represents the sound wave disturbance and PQ= 105 N /m 2 , is the mean 

atmospheric pressure. However, we are only interested in the strength of the fluctuating
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component p(t). Since energy is proportional to the square of the pressure, it is 

conventional to use the mean square pressure as a measurement parameter

p L  = j  \ l P i t ?  *■ (2.3)

It should be noted here that the range of root-mean-square (rms) pressure fluctuations in 

which we are interested for audio acoustics extends from about 2 x l 0 ~ 5 N /m 2 to 

20 N / m2 . These amplitudes represent a very small fluctuation of pressure about the 

mean atmospheric value of 105 n / m2 , (Ford 1970).

2.2.2 Sound Intensity

Fahy (1989) presented a comprehensive discussion on the principles of sound intensity 

in a book entitled "Sound Intensity". It covers from the basic theoretical analysis of 

sound intensity, the measurement of sound intensity up to the practical applications of 

sound intensity technique to engineering problems such as machinery design, building 

acoustics, vehicle and engine technology, and workplace noise control. The fundamental 

development of the sound intensity measurement technique began with an effort to 

measure the net sound energy flow, namely the power density (W) given by the equation

l a  = j :  \o P va d t , (2.4)

Where Ia is the time-averaged sound intensity in any specified direction a, p  is the 

instantaneous sound pressure at a point and va is the instantaneous particle velocity in 

the direction a in which the power density is being measured (Clapp and Firestone 

1941). In order to use a two-microphone method as shown in Figure 2.1, the relation 

between pressure gradient and particle velocity needs to be found to carry out the 

integration in equation (2.4).
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Microphone 1Propagation of 
sound energy

Solid spacer

Microphone 2

Microphone holder

Figure 2.1 Measurement of sound intensity signals using a two-microphone method.

Newton's second law can be used to relate the pressure gradient and particle velocity at 

a mid-span between the two microphones

<2 -5)at dr

rearranging this equation, we get

v„ = - ( — ) \ ^ f - d t .  (2.6)
Po d r

This equation can also be obtained from the Euler equation that relates particle 

acceleration and pressure gradient (Lahti 1990).
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■YP = Po
d v 
d t

+(v-v)v (2.7)

With the assumptions of small perturbation, no mean flow and neglecting higher order 

terms, the Euler's equation becomes

d v 
d t P o

vp . (2 .8)

This equation can be simplified further to obtain equation (2.6). The average pressure at 

the mid-span and the pressure gradient between the two pressure microphones can be 

represented by the following equations:

(P2 + P l ) /  2 -. (2.9)

and

(p2 - p , )
A r

(2 .10)

where p 1 is the pressure signal from the first microphone, p 2 is the pressure signal from 

the second microphone and Ar is the space between the two pressure microphones. 

Substituting these variables into equations (2.4) and (2.6) gives

a T  Jo p A ro
(2.11)

rearranging the variables, we get the equation for sound intensity in term of pressure 

from the two microphones, air density and distance between the two microphones 

(Baker 1955, Shultz 1956).
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P 2 + P 1  *T ,

7« = “  9T a L  (P2 - P 1 ) d t ' (2-12)2 7  p A r

Two approaches are used to process the signals from the two microphones for sound 

intensity measurement. The first approach is the digital filter method by which sound 

intensity is calculated in real time in the time domain. The second approach is the FFT 

method, by which the sound intensity is calculated in the frequency domain from the 

imaginary part of the cross-spectrum function. In the frequency domain, the Fourier 

transform of va at the mid-point between the pressure microphones may be 

approximated as

i (F , - F  ,)F  K _ ± j * —
va  p 0 Arco

where i = (-1)1/2 . In addition, Fourier transform of the pressure at the same location can 

be expressed as

Fp « L2 {Fp l +Fp2) (2.14)

Where Fpl is the Fourier transform of the pressure signal at the first microphone and Fp2 

is the Fourier transform of the pressure signal at the second microphone. For stationary 

and ergodic signal with zero mean (Gade 1985, Jacobsen 1989 and 1990), the active 

sound intensity spectrum can be represented by the following equation:

cos cp

(2.15)

Im {Fp,F*2) Im{G12}
2 p 0 Arco p 0 Arco

where p  and va are complex amplitudes of the sound pressure and the particle 

velocity, cp is the phase angle between the two pressure signals, and
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2*
G1 2  = ~\.Fpi* Fp2] is cross spectrum betweenp j  and p 2. Note that the minus sign 

and the order of the conjugate asterisk is related as

Im {F p l F;2 } = -  Im { F*pl Fp 2 )
(2.16)

The presence of the imaginary part of the cross spectrum represents the effective 

integration of equation (2.4) to produce the necessary relationship between average 

sound pressure and the particle velocity. In addition, the reactive sound intensity can be 

written as follows

= p m { p v ’ } = j |p ||v a|s!mp

1
2co p A r ( G „ - G 22)

(2.17)

where G}] and G22 are the real auto spectra of the two microphone signals. In some 

cases, the velocity of the vibrating surface can be measured directly using an 

accelerometer. This method is widely used to find the sound power and to analyse the 

sound signal of a large source in-situ (Hodgson 1977, Brito 1979, Crocker 1981). It is 

called the surface intensity method.

Similar to sound power level the sound intensity level is represented in units of decibel
 /2 / ?

with the reference intensity Irej- equal to 10 watts/ m . Thus the equation for sound 

intensity level can be written as

Lj -  10 log 10
Intensity

\10  12 watts!m2 j
dB (2.18)

and the equation for sound power level of a sound source is

L w - 1 0  logjq
f  Sound Power Output ̂  
V 10~12 watts J
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2.2.3 Acceleration Noise

Until recently, it has not been clear how important acceleration noise is in industrial 

machines (Anderson and Anderson 1993). Acceleration noise is usually associated with 

the sound signal that is generated by impacting bodies. It has been shown that the

energy emitted as sound can never be greater than 1.5 x 10 “ 4 times the kinetic energy 

produced during impact (Richards et al 1979). Fortunately, the sound pressure 

microphones are capable of measuring the very small variations of sound pressure 

signals in air. The dominating sources of sound signals emitted by a defective machine 

component are usually associated with acceleration noise due to impact and ringing 

noise from flexural vibrations of the machine component. Air-particle acceleration is an 

ideal variable that can be used to detect these signals. Equations (2.8), (2.9) and (2.10) 

can be used to derive the formula for obtaining air-particle acceleration signals using the 

two-microphone method.

«P(0 = ---- —  ( Pi -  P2 ) (2-20)
V P „  A r J

where p j  and p 2 are the time variation of pressure signals from the first and second 

microphone respectively, and A r is the distance between the two microphones. A 

detailed derivation of equation (2.20) is presented in Appendix A.

2.3 Fundamental of Signal Processing Methods

In this study, the measured signals are processed in three different domains, namely; 

time domain, frequency domain, and simultaneous time-frequency domain. The time 

domain method is mostly the utilisation of statistical parameters for monitoring machine 

components. The frequency domain analysis capitalises on the advancement of fast 

Fourier transform (FFT) to analyse sampled signals. The simultaneous time-frequency 

domain analysis gain much momentum from the development of the wavelet transform 

method which is analogous to the FFT method in frequency domain analysis.
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2.3.1 Statistical Analysis Methods

The application of statistical distribution moments such as kurtosis and skew using 

vibration and acoustic emission (high frequency sound) signals for monitoring 

manufacturing processes and machine conditions have been well established (Kannatay- 

Asibu 1982, Diniz et al 1992, Trujillo et al 1994, Daadbin and Wong 1991, Martin

1992). However, no literature has so far been found on the application of air-particle 

acceleration signals for such purposes.

If the probability density of the distribution of data sample exist such that

From equation (2.23) the mean x or E{x), of the random variable is the first-order 

moment, the rms value is the square root of the second-order moment and the variance 

a  2 is the second-order central moment. The mean gives the average value of the 

variable, the rms value gives the intensity, and the variance gives the deviation from the 

mean. If the data available are in discrete form, equation (2.23) can be written as

Prob [x < x(0 < x + dx] = p{x) d x , (2.21)

then the expectation {mean) of a random function of time, x(t) is

E[x)
1
— Jx{t)dt = | xp{x)dx

—00 -0 0 (2.22)

Next the rth-order moment about the mean x , is given by

CO
E  £{x -  E(x) } r J = |  ( x - x ) r p (x )  dx

—00 (2.23)

1 N
M r = —  E  ( x k - x ) r 

N  k=l (2.24)
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where N  is the number of data points, and r is the order of the moment. The following 

equations present the calculation for the other variables in continuous and discrete form,

rms = j x 2 p ( x )  dx  =
7 N 

k=l (2.25)

standard deviation,

a  = |  (x -  x) 2 p  (x) dx =
N

(2.26)

Skew =  —  

a (2.27)

Kurtosis =
a 4 (2.28)

and

Crest Factor =
[Maximum Peak]

rms (2.29)

The other statistical parameters used in the study were based on beta function 

distribution, whereby the statistical distribution is normalised based on the gamma 

function (Cooper and Weekes 1983):

P {a,b) = M M x a- 1( l - x ) 6"1 
Y{a + b) (2.30)

The mean of the beta function distribution can be written as,

26



Mean = x = a
a + b (2.31)

and the equation for the standard deviation is

I ab(T =
V (a + b + Y)(a + b) (2.32)

Thus, the parameters a and b can be derived from equation (2.31) and (2.32):

a = — -  (x  - x  -c t )
(2.33)

and

^  *-  ( x - x  2- g 2)
(2.34)

Since the beta function algorithm requires the data to be ranged between zero to one, it 

is necessary to remove any dc shift, to rectify, and finally to normalise the raw data 

before equations (2.33) and (2.34) can be used.

The application of the beta function parameters a and b was performed by Whitehouse 

(1978) to classify surface texture of engineering materials using different manufacturing 

processes. Whitehouse presented another form of equations for calculating the beta 

function parameters a and b using variables borrowed from the analysis and 

measurement of materials' surface texture and roughness. The beta function parameters 

were written in the form

a
R v ( R v R p - R 2q )

R , R l (2.35)
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b = Rp(RvRp-R2q)
R , R <i (2.36)

where Rp is magnitude of the highest peak, Rv is magnitude of the lowest valley, Rq is 

the rms value, and Rt is the maximum peak-to-valley height of the signal profile. The 

parameters a and b are less dependent on the extreme maxima and minima compared to 

the central moments variables namely skew and kurtosis. Therefore, the beta function 

parameters are theoretically more stable than the central moment variables. The moment 

of beta function distribution (Larson 1982) can be written as:

^  _ (a + b -1 ) (a + b -  2) • • • (a +1) a
(a + b + r - l ) ( a  + b + r - 2 ) - " ( a  + b + l)(a + b) (2 37)

Odd moments, i.e., r = 1,3,5,.... etc., relate information about the position of the peak 

density relative to the median value. Even moments, i.e., r = 2,4,6,...., etc., indicate the 

spread in distribution (Dyer and Stewart 1978).

Statistical analysis is mostly applied to random signals where methods based on 

deterministic signals is not applicable. A random process is said to be stationary if the 

probability distributions obtained for an ensemble do not depend on absolute time. The 

term "stationary” refers to the probability distribution but not the signal samples 

themselves. Furthermore, a stationary process is called an ergodic process, if in addition 

to all the ensemble averages being stationary with respect to change of time scale, the 

averages taken along any single sample is the same as the ensemble averages (Newland

1993).

2.3.2 Spectral Analysis Method

Fourier-series analysis can synthesise any periodic function x(t) into its sine and cosine 

components. For a nonperiodic function the Fourier series turns into Fourier integral and
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the Fourier coefficients turn into continuous functions of frequency called Fourier 

transforms. The Fourier transform of a nonperiodic signal x(t) is

AT((D) = —  V "  x ( t ) e - J* ' d t  (2.38)
2n J- c0

and the inverse Fourier integral equation is

x(t) = f '" X(<d ) e Ja ' d(a (2.39)
J — 00

where e ±J(0t = cosco t ± j  sin© t , is the Euler's equation.

For a stationary random signal, the spectral analysis is not carried out on the function 

itself but on its autocorrelation function Rxx(t). This autocorrelation function gives 

information about the frequencies present in a random process indirectly. The concept 

of power spectral density (PSD) is used to analyse the spectral properties of random 

signals, such as the characteristics of signals in the frequency domain. The plot of power 

spectral density function against frequency is the power spectrum (auto-spectrum) of the 

signal (Anderson and Anderson 1993). The Fourier transform of Rxx(t) which gives the 

power spectral density function Sx  is shown below

■ s »  = 2 -  r - * „ ( T ) e - ' “ *  , (2.40)
271 J-°°

and

= f  * (0 * (T - t ) dt (2.41)
J — oo

The type of spectrum analysis used is dependent on the type of signals being measured. 

For deterministic signals the spectrum analysis based on the rms values can be used to 

detect the strength of frequency components in the signals. As an alternative, the power 

spectrum can also be used for this type of signals. For random signals the power spectral
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density spectrum is used, and for transient signals the energy spectral density (ESD) is 

utilised.

2.3.3 Cepstral Analysis Method

For a linear system, the measured signal y(t) is the convolution of input signal x(t) and 

impulse response h{t) of the system. Thus, the measured signal, has been obscured by 

the transmission medium through which it passed. Cepstrum analysis can be used to 

separate the excitation spectrum from the transfer function component. The Fourier 

transform of the output signal due to the excitation of input signal can be presented as

7(03) = H  (co ) X  (g) ). (2.42)

The logarithm of the spectrum is used to separate the two components

logY(d) ) = logH(u) ) + log X (($) (2.43)

The logarithm of the spectrum is transformed again to obtain

3[/og7(ct))] = 3[l0gtf(©  )] + 3[logX (© )], (2.44)

where 3  is the Fourier transform of a function.

The above process is called the cepstrum analysis which shows the signal in frequency 

domain, measured in units of time. Cepstrum can also be considered as a spectrum of a 

logarithmic amplitude spectrum. Therefore, it can be used for detection of any periodic 

component in a spectrum as shown by Brown and Jensen (Bruel and Kjaer Application 

Notes). One of the advantages of using cepstrum analysis is that it can easily reveal the
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repetitive impact signals that have been recorded without the need to know the transfer 

function of the physical system.

2.4 Theory of Wavelet Transform Method

The wavelet transform method is based on two fundamental equations, namely, the 

scaling function, and the basic function. The scaling function also known as the father 

wavelet can be generated from the basic dilation equation and can be written as

§ (x ) = c0(J) (2x) + Cj(|) (2x -1 )  +......+ cn§ (2x - n )  5 or

§ (X) = Z  cn§ (2 x - n ) (2.45)
nez

where z is a set of integers. The basic dilation function can be obtained either using a 

recursive method or using an iterative method. Once the scaling function has been 

established the corresponding basic function equation can be constructed from it. The 

basic function is sometimes called the mother wavelet, primary wavelet or analysing 

wavelet and can be written as

V 00  = 2  i - l " )  c„+; <t> (2x + n) (2.46)
nez

where cn are the wavelet coefficients. The number of coefficients chosen will determine 

the shape of the analysing wavelet. For example, the Haar wavelet contains two 

coefficients, the D04 wavelet contains four coefficients and so on. This subject has been 

discussed in detailed by Daubechies (1988) and many different types of analysing 

wavelet are available today and ready to be utilised. The wavelet coefficients must 

satisfy three conditions for them to be eligible to be used in the analysis (Strang 1989, 

Strang and Fix 1973, Newland 1993). The three conditions are:

(i) conversion of area condition,
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X  c» = 2
n

(2.47a)

(ii) accuracy conditions,

Y J ( ~l n) n m cn = 0 ; (2.47b)
n

where m is a set of integer, and

(iii) orthogonality conditions.

Y . C „ C „ + 2m = 0 (2.47c)
n

for all m except when m = 0.

A class of orthonormal basis function is derived from the dilation and translation 

process of the mother wavelet, usually written as

/ x  1 ( x - b }
V a,6O 0  = - p V  ------  • (2.48)

yja V a J

For a discrete wavelet transform, the parameters a and b are discretised as follow:

a = a™, b -  nb0 2m. Typical values for a0 = 2, and bQ = 1. Substitute these 

values into equation (2.48),

V m,„00 = 2~m/2y  {2'mx -  n). (2.49)

where a and m are the dilation factors, and b and n are the shift factors of the wavelet 

packet.

The goal of a wavelet transform is to decompose any arbitrary signal f(x) into an infinite 

summation of wavelets at different scales. The independent variable x is assumed to be

32



defined in one unit interval that is for 0 < x < 1. As an example, if the independent 

variable is time t and we are interested in a signal over duration T , thenx = t / T andx 

covers the range 0 < x < 1, (Newland 1993). The discrete wavelet transform of a 

function j(x) involves computation of the inner product for various values of parameters 

m and n as shown below (Palavajjhala et al 1994):

0) = Tmn(J{x)) = 2 -m/2^ _ J { x ) y ( 2 - mx-r i)dx  (2.50)

where Tm n ( / (x)) represents the coefficients of the wavelet transform method. Equation

(2.50) shows that a time domain function fix) is mapped onto a two-dimensional time- 

and frequency- domain simultaneously.

2.4.1 Wavelet Packet Transform

Mallat (1989) has shown that the tree or pyramid algorithm can be applied to the 

wavelet transform by using wavelets as filter coefficients of the quadrature mirror filter 

(QMF) pairs. These are specially designed pairs of finite impulse response (FIR) filters 

that can separate the high-frequency and low-frequency components of the input signals. 

The low-pass filter coefficients are associated with the approximation components and 

the high-pass filter coefficients are associated with the detailed components of the input 

signal. Using wavelet packets analysis method, the wavelet transform is generalised to 

produce a library of orthonormal bases of modulated wavelet packets, and these bases 

are similar to adaptive windowed Fourier transforms.

Combination of h = {hn} defined as a summing filter and the associated differencing 

filter g  = {gw} = (-l)n hj_n; together known as the conjugate mirror filter can be used to 

construct the orthonormal bases. The coefficient sets h and g  respectively define scaling 

and basic functions <|) and \j/ according to the relationships

§ (x)  = ( 2 x - n )  (2.51)
n
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\j/ (x) = 2 l/l T ,g n V  (2x - n ) .
n

(2.52)

The wavelet decomposition only keeps the detailed components of the signal whereas 

the approximation components are being decomposed again into the next level as 

indicated in Figure 2.2(a). On the other hand, the wavelet packet decompose the input 

signal by applying filters H  (Low pass) and G (High pass) recursively to form a tree or 

pyramid algorithm as shown in Figure 2.2(b). Wickerhauser (1992) has developed the 

best basis algorithm from the wavelet packet transform method by finding the most 

efficient way (i.e. with minimum entropy cost function) to represent an input signal. An 

M-sample signal where M  = 2m, produces m wavelet packet bases and takes 0(M  log2 

M) operations, the search for the best basis uses an additional 0(M) operations. On the 

other hand, the fast Fourier transform (FFT) algorithm of an input signal with length M  

requires O(Mlog2M) operations.
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INPUT Level 0

Level 1

Level 2

Level m

(a) Block diagram of signal decomposition using wavelet
transform.

INPUT Level 0

Level 1

Level 2

Level m

(b) Block diagram of signal decomposition using wavelet packet
transform.

Figure 2.2 Signal decomposition using wavelet and wavelet 
packet algorithms.

The time-frequency resolutions at the different levels of the wavelet packet algorithm 

are best presented in Figure 2.3. It shows that at level zero the time resolution is at its 

best and the frequency resolution is at its worst. On the other hand, at the highest level, 

the frequency resolution is at its best and the time resolution is at its worst. The levels in 

between show compromised time-frequency resolution as shown in the diagram. The 

number of points, p  that represents the time position of the signal at a particular level m
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ranges from zero to —  -  1, whereas the number of nodes, n that represents the

frequency bin in the signal at a particular level m ranges from zero to 2m -  1. And the 

maximum number of levels that can represent the input signal is equal to log2 M . We 

can see from Figure 2.3 that each level of the time-frequency frame has its own time and 

frequency resolutions. Thus given a fixed level the time-frequency resolution for that 

level can be represented as shown in Figure 2.4.

Maximum time resolution (Minimum frequency resolution)

Level 0

Level 1

Level 2

Level m

Compromised 

v  time-frequency 
resolution

(n0)

Maximum frequency resolution (Minimum time resolution)

Figure 2.3 Time-frequency resolution of the wavelet packet decomposition.



r  2m - i

i
i
i

NODES ) \
1

1

0

0 1 2 ---------  M

1 2 

POSITIONS

1

J

Figure 2.4 Time-frequency frame in a fixed level, m.

From the output of the wavelet packet transform, we can calculate back the frequency 

and time components of the signal. Given the sampling frequency R , wavelet level m, 

wavelet node number n, and the wavelet position p, the nominal centre frequency can be 

calculated by using the following equation:

F  = (P/2)*(/? + 0 .5 ) /2m. (2.53)

The uncertainty of the calculated frequency can be expressed as

A F  =
(P /2 )

(2.54)

The corresponding time location of the signal is obtained from the equation

t = (P  + 0.5)
\ . R j

(2.55)
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with uncertainty of the calculated time expressed as

2 m
A / = — . (2.56)

2.5 Artificial Neural Networks

The concept of artificial neural networks was derived from basic constituents of the 

brain known as neurons. The human brain is an enormous collection of interconnected 

processing units known as neurons. A neuron is capable of receiving and sending 

signals. Each neuron can receive signals from other neurons, sum these signals, 

transform this sum and send the results to other neurons. A schematic diagram 

representation of a neuron is shown in Figure 2.5. Artificial neural networks resemble 

the brain in such a way that knowledge is acquired through examples and training 

process, and the knowledge is distributed and stored in the weights of the intemeuron 

connection.

Input

x o Summing
Junction Output

Xl

Activation
Function

Weights

Figure 2.5 Schematic model of a neuron.

Artificial neural networks can be categorised according to the three different types of 

learning methods that are employed to train the networks. The first type is the
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supervised learning where the output of a network is compared with the correct output 

and weights in the connection within the network are then adjusted to produce better 

output. The second type is called the reinforcement learning where the network is only 

told if the output produced was good or bad. And the third type is called the 

unsupervised learning where a network develops its own classification rules by 

extracting information from the examples input to the network.

2.5.1 Back Propagation Algorithm

The most popular type of algorithm for supervised learning application is back 

propagation. A back propagation network is a feedforward network of processing 

elements which can have any number of layers, such as, the input layer, hidden layer(s), 

and output layer. The schematic diagram showing the common feature of the back 

propagation network is presented in Figure 2.6. The function signals begin at the input 

node and propagate forward through each layer and emerge at the output layer as output 

signals. Whereas the error signals start at the output neurons of the network and 

propagate backward through each layer of the network. This type of network was used 

in the research study using air-particle acceleration signals to identify the type of defects 

induced in a test-bearing.

Direction o f Fucntion Signals

Output
Layer Training

Signals

Hidden
LayerInput

Layer
Direction of Error Signals

Figure 2.6 Representation of back propagation network with 
one hidden layer.
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CHAPTER 3

DESIGN, CONSTRUCTION AND CALIBRATION OF TEST RIG

Information gathered from the literature review showed that the sound intensity 

measurement technique has good potential, and can offer several advantages if applied 

to machine condition monitoring. It is well known that excessive noise is frequently the 

first indication of deterioration of bearing in service. Initial studies carried out by Kim 

(1984) indicated that sound intensity measurement was capable of showing signs of 

intermediate stage of incipient failure in a rolling element bearing. Tandon and Nakra 

(1990) showed that a change in sound intensity frequency spectrum above 4KHz was 

observed due to the presence of defect in rolling element bearings. Also most of the 

defects in mechanical components are due to bearing failures (Daadbin and Yuen 1990). 

Furthermore, the mechanical behaviour of bearing component is well established which 

makes it convenient to compare experimental results with theoretical analysis. A test rig 

was constructed to carry out further experimental study on the applicability and 

limitations of sound intensity techniques for monitoring bearing condition.

3.1 Rig Design

A simple experimental system was designed to test the condition of rolling element 

bearings using vibration, sound pressure, sound intensity, and air-particle acceleration 

signals. A study was carried out on the rig to test the applicability of sound intensity 

technique for monitoring bearing condition, and to explore the advantages and 

limitations of this technique.

The test rig consists of a 40mm diameter shaft driven by a 2HP variable speed electric 

motor via a belt drive system. The speed of shaft can be varied from 500rpm up to 

5000rpm. The test rig is capable of testing the different types of bearing defect such as 

inner race defect, rolling element defect, outer race defect, and missing
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roller. In addition, the effect of shaft misalignment, loading condition, and unbalance 

can also be tested using the rig. Overall layout of the test rig is shown in Figure 3.1.
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(a) Front view
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(b) Front view with enclosure

Test bearing
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Photocell

5 1 0

Control /  box /Power
switclf

6 9 5
Acoustics enclosure
Plastic windows

1 3 9 0

Diagram drawn not to scale 
All dimensions are in mm

Figure 3.1 Schematic diagram of test rig.
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Only the test bearing and other auxiliary equipment are exposed to the user, other 

moving components of the rig were enclosed in a housing. This enclosure was 

constructed for two purposes: first is for safety reasons, and second is for minimising 

the effect of noise produced by other moving components in the rig. It was built from 

plywood 4mm in thickness and the inside surface was coated with rubber pad 2mm in 

thickness. It can attenuate sound by between 16.9dB at 500Hz up to 49dB at 12KHz as 

indicated in Figure 3.2.

Sound Attenuation by the Enclosure

50 -

_  4 0 -CQ"O
^  3 0 -

0.5 1 2 3 4 5 6 7 8 9 10 11 12

Frequency (KHz)

Figure 3.2 Attenuation of sound by the enclosure.

3.1.1 Ancillary Equipment

Other equipment used include Bruel and Kjaed™) 2032 dual-channel analyser 

complete with Bruel and Kjaeb™) Type 4181 sound intensity probe, sound level 

meter, accelerometer, GOULDt™) four channel oscilloscope, AMF Vennert™) digital 

counter, and 80486 micro-computer with IEEE card. Signal analysis and processing 

softwares that were utilised include Dadispt™) V3.01 for data analysis and display, 

Wavelet Packet Laboratory for Windows, WPLW(™) Version 1.02 for wavelet
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analysis, Neudesk(™) for artificial neural networks algorithm and Borland(™) Turbo 

C++ Version 3.0 compiler for high level programming language.

3.2 Calibration of Test Rig and Ancillary Equipment

The first calibration exercise done on the test rig was to correlate the rotational speed of 

the shaft with the indicator at the control knob of the speed controller. These readings 

were also compared with results from stroboscope and hand-held tachometer. Figure

3.3 shows a linear relationship between the shaft speed and the position of control knob. 

The range of control knob position is from 0 to 100. Calibration of other components 

such as the accelerometer, charge amplifier and sound level meter were carried out 

regularly during the period of study to ensure that they are fully calibrated and working 

correctly.

Speed Calibration of Test-Rig

90 -  
80 .. 
70 .. 

|  6 0 -
1  5 0 -  

4 0 --Q
2  3 0 -

10 . .

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 

Speed of Test-Shaft (rpm)

Figure 3.3 Speed calibration results from the test rig.
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3.2.1 Calibration of Sound Intensity Measurement System

The measurement of sound intensity signals using the two-microphone method is very 

sensitive to the phase difference between the two channels of the measuring microphone 

and analysing instrument. Therefore, it is sensitive to the phase-mismatch error (Ren 

and Jacobsen 1991, Pascal and Carles 1982). However, due to the phase-corrector 

units specified for the Bruel and Kjaer Type 4181 microphone pair, the phase matching 

characteristic is retained even in sound fields with very high pressure-level gradients 

resulting in high accuracy of near field measurements at low frequency sound signals.

Detailed analysis of phase-mismatch error was presented by Gade (1985) which utilised

the indicators called the residual pressure-intensity index of the measuring system and 

the measured pressure-intensity index of the sound field at the microphone position. 

The utilisation of these indices was first introduced by Roland (1982).

The residual pressure-intensity index is defined as the difference between sound 

pressure and sound intensity levels when the microphones are subjected to a sound field 

with 0° phase difference between the two microphone positions. Whereas, the 

measured pressure-intensity index is the difference between sound pressure and sound 

intensity levels, at the measuring position in the field.

P I  Residual ~~ l p ,0 ~  1 1,0 ( 3 -1^0

PI Measured ~ Ip,M ~ Il,M  (3.1b)

The criteria used to assess the accuracy of sound intensity measurement is presented by 

Equation (3.2),

P I  Measured — P I  Residual ~ (3-2)

if K  is 7dB, then the accuracy of measurement is ±ldB, and if K  is lOdB the accuracy 

of measurement is ±0.5dB. In addition, amplitude calibration of the two pressure 

microphones were also performed to ensure that their performance are identical.
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Calibrations of the sound intensity measuring system were carried out regularly during 

the study period using Bruel and Kjaer Type 3541, Type 4226 sound intensity 

calibrators. Typical results for the calibration are shown in Figure 3.4. These results 

were consistent with the values specified by the manufacturer (Bruel and Kjaer Product 

Data). A quick check on the accuracy of measurement using sound intensity technique 

can be carried out using ordinary piston-phone calibrator and the appropriate coupler 

with single frequency sound source at lKHz. The residual pressure-intensity index with 

50mm and 12mm spacers should be around 30dB and 24dB respectively.

Residual Pressure-intensity Index

<D
(0>
CDTJ -u—  50mm spacer

10 it
12mm spacer

2000 400031.5 63 125 250 500 1000
Frequency (Hz)

Figure 3.4 Results from calibration of sound intensity measurement system.

3.2.2 Directional Properties of the Microphone Pair

Figure 3.5 shows a typical directional properties of microphone pair when applied to 

measurement using sound intensity technique. The sensitivity of the microphone pair is 

dependent on the angle of incidence of the incoming sound signals which measures the 

component of the signals along the probe axis.

I  measured =  ^insident C0S ® ( 3 -3 )
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The sensitivity of the microphone pair is a minimum when the angle of incidence of the 

sound wave propagation is equal to ninety degrees. This feature is widely used to find 

and to identify sound sources in the field.

Spacer

Microphones

Figure 3.5 Schematic diagram showing directional properties of 
microphone pair.

3.2.3 Impact Test

The impact test was carried out to identify the natural frequencies at which the test rig 

and bearing housing were vibrating in response to external excitation force. Six 

different position and direction of impacts were applied as shown in Figure 3.6.

47



P e r s o n a l
C om puterB&K 2032  

A n a ly s e r

C harge  A m p l i f i e r
P o s i t i o n  & d i r e c t i o n  
o f  im p a c tsA c c e le r o m e t e r

T e s t  r i g

Figure 3.6 Position and direction of impacts for the test.

Three readings were recorded from each of the six impact which correspond to different 

set of frequency range and resolution: (a) Frequency ranging from 0 to 800Hz, with 

1Hz frequency resolution, (b) Frequency ranging from 0 to 3.2KHz, with 4Hz 

frequency resolution and (c) Frequency ranging from 0 to 25.6KHz, with 16Hz 

frequency resolution. A sample of the results are shown in Figure 3.7.
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(a) Longitudinal impact on the test shaft.
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(b) Longitudinal impact on the rig structure.
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(c) Vertical impact on the rig structure.

Figure 3.7 Vibration spectrums from impact testing of the rig.

Results from the impact test indicate that natural frequencies of the support structure are 

mainly below 400Hz, which can be attributed to the different modes of vibration of the 

support structure. The natural frequencies of the bearing component and housing are 

measured to be from 2784Hz up to 3168Hz as shown in Table 3.1.
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Table 3.1 Summary of the impact test results.

Impact Position Frequency Component of 
Displayed Spectrum (Hz)

Impact on shaft 
(No. 1,2 and 3)

29, 80, 156, 240, 
3164, 3168, 6336

Impact on support
structure
(No. 4, 5 and 6)

80, 228, 240, 256, 360, 
2784, 3164, 3168

3.3 Pilot Study

Experimental work for the pilot study was carried out using a self-aligning double row 

ball bearing (NSK 1209K) and single row cylindrical roller bearing (NSK 209K). 

Physical dimensions of the test bearing are presented in Table 3.2. The main objective 

of the pilot study was to observe changes in frequency spectrums that were obtained 

from the test-bearings with and without defects using sound pressure, sound intensity 

and vibration signals. Therefore, only frequency spectrums were measured and 

analysed at this stage. All defects on the roller, inner race and outer race of the test- 

bearings were initiated using an etching pen. The defects were made into oval shape 

craters with the length ranging from 1.70mm to 3.26mm, the width ranging from 

1.25mm to 2.42mm and the depth ranging from 26.9pm to 160.1pm. These 

measurements were obtained using the Hobson TalysurfC™) surface roughness 

measuring machine.
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Table 3.2 Physical characteristics of the test-bearings used for 
the pilot study.

Bearing Type
Self-aligning 
ball bearing 
(NSK 1209K)

Single row cylindrical 
roller bearing 
(NSK NF209K)

Ball radius 4.76mm 5.01mm

Number of elements
32

(16 per row) 14

Pitch circle 
radius

32.75mm 33.5mm

Internal diameter 40mm 40mm

The experiments were carried out under typical laboratory conditions and the effect of 

background noise level was considered to be minimal. The magnitude of sound 

intensity and sound pressure signals were measured using the A-weighted analysis 

because it resemble the loudness perceived by the human ear, and at this stage the 

signals can also be evaluated qualitatively by the researcher. The logarithmic amplitude 

values were obtained for the measurement with the reference value for sound pressure 

signal is 20pPa and the reference value for sound intensity signal is lxlO '12 W/m2.

3.3.1 Results From Pilot Study

The initial results obtained confirm the finding of previous researchers, and they also 

showed that sound intensity spectrum can be used to indicate the presence of defects in 

rolling element bearings (Kim 1984, Tandon and Nakra 1990). However, further 

detailed study needed to be carried out in order to develop and apply the sound intensity 

measurement technique for diagnostics and for identification of the type of defect 

indicated by the signals.
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Figure 3.8 shows that most of the defect signals indicated from the sound intensity 

measurement technique were highlighted at frequencies ranging from lKHz up to 

4.6KHz when the shaft speed is lOOOrpm. Similar conclusion can be derived from the 

sound pressure spectrum. At 500rpm the sound pressure spectrum from self-aligning 

bearing with defects show slight increased in level at frequencies between lKHz to 

1.4KHz as indicated in Figure 3.9.

Compared to the results obtained using vibration signals, sound intensity signals were 

not very effective at indicating other abnormalities in the test-rig such as the missing 

rollers and the presence of an unbalance rotating disk attached to the test-shaft. These 

results are shown in Figure 3.10(a) and (b). All of the test results obtained from the 

cylindrical roller bearing revealed that there were no significant differences in the 

frequency spectra from bearings with the presence of a defect and the frequency spectra 

from bearings without a defect. This is because in a cylindrical roller bearing there was 

line-contact occuring between the rolling elements and both the inner race and the outer 

race of the bearing component. Therefore, the existence of a point-defect on one of the 

bearing components did not have any effect on the performance of a cylindrical roller 

bearing. For future activities, only line defect should be used when testing a cylindrical 

roller bearing.
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Figure 3.8 Sound intensity signals from self-aligning bearing 
running at lOOOrpm.
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Figure 3.9 Sound pressure spectrum from self-aligning bearing 
running at 500rpm
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SI Signals From Self-Aligning Bearing
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(a) Spectrums from sound intensity signals.
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(b) Spectrums from vibration signals.

Figure 3.10 Spectrum of signals from self-aligning bearings with 
missing rolling elements and unbalance rotating mass 
running at lOOOrpm.
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3.4 Conclusion From Pilot Study

The results obtained from sound intensity measurement technique showed good 

repeatability whereby readings taken at different time with the same conditions look 

very similar to each other. In general, the sound intensity spectrum can indicate the 

presence of abnormalities in rolling element bearing components. However, the 

frequency spectrum alone is not sufficient to identify the type of defect present in the 

bearing. Other signal processing methods need to be employed to carry out this task.

Many weaknesses in the performance of the test-rig were identified from the pilot study. 

The next task of the research project was to modify the test-rig, and to ensure that the 

performance of the test-rig is further improved. The list of tasks to be carried out were 

as follow:

(i) Replace the rubber isolators below the support bearing housings with 

mild steel support structure.

(ii) Install a photocell on the rig to create a pulse signal every time the test-shaft 

rotates, to be used as trigger signal when acquiring data for next 

experiment.

(iii) Modify the radial loading mechanism.

(iv) Modify support structure for the test bearing,

(v) Manufacture a new test-shaft made from high strength material 

(EN19T Steel) and ground finish with tolerance of ±0.005mm.

All the measurement parameters and the set-up for future experimental work were noted 

and tested. The cylindrical roller bearing will be used in the next stage of the study 

because the dynamic behaviour of this type of bearing is easier to explain, therefore the 

theoretical analysis work can be done with better accuracy and with higher confidence.
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U riAr 1 HiK 4 

COMPARISON STUDY: TIME DOMAIN ANALYSIS

4.1 Continuation of Previous Work

The initial task to be carried out in this study was to modify and to improve the test-rig 

as suggested in the previous chapter. The next task was to determine and to specify all 

the settings required to carry out the experimental works. The overall layout of the test- 

rig complete with the ancillary equipment are shown in the photograph labeled as Plate

4.1 below.

Plate 4.1 Photograph of the test rig.
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The sound intensity transducers and measuring system were calibrated and checked 

regularly to ensure that they were working correctly. The type of bearing used for the 

initial experimental work was the cylindrical roller bearing NSK NF209K. The 

dimensions of the test-bearing used were dre = 10mm, dp = 65.0mm and number of 

rolling elements, n = 14 as shown in Figure 4.1, the test-bearings used for the 

experiment were cleaned using 1.1.1 Trichloroethane and Universal Oil was used as 

lubricant for all the bearings. The minimum load required for the rolling element 

bearing was 2% of the dynamic load rating to ensure ideal behavior of the roller as 

stated in the SKF general catalogue (1989). Therefore, during the study the radial load 

was maintained at 1.5KN. Defects were created by scratching a line across an outer 

race, an inner race and a rolling element using an etching pen. The width of the defects 

ranged from 1.40mm to 2.40mm and the depth ranged from 0.44mm to l'.50mm. 

Typical defects are shown in Plate 4.2(a) to (c) which represent line defects on the 

rolling element, outer race and inner race of the test-bearing respectively.

inner race diameter 
pitch diameter 
outer race diameter 
rolling element diameter

Figure 4.1 Schematic diagram of a cylindrical roller bearing
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(a) Rolling element defect

(b) Outer race defect

(c) Inner race defect

Plate 4.2 Photographs of the bearing defect manufactured using 
etching pen.
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4.2 Set up for the Measuring and Analysing Equipment

The maximum voltage at the input channels must be set for the Bruel and Kjaer 2032 

dual channel analyser before sound or vibration measurements can be carried out. For 

sound measurement, equation (2.1) was used to derive the formula required to calculate 

the estimated maximum voltage settings, given the overall dB value of the sound 

signals.

P r m = P r e f *  l O ^ 20) (4.1)

vrms ~ Prms x (microphone sensitivity) . (4.2)

For sinusoidal signals, the maximum voltage Vmax = V2 x vms. Some values of this 

variable are presented in Table 4.1, the value for microphone sensitivity is set to 

4l.5mV/Pa which was determined during calibration of the two microphones.

Table 4.1 A guideline for setting the maximum voltage for 
the Bruel and Kjaer 2032 analyser.

Lp (dB) Prms Vrms ^max (m K) 
(sinusoidal)

80 0 .2 0 0 8.3 11 .7
85 0 .3 3 5 13.9 1 9 .7
88 0 .5 0 2 2 0 .8 2 9 .4
90 0 .6 3 2 2 6 .2 37 .1
92 0 .7 9 6 3 3 .0 4 6 .7

95 1 .125 4 6 .7 6 6 .0

98 1 .589 6 5 .9 9 3 .2

100 2 .0 0 0 8 3 .0 1 1 7 .4

105 3 .5 5 7 1 4 7 .6 2 0 8 .7

110 6 .3 2 5 2 6 2 .5 3 7 1 .2

115 1 1 .2 4 7 4 6 6 .8 6 6 0 .2

120 2 0 .0 0 0 8 3 0 .0 1 1 7 3 .8
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Most sound level measurements carried out fell between 80dB to lOOdB. Therefore, 

the maximum input voltage for the Bruel and Kjaer 2032 analyser was set between 

15mV up to 120mV. However, the value of maximum voltage setting will affect the 

amplitude resolution of the sampled sound signals. The format used by the analyser to 

represent the amplitude of measured signals is real single precision with 2's complement 

notation, and each amplitude value is stored using a 16-bit word in a format as indicated 

in Figure 4.2.

-2° 2_1 2-2 2-3 2-15
(sign)

Figure 4.2 Real single precision data format.

The formula for calculating the amplitude resolution can be written as

Resolution = - W* ~ l ~ Vmln). (4.3)
2‘3

Therefore, if the maximum voltage was set to 15mV  the amplitude resolution of the 

displayed signals was 916xlO_9F (22.lp.Ptf), and the amplitude resolution for maximum 

voltage setting at 120 mV  was 7.32xlO_6F (176pPtf).

The other parameters set up as shown in Table 4.2 were used for measuring vibration 

and sound signals for the research work. These parameters were chosen based on the 

results obtained during the pilot study, which gave optimum results for the different 

shaft speeds so that the signals being measured contain samples of true signals to 

represent the characteristics of the test-bearing. Trigger signals obtained from the 

slotted-disk mechanism attached to the shaft were used to start each measurement to 

ensure that the signals measured always begin from the same position relative to the 

shaft revolution.
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Table 4.2 Measurement set up for the Bruel and Kjaer 2032 analyser.

Speed of Shaft 
(rpm)

Control Knob 
Position

Frequency 
Range (KHz)

No. of Shaft 
Revolution per 
Sampling 
Period

Length of 
Microphone 
spacer (mm)

500 20 1.6 4.16 50
1000 27 3.2 4.16 12
1500 34 6.4 3.12 12
2000 41 6.4 4.16 12
2500 48 6.4 5.20 12
3000 55 12.8 3.12 6
3500 61 12.8 4.16 6
4000 67 12.8 5.20 6
4500 75 12.8 6.24 6
5000 82 12.8 7.28 6

The practical range of frequency that can be covered from using the sound intensity 

measurement technique was dependent on the length of microphone spacer that was 

used to separate the two microphones as indicated in Table 4.3 below.

Table 4.3 Practical frequency range for sound intensity measurement

Length of Microphone Spacer 
(mm)

Frequency Range 
(Hz)

6.0 128 to 12800
8.0 100 to 10000
12.0 64 to 6400
50.0 16 to 1600

All signals captured and displayed using the Bruel and Kjaer 2032 analyser were then 

imported to a desktop computer. Data was imported using an IEEE card for post

processing using time domain, frequency domain, and wavelet analysis methods. A 

list of the macros and command files used for importing the data, for post-processing 

and for displaying the processed data using Dadisp(™) software is presented in 

Appendix B.
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4.3 Identification of Bearing Defects Using Statistical Method

The performance of utilising different types of signal, namely, sound intensity, sound 

pressure, air-particle acceleration and vibration signals to detect the presence of line 

defect in a rolling element, an outer race and an inner race of a bearing component was 

evaluated at this stage. The type of defects used for the experiment were already shown 

in Plate 4.2.

4.3.1 Statistical Moments and Beta Distribution Function Parameters

The well established statistical central moments such as the crest factor, and kurtosis 

were utilised to indicate the presence of a defect on the rolling element, inner race and 

outer race of the test bearing. In addition, other statistical parameters derived from the 

beta distribution function were also used. A comparative study from results obtained 

using the different types of signal and from results obtained using different types of 

statistical analysis was performed at this stage.

The statistical analysis method was used first because of its simplicity and fast 

computation time. A computer program was developed using C language to perform 

the calculations, a listing of the program is shown in Appendix C. A theoretical 

derivation of all the statistical parameters used in this study are presented in Chapter 2.

Typical statistical parameter values obtained from deterministic signals are shown in 

Table 4.4 and Figure 4.3. All of the statistical parameters including kurtosis, crest 

factor, and variables derived from beta distribution function a and b for the 

deterministic signals were less than 2. For random signals with normal distribution, the 

kurtosis value was 3 and the values of beta function variables a and b were both close 

to 6.
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Table 4.4 Summary of the statistical analysis of deterministic
and random signals.

Type of Signals Kurtosis Crest Factor 'a 'b'

Sine wave 1.5 1.4 0.5 0.5
Triangle wave 1.8 1.7 1.0 1.0
Square wave 1.0 1.0 0 0
Random Signals,
Normal
distribution

3.1 1.8 6.3 5.9

Random Signals, 
Flat distribution

1.8 1.7 1.0 1.0

Sine + Normal 1.8 1.8 1.9 1.9
Sine + Flat 1.8 2.0 1.4 1.4

The statistical variables utilised for the study were kurtosis, crest factor, and beta 

distribution function parameters a and b. The third central moment namely skew was 

not included in the study because the odd central moment of the statistical distribution 

only indicates whether the distribution is skewed to the right or to the left of the median 

value, and this value does not reflect the condition of the test bearing.

Samples of the different shape of Beta distribution function derived from different 

values of parameters a and b are shown in Figure 4.4. As the values of a and b 

become large the peak of the distribution become sharp and thin, and as the values of a 

and b becomes small, the shape of the distribution becomes wide and spread. When 

the values of a and b are both equal to 1.0, the shape of the distribution becomes a 

flat horizontal line. When the value of a is greater than b the shape of the distribution 

is skewed to the right and when the value of b is greater than a the shape of the 

distribution was skewed to the left. These are the common shapes that are encountered 

when using the beta distribution function parameters.
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(d) Probability Density Function of Signals in Figure 4.3(c) 
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Figure 4.3 Plots of the time traces and probability density functions of 
deterministic and random signals.
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(a) Some Samples of Beta Distribution Function
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Figure 4.4 Several shapes of Beta distribution function for 
different values of ‘a’ and ‘b \

Kurtosis and crest factor were used to describe the spread of the probability distribution 

function. However, crest factor was less sensitive to the presence of an extreme 

maxima in a signal compared to kurtosis. This can be seen by observing Equations 

(2.29) and (2.30) where a maximum value affect crest factor by a factor of one, and 

kurtosis is affected by a factor to the power of four. On the other hand, both of the beta 

function parameters a and b are less affected by the presence of an extreme maxima 

in a signal compared to kurtosis as shown in Equations (2.34) and (2.35).
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Defective rolling element bearing components as shown in Plate 4.2 were used to study 

the performance of utilising the air particle acceleration signal to identify the type of 

defect present in the test bearing. Results from the analysis of sound pressure and 

vibration signals are also included for comparison.

As a start the time series of vibration, sound pressure and air particle acceleration 

signals from the bearing without induced defect are presented in Figure 4.5 and the time 

series of the same signals from the bearing with an outer race induced defect are shown 

in Figure 4.6. In both cases, the speed of the shaft was maintained at 2000rpm. These 

readings were taken under typical laboratory condition where the effect of background 

sound level was considered to be minimal. It is obvious from Figure 4.5 that the 

vibration signals from the normal test bearing do indicate some random peaks due to 

imperfections in the bearing elements. The time series of sound pressure for the same 

bearing shows the effect of amplitude modulation between two components of a high 

and a low frequency signals. Whereas, the time series of air-particle acceleration 

signals show uniform oscillations with smaller amplitude modulation by the low 

frequency components compared to the previous two signals. Vibration signals from 

Figure 4.6 indicate uniform peaks with equal interval which is the characteristic of an 

outer race line defect in the test bearing. The peaks from the sound pressure signals are 

not as sharp as the peaks shown in the vibration signals and the low frequency 

modulation is still indicated from the sound pressure signals. The peaks in the air- 

particle acceleration signals are about the same feature as the peaks from sound pressure 

signals but the low frequency modulation has been eliminated, this shows that the low 

frequency modulation presence in the sound pressure signals was not emitted by the test 

bearing. This modulation could be due to other moving components in the test rig such 

as the belt-drive unit or the motor. The quality of air-particle acceleration to indicate an 

impulsive signals is better than the quality of sound pressure and slightly inferior to the 

quality of vibration signals. This shows that the vector property of the air-particle 

acceleration signals give better signal-to-noise ratio compared to the signals obtained 

from the measurement of sound pressure.

The effect of background noise on the measurement of sound pressure signals is 

highlighted in Figure 4.7(a). This signal was taken in the presence of transient
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background noise emitted by slamming the door in the laboratory. All statistical 

variables calculated from this signal do not indicate the presence of an impulsive defect 

signal coming from the test bearing. However, in Figure 4.7(b) the air-particle 

acceleration signals clearly discard the effect of background noise, and the statistical 

variables calculated from this signal are able to indicate the presence of defect in the 

test-bearing.
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Figure 4.5 Instantaneous time series of different types of signal from normal 
bearing running at 2000rpm.
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Figure 4.6 Instantaneous time traces of different types of signal from 
bearing with outer race defect running at 2000rpm.
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signals from bearing running at 500rpm.
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The advantages of using air-particle acceleration signals compared to using sound 

pressure signals were also indicated even when the background noise level was 

considered to be minimal. Figure 4.8 shows time traces of sound pressure signals from 

rolling element bearing with several different conditions. The induced defects used for 

this test were created using an etching pen and these defects are already shown in Plate 

4.2. Statistical variables calculated from the time traces in Figure 4.8, shows that using 

sound pressure signal it is difficult detect and identify the presence of defect on the 

outer race, and on the inner race of the test-bearing. However, the presence of the 

rolling element defect can be detected qualitatively and quantitatively, by observing the 

overall impulses shape and by calculating the statistical variables respectively as shown 

in Figure 4.8(c). The amplitude in this Figure was normalised to the maximum value in 

order to maintain a uniform scaling on the graph.

Figure 4.9 shows the air particle acceleration signals from the same experimental 

conditions as in Figure 4.8. These results show that air-particle acceleration signals can 

indicate the presence of a defect in the test-bearing better than from using sound 

pressure signals. The overall background noise level for this experiment ranged from 

54.0 to 58.0dB, and the overall noise level from the test-bearing ranged from 70.0dB to 

78.0dB linear scale. Therefore, the effect of background noise in this case was 

considered to be minimal. The presence of background noise, even at a low level can 

affect the measurement of sound pressure signal. The result can give a false indication 

on the condition of bearing being monitored if only the statistical variables were used. 

In both cases the results from using air-particle acceleration signal are superior at 

picking up the impulsive nature from a defective bearing. Therefore, the results 

obtained from measurement of air-particle acceleration signals are more reliable 

compared to the results from measurement of sound pressure signals.

Results from the measurement of vibration signals are shown in Figure 4.10 for 

comparison purposes. As expected the indication of impulsive signals from a defective 

bearing was much clearer from the vibration signals. One interesting feature is observed 

from these signals, the impulses are evenly spaced in the case of outer race and inner 

race defects. Whereas, for the case of rolling element defect, the time of occurrence of 

the impulsive signals are unpredictable. This is due to the complex mechanism that
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caused these impulsive signals in a defective rolling element bearing. These signals are 

dependent on the relative rotation of the defective rolling element with respect to the 

outer race and inner race of the bearing component. Moreover, since the test bearing 

was only loaded at the top, the rolling element was tightly squeezed when it passed 

through the top of the shaft. On the other hand, at the bottom of the shaft the clearance 

between the rolling element and the races were relatively loose. Any micro stick-slip 

that occurs during each revolution of the rolling element around the shaft caused a shift 

in the position of the rolling element defect with respect to the inner and outer races of 

the bearing. Therefore, the timing when the defect was in contact with either the inner 

or the outer race was randomised. As a result, the train of impulses which was the 

product of this process, occurred randomly in the time trace of the measured signals.

The amplitudes in Figures 4.7, 4.8 and 4.9 are normalised with respect to the largest 

amplitudes that were measured from each type of signal. For instance, all of the largest 

amplitudes occur from the operation of the bearing with a rolling element defect. 

Therefore, all the graphs for rolling element defect are normalised from zero to one. 

The rest of the graphs are normalised with respect to this largest value. A summary of 

the statistical variables calculated from this study is shown in Table 4.5. This table 

shows the relative performance of air-particle acceleration signals to indicate the 

presence of defect in a rolling element bearing, compared to the performance of sound 

pressure and vibration signals.

It is interesting to see that the scaling of the normalised amplitude in all the graphs in 

Figure 4.9 are almost the same as their counterpart in Figure 4.10. This shows that the 

sensitivity of air-particle acceleration and vibration signals to detect defect signals are 

almost identical. However, the absolute values of the amplitude obtained from each 

type of signal are very far apart. For example, the vibration signals are measured in 

units of ‘g ’ (lg  = 9.81 m/s2) and the air-particle acceleration signals are measured in 

units of micro ‘g’ (1 x 10'6 g).
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Figure 4.8 Sound pressure signals from bearing running at
2000rpm

73



N
or

m
. 

A
m

pl
itu

de
 

N
or

m
. 

A
m

pl
itu

d 
N

or
m

. 
A

m
pl

itu
d 

N
or

m
. 

A
m

pl
itu

de

(a) No defect

K =2.9, C F =2.8, a =3.7, b =3.9

-0.06
-0.08

time (sec)

(b) Outer race defect 

K =3.9, C F =4.2, a =5.5, b =7.00.2 - -

0.05--

0.15 -L

time (sec)

(c) Rolling element defect 
K =11.2, CF =5.5, a =22.0, b =16.5

0 -

time (sec)

(d) Inner race defect 
K =5.1, CF =3.7, a =11.6, b =7.7

time (sec)

Figure 4.9 Air particle acceleration from bearing running at
2000rpm
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Figure 4.10 Vibration signals from bearing running at 2000rpm.
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Table 4.5 A Summary of the statistical variables from the time-domain 
analysis study. Speed of shaft = 2000rpm.

No Defect Outer Race 
Defect

Rolling 
Element Defect

Inner Race 
Defect

Sound
Pressure

+Kurt. = 3.1 
C. F. = 4.3 

a = 5.7 
b = 7.2

Kurt. = 3.2 
C. F. = 3.3 

a = 4.9 
b = 4.9

Kurt. = 6.4 
C. F. = 4.5 

a = 12.7 
b = 11.1

Kurt. = 3.9 
C. F. = 3.3 

a = 6.5 
b = 5.3

Air-particle
Acceleration

Kurt. = 2.9 
C. F. = 2.8 

a = 3.7 
b = 3.9

Kurt. = 3.9 
C. F. = 4.2 

a = 5.5 
b = 7.0

Kurt. = 11.2 
C. F. = 5.5 

a = 22.0 
b = 16.5

Kurt. = 5.1 
C. F. = 3.7 

a = 11.6 
b = 7.7

Vibration Kurt. = 2.9 
C. F. = 3.3 

a = 5.0 
b = 4.9

Kurt. = 11.1 
C. F. = 5.2 

a = 14.1 
b = 13.4

Kurt. = 28.8 
C. F. = 9.0 

a = 36.1 
b = 38.4

Kurt. = 13.6 
C. F. = 7.5 

a = 25.3 
b = 26.9

Kurt. = Kurtosis 
C. F. s  Crest Factor

4.3.2 Classification of Defect Using Statistical Method

At this stage, an attempt was made to classify the type of defect present in the test 

bearing based on the calculated values of kurtosis, crest factor and beta distribution 

function parameters a and b. A comparison study was also performed to evaluate the 

effectiveness of using the different types of signal to indicate the presence of a defect in 

the rolling element bearing. Another type of defect was included, whereby the test 

bearing was operated with one missing rolling element. Some of the results from this 

study are presented as a scatter plot of kurtosis versus crest factor and beta function 

parameter a versus b as shown in Figures 4.11 and 4.12.

Results from the study show that all of the signals used in the experiment failed to 

differentiate between the condition of a normal bearing and the condition of a missing 

roller. This is the case, even from the results obtained using vibration signals. From
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Figure 4.11, the plot of kurtosis versus crest factor from air-particle acceleration and 

vibration signals are able to group the different types of defect used into different areas 

on the graph. However, this can only be used as a guide in identifying the type of 

defect used in the experiment. Other analysis methods must be implemented to 

determine the type of defect presence in the test bearing. The magnitude of beta 

function parameters a and b are consistently larger than the magnitude of kurtosis and 

crest factor as indicated in Figure 4.12. However, there is no significant advantages 

obtained from using beta function parameters a and b compared to using kurtosis and 

crest factor from the experiment. Both of the statistical methods could indicate the 

presence of abnormality in the test bearing but the type of abnormality is difficult to 

determine.

4.3.3 Effect of Shaft Speed

In an ideal situation, the results from using a statistical method should be independent 

of the speed of shaft. However, from the experimental results obtained in the study, 

the statistical variables are affected by speed of the shaft as shown in Figure 4.13. The 

features in this figure represent the overall characteristics of the results from using the 

statistical method. Each data in the figure is taken from an average of ten readings from 

bearing with the rolling element defect.

The pattern of the plots are similar in all the three types of signal measured when the 

shaft speed is between 500rpm to 1500rpm. It is interesting to see that each signal 

behaved differently than the others when the shaft speed is higher than 1500rpm. From 

the sound pressure signals, the magnitude of the statistical variables become smaller as 

the speed increases. In the case of air particle acceleration, the values of the statistical 

variables decrease when the speed is higher than lOOOrpm. Most of the variables reach 

a minimum value when the shaft speed is equal to 2000rpm, and after that they start to 

increase again slightly as the speed is set higher than 2000rpm. Finally, the statistical 

variables calculated from vibration signals oscillate about their mean level when the 

shaft speed is set higher than lOOOrpm.
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The main reason why the statistical variables are lower at the speed range of 1500rpm 

and 2500rpm is that at this speed range, the longitudinal natural vibration of the test- 

bearing support mechanism is encountered. As a result, the bearing housing vibrated 

more rigorously at this speed, and the overall vibration and sound signals produced are 

corrupting the signals produced by the defective component. The difference between 

the peaks and standard deviations of the measured signals tend to become smaller at this 

speed range. Since all of the statistical variables used are dependent on this variable 

they also tend to become smaller. Therefore, the relatively poor performance of the 

statistical method are mostly due to the natural frequency of the test-rig structure. This 

is confirmed by the frequency spectra obtained from another set of impact tests shown 

in Figure 4.14. The spectra show critical frequency peaks at 26Hz, 35Hz, and 49Hz 

which are very close to the operating frequency of the shaft speed at 1500rpm (25Hz), 

2000rpm (33.3Hz), and 3000rpm (50Hz) respectively.

Other examples which reveal the effect of exciting the natural frequencies of the support 

structure are shown in Figures 4.15 and 4.16. The earlier figure presents the time traces 

of sound pressure, air particle acceleration, and vibration signals from bearing with 

outer race line defect. The speed of the shaft at this instance was set to lOOOrpm. The 

latter figure presents similar types of signals with the same bearing condition but the 

shaft speed at this stage is set to 2000rpm. It is clear that the peaks in Figure 4.15 are 

sharper and cleaner than the peaks in Figure 4.16, and the natural vibration of the 

support structure for the test bearing has corrupted the signals in the latter figure 

resulting in poor performance of the statistical method.
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Figure 4.11 Plot of kurtosis versus crest factor from a test-bearing 
running at 500rpm
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Figure 4.15 Time traces of different types of signals from
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4.4 Development of Correlated Time Averaging Method

It is extremely difficult to perform synchronous time averaging on the signals measured 

from the bearing with a defective rolling element. This is due to the random phase of 

the impulses that are measured from such a bearing as shown in Figures 4.8(c), 4.9(c), 

and 4.10(c). As a result, the position of impulses in one time trace will be different 

than in the other traces, and when many averages from these traces are added together 

all the impulses that are characteristics of a defective bearing will disappear. These 

impulses are disappearing together with the random noise because of their randomness 

in phase. A new method called correlated time averaging is developed in this study to 

overcome this problem. One of the advantages from using this method is that a higher 

signal-to-noise ratio can be achieved even if the signals are measured without a trigger 

mechanism.

The main objective of the correlated time averaging method is to capture the family of 

impulses that occur due to the presence of a defect in a bearing component. In a rotating 

machine component such as bearings or gears, a defective component in operation will 

generate a family (or a series) of impulses. In each rotation, this family of impulses 

will repeat itself but the time of occurrence might be random depending on the type of 

defect present.

The first step in this method is to capture the family of impulses from a time trace. This 

is performed using a time window that slides along the time trace and capturing a family 

of impulses inside this window by positioning the window in the middle of a peak. 

Once the desired signal is captured it is saved for the next step and this procedure is 

repeated until a maximum number of captured signals is obtained for the next step of the 

averaging process. The procedure in these steps is shown in graphical form in Figure 

4.17. The width of the capturing window is adjusted to optimise the total number of 

data points captured, so that enough data is obtained to represent the different types of 

defect that can occur. In this study, the total number of data points for the sliding 

window is set to 256. This represents 0.52 to 0.91 rotations of the bearing shaft 

depending on its speed. For the type of defects studied, this setting is enough to capture
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the impulses and the different characteristics of each type of defects being studied can 

be identified.

Sliding window

Ampl.

t (sec)

Figure 4.17 Procedure for capturing a family of impulses from 
a time trace.

In the second step, a pair of the captured signals is selected and a cross correlation 

routine is performed. Then, these two signals are aligned so that the maximum 

coefficient of the cross correlation function is set to zero time. Next, the two captured 

signals are added and averaged to obtained an averaged time trace signal. Then, 

another pair of the captured signal is selected and this routine is repeated until there is 

no more signal left to be processed. Figure 4.18 below shows a schematic diagram of 

this procedure to obtain correlated time averaged signal from eight samples of time 

trace.
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Figure 4.18 Schematic diagram on the correlated time averaging process from 
eight captured time traces.

Figure 4.19 shows some examples on the effectiveness of the correlated time averaging 

procedure to obtain a high signal-to-noise ratio from a defective rolling element bearing. 

As the number of averaging process is increased, the quality of the signal becomes 

better as shown in the figure. Comparison results between time-averaged signals 

obtained from a bearing with rolling element defect and time-averaged signals from a 

normal bearing are presented in Figure 4.20. As expected these signals represent 

amplitude modulation signals, whereby the higher frequency acts as a carrier frequency 

and the low modulation frequency contains the information that is characteristic of the 

bearing being tested.

The amount of noise reduced during the averaging process is dependent on the total 

number of averages used. Figure 4.21 shows a time trace of the noise reduced from 

thirty-two averaged signals. This signal is obtained by subtracting signal in Figure 

4.19(d) from the signal in Figure 4.19(a). The percentage of noise reduced is calculated 

using the following formula:
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Y * 2  _ V X 2

% o f noise reduction = T"1 mycc/ x 100
z X „

(4.4)

where ximt is the instantaneous data, and xmged is the time-averaged data. The 

percentage of noise reduction from Figure 4.21 is calculated to be:

% o f noise reduction = ( (1 5 2 8 4 .1 7  - 4 5 6 1 .2 9 6 )  / 1 5 2 8 4 .1 7 )  * 1 0 0

=  7 0 .2  %

This result shows that a large amount of noise is eliminated from the correlated time 

averaging process. Therefore, the presence of abnormality in bearing component is 

easily detected using this method as proven in this case study.

4.5 Summary

This chapter presents a comparison study on the detection of defects in a rolling element 

bearing using time domain analysis methods. The type of defects being studied are 

mainly outer race line defect, inner race line defect and rolling element line defect. 

These defects are created using an etching pen and pictures of these defects are shown in 

Plate 4.2. Statistical moments such as crest factor and kurtosis are utilised in this study. 

In addition, the applications of beta distribution function parameters a and b are also 

performed. A comparison study on the effectiveness of using sound pressure, vibration 

and air particle acceleration signals to detect the presence of defect in rolling element 

bearing is carried out. Finally, the correlated time averaging method is successfully 

developed and applied to minimise the amount of noise in the measured signals.
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Figure 4.19 Correlated time averaging process of air particle acceleration 
signals from bearing with rolling element defect.
Speed of shaft = 1500rpm.
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CHAPTER 5

COMPARISON STUDY: FREQUENCY DOMAIN AND SIMULTANEOUS 

TIME-FREQUENCY DOMAIN ANALYSIS METHODS

5.1 Introduction

The format of this chapter is similar to Chapter 4, whereby a comparison study is 

carried out to evaluate the effectiveness of using vibration, sound pressure, sound 

intensity and air-particle acceleration signals. However, at this stage frequency domain 

analysis methods are used including spectral analysis, cepstral analysis, zoomed- 

spectral and cepstral analyses, and wavelet analysis methods. Spectral analysis is one 

of the most widely used techniques in machine condition monitoring. It can offer some 

advantages such as the mixture of complex sinusoidal components in a signal are easier 

to be recognised in the frequency domain. In addition, huge data reduction can be 

achieved using spectral analysis methods. The zooming facility in spectral analysis 

method enables us to increase frequency resolution with the same number of spectral 

lines.

The newly developed wavelet analysis method is included in the study. In contrast to 

Fourier transform, wavelet transform is very efficient in identifying and representing 

the presence of short duration transient components in a signal. In general, the wavelet 

analysis method is used to map a time-domain function onto a representation that is 

localised in both time- and frequency-domains. The types of defect studied at this stage 

are the same as in the previous chapter unless otherwise mentioned specifically to be 

different.

5.2 Spectral and Cepstral Analysis Methods

For a stationary random signal, power spectral density is commonly used to represent 

this signal in the frequency domain. The power spectral density function can be derived 

from autocorrelation function of a signal as already discussed in Chapter 2.
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Alternatively, the power spectrum which is also the spectrum of squared amplitudes of 

a real valued function can be implemented in order to obtain a signature of the measured 

signals. The transformation of a real valued function from time-domain into frequency- 

domain and the derivation of power spectral are shown in Figure 5.1. It is clear from 

this diagram that it is not possible to recover the original signal from the power 

spectrum since only the magnitude of the signals are retained, and the phase 

information are lost in the process. For a real valued function, which is usually the case 

in vibration and sound pressure measurement, each component at frequency f n must be 

matched by a component at -fn which has equal amplitude but opposite phase. 

Therefore, the resultant signal will always be real because the imaginary components at 

each frequency will always be equal to zero. The Bruel and Kjaer 2032 dual-channel 

analyser used in this study computes the imaginary parts of a real-valued time signal x{t) 

using the Hilbert transform H\\ as shown below. In essence, it corresponds to a -90° 

phase shift of the original signal.

~  1 r00 1H [x( t ) ]  = x ( t )  = — x ( u )  du.
n J-°° t - u

(5.1)
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Figure 5.1 Transformation of time-domain signals into power spectral in 
frequency-domain.

The total number of data points N, measured using the Bruel and Kjaer 2032 analyser 

is set equal to 2048. To avoid aliasing using Nyquist criterion the total number of 

frequency lines used for display is set to 800 (which is equal to 2048/2.56). The two- 

sided frequency spectrum S^k)  is defined as:

$ x ( k )  = % \W (m )-x (m )]  (5.2)

where W(m) is the weighting function; 3 [  ] is a symbol for Fourier transform process; 

0 < m < N - l ; 0 < k < N - l ;  and N  = 2048. The displayed function is derived 

from a one-sided frequency spectrum Gx (k), where 0 < k  < 800:

Sx  (k)  for  k = 0 
Gx  (k)  = - 2 S x ( k ) f o r  I < k < % - 1  (5.3)

0 for  y 2 < N - l



This can be displayed in the form of real and imaginary parts, or magnitude and phase 

components, and the magnitude can be scaled as rms, power, power spectral density, 

or energy spectral density.

A simple mathematical derivation of cepstral analysis method is already shown in 

Chapter 2. However, for convenience, another version of the mathematical formula to 

describe the concept of cepstrum analysis method is also shown below. If the power 

spectrum of a measured signal is written as:

P S ( f )  = | Gx ( / )  | 2 (5.4)

Then the power cepstrum can be written as:

CjrCO = | 3  {log [ P S ( f  ) ] } |2 (5.5)

The cepstrum analysis method is commonly used to show the complex features of a 

signal containing mixture of different families of harmonics and sidebands.

Frequency averaging process for sound pressure, sound intensity, and vibration signals 

are performed directly by the analyser. However, for the air-particle acceleration signals 

a further post-processing procedure needed to be carried out based on the principle 

shown below.

Air-particle acceleration signals: ap{t) = p 2(t) -  p x( t ) , (5.6)

Fourier transformed of equation (5.6): A P  ( / )  = P2 ( / )  - Px( f )  (5.7)

Frequency averaging of the complex air-particle acceleration signal is performed as

follow:
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= -jJrE { ( / )  - ( /)}  (5.8)

Since all of the variables are vector quantities, the summations of the real and 

imaginary components are carried out separately, and the magnitude of the resultant 

vector is calculated from the real and imaginary components.

5.2.1 Detection of Defect

5.2.1.1 Calculation of bearing defect frequencies

Basically, the formulae for calculating defect frequencies on the outer race, inner race, 

and rolling element can be summarised as follow:

nN f  r
f o r  =   c o s  Por 120 V R

(5.9)

f  =— f lr 120 \
1 + — COS P 

R
(5.10)

f r e  =
NR

60 r Cos p
1 - 1 — Cos p 

R
(5.11)

where

for

fir

fre

N

outer ring defect frequency

inner ring defect frequency

rolling element defect frequency

shaft rotational speed (revolution per minute)

radius of roller (5mm)
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R

n

P

pitch circle radius for the roller (32.5mm) 

number of rolling element (14) 

contact angle.

5.2.1.2 Signals from other moving components of the rig

The other moving components in the test rig were identified to be the motor, the drive- 

shaft and the toothed-belt connecting the motor and the drive-shaft. The mean diameter 

of the motor-sprocket is 290mm and it has 72 teeth on its circumference. On the other 

hand, the mean diameter of the shaft-sprocket is 70mm, and it has 18 teeth on its 

circumference. Calculation of the pulse frequencies generated by the shaft-sprocket and 

the motor-sprocket due to the passage of the toothed-belt were carried out using the 

following equations:

f  = "a N  
Jps 60

(5.12)

where

/ pm
Ntm m 

60
*tm N  Ds
60 D„

fps - pulse frequency due to the shaft-sprocket

fpm = pulse frequency due to the motor-sprocket

n tm = number of teeth on the motor-sprocket (72)

n ts number of teeth on the shaft sprocket (18)

= rotational speed of motor-sprocket

D m  = mean diameter of motor-sprocket (290mm)

Ds = mean diameter of shaft-sprocket (70mm).

(5.13)

Equations (5.7) to (5.11) are used to calculate the frequencies to be monitored from the 

test rig and the results are presented in Table 5.1.
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Table 5.1 Calculated defect-frequencies from bearing and 
other moving components of the test-rig.

Speed of

shaft

(rpm)

Outer race 

defect freq. 

(Hz)

Inner race 

defect freq. 

(Hz)

Rolling 

element 

defect freq. 

(Hz)

Pulse freq. o f 

motor-

sprocket (Hz)

Pulse freq. o f  

shaft-

sprocket (Hz)

500 49.3 67.3 52.9 144.8 150

1000 98.7 134.6 105.8 289.6 300

1500 148.1 201.9 158.7 434.5 450

2000 197.4 269.2 211.5 579.3 600

2500 246.8 336.5 264.4 724.1 750

3000 296.1 403.8 317.3 869.0 900

4000 394.9 538.5 423.1 1158.6 1200

5000 493.6 673.0 528.9 1448.3 1500

5.2.2 Analysis of Results

For the initial part of the study, three types of signal are used: sound pressure, sound

intensity, and vibration signals. The main purpose of this study is to compare the

effectiveness of using different measurement techniques to indicate the presence of a

defect in a rolling element bearing. In addition, studies on the advantages and

limitations of the spectral and cepstral analyses method are also performed. Magnitude

spectra of the measured signals from bearing with no defect, a missing roller, and a

line defect on one of the rolling element are shown in Figure 5.2. Spectra of sound

pressure and sound intensity signals are displayed in dB scale with reference to p rej  =
-12 220 jaPa and Irej  = 10' watts/m respectively. On the other hand, the spectra of 

vibration signals are displayed in a normalised linear scale in order to fit all the spectra 

into one graph. All spectra are obtained by averaging one hundred instantaneous spectra 

to minimise the effect of random noise.

Results from Figure 5.2 indicate that under typical laboratory condition with low 

background noise, the spectra of sound pressure and sound intensity signals are almost 

identical. The results also indicate that different types of defect will excite different a
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frequency region depending on the transfer function of the physical system being 

measured. In the case of a defective bearing, modulation of the frequency spectra 

above 1.6KHz are clearly indicated from all the signals measured. However, the type 

of defect presence is difficult to diagnose if only the frequency spectrum is monitored. 

Other method such as cepstrum analysis must be carried out in order to determine the 

type of defect presence in the test-bearing.

Figure 5.3 shows results obtained from implementing cepstral analysis method using the 

same signals as in Figure 5.2. However, only sound intensity and vibration signals are 

used because for this case, results from the sound pressure signal would be similar to 

the result from using sound intensity signal. The peaks in Figure 5.3 clearly indicate the 

modulation of the frequency spectra representing the repetitive impulsive signals from 

the rolling element defect. The calculated defect frequency in this case is 317.3Hz, 

whereas the frequency peaks indicated from the figure are 316Hz and 320Hz. But the 

frequency resolution of the spectra is 8Hz. These results show that cepstral analysis 

method can accurately indicate the type of defect present in the test-bearing.

The effect of high background noise on sound pressure and sound intensity 

measurement is shown in Figure 5.4. The background noise is generated using a white 

noise generator connected to a speaker, and the instantaneous spectrum is presented in 

Figure 5.4(a). The averaged frequency spectra for sound pressure and sound intensity 

signals are also included in the same graph for comparison. This figure shows that the 

overall level of sound pressure spectrum is higher than the overall level of sound 

intensity spectrum. However, from Figure 5.3(b) and (c) the magnitude of the peak due 

to the presence of rolling element defect is higher in sound intensity cepstrum compared 

to sound pressure cepstrum. This shows that the defect signal is better detected using 

the sound intensity technique when the background noise level is high.
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Figure 5.2 Frequency spectra of sound pressure, sound intensity,
and vibration signals. Speed of shaft = 3000rpm.
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(a) Cepstrums of sound intensity signals
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Figure 5.3 Cepstra of sound intensity and vibration signals. 
Speed of shaft = 3000rpm.

100



(a) Spectrums of sound pressure and sound intensity signals
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Figure 5.4 Spectra and cepstra of sound pressure and sound
intensity signals in the presence of background noise.
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5.3 Zoomed Spectral and Cepstral Analysis

5.3.1 Zoom Fourier Transform

Zoom analysis in the analyser was performed using frequency shift and low pass filter 

operations. If x(t) is a periodic function such that

x(t) = x(t + nT) (5.14)

where n is an integer number and T is the time taken for the function to cover one 

complete cycle . The Fourier transform equation is written as

x '(A) = \  I ” !  dt (5.15)

where f k is the kth harmonic frequency component of /;.

The multiplication of the input function x(t) by a rotating unit vector e~j2lz^kt 

effectively shifted the frequency origin to frequency f k. The component at frequency f k 

was stopped in the position it occupied at time zero, and virtually becomes a new dc 

component. The positive and negative sampling frequencies ± fs were like wise moved 

by an amount f k as illustrated in Figure 5.5. The modified complex signal was then 

filtered to remove all frequency components outside the range of expanded region. 

Finally, the resampled sequence of the filtered complex function was transformed using 

FFT algorithm to give the “zoomed” spectrum.
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Figure 5.5 Schematic diagram of the “Zoomed” algorithm.

When the defect signals were not very clear, especially in low speed bearing operation, 

cepstrum analysis of a broadband frequency spectrum sometimes fail to indicate the 

presence of defect in the bearing component. However, by zooming into the high 

amplitude region of the frequency spectrum, the defect signal was detected much easier 

and shown in the plot of the zoomed cepstrum. Figure 5.6 presents the results from a 

case study whereby a test bearing with a defective outer race was operated with the shaft 

speed of 430rpm. The calculated defect frequency for this case was 42.4Hz. It is shown 

from the zoomed sound intensity cepstrum that a small peak is indicated which 

represent a defective frequency component at 43.7 Hz. This frequency peak is very 

close to the calculated defect frequency of the test-bearing. On the other hand, there is 

no peak indicated near the calculated defect frequency value from the broadband 

cepstrum analysis shown in Figure 5.6(c). Similarly, the same results were obtained 

from the zoomed cepstrum analysis of vibration signal as shown in Figure 5.7. 

However, as expected the results obtained from vibration signals were more clearer 

compared to the sound intensity results. The results from all the different types of 

defect used in Figure 5.8 show that only the component of the defect frequency is shown
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from the zoomed cepstrums analysis method. Where, the complex frequency 

modulation from the transfer function of the physical system has been isolated from the 

defect signal. The calculated defect frequencies for the study is shown in Table 5.2, 

and the shaft-speed for this case was maintained at 820rpm.

Table 5.2 Calculated defect frequencies when the speed of 
shaft is set to 820rpm.

Defect Type Calculated Defect 
Frequency (Hz)

Outer race defect 80.9

Rolling element defect 86.7

Inner race defect 110.4
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Figure 5.6 Broadband and Zoom cepstral analysis of sound
intensity signal. Speed of shaft = 430rpm. Outer race defect.
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Figure 5.7 Broadband and zoomed cepstral analysis of vibration signal. 
Speed of shaft = 430rpm. Outer race defect.
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5.4 Simultaneous Time-Frequency Analysis Method

The theory of dilation wavelets that will be used in this study has already been presented 

in Chapter 2. This section discusses the general concept of the simultaneous time- 

frequency analysis method and presents the results of applying this method in 

monitoring the rolling element bearing condition. Basically, wavelet transform method 

is used to decompose an arbitrary function into its basic unit and the coefficients of the 

wavelet transform are obtained by dilation and translation of the mother wavelet. A 

wavelet transform can indicate local transient-oscillation of a signal at a particular point 

which is typical in a defective machine component. This is not possible using the 

Fourier transform method because it assumes that the coefficient of a particular 

frequency component exists for the whole lifetime of the signal. An analogy on the 

concept of dilation, compression and translation of a mother wavelet transform is 

presented in Figure 5.9. Three types of wavelet transform analysis product will be 

studied in this section: best level, best basis, and wavelet basis. In addition, the local 

cosine transform (LCT) method will also be implemented to generate acoustic 

signatures of the bearing component. The local cosine transform method is an extension 

of the short time Fourier transform (STFT) method, whereby the input signal is cut into 

several segments and Fourier cosine transform is performed on each segment. The 

length and the number of segment used is dependent on the level of the LCT as 

presented in Chapter 2.

At this stage, the simultaneous time-frequency analysis method is used to capture the 

signature of signals measured from a rolling element bearing. The different signatures 

obtained from the measured signals will be used to identify and to classify the type of 

defect present in a bearing component. Next, diagnostic works are carried out from the 

simultaneous time-frequency patterns of the signal, in order to identify the type of 

defect present in the bearing component. In addition, the wavelet transform method is 

also applied to minimise the random noise in a signal. All signal analysis work 

performed in this section are carried out using WPLW(TM) software package. This 

software package was developed by Coifman and Wickerhauser (1993) and distributed 

by Digital Diagnostic Corporation, Yale University, USA. Two-dimensional time 

frames will be used to represent the pattern of a signal and this representation is known
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as the phase plane diagram. Effectively, the wavelet packet transform method is utilised 

for the following purposes: to capture the time-frequency signature of a signal, to 

perform multi-scale analysis on a signal, to filter out noisy components in a signal, and 

to select important features that represent a signal (Coifman and Wickerhauser 1993).

The b ase  unit of wavelet transform analysis is the 'mother wavelet', 

i.e. Dilation and translation operations of the 'Haar wavelet'.

A  Basic Haar wavelet A Dilation operation

-E >

a  Translation operation

-D>

A
Compression & 
translation

■>

Figure 5.9 The concept of wavelet basic-unit operations to represent a signal.

5.4.1 Performance of Simultaneous Time-Frequency Analysis Method

The effectiveness of wavelet transform method to localise and to identify local 

frequency components in a signal depends on the type of mother wavelet used and on 

the nature of the input signals. The number of coefficients used to represent the mother 

wavelet will also affect the performance of a wavelet transform. The larger the number 

of coefficients the smoother the mother wavelet becomes. The diagrams in Figure 5.10 

below represent a wavelet known as the Daubechies wavelets, the numbers that follow 

the letter ‘D’ in the diagram indicate the number of coefficients used to develop the 

mother wavelet.
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(a) D2 (b) D4 (c) D20

Figure 5.10 Diagrams of Daubechies wavelets developed using 
several different coefficient numbers.

A simple signal has been created to carry out an initial study on the performance of 

wavelet packet transform and local cosine transform in analysing a signal. This is a 

combination of two transient-sinusoidal signals joint back-to-back as shown in Figure 

5.11. A high frequency component of the signal (lKHz) begins with high amplitude 

and then decays exponentially and finally disappear in the middle of the sampling 

period. At this instance, a second frequency component (500Hz) starts to emerge and 

gradually increased in amplitude until it reaches a maximum value near the end of the 

sampling period. In Figure 5.11(b), the frequency spectrum of the signal indicates two 

clear peaks at 500Hz and lKHz representing the two frequency components of the input 

signal. However, it is impossible to see time-behaviour of the input signal from the 

spectrum diagram.

In the following section, the wavelet transform and wavelet packet transform methods 

will be utilised to study the behaviour of the above signal in time- and frequency- 

domain simultaneously. Four types of mother wavelets are used for the initial study as 

indicated in Figure 5.12. These mother wavelets were chosen from a list of wavelets 

available in the WPLW(TM) software. A Phase plane diagram which represented a time- 

frequency plot of a signal was used to compare the performance of each of the mother 

wavelet. The results from the initial study are shown in Figure 5.13. The dark patches 

in the phase plane diagram represent areas of high values of the wavelet coefficients 

Results from the applications of Beylkin wavelet (B18) and Daubechies wavelet (D12)
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clearly show the two-temporal frequency components in the input signal but the time- 

position of the 500Hz component has been shifted and wrapped around into the left- 

hand side of the phase plane diagram. This is due to the inherent properties of the 

orthogonal wavelet bases function which do not have a linear phase response. However, 

the results from using Coifman wavelet (C l2) shows minimum phase shift compared to 

the results of using other wavelets. The gradual decrease of the high frequency 

component (lKHz) and the gradual increase of the low frequency component are also 

clearly indicated by the difference in the intensities of the phase plane diagram. If the 

time-position (phase information) of the input signal need to be preserved the local 

cosine transform (LCT) method can be utilised as shown in Figure 5.13(d).

10.0  0  - -

5 0 0 H z
1 0 0 0 H z

0.0  0

- 5 . 00

- 10.0  0

1.2 0 
1.0 0

0 . 4  0 
0 . 2  0

F r e q u e n c y  (H z)

Figure 5.11 Input signal used for the initial study of simultaneous 
time-frequency domain analysis.
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(a) Beylkin wavelet [B18] (b) Coifman w avelet [C12]

(c) Daubechies wavelet [D12] (d) Local cosine [LCT]

Figure 5.12 Different types of mother wavelets used for the initial study 
of simultaneous time-frequency domain analysis.
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(a) Result from B18 wavelet (b) Result from C12 wavelet
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Figure 5.13 Phase plane diagrams from the best basis representation of wavelet 
packet transform.
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5.5 Analysis of Bearing Signals Using Wavelet Transform Method

In this section, results from the applications of wavelet transform and wavelet packet 

transform to analyse signals from cylindrical rolling element bearing are presented. The 

analysis of signal at this stage can be classified into the following categories:

(i) to capture the time-frequency signature of a signal using the phase plane 
diagrams obtained from best basis, best level, and wavelet basis,

(ii) to perform denoising operations on a signal using multilayer analysis 
in the wavelet packet transform method, denoising is the name given 
to the process of eliminating random noise using the wavelet packet 
transform method.

(iii) to perform multi-scale analysis on a signal from the result of a wavelet 
transform,

(iv) to select important features that represent a signal, and

(v) to compress a signal.

Phase plane diagrams from the wavelet packet transform of air-particle acceleration 

signals are shown in Figure 5.14. These diagrams were obtained from the best basis of 

wavelet packet transform. From this stage onward Coifman wavelet (C l2) was chosen 

to perform wavelet analysis because it has been shown from previous results that it can 

minimise phase shift in the phase plane diagram when compared to other wavelets. The 

signals are measured from the operation of a cylindrical rolling element bearing with 

different conditions, such as normal condition, rolling element line defect, outer race 

•line defect, and inner race line defect. The speed of the test-shaft for this study was 

maintained at 2000rpm. The patterns of air-particle acceleration signals from different 

bearing condition display different characteristics as shown in Figure 5.14. The 

frequency content and time-behaviour of the signals were different for different bearing 

conditions. These patterns were used as signatures that represent the condition of the 

bearing in operation. In general, the signal from the bearing with no defect was rich 

with broadband frequency content that occur uniformly along the time domain. 

Whereas, the signal from a defective bearing contain a repetitive short duration of pulses 

that can be identified from vertical lines in a phase plane diagram. These repetitive
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vertical lines in the phase plane diagram represent the impulsive nature of a defective 

bearing signal.

Several different patterns of the phase plane diagrams can be constructed from the same 

signal, depending on the type of basis used to construct it. Figure 5.15 presents the 

phase plane diagrams from a bearing with a rolling element line defect. These diagrams 

are obtained from the best level, best basis, and wavelet basis of a wavelet packet 

transform results. All of the coefficients chosen from the best level basis are taken only 

from one fixed level. Therefore, the time-frequency frames in the phase plane diagram 

have a uniform rectangular shape as shown in Figure 5.15(a). These uniform square 

frames also show that the uncertainties of time-position and frequency-component of the 

signal obtained from this display are constant.

Although the general shape of the phase plane diagram from best basis are almost the 

same as the best level basis, the shape of time-frequency frames as shown in Figure 

5.15(b) are not uniform. All of the coefficients used to construct this diagram are 

selected from the high-valued coefficients available from all the different levels of the 

wavelet packet transform. Because different levels will have different time-frequency 

resolution, the shape of time-frequency frames in the phase plane diagram will also be 

different. This is the most effective way to represent an input signal since all the high

valued coefficients from any level can be selected and displayed in the phase plane 

diagram.

The third phase plane diagram shown in Figure 5.15(c) is constructed from the wavelet 

basis. The main feature of a wavelet basis is the multiscale octave segmentation of the 

input signal. The high-frequency components are contained in Level 1 as shown in the

figure. The frequency range in this level is set from - F max to Fmax of the input signal.
2

Where Fmax is the maximum frequency that can be extracted from the input signal. The 

next lower frequency components are contained in Level 2, and the frequency range in 

this level is half of the frequency range in Level 1. These relationships are continued 

into the next level and so on until the maximum level is reached. As the number of 

levels increases, the shape of the time-frequency frames become shorter and wider
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which indicate that the frequency resolution is smaller and the time-resolution is bigger. 

Therefore, in this diagram the best frequency resolution is obtained from the highest 

level and the worst frequency resolution is obtained from the lowest level, and vice- 

versa. The wavelet basis is best used to represent and to detect transient components in 

a signal.

The next application of wavelet packet transform method implemented in this study was 

the de-noising algorithm or also known as the coherent structure extraction of an input 

signal. In Figure 5.16, the process of the de-noising algorithm was carried out on sound 

pressure signal obtained from a bearing operated in the presence of high background 

noise. The diagram in part (a) was the original input signal and the second diagram in 

part (b) was obtained by transforming the input signal using C12 wavelet and 

reconstructed from the best basis display. Only the coefficients with high values were 

selected for the reconstruction, and these selected coefficients represent twenty percent 

of the total energy in the input signal. This was the first coherent component of the 

input signal. The remainder of the signal not selected in the process called the residual 

component, was transferred into the next layer and transformed again using the same 

mother wavelet. Next, high-valued coefficients which represent twenty percent of the 

residual component were selected from the best basis display and reconstructed to 

obtain the second coherent component. The next remainder of the signal which was the 

second residual component was transferred again into the next layer and the same 

process was repeated to obtain the third coherent component of the input signal. This 

component is presented in part (c) of the figure. Finally, the input signal was obtained 

from the summation of all the coherent components and a residual component of the last 

layer as shown in equation 5.16.

s = coh(O) + coh(l) + coh(2) + . . . +coh(n) + res(n) (5.16)

Where s is the input signal coh(0), coh(l) up to cohiri) are the coherent components 

from all the different layers, and res(ri) is the residual component from the last layer.

As the number of layer increases in Figure 5.16(b) and (c), the background noise 

component indicated by the presence of random broadband signal become more
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apparent. Whereas the repetitive impulsive signals due to bearing component defect 

were easier to be detected from the first coherent component in part (a) of the figure. 

Different types of mother wavelet can be chosen to transform the coherent component at 

each layer. This is useful when different features of the input signal need to be 

identified from each layer of the wavelet transform process.

Another important feature of the wavelet transform method is the ability to look at a 

signal using different time-frequency scales simultaneously. Figure 5.17 shows how the 

defect signal from a bearing component is easily detectable from multiscale analysis of 

the wavelet transform method. The wavelet basis of the air-particle acceleration signal 

from bearing with an outer race line defect is used for the analysis. The speed of the 

test-shaft for this case was set to 2000rpm. Reconstruction of the signal based on all the 

coefficients selected from Level 1 shows the impulsive high frequency components as 

shown in Figure 5.17(b). The time period of impulses are clearly shown from this 

diagram. The low frequency oscillation of the defect signal is clearly shown in the 

reconstructed signal based on the coefficients in Level 6 as shown in Figure 5.17(d). 

These signals can be used to diagnose the condition of a bearing component. The 

frequency spectrum of the reconstructed signal from Level 6 is shown in Figure 5.18. In 

this diagram, a very strong peak is indicated at 200Hz which indicate the presence of 

outer race defect in the test-bearing. The calculated defect frequency is 197.4Hz and the 

frequency resolution of the spectrum diagram is 8Hz. This study showed that the 

condition of the bearing component can be diagnosed easily using multiscale analysis of 

a wavelet transform.

Finally, one of the most significant features of a wavelet transform method is the ability 

to compress a signal. Only a few of the wavelet coefficients are required to represent a 

signal without losing the important information contained in the signal. Figure 5.19(a) 

shows a sample of air-particle acceleration signal measured from bearing with inner race 

line defect. A total of 2048 data points were used to record the amplitude in time 

domain. In Figure 5.19(b) a reconstruction of the same signal was obtained from the top 

102 wavelet coefficients selected from the best basis. The compression ratio 

accomplished from this process is 1:20, and the reconstructed signal carry seventy-six 

percent of the total energy contained in the original signal. From the two diagrams, it is
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evident that the reconstructed signal looks very similar to the original signal. Whereas 

only th of the total coefficients were used for its representation. This method can 

be used to minimise the number of features needed to represent a signal for further 

analysis and to minimise the space required to store a signal.

5.6 Summary

Frequency domain and simultaneous time-frequency domain analyses methods have 

been implemented to diagnose the condition of a cylindrical rolling element bearing. 

Sound pressure and air-particle acceleration signals are measured and analysed. 

Although the frequency spectrum of a bearing signal changes in the presence of a defect, 

the type of defect detected is difficult to determine. Cepstrum and zoomed cepstrum 

analyses method were used successfully to detect the frequency content of a defective 

signal. Next, the types of defect present are determined by comparing the frequency 

content of the measured signals with the calculated defect frequencies that are expected 

from the test-bearing.

Wavelet transform and wavelet packet transform methods are used to analyse and 

represent the measured signals in simultaneous time-frequency domain. Signatures of a 

bearing signals are obtained from the phase plane diagram of wavelet packet transform. 

Classification of the bearing signals are performed from the phase plane diagrams. 

Further analysis and diagnosis work are performed using the multi-layered and multi

scale algorithms that are available in wavelet transform and wavelet packet transform 

methods. It was shown that the exact frequency component from a defective bearing 

signal can be determined using these algorithms. Finally, the wavelet transform method 

is used to compress a signal whereby only a small number of wavelet coefficients are 

needed to reconstruct the signal. This feature is very important if small space is 

available to store the signal and if only a few coefficients are required to represent the 

signal.
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Figure 5.14 Phase plane diagram of air-particle acceleration signal measured 
from cylindrical rolling element bearing.
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transform method using air-particle acceleration signal.
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Figure 5.16 Denoising of a sound signal using wavelet packet transform.
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Figure 5.17 Multiscale analysis of air-particle acceleration signal from 
different level of wavelet transform method.
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Figure 5.18 Frequency spectrum of the reconstructed wavelet transform 
from level 6.
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Figure 5.19 Compression of a bearing signal using wavelet packet 
transform. (Compression ratio 1:20).
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CHAPTER 6

NEW METHOD FOR MONITORING BEARING CONDITION 

USING AIR-PARTICLE ACCELERATION SIGNALS

6.1 Introduction

The operation of a machine component, such as a rolling element bearing, will result in 

the emission of sound energy into its surroundings. The sound energy produced by a 

good condition bearing is mostly due to manufacturing inaccuracies in the bearing 

components. In this simple example, the bearing in operation becomes the sound 

source which radiates sound power and the effect is the variation of sound pressure in 

the surrounding area. The sound pressure signal measured using a microphone is 

dependent on the distance between the sound source and the measuring position. It also 

depends on the acoustic environment, also called the sound field when the sound waves 

are present. Because sound pressure is a scalar quantity, its measurement can easily be 

affected by the presence of other sound sources near the measurement position. This 

makes it difficult to measure sound pressure due to a machine component in a noisy 

environment.

With the development of the sound intensity measurement technique, the sound power 

of a source can be measured in situ even in a noisy environment. Sound intensity is a 

measure of sound energy flow per unit area at a specific position and direction. Because 

it is a vector quantity, the presence of a steady external background noise will not have 

any damaging impact on sound intensity measurement. The vector property of sound 

intensity measurement is also useful in locating and identifying the source of a noisy 

component in a complex environment. However, the requirements on the measuring 

probe and the analysing system are very strict. Because this technique utilises the phase 

difference between signals from the two microphones to compute the velocity 

component of the air-particle, any inherent phase mismatch in the microphone pair and 

analysing instrument will cause errors in the measurement.
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The difference between sound pressure and sound intensity measurement is best 

visualised from the analogy of ripples produced on the surface of a pond if a rock is 

thrown into it. The behaviour of surface waves in the water is shown in Figure 6.1. The 

oval shape solid lines in the diagram show maximum displacements of the water level 

and the dashed lines indicate minimum displacements. These are analogous to the 

maximum and minimum sound pressure areas in a sound field. Furthermore, the 

magnitude and direction of wave energy propagation shown by the arrows in the 

diagram, is measurable using the sound intensity technique in the case of an acoustic 

disturbance.

DiFdotion of 
wave propagation___

Figure 6.1 Propagation of surface waves in a pond.

A new and novel method is proposed in this study to measure the effect of an acoustic 

disturbance caused by a sound source. The new parameter introduced in this study is 

capable of tapping the advantages of using a vector quantity similar to the measurement 

of sound intensity signal but without its strict requirements on the probe and analysing 

system. The new parameter proposed in this study is the air-particle acceleration signal 

which is derived from a two-microphone method similar to sound intensity 

measurement technique. However, the two microphones do not have to be phase- 

matched. The only requirement imposed on the microphone pair and the analysing 

system is that the amplitude response from each channel has to be identical. This
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requirement is easily fulfilled by performing amplitude calibration on the two 

microphones and the analysing system. The easiest way to measure air-particle 

acceleration signal is using two sound level meters separated by a fixed distance. It is 

also cheaper to buy the hardware for measuring air-particle acceleration compared to 

sound intensity measurement system. The formula to compute air-particle acceleration 

signal using the two-microphone method is presented again in this section for 

convenience.

aP(t)  = [ p M - p M  (6, }
V P o A r J

ap(t) is the vector quantity of air-particle acceleration

P i( 0 is sound pressure signal from the first microphone

P2 O) is sound pressure signal from the second microphone

Po is the density of air in the acoustic field, and

A r is the distance between the two microphones.

This equation shows that knowing the pressure gradient between the two microphones 

and the air density, the air-particle acceleration signal can be calculated. This 

parameter does not measure the absolute strength of the sound source rather it is an 

indication of how much the acoustic field is being disturbed by the sound source. This 

is sufficient if the signal is to be used to monitor the condition of the sound source.

6.2 Characteristics of the Measuring System

In this study all measurements of the air-particle acceleration signals are carried out 

using the same instruments that are used to measure the sound intensity signals. 

Basically, it consists of a pair of condenser microphone arranged face-to-face separated 

by a solid spacer, and a dual channel signal analyser. Further post processing and 

display are carried out using a desktop computer.
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Because the pressure gradient was calculated using a finite difference approximation 

from the two microphone positions, it causes a restriction on the upper frequency limit 

on the measurement of air-particle acceleration signal. Therefore, the smaller the 

length of spacer used, the higher the frequency range of measurement will be. This is 

similar to the restriction imposed on the measurement of sound intensity signal. 

Normally, the frequency range that can be covered using a pair of half-inch 

microphones with a 12mm spacer is between 64Hz to 6.4KHz. However, a recent 

study (Jacobsen et al 1996) has proven that the combination of half inch microphones 

with 12mm spacer is capable of giving an accurate measurement at frequency one 

octave higher than the limit imposed by the finite difference error. Therefore, the 

combination of half-inch microphones with 12mm spacer can be used to measure sound 

intensity and air-particle acceleration up to frequency of lOKHz accurately.

6.3 The Origin of Mechanical Sound

The origin of sound in industry is always associated with the vibration of machine 

components. However, this is not the only source of sound that is being studied in 

engineering applications. In this section some of the dominant causes of sound 

generation in industry are presented.

The first and most common type is sound generated by vibrations of machine 

component in the audible frequency range which is between 20Hz to 20KHz. This is 

the common source of sound from vibration of panels and plates on a machine 

component such as the panels that are used to cover gearboxes or other machine 

components.

The second type of sound is due to a sudden deceleration or sudden acceleration of rigid 

bodies. For example, if a small steel sphere is dropped onto a solid floor a sharp “tick” 

sound is emitted even though the steel sphere is vibrating above the audible frequency 

range. The sudden deceleration when the sphere hits the floor and the sudden 

acceleration when it starts to bounce back causes an impulsive motion of the air around
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the sphere. The sound produced from this process is often called the acceleration noise 

and mostly occurs when there are rapid metal to metal contact in machinery.

The next type of sound is normally encountered in an exhaust pipe. The sound signal is 

produced by an oscillating piston which causes sound waves to travel along a pipe. A 

body of air at the open end of the exhaust pipe oscillates similar to the sound waves 

caused by the piston and transmits sound to the surroundings.

Finally, the sound signal caused by turbulent eddies in jet flow is also frequently 

encountered in industry. This type of sound is sometimes called aerodynamic sound. 

No vibration of rigid bodies are involved to produce the sound. A common example is 

the sound produced by gas turbines that are used to propel modem aircrafts.

6.3.1 Noise From Rolling Element Bearing

Sound produced by a bearing is mostly due to irregularities and imperfections on the 

rolling elements and raceways of the bearing component. About fifty percent of bearing 

noise is caused by incorrect installation. This is particularly true in the case of roller- 

contact bearings (Diehl 1973). Sound emitted by a defective bearing is mostly 

impulsive in nature due to a repetitive metal-to-metal contact of the defective 

component. This sound signal is also accompanied by sound due to ringing and the 

resonance effect of the bearing housing. The air-particle acceleration signal is an ideal 

parameter that can be used to detect abnormality in a rolling element bearing component 

due to the impulsive nature of such a signal.

6.3.2 Utilising of Air-Particle Acceleration Signals

Predictive maintenance using sound and air-particle acceleration signals can serve two 

purposes, namely, to reduce the noise level produced by machines and to increase 

productivity. A properly planned acoustical maintenance program can be coordinated 

with the predictive maintenance program in industry. Each activity will enhance the
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other and an optimised effort is achieved. The equipment needed for these activities are 

also almost identical. The fitness of a machine in operation and the noise level it 

produces is determined from a single measurement step. In fact, the method of sound 

measurement proposed in this study can be used for several purposes such as noise 

hazard study, hearing conservation, engineering noise control and predictive 

maintenance programs.

Initially, a baseline study on a new machine under normal operating condition must be 

carried out. These readings are used as reference levels, whereby the trend of the sound 

pressure and air-particle acceleration signals is compared to the reference level. An 

overall dB level can be used for this type of measurement. The equations as presented 

in Chapter 2 are shown again here for convenience.

L . = 20 logI0
f  \

P m is dB
\  P r e f  7

(6.2)

where p rms is the root mean square value of the sound pressure signals, and p ref  is 

the reference sound pressure at 20 pPa.

= 10 logj0
r \

aP r ,n s
ap dB

\ a P reJ  )

(6.3)

where ap rms is the root mean square value of the air-particle acceleration signals, and

6 2apref  is the reference value at 9.81 x 10' m/s (1 micro ‘g’). Similarly, an overall dB 

level of vibration signals is calculated from the equation:

L ,b = 10 log10

vb

vb„,ref

dB (6.4)

where vbref  used for this study is 0.0lg (10 milli ‘g’).
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If an abnormal high acoustic signal is detected from a machine component, a detailed 

analysis can be carried out to diagnose the fault present in the machine component. In 

this study, several different types of analysis method are used for the diagnosis 

including statistical, spectral, cepstral, and wavelet transform methods. Some samples 

of diagnosis work to determine the type of defect presence in a cylindrical rolling 

element bearing were already presented in the previous chapters.

6.4 Validation Study

A new set of bearings were used for the validation study. The type of bearing used is an 

RHP cylindrical roller bearing Type NF209ETNCNSK with diameter of rolling element, 

dre = 10.97mm, pitch diameter, dp = 65.47mm and number of rolling element, n = 

16. The cage for the rolling element was made from plastic material and the operation 

of this type of bearing was quieter than the previous type of test-bearing used in this 

study.

Two types of experimental study were carried out at this stage. First, the sensitivity of 

using the air-particle acceleration signal to detect a defective bearing component was 

compared to the performance of using sound pressure and vibration signals. For this 

experiment, a uniform line defect was created on the rolling elements using Spactron 

Electro Discharge Machine (EDM). Several different sizes of line defect were 

manufactured as shown in Plate 6.1 and the nominal size of these defects are presented 

in Table 6.1. The smallest size of line defect shown in the table was made using a 

TEER ST200, Scratch Test Machine. Measurements of the defect size were carried out 

using a Laser Form Talysurf 120L Machine manufactured by Taylor Hobson Company.

Table 6.1 Different sizes of rolling element line defect used in this study.

Rolling Element 
Line Defect no.

Nominal Width 
(mm)

Nominal Depth 
(mm)

Sam ple no.1 0.500 0.430
Sam ple no.2 0.250 0.275
Sam ple no.3 0.190 0.041
Sam ple no.4 0.090 0.003
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(a) Defect sample no.1, nominal width = 0.50mm

(b) Defect sample no.2, nominal width = 0.25mm

(c) Defect sample no.3, nominal width = 0.19mm

(d) Defect sample no.4, nominal width = 0.09mm

Plate 6.1 Different sizes of rolling element defect tested in the study
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The second study was concerned with the effectiveness of using air-particle acceleration 

signal in the presence of high background noise. The performance using air-particle 

acceleration signals was compared to the results from using sound pressure signals. For 

this study the background noise was produced by connecting a white noise generator 

Type 419C, manufactured by Dawe Instrument Limited, to a Q-Max Wedge Monitor, 

CSPWM152 loud speaker. The set-up for this experiment is shown in Figure 6.2 

below. The sound pressure microphones were located 230mm above the test-bearing 

during all of the experiment activities.

White Noise Generator

Loud Speaker

Test-Rig Housing

Test
Bearing

Transparent
Windows

Computer
Control Panel

Signal Analyser

Figure 6.2 Top view of the experimental set-up.

6.4.1 Detailed Study of Defect Detectability

A study to establish the effectiveness of using air-particle acceleration signals compared 

to sound pressure and vibration signals was performed the results of which are presented 

in this section. Four different sizes of line defect as shown in Plate 6.1 were introduced 

on rolling elements of a cylindrical roller bearing. The study was carried out at three 

different speeds of the shaft, namely: 500, 1500 and 3000rpm. These speeds represent 

a low speed, a medium speed and a high speed of the shaft respectively. For each case,
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eight samples of data were measured, analysed and recorded. The type of variables used 

for the study were the overall dB levels calculated from the rms value of a signal and 

Kurtosis value calculated from statistical method established in the previous chapters.

The results obtained from defect sample no.l (0.5mm nominal width) and sample no.2 

(0.25mm nominal width) showed clear indications of the presence of defect in the test- 

bearing. This was consistent with all the different types of signal used in the study. 

Therefore, they are not shown here because they do not show the relative performance 

of using different types of signal to indicate the presence of defect in a bearing 

component.

Table 6.2 shows result obtained from the measurement of signals from a test-bearing 

with no defect. The values in brackets show the range of the calculated parameters 

obtained from eight samples of data for each case. The values shown above the brackets 

are the statistical mean values of the calculated parameters from all eight samples. 

Notice that the overall dB value increases as the shaft speed increases, whereas the 

Kurtosis value remain almost the same at all speed. This scenario is consistent with all 

the different types of signal used in the study. Therefore, the Kurtosis value from a 

bearing with no defect at any shaft-speed should be very close to three.

Results from the experimental work carried out using the test-bearing with defect 

sample no.3 (0.19mm nominal width) are shown in Table 6.3. Although the overall dB 

value increases as the shaft-speed is increased, the values themselves are consistently 

lower than the values measured when there was no defect present in the test-bearing. 

This can be seen clearly by comparing the results presented in Table 6.3 with the results 

in Table 6.2. For example, the mean dB value of sound pressure signal from a test- 

bearing with defect sample no.3, and with shaft-speed of 500rpm is 64.4dB as shown in 

Table 6.3. Whereas the mean dB value of sound pressure signal from a test-bearing 

with no defect is 66.0dB. This result indicates that the overall sound energy actually 

decreases in the presence of a line defect in the rolling element of the test-bearing. The 

reason for this is complex in nature, and it depends on the transfer function of the 

physical system. Thus the accepted norm that a quieter machine indicates that there is 

no defect presence could be misleading. The nature of the sound signal emitted needs to
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be identified before the condition of the machine can be established. These results also 

show that whenever there was changes in the overall dB value of a measured signal, 

either it was lower or higher than the reference level, a more detailed study on the 

machine component must be performed in order to determine the cause.

The kurtosis values shown in Table 6.3 are used to indicate whether the defect signal is 

detectable from the measurement of sound pressure, air particle acceleration and 

vibration signals. The kurtosis values also indicate that the presence of defect sample 

no.3 is not detectable from the measurement of sound pressure signals. This finding is 

consistent with all the shaft-speeds tested in the study. In addition, Kurtosis values at 

shaft-speeds of 500rpm and 1500rpm reveal that air-particle acceleration signals are 

capable of indicating the presence of defect signal from defect sample no.3. However, 

when the shaft-speed was set to 3000rpm the Kurtosis value from air-particle 

acceleration signals failed to indicate the presence of defect in the test-bearing.

Another interesting finding from Table 6.3 is that the performance of air-particle 

acceleration signals to indicate the presence of a defect in the test-bearing is superior to 

the performance of vibration signal when the shaft rotates at low speed, i.e. 500rpm. 

On the other hand, the performance of the vibration method is slightly superior than the 

performance of air-particle acceleration signal when the shaft rotates at high speed, i.e. 

1500rpm and 3000rpm. At low speed, the reading of vibration signals from an 

accelerometer were easily corrupted by the low-frequency vibration of the test-rig 

structure and also by the vibration of the test-bearing support structure. On the other 

hand, at high speed, the reading of the air-particle acceleration signals were easily 

corrupted by the high-frequency components from reflections of sound signals emitted 

by the other moving components in the test-rig. Although all the other moving 

components were placed in an enclosure, the high-level, high-frequency sound signal 

they produced can easily escape from tiny openings of the enclosure. Any reflections 

which were inline with the probe will be included in the air-particle signals that were 

being measured. This argument is supported by the evidence shown in Figure 6.3. 

Part(b) of the figure, shows a sample of air-particle acceleration signal when the shaft- 

speed was set to 500rpm. The impulsive nature of defect signals emitted by the defect 

sample no.3 are clearly indicated in the figure. It is also clear that most of the signals in
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this figure consist of high frequency components, compared to Part (c) where a sample 

of vibration signal under similar situation is corrupted mostly by low-frequency 

vibration signal from the test-rig structure.

Results from the smallest size of defect tested in this study are shown in Table 6.4. The 

results from vibration signals show that the presence of defect sample no.4 in the test- 

bearing was not detected at the speeds tested in the study. Whereas, only a slight 

indication of the defect signal was indicated from the Kurtosis value of air-particle 

acceleration signal at 500rpm. This result confirm earlier findings that the air-particle 

acceleration signal is superior to vibration signal when the test-shaft was rotating at low 

speed, i.e. 500rpm. At other speeds tested, results from air-particle acceleration also 

failed to show any abnormality in the test-bearing.

Table 6.2 Results from analysis of bearing signals with no defect

Speed
(rpm)

Type of Signals

Sound Pressure Air-Particle Acceleration Vibration
dB-Level Kurtosis dB-Level Kurtosis dB-Level Kurtosis

500 66.0 
(65.0 - 67.0)

2.9 
(2 .7 -3 .1 )

7.9 
(7.4 - 7.8)

3.1 
(2.8 - 3.3)

27.7 
(26.5 - 29.7)

3.0 
(2 .7 -3 .3 )

1500 76.6 
(76.2 - 77.0)

3.0 
(2.7 - 3.3)

10.1 
(9.7 -10.3)

3.0 
(2.7 - 3.3)

36.3 
(35.5 - 36.8)

3.0 
(2.9 - 3.2)

3000 79.6 
(78.7 - 80.5)

2.9 
(2 .8 -3 .1 )

13.1 
(12.8 -13.4)

3.0 
(2 .8 -3 .1 )

61.4
(60 .8 -61 .7 )

2.9 
(2 .8 -3 .0 )
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Table 6.3 Results from analysis of bearing with defect sample no.3. 
(Nominal width of defect = 0.190mm).

Type of Signals

Speed
(rpm)

Sound Pressure Air-Particle Acceleration Vibration
dB-Level Kurtosis dB-Level Kurtosis dB-Level Kurtosis

500 64.4 
(62.3 - 65.9)

3.1 
(2.6 - 3.3)

6.0 
(5.6 - 6.4)

5.1 
(3.9 - 6.7)

11.2
(11 .0 -11 .3 )

3.4 
(2 .9 -3 .6 )

1500 71.8 
(70.5 - 73.9)

3.2 
(2.8 - 3.3)

8.3 
(7.8 - 9.3)

3.7 
(3 .1 -4 .1 )

19.5 
(19.3 -19 .7)

4.2 
(3 .4 -6 .1 )

3000 77.3 
(76.5 - 78.0)

2.9 
(2.8 - 3.0)

13.2 
(12.4 - 16.4)

3.1 
(3.0 - 3.3)

25.0 
(24.9 - 25.2)

3.9 
(3 .5 -4 .8 )

Table 6.4 Results from analysis of bearing with defect sample no.4. 
(Nominal width of defect = 0.090mm).

Speed
(rpm)

Type of Signals

Air-Particle Acceleration Vibration
dB-Level Kurtosis dB-Level Kurtosis

500 9.7 
(9.4 - 9.9)

3.7 
(3.2 - 4.2)

26.6 
(26.0 - 27.3)

3.1 
(2.9 - 3.3)

1500 10.2 
(9.8 - 10.5)

2.8 
(2.6 - 3.0)

35.0 
(34.2 - 35.5)

2.9 
(2 .7 -3 .1 )

3000 12.4 
(12.3 - 12.6)

3.1 
(2.9 - 3.3)

61.1
(60 .8-61 .4)

2.9 
(2.6 - 3.2)
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Figure 6.3 Samples of time domain signal measured from defect 
sample no.3 when the shaft-speed is set to 500rpm.
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6.4.2 Effect of Background Noise

Experimental work to study the effect of high background noise on the performance of 

air-particle acceleration signals as carried out, and is presented in this section. The 

experiments were carried out using a cylindrical rolling element bearing with defect 

sample no.2 as shown in Plate 6.1. Data from the measurement of air-particle 

acceleration signals was analysed for three different speeds of the test-shaft: 500rpm, 

1500rpm and 3000rpm. However, only results from shaft-speed of 1500rpm are 

presented in Table 6.5 because they show the limit of the effectiveness of air-particle 

acceleration signals in the presence of high background noise.

A white noise generator was connected to a loud speaker to produce high amplitude 

background sound signal which contain all the frequency range that were included in the 

study. A sound level meter was used to measure the overall dB levels of the 

background noise. A linear weight filter was used for the calculation of overall dB 

level, whereby all frequency components have equal contribution towards the overall 

value. For each scenario, eight samples of air-particle acceleration signals are recorded 

and analysed as indicated in Table 6.5. For each sample, the Kurtosis value was 

calculated and used to evaluate the effectiveness of using air-particle acceleration signal 

to indicate bearing defect in the presence of high background noise.

The second column in Table 6.5 presents Kurtosis values calculated from air-particle 

acceleration signals measured only from the test-rig with minimal background noise in 

the laboratory. A typical linear weight background sound level in the laboratory was 

measured between 54dB to 58dB. This was very low compared to the sound level 

measured from the test-rig alone at 72dB. Therefore, the effect of background noise 

level for this case was considered to be minimal.

The last row of the table presents the mean Kurtosis value calculated from all eight 

samples of the signals being measured for each scenario. For instance, the mean 

Kurtosis value measured from test-rig alone was calculated to be equal to 9.5. This 

shows a clear indication of the presence of defect sample no.2 in the test-bearing. 

Results shown in Table 6.5 also indicate that the presence of defect sample no.2 in the
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test-bearing was detectable from measurement of air-particle acceleration signals even 

when the overall background noise level was 90dB. This background level was 14dB 

higher than the sound signal emitted by test-rig alone. This is a very good indication of 

one of the advantages derived from using air-particle acceleration signal to monitor the 

condition of a machine component.

A sample of time domain signals obtained from measurement of sound pressure and air- 

particle acceleration signals is shown in Figure 6.4. The signals in part (c) and (d) are 

obtained from the first sample of measurement when the overall background noise level 

is set to 90dB which is 14dB higher than the sound signal produced by the test-rig 

alone. The impulsive signals due to the presence of defect sample no.2 is clearly 

indicated in the air-particle acceleration signals. Whereas, measurement of sound 

pressure signals failed to indicate the presence of defect in the test-bearing as shown in 

part (c) of the figure.

This result shows that even if the background noise energy is much higher than the 

sound energy emitted by the defective bearing, air-particle acceleration signals are still 

able to pick up the signals emitted by the defective bearing. However, the efficiency of 

using air-particle acceleration signal is also dependent on the direction of the 

background noise. For this experiment the direction of background noise propagation is 

perpendicular to the axis of the measurement probe, therefore obviously, the effect of 

the high background noise on the measurement of air-particle acceleration signal is 

minimal. Nevertheless, these results show that a big improvement is achieved when 

using air-particle acceleration signals compared to the performance of using sound 

pressure signals.

The directionality characteristic of the two-microphone method can be used to search 

for a dominant sound source. A sound incident at ninety degrees angle with respect to 

the probe axis will show minimum amplitude display on the reading of air-particle 

acceleration signal, as shown in Figure 3.5. Therefore, the direction and location of a 

dominant sound source is easily indicated using this method.
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Table 6.5 Kurtosis values of air-particle acceleration signal in the
presence of high background noise. Shaft-speed = 1500rpm.

Defect 
Sample no.2

Test-Rig 
Alone: 76dB

Background 
Noise: 87dB

Background 
Noise: 90dB

Background 
Noise: 93dB

Background 
Noise: 97dB

Signal no.l 10.5 4.6 4.9 3.4 3.1
Signal no.2 10.8 3.7 6.0 3.1 3.1
Signal no.3 10.2 4.5 3.4 3.5 3.3
Signal no.4 11.9 4.3 5.7 4.6 3.0
Signal no.5 7.0 4.3 5.3 3.4 3.2
Signal no.6 12.7 4.0 3.7 2.9 3.0
Signal no.7 5.3 5.5 4.4 3.2 3.0
Signal no.8 7.3 6.1 4.6 3.7 3.0

MEAN 9.5 4.6 4.8 3.5 3.1
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Figure 6.4 A sample of time-domain signals measured from test-rig with 
defect sample no.2 and a high background noise at 90dB.
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6.5 Industrial Case Study

A four-channel tape recorder was used to carry out field measurement of sound and air- 

particle acceleration signals. Then, the recorded signals were brought into the 

laboratory to be analysed. This is the common method used to analyse field data if the 

analysis equipment is expensive, bulky and sensitive to mechanical shock. Although, 

robust and portable equipment can also perform the same task in the field if  it is 

available. In this study a Store 4D Racal, four-channel tape recorder was used to 

record vibration, sound and air-particle acceleration signals in an industrial 

environment.

6.5.1 Calibration of Tape Recorder

Before the tape recorder was used in the industry, the performance of the tape recorder 

was checked and calibrated in the laboratory. The amplitude and phase responses in 

each channel of the tape recorder were also checked to make sure that they were within 

the acceptable limit for sound intensity measurement technique. Although, for the 

measurement of air-particle acceleration signals, only the amplitude response between 

each channel has to be identical. The overall set-up for the tape calibration procedure is 

shown in Figure 6.5 below.

Dual Channel 
Signal Analyser

Microphones

Computer

Acoustic
Coupler

Tape RecorderB&K Type 4220 
Calibrator

Figure 6.5 Overall set up of tape calibration procedure.
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The results of phase calibration between two channels of the tape recorder is presented 

in this section. For this case, the calibrator was used to produce a sound signal at a 

particular frequency. The acoustic coupler will make sure that the sound signals 

recorded by the two microphones are at the same phase relative to each other. Phase 

mis-match in the two channels will cause a lower frequency limit in the sound intensity 

measurement technique. The signals measured from the two microphones were 

recorded onto the tape recorder, at the same time the signals were also recorded by the 

signal analyser. From the recorded signal of the tape recorder and the signal analyser, 

the accuracy of the tape-recorded signal were confirmed.

Calculation of phase mis-match between the two channels of the tape recorder used to 

record sound signals was carried out using the following equation:

. ,  360° „  „
<i> =  X /  X -------  ( 6 .6 )

cycle

where

<|> is the phase mis-match between the two channels.

t  12 is the time delay between the two channels calculated
from the maximum value o f cross-correlation function.

/  is the frequency of the sound signal being measured in Hertz.

The phase mis-match at a frequency of 40Hz is calculated to be:

<|> = 7 .08xl0”7sec x 40 cycle/sec x 360 degree/cycle 
= 0.01 degree

It shows that the worst scenario in the phase mismatch calculation is very small, and 

therefore, the effect of phase mis-match in tape measurement of sound signal was 

considered to be minimal.
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6.5.2 Monitoring of Bearing Signals at Caparo Merchant Bar, Scunthorpe

The Caparo Merchant Bar (CMB) was officially opened in 1985 as a joint venture with 

British Steel. It produces popular sizes of flat plate, angle, channel and round steels for 

the volume sector market For the purpose of this study, measurement of vibration, 

sound pressure and air particle acceleration signals were carried out on the rear bearing 

of Rolling Stand 2 in the Light Section Mill. The instruments used for the 

measurements included: sound level meter, accelerometer, sound intensity probe, 

charge amplifier, dual channel signal analyser and a four-channel tape recorder. A set

up of the measuring transducer with the machine component is shown in Plate 6.2. All 

the signals were measured and recorded simultaneously, and the characteristics of the 

signals being measured represent a typical scenario of the operational activities of the 

plant. The background noise level measured during the study varied from 90dB up to 

lOOdB measured on a linear-weighted scale, and the nominal speed of the shaft was 

measured to be 1062rpm. These measurements were carried out on Wednesday 26th 

June 1996. The data were recorded onto the tape recorder and brought to the laboratory 

for further analysis work.
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Plate 6.2 Positions of the accelerometer and microphones for the 
measurement of industrial data.

6.5.2.1 Analysis of data

Because it is not possible to monitor a defective bearing component in the plant, only 

measurement of a normal bearing under typical operating condition was carried out. 

Comparison study on the performance of vibration, sound pressure and air-particle 

acceleration signals was performed to evaluate the effectiveness of using air-particle 

acceleration signal in an industrial environment. Basically, operation of the Roller 

Stand 2 can be separated into three parts:
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(i) unloaded, where no steel bar was being rolled,

(ii) initial loading step, where the steel bar was being rolled into 
position, and

(iii) fully loaded, where the steel bar was already in position for rolling.

All of the three steps of operation can be seen clearly from the time domain 

measurement of vibration signals as shown in Figure 6.6. When the roller was not 

loaded the vibration signal shows a uniform high frequency oscillation of the bearing 

housing with relatively low amplitudes. However, at the instance when the bar was 

being fed to the roller a sudden increase in vibration amplitude was recorded as shown 

in Part (b) of the figure. The vibration signals of a loaded roller as shown in Part (c) 

indicates that the amplitude of the vibration signal was higher compared to the vibration 

level when the roller was not loaded. The vibration of a loaded roller mainly consists of 

lower frequency components due to the response of the whole machine structure being 

measured by the accelerometer. This can be seen by comparing the nominal period of 

oscillations of the vibration signals shown in Part (a) and (c) of the figure.

The instantaneous time domain of air-particle acceleration and sound pressure signals 

presented in Figures 6.7 and 6.8 can only indicate two modes of roller operation: loaded 

and unloaded. The high impulsive signals shown from measurement of vibration signal 

during the loading operation is not indicated from sound and air-particle acceleration 

signals. This is because the air-particle acceleration measurement technique is only 

sensitive to the local change of the air-particle motion. During the loading operation, 

the high impulsive nature of vibration and sound pressure signals were located at the 

roller itself which was far away from the rear bearing. Therefore, the local air-particle 

acceleration signals near the rear bearing were not affected by the loading process. 

Whereas, reading of sound pressure signals was easily corrupted by the presence of 

high background noise in the plant. Kurtosis values calculated from all the measured 

signals showed that the bearing being monitored was in good condition.

Measurement of vibration signals as shown in Figure 6.9 was dominated by frequency 

components ranging from 2.5KHz to 3.0KHz which can be associated with the transfer 

function of the bearing housing. The frequency spectrum of the air-particle acceleration
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signal showed a uniform distribution of high frequency components between 3.5KHz up 

to 6.4KHz, although the amplitudes are slightly less than the low frequency 

components. Whereas, frequency averaging of sound pressure signals show that it is 

dominated by low frequency components at 144Hz and 472Hz which mostly come from 

background noise from other sources in the plant. This shows that the measurement of 

air particle acceleration signal is more sensitive towards the changes in high frequency 

components. This is the region which is most affected by the presence of a defect in a 

bearing due to metal-to-metal contact in the bearing components. This result is similar 

to the discussion presented in Section 6.3.1. The frequency spectra in Figure 6.9 are 

obtained from averaging fifty instantaneous spectrum of the signals being measured. 

The frequency averaging process was performed in order to minimise the effect of 

random noise on the measured signals.
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(a) Instantaneous Vibration Signals From Unloaded Roller

Kurtosis = 3.0, Crest Factor = 3.0

0.000 0.024 0.049 0.073 0.098

Tlme(sec)

0.122

(b) Instantaneous Vibration Signals During Loading

3.00

1 ,0 0 . .

O )
0.00

- 2.00
0.024 0.0490.000 0.073 0.098 0.122

Time(sec)
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Figure 6.6 Instantaneous vibration signals from different operating 
conditions of Roller Stand 2.
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(a) Instantaneous Air-Particle Acceleration Signals 
From Unloaded Roller
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(b) Instantaneous Air-Particle Acceleration Signals 
From Loaded Roller
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Figure 6.7 Instantaneous Air-Particle Acceleration signals from 
different operating conditions of Roller Stand 2.

(a) Instantaneous Sound FYessure Signals From Unloaded Roller
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Figure 6.8 Instantaneous sound pressure signals from different 
operating conditions of Roller Stand 2.
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(a) Spectrum  Averaging of Vibration Signals
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Figure 6.9 Frequency averages from fifty readings of measured signal 
from Roller Stand 2, Light Mill Section.
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6.6 Summary

In this chapter the effectiveness of using air-particle acceleration signals for monitoring 

bearing condition is presented. The advantages and limitations of using air-particle 

acceleration signals are also identified. Results from the experimental works showed 

that the performance of the air-particle acceleration signal is better than the performance 

of sound pressure signal in the presence of high background noise. In fact, the 

indication of impulsive defect signals are shown clearly from the measurement of air- 

particle acceleration signals even when the background noise was 14dB higher than the 

overall sound level of the defective bearing signals. A 3dB increment of sound pressure 

level represents a double in power of the sound source.

The sensitivity of the air-particle acceleration signal to indicate very small defects in the 

bearing component is almost identical to the sensitivity of vibration signal. Moreover, 

at low bearing speed (i.e. 500rpm) the performance of air-particle acceleration signals 

are consistently better than the performance of vibration signals. This is because the 

vibration measurement at low speed was easily corrupted by the resonance vibration of 

the test-rig structure. Whereas the defect frequency mainly consists of high frequency 

components which is easily detectable from the measurement of air-particle acceleration 

signal. However at high speed tests (i.e. at 1500rpm and 3000rpm) the performance of 

vibration signals is slightly superior to the performance of air-particle acceleration 

signals.

The measurement of air-particle acceleration in the field was carried out using a four- 

channel tape recorder. A sample of results from measurements of sound pressure, air- 

particle acceleration and vibration signals to monitor bearing condition in an industrial 

environment is also presented in this chapter. Basically, this chapter presents the 

application of a new and novel method of monitoring bearing condition using air- 

particle acceleration signal. The method developed in this study can easily be 

incorporated with the hearing conservation program and the condition-based 

maintenance program which are already implemented in industry.
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CHAPTER 7

APPLICATION OF ARTIFICIAL NEURAL NETWORKS

7.1 Introduction

The machine component monitoring system being developed in this study should be 

able to identify the condition of a test-bearing quickly and consistently. One way of 

achieving this is by incorporating artificial intelligence into the monitoring system. The 

development of artificial neural networks in recent years provides a powerful method 

that can be implemented to analyse a large amount of data and to deduce expert 

information from the data. As a result, artificial neural networks are included in the 

study and they are used to identify complex patterns produced by the test-bearing.

Artificial neural networks are parallel distributed signal processing systems that imitate 

the neuron structure of a biological brain. The application of this system is most 

appropriate when we have the input and output signals from a machine component, but 

the algorithm required to process the input signals is not precisely known. The artificial 

neural network was trained to leam the required “knowledge” from examples of input 

and output patterns acquired from the test bearing. The knowledge acquired from 

training is stored in the connection weights (synaptic weights) that link all the neurons. 

During the training process the weights are altered in response to the training data. 

When minimum root sum-squared error from the output is achieved, the training 

process is terminated and the networks were saved for future use. Basically, artificial 

neural networks are used for two purposes: classification and modeling. In this study, 

the application of artificial neural networks mainly falls in the classification category, 

where air-particle acceleration signals from bearings with different types of defect are 

fed into a network and the types of defect present in the bearing component are 

identified by a trained network.
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7.2 Network Design

Nowadays, with rapid development of artificial neural networks, there are two main 

tasks left for a user to do: network design and data presentation. In this study, the 

multilayer perceptron network (MLP) was utilised. This type of network consists of an 

input layer, one or two hidden layers, and an output layer as shown in Figure 7.1 

below.

Output
Layer

Input
Layer

Hidden
Layers

Figure 7.1 A schematic layout of a multilayer perceptron with 
two hidden layers.

There are three methods available to train an artificial neural networks: supervised, 

unsupervised and re-enforcement learning. Supervised learning can be implemented 

when samples of input patterns and their expected output patterns are readily available 

from previous data. In this method, a set of input pattern is fed into a network and the 

expected output pattern is also presented to calculate the error produced by the network. 

Once the training session is completed, the trained network can be tested with a new set 

of data that it has not seen before. This type of learning process was chosen for this 

study.
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Unsupervised learning is implemented to classify data when no prior information is 

available about the data. In this type of learning, the network tries to group each input 

vector into a cluster in an output grid. The total number of clusters available are 

dependent on the number of neurons assigned to the output grid. This type of learning 

method is seldom used due to its complexity and unpredictable outcomes.

Re-enforcement learning is midway between supervised and unsupervised learning. In 

this type of learning, input data is fed into the network and a scalar value is given to 

evaluate the performance of the network. This value is used as a performance index to 

guide the network during a training process.

7.3 Utilisation of Back-Propagation Algorithm

The development of the back-propagation learning algorithm by Rumelhart, Hinton and 

Williams (1986) certainly put an end to the negative impression about learning in 

multilayer perceptrons that has been implied by the famous article written by Minsky 

and Papert (1969). With the development of the back-propagation algorithm, it proved 

that there was an efficient method available that can be used to train a multilayer 

perceptron. In a training process, it calculates the error and also the rate of change of 

error for a given set of weights and then modifies each of the weights in the network to 

minimise the error using the following equation:

where WChange is a change in the connection weight, r\ is the learning rate

dEparameter, a  is the momentum coefficient assigned for the network and is the

rate of change of error with respect to a particular weight. This equation shows that as 

the gradient of the error surface becomes steeper the change in the weight becomes

WChange, + a  * WChange t _ j
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larger. The inclusion of the momentum coefficient in the equation is to ensure that the 

error surface does not stop and get “trapped” in a local minima as shown in Figure 7.2.

RMS
Error

/ \  Local minima

Error Surface

j  Global minima

Weight

Figure 7.2 Illustration of an error surface for a single weight.

7.3.1 The Forward Pass

The input pattern used to train a chosen network design was fed to the network using the 

forward pass algorithm. The learning process for an MLP network with single hidden 

layer can be summarised by the following steps (Haykin 1994):

(i) Randomise all the weights in the connection of neurons in 

the network if necessary.

(ii) Present one of the pth. training patterns to the input layer.

xp (7.2)

(iii) Calculate net input to hidden layer neuron j .

N
y j  = Z wu x Pi- (7.3)
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Wjj is the weight of a connection between z'th input node and

j th  hidden neuron, and N  is the total number of nodes in the 

input layer.

(iv) Apply the net input to hidden neuron j  to the transfer 

function to find a hidden neuron’s output activation.

ohj = f ( y j )  = 1 . (7.4)
1 + e J

The effect of this equation is to restrict the output of a neuron 

between 0 and 1. This equation is commonly known as the 

sigmoid function or the activation function.

(v) Feed forward the activations of the hidden neurons to the 

output neuron k to calculate its net input.

y k = I  WJk ohj (7.5)
1=1

Wjk is the weight of a connection between y'th and Ath 

neurons, and L is the total number of neurons in the hidden layer.

(vi) Apply the net input to the output layer neuron k  to the 

transfer function to find the output neuron’s activation value.

0 0  k = f ( y k)  = - — — . (7.6)
1 + e n

The formulation in the previous steps are easier to be understood using the illustration in 

Figure 7.3. At this stage the actual output activations from the network are obtained. 

These activation values are the effect of supplying the network with the input pattern. 

Error from the network performance is obtained from the difference between the 

expected output pattern with the actual output activation pattern from the network.
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Next, the weights in the connection of the neurons are modified to minimise the error 

using the back propagation algorithm.

Direction of
forward pass

Output layer

Wn

X p N °  

Input layer
Hidden layer

Direction of

back propagation

Figure 7.3 Graphical illustration of an internal structure of 
a multilayer perceptron with single hidden layer.



7.3.2 Back Propagation

The error function at each output neuron is defined as the difference between the desired 

output ( d k ) pattern and the actual output activation from the network. Therefore, the 

error function at the output neuron can be written as

errork =  (d k - o o k) (7 .7 )

Next, this error value is multiplied by the derivative of the activation function 

calculated for the output neuron to produce a delta term for that neuron.

8 ok = error k
r d f '

S y J
= error k ook (1 -  ook) (7 .8 )

The error signal is propagated backward and the error value of neuron j  in the hidden 

layer is determined by the following equation

M
error j  = £ 8  °k Wkj ■ (7 .9 )

k

Where M  is the total number of nodes in the output layer. Similar to the output layer, 

the delta term for each hidden neuron is obtained from

8 hj = error j  ohj (1 -  o h j) .  (7 .1 0 )

(  d E \
The weight error derivative ----  defined earlier as the rate of change of error with

\dW J

respect to a particular weight is computed by multiplying the delta term at each neuron 

with the activation of other neuron that it is connected to. For a neuron connection 

between the hidden layer and the output layer
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'  d E '
\d W J  jk

= 5 ok (ohj ) (7.11)

Similarly, the weight error derivative for a connection between the input layer and the 

hidden layer is computed by the following equation:

dE 
dW JtJ

= 8 hj (*„,) (7.12)

Finally, the weights are updated to minimise the error, a learning rate parameter and a 

momentum coefficient are incorporated in the equations. Initially, the weights between 

the hidden and output layer are updated

f dE'''
Jk \dWJ Jt

(7.13)

Then, the weights for the connection between the input layer and the output layer are 

also updated.

W„(f) = wt ( l - 1) -  T! ( J g  + a [w„ (l - 1) -  WiJ (t -  2)] .

(7.14)

A general form of equations (7.13) and (7.14) is already presented in equation (7.1). 

The training steps presented in this and the previous sections are repeated until the 

magnitude of the root sum-squared error at the output layer was lower than the 

maximum allowable value specified by the user.
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7.4 Identification of Bearing Defects

The multilayer perceptron with single hidden layer has chosen for this study. The 

stochastic back propagation algorithm is used to train the network. With this algorithm, 

the weight changes in the network are made after each pattern presentation. Because the 

order of input pattern may influence the learning process, they are presented to the 

network in random order. Optimum values for the learning rate and the momentum 

coefficient are determined by a heuristic method. Once the network design has been 

resolved, the next task was to select the relevant features from raw data. The procedure 

for selecting these features is presented in the next section.

7.4.1 Feature Selection Using Wavelet Transform

In this study the different types of defect tested in a cylindrical roller bearing were 

identified using the artificial neural network algorithm. The type of test-bearing used 

for this study was the same as the test-bearing presented in Chapter 6. A test-bearing 

with four different conditions namely; normal bearing, rolling element line defect, 

outer race line defect and inner race line defect was tested in this study. The shaft speed 

for the initial study was maintained at 1500rpm, and only air-particle acceleration 

signal was utilised to train the network.

The main purpose of a feature selection algorithm is to pick up only the important 

parameters that can be used to represent a sample of measured signal. Since only a few 

parameters will be chosen as an input to the artificial neural networks software, the 

algorithm for selecting these parameters must be able to represent the raw signal 

effectively. For this reason, the wavelet transform method was selected as a feature 

selection algorithm in this study. Six features were chosen from a result of the wavelet 

transform method of air-particle acceleration signals. These features were obtained 

from the summation of the magnitudes of wavelet coefficient at different levels as 

shown in Figure 7.4. Each feature was normalised by the summation of wavelet 

coefficients from all levels of the wavelet transform result. Since these features 

represent the summation of wavelet coefficients at different frequency bins, the time
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information of the signal is lost. The frequency range for each feature increases in an 

octave frequency band as indicated by the shaded region in the figure. The parameter 

Fmax shown in the figure is the maximum frequency component that was available 

from the measured signal. In this study, the Coifman wavelet (C l2) was used to 

transform the measured signals since it is capable of representing time-frequency 

components of a signal with minimal phase shift. A diagram that shows the waveform 

of a Coifman wavelet is already shown in Chapter 5.

1/32 Fmax

1/16 Fmax 
1/8 Fmax

1/4 Fmax 1/2 Fmax

Original signal

Feature 4

Feature 5

Feature 6

Level 2

Level 3

Feature 3 from Level 4 

Feature 2 from Level 5 

Feature 1 from Level 6

Fmax

Level 0

Level 1

Figure 7.4 Representation of features from the frequency bins of a 
wavelet transform algorithm.

All of the features were calculated from the magnitude of wavelet transform 

coefficients. As indicated in Figure 7.4, only coefficients from the first six levels of 

the wavelet transform result were used for calculating these features. The mathematical 

formulation to calculate the features is presented below:
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I
F, = - T - n-------------- • (7-15)

I  I
/ = 1 7=1

Where MW^jj  is the magnitude of wavelet transform coefficient from level /, j  is

the index of wavelet coefficient in level /, N  is the total number of coefficient in level 

/, L is the total number of levels from the wavelet transform process and / is an 

integer number which represent the feature’s index, ranging from 1 to 6. All features 

were normalised with the summation of all of the wavelet transform coefficients 

available from a signal.

7.4.2 Experimental Determination of Optimal Network Design

There were three variables left to be decided to achieve an optimal design of the 

multilayer perceptron chosen in this study. These variables are:

(i) the number of neurons in the hidden layer,

(ii) the value for learning rate parameter ( r j ), and

(iii) the value for momentum coefficient ( a ) .

The ultimate objective of a pattern classifier in this study is to achieve an acceptable rate 

of correct classification of the different bearing conditions using air-particle acceleration 

signals. Therefore, the parameters that are used to evaluate the performance of the 

different network design included: (i) the percentage accuracy of the network to

classify bearing signals, (ii) the minimum magnitude of error values, and (iii) the 

number of epochs when the training was terminated. An epoch is defined as a single 

pass of the entire input pattern into a network.

In this study, forty records of time domain signals were recorded at random for each 

bearing condition. Each sample contains 2048 data points which represent five 

revolutions of the test-bearing shaft. A set containing twenty data samples from each
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case of bearing condition was selected to train a network, and another similar set was 

selected independently to evaluate the performance of the trained network. All work 

involving the artificial neural networks were performed using a window-based 

NeuralDesk(lM) software which was developed by Neural Computer Sciences company. 

A computer program was developed using C language to calculate all the features that 

are required. This program is used to calculate the features from the output of a wavelet 

transform algorithm. A listing of this program is shown in Appendix D.

Results from training of the artificial neural networks with different numbers of neuron 

in the hidden layer are shown in Table 7.1. For this study, the values for learning rate 

parameter ( r j ) and momentum coefficient ( a  ) were set to 0.1 and 0.9 respectively. 

Six neurons were specified in the input layer which is equal to the number of features 

calculated from the output of wavelet transform algorithm. Four neurons were set in the 

output layer which represent four different conditions of the test-bearing. Training of 

the network was terminated when the root sum-squared error during training fell below 

0 .0001.

Table 7.1 Performance of multilayer perceptron with different 
number of neurons in the hidden layer

Number of 
Neurons in 
Hidden 
Layer

Percentage of Correct 
Classification

Query Data Training Data

ND* OD RD ID ND OD RD ID

3 85 95 100 95 100 100 100 100
4 85 100 100 95 100 100 100 100
5 85 100 100 95 100 100 100 100
6 85 100 100 95 100 100 100 100

* ND = No defect, OD = Outer race defect,
RD h Rolling elem ent defect, and ID s  Inner race defect

The resuits show that the optimal number of hidden neurons was equal to four. 

Increasing the number of neurons more than four did not improve the performance of 

the artificial neural networks. The results also showed that fifteen percent of the query 

data measured from bearings without defect are misclassified as indicating the presence
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of rolling element defect. Five percent of the data measured from bearings with inner 

race defect are misclassified as indicating the presence of outer race defect. One 

hundred percent correct classifications are achieved from the network when features 

from outer race defect and rolling element defect are tested. Finally, one hundred 

percent correct classification is indicated when the network was tested using the same 

set of data that are used for training.

The next study was carried out to determine the optimal values for the learning rate 

parameter ( r | ) and momentum coefficient ( a ). An optimal network design as 

determined in the previous study was implemented for this experiment. Therefore, the 

network consisted of six neurons in the input layer, with a single hidden layer 

containing four neurons and another four neurons in the output layer. All training 

sessions were initiated using the same random values of weights in the neurons’ 

connection. Training of the network was terminated when the total number of epochs 

reached 20,000 or when the error value fell below 0.001, which ever came first. 

Results from the experiment are presented in Table 7.2 and Figure 7.5 as shown below.

Table 7.2 Training results of multilayer perceptron using 
four hidden neurons

Momentum

Coefficient
( a )

Learning Rate ( r | )
0.10 0.25 0.50 0.75 0.90

0.10
0.0069+

(20,000)*
0.367

(20,000)
0.444

(20,000)
0.458

(20,000)
0.462

(20,000)

0.25
0.0059

(20,000)
0.368

(20,000)
0.454

(20,000)
0.461

(20,000)
0.466

(20,000)

0.50
0.0027

(20,000)
0.001

(20,000)
0.001
(9465)

0.001
(5058)

0.001
(4366)

0.75
0.0015

(20,000)
0.001

(10,303)
0.001
(3443)

0.001
(1872)

0.001
(1546)

0.90
0.001
(9205)

0.404
(20,000)

0.317
(20,000)

0.001
(17,806)

0.001
(5268)

This number represents the magnitude of error when training was 
terminated.

* The number in bracket shows the total number of epoch when 
training was terminated.



This table shows that when the value of the momentum coefficient is low (i.e. less than 

0.5) the network is unable to learn from the training session. Therefore, the momentum 

coefficient must be set to a high value for the network to be able to search for the global 

minima on the error surface. However, the values for momentum coefficient and 

learning rate parameter must be limited between zero to one. In addition, as a rule-of- 

thumb, the summation of these two variables should be equal to one (NeuralDesk 

User’s Guide, 1994). When the learning rate was set to a low value, the error surface 

plots show that the error surface converges to an asymptotic value in a smooth and 

gradual manner. This causes the network to learn at a very slow pace and it might take 

a very long time before the network was fully trained. On the other hand, when the 

learning rate was set to a high value it moved the error in a large step and the network 

may become unstable. This phenomenon was indicated by unsteady oscillations of the 

error surface plots. The goal of this study was to find a balance when setting the values 

for the learning rate parameter and the momentum coefficient so that the network is able 

to search for the global minima in a reasonable length of time. The results show that the 

optimal value for learning rate parameter is 0.10 and the optimal value for the 

momentum coefficient is 0.90. Once all the parameters for designing an optimal 

multilayer perceptron are identified, it is tested with another set of data. When air- 

particle acceleration data were obtained by setting the shaft speed to 3000rpm, one 

hundred percent correct defect-classification for all the different types of defect were 

achieved from this test.
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Figure 7.5 Plots of mean-squared error versus the number of epochs for different 
values of learning rate and momentum coefficient.

7.5 Discussion on the Experimental Results

The results shown in this study indicated that wavelet transform method can be used as 

a pre-processor for artificial neural networks applications. In addition, they also 

showed that features from the measurement of air-particle acceleration signals can be
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as input to the neural network algorithm. When the shaft-speed was set to 1500rpm, 

measurement of the air-particle acceleration signals was corrupted by the natural 

vibration of the test-rig structure. As a result, fifteen percent false alarms were 

indicated from the response of the artificial neural networks when it was tested using 

signals from a normal bearing. In this case, all of the false alarm signals were classified 

as an indication of rolling element defect, where these data were actually obtained from 

a normal bearing.

However, when the shaft-speed was increased to 3000rpm, one hundred percent correct 

classification was performed by the network for all types of bearing defect tested in this 

study. Therefore, the artificial neural networks used in this study is capable of 

indicating the presence of defect in the test-bearing. In addition, the type of defect is 

also recognised by the network. The kind of pre-processing analysis method must be 

chosen carefully to make sure that the network can learn to classify the type of fault 

occurring in the test-bearing. An efficient feature extraction algorithm will ensure that 

the network can learn in a short time and the generalization capability of the trained 

network is improved. All of the parameters required to obtain an optimal network 

design such as the number of hidden layers, number of neurons in the hidden layer, 

number of neurons in the output layer, the learning rate parameter and the momentum 

coefficient were determined using a trial-and-error method.
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CHAPTER 8

CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

8.1 Conclusion

A new and novel method for monitoring rolling element bearings using air-particle 

acceleration signal is successfully developed in this study. This type of signal was 

derived using a two-microphone method based on the principles of sound intensity 

measurement technique. However, the requirement imposed on the measurement probe 

and on the analysing equipment for measuring air-particle acceleration signals is less 

demanding compared with the requirement for measuring sound intensity signals. For 

example, the amplitude-response and phase-response of the two microphones used to 

measure sound intensity signals must be identical. Whereas, for measuring air-particle 

acceleration signals only the amplitude response needs to be identical. As a result, the 

cost to set up a measurement system utilising air-particle acceleration signals is much 

cheaper than the cost of sound intensity measurement system. The most attractive 

feature of using air-particle acceleration signals is the non-contact and non-intrusive 

nature of the measurement transducer. This makes it a very attractive method that can 

be implemented in harsh industrial environment. Another important characteristic of 

air-particle acceleration signals is high signal-to-noise ratio. This is because air-particle 

acceleration is a vector quantity compared to the scalar quantity of sound pressure 

signals.

The performance from utilising air-particle acceleration signals to indicate bearing 

component defect has been compared with the performance from utilising sound 

pressure and vibration signals. The method developed in this study to utilise air-particle 

acceleration signals, has proven to be able to take advantage of the non-intrusive and 

non-contact nature of the measuring transducers and yet without the limitations of sound 

pressure measurement. The new method developed in this study is capable of indicating 

the presence of defective signals from a bearing component where the surrounding 

background noise was high. Experimental results from the study showed that even if 

the overall background sound level was 14dB higher than the sound level emitted by the
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test-bearing, the impulsive signals from a defective bearing component were clearly 

indicated from the measurements of air-particle acceleration signals. The sensitivity of 

air-particle acceleration signals to indicate bearing defects are almost the same as the 

sensitivity of vibration signals. However, vibration measurements are dependent on the 

way the accelerometer is coupled to the vibrating surface, and the signal can easily be 

corrupted by the presence of power-supply-line frequency and its harmonics.

The measured signals were analysed using several different types of signal processing 

method including: statistical, spectral, cepstral and wavelet transform methods.

Statistical variables such as kurtosis and crest factor are used successfully to indicate the 

presence of defective component in a test-bearing. However, the type of defect was not 

identifiable from the values of these variables. Frequency spectrum analysis method 

was used to detect the presence of defect in the test-bearing. It was difficult to 

determine the type of defect indicated from the frequency-spectrum plots because these 

plots were dependent on the transfer function of the bearing housing. Moreover, the 

frequency spectra were also affected by the modal vibration of the test-rig structure. 

Diagnosis works for identifying the type of defect in the test-bearing were successfully 

carried out using cepstrum and zoomed cepstrum analysis methods. Results from these 

two methods are accurate when compared with the calculated defect frequency of the 

test-bearing. Wavelet transform and wavelet packet transform methods were also 

implemented in the study. These methods are successfully utilised in the study for the 

following tasks:

(i) to capture the time-frequency signatures of bearing signals using the 

phase plane diagrams obtained from best basis, best level, and wavelet 

basis,

(ii) to perform denoising operation on a signal using multilayer analysis in 

wavelet packet transform method,

(iii) to perform multiscale analysis of a signal from the result of wavelet 

transform method,
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(iv) to select important features that represent a signal

(v) to compress a signal.

The machine component monitoring system developed in this study is capable of 

identifying the condition of a test-bearing quickly and consistently. This is achieved by 

incorporating artificial neural networks in the monitoring system. A multilayer 

perceptron with back propagation training algorithm was tested in the study. Only air- 

particle acceleration signals were used for testing the network. Results from the 

experiment show that in a worst scenario when the shaft-speed was set to 1500rpm, 

fifteen percent false alarm (wrong classification of a normal bearing signals) were 

indicated by the network. One hundred percent correct classification has been achieved 

from outer race defect and rolling element defect signals, and ninety-five percent 

correct classification has been achieved from test-bearing with inner race defect at this 

speed. This is because at 1500rpm, the measurement of bearing signals were corrupted 

by the natural vibration of the test-rig structure. When the shaft-speed was set to 

3000rpm, one hundred percent correct classification has been achieved for all the 

different types of defect tested in this study. Finally, the machine condition monitoring 

system developed in this study has been successfully applied in an industrial case study.

8.2 Contribution to the Field of Machine Condition Monitoring

A non-contact and non-intrusive machine condition monitoring system which utilised 

air-particle acceleration signals is firmly established in this research study. This is a 

very attractive method that can be used for monitoring the condition of a machine 

component in industry. Although only cylindrical rolling element bearings have been 

used in this study, this method can also be extended to monitor gears, pumps, motors 

and other machine components. The steps required for measuring air-particle 

acceleration signals are much easier to carry out than the steps required for measuring 

vibration signals. Moreover, the method developed in this research can be applied in 

combination with other established methods already available in the industry. This
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method can also be incorporated into noise maintenance programme of machines in 

industry. The unwanted sound signals produced by these machines are now fully 

exploited to diagnose the faults that cause them.

A new method to capture a family of impulses that may occur randomly during the 

operation of a defective bearing is also developed in this study. This method is utilised 

to capture the impulsive signals with a high signal-to-noise ratio when other 

conventional methods failed to do so. It is called the correlated time averaging method. 

It is very good at indicating the presence of rolling element defect in the test-bearing 

where conventional time averaging method is not applicable. One of the advantages of 

using this new method is that it can be used to carry out time-domain averaging of 

bearing signals without using trigger mechanism.

8.3 Suggestions for Future Work

A dedicated system for on-line machine component monitoring system using air-particle 

acceleration signals can be developed in the future. Real-time application of air-particle 

acceleration signal to monitor machine components will make it an attractive method to 

be implemented in industry.

It has been shown from this study that at low speed (i.e. at 500rpm) the performance of 

air-particle acceleration signals was slightly superior to the performance of vibration 

signals. Therefore, a detailed study of the application of air-particle acceleration 

signals for low speed bearings is proposed. Other types of artificial neural networks 

algorithm such as a Kohonen network, and a hybrid neural networks can also be 

incorporated in the future.
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Appendix A 

Derivation of Air-Particle Acceleration Formula 

Using a Two-Microphone Method

Euler’s equation is used to relate the air-particle acceleration and the pressure gradient 

between the two closely spaced sound pressure microphones.

-*P = Po
d v
—  + ( v v ) v  
o t (1)

where V p is the sound pressure gradient between the two microphones, p 0 is the 

standard atmospheric air density and v is the vector quantity of the air-particle velocity. 

With the assumption of small pertubation, no mean flow and neglecting higher order 

terms, the above equation can be simplified as:

d v 1—  =  vp. (2)
8 t p D

d v
Subtitute the equation ap  = —  into equation (2), to obtain the following

d t

equation:

1ap  =  vp. (3)
P„

where a p  is the variable that represent the air-particle acceleration signals.

If the measurement of sound pressure signal propagation is carried out along the probe 

axis, the above equation can be simplified further to obtain the equation below.

1 d p  , A,ap  = ------- — . (4)
P . dr
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Furthermore,

(5)

where p j  is the pressure signal from the first microphone, P2  is the pressure signal from

the second microphone and A r is the space between the two sound pressure 

microphones.

Subtitute equation (5) into equation (4), and include the time variable in the resulting 

equation to get the final formula for representing the air-particle acceleration signals.

I 1ap(t)  = -----—  [p, ( t )  -  p 2 (t)]
VP„ A r)

(6)
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Appendix B 

Listing of Command and Micro Files

(i)Listings of Command Files

! A command file named inb&k800.dsp to create a start up window 
! for importing the frequency domain data from B&K 2032 Analyser.
1
! This file is used to automatically
! import 800 data-points of frequency spectrum from B&K2032 Analyser.
I
Ibegin

CONFIG(21,0,16,"EOI") @cr Iconfiguring B&K equipment....
OUTPUT(26,"AF 0,800") @cr
ENTERA(26,800) @cr !importing the 800 points of data
@MESSAGE("800 DATA POINTS IMPORTED: ......")

! Display message on the screen 
lend

! This is a command file named in2048.dsp to create a start up window 
! for importing the time domain data from B&K 2032 analyser.

! This file is used to automatically
! import 2048 data-points of time domain signals from B&K 2032 analyser 
1
Ibegin

INIT @cr ! initialising the ieee card
HELLO @cr ! check on operational ieee
@MESSAGE("IEEE card is initiated ")
! Display message on the screen, and waiting for RETURN key to be pressed 
! Note: This file must be used with the appropriate window in Dadisp's software

@CNTL_HOME ! Go to the first window
CONFIG(21,0,16,"EOI") @cr ! Configuring B&K equipment....
OUTPUT(26,"AF 0,1024") @cr ! to import data from 0 to 1024 pts.
ENTERA(26,1024) @cr ! Importing the data
@MESSAGE("THE FIRST 1024 DATA POINTS IMPORTED: ......")

@CNTL_HOME
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@SP ! Go to the second window
CONFIG(21,0,16,"EOI") @cr ! Configuring B&K equipment....
OUTPUT(26,"AF 1024,2047") @cr ! to import data from 1024 to 2047 pts.
ENTERA(26,1024) @cr ! Importing the next data
@MESSAGE("2048 DATA POINTS IMPORTED: ......")

! Display message on the screen 
@CNTL_HOME ! Send cursor to the first window

lend

(ii) Listing of Macros command

svdb setvunits("dB") Set vertical units to "dB"
svg setvunits("g") Set vertical units to "g"
svp setvunits("Pa") Set vertical units to "Pa"
shhz sethunits("Hz") Set horizontal units to "Hz"
sdx8 setdeltax(8) Set deltax to 8
sdx 16 setdeltax( 16) Set deltax to 16
sdx2 setdeltax(2) Set deltax to 2
sdx4 setdeltax(4) Set deltax to 4

c clear To clear a window
ca clearall To clear all window
In linecur(-l,l) To draw line on a worksheet
txtextcur( 1,-1,-1,1) To input text with small font

aa load("ascdira.dsp") To write ascii file to A directory
ac load("ascdirc.dsp") To write ascii file to C directory
ra load("rdasci.dsp") To read ascii file from A directory
Id load("loadset.dsp") To load entire dataset into worksheet
tc load("TC.DSP") To run Turbo C program from Dadisp software
ms menufile("m_stat.men") To load the pop up menu for statistical 

analysis

sv setvunits("Volts")|sethunits("Hz")|setdeltax(l/8)
sg setvunits("G")|sethunits("Hz")|setdeltax(l/8)
sy setvunits("(xl00) Percent")
lpl label("Prob. Distribution Function")
lp2 label("Prob. Dens, of Beta Function")
yc setvunits("Counts")
xl sethunits("No Units")
yl setvunits("Y (Units)")
y2 setvunits("No Units")
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Appendix C

Listing of C Program to Calculate Statistical Parameters

#include <stdio.h>
^include <stdlib.h>
#include <math.h>

double sum, y, min, max, mean; 
double power(double, int); 
double Rv, Rp, Rq, Rt;

int i;
char infile [30];
FILE *ifp = infile

main()
{
void statl(void), stat2(void), beta(void); 
void pm_info(void);

pm_info();

printf("\n\nEnter the name of the input file: "); 
scanf("%s", infile); 
ifp = fopen(infile, "r");

statl(); /* Function to calculate mean, max, m in ,.... */

ifp = fopen(infile,"r");

stat2(); /* Function to calculate R's and other statistical variables */

beta(); /* Function to calculate beta func. statistical analysis */

fclose(ifp);

}

"LJscd m the ^tciin Pro^r3m
void pm_info(void)

printf("\n* This program reads the time history data from a file *");
printf("\n* and calculates the statistical parameters for the data *");
printf("\n* such as the mean, max, min, rms, standard deviation, *");
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printf("\n* skew, and kurtosis. In addition, this program will also *");
printf("\n* calculates the statistical parameters of a beta function *"); 
printf("\n* such as Rv, Rp, Rt, Rq, 'a1, 'b', Skew_beta, and *");
printf("\n* kurtosis_beta. *");
printf("\n* --------------------------------------------------------  *");
printf("\n* written by: *");
printf("\n* Mohd Jailani Mohd-Nor *");
printf("\n* School of Engineering *");
printf("\n* Sheffield Hallam University *");
printf("\n* Pond Street, Sheffield SI 1WB *");
printf("\n* *");

}

void statl(void)
{

if (fscanf(ifp,"%lf', &y) !=1) { 
printf("\n\nNo data found - bye! "); 
printf("\n\nHit any key to continue...");
getchO;
exit(l);
}

min = max = sum = mean = y; 
i=  1;

while (fscanf(ifp,"%lf1', &y) = 1 )  {
++i;
if (y < min) 

min = y; 
else if (y > max) 

max = y; 
sum += y; 
mean = sum / i;
}

}

void stat2(void)
{
double crest, rms, std, kutosi, skew; 
double sumstd, sumsqr, sumskew, sumkurt; 
int j;

Rv = mean - min;
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if (Rv < 0.0) Rv = Rv*(-1);

Rp = max - mean;
if (Rp < 0.0) Rp = Rp*(-1);

Rt = max - min;

sumstd = sumsqr = sumskew = sumkurt = 0.0; 
j = 0;

while (fscanf(ifp,"%lf' &y) =  1) {
++j;
sumsqr = sumsqr + power(y,2); 
sumstd = sumstd + power((y-mean), 2); 
sumskew = sumskew + power((y-mean), 3); 
sumkurt = sumkurt + power((y-mean), 4);

}

rms = sqrt(sumsqr/i);
Rq = std = sqrt(sumstd/i); 
skew = (sumskew/i)/(power(std,3)); 
kutosi = (sumkurt/i)/(power(std,4)); 
crest = max/rms;

printf("\n%s%5d\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.
3f\n%s%12.3f\n%s%12.3f',

'No. of Item: " i
'Mean: ",mean,
'Min: ",min,
'Max: ",max,
'Std Dev.: ",std,
'Skew: ",skew,
'Kurtosis: ",kutosi,
RMS: ",rms,
Crest Factor:: ",crest);

printf(,,\n\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f',
"Rq: ",Rq,
"Rp ",Rp,
"Rv: ",Rv,
"Rt: ",Rt);

void beta(void)
{
double a,b,skb,ktb;
double skew(double, double), kurtosis(double, double);
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a = Rv*(Rv*Rp - power(Rq,2)) / (Rt*(power(Rq,2))); 
b = Rp*(Rv*Rp - power(Rq,2)) / (Rt*(power(Rq,2))); 
skb = skew(a,b); 
ktb = kurtosis(a,b);
printf("\n\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f', 

"Value of 'a': ",a,
"Value of 'b': ",b,
"Skew_beta: ",skb,
"Kurtosis_beta: ",ktb);

printf("\n\n Hit any key to continue  ");
getchO;

}

double skew(double aa, double bb)
{
double ss, si; 
double s2, s3;

si = 2*(bb-aa)/(aa+bb+2); 
s2 = (aa+bb+l)/(aa*bb); 
s3 = sqrt(s2); 
ss = sl*s3; 
return ss;

}

double kurtosis(double a2, double b2)
{
double kk, k l, k2;

k l = 6*((a2-b2)*(a2-b2)*(a2+b2+l)-a2*b2*(a2+b2+2)); 
k2 = a2 * b2 * (a2+b2+3) * (a2+b2+2); 
kk = kl/k2; 
return kk;

>      .

double power(double z, int n)
{
double pp = 1.0; 
intk;
for (k = 1; k <= n; ++k) {
PP = PP * z; }

return pp;
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Appendix D 

Listing of C Program to Calculate Features For 

Neural Network Applications

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double y,inpvec[2049];
double sumtot, suml,sum2,sum3,sum4,sum5,sum6; 
double smfeatl ,smfeat2,smfeat3,smfeat4,smfeat5,smfeat6; 
int l,m,i,limit = 2048; 
char ans = 'y', infile[30], outfile[30];
FILE *ifp = infile;
FILE *ofp = outfile;

main()
{
void pm_info(void); 

pm_info();
printf("\n\nEnter the name of the output file: "); 
scanf("%s", outfile); 
ofp = fopen(outfile, "w");

for (1=0; 1<= 2048; ++1) { 
inpvec[m] = 0.0;
} /* bracket for the for loop */

while(ans == 'y' || ans =  'Y '){ 
printf("\n\nEnter the name of the input file: "); 
scanf("%s", infile); 
ifp = fopen(infile, "r");

if  (fscanf(ifp,"%lf’, &y) !=1) { 
printf("\n\nNo data found - bye! "); 
printf("\n\nHit any key to continue..."); 
getch(); 
exit(l);

} /* close bracket for the if statement */ 

sumtot = 0.0;
for (m =l; m <= 2048; ++m) { 

fscanf(ifp,"%lf&inpvec[m]); 
if (inpvec[m] < 0.0) {

inpvec[m] = inpvec[m]*(-l);
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sumtot += inpvec[m];
}

else

sumtot += inpvec[m];
}
printf("\n The total magnitude sum of wavelet coefficients = %7.31f\n", sumtot);
printf("\n\nHit any key to continue...");
getchO;

suml = sum2 = sum3 = sum4 = sum5 = sum6 = 0.0; 
smfeatl = smfeat2 = smfeat3 = 0.0; 
smfeat4 = smfeat5 = smfeat6 = 0.0; 
for (i=l; i <= 64; ++i) suml += inpvec[i]; 
for (i=65; i <= 128; ++i) sum2 += inpvec[i]; 
for (i=129; i <= 256; ++i) sum3 += inpvec[i]; 
for (i=257; i <= 512; ++i) sum4 += inpvec[i]; 
for (i=513; i <= 1024; ++i) sum5 += inpvec[i]; 
for (i=1025; i <= 2048; ++i) sum6 += inpvec[i];

smfeatl = suml/sumtot; 
smfeat2 = sum2/sumtot; 
smfeat3 = sum3/sumtot; 
smfeat4 = sum4/sumtot; 
smfeat5 = sum5/sumtot; 
smfeat6 = sum6/sumtot;

fprintf(ofp,"\n%8.21f%8.21f%8.21f%8.21f%8.21f%8.21f\n", 
smfeat 1 ,smfeat2,smfeat3 ,smfeat4,smfeat5 ,smfeat6);

printf("\n\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f\n%s%12.3f\n\n", 
"Feature 1: ",smfeatl,
"Feature 2: ",smfeat2,
"Feature 3: ",smfeat3,
"Feature 4: ",smfeat4,
"Feature 5: ",smfeat5,
"Feature 6: ",smfeat6);

fclose(ifp);
printf("\nDo you want to read another data file? \n");
printf("\nPlease enter Y or N \n"); 
ans = getchar();

} /* close bracket for the while loop */

fclose(ofp);
return 0;
} /* close bracket for the main function */
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/*
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*/

void pm_info(void)

printf("\n* This program reads an output file from a wavelet *");
printf("\n* transform method and calculates the features needed *");
printf("\n* for neural network applications. Six features are *");
printf("\n* calculated from each file which represents the *");
printf("\n* strength of the wavelet ceofficients at different *");
printf("\n* levels of the wavelet transform method. *");
printf("\n* ---------------------------------------------------------------------------------  *");
printf("\n* *");
printf("\n* written by: *");
printf("\n* Jailani Mohd-Nor *");
printf("\n* School of Engineering *");
printf("\n* Sheffield Hallam University *");
printf("\n* Pond street, Sheffield SI 1WB *");
printf("\n* *");
printf("\n* *");

}
/*
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
*/
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