Sheffield
Hallam
University

Computer aided flow-turning.

MOHAMAD, Ala Hassoon.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20070/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20070/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

" VosRakk
iivii
«\miN]) oIRi.ET 100225-

SMJ&'i'lKLD SI IWB

ProQuest Number: 10697377

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697377

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Computer Aided Flow-Turning

by

ALA HASSOON MOHAMAD B.Sc.

A thesis submitted to the COUNCIL FOR NATIONAL ACADEMIC

AWARDS in partial fulfilment of the degree of MASTER OF PHILOSOPHY'

Sponsoring Establishment: Department of Mechanical and
T

Production Engineering

Sheffield City Polytechnic

Sheffield 1
Collaborating Establishment: C.W. Fletcher & Sons Limited

Sterlihg Works, Arundel Street

Sheffield S1 1DP

July 1988

ACKNOWLEDGEMENTS

I should 1like to thank Dr.E.A.Vallis Head of Mechanical and
Production Engineering Department and the Aﬁthorities of Sheffield City
APolytechnic for allowing this work to be carried out.

I should 1like to take this opportunity to acknowledge the

invaluable guidance and continual assistance given by Prof.M, SARWAR

under whose supervision this work was carried out.

The author gratefully acknowledges his appreciation to Prof.
M.S.J.HASHMI on the overall context of this research and preparati§n of
the final report.

The author also wishes to thank Dr.J.R.TRAVIS from the Electric and
the Electéonic Department for his part on the electronic design and
software development side.

Mr.R.RODDIS for his assistance, encouragement and patience in the

program design, SDK-85 board modification and in the understanding of

the Intel development system.

Mr.J.ASHBY from the Automation Advisory Service_Department for his
advice and assistance in the hydraulic circuit design, component
selection and testing procedure.

Mr.L.EVANS for constructing the hydraulic rig and his wuseful
comments.

Mr.J.STANLEY for his assistance in the CAD/CAM system drawings and
his useful suggestions. |

The technical assistance offered by Mr.R.Teasdale and his staff was
much appreciated and particular thanks go to Mr.S.Leigh, Mr.T. 0' Hara
and Mr.R.Wilkinson for their assistance in manufacturing and setting up

the experimental equipment.

ABSTRACT
Computer Aided Flow-turning

A. H. Mohamad

The work wundertaken in this research is concerned with the
flow-turning process and its control using microprocessor technology.
The research centres on the design of a suitable flow-turning process
controller in which hardware and software are integrated together
leading to a successful realisation.

Microprocessor software has been developed to provide 'a user
friendly interface with the operator. This was written in PL/M 80 which
was subsequently compiled into machine code for execution on a modified
commercially available single board computer. Interface circuits were
designed and transducers and actuators selected to enable this computer
to be linked to a flow-turning rig which itself was custom designed to
facilitate automatic control. Considerable development work was devoted

to the integrated system to produce a working controller.

The endeavour was rewarded with success and a working controller
has been accomplished. Experimentation and testing of the real
specimens followed and the results obtained are tabulated.

- 4ii -

CONTENTS PAGE

ACKNOWLEDGEMENTS 1
ABSTRACT ii
CONTENTS } S ddd
LIST OF FIGURES o viii
LIST OF PLATES A xii

CHAPTER 1: Flow-turning process definition and history

1.1 - The flow-turning process 1

1.2 - The advantages and disadvantages 5

1.3 - Historical background of flow-turning 8

1.4 = Machines for flow-turning 13
1.5 - Coolants and lubricants 14
1.6 - Speed and feed rates 15
1.7 — Background to the design of the rig and scope

of the present work 15

CHAPTER 2: Microprocessor applications and selection

2.1 - Introduction 17
2.2 - Examples of common microprocessor uses 17
2.3 - Using the microprocessor as an alternative

method of tool movement control 18
2.4 - Selection of the microprocessor : 19
2.4.1 - Intellec Series II microcomputer developmént

system 21
2.4.2 = In-Circuit Emulator (ICE-85) 21
2.4.3 - PL/M 80 programming language 23

- iii -

CONTENTS (cont)

2-4.4
2.4.5

2.4.6

CHAPTER

3.1
3.2
3.3

3.4
CHAPTER

4.1
4.2

4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.4

4.5

4.5.1

4.5.2

3:

Universal PROM programmer
I1SIS-II Disk Operating System

Intel SKD-85 (Systém Design Kit)

Equipment description and preliminary

testing

Introduction
Description of the experimental equipment
Modification of the rig

Preliminary testing
Hardware design and testing

Introduction

Hydraulic components

The hydraulic circuit design
Proportional directional valve
Hydraulic cylinder

Relief valve

Filter

Gear pump

Electric motor

0il reservoir

The hydraulic circuit tests
Electronics

Transducer

ADC board

PAGE

24
24

26

28
28
28

38

42
42

44
46
47
47
47
47
47
49
49
50
50

51

CONTENTS (cont) PAGE

4.5.3 - DAC board , 52
4.5.4 - Shaft encoder 55
4.5.5 - Counter board : 55
4.5.6 — Modified SDK-85 board 59
4.6 - The electronic circuit tests 60
4.6.1 - Modified SDK-85 board 60
4.6.2 ~ Transducer and ADC board 60
4.6.3 - DAC board ' 68
4.6.4 - Shaft encoder and counter board 69

CHAPTER 5: Software development and testing

5.1 - Introduction 74

5.2 -~ Outline description of software from operator's

point of view 74
5.3 ~ Software development cycle 74
5.4 = 'Flow' module 79
5.5 — 'Initialisation' module 79
5.6 - 'Console I/0' module 81
5.7 = 'Machine Set—up' module 81
5.8 — 'Shape Select' module 81
5.9 -~ 'Cone Generation' module 82
5.10 - 'Parabola Generation' module 82
5.11 -~ '"Machine Cone Control' module : 82
5.12 - 'Machine Parabola Control' module | 84
5.13 - 'Display' module 84
5.14 - 'Par Interpolation' procedure 91
5.15 -~ Other program notes 91

-y -

CONTENTS (cont)

5.16 - Software testing

CHAPTER

6: Rig commissioning

6.1 - Introduction
6.2 - Testing observations (version 1)
6.2.1 - Linear transducer recalibration
6.2.2 - Counter test
6.2.3 — DAC test
6.2.4 -~ Contour shape
6.3 — Further software modifications and enhancements
6.4 — Spindle speed and feedrate ranges
6.5 — Selection of the appropriate roller speed
6.6 — Testing observations (version 2)
6.7 - Experimental testing
CHAPTER 7: Results and discussion
7.1 - Results
7.2 - Implementation of the control system
7.3 - Future improvements, modifications and suggestions
CHAPTER 8: Conclusion
REFERENCES
APPENDICES

APPENDIX I: Software test programs

1 - Shaft encoder and counter (3 sheets)

- vi -

PAGE

92

95
95
95
97
99
102
105
106
106
107

108

115

117

120

123

124

Al

A2

CONTENTS (cont)

2- - ADC (3 sheets)

3 - DAC (2 sheets)

APPENDIX II: Main program modules

10

11

12

13

Flow (PL/M) (3 sheets)

Initialisation (PL/M) (8 sheets)
Console I/0 (PL/M) (6 sheets)

Machine Set-up (PL/M) (6 sheets)

Shape Select (PL/M) (4 sheets)

Cone Generation (PL/M) (9 sheets)
Machine Cone Control (PL/M) (14 sheets)
Parabola Generation (PL/M) (8 sheets)

Machine Parabola Control (PL/M) (14 sheets)

1

DISPLAY (Assembly Language) (4 sheets)

1

INRO (Assembly Language) (2 sheets)

1

INVECT (Assembly Language) (1 sheet)

INIT (Assembly Language) (1 sheet)

APPENDIX III: Basic program to find the integer ratio

APPENDIX IV: Results (13 sheets)

Tables 1,2,3,4,5,6,7,8

Graphs 1,2,3,4,5

- vii -

PAGE

A8

AlO
Al3
A21
A27
A33
A37
A46
A60
A68
A82
AB6
A88

AB9

A90

A92

LIST OF FIGURES

CHAPTER 1
1.1 Workpiece before and after the process
1.2 Tllustration of the forming of a sheet metal cone.
CHAPTER 2
2.1 Program development flow using ISIS-II operating
system
CHAPTER 3
3.1 Preliminary testing former
3.2 Final testing former
3.3 Parabola equation
3.4 Parabolic former
3.5 A schematic diagram showing tool fixing arrangement
3.6 Roller assembly
3.7 Axial force with feed
3.8 Radial force with feed
CHAPTER 4
4.1 The hydraulic circuit
4.2 Unipolar AD574 ADC circuit
4.3 Bipolar DACO800 +5 volts
4.4 An overall schematic diagram
4.5 Counter circuit
4.6 Second counter circuit
4.7 Connections for ACIAl
4.8 Memory devices
4.9

Decoding, clock-generation, timer in and interrupt

- viil - e

2AcE

25

32
33
34

35

39
40

41

43
53
54
56
57
58
61
62

63

LIST

OF FIGURES (CONT)

4.10
4.11
4.12
4.13
4.14
4.15

4.16

Baud rate generation & serial I/0

Baud rates and memory address map

Transducer voltage-displacement relation

Cylinder speed calculation and conversion

A graphical representation of the useful DAC range
A schematic diagram of the DAC range

Lathe ON/OFF switch drive arrangement

CHAPTER 5

5.1

5.2

5.3

5.4

5.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12

5.13

The program as seen from the operator's pointof view
(1)

The program as seen from the operator's pointof view
(2)

The program as seen from the operator's point of view
(3)

Flow-turning process hierarchy chart

Cone Generation, ADC Input and Shaft Encoder
procedures

Tool Advance procedure flowchart

Tool Retract procedure flowchart

Machine Cone Control module

Interpolation procedure flowchart (1)

Interpolation procedure flowchart (2)

Interpolation procedure flowchart (3)

Cone and Parabola procedures

Roller prescribed path

N
CHAPTER 6 R | \,_Y*X \\Mg

///// - 1ix -

PAGE

64
65
67
70
71
72

73

76

77

78

80

56
86
87
45
88
89
90
93

94

LIST

OF FIGURES (CONT)

6.2

6.3

6.4
6.5
6.6
6.7

6.8

Appen
A3.1

A3.2

Appen

Table
Table
Table
Table
Table
Table
Table
Table
Graph
Graph
Graph

Graph

‘Transducer test with PROG2 program

Cylinder movement techniques

An example.of the calculated retract distances for the
interpolation routine

Possible options for locating position

Conical contours with 8 encoder pulses

Conical contours with 16 encoder pulses

Parabolical contours with 16 encoder pulses

Test programme'for the flow-turning process

dix iii : A Basic program to find the integer ratios
¢ Basic program to find the integer ratios (1)

¢ Basic program to find the integer ratios (2)

dix iv : Results

1 : Results obtained from test samples (1)
2 : Results obtained from test samples (2)
3 : Results obtained from test samples (3)
4 : Results obtained from test samples (4)
5 : Results obtained from test samples (5)
6 : Results obtained from test samples (6)
7 : Results obtained from test samples (7)
8 : Results obtained from test samples (8)
1 : The actual against the input cone angle
2 : The reduction in thickness against the con; angle

3 : The hardness against the speed

PAGE

98

100

103
104
111
112
113

114

A90

A91

A92
A93
A94
A95
A96
A97
A98
A99
Al100
AlOl

Al02

4 : The hardness against the cone angle with different

different lubricants

- X -

Al103

LIST OF FIGURES (CONT) PAGE

Graph 5 : The hardness against the cone angle with different

different feeds Al04

_xi—

LIST OF PLATES PAGE

CHAPTER 1

1.1 The disc and the finished product 3
CHAPTER 2

2.1 The Intel development system 22
2.2 The SDK-85 board 27
CHAPTER 3

3.1 General view of the equipment 29
CHAPTER 4

4.1 The hydraulic power pack 45
4.2 A view showing the hydraulic cylinder . | 48
CHAPTER 6 »

6.1 Other equipménts (VDU, the cabinet and the power

supply) 96

- xii -

Chapter 1: Flow-turning process definition and history

1.1 - The flow—tﬁrning process

Flow-turning is a process by which a metal blank is deformed to a
final axisymmetrical component shape using a tool (usually a roller) to
press it against a former. A reduction in wall thickness occurs.

Briefly it can be likened to the cold rolling of sheet metal, with
the difference that the roller is in single»point contact instead of in
line contact(l).

The pre-requisite for flow-turning is the mneed for a final
axi-symmetrical component, provision of a mating mandrel, a forming
roller and a means by which the movements gf this rolier can be made to
describe the required profile(2).

As no metal is removed, it follows that the volume of material
remains unaltered, so in order to calculate for a conventional blank
size, the change in wall thickness is the only important information
required. The process is illusfrated in fig 1.1 and plate 1.1.

There are two types of flow-turning:-

1- Tube spinning (flow forming)

2- Shear spinning (shear forming)

In tube spinning, as the name implies, the pre-form is tubular and
is flow-turned to the required dimension by continuous point extrusion
which increases the length of the tubular section by reducing the wall
thickness.

In shear spinning the pre-form is a flat disc which is formed into
progressive cone shapes by displacing the metal along the shear planes

running parallel to the centre line of rotation.

SSs00Jd U] Us14J0 pUD 240jag 209]dYJOM [| 94

03
ﬁJﬁQ
il

‘.‘7. . /I/
916uo suoy 0 15UDUDY o
mmerv‘O.NCungC..& - 43 - .“OU._QOU b - ﬂ\l\
ssauyoiyl ouibidg - 01 h—
Sl
OUIS ¥ 01=33
J3313WDIp 9104 - P
, J3318Wp|p 203 1dyJoM - (
202 1dyJoM paysiuly ay]
- ssaooud ay3 aJojaq @03 dyJop
xcogn JdDINOUID D Jo 3Ino sjuduodwoo ojJzdwwhsixo upb sonpoud usyy S

pup ssaooud Bujudnl-mo1y Byl Joj Jo717043U0D Bujyuom D dojensp o]

WY FHL

The relationship between the 1length of the cone and the wall

thickness follows a sine law; that is, the wall thickness Tl of tﬁe
finished part is equal to the thickness T of the flat blank multiplied
by the sine of one half of the included cone angle. It is, therefore,
essential to stért a pre-form at a specific thickness according to the
thickness of the wall required in the finished cone(3).

It is impossible, in conical flow-turning, to reduce the wall
thickness by more than shown by the sine-formula, since the blank would
offer too much resistance as the displaced material flowed into the
increasing diameter. An increasé in the roller pressure can cause the
'ring' of piled up metal to impede the tool and the strength of the
. blank material can be exceeded, thus leading to a tear(l).

Since in most cases a single roller-pass only is required, complex
systems to control the roller path are mnot usually necessary. Two

methods of controlling the roller are in common use:

1- Through variation of roller in-feed cylinder pressure.

2~ Through a hydraulically operated copying device and

template.

Of the two systems, the first is the simpler to set up but requires
a certain measure of skill in operation, particularly in judging the
starting point at which the required set pressure is introduced to the
roller in-feed cylinder to commence the forming operation(4).

The technique c¢an be used to produce angles of between 12 and 80
degrees from the centre line of mandrel rotation. Be1§w 12 degrees the
thinning is excessive and above 80 degrees the amount of working is
insufficient to ensure metallurgical stability(5).

With shear forming, in contrast, the metal is stretched beyond its

elastic 1limit, thereby introducing new properties. This procedure

-4 -

involves stresses being applied to the material to stretch it beyond
its elastic 1limit, but below its yield point, and produces plastic
deformation, which can be recognised in the characteristic features of
shear-formed material(4). |

This process can be used for componenﬁs where the cone angle lies
between 8 and 80 degrees. However, for single-pass forming, the
limiting minimum angle lies around 13 degrees. For components with an -
angle between 8 and 13 degrees, a two-pass forming operation is

necessary(4) .

1.2 - The advantages and disadvantages

In general, it can be stated that whenever the cone angle lies in
the range 13 to 80 degrees it is worth investigating the feasibility of
the shear-forming technique(4).

Most metals can be formed by this process and although heat 1is
sometimes applied throughout thevcycle, it is not required for steel
alloys and most nonferrous metals(6).

One main advantage of this process, which makes it suitable for
many applications, is the .improvement obtained in the mechanical
properties of the workpiece material, namely an increase in hardness
and ultimate tensile stress. However this is usually accompanied by a
decrease in ductility. Other advantages are speed of operation, 1little
waste and economy, especially for smaller batch manufacture. Moreover,
the tooling and setting requirements are comparatively simple and
relatively inexpensive. Recent applications of the spin—forging process
are the manufacture of conical parts to a high degree of dimensional
accuracy which include, for example, radar reflectors, components for
jet and turbine engines, satellite nose cones, rocket components, truck

wheel rims and parts for nuclear reactors(7).

-5 -

Tolerances in thickness and inside diameter of between +0.0508 mm
are possible and very smooth surface finishes are produced, so that in
many cases finishing or polishing operations can be reduced or
eliminated(3).

Tooling for flow-turning is remarkably low in cost,'only about 107
that of deep—-drawing dies, and 1long tool life 1is obtained.
Flow-turning is especially suitable, therefore, for the production of
small quantities of components and these can be produced more
economically than by deep-drawing, forging or machining(3).

Most metals can be formed by flow-turning provided that sufficient
pressure can be applied. These include aluminium alloys, copper alloys,
mild steels, many Ftainless steels, high temperature alloys, Monel,
Iconel and Nimonics. Some metals, such as molybdenum and magnesium, are
difficult to spin unless they are heated and most titanium alloys
require to be heated(3).

Since the actual deformation of the material takes place only at

the point of contact between the roller and the blank, the remaining

material remains free of any stresses. This characteristic of shear
forming allows a very much greater degree of deformation of the
material to be achieved than is possible with other processes. In many
cases, finished components can be produced in a single operation, when
the use of other techniques would involve several(8).

The shapes that can be produced successfully and economically by

flow-turning fall into four classes:-

1- Straight-wall cones

2- Curvilinear-wall shapes

3- Hemispherical or elliptical shapes
4- Straight-wall shapes

Straight-wall cones can be made from flat blanks, the maximum
thickness depending on tﬁe material and the power available.

Curvilinear shapes can be flow-turned from either flat blanks
resulting in a gradual thinning of the walls, or from tapered blanks
which give an almost constant thickness of wall of the thinnest
component .

Hemispherical shaped parts with é constant wall thickness can be
flow-turned from tapered flat plates. When the machine is fitted with
contour tracing equipment, tube and curvilinear wall sections with
multiple diameters can be formed(3).

Parts having a cone angle of less than 60 degrees require a conical
preform. A reduction in wall thickness of up to 807% is possible
although, in most cases, the reductions are much smaller(6).

Standard machines are typically made to spin parts 127 cm long and
106.68 cm 1in diameter. However, there is no upper size limit, capital
investment and requirements being the only limiting factors(9).

Flow-turning is generally practicable only for components that are
of hollow, conical or cylindrical shape. Another limitation is the
thickness of the material that can be formed. Power requirements for

flow-turning depend on the type of material or alloy, the included

. angle, diameter and thickness of the workpiece, the percentage

reduction in wall thickness and the rate of feed of radius of the
roller. Stainless steel and Nimonics up to 19.05 mm have been
successfully shaped as well as aluminium and brass alloys up to 38.1 mm
thick. The smallest angle considered practicable from the blank is
generally considered to be 30 degrees, but smaller anéles down to 15
degrees have been turned. Ductility or elongation of the material is
reduced substantially after flow-turning(3).

The dimensional accuracy obtained will depend on a number of

factors including

1- Variation in the thickness of the original material.

2- The severity of the operation.

3- The rigidity of the machine - no machiné is absolutely
rigid and will deflect under the application of

considerable power.

There 1is a limiting point at which the molecular structure of the
material will break down and reduction passes can only be taken below
this limit, the corresponding angle being referred to as 'critical'. If
a shape beyond the critical angle is required, furthef passes become
essential(10).

1.3 - Historical background of flow-turning

The process of flow-turning was probably first used in the United
States of America to produce cream separator cones. Subsequently the
famous television cone was produced in great quantities in this
manner(9) .

Fiowéturning is said to have been invented and patented in the
early years of this century. The process has been developed since 1947
and development was particularly intensive at the time of American
rearmament during the Korean War, when speed of productioh was of prime
importance(3).

During the spinning of cones, the initial wall thickness of the
material remains unchanged whereas, in the spin-forging operation, the
final thickness is dictated by the sine of the cone sémi—angle. Also in
spin-forging, there is no appreciable change in the radial position of
each element from its original position in the circular blank. The
maximum diameter of the formed cone thus remains approximately the same

as the original blank diameter(7). (See the illustration in fig 1.2.)

-8 -

ssaooud BujuuNI-MOT4 DYl (2)
ssaooud bujuulds ayl ()

Ag suo> 1p3auw 3984s O jo bujwioj a4y BuiibdIsSnii] :Z | 914

@
2UND paysiuly

JBWJO0J

JauwJo 4

102 [U0D

100 | U0D

In metal spinning, the metal can normally be reduced only slightly

in thickness and, as the reduction cannot be predetermined exactly,
the finished parts are not always exactly uniform and close tolerances
cannot be maintained consistently. Flow-turning is, however, a much
more exact process. As no metal is detached during the process and the
volume of the actual material remains the same, very large reductions
in thickness are accomplished with corresponding increases in total
area. The metal undergoes partial shear deformation under the high
pressures employed as it is squeezed ahead of the roller and displaced
parallel to the centre line of the part being formed. The metal is
obtained from the thickness of the blank and not the diameter of the
blank, as in metal spinning(3).

The first development from simple hand spinning was the provision
of mechanical assistance either to reduce the physical effort required
by the spinner or to increase the gauge diameter and range of metals
spun.

Mechanical spinning always uses roller tools ‘mounted on a
cross—-slide carried on a longitudinal slide mounted alongside the
machine. The simplest method of moving the tool is by means of a
handwheel operating on screw threads. A recently reported variant of
this system 1is the attachment of stepping motors to drive the feed
Screvs.

The more usual method of providing mechanical assiétance to the
tool 1is to move the compound slide carrying the tool by hydraulic
means .

For automatic spinning, the objective is to progfam the roller tool
in pre-determined paths to convert the blank into a spinning. Several

benefits can accrue from such automatic sequencing:

- 10 -

First, there 1s product reproductibility which, always a problem
with a manually produced article, should be much better. Similarly with
correct adjustment, surface finish may also be improved.

Second, with the increasing scarcity of skilled and experienced
spinners, routine work can be performed by less-skilled personnel.

There have been three main lines of development of automatic

spinning, viz

1- Self-learning systems

N
1

Template systems
3- Fully CNC systems

These are detailed below:

1- This system entails a spinner producing a component wusing a
mechanically or hydraulically-assisted lathe. In doing so, he
exercises his normal skills. When he is satisfied with his

procedure, his operations are recorded. The play-back of this

record then actuates the 1lathe into reproducing the same

movements.

2- A pre-cut template can also be used to predetermine the path of
the roller. For the final spinning passes, this template will
normally have the profile of the required component. A
succession of pre-form passes can be achieved by using either

a series of templates or a swivelled template system.

When a series is used the sheet-metal templates are individually
cut and checked on the lathe before the next in succession is
cut. Either the template carrier or the template sensor 1is

advanced to the next position after each traverse.

- 11 -

In the swivel template system a template shaped to the final form
of the work-piece 1is fixed to the template carrier. The
wheeled template tracer can be adjusted to give a
predetermined gap between spinning roller and workpiece on the
final passes. A second pivoting template is mounted below the
fixed template and is retracted by a hydraulic cylinder, a
series of cams providing the necessary steps. When.the tracer
is fully retracted, these follow the final form template.

Operation is through electrical sequential control actuated by

micro-switches.

3- The next logical development in automatic spinning was to
produce an 'electronic' template machine with the path data
and information for auxiliary actions stored on punched

tape(1ll).

With a semi-automatic machine, it is only necessary to remove the
finished workpiece and to put in the new~b1ank. A machine can properly
be called automatic when all manipulations are mechanized. Completely
automatic machines feed the blanks from magazines and finished
components are also removed. The development of spinning and
flow-turning lathes to automatic machines has beeﬁ made possible
through the application of hydraulic actuation and this development
can be considered as having taken place in stages.

First the centre was tightened up hydraulically. The next step was
thé hydraulic movement of the roller forming 1ever} operated by a
hydraulic cross slide(1l2).

A lathe which can do both spinning and flow-forming has been
developed by Joshua Bigwood & son—Ltd, Engineers, Wolverhampton. It

has the capability of making a wider range of items than was

-12 -

previously possible' by flow-forming, and can ?roduce cylindrical
shapes from a single blank of metal in one operation. The lathe can
also produce items such as stainless steel sinks, buckets, bowls and
is particularly suitable for the manufacture of stainless steel
vessels and storage containers for chemicals, pharmaceuticals, bakery
and ‘daiiy products. Particular success has been achieved with
stainless steel, which has hitherto proved particularly d;fficult for
this type of work. However, mild steel,.aluminium, copper and brass
can also be formed with complete satisfaction(13).

Today, with the assistance of electronic circuits and switahing,
all spinning and flow-turning manipulations can be initiated(12).

The number of a?plications this process can be used for is so wide

that further rapid development seems likely.

1.4 - Machines for flow-turning

For flow-turning, a number of makes of machine in a wide range of

sizes 1is available, and most of these resemble heavy duty lathes.
What is believed to be the most powerful flow-turning machine in
Europe 1is the Cincinnati "Hydrospin" installed in the machine shop of
Bristol Siddeley Engines Ltd at Patchway. It will accommodate
components more‘ than 121.92 cm long and up to 106.68 cm in diameter.
The headstock is driven by a 200 hp dc motor and a force of 28 tons at
each tool ring makes possible the spinning of pre-forms 20.63 mm
thickness in high tensile heat-resisting steels and similar materials.
With shear spinning, however, the pre-form thickneas has been limited
to approximately 15.875 mm. The machine was supplied with a hydraulic
system working at 3,000 p.s.i., as this was considered to be the

minimum pressure to handle the thick section components to be formed.

-13 - .

Much bigger and more powerful machines for flow-turning can be
made(3) .

In practice, the longitudinal slide is fixed approximately para11e1
to the contour of the component and the pressure of the roller in-feed
cylinder (or top side) set to give the required degree of material
deformation(4).

Standard machines have a force on the cross-slide of 50,000 1b and
the tailstock a force of 30,000 1b. The total load against the
headstock and its bearing is 130,000 1b. The speed of the headstock is
currently from 100 to 450 rev/min. It is becoming evident that higher
speeds will be advantageous, which will of course increase the bearing
design problem in the headstock and rollers. The rollers and tool

rings are driven by contact with the work and the mandrel(9).

1.5 - Coolants and lubricants

It 1is generally necessary to use both a coolant and a lubricant in
flow-turning. A soluble oil may be used for both purposes in some
cases (such as for low pressure spinning of thin ductile materials)

but when the material is difficult to spin and high pressures are
necessary, it is usually better to use separate cooling and
lubricating media(3).

Lubricants are used on the mandrel to prevent scoring of the part
when it 1is removed from the mandrel. Any type of paste lubricant is
satisfactory. The lubricant used on the outside of the part is a
different matter: the type employed depends on tﬁe type of material
being spun. The lubricants established for most drawing or rolling
applications are also suitable for spinning. The other requirement for
the 1lubricant is that it must not be dissolved by any coolant fluid

used.

- 14 -

It must be noted that the material used for spinning must be clean,
as inclusions of dirt or slag in the blank will cause cracking or
splitting of the part as it is formed. Normally, tool marks or
scratches will not cause difficulty provided that the forming
operation 1is not too severe. However, if the preform is of critical
shape and the spinning operation is very difficult, tool marks or
scratches may cause cracking of the parf during spinning, due to

stress concentration set up by sharp corners(9).

1.6 - Speed and feed rates

The surface speed can affect the metallurgical propert?es of the
part produced. Best results are wusually obtained at speeds from
(1000-2000) surface feet per minute. Although this range of speed
requires more power than lower speeds, the properties and results
obtained at lower speeds are not desirable.

The rate of feed influences the finish of the part: the finer the
feed, the smoother surface obtained. Usually the best results have
been obtained with feed rates from 0.0508 - 1.27 mm per revolution.
Where smoothness is not the most important factor, feed rates of 0.762

- 1.27 mm per revolution are often preferred(3).

1.7 - Background to the design of the rig and scope of the present

work

Whilst normal practice is to control the rbller movement in
flow-turning either by templates or NC machines (see section 1l.4), a
more 7reliable and cheaper control could be achieved by introducing
micros into the flow-turning. Microprocessor control is becoming 1less

expensive and is well within the budget of small companies. This is a

- 15 -

trend

which will undoubtedly accelerate as software and hardware are

becoming cheaper and cheaper.

This work is aimed at developing a suitable microprocessor based

controller to replace the existing control techniques.

The principal objectives of the work programme were to

(1)

(ii)

Highlight microprocessor application areas, and recommend an
appropriate microcomputer. Assess the capabilities of the
software development systems available.

Develop and implement the flow-turning process rig.

(iii) Formulate microcomputer programs for the control of the

(iv)

(v

required contours (conical and parabolic shapes are
implemented) .

Test the program on the rig and ascertain that it performed its
intended function.

Assess the overall capabilities of flow-turning and the

potential practical applicability of the rig.

- 16 -

Chapter 2: Microprocessor applications and selection

2.1 = Introduction

This chapter is concerned with the selection, application and
implementation of the microprocessor element in the control system.

The first task was to choose a microprocessor suitable for
controlling the flow-turning process. Also in this chapter, some of the
application areas are highlighted to illustrate how the microprocessor
has become an essential ingredient in almost all sectors of 1life.
Microprocessor-aided flow-turning is contrasted with other
manufacturing techniques in terms of efficiency, initial cost and
degree of accuracy after which it was decided to adopt the new
technology as an alternative to the existing methods. The choice of
microprocessor was carefully considered in this research in view of
availability and associated expertise.

Some of the tools wused in developing the flow-turning process
software are described briefly to demonstrate how considerable time and
cost can be saved. Also, the language used (PL/M 80) was underlined and
explained in some detail.

The wuse of a microprocessor may in itself promote a change in
present manufacturing techniques for this process or it may pave the

way for other further research. This research was directed towards

implementation of a microprocessor in the flow-turning process.

2.2 - Examples of common microprocessor uses

There are many current application areas for microprocessor, and to
some extent.these indicate the likely course of future developments.
It is wuseful for manufacturers and users to know in what fields

investment will be fruitful and what are the practical application

- 17 -

opportunities. Major areas in which microprocessors were likely to make

an impact are listed

1- production monitoring / recording

2- automatic warehousing

3- distribution

4— retail trade (point of sale / sfock recording)

5- banking transactions

6- tickets /reservations / passenger movements

7- hotel / restaurant booking

8- hospitals (patient records / monitoring/ analysis)
9- road control (traffic lights / hazards)

10- building control (heat / light / lifts / fires)

11- office'systems (word processing / automatic filing)

There are many processes and phases in industrial activity from the
handling of basic raw materials, through the design and manufacture of
products. All the associated tasks, processes and productién control
lend themselves to computerisation.

As far as the engineering industry is concerned, processes such as
flow-turning, metal-spinning and tube-bending are amenable to
microprocessor control. Micros can also help to optimise forging,

cold-forming and extrusion operations(14).

2.3 - Using the microprocessor as an alternative method of tool

movement control

As mentioned earlier in chapter 1 section 1.3, there are various

well-known methods of controlling tool movement which can be used

satisfactorily and efficiently. The techniques wuse specialised

- 18 -

flow-turning machines (with their supporting hardware and software)
which are usually expensive. Some of these techniques involved using a
medi computer or a CNC lathe to store the tool movements, as mentioned
previously in section 1l.4.

In this research, a lathe was converted to accommodate the
flow-turning process and «can also perform spinning. Certain
modifications were carried out, which included the hardware (which 1is
elaborated on in chapters 3 and 4) and‘software (as explicated in
chapter 5).

In this study, a controller was conceived, fabricated and installed
on the lathe to perform the flow-turning process. A single board
microcomputer system (SDK-85) was utilized with the necessary interface
to communicate with the designed rig. A program was written to enable
the roller to follow the required shape(s) (conical or parabolic).

The rig design was simplified by using a single hydraulic cylinder
to actuate the tool (in the y-axis) while employing the screw threads
on the lathe to move in the x-axis. In this way, the added features can
be implemented on a second hand lathe of appropriate size and cost,
thus keeping the overheads to a minimum. The price of the added
features was around £1300 in total and, assuming an estimated 1lathe
value of £8000, thus the sum total is £9300 which is probably less than

1/7 the cost of a new flow-turning machine.

2.4 - Selection of the microprocessor

The microprocessor selected should be able to perfbrm the following

1- Fulfil the arithematic manipulations which involve addition,
' subtraction, multiplication and division with adequate accuracy

(vhether it is 8 or 16 bit. processor).

- 19 -

2~ Possess adequate speed to process data which include
input/output operations (the input of transducer movement i.e
ADC, the shaft encoder input, which is the roller tool
position, and the output of digital values to the DAC).

3~ Meet good language facilities, with floating point variables if

possible.

The two possible available models are the SDK-85 or the SDK-86
microcomputer boards.

On the one hand, the SDK-85 board has the 8085 as a CPU, which is
an 8-bit general-purpose microcomputer that is very cost-effective in
small systems because it has a low hardware overhead requirement. At

~the same time it is capable of accessing up to 64K byteé of memory and
has status 1lines for controlling large systems. The SDK—BS
microcomputer is wused mainly is small control applications. It has
enough I/0 ports, yet has some 1anguagé limitations (there are no
floating point variables, only integers, which limits the accuracy).

On the other hand, the SDK-86 board has a newer, more powerful
16-bit processor with good language facilities (floating point
variables). However the supporting hardware and software were not
available to ;he researcher within the Mechanical and Production
Department of Sheffield Polytechnic.

The microprocessor . to be selected must fulfil the three
requirements mentioned above for the flow-turning process. In
addition, other factors have to be considered, such as expertise. Both
the SDK-85 microcomputer systems satisfy the three criteria. However,
because the former has been accessible for several yéars, expertise is
already obtainable, an important incentive when undertaking such

research. Moreover, all the difficulties associated with wusing the

- 20 -

hardware and software are well known. Thus the SDK-85 was chosen as
the most suitable device.

N

Some of the development aids available were

1- Intellec series II microcomputer development system.
2- In-circuit emulator (ICE-85).

3- PL/M 80 programming language.

Eo
1

Universal PROM programmer.

wv
1

ISIS-II diskette operating system.

These aids are discussed in the following section

2.4.1 - Intellec series II microcomputer development system

The Intellec series (model iMDX 225) is a completeA microcomputer
development system integrated in one compact package. It includes a
CPU with 64K of RAM memory, 4K bytes of ROM memory, a 2000 character
CRT, detachable full ASCII keyboard with cursor controls and
upper/lower case capability, an integrated 250K byte disk drive, plus
an iMDX 721 dual disk drive system. Plate 2.1 shows the Intellec

development system.

2.4.2 = In-circuit emulator (ICE-85)

This is a debugging device which is available with the development
system. It is invaluable because of its abilify to test software
without 'blowing' an EPRO&s This works by allowing a program that
exists 1in object code on a disk file, to be loaded and run in the

development system's CPU, under the control of ICE. The ICE software

- 21 -

Towwexboaxd NOId

is a sophisticated monitor which controls the execution of a program,
with a set of commands to facilitate debugging of the program under
development. These commands permit such functions as insertion of
'break points' into the program.

The break points can be specified as either addresses or symbolic
addresses, or the break point could be specified as a certain command
or operation, for example, the calling of a sub-routine.

When the execution is terminated, the ICE permits investigation as
to why the program has stopped. The ICE will produce an output of the
last 'n' instructions executed, or a listing of the status registers

and memory locations;y this also applies to controlled

terminations(1l5).

2.4.3 - PL/M 80 programming language

PL/M 80 is a high level programming 1language for use on the

Intellec microprocessor development system. It is easy to 1learn,

facilitates rapid program development and debugging, and significantly
reduces maintenance costs.

PL/M 80 is an algorithmic language in which program statements can
naturally express the algorithm to be programmed.

The PL/M 80 compiler converts 'free-form' PL/M programs into
equivalent instructions for the 8085 processor. Fewer PL/M 80

statements are required for a given application than would be required

with assembly language or machine code.

The major benefits of using PL/M 80 for the development of the

flow—turﬁing include the following

(i) Low learning effort.

- 23 -

(ii) Earlier project completion - PL/M 80 increases prégrammer
productivity.

(i1i) Lower software development costs - because of (ii) above.

(iv) Increased reliability - because a simply stated program is more
likely to perform its intended function.

(v) Easier enhancement and maintenance - because it is readable and

understandable.

The PL/M compiler accepts source programs, translates them into
object cbde, and produces 1listings. After compilation, the object
program may be linked to other modules, located to a specific area of
nemory, then executed. Fig 2.1 illustrates a program development cycle
where the program consists of two different types of modules (PL/M and

assembly language) see (16), (17) and (18).

2.4.4 - Universal PROM programmer

The UPP-103 wuniversal PROM programmer is an Intellec system
peripheral capable of programming and verifying various EPROMs.

Programming and verification operations are initiated from
development system console and are controlled by the wuniversal PROM

mapper (UPM) program(19). Plate 2.1 shows the PROM programmer.

2.4.5 - 1I81S-I1 Disk Operating System

This 1is a well established operating system very similar to CP/M.
Various application packages are available to run under the system
such as assemblers, screen editors and compilers. The disk operating

system can be seen in plate 2.1.

- 24 -

wa3shs buljpdado

Y3INWYE905d
WOYd

HOL1YINW3
LINJYIIJ-NI
§8°301
TYNOI1.d0

HOL INOW
9ng3d

II-5SISI

31V201

VIA pt————

430v017 | g

37NA0OW

193180
378Y1v¥30713Y

37NAJ0W

" 133r8o
378v.1v20713Y

5319vygi
WYd904d

NSIP [[-G[G] bulsn mo7J juswdo)arsp awwodbodd [2 th

mmmmuwmm< 30905 ¥0L1a3

ONILVI0TTY[[roi ol |, 2534
1LY90 AT8W3SSY| |11-SIS]
ERIEI D momsom_mwu.mmmmmu
W1d 08-W1d [1-SISI

-25-

2.4.6 - Intel SDK-85 (System Design Kit)

This 1is a single board microcomputer,

microprocessor with:-

2K bytes of ROM

2k bytes monitor/ROM adaptability
512 bytes of RAM
76 bits of Parallel I/O

serial I/0 - limited to 110 bauds

See plate 2.2 for the SDK-85 board.

- 26 -

based

on

the

8085

P L ATE

27

BOBO089D9B

Chapter 3: Equipment description and preliminary testing

3.1 - Introduction

In this chapter a detailed description of the apparatus used is
given and modifications to the existing rig are explained.

Also, the preliminary testing carried out during the onset of the
research 1is summarised and the results obtained are shown in the form
of graphs.

The parts made in the workshop including the roller and formers are
explained in detail with drawings.

Later, in chapter 6, the ranges of the suitable spindle speeds and
carriage . feeds were selected after consideration of software

requirements.

3.2 - Description of the experimental equipment

A lathe was needed to perform the flow-turning process. The one
" chosen in the workshop was manufactured by Dean Grace & Smith with 33
cm swing. There were 12 spindle speeds available, ranging from 16.8 to
750 rpm and 48 carriage feed rates, ranging from 0.226 to 12.7 mm per
revolution. Plate 3.1 shows a general view of the equipment used. It
was assumed that with this type of lathe the process can be carried out

although the lathe is not specialised for this job but can be converted

. to handle this task.

3.3 - Modification to the existing rig

In order to make flow-turning possible, some components had to be

made and added to the lathe. Alterations included the following:-

- 28 -

1- Modifications to accommodate the workpiece and the roller (these
will be explained in this chapter).

2- Other modifications, which include attaching the transducer to
the cross-slide so as to measure roller movement, selecting and
fabricating the ADC and the DAC boards, mounting the shaft
encoder on the leadscrew end and making the counter board;
installing a relay and the necessary circuitry on the lathe
electric starter so that the microcomputer SDK-85 could
remotely control the ON/OFF starter. These will be dealt with

in chapter 4 (the hardware).

The tooling for shear spinning consists of the mandrel, tool rings
or rollers, and the tracing templates. As the mandrels must be harder
than the material in the finished part, they must have a compression
strength of 200,000 1b/in square. Tool steel that can be hardened to
this or a higher strength is easily obtained, but for large mandrels,

the cost is significant. A very satisfactory material at lower cost is

high-strength nodular iron which may be cast to shape and hardened to
the required strength.

The tool rings or rollers must be of higﬁ-grade tool steel in order
to obtain mimimum hardness of 62 Rockwell C. This hardness is
necessary to resist wear and scuffing(9).

To position the workpiece in place, it was considered best to fix
by using the tailstock as a support. The tailstock was provided with
a dummy rotating centre which was made specifically for this purpose
to hold the blank against the mandrel end by exerting pressure on it.
The centre was provided with a pig in the middle, which passes through
the centre hole of the workpiece.

One thickness of commercially pure aluminium sheet (BS 1470/SIC) 6f

1.6 mm was used. The aluminium sheets were cut into discs of 100 mm

- 30 -

diameter, each with a hole drilled at the centre. High pressure
grease was used as the lubricant throughout the study.

Chucks or formers are often made of cast iron, but when forming
high-tensile materials or producing large quantities, chucks of
hardened and ground steel may prove more economical. Generally the
quality of surface finish obtainable is related to the surface finish
on the chuck itself, imperfections in the chuck frequently being
transferred to the work under the very heavy pressure applied(10).

The former was made in the shape of a cone with 10 degrees
semi~angle (see fig 3.1), and was used in the initial testing. It was
made of steel EN8, which can withstand the compressive pressure
imposed by the roller. Another former with 30 degrees semi-angle was
made. at a later stage of the research for the final testing (see fig
3.2) . This was however made from Meehanite.

Meehanite castings satisfy the requirements for a good mandrel
material. Such castings are noted for their fine grained structure,
which ensures dependability and freedom from casting defects. A
uniform structure provides good machinability with a compression
strength of 80 ton/in square in the as-cast condition. Moreover,
Meehanite type 'GA' is able to resist the extreme high level of
external fbrces applied to the surface of the mandrel during spinning
operations(20).

At a later stage of the research it was decided to implement the
parabola contour (see figs 3.3 and 3.4). A parabolic former was made
in a later stage of the work on a CNC lathe, retro-fitted with an
AUDIT M268 controller. The program was generated using software
package called 'path turn' supplied by 'paéh trace'.Ltd. The parabola
was generated with the loop command within the geometry section, this
was then processed by the machining secfion to give»tool movements in

order to cut the parabola. This data was then post—processed to suit

- 31 -

JBWJOJ DbUIllsSs] hdouiwl)add [€ 94

2 3

A
M34I5 dVO NITIV MGE 2/ 1 ————
v L . _ _
[o)) V] _ N o0
_.. = _._ | o wn
— — m - I: B - - m m
[> K 1 _ > >
? " S D
V =) =
=

0l —

-30-

M3YIS dY2 N3ITY Ms8 2/!

-
L

Jawdoy builss] (oUl4 iz £ 9]

. A 9
<3 = k-
A
0
b T e
o f—F | | 3 ~
n
= - "] - i = =
SN v s o _ = =
SRR
ERSERY
2> > N
oow v
el 25 o

-33-

e

uo 1 310Nba o_qogomoag C°C 94

vbs 61 IS1°EL
80510°0 ceo'e
PAole 0] gio°t
0 0
ANYOA X ani1oA A

srxo-y "2 - (A0

w<e

@r'zx)

Spxv-4

SIDAJAIU] G[0°| I0 SANIDA X 83D1NDJ0D

b2 03 0 wodj sanjoa R yjiIm

m_mmw - x
Z
) 8°€L2 = Nm

(0°0) Y3!M saundeq uojjonba ayj

Sb 89 =D aJdojauayy
(0E-0S) D) = mao..vt

(©) 32 2noA 2y3 326 o3 23In3j38gns

(v2°0S) = (2fi'gx) puo

"

008 = (th 1o yim

uotjorkta progodod --- (ox-xr0p = (oh-A)
z

.34

JBWUOJ 0)OgoUdd pE 9] 4

44 9

vidor

viaoolL

M3YOS dvd NITIV MSg L2/l e
12 =t |
1 |
R — = N T I - |
P e S
_ O
N A
S AT
i >
= \ .
d00 €
el s T

-35-

ISO work address format of the AUDIT lathe. Finally, punched tape was

produced to load into AUDIT.

The former was mounted on a stub arbor which itself was then
mounted in a four jaw chuck and trued using a dial test indicator so
as to be concentric. The former was mounted on the stub arbor by
means of a bolt This was so designed that mounting and dismounting
(i.e replacing a former) can be done easily, quickly and efficiently.

All that was required was to slaken the bolt, then remove
(dismount) the first former, install (mount) the second former and fix
with the bolt again. This arrangement allowed different formers to be
used with minimum set-up time.

Some modifications to the lathe had to be carried out in order to
accommodate the roller tool. The compound slide was removed and
.replaced with a fixed tool post on which the roller forming tool was
mounted. The fixed tool post was connected to the piston rod instead,
so that movement could be controlled hydraulically and the necessary

power would be provided to form the workpiece. In order to prevent

damage to the cross-slide transducer, the metal back stop was fixed to
the top surface of the cross-slide, which preventéd the cross-slide
from compressing the transducer beyond its working travel, (see fig
3.5 also see chapter 4 section 4.6.2).

Forming rollers must be well supported, free running without play
to minimize surface friction, and at the same time capable of
producing a high degree of finish. The contour of the roller has to be
designed to allow for the correct flow of the material during
operation. Accordingly to satisfy these criteria, a roller was made
of EN9 steel with a semi circular profile. Roilers are made of a
variety of materials. Where heavy pressures are exterted, they are

usually of steel, hardened and ground(10).

- 36 -

hydraulic

é(//// cylinder

metal back

stop transducer

‘\\\ '/

\\\\\(- — jf////

cross—-siLide

~a

/
Q:\b\,\\\\\\ﬂ

piston rod —_

£ ST PRSSNGS0

An

roller forming \\\

tool fixed tool post

FIG 3.5: A schematic diagram showing the tool fixing
arrangement

-37/-

The whole roller assembly including a support bar, spindle, ball

bearing and a roller was designed and fabricated. The roller

assembly can be seen in fig 3.6.

3.4 - Preliminary testing

As mentioned in chapter 1, the next step was to devise a method of
moving the roller to follow the contour.

It was decided to use the taper attachment on the lathe to
configure the conical contour with a 10 degree taper. The experiments
were performed with the feed engauged.

Deformations were recorded on graph paper with peaks observed at
the commencement of‘the bending of the disc. Uneven wall thickness was
obtained as it was found that the taper attachment contour did not fit
onto the former profile precisely. The outer wall thickness was almost
the same as the original blank thickness, whereas the inner parts were
reduced by a different extent.

It was informative to measure the forces' magnitudgs during initial
testing. The axial and the radial force components imposed by the
roller were measured by means of a dynamometer installed on the roller
pedestal and the values plotted on a graph using a PL 2000 plotter.
These can be seen in fig 3.7 and 3.8.

Results showed that the axial force had the maximum values all the
time. These results corresponded with the results obtained by
C.F.Noble & K.S.Lee(2) and contradicted with R.A.C.Slater &

A.Joorabchian(7).

- 38 -

100L ONIWHOH 4571104

NTquessp U110y 9°¢ 914

L

00°S b
Y3IOVdS | INI| L | I] N \
JIONIJS |eN3 | L |2 ﬁ g /W// \
¥37704 |6N3| L | € : | T
Yvg 1Y0ddnS | IN3| L | ¥ omlTuiAlu i
7z 2029 ONIYY3Ig T11veg z|s . _ e
. ..._ w \:/n o)
STIXSE P dI10Y10 TYNYILNI z |9] N Z
QY4 ZWY "LAN z | 0061
(9Y) ZaW YIHSYM 4007 Z 1|8 ~
£
0
™M
!
_ g 0" 1¥51g
Ly ¢ =ET Y a3949YINT
- : 3
e % e 7 » AR
W i .
L] & |° 252l T 986+ 1 o b
' o ») S66° 5 1g ! o N
] —_]
® 371 Ol | 66418 =
_ \mﬁ& L MNL- T~ " 00sig §] oy
, \ _ . : 4 Cl_ om—‘ ﬂ I
B W
o

/ Sl

ooc

4/vY 61

(SP88J 1UBJBJJ[p) Ppoods (3 M 80404 1DIXY /€ 914

Crwedw
poads oo
oob
ADJ LW 2800 e
003
Adu/ww GEf 0 T
Aeusue (010 T . Lo A S —— -k 002
s . _)
ABJ/UW 770 Xa | | 0040y
ADJ/WW 20 " T o o e e e el et e M e e — e — — —]

-40-

(Sp224 JUsJa]lIp) pa2ds

(w-d-wy
paads

AdJ/LW /30 °0

ADJ/UL GE| 0

Add/EL 0] 0
ABJ/UW 282 0

AJd/LWL 1910
ADJ/WW L0 0

003 00Ss oo 00€ ooc o]

UM 20404 10I1PBY “8°E

00€

0SE

ook

osy

005

0SS

003

9l

(N
RN

101poY

-4 7 -

Chapter 4: Hardware design and testing

4.1 = Introduction

In this chapter, a full description of the hardware components
included to build the flow-turning process controller 1is presented
along with the component associated test procedures.

These components can be broadly divided into the hydraulic circuit
and the electric circuits which can be subdivided further as follows:

The hydraulic circuit consists of a proportional directional valve,
a cylinder, a relief valve, 3 filter, a gear pump, an electric motor,
and an oil reservoir. The design, selection, fabrication and inspection
of the hydraulic components are described in detail.

The electrical circuits comprised ADC, DAC and counter boards.
Also, their integral parts, namely the linear transducer and the shaft
encoder, which complement the ADC and the counter boards functions, are
listed. The various components and boards were devised, decided on,

assembled and then examined afterwards.

4.2 - Hydraulic components

A hydraulic power pack was built to drive the cylinder controlling
the roller. Part of the rig function was to provide the necessary force
for the flow-turning to be performed. The circuit was devised and
fabricated with the help of the Automation Advisory Service Department.
A schematic diagram for the circuit is shown in fig 4.1; The circuit
consists of the following parts:-

1- A cylinder

2- A proportional directional control valve
3- A relief valve

4- A filter

5- A gear pump

- 42 -

7 L1 P

HYDRAULIC CYLINDER

PROPORTIONAL VALVE

RELIEF VALVE

FILTER

A GEAR PUMP

AN ELECTRIC MOTOR

N|loOjniNstwiN T

RESERVOIR

FIG 4.1: The hydraulic circuit

—-43-

6- An electric motor
7- An oil reservoir

The cylinder was used indirectly to move the roller. Instead of
mounting the roller on the cylinder rod, it was found technically
easier to connect the piston rod to the cross—-slide over which the
roller was fixed.

The o0il flow rate control and direction were accomplished by means
of a proportional directional control valve. This type of valve
provides flow control together with directional control in the same
manner as the normal type of directional control valve. Thus a single
proportional valve can fulfil the functions of flow control,
directional control and braking valves. IF offers a simple method of
electrical control of the working speed of hydraulic units, such as
cylinders and motors. The hydraulic components can be seen in plate

_4010

4.3 - The hydraulic circuit design

An approximate calculation of the hydraulic circuit components

needed were as follows
Roller force on disc (radial)= 4.7 kN
Cylinder speed (maximum)= 70 mm/s

we assume a pressure of= 70 bar

F=P*A - (1)
where
- 2
P= cylinder pressure (N/m)
F= roller force (N)
2
A= cylinder area (m)

- 44 -

®C

re Iref valve

Mo Switen
4

ic power

From equation (1) is derived the cylinder area and then the diameter
was determined to be 2.92 cm. The nearest cylinder size is 3.81 cm.
The correct pressure is calculated corresponding to the force of 4.7kN
from (1) to be 41 bar.

Q=V*A ———(2)

where
Q = oil flow rate (£7min)
V = cylinder velocity (m/s)
A = cylinder area (ns

The oil flowrate from equation (2) was calculated to be 4.78 ,L/min.
The pump capacity will be about 6 L/min. The motor power is to be

determined from

P *Q
Theoretical power = = = —ccee—e- (3)
600
where
P = power in (kW)
Q = flowrate in (litre/min)

The theoretical power was calculated from (3) to be 0.327 kW. A 1.1
kW motor was chosen in order to compensate for the hydraulic losses in
the different parts of the circuit. The proportional valve size should
be selected to accommodate about 6 l/min. The relief valve should be
able to bypass the calculated flowrate when the piston reaches one of
the c¢ylinder ends, so the capacity should be near 6 ‘ﬂlmin. The
valves, filter and pipework must be capable of handling a flow of

approximately 6 I/min.

4.3.1 - Proportional directional valve

- 46 -

The o0il control valve used was manufactured by Integrated
Hydraulics (Wandfluh) with a valve number NG6 (VWS4D61-10-TF). Plate

4.1 shows the proportional valve.

4.3.2 - Hydraulic cylinder

The cylinder chosen was the Carter model BBJ 1.5 in Bore * 6 in
Stroke and with a rod diameter 5/8 in, style MFl. Plate 4.2 shows the

hydraulic cylinder.

4.3.3 -~ Relief valve

The relief valve chosen was manufactured by Integrated Hydraulics
(Wandfluh) with a valve number 1G11-R2W-10S. Plate 4.1 shows the

relief valve.

4.,3.4 - Filter

The o0il filter used was designed by Pall Industrial Hydraulics.wi;h

a filter assembly part number HH9020UPRBD. Plate 4.1 shows the filter.

4.3.5 - Gear pump

It was decided to choose GMM gear pump with 4.4 ﬁ/min at 1500 rpm
delivery, motor speed of 1420 rpm so that the pump output is 4.16

l/min. Plate 4.1 shows the pump.

4.3.6 -~ Electric motor

- 47 -

The gear pump was driven by a Brook Crompton Parkinson Motor (BCPM)
with ED9OL frame size, 1.1 kW, 1.5 hp and 1420 rpm at full load

speed. Plate 4.1 shows the motor.

4.3.7 - 0il reservoir

A five gallon oil storage tank was built for the hydraulic circuit.
The o0il 1level could be readily observed thréugh the sight glass. The
tank was made of mild steel sheet 16 gauge and also served as .a heat
sink and dissipator.

It was provided with 2 internal baffles, a suction line strainer, a
return line defuser to prevent turbulence and a filler cap air

breather (Plate 4.1).

4.4 - The hydraulic circuit test

The principal objectives were to check

1- Motor wiring connections
2- 0il filtration
3- The regulation of the relief valve lift pressﬁre
4— Possible leaks
- Before using the system, it was necessary to purge it of all dirt
particles and fragments trapped inside piping, joints and parts. This
was accomplished by operating the pump and circulating oil through the
system, without the proportional control valve or the cylinder in the
circuit so as to avoid any contamination of :these sensitive
components.
Next, the proportional control valve was added downstream of the
filter and the output ports of the valve connected. The purging of

dirt particles was repeated for both positions of the valve.

- 49 -

Finally the cylinder was connected to the output ports of the valve
and the piston advanced and retracted repeatedly to release the air
trapped inside the cylinder. This was done for about 15 minutes wuntil

the piston movement was smooth.

4.5~ Electronics

A variety of electronic components and circuit boards was used
during this research. The equipment comprised the
1- Transducer

2- ADC board

3- DAC board
4—~ Shaft encoder

5- Counter board

6— Modified SDK-85 board
These fulfil different functions in the control of the process,

each of which is described below:-

4.5.1 - The transducer

Actual tool movement was measured. by means .of a hybrid track
rectilinear potentiométer connected to the cross-slide upon which the
roller was fixed. Whenever the tool was advanced or retracted, the
transducer would be displaced by the same amount, thus the actual
distance moved was known.

The stroke of the transducer was chosen to be slightly longer than
the cylinder stroke, which was 150 mm. The resolution was virtually

infinite and linearity was within 0.17%.

- 50 -

Mounting was accomplished with two studs, one of which was clamped
on the cross—-slide (the moving part) and the other end fastened on the
saddle far end (the stationary part).

Fine adjustment of the transducer slider was done by rotation of the
slider eyelet fixing.

To protect the transducer, another thicker stud was fixed on the
side of the saddle opposite the tailstock to guard it from possible
damage inflicted by accidently hitting the tailstock.

Further protection, when the transducer was fully retracted, was
provided by a rectangular metal block fixed on the far side of the
saddle.

Monitoring of the roller (tool) movement feed control in the
y-direction was achieved with this device. The required feed for the
flow-turning process is specified in the software, the minimum
increment being 1/8 of a millimeter (see section 4.6.2.).

The choice of transducer was a Penny & Giles type HLP 190SA1/150/6K.

4.5.2 - ADC board

The analogue output of the transducer required conversion to a
digital signal to enable the position input to be fed to the
microcomputer. A 12-bit unipolar ADC board was constructed to feed the
actual roller position measured by the transducer to the
microcomputer. Each ADC conversion would be initiated by a start
command coming from the second bit on port (2AH); 40 microseconds
later the data could be read from the ports (21H) aﬁd (23H).

The following is an approximate assessment of tool traverse
position measurement for purposes of ADC selection. A more accurate

assessment of tool traverse resolution is given in section 4.6.2.

- 51 -

N

: 2
ADC resolution =

transducer stroke (mm)
where N = Number of bits
1
2 4096

150 150

27.3 steps/mm

Using the 10 most significant bits the resolution becomes:-
©
2 1024

150 150

6.8 steps/mm

n

which was sufficently accurate for this application. The choice of
ADC was an Analogue Devices type AD574. The layout of the circuit

board is shown in fig 4.2.

4,5.3 - DAC board

The digital output of the roller control commands from the
microcomputer required conversion to an analogue to enable cylinder
movement . An 8-bit bipolar 5 wvolt DAC board was constructed to
convert the digital control signal values output from the
microcomputer to an analogue voltage, which was then fed to the valve
controller (voltage-current converter).

The roller control commands, (advance, retract or stop) were sent
from the SDK-85 to the valve controller. As the proportional
directional valve worked on current rather than voltage, the valve
controller converted the cong;ol signals into current signals. The
digital values were output through port (22H). The chosen DAC was a

National Semiconductor type DAC 0800. The circuit board layout is

shown in fig 4.3.

- 52 —~

58-205

(HYZ) 1Y0d

(HeZ) 1H0d

n w

- 0N v

(HLZ) 1Y0d

11N241D Jay #/.GQy Jorodiun izt 94

ASi-|Arddng usmoy »mmw
S+

10dng JaMOd AG+ f—9

[Y32NASNVEL]
Si WD 910 WOD YNV £ |1 _
I AGH
L 1], A1+ NI ACZ Y1 19N
L 11 ASI- LNdNI 3N90TVNY
NI ACL EL 3 ~— . .
Ao g5] AOL+ 0L O ||qu
.rm: , 440 d1g 2t 3) ST
y ool
et w o 439 a3 h M
(1A oo__ oct
toe NI 434 oL f3 Md%\ ©
1)1 2y
2z]
i 2 ah
h mm 33 9 ¢ ast+ oot ASL-
/48 G (3 1d
1|57 g
bes oY b
—t|22 aou 2 En
N ez 515 AR
- B®
13

11V VO 17 YR VO Y

..5'3.

53170A G-

00800v(J Jp1odig :g

lee

A

B +A -A
.ﬁ |0
I 1070]
il 10
[€1 9l S
sl JIYA-
80 ova | s
7l MW
2L lL0LB68LYIS D VA 4
g5 g5

£ >

NASIE

-54-

4.5.4 - Shaft encoder

The roller traverse position was measured along the axis of the
rotating workpiece. A rotary encoder was used to read the carriage
position from when it starts moving towards the former until it stops
after forming the workpiece, see fig 4.4. A rubber coupling was used
to connect the encoder shaft to an adapter head provided on the
leadscrew.

The selected encoder was an OMRON E6A-CW100 rotary encoder having
100 pulses per rev with lathe leadscrew pitch of 6.35 mm (1/4 in).
Each encoder pulse was equivalent to 0.0635 mm i.e shaft encoder

resolution equal to 0.0635 mm.

4.,5.5 — Counter board

The output pulses from the shaft encoder were fed to the counter
board containing a circuit which provided the bhinary value of the
leadscrew position. This was taken into port 29H on the microcomputer.

The first prototype of this board (shown in fig 4.5) failed to
satisfy the operating requirements (see section 4.6.2) and a second
circuit was designed and developed, which proved to be satisfactory

upon testing. The new board is shown in fig 4.6.

Calculation of maximum counter pulses

In order to determine the total number of encodér pulses stored in
the counter variable (in the software), the encoder rotation mnumber
has to be calculated first as follows

The total distance envisaged to be moved by the saddle

= Distance before forming (counter disabled) + Form length

- 55 -

woJubo Ip D130WBYDS 11DJBAD Uy b b 94

2510
1 >00LS7IvL

X08 Yv39 Y5WY0S

u

AN g Wy Wy Byl gy Wy Wy Wy WybybybyTyg 3
o
vl = | |Z AIIIII
- S| INIWIAOW 39VIYHUVYD
G 3 |le
G
) —~
JUNVAQY pa
. IAA b L v
70J43U0D0 JDNUDW WOJJ TVYNOI 1H0J0Ud T

(S3HOLIFE) [STYNS B_ TEZ?U_ _QQ<_ _

o
5 ¥ w% r&_‘ 1 ;w

[0 1dod] 8 _1god] [V _1god]{[v 1dod | (8 Eoﬁ: 2 E?:
(H82) (HY2) (H62) HL2) (HZ2) (HEZ)

WYY WYY
NOISNYJX3 JIsve

_F’_J

QMUmcoo DUD W Wwody .
~

-56-

11IND2JIo Jd23unoy g 94

. . . . // H300IN4
ECRET WY Jvis
AO ﬁx ﬂ, ﬂ. ‘
HI991Y1 '
LI IWHOS (ONVN AJv18
v £60t A
] A0
g3sn LON
_4 _:>m (8 1Nn0)
N ® YILNNOD 13534 0L Wmmmw Qmmo
0 26 5 99 e oo ™S hve) 1904 1 118 o g AG+
SRR
KMHZDOQ mmmlmOm WQ
4 401VY105[-01d0
oror % >
oL 1L 9! —3 N
T || LR
og Ms:. ﬁﬂzbuz LG ON ON ' - g .
m = - p—
A0 | d MSZ 0NO1 MSZ 2Nz

~57-

* POWER SUPPLY=8V BATTERY

+3V
w 10116V
= 3
2 + ||TANT 307 979
o m= 1<
w Q D
z 3 o Y . —~= oV
S F 1 10K ! 10
- O y e
g~ | N Tov
\ TANT
s [H . N - +5V
100PF 1% \\
>r— }-—4————4— ~
1000
1 AT 10V
K 4 ELECTROLYTIC
._J—_‘.
iR me
0 ?J'—’
L ! NE
4 et
i 07 - e
1 ' a4 O
fo.1 06 ~=H | NC o
CER Ge B 5 o3
05 ~<H 3 ¢3
35 e 0 o4
r<?- G1
|
D
—] 4 M6 ¢ D1
30— 5 . $5
Gl e— —e Q€ » D3
32 — 2 ——e QS b D4
a3 —e 04 ¢ D5
—MA O e ¢ D
¢ 07
l______J ! 4 NC
Do ~=H) LNC o
Qo -5 0 -
10 21 < ‘ﬁ‘“c"
H 10V TANT a1 B 5 | o
02 <2 T
., ey (O e
MASTER
» RESET
. __”,_ . — .

FIG 4.6; Second counter circuit

-58-

0+ 50

= 50 mm

The leadscrew has 4 threads/in
1 in= 25.4 mm

lathe pitch= 25.4/4

"

6.35 mm

number of rev= The total distance/lathe pitch

50/6.35

7.87 rev

Therefore the maximum encoder pulse count is of the order of
7.87%100 = 787 pulses. The limitation of the 8 bit counter (255 pulses
maximum) was overcome by treating the counter output as an incremental

count and accumulating the total count in a sixteen bit variable.

4.5.6 — Modified SDK-85 board

The flow-turning process program had to be stored in the
microcomputer memory before the process could actually start, i.e the
purpose was to be finally independent of the development system.

After program development, it was found that the program memory
requirement was about 10K bytes. This was far greater than that
provided on the SDK-85. The memory was therefore expanded by adding
three contiguous EPROM chips having a total memory capacity of 12K. It
was useful to have some extra memory for further expansion or
modifications and for future implementations.

There was another problem in outputting the text to the VDU. It was
thought that the SDK-85's original serial interface operating at 110
baud was far too slow for the present application. For this reason a

serial interface capable of operating at up to 9600 baud was developed

- 59 -

to replace the SDK-85's serial interface. For this, an ACIA chip
MC6850 was used in conjunction with an 8 position baudrate switch and
other necessary circuitry (see figs 4.7 - 4.10). The ACIA
(asynchronous communications interface adapter) permits data to be
transmitted or received in a serial format i.e as a stream of pulses.
The output speeds are shown in fig 4.11. Any of these could be

selected by simply switching to that baud rate.

4.6 - The electronic circuit test

All of the‘above mentioned electrical components were to be tested
before use. The first task was to modify the SDK-85 board, after which
the ADC and DAC and finally the counter board were assembled. The last
three were housed in a cabinet for convenience and compactness along
with the necessary sockets and switches on the front and back covers.

Circuit testing includes:

4.6.1 - Modified SDK-85 board

After the extra ACIA line and the EPROM sockets were added with the
necessary circuitry, a careful examination of the additional operating
features was carried out.

The sockets were checked by inserting programmed chips into them,
and by stepping through known programs (using the SDK-85 keyboard) it
was possible to ascertain the functionability of the EPROMs. The ACIA
line was readily inspected by outputting a piece of text to the VDU.

This was repeated for all the eight different baudrates available.

4.6.2 = Transducer and ADC board

- 60 -

L$V IV JO4F Suoljloauuog /7 F 9ld

-B61-

T~
P
XL == N
mmxm 50
3 9,
c3vIov . Y o " o o o
m | T
404 ; s a o o
5o olr -
AR T04.NOD ; zeyIov |22 TGERER
008v 1| / 3ivy dnva 1 ~
oorkz| 9 XL =52 5
g -
oocl!i § 3 m@xm S
209 -~ 1SY10Y ‘
9 2,
051 | 2 404 5 >
oLl |1 ; 4
Nl 1 E R =
S3LvY anve ; t
S S j
YINT A3Y oowwzmz ,)
g SINT >
18V10V 1404 193A _ I
zsvI1av dine g 3705N0D |4 5
_ X3 g Sx:i 1x3 aos = _— 10
o) o N a n a) O o mlx.\ o o o
$°915Y S°21SY
o) o o o a o " " 0 IYNY3ILX3 TYNY3LX3
401037135 4013037148

30 ddA/3M
02 iz
- ——181 6lf—
. oLy
193735 WYY » 2z 4
6Y
£eZt———-
ay
n I
LY
—l —="
gz 4 Z<ﬁ ¢ gv
—_—{g| £l
gz 4gd Sv
—G] b b—
0 @ vy
—_—b S b—
2E @ gv
. g Z
—l 1 L f—
gg ca ot . Ly
——— m T,
L
8€ lmlm AMNV ov
ob 0d
ve cl
AS AO

S22 1AB0D NJoWd| 9°'F 94

oc
44
ve
92
8z
og
4
14
sE
8¢
ov

cr

m_.@ Ly
30 ‘
(4 ¥4
o8¢ ol
WOYd3 R mZNQ VN 2z =
mm,.ll.m<
. Y
2a ¢ WOHd4 2o
mm!m, sy
sa 4z
49 £l 134
@ VZELT m
2a ol ¢ Ly
— mll
19) 0¥
[o]4]
be cl
AS A0

..ES;?..

R et

B T

5J0398785 3dNJJd3Ul pupb U] Jauw|j ‘UO|3DJsUSD Y0070 BUIpodsg ‘6 914

As+
7
¢ IN ¢ NId
S Yl 28vI9Y
) YINI EsVIov [) oﬁ " oul es
5 oz S°'9 1SY s803] 00SZ AS+
I YINT 18VI9V L NId
IN Z oYl L$VIOV
3 (I w
— 00572
¥t NId ot & 3
v _
Lyvigy 38 \ 2 oo
00SL 6 zr
$'9 1SH @ 1X3 A0
aN9 '|||—| AS VL NId OOWJVN
572 1SY @ 1X3 A0 £ NId
A S°¢ 15y s808 0004 135 28¥I19Y —| ¢ S s o
S |— o
0003 135 Ig¥IV —| 6
LN 2 bb—wor g
N —] ot
GIN 8 1¥0d 2428 oD —u BEISTIHL
GINT V 1H06 0008 (9119) Wy — 2t £l— bty 21
A INO YIWIL S5'8 b= . J —] et
= e 000Y £ WO¥d3 2 e bt
‘ T 2 Wo¥dZ ——| i
N[Y3WLL ssi8 93070 WILSAS e | ztv s
\/ 0008 | WOMd3 — Sl
st 8
a Zr00zZ L _ _ cr
X3

AS A0

-63-

|:| 1.8432 MHZ

1488

PIN 1 =12V
PIN 14 +12V
PIN 7 OV

IPINS 6,9,11,14,15,i6,17,18, i9 NC
1489 PIN 7 OV
o . 22 L PIN 14 +5V
2
RS 8
5v | 23 3
LN 3 POSITION
MC14411 s j SWITCH
BAUD 7
RATE s-—Jl
RESET |GENERATOR 13
sV 10]
:8 POSITION
]lz 2|4 SWITCH
ov 5v
Aciast seL —LOv V1
9 1 1488 S—SE 1 12 5 axl ck
330PF ° sy e %, T
ov 47| |l © ©57 + [ooTX o
: 330PF .I al z T\
i X 2
o] ° o —
.- o
1489 R1S|_ ACIA%] Ia—Dﬁ
] 27K s 18
RX |, 6850 1|25 \\
15
a7k 112V c1s . | RS_A0
1489 Py o
'] P 13 [BZL_ PR
ov
ACIAS2 SEL oy 3V |
J10 — ———9¢s2 1 12
330PF sv ——{7]8 ¢so ok TR
o ov 4K7 mno Cs1 ;3 — €
330PF ED_ , >
- ShE
._L_ l: 18 |5
- RTS|_ ACIA$2 o[0T
ol 1489 Jo—5) :2 o1
RX 6850 757—’01)
-12v ~TC 21]
1489>-O 27K 5 p Aoj
Al P 3 | Rx cK
ov 4 T)eK

FIG 4.10: Baud rate generator & serial 1/0

-654-

switch baud rate
1 110
2 150
3 300
4 600
5 1200
6 4800
7 4800
S 9600
memory map
EPROM 1 8000 - 8FFFH 4K
EPROM 2 9000 - SFFFH 4K
EPROM 3 AOOO0 - AFFFH 4K
RAM BO00 - B7FFH 2K
ACIA81 E000 - EOOTH

FIG 4.11: Baud rates and memory address map

~-B65-

The ADC board was tested first using a Limrose PB 100 digital

circuit patching panel to supply the conversion start command and
monitor the digital output of the ADC and a variable power supply to
supply the analogue input. Thus a known d.c. voltage between 0-5
volts and measured with a digital multimeter was input to the ADC and
the corresponding digital value from the ADC was displayed on the PB
100 LED panel. Input voltages according to the ADC manufacturer's
calibration data were applied and adjustment of the gain control made
so that the digital value wés in accordance with the data. The clock
on the PB 100 was used to control the start conversion on the ADC.

The next part was to test the displacement transducer. To ensure
the transducer met specifications, a measured d.c. voltage was
connected and its output voltage was taken to the ADC input. Both the
transducer output and the digital output of the ADC were then
monitored when the transducer was moved. It was found that the
relationship was not linear due to the ADC causing a loading effect on
the transducer output.

This difficulty was overcome by incorporating a d.c. voltage
follower board in the circuit.

The transducer was also examined for linearity over its whole range
to ensure accurate performance. A further test was carried out with
the transducer connected to the cross—slide of another lathe enabling
accurate movement of the transducer by the cross—-slide traverse
control. Readings were recorded at a given interval and two different
input voltages were used, results were tabulated and then presented in
graphical form, fig 4.12.

It was obvious by observing these figures that the transducer was
linear and within specification.

After checking 1linearity, the resolution was determined. As only

10-bit of the 12-bit ADC were being used and assuming an active

- 66 -

UOT3079d 3UsWadDdS1p-8b0I0A J8ONPSUDU] ‘¢ p 9]4

oSt O»1L OEL 02L OLlL ¢COL 06 08 0L 09 o0S OF 0 02 Ol
S —
! |

)

— -
JusWwaon)dsip -
- = - -+-r£
i Bty il sttt ol 4
S R S R S o
—lopr g
Sy,
ABI Ll hlegoa gLl L] L8
-1

|
T
|] _ ! I
+ i
|
|

A Sl

[
-r
o

[
e = -+ —

!

]]]
ILI.ﬂI_I..._I._..I_l.._.llI_In
| | 1

|
lll_ll.lhlr.l_l..hlfl.l.rllL

(S3170A)

2b07170A

-67-

transducer length of 128 mm from the 150 mm- total length, it was
calculated that the total voltage needed across the transducer would

be 11.719 volts to give 1/8 mm resolution of the tool traverse.

4.6.3 - DAC board

The apparatus used for this test was similar to that for the ADC,
which included the 1limrose PB 100 test board and the digital
multimeter.

The digital values were input from eight switches on the Limrose
panel and the corresponding analogue voltage values were shown on the
DVM display. As the switch combinations were altered, the DAC output
changed symmetrically between x 5 volts.

To see the DAC output values on the screen, a small program was
written. The software was run with the Intellec development system,
an ICE-85, an oscilloscope and the SDK-85 board. The symmetrical

values in the form of a continuous series of inclined straight 1lines

(i.e a sawtooth waveform) across the oscilloscope>screen were seen.
The testing program PROG 3 is shown in appendix 1.

The cylinder speeds during advancing and retracting had to be
calculated in order to be incorporated in the software. This was done
by measuring the time required to move the roller tool a constant
distance of 148 mm, which is the cross-slide traverse, and then
dividing this distance by the measured time to obtain the speed.

A variable power supply was connected to the DAC board during the
test while the voltage was displayed on a DVM. The v?lue corresponding
to a glven speed was recorded. The test was repeated three times and
the average was taken for the recorded times.

Thg equivalent decimal numbers corresponding to the recorded

voltages were calculated for use later in the program. Values were

- 68 -

obtained for advancing and retracting, and are 1llustrated in

graphical form in figs 4.13, 4.14 and 4.15.

4.6.4 - Shaft encoder and counter board

Prior to wusing the encoder on the rig, it was essential to ensure
that an accurate number of pulses would be sent to the SDK-85.

It was important to measure the exact number of pulses from the
encoder to the counter board, the transfer of the eight bit count
through port 29H on the SDK-85 and to obtain the correct computation
of the sixteen bit accumulated count. For this purpose a small test
program was run on the Intellec development system and the output was
displayed on the SDK-85 4 address LEDs as before.

The number of rotations has to correspond with the value listed for
the encoder specifications, thus for these tests an encoder of 100
pulses/rev was used. Upon running the program, the number initially
displayed was OOH. As the encoder was slowly rotated, the display
started counting up accordingly. When it was rotated about half a
revolutionA clockwise, the figure was 032H i.e 50 decimal as expected
from the encoder specifications. With continuous rotation, the number
was steadily increased until it occupied the four LEDs. The testing
program PROG 1 can be seen in appendix 1.

The lathe ON/OFF remote control drive from the microcomputer was
accomplished with a Darlington relay connected to the lathe relay. The
limit microswitches used for the carriage end and the cylinder were

connected to port 2BH, as shown in fig 4.16.

- 69 -

UG SJ8AU00 PUD UOI1D1N0700 peads Jepuilhy ‘€1 F 914

N Y1 6L 281 2871 [4871 /. 9599 12z tz'z | ez | e -
: VL6l 28" 1 8L | 81 g 95°39 iz°¢ 2’z e ez 9-
AN a1 81 | 2071 3 9599 1z2°2 12z | 12z | e S-
b1 6L 28" 1 391 | el v 95°99 12°2Z 12z iz | ez V-
95 62 REH FER PR X3 5599 122 22| 122 | e | ae-
81qoufoiqoun 5B 50 o T | 21 3E 6100u1D1d0u 95°93 122 122 | w2z | 2e | 9e-
au0 89°9. | Qb | [E6°1 ve L | 28 L | vE 19euBRqoun 5593 | Qp| [tez | tee| ez | ee | ve-
s/uw §°2| uoys 0Z°2 S0°Z €0z | 902 | 2F 8 4248 e [4t4 1272 z'e | ze-
8525 252 €52 | 692 T S/ww 22 Uoyl 509 EVZ | zv 2 | ev-e | ere €~
8897 S313[0018A ¥ <z Cr 77°F 21°E € FE 587 S231/9070A ¥ £2°sk 31 ”m m_”m bE'E y0°'€ 8°2-
v 82 [z €26 | vZ S| 92 22 ev’S | ey'Ss | Ssv's | 63°S T 9'2-
921 A ca L] sa it ve 0 0 0 0 0 0 ¥ Z-
spaoauj Bujaow sepujifg 0 Q0 0 0 0 22 pamine Bujacn Jeputihy 0 0 0 0 0 0 Z'2=
0) ¢ R 0 Z c 0 0 0 0 0 2z~
UU e o) ™ 15 Ouieulz Boirieu]t Bormrrg] rrvem | DU 0/) § Buiptay|z Ouircoy|y Buipiey| (s1104)
peads fecurisig| ew;y & ey efn37104 L = peads |esurisia] ewsy) swiL °603704
|
€02 a'e
661 9'E
S61 v'E H
161 G 6S bE- .
81 3 £9 2 E- .
£al a8z .9 €~
621 92 1 g-2-
St v-e SSIYUS 904" D) |||.~.|m|.|mq—nun =P S¢ 32
FO T YT (33104) 93104 47 % A SSEX(LF 940 jJue10A[Nb] ($3104)
10wiIRg sfo3j04 Un13mna1e erdLg DINWLO5 UG !IDINDID) FLITELY sfp3704

ebuoy 8a13)c0gd Ingasn ofuby oa)3oBepN 1njesn

San1bA Jyg 1nJasn oy3l JO Uo]jbjussadded q00iydodb v p[b WMm

(S370A)
abp7170A

Sit

641

£81

481

161

S61

PAS

¥4

CETaRYey)
1oW109(

Sl

(s3104)
abpniqop

-71-

I v 4 e A ¥

Ay e

abubdJ Jy(g 8yl 4O woJboIp O130WsYOdS Yy G| p 9[4
. —

[=

=

bujjopuiad Japuliho

~ebubd Jn4osn
39V170A e

NE'S p ' C

JUBWaAOW

Japuiqho ou Buioubapp uspuiiho

sbupu ppap

—

abubu Jnjasn
Ay E-

O NG C~

Soe //Um
4 (A

711020 coz

fmm_,////mwm\\

S

65 |

Vi
LN354N3

ALE "3-

-72-

JUBWSBUOIID 8A1JP Yo7 IMS J40/NO 24ab] ‘gl b 91

440 "\«
€ HOLIMS No
S ‘ Tz 119
Z HOLIMS NO Hae
|) U E 8 Jyog
u ol 0 LI9
A —d—
- —_
NO :
Il HOLIMS M@C.~ QOQ

9SUBADJ] SSOJD pup 8bD|[UJUDD U0y SBYOIIMS Jiw]]

UREY,
JHLY T
4015
LYV1S
X089 Vs
AVIZY |
YIALHG | N9
NOLONI THVa N
AS

11N2J1D YOI IMS J40/NO YD

~73-

Chapter 5: Software development and testing

5.1 = Introduction

The flow-turning program structure is illustrated with a hierarchy
chart. The function of all the modules is described while important

Machine Cone Control module is explained with flowcharts.

5.2 - Outline description of software from operator's point of view

This section is concerned with the menu part of the software
before, during and after the process as it appears on the VDU screen to
the operator (see figs 5.1 to 5.3).

When the program starts, the 'Initialisation' module generates
textual information about the flow-turning program on the VDU. The
'Initialisation' module is followed by the 'Machine Set-up' module
which provides interactive messages to the operator to enable the rig

to be set up for the flow-turning process. Program control then

progresses to the 'Shape Select' module, whereby a contour is selected.
Either the 'Cone Generation' or the 'Parabola Generation' will follow
where the parameters have to be specified. After this, control of the
flow-turning prdcess can start in the 'Machine Cone Control' or
'Machine Parabola Control', where the workpiece will take the contour
shépe. After the workpiece has been formed, vthe program will ask
whether another identical piece is required. If the answer is yes, then
control remains in 'Machine Cone Control' or 'Machine Parabola
Control'. Otherwise control passes to 'Shape Select; for specifying a
new shape. The program listing (in PL/M 80 and Assembly languages) is

shown in appendix 2.

5.3 - Software development cycle

- 74 -

Initialisation

—

;

Machine Set-up

[

Shepe Select

lCone

Cone Generation

L Console
r~ Input
I Output
\
Parabola
/

Parabola Generation

/]

Machine Cone Control M

!]

-

Machine Cone Control [~

Another
identical
cone

e

Machine Parabala Control
! L]

——

Machine Parcbola Control[—
2

Another
identica

Schematic Layout of 5.1,

5.2 and 5.3

-75-

program
start

¥

Initialisation

Introduction text about process,
microcomouter used, programming
language, etc 1

[2 pages of text]

kil

Machine Setup

interactive instruction messages Console
—— Input

[1 oage of text]

[~y

: .

/ SHcpe Select \

A- Conical

to the operator l Output

B- Parabolic

|1 oage of text]

parabolic
contour ical
conica
AA (cont. on 5.3) contour
(cont. from 5.2) (cont. on 5.2)

(cont. from 5.3)

FIG 5.1: The program as seen from the operdator’s view (1)

-76-

I\ 5.1 & 5.1

// Cone Generation //

parameters input

1- Form Length (mm)
2- Interpolation Increments (encoder puises)
3- Cone Angle (degrees)

[1 page of text]

Machine Cene Control

Roller tool movements before
and during the process —

Console
Input
Output

[1 oage of text]

Machine Cone Control

After process completion

L———*T

|1 oage of text]

ancther
identical

cone

o

no

FIG 5.2: The program as seen from the operator’s view (2)

-77-

A 5.1 & 5.1

// Parabola Generation . //

parameters input

1- Form Length (mm)

[1 page of text]

Machine Parabota Control

Roller tool mcvements before
and during the prccess —

[1 oage of text] Console
k— Input
l Output
h) B ! |
Machine Parabola Control I
After process completion] .

[1 page of text]

ancther
identical

parabola

?

no

FIG 5.3: The program as seen from the operator’'s view (3)l

~-78-

After each module has been written, it is compiled, linked to other
modules and thén located into the relevant hardware address space.
The In-Circuit Emulator is then inoned and the software tested withoué
having to 'blow' an EPROM. If any faults are found, the user has to
return to the high level language, make the necessary changes and then
re-compile the module(s) and re-run under ICE until a satisfactory

result is achieved, (see also section 2.4.3 and fig 2.1 chapter 2).

5.4 = '"Flow' module

This is the main module for the flow-turning process. It calls
'Initialisation',.'Machine.Setup‘, 'Shape Select' and either 'Cone
Generation' followed by 'Machine Cone Control' or 'Parabola Generation'
followed by 'Machine Parabola Control'. The module is illustrated with

the hierarchy chart in fig 5.4.

5.5 - '"Initialisation' module

This is the first module to be called by the main flow module. It
performs all the necessary initial hardware resetting on the SDK-85.
The SDK-85 resetting includes port configurations, resetting ACIA 1 and
zeroing the SDK-85 display. To prevent unnecessary conversions by the
ADC, the ADC convert signal is set high at all times until a conversion
is required.

Likewise the bipolar DAC is initialised so as to keep the roller
stationary. Zero volts are output to the valve contrgller which in turn
sends a current proportional to this wvoltage to the proportional
directional wvalve. The cylinder will remain in place until further

commands ére received from the software. The shaft encoder counter is

also reset to zero.

-79 -

INCVEAVENENENDY mmwoongcwcgjurzoqm

1001 3uep]
Jayjouy

10J3U0)
2uU0)
CIVRRVIYeIN
VYFENERNED
au0)

!

1043U0)
DogpUDd
U YOD)

——t

Uo | 3D JBUBY
D70gDUDY

p10qoJDd

¢
1081795

au0)

2doyg

_Qs

-395 aUlYOoD| |

‘PS5 914

-80-

[UGT3065110191U]

|

55400dd ININANL-MO 14

5.6 - 'Console I/0' module

This 1s a wutility module which contains all the console terminal
input-output routines. 1Its procedures are called upon by the other
modules.

'Console Out' is a procedure whereby a character is output to the
VDU screen. The procedure is useful in displaying the introductory text
and other text. All the characters were output through the serial
channel ACIA 1.

'Message' procedure uses 'Console Out' to present messages on the
VDU. To input one character from the VDU keyboard as for example during
input of the operator's parameters in 'Cone Generation' module,
'Console In' procedure is invoked. In 'Decimal Value Input' procedure,
a maximum of two digits can be input, tested for the correct character
value and then stored. These input numbers represent the cone input

parameters or parabola parameters.

5.7 - '"Machine Set-up' module

This procedure directs the operator to set up the flow-turning
machine and the associated hardware. The instructions are displayed one
by one on the VDU screen and the operator is expected to respond

accordingly.

5.8 - 'Shape Select' module

This module displays a menu giving a choice of contour i.e the
former profile or the specified mandrel. A choice of the two above

mentioned contours is available.

- 81 -

5.9 - 'Cone Generation' module

This is a module whereby the cone contour variables are entered
into the program memory. Cone variables are displayed on the VDU as
their values are keyed in by the operator. If the value typed is not
the desired one, it can then be rectified with the delete key on the
VDU console. The routine allows either one or two digits to to ﬁe keyed
in. After each parameter is properly entered, it must be followed by a

RETURN on the VDU keyboard, see fig 5.5.

5.10 = 'Parabola Generation' module

This is a module whereby the parabola contour variables are entered
into the program memory. It serves a similar purpose to the 'Cone

Generation' module.

5.11 = '"Machine Cone Control' module

This is the module which actually controls the flow-turning
process. All the control and monitoring of the flow-turning machine is
carried out in this module and in particular the series of roller
movements required to produce a conical shape is generated. The dinput
data from the 'Cone Generation' module are passed to this module so
that the movement is described according to the parameters specified.
The movements include advancing, retracting the roller and following
the required contour, as determined by the 'Coniéal Interpolation'
routine.

The module holds the 'Shaft Encoder' procedure which reads the

carriage position along the workpiece i.e the tool position (x-axis),

- 82 -

SaJnpadoJdd U0 1bJsuUsg suUO0) puUb JopOIOUT 3 JPygG

0/1 310SNOJ

AYYSS303N 4!

[07T_37705N02]

(071 37705N02]

AYdS10 S39VYSS3W HOUY3
‘YO3HI ALIQI VA VLVO

Qyv08A3N WoYd
1NdNI SYILIWVHVd

N33435 NO
AY1dS10 _SY313WVHYd

INOILYY3INI9 3INOD |

‘aunpasoud padfy ay3 Buryioo uodn (NOIL[SOJ$3IVIYYYD)
A1awou pauuniad @ 171M 21GDIJOA 11G-g| V¥

‘(uotljsod 8Inq0sqo 9 () sasind jo Jaqunu 1DJOI @yj S| IOY]
‘s3unod 10303 ayj aAtb o3 e1fig ybiy ayy 0
pappL S| | UBY] ‘GGz Spaadxa poad anibA ayi 4|
‘H6Z 3dod
ybnouayz paindur si anjoa 8y -A1ajaqduod sdojs Maddspval 1113
3J035 wodj 2wyl Aub 3o uoljicod @Bpjuupd ay3 poas 03 aulinod y

LY300ONT 1 4VHS |

* (QYOMSNI$30Y) hiauwou 871qo]JDA
S31q 01 @216 03 jjo peysow aJuo SIIq puz eyl pupb 3IS| 8y)

* (QYOMSN[$20V)
fiyswpu a1goiJoAa 11gq-g| o u Jayjaboy paujof aup
Yoty ‘(sanioa 103161p 386 03) poad eq up> Mou s3Jdod eyl

- (p2321duod 2q 03 U0ISJUdAUOD Joj) 3sdoie o3 soby
fojap awi3 uaaiB o ueyj ‘pas|iolIIU] S| UOISIBAUOD 8Y|
"S31q Jup2)31ub|S IS0W 8yl (Z1-6) HEZ 3Jod
‘s31q Jupdtyub)s 3s02) By3 (8-1) HIZ 34od

Ryewou pasn aup s3uod oM]
‘J23JeAu00 103¢61p enbBoiouo 31q-z| @y3 poas o3 eujInod y

1NdNT Jay

‘Indu] Jav ‘S°S 914

-83-

while 'ADC Input' procedure reads the radial position (y-axis) via the
rectilinear transducer, see fig 5.5.

'Tool Advance' is a procedure which is called upon by the 'Machine
Cone Control' procedure to advance the tool to the position specified
by the parameter, see fig 5.6.

'Tool Retract' is a procedure which is called upon by the 'Machine
Cone Control' module to retract the tool to the position specified by
the parameter, see fig 5.7.

The 'Cone Interpolation' routine is needed to calculate the retract
distance in the y-axis corresponding to the distance moved in the
x—axis. The distance moved by the carriage is the independent variable
upon which the tool movement depends. The greater this distance is, the

larger the retract distance will be, see figs 5.8 - 5.11.

5.12 - 'Machine Parabola Control' module

This module controls the flow-turning process for a parabolic shape

and thus serves a similar purpose to the 'Machine Cone Control' module.
The 'Shaft Encoder', 'ADC Input', 'Tool Advance', 'Tool Retract'
routines are the same as those used in the 'Machine Cone Control’
module. The interpolation procedure 'Par Interpolation' will be

explained in section 5.14.

5.13 - 'Display' module

A program enhancement was incorporated to indicate the position of
the carriage at any point in time by displaying the number of shaft
encoder pulses received. This was done to provide a check on the shaft

encoder and counter circuit by means of a visual comparison.

- 84 -

Enter with value of the
required absolute position

l

Jump to return if tool fully advanced

(IF final position < 03FF THEN)

Read present tool position in ADC steps

(present position = ADCSINPUT)

Advance tool tiil instructed to do otherwise

(Qutput (port822H) = AdvanceDACvalue)

IF present position < required position THEN

continue to advance

Otherwise stop

Stop advance
(Output (port$22H) = Stop$DACSvalue

Return to calling
, program

FIG 5.6: Tool Advance procedure flowchart

-85-

T U SICRV PR

Enter with value of the
required absolute position

Read present tool position in ADC steps

(present position = ADCSINPUT)

Retract tool till instructed to do otherwise

(Output (port822H) = RetractsDACSvalue)

.
Y

If present position > required position THEN

continue to retract

Otherwise stop

Stop retract
(Output (port$22H) = Stop$DACSHvalue

Return to calling
program

¢

FIG 5.7: Tocol Retract procedure flowchart

-86-

27NPOoW 70JJUO) BUO) BUIYDDK ‘8°'G 94

INdNT8O0V
WNLYQ
01 [12vy13937001] [9300INIS13VHS | [LNINTSIaY]
NYNL3Y _ _
aNy
10v413Y _
[NOTLVIOJYIINT) [(3ONVAGYS 1001 |
[LNINI82aY | [LndgNI82av}
[F0YINOD 3INOD SNTHIYW| (TAaNTS5G7]

[13vH13Y87001 | [3ONYAQYS1001 |
_ho<mhmmw400h__EMQOQZMWHm<Im_ .

_ J :
| .
[NOTIV10dg3INT]

1NdNI83aY

[4300IN381 IVHS]

(EINIOd) 0L (ZINIOd) Y3704 3HL LOYY13Y-S
"IHLVT JHL 440 HIOLIMS-b
(CINIOd) 0L (LINIOd) YNOLNOD 3HL 9NOTY 3AOW-E
‘(LINIOd) 0L (SINIOd)
"O039VION3 AQY3IYIY SI WSINVHIIW 3ISY3AVHL S,3HLYT 3HL

(TI0YINOD Y3INdW0J) 3HLYT 1Y¥iS-C
(SINIOd) 0L (VAINIOd) "NOILISOd G3NIWY3L303¥d 3HL 0L Y37704 IONVAQY-!

J1NUJOW 104INOJ INOJ INIHIVW

-87-

Enter with value of the
form Length

Initialise

(Moved$Distance$Encoder$Puises = 0)

Calculate and then retract to the next absolute
position and update the current carriage position

for each required increment of carricge position

(DO WHILE Mcved$Distance <= Interpolation$Distance)

i

Update the Moved$Distance$Encoder$Pulses

Moved$Distance=Mcved8Distance+Increments

Wait for carriage to reach next interpolation position
DO WHILE carriage$position-Initial$Distance
< Moved$Distance

(cont.)

FIG 5.9: Interpolation procedure flowchart (1)

-88-

s Sea s e o8 pa e emb e ey e . e e - e g iR s e e s ATy < e asm s e T e e

Calculate Y18ADCSsteps
Y18ADCSsteps=MovedsDistancextan$Num (1) /tan$Den (1) --(1)

where

Y1$ADC8steps=Current calcuiated retract distance from
interpolation start of the tool
(in the y-direction), i.e the dependent variable

Mcved$Distance=Current carrioge movement distance
from interpolation start (in the x-direction)
i.e the independent variable.

The value will be a muitiple of (8-16) pulises
as speciFied in Cone Generation mcduie.

tanSNum (1) =An integer representing the numerator of the

tangent of the ongLe expressed as a ratio as
specified in Cone Generation moduie

tenSDen (1D =An integer representing the dencmenctor of the
tangent of the angle expressed as a

ration as specified in Cone Generation module

A IF from (1) the remainder is >= 0.5 add one to
Y18ADCSsteps
Otherwise neglect the remainder (first approximation)
(cont.)
FIG 5.10: Interpolation procedure flowchart (2)

-89-

A 17
To convert from Enccder Pulses to mm cend then

to ADC steps we have to multiply by
32 and divide by 63

Y18ADCSsteps=(Y15ADCSsteps*x32) /63 --(2)

l

IF from (2) the remcinder is >= 0.5 add one
to Y13ADCésteps

Otherwise neglect the remcinder (second approximation)

Get the first absolute position to move to

Absolute$ADCSsteps=Former$tipSADCEsteps-Y15ADCSsteps

--(3

Retract tool to required absolute position

Call TcolSRetract (Absolute$ADCHsteps)

Repeat interpolation as determined by
DO WHILE Lloop

Otherwise END WHILE

Return to Machine Cone
Control mocdule .

FIG 5.11: Interpolation procedure flowchart (3)

{BC).

The number of pulses was displayed on the SDK-85, the 4 digit
display indicating the total number of pulses and the 2 digit the
number of pulses in the current byte. The two monitor routines 'UPDDT'
and 'UPDAD' required for this purpose were included in the main
program. These were the only modules written in assembly: code. The

'Initialisation' module clears both fields upon executing the program.

5.14 - 'Par Interpolation' procedure

This routine is different from 'Con Interpolation', since the
points of the parabolic contour were calculated beforehand and stored
in a look-up table. The routine had to be done this way since the PL/M
80 1language could not calculate the square root in the parabola
equation adequately, owing to the lack of floating point arithmetic.

First, the parabolic equation constant was determined and then the
‘interpolation points were calculated every 16 encoder pulses
(equivalent of 1.016 mm). The interpolation points (real numbers) were
represented as ratios of integers which could be held as PL/M 80
variables.

To find these integer ratios, a program was written (in Basic
language) which estimated and printed out the ratios (see appendix 3

for the program).

5.15 = Other program notes

The tangents of the cone angles had to be inéroduced in a form
which could be held as a PL/M 80 variable. Since this language could
not deal with real numbers, the tangents had to be expressed as ratios
consisting of two integers. These two integers had to be found by

trial and error, since they had to be chosen to give the greatest

- 91 -

possible accuracy, whilst not permitting thé ultimate 1limit of 65535
(for sixteen bit integérs) to be exceeded during the evaluation of the
expressions in which they are involved. All the calculations had to be
worked out in advance to avoid overflow. Similarly, the form length had
to be converted from millimeters to encoder pulses.

Both the tangent and the form length tables were incorporated in
'Machine Cone Control' module in array form where the required value
could be obtained by referring to that array index. Fig 5.12 shows the

cone and the parabola procedures.

5.16 - Software testing

-

The main modules, 'Initialisation', 'Console I/0', 'Shape Select',
'Cone Generation', 'Machine Cone Control' were designed first.
'Display', 'Parabola Generation' and 'Machine Parabola Control' were
added later with other alterations in 'Machine Cone Control' module.

Software testing was aimed at checking the flow-turning controller

performance, locating visible sources of error, data manipulation
testing, a thorough examination of the magnitude of integer numbers
resulting from mathmatical operations, such as multiplication,
uncovering unexpected snags and diagnosing possible shortcomings.

Each movement made by the tool had to be checked for correspondance
with the requested flow-turned profile. The roller ﬁath can be seen in
fig 5.13. The y—-axis distance (4-5) was found to be incorrect. The
same applied to the x—-axis distance (5-1). These errors were due to
hardware. Some minor faults were rectified immediately while other
more serious problems were solved at a later stage (see chapter 6).
Tool movement along the conical contour (1-2) was not precisely checked

at this point, although it appeared to be consistent with a conical

profile.

- 092 -

meDﬁvaOLQ L1o0gbJbd pPUL SU0) 72| G 9]

JONYAQY
1001

10vy13d
1001

N\

1Ivy13y
1001

JONVAQY
1001

/

NOILYI0dY3LN]

1VJINOD

Y3AOON3 NOILVIOdY3INI
1 4YHS QNme%m<Q
qomhzoo v109v4vd
INAN] |——»
gy INTHOYIW

!

/

J30JOONS
14VHS

[NOILVY3INI9 V109vY4vd |

1041NOO 3INOJ

INTHOVIW

e

1NdNI
aay

[NOILYYINT9 3INOJ |

ONININL MO1d

-93-

*
13

HIWH0S

J30d paqiuossad J8770y £1°G 914

JUBWSAOW JONUDJY

[FIUlOd 03 £3U]od|

JuUsWaAOW Y41 4

Ja7704 30DJIOY

[E3Ul0d 03 Zjulod]

JUBWIAOW Y3 JO

JNOJU0D DD IU0)

|c3ulod 03 [JU[Od]

JUswaAow pdly]

1497 90l
[[3Ujog 03 GiUlod

e - s o e — — o — ———

jusweAowWw puUodag

J2770d 20UDAPY

[GIUl04 03 pIUlod]|

JUSUW2A0W 3SJ 4

-94-

i
‘-
i
>

Chapter 6: Rig commissioning

6.1 - Introduction

The initial stages of program development and debugging were
accomplished using a development system with an in-circuit emulator.
Subsequently the software was integrated with the hardware and tested
on the rig in real time. The modifications found necessary during the

development process are detailed below.

6.2 — Testing observations (version 1)

After transferring the program to the EPROM chips and running it in

the real application, the following faults were observed:-

1- The advance distance was not correct (the observed distance
moved was greater than the calculated distance).

2- The counter reading was inconsistent.

3~ The contour had a greater conical angle than the input value
of 30 degrees (former angle).
4— The tool did not retract to the datum position, but in fact

moved further.

To identify these errors, hardware components were checked with

special software routines. Some of the equipment used is shown in plate

6.1.

6.2.1 - Linear transducer recalibration

The transducer was found to have an wunstable supplj voltage.

Instead of the correct calculated value of 11.719 volts it was 8.19

- 95 ~

volts. The voltage was brought back to 11.719 by adjusting the power
supply potentiometer.

Rerunning the program to ensure that transducer resolution had the
correct value along its entire length, a special routine to test the
transducer performance (?ROGZ) was loaded manually into the SDK-85,
(see appendix 1 for PROG2).

Using a micrometer, the accuracy of transducer measurement was
checked and the resolution was found to be within the specified
tolerance throughout the range.

It was also found that the resolution remained constant throughout
the length. An illﬁstration is provided in fig 6.1. Another problem was
power supply drift, whicb had to be measured over a period of time to
ascertain a reliable transducer performance. Mains to the power supply
had to be checked as well;

The power supply had a tendencv to shiff upwards over a period of
time. An example of the fluctuatioﬂ over a 30 minute period was from
11.719 to 11.85 volts. The problem was overcome by using a separate
high stability d.c. power supply.

The transducer in conjunction with the ADC enabled movements of 1/8
mm to be detected corresponding to an ADC resolution of 10 mV per least

significant bit.

6.2.2 - Counter test

A persistent and unidentifiable fault occurred on the counter
board, so another counter board had to be made. Whén tested it was
found to be satisfactory.

To verify counter operation, a mark was made with a pen on the
carriage edge; then upon running the program to displace the carriage,

the distance was measured by making another mark at the new carriage

- 97 -

woJbodd Z9044 Y IM 1S83 J20NPSUbJ]

ppay Ja3aWwoJdjw ayl bulsn
Ab1ds1p gg-3Os @2y3 uo umoys sbuippad jupdo ww| oM| x

“1°9 914

A (U0 3N70Sau)

0| 8 8 | 8|8 8 | 8 8118|8188 |]8|0|0]0 20US US4 4 I(]
(10W 1 09PDXDY)

0 |83 | V8 |301|8CL|08L|3CL|0€EC |88 |80C|8CE |22 |0IE |J4E|JHE | 4HE z @C_Uomm
(oW ! O9pDX3Y)

0O |09 |28 |30L|0CL|B21(331|BCC|E8C|00C|0CE |VLE|SIE [JHE|JHE | JH€E ! mc._Uomm
(wwy U] yzbua|

OSLIOvL|OELI0CLIOLL{O0L| 06|08 |0 09|05 (0¥ |0E|OC|0OL]| O UBONPSUD]

I
_

p0Up]SIpP Bullpuado

abubu njasn
uw 821

|
)
O

e

wacwuxsz+m:

98’

position. This was repeated several times and the distance was found to
be within acceptable tolerance in each case.

The distance travelled corresponded to the number of pulses stored
in the 'Machine Cone Control' module and a visual check on the number

of rotations of the leadscrew agreed with this.

6-2'3 - DAC test

The roller forming tool can be moved (in the y-axis) either
manually by placing the switch in the manual position and then twisting
the potentiometer clockwise or anticlockwise to advance or retract the
tool, or it may be automatically driven by the computer, by moving to
the auto position.

When the power was switched on while in the manual switch position,
and without the program running, the tool remained stationary until it
received an advance or retract signal, but in the auto position, it

fully advanced instantly to the far end, pushing the limit switch with

the risk of damage. This effect was due to the logic high signal sent
out by the DAC to the valve controller as a result of microprocessor
output being high until initialised by the program. To overcome this,
the sequence of operating the oil pump and then running the program had
to be reversed i.e the program execution had to be done first, then the
pump was switched on.

In version 1, advancing and retracting of the tool were done at the
maximum speeds. However this may not be the most efficient method of
performing for this application owing to persisteﬁt tool qvershoot.

Other possible ways of controlling tool movement, (see fig 6.2.) are by

(a) Acceleration from zero to maximum velocity, constant velocity

- 99 -~

(a)
velocity \\
time
accelerating decelerating
(b) * * X
velocity]
time
slow
(C) P ¥
velocity
time
Fast
(d) %
velocity
time

accelerating fast decelerating,
* *# 3 %

Advance distance either (¢) or (d)

Retract distance (c) only

(b) shouldn’t be used

FIG 6.2: Cylinder movement techniques
-100-

for a period, followed by deceleration to a halt at full
distance.

(b) Acceleration then deceleration (no speed limit).

(c) Slow movement throughout traverse.

(d) Maximum velocity from start to finish.

All the above-mentioned methods of controlling tool movement were
possible implementations, but options (a) and (b) were dismissed
because of

1- The need to simplify the control algorithm in order to reduce

the response time.
2- The lack of ability to control speed adequately by varying the
voltage.

The relationship between the voltage applied to the valve
controller (which is converted subsequently into a current fed to the
proportional valve) and the corresponding equivalent decimal value
(used in programming) to the cylinder speed for tool advance and
retract is given in fig 4.13 chapter 4. The velocities quoted were
found experimentally by measuring the travel time for a predetermined
piston stroke of 148 mm.

These figures show firstly that large voltage thresholds exist for
both tool advance and retract before tool movement occurs and secondly
that tool speeds are too critically dependent on voltage in the area
of these threshold levels for reliable measurement. This means in
practice that velocities of less than 12.6 and 27 mm/s could not be
obtained for tool advance and tool retract movements.

It was decided to choose (during the process) a cbnstant tool speed
which was well below the maximum speed and could be tuned to give a

satisfactory contour.

- 101 -

6.2.4 - Contour shape

The conical angle of the contour was found to be larger than set in
version 1 of the program (see section 6.2). To determine the reason
for this, the 'Interpolation' routine values (retractions) were
calculated and compared with the retractions observed. An example of
the calculated interpolations can be seen in fig 6.3/ The actual
retractions were significantly greater than the set values. The
assumptions initially made were therefore reviewed for possible
errors.

On reviewing the assumptions it was realised that the software had
been written in such a way as to allow relative distances to be
specified in 'Tool Advance' and 'Tool Retract' (which are included in
'Machine Cone Control' procedure). This method proved to be
error-prone, as it carried a cumulative inaccuracy to the next
distance to be moved (without checking the required position).

Each call to the 'Tool Advance' and 'Tool Retract' procedures
specified the amount of movement from the current position. Also since
the tool was not decelerated and the tool stop condition was only
initiated when the tool reached the final position, it was likely that
tool overshoot would occur at each interpolation. This overshoot was
not taken into account in the calculation of the next interpolation
and so the error increased continuously to a maximum at the end (see
fig 6.4 a).

Another method of specifying the positions was by the use of
algorithms ('Tool Advance' and 'Tool Retract') bésed on absolute
position, whereby the final location to be moved to was specified for
each increment (retraction). In this way, if an error occured in
determining the first point it would not be passed on to the next

point.

- 102 -

To shew a sample calculction of the Interpolation rcoutine,
the following data are used:-

1- Form Length = 50 mm
= 787 puises see figure 5.33
2- Increments$Encoder$Pulses = 16 puises

3- Cone Angle = 30 degrees

tanSNum (30) = 26

tansDen(30) = 45 See figure 5.32

For the above 2 and 3 also see the program Listing in
Appendix 2 Cone Generation and Machine Ccne Control mcdules.
Figures 5.29 to 5.31 for Interpolation flowcharts.

Samole Calcuiation

Y15ADCSsteps=MovedsDistancextansNum (30) /tanxDen (30) --(1)
26
= 16 % —--
45
= 9.24

IF from (1) remcinder is >= 0.5 THEN add one to Y1ADCsteps
Y1$ADCSsteps = 9

Y16ADCSsteps=Y15ADCEEstepsx32/63 ~-(2)

= 9 x 32/63
= 4.57

IF from (2) remainder is >= 0.5 THEN add one to Y1$ADCSsteps
Y18ADCSsteps = 5 ‘

The calculated values are shown in figure 6.4.

FIG 6.3: An example of the calculated retract distances
for the Interpolation routine

-103-

R e 48 S e R e ae sl T WA A b a0 U s FATY T ey n e Ty g s m - [N 0 U T T

contour| Y practical
shcpes theortical 4_
3
2 41 l
40° g [
~N 3' |
1
2! b !
\ I | !
71 | | l‘
il I | I I &
0° X
(a) Relative position carriage
» _ distance
(cumuticative error)
contour] Y ,
practical
shapes theortical
4
3 //T-
4)
2 I
P
1) | |
! ! !
/1| 4 1 J
L | L, | e
X
30° carriage
(b) Absolute position 30 . J
distance

(steady error)

FIG 6.4: Possible options for locating position

~104-

It should be noted that there would be a slight deviation from the
conical contour based on the absolute position since the CPU could
not continue counting the number of pulses from the encoder (carriage
position) while it performed other arithmetic manipulations at the

same moment (see fig 6.4 b).

6.3 - Further software modifications and enhancements

The major faults and shortcomings of version 1 of the program
became more apparent when tests were carried out on the flow-turning

rig. The alterations included the following:

1- Resetting and enabling the counter chip was done in
'Initialisation' module only. This has to be done in 'Machine
Cone Control' module ('Machine Cone Control' procedure) for the
successive turnings.

2- The data and the address fields on the SDK-85 were not used in
version 1. An improvement was made by displaying the counter
reading (the contents of port 29H), which is a byte variable and
the cumulative count (carriage position), which is an address
variable on the data and the address fields respectively. These
displays were initialised to zero at the start of the
flow-turning prdcess and continuously updated until the end of
'Interpolation' procedure.

3- The advance and the retract speeds (see section 6.2.3) were
decreased to reduce the tool overshoot.

4— A new approach based on calculation of absolute rather than
relative position during 'Interpolation' was implemented. This
necessitated alterations in 'Tool Advance', 'Tool Retract' and

'Interpolation' and other pertinent module modifications.

- 105 -

6.4 — Spindle speed and feedrate ranges

From section 1.7 chapter 1, the flow-turning surface speed range
was specified to be between 1000 to 2000 ft/min, when converted to rpm
this gives a minimum speed of 1591 rpm and a maximum of 3183 rpm.
These speeds are not available on the lathe since the maximum is 750
rpm, also the software requirement necessitated using lower speeds
than 750 rpm. |

From section 1.7 we also have for best results (excellent surface
finish), the feedrate range is between (0.0508 - 1.12) mm/rev. For
acceptable results (surface finish not important), the feedrate range
is (0.762 - 1.27) mm/rev.

It is clear from the above that the acceptable and the best

feedrates range on the lathe will lie between (0.226 - 1.27) mm/rev.

6.5 - Selection of the appropriate roller speeds

In the first version of the program, maximum cylinder speeds were
used. However to achieve the best contour, two parameters had to be
considered:-

1- Lathe spindle speeds and feeds.
2- Roller tool retract speeds.

A combination of the appropriate lathe spindle speeds and the
carriage feedrates was selected from the available values. It was
necessary that the roller tool had time to finish retracting the
calculated increment for each interpolation pgint before the carriage
reached the mnext point for interpolation. This imposed a lower limit

on the choice of roller speed, as set out below.

- 106 -

Roller retract increment Carriage increment

Roller speed Carriage speed

where:

carriage speed = carriage feed * spindle speed
and

roller retract increment

= tan (cone angle)
carriage increment
Therefore

minimum roller speed =
carriage feed * spindle speed * tan (cone angle)

The time taken by roller to complete incremental movement on y—~axis
is less than the time taken by the carriage on x-axis. The roller
speed was selected to comply with the above condition, and could be
adjusted by varying the digital output signal to the DAC. The digital
values used in version 2 of the program were 177 and 73 for advance
and retract respectively, and these complied with the above condition

and also reduced the overshoot to an acceptable level.

6.6 — Testing observations (version 2)

After the changes explained in section 6.2.4 had been completed,
the second version of the program was observed to give a sati;factory
contour. However, some further comments about this program version
are relevant.

When testing this version of the software, the Interpolation
routine appeared to malfunction persistently. The routine was checked
again for possible errors without success. During running of the
program, it was observed that the number of retractions actually moved
by the roller tool did not correspond to the calculated number of
retractions. It was concluded that this effect was due to the roller
tool overshooting. This tendency to overshoot caused excessive

incremental tool movement resulting in zero movement at some steps

- 107 -

because the actual tool position already exceeded the required
position. This effect was relatively easy to identify as the carriage
position address variable was displayed on the microcomputer. To
rectify this overshooting, the cylinder speed was slowed down by
adjusting the proportional valve amplifier. On rerunning the program
the problem was found to have been minimized.

Another problem which occurred was in defining the datum position
at which 'Interpolation' should start. This was due to the variation
in angular position of the leadscrew when the traverse was engaged
every time the 'Interpolation' started. To overcome this problem, a
micro switch was fitted on the carriage path at a position
corresponding to the former tip and the software was amended so that

'Interpolation' commenced at this position.

6.7 - Experimental testing

The modified rig described in chapter 3 was wused in the

experimentation tests which were aimed at verifying the rig
effectiveness for producing a successful controller to control the
flow-turning process.

Some checks on the rig had to be made before any tests could be
carried out: in particular the former had to be checked for
concentricity with a dial gauge.

The sample was held firm against the former by the tailstock. The
roller tool had to be brought close to the former at a distance of
about 10-20 mm. The tailstock was placed as far for@ard as possible on
the lathe bed so as to maximize rigidity by reducing the extended part
of the tailstock holding the disc. However a large amount of tailstock
extension was still required which, as observed 1later, produced an

undesirable effect on the samples.

- 108 -

The advance tool distance from the datum to the former tip, i.e the
étart point along the y-axis, was 72 mm of the transducer extension.
The corresponding forming start point along the x-axis was initiated
by the carriage actuating a limit switch clamped on the lathe bedway.
This could also be manipulated manually to obtain the correct starting
position.

After forming the disc, the roller retracted to the datum, the
carriage movement ceased gradually after the 1lathe has been
automatically switched off. The carriage traverse then has to be
disengauged and the carriage returned manually to the starting
position close to the tailstock ready for the next run. The tool
movements are shown diagramatically in fig 5.13 chapter 5.

The forming process was initiated from the SDK-85 microcomputer
keyboard and then the rest of the process was monitored from the VDU.
For repeated samples the software provides a facility to avoid keying
in the same parameters again and again. After fixing the workpiece
and switching on the power, the program can be executed on the SDK-85

board as follows:

1- Enter the interrupt service routine starting address at 20C8H
and 20CDH (three bytes each C3H, FOH and A7H).
2- Press 'GO 8000H' followed by 'EXEC' keys.

3- Enter the parameters as required.

If the roller deviates from its prescribed path, then VECT INTR key
on the SDK-85 board or the emergency stop switch on 1the lathe front
should be pressed. The vector interrupt routine is shown in appendix
2.

Throughout the test program, different grades of greases were used

in the experimental work. For the 162 samples produced three different

- 109 -

types were used, ﬁamely G.56/T grease Silkolene, Simnia grease 0O Shell
(as lubricant 1) and Garia C oil Shell (as lubricant 2)..

Before performing the actual tests with the samples, the contour
was plotted using an adapted dial gauge pedestal fitted with a ball
point pen. This involved fixing the moving carriage with the ball
point pen in contact with a sheet of paper mounted on a rigid plate on
the lathe bed.

The conical contours were examined using the maximum and the
minimum values of the software parameters governing the resolution of
carriage position. Figs 6.5 and 6.6 show the plotted contours.

With each of these resolutions, the conical test angles of
30,35,40,45 were drawn. These curves were then checked against the
above angle values and found to be correct.

The same procedure was repeated with the parabolic contour and the
plot is shown in fig 6.7. However in .this case a fixed resolution of
16 encoder increments was used throughout.

After verifying the plots, tests were conducted to produce actual
flow-turned samples. After concluding the tests eéch of the samples
was measured. Three measurement tests were performed, namely the cone
angle, the reduction in thickness and the ensding hardness. The test
programme is shown in fig 6.8.

A Hilger and Watts universal optical projector with a magnification
of 15 was used to measure the cone angle. The thickness was measured
using a MITUTOYO digital dial gauge linked to a DP1 dataprocessor.

Hardness tests were carried out using the Vickers Pyramid Hardness

Tester.

- 110 -

— 0GE

D

0 (9)

0E (P)
ww 05
‘wedu gy

sasnd pmboocm 8

S8s7nd JspoouUs g U3l IM SJN0JuU0D (DO JU0) G'g bl

yjbuaq suoo

paads a1pu)ds

Uo|3n10SadJ auod

-111-

S85]Nd JopodUs g| Yl IM SJNOJU0D JpOJUO) fg°'g b4

oSb

0 GE

@D O0F ()

—-112-

(@ 0£ (®)

ww oG = yzbus] suod
‘wrd-y gy = paads aqpulds
s957nd UBPOOUS g| = UO|IN10SSJ BUOD

sesind Jspoous g| YJIM JNO3UOD D]OgDUDJ

‘wedu gp

sas1nd Jspoous gj

I

/°9 bl

. syjbus] pjogound Jusus4ip

peads a7puids

uoJ3niosad pblrogqoJod

-113-

SHEFFIELD CITY POLYTECHNIC
DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

COMPUTER AIDED FLOW TURNING

by
A ﬁ Mohamad

Final testing on the rig v .

Testing with a conical former and with cone parameters as follows:-

1 Former angle = 30 degrees
2 Increments (distance between two interpolations) = 16 encoder pulses

3 Form length = 40 mm
First test

Choose a spindle speed = 95 rpm
Roller movement angles (contour)

30 degree 3 specimens
35 degrees _ 3 specimens
40 degrees 3 specimens
45 degrees 3 specimens

Second test

Choose roller movement angle (contqur) to be 40 degrees

Spindle speed 1 = 95 rpm . 3 specimens
Spindle speed 2 = 135 rpm 3 specimens
Spindle speed 3 = 186 rpm 3 specimens

Third test

Choose a spindle speed = 95 rpm
Roller movement angle = 30, 35, 40, 45 degrees

No lubricant (dry) 30, 35, 40, 45 3 specimens at each angle
Lubricant 1 30, 35, 40, 45 3 specimens at each angle
Lubricant 2 30, 35, 40. 45 3 specimens at each angle

Fourth test

Choose a spindle speed = 95 rpm
Roller movement angle 30, 35, 40, 45 degrees

]

Lathe carriage feed 1 = 1.27 mm/rev 3 specimens
Lathe carriage feed 2 = 0.552 mm/rev - 3 specimens
Lathe carriage feed 3 = 0.226 mm/rev - 3 specimens

12 4+ 9 + 36 + 12
= 69

Total specimens

Repeat the tests with . .
Increments (distance between two interpolations = 8 encoder .pulses (smaller steps)

Total séecimens = 138

FIG 6.8: Test programme for the flow-turning process

114

Chapter 7: Results and discussion

7.1 - Results

From the results shown in tables 1 to 8, graphs 1 to 5 were plotted
as seen in appendix 4. The following observations can be made.

The resulting angles from the forming process tend to exhibit a
slight difference to the input cone angle from test 1, as shown in
graph 1. This trend is almost the same for the 8 and 16 encoder
increment (which is the software interpolation step). In flow-turning
with a 30 degree former, there is a maximum variation of 3.78 and 3.41
degrees for 8 and 16 encoder increments respectively. With 35, 40 and
45 degrees there is a maximum variation of 1.48 degrees. The reason for
the above variation was the inefficient tailstock support set-up
discussed in section 6.7 chapter 6. More precise cone angles qould be
achieved in future with a better set-up design.

Also from the first test, it can be seen from graph 2 that the
reduction in wall thickness decreases as the cone angle increases in
spinning (35, 40,45) which is about the same for the two interpolation
steps. For 8 encoder increments and 30 degree cone angle, the maximum
reduction in flow-turning is 25.27% while it is 36.04% with 16 encoder
increments. The above trend is to be expected since with a larger
increment, the less frequent movement of the tool away from the conical
profile results in higher contact pressures between tool and workpiece.

From the second test graph 3, the original hardness of the disc was
43 VPN which remained almost the same with 8 encoder pulses, decreasing
to slightly below its original value as spindlg speeﬁ decreased. With
larger increments, that is higher contact pressure between the tool and
workpiece, the hardness decreased more steeply as spindle speed

decreased.

- 115 -

In flow~turning and spinning processes the wuse of different
lubricants influences the hardness. The effect of the lubricants on the
hardness are shown in graph 4, test 1 and 3. Running the process with 8
encoder increments and with lubricant 1, 2 and dry condition, the
hardness remains almost the same while with grease (thicker lubricant)
the hardness has decreased considerably compared with the unworked
material. With 16 encoder increments, the hardness has shown large
decreases of similar magnitude both with and without lubricants. This
is surprising and difficult to explain since the hardness would be
expected to increase with work hardening, or at least remain the same.

In test 4 graph 5, showing the effect of wusing three different
feeds, the hardness value almost retained the original value w}th 8
encoder pulses, while it decreased by similar amount for all feed rates
with 16 as seen from the three curves. |

The hardness machine was checked for possible errors, and the tests
were repeated, but both checks confirmed that the original results were
valid.

Owing to the uneveness of the surface and the curvature of the
disc, the hardness test was not easy to set up, adjust and measure. A
total of four readings was taken per sample and then these values were
averaged. If it were possible to straighten the sample to obtain an
easy method of testing this would introduce more stresses into the
sample and thus the resulting hardness would not be representative of
the after test hardness.

The surface smoothness obtained was not anticipated. From
observation it was clear that in the real tests fhe tool missed an
average of 2 in 5 interpolation points, which produced an uneven
surface. In contrast, in the contour testing carried out prior to the
real testing the plotted curves were acceptable and £fairly accurate,

see section 6.7 chapter 6. The uneveness of the surface was quite

- 116 -

evident in the flow-turning samples having 30 degrees and to a lesser
extent with the spun samples having 35,40 and 45.

After writing the parabola software the contour was plotted as seen
in fig 6.7. The parabolic profile starts horizontal(right hand side of
the plot) and it appears that because tool movements are small there is
no significant overshoot but as the profile becomes steeper, the larger
tool movements seem to be accompained be overshoot with the result that
the steps become more wuneven than expected. The contour was
subsequently tested with some samples. A full test programme was not
conducted (as with the conical contour) as it was thought that the
tests should await implementation of the major hardware and software
changes mentioned below. Two samples of A were formed successfully,
but when BS 1470 was used it was a bit soft and the samples were torn

during the forming process.

7.2 - Implementation of the control system

The research was aimed at making a suitable flow-turning process
controller, which would include both hardware and software.

A top-down design methodology was adopted in designing the
controller with the intention of clérifying the requirements in terms
of hardware and software at an early stage. A schematic layout was
drafted for the electronic circuit control followed by the individual
board details. Individual circults were built while other necessary
complementary hardware was designed and manufactured.

After estimating the hydraulic requirements, which included the
force magnitude, calculations were performed for the requiréd capacity
of the directional proportional control valve, the cylinder, the pump,
the motor, the relief valve and appropriate oil tank size. The circuit

was then fabricated aécordingly.

- 117 -

The modifications to the SDK-85 microcomputer board were carried
out only after the estimat;d program memory size was determined in
order to establish the number of PROMs to be installed on the board.

In parallel with this, the software design was thought of in terms
of blocks doing specific tasks. These tasks were then divided into
subtasks to reduce the complexity involved until it was not possible to
divide any further.

The software modules were reduced to a minimum in order to give a
simple efficient design. The first six modules were written for the
conical contour and then another two were added for the parabolic
contour.

There were some problems associated with this work, which involved
both the software and the hardware. The hardware problems included the
following:

The counter board was found to be faulty on testing and gave
inconsistent readings. It was decided to have it replaced with a second
counter board whicﬁ proved to operate satisfactorily.

There was an uncertainty about the transducer performance when
tested with the software debugger ICE-85. This difficulty was dealt
with by inserting a d.c. voltage follower board in the circuit.

The hydraulic power pack was wrongly placed below the cylinder
level causing air to be trapped inside. Continuous circulation of oil
has minimized this effect to an acceptable level.

The parabolic former was not in the original scheme and had to be
made for the final testing towards the end of the research. It took
more than a month to make on the CNC lathe as a prbgram had to be
written to produce the parabolic profile.

Another difficulty faced at a later stage was a faulty E?ROM chip.
It was not possible to éstablish the sources of error and finally

another SDK-85 board was used. As far as the software was concerned

- 118 -

the first problem encountered was the counter 1latching. To avoid
inputting readings to the SDK-85 whilst the counter value was changing,
a piece of software was incorporafed in the 'Shaft Encoder' routine to
sample the counter value 10 consecutive times and return a reading only
when the ten samples were all the same.

Another problem observed during program development was involved in
the tool movement technique. Implementation of a contour based on
absolute rather than relative position movement has significantly
improved the contour.

An additional problem was that the 8085 CPU integer arithmetic
caused a restriction on the calculations. The PL/M 80 compiler could
only handle 8 and 16 bit unsigned integer values, thus any real numbers
involved as coefficients in the contour equations had to be represented
as ratios of positive 16 bit integers with some loss of accuracy. Also,
if overflow occurred during the addition or multiplication of 16 bit
integers the result would be represented modulo 65535, i.e it would be

in error by 65535. To avoid overflow, the contour equations were

written such that, in general, a multiplication was followed by a
division to prevent the intermediate result from approaching 65535 (see
'Cone Interpolation' procedure). This writing of the equations also
involved changing the values of the rational numbers representing the
real coefficients to reduce the magnitude of numerator and denominator.
This eliminated the risk of overflow at the cost of an acceptable 1loss
of accuracy. Finally, during division computations, the value of the
remainder was lost. The equations were writtemn in such a way that
resulting position was rounded to the nearest inﬁeger. The above
procedure was practicable for the linear equations involved in the cone
contour, but could not be applied to the parabolic interpolations which

involved the computation of square roots. The points on the parabolic

- 119 -

contour to which the tool is required to move were therefore calculated

and stored in the program beforehand in the form of a look-up table.

7.3 - Future improvements, modifications and suggestions

A better control over the flow-turning process could be achieved if
the following suggestions, modifications and improvements were
implemented:

For the 8085 processor, it is possible to add more accuracy to the
calculations involved by incorporating a floating point software
package. However, this would make the response time slower which is .
undesirable in this control application, so this idea had to be
abandoned. A more advanced processor such as the 8086 with 8087
co-processor will have a hardware floating point which is faster than
the software floating point. At the commencement of the project,
however, the 8085 was chosen for reasons given in chapter 2 section
2.4. The PL/M 80 programming 1angugge used has a simple algorithm, easy
to use, quicker to learn and efficient which made it suitable for such
an application.

In further research using floating point arithmetic, it would be
possible to obtain different parabola resolutions (instead of the
constant 16 encoder pulses) in addition to having different parabola
contours (as the parabola constant could be varied) since the points
could be directly calculated instead of being derived by use of a
look-up table. This would allow any parabolic profile to be generated
and, depending on the other controls used, an improveﬂ contour could be
obtained.

As the roller tool moved along the former and the workpiece started
tq take the required contour, there was no direct way to verify whether

the CPU was acting fast enough to perform the various manipulations.

- 120 -

This possibility may be reduced by using a faster processor than the
8085 processor family. Moving up to the 16 bit 8086'processof would be
advantageous in future work, using PL/M 86 programming ianguage which
is similar to PL/M 80.

In a future implementation with jfloating point arithmetic, the
'Cone Interpolation' and 'Parabola Interpolation' procedures would be
modified to calculate the tool position directly without the use of
data stored in look—up tables.

In addition to the above mentioned, there was no fail-safe
procedure. The absence of this precaution would cause problems if a
power failure occurred during the flow-turning process. A standby power
supply could be used.

An improvement added at a later stage of the work was the addition
of an emergency stop button which would switch off the 1lathe after
retracting the tool to relieve contact préésure if the tool deviated
from the prescribed path.

Conical formers with different angles could be made for further

tests since they are relatively easy to produce on an ordinary lathe,
unlike the parabolic former which needed a CNC lathe. (Néte that, with
floating point arithmetic and direct calculation as mentioned above,
the cone contouring algorithm could generate cones of any angle, with
no requirement for data calculated in advance).

One possibility for further work would be the use of different
materials for flow-turning. This was not considered in this research as
the main concern was to get the controller working (which consumed most
of the time). In addition, the effect of variatioﬁ in workpiece size
could be investigated by performing tests over a range of ﬁaterial
thickness and diameters. Using larger workpiece would enable testing
the component for ultimate tensile strength after the process, which

was not possible with the present workpiece size.

- 121 -

Another suggestion would be to employ a variable speed lathe to
establigﬂ-the highest spindle speed compatible with the software
limitations since operating at higher speed would be advantageous with
respect to surface finish. Once the speed is established, it could be
used subsequently in the flow-turning process for improved results.

The hydraulics wutilized performed satisfactorily and gave enough
force to form the commerically pure aluminium BS 1470/SIC. Yet, for
harder metals such as steel, harder rollers and formers would have to
be made as mentioned in chapter 3 section 3.3.

A more accurate control over the tool movement could be achieved
with the wuse of a better directional proportional control valve than
the present NG6 valve which determines the o0il flow rate to the
cylinder which in turn determines the speed. Greater control 'over
velocity in thé. lower tool speed range would facilitate smoother
incremental changes in tool position. Alternatively, if a means of
introducing a variable damping to the tool <could be incorporated 1in
then probably the overshoot could be considerably reduced.

Drawing the contour prior to the tests could be done more
accurately by using electronic or electrical means instead of the
present method which cannot detect small movements such as 0.1 mm. The
plotted contour could be checked against the one obtained from real
testing and thus a close check on the effect of overshoot or tool
contact force could be made, see section 6.7 chapter 6.

The encoder increment parameter, which determines the conical step
could be improved by reducing the present minimum step of 8 equivalent
to 0.5 mm to a minimum of 2 equivalent of 0.2 mm if ﬁhe new controls

were implemented as mentioned above.

- 122 -

Conclusion

A hardware/software design was produced for a microcomputer based
flow-turning process controller which after development resulted in a
fully functional flow-turning system.

The flow-turning roller tool was made to follow specific patterns
of preprogrammed movements namely conical and parabolic contours.
Experimentation and testing showed the contour to be successfully
reproduced on the product,

The workpiece was also successfully formed to cone angles of 35, 40
and 45 degrees without a supporting former. In addition, flow-turning
of a 30 degree cone angle was also achieved with a former.

Flow-turning of the 30 Hegree angle cones resulted in reductions of
wall thickness of 257 - 31%.

The use of a higher spindle speed during forming would have been
beneficial to give an improved surface finish. However, the present
processor had limitations in terms of response time, therefore in order
to achieve an improved quality of surface, a processor with faster

response should be used.

- 123 -

REFERENCES

CHAPTER 1

1- SHEET METAL INDUSTRIES

Marc 1975’ VO].. 52’ NO.B, Pg- 140-145

2- C.F.NOBLE & K.S.LEE
"A study in flow-turning”
Proc. of the int. conf. on Rotary Metal Working

Processes (1lst) 1979

3- Design & Components in Engineering

Mar. 11 1965, pg. 6-13

~
1

SHEET METAL INDUSTRIES

May 1977, pg. 485-492

5- Modern Machine Shop

Mar. 11 1965, pg. 6-13

"Manufacturing Processes”

pg. 302-305 & pg. 383-401, Sixth Edition , 1969

'7- R.A.C. SLATER & A.JOORABCHIAN
"An experimental study of the spin-forging of sheet metal cones

using a mandrel of constant cone angle”

U. of Birmingham, 1976, pg. 531-537

- 124 -

8- SHEET METAL INDUSTRIES

Apro 1977’ pgo 382-389

9- R.A.PAULTON & B.N.COLDING
"Two industrial processes for plastic deformation of metals”
Inst. of Mech, Engineers, Conf. on Eng'g

Manufacturing Technology, paper no.57, London.

Mar. 1958 pg. 54-62

10- SHEET METAL INDUSTRIES

Febo 1970, V01047, N0.2, pgo 131-136 & 144

11- SHEET METAL INDUSTRIES

July 1981, pg. 505-511

12- SHEET METAL INDUSTRIES

Feb. 1975, Vol. 52, No.2, pg. 72-75

13- SHEET METAL INDUSTRIES
Dec. 1975, pPg . 749
CHAPTER 2

14- G.L. Simons
"The uses of microprocessors"”
pg. preface, 22, 97
H. Charlesworth & Co., Ltd, Huddersfield, 1980
15- ICE-85 Instruction Manual

Intel corp. 1978

16- PL/M 80 programming manual ‘
: Intel corp. 1978

- 125 -

17- PL/M 80 compiler operators manual

Intel corp. 1977

18~ Daniel D. McCRACKEN v Q
7/
"A guide to PL/M 80 programming for microcomputer applications”

Addison-Wesley, 1978 .

19- MCS-80/85TM family user's manual

Intel corp. 1979

CHAPTER 3
20- SHEET METAL INDUSTRIES

"Spin forming using Meehanite mandrels”

Nov. 1974, pg. 702-704

- 126 -

Appendix
Appendix
Appendix

Appendix

APPENDICES

I

I1

ITI

IV

.
.

Software test programs (8 sheets)

Main program modules (80 sheets)

A Basic program to find the integer ratios (2 sheets)

Results (13 sheets)

- Al -

PL/4-80 COMPILER FABE

ISIS-1I PL/N-80 V3.1 COMPILATION OF MODULE TESTY
OBJECT MODULE PLACED IN :F2:progi.0Bd
COMPILER INVOKED BY: plaB0 :F2:progi.pla DEBUG

SWORKFILES(:F2:,:F2;)
$PAGERIDTH(B0)
$PABELENBTH(3)

i TEGTS!:
o

/% FILESNAME 'PROB1" 8/

PR R R R et ReiatieReiessierattebiiesitstoeseitstity)

i t/
e TEST$1 DECLARATIONS 1y
it t/

TR L I L R R L e e e s i 48 y/

2 1 DECLARE READSPULSES RDDRESS;

Il DECLARE DUNHY ADDRESS;

i 1 DECLARE UPDAD ADDRESS DATA{O34TH);

it DECLARE FOREVER LITESALLY "WHILE 1°;

H 1 JECLARE DRTASDIRECTICNSBYTESD LITERALLY "Q00GS$00108°;
7 1 DECLARE COHMANDSSTATUSSREGS2 LITERALLY "Z28H';

g 1 DECLARE FORTSZAH LITERALLY "ZAH';

FR Rt R ta R i i torasetiasiiestsririssititoty

/1 ¥/
JRERER TEST$1 PROCEDURES 1888287
/1 L]

FR R R R R Rt Rt eiRtieseistiteitissioiststitey)

PR320 RRe ettt eesiitotsiiiteassRtsttiottesiststeiiiticy)

/¥ FUNCTION: SHAFT$ENCCDER (ENCODER B-BIT INPUT) 1/
/% PARAMETER INPUT: READSPULSES t/
/% QUTPUTS: 16-BIT VALUE IN (.READSPULSES) ¥/
/t PROCEDURE: PUBLIC 1/
/% CALLS: NOTHING 9
/t DESCRIPTICON: THE VALUE OF THE COUNT WILL BE STORED &/
3 IN TWO BYTES({14-BIT), THE HIGH AND THE LOW. 8/

11 PORT$Z9H WILL BE READ, THE COUNT WILL BE STORED #/
/t IN THE LOW BYTE WHICH IS UPDATED CONTINUDUSLY. &/
/% WHEN THE VALUE EXCEEDS 235 THEN I WILL BE ADDED TO &/
/% THE HIGH BYTE. PULSE.HIGH AND PULSE.LOW ARE STORED 8/
/% IN HEMORY WHERE THEY CAN BE TESTED. 8/
JR Rt e bR R iR iR seesaRessieciesittssesititity

1

PL/¥-80 COMPILER PABE 2

$EJECT
9 1 SHAFTSENCODER:
PROCEDURE ADDRESS PUBLIC;

0 2 DECLARE PULSE STRUCTURE(LOW BYTE,HIGH BYTE) AT (.READSPULSES);

112 DECLARE COUNTER BYTE;

12 2 DECLARE PORT$29H LITERALLY ‘29H";

13 2 COUNTER=INPUT(PORT$29H); /8 READ CARRIAGE POSITICN 8/

14 2 IF COUNTER{PULSE.LOW THEN

15 2 PULSE.HIGH=PULSE.HIBk+1;

16 2 PULSE.LOW=COUNTER;

17 2 RETLRN READ$PULSES;

18 2 END SHAFTSENCDDER;
FREEeE 00t etettiiteetiiateseactiiiesitesssisisitssessessy
1 X/
/1in PORTS - INITIALISATION $288¢9)
1 1/
Paeieeeitetiatisatiiiteasssetisacisiseassnsttatdsieceticyl
/% EXFANSION RAN 8/

19 ! OUTPUT (COXMANDSSTATUSSREGSZ)=DATASDIRECTIONSEYTES2;
/% FORT A (29H) INPUT {SHAFT ENCODER) $/
RSt eRe R et asseiieetiicritesecteiittitistrtocitiietiteey)
it v/
i1 CGUNTER INITIALISATION Ly
/3 1/
AR s gy

20 1 QUTPUT{PORT$Z2AH}=00; /% INITIALISE RESET LINE TD FALSE 8/

211 QUTPUT(PCRT$ZAH)=01; /t (OV). BENERATE COUNTER RESET &/

2 1 OUTPUT{PORT$2AH)=00;
JRREE2220002 0002000820 0000 R 00e00¢et Rkttt 0080088R00808¢)
/1 4/
JRetEtd MAIN PROGRAN 1388347)
/8 1y

RRRE et aedtssieriintiossecsiisteriassessesteiiting

A3

PL/H-80 COMPILER PAGE

23
24
23
28

27

$EJECT »
READSPULSES=0; /¢ INITIALISE THE 16-BIT VARIABLE T0 0 ¢/
D0 FOREVER;

CALL UPDAD{DUMMY ,SHAFTSENCODER);
END; /% END OF DD FOREVER #/

LSS I

1 END TEGT$1;

HODULE INFGRMATIGN:

LoDt AREA SIIE 004EH 75D
VARIAGLE ARER SIZE = 000SH 3D
HAXTMGM STACK SIZE = GOOZH 3]
90 LINES READ

0 FXOGRAM ERROR(S)

"

END OF PL/M-BO CONPILATION

A4

PL/M-80 COMPILER : PAGE

ISIS-11 PL/M-B0 V3.1 CONPILATION OF MODULE TEST2
OBJECT MODULE PLACED IN :F2:prog2.0Bd
CGMPILER INVOKED BY: piasB0 :F2:prog2.pla DEBUG

- e

L 7 - e B R R L]

r -

— . e bt pea b e b pes b e

$HORKFILES{:F2:,:F2:)
$PAGEHIDTH(B0)
$PASELENGTH{S])

TESTS2:
00;
/% FILESNAME ‘PROG2" 1/

FA e e iRt ity iteiatieitscietietibseeisttititittys

1 L 7
JR33831] TEST$2 BECLARATIONS Ny
it 4/

LR E R e et i i isortReratsitsiesberitinesiarsiitssiiety)

3

DECLARE DATASDIRECTICNSBYTESY LITERALLY *(G00G3G010B";
DECLARE DATASDIRECTIONSBYTES2 LITSRALLY '0000$0010B°;
DECLARE COMMANDSSTATUSSREGSL LITERALLY 'Z20H';
DECLARE COMMANDSSTATUSSREES2 LITERALLY "Z3H';
DECLARE DUMMY ADDRESS;
GECLARE UPDAD ADDRESS
BECLARE FOREVER LI’E
BECLARE PULSE$HIGH L
DECLARE FULSEiLQ# L
GECLARE FORTS2RH LIT
DECLARE COUNT BYTE;

ATA(0TE3H)

Y HHILE L'

ALY '0@00300103';
ALLY " 900080000F" 3
RALLY "2RH';

:u*nr—‘.x:

(Rt i i saieaneReiisiesieoReriissassteiitsssiteoststisetyl

1 1/
/18 TEST$2 PROCEDURES 1838447
it ¥/

Dy ey e ey e ey ety P YTy ey aeaee e aeqatstqetseytessstnetesstisty,

SRR R e i e i Rttt ieRisiaesoaeiirssaestitisatsisssitittys

/% FUNCTICN: ADCS$INPUT (12-BIT ADC) t/
/% PARAMETERS INPUT: ANALOGE SIGNAL 8/
/% DUTPUTS: 12-BIT DIGITAL VALUE 19
/1 PROCEDURE: PUBLIC Y
/% CALLS: NOTHING Y/
/¢ DESCRIPTION: TO INITIALISE CONVERSION A HIGH PULSE IS s/
/% GIVEN FOLLOWED BY A LOW PULSE, THIS IS DONE BY &/
/% BIT$1 PORT$2AH.A CERTAIN TIME HAS TO ELAPSE 1/
/% BEFORE READING THE PORTS 4/
/% 214 (8-BIT) LSB 1/
1 234 (9-12BIT) NSB 4/

R iRt R R a R Ry ResReRsyiRnesiseuassRenssiftasitsneizey

A5

PL/¥-80 COMPILER ' PAGE

13

14
15
15

17

18
19

25

1

(SIS)

Py R

ra

%]

3 P

$EJECT

ADC$INPUT:

PROCEDURE ADDRESS PUBLIC;
DECLARE PORT$2LH LITERALLY ‘21H';
DECLARE PORT$23H LITERALLY "23H';
DECLARE ADCSINSWORD ADDRESS;

DUTPUT(PORT$ZAH)=PULSESLON;
OUTPUT(PORT$2AH)=PULSESHIBH;
CALL TIME(1}; /x A DELAY OF 100 MICROSECONDS UNTIL 8/
i1 CONVERSION 15 COMPLETED LY

/% READ PORT 23H, MASK OFF 4 NSB'S, DOUBLE IT(I.E %/
/1 ADD B IERDS TO THE LEFT) AND THEN ROTATE LEFT &/
/v 8 DIBITS. t/
RDCINWGRD=0HL (DOUBLE(INPUT (PORTS23H) AND 000G$1111B},8);

/% RDD THIS VALUE TO THE INPUT OF PORT$ZIH AND THEN &/
/% ROTATE RIGHT 2 DIGITS (7D RID OFF 2 L5R'S). t/

ADCHINSKORD=SHR((ADCSINSWORD+INFUT(PORT$21H)),2);

TURN ADCSIN$WORD; /% RETURN 10-RIT VALUE t/
CHINP

C N
END ADCSINPUT;
AT R O R R R R e 448/

AR N R R R R ey

it t/
JRERELY PORTS INITIALISATION 1eREiL Y
it t/

LR R b iR bRttt iReriersiteiiottsststiiisatineitsel)
/¢ BASIC RAN t/
OUTPUT (CCMMANDSSTATUSSREESL)=DATASDIRECTIONSBYTES];

/% PORT 241 INPUT ADC (B LSR) &/
/v PORT 23H INPUT ADC (4 MSB) ¢/

/¢ EXPANSION RAM ¥/
DUTPUT (COMMANDSSTATUSSREGS2)=DATASDIRECTIONSBYTES2;

/% PORT 2RH OUTPUT (START ADC COXMAND) 8/

>
(=)

PL/N-80 COMPILER

[JCIN N]

o

et e

+o

$EJECT

333383323332 300 8RR T3 ECe esRRtesitasitesisittssissitted
t 1/
JRetitd ADC INITIALISATION 1/
it L4

Jieeioctteetatistiestatietitiseasiistisestsiseinsittitey)
QUTPUT (PORT$2AH)=PULSESHIGH; /¢ START COMKAND TO FALSE 3/

REeEsetiaeitatoctieiietitiinvossstsstisesistrsinstestiiyl

" 1/
i MAIN PRGGRAM 1224340
/1 t/

JEREBREESESRERNERERE SRR LSRR ERLENTNRIFLILeLNIIEILILILL/
20 FOREVER;
SALL UPDAD(DUMNY ,ADCSINFUT);
/% A DELAY OF 1 SECGND 8/
COUNT=1;
D0 WHILE COUNT¢=25;
CALL TIME{200);
COUNT=COUNT+1;
END: /1 D0 WHILE &/
END; /% END OF D0 FOREVER 1/

END TESTSZ;

HODULE INFORMATION:

CODE AREA SIZE
YARIABLE AREA SIIE
NAXIMUM STACK SIZE = 0004H 4D
122 LINES READ

0 PROGRAM ERRCR(S)

006AH 106D
000 5H D

END OF PL/K-BO CONPILATION

A7

PAGE

PL/4-80 COMPILER PASE

IS15-11 PL/M-E0 V3.1 COHPILATION OF MODULE TEST3
DBJECT MODULE PLACED IN :F2:prog3.OBJ
COMPILER INVOKED BY: plaB0 :F2:prog3.pla DEBUG

U‘l.b-l’/lhd.

10
11

12

[T

M) D

S]

(2]

SHORYFILES(:F2:,:F2:)
$PAGEWIDTH{B0)
$PAGELENGTH(33)

TEST$3:
bo;
/% FILESNAME "PROS3" t/

AR e iRt R R iR i iesieRy iRessitsssastisssisseeityl

i1 L Y]
11811 TEST$3 DECLARATICNS 138883LY)
/1 8/

AR I N N N A R R R L TR g R s R LY/

DECLARE DATA$DIRECTIONSBYTES! LITERALLY "0000$G010R";
DECLARE COMEANDSSTATUSSREGS! LITERALLY "20H";
DECLARE DUMY ADDRESS;

DECLARE FOREVER LITERALLY "WHILE &'y

AR s gy

i §/
FReREEs TE5783 FROCEDURES 1y
/3 1/

TR Rt eeieeyiteteiiecitisatoteiietisstiotecseseititiscy

VALUE:
PROCEDURE PUBLIC;
DECLARE I BYTE;
DECLARE PORT$22H LITERALLY "224';

D0 1=0 TO 255;
OUTPUT(PORTS$22H)=1;
END;
END VALUE;

JUREREERNERSREERERRERSERRRRR RIS RRSRaNIRRTEsssIRLLLLL/

1 - ¥/
JRRREee PORTS INITIALISATION 18288171
/8 ' 1/

2328838822220 ket iRiR e kit iisissiaiiizniatizissatRasity

8]

PL/X-80 COMPILER PAGE

13

14
15
16

L% I 0 B e

$EJECT
/t BASIC RAM ¥/

OUTPUT(COMMANDSSTATUSSREG$1)=DATASDIRECTICNSBYTES!;

/¢ PORY 22H OUTPUT (8 BIT) DAC &/

PRt eetdteteriitiistutisatetsineioeishossseiiitsifisitesiy

it 1/
JREe44] HAIN PROGRAM 1§288d0
it 1/

JE R LR TR e et R e st atateetatatatttatatatsteaiisstacissity,
DO FOREVER;

CALL VALUE;
END; /% END FOREVER ¢/

END TESTH3;

MODULE INFORMATION:

CODE 3RER SIIE
YARIABLE AREA S
HAXINUM STACK S
40 LINES READ

0 PROGRAN ERROR(S)

= 0OZAH 42D
1E = 0003H 3D
17 = G002H 2D

END OF PL/M-B0 COMPILATION

A9

2

PL/M-80 COMPILER

JS1S-11 PL/M-BO V3.1 COMPILATION OF MODULE FLONTURNINGMAIN
OBJECT MODULE PLACED IN :F2:flow.0BJ
COMPILER INVOKED BY: pleBO :F2:flow.pla DEBUS

$WORKFILES(:F2:,:F2:)
$PAGEWIDTH{BO)
$PAGELENGTH(55)

1 FLOWSTURNINGSMAIN:
jiliH
/% MAIN MODULE &/

/% FILESNANE "FLOW' 8/

[A2eeateEeeeiasitesinypesiiassersissseriiesissitesstitiy)

/1

t

FRRSRBESRRRRRISRRRLSRTQISRRORLRRSRLSILSISRESILLLLILLY/

/% NONE 8/

PR iR et e a Rttt easitesotestitesbesitiitiistssteyl

1
sn PUBLIC VARIABLES DECLARATIONS
1

R3320 0R0000 0000 0kt siRisiRaseciesstitisasitiy]

/8 NONE &/

TR2eePeeeiResaetistaesaesiaseintiatsatitessetsiiiisisey

1%
JREReR ¢ LOCAL VARIABLES DECLARATIONS
I3} '

ARttt ictiRetRets s ResaRtssesietsaeitiscetsstiitessty

2 1 DECLARE FOREVER LITERALLY "WHILE 1';.
I 1 DECLARE SELECT$RYTE BYTE;

FEBETLRBRRBLTIILITTLRAOROIRLIBRRTORIISRLORLIRILINLINY/

/3

/888888 EXTERNAL PROCEDURES DECLARATIONS

n
JERRRESLSNSRERERRRIRILIRIIIREILRIILIILNIBINILIRILLNLL/
"I INITIALISATION:PROCEDURE EXTERNAL;
5 2 END INITIALISATION;
b MACHINESSETUP:PROCEDURE EXTERNAL;
7 2 END MACHINESSETUP;

Al0 j

reaetns EXTERNAL VARIABLES DECLARATIONS

PASE 1

PL/M-80 COMPILER

10
i1

12
13

14
13

16
17

18
19

20

A
22
23
i)
25
26

2

.~

SHAPE$SELECT:PROCEDURE BYTE EXTERNAL;
END SHAPE$SELECT;

CONESGENERATION:PROCEDURE EXTERNAL;
END CONESGENERATION;

HACHINESCONESCONTROL :PROCEDURE EXTERNAL;
END MACHINESCONESCONTROL;

PARABOLASGENERATION: FROCEDURE EXTERNAL;
(END PARABOLASGENERATION;

KACHINESPARABOLASCONTROL :PRGCEDURE EXTERNMAL;
END MACHINESFARABOLASCONTROL;

TRttt it eiaaseetsinsietiieritessiasetiitibtisity

/3 L4}
/t838 LOCAL PROCEDURES DECLARATIONS 1/
I3 Y/

J R e R bR R R bR bR sR L Risibiiieiliitity)

/% NGNE ¢/
FR R Rt e et i et eiistesaesaistiseiititity
it Y/
1y PUBLIC PROCEDURES DECLARATIONS 1$8834 1)
/3 1/

ARt iRt ae e RetasieraeaysReeisesststiisizeseeiyl
/% NOHE 8/

JASIELESIBERSEREIEARRIRERRRIIIISRINRRLINNRNLEINILY/

t 1/
Rettet NAIN FRCGGRAN e/
I | ¥/

AR Eeeyoeesaeseaiteesiessinsiysieeseciivtittsitsiity

CALL INITIALISATION;
CALL HMACHINESSETUP;

DD FOREVER;

SELECT$BYTE=SHAPESSELECT; /% SELECT A CCNTOUR 8/

IF SELECTSBYTE="A' THEN /¥ IF CONE IS SELECTED THEN 8/
D0; .
CALL CONESGENERATION; /8 ENTER CONE PARAMETERS 8/

CALL MACHINESCONESCONTROL; /% FLOW-TURNING PROCESS $/

END;

ELSE /% OTHERWISE SELECT A PARABOLA 8/
D0

All

PASE

PL/M-B0 CONPILER PAGE 3

28 3 CALL PARABOLASGENERATION; /8 ENTER PARABOLA LENGTH 8/

29 3 CALL MACHINE$PARABOLASCONTROL; /8 FLOW-TURNING PROCESS #
- !

30 3 END;

32 END; /% DD FOREVER 8/

R ERe e te ety eseesiesaasetisiasiasisediieesissiiyi

32 1 END FLOWSTURNINGSMAIN;

HDDULE INFORMATION:

CGDE AREA SIIE = 00ZBH 43D
VARIABLE AREA SIZE = 000fH 1
HAXIMUN STACK SIZE = 0002H 2D
107 LINES READ

0 PROGEAM ERROR(S)

EKD OF PL/¥-80 COMPILATION

A2

rL/n-gy LunriLex

IS1S-11 PL/N-BO V3.1 COMPILATION OF MODULE INITIALISATIONMODULE
OBJECT MODULE PLACED IN :F2:initia.DBJ
COMPILER INVOKED BY: plaB0 :F2:initia.pla DEBUS

[

w

~

[y,

$HORKFILES(:F2:,:F2:)
$PAGEWIDTH(80)
$PRGELENGTH(35)

INITIALISATIONSMODULE:
D0;
/% FILESNRME “IHITIAC o/

R Rt eReie i ereeioeisitioeastinsasessititacisisisissy

/3 Y/
/11111 EXTERNAL VARIABLES DECLARATIONS s/
1 1/

SRS L R AR DR ST LA S IREL RO AATRND/
/% NONE 3/

JRReEerateseiiaioetitosetiesiisataceeitintateattoseseeieteiv

/1 1/
IERee FUBLIC VARIABLES DECLARATIGNS 1888847
1 L)

R R iRt ei et aisetireorititbesetseseatittesity
LECLARE PORT$ZAHSGUTPUT BYTE FUBLIZ:

L R R R T e ey e et e R at ety ReyTaea e e Y ieesetsssetissssvan

t 1/
i LOCAL VARIABLES DECLARATICNS ey
1 1/

ANty

/% ASCII CODE CHARACTERS #/

. DECLARE ESC LITERALLY "1BH';
DECLARE CLEARSSCREEN LITERALLY "1RH';
DECLARE QUOTE LITERALLY "27H';
/% ACIA$1 RESET, COMMAND AND CONFIG VALUES 8/
DECLARE ACIA1COMMANDSRES BYTE AT {0EQO0H);
DECLARE ACIA$ISRESET LITERALLY "Q3H';
DECLARE ACIASCONFIGS$1 LITERALLY “15H';

/1 RAN'S AND PORTS DESIGNATION 8/
/¢ BASIC RAN 8/

DECLARE DATASDIRECTIONSBYTES! LITERALLY "0000$0010B°; .

A13

e i seen ' PABE 2

0 1 DECLARE COMMANDSSTATUSSREGSL LITERALLY ‘20H;
/¥ EXPANSION RAM 3§/

1t DECLARE DATASDIRECTIGNSBYTES2 LITERALLY ‘0000$0010B°;
12 1 DECLARE COMMANDSSTATUSSREGS2 LITERALLY ‘28H';

/% PORTS DESIGNATION 3/

171 DECLARE PORT$22H LITERALLY "22d";
14 1 DECLARE PORT$2AH LITERALLY '"2AH";
15 1 DECLARE PORT$2AH$OFFSLATHE LITERALLY "1111$1081B";
6 DECLARE PORT$2BHSEXTENDED LITERALLY *0000$0001B°;
17 1 DECLARE ADCSIDLE LITERALLY "0000$0010R";
i8 1 DECLARE KRD$DPLYSCONTROL BYTE AT (1900H);
19 1 DECLARE KHODE LITERALLY "0
20 1 _DECLARE ¥BNIT LITERALLY "OCCH';
A1 DECLARE CLEARSDATASFIELD LITERALLY "0’
2 1 DECLARE CLEARSADDRESS$FIELD LITERALLY "0°;
TAEa2CE a2 esaiteiiiniestsniatitietetttitiesiestiieiiriiiiesty)
i3] . 5/
i EXTERNAL PROCEDURES DECLARATIONS [$838 474
I3} 1/
AN R O e s pny/
231 CONSDLESOUT:
FROCEDURE {CHAR) EXTERNAL;
%2 BECLARE CHAR BYTE;
25 2 END CCHOOLE$OUT;
AR I R e e A L A1/
P T MESSASE:
FROCEDURE(POINTER,LASTSELEMENT) EXTERNAL;
27 2 DECLARE POINTER ADDRESS;
B 2 DECLARE LASTSELEMENT ADDRESS;
29 2 END MESGAGE;
PRt iRttt riatsiiittitoeactiiiiisiteieriatictittsiiy)
KIS BET:
' PROCEDURE { TARGETSCHAR) EXTERNAL;
32 DECLARE TAREBET$CHAR BYTE;
32 2 END BET;
JAR222 R et stssieiateiineisititttsasesantitatitizisnsetiy)
3 1 UFDDT:

PROCEDURE {PAR$1)} EXTERNAL;

Al4

FL/R=BY LUNFILEKR PAGE

34
35

36

31
38

39

40

41

»N

DECLARE PAR$! BYTE;
END UPDDT;

AUSESERAREAREERRELILEERIRtRtsRaRsRtasaRtsaseteeasesansanss/
UPDAD:
PROCEDURE (PARS2) EXTERNAL;
DECLARE PARS2 ADDRESS;
END UPDAD;

JR3E3023003028¢8188¢23R 28t daistasRnaestnsistsesttisitssistiy)

INIT:

PROCEDURE EXTERNAL;

END INIT;
R38R 8e3e8esdtisdeaiatissadiseiitseiisesestitseiiitistetiyl
/1 1/
FRtidst! LOCAL PROCEDURES DECLARATIONS 133833 95
/% 1/

FRREes e oRtietetsoesaaitsstiisasiraiissatiensitiesesitiiviy

/% NOKNE %/
FAEReeee ettt riatiiuetiiestioRestrtiReeteaissbnssetitisity
I 1/
JRestRt: PUELIC PHOCEDURES DECLARATIONE 1322829
/1 1/

[R R Rttt ntaisssintisatsinseatsiiseitesiiity

A T T R R T S A RN R e AR aaY/
/¢ FUKCTION: INITIALISATION (INITIALISE CONMPOKENTE) 1 9
/1 FRRAMETERS INFUT: KORE LY

/¥ DUTFLTS: THO PREES OF TEXT ON THE VDU £/
/1 PROCEDURE: PUBLIC 3/
/1 CALLS: CONSDLESCUT, MESSABE, BET 1/
/% DESCRIFTION: R PROCEDURE TO GUTFUT TO THE SCREEK TWZ &/
1 FAGES OF TEXT DNE AFTER ANDTHER, THE ¥/
it OFERATOR IS TO PRESS THE SPACE BAR TO PRONMGTE ¥/
I3 FURTHER PAGE. THE PRGES SHDW AN IDER &BOUT THE v/
{1 PROIECT. 1/

FR R et R iR R e i ittt raritsesnsertasstotssisity)

INITIALISATION:
PROCEDURE PUBLICS

/% IKITIALISATION FIRSY PABE OF TEXT ¥/

/488 ESC,"=", TWO BYTES TO ADDRESS CURSOR DK SCREEN
“1y"."y THO BYTES TO INDICATE NUMBER OF ROk AND COLUMN
RESPECTIVELY, IN THIS CASE ROKW 2 COLUMN 15 SEE TABLE 114/

A15 |

3

42

/% 1st page of text ¢/

DECLARE PAGE$1(#) BYTE DATA

{ESC, ="', ", {t F2 Ci3 ¢/

*MICROPROCESSOR AIDED FLOW-TURNING'

JESC, ="' "y /8 R Ci5 &/
REttiietsesestcitisitistesiestiiy

JESCy ="' 8", 7 /Y RYCL &/

"OBJECT: To control the FLOW-TURNING PROCESS by an SDK-85 microcoa
puter.” ‘

JESC,"=" "8, 7 /tRYCL 1/

JESC, =", Y, IR CL

'DESCRIPTION: A process to aake an axisyasetric components out of
tircular’

(ESC,'=",BUOTE," ", /¢ RBCL &/

fmmmmmmem e discs. A roiler is to move and to press the rotati
ng disc’

N /t RY €14 &/

‘against the forzer. The final shape is dependent upon the’

A e e /% R10 €14 1/

“former shape which could ke one of the following:’
JE8C, ="t /Y R12 09 8/

"1-CONICAL contour’

E8C =TT /Y K13 L9 ¢/

' Z-PRRABGLIC contour’

L /4 RIDCY &/

' Wall thickness is to te reduced after the process.’
/v R21CL 8/

P to proceed’);

) -

"Hore!! depress
/% 200 page of text 8/

DECLARE PAGE$S2{1) BYTE DATA

(ESC,"="," *'%", L RLCS ¥/
“mununununuInanananunIoRIT Iy
JESC, =t /1 R2 Ci2 1/

"M.Phil Project BY ALADDIN H, MOHSMAD'

JE8C, =", /Y RICh 1/

e PRt ae et eiiatiietiiitaersasitistiasseisisititiitn
JESC, =", £, "4, /4 R4 C12 ¢/

‘Mechanical and Production Engineering DPepartsent’

JEBC, =", 0L, /Y RECT W/
‘Supervisors :-*
yESC, ="'k, R, 13 R7 022 4/

"1-Dr M.SARWAR (Mech. & Production Eng.)’
,ESC, =" QUOTE,"5", /¥ RB C22 ¢/

"2-Dr M.S.J. HASHAMI (Mech, & Production Eng,)
JESC, ="y (7,5, /8 R9 C22 8/

"3-Dr J.R. TRAVIS (Elec. & Electronics Eng.)’
yESC, =", ") 1 /L R10 C} &/

"TITLE - Microprocessor Aided Flow-Turning.’

Al6

PL/K-80 COMPILER PAGE

JESC, =", '8",'8, It RIL G5 8/

*DESCRIPTION -

,ESC,"=","+","3", /% R12 €20 ¥/

""The progras will control roller aoveeent according to a’
4ESC,"=",",","8", 1% R13 £23 &/

‘prescribed path.’

,ESC,"=",'-",GUOTE, /¢ Ri4 CB &/

‘Calls - Initialisation, Machine$Setup, Console$Inputs$Cutput,’
JESCy ="y 7,00, /3 R15 C17 &/

"ShapesSelect, Cone$Generation, Machine$Cone$Control,’
LESC, ="y, /% R16 C17 &/
‘Parabola$Generation, Machine$ParabolasControl.’
,ESC,"=","0",BUOTE, /¥ RI7TCB &/

'Prograr Requireaents 11X bytes of sesory’
,ESC,"=","1",GUOTE, /¢ RiB C8 &/

‘1/0 Reguirerents 2 {8-BIT) Input Ports’
(ESC,'=","2" 'R, /% R19 C35 ¥/

‘2 {B-BIT) Dutput Ports’

(ESC,"=","3", 8", /% R20 L35 ¢/

‘2 (6-BIT) Input Ports’

(ESC,"=","4",BUOTE, /¢ R21 CEB &/

‘Progransing Language PL/R 80
,E5C,'=","5",6UBTE, /e R22C8 1/

‘Microcoaputer Used INTEL-85 with 8085 CPU',
ESC,"=",'7",'¢", /t R24 C12 3/

'Press SF to proceed please’);

ARERLELRAARLRRIRLaLny FORTS INITIALISATION tregsgdnegagrssasy/

i3 2 QUTPUT(COHMANDSSTATUSSREGSL) =DATASDIRECTIONSEYTES!;
/% BASIC RAN CONFIGURATION (BITS FRGH RIGHT TO LEFT)
PORT A (ZIH) INPUT (ADC) 1-8 BIT
PORT B (22H) OUTPUT (DAC) 1-B BIT
PORT C (234} INPUT (ADC) 9-12 EIT
1/
45 2

CUTPUT{COMMANDSSTATUSSRESSZ) =DATASDIRECTIONSRYTESZ;
/% EXPANSICN RAM CONFIGURATION (BITS FROM RIGHT 7O LEFT)
FORT A (29H) INPUT ({COUNTER)
PORT B (2AH) OQUTPUT {SIGNALS)
PORT € (2BH) INPUT (SWITCHES)
4/
/%
BASIC RAN (B133)
INPUT PORT 21H:INDICATOR BITS (ADC B LEAST SiGNIFICANT BITS)
BIT$0:
BITs!:
BiT$2:
bIT$3: ALL USED
BIT$4:
BIT$3:

a7 |

ru/M-80 CONPILER PAGE

BIT$6:
BIT$7:

QUTPUT FORT 22H:INDICATOR BITS {DAC)
BIT$0:

BIT$1:

BITS$2:

BIT$3: ALL USED

BIT$4:

BIT$5:

BIT$6:

BIT$7:

INPUT PORT 23H:INDICATOR BITS {ADC 4 MDST SIGNIFICANT BITS)
BIT$0: ADC BIT$8

BIT$1: ADC BITS9

BIT$2: ADC. BIT$10

BIT43: ADC BRITSLY

BITs4: NOT USED

BIT$5: NDT USED

EXPANSION RAM (B1535)
INPUT PORT Z9H:INDICATOR BITS {COUNTER)
BIT$0:
BITs!:
BIT$2:
BITS$3: ALL YBED
RIT$4:
BIT$5:
BITS$6:
BIT$7:

GUTPUT FORT ZAH:INDICATOR BITS (SIGNALS)
BIT$0: [COUNTER RESET BIT)
BIT$1: (START CONVERSIGN ADC BIT)
BIT$2: (CN/OFF LATHE BIT)
BIT$3: {ON/OFF ODIL PUNP BIT)
BITs4: NOT USED
BIT$5: NOT USED
BIT$6: NOT USED
EIT$7: NOT USED

INPUT PORT 2BH:INDICATOR BITS
BIT$0: CYLINDER$SADVANCESSNITCH
BIT$1: NOT USED
BIT$2: CARRIAGESLIMIT$SWITCH
BIT$3: NOT USED
BIT$4: NOT USED
BIT$5: NOT USED
/
/essasaanessseenas ACIA INITIALISATION ssassstsssssssssssst/

Al8

PL/M-80 COMPILER PAGE

4
47

48

49
30

n
by b

54
33

3
37

~)

(28]

It ACIRSE 8/

ACIAS1$COMMANDSREG = ACIA$1$RESET; /t RESETS ACIASE ¢/

ACIA1COMMANDSREG = ACIASCONFIGS$1; /¢ ACIA$Y CONFIGURATICN #1b

BAUD RATE &/

Jaseareryessy COMPONENTS INITIALISATION sssgrtaresssntst/
/% INTERRUPT ENABLE RST 6.5 AND RST 7.5 4/

CALL INIT;

REei00320000e0cReticttaaieeibesiesstititsetetitiseisctity
/% INITIALISE THE GUTPUT BYTE OF PORT 28H 70 1 &/

/% 1.E COUNTER INHIBITED, LATHE OFF AND t/
1 ADC CONVERT L2W ¥/

_PORTSZAHSOUTPUT=1;
QUTPUT(PGRT$2AH)=PORTS2AH$OUTPUT;

TR Rt a ettt et iiaeasestitsesRisaseistissesessiy)

/1% ADC (CONVERTOR COMMAND) &4/
/Y INITIALISE THE START COMMAND 7D TRUE (5V) &/

PORT$28HECUTPUT=PORTS2AHSCUTPUT OR ADCSIDLE;
CUTPUT(PORTSZAH)=PORT$ZAHSOUTPUT;

AR N I L L R R e g/

/41 DAC INITIALISE 4/
/% INITIALISE DAC TO 4V i.e 128 8/

DUTPUT(FORT$22H)=128;
PR PR Rt R Rt i etiitesseasssatibiesstesitty)
/4% INITIALISE SDK-BY KEYROARD DISPLAY #4/

KBD$DPLY$CONTROL=KMODE;
KED$DPLY$CONTROL=KBNIT;

R PR aeieneRertatytiisiessiiistastasstasieeattitistietiny

/8% CLEAR SDK-85 DISPLAY 88/

CALL UPDDT(CLEAR$DATASFIELD);
CALL UPDAD(CLEARS$ADDRESS$FIELD);

PREetesteseettonetiasteniteaiatsesiiteinetittasitstisesitnitey)

|
Al9

7

PL/N-80 COMPILER PAGE

8 2 CALL CONSOLE$OUT(CLEARSSCREEN);

/% FIRST PAGE OF TEXT &/

39 2 CALL HESSAGE(.PAGE$I,LAST(PAGE$1}); /% PABE 1 8/
60 2 CALL BETU" '); /% 6ET 5P &/
61 2 CALL CONSOLE$OUT(CLEAR$SCREEN); /% CLEAR SCREEN #/

/% SECOND PAGE OF TEXT #/

62 2 CALL MESSAGE{.PAGE$Z,LAST(PAGE$2)); /% PASE 2 &/

63 2 CALL GET{" "}; /% GET SP &/

4 2 CALL CONSOLE3OUT(CLEARSSCREEN); /% CLEAR SCREEN 8/
6y 2 END INITIALISATION;

FR SRRttt e tiaie et eiratieciotessisseseisatitseisesty

b 1 ERD INITIALISATICNS$HCDULE;

HODULE INFORMATICN:

CODE AREA SIZE = 0h5BH 1640
VARIABLE AREA S11E = 0GOIH 1D
KAXIHLA STACK SIIE = 0002H 2D
374 LINES READ

0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

A20

PL/H-80 CONPILER

ISIS-11 PL/N-B80 V3.1 COMPILATION OF MODULE CONSOLEINPUTOUTPUTNODULE
DBJECT MODULE PLACED IN :F2:consol.DBJ
COMPILER INVOKED BY: plaB0 :F2:consol.pla DEBUG

~N oWt o

10
11

Pt e bt e e e

— =t pon P

$WORKFILES(:F2:,3F2:)
$PAGEWIDTH(B0)
$PAGELENGTH(S5)

CONSOLESINPUTSDUTPUTSMODULE:
DO;
/¢ FILESNAME °CONSOL' &/

FEERERERORRERRRRIRRRRRIREROERRROORRLILEIRSLIRLSILIILLISLIILILLY/

1 8/
318011 EXTERNAL VARIABLES DECLARATIONS sessee/
it LY)

ALERERR e Reneeinatiesbeesitnsitesetsieiitctitssisiy)

/3 NONE &/

JA R Rttt Restiaaiitasiatsseesiisiittsiesisty

/t 4/
RERERE PUBLIC VARIABLES DECLARATIONS 224349
I3 ¥/

JR et R it R iR iR eiesitiRessisessisesy)

/3 NOKE 8/
Rttt ee ettt rtetatoasieoeericaeiassasititiseieissyl
13 8/
1833418 LOCAL VARIABLES DECLARATIONS 1834407
1 17)

JERSRSERERRRSRRRIRRRRIRRTIRRLRIRRLRASAIRSLLLLLISIININLILL/
/% ASCIT CODE CHARACTERS 8/

DECLARE ESC LITERALLY "1BH';

DECLARE BELL LITERALLY ‘O07H';

DECLARE SPACE LITERALLY "20H';

DECLARE BACK$SPACE LITERALLY '08H';
DECLARE CARRIAGESRETURN LITERALLY "ODH';
DECLARE DELETE LITERALLY "7FH’;

/% ACIA$L FLAGS, COMMANDS AND DATA VALUES 8/
DECLARE RXRDY$Y LITERALLY “01H';
DECLARE TXRDY$! LITERALLY "02H';

DECLARE ACIAS$ISCOMMANDSREG BYTE AT (OEOOOH);
DECLARE ACIA$1SDATASREG BYTE AT {OE001H);

!
A21 |

PAGE

PL/N-80 COMPILER

12

13

14

15

16
17
18
19
20

N A NN

/% MODULE VARIABLES 8/
DECLARE 1 ADDRESS;

DECLARE MESS$1{8)BYTE DATA

(ESC,"j"); /% START INVERSE 8/

DECLARE NESS$2($)BYTE DATA

(ESC, k"); /% END INVERSE 8/
TR2220eReet Rl Rt R Reete ittt ensistatasssiteieasistieassiieityl
gitt!tt EXTERNAL PROCEDURES DECLARATIONS ttttt:;
;ttttttttttttttttttltttttt!t!ttttttt!ttttltltl!ii1‘!&8!!(3:;

/3 NONE &/
AR iR R e bt Reisaeitusseeseaientitsisociirseeisesiieiityl
;;ttttt LOCAL PROCEDURES DECLARATIONS lilt!;;
t 1/

JEERERRSRETRERERRASRRENSNSELRURERsRSILLeRCISLIRILILLLILLL/

/% NONE ¥/
PR ittt Ret e einetisteiasitisattaieissiesiesey
n t/
R3¢ PUBLIC PROCEDURES DECLARATIONS 1yss/
/% /

JR Rttty R esiesiteiiaesirsiqssiesitricisisiesitiy)

FERERRRRER AR st na Rt s s asreaseasssssteasstonsstanssy/

/% FUNCTION: CONSOLESOUT (CONSOLE QUTPUT TO SCREEN) t/
/% PARANETERS INPUT: CHAR(BYTE) $/
/% DUTPUTS: CHAR 19)
/% PROCEDURE: PUBLIC 1/
/% CALLS: NOTHING t/
/¢ DESCRIPTION: SENDS A CHARACTER TD SCREEN) t/

JR220ER2208008esietotiniRasineitReiRyaasstesiiesessisittsets

CONSOLESOUT:
PROCEDURE(CHAR) PUBLIC;
DECLARE CHAR BYTE;
DO WHILE NOT ((ACIASICOMMANDSREG AND TXRDY$1)=2);
END;
ACIAS1DATASREG=CHAR;
END CONSOLESOUT;

JTURBEERERRORNIRRRERRRIRRRORIRaRanansssssesusasatestsessesssy

PREesRese eyt Ry et st yityyunsiassbnstasitiqtntestessetitiitl

|
A22 |

PAGE 2

1t/
84
n
8 8/
s
s
88
88/
8 ¥
88
14127)

1188/

PL/N-BO COMPILER ' PABE 3

2

22
23
24
25
26
21
28

29

30
3t
32
33
34
35

Nl RN

(S o I K B BN N |

n fUNCTIDN: MESSAGE (MESSAGE DISPLAYED ON SCREEN) s/

/% PARAMETERS INPUT: POINTER{ADDRESS), LASTS$ELEMENT(ADDRESS) ¢/
/% DUTPUTS: MESSAGE CHARACTERS CHAR 8/
/% PROCEDURE: PUBLIC 8/
/% CALLS: CONSOLESDUT 8/

/% DESCRIPTION: DUTPUTS A TEXT MESSABE ON SCREEN VIA ACIAS{ s/
JA338e2 82l geRdiRatiReiieiateisdiaqseaitatiiositeiitecaisieisicy)

RRY

MESSAGE: R
PROCEDURE (POINTER,LASTSELENENT)PUBLIC; AR
DECLARE POINTER ADDRESS; AR Y
DECLARE TEXTSMESSAGE BASED POINTER{2000) BYTE; 8 8/
DECLARE LASTSELEMENT ADDRESS; IR

DO I=0 TO LASTSELEMENT; 88/

CALL CONSOLE$OUT{TEXT$NESSABE(1)); 8 8/

END; e 8

END NESSAGE; ny
8

Rt iRt iR iRy Resasiisotiesissiteiisitititiiiyg

FRReEet e ritiaielaeeasiiee et aeiasesitetiitesistitesinity

/% FUNCTION: CONSOLESIN (OBTAIN A CHAR) 8/
/% PRRAMETERS INPUT: NONE 1/
/% QUTPUTS: NONE 1/
/% PROCEDURE: TYPEL(BYTE), PUBLIC s/
/% CALLS: NOTHING s/
/% DESCRIFTION: WAITS UNTIL A CHARACTER IS ENTERED FROM 1/
/4 KEYBOARD THEN ASSIENS THE VALUE TO A VARAIABLE CHAR §/
/ll!tltltttl!ttltlttttXltlxttttttt!ttX!tttttttltttttt(ttttttlt!t(/
1

CONSOLESIN: /% 8/
PROCEDURE BYTE PUBLIC; 8 8/
DECLARE CHAR BYTE; 14

DO WHILE NOT ((ACIAS1SCOMMANDSREG AND RXRDY$1)=1); It Y

END; /8 84
CHAR=ACIAS1DATASRER AND 7FH ;/8 STRIP GFF PARITY BIT $/
RETURN CHAR; e Y

END CONSOLE$IN; 88
3 8

FURERRSBREs Rttt R R uR st e Rt et i e a e n e st assassssgsansingg/

JR R iRyt tiyeriResatieeatietinsaricsestisiqieicitistsssiittiey)
/% FUNCTION: BET (GET THE APPROPRIAT CHARACTER FROM KEYBOARD) §/

/% PARAMETERS INPUT: THE REDUIRED PARAMETER (* °) s/
/% QUTPUTS: NONE ’ $/
/% PROCEDURE: PUBLIC ' 8/
/% CALLS: CONSOLESOUT, CONSOLESIN 7
/% DESCRIPTION: READS A CHAR, IF IT IS THE TARGET ONE THEN $/
4 IT RETURNS TO THE CALLING PROGRAM, OTHERWISE t/
/8 WILL RING A BELL AND THE DPERATOR SHOULD NOW §/

A23

PL/N-BO CONPILER PABE &

36

37
38
39
40
|
12
53
7

45

45
47
48
49

50
81

52

53

5
55
56
37
98
59

AN N N —

rI A

N RN

~

L B e el A

8 PRESS THE TARGET CHAR $/
ARERaRe Rt ey ittty entitRieasititenastiiiesiitensitasitesitesity)
AR

GET: IR
PROCEDURE (TARGETSCHAR) PUBLIC; 88
DECLARE TARGETSCHAR BYTE; R
DECLARE CHAR BYTE; 1% 8/
CHAR=CONSOLE$IN; /¢ READ A CHARACTER FROM KEYBOARD 7

DO WHILE CHAR(>TARGET$CHAR; 8t/

CALL CONSOLESOUT(BELL); /% RING A BELL s/
CHAR=CONSOLES$IN; /¢ READ A CHARACTER FROM KEYBOARD t/

END; AR

END 6ET; AR
AR Y

FURSRERIRRARRaR IRt s anas s s nenanasaneasaenannagessssesssnsassss/

PRt eReeasetiseinisiterissairiehissiscssiinitassassetiesstiing
/% FUNCTION: DECIMALSVALUESINPUT (ONE OR TWO DECIMAL DIGIT) 1/

/¢ PARAMETERS INPUT: NONE 8/
/% CUTPUTS: NONE s/
/% PROCEDURE: TYPED(BYTE), PUBLIC 4/
/¢ CALLS: CONSOLES$CUT, CONSOLESIN $/
/% DESCRIPTION: TO INPUT A NUMBER CONSISTING OF ONE DR TWD $/
/3 DIGITS FROM THE XEYBOARD FOLLCWED BY CARRIAGE &/
/% RETURN. IF DIGIT FRESSED I5 {0 TO 9) THEN IT 4/
3] WOULD BE ACCEPTED, OTHERWISE A BELL WILL RING, THE &/

3 NUMBER WILL BE DELETED FROM THE SCREEN AND THE CURSOR 8/
/¢ WILL RETURN 70 THE IKITIAL POSITION AND THE OFERATOR 3/

/% CAN NOW ENTER THE RIGHT DIGITS. 4/
FARLERERRERSRITAIEASENTURIRRRItErs IRt antt et antsstensesensestassy/
TR

DECIMALSVALLESINPUT: TR
PROCEDURE BYTE PUBLIC; ity
DECLARE VALUE BYTE; TRY,
DECLARE NOSDIGITS BYTE; TRY,
DECLARE CHAR BYTE; TR,
DECLARE DECIMAL$DIGIT BYIE; it 8
ITRY,

VALUE=0; /% INITIALISE 8/
NOSDIBITS=0; /8 INITIALISE ~ 7]
I

CHAR=CONSOLESIN; /8 READ A CHARACTER FROM KEYBOARD 8/
TRY,

DO WHILE CHAR <> CARRIAGESRETURN; XY,
/488 IF CHAR=DECIMAL DIGIT 18/

IF CHARY="0" AND CHARC="9" THEN /8 ANY DIGIT 0.70 9 8/

D0; . XY,
NOSDIGITS=NOSDIGITSH; I8 8/

IF NO$DIGITS{=2 THEN /88

00; It 8

CALL CONSOLESODUT{CHAR); /% DHAR N SCREEN 7

a24

PL/R-

60
61
62
63

&4
3]
b4
b7
68

69
70
I}
12
3
74
7%
76
77
78
79

80

a1

82

83
84

85

Bb

B0 COMPILER

PABE 5

DECIMALSDIGIT=CHAR-0"; Ry

H]
3 VALUE=VALUES10; 8 8
b} VALUE=VALUE+DECINALSDIGIT; IR
b END; /¢ END IF t/
ELSE Iy
L] DO; 88
3 NO$DIBITS=2; 88
H] CALL CONSOLESOUT(BELL); /8 RING A BELL 1/
3 END; /% END ELSE 4/
4 END; /438 END IF CHAR=DECIMALSDIGIT 1t/
88/
/43¢ IF CHAR=DELETE e/
3 ELSE IF CHAR=DELETE THEN 8 8
3 IF NOSDIGITSY0 THEN %4
3 bO; : sy
L] VALUE=VALUE-DECINALS$DIGIT; 18 8
4 VALUE=VALUE/10; 1
4 DECIMALSDIGIT=VALUE; /¢ OK FOR MAX 2-DIGITS GNLY 8/
4 NO$DIGITS=ND$DIGITS-1; 8 8/
4 CALL CONSOLESODUT(BACKS$SPACE);/8 60 ONE SPRCE BACK 8/
4 CALL CONSOLESOUT(SPACE)}; /¢ DELETE DIBIT 4/
4 CALL CONSOLES$OUT(BACKS$SPACE); /¢ 60 BACK AGAIN 8/
4 END; /8 END IF {/
ELSE /% ND$DIBITS=0 4
3 CALL CONSCLESOUT{BELL); /8 RING A BELL 8/
/438 END CHAR=DELETE 11/
n
/13% CHAR=ANY OTHER CHAR 1y
ELSE 8 8/
3 CALL CONSOLESOUT(BELL); /% RING A BELL s/
/818 END CHAR=ANY OTHER CHAR 1/
3 CHAR=CONSOLES$IN; /8 READ A CHAR FROM KEYROARD 4/
3 END; /% WHILE s/
2 RETURN VALUE; 84
88
2 END DECIHAL$VALUE$IﬁPUT; 18 3/
88

Rt iRiEReiR et et netiaisinsastitsiertntaseserictitinitntisiiily

1 END CONSDLES$INPUTSOUTPUTSMODULE;

MODULE INFORMATION:

CODE AREA SIZE
VARIABLE AREA SIZE
MAXINUM STACK SIZE
243 LINES READ
0 PROGRAM ERROR(S)

= O14AH 330D
= 000EH 14D
= 0004H 4

A25 !

4 e et 4 ho o e

PL/N-80 COMPILER PAGE

ISIS-I1 PL/R-80 V3.1 COMPILATION OF MODULE MACHINESETUPMODULE
OBJECT NODULE PLACED IN :F2:setup.0BJ
COMPILER INVOKED BY: plaB0 :F2:setup.pls DEBUG

o P pn P pen P pea b e bee e

$WORKFILES(:F2:,:F2:)
$PAGEWIDTH(80)
$PAGELENBTH(S5)

NACHINESSETUPSNODULE;
pliH
/% FILESNAME 'SETUP 8/

AERReE Rt et saetitetstentairsuesinasessitsstasiissssisitifisy

/% s/
/118888 EXTERNAL VARIABLES DECLARATIONS 113381 7)
1 1/

AARSESRIRER RN Rt RN E R IR R s a s ansanssnsesassaseassssy/
DECLARE PORTS2AHSOUTPUT BYTE EXTERNAL;

JA R ittt R iR R R Re Rt i isaessatssassitasitesetitv

It 3/
/183888 PUBLIC VARIABLES DECLARATIONS 1118/
/3 8/

AR e it iR R R R it iiesieiesinsiistiiteieitty

/8 NONE &/
AEERERERERE RN L T LR r s e assaeasssassnsqnsansssanssy/
A ; 3/
JReEits LOCAL VARIABLES DECLARATIONS e/
4 t/

PR3aeetelpee iRy Rt R asaeeRseatanstsinsetsissesitsititgg
/% ASCIT CODE CHARACTERS 8/

DECLARE BELL LITERALLY 'O07H';
DECLARE BACKSSPACE LITERALLY “OBH’
DECLARE LINESFEED LITERALLY ‘OAH'
DECLARE CARRIAGESRETURN LITERALLY ‘ODH';

DECLARE CLEARSSCREEN LITERALLY ‘IAH';

DECLARE ESC LITERALLY "1BH';

DECLARE HOME LITERALLY ‘IER';

DECLARE SP LITERALLY ‘'20H";

DECLARE DELETE LITERALLY ‘7FH’;

DECLARE QUOTE LITERALLY "27H"; /8 SINGLE QUOTE #/
DECLARE DQUOTE LITERALLY °22H'; /¢ DOUBLE QUOTE ¢/

-e we

DECLARE PORT$2BH LITERALLY ‘2BH'}
DECLARE PORT$2BH$INPUT BYTE;

A27 .

PL/M-B0 COMPILER PASE 2

18

17
18

19

20

2
22

23

r

DECLARE PORT$2BH$ADVANCED LITERALLY °0000$0001B°;

DECLARE PORT$2AH$STARTSPUMP LITERALLY '0000$1000B°;
DECLARE PORT$2AH LITERALLY ‘2AH’;

/% MODULE VARIABLES 8/
DECLARE LETTER BYTE;

IRIRRRARLRALERREARARRARRRLARELSA42020R22R2448 08880382 Y)

/1 t/
1338438 EXTERNAL PROCEDURES DECLARATIONS e/
Ik 4/
RS eeee e ates bl aintiatiyeeseasitsstasasinsicssistiteseiitieivi
Ry

MESSAGE: 88
PROCEDURE (PDINTER,LASTSELEMENT) EXTERNAL; AR Y
DECLARE PDINTER ADDRESS; 88/
DECLARE LASTSELEMENT ADDRESS; Ry

END MESSAGE; A7)

: 88

PRt Rt R e R R R R bR R RN R PR R R RS 2802800084Y)
ity

BET: A7)
PROCEDURE(TARGETSCHAR) EXTERNAL; . Iv
DECLARE TARGETS$CHAR BYTE; st

END BET; IR Y
Y

JA Rt Rt R et R R RN RR e i esteiRseisseseriasitititeiy)

A R Rttt eserietasttteriiassRitisiettioiiniisisisissesstty)

;:tlllt LDCAL PROCEDURES DECLARATIONS 3!1!!:;
;:tttttltttittlltt!tlittlt!tt!t!tl!!lltttttttltt!lttttt!!tttt!Xtii
/8 NONE 8/
ARyt ie et i esintiNqitssseiqsitssssitstsitissssty)
jit!!!t PUBLIC PROCEDURES DECLARATIONS ttttl:j
2 ' §/

PR R R et R R aastResesstnseniessistessttniesiteity)

JUSEERSRBRRIBRERBRIRRERROtRRRsaNROIBINIRRLIRILISISRISRISIISIINSL/

/% FUNCTION: SETUP . 8/
/% PARAMETERS INPUT: NONE , s/
/8 GUTPUTS: NONE 8/
/¢ PROCEDURE: PUBLIC §/
/% CALLS: MESSAGE, GET 8/
/¢ DESCRIPTION: A PROCEDURE PRODUCING COMMANDS TO OPERATOR TO #/
/s SET UP THE EQUIPMENTS AND MAXE THEM READY FOR &/

A28

PL/M-80 COMPILER . PAGE 3

t- OPERATION. THE COMMAND WILL BE DISPLAYED ONE BY ONE ¢/
/% WHILE THE OPERATOR IS EXPECTED TD DO AS TOLD AND THEN ¢/
/% PRESS SPACE KEY AFTER CARRING OUT EACH ONE. ALSD THE TEXT 8/
/% WILL BE DISPLAYED FLASHING AND THEN WILL TURN TD NORMAL s/
/t VIDED AFTER PRESSING SPACE. L4
PSRt Resi iR oiRateatitastnsiresnesiiasintitansiseasitesitiaiiy

21 1 MACHINES$SETUP:
PROGCEDURE PUBLIC;

/% MESSAGES TO BE OUTPUTED TO THE VDU SCREEN., 8/
/% THESE INCLUDE MACHINE SETUP INSTRUCTIONS AND 8/
/% DTHER MESSAGES. 4/

/% TEXT IN REVERSE VIDED &/

28 2 DECLARE PAGES3($) BYTE DATA
(£5C,°=",5P,"1°, /% RL C18 &/
ESC,"ji", /% START REVERSE 8/
"MICROPROCESSOR AIDED FLOW-TURNING®,
ESC, k", /% END REVERSE $/
ESC,'=", ', 1", 18 R2 C1B 8/
ESC,"3" /% START REVERSE 8/
THIRIRARLAERARIRIRLANRIRINNLILNNS
ESC, k', /% END REVERSE 8/
ESC, ‘=", BAUDTE,DOUDTE, /8 R3 L3 8/
ESC,'i", /% STRRT REVERSE ¢/
‘M.Phil project’,
ESC, 'k, /% END REVERSE 8/
ESC,'=","£',"X", /% R4 €57 8/
ESC,"i /8 START REVERSE 8/
"ALADDIN H, MOBAMAD',
ESC, k', /% END REVERSE 8/
ESC,'=","$","8", /8 RS C25 8/
‘MACHINE SET-UP",
ESC,'=',"%",'8", /8 R6 C25 8/
fmeemooomemoes RH
29 2 DECLARE BLINK(3} BYTE DATA
{ESC, ")3 /% BLINKING CHARACTERS 3/
0 2 DECLARE NORMAL{#) BYTE DATA
{ESC,'g"); /% STOP BLINKING #/
i 2 DECLARE ERASE($) BYTE DATA
(ESC,'y"); /% ERASE TD END OF SCREEN WITH NUL
- Sy
32 2 DECLARE STSERA(#) BYTE DATA
{ESC,'=","$",'8'); /8 RS C25 ¥/
33 2 DECLARE MESS$1RBCS5(#) BYTE DATA .
(ESC, ‘=" ,BUOTE,"$°); /8 R8 C5 8/
2 DECLARE MESS$1($) BYTE DATA
(*1-Place workpiece in position and depress SP.');
3 2 DECLARE MESS$2RIC5(3) BYTE DATA ,
(ESC,"=","("y'8"); /8 R9 CS 8/

A29|

PL/N-80 COMPILER PABE 4

b 2 DECLARE MESS$2(%) BYTE DATA
('2-Start o0il pusp and depress SP.');
31 2 DECLARE MESS$3R10CS(8) BYTE DATA
(ESC,"="4")"y'8'); /Y R10 C5 &/
B2 DECLARE MESS$3{%) BYTE DATA
(*3-Energise valve controller V/1 then SP.");
39 2 DECLARE MESS$4R11C5(8) BYTE DATA
(ESC,"=","4",'$"); I RIL C5 8/
4 2 DECLARE MESS$4{8) BYTE DATA
{"4-Switch on ADC, DAC, encoder and SDK-B3, then SP.°);
41 2 DECLARE MESS$5R12C5(8) BYTE DATA
(ESC,'=","+","$'); /8 R12 C5 &/
42 2 DECLARE MESS$5({%) BYTE DATA
{*9-Check tool is at datum position, if not move to datus then SP.
- 'y
3 2 DECLARE MESS5$6{%) BYTE DATA
(ESC,"=","4","$", /Y R21 C5 8/
'Press SP to proceed.’);

JRetoettnsiotarsstietinteciateiitesdciescestnsisetitsesiityi
/3 MAIN PREGGRANM t/
PRttt e R iRy aeetiosseiitoritseiisisiteiy)

/% A SERIES OF CALLS WHICH DISPLAY THE INSTRUCTIONS ON 8/

/¢ THE VDU SCREEN. t/
44 2 CALL MESSAGE(.PABES3,LAST(PAGESS));
85 2 CALL MESSAEBE{.MESS$IRBCS,LAST(MESS$IRBLS));
4 2 CALL MESSAGE(.BLINK,LAST(BLINK));
47 2 CALL MESSABE(.MESS$1,LAST(MESSS1));
48 2 CAtL BGET(" ");
49 2 CALL MESSAGE{.MESS$IRBCH,LAST{MESS$IRBLS));
¥ 2 CALL MESSAGE{.NORMAL,LAST(NCRMAL));
a2 CALL MESSABE{.MESS$2RICH,LAST(MESS$2RGCS));
2 2 CALL MESSAGE(.BLINK,LAST{BLINK]);
32 CALL MESSAGE(.MESS$2,LAST(MESS$2));

/% SNITCH ON THE DIL PUNP 8/

M 2 PORT$2AH$OUTPUT=PORT$2AHSOUTPUT OR PORT$2AH$STARTSPUNP;
3 2 OUTPUT (PORT$2AH)=PORT$2AH$OUTPUT;

W2 CALL GET(" *); .
57 2 CALL MESSAGE(.MESS$2R9CY,LAST(MESS$2RICS));
58 2 CALL MESSAGE{.NORMAL,LAST(NORMAL));

59 2 CALL MESSAGE{.MESS$IR10CS,LAST(MESS$3RLOCS));
60 CALL MESSAGE(.BLINK,LAST(BLINK});
61 2 CALL MESSAGE{.MESS$3,LAST{NESS$3));

~N

A30

PL/N-80 COMPILER PABE 5

62
63
64

63
bb
o7
68
&9
70

3
72
73
74
7%
76

77
78
79
80
)

82
83
B4
B3
Bb

87
88
89
9

9

92

~N

NN

NN

N NN

(2]

N =

LSRN BN C I N)

CALL ~ BET{" ');
CALL MESSAGE{.MESS$3R10CS,LAST(MESS$3R10CS));
CALL MESSABE{.NORMAL,LAST(NORMAL));

CALL MESSAGE(.MESS$4R11CS,LAST{MESS$4R1LCS));
CALL MESSAGE(.BLINK,LAST(BLINK});

CALL MESSABE{.MESS$4,LAST(NESS$4));

CALL BET(")5

CALL NESSABE{.MES5$4R11C5,LAST{MESS$4R11CS));
CALL MESSAGE(.NORMAL,LAST(NORMAL));

CALL MESSABE{.MESS$SR12C3,LAST{MESS$SR1IZCR));
CALL MESSABE(.BLINK,LAST{BLINK});

CALL MESSAGE(.MESS$5,LAST(MESS$D));

CALL BET(" ')

CALL MESSABE(.MESS$5R12C5,LAST(MESS$ER12CS));
CALL MESSAGE({.NORMAL,LAST{NORMAL));

ReeaesReaaRespeeesteitieittiitiieseessnietitititiitneisty)

/% Check that PISTONSALVANCEDSSWITCH is closed, 1/
/% if not then advance the piston till it is closed 8/

) | i.e tool is at datus. $/

PORT$2BHS INPUT=INPUT(FORT$2BH); /8 READ PORT 8/
IF {PORT$2BHSINPUT AND PORT$2BHSADVANCED)=0 THEN
00;
DUTPUT{22H)=59; /% START ADVANCE 8/
PORT$2ZBH$ INPUT=INPUT(PCRT$2BH); /% READ AGAIN 8/

/% CONTINUE TO ADVANCE TILL SWITCH IS CLOSED &/
DO WHILE (PORT$2BHSINPUT AND PORT$ZBH$ADVANCED)=0;
PORTZBHINPUT=INPUT (PORT$2BH) ;
END; /¢ DO WHILE ¥/
END; /8 DO &/
GUTPLT(22H)=128; /% STOP PISTON ADVANCE 8/

JRReResetasRasateetntsteteesiestsiesiesttitsiteiaseessssesd
CALL MESSAGE(.MESS$6,LAST(MESS$6));

CALL BET(" ")
CALL MESSABE(.STSERA,LAST(ST$ERA));

" CALL MESSAGE{.ERASE,LAST(ERASE}};

END MACHINES$SETUP;

/tttttttttttt!tlttttttttttttt!tlt!tllttttttttt!i!ttllttll3ttt‘lltl
/

END MACHINESSETUP$MODULE;

A3l

PL/H-B) COMPILER

MODULE INFORMATION:

CODE AREA SIZE = Q3LEH
VARIABLE AREA SIZE = 0002H
MAXINUM STACK SIZE = 0002H
249 LINES READ

0 PROGRAM ERROR{S)

END OF PL/H-80 CDHPILATIDN

798D

A32

20
2D

PAGE

b

PL/M-80 COMPILER PABE

ISIS-1I PL/M-80 V3.1 COMPILATION OF MODULE SHAPESELECTMODULE
OBJECT MODULE PLACED IN :F2:shape.DBJ
COMPILER INVOKED BY: plaB0 :F2:shape.pla DERUG

D ~ O W I N RO

b b o
N O O

P el il T T Oy Sy Wy

$WORKFILES{:F2:,:F2:
$PAGENIDTH(80)
$PAGELENGTH({33)

SHAPESSELECTSMODULE:
00;
/% FILESNAME "SHAPE' &/

AR Rttt eietasitstiesasetinitieieisotrisiesttissitstiy

% $/
/118t EXTERNAL VARIABLES TDECLARATIONS 1/
I3 4/

JR et iiteiesareeiteiieittaeetaitataatrecRtiiasitotesitesititiy)

/% RONE 8/

PR E R Rt R Rase ettt otatiitassestesticseisttisisisyl

1 Y/
i PUBLIC VARIABLES DECLARATIONS 18888005
/3 y/

LD ettt ettt rtostinet s iiiiseiesesvittisesesissitity

/3 NONE t/

PR e Rttt Rttt ratte it eie it isasisacieteriiiesiesitiiiy

it t/
f1sr LOCAL VARIABLES DECLARATIGNS 424489
/1 Y/

IR 002t eoioteieintetetiasieieiieioceasttitocstinsesisi
/% ASCIT CODE CHARACTERS 3/

GECLARE BELL LITERALLY "O7H';

DECLARE BACK$SPACE LITERALLY 'OBH';

DECLARE LINESFEED LITERALLY 'OAH';

DECLARE CARRIAGE$RETURN LITERALLY “ODH';

DECLARE CLEAR$SCREEN LITERALLY ‘1AHK';

DECLARE ESC LITERALLY "1BH';

DECLARE HOME LITERALLY “1EH';

DECLARE SP LITERALLY "20H";

DECLARE DELETE LITERALLY ‘“7FH’; .

DECLARE QUOTE LITERALLY "27H'; /% SINGLE QUOTE %/
DECLARE DOUOTE LITERALLY "22H'; /% DDUBLE QUOTE &/

/% NODULE VARIABLES $/

1&323;

PL/N-80 COMPILER PABE 2

13

14

15
16

17

18
19
20

(2]
[#2]

-
24

LY

£l

26

27

1

N ro N

(8]

oS}

DECLARE LETTER BYTE;

PR32ee 22228 28eR)eaesseststassenseintseiesstecistntiteteeistiniy)

/t 8/

/88882 EXTERNAL PROCEDURES DECLARATIONS t885t/

/t 8/

FRRERERERREE R RS EREREERRRS PRt REREsLsnteessssnssetesnsssees/

TRY,

CONSOLESOUT: /18

PROCEDURE (CHAR) EXTERNAL; It 8/

DECLARE CHAR BYTE; %1

END CONSOLESOUT; o

N7

SRR R AR AR TR R LRI ER R RERIERRsaRRREsLIRIRQY/

TR7

MESSAGE: TRV,

PROCEDURE (POINTER,LASTSELEMENT) EXTERNAL; TR7

DECLARE PDINTER ALDRESS; IIRY,

DECLARE LASTSELEMENT ADDRESS; TR7]

END MESSABE; o

it

FE T Re LT LRt e Ry tRtstRtatatatatieasterstststasetstaacey;

TRy

CCNSOLE$IN: _ It 8/

PROCEDURE BYTE EXTERNAL; ity

END CONSOLESIN; ity

i

T T et et La ittt RattttatRtatttatasestitretetassteistsstesiy]

TRY]

BET: TR1)

PROCEDUNE {TARBETSCHAR) EXTERNAL; TRY

DECLARE TARGETSCHAR RYTE; RY,

END BET; , ity

TSt e R LRyt ta LR aeRtRTLtRetatenstatatstataessetstassstey,

it 1/

/118118 LOCAL PROCEDURES DECLARATIGNS $1188/

/t 1/

JASSTELRERIREERRRERRER BT L SRR SR AR RERRRENRNRRERITARLILINLY/
/% NGNE #/

JALESESRERSLTREL s ERRtRtRsrssrasRes nesstsesatesssssretstsesnss/

/t 8/

388848 PUBLIC PROCEDURES DECLARATIONS 113888/

/t 8/

JASeeee ety siibhedsiitessstetrisitovesiinecsiittsssiteesiesty)

SHAPESSELECT:
PROCEDURE BYTE PUBLIC;

DECLARE PAGES4(8) BYTE DATA

A34!

PL/X-80 COMPILER PAGE

30

ol
—

Gl A d e b
00 g O~ on =y

R »]
[I

L -
N

Bl
N e

[22 BN I P2 I SRR N B X]

~

{ESC,"=","$",'8", /¢ RS C25 8/

"GHAPE SELECT',

£SC,'=',"%", '8, /8 R6 €23 8/
R ‘.

g5C, =", 1, /L RILCR U/
"A-CONICAL',

ESC, ="y 5 (7 /t RI3 C9 &/

*B-PARABOLIC’

ESC,'=","2°,"¢", : /8 R19 C5 ¢/
"type A or B');

DECLARE NOT$I(#)BYTE DATA(
ESC,"'=",'7",'$", iYRA LS Y
‘Press 5P to proceed please’);

DECLARE POS$1(3)BYTE DATA

(ESC,"=", 4", "' iR LY
DECLARE ERR$1{)EYTE DATA
(ESC,"=","6","8", /AR LS ¥/

ESC, "', 71 BLINKING CHARACTER ¥/

"This is a had character, reenter one fros the senu please.’,
£SC,"q"}; /¥ END BLINKING 1/

DECLARE DELSERR$L{1;SYTE DATA

{ESC,"=","6" ', /PRI CS 1/

ESL, T) f1 ERASE TO EWD OF LINE &/

/% SHAPE SELECTION TEXT DISPLAY PAGE 1/
CALL HESSAGE(.PRGES4 LAST(PABES4});

/4 KEY IN A LETTER, CHECK THAT IT IS ONE OF THE TH0 8/
/% LETTERS "A" OR "B’ . IF NOT RING A HELL AND &/
/vt ISSUE A ELINKING ERROR MESSAGE. §/

LETTER=CONSOLESIN; /% BET LETTER &/

DO WHILE LETTERC)'A" AND LETTERC'B'y /8 TEST IF FALSE 8/
CALL CONSOLESGUT(BELL); /8 RING A BELL %/
CALL MESSASE(.ERR$1,LAST{ERRS1));
LETTER=CONSOLESIN; /% BET NEW LETTER &/

END; /% WHILE 8/

CALL MESSAGE{.DELSERR$1,LAST(DELSERRS1));
CALL MESSAGE(.PDSS$1,LAST(POS$1));

IF LETTER="R" THEN CALL CONSOLESOUT('A');
ELSE CALL CONSOLESOUT('B");

CALL MESSAGE{.NOT$1,LAST(NDTS$1));
CALL BET{" *);

A35

PL/K-B0 COMPILER . PAGE

45

47

48

45

2 RETURN LETTER;

LS]

CALL CONSOLESDUT(CLEAR$SCREEN);
PARe et rReasctsitateiiaeisaniiotesitisoestittisitasieseiityl
2 END SHAPESSELECT;

1 END SHAPE#SELECTSHDDULE;

MODULE IHFORMATION:

CODE AREA SIZE = 138 309D
VARIABLE AREA SIZE = §001H 1D
MRXIMUM STACK SIZE = 0002H 2D

150 LINES READ
' PRGGRAM ERRGR(S)

END OF PL/K-80 COMPILATION

Aaag

PL/M-B0 COMPILER PABE

1815-11 PL/K-BO V3.1 CONPILATION DF MODULE CONEGENERATIONMODULE
OBJECT MODULE-PLACED IN :F2:conege.OBJ
COMPILER INVOKED BY: pinB0 :F2:conege.pla DEBUS

e P RO

~

10
11
12

13
i4

[N T S=N

— e b pe —

-

$WORKFILES(:F2:,:F2:)
$PAGEWIDTH(BO)
$PABELENGTH(S5)

CONESSENERATIONSMODULE:
DO;
/% FILESNANE °CONEEE® 8/

JURSERLERRERRR s s s Rt saarsaussasssssansassassasagssnssssssss/

;:tllit EXTERNAL VAKIABLES DECLARATIONS t!tt:j

j:ll!!!X!!l!!it!t!lltt!!tltttllltlttt!l!!ltl!tl!l!lt!ttlltl!t:;
/% NONE &/

JR Rl et Rt i et iee et ettt seystiRrasiesistesisnitisstity

;:llllt PUBLIC VRRIABLES DECLARATIONS ltttlii

it Y/

FR Rttt Re Rt isasatiiteiasiiioeitettetsottieietsseetiyl

DECLARE FORMSLENGTHSMM BYTE PUBLIC;

DECLARE INCREMENTSSENCODERS$PULSES BYTE PUBLIC;
DECLARE CONES$ANGLESDESREES BYTE PUBLIC;

DECLARE ROLLER$POSITIONSADC$STEPS ADDRESS PUBLIC;

FREReR AR e R iRedi iy tasiiasisasheitieosittitinsity

/1 ¥/
/11888 LOCAL VARIABLES DECLARATIONS 1118/
/1 8/

FUBBERRBRRRRRRRRNIRRsateaasasanss s asuaseansnenssssssaserssny/
/% ASCI! CODE CHARACTERS 8/

DECLARE ESC LITERALLY "1BH';
DECLARE QUOTE LITERALLY "27H"; /% SINGLE QUOTE 8/
DECLARE DGUOTE LITERALLY °22H'; /¢ DOUBLE QUOTE ¢/

DECLARE SPACE LITERALLY "20H';
DECLARE BACK$SPACE LITERALLY "OBH';
DECLARE BELL LITERALLY 'O7H';
DECLARE CLEAR$SCREEN LITERALLY °1AH';

DECLARE ROLLER$ADJUST BYTE;
DECLARE INCREMENTS BYTE;

A37 {

PL/H-B0 COMPILER v PAGE 2

13

16

17

18

19
20

AR

22
3

24

23
24

27

30

31

1

1

DECLARE DIRECTION BYTE;

/% 592 ADC STEPS IS EQUIVALENT 7D 74 MM OF 8/
t TRANSDUCER LENGTH y/

DECLARE FDRMERTIPADCSSTEPS LITERALLY *592°;
DECLARE TEST$POSITION BYTE;

[RRetdetptesietaetteeierstateetiqeiinsitssattiessessiessisittistiy)

i 4
/43888 EXTERNAL PROCEDURES DECLARATIONS 1/
/% 4/

PR EEes Rt eei it e aeinetiiResasiaststesirtesstistiesiiittiesititiity)

JRREeaetataeaei e e teteierinsitisneriarinsinsitiesetitiity)

ITRY;

CONSOLESOUT: XY,
PROCEDURE (CHAR) EXTERNAL; TR Y,
DECLARE CHAR BYTE; TRY,

END CONSOLESOUT; TRy,
TRY,
IAREREREREITELERESERE IRt sRRasRIeReRstnts s saransnsetasaIntany
N7,

MESSABE: TRY,
PROCEDURE (POINTER, LASTSELEMENT) EXTERNAL; TR,
DECLARE POINTER ADDRESS; n

DECLARE LAST$ELENENT ADDRESS; TRy,

END MESSAGE; ITRY,
ITRY;
JESESERARARIEIATARSRLARSEIRONISRtatIrIRINtaRIABIRIIIIRNNItILIINLY
ITRY,

CONSOLE$IN:PROCEDURE BYTE EXTERNAL; IRy,
END CONSOLESIN; TRY,
TRy,

R AL LRt E LRt LSRRttt LR IRt RE Rt aatatataantiiety;
It 3/

BET: XY
PROCEDURE (TARGETSCHAR) EXTERNAL; TR,
DECLARE TARGETSCHAR BYTE; IRY;

END BET; TRY,
8
IRRETISERERERERERaRaRERsEtRtRtatntatatatatarstansetatatasasesaisy/
ITRY]

DECINALSVALUES INPUT: IIRY
PROCEDURE BYTE EXTERNAL; . IIRY
END DECIMALSVALUESINPUT; . 8
88/

PRt e Ry R R R RRyeResiRRRitRnsiRastinssitististittiny

/tlttltt!tt!tt!lttttttttt!ll81!!‘!!tt!t!f‘l!tttttttt!!ttttltttttll
/8 $/

A38

PL/M-B0 COMPILER PAGE 3

(2]
~

[0 LA B2 B S B 2 |
N ope A

e 4
~0 o ~§ D~

40

[%N

NA RO PN

11 LOCAL PROCEDURES DECLARATIONS 11217
It $/
RiiReeiitatasyitansitaastaesieriiineiiiesitetiiitrassstisiiteiiey

32330t edRetetagandisqsisyteiintitasnotitatdeqssociseittiity)

/% FUNCTION: BACKSDELETESPOSITION 4/

/% PRRAMETERS INPUT: NONE s/

/% OUTPUTS: NONE Y/

/% PROCEDURE: s/

/¢ CALLS: CONSOLESOUT 1/

/¢ DESCRIPTION: A PROCEDURE TO BACKSPACE TWD POSITIONS, DELETE &/

1% TWO CHRRACTERS FROM SCREEN, THEN BACKSPACE TWD &/

/1 POSITIONS, WHERE IT WAS INITIALLY. THIS PROCEDURE 8/

/8 THEN REQUESTS OPERATOR TO ENTER THE CORRECT NUMBER 8/

/8 AFTER A NUMBER NOT WITH IN THE SHOWN RANGE HAS BEEN TYPED 8/

/% N, 8/

PRt et ettty erinsastnsacetsaseeaetiteesitiiintittiasiitsttiy)

ARy

BACKSDELETESPOSITION: /8 84
PROCEDURE; ey

CALL CONSOLESOUT(BACKS$SPACE); 88

CALL CONSOLESDUT(BACKS$SPACE); v 8

CALL CONSOLESOUT(SPACE); ARy

CALL CONSOLESOUT(SPACE); R

CALL CONSOLESOUT(EACKS$SPACE); ARy

CALL CONSOLESDUT{BACKS$SFACE); 18 84

END BACKSDELETE$POSITION; 4

1t 8/

PR ARt iRt R Rttt siiissaiiRebessiitteseity)

JREeTRtReteesatatteiepeaeiotitnseottitetetatiiieratioitisssaitty

I 4/
214 PUBLIC PROCEDURES DECLARATIORS freey/
11 s/

BRI R et i eeRe R e et rsssiieeiieseissistieeititettiieiessssstity

ARt ittt R Reeisisnasitsiettiniseseciteiititititidy)

/8 FUNCTION: CONESBENERATION $/
/¥ PARANETERS INPUT: CONICAL PARAMETERS FROM KEYEODARD s/
/% OUTPUTS: NONE . t/
/% PROCEDURE: PUBLIC t/
/% CALLS: MESSAGE, DECIMALSVALUESINPUT, BACK$DELETESPOSITION, 8/
4 CONSOLESOUT t/
/% DESCRIPTION: A PROCEDURE TD DISPLAY CONICAL PARAMETES ON s/
/1 SCREEN, THEN OPERATOR IS REQUIRED TO FILL IN THE 8/
1 VARIABLES WITH APROPRIATE VALUES SELECTED FROM EACH 8/

4 VARIABLE LIMITS SHONN ON THE SCREEN. FAILING TO DD SO 8/
/¢ WILL RING A BELL AND OPERATOR IS REBUESTED TO ENTER THE &/
/% RIGHT VALUE AGAIN. 8/
JR3330¢aRes e RtRsittesieesitnsitnsittesitetitntisitnciitetitistety)

CONESGENERATION:

1&39:

PL/K-80 COMPILER PABE 4

PROCEDURE PUBLIC;
/8 CONICAL CONTOUR PARRMETERS DISPLAY 8/

4 2 DECLARE PAGE$5{#) BYTE DATA

{ESC,"=","'",'7", /% R2 C24 ¢/
‘CONICAL CONTOUR PARAMETERS',

ESC, =" ,DBUOTE, "7, /8 R3 C24 8/

. ‘

ESC,'=",'1',")", /3 R& C10 8/

‘Fore Length (&a) Increments (Encoder Pulses)’,
ESC,"=','8",)", /8 R7 C10 8/

(30 to 74) (B to 18)°,

ESC, =" ,QUOTE, ", ", /8 8 C13 t/
|3 /% START REVERSE VIDED &/
ESC,’=",QUOTE," /", n R8 Cib t/
ESC, k', /% END REVERSE VIDED s/
ESC, =" ,BUDTE,'N’, 1 ke C47 1.7
ESC, 5", /% START REVERSE VIDED ¢/
ESC, =" ,DUOTE, Q" /3 R8 C50 t/
ESC, k", /% END REVERSE VIDED s/
ESC,"=","+","Y", /8 RI2 CT &/

‘Cone Angle (Degreesj’,

ESC, ="'y, 4, P RIS CT Y/

(30 to 43)°,

ESC,"=","-"y")", /% R14 C10 &/

ESC,"i’, /% START REVERSE VIDED #/
ESC,'="y'="y"y "y /% R14 CI13 1/
ESC, k', /% END REVERSE VIDED ¢/
ESC,"=","6","k", /18 R C7 &/

‘After each paraeeter press RETURN please.’,
ESC,'=",'7","}", /% R24 €2 8/

‘1f incorrect value is entered, use DEL key to erase before RETURN
- .');
42 2 DECLARE NOT$1(%)BYTE DATA(

ESC,'=",'7",'Y", /v R24 C7 ¥/
‘Press SP to proceed please’);

43 2 DECLARE POS$1(%) BYTE DATA
(ESC,"=*,QUOTE, "~"); /3 RB C14 8/

“ 2 DECLARE POS$2(%) BYTE DATA
(ESC,"=",BUDTE,"0"); /% RB C48 #/

45 2 DECLARE POS$3(8) BYTE DATA
(ESC, =", =","8"); /% R14 C11 8/

|
1&4();

PL/H-B0 COMPILER PAGE

46

47

48

49

94

35

56

57

38

DECLARE ERR$1(8) BYTE DATA

(ESC,"=","5","%", /8 R22 €7 4/
ESC,"*", /% BLINKING CHARACTER 8/

"Paraaeter not within limits, reenter please.’,
ESC,q"}; /8 END BLINKING 8/

DECLARE ERR$2(#) BYTE DATA

(ESC,"=",'5","%", /% R22 C7 ¥/
ESC,"*"y /% BLINKING CHARACTER 8/

‘Enter either "'Y'" or "'N°' please.’,
ESC,"T'); /% ERASE TO END OF LINE &/

DECLARE ERR$3(#) BYTE DATA

{ESC,‘=","5","'Y", /t R22 C7 ¢/
ESC,* ", /8 BLINKINS CHARACTER 8/

‘Enter either "°F'" or "'R"" please.’,
ESC,"T"); /% ERASE TO END OF LINE 3/

DECLARE DELSERR{%) BYTE DATA
(ESC,"=","%',"&", /Y RZ2CT &/
ESC,'T");

DECLARE ADJ$1(8) BYTE SATA(
ESC,"=","/",GUDTE, /Y RIS CB ¥/
‘Do ycu raquire roller adjusteent 7 (Y/N)');

DECLARE ADJ$2{¥) BYTE 2ATA(
ESC,"=", 1" ,QUOTE, /4 RIB CB 8/
‘How many increzents ? {1-30) (1 incresent=1/8 ea)’);

DECLARE ADJSI(#) BYTE DATA(

ESC,"=","3" ,BUOTE, /% R20 C8 #/
‘Forward or reverse ? (F/R)');

DECLARE POS$4(3} BYTE DATA{
ESC,"="y" 0", ")) /8 R17 CL0 &/

DECLARE POS8$5(%) BYTE DATA(
ESC,="y"2°,")"); /8 R19 C10 &/

DECLARE POSS$H(%) BYTE DATA(
ESC, ="y 4"y)") /8 R2t C10 &/

DECLARE POS$7(#) BYTE DATA(

ESC,'=',"1","%’); /8 RIB CT o/
DECLARE TEST$1{%) BYTE DATA(

ESC,"="y"0',"%’, IVRI7C7T v

‘Do you require the roller test position (Y/N) ?°);

DECLARE DELS$T(8$) BYTE DATA(

A4l

PL/M-B0 COMPILER

&0

L)

62
63
b4
63
6
67
68
69
70
71

72
13

74

75
76
7
78
79

[N JRLS R 25 I S I S S PV R CR G B N)

~

[72 I 20 B P8 B 7 B Y]

PABE 6

ESC,'=","0", k', /A RI7 €7 8/
ESC,'T",

ESC,'=",'1",t", /% R18 C7 8/
ESC,'T",

ESC,'=",'T"," /8 R24 CY 8/
£SC,'T');

DECLARE DELSF(8$) BYTE DATA(

ESC,'=","6"," *y /8 R23 C1 8/
£SC,'T",

ESC,'=" 47", It R24 CL o/
£5C,'T');

AR e R0EsReedResii st eiaeiatepesitetirnsteyssetsiitsissitsitity)

CALL CONSOLE$OUT{CLEAR$SCREEN);

JAEee et aRestatiitiespesidiisssatesieitatiistiseitistesitity)

CALL MESSAGE(.PABE$S,LAST{PAGESS));

LR AR Rt Rttt ariaiReiasaeetaetieiatsiiesteriesicitiasieity

1 CONE PARRMETERS INPUT ¥/

FA R R R et ety iRt e sieseReaiisiiatitsesisity

/% INPUT FCRMSLENGTHSHN 1/

CALL MESSAGE(.POS$1,LAST(POSS1)); /% PGSITION 8/
FORMSLENGTHSNM=DECIMALSYALUESINPUT; /% BET VALUE 8/

30 RHILE
CALL
CALL
CALL
CALL

FORMSLENGTHSMN(I0 OR FORMSLENGTHSMNX74; /% CHECK 8/
BACKSDELETESPOSITION;

MESSAGE (L ERRS$1,LAST{ERRS$1)); /¢ ERROR MESSAGE 8/
CONSOLESOUT(BELL); /% RING A BELL 8/

MESSAGE (. PDS$1,LAST(POS$1)); /¢ REPOSITICN ¢/

FORMSLENGTHSN=DECINALSVALUESINPUT; /% BET NEN VALUE 8/
END; /8 WHILE 8/
CALL MESSAGE(.DELSERR,LAST(DELSERR)};

/% INPUT INCREMENTSSENCODERSPULSES 8/

CALL NESSAGE(.P0S$2,LAST(PDS$2)); /% POSITION 8/
INCREMENTS$ENCODERS$PULSES=DECIMALSVALUESINPUT; /8 BET VALU

E¥
DO WHILE
ULSES(B;
CALL
coLL
CALL
CALL

INCREMENTS$ENCODERSPULSES>16 GR INCREMENTSSENCODERSP

BACK$DELETES$POSITION;
MESSABE(.ERR$4,LAST(ERR$1)); /¢ ERROR MESSAGE #/
CONSOLES$OUT(BELL); /¢ RING A BELL 8/
MESSAGE(.P0S$2,LAST(POS$2)); /¢ REPOSITION 8/

INCREMENTSSENCODERSPULSES=DECINALSVALUESINPUT; /8 BET NEW

zxa:z;

PL/M-BO CCMPILER PABE 7

80
81

B2
83
B4
83
86
g7
88
89

50
91

52

94
95
9%
97
96
99
100
101
102
103
104
105
106
107

N N

Nl e e TN N NN

(2]

1)

(2 NN I 2 B PN B N I I N R YR SV RN YN YR SN S I

= VALUE &/

END; /% WHILE &/
CALL MESSABE(.DELSERR,LAST(DELSERR));

/% INPUT CONESANGLESDEGREES 8/

CALL MESSAGE(.P0OS$3,LAST(P0S$3)); /8 POSITION ¢/
CCNESANGLESDEGREES=DECIMALSVALUESINPUT; /% BET VALUE 8/
DO WHILE CONESANGLESDEGREES(30 OR CONE$ANGLE$DEGREES)45;
CALL BACKSDELETESPOSITION;
CALL MESSABE(.ERR$1,LAST(ERR$1)); /¢ ERRDR MESSABE $/
CALL CONSOLESOUT{BELL); /¢ RING A BELL §/
CALL MESSABE(.POS$3,LAST(POS$3)); /8 REPOSITION #/
CONESANGLESDEGREES=DECIMALSVALUESINPUT; /8 GET NEW VALUE 8

END; /8 WHILE 8/
CALL MESSAGE(.DELSERR,LAST(DELSERR));

AR LR LR AARERRLLRRASLLL AR08 800000020 82888 82028007

/v 70 COMPENSATE FCOR THE ROLLER RADIUS, THIS DISTANCE HAS 70 8/
/¢ BE ADDED TO THE INITIAL POSITION 1/
/% R{1-CO5(30)) = 9(1-0.866) 8/
1 1.2 MH WHICH IS EQUIVALENT OF 10 ADC$STEPS 8/

PR DR R Rt at e i et eRisee e rittrstesesttbtateey)
ROLLER$POSITIONSADCSSTEPS=FORMERSTIPSADCSSTEPS+10;
JUESII IR R R SN R R AR s LR L AR R R AR AN Y
CALL HESSABE{.DELSF,LAST(DELSF)); /¢ DELETE FGOTNOTE 8/
IREeReseeactietetasitetietiRnistiainstesiscinsetiecerititeteintity
/% ROLLER TEST POSITION REGUIRED ? 8/

CALL MESSABE{.TEST$1,LAST(TEST$1));
TEST$POSITION=CONSOLESIN;
DO WHILE TESTS$POSITIONC)“Y' AND TEST$POSITIONCM'N';
CALL CONSOLESDUT(BELL);
CALL MESSAGE(.ERR$2,LAST{ERR$2)};
TEST$POSITION=CONSOLES IN;
END; /¢ DD WHILE 8/
CALL MESSAGE(.DELSERR,LAST(DELSERR)); .
IF TEST$POSITION="N' THEN
D0;
CALL MESSABE{.PDS$7,LAST(POSS7));
CALL CGNSDLESQUT(TEST$POSITION);
CALL MESSAGE(.NOT$1,LAST(NDTS$1});
CALL GET(" *);

A43]

PL/M-B0 COMPILER PAGE 8

A108 3 CALL MESSABE(.DELST,LAST|DELST));
RtesRReetaaseasieaqtassetysadstysiaieetstsiisiitiiivy
/% ROLLER ADJUSTMENT REGUIRED ? 8/

CALL MESSAGE(.ADJI$I,LAST(ADJ$1));

109 3
110 3 ROLLER$ADJUST=CONSOLESIN;
m 3 DO WHILE ROLLER$ADJUSTC>'Y' AND ROLLERSADJUST()'N';
112 4 CALL CONSOLESOUT(BELL);
"3 4 CALL MESSAGE(.ERR$2,LAST(ERR$2));
114 4 ROLLER$ADJUST=CONSOLESIN; '
115 4 END;
116 3 CALL MESSAGE(.DELSERR,LAST{DEL$ERR));
17 3 CALL MESSAGE(.POS$4,LAST(PO5$4));
g 3 CALL CONSCLESOUT(ROLLER$ADJUST);
119 3 IF ROLLER$ADJUST="Y' THEN
120 3 DO;

/¥ INFUT ROLLER ADJUSTMENT 8/
121 4 CALL MESSAGE(.ADJ$2,LAST{ADIS2)); 3
122 4 CALL MESSAGE(.PDS$3,LAST{POS$5});
128 4 INCREMENTS=DECIAALSVALUESINPUT;
124 4 DO ARILE INCREMENTSC! OR INCREMENTS:B0;
125 % CALL BACK$DELETESPOSITION;
1263 CALL MESSAGE(.ERXR$1,LAST(ERR$L));
i27 % CALL CONSOLESOUT(BELL);
1286 & CALL MESSABE{.PDS$5,LAST{POSS5));
129 3 INCREMENTS=DECINALSVALUESINPUT;
1303 END;
131 4 CALL MESSAGE(.DELSERR,LAST(DELSERR));

/% INPUT ADJUSTMENT DIRECTIGN 8/
132 4 CALL MESSAGE(.ADJ$3,LAST{ADJS3));
133 4 DIRECTION=CONSOLESIN;
138 4 D0 WHILE DIRECTIONC)'F' AND DIRECTIONO'R';
1305 CALL CONSOLESOUT(RELL); ;
1365 CALL MESSABE{.ERR$3,LAST(ERRS3)); é
137 5 DIRECTION=CONSOLESIN;
138 5 END; '
139 4 CALL MESSAGE(.DEL$ERR,LAST(DELSERR));
150 ¢4 CALL NESSAGE{.POS$6,LAST(POS$5));
141 4 CALL CONSOLESOUT(DIRECTION);
142 4 . IF DIRECTION="F" THEN .
143 4 ROLLER$POSITIONSADCS$STEPS=ROLLER$POSITIONSADCSSTEPS- INCREMENTS

ELSE

AL4 l

PL/M-80 COMPILER PABE 9

144 4 ROLLERSPOSITIONSADCSSTEPS=ROLLERSPOSITIONSADCSSTEPS+ INCRENENTS
- 3
145 4 END; /¢ IF ROLLER ADJUST = 'Y #/
145 3 CALL MESSAGE(.NOT$1,LAST(NOT$1));
147 3 CALL BET{")
148 3 CALL CONSOLESOUT!CLEARSSCREEN);
1y 3 END; /» IF TESTSPOSITION='N' 8/
ELSE /8 IF TESTSPOSITION="Y' THEN 8/
150 2 D0;
15 3 CALL MESSABE(.POS$7,LAST(POS$7));
152 3 CALL CONSOLES$DUT(TESTSPOSITION);
1533 CALL MESSAGE{.NDT$1,LAST(NDT$1));
15 3 CALL BET(" ');
/% 552 ADC STEPS IS EGUIVALENT T0 &9 MX OF 8/
t TRANSDUCER LENGTH 1
155 3 ROLLER$POSITIONSADCSSTEPS=552;
15% 3 END;

PRt e R it sat s aysieseesitssittsesifessiiosesittsassatiy)
157 2 END CONESGEKERATION;

138 1 END CONESGENERATIDNSMODULE;

HODULE INFORMATION:

CODE AREA SIZE = 06124 1504D
VARIABLE AREA SIZE = Q009H 9D
MAXIMUM STACK SIZE = COC4H 4D
429 LINES READ

0 PROGRAM ERROR{S)- -

END OF PL/M-80 COMPILATION

A45

PL/N-B0 COMPILER ' PABE

I515-11 PL/M-80 V3.1 COMPILATION OF MODULE MACHINECONECONTROLMODULE
OBJECT MODULE PLACED IN :F2:conesc.DBJ
COMPILER INVOKED BY: plaBO :F2:conesc.pls DEBUG

(S LR P S)

10

— e b b

SNORKFILES{:F2:,:F2:)
$PAGENIDTH(B0)
$PAGELENGTH{D3)

MACHINESCONESCONTROLSMODULE:
[0;
/8 FILESNANKE "CONEMC' ¢/

AR Rttt naa e i astesinsiesiactessiryisiesseiiiistitisiy)

¥ 1/
Ipetett! EXTERNAL VARIABLES DECLARATIONS 13R1327)
/t /

PRt R Rt R i bR e R R e eariasaestnsisstsississitiiyl
DECLARE FORMSLENGTHSMM BYTE EXTERNAL;
. DECLARE INCREMENTS$ENCODERS$PULSES BYTE EXTERNAL;
DECLARE CCNE$ANGLESDEGREES BYTE EXTERNAL;
DECLARE ROLLERSPOSITICNSADCSSTEPS ADDRESS EXTERNAL;
DECLARE PORTS2AH$OUTPUT BYTE EXTERNAL;

FA R Ry Re R R iR s ReRessisiistotiesssiitsbseiiiy)

/3 4/
RREReR PUBLIC VARIABLES DECLARATIONS sar8t/
it 4/

JR Ryt a R EaeRel e aNtsiiteesessissitsitseseseisisiiy

/% NONE ¥/
R Eeeaetaetisiasiassneaesiaeaesteicitesesitasistassssatestsiiy
/1 , 4/
/318888 LOCAL VARIABLES DECLARATIONS s/
] 1/

JUSERRESSURBRRS Rt e n e s srusssnsnasnsnassaanesssssesssssty/
DECLARE 1 BYTE; /8 GET THE CONESANGLESDEGREES INDEX 8/
DECLARE CARRIAGES$PDSITIONSENCODERSPULSES ADDRESS;
DECLARE TANSNUN(15)BYTE DATA(
26,3,78,37,56,7,53,49,25,17,47,73,9,
£9,28,1);
DECLARE TANSDEN(14)BYTE DATA(

45,5,125,57,83,10,73,85,32,
21,56,84,10,74,29,1);

i

PL/N-80 COMPILER

/% ASC1I CODE CHARACTERS 8/

11 1 DECLARE ESC LITERALLY °1BH’;
12 1 DECLARE BUDTE LITERALLY °27H';
3 1 DECLARE CLEARSSCREEN LITERALLY ‘1AR’;
14 1 DECLARE BELL LITERALLY 'O7H';
15 1 DECLARE CARRIAGESRETURN LITERALLY ‘ODH';
16 1 DECLARE TURNINGSREBUIRED BYTE;
17 1 DECLARE TRUE LITERALLY 'OFFH';
18 1 DECLARE FALSE LITERALLY "0°;
19 1 DECLARE ANSNER BYTE;
20 1 DECLARE COUNTERSRESET LITERALLY ‘000089001B";
281 DECLARE COUNTERSENABLE LITERALLY '1111$1110B°;
2 1 DECLARE CLEAR$DATASFIELD LITERALLY "0°;
23 1 DECLARE CLEARS$ADDRESSSFIELD LITERALLY ‘0°;
24 1 DECLARE KBD$DPLYSCONTROL EYTE AT (1900H);
25 1 DECLARE KMODE LITERALLY “0°;
26 1 DECLARE KENIT LITERALLY 'OCCH';
27 1 DECLARE PAEES$7(3) BYTE DATA
(ESC,'="," ','8", /v Ry C25 8/
‘Flow-turning roller sovesents’,
ESC,'=","'", "8, /8 R2 C25 ¢/
’
- E5C,'=","8","8", /W R4 C5 4/
'1- Roller advancing {4-5)°,
ESC,'=",'$",'$", I8 RS C§ 8/
"2- Lathe switched on, carriage soving left {5-1})’,
ESC, =", 27,87, /Y R6 C5 8/
'3- Conical contour path (1-2)°,
ESC,'=",'t','$", /Y RT CS 4/

"4- Lathe switched off, roller retracted {2-3)°,

ESC,'=",0UDTE,"$",
‘5- Manual moveaent to datue (3-4)°,

/¢ R8 C5 8/

ESC,"=",")", "=, /% R10 €30 8/
'1 5.’
ESC, =", ¢, =", /8 R12 C30 8/

‘HEEtHEEEEEE bR bbb’ '
EsD,':".,"';.,

/% RI13 C28 8/

+ +,

ESC, ="', 'Y, I8 R4 €26 8/
‘+ +, .

ESC, ="y 4"y 7", /8 R15 C24 8/
v 3
ESC,’'=","1",'3", /8 R16 C20 8/
‘24 + '

ESC,'=',"0°,'3",

A47

s
/% R17 C20 8/

PAGE

2

PL/H-B0 COMPILER PABE 3

28

32

33
34

3b
31

38

" ¢,
ESC,'=","1%,"3, /% R18 C20 ¢/
4 +,
ESC,=','2°,'Y’, /% R19 C20 8/
TR R
ESC,'=","4','3’", /¢ R21 C20 §/
‘3 4 DATUN ")

DECLARE PAGESB{%) BYTE GATH(

ESC,"="y 2%, "4, /4 R6 €27 8/

‘Flow-turning is completed’,

ESC,"=", b, 1", /S RT 21 8/

y

ESC,'=",")",'$", /8 R1IO CS ¢/

"1- Please reeove the finished coaponent.’,

ESC,'="y"+','$", /¢ R12 05 8/

"2- Disengage the carriage and return to datua by
the handwheel.’,

ESC,'=","3",'¢", /$ R20 C3 W/
"Another identica] cone ? (Y/N) then RETURN');

DECLARE MESS$1(%) BYTE DATA{

ESC,"=","3"y"'$"); /4 R22 €5 1/

DECLARE ERRORS1(#) BYTE DATA(

ESC,"*", /% BLINKING STARTS §/

ESC,"=",'7",'$", /18 R24 Ch ¢/
"Enter either Y OR X please');

DECLARE DELETESERRORS1{%) HYTE DATA(

ESC,'=",'7",'$", /Y R24 C5 ¥/

ESC,'T"); /% ERASE TD END OF LINE 8/

PR Ry R R e ReininiRsiiticitasosststitetiniisestitittiyl

/3 4/
/1 EXTERNAL PROCEDURES DECLARATIONS 1/
/3 s/

JA et R et iatiateeasiaei)iiiseseiitnessciisisicssiy)

UPDDT:

PROCEDURE (PARS1) EXTERNAL;
DECLARE PARS1 BYTE;

END LPDDT;

PREettetstestaiesessiestesetitersiaeiRestasiqsiststesssietstety]
UPDAD:
PROCEDURE (PARS$2) EXTERNAL;
DECLARE PAR$2Z ADDRESS;
END UPDAD;
RRREta Ry iR nyinateasyiteiitiasiasssecistesistetittssiesitiity)

CONSDLE$OUT:
PROCEDURE(CHAR) EXTERNAL;

zx4z;é

PL/K-80 COMPILER PRGE 4

39
40

4
§2

43
44

45

4

47

48
49

50

31

52
23

2
2

~N N

DECLARE CHAR BYTE;
END CONSOLESOUTS

A2 2t222 28R REtttReelitteieanssitnsisisnasisiepacititiitettd
MESSABE:
PROCEDURE (POINTER,LASTSELEMENT) EXTERNAL;
DECLARE POINTER ADDRESS;
DECLARE LASTSELEMENT ADDRESS;
END MESSAGE;
et tietiaiiasiiniatsanyRqsusinsiaseasiesstisiasssesitties

CONSOLESIN:PROCEDURE BYTE EXTERNAL;
END CONSDLESIN;

Ly,
BET:
PROCEDURE (TARGETSCHAR) EXTERNAL;
DECLARE TARGETSCHAR BYTE;
END BET;
L R T T T L AR T I L LT LI AL RE T AR A AR)

PR R e R R Ryt ot R R R R e R R reRetiiasatasssetity

it 1/
1318488 LDCAL PROCEDURES DECLARATIONS peae/
/3 4/

FR et R it Ry Re iR RiitasRriesReasrsssiciniesttityl

JRSteetiatiotatsestieaiisotseiRsRisissesattertizstitiiqsitieistiy

/% FUNCTION: SHAFTSENCODER (ENCODER B-BIT INPUT) 1/
/% PARAMETERS INPUT: NONE t/
/% DUTPUTS: 16-BIT VALUE IN (.CARRIAGE$POSITIONSENCODERSPULSES) %/
/% PROCEDURE: LOCAL /
/% CALLS: NOTHINB 4/
/% DESCRIPTION: THE ACCUMULATIVE VALUE OF THE COUNTER WILL EE &/
% STORED IN TND BYTES{16-BIT), THE HIGH AND THE &/
t LOK. PORT$29H WILL BE READ, THE LOW BYTE WILL ALL &/
"t THE TINE BE READ AND UPDATED, IF THE VALUE EXCEEDS &/

/t 256 THEN 1 WILL BE ADDED TO THE HIGH BYTE. PULSE.HIGH 8/
/% AND PULSE.LOW ARE STORED IN MEMDRY WHERE THEY ARE REFERED 8/
/% T0 BY THE BLOBAL VARIABLE CARRIABE$POSITIONSENCODERSPULSES. 8/
FOIRERRURBERRRERRERRERRERREauRuRusrRsRIRRERRRRIRISRILISRISIRLOILING/

. R
SHAFTSENCODER:) 188/
PROCEDURE ADDRESS; 88
DECLARE PULSE STRUCTURE(LOW BYTE,HIGH BYTE) AT ny
(.CARRIAGES$POSITIONSENCODERS$PULSES); 4

DECLARE READ$COUNT BYTE; | 88
DECLARE NOSOFREADS LITERALLY "10'; 188/

ALY

PL/N-B0 COMPILER

94
99
96

37

58
59
60
b1
63
b4

65
b6
67

&8
69

70
7t

12

73
74
75
78
71
78

~N

[2 0 B PN S B R N]

N o

S

RN O N

PABE 5

DECLARE COUNTER BYTE;
DECLARE COUNTER$1 BYTE;
DECLARE PORT$29H LITERALLY "29H';

/% THE CODE DEBOUNCES COUNTER BY SOFTWARE 8/

RETRY:

READSCOUNT=ND$OF $READS;

COUNTER=INPUT (PORT$29H) 3

DO WHILE READ$SCOUNT)O;
COUNTERS$1=INPUT{PORT$29H);
IF COUNTERCCDUNTER$! THEN 60TD RETRY;
READ$COUNT=READSCOUNT-1;

END; /% WHILE ¢/

IF COUNTERCPULSE.LOW THEN
PULSE.HIGH=PULSE.HIEH+1;
PULSE.LOW=COUNTER;

/¢ DISPLAY CGUNTER'S VALUE ON 5DK-85 LED'S &/
CALL UPDDT{COUNTER);
CALL UPDAD(CARRIAGES$POSITIONSENCODERSPULSES);

RETURN CARRIAGESPOSITIONSENCODERSPULSES;

END SHAFT$ENCODER;

iy
R
88
88

88/
Ry
v 8/

/v 4
A Y
Yy

AR iRt R R et riyartoiesetatesieitittsereititittyl

JR2E22E e i aesirioteasiieiiisiteaeitesessatinsprirsettieiety)
/% FUNCTION: ADCSINPUT (12-BIT ADC)

/% PARAMETERS INPUT: ANALOBUE VGLTABE (0-10) VOLTS

/8 QUTPUTS: DIGITAL VALUES (0 - 1023)

/% PROCEDURE: LOCAL

/¥ CALLS: TINE

/% DESCRIPTION: DUTPUT PULSE LOW (00) AND THEN OUTPUT

I
%
Ik}
/t
/t

PULSE HIGH (02) VIA PORT$2AH BIT$! TO START
CONVERSION, WAITS TILL CONVERSION 15 COMPLETED,
THEN INPUTS THE VALUES FROM PORTS
21H (8-BIT) B LSB'S
23H (9-12 BIT) 4 NMSB'S

t/
t/
v/
8/
L9
t/
8/
$/
t/
1/
8/

AR Reyeeieetiatiienteesiasenstasissiatiteitieisisatiteitiietd

ADCSINPUT:

PROCEDURE ADDRESS;

DECLARE ADC$CONVERT LITERALLY "1111$1101B";
DECLARE ADCSIDLE LITERALLY '0000$0010B°;
DECLARE PORT$21H LITERALLY '21H'; /¢ ADC 1-8 BIT
DECLARE PORT$23H LITERALLY ‘23H'; /¢ ADC 9-12 BIT
DECLARE PORT$2AH LITERALLY “2AH';

DECLARE ADC$INSWORD ADDRESS;

/% START CONVERSION

88

ViR

ey
/8 8/
Y
s/
8/
4/
8 8

PL/M-BO COMPILER

79
80
81

82

83

B4
83

86

87
88
89
90
b2

92
93

%

~N

LSRN X R X)

PABE &

OUTPUT(PORT$2AH)=PORT$2AH$OUTPUT AND ADCSCONVERT; 88/
OUTPUT(PORT$2AH)=PORTS2AHSOUTPUT OR ADCSIDLE; 2R
CALL TIME(1); /% A DELAY OF 100 MICROSECONDS UNTIL s/
1t CONVERSION IS COMPLETED 4/

/% READ PORT 23H, MASK OFF 4 MSB'S, DOUBLE IT{i.e ADD B IERD 8/
" TO THE LEFT) AND THEN ROTATE LEFT 8 DIGITS, §/

ADCS INSHORD=SHL (DOUBLE(INPUT(PORT$23H) AND 0000$1111B),B);/% §/

/% ADD THIS VALUE TO THE INPUT DF PORT$21H AND THEN ROTATE 8/

/% RIGHT 2 DIGITS (7D RID OFF 2 LSB'S). 8/
ADCS$ INSWORD=SHR{ (ADCSINSHORD+INPUT(PORTS$21H)),2); ny
RETURN ADCSINSWORD; /8 RETURN 10-BIT VALUE (POSITION) $/
END ADCS$INPUT; 88/
AR Y

Rt R et R R iR R R R eetayiiititestiosoesesisttitiiy)

JReee e eee et erie Rty saatitrieieestciistttieiiseiinsestsetitiiyl

/1
/3
1
/1
1
/t
/4
/3
/3
/t

FUNCTICN: ADVANCE THE ROLLER A GIVEN DISTANCE. 9
PARAMETERS INPUT: ADVANCE DISTANCE IN ADC STEPS. Y/
DUTPUTS; NOKNE. 4/
PROCEDURE: LOCAL 3/
CALLS: ADCSINPUT. 1/
DESCRIPTION: 4

THE CURRENT TOOL POSITION IS INPUT AND TDOL $/
ADVANCE INITIATED IF REQUIRED. TOOL POSITION 1/
15 CONTINUALLY MONITORED AND TDOL ADVANCE 8/
TERMINATED WHEN THE SPECIFIED POSITION IS ACHIEVED. 8/

JORRRRSRRRE TR s s ss st a st raaaasunsanspsanenssasssassansrsssty/

TODL$ADVANCE:
PROCEDURE{ABSOLUTESPOSITIONSADCSSTEPS);

It
%

IF

bo;

DECLARE ABSOLUTESPOSITIDNSADCSSTEPS ADDRESS;
DECLARE PRESENT$POSITIONSADC$STEPS ADDRESS;
DECLARE ADVANCES$DACSVALUE LITERALLY "183°;
DECLARE STOPSDACSVALUE LITERALLY "128°;
DECLARE PORT$22H LITERALLY “22H";

IF ABSOLUTE POSITION 15 LESS THAN THE MAXINUM VALUE &/
{03FFH), 60 THROUGH THE ROUTINE. 7

ABSOLUTESPOSITIONSADCSSTEPSCO3FFH THEN .
/% READ PRESENT POSITION 8/
PRESENT$POSITIONSADCSSTEPS=ADCSINPUT; .

/% ADVANCE TOOL #/

A51 |

PL/H-B0 COMPILER PAGE 7

95

96

97

9B

99

100

104

102
103
104
105

106
107

108

109

110

3

N o RN

OUTPUT (PORT$22H)=ADVANCE$DACSVALUE;

/% ADVAKCE AND COMPARE THE TWD DISTANCES 8/

DO WHILE PRESENTSPOSITIONSADC$STEPSC
ABSOLUTESPOSITIONSADCSSTEPS;

/% READ AGAIN &/
PRESENT$POSITIDNSADCSSTEPS=ADCSINPUT;

END; /% DO WHILE 8/

/% STOP TOOL ¢/
OUTPUT(PORT$22H)=5TOP$DACSVALUE;

END; /8 DD &/
END TOOLSADVANCE;
FR ettt Rt Rei ettt sReseieiitsssiioteitstsitiey

Rt e i te iR asasisteasieisssaaiitsitiisehtisisitetetyy

/% FUNCTION: RETRACT THE ROLLER A BIVEN DISTANCE. 4/
/% PARAMETERS INPUT: RETRACT DISTANCE IN ADC STEPS. LY
- /% DUTPUTS: HDNE. t/
/% PRGCEDURE: LOCAL. 14}
/% CALLS: ADCSINFUT, t/
/% DESCRIPTION: 1/
/8 THE CURRENT TOOL POSITION IS INPUT AND TOOL 19
I} RETRACT INITIATED IF REQUIRED. TOOL POSITION IS 4/
3 CONTINUALLY MONITORED AND TOOL RETRACT TERMINATED &/
/3 WHEN THE SPECIFIED PDSITION IS5 ACHIEVED. v/

RS P et R Rt Rt Rt R e teteesaeinsetitsittniiistptietyl

TOOLSRETRACT:
PROCEDURE(ABSOLUTESPOSITIONSADCSSTEPS)
DECLARE ABSOLUTESPOSITIONSADCSSTEPS ADDRESS;
DECLARE PRESENTSPOSITIONSADCS$STEPS ADDRESS;
DECLARE RETRACTSDACSVALUE LITERALLY ‘73"
DECLARE STOP$DACS$VALUE LITERALLY "128';
DECLARE PORT$22H LITERALLY "22H";

/% READ PRESENT POSITION 8/
PRESENT$POSITIONSADCSSTEPS=ADCS INPUT;

/¢ RETRACT TOOL 8/
OUTPUT (PORT$22H)=RETRACT$DACSVALUE;

/% RETRACT AND COMPARE THE TWD DISTANCES 8/ -
DO WHILE PRESENT$POSITIONSADCS$STEPS)
ABSOLUTE$POSITIONSADCSSTEPS;

/% READ AGAIN 8/

A52

PL/M-B80 COMPILER PAGE

i

12

13

114

115
117
118
119
120

121

122

123

124

3

3

(S T K I O B G BN]

PRESENT$PDSITIONSADCSSTEPS=ADCSINPUT;
END; /% DO NHILE ¥/

/% STCP TOOL 8/
OUTPUT(PORT$22H)=STOP$DACSVALUE;

END TODLSRETRACT;

B

FREEi3R 33 aei s teieaesRtatiinestesitassiatiastasstesiiasistyisificy

/

JR22ReReEat eyttt Reiieiessatsesosetsitiisiitiisitsitiy]

/% FUNCTION: CONE INTERPDLATION

/% FARAMETEKS INPUT: INTERPOLATIONSENCODER$PULSES(ADDRESS),
1 INCREMENTSSENCODERSPULSES {BYTE),

/% OUTPUTS: CONICAL CONTOUR

/% PROCEDURE:

/% CALLS: SHAFTS$ENCODER, TOOL$RETRACT

/% DESCRITPION: A PROCEDURE TO DESCRIBE THE CONICAL CONTOUR.,
/3 _ THE PROCEDURE MGINTORS THE CARRAIGE PDSITION AND
1 AT PRECETERMINED INTERVALS (8,9,....15 ENCODER PULSES)
/% CALCULATES THE ROLLER POSITION REBUIRED TO MAINTAIN THE

/% CONICAL CONTOUR AND RETRACTS THE ROLLER.

8/
$/
7}
s/
t/
4/
t/
t/
8/
s/
s/

FA Rttt e e e Rataseriatseesestsiesteitssisittssietitsy)

CONSINTERPOLATION:
PROCEDURE (INTERPOLATIONSENCODERSPULSES)

DECLARE INTERPOLATIONSENCODERS$PULSES ADDRESS;
DECLARE MOVEDS$DISTANCESENCODER$PULSES ADDRESS;
DECLARE ABSOLUTESADC$STEPS ADDRESS;

DECLARE Yi$ADCSSTEPS ADDRESS;

DECLARE Y1$TEMP ADDRESS;

/t INITIALISE THE MOVED DISTANCE &/
NOVED$DISTANCESENCODERS$PULSES=0;

/t CALCULATE AND THEN RETRACT TO THE NEXT ABSOLUTE 8/

/t POSITION AND UPDATE THE CURRENT CARRIAGE 4/
/% POSITION FOR EACH REBUIRED INCREMENT OF CARRIAGE 8/
/% POSITION. 8/

DO WHILE MOVED$DISTANCESENCODER$PULSES(=
INTERPOLATIONSENCODERS$PULSES;

/% UPDATE THE MOVED DISTANCE $/

MOVED$DISTANCE$SENCODERS$PULSES=
HOVED$DISTANCESENCODERSPULSES
+INCREMENTSS$ENCODERSPULSES;

DO WHILE CARRIAGE$POSITIONSENCODER$PULSES(

A53

PL/M-B0 COMPILER PABE 9

125
124
127
128
129
130
131

132
133

134

[V 2 7

o

MOVEDSDISTANCES$ENCODERS$PULSES;
CARRIAGES$PDS1TIONSENCODER$PULSES=SHAFT$ENCODER;
END; /¢ DO WHILE CARRIAGE POSITION &/

/% CALCULATE THE NEXT RETRACT DISTANCE 8/
Y1ADCSTEPS=(NOVEDSDISTANCESENCODERSPULSES
STANSNUM(1))/TANSDEN(I);
IF (28((MOVEDSDISTANCESENCODERSPULSESSTANSNKUN(T)) MOD
TANSDEN(I)))>=TANSDEN({I) THEN
Y1$ADCSSTEPS=Y1$ADCSSTEPS+1;

/% CONVERT FROM PULSES TO ADCSSTEPS 8/
Y1$TEMP=(Y1$ADCSSTEPS32) /63;
IF (28({YI$ADCSSTEPS32) MOD 63))>=43 THEN
YISTEMP=Y1$TENP+1;
Y1$ADCSSTEPS=YI$TENP;

/% CALCULATE THE NEXT ABSOLUTE POSITION 8/
ABSOLUTESADCSSTEPS=ROLLER$POSITIONSADCSSTEPS-Y1$ADCSSTERS

e

/% RETRACT TO THE NEXT ABSOLUTE POSITION 8/
CALL TOOLSRETRACT{ABSOLUTESADCSSTEPS);

END; /% DO WHILE MOVED DISTANCE &/
END CONS$INTERFOLATION;
PR R R ae i aetnsatesateyatsietReeasiitsiceisiteittisitssiy)

JERREREER R R R s st s ana g aeanragasssasesssasnssnssses/

/8 t/
JRResEE PUBLIC PROCEDURES DECLARATIONS 131888/
/1 s/

FERRER R R I RaR R IR s st i st aa st neaneasnnssansasssssnasgsssasasy/

ARttt Rty eyt Rs Rt eiRtsieyiiasninsssasstedesssissitetd]

/% FUNCTION: MACHINESCONESCONTROL (CONTROL TODL MOVEMENT) 8/
/% FARAMETERS INPUT: DEFINED IN PREVIOUS PROCEDURES s/
/% QUTPUTS: DEFINED IN PREVIOUS PROCEDURES s/
/% PROCEDURE: PUBLIC 8/
/% CALLS: SHAFTS$ENCODER, TOOLSADVANCE, INTERPOLATION, $/
A TOOLSRETRACT, CONSOLES$DUT, MESSABE. s/
/¢ DESCRIPTION: TOOL MOVEMENT CAN BE SUBDIVIDED INTO THE 7
/8 FOLLOWING SEGEMENTS:- s/
It : $/
/8 (4 TO 5) ADVANCE TOOL (LATHE IS OFF) . s/
t OPERATE LATHE, INITIALISE COUNTER 7
/8 (5 TD 1) HOVEMENT WHILE TOOL IS HELD IN POSITION s/
/¢ (1 70 2) CONTOUR SHAPE (CONICAL,ECT) - $/
/t SWITCH OFF LATHE $/
/% (270 3) RETRACT TOOL s/

A54
I

PL/H-80 COMPILER

140

144
142

143
144

145
146

147
148
149
150

151
152
153
154

NN

NN

PAGE 10

JUSEBERURRERREBRRRatRaRtenanesnasaneasenanssssasasnsssssssases/

/8

I | #HHHEHERREE I EEEEREEEEE §
/8 + +
/1 +
/3 +
/8 +

/% +

/8 +

/3 2
/4

/3

/8

/3

/3

/8 3
/%

/8

B . T, T T S SV S SRS

P S

Hettdtbtitetittttititdttttitititttsess 4§

$/
s/
$/
$/
8/
1/
4/
/
5/
8/
t/
4
t/
Y/
s/
1/
t/

JREe ettt iRttt R iR iRt asiusisssistisseisieistisityl

HACHINESCONESCONTROL:
FROCEDURE PUBLIC;

DECLARE FORMSLENGTHSENCODER$PULSES(435)ADDRESS DATA(47Z,488
4904,519,535,551,567,582,598,614,630,545,661,677,493
,708,724,740,736,771,787 ,603,819,835,850,856,882,898
,913,929,945,961,976,992, 1008, 1024, 1039, 1055, 1071
,1087,1102,1118,1134,1150,1163);

DECLARE INTERPOLATIONSENCODER$PULSES ADDRESS;

JECLARE PORTS$ZAH LITERALLY '2AH’;
DECLARE J BYTE; /% GET THE FORMSLENGTHSMN INDEY 8/

/% HASKS TO CONTROL LATHE 8/
DECLARE PORTZAHSTARTSLATHE LITERALLY "00C0$0100B°;
DECLARE PORT$2AH$STOPSLATHE LITERALLY "11118$1011B°;

/% DAC CONTROL VALUES 8/
DECLARE RETRACTSDACSVALUE LITERALLY ‘73
DECLARE STOP$DACSVALUE LITERALLY "128";

DECLARE PORT$2BH LITERALLY "2BH’;

DECLARE PORT$ZBHSINPUT BYTE;

DECLARE PORT$ZBHSADVANCED LITERALLY '0000$0001B°;
DECLARE PORT$2BH$CARRIABE LITERALLY ‘0000$0100B";

DECLARE DLD$POSITIONSENCODER$PULSES ADDRESS; .
DECLARE NEWSPOSITIONSENCODER$PULSES ADDRESS;
DECLARE COUNT$! BYTE;

DECLARE COUNTS2 BYTE;

l&Sfii

PL/N-BO CONPILER

155
156
157

158
159

160

161

162
163

164
165

166
167

168

169

N

(92 I ¥}

(2]

JURBRRRERRIRRERRtaRtasaaentesseaanonasasesesatesnsssnssssastey/

4

7381888 CALCULATIONS PRIOR TO THE PROCESS 1133127

/8

JAReEeeiaetieenittesit i siasitsinastesstasteeiitesifeniietniityl

1=CONES$ANGLE$DEGREES-30; /% GET THE CONESANGLE$DEGREES INDEX 8/
J=FORNSLENGTHSMN-30; /8 GET THE FORMSLENGTHSMM INDEX 8/
INTERPOLATIONSERCODER$PULSES=FORMSLENGTHSENCODERSPULSES{d);

TURNINGS$REBUIRED=TRUE;
DO WHILE TURNINGSREQUIRED;

CALL CONSOLESDUT(CLEARSSCREEN); /8 CLEAR SCREEN 8/
CALL MESSAGE(.PAEE$7,LAST{PAGES7)); /8 PAGE 7 ¢/
FARarEReRe iRt e it tiiaanitasisasiesRessissioasitinssesiittyl

/333 INHIBIT COUNTER UNTIL INTERPOLATION BEGINS, INITIALISE &/
/1% SET LINE TO TRUE (5V) 4/

PORT$2AKSCUTPUT=PORT$2AH$OUTPUT OR COLNTERSRESET; .
QUTPUT (PORT$2AH)=PORT$2AHSOUTPUT;

PR R et e R uee iR eRisiisasieintsiisaistesitsisittiyl
/3%% INITIALISE 5DK-85 KEYBOARD DISPLAY 833/

KEDS$DPLYSCONTRGL=KMODE
KBD$DPLYSCONTROL=KBNIT;

PR ReE Rttt iRttt esitsResesatieesiisasticiitsitsiety]
/318 CLEAR SDK-B5 KEYBOARD DISPLAY 883/

CALL UPDDT(CLEARSDATASFIELD);
CALL UPDAD{CLEAR$ADDRESSSFIELD);

AR Re iR aRti et asbaieeittteessstesieststintasceisasiasieseiiy
/338 DAC INITIALISE s8¢/

OUTPUT(22H)=STOPDACVALUE;
AR R R iR R R R idResResinssessstiinyiaeeititjtesesity
/338 INITIALISE ADDRESS POSITION 838/
CARRIAGE$POSITIONSENCODERS$PULSES=0;

JURERBURRBELERTEORTRIssssasssassspaassssasssstassantsssey/

AS6

PABE 11

PL/N-B0 COMPILER PAGE 12

170

1
172

173
174
175
176

177
178

179

180
181

Jh-lh(/lr_,)_

[PV]

I3 4/
2141 THE MAIN PROGRAM 11117
It t/

JAeEEe et ettnstanstaissitatqiiiassiiesaisinyiissiitaiiitgy)

JRERREERRTRRRsRRsaRetsserssasessssannesassasasansnssssrssstssne
/

nu ADVANCE TOOL (PDSITION 4-5) 1"/
CALL TODL$ADVANCE(ROLLER$POSITIDNSADCSSTEPS); AR
AR

A2 e R bR R ot o st iatisitotitesinsineitasiaseasiesitsiiey)
113 SWITCH LATHE ON 1/
PORT$2AHSOUTPUT =PORT$2RHS$CUTPUT OR PORT$2AH$STARTSLATHE; /8 §/
QUTPUT (PORT$2AH) =PORT$2AH$OUTPUT; /8 8/

AR REReRetest et iRt nsanstesRastnstniestnieriteissiineasiyi
/438 CARRIAGE WILL START MOVING LEFT (POSITION 5-1) 1/

/% WAIT TILL CARRIAGE SWITCH 1S CLOSED 8/

PORTS$2BHS INPUT=INPUT(FORT$2EH); /% READ PORT 8/

D0 WHILE (PORT$2BH$INFUT AND FORT$ZBHSCARRIAGE)=0;
PORT$2EH$ INPUT=INPUT(PORTS2BH); /8 READ ABAIN 8/

END; /% DO WHILE 8/

ity
A PR Rt R it R iR bt RriRebesinsasisseritinsieaeitiny

/418 ENABLE COUNTER #1414/
PORT$2AH$0UTPUT=PORT$2AHSOUTPUT AND COUNTERSENABLE;
DUTPUT{PORT$2AH)=PORT$2AHS DUTPUT;

PEREt e ettt et anse et ersiaeiatsiansinsiisbesissiisisited)

/888 CONICAL CONTOLR (POSITION 1-2) 158/
TR

CALL CONSINTERPOLATION(INTERPOLATIONSENCODERSPULSES); TRV,
It 8/
JORERSRIESEREITAtEstIILIITILIRIRIAtIRRIALNSRRILQLILILLIIILLLLIL/
ITRY,

/% SWITCH OFF THE LATHE , 0}

, It 8

PORT$2AHSOUTPUT =PORT$2AHSOUTPUT AND PORT$2AHSSTOPSLATHE; /8% 8/
DUTPUT {PORT$2AH)=PORTS 2AHSOUTPUT; TRY,

JRSSRRRERRNBUEREURRNBRRNRURORRRSREERRLIRIRAIBOSRILASRISIIILSSINGY)/

AST

PL/H-B0 COMPILER PABE 13
/418 RETRACT TOOL (POSITION 2-3) "/
1188 RETURN TO DATUM ny/
182 3 PORTZBHINPUT=INPUT{PORT$2BH); /% READ PORT %/

/% ADVANCE PISTON TILL IT REACHES DATUM 8/
/% NOVE PISTON TILL IT HITS ADVANCED SWITCH 8/

183 3 IF (PORTS$ZBHSINPUT AND PORT$2BHS$ADVANCED)=0 THEN
184 3 00;

185 4 OUTPUT(22H)=RETRACTS$DACSVALUE; /8 START ADVANCE TO DATUM 8/
186 4 PORT$2BH$ INPUT=INPUT(PORT$2BH); /¢ READ PORT 8/

187 4 DO WHILE (PORT$2EH$INPUT AND PORT$2BHSADVANCED)=0;

188 5 PORT$2BH$ INPUT=INPUT(PORT$2BH); /8 READ AGAIN 8/

189§ END; /8 DD WHILE 8/

190 4 END; /8 D0 8/

191 3 OUTPUT(22H)=5TOPSDACSVALUE; /8 STOP PISTON ADVANCE 8/

PR et Rt et iR R R i nbarstebirieeresessieiintiesitititty)

/% A ROUTINE TO DISPLAY THE CARRIAGE POSITICN DN THE SDK-85 8/

/8 EVERY 0.9 SECCNDS TILL LEADSCREW IS STATIGNARY ¥/
192 3 OLD$POSITICNSENCODERSFULSES=SHAF T$ENCODER;
193 3 COUNTS1=0;
194 3 DD WHILE COUNTS$1¢10;
195 4 COUNT$2=1;
196 4 DD WHILE COUNT$2¢=23;
197 5 CALL TIME{200);
158 5 COUNT$2=COUNTSZ+1;
199 5 END; /% DO WHILE &/
200 4 NER$POSITIONSENCODERSPULSES=SHAFTSENCODER;
201 4 IF NEW$POSITIONSENCODER$PULSES=0LD$POSITIONSENCODERSPULSES THEN
202 4 COUNT$1=COUNT$1+1;
ELSE
203 4 D0;
206 5 COUNT$1=0;
205 5 GLD$POSITIONSENCODERSPULSES=NEWSPOSITIONSENCODERSPULSES;
206 5 END; /¢ ELSE 8/
207 4 END; /% DO RHILE ¢/
Rt Rt e et tie iRyt eRestactteRtissetsissitiessassisttl
-
208 3 CALL CONSOLE$OUT(CLEARSSCREEN); /% CLEAR SCREEN 8/
209 3 CALL MESSAGE{.PAGE$B,LAST(PAGESB}); /8 PAGE 8 8/
200 3 ANSWER=CONSOLESIN; /8 6ET REPLY 8/
21 3 DO WHILE ANSNER(>'Y' AND ANSWERC'N';

A58

PL/N-B0 COMPILER PAGE 14

212
213
214
215
216
217
218
29
220
221
222

223

224

CALL CONSOLESDUT(BELL);
CALL MESSAGE(.ERRORS,LAST(ERRORS1));
ANSNER=CONSOLESIN;

END; /& DO WHILE 8/

CALL MESSAGE(.DELETESERRORS!,LAST(DELETESERRORS1));

CALL MESSABE(.MESS$1,LAST(MESS$1));

CALL CONSOLESDUT(ANSMER);

CALL BET(CARRIAGESRETURN);

IF ANSKER="N" THEN
TURNINGS$REQUIRED=FALSE;

END; /¢ DD WHILE 8/

Al it AN A Nl N e e

CALL CUNSDLE’DUT(CLEARiSCREEN);

[N)

2 END MACHINESCONESSCONTROL;
[RbResiateesiRnsiastaisiotteiteseetitetitasititittsiesteitntiy

1 END MACHINES$CONESCONTROL$MODULE;

HODULE INFORMATION:

D778H 1912
0026H 38D
0008H 8D

CODE AREA SIIE
VARIABLE AREA SIZE
NAXINUN STACK SIZE
685 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATICN

A59

[RO

PL/X-B0 COMPILER PASE

1515-11 PL/M-BO V3.1 COMPILATION OF MODULE PARAGENERATIONMODULE
OBJECT MODULE PLACED IN :F2:parage.0BJ
COMPILER INVOKED BY: plaBO :F2:parage.pla DEBUG

~3

O O O g O N b=

12
13

— e bt e bt e e

 $WORKFILES(:F2:,:F2:)

$PAGEWIDTH(80)
$PAGELENGTH(33)

PARASGENERATIONSMODULE:
00;
/% FILESNAME °PARAGE" §/

JREE113Ee Rt et aetasitnste iRt nsiinisnciesstisiiessitsitiyl

/3 : 4
JRERiEL EXTERNAL VARIABLES DECLARATIONS 1/
/% 1/

A R eyttt iR ieti i arieisstisstitsiritieceisity]

/8 NONE 8/

PRt eniestesReesteivetetteiisReissiieseitesiesstsesteiy

/3 9)
JRReses PUBLIC VARIABLES DECLARATIENS 1erent/
/¥ 1/

AARSERIRLREIRLIRTNRIROIRRRSLLNLRERLRLRSLNLIIOLSILISIISILILINY/

DECLARE FGRMSLENGTH BYTE PUBLIC;
DECLARE ROLLER$POSITION ADDRESS PUBLIC;

F R R R R Ry Ry R iRt Reaesiesisitssssseiititity

it Y/
i LOCAL VARIABLES DECLARATIONS 1/
/1 Y

P R R R et aes iRt ReR R iRraasiriessititsitity
/t ASCIT CODE CHARACTERS 8/

DECLARE ESC LITERALLY "1BH';
DECLARE QUOTE LITERALLY "27H'; /% SINGLE QUOTE 8/
DECLARE DOUOTE LITERALLY "22H'; /# DOUBLE BUOTE ¢/
DECLARE SPACE LITERALLY "20H;

DECLARE BACKS$SPACE LITERALLY "08H';

DECLARE BELL LITERALLY “07H';

DECLARE CLEARSSCREEN LITERALLY "$AH';

DECLARE ROLLER$ADJUST BYTE;
DECLARE INCREMENTS BYTE;
DECLARE DIRECTION BYTE;

/% 592 ADC STEPS IS EQUIVALENT TO 74 X OF 8/ -

|
A60 |

1

PL/N-B0 COMPILER PAGE 2

1

15

16

17
18

19

20
2l

n
&

1

1

o N

It TRANSDUCER LENGTH $/
DECLARE FORMERSTIPADCSSTEPS LITERALLY °592°;
DECLARE TEST$POSITION BYTE;

JRERsEeeieesitastediteasoReisasiisiasivasoesiesiinsiaststiisiiziy)

4 t/
f1srss EXTERNAL PRCCEDURES DECLARATIONS 1848/
/% t/

JARe080080t ettt nsRestetsiinsiassteitestiesitistiiscssitiniiieiity

RSt R Rt niRrineiesesiettiriteiiseeinsaisnsinsatestitieiiy

ITRY,

CONSOLESGUT: TRY,
PROCEDURE {CHAR) EXTERNAL; ITRY,
DECLARE CHAR BYTE; It 8

END CONSOLESOUT; IRY;
TRY,
JRBERSALIEERRLERSRINIINSRTILLANIRLINIRIRIIRLURIIRIRILILRLIRIINGY/
TRY

NESSAGE: : TRY,
PROCEDURE (POINTER,LASTSELEMENT) EXTERNAL; TRY,
DECLARE POINTER ADDRESS; ITRY;

DECLARE LASTSELEMENT ADDRESS; /It 8]

END MESSAGE; TRY;
TRY,
FESERRSTIARLEARRIEt AR It RNt NRataRantnss st ettt ant s ntastases/
TRY,

CONSOLESIN:PROCEDURE EYTE EXTERNAL; TRY,
END CONSOLESIN; : RRY,
TRY,
JEESELERIELALSARsRsERsRsETItIRaRIRt It tRt sttt sRestsessnsesesy/
TRy

BET: NIkl
PROCEDURE (TARGETSCHAR) EXTERNAL; TR,
DECLARE TARGETSCHAR BYTE; It 8

END BET; TRY
TRY,
JESREERERSERIRERTEtIRsRIRtaRaEsssaRaRaRa SRR ItIIeRLILIIRINIILY/
TRY;

DECIMALSVALUESINPUT: it 8
PROCEDURE BYTE EXTERNAL; , XY,
END DECINALSVALUESTNPUT; 188

It 8l

ARRREesieeaiReesinsteniintiRasitessasitiinsneptisiiesessteiiseiv

PRiEeesiieasesitiiqtiietisisnniteatyitasisassnnssietistnsitiesets

1t 8/
/18888 LOCAL PROCEDURES ~ DECLARATIONS 13383 7)
3 7

e 1y,

A61

PL/X-B0 COMPILER . PABE 3

3
)
33
]
35
3
37

38

RN PO M RN R

Rit2333tEdERe et Rytattinetittesiteatibiansisasesitessisiiesiitity)

/% FUNCTION: BACKSDELETESPOSITION 8/

/% PARAMETERS INPUT: NONE , s/

/% OUTPUTS: NONE 8/

/% PROCEDURE: 8/

/% CALLS: CONSOLESOUT 7]

/8 DESCRIPTION: A PROCEDURE TD BACKSPACE TWD POSITIONS, DELETE 8/

n TWO CHARACTERS FRON SCREEN, THEN BACKSPACE TWO #/

/t POSITIONS, WHERE IT WAS INITIALLY. THIS PROCEDURE 8/

It IS THEN REQUESTS OPERATOR TO ENTER THE CORRECT NUMBER 8/

/t AFTER A NUMBER NOT WITH IN THE SHONN RANGE HAS BEEN TYPED 8/

nIN, '

IATERERESUREREBERARERSRSBUBEBERREENTRLILINERIELILRLILILLLILILY/

IR

BACK$DELETESPOSITION: Ry
PROCEDURE; e

CALL CONSOLESDUT(BACK$SPACE); IRY

CALL CONSOLE$OUT(BACKSSPACE); IR

CALL CONSOLES$OUT(SPACE); Ry

CALL CONSOLESDUT(SPACE); R

CALL CONSOLESOUT(BACK$SPACE); I

CALL CONSOLESOUT{BACKSSPACE); R

END BACKSDELETESPOSITION; R

RY

FURTRREIRRRIRORR R RaR IR IR R ERRs It Rsst s asRsaRIsISLILIILLY/

JA2ee et tat e et rter it asiatiatseatsintsotssittsisessiisiiseey)

1 t/
/1 PUBLIC ~ PROCEDURES DECLARATIONS 1t/
/1 t/

JA R R e ie R et enitepeitienseiitiosasiotnsiogtstsiisesestisiy)

FR R R R Rt iR e asRebResRisitfesieratitesitstsseiiy)

/% FUNCTICN: PARASGENERATION s/
/% PARAMETERS INPUT: PARABOLA PARANMETERS FROM KEYBOARD 8/
/% QUTPUTS: NONE 8/ -
/% PROCEDURE: PUBLIC 1/
/% CALLS: MESSAGE, DECIMALSVALUESINPUT, BACKSDELETESPOSITION, 8/
/3 CONSOLESOUT Y/
/% DESCRIPTION: A PROCEDURE T0 DISPLAY PARABOLA PARAMETES GN 8/
t SCREEN, THEN OPERATOR IS REGUIRED 7O FILL IN THE &/
1 VARIABLES WITH APROPRIATE VALUES SELECTED FROM EACH 8/

1 VARIABLE LIMITS SHOWN ON THE SCREEN. FAILING T0 DO 50 8/
/% WILL RING A BELL AND OPERATOR IS5 REBUESTED TO ENTER THE §/
/% RIGHT VALUE AGAIN. s/
PRyttt ety itasiatiatisasiessiessiassitasitisieisisy

PARABOLASGENERATION:
PROCEDURE PUBLIC;

/% PARABOLA CONTOUR PARAMETERS DISPLAY 8/

Ab62

-——

PL/M-BO COMPILER PAGE 4

39 2 DECLARE PAGE$&(#) BYTE DATA

{ESC,"=","'",' 7", /8 R2 C24 v/
"PARABOLA CONTOUR PARAMETERS',
ESC,"=",DBUOTE, 7", IV R3 C24 &/

y
ESC,"=",'1",")", /8 R6 C10 ¢/
‘Form Length (aa)’,
ESC,'=",'¢",")", I8 R7 C10 &/
(30 to 74)°,
ESEC,"=",BUDTE,", ", /1 RB C13 s/
ESC, 3", /% START REVERSE VIDED §/
ESC, =" ,BUOTE," /", /% R8 C1s 1/
ESC, 'k’ /% END REVERSE VIDED §/
ESC,'=','8",'M’, /% R11 T46 8/
ine
Ly
ESC,'=","¢",'8", /% R12 C25 8/
‘Parabola equation y= 4atx’,
ESC,"=",",",'A", /8 RIS T34 &/
‘and with a= 68.45",
ESC,"=" 6", k", /8 R23 C7 %/
"After each parameter press RETURN please.’,
ESC,'=","7"," ", /P R24 C2 8/

"It incorrect value is entered, use DEL key to erase before RETURN

- Ul

40 2 DECLARE NOT$1{8) BYTE DATA(
ESC,'=",'7",°4", /% R24 C7 ¢/
"Press SP to proceed please’);

DECLARE ERR$1(#) BYTE DATA .
(ESC,"=","5",'L", /It R22CT ¥/
ESC, 'y /% BLINKING CHARACTER &/

‘Paraseter not within lisits, reenter please.’,
ESC,°q"); /% END BLINKING §/

4

[8]

2 2 DECLARE ERR$2(8) BYTE DATA
{ESC,"=","3", "k’ /Y R22C7 &/
ESC,"*', /% BLINKING CHARACTER &/
‘Enter either "'Y'" or '°'N'" please.’,
ESC,T'); /¢ ERASE TO END OF LINE #/

g 2 DECLARE ERR$3({%) BYTE DATA
(ESC,*=","'5",'%&"y /18 R22 C7 4/
ESC,'~', /% BLINKING CHARACTER 8/
‘Enter either “'F'’" or '‘R’’ please.’,
ESC,'T°); /¢ ERASE TD END OF LINE &/

A63

PL/X-80 COMPILER PAGE

44

45

4

47

4B

49

o

95

56

2

(%]

DECLARE DELSERR($) BYTE DATA
(ESC,"=*,"5","&’, /8 R22 C7 8/
ESC,'T');

DECLARE ADJ$1{$) BYTE DATA(
Esc,’=", "/’ ,BUDTE, /¢ Rib CB &/
‘Do you require roller adjustsent ? (Y/N)');

DECLARE ADJ$2(%) BYTE DATA({
ESC,‘=","1’ ,OUDTE, /3 R1B CB &/
"How many incresents ? (1-80) (1 increeent=1/8 as)’);

DECLARE ADJ$3{3) BYTE DATA(
ESC,’=","3",BUOTE, /8 R20 C8 &/
‘Forward or reverse ? (F/R)’);

DECLARE POS$1(%) BYTE DATA(
ESC,"=",BUOTE,"-"); /% RB Ci4 &/

DECLARE POS$2(8) BYTE DATA(,
ESC,"=","0",")"); /8 RI17 C10 8/

DECLARE POS$3(8) BYTE DATA(
ESC,"="y"2°,")")5 : /8 R19 C10 1/

DECLARE POS$4({8) BYTE DATA{
ESC,"=","4",")")5 /% R21 C10 &/

DECLARE POS$3(%) BYTE DATA(
ESC,"="," 1",k); /A RIBCT 8/

DECLARE TEST$1{t) BYTE DATA{
ESC,"'=","0",'%", Y RI7CT W
‘Do you require the roller test position (Y/N) ?°);

DECLARE DEL$T(8) BYTE DATA(

ESC,"=', 0", k", JARITCT 8/
£SC,'1',

ESC,"=","1', 4", /% R1B L7 8/
ESC,'T",

ESC,’=','7"," /4 R2 C1 8/
ESC,"T');

DECLARE DELSF(8) BYTE DATA(

ESC,"=","6'y" *, /8 R23 C1 8/
ESC,'T’,

ESC,'=','7"," *, /R4 L1 8/
ESC,'T');

[A3¢e3e0esReeieesteestnstesesseyseqeiasitatitsiatisesitsiityl

CALL CONSOLE$OUT{CLEARS$SCREEN);

A6h |
{

PL/M-80 COMPILER

a8
a9
&0
b1
62
63
64
63
bb
67

68

89
70
n
72
73
74
75
76
n
78
79
80
81
82
83

NI L Nl Y RN

ol RPN

AN NN N

[0 I 7 I % By]

RRe122te0eRestRibiesitsatesttinsiitasicnsisdtitsfeeiiiitiivy
CALL MESSABE{.PAGE$6,LAST(PAGESS));
JARETRRRE R AR R R RN AR NS R aqRResisecsiiioatitssaiisiy)
1t PARABOLA PARAMETERS INPUT t/
PREiRR e iy i aesiteasssiiiatiiisiassiferiiteatisiittesty)
/% INPUT FGR&$LENSTH$HH 4/ |
CALL NMESSAGE(.PDS$1,LAST(POS$1));
FORMSLENGTH=DECIMAL $VALUESINPUT; /8 GET VALUE §/

DD WHILE FORMSLENGTH(30 OR FORMSLENGTH>74; /¢ CHECK 8/
CALL BACK$DELETES$POSITION;

CALL MESSAGE(.ERR$1,LAST(ERR$1)); /¢ ERROR MESSAGE 8/

CALL CONSOLESOUT(EELL); /¢ RING A BELL 8/
CALL NESSABE{.POS$1,LAST(POS$1)); /% REPOSITION 8/
FORMSLENSTH=DECIMALSVALUESINPUT; /8 GET NEN VALUE 8/
END; /% WHILE 8/
CALL MESSASE(.DELSERR,LAST{DELSERR));

AR R RN TR A R aRas I asasranseasssnsgssas/
CALL MESSAGE(.DELSF,LAST{DELSF)}; /% DELETE FODTNOTE &/

PR iRttt ity iRyt esiasatinsstssinsiesititey

/% ROLLER TEST POSITION REGUIRED ? &/

CALL MESSABE(.TEST$1,LAST{TEST$1));
TEST$PDSITION=CONSOLESIN; '
DO WHILE TEST$POSITIONCY'Y" AND TEST$POSITIONO'N';
CALL CONSOLESOUT(BELL);
CALL MESSAGE(.ERR$2,LAST(ERR$2));
TEST$POSITION=CONSGLESIN;
END; /% DO WHILE 8/
CALL MESSAGE{.DELS$ERR,LAST(DELSERR));
IF TESTSPOSITION="N" THEN
D0;
CALL MESSAGE(.P0S$3,LAST(PDS$5));
CALL CONSOLESOUT{TEST$POSITION);
CALL MESSAGE(.NOT$1,LAST(NOT$1));
CALL BET(")5
CALL MESSAGE(.DELST,LAST(DELST)};

RRRteaaRsbt b inttasiiesttestitnssitentinsinsicetiittistisy

/% ROLLER ADJUSTMENT REBUIRED ? §/

i
ZXGESi

PAGE

PL/¥-80 COMPILER PABE

B4 3 CALL MESSAGE(.ADIS1,LAST(ADIS1));

85 3 ROLLER$ADIUST=CONSOLESIN;

85 3 DO WHILE ROLLERSADJUSTS)'Y* AND ROLLER$ADJUST()'N';
B7 4 CALL CONSOLESOUT(BELL);

g 4 CALL MESSASE(.ERR$2,LAST(ERR$2));

89 4 ROLLER$ADJUST=CONSOLESIN;

%0 4 END;

91 3 CALL MESSAGE{.DELSERR,LAST(DELSERR));

92 3 CALL MESSAGE(.POS$2,LAST(P0S$2));

93 3 CALL CONSOLESOUT (ROLLERSADIUST);

9% 3 IF ROLLERSADJUST="Y" THEN

95 3 DO;

/% INFUT ROLLER ADJUSTMENT 3/

% 4 ‘CALL MESSAGE(.ADJS2,LAST(ADI$2));

97 4 CALL MESSAGE(.P0S$3,LAST(P0S$3));

%8 4 iNCREHENTS=DECIMALSVALUESINPUT;

99 4 DD WHILE INCREMENTSCI OR INCREMENTS}BO;
100 5 CALL BACKSDELETESPOSITION;

104 5 CALL MESSAGE(.ERR$1,LAST(ERRS1));
102 5 CALL CONSOLESOUT(BELL);

103 5 CALL MESSAGE(.POS$3,LAST(PDSST));
104 5 INCREMENTS=DECINALSVALUES INPUT;

105 5 END;

106 4 CALL MESSAGE(.DELSERR,LAST(DELSERR));

/% THPUT ADJUSTMENT DIRECTION 4/

107 4 CALL MESSAGE(.ADJS3,LAST(ADIS3));

108 4 DIRECTION=CONSOLES IN;
109 4 DO WHILE DIRECTION()'F' AND DIRECTIONC'R’;
1o s CALL CONSOLESOUT{BELL);
"y s CALL MESSAGE(.ERR$3,LAST(ERR$3));

112 5 DIRECTION=CONSOLESIN;
u3 s END;

14 CALL MESSABE(.DELSERR,LAST(DELSERR));
15 4 CALL MESSAGE(.POS$4,LAST(POS$4));

16 4 CALL CONSOLESOUT (DIRECTION);

7 4 IF DIRECTION="F" THEN

118 4 ROLLERSPDSITION=FORMERSTIPSADCSSTEPS- INCREMENTS;

ELSE
19 4 ROLLER$POSITION=FGRMERSTIP$ADCSSTEPS+INCREMENTS;
120 4 END; /3 END IF ROLLERSADJUST= 'Y' 8/
ELSE

121 3 ROLLERSPDSITION=FORNERSTIPSADCSSTEPS;
122 3 CALL MESSABE(.NDTS$1,LAST(NOTS$1));

!

A66 |

123
124

125

126
127
128
129
130

PL/H-80 COMPILER : PAGE
3 CALL BET{" ");
3 CALL CONSOLESDUT{CLEARSSCREEN);
3 END; /% IF TESTSPOSITION="N" §/
ELSE /% IF TEST$POSITION="Y' THEN &/

2 DO;
3 CALL MESSABE(.POS$S,LAST(PDSSS));
3 CALL CCNSOLESOUT(TESTSPOSITION);
3 CALL MESSAGE(.NOT$1,LAST(NOT$1));
3 CALL BET(" ‘)5

/% 552 ADC STEPS 15 EGUIVALENT TD 69 MM OF 8/

I TRANSDUCER LENGTH s/
3 ROLLERS$PDSITION=352;
3 END;

R PR Rt aseaiatsttitssieitstestitisseetitiivtiseiseiyl

2 END PARARCLASGENERATION;

1 END PARASBENERATICNSMODULE;

HODULE INFORMATION:

03160 1302D
0CO7H 7
0004H 4D

CODE AREA SIIE
VARIABLE RREA SIIE
HAXTHUM STACK SIIE
379 LINES READ
{0 PROGRAY ERROR(S)

END OF PL/M-BO COMPILATICN

A67

FL/H-80 COMPILER PASE

ISIS-11 PL/N-80 V3.1 COMPILATION OF MODULE MACHINEPARABOLACONTROLMODULE
OBJECT MDDULE PLACED IN :F2:paramc.0BJ .
COMPILER INVOKED BY: plsB0 :F2:parasc.ple DEBUG

(2}

O 0 o~y O

12
13
14

Pt poe bt s Pn

— e b pes

$WORKFILES(:F2:,:2F2:)
$PAGEWIDTH{BO)
$PAGELENGTH(535)

MACHINESPARARDLASCONTROLSMODULE s
D0;
/8 FILESNAME “PARAMC' 8/

A RERe iRt iaeeRe iR nyeestaesessiiysonsiasitsiississiitsetitiy

1 L3
/131888 EXTERNAL VARIABLES DECLARATIONS 131811 Y)
/3 8/

JERRBSRRERRRRISRRBRLRRIRaRIRuORRsseRssaRsRRLERREIRLILLLLILILIILILIY/

DECLARE FORNSLENGTH BYTE EXTERNAL;
DECLARE ROLLERS$POSITION ADDRESS EXTERNAL;
DECLARE PORT$2RHSOUTPUT BYTE EXTERNAL;

1

JAEI I R O N I I N RN R AN R ANY

1 ¥/
mnn PUBLIC VARIABLES DECLARATIONS 122347
3 Ly

FRRRRRSRER R R s R R s e s saRasansessssaassssasasaesensy/

/8 NONE 8/

JR et et reReierReoseeeReteRaResastieiteisisibeseiesiiy

1 1/
g LOCAL VARIABLES DECLARATIONS 1$28387)
/1 4/

AEER et ienseitRreis et rsbiseestnodsaiiscitisesisesscisety)
DECLARE CARRIAGES$PDSITIONSENCODERSPULSES ADDRESS;
/% ASCII CODE CHARACTERS #/

DECLARE ESC LITERALLY "1BH';

DECLARE QUOTE LITERALLY “27H';

DECLARE CLEARS$SCREEN LITERALLY °1AH";
DECLARE BELL LITERALLY “O7H';

DECLARE CARRIAGESRETURN LITERALLY "ODH';

DECLARE TURNINGSREQUIRED BYTE;
DECLARE TRUE LITERALLY "OFFH';
DECLARE FALSE LITERALLY “0°;
DECLARE ANSKER BYTE; -

a6

PL/H-80 COMPILER PAGE

15
16

17
18

19
20
21

22

23

DECLARE COUNTER$RESET LITERALLY ‘0000$0001B°;
DECLARE COUNTERSENABLE LITERALLY "1111$1110B°;

DECLARE CLEARSDATASFIELD LITERALLY '0';
DECLARE CLEARSADDRESSS$FIELD LITERALLY °0°;

DECLARE KBD$DPLYSCONTROL BYTE AT (1900H);
DECLARE KMODE LITERALLY “0°;
DECLARE KBNIT LITERALLY “OCCH';

DECLARE PAGE$9(#) BYTE DATA

{ESC,"="," ",'8", /8 Rl C25 §/
‘Flow-turning roller sovezents’,
ESC,"="," ', "B, I8 R2 C25 ¢/
3
ESC,"=",’£",'$", /8 RE C5 8/
"§- Roller advancing (4-5)°,
ESC,'=","$",’$", /8RS C3 ¥/
'2- Lathe switched on, carriage eoving left {5-1)',
ESC,'=","1",'$", /YR C5 W/
‘3- Parabolic contour path {1-2)’,
ESC,"=","'4",'$", /Y R7 C5 4/
'4- Lathe switched off, roller retracted (2-3)°,
ESC,‘=',BUDTE,"$", /4 RB 05 ¥/
'3- Manual eovement to datus {3-3)°,
ESC,"=",")", =", /% R10 T30 3/
1 3,
ESC,"=","+',"?", /% R12 €32 ¢/
R S 2T
ESC,"="y"y" "3, /% R13 C28 1/
4 +,
ESC,'=","-",'8", /3 Ri% C25 4/
‘4 +,
ESC,"=",".","5", /¢ R15 C22 §/
"+ +,
ESC,"=","/",'3", /8 R16 C20 8/
‘2 + +,
ESC,'=","0",'3", /8 R17 C20 ¥/
‘4 4,
ESC,'=","1','3", /% R18 C20 ¢/
'+ +,
ESC,'=",'2','3’, /% R19 C20 ¢/
R T R aaas 2SR RSN XL ST A
ESC,"=","4",'3", /% R21 C20 &/
3 4 DATUM ');
DECLARE PAGE$10{#} BYTE DATA(
ESC,"=","X"y"s", /Y R6 C27 &/
‘Flow-turning is cospleted’,
ESC, ="'k, 3", /18 R7 C27 8/

A69 |

PL/M-80 COMPILER PABE
ESC,'=',")y'8", /I$RIOCS ¥/
‘1~ Please resove the finished cosponent.’,
ESC,'=","¢",'$", /$ R12C5 &/

36

37
38
39

NN

~N

*2- Disengage the carriage and return to datus by
the handwheel.’,

ESC,*=","3','$", /8 R20 €5 &/
‘Another identical parabola ? (Y/N) then RETURN');
DECLARE MESS$1(%) BYTE DATA(

- ESC,'=",750, 80); 1V R22 €5 ¥/

DECLARE ERROR$1{%) BYTE DATA{

ESC,"~*, /% BLINKING STARTS ¢/

ESC,'=",'7",'¢", IS R4 C5 ¥/
‘Enter either Y OR N please’);

DECLARE DELETESERRORS1($) BYTE DATA(
ESC,’=*,"7",'$", /8R4 C5
ESC,'T'); /% ERASE TO END OF LINE &/

(Rt iesantaea R iR R e e e Rsitisiniisasiiessssiiiieiy)

4] ’ L4
s EXTERNAL PROCEDURES DECLARATIONS seaesy/
1 Y

PR R R iRttt R Rt tR et RrioyeiiaciesRisisissittisstisiivy

UPDDT:

PROCEDURE (PARS$Y) EXTERNAL;
DECLARE PARS$! BYTE;

END LPDDT;

ARty ettt tae e i tta R ea R eiasiatsqesesssstinitiisety

UPDAD:
PROCEDURE (PAR$2) EXTERNAL;
DECLARE PARS2 ALDRESS;

END UPDAD;

JR iRttt R iR aeieeseneesasRrieitsecsiesiestasitiisctssy)

CONSOLESOUT:

PROCEDURE(CHAR} EXTERNAL;
DECLARE CHAR BYTE;

END CONSOLES$DUT;

JRRattiRe et Raieuiiessatiatinseasesiniiteitetisesitersttsctity)

MESSAGE:

PROCEDURE(POINTER,LASTSELEMENT) EXTERNAL;
DECLARE POINTER ADDRESS;
DECLARE LASTSELEMENT ADDRESS;

END MESSAGE; :

AEeR2eeseesetetsteesasinsesifsitstnsecsstntttititesitstiiey)

A70 |

3

PL/H-80 COMPILER PREE 4

40
1

42

13
7

M

Ly
48
49
30
b))

92

93
1]
59
9b
o8

i
2

NN

N L LN NN

CONSOLESIN:PROCEDURE BYTE EXTERNAL;
END CONSOLESIN;

TREBRaRR R e g e s an e s nseaansstassssastassnasasnssnssess/
BET:
PROCEDURE(TARBETSCHAR) EXTERNAL;
DECLARE TARGET$CHAR BYTE;
END GET;
JAS Rttt R LR eaessasessesssssssy/

PRREaseseressetniaiteiisstttiiasatacinbaseetietesiitssitesitiitiiyy

I3 1)
Rttt LOCAL PROCEDURES DECLARATIONS sy
/% 8/

JERSRERERERRRESR TR tRReRIsa st aasaeaeansaasssaasneRsansIsIBILILY/

e 20e e e ReteretesieriResitcitsiotestotisesiiteittstesssttsity

/% FUNCTION: SHAFTSENCODER (ENCODER 8-BIT INPUT) , y/
/% PARANETERS INPUT: NONE L4}
/% DUTPUTS: 1&-BIT VALUE IN (.CARRIAGE$POSITIONSENCODERSPULSES) 8/
/% PROCEDURE: LOCAL s/
/% CALLS: NOTHING 1/
/% DESCRIPTION: THE ACCUMULATIVE VALUE OF THE COUNTER WILL BE &/
/t STORED IN TKO BYTES(16-BIT), THE HIGH AND THE ¢/
it LOW. PORT$29H WILL BE READ, THE LOW BYTE WILL ALL 8/
it THE TIME BE READ AND UPDATED, IF THE VALUE EXCEEDS ¥/

il 256 THEN 1 WILL BE ADDED TO THE HIGH BYTE. PULSE.HIGH &/
/¢ AND PULSE.LOW ARE STORED IN MEMORY WHERE THEY ARE REFERED 3/
/¢ 70 BY THE GLODBAL VARIAHLE CARRIAGE$POSITIONSENCODERSPULSES. #/
JUESREARIER IR ISRt s RN NI TaRRReaRLRLRIIRILIRISIILY/

AR Y

SHAFT$ENCODER: Yy
PROCEDURE ADDRESS; 188/
DECLARE PULSE STRUCTURE(LOW BYTE,HIBH BYTE) AT AR Y
{.CARRIAGESPOSITIONSENCODERSPULSES); Yy

DECLARE READSCOUNT BYTE; 8 8
DECLARE NODFREADS LITERALLY "10°; s
DECLARE COUNTER BYTE; R
DECLARE COUNTER$1 BYTE; RRY
DECLARE PORT$29H LITERALLY "29H"; 8 8

18 8/

/% THE CODE DEBOUNCES COUNTER BY SOFTWARE $/

RETRY:
READS$COUNT=ND$OF $READS;
COUNTER=INPUT(PORT$29H) ;
DD WHILE READSCOUNT>O;
COUNTER$1=INPUT{PORT$29H);
IF COUNTERC)>COUNTER$! THEN 60T0 RETRY;
READSCOUNT=READSCOUNT-1;

A71

e e cwp e . oo

R o b m A e e e

PL/H-80 COMPILER : PABE 5

¥ 3 END; /8 WHILE &/

80 2 IF COUNTER(PULSE.LOW THEN 88/

61 2 PULSE.HIGH=PULSE.HIGH+1; ARV

62 2 PULSE.LOW=COUNTER; iR
/% DISPLAY COUNTER'S VALUE ON SDK-B5 LED'S 8/

63 2 CALL UPDDT{COUNTER);

64 2 CALL UPDAD{CARRIAGESPOSITIONSENCODERSFULSES);

8 2 RETURN CARRIABGE$POSITIONSENCODERSPULSES; 8 8/

66 2 END SHAFT$ENCODER; iR Y

88/
JARREE R0 ietsoa sttt nsteyttsit it rsinsitessasitasipaseiasesiiitty)

JR32edtedRtieaieaisaasotttetsetiatrettiessussteastiybitseisisey)

/% FUNCTION: ADCSINPUT {12-BIT ADC) 4/

/% PARAMETERS INPUT: ANALOGUE VOLTABE {0-10) VDLTS Y

/% OUTPUTS: DIGITAL VALUES {0 - 1023) 8/

* /% PROCEDURE: LOCAL t/

/% CALLS: TINME 8/

/% DESCRIPTION: GUTPUT PULSE LOW (00) AND THEN OUTPUT s/

I} PULSE HIGH (02) VIA PORT$ZAH BIT$1 TD START ¥/

it CONVERSICN, WAITS TILL CONVERSION IS COMPLETED, #/

1t THEN INPUTS THE VALUES FROM PCRTS L4

it 21H (8-BIT) B LSB'S 8/

3] 23H (9-12 BIT) 4 M8B'S t/

AREERe Rt e i iesatiacietieeesieeeitetistiiteitstasttisasessitty)

It 8

67 1 ADCSINPUT: 88/
PROCEDURE ADDRESS; Y

68 2 DECLARE ADC$CONVERT LITERALLY "1111$1101B°; 217
89 2 DECLARE ADCSIDLE LITERALLY "0000$0010B"; Y
70 2 DECLARE PORT$21H LITERALLY "21H'; /% ADC 1-8 BIT 1/
2 DECLARE PORT$23H LITERALLY "23H"; /¢ ADC 9-12 BIT 1/
72 2 DECLARE PORT$2AH LITERALLY "2AH"; /8 START CONVERSION 4/
732 DECLARE ADC$INSWORD ADDRESS; R
"2 DUTPUT(PORT$2AH)=PORT$2AH$OUTPUT AND ADC$CONVERT; Ry
7% 2 OUTPUT(PORT$2AH)=PORT$2AHSOUTPUT OR ADCSIDLE; e
6 2 CALL TIME(1); /% A DELAY DF 100 MICRDSECONDS UNTIL s/
/3 CONVERSION IS COMPLETED 4/

/% READ PORT 23H, MASK OFF 4 MSB'S, DOUBLE IT(i.e ADD 8 ZERD 8/

4 T0 THE LEFT) AND THEN RDTATE LEFT 8 DIGITS. 7

7 2 ADCS INSWORD=SHL (DOUBLE(INPUT(PORT$23H) AND 0000$1111B),8);/% 8/

/% ADD THIS VALUE TO THE INPUT OF PORT$2IH AND THEN ROTATE 8/
1t RIGHT 2 DIGITS (70 RID OFF 2 LSB'S). - §/

A72l

PL/H-80 COMPILER PABE &

78

79
80

81

82
B3
84
5]
8k

87

88

69

90

9

92

93

%

2

2
2

[y

LSRG N B SO X]

>

ADB’INSHDRD=SHR((ADCSIN$HORD¢INPUT(PORT$21H)),2); 88
RETURN ADCSINSWORD; /¢ RETURN 10-BIT VALUE (POSITION) ¥
END ADCSINPUT; s 8
s

AR At Rttt Ryt ansinssteasitnsitatieeiiesiiseiiesiitiity]

A eietiReesRasieieensiisessstissyiteadditessisietiisiticiiiised]

/% FUNCTION: ADVANCE THE ROLLER A GIVEN DISTANCE, $ -
/% PARANETERS INPUT: ADVANCE DISTANCE IN ADC STEPS. $/
/% DUTPUTS:NDNE. - 1/
/% PROCEDURE: LOCAL s/
/t CALLS: ADCS$INPUT. s/
/% DESCRIPTION: 8/
/1 THE CURRENT TOOL POSITION IS INPUT AND TOOL s/
1t ADVANCE INITIATED IF REOUIRED. TOOL POSITION 15 8/
It CONTINUALLY MONITORED AND TOOL ADVANCE TERMINATED ¢/
I WHEN THE SPECIFIED POSITION IS ACHIEVED. . ¥/

PRttty R e R ReReiResieRrssaiastesitississityl

TODLSADVANCE:

PROCEDURE (ABSOLUTES$POSITIONSADCASTERS);
DECLARE ABSOLUTE$POSITIGN$ADCSSTEPS ADDRESS;
DECLARE PRESENTS$POSITIONSADCSSTEPS ADDRESS;
DECLARE ADVANCESDACSVALUE LITERALLY "183°;
DECLARE STOPSDACSVALUE LITERALLY "128';
DECLARE PORT$22H LITERALLY "22H";

/% IF ABSOLUTE POSITION 15 LESS THAN THE MAXIMUM VALUE ¢/
/3 {O3FFH), 60 THROUGH THE ROUTINE. §/

IF ABSCLUTE$POSITIONSADCSSTEPSCOIFFH THEN
D0;

/% READ PRESENT POSITION 8/
PRESENT$POSITIONSADCSSTEPS=ADCS INPUT;

/% RDVANCE TOOL 8/
OUTPUT(PORT$22H)=ADVANCE$ DACSVALUE ;

/% ADVANCE AND COMPARE THE TWD DISTANCES 8/
DO WHILE PRESENT$POSITIONSADCS$STEPSC
ABSOLUTESPOSITIDNSADCSSTEPS;

/% READ AGAIN 8/
PRESENT$POSITIONSADCSSTEPS=RADCSINPUT;

END; /% DD WHILE &/

/% STOP TOOL 8/
DUTPUT{PORT$22H)=STOP$DAC$VALUE ;

A73

PL/H-80 COMPILER

95

98

97
98
99
104
1

102

104

105

106

107

108

109

3

—

LSS 2N B AN I G I N]

END; /8 DO 8/

END TOOLSADVANCE;

PABE 7

JR3te3eeaRitteiiesttnstasttustestacistssieitasissbessietiesitesiy)

JURBIRIORRABERSIRRIRNEa IS RRiReRnsessnsastasssiaasasanssssansstiey/

/% FUNCTION: RETRACT THE ROLLER A GIVEN DISTANCE. 8/
/% PARANETERS INPUT: RETRACT DISTANCE IN ADC STEPS. 8/
/% BUTPUTS: NONE.)
/% PROCEDURE: LGCAL. 8/
/% CALLS: ADCSINPUT. 1/
/% DESCRIPTION: 9]
% THE CURRENT TOOL POSITION IS5 INPUT AND TOOL Y
1 RETRACT INITIATED IF REQUIRED. TOOL PGSITION IS &/
it CONTINURLLY MONITORED AND TOOL RETRACT TERMINATED 8/
t WHEN THE SPECIFIED POSITION IS ACHIEVED, 4/

ARt Raetaesinstnteeristesintteistersesinieninciasitsesiftsiiciiiy

TOOL$RETRACT:)

PROCEDURE (ABSCLUTE$POSITIDNSADCSSTEPS);
DECLARE ABSOLUTESPOSITIONS$ADCSSTEPS ADDRESS;
DECLARE PRESENT$PGSITIGNSADCSSTEFS ADDRESS;
DECLARE FETRACTSDACSVALUE LITERALLY '73";
DECLARE STGPSDAC$VALUE LITERALLY "128°;
DECLARE PORT$22H LITERALLY “2ZH';

/% READ PRESENT POSITION 8/

PRESENT$POSITIONSADCSSTEPS=ADCSINPUT;

/% RETRACT TOOL 8/
OUTPUT (PORT$22H)=RETRACTSDACSVALUE;

/% RETRACT AND COMPARE THE THO DiSTANCES 8/
DO WHILE PRESENT$POSITIONSADC$STEPS)
AESOLUTESPOSITIONSADCSSTEPS;

/% RERD AGAIN 8/
PRESENT$POSITIONSADCSSTEPS=ADCSINPUT;

END; /% DO WHILE 8/

/% STOP TO0OL $/
OUTPUT(PORT$22H)=STOP$DACSVALUE;

END TODLSRETRALT;

FR ARt e R e ey iRy yeaesenseessaesitptasiesseinistsstssssifi

/

PRt Rt e e e R ysiiRaeeesstietsssnisiodsptassitesictiify

A74

PL/H-80 COMPILER PAGE B

110

m
112
113
114
115
118

117

118

119

120

NN NN

/% FUNCTION: PARABOLA INTERPOLATION

s/
/% PARRMETERS INPUT: INTERPOLATIONSENCODERS$PULSES (ADDRESS) 1)
/% QUTPUTS: PARABOLIC CONTOUR 3/
/% PROCEDURE: 1Y)
/% CALLS: SHAFTSENCODER, TOOL$RETRACT . 1)
/% DESCRITPION: A PROCEDURE TO DESCRIBE THE PARABOLA CONTOUR. &/
/% THE PROCEDURE MONITORS THE CARRIAGE POSITION AND 8/

3] AT INTERVALS OF 16 ENCODER PULSES EXTRACTS THE ROLLER 8/
/% POSITION REGUIRED TO MAINTAIN THE PARABOLIC CONTOUR FROM THE 8/
/% LOOK-UP TABLE AND RETRACTS THE ROLLER TD THAT POSITION. t/
PRetiesiininsinseaiieiteinsintesietesietntieseititinitotiitiieitny)

PARSINTERPOLATION:
PROCEDURE (INTERPOLAT IONSENCODERSPULSES) 5

DECLARE INTERPOLATION$ENCODERSPULSES ADDRESS;

DECLARE MOVED$DISTANCESENCODER$PULSES ADDRESS;

DECLARE ABSOLUTESADCSSTEPS ADDRESS;

DECLARE Y1ADCSTEPS ADDRESS;

DECLARE ADCS$RESDLUTION LITERALLY 'B';

DECLARE J BYTE; /t PARAEOLA RADUIS, NUMERATOR AND 8/
/3 DENOMENATOR INDEX t/

DECLARE INCREMENTSSENCODER$PULSES LITERALLY "186°

DECLARE PARASNUN(72) ADDRESS DATA(131,524,451,45,
951,704,806,90,528,941 ,957,405,295,852, 123,30,
941,193,377,456, 485,177, 355,810,205, 813,853,869,
929,492,471,637,583,292,956, 385,160,969, 347,187,
995, 485,718,708,710, 710,533, 443,849,820, 961,387,
b45,1000,479,934,49,799,958,95, 491, 942,823,803,
223,739,697,523,359,354, 19,899} ;

DECLARE PARASDEN(72) ADDRESS DATA(34747,34747,
19186 ,746,10196,5187,4363,373,1729, 2549, 2054,
746,463,1153, 145,373,882, 158,277,435, 412,97, 178,
373,87,319, 314,294,293, 145,130, 165, 142, 67,207,
79,31,178,64,31,157,103,103,97,93,89, 64, 51,9,
B7,98,36,61,91,42,79,4,63,73,7,35,65,55,52, 14,
45,53,30,20,19,1,45) 5

/% VALUES OF THE RADIUS COMPENSATION ALONG THE ¢/
1t PARABOLIC CONTOGUR (ADC STEPS) §/

DECLARE RADSCON(72) BYTE DATA(0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,

/% INITIALISE THE MOVED DISTANCE 8/

|
4&755{

PL/M-B0 COMPILER PABE 9

124
122

123

124

123

126
127

131

L2]

2]

MOVED$DISTANCESENCODERSPULSES=0
3=0

-e we

/¢ CALCULATE AND THEN RETRACT TO THE NEXT ARSOLUTE 8/
/8 POSITION AND UPDATE THE CURRENT CARRIABE 8/
/% POSITION FOR EACH RERUIRED INCREMENT OF CARRIABE 8/
/8 POSITION. 4/

DO WHILE MOVEDSDISTANCESENCODER$PULSES(=
INTERPOLATIONSENCODERS$PULSES;

/% UPDATE THE MOVED DISTANCE 8/
HOVEDSDISTANCESENCODERSPULSES=
HOVED$DISTANCESENCODERSPULSES
+INCREMENTS$ENCODERSPULSES;
DO WHILE CARRIAGE$POSITIONSENCODERS$PULSESC
NOVED$DISTANCESENCODERSPULSES;
CARRIAGESPOSITIONSENCODER$PULSES=SHAF T$ENCODER;
END; /% DO WHILE CARRIABE FOSITICN 8/

/% CONVERT FROM MILLIMETERS TO ADC$STEPS 3/
YL$ADCSSTEPS=PARASNUM(J) $ADCSRESOLUTICN/PARASDENIJ);

IF (28 ({PARASNUM(J)SADCSRESOLUTION) MOD PARASDEN(J)))
© »=PARASDEN(J) THEN
Yi$ADCSSTEPS=YI$ADUSSTEPS+L;
/% CALCULATE THE NEXT ABSOLUTE POSITION 8/
ABSOLUTESADCSSTEPS=ROLLERSPOSITION-Y1$ADCSSTEPS+RADSCOM(J
/% RETRACT TO THE NEXT ABSOLUTE POSITION &/
CALL TOOLSRETRACT{ABSOLUTESADCSSTEPS);
J=J+1; /¥ UPDATE THE PARAEOLA INDEX 8/
END; 7% DO WHILE MOVED DISTANCE 8/
END PARSINTERPOLATION;
AR ReesRaeeiasieas ettt et insinsiastesitiinsitsiissessiity

RRRRRRRRSARRRRE 2222 R RRRRRR2 22222020228 RE0R00R0802RRRRRRLELSEEY)

1t 7
/334184 PUBLIC PROCEDURES DECLARATIONS 131000
| : s/

JRREBESEEBRRRRRRRaRRaNBaRuaRsasaResassnssessssasansssaasesrtyy/

JASSARIIEEISANNEEIEEIIINNNTLIIRRTILISRRNNIIRRRIBLIRRRIILIRIRIILY/
/% FUNCTION: MACHINESPARABOLASCONTROL (CONTROL TOOL MOVEMENT) 8/
/¢ PARAMETERS INPUT: DEFINED IN PREVIOUS PROCEDURES 4/

A76 ;

PL/N-BO COMPILER

139
140

141
142

/% OUTPUTS: DEFINED IN PREVIOUS PROCEDURES
/% PROCEDURE: PUBLIC
/% CALLS: SHAFTSENCODER, TODL$ADVANCE, PAR$INTERPOLATION,

3 TOOLSRETRACT, CONSOLES$DUT, MESSABE.

/¢ DESCRIPTION: TOOL MOVEMENT CAN BE SUBDIVIDED INTD THE
/1 FOLLOWING SEGEMENTS:-

/3

/¢ {4 70 5) ADVANCE TOOL (LATHE IS GFF)

It OPERATE LATHE, INITIALISE COUNTER

/¢ (3 70 1) MDVEMENT WHILE TOOL IS HELD IN POSITION
/¢ (1 70 2) CONTOUR SHAPE (PARABOLA)

11 SWITCH OFF LATHE

/% (2 T0 3) RETRACT T0OL

PAGE 10

4/
4/
4
t/
L)
4/
8/

R

8/
4/
4
s/
§/

ARt Rt eR Rt RepRartRseestnseasttotseesiesitositidassttitniivy

1

/1 | tetttetttteetttddtttieess §
13} + +
/1 +
/t +
/% +

1 +

/4 +

/1
/
i
/1t
/¥
T4} +
/1t T dttttttiedii bbbt itittbbiiiit bt 4
/!

i

LS]

+ - o+ o+
P T T S G

¥/
4/
4/
4/
t/
1/
§/
/
t/
8/
4/
8/
1/
Y/
1/
¥/
4/

AIRREIRERIRIRARRRARRELRERERRARAARRIRRAANLRI SR 2222232088 88Y)

BACHINESPARABDLASCONTROL :
PROCEDURE PUBLIC;

DECLARE FORMSLENGTHSENCODERSPULSES(45)ADDRESS DATA(472,488
,504,519,535, 551,567,562, 598, 614,630, 445, 481 , 677, 493
,708,724,740,756,771, 787,803,819, 835, B50, 866, 882, 858
,913,929,945, 961,976,992, 1008, 1024, 1039, 1055, 1071
,1087,1102,1118,1134,1150,1165) ;

DECLARE INTERPOLATIGNSENCODERSPULSES ADDRESS;

DECLARE PORT$ZAH LITERALLY "2AH";
DECLARE J BYTE; /# BET THE FORMSLENGTHSMM INDEX 8/

/% MASKS TO CONTROL LATHE 8/
DECLARE PORT$2AH$STARTSLATHE LITERALLY *0000$0100B';
DECLARE PORT$2AH$STOPSLATHE LITERALLY "§111$1041B°;

/% DAC CONTROL VALUES 8/

A77

]
|

PL/M-80 COMPILER PAGE

143
144

145
144
LY}
148

149
150
1
152

53
14

155
136

159

169

161
162

163
164

N oN ~N N

NN RN

(72

.~

(]

DECLARE RETRACTSDACSVALUE LITERALLY "73°;
DECLARE STOP$DACSVALUE LITERALLY 128

DECLARE PORT$2BH LITERALLY °'2BH";

DECLARE PORT$2BH$INPUT BYTE;

DECLARE PORT$2BHSADVANCED LITERALLY "0000$0001B°;
DECLARE PORT$2BH$CARRIAGE LITERALLY "(000$0100B’;

DECLARE OLDS$POSITIONSENCODER$PULSES ADDRESS;
DECLARE NEWSPOSITIONSENCODER$PULSES ADDRESS;
DECLARE COLNTS$1 BYTE;
DECLARE COUNTS$2 BYTE;

1

LR et Re Rt e Ry ienyeReseotieasiotsessditisasicsiisisiy)

I 8/
3832} CALCULATIONS PRIOR TO THE PROCESS 1823887)
/1 4/

ettt ateeseetasteieseaiistactiesetiiiteiiasiesiiiisiasiseiesy)

J=FOEMSLENGTH-30; /¢ GET THE FORMSLENGTHSHM INDEX §/
INTERPOLATIONSENCODERS$PULSES=FCRM$LENETHSENCODERS$PULSES (1) 5

TURNINGSREGUIRED=TRUE;
D0 WHILE TURNINBSREQUIRED;

CaLL CSNSGLE$GUTiCLEﬁR$SCREEN); /% CLEAR SCREEN 8/
CALL MESSAGE(.PAGES9,LAST(FABEST)); /4 PABE 9 &/
PR Rt i iR esa et R RaesasseiinsisiisitisRshsbesisey

/488 INHIBIT COUNTER UNTIL INTERFOLATION BEGINS, INITIALISE 3/
/438 SET LINE 70 TRUE {¥V) Ly

PORT$2AH$DUTPLT=PORTSZAHSOUTPUT OR COUNTERS$RESET;
BUTPUT(PORT$2AH)=PORTS2AHSDUTPUT;

R R Rttt iRty iasRiRseRsiusstassesbitesintiissesy)
/383 INITIALISE SDK-BS KEYBOARD DISPLAY #33/

KBD$DPLYSCONTROL=KNDDE;
KBD$DPLYSCONTROL=KBNIT;

JA38ees PRt iResEattiesieeiasistatbasiRestastessessscRtiesinityl
{433 CLEAR SDK-B5 KEYBOARD DISPLAY $3%/

CALL UPDDT(CLEARSDATASFIELD);
CALL UPDAD{CLEARSADDRESSSFIELD);

118202320 480200880282 R st eRR023222e 24222082223 R012E232%¢88)

) !
A78 :

PL/N-B0 COMPILER PAGE 12

165

166

167

18
169

170
171
172
173

174
175

3

3

) e

N N Y R

e A

/438 DAC INITIALISE 888/

OUTPUT(22H)=STOP$DACSVALUE;
RRtseeedteasiceieettribteisetsvasinsiaienseasiitesittsiteity]
/338 INITIALISE ADDRESS POSITION #83/
CARRIAGESPOSITIONSENCODERSPULSES=0;

PR ERe iRt aeiRa ettt aitiiesiaitssiasisiessseiiy)

% t/
iLt THE MAIN PROGRAM 13147
/3 1/

AR EReRtRee e siteiitiracrsRtitesietseiinspissiseiiiity

[el atiatse e attettetiioateesiiiasatontasoneiisstesitasatsbast
-

i1 ADVANCE TOCL (PDSITION 4-5) 1/
CALL TOGLSADVANCE (ROLLER$POSITION); A Y
ity

P R iR e Rt R R Rt iratati et siritiatititssibatitsetyl
/151 SWITCH LATHE ON 111/
PCRT$2RHSOUTPUT =PORT$ZAHSOUTFUT CGR PORT$2AHSSTARTSLATHE; /3 8/
OUTPUT(PDRT$ZAH)=PORTIZAHSOUTPUT; Yy

PR R R R R R R R et R R iRt iRt ssiisiityy
/133 CARRIAGE WILL START MOVING LEFT (POSITION 3-1) 1/

/% WAIT TILL CARRIAGE SWITCH IS CLOSED ¢/

PORTZEH INPUT=INPUT (PDRT$2BH); /% READ PORT &/

DO WHILE {PCRT$2BH$INPUT AND PORT$2BH$CARRIAGE)=0;
PORT$2BH$INPUT=INPUT(PORT$2EH); /¢ READ AGAIN 8/

END; /% DO WHILE &/

88/
PR R R R R asReitsaeatsRoteinseatiesiRe sestisiety)

/438 ENRRLE COUNTER #8383/

PORT$2AH$0UTPUT=PORT$2AHS$OUTPUT AND CDUNTER&ENAELE,
OUTPUT (PORT$2AH)=PORT$2AH$CUTPUT;

FREERERRBURSRanROtaRniasnasnsaneasserssteanssaneeanssesssssnssy/

/888 PARRBOLIC CONTOUR (POSITION §-2) .ittl

A79 |

PL/M-B0 COMPILER PABE 13

176

1m
178

179

160
181
182
183

164
185
186
187
188

189
190
191
192
193
194
195
196
197
198
199

200
201

= e A A

ol B N N b

i Be e YN LN e e N N N

£)

R

CALL PAR$INTERPOLATION{INTERPOLATIDNSENCODERSPULSES); 18 8
88/

JRRRAREEREeR Rt tuatantn st teasansarsanssesstssestaseanastsssessy/
s

/% SWITCH COFF THE LATHE 4
8/

PORT$2RHS$DUTPUT =PORT$2RH$DUTPUT AND PORT$2AH$STOPSLATHE; /8 8/
OUTPUT (PORT$2AH) =FORT$ZAHSDUTPUT; 2R

R iR Reo R Rt iRttt et eRraerissatsssicsitsetissitstity]

1111 RETRACT TOOL (POSITION 2-3) s/
1 RETURN TO DATUM "y

PORTS$2BH$INPUT=INPUT{PORTS$2BH); /% READ PORT &/

/t ADVANCE PISTON TILL IT REACHES DATUM 8/
/% MOVE PISTON TILL IT HITS ADVANCED SWITCH %/

IF (PORT$2BH$ INPUT AND PORT$2BHS$ADVANCED)=0 THEN

no;
QUTPUT(Z22H)=RETRACTSDACSVALUE; /% START ADVANCE TO DATUM &/
PORTSZEHS INPUT=INPUT(FORT$2BH); /8 READ FORT ¢/

DO WHILE (PCRTS2EHSINPLT AND FORTS2EHSADVANCED)=0;
PORTS2EH$ INPUT=INPUT (PORTS$2RH); /8 READ AGAIN 8/
END; /% DD WHILE ¢/
END; /% D0 8/
BUTPUT(22H)=STOPSDACSVALUE; /% STOP PISTON ADVANCE ¢/

PR R Rt bR e e Rt R R eRe it i Rt patietitseititiestity)

/% A RCUTINE 7O DISPLAY THE CARRIAGE POSITION ON THE SDX-85 ¢/
/% EVERY 0.5 SECONDS TILL LEADSCREW 1S STATIONARY 1/

DLDSPOSITIGNSENCODERS$PULSES=SHAFTSENCRDER;
COUNT$1=0;
DO WHILE COUNTS$1<10;
COUNTS2=1;
00 WHILE COUNT$2¢=25;
CALL TIME(200);
COUNT$2=COUNT$2+1;
END; /% DO WHILE 8/
NEW$PDSITIONSENCODER$PULSES=SHAF T$ENCODER;
IF NEW$PDSITIONSENCODER$PULSES=DLD$POSITIONSENCODER$PULSES THEN
COUNT$1=COUNTS1+1;
ELSE
D0;
COUNT$1=0;

AS80 |

PL/K-80 COMPILER PAGE 14

202 35 0LD$PUSITIONSENCDDER3PULSES=NEH$PDSITION‘ENCGDER$PﬂLSES;

203 5 END; /8 ELSE ¢/

204 4 END; /% DO WHILE &/

[A322eeeiReeitatyiiaeyotasssessstaltestpeesiatasdisaiiiaasissssss]

-

209 3 CALL CONSOLESOUT(CLEARSSCREEN); /8 CLEAR SCREEN 8/

206 3 CALL MESSAGE{.PAGE$10,LAST(PAGE$10)); /% PAGE 10 8/

07 3 ANSWER=CONSOLE$IN; /3 GET REPLY 8/

208 3 DO WHILE ANSWER{>'Y" AND ANSWER(>'N';

209 4 CALL CONSOLESDUT(BELL);

210 4 CALL MESSABE{.ERKOR$!,LAST{ERRORS1));

211 4 ANSWER=CONSDLESIN;

212 4 END; /% DD WHILE ¢/

A3 3 CALL MESSAGE(.DELETESERRDR$1,LAST(DELETESERRDRS1));

214 3 CALL MESSAGE{.MESS$1,LAST{MESS$1));

213 3 CALL CONSOLESOUT{ANSKER);

216 3 CALL BET{CARRIABE$RETURN};

2173 IF ANSHER='N" THEN

218 3 TURNINGS$REGUIRED=FALSE;

219 3 END; /¢ DD WHILE &/

20 2 CALL CONSOLESOUT{CLEARSSCREEN);

221 2 END MACHINESPARAEOLA$CONTROL;

PR Rt R R R R Rt RiReieioasiotetatotototsstsey

22 1 END MACHINE$PARABDLASCONTROL $MODULE;

HODULE INFORMATIDN:

CODE AREA SIIE 0BASH 2213D
VARIAELE AREA SIZE = 0024H 36D
HAXINUM STACK SIZE = 000BH 8D
697 LIRES READ

0 PROGRAM ERROR(S)

END OF PL/N-BO COMPILATION

|
A81 l

aseB0 sf2:disply.ase debug

18i5-11 8080/8085 MACRO ASSEMBLER, V4.1 DISPLA PASE 1

m

LoC O8J LINE SOURCE STATEMENT

1 $PAGEWIDTH(B0)
2 $PAGELENGTH{3])

3
T C RSt a L LA e ettt tiitititatittattatetstnateaige
5.
6 NAME DISPLAY
7
R PR T e e e PR T e Rt u e tatsttatatsitittatiteteitnisteis,
16 PUELIC UPDDT
1 PUBLIC UPDAD
12
IR LA eyt e Ie et Rt LRt atetatttititatstttttatateatatstss
14 :
20F3 13 DIFF EQU 20F9H
4301 1 BTFLD EAU MM
090 17 RDISP EAL 5
034 18 Wi B 9
1900 19 SNTRL SO 1500H
4208 20 DINSK EGU 08
1800 21 BSFLY S iBCOM
22
23 P E ERE E S L R LA LR LA AL A L AR Y
24 £5E5
25 (IEIIEE I IR IR R LR IS IR SRR IR R R IR LR IRLY
2% HIDSP:
4000 74 27 4y AD j SET FIRST DATA BYTE
3001 OF 28 RRC ; CONVERT 4 HIGH ORDER BITS
0002 GF 29 RRC ¢ /16 A SINGLE CHARACTER
4003 OF 30 %RC :
0004 OF 3 RRC ;
G305 EAOF 32 ANLOOFH
0007 21F920 33 LI H,GECFF : GET AGBRESS OR OUTFUT BUFFER
0008 77 34 MOV M,A; STGRE CHARACTER IN GUTPUT
35 : EUFFER
0603 74 3 MV A, ; GET FIRST DATA BYTE AND
37 ; CONVERT 4 LON ORDER
000C £&0F 38 ANI OFH ; /BITS T A SINGLE CHARACTER
D00 23 3 NN H s NEXT BUFFER POSITION
000F 77 o MOV M,A ; STORE CHARACTER IN BUFFER
0010 7B 8 MV AE ; GET SECOND DATA BYTE
0011 OF [} RRC s CONVERT 4 HIGH ORDER BITS
0012 OF 13 RRC : /10 A SINGLE CHARACTER

A82 |

151S-11 §080/8085 MACRD ASSEMBLER, V4.1 DISPLA PRBE 2

L0C GBJ LIKE SOURCE STATEHENT
6013 OF 44 RRC :
0014 OF 45 RRC H
0015 EAOF 44 ANI OFH :
6017 23 §7 Ny H ; NEXT BUFFER FOSITION
018 77 48 nov HA 3 STORE CHARACTER IN BUFFER
0019 7B 45 HOV f,E 3 GET SECGND DATA EYTE AND
20 ; CONVERT
i1 ; LOW ORDER
0614 EBOF 3z ANT (FH ; /4 BITS TO A SINGLE CHARACTER
001C 23 53 INX H ;3 NEXT BUFFER POSITION
001D 77 34 HOV HA ; STORE CHARACTER IN BUFFER
0G1E 21F929 35 LIl H,GRUFF 3 RETURN FDERESS OF QUTPUT
34 ; BUFFER INH & L
w21 9 57 RET :
38
D S R R R PR R e R RN uee Rt ssativsssiestelotaedssi]
&0 DUTFT
51 SRC ; USE DATA FIELD ?
¥ if JuTod 4 YES-20 SET UF TD USE DATA
83 ; FIELD
54 ¥l £.4 ; NO-CGUNT FOR ADDRESS FIELD
55 MYVl R.ATISP ; CONTROL CHERACTER FOR DUTPUT
5 ; TC/ADDRESS FIELD OF DISPLAY
Q0ZA LI3100 © 47 IMP aurLe
(620 DEO2 68 CUTSS: ¥V £,2 ;+ ZOUNT FOR DATA FIELD
0ZF 3E94 &9 By A,DDISP ; CONTRGL CHARACTEY FOR DUTPLT
70 ; T0 DATA FIELD/ OF DISPLAY
2631 320019 71 2UTio: STA ONTRL
{034 7E 72 QUTIS: MOV AN ; GET CUTPUT CHARACTER
0035 EB 73 ICHG ; SAVE CUTPUT CHARACTER ADDRESS
74 ;s INDYE
0036 216620 C 73 L H,DSPTR ; BET DISPLAY FORMAT TABLE
76 ; ADDRESS
9939 85 77 ADD L : USE OUTPUT CHARACTER AS A
78 ; POINTER TD
203A &F 79 MOV L.A ; /DISPLAY FORMAT TABLE
6038 7E 8o Moy AN + BET DISPLAY FORMAT CHARACTER
81 + FROM THBLE
¢03C 61 82 MOV H,C ; TEST COUNTER WITHOUT CHANGING
B3 i 1T
003D 25 84 OeR H : 15 THIS THE LAST CHARACTER ?
Q03E C24700 C 85 JINI QUT20 ; NO-B0 OUTPUT CHARACTER AS IS
0041 05 s DCR B ; YES-IS DOT FLAG SET ?
0042 C24700 € 87 INI DUT20 ; ND-G0 OUTPUT CHARACTER AS 15

A83

1515-11 B0B0/8085 MACRD ASSEMBLER, V4.1

L0C ORJ
0045 F40B
0047 2

048 320
6048 E

4040 23
(04D 0D

G048 C23400

a1 09

0432 31
G333 CDO000

¢0ah 39
{03E CDOR00
0061 AF
452 CD2260
(6 C9

1086 F3
0067 60
0068 BS
0069 F4
00LA b6
006B Db
006C b7

LINE

f8

89

30

91

92

93

54

93

95

37

38

79
1460
101
192
163
104
142
196
17
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

B

SOURCE STATEMENT

i1

ouTZ0: CMA

STR
ACHB
NX
icR

Jh

RET

DTHSK
;
DSPLY 3
;
;
H i
€ H
ouTis
;
;

SPLA PAGBE 3

YES-OR IN MASK T0 DISPLAY DOT
¥ITH/ LAST CHARACTER
COMPLEMENT OUTPUT CHARACTER
SEND CHARACTER 7D DISPLAY
RETRIEVE CUTPUT CHARACTER
ADDRESS

NEXT QUTPUT CHARACTER

ANY MORE OUTPUT CHARACTERS ?
YES-B0 PROCESS ANOTHER
CHARACTER

N0 - RETURN

R 200N R iRt a s i atRsacetsatiittssiotiiisasitis:
UPLDT:

HEV
CatL
MVl

I
Hl

oy

~
TT
EAT=.

I,C H
HXDSP
A DTFLD
DuTPT

e
UPDAD:

bR :
£,L i
HiDSP
A i
GuTpPT 4

1)

R R Re e e e iRt et ieiotatieeiitiesorsitsisily

L

BSPTR

- wa wma ma me

A84

¢ i TABLE FOR TRANSLATING CHARACTERS FOR GUTPUT

DB
DB
DB
0B
DB
DB
DB

DISPLA
FORMAT

Y
CHARACTER
H 0
H i
i 2
73
i 4
H 5 AND S
i b

I515-11-6080/8085 MACRD ASSENBLER, V4.1 DISFLA PRBE 4

[REVER TN LINE SCURCE STATEMENT

006D 70 132 bB TRy 7

(0LE F7 133 DR OF7TH 3 8

G0F 76 134 DB TSRy 9

0070 77 133 By 77 A :
0071 €7 136 B 0074 ;B (LGWER CARSE)
0072 93 137 bE 33 3 C

0073 E3 138 DB JESH 3 D (LOWER CASE)
6078 97 139 g 7L R

(073 17 140 B I3 F

131

LZ i e s
143 EHD ;

HSER SYHEOLS

ADISF 4 04090 CNTRL 4 1300 DDISP A ©094 DEPLY A 1800
55PTB T 00e6 DTFLD A (GOL DTHSK A 0O0B HYDSP C 40090
DRUFF 4 20F9 QUTGS C 002D OUTI0 C 4031 GUTIE T 0034
QuT20 € 4047 DUTPT € 0022 UPDAD C 00GC LPBDT € G032

ASSEMBLY COMPLETE, ND ERRCRS

A85 |

aspB0 :f2:inro.ase debug

1518-11 BOBO/BOBY HACRD ASSEMBLER, V4.1 INRO PAGE 1

LG6C GBY

0000 3E4F
0402 L322
(0G4 DRZB
(006 E£401
G008 CAG400 €
000B 3JEGO
040D D322

000F 3E00
0011 D32A

LINE

SOURCE STATEMENT

1 $PABERIDTH{SY)
2 $PAGELENGTH(33)

3

LI PR R eoestirinsiitasesestttiodiesettsiftsl
3

b NANE INRG

7

R RS R PR R i iRt riiasiteleasisisesestity
g

i PUBLIC INRD
i

YRR a0t i soseracesriesusasussstiatins
13

14 C3EB CODE RELOCATABLE
13

16 inpninrnin e rr s i
7

8 RETRACT T4OL TC DATLM

1S

0 g11:::xxxxxxtxxx:xxt:xxxxxxxx:xxxxitxxxxzzztt
!

27 INRD: MYD A,4%H ; DUTRPUT TOOL
23 04T Z2H i RETRACT COMMAND

24 LaBfs IN ZBH ; AT TILL TCOL

25 ANI iH ; FULLY RETRACTED

5 41 Lagt
27 MVl A,B0H ; STIP

28 ouT ZZ2H ; TOOU
29

RIT SR PSR a o e e saseResettsrasttaseitiasiissesite
31

32 SWITCH OFF THE LATHE AND THE QIL PLHP

33 3 :

R et ieeerteseisssesistetingsinsassstisssi
39

36 HYI A,0H s OUTPUT TCOL RETRACT

37 OUT 2AH ; COMNAND

38

39 ARLBLIRRSAREISISLRLRRILIRASRALLLILALILLLLIILS
40 ; :

41 RETURN TO MONITOR

42 ;

AT SERRRRBLILARBRRTRLRSRERLRLIRTENLEALALISILINING

1&8(3;

1518-11 BCBO/BOES MACRD ASSEMBLER, V4.1 INRD PABE 2

LOC ©oR LINE SOURCE STATEMENT
44
0013 CF 43 RST 1
35
CY AR PRES R L0002 et Rttt eiestetetiaiisatsaciisel
48
49 END

PUBLIC SYNHOLS
o C ook

-ann

A87

aseB0 :f2:invect.asa debug

1515-11 8080/8082 MACRO ASSEMELER, V4.1 INVECT PRGE 1
LtoC oRJ LINE SOURCE STATEMENT
1 SFAGEWIDTH{80)
2 $PAGELENGTH(33)
K
4 i R R R RN L ARLILYL
3
b NAKE INVECT
7 .
DS R PR e RactirioRRtseiteiiasstitiecisitetsl
g
19 EXTRN IKRD
i1
12 pipennpnnnnsnannnnn
13
14 5 R8T 6,0 INTEREUFT YECTSR
20(8 id CRE 20C6H
2008 C30000 E 16 JKP INRD PP T
17 HI i
18 § RST 7.5 INTERAUPT VECTOR
20CE 19 OB ZOLEH
ZOCE C30000 E 20 JH#P INRD ¢ JUMP TO INTERRUPT
21 s SERVICE ROUTINE
22
PA T S e R R RS e AN iR aeeRisraaibeisitssisisstsl
24
25 END
PUBLIC SYMROLS
EXTERNAL SYMBOLS
INRD E 0000

USER SYMBOLS
INRD E 0000

ASSEMBLY COMPLETE, NO ERKORS

A88 |

aseB0 :f2:init.ase debug

I515-11 8089/B085 MACRD ASSEMBLER, V4.1 INIT PAGE 1

LEC 0BJ LIRE SOURCE STATEMENT
1 $PAGEWIDTH(BO)
2 $PABELENGTH{ 33}
3 $MODBS

R R R R R R aeese et esseiRetiisettiResitss

) O~ N Ba

NAKE INIT

RSt a e e risirtrsoseeieaeiastesotasttif

Le=JNEN s B o ¢]

PUELIC INIT

DRYEE oS IR 2

PHRIO RO R e s a1y
LSES ; CODE RELGCATABLE
R R R R R R R et PRy o it ioRsetersoinasisisss
INIT:
VD AT
SI¥ ; UNMASK RST 7.3 AND 4.9

E: i ENRBLE ALL INTERRUPTS
RE ; RETURN 7O INITIALISATION HODULE

4409 IE0T
4502 30
9003

4904 §

G P R R R R ke b pe b s b e b s b
e Ll B e D O3 g O n b

ra
on

B opunaimnnunnnnunnnnnnnnnng

) R

rd
[oe]
[44)

ND

PUBLIC STYHMECLS
INIT € Q000
EXTERNAL SYMROLS
USER SYMEGLS
INIT T 0000

ASSEMBLY COMPLETE, NO ERRORS

A89

10 LPRINT "Y VALUE","X VALUE","X RATIO"
L1} 1]

20 LPRINT *

30 FOR Y=0 TO 74 STEP 1.016
40 X=(Y"2)/273.8
30 IF Y=0 THEN LPRINT Y,X: GOTO 180
60 FOR I=1 TGO 1000

70 J=I/X

80 J(I)=INT(Jd+.35)
90 D(1)=ABS(I/J(1)-X)

110 NEXT 1
120 T=999:TI=0

130 FOR I=1 TO 1000
140 IF D(I)<T THEN T=D(I):TI=I

150 NEXT 1

160 I=TI

170 LPRINT Y,X,I;"/"33(1)
180 NEXT Y

190 END

Y VALUE

—— i — —

1.016
2.032
3.048
4,064
5.08
6.096
7.112
8.128
?.143999
10.16
11.176
12.192
13.208
14.224
15.24
16.2%56
17.272
18.288
19.304
20.32
21.336
22.352
23.36801
24.38401
25.40001
26.41601
27 .43201
28.44801
29.46401
30.48001
31.49601
32.51201

X VALUE

3.77011E-Q3

X RATIO

131 /7 34747

1.508B044E-02
3.393099E-02
6.032176E-02
9.425274E-02

© 1357239

. 18473583
. 241287

. 3053788
« 3770109
4561832
. 9428957
6371484
7389412
.8482745
. 2651479
1.089562
1.221516
1.36101

1.508044
1.662619
1.824734
1.994389
2.171584
2.35632

2.548595
2.748412
2.955768
3.170664
3.393101
3.623078
3.860595

704 / 5187
806 / 4363
Q0 / 373
°28 / 1729
Q61 / 2549
937 / 2034
405 / 746
295 / 463
852 / 1153
23 / 145
I60 /7 373
961 7 882
193 /7 1358
377 /1 277
656 / 435
6BS / 412
177 /7 97
355 / 178
810 7/ 373
205 / 87
813 /7 =19
863 / 314
869 / 294
Q29 / 293
492 / 1435
471 / 130
637 / 165

524 / 34747
651 / 19186

45 / 746

261 / 10196

A3.1: Basic program to find the integer ratios (1)

A90 |
|

N e P N S

B O L

R AR TN

33.52801
34.54401
35.56001
36.57601
37 .592

38.608

39.624

40.64

41.656

42.672

43.688

44.704

45.72

46.73599
47.75199
48.76799
49.78399
- 50.79999
51.8159%9
52.83199
93.84799
54.8639%
55.879%98
56.89598
57.91198
°8.92798
59.94398
60.95998
61.97598
62.99198
64.007%98
65.02397
66.03997
67.03597
68.07197
69.08797
70.10397
'71.11996
72.13596
73.15196

4.105652
4,358248
4.618386
4.886063
5.161281
5.444039
5.734337
6.032175

6.337554

6.650473
6.970932
7.298931

7.634471 -

7.97755

B.32817

8.68633

2.052029
9.425269
?.80605

10.19437
10.59023
10.99363
11.40458
11.82306
12.24908
12.68264
13.12374
13.57238
14.02857
14.4922

14.96353
15.44236
15.9287

16.42258
16.92401
17.43297
17 .94947
18.47352
19.00351

19.54423

583

/ 142
292 /7 67
956 / 207
I8 / 79
160 /7 31
969 / 178
367 / 64
187 /7 31
995 / 157
685 / 103
718 /7 103
28 1 97
710 / 93
710 / 89
533 / b4
443 / 51
869 / 96
820 / 87
961 / 98
367 1/ 36
646 / 61
1000 /7 91
479 / 42
934 / 79
49 / 4
799 / 63
258 / 73
95 / 7
491 / 35
942 / 65
23 / 55
803 / 82
23 /7 14
739 / 45
897 / S3
523 / 30
359 /7 20
351 / 19
19 /7 1
899 / 46

A3.2: Basic program to find the integer ratios (2)

A9l

¢ Maximum | Minimum Mean Range |Microscepe| Hardness | Reduction
| thickness | thickness | thickness in reading ':n
3 ‘_é thickness | at 10 Kg VHN (thx:kntess)
2 3 . Load perzantage
S =z reduction oac %
0 (mm) (mm) (mm) (mm) (mm)
1 1.120 0.850 1.012 0.270 0.973 19.59 36.75
2 1.198 0.841 1.019 0.357 0.888 23.95 36. 31
3 1.205 0.842 1.039 0.363 0.886 23.62 35.06
4 1.675 1.178 1.382 0.497 0.871 24.44 13.62
S 1.734 1.156 1.417 0.578 0.878 24.06 11.43
6 1.646 1.166 1.364 0.480 0.916 22.10 14.75
7 1.675 1.308 1.492 0.367 0.897 23.05 6.75
8 1.678 i.295 1.457 0.383 0.886 23.62 8.93
g i.664 1.267 1.446 0.397 0.872 24.39 9.62
10 1.670 1.416 1.551 0.254 0.892 23.31 3.06
11 1.626 1.425 1.509 0.201 1.018 17.89 5.68
12 1.585 1.428 1.501 0.157 1.023 17.72 6.18
13 1.611 i.360 1.443 0.251 1.022 17.75 39.43
14 1.625 1.403 1.496 0.222 1.018 17.8S 6.50
15 1.621 1.395 1.489 0.226 i.016 17.96 6.93
16 1.608 1.370 1.488 0.238 1.013 18.07 7.00
17 i.689 1.320 1.465 0.369 0.883 23.78 8.43
18 1.694 1.342 1.474 0.352 0.882 23.84 7.87
i9 1.643 1.318 1.468 0.325 0.8i4 27.99 8.25
20 1.621 1.294 i.467 0.327 0.8i6 27.85 8.31
21 1.655 1.296 1.4863 0.358 0.8i5 27.92 8.56
22 1.250 0.966 1.084 0.284 0.789 29.79 32.25
23 1.296 0.968 1.106 0.327 0.792 29.56 30.87
24 1.279 1.006 1.104 0.273 0.780 30.48 31.00
25 1.685 1.180 1.405 0.505 0.877 24.11 12.18
26 1.660 1.165 1.3€69 0.495 0.894 23.20 i4.43
27 1.688 1.114 1.368 0.574 0.887 23.57 14.50
28 1.631 1.230 i.440 0.341 0.883 23.25 10.00
29 1.669 1.359 1.511 0.310 0.886 23.62 5.56
30 1.680 1.343 1.488 0.337 0.879 24.00 7.00
31 1.649 1.408 1.531 0.241 0.875 24.22 4.31
32 1.700 1.437 1.568 0.263 0.884 23.73 2.00
33 1.631 1.411 1.526 0.220 0.828 27.05 4.62
34 1.266 1.000 1.135 0.266 0.875 24.22 29.06
35 1.333 0.903 1.124 0.430 0.893 | 23.25 29.75
36 | 1.305 1.010 1.150 0.295 0.864 24.84 28.12
37 1.686 1.188 1.392 0.498 0.873 24.33 13.00
38 1.658 1.100 1.359 0.558 0.877 24.11 15.06
39 1.654 1.140 1.351 0.514 0.872 24.39 15.56
40 1.620 1.283 1.454 0.337 0.888 23.52 9.12
41 1.650 1.276 1.433 0.374 0.896 23.10 10.43
42 1.627 1.294 1.457 0.333 0.874 24.28 8.93
43 1.714 1.412 1.537 0.302 0.907 22.54 3.93

Table 1: Results from the test samples (1)

-A92-

o Max i mum Minimum Meon Range Microscope| Hardness | Reduction
* Q| thickness | thickness | thickness in reading In
3 g thickness at 10 Kg VHN (th'Ckr:ess)
Q_] Load PGPNF\ oge
g = reduction p
«n (mm) (mm) (mm) (mm) (mm)
44 1.656 1.387 1.533 0.268 0.8385 23.15 4.18
45 1.681 1.390 1.521 0.291 0.884 23.73 4.93
46 | 1.214 0.883 1.036 0.321 0.873 24.33 35.25
47 1.290 0.914 1.077 0.376 0.869 24.56 32.68
48 1.292 0.998 1.144 0.294 0.887 23.57 28.50
49 1.701 1.086 1.352 0.615 0.850 23.41 15.50
50 1.738 1.134 1.379 0.604 0.885 23.68 13.8i
51 1.731 1.123 1.367 0.608 0.890 23.41 14.56
52 1.694 1.304 1.474 0.390 0.879 24.00 7.87
53 1.682 1.248 1.435 0.434 0.3900 22.89 10.30
54 1.1.724 1.332 1.476 0.392 0.884 23.73 7.75
55 1.678 1.386 1.516 0.292 0.885 23.68 5.25
56 1.676 1.377 1.509 0.299 0.884 23.73 5.68
57 1.653 1.366 1.511 0.293° | 0.883 23.78 5.56
58 1.549 1.248 1.416 0.300 0.892 23.31 11.50
59 1.739 1.410 1.546 0.328 0.884 23.73 3.37
60 1.747 1.432 1.586 0.315 0.8893 23.25 0.87
61 1.756 1.523 1.612 0.233 0.8567 23.05 1.20
62 1.476 1.095 1.282 0.381 0.88S 23.46 18.87
63 1.706 1.365 1.483 0.341 0.881 23.36 6.68
64 1.688 1.424 1.556 0.275 0.88¢ 23.46 2.75
65 1.674 1.450 1.557 0.224 0.876 24.17 2.68
66 1.430 0.937 1.175 0.493 0.885 23.68 26.56
67 1.664 1.170 1.367 0.494 0.917 | 22.05 14.56
68 1.701 1.257 1.458 0.444 0.870 24.50 8.87
69 1.826 1.38i 1.524 0. 445 0.882 23. 31 4.75
70 1.527 0.960 1.185 0.567 0.873 24.33 25.93
71 1.406 1.027 1.206 0.378 0.879 24.00 24.62
72 1.418 1.0€1 1.230 0.357 0.869 24.56 23.12
73 i.683 1.089 1.371 0.584 0.878 24.06 14.31
74 i.670 1.148 1.376 0.521 0.880 23.95 14.00
75 1.763 1.163 1.406 0.600 0.874 24.28 12.12
76 1.733 1.273 1.451 0.460 0.851 23.36 g9.31
77 1.693 1.314 1.4E67 0.378 0.874 24.28 8. 31
78 1.641 1.535 1.473 0.288 0.878 24.00 7.93
79 1.724 1.341 1.472 0.383 0.88€ 23.62 8.00
80 1.661 1.342 1.480 0.320 0.883 23.78 7.50
81 1.693 1.297 1.445 0.386 0.672 41.10 9.68
82 1.695 1.303 1.468 0.392 0.670 41.30 8.i18
83 | 1.670 1.295 1.472 0.375 0.662 41.60 8.00
84 1.728 1.315 1.483 0.413 0.664 42.10 7.31
85 i.714 1.271 7.459 0.443 0.661 42.40 8.8i
86 1.726 1.282 1.464 0.444 0.672 41.10 8.50

Table 2: Results from the test samples (2)

-AS3-

Maximum | Minimum Mean Range |Microscopel Hardness |Reduction
§|thickness|thickness | thickness in reading in
3 g thickness| at 10 Kg VHN thickness
%— 2) reduction load {percentage)
o (mm) (mm) (mm) (mm) (mm) A
87 1.756 1.338 1.500 0.417 0.658 42.8 6.25
88 1.756 1.246 1.437 0.51¢ 0.659 42.7 10.18
839 1.724 1.315 1.482 0.408 0.662 42.3 7.37
380 1.442 1.010 1.229 0.432 0.650 43.83 23.18
g1 1.458 1.010 1.221 0.448 0.671 41.2 23.68
g2 i.515 0.974 1.234 0.541 0.656 43. 1 22.87
93 1.772 1.176 1.390 0.5396 0.658 42.8 13.12
94 1.805 1.208 1.437 0.597 0.654 43.4 10.18
g5 1.713 i.150 1.375 0.563 0.650 43.9 i4.06
96 | 1.659 1.258 1.421 0.401 0.670 41.3 11.18
g7 1.757 i.308 1.466 0.443 0.665 41.9 8.37
g8 1.697 i.230 1.438 0.467 0.685 39.5 10.12
99 1.772 1.421 i.547 0.351 0.679 40.2 3.31
100 1.761 1.388 1.521 0.373 0.662 42.3 4,93
1014 1.735 i.366 1.494 0.369 0.667 41.7 6.62
102 | 1.262 0.949 1.121 0.313 0.638 45.6 29.93
1031 1.366 0.905 1.168 0.461 0.653 43.5 27.00
1044 1.372 1.016 i.186 0.356 0.644 44.7 25.87
1051 1.732 1.102 1.376 0,630 0.665 41.8 14.00
i06] 1.664 1.143 1.362 0.521 0.648 44.0 14.87
1071 1.687 1.149 1.387 0.538 0.658 42.8 13. 31
108 1.734 1.263 1.456 0.471 0.653 43.5 3.00
i09] 1.652 1.295 1.474 0.357 0.653 43.5 7.87
110 1.688 1.271 1.460 0.418 0.654 43.4 8.75
1114 1.718 1.355 1.511 0.364 0.664 42.1 5.56
112] 1.663 1.401 1.520 0.262 0.673 40.9 5.00
1131 1.683 1.398 1.546 0.285 | 0.661 42.4 3.37
1141 1.393 0.975 1.188 0.418 0.647 44.3 25.75
115] 1.415 0.988 1.188 0.426 0.647 44.3 25.75
1161 1.393 0.934 1.152 0.459 0.653 43.5 28.00
117 1.701 1.094 1.334 0.607 0.653 43.5 16.62
1181 1.685 1.125 1.362 0.560 0.651 43.8 14.87
1191 1.702 1.173 1.404 0.523 0.656 43.1 12.25
120 1.872 1.278 1.453 0.394 0.663 42.2 g9.18
1211 1.702 1.275 1.474 0.427 0.676 40.6 7.87
122 1.747 1.272 1.466 0.475 0.670 41.3 8.37
123 1.665 1.418 1.558 0.247 0.653 42.7 2.62
124] 1.704 1.343 1.493 0.355 0.671 41.2 6.68
1251 1.669 1.390 1.521 0.279 0.658 42.8 4.93
126 1.547 1.225 1.384 0.322 0.666 41.8 13.5
127] 1.519 1.307 1.384 0.212 0.678 40.3 13.5
128 1,472 1.249 1.357 0.223 0.722 35.6 15.18
1281 1.732 1.406 1.541 0.326 0.729 34.9 3.68

Table 3: Results from the test samples (3)

-A94-

. Maximum | Minimum Mecn Range |Microscuoe| Hardness |Reduation

| thickness|thickness|thickness in reading _in
s 8 thickness| at 10 Kg VHN ,thirfkness
Q. 3 R (percentage)
g =z reduction Load
@ {mm) (mm) (mm) (mm) | (mm) *
130
131 1.731 1.366 1.553 0.365 0.742 33.68 2.93
1321 1.742 1.388 1.566 0.354 0.715 36. 30 3.40
1331 1.727 i.518 1.634 0.209 0.729 34.390 2.12
1341 1.785 1.469 1.599 0.316 0.662 42. 30 0.06
1351 1.741 1.463 1.590 0.278 0.681 40.00 0.62
1361 1.795 1.496 1.596 0.2399 0.663 42.20 0.25
137 1.674 1.503 1.585 0.171 0.672 41.10 0.93
1381 1.728 1.526 1.626 0.202 0.668 41.60 1.62
1391 i.452 1.126 1.287 0.326 0.653 43.50 19.56
140 1.538 1.156 1.320 0.382 0.658 42.80 17.50
141 i.514 1.161 1.310 0.353 0.654 43.40 18.1i2
1421 1.701 1.286 1.463 0.415 0.648 44.20 8.56
143 | 1.724 1.302 1.503 0.422 0.652 43.60 6.06
1441 1.774 1.2397 1.482 0.477 0.704 37.40 7.37
1451 1.710 1.424 1.543 0.286 0.653 43.50 3.56
146] 1.753 1.408 1.546 0.345 0.665 41.90 3.37
1471 1.719 i.452 1.608 0.227 0.664 42.10 0.50
148 1.704 1.463 i.562 0.241 0.658 42.80 2.37
1491 1.695 1.483 1.571 0.212 0.661 42.40 1.81
150| 1.689 1.460 1.576 0.229 0.648 44.20 1.50
151 1.433 0.892 1.208 0.441 0.641 45.10 24.5
152 1.311 0.9397 i.150 0.314 0.644 | 44.70 28.i2
153 | 1.452 0.911 1.148 0.541 0.648 44.20 28.25
154 1.726 1.123 i.342 0.603 0.646 44, 40 i6.12
155| 1.685 1.161 1.416 0.524 0.643 44.90 11.50
156 1.657 1.120 1.377 0.537 0.657 43.00 13.93
1571 1.694 1.252 1.448 0.442 0.654 43. 40 8.50
1581 1.670 1.296 i.483 0.374 0.652 43.60 7.31
159 1.667 1.258 1.454 0.409 0.663 42.20 9.12
160) 1.728 i.352 1.483 0.376 | 0.658 42.80 6.93
161 i.681 1.409 1.522 0.272 0.665 41.90 4.87
162 1.662 1.362 1.505 0.300 0.666 41.80 4.87

Table 4: Results from the test samples (4)

-A95-

- Mean Mean
. Input Measured value value Aﬂg Le
3| Angle Angle £
v 2 for the | for the | yifrerence
e 2 (degrees) (degrees) two sides séggie:s
Qo
@ side 1 | side 2 |(degrees)|(degrees)|(degrees)
1 30 33.50 32.25 32.87
2 30 34.00 32.00 33.00 33.41 3.41
3 30 33.50 35.25 34.37
4 35 34.80 37.60 36.20
S 35 34.90 37.60 36.25 36.20 1.20
6 35 34.90 37.40 36.15 :
7 40 42.50 33.80 41.15
8 40 42.00 33.80 40.90 40.97 0.97
S 140 42.00 39.75 40.87
10 45 44.00 46.50 45,25
11 45 43.50 46.50 45.00 44.95 0.05
12 45 43.50 45.70 44.60
13 | 40 40.90 38.50 33.70
14 | 40 41.00- 38.50 33.75 38.73 0.27
15 | 40 41.00 38.50 38.75
16 40 38.50 41.25 39.87
17 40 39.50 42.00 40.75 40.62 0.62
18 40 40.00 42.50 41.25
ERIED 42.50 40.50 41.50
20 | 40 42.00 40.00 41.00 41.50 1.50
21 | 40 43.00 41.00 42.00
22 30 33.00 35.50 34.25
23 30 32.70 35.00 33.85 34.06 4.06
24 30 32.70 35.50 34.10
25 | 35 36.80 34.75 35.77
26 | 35 36.80 34.00 35.40 35.51 0.51
27 | 35 36.50 34.25 35.37
28 40 40.50 43.00 41.75
29 40 40.25 43.25 41.75 - 41.55 1.55
30 40 33.80 42.50 41.15
31 | 45 46.25 44.50 45.37
32 | 45 46.50 44.50 45.50 45.84 0.84
33 | 45 48.80 44.50 46.65
34 30 32.25 33.50 33.37
35 30 34.50 32.50 33.50 33.45 3.45
36 30 34.50 32.50 33.50
37 | 35 37.00 34.50 35.75
38 | 35 37.50 35.00 36.25 36.08 1.08
33 | 35 37.50 35.00 36.25
40 40 39.25 42.50 40.87 .
41 40 39.00 42.50 40.75 40.99 0.99
42 40 40.00 42.75 41.37

Table 5: Results from the

test samples (5)

-A96-

Mean Mean
Input Measured
5 Angl.e Angle value value Ang Le

v £ J for the | for the | irrarence
g. 3| (degrees) (degrees) two sides sémh;f:s
o side 1 side 2 |(degrees)|(degrees) | (degrees)
43 | 45 47.50 43.60 45.55

44 | 45 46.50 44.50 45.50 45.47 0.47
45 | 45 46.50 44.25 45.37

46 30 33.00 35.00 34.00

47 30 32.50 35.00 33.75 33.83 3.83
48 30 32.50 35.00 33.75

49 | 35 37.25 35.00 36.12

50 | 35 36.50 34.50 35.50 35.70 0.70
51 | 35 36.50 34.50 35.50

52 40 40.00 41.80 40.90

53 40 39.75 41.80 40.77 40.90 0.90
54 40 39.60 42.50 41.05

55 | 45 46.50 45.00 45.75

56 | 45 46.75 44.50 45.62 45.62 0.62
57 | 45 46.75 44.25 45.50

58 30 33.00 35.40 34.20 4,20
59 35 38.50 35.25 36.87 1.87
60 40 40.50 43.50 42.00 2.00
61 45 47.00 46.50 46.75 1.75
62 | 30 32.50 35.00 33.75 3.75
63 | 35 37.25 35.50 36.37 1.37
64 | 40 41.00 42.50 41.75 1.75
65 | 45 48.25 45.00 46.62 1.62
66 30 32.50 34.80 33.65 3.65
67 35 37.25 35.00 36.12 1.12
68 40 41.00 42.50 41.75 1.75
69 45 46.75 44.75 45.75 0.75
70 | 30 32.70 34.75 33.72

71 30 32.50 34.75 33.62 33.78 3.78
72 | 30 32.50 35.50 34.00

73 35 37.25 34.50 35.87

74 35 37.00 35.00 36.00 36.04 i.04
75 35 37.00 35.50 36.25

76 | 40 40.50 42.50 41.50

77 | 40 40.00 42.50 41.25 40.91 0.91
78 | 40 41.00 -39.00 40.00

79 45 46.00 47.50 46.75

80 45 45. 40 47.50 46. 45 46. 48 1.48
81 45 45.00 47.50 46.25

82 | 40 41.75 40.00 40.87

83 | 40 40.80 42.70 41.75 41.34 1.34
84 | 40 42.30 40.50 41.40

Table 6: Results from the test samples (B)

—-A97-

4 Mean Mecn
Input Measured

% Anb(.e Angle value value AngLe
s £ J fFor the | for the | jirrorence
g_ 3| (degrees) (degrees) two sides sa‘;gfgs
@ side 1 side 2 | (degrees)|(degrees) | (degrees)
85 | 40 40.75 42.50 41.62
86 | 40 42.00 40.40 41.20 41.52 1.52
87 | 40 40.50 43.00 41.75
88 40 43.00 40.25 41.62
85 40 40.00 42.80 41.40 41.26 1.26
30 40 41.80 39.75 40.77
g1 | 30 33.00 35.00 34.00
92 | 30 35.00 33.00 34.00 33.83 3.83
93 | 30 32.50 34.50 33.50
94 35 37.00 35.50 36.25
g5 35 35.50 37.50 36.50 36.33 1.33
g6 35 37.00 35.50 36.25
97 | 40 40.50 42.50 41.50
938 | 40 42.60 40.50 41.55 41.51 i.51
§9 | 40 40.50 42.50 41.50
100 45 46. 70 45.00 45.85
101 45 45.30 46.50 45.90 46.15 1.15
102 45 48.00 45.40 46.70
103} 30 32.80 34.70 33.75
1041 30 34.50 32.70 33.60 33.73 3.73
105 30 32.70 35.00 33.85
106 35 36.50 35.50 36.00
107 35 35.50 37.00 36.25 36.25 1.25
108 35 37.00 35.00 36.00
109 40 40.50 42.50 41.50
110] 40 42.50 40.00 41.25 41.41 1.41
1111 40 40.00 43.00 41.50
112 45 46.00 44.00 45.00
113 45 44.00 47.25 45.62 45,62 0.62
114 45 47.50 45.00 46.25
115] 30 32.50 35.00 33.75
116 30 34.50 32.50 33.50 33.70 3.70
1171 30 32.70 35.00 33.85
118 35 37.50 35.00 36.25
119 35 35.00 37.50 36.25 36.33 1.33
120 35 37.50 35.50 36.50
121] 40 40.50 42.50 41.50
122 | 40 42.25 39.75 41.00 41. 41 1.41
123 40 40.00 43.50 41.75
124 45 46.50 45.50 46.00
125 45 45.50 47.50 46.50 46.08 1.08
126 45 46.5 45.00 45.75

Table 7: Results from the test samples (7)

-AS8-

Mean Mean
Inout Measured :

5 Angle Angle volue | valve |Angle
K .g for the for the | 4ifference
% 3l (degrees) (degrees) two sides s;;‘;fjs
@ side 1 | side 2 |(degrees)|(degrees)|(degrees)
1271 30 33.50 34.80 34.15
1281 30 35.00 32.50 33.75 33.80 3.80
25§ 30 33.25 33.75 33.50
130 35 35.00 35.50 36.75
131 35 34.50 37.50 36.00 36.00 1.00
132 35 36.00" 34.50 35.25
1331 40 40.75 42.50 41.62
134 40 43.70 40.00 41.85 41.74 1.74
1351 40 40.00 43.50 41.75
136 45 47.00 45.50 46.25
137 45 45.00 48.25 46.62 46.45 1.45
138 45 48.00 45.00 46.50
i139] 30 33.00 35.00 34.00
140 | 30 - 35.00 32.50 33.75 33.83 3.83
1411 30 32.50 35.00 33.75
142 35 36.00 35.00 35.50
143 35 35.00 36.50 35.75 35.83 0.83
144 35 36.50 36.00 36.25
1451 40 40.50 42.50 41.50
1461 40 42.00 40.50 41.25 41.00 1.00
1471 40 39.00 41.50 40.25
148 45 46.00 45.50 45.75
i49 45 45.50 47.50 46.50 45.95 0.95
150 45 46.50 44.75 45.62
151] 30 32.80 33.50 33.15
1521 30 32.50 31.50 32.00 32.75 2.75
153] 30 32.25 34.00 33.12
154 35 36.50 35.50 36.00
155 35 35.00 37.50 36.25 36.16 1.16
156 35 37.00 35.50 36.25
1571 40 40.00 42.80 41.40
158 | 40 43.00 40.00 41.50 41.30 1.30
i59] 40 40.00 42.00 41.00
160 45 47.00 44.50 45.75
161 45 45.00 47.00 46.00 45.92 0.92
162 45 46.80 45.25 46.02

Table 8: Results from the test samples (8)

~A99-

Actual
semi-cone angle

(degrees)
| I
.]
First Test 45 - l
cctual |
40 - angle
8 encoder puises :
35 1 input :
30 4 _'/ angle
|
I] i T B'!
30 35 40 45
Input
semi-cone angle
(degrees)
Actual
semi-cone angle
(degrees)
__________ !
First Test) i
45 I
actual !
16 encoder pulses 40 4 angle l
|
35 4 I
input |
30 angle !
I
I i i 1 >l

30 35 40 45
Input
semi-cone angle

(degrees)

Graph 1: The actual against the input cone angle

-A100-

Reduction in
thickness X%

30 fF-——"—""—""~"—~"~"—- |

First Test - !
I

20 |

8 encoder pulses !
|

) |

10 {

1

|

1 | i B‘

30 35 40 45

Semi-cone angle

(degrees)
Reduction in
thickness 7%
I i
First Test !
40 |
|
16 encoder pulses 30 - :
20 -~ !
|
10 |
|
T T —

30 35 40 45

Semi-cone angle

~ (degrees)

Graph 2: The reduction in thickness against the cone angle

-A101-

original

Hardness o hardness
(VHN) o
50 f--—=f - |
Second Test | ‘ 40 I —g;;=€>===€1
!
8 encoder pulses 30 - :
20]
!
10 - !
|
1 1 T y
100 200
Speed

Angle= 40 degrees (r.p.m.)

original
Hardness hardness
(VHN) '/////
50 W —-—i‘ ————— |
Second Test — — - —
40 - |
|
v 30 - |
16 encoder pulses |
20 A I
|
10 |
|
T T —
100 200
Angle= 40 degrees Speed
: } (r.p.m.)

Graph 3: The hardness against the speed
-A102-

original

Herdness hardness
(VHND
50 LS
First and Third Tests
40
8 der L
encoder pulses 30
20
10
|
1
T I T 1
30 35 40 45
semi-cone angle
(degrees)
origincl
Hardness . hardness
(VHN)
50 p—=———=—— =\~ -
§ .
First and Third Tests 04— T 1
I
30 A : dry
16 encoder pulses ' lub 1
20 -+ \Q I lub 2
10 - ws\:grease
I
[} 1 1] i »l

30 35 40 45

semi-cone angle

(degrees)

Graph 4: The hardness against the cone angle with
different Lubricants .

-A103-

~original

Herdness herdness
(VHN)
Fourth Test >0 £
| 40
8 encoder puises
30
1.27 mm/rev
207 0.552 mm/rev
10 - ™ 0.226 mm/rev
30 35 40 45
semi-cone angle
(degrees)
original
Hardness herdness
(VHN) \
S S %‘|
-
Fourth Test 40 - |
' |
16 encoder pulses 30 - :
20 - ‘ 1.27 mm/rev
0.552 mm/rev
10 A 0.226 mm/rev
|
— T

30 35 40 45

semi-cone angle

(degrees)

Graph 5: The hardness against the cone dnqLe with

different feeds
-A104-

