
Computer aided flow-turning.

MOHAMAD, Ala Hassoon.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20070/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20070/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

■ * i k4.ll i. I t v»iivii \ U5kAk k «\ ■ iN I) '•> I Ri.E I
SMJ&'i'lKLD SI IWB

100225-

/

ProQuest Number: 10697377

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697377

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Computer Aided Flow-Turning

by

ALA HASSOON MOHAMAD B.Sc.

A thesis submitted to the COUNCIL FOR NATIONAL ACADEMIC

AWARDS in partial fulfilment of the degree of MASTER OF PHILOSOPHY

Sponsoring Establishment: Department of Mechanical and

Production Engineering
Sheffield City Polytechnic

Sheffield 1

Collaborating Establishment C.W. Fletcher & Sons Limited

Sterling Works, Arundel Street

Sheffield SI 1DP

July 1988

ACKNOWLEDGEMENTS

I should like to thank Dr.E.A.Vallis Head of Mechanical and

Production Engineering Department and the Authorities of Sheffield City

Polytechnic for allowing this work to be carried out.

I should like to take this opportunity to acknowledge the

invaluable guidance and continual assistance given by Prof,M. SARWAR

under whose supervision this work was carried out.

The author gratefully acknowledges his appreciation to Prof.

M.S.J.HASHMI on the overall context of this research and preparation of

the final report.

The author also wishes to thank Dr.J.R.TRAVIS from the Electric and

the Electronic Department for his part on the electronic design and

software development side.

Mr.R.RODDIS for his assistance, encouragement and patience in the

program design, SDK-85 board modification and in the understanding of
the Intel development system.

Mr.J.ASHBY from the Automation Advisory Service Department for his

advice and assistance in the hydraulic circuit design, component

selection and testing procedure.

Mr.L.EVANS for constructing the hydraulic rig and his useful

comments.

Mr.J.STANLEY for his assistance in the CAD/CAM system drawings and

his useful suggestions.

The technical assistance offered by Mr.R.Teasdale and his staff was

much appreciated and particular thanks go to Mr.S.Leigh, Mr.T. O’Hara

and Mr.R.Wilkinson for their assistance in manufacturing and setting up

the experimental equipment.

- i -

ABSTRACT

Computer Aided Flow-turning

A. H. Mohamad

The work undertaken in this research is concerned with the
flow-turning process and its control using microprocessor technology.
The research centres on the design of a suitable flow-turning process
controller in which hardware and software are integrated together
leading to a successful realisation.

Microprocessor software has been developed to provide a user
friendly interface with the operator. This was written in PL/M 80 which
was subsequently compiled into machine code for execution on a modified
commercially available single board computer. Interface circuits were
designed and transducers and actuators selected to enable this computer
to be linked to a flow-turning rig which itself was custom designed to
facilitate automatic control. Considerable development work was devoted
to the integrated system to produce a working controller.

The endeavour was rewarded with success and a working controller
has been accomplished. Experimentation and testing of the real
specimens followed and the results obtained are tabulated.

- ii -

CONTENTS PAGE

i

ii

iii

viii

xii

CHAPTER 1: Flow-turning process definition and history

1.1 - The flow-turning process 1

1.2 - The advantages and disadvantages 5

1.3 - Historical background of flow-turning 8

1.4 - Machines for flow-turning 13

1.5 - Coolants and lubricants 14

1.6 - Speed and feed rates 15

1.7 - Background to the design of the rig and scope

of the present work 15

IAPTER 2: Microprocessor applications and selection

2.1 - Introduction 17

2.2 - Examples of common microprocessor uses 17

2.3 - Using the microprocessor as an alternative

method of tool movement control 18

2.4 - Selection of the microprocessor 19

2.4.1 - Intellec Series II microcomputer development

system 21

2.4.2 - In-Circuit Emulator (ICE-85) 21

2.4.3 - PL/M 80 programming language 23

- iii -

ACKNOWLEDGEMENTS

ABSTRACT

CONTENTS

LIST OF FIGURES

LIST OF PLATES

CONTENTS (cont) PAGE

2.4.4 - Universal PROM programmer 24

2.4.5 - ISIS-II Disk Operating System 24

2.4.6 - Intel SKD-85 (System Design Kit) 26

CHAPTER 3: Equipment description and preliminary

testing

3.1 - Introduction 28

3.2 - Description of the experimental equipment 28

3.3 - Modification of the rig 28

3.4 - Preliminary testing 38

CHAPTER 4: Hardware design and testing

4.1 - Introduction 42
4.2 - Hydraulic components 42

4.3 - The hydraulic circuit design 44

4.3.1 - Proportional directional valve 46

4.3.2 - Hydraulic cylinder 47

4.3.3 - Relief valve 47

4.3.4 - Filter 47

4.3.5 - Gear pump 47

4.3.6 - Electric motor 47

4.3.7 - Oil reservoir 49

4.4 - The hydraulic circuit tests 49

4.5 - Electronics 50

4.5.1 - Transducer 50

4.5.2 - ADC board 51

- iv -

CONTENTS (cont) PAGE

4.5.3 - DAC board

4.5.4 - Shaft encoder

4.5.5 - Counter board

4.5.6 - Modified SDK-85 board

4.6 - The electronic circuit tests

4.6.1 - Modified SDK-85 board

4.6.2 - Transducer and ADC board

4.6.3 - DAC board

4.6.4 - Shaft encoder and counter board

CHAPTER 5: Software development and testing

5.1 - Introduction 74

5.2 - Outline description of software from operator’s

point of view 74

5.3 - Software development cycle 74

5.4 - ’Flow’ module 79

5.5 - ’Initialisation’ module 79

5.6 - ’Console I/O’ module 81

5.7 - ’Machine Set-up’ module 81

5.8 - ’Shape Select’ module 81

5.9 - ’Cone Generation’ module 82

5.10 - ’Parabola Generation’ module 82

5.11 - 'Machine Cone Control’ module 82

5.12 - ’Machine Parabola Control’ module 84

5.13 - ’Display’ module 84

5.14 - ’Par Interpolation’ procedure 91

5.15 - Other program notes 91

52

55

55

59

60

60

60

68
69

- v -

CONTENTS (cont) PAGE

5.16 - Software testing 92

CHAPTER 6: Rig commissioning

6.1 - Introduction 95

6.2 - Testing observations (version 1) 95

6.2.1 - Linear transducer recalibration 95

6.2.2 - Counter test 97

6.2.3 - DAC test 99

6.2.4 - Contour shape 102

6.3 - Further software modifications and enhancements 105

6.4 - Spindle speed and feedrate ranges 106

6.5 - Selection of the appropriate roller speed 106

6.6 - Testing observations (version 2) 107

6.7 - Experimental testing 108

CHAPTER 7: Results and discussion

7.1 - Results 115

7.2 - Implementation of the control system 117

7.3 - Future improvements, modifications and suggestions 120

CHAPTER 8: Conclusion 123

REFERENCES 124

APPENDICES A1

APPENDIX I: Software test programs

1 - Shaft encoder and counter (3 sheets) A2

- vi -

CONTENTS (cont) PAGE

2 - ADC (3 sheets) A5

3 - DAC (2 sheets) A8

APPENDIX II: Main program modules

1 - Flow (PL/M) (3 sheets) A10

2 - Initialisation (PL/M) (8 sheets) A13

3 - Console I/O (PL/M) (6 sheets) A21

A - Machine Set-up (PL/M) (6 sheets) A27

5 - Shape Select (PL/M) (A sheets) A33

6 - Cone Generation (PL/M) (9 sheets) A37

7 - Machine Cone Control (PL/M) (1A sheets) AA6

8 - Parabola Generation (PL/M) (8 sheets) A60

9 - Machine Parabola Control (PL/M) (1A sheets) A68

10 - DISPLAY (Assembly Language) (A sheets) A82

11 - INRO (Assembly Language) (2 sheets) A86

12 - INVECT (Assembly Language) (1 sheet) A88

13 - INIT (Assembly Language) (1 sheet) A89

APPENDIX III: Basic program to find the integer ratio A90

APPENDIX IV: Results (13 sheets) A92

Tables 1,2,3,A,5,6,7,8

Graphs 1,2,3,A,5

- vii -

LIST OF FIGURES PAGE

CHAPTER 1

1.1 Workpiece before and after the process 2

1.2 Illustration of the forming of a sheet metal cone 9

CHAPTER 2

2.1 Program development flow using ISIS-II operating

system 25

CHAPTER 3

3.1 Preliminary testing former 32

3.2 Final testing former 33

3.3 Parabola equation 3A

3.A Parabolic former 35

3.5 A schematic diagram showing tool fixing arrangement 37

3.6 Roller assembly 39
3.7 Axial force with feed AO

3.8 Radial force with feed A1

CHAPTER A

A . 1 The hydraulic circuit A3

A.2 Unipolar AD57A ADC circuit 53

A.3 Bipolar DAC0800 +5 volts 5A

A.A An overall schematic diagram 56

A.5 Counter circuit 57

A.6 Second counter circuit 58

A.7 Connections for ACIA1 61

A.8 Memory devices 62

A.9 Decoding, clock-generation, timer in and interrupt

- viii -

63

LIST OF FIGURES (CONT) PAGE

A.10 Baud rate generation & serial I/O 64

4.11 Baud rates and memory address map 65

4.12 Transducer voltage-displacement relation 67

4.13 Cylinder speed calculation and conversion 70

4.14 A graphical representation of the useful DAC range 71

4.15 A schematic diagram of the DAC range 72

4.16 Lathe ON/OFF switch drive arrangement 73

CHAPTER 5

5.1 The program as seen from the operator’s pointof view

(1) 76

5.2 The program as seen from the operator’s pointof view

(2) 77

5.3 The program as seen from the operator’s point of view

(3) 78

5.4 Flow-turning process hierarchy chart 80

5.5 Cone Generation, ADC Input and Shaft Encoder

procedures 56

5.6 Tool Advance procedure flowchart 86

5.7 Tool Retract procedure flowchart 87

5.8 Machine Cone Control module 45

5.9 Interpolation procedure flowchart (1) 88

5.10 Interpolation procedure flowchart (2) 89

5.11 Interpolation procedure flowchart (3) 90

5.12 Cone and Parabola procedures 93

5.13 Roller prescribed path 94

CHAPTER 6

LIST OF FIGURES (CONT) PAGE

6.1 Transducer test with PR0G2 program 98

6.2 Cylinder movement techniques 100

6.3 An example of the calculated retract distances for the

interpolation routine 103

6.A Possible options for locating position 104

6.5 Conical contours with 8 encoder pulses 111

6.6 Conical contours with 16 encoder pulses 112

6.7 Parabolical contours with 16 encoder pulses 113

6.8 Test programme for the flow-turning process 114

Appendix iii : A Basic program to find the integer ratios

A3.1 : Basic program to find the integer ratios (1) A90

A3.2 : Basic program to find the integer ratios (2) A91

Appendix iv : Results
Table 1 : Results obtained from test samples (1) A92

Table 2 : Results obtained from test samples (2) A93

Table 3 : Results obtained from test samples (3) A94

Table 4 : Results obtained from test samples (4) A95

Table 5 : Results obtained from test samples (5) A96

Table 6 : Results obtained from test samples (6) A97

Table 7 : Results obtained from test samples (7) A98

Table 8 : Results obtained from test samples (8) A99

Graph 1 : The actual against the input cone ,angle A100

Graph 2 : The reduction in thickness against the cone angle A101

Graph 3 : The hardness against ithe speed A102

Graph 4 : The hardness against the cone angle with different

different lubricants A103

LIST OF FIGURES (CONT) PAGE

Graph 5 : The hardness against the cone angle with different

different feeds A104

- xi -

LIST OF PLATES

CHAPTER 1

1.1 The disc and the finished product

CHAPTER 2

2.1 The Intel development system

2.2 The SDK-85 board

CHAPTER 3

3.1 General view of the equipment

CHAPTER 4

4.1 The hydraulic power pack

4.2 A view showing the hydraulic cylinder

CHAPTER 6

6.1 Other equipments (VDU, the cabinet and the power

supply)

Chapter 1: Flow-turning process definition and history

1.1 - The flow-turning process

Flow-turning is a process by which a metal blank is deformed to a

final axisymmetrical component shape using a tool (usually a roller) to

press it against a former. A reduction in wall thickness occurs.

Briefly it can be likened to the cold rolling of sheet metal, with

the difference that the roller is in single point contact instead of in

line contact(l).

The pre-requisite for flow-turning is the need for a final

axi-symmetrical component, provision of a mating mandrel, a forming

roller and a means by which the movements of this roller can be made to

describe the required profile(2).

As no metal is removed, it follows that the volume of material

remains unaltered, so in order to calculate for a conventional blank

size, the change in wall thickness is the only important information

required. The process is illustrated in fig 1.1 and plate 1.1.

There are two types of flow-turning:-

1- Tube spinning (flow forming)

2- Shear spinning (shear forming)

In tube spinning, as the name implies, the pre-form is tubular and

is flow-turned to the required dimension by continuous point extrusion

which increases the length of the tubular section by reducing the wall

thickness.

In shear spinning the pre-form is a flat disc which is formed into

progressive cone shapes by displacing the metal along the shear planes

running parallel to the centre line of rotation.

- 1 -

°dO¥
1

D=01

■DCa
ww0O0 <_ a.
O)c
cc_34J1ISo
<D-C4->
c.ou_
c0
Oc.4Jcoa
CDc
.vco5

co

Q_O
—j 0 > 0 ■o

-u3O
W+Jc0coa.eoo
a

0eeZDU)
Xo
co
0o3*0Oc_Q_
C0-C

c tnA; inO 0c-C -v:4-> a 0•— —)
■ I -C CDD -l_> CC a

.—)
CD o 0c ct_ — oO IX

1
o

1
o

I

L_ £3
+-) 4-J

oc

cl

Q

XI CL

- 2 -

FI
G

1.
1:

Wo

rk
pi

ec
e

be
fo

re

an
d

af
te
r

the

pr
oc

es
s

The relationship between the length of the cone and the wall

thickness follows a sine law; that is, the wall thickness T1 of the

finished part is equal to the thickness T of the flat blank multiplied

by the sine of one half of the included cone angle. It is, therefore,

essential to start a pre-form at a specific thickness according to the

thickness of the wall required in the finished cone(3).

It is impossible, in conical flow-turning, to reduce the wall

thickness by more than shown by the sine-formula, since the blank would

offer too much resistance as the displaced material flowed into the

increasing diameter. An increase in the roller pressure can cause the

’ ring1 of piled up metal to impede the tool and the strength of the

blank material can be exceeded, thus leading to a tear(l).

Since in most cases a single roller-pass only is required, complex

systems to control the roller path are not usually necessary. Two

methods of controlling the roller are in common use:

1- Through variation of roller in-feed cylinder pressure.
2- Through a hydraulically operated copying device and

template.

Of the two systems, the first is the simpler to set up but requires

a certain measure of skill in operation, particularly in judging the

starting point at which the required set pressure is introduced to the

roller in-feed cylinder to commence the forming operation(A).

The technique can be used to produce angles of between 12 and 80

degrees from the centre line of mandrel rotation. Below 12 degrees the

thinning is excessive and above 80 degrees the amount of working is

insufficient to ensure metallurgical stability(5).

With shear forming, in contrast, the metal is stretched beyond its

elastic limit, thereby introducing new properties. This procedure

- 4 -

involves stresses being applied to the material to stretch it beyond

its elastic limit, but below its yield point, and produces plastic

deformation, which can be recognised in the characteristic features of

shear-formed material(4) .

This process can be used for components where the cone angle lies

between 8 and 80 degrees. However, for single-pass forming, the

limiting minimum angle lies around 13 degrees. For components with an

angle between 8 and 13 degrees, a two-pass forming operation is

necessary(4).

1.2 - The advantages and disadvantages

In general, it can be stated that whenever the cone angle lies in

the range 13 to 80 degrees it is worth investigating the feasibility of

the shear-forming technique(4).

Most metals can be formed by this process and although heat is

sometimes applied throughout the cycle, it is not required for steel

alloys and most nonferrous metals(6).

One main advantage of this process, which makes it suitable for

many applications, is the improvement obtained in the mechanical

properties of the workpiece material, namely an increase in hardness

and ultimate tensile stress. However this is usually accompanied by a

decrease in ductility. Other advantages are speed of operation, little

waste and economy, especially for smaller batch manufacture. Moreover,

the tooling and setting requirements are comparatively simple and

relatively inexpensive. Recent applications of the spin-forging process

are the manufacture of conical parts to a high degree of dimensional

accuracy which include, for example, radar reflectors, components for

jet and turbine engines, satellite nose cones, rocket components, truck

wheel rims and parts for nuclear reactors(7).

- 5 -

Tolerances in thickness and inside diameter of between +0.0508 mm

are possible and very smooth surface finishes are produced, so that in

many cases finishing or polishing operations can be reduced or

eliminated(3) .

Tooling for flow-turning is remarkably low in cost, only about 10%

that of deep-drawing dies, and long tool life is obtained.

Flow-turning is especially suitable, therefore, for the production of

small quantities of components and these can be produced more

economically than by deep-drawing, forging or machining(3).

Most metals can be formed by flow-turning provided that sufficient

pressure can be applied. These include aluminium alloys, copper alloys,

mild steels, many stainless steels, high temperature alloys, Monel,

Iconel and Nimonics. Some metals, such as molybdenum and magnesium, are

difficult to spin unless they are heated and most titanium alloys

require to be heated(3).

Since the actual deformation of the material takes place only at

the point of contact between the roller and the blank, the remaining
material remains free of any stresses. This characteristic of shear

forming allows a very much greater degree of deformation of the

material to be achieved than is possible with other processes. In many

cases, finished components can be produced in a single operation, when

the use of other techniques would involve several(8).

The shapes that can be produced successfully and economically by

flow-turning fall into four classes:-

1- Straight-wall cones

2- Curvilinear-wall shapes

3- Hemispherical or elliptical shapes

4- Straight-wall shapes

- 6 -

Straight-wall cones can be made from flat blanks, the maximum

thickness depending on the material and the power available.

Curvilinear shapes can be flow-turned from either flat blanks

resulting in a gradual thinning of the walls, or from tapered blanks

which give an almost constant thickness of wall of the thinnest

component.

Hemispherical shaped parts with a constant wall thickness can be

flow-turned from tapered flat plates. When the machine is fitted with

contour tracing equipment, tube and curvilinear wall sections with

multiple diameters can be formed(3) .

Parts having a cone angle of less than 60 degrees require a conical

preform. A reduction in wall thickness of up to 80% is possible

although, in most cases, the reductions are much smaller(6).

Standard machines are typically made to spin parts 127 cm long and

106.68 cm in diameter. However, there is no upper size limit, capital

investment and requirements being the only limiting factors(9).

Flow-turning is generally practicable only for components that are

of hollow, conical or cylindrical shape. Another limitation is the

thickness of the material that can be formed. Power requirements for

flow-turning depend on the type of material or alloy, the included

angle, diameter and thickness of the workpiece, the percentage

reduction in wall thickness and the rate of feed of radius of the

roller. Stainless steel and Nimonics up to 19.05 mm have been

successfully shaped as well as aluminium and brass alloys up to 38.1 mm

thick. The smallest angle considered practicable from the blank is

generally considered to be 30 degrees, but smaller angles down to 15

degrees have been turned. Ductility or elongation of the material is

reduced substantially after flow-turning(3) .

The dimensional accuracy obtained will depend on a number of

factors including

- 7 -

1- Variation in the thickness of the original material.

2- The severity of the operation.

3- The rigidity of the machine - no machine is absolutely

rigid and will deflect under the application of

considerable power.

There is a limiting point at which the molecular structure of the

material will break down and reduction passes can only be taken below

this limit, the corresponding angle being referred to as ’critical’. If

a shape beyond the critical angle is required, further passes become

essential(10).

1.3 ~ Historical background of flow-turning

The process of flow-turning was probably first used in the United

States of America to produce cream separator cones. Subsequently the

famous television cone was produced in great quantities in this
manner(9) .

Flow-turning is said to have been invented and patented in the

early years of this century. The process has been developed since 1947

and development was particularly intensive at the time of American

rearmament during the Korean War, when speed of production was of prime

importance(3).

During the spinning of cones, the initial wall thickness of the

material remains unchanged whereas, in the spin-forging operation, the

final thickness is dictated by the sine of the cone semi-angle. Also in

spin-forging, there is no appreciable change in the radial position of

each element from its original position in the circular blank. The

maximum diameter of the formed cone thus remains approximately the same

as the original blank diameter(7). (See the illustration in fig 1.2.)

- 8 -

- 9-

(1)

th
e

sp
in

ni
ng

pr

oc
es

s
(2)

th

e
fL

ow
-t

ur
ni

ng

pr
oc

es

In metal spinning, the metal can normally be reduced only slightly

in thickness and, as the reduction cannot be predetermined exactly,

the finished parts are not always exactly uniform and close tolerances

cannot be maintained consistently. Flow-turning is, however, a much

more exact process. As no metal is detached during the process and the

volume of the actual material remains the same, very large reductions

in thickness are accomplished with corresponding increases in total

area. The metal undergoes partial shear deformation under the high

pressures employed as it is squeezed ahead of the roller and displaced

parallel to the centre line of the part being formed. The metal is

obtained from the thickness of the blank and not the diameter of the

blank, as in metal spinning(3).

The first development from simple hand spinning was the provision

of mechanical assistance either to reduce the physical effort required

by the spinner or to increase the gauge diameter and range of metals

spun.

Mechanical spinning always uses roller tools mounted on a

cross-slide carried on a longitudinal slide mounted alongside the

machine. The simplest method of moving the tool is by means of a

handwheel operating on screw threads. A recently reported variant of

this system is the attachment of stepping motors to drive the feed

screws.

The more usual method of providing mechanical assistance to the

tool is to move the compound slide carrying the tool by hydraulic

means.

For automatic spinning, the objective is to program the roller tool

in pre-determined paths to convert the blank into a spinning. Several

benefits can accrue from such automatic sequencing:

- 10 -

First, there is product reproductibility which, always a problem

with a manually produced article, should be much better. Similarly with

correct adjustment, surface finish may also be improved.

Second, with the increasing scarcity of skilled and experienced

spinners, routine work can be performed by less-skilled personnel.

There have been three main lines of development of automatic

spinning, viz

1- Self-learning systems

2- Template systems

3- Fully CNC systems

These are detailed below:

1- This system entails a spinner producing a component using a

mechanically or liydraulically-assisted lathe. In doing so, he

exercises his normal skills. When he is satisfied with his

procedure, his operations are recorded. The play-back of this
record then actuates the lathe into reproducing the same

movements.

2- A pre-cut template can also be used to predetermine the path of

the roller. For the final spinning passes, this template will

normally have the profile of the required component. A

succession of pre-form passes can be achieved by using either

a series of templates or a swivelled template system.

When a series is used the sheet-metal templates are individually

cut and checked on the lathe before the next in succession is

cut. Either the template carrier or the template sensor is

advanced to the next position after each traverse.

- 11 -

In the swivel template system a template shaped to the final form

of the work-piece is fixed to the template carrier. The

wheeled template tracer can be adjusted to give a

predetermined gap between spinning roller and workpiece on the

final passes. A second pivoting template is mounted below the

fixed template and is retracted by a hydraulic cylinder, a

series of cams providing the necessary steps. When the tracer

is fully retracted, these follow the final form template.

Operation is through electrical sequential control actuated by

micro-switches.

3- The next logical development in automatic spinning was to

produce an ’electronic’ template machine with the path data

and information for auxiliary actions stored on punched

tape(11).

With a semi-automatic machine, it is only necessary to remove the

finished workpiece and to put in the new blank. A machine can properly

be called automatic when all manipulations are mechanized. Completely

automatic machines feed the blanks from magazines and finished

components are also removed. The development of spinning and

flow-turning lathes to automatic machines has been made possible

through the application of hydraulic actuation and this development

can be considered as having taken place in stages.

First the centre was tightened up hydraulically. The next step was

the hydraulic movement of the roller forming lever, operated by a

hydraulic cross slide(12).

A lathe which can do both spinning and flow-forming has been

developed by Joshua Bigwood & son Ltd, Engineers, Wolverhampton. It

has the capability of making a wider range of items than was

- 12 -

previously possible by flow-forming, and can produce cylindrical

shapes from a single blank of metal in one operation. The lathe can

also produce items such as stainless steel sinks, buckets, bowls and

is particularly suitable for the manufacture of stainless steel

vessels and storage containers for chemicals, pharmaceuticals, bakery

and dairy products. Particular success has been achieved with

stainless steel, which has hitherto proved particularly difficult for

this type of work. However, mild steel, aluminium, copper and brass

can also be formed with complete satisfaction(13).

Today, with the assistance of electronic circuits and switching,

all spinning and flow-turning manipulations can be initiated(12).

The number of applications this process can be used for is so wide

that further rapid development seems likely.

1.4 - Machines for flow-turning

For flow-turning, a number of makes of machine in a wide range of
sizes is available, and most of these resemble heavy duty lathes.

What is believed to be the most powerful flow-turning machine in

Europe is the Cincinnati "Hydrospin" installed in the machine shop of

Bristol Siddeley Engines Ltd at Patchway. It will accommodate

components more than 121.92 cm long and up to 106.68 cm in diameter.

The headstock is driven by a 200 hp dc motor and a force of 28 tons at

each tool ring makes possible the spinning of pre-forms 20.63 mm

thickness in high tensile heat-resisting steels and similar materials.

With shear spinning, however, the pre-form thickness has been limited

to approximately 15.875 mm. The machine was supplied with a hydraulic

system working at 3,000 p.s.i., as this was considered to be the

minimum pressure to handle the thick section components to be formed.

- 13 -

Much bigger and more powerful machines for flow-turning can be

made(3) .

In practice, the longitudinal slide is fixed approximately parallel

to the contour of the component and the pressure of the roller in-feed

cylinder (or top side) set to give the required degree of material

deformation(A).

Standard machines have a force on the cross-slide of 50,000 lb and

the tailstock a force of 30,000 lb. The total load against the

headstock and its bearing is 130,000 lb. The speed of the headstock is

currently from 100 to 450 rev/min. It is becoming evident that higher

speeds will be advantageous, which will of course increase the bearing

design problem in the headstock and rollers. The rollers and tool

rings are driven by contact with the work and the mandrel(9).

1.5 - Coolants and lubricants

It is generally necessary to use both a coolant and a lubricant in

flow-turning. A soluble oil may be used for both purposes in some

cases (such as for low pressure spinning of thin ductile materials)
but when the material is difficult to spin and high pressures are

necessary, it is usually better to use separate cooling and

lubricating media(3).

Lubricants are used on the mandrel to prevent scoring of the part

when it is removed from the mandrel. Any type of paste lubricant is

satisfactory. The lubricant used on the outside of the part is a

different matter: the type employed depends on the type of material

being spun. The lubricants established for most drawing or rolling

applications are also suitable for spinning. The other requirement for

the lubricant is that it must not be dissolved by any coolant fluid

used.

- 14 -

It must be noted that the material used for spinning must be clean,

as inclusions of dirt or slag in the blank will cause cracking or

splitting of the part as it is formed. Normally, tool marks or

scratches will not cause difficulty provided that the forming

operation is not too severe. However, if the preform is of critical

shape and the spinning operation is very difficult, tool marks or

scratches may cause cracking of the part during spinning, due to

stress concentration set up by sharp corners(9).

1.6 - Speed and feed rates

The surface speed can affect the metallurgical properties of the

part produced. Best results are usually obtained at speeds from

(1000-2000) surface feet per minute. Although this range of speed

requires more power than lower speeds, the properties and results

obtained at lower speeds are not desirable.

The rate of feed influences the finish of the part: the finer the

feed, the smoother surface obtained. Usually the best results have

been obtained with feed rates from 0.0508 - 1.27 mm per revolution.

Where smoothness is not the most important factor, feed rates of 0.762

- 1.27 mm per revolution are often preferred(3).

1.7 - Background to the design of the rig and scope of the present

work

Whilst normal practice is to control the roller movement in

flow-turning either by templates or NC machines (see section 1.4), a

more reliable and cheaper control could be achieved by introducing

micros into the flow-turning. Microprocessor control is becoming less

expensive and is well within the budget of small companies. This is a

trend which will undoubtedly accelerate as software and hardware are

becoming cheaper and cheaper.

This work is aimed at developing a suitable microprocessor based

controller to replace the existing control techniques.

The principal objectives of the work programme were to

(i) Highlight microprocessor application areas, and recommend an

appropriate microcomputer. Assess the capabilities of the

software development systems available.

(ii) Develop and implement the flow-turning process rig.

(iii) Formulate microcomputer programs for the control of the

required contours (conical and parabolic shapes are

implemented) .

(iv) Test the program on the rig and ascertain that it performed its

intended function.

(v) Assess the overall capabilities of flow-turning and the

potential practical applicability of the rig.

- 16 -

Chapter 2: Microprocessor applications and selection

2.1 - Introduction

This chapter is concerned with the selection, application and

implementation of the microprocessor element in the control system.

The first task was to choose a microprocessor suitable for

controlling the flow-turning process. Also in this chapter, some of the

application areas are highlighted to illustrate how the microprocessor

has become an essential ingredient in almost all sectors of life.

Microprocessor-aided flow-turning is contrasted with other

manufacturing techniques in terms of efficiency, initial cost and

degree of accuracy after which it was decided to adopt the new

technology as an alternative to the existing methods. The choice of

microprocessor was carefully considered in this research in view of

availability and associated expertise.

Some of the tools used in developing the flow-turning process

software are described briefly to demonstrate how considerable time and

cost can be saved. Also, the language used (PL/M 80) was underlined and

explained in some detail.

The use of a microprocessor may in itself promote a change in

present manufacturing techniques for this process or it may pave the

way for other further research. This research was directed towards

implementation of a microprocessor in the flow-turning process.

2.2 - Examples of common microprocessor uses

There are many current application areas for microprocessor, and to

some extent these indicate the likely course of future developments.

It is useful for manufacturers and users to know in what fields

investment will be fruitful and what are the practical application

- 17 -

opportunities. Major areas in which microprocessors were likely to make
an impact are listed

1- production monitoring / recording

2- automatic warehousing

3- distribution

4- retail trade (point of sale / stock recording)
5- banking transactions

6- tickets /reservations / passenger movements

7- hotel / restaurant booking

8- hospitals (patient records / monitoring/ analysis)

9- road control (traffic lights / hazards)

10- building control (heat / light / lifts / fires)

11- office systems (word processing / automatic filing)

There are many processes and phases in industrial activity from the

handling of basic raw materials, through the design and manufacture of

products. All the associated tasks, processes and production control

lend themselves to computerisation.

As far as the engineering industry is concerned, processes such as

flow-turning, metal-spinning and tube-bending are amenable to

microprocessor control. Micros can also help to optimise forging,

cold-forming and extrusion operations(lA).

2.3 - Using the microprocessor as an alternative method of tool

movement control

As mentioned earlier in chapter 1 section 1.3, there are various

well-known methods of controlling tool movement which can be used

satisfactorily and efficiently. The techniques use specialised

- 18 -

flow-turning machines (with their supporting hardware and software)

which are usually expensive. Some of these techniques involved using a

medi computer or a CNC lathe to store the tool movements, as mentioned

previously in section 1.4.

In this research, a lathe was converted to accommodate the

flow-turning process and can also perform spinning. Certain

modifications were carried out, which included the hardware (which is

elaborated on in chapters 3 and 4) and software (as explicated in

chapter 5).

In this study, a controller was conceived, fabricated and installed

on the lathe to perform the flow-turning process. A single board

microcomputer system (SDK-85) was utilized with the necessary interface

to communicate with the designed rig. A program was written to enable

the roller to follow the required shape(s) (conical or parabolic).

The rig design was simplified by using a single hydraulic cylinder

to actuate the tool (in the y-axis) while employing the screw threads

on the lathe to move in the x-axis. In this way, the added features can

be implemented on a second hand lathe of appropriate size and cost,

thus keeping the overheads to a minimum. The price of the added

features was around £1300 in total and, assuming an estimated lathe

value of £8000, thus the sum total is £9300 which is probably less than

1/7 the cost of a new flow-turning machine.

2.4 - Selection of the microprocessor

The microprocessor selected should be able to perform the following

1- Fulfil the arithematic manipulations which involve addition,

subtraction, multiplication and division with adequate accuracy

(whether it is 8 or 16 bit processor).

- 19 -

2- Possess adequate speed to process data which include

input/output operations (the input of transducer movement i.e

ADC, the shaft encoder input, which is the roller tool

position, and the output of digital values to the DAC)•

3- Meet good language facilities, with floating point variables if

possible•

The two possible available models are the SDK-85 or the SDK-86

microcomputer boards.

On the one hand, the SDK-85 board has the 8085 as a CPU, which is

an 8-bit general-purpose microcomputer that is very cost-effective in

small systems because it has a low hardware overhead requirement. At
the same time it is capable of accessing up to 64K bytes of memory and

has status lines for controlling large systems. The SDK-85

microcomputer is used mainly is small control applications. It has

enough I/O ports, yet has some language limitations (there are no

floating point variables, only integers, which limits the accuracy).
On the other hand, the SDK-86 board has a newer, more powerful

16-bit processor with good language facilities (floating point

variables). However the supporting hardware and software were not

available to the researcher within the Mechanical and Production

Department of Sheffield Polytechnic.

The microprocessor to be selected must fulfil the three

requirements mentioned above for the flow-turning process. In

addition, other factors have to be considered, such as expertise. Both

the SDK-85 microcomputer systems satisfy the three criteria. However,

because the former has been accessible for several years, expertise is

already obtainable, an important incentive when undertaking such

research. Moreover, all the difficulties associated with using the

- 20 -

hardware and software are well known. Thus the SDK-85 was chosen as

the most suitable device.

Some of the development aids available were

1- Intellec series II microcomputer development system.

2- In-circuit emulator (ICE-85).

3- PL/M 80 programming language.

4- Universal PROM programmer.

5- ISIS-II diskette operating system.

These aids are discussed in the following section

2.4.1 - Intellec series II microcomputer development system

The Intellec series (model iMDX 225) is a complete microcomputer

development system integrated in one compact package. It includes a

CPU with 64K of RAM memory, 4K bytes of ROM memory, a 2000 character

CRT, detachable full ASCII keyboard with cursor controls and

upper/lower case capability, an integrated 250K byte disk drive, plus

an iMDX 721 dual disk drive system. Plate 2.1 shows the Intellec

development system.

2.4.2 - In-circuit emulator (ICE-85)

This is a debugging device which is available with the development

system. It is invaluable because of its ability to test software

without 1 blowing’ an EPROM. This works by allowing a program that

exists in object code on a disk file, to be loaded and run in the

development system’s CPU, under the control of ICE. The ICE software

- 21 -

PR
OM

pr
og

ra
mm

er

is a sophisticated monitor which controls the execution of a program,

with a set of commands to facilitate debugging of the program under

development. These commands permit such functions as insertion of

’break points’ into the program.

The break points can be specified as either addresses or symbolic

addresses, or the break point could be specified as a certain command

or operation, for example, the calling of a sub-routine.

When the execution is terminated, the ICE permits investigation as

to why the program has stopped. The ICE will produce an output of the

last ’n’ instructions executed, or a listing of the status registers

and memory locations; this also applies to controlled

terminations(15).

2.4.3 - PL/M 80 programming language

PL/M 80 is a high level programming language for use on the

Intellec microprocessor development system. It is easy to learn,
facilitates rapid program development and debugging, and significantly

reduces maintenance costs.

PL/M 80 is an algorithmic language in which program statements can

naturally express the algorithm to be programmed.

The PL/M 80 compiler converts ’free-form’ PL/M programs into

equivalent instructions for the 8085 processor. Fewer PL/M 80

statements are required for a given application than would be required

with assembly language or machine code.

The major benefits of using PL/M 80 for the development of the

flow-turning include the following

(i) Low learning effort.

- 23 -

(ii) Earlier project completion - PL/M 80 increases programmer

productivity.

(iii) Lower software development costs - because of (ii) above.

(iv) Increased reliability - because a simply stated program is more

likely to perform its intended function.

(v) Easier enhancement and maintenance - because it is readable and

understandable.

The PL/M compiler accepts source programs, translates them into

object code, and produces listings. After compilation, the object

program may be linked to other modules, located to a specific area of

memory, then executed. Fig 2.1 illustrates a program development cycle

where the program consists of two different types of modules (PL/M and

assembly language) see (16), (17) and (18).

2.4.4 - Universal PROM programmer

The UPP-103 universal PROM programmer is an Intellec system

peripheral capable of programming and verifying various EPROMs.

Programming and verification operations are initiated from

development system console and are controlled by the universal PROM

mapper (UPM) program(19). Plate 2.1 shows the PROM programmer.

2.4.5 - ISIS-II Disk Operating System

This is a well established operating system very similar to CP/M.

Various application packages are available to run under the system

such as assemblers, screen editors and compilers. The disk operating

system can be seen in plate 2.1.

- 24 -

DCCD OZD <C 1—CDLU :> ZQ o21

1- a:—1 •— 0C UJ< in d o 2Z2 CO O 1— 2: 2ZO • CC C o—- UJ — • —J cc cc!— CD CD ZD CL CDa_ i 2: oO 2 UJ cc■— CL

UJ
O ..J
uj zdQ CD Oo

e
0)
4~>
01 IT i 0)

O UJ00 o

cl on

-
CD

o
CDUJ-J1 cr CDCD o o 2:•— i < UJCD 2: CO

UJ
cc

CD<

>- uj-J CD UJOQ C CD2Z ZD ccUJ CD ZDCO 2 oCO <C cnC -J

-25-

FI
G

2.
1:

pr

og
ra

mm
e

de
ve

lo
pm

en
t

fi
ow

us
in
g

15
15

-1
1

di
sk

op
er

at
in

g

2.4.6 - Intel SDK-85 (System Design Kit)

This is a single board microcomputer, based on the

microprocessor with:-

2K bytes of ROM

2K bytes monitor/ROM adaptability

512 bytes of RAM

76 bits of Parallel I/O

serial I/O - limited to 110 bauds

See plate 2.2 for the SDK-85 board.

8085

- 26 -

B0BO089D9B

MEM

P L A T E 2 . 2

- 27

Chapter 3: Equipment description and preliminary testing

3.1 - Introduction

In this chapter a detailed description of the apparatus used is

given and modifications to the existing rig are explained.

Also, the preliminary testing carried out during the onset of the

research is summarised and the results obtained are shown in the form
of graphs.

The parts made in the workshop including the roller and formers are

explained in detail with drawings.

Later, in chapter 6, the ranges of the suitable spindle speeds and

carriage . feeds were selected after consideration of software

requirements.

3.2 - Description of the experimental equipment

A lathe was needed to perform the flow-turning process. The one

chosen in the workshop was manufactured by Dean Grace & Smith with 33

cm swing. There were 12 spindle speeds available, ranging from 16.8 to

750 rpm and 48 carriage feed rates, ranging from 0.226 to 12.7 mm per

revolution. Plate 3.1 shows a general view of the equipment used. It

was assumed that with this type of lathe the process can be carried out

although the lathe is not specialised for this job but can be converted

to handle this task.

3.3 - Modification to the existing rig

In order to make flow-turning possible, some components had to be

made and added to the lathe. Alterations included the following

- 28 -

1- Modifications to accommodate the workpiece and the roller (these

will be explained in this chapter).

2- Other modifications, which include attaching the transducer to

the cross-slide so as to measure roller movement, selecting and

fabricating the ADC and the DAC boards, mounting the shaft
encoder on the leadscrew end and making the counter board;

installing a relay and the necessary circuitry on the lathe

electric starter so that the microcomputer SDK-85 could

remotely control the ON/OFF starter. These will be dealt with

in chapter 4 (the hardware).

The tooling for shear spinning consists of the mandrel, tool rings

or rollers, and the tracing templates. As the mandrels must be harder

than the material in the finished part, they must have a compression

strength of 200,000 lb/in square. Tool steel that can be hardened to

this or a higher strength is easily obtained, but for large mandrels,

the cost is significant. A very satisfactory material at lower cost is
high-strength nodular iron which may be cast to shape and hardened to

the required strength.

The tool rings or rollers must be of high-grade tool steel in order

to obtain miraimum hardness of 62 Rockwell C. This hardness is

necessary to resist wear and scuffing(9).

To position the workpiece in place, it was considered best to fix

by using the tailstock as a support. The tailstock was provided with

a dummy rotating centre which was made specifically for this purpose

to hold the blank against the mandrel end by exerting pressure on it.

The centre was provided with a pig in the middle, which passes through

the centre hole of the workpiece.

One thickness of commercially pure aluminium sheet (BS 1470/SIC) of

1.6 mm was used. The aluminium sheets were cut into discs of 100 mm

- 30 -

diameter, each with a hole drilled at the centre. High pressure

grease was used as the lubricant throughout the study.

Chucks or formers are often made of cast iron, but when forming

high-tensile materials or producing large quantities, chucks of

hardened and ground steel may prove more economical. Generally the

quality of surface finish obtainable is related to the surface finish

on the chuck itself, imperfections in the chuck frequently being

transferred to the work under the very heavy pressure applied(lO).

The former was made in the shape of a cone with 10 degrees

semi-angle (see fig 3.1), and was used in the initial testing. It was

made of steel EN8, which can withstand the compressive pressure

imposed by the roller. Another former with 30 degrees semi-angle was

made at a later stage of the research for the final testing (see fig

3.2). This was however made from Meehanite.

Meehanite castings satisfy the requirements for a good mandrel

material. Such castings are noted for their fine grained structure,

which ensures dependability and freedom from casting defects. A

uniform structure provides good machinability with a compression

strength of 80 ton/in square in the as-cast condition. Moreover,

Meehanite type ’ GA’ is able to resist the extreme high level of

external forces applied to the surface of the mandrel during spinning

operations(20).

At a later stage of the research it was decided to implement the

parabola contour (see figs 3.3 and 3.4). A parabolic former was made

in a later stage of the work on a CNC lathe, retro-fitted with an

AUDIT M268 controller. The program was generated using software

package called ’path turn’ supplied by ’path trace’ Ltd. The parabola

was generated with the loop command within the geometry section, this

was then processed by the machining section to give tool movements in

order to cut the parabola. This data was then post-processed to suit

- 31 -

UJ
cc oin
cl
o

UJ-J
-J<c

LQQQ

CM\

■O)10 via 09
•CH

on

(M

o
CMID

CD

-OHkj-

■CHfo
via 99

c_
0)
Ec_
o
<4-

oj
c
-I—)
10
cl)
4-J

e
o c

CD
<L

a

on
CD
u_

32-

I J

LUCCO(-0
CLco
LU-J
-Jc
IP
CD

rsj

via 09

VIG

on
CD

^r(N-
Oon

.CO

lo- •ol

■oj

C
Q)e
c_
o
<4-

cr c
40
LO
0)
40

D
C
IL.

CM
on
CD
LL

-33-

FI
G

3.
3

rP
ar

ab
oL

 i
a

eq
ua

ti
on

r j

UJccoto
Cl.co
LU
- J
- J

LO03
CM\

-OH
V I Q O 9oo via

cn

cn

■ol

o)viaooi

-35-

FI
G

3.
4:

Pa

ra
bo

la

fo
rm

er

ISO work address format of the AUDIT lathe. Finally, punched tape was
produced to load into AUDIT.

The former was mounted on a stub arbor which itself was then

mounted in a four jaw chuck and trued using a dial test indicator so

as to be concentric. The former was mounted on the stub arbor by

means of a bolt This was so designed that mounting and dismounting

(i.e replacing a former) can be done easily, quickly and efficiently.

All that was required was to slaken the bolt, then remove

(dismount) the first former, install (mount) the second former and fix

with the bolt again. This arrangement allowed different formers to be

used with minimum set-up time.

Some modifications to the lathe had to be carried out in order to

accommodate the roller tool. The compound slide was removed and

replaced with a fixed tool post on which the roller forming tool was

mounted. The fixed tool post was connected to the piston rod instead,

so that movement could be controlled hydraulically and the necessary

power would be provided to form the workpiece. In order to prevent
damage to the cross-slide transducer, the metal back stop was fixed to

the top surface of the cross-slide, which prevented the cross-slide

from compressing the transducer beyond its working travel, (see fig

3.5 also see chapter 4 section 4.6.2).

Forming rollers must be well supported, free running without play

to minimize surface friction, and at the same time capable of

producing a high degree of finish. The contour of the roller has to be

designed to allow for the correct flow of the material during

operation. Accordingly to satisfy these criteria, a roller was made

of EN9 steel with a semi circular profile. Rollers are made of a

variety of materials. Where heavy pressures are exterted, they are

usually of steel, hardened and ground(lO).

- 36 -

m eta l back
s top

cross-siibe

piston rod

r o l l e r forming
too I

hydrautic
c y I / nder

t ra n s d u c e r
/

fixed toot post

FIG 3.5: A schemafcic diagram showing the toot fixing
arrangement

-37-

The whole roller assembly including a support bar, spindle, ball

bearing and a roller was designed and fabricated. The roller
assembly can be seen in fig 3.6.

3.4 - Preliminary testing

As mentioned in chapter 1, the next step was to devise a method of

moving the roller to follow the contour.

It was decided to use the taper attachment on the lathe to

configure the conical contour with a 10 degree taper. The experiments

were performed with the feed engauged.

Deformations were recorded on graph paper with peaks observed at

the commencement of the bending of the disc. Uneven wall thickness was

obtained as it was found that the taper attachment contour did not fit

onto the former profile precisely. The outer wall thickness was almost

the same as the original blank thickness, whereas the inner parts were

reduced by a different extent.

It was informative to measure the forces’ magnitudes during initial

testing. The axial and the radial force components imposed by the

roller were measured by means of a dynamometer installed on the roller

pedestal and the values plotted on a graph using a PL 2000 plotter.

These can be seen in fig 3.7 and 3.8.

Results showed that the axial force had the maximum values all the

time. These results corresponded with the results obtained by

C.F.Noble & K.S.Lee(2) and contradicted with R.A.C.Slater &

A. Joorabchian(7).

- 38 -

ooINI
CMCD m

>s>. o
CM CDCM

O0c CD
U_O UJ O CC

OUJ<c cr
UJo

cc
UJo

UJoo occ in
O f

UJUJ UJ UJ
OCM

8 L 0 ‘S£ 0

00 •9cn
ooooLO CMlD 00 CD

LO

00
UJ
CDcc<

o cn
o cn
inin ^

-39-

-40-

Chapter 4: Hardware design and testing

A.l - Introduction

In this chapter, a full description of the hardware components

included to build the flow-turning process controller is presented

along with the component associated test procedures.

These components can be broadly divided into the hydraulic circuit

and the electric circuits which can be subdivided further as follows:

The hydraulic circuit consists of a proportional directional valve,

a cylinder, a relief valve, a filter, a gear pump, an electric motor,

and an oil reservoir. The design, selection, fabrication and inspection

of the hydraulic components are described in detail.

The electrical circuits comprised ADC, DAC and counter boards.

Also, their integral parts, namely the linear transducer and the shaft

encoder, which complement the ADC and the counter boards functions, are

listed. The various components and boards were devised, decided on,

assembled and then examined afterwards.

A.2 - Hydraulic components

A hydraulic power pack was built to drive the cylinder controlling

the roller. Part of the rig function was to provide the necessary force

for the flow-turning to be performed. The circuit was devised and

fabricated with the help of the Automation Advisory Service Department.

A schematic diagram for the circuit is shown in fig A.I. The circuit

consists of the following parts:-

1- A cylinder

2- A proportional directional control valve

3- A relief valve

A- A filter

5- A gear pump

- A2 -

7

1 HYDRAULIC CYLINDER
2 PROPORTIONAL VALVE

3 RELIEF VALVE

A FILTER

5 A GEAR PUMP

6 AN ELECTRIC MOTOR
7 RESERVOIR

h i i d r

-43-

6- An electric motor

7- An oil reservoir

The cylinder was used indirectly to move the roller. Instead of

mounting the roller oh the cylinder rod, it was found technically

easier to connect the piston rod to the cross-slide over which the

roller was fixed.

The oil flow rate control and direction were accomplished by means

of a proportional directional control valve. This type of valve

provides flow control together with directional control in the same

manner as the normal type of directional control valve. Thus a single

proportional valve can fulfil the functions of flow control,

directional control and braking valves. It offers a simple method of

electrical control of the working speed of hydraulic units, such as

cylinders and motors. The hydraulic components can be seen in plate

4.1.

4.3 - The hydraulic circuit design

An approximate calculation of the hydraulic circuit components

needed were as follows

Roller force on disc (radial)= 4.7 kN

Cylinder speed (maximum) = 70 mm/s

we assume a pressure of= 70 bar

F = P * A — (1)

where
/ aP= cylinder pressure (N/m)

F= roller force (N)
, aA= cylinder area (m)

- 44 -

re Iref valve

mp switen4

® C JB

ic p o w e r
y *

From equation (1) is derived the cylinder area and then the diameter

was determined to be 2.92 cm. The nearest cylinder size is 3.81 cm.

The correct pressure is calculated corresponding to the force of 4.7kN

from (1) to be 41 bar.

Q = V * A ------- (2)

where
3Q = oil flow rate (m/min)

V = cylinder velocity (m/s)
aA = cylinder area (m)

The oil flowrate from equation (2) was calculated to be 4.78 X/min.

The pump capacity will be about 6 X//m±n- The motor power is to be

determined from

P * Q
Theoretical power = " (3)

600

where

P = power in (kW)

Q = flowrate in (litre/min)
The theoretical power was calculated from (3) to be 0.327 kW. A 1.1

kW motor was chosen in order to compensate for the hydraulic losses in

the different parts of the circuit. The proportional valve size should

be selected to accommodate about 6 X/min. The relief valve should be

able to bypass the calculated flowrate when the piston reaches one of

the cylinder ends, so the capacity should be near 6 The

valves, filter and pipework must be capable of handling a flow of

approximately 6 j,/m:In.

4.3.1 - Proportional directional valve

- 46 -

The oil control valve used was manufactured by Integrated

Hydraulics (Wandfluh) with a valve number NG6 (VWS4D61-10-TF) . Plate

4.1 shows the proportional valve.

4.3.2 - Hydraulic cylinder

The cylinder chosen was the Carter model BBJ 1.5 in Bore * 6 in

Stroke and with a rod diameter 5/8 in, style MF1. Plate 4.2 shows the

hydraulic cylinder.

4.3.3 - Relief valve

The relief valve chosen was manufactured by Integrated Hydraulics

(Wandfluh) with a valve number 1G11-R2W-10S. Plate 4.1 shows the

relief valve.

4.3.4 - Filter

The oil filter used was designed by Pall Industrial Hydraulics with

a filter assembly part number HH9020UPRBD. Plate 4.1 shows the filter.

4.3.5 ~ Gear pump

It was decided to choose GMM gear pump with 4.4 jt/min at 1500 rpm

delivery, motor speed of 1420 rpm so that the pump output is 4.16

//min. Plate 4.1 shows the pump.

4.3.6 - Electric motor

- 47 -

The gear pump was driven by a Brook Crompton Parkinson Motor (BCPM)

with ED90L frame size, 1.1 kW, 1.5 hp and 1420 rpm at full load

speed. Plate 4.1 shows the motor.

4.3.7 - Oil reservoir

A five gallon oil storage tank was built for the hydraulic circuit.

The oil level could be readily observed through the sight glass. The

tank was made of mild steel sheet 16 gauge and also served as a heat

sink and dissipator.

It was provided with 2 internal baffles, a suction line strainer, a

return line defuser to prevent turbulence and a filler cap air

breather (Plate 4.1).

4.4 - The hydraulic circuit test

The principal objectives were to check
1- Motor wiring connections

2- Oil filtration

3- The regulation of the relief valve lift pressure

4- Possible leaks

• Before using the system, it was necessary to purge it of all dirt

particles and fragments trapped inside piping, joints and parts. This

was accomplished by operating the pump and circulating oil through the

system, without the proportional control valve or the cylinder in the

circuit so as to avoid any contamination of these sensitive

components.

Next, the proportional control valve was added downstream of the

filter and the output ports of the valve connected. The purging of

dirt particles was repeated for both positions of the valve.

- 49 -

Finally the cylinder was connected to the output ports of the valve

and the piston advanced and retracted repeatedly to release the air

trapped inside the cylinder. This was done for about 15 minutes until

the piston movement was smooth.

4.5- Electronics

A variety of electronic components and circuit boards was used

during this research. The equipment comprised the

1- Transducer

2- ADC board

3- DAC board

4- Shaft encoder

5- Counter board

6- Modified SDK-85 board

These fulfil different functions in the control of the process,

each of which is described below:-

4.5.1 - The transducer

Actual tool movement was measured- by means of a hybrid track

rectilinear potentiometer connected to the cross-slide upon which the

roller was fixed. Whenever the tool was advanced or retracted, the

transducer would be displaced by the same amount, thus the actual

distance moved was known.

The stroke of the transducer was chosen to be slightly longer than

the cylinder stroke, which was 150 mm. The resolution was virtually

infinite and linearity was within 0.1%.

- 50 -

Mounting was accomplished with two studs, one of which was clamped

on the cross-slide (the moving part) and the other end fastened on the

saddle far end (the stationary part).

Fine adjustment of the transducer slider was done by rotation of the

slider eyelet fixing.

To protect the transducer, another thicker stud was fixed on the

side of the saddle opposite the tailstock to guard it from possible

damage inflicted by accidently hitting the tailstock.

Further protection, when the transducer was fully retracted, was

provided by a rectangular metal block fixed on the far side of the

saddle.

Monitoring of the roller (tool) movement feed control in the

y-direction was achieved with this device. The required feed for the

flow-turning process is specified in the software, the minimum

increment being 1/8 of a millimeter (see section 4.6.2.).

The choice of transducer was a Penny & Giles type HLP 190SA1/150/6K.

4.5.2 - ADC board

The analogue output of the transducer required conversion to a

digital signal to enable the position input to be fed to the

microcomputer. A 12-bit unipolar ADC board was constructed to feed the

actual roller position measured by the transducer to the

microcomputer. Each ADC conversion would be initiated by a start

command coming from the second bit on port (2AH); 40 microseconds

later the data could be read from the ports (21H) and (23H).

The following is an approximate assessment of tool traverse

position measurement for purposes of ADC selection. A more accurate

assessment of tool traverse resolution is given in section 4.6.2.

- 51 -

M
2

ADC resolution =
transducer stroke (mm)

where N = Number of bits
n2 4096

150 150

= 27.3 steps/mm

Using the 10 most significant bits the resolution becomes:-

2 1024

150 150

= 6.8 steps/mm

which was sufficently accurate for this application. The choice of

ADC was an Analogue Devices type AD574. The layout of the circuit

board is shown in fig 4.2.

4.5.3 - DAC board

The digital output of the roller control commands from the

microcomputer required conversion to an analogue to enable cylinder

movement. An 8-bit bipolar +5 volt DAC board was constructed to

convert the digital control signal values output from the

microcomputer to an analogue voltage, which was then fed to the valve

controller (voltage-current converter).

The roller control commands, (advance, retract or stop) were sent

from the SDK-85 to the valve controller. As the proportional

directional valve worked on current rather than voltage, the valve

controller converted the control signals into current signals. The

digital values were output through port (22H). The chosen DAC was a

National Semiconductor type DAC 0800. The circuit board layout is

shown in fig 4.3.

- 52 -

S 8 ~ > I 0 S

in

CO r>- CD Cn rn <\j o cn co n u

a.a,in i/v_n

CL CL
u.r\j | Li o \ iu_ lu t K u

«n v m 10 in
CD

UJ
Qin
cn

- 53 -

FI
G

4.
2:

Un

ip
oL

ar

AD
57

4
AD
C

ci
rc

ui
t

oLU

OCO

Ln
on

oo oo uo o
O ono
Ocn o
Q00 o

onun
LL. u_
UJ LUcc cr o

IN-

o
— W M / V W

o

-54-

FI
G

4.
3:

Bi
po

La
r

DA
C0

80
0

-5
vo

Lt
s

4.5.4 - Shaft encoder

The roller traverse position was measured along the axis of the

rotating workpiece. A rotary encoder was used to read the carriage

position from when it starts moving towards the former until it stops

after forming the workpiece, see fig 4.4. A rubber coupling was used

to connect the encoder shaft to an adapter head provided on the

leadscrew.

The selected encoder was an OMRON E6A-CW100 rotary encoder having

100 pulses per rev with lathe leadscrew pitch of 6.35 mm (1/4 in).

Each encoder pulse was equivalent to 0.0635 mm i.e shaft encoder

resolution equal to 0.0635 mm.

4.5.5 - Counter board

The output pulses from the shaft encoder were fed to the counter

board containing a circuit which provided the binary value of the
leadscrew position. This was taken into port 29H on the microcomputer.

The first prototype of this board (shown in fig 4.5) failed to

satisfy the operating requirements (see section 4.6.2) and a second

circuit was designed and developed, which proved to be satisfactory

upon testing. The new board is shown in fig 4.6.

Calculation of maximum counter pulses

In order to determine the total number of encoder pulses stored in

the counter variable (in the software), the encoder rotation number

has to be calculated first as follows

The total distance envisaged to be moved by the saddle

*= Distance before forming (counter disabled) + Form length

- 55 -

oe-u>

Xo
cc
UJCD

_lco

cc

II >I r<- —I §S»-
I £SUJ

ccUJ
a.

CM oUL
0 0

cd
oUJ

OQCM

C/1 o
QCl

UJo
UJ>

CD

<CCD

-56-

FI
G

4.
4:

An
ov

er
al

l
sc

he
ma

ti
c

di
ag

ra
m

>o o o

>>
in

o r:
° § ^ o o

ôr

in

iu
ooo

o cc
LUCO
LU
CC

CM

P on

o ̂
1/1 o

P 10
o

(M

CM

O OCD
I— LU
LU Q<c o X o un 2LUo

oco
cn

-57-

FI
G

4.
5:

Co
un

te
r

ci
rc

ui
t

DI
RE
CT

CO
NN
EC
TI
ON
S

TO
EN
CO
DE
R

POWER SUPPLY=9V BATTERY
+9VOV ibv

307 979TANT

10K

10V
TANT

1OOPF

1 000
AT 10V

ELECTROLYTIC

Nr
NC

07 -gs- OS -*3&
QE
C5 *3̂
Ob'

NC a
D3

"*3#- 03
-§2- 0-1 <5§- 01

:ER

DO

oe05 D3D4D5
D7

NC
NCDOQO -&»- 01 NC
NC

10V TANT 02 NC

MASTER
RESET

— —

FIG 4.6: Second cou n t e r c i r c u i t

- 58 -

= 0 + 50

= 50 mm

The leadscrew has 4 threads/in

1 in= 25.4 mm

lathe pitch= 25.4/4

= 6.35 mm

number of rev= The total distance/lathe pitch

= 50/6.35

= 7.87 rev

Therefore the maximum encoder pulse count is of the order of

7.87*100 = 787 pulses. The limitation of the 8 bit counter (255 pulses

maximum) was overcome by treating the counter output as an incremental

count and accumulating the total count in a sixteen bit variable.

4.5.6 ~ Modified SDK-85 board

The flow-turning process program had to be stored in the

microcomputer memory before the process could actually start, i.e the

purpose was to be finally independent of the development system.

After program development, it was found that the program memory

requirement was about 10K bytes. This was far greater than that

provided on the SDK-85. The memory was therefore expanded by adding

three contiguous EPROM chips having a total memory capacity of 12K. It

was useful to have some extra memory for further expansion or

modifications and for future implementations.

There was another problem in outputting the text to the VDU. It was

thought that the SDK-851 s original serial interface operating at 110

baud was far too slow for the present application. For this reason a

serial interface capable of operating at up to 9600 baud was developed

- 59 -

to replace the SDK-85's serial interface. For this, an ACIA chip

MC6850 was used in conjunction with an 8 position baudrate switch and

other necessary circuitry (see figs 4.7 - 4.10). The ACIA

(asynchronous communications interface adapter) permits data to be

transmitted or received in a serial format i.e as a stream of pulses.

The output speeds are shown in fig 4.11. Any of these could be

selected by simply switching to that baud rate.

4.6 - The electronic circuit test

All of the above mentioned electrical components were to be tested

before use. The first task was to modify the SDK-85 board, after which

the ADC and DAC and finally the counter board were assembled. The last

three were housed in a cabinet for convenience and compactness along

with the necessary sockets and switches on the front and back covers.

Circuit testing includes:

4.6.1 - Modified SDK-85 board

After the extra ACIA line and the EPROM sockets were added with the

necessary circuitry, a careful examination of the additional operating

features was carried out.

The sockets were checked by inserting programmed chips into them,

and by stepping through known programs (using the SDK-85 keyboard) it

was possible to ascertain the functionability of the EPROMs. The ACIA

line was readily inspected by outputting a piece of text to the VDU.

This was repeated for all the eight different baudrates available.

4.6.2 - Transducer and ADC board

- 60 -

SE
LE

CT
OR

S
E
L
E
C
T
O
R

CM o

cn
UJ
i— • < cc
Q
CD

o o O O O o o o'— in O o O o o o' ■' CDCO CMM-CMoôr LOCD
- CM CD LnCO CD

a . cc

UJ LU
H- -J t— —J

O va <c O
cc CC cc cc cc cc

K- o H- o
Q 2 U_ o Q 21 U_
U) o D o< o <C o
CD CD

r-^nVailjN J)

CM
*A<C
o<c

m
<n
o

LU -J ^ O q ui in o(J>
o o

00:

cn cmi i X X !— CC

cm
cccoLU I—
I— CO x cc
UJ

-a; in 2 •ccxUJ I—
I— CO
X cc
UJ

<£
O
<C

X CM
CC

CD

CM

o

o

x rM cc

u

c_
0Cu-
01
C
O
4-)o0>
cco
o

IN-

CD
U-

- 6 1 -

1 o CO in M" CM O 00 incn m cn cn cn CM CM

o CM cn M- in inQ Q Q Q Q Q Q o

m o ^ n in b n

CD
CM

CO
oc

|UJ ®o -

t D N U i n ' r (n ! M - cn cm <x>CM CM —

o CM cn m cn CV 00 cn o
< ■i <c c c <

UJ
lo

Q.
CL>
|UJ

ICC

>o

CM cn V in in N
Q a a Q Q u Q

o cn v in co i'-

AC
<C
CMon
CM

o
cc
Cl
UJ

IUJ Co lo —

c o r ^ t o L n v m c M r -

cn2 :
Cl
m -
cm

cn cm cn
cm cm —

CM

O CM cn M- in in 00 cn O
•<c c c <C < -t *jc c •<

o CO in V CM o CO in M- CM oM- CO cn cn cn cn CM CM CM CM CM

IQlac

- 6 2 -

FI
G

4.
8:

Me

mo
ry

de
vi

ce
s

CLK 7 . 5 6 . 5

MX.r Vo U3

k

if-xlO Nl
-J T.u a:

ta♦— Q (— to 2 ir, ■cod;

O o o omo o oo o oCD a> < S
CM cn Sx X Xo o oa: a: a: Xq. a. 0.UJ UJ UJ a:

>LO
cn
lo

>o

'§ >cncm in

C\J to v NA ~ ~ -

UJ UJ

H

:»o v
r- —2 2
SI SI
oOin
r̂rv-

— 2 o ■— ex.

o £

. A © Ar»

-Q-.
CM

-C=k

CMV* ^

63-

FI
G

4.
9:

De
co

di
ng

,
cl

oc
k

ge
ne

ra
t/

on
,

ti
me
r

in
an

d
in

te
rr

up
t

se
le

ct
or

s

7.8432 MHZ

R 5 AOV
R5 B5V

RESET5V

OV

ACJAS1 SEL
J9 RX c#c

33 OFF =r=
OV

33 OFF 02
03

RTS 0527K 06RX 07
RS AO "s-12V27C CTS

DCD
5VOV

J 70 I486
330PF R/T5 WR

4K7
07330PF =F 06
05
04RTS 0307RX

-12V27/C CTS1489 !— AO
RX C/C0 CD

OV TX CK

14 89

1489 PIN 7 OV
PIN 14 +5V

1488 PIN 1 -12V
PIN 14 +12V
PIN 7 OV

a POSITION
SWITCH

3 POSITION
SWITCHMCI 4411 5

BAUD 7
RATE 8

GEN ER A TO R 13

22

23

24

9 CS2 8 CSO
10 CS1

23

ACIA%2
6850

20

I CS2 8 CSO

F I G 4 . 1 0 : B a u d r a t e g e n e r a t o r 8 s e r i a L I / O
-64-

s w i t c h . ba u d rat e
1 110
2 150
3 300
4 600
5 1200
6 4800

■ 7 4800
8 9600

memory map

E P R O M 1 8 0 0 0 - 8FFFH 4 K

E P R O M 2 9000 - 9FFFH 4 K

E P R O M 3 A 0 0 0 - A F F F H 4 K

RAM B 0 0 0 - B 7 F F H 2 K

A C 1 A $ 1 E 0 0 0 - E 0 0 1 H

F I G 4 . 1 1 : B a u d r a t e s a n d memory a d d r e s s m a p
- 6 5 -

The ADC board was tested first using a Limrose PB 100 digital

circuit patching panel to supply the conversion start command and

monitor the digital output of the ADC and a variable power supply to

supply the analogue input. Thus a known d.c. voltage between 0-5

volts and measured with a digital multimeter was input to the ADC and

the corresponding digital value from the ADC was displayed on the PB

100 LED panel. Input voltages according to the ADC manufacturer’s

calibration data were applied and adjustment of the gain control made

so that the digital value was in accordance with the data. The clock

on the PB 100 was used to control the start conversion on the ADC.

The next part was to test the displacement transducer. To ensure

the transducer met specifications, a measured d.c. voltage was

connected and its output voltage was taken to the ADC input. Both the

transducer output and the digital output of the ADC were then

monitored when the transducer was moved. It was found that the

relationship was not linear due to the ADC causing a loading effect on

the transducer output.

This difficulty was overcome by incorporating a d.c. voltage

follower board in the circuit.

The transducer was also examined for linearity over its whole range

to ensure accurate performance. A further test was carried out with

the transducer connected to the cross-slide of another lathe enabling

accurate movement of the transducer by the cross-slide traverse

control. Readings were recorded at a given interval and two different

input voltages were used, results were tabulated and then presented in

graphical form, fig 4.12.

It was obvious by observing these figures that the transducer was

linear and within specification.

After checking linearity, the resolution was determined. As only

10-bit of the 12-bit ADC were being used and assuming an active

- 66 -

in
cnCD

4-J
C
cd
E
CD r-\o e
o E

— j '
Cl

-i“ r£
L _ _ 4 - L— +•/

— +■

_ L

_ _4 _ L +- ~T~ (--
-h -

_ !_

in v cn cm ° o i o o N t D i n ^ n f M

CD
CO CO
D +J
4-J — 3-j o
o >
> ^

-67-

FI
G

4.
12

:
Tr

an
sd

uc
er

vo

Lt
aq

e-
di

sp
la

ce
me

nt

re
la

ti
on

transducer length of 128 mm from the 150 mm total length, it was

calculated that the total voltage needed across the transducer would

be 11.719 volts to give 1/8 mm resolution of the tool traverse.

4.6.3 - DAC board

The apparatus used for this test was similar to that for the ADC,

which included the limrose PB 100 test board and the digital

multimeter.

The digital values were input from eight switches on the Limrose

panel and the corresponding analogue voltage values were shown on the

DVM display. As the switch combinations were altered, the DAC output

changed symmetrically between ± 5 volts.

To see the DAC output values on the screen, a small program was

written. The software was run with the Intellec development system,

an ICE-85, an oscilloscope and the SDK-85 board. The symmetrical

values in the form of a continuous series of inclined straight lines
(i.e a sawtooth waveform) across the oscilloscope screen were seen.

The testing program PROG 3 is shown in appendix 1.

The cylinder speeds during advancing and retracting had to be

calculated in order to be incorporated in the software. This was done

by measuring the time required to move the roller tool a constant

distance of 148 mm, which is the cross-slide traverse, and then

dividing this distance by the measured time to obtain the speed.

A variable power supply was connected to the DAC board during the

test while the voltage was displayed on a DVM. The value corresponding

to a given speed was recorded. The test was repeated three times and

the average was taken for the recorded times.

The equivalent decimal numbers corresponding to the recorded

voltages were calculated for use later in the program. Values were

- 68 -

obtained for advancing and retracting, and are illustrated in

graphical form in figs 4.13, 4.14 and 4.15.

4.6.4 - Shaft encoder and counter board (

Prior to using the encoder on the rig, it was essential to ensure

that an accurate number of pulses would be sent to the SDK-85.

It was important to measure the exact number of pulses from the

encoder to the counter board, the transfer of the eight bit count

through port 29H on the SDK-85 and to obtain the correct computation

of the sixteen bit accumulated count. For this purpose a small test

program was run on the Intellec development system and the output was

displayed on the SDK-85 4 address LEDs as before.

The number of rotations has to correspond with the value listed for

the encoder specifications, thus for these tests an encoder of 100

pulses/rev was used. Upon running the program, the number initially

displayed was 00H. As the encoder was slowly rotated, the display

started counting up accordingly. When it was rotated about half a

revolution clockwise, the figure was 032H i.e 50 decimal as expected

from the encoder specifications. With continuous rotation, the number

was steadily increased until it occupied the four LEDs. The testing

program PROG 1 can be seen in appendix 1.

The lathe ON/OFF remote control drive from the microcomputer was

accomplished with a Darlington relay connected to the lathe relay. The

limit microswitches used for the carriage end and the cylinder were

connected to port 2BH, as shown in fig 4.16.

- 69 -

4-J

o
O) M« .. cn

<1)CO 7̂ D i2
4-J _ j
) O

cn

cn

CM
cn

cn

to

cn 01 in <n oi

O
E
OOQ

<DCOo
o>

CM
I

CO
CM

-71-

FI
G

4.
14
:

A
gr

ap
hi

ca
l,

re

pr
es

en
ta

t
i on

of

th
e

us
ef
ul

DA
C

va
lu

es

CD

LD
r\j

CD o

-4-Jcno

LU
CC o
o

4-J

CD

cn

Ln

o
CD

- 7 2 -

CM

OO O

LOin
u. u_u_
o o

oo

CD

o
ID

o

4 -J o

QQ QQ

OCl
O

2 cc
£ > ! < X £ ̂ J o
^ cr UJ QQ —i r r CC QcQ

UJ >~

<C UJ

o

ccoQ
CD cn

-73

FI
G

4.
16

:
La
th
e

ON
/O

FF

sw
it
ch

dr
iv

e
ar

ra
ng

em
en

t

Chapter 5: Software development and testing

5*1 - Introduction

The flow-turning program structure is illustrated with a hierarchy

chart. The function of all the modules is described while important

Machine Cone Control module is explained with flowcharts.

5.2 - Outline description of software from operator1s point of view

This section is concerned with the menu part of the software

before, during and after the process as it appears on the VDU screen to

the operator (see figs 5.1 to 5.3).
When the program starts, the ’Initialisation’ module generates

textual information about the flow-turning program on the VDU. The

’Initialisation’ module is followed by the ’Machine Set-up’ module

which provides interactive messages to the operator to enable the rig

to be set up for the flow-turning process. Program control then
progresses to the ’Shape Select’ module, whereby a contour is selected.

Either the ’Cone Generation’ or the ’Parabola Generation’ will follow

where the parameters have to.be specified. After this, control of the

flow-turning process can start in the ’Machine Cone Control’ or

’Machine Parabola Control’ , where the workpiece will take the contour

shape. After the workpiece has been formed, the program will ask

whether another identical piece is required. If the answer is yes, then

control remains in ’Machine Cone Control’ or ’Machine Parabola

Control’. Otherwise control passes to ’Shape Select’ for specifying a

new shape. The program listing (in PL/M 80 and Assembly languages) is

shown in appendix 2.

5.3 - Software development cycle

- 74 -

I n i t i a L i s a t i o n

Console
I n p u t

Output
Machine Set-up

Shape SeLect

Parabola

Cone

Parabola GenerationCone Generation

Machine P a r a b o l a ControlMachine Cone Control

Machine Parabola ControlMachine Cone Control

yesyes

no

Schematic Logout of 5.1, 5.2 and 5.3
-75-

program
start

Shape Select
A- Conical.

B- Paraboiic

1 oaqe of text

paraboL ic
contour
Ccont. on 5.3) con icaL

contour

Console
Input

O u t p u t

interactive instruct/on messages
to the operator

Machine Setup

1 oaqe of text

Introduction text about process,
microcomouter used, programming
Language, etc

In i t i aL isat i on

2 pages of text

Ccont. from 5.2)
Ccont. from 5.3)

Ccont. on 5.2)

FIG 5.1: The program as seen From the operator's view CD
-76-

Cone Generation
/parameters input

/ I- Form Length (mm)
/ 2- InterpoLat ion Increments Ce.ncoder pulses)
3- Cone Angle (degrees) /

1 page of text

another
i den t ical

yes

cone

no

Console
Input
Output

After process completion
Machine Cone Control

I page of text

Roller tool movements before
and during the process

Machine Cone Control

1 oaqe of text

FIG 5.2: The program as seen from the operator's view C2)
-77-

Parabola Generat ion
/ parameters input
1- Form Length Cmm)

1 oaqe of text

another
identicat
parabola

yes

no

Console
Input
Output

After process completion
Machine Parabola Control

1 page of text

Roller tool movements before
and during the process

Machine Parabola Control

1 oaqe of text

FIG 5.3: The program as seen from the operator's view (3)

-78-

After each module has been written, it is compiled, linked to other

modules and then located into the relevant hardware address space.

The In-Circuit Emulator is then invoked and the software tested without

having to ’blow’ an EPROM. If any faults are found, the user has to

return to the high level language, make the necessary changes and then

re-compile the module(s) and re-run under ICE until a satisfactory

result is achieved, (see also section 2.4.3 and fig 2.1 chapter 2).

5.4 - ’Flow1 module

This is the main module for the flow-turning process. It calls

’Initialisation’, ’ Machine.Setup’ , ’Shape Select’ and either ’Cone

Generation’ followed by ’Machine Cone Control’ or ’Parabola Generation’

followed by ’Machine Parabola Control’. The module is illustrated with

the hierarchy chart in fig 5.4.

5.5 - ’ Initialisation’ module

This is the first module to be called by the main flow module. It

performs all the necessary initial hardware resetting on the SDK-85.

The SDK-85 resetting includes port configurations, resetting ACIA 1 and

zeroing the SDK-85 display. To prevent unnecessary conversions by the

ADC, the ADC convert signal is set high at all times until a conversion

is required.

Likewise the bipolar DAC is initialised so as to keep the roller

stationary. Zero volts are output to the valve controller which in turn

sends a current proportional to this voltage to the proportional

directional valve. The cylinder will remain in place until further

commands are received from the software. The shaft encoder counter is

also reset to zero.

- 79 -

cnin
l u
o

0

0 1
Cl

o oo

C O -Q o o
-Q a D C_CL o

o

o r a.
40

lo

4-Jo
4-J

-80-

FI
G

5.
4:

F
Lo
w-
tu
rn

i nq

pr
oc
es
s

h
i e

ra
rc

ht
i

ch
ar

t

5.6 - ’Console I/O’ module

This is a utility module which contains all the console terminal

input-output routines. Its procedures are called upon by the other

modules.

'Console Out’ is a procedure whereby a character is output to the

VDU screen. The procedure is useful in displaying the introductory text

and other text. All the characters were output through the serial

channel ACIA 1.

’Message’ procedure uses ’Console Out’ to present messages on the

VDU. To input one character from the VDU keyboard as for example during

input of the operator’s parameters in 'Cone Generation’ module,

’Console In’ procedure is invoked. In ’Decimal Value Input’ procedure,

a maximum of two digits can be input, tested for the correct character

value and then stored. These input numbers represent the cone input

parameters or parabola parameters.

5.7 - 'Machine Set-up’ module

This procedure directs the operator to set up the flow-turning

machine and the associated hardware. The instructions are displayed one

by one on the VDU screen and the operator is expected to respond

accordingly.

5.8 - 'Shape Select’ module

This module displays a menu giving a choice of contour i.e the

former profile or the specified mandrel. A choice of the two above

mentioned contours is available.

- 81 -

5.9 - ’Cone Generation’ module

This is a module whereby the cone contour variables are entered

into the program memory. Cone variables are displayed on the VDU as

their values are keyed in by the operator. If the value typed is not

the desired one, it can then be rectified with the delete key on the

VDU console. The routine allows either one or two digits to to be keyed

in. After each parameter is properly entered, it must be followed by a

RETURN on the VDU keyboard, see fig 5.5.

5.10 - ’Parabola Generation’ module

This is a module whereby the parabola contour variables are entered

into the program memory. It serves a similar purpose to the ’Cone

Generation’ module.

5.11 - ’Machine Cone Control’ module

This is the module which actually controls the flow-turning

process. All the control and monitoring of the flow-turning machine is

carried out in this module and in particular the series of roller

movements required to produce a conical shape is generated. The input

data from the ’Cone Generation’ module are passed to this module so

that the movement is described according to the parameters specified.

The movements include advancing, retracting the roller and following

the required contour, as determined by the ’Conical Interpolation’

routine.

The module holds the ’Shaft Encoder’ procedure which reads the

carriage position along the workpiece i.e the tool position (x-axis),

- 82 -

U
dc

in
pu

tI

to

CL

UJ
C O

in

in

C L XI
TO
XI

UJe>O X 10 cn
T> r\i

cc

tox:
L TO c» — .
4> C jQ4-> x:
L 4) oD Tt>
C. 4) 35 CJO E Cl w — I >o 10 M u41 0)4J 4J 4J 3 £ O)

41 oo X X c O c o4-> 4) > •u44 > Q. 0)TO c c — E —j U.o o TO O o .Q «4~
■U o o O 4J a oO 41X4> <4- u.

c
05 c.o

XIoTO c c 4) _ *u >O TO TO X * 10—i <u 4-1 o■o U1 U) 01 £co 4-»
10

4-1
W •o'4>

O
w

*7)
O

-QICO 0)t.
acc
oTO o o 10 4-» o re41 E L4) VIXI 4> — > —j o U) 21 E 41 o "O 4-1

CM a 4) X •— c o c VI
c X -44 •44 o 01 -Q o*j t. Q<11 TO r\ c 4 a c *U <X 4) CM r 0) c v-s

4J W 00 4—
w

Q -C oa3 1 1 44 3•O 4“ cn c 01 ♦ oo 4) w 44 o 05 ~ jC 014) L c W o O Q 4-1 £L O X X o cr Om S- 2 o XJ c0 U1 CM CM w U o "O 3C c•4-1 -4-1 c % c 0) VI o 0)L 4-1 4-1 <u W C 2 —i
« O L L > _ 4J Xic Q. O O c il O S w oQ. CL o c — > o•4-1
3 OX

o W 8 Q a. o> 0) bO h* 4) x: >L XK
•C 01JC o h-•<___________ H-

> -
<C

v _J
o CL
UJ inX >■—* > -o Q cc

<c>- in inf— lU in
—• ID UJ
Q ■< oin UJ
_J in 2<C UJ

X u_
< cch- o<C ccQ cc

UJ

o

cc
UJ
UJ
CD
UJ

oo
a y oinUJ oor oo

OO > -
c
-Ja.in 2a UJ

UJin CCcc
UJ inh—
UJX 2O
cc
CL

UJ

-83- FI
G

5.
5:

AD
C

In
pu
t,

Sh
af
t

En
co
de
r

an
d

Co
ne

Ge

ne
ra

ti
on

pr

oc
ed

ur
es

while ’ADC Input’ procedure reads the radial position (y-axis) via the

rectilinear transducer, see fig 5.5.

’Tool Advance’ is a procedure which is called upon by the ’Machine

Cone Control’ procedure to advance the tool to the position specified
by the parameter, see fig 5.6.

’Tool Retract’ is a procedure which is called upon by the ’Machine

Cone Control' module to retract the tool to the position specified by
the parameter, see fig 5.7.

The ’Cone Interpolation’ routine is needed to calculate the retract

distance in the y-axis corresponding to the distance moved in the

x-axis. The distance moved by the carriage is the independent variable

upon which the tool movement depends. The greater this distance is, the

larger the retract distance will be, see figs 5.8 - 5.11.

5.12 - ’Machine Parabola Control’ module

This module controls the flow-turning process for a parabolic shape
and thus serves a similar purpose to the ’Machine Cone Control' module.

The 'Shaft Encoder', 'ADC Input’, 'Tool Advance’, 'Tool Retract'

routines are the same as those used in the 'Machine Cone Control'

module. The interpolation procedure 'Par Interpolation' will be

explained in section 5.14.

5.13 - 'Display' module

A program enhancement was incorporated to indicate the position of

the carriage at any point in time by displaying the number of shaft

encoder pulses received. This was done to provide a check on the shaft

encoder and counter circuit by means of a visual comparison.

- 84 -

Enter w i t h v a l u e o f the
required a b s o l u t e position

V

— 53- J u m p to r e t u r n if tool f u l l y advanced
(IF finaL position < 03FF THEN)

U
R e a d present tool position in ADC steps

(present position = ADC$INPUT)

A d v a n c e tool till instructed to do o t h e r w i s e
(Output (portS22H) ~ AdvanceSDACSvaLue)

1
IF present position < required position THEN

continue to advance

O t h e r w i s e s t o p

Stop advance

(Output(port$22H) = 5top$DAC$vaLue

Return to c a l l i n g
program

FIG 5.6: Tool Advance procedure flowchart
- 8 5 -

Enter with value of the
required absolute position

V
Read present tool position in ADC steps

(present position = ADC$INPUT)

Retract tool till instructed to do otherwise
(Output (port$22H) = RetractSDACSvalue)

i

IF present position > required position THEN
continue to retract

Otherwise stop

Stop retract
(Output (portS22H) = 5topDACvaLue

Return to calling
program

FIG 5.7: Too I Retract procedure fiowchart

-86-

MA
CH

IN
E

CO
NE

CO

NT
RO

L
MO

DU
LE

2o
1—
ino
CL

Q
UJ2
Xcc /—V
id —1f— o
UJ ccQ }—
UJ 2
CC o
CL o
UJ ccX id
1— f -

2o CL
h - Xocc o
UJ
_ l
-J IDo Xcc K

<
UJ -Jo2 I—c CC
> <o t -c in

1
CN)

Q
IDe>ce>

in

in
UJa;

UJa;

o
C\J
1—■
2 on
O h—
CL 2

O
O CLI—
r~\ O
T— I—

T— 2 i~y
h * CM
2 O K
•—• CL 2
O V_r —i
CL Oo cc CL

2 o
O O UJ
H- —̂ X •

2 t— CC
o O <c UJ
in o _1 -J
K -J
2 UJ UJ o

• X X cc
O h* I—
CL UJV_r CD IL X

2 u . H -
O o
-J K
•<c X Oo c
UJ K cc
> . •—« J—o 3C UJX1 in cc11m i■v in

UJ

UJ

cc
UJQOO2
UJw>h*u_<:xin

CL

OQ

2O
h—
<-j
CL
CCUJh-
2•— ■
—

1— zaCL2
moQ<

-87-

FI
G

5.
8:

Ma

ch
in

e
Co
ne

Co
nt

ro
l

mo
du

le

Enter with value of
form Length

the

Ccont.

(MovedSDi stanceSEncoderSPuLses = 0)

MovedSD i stance=MovedSDistance*Increments
Update the MovedSD i stanceSEncoderSPuLses

Wait for carriage to reach next interpolation position
DO WHILE carriageSposition-InitiaLSDistance

< MovedSDistance

(DO WHILE MovedSDistance <= 1nterpolationSDistance)

Calculate and then retract to the next absolute
position and update the current carriage position
for each required increment of carriage position

FIG 5.9: InterpoLat i on procedure flowchart Cl)

- 8 8 -

I
X.

Calculate Y1SADCSsteps
Y1ADCsteps=MovedSDistance*tanSNum(D/tonSDen(J) — CD

where

Y1SADC$steps=Current calculated retract distance From
i nterpoLat i on start of the tool

(in the y-direction), i.e the dependent variable

MovedSDi stance-Current carriage movement distance
From i nterpoLat i on start (in the x-d i rect i on)
i.e the independent variable.
The value will be a multiple of C8-16) pulses
as speciFied in Cone Generation module.

tanSNum (1)~An integer represent i ng the numerator of the
tangent of the angle expressed as a ratio as
speciFied in Cone Generation module

tanSDen (I)=An integer representing the denomenator of the
tangent of the angle expressed as a
ration as speciFied in Cone Generation module

X
IF From (D the remainder is >= 0.5 add one to

YISADCSsteps

Otherwise negLect the remainder (First approximation)

^ (cont.)

FIG 5.10: InterpoLation procedure flowchart C2)
-89-

Repeat interpoLat i on as determined by
DO WHILE Loop

Otherwise END WHILE

Return to Machine Cone
ControL module

Retract tool to required absolute position

Call ToolSRetract CAbsoluteSADCSsteps)

AbsoLuteADCsteps=FormertipADC$steps-YlSADC$steps
— (3)

Get the First absolute position to move to

Otherwise neglect the remainder (second approximation)

IF From (2) the remainder is >= 0.5 add one
to Y1SADCSsteps

To convert From Encoder Pulses to mm and then
to ADC steps we have to multiply by

32 and divide by 63
Y1SADC$steps=CY1SADC$steps*32)/63 — (2)

FIG 5.11: /nterpoLation procedure flowchart (3)

-90-

The number of pulses was displayed on the SDK-85, the 4 digit

display indicating the total number of pulses and the 2 digit the

number of pulses in the current byte. The two monitor routines ’UPDDT’

and ’UPDAD’ required for this purpose were included in the main

program. These were the only modules written in assembly code. The

’Initialisation’ module clears both fields upon executing the program.

5.14 - ’Par Interpolation1 procedure

This routine is different from ’Con Interpolation’, since the

points of the parabolic contour were calculated beforehand and stored

in a look-up table. The routine had to be done this way since the PL/M

80 language could not calculate the square root in the parabola

equation adequately, owing to the lack of floating point arithmetic.

First, the parabolic equation constant was determined and then the

interpolation points were calculated every 16 encoder pulses

(equivalent of 1.016 mm). The interpolation points (real numbers) were

represented as ratios of integers which could be held as PL/M 80

variables.

To find these integer ratios, a program was written (in Basic

language) which estimated and printed out the ratios (see appendix 3

for the program).

5.15 - Other program notes

The tangents of the cone angles had to be introduced in a form

which could be held as a PL/M 80 variable. Since this language could

not deal with real numbers, the tangents had to be expressed as ratios

consisting of two integers. These two integers had to be found by

trial and error, since they had to be chosen to give the greatest

possible accuracy, whilst not permitting the ultimate limit of 65535

(for sixteen bit integers) to be exceeded during the evaluation of the

expressions in which they are involved. All the calculations had to be

worked out in advance to avoid overflow. Similarly, the form length had

to be converted from millimeters to encoder pulses..

Both the tangent and the form length tables were incorporated in

’Machine Cone Control’ module in array form where the required value

could be obtained by referring to that array index. Fig 5.12 shows the

cone and the parabola procedures.

5«16 - Software testing

The main modules, ’Initialisation’, ’Console I/O’, ’Shape Select’,

’Cone Generation’, ’Machine Cone Control’ were designed first.

’Display’, ’Parabola Generation’ and ’Machine Parabola Control' were

added later with other alterations in ’Machine Cone Control’ module.

Software testing was aimed at checking the flow-turning controller
performance, locating visible sources of error, data manipulation

testing, a thorough examination of the magnitude of integer numbers

resulting from mathmatical operations, such as multiplication,

uncovering unexpected snags and diagnosing possible shortcomings.

Each movement made by the tool had to be checked for correspondance

with the requested flow-turned profile. The roller path can be seen in

fig 5.13. The y-axis distance (4-5) was found to be incorrect. The

same applied to the x-axis distance (5-1). These errors were due to

hardware. Some minor faults were rectified immediately while other

more serious problems were solved at a later stage (see chapter 6).

Tool movement along the conical contour (1-2) was not precisely checked

at this point, although it appeared to be consistent with a conical

profile.

- 92 -

o

cc
LU
UJ
CD

OCD<C
CC<C
CL

CD

Cr:

o-JLl_

o
<cccLU2 :LUCD
UJ2 :oCD

h-
CD ZD
Q CL
<c x

CC
h ~ LULl Q< O
X CD
LD XUJ

UJ

Xo<c

oCD

OCDCcc<c
cl

■*3-

XoCD <— 1•— ih-
— I<cOcm -Jo< CLcccc<c LU
cl h-X

O X
Q CL < X

cch- LUX CD<c OX CD
LQ X

UJ

c <cCD O
cl o cc

CD UJ

-93-

FI
G

5.
12

:
Co

ne

an
d

Pa
ra
bo
La

pr
oc

ed
ur

es

>-

©

©I
ccLU
CCoLU

4—)c
Q)E<l>>
O

4-)ine
u_

Q

©

o

4-J
4-J 4-)

un

4-J

4-J

4-J

4-J

r\j
4-J

on
4-J

Cl

ooL
4-J
Occ

4-J
c
o

CL

o
4-J

on
4-J
c
o

c l

4 Jc
0)E<u>oE

4-J
c
<DE<D>
OE
-C
4-)
<4—

LU

- C4-J
Oa.
"O
CD
-Q
C_
0
CO
0)
c
01
c_
CD

oCL
on
Ln
CD

l l

-94-

Chapter 6; Rig commissioning

6.1 - Introduction

The initial stages of program development and debugging were

accomplished using a development system with an in-circuit emulator.

Subsequently the software was integrated with the hardware and tested

on the rig in real time. The modifications found necessary during the

development process are detailed below.

6.2 - Testing observations (version 1)

After transferring the program to the EPROM chips and running it in

the real application, the following faults were observed

1- The advance distance was not correct (the observed distance

moved was greater than the calculated distance).

2- The counter reading was inconsistent.
3- The contour had a greater conical angle than the input value

of 30 degrees (former angle).

A- The tool did not retract to the datum position, but in fact

moved further.

To identify these errors, hardware components were checked with

special software routines. Some of the equipment used is shown in plate

6.1.

6.2.1 - Linear transducer recalibration

The transducer was found to have an unstable supply voltage.

Instead of the correct calculated value of 11.719 volts it was 8.19

- 95 -

volts. The voltage was brought back to 11.719 by adjusting the power

supply potentiometer.

Rerunning the program to ensure that transducer resolution had the

correct value along its entire length, a special routine to test the

transducer performance (PR0G2) was loaded manually into the SDK-85,

(see appendix 1 for PR0G2).

Using a micrometer, the accuracy of transducer measurement was

checked and the resolution was found to be within the specified

tolerance throughout the range.

It was also found that the resolution remained constant throughout

the length. An illustration is provided in fig 6.1. Another problem was

power supply drift, which had to be measured over a period of time to

ascertain a reliable transducer performance. Mains to the power supply

had to be checked as well.

The power supply had a tendency to shift upwards over a period of

time. An example of the fluctuation over a 30 minute period was from

11.719 to 11.85 volts. The problem was overcome by using a separate

high stability d.c. power supply.

The transducer in conjunction vith the ADC enabled movements of 1/8

mm to be detected corresponding to an ADC resolution of 10 mV per least

significant bit.

6.2.2 - Counter test

A persistent and unidentifiable fault occurred on the counter

board, so another counter board had to be made. When tested it was

found to be satisfactory.

To verify counter operation, a mark was made with a pen on the

carriage edge; then upon running the program to displace the carriage,

the distance was measured by making another mark at the new carriage

- 97 -

fu
lL

u
ex

te
nd

ed

E
E

00
CM

cl)
CDCoc_

D
<4-
cl)
U)D

CDC
oc0)CLO

oin o o o

74
0 o

CD 68 00

13
0 CMCO BA 00

o
CM

CDo LLo 00'— '— r~
o o

CM
CD
CM CD*— T~ T~

oo 03
d -

ooo oo
' r~

06
IC

E COo oo
80

CD
CM
CM 23

0

00
70 28
3 CD

CD
CM

oo

60

o
Q
CM

CO
a
CM

00

50

O
CMon 32

8 oo
o ViN-cn 37

C CO

30

moon 3 C
D oo

20 3F
F

3F
F o

o

3F
F

3F
F o

o 3F
F

3F
F o

Tr
an

sd
uc

er

en
gt
h

in
(m
m)

Re
ad

in
g

7
Ch
ex
ad
ec
 i

ma
l)

Re
ad

in
g

2
Ch
ex
ad
ec
 i

m
at

)
D
i f

fe
re

nc
e

Cr
es
o

Lu
t

i o
n)

—i

ZDO
.—)
CLU)

in00I
Qin
Q)-C

o-CU)
U)CD
c
T5o0)e
c.oCla
EE
Os

5K

*0O<1)-C
e 0)
4—>
Q)EOc_
o

<u-C4-)
CD
c
U)3

E
O'
C.
cioc.
cu
CM
CD
O
cca.
-C4-J

4-J
CO
0
4-J

c.
0
O
D

~o
V)c
a
e

* *

to
CD
ll.

-98-

position. This was repeated several times and the distance was found to

be within acceptable tolerance in each case.

The distance travelled corresponded to the number of pulses stored

in the ’Machine Cone Control’ module and a visual check on the number

of rotations of the leadscrew agreed with this.

6.2.3 - DAC test

The roller forming tool can be moved (in the y-axis) either

manually by placing the switch in the manual position and then twisting

the potentiometer clockwise or anticlockwise to advance or retract the

tool, or it may be automatically driven by the computer, by moving to

the auto position.

When the power was switched on while in the manual switch position,

and without the program running, the tool remained stationary until it

received an advance or retract signal, but in the auto position, it

fully advanced instantly to the far end, pushing the limit switch with
the risk of damage. This effect was due to the logic high signal sent

out by the DAC to the valve controller as a result of microprocessor

output being high until initialised by the program. To overcome this,

the sequence of operating the oil pump and then running the program had

to be reversed i.e the program execution had to be done first, then the

pump was switched on.

In version 1, advancing and retracting of the tool were done at the

maximum speeds. However this may not be the most efficient method of

performing for this application owing to persistent tool overshoot.

Other possible ways of controlling tool movement, (see fig 6.2.) are by

(a) Acceleration from zero to maximum velocity, constant velocity

- 99 -

a c c e i e r a t i n q fast deceierat i nq . Ca) x------------ --------- x------------ %
veloc i ty

t i m e

o c c e Lerati nq deceieratinq (b) x------------------x-------------- a— x
v e L o c i ty

t i m e

Cc) Xr
s low -x

veIoc/ty

t / me

Cd) x-
fast

vetocity

t i m e

A d v a n c e d i s t a n c e e i t h e r Cc) o r Cd)

R e t r a c t d i s t a n c e Cc) o n l y

Cb) shouldn't be u s e d

F I G 6 . 2 : C y l i n d e r m o v e m e n t t e c h n i q u e s
-7 00 -

for a period, followed by deceleration to a halt at full

distance.

(b) Acceleration then deceleration (no speed limit).

(c) Slow movement throughout traverse.

(d) Maximum velocity from start to finish.

All the above-mentioned methods of controlling tool movement were

possible implementations, but options (a) and (b) were dismissed

because of

1- The need to simplify the control algorithm in order to reduce

the response time.

2- The lack of ability to control speed adequately by varying the
voltage.

The relationship between the voltage applied to the valve

controller (which is converted subsequently into a current fed to the

proportional valve) and the corresponding equivalent decimal value

(used in programming) to the cylinder speed for tool advance and

retract is given in fig 4.13 chapter 4. The velocities quoted were

found experimentally by measuring the travel time for a predetermined

piston stroke of 148 mm.

These figures show firstly that large voltage thresholds exist for

both tool advance and retract before tool movement occurs and secondly

that tool speeds are too critically dependent on voltage in the area

of these threshold levels for reliable measurement. This means in

practice that velocities of less than 12.6 and 27 mm/s could not be

obtained for tool advance and tool retract movements.

It was decided to choose (during the process) a constant tool speed

which was well below the maximum speed and could be tuned to give a

satisfactory contour.

- 101 -

6.2.4 - Contour shape

The conical angle of the contour was found to be larger than set in

version 1 of the program (see section 6.2). To determine the reason

for this, the ’Interpolation1 routine values (retractions) were

calculated and compared with the retractions observed. An example of

the calculated interpolations can be seen in fig 6.3. The actual

retractions were significantly greater than the set values. The

assumptions initially made were therefore reviewed for possible

errors.

On reviewing the assumptions it was realised that the software had

been written in such a way as to allow relative distances to be

specified in ’Tool Advance’ and ’Tool Retract’ (which are included in

’Machine Cone Control’ procedure). This method proved to be

error-prone, as it carried a cumulative inaccuracy to the next

distance to be moved (without checking the required position).

Each call to the ’Tool Advance’ and ’Tool Retract’ procedures
specified the amount of movement from the current position. Also since

the tool was not decelerated and the tool stop condition was only

initiated when the tool reached the final position, it was likely that

tool overshoot would occur at each interpolation. This overshoot was

not taken into account in the calculation of the next interpolation

and so the error increased continuously to a maximum at the end (see

fig 6.4 a).

Another method of specifying the positions was by the use of

algorithms (’Tool Advance’ and ’Tool Retract’) based on absolute

position, whereby the final location to be moved to was specified for

each increment (retraction). In this way, if an error occured in

determining the first point it would not be passed on to the next

point.

- 102 -

To show a sample calculation of the Interpoiat i on routine,
the following data are useds-

1- Form Length " 50 mm
= 787 pulses see figure 5.33

2- JncrementsSEncoderSPulses = 18 pulses
3- Cone Angle = 30 degrees

tanSNum (30) " 2 6 _ __
tan$Den(30) = 45 see p'9ure 5*32

For the above 2 and 3 also see the program Listing in
Appendix 2 Cone Generation and Machine Cone Control modules.
Figures 5.29 to 5.31 for Interpoiat i on flowcharts.

Samole Calculation

VISADCSsteps=Moved$Dis tanee*tan$Num C30)/tan*Qen(30) — (1)
26

= 15 * —
45

9.24

IF from Cl) rema i nder is >~ 0.5 THEN add one to Y1BADCBsteps
Y1SADCBsteps = 9
Y1SADC$steps=Y1SADCSSsteps*32/63 — (2)

= 9 * 32/63
= 4.57

IF from (2) remainder is >~ 0.5 THEN add one to Y1SADCBsteps
YISADCSsteps = 5

The calculated values are shown in figure 6.4.

FIG 6.3; An example of the calculated retract distances
for the Interpoiat i on routine

-10 3-

contour
shapes

y

(a) R e l a t i v e position
Ccumu La t ive e r r o r)

practicat

theorticai

carriage
di stance

contour
shapes

y

Cb) A b s o l u t e p o s i t i o n
(s t e a d y e r r o r)

practicat
theorticat

carriage
distance

F I G 6.4: P o s s i b l e o p t i o n s for l o c a t i n g p o s i t i o n

-104-

It should be noted that there would be a slight deviation from the

conical contour based on the absolute position since the CPU could

not continue counting the number of pulses from the encoder (carriage

position) while it performed other arithmetic manipulations at the

same moment (see fig 6.A b).

6.3 - Further software modifications and enhancements

The major faults and shortcomings of version 1 of the program

became more apparent when tests were carried out on the flow-turning

rig. The alterations included the following:

1- Resetting and enabling the counter chip was done in

’Initialisation’ module only. This has to be done in ’Machine

Cone Control’ module (’Machine Cone Control’ procedure) for the

successive turnings.

2- The data and the address fields on the SDK-85 were not used in

version 1. An improvement was made by displaying the counter

reading (the contents of port 29H), which is a byte variable and

the cumulative count (carriage position) , which is an address

variable on the data and the address fields respectively. These

displays were initialised to zero at the start of the

flow-turning process and continuously updated until the end of

’Interpolation’ procedure.

3- The advance and the retract speeds (see section 6.2.3) were

decreased to reduce the tool overshoot.

4- A new approach based on calculation of absolute rather than

relative position during ’Interpolation’ was implemented. This

necessitated alterations in ’Tool Advance’, ’Tool Retract’ and

’Interpolation’ and other pertinent module modifications.

- 105 -

6.4 - Spindle speed and feedrate ranges

From section 1.7 chapter 1, the flow-turning surface speed range

was specified to be between 1000 to 2000 ft/min, when converted to rpm

this gives a minimum speed of 1591 rpm and a maximum of 3183 rpm.

These speeds are not available on the lathe since the maximum is 750

rpm, also the software requirement necessitated using lower speeds

than 750 rpm.

From section 1.7 we also have for best results (excellent surface

finish), the feedrate range is between (0.0508 - 1.12) mm/rev. For

acceptable results (surface finish not important), the feedrate range

is (0.762 - 1.27) mm/rev.

It is clear from the above that the acceptable and the best

feedrates range on the lathe will lie between (0.226 - 1.27) mm/rev.

6.5 - Selection of the appropriate roller speeds

In the first version of the program, maximum cylinder speeds were

used. However to achieve the best contour, two parameters had to be

considered:-

1- Lathe spindle speeds and feeds.

2- Roller tool retract speeds.

A combination of the appropriate lathe spindle speeds and the

carriage feedrates was selected from the available values. It was

necessary that the roller tool had time to finish retracting the

calculated increment for each interpolation point before the carriage

reached the next point for interpolation. This imposed a lower limit

on the choice of roller speed, as set out below.

- 106 -

Roller retract increment Carriage increment
------------------------ < C -----------------

Roller speed Carriage speed

where:
carriage speed = carriage feed * spindle speed

and

roller retract increment
" " ■ — — = tan (cone angle)

carriage increment
Therefore

minimum roller speed =
carriage feed * spindle speed * tan (cone angle)

The time taken by roller to complete incremental movement on y-axis

is less than the time taken by the carriage on x-axis. The roller

speed was selected to comply with the above condition, and could be

adjusted by varying the digital output signal to the DAC. The digital

values used in version 2 of the program were 177 and 73 for advance

and retract respectively, and these complied with the above condition

and also reduced the overshoot to an acceptable level.

6.6 - Testing observations (version 2)

After the changes explained in section 6.2.4 had been completed,

the second version of the program was observed to give a satisfactory
contour. However, some further comments about this program version

are relevant.

When testing this version of the software, the Interpolation

routine appeared to malfunction persistently. The routine was checked

again for possible errors without success. During running of the

program, it was observed that the number of retractions actually moved

by the roller tool did not correspond to the calculated number of

retractions. It was concluded that this effect was due to the roller

tool overshooting. This tendency to overshoot caused excessive

incremental tool movement resulting in zero movement at some steps

- 107 -

because the actual tool position already exceeded the required

position. This effect was relatively easy to identify as the carriage

position address variable was displayed on the microcomputer. To

rectify this overshooting, the cylinder speed was slowed down by

adjusting the proportional valve amplifier. On rerunning the program

the problem was found to have been minimized.

Another problem which occurred was in defining the datum position

at which ’Interpolation’ should start. This was due to the variation

in angular position of the leadscrew when the traverse was engaged

every time the ’Interpolation’ started. To overcome this problem, a

micro switch was fitted on the carriage path at a position

corresponding to the former tip and the software was amended so that

’Interpolation’ commenced at this position.

6.7 - Experimental testing

The modified rig described in chapter 3 was used in the
experimentation tests which were aimed at verifying the rig

effectiveness for producing a successful controller to control the

flow-turning process.

Some checks on the rig had to be made before any tests could be

carried out: in particular the former had to be checked for

concentricity with a dial gauge.

The sample was held firm against the former by the tailstock. The

roller tool had to be brought close to the former at a distance of

about 10-20 mm. The tailstock was placed as far forward as possible on

the lathe bed so as to maximize rigidity by reducing the extended part

of the tailstock holding the disc. However a large amount of tailstock

extension was still required which, as observed later, produced an

undesirable effect on the samples.

- 108 -

The advance tool distance from the datum to the former tip, i.e the

start point along the y-axis, was 72 mm of the transducer extension.

The corresponding forming start point along the x-axis was initiated

by the carriage actuating a limit switch clamped on the lathe bedway.

This could also be manipulated manually to obtain the correct starting

position.

After forming the disc, the roller retracted to the datum, the

carriage movement ceased gradually after the lathe has been

automatically switched off. The carriage traverse then has to be

disengauged and the carriage returned manually to the starting

position close to the tailstock ready for the next run. The tool

movements are shown diagramatically in fig 5.13 chapter 5.

The forming process was initiated from the SDK-85 microcomputer

keyboard and then the rest of the process was monitored from the VDU.

For repeated samples the software provides a facility to avoid keying

in the same parameters again and again. After fixing the workpiece

and switching on the power, the program can be executed on the SDK-85

board as follows:

1- Enter the interrupt service routine starting address at 20C8H

and 20CDH (three bytes each C3H, FOH and A7H).

2- Press ’GO 8000H’ followed by ’EXEC’ keys.

3- Enter the parameters as required.

If the roller deviates from its prescribed path, then VECT INTR key

on the SDK-85 board or the emergency stop switch on the lathe front

should be pressed. The vector interrupt routine is shown in appendix

2.
Throughout the test program, different grades of greases were used

in the experimental work. For the 162 samples produced three different

- 109 -

types were used, namely G.56/T grease Silkolene, Simnia grease 0 Shell

(as lubricant 1) and Garia C oil Shell (as lubricant 2).

Before performing the actual tests with the samples, the contour

was plotted using an adapted dial gauge pedestal fitted with a ball

point pen. This involved fixing the moving carriage with the ball

point pen in contact with a sheet of paper mounted on a rigid plate on

the lathe bed.

The conical contours were examined using the maximum and the

minimum values of the software parameters governing the resolution of

carriage position. Figs 6.5 and 6.6 show the plotted contours.

With each of these resolutions, the conical test angles of

30,35,40,45 were drawn. These curves were then checked against the

above angle values and found to be correct.

The same procedure was repeated with the parabolic contour and the

plot is shown in fig 6.7. However in this case a fixed resolution of

16 encoder increments was used throughout.

After verifying the plots, tests were conducted to produce actual
flow-turned samples. After concluding the tests each of the samples

was measured. Three measurement tests were performed, namely the cone

angle, the reduction in thickness and the ensuing hardness. The test

programme is shown in fig 6.8.

A Hilger and Watts universal optical projector with a magnification

of 15 was used to measure the cone angle. The thickness was measured

using a MITUT0Y0 digital dial gauge linked to a DPI dataprocessor.

Hardness tests were carried out using the Vickers Pyramid Hardness

Tester.

- 110 -

Fi
g

6.
6:

Co
ni

co
L

co
nt
ou
rs

wi
th

16
en

co
de

r
pu

ls
es

Fi
g

6.
7:

Pa
ra

bo
La

co

nt
ou

r
wi
th

16
en

co
de

r
pu

ls
es

SHEFFIELD CITY POLYTECHNIC

DEPARTMENT OF MECHANICAL AND PRODUCTION ENGINEERING

COMPUTER AIDED FLOW TURNING
by
A H Mohamad

Final testing on the rig

Testing with a conical former and with cone parameters as follows

1 Former angle = 30 degrees
2 Increments (distance between two interpolations) = 16 encoder pulses
3 Form length = 40 mm
First test
Choose a spindle speed = 95 rpm
Roller movement angles (contour)
30 degree 3 specimens
35 degrees 3 specimens
40 degrees 3 specimens
45 degrees 3 specimens
Second test
Choose roller movement angle
Spindle speed 1 = 95 rpm
Spindle speed 2 = 135 rpm
Spindle speed 3 = 186 rpm
Third test
Choose a spindle speed = 95 rpm
Roller movement angle = 30, 35, 40,
No lubricant (dry) 30, 35, 40, 45
Lubricant 1 30, 35, 40, 45
Lubricant 2 30, 35, 40. 45
Fourth test
Choose a spindle speed = 95 rpm
Roller movement angle = 30, 35, 40, 45
Lathe carriage feed 1 = 1.27 mm/rev
Lathe carriage feed 2 = 0.552 mm/rev
Lathe carriage feed 3 = 0.226 mm/rev

Total specimens = 1 2 + 9 + 3 6 + 1 2
= 69

Repeat the tests with
Increments (distance between two interpolations = 8 encoder .pulses (smaller steps)

Total specimens =138

FIG 6.8: Test programme for the flow-turning process

degrees
3 specimens

• 3 specimens
3 specimens

45 degrees
3 specimens at each angle
3 specimens at each angle
3 specimens at each angle

(contour) to be 40 degrees
3 specimens
3 specimens
3 specimens

114

Chapter 7: Results and discussion

7.1 - Results

From the results shown in tables 1 to 8, graphs 1 to 5 were plotted

as seen in appendix 4. The following observations can be made.

The resulting angles from the forming process tend to exhibit a

slight difference to the input cone angle from test 1, as shown in

graph 1. This trend is almost the same for the 8 and 16 encoder

increment (which is the software interpolation step). In flow-turning

with a 30 degree former, there is a maximum variation of 3.78 and 3.41

degrees for 8 and 16 encoder increments respectively. With 35, 40 and

45 degrees there is a maximum variation of 1.48 degrees. The reason for

the above variation was the inefficient tailstock support set-up

discussed in section 6.7 chapter 6. More precise cone angles could be

achieved in future with a better set-up design.

Also from the first test, it can be seen from graph 2 that the

reduction in wall thickness decreases as the cone angle, increases in
spinning (35, 40,45) which is about the same for the two interpolation

steps. For 8 encoder increments and 30 degree cone angle, the maximum

reduction in flow-turning is 25.27% while it is 36.04% with 16 encoder

increments. The above trend is to be expected since with a larger

increment, the less frequent movement of the tool away from the conical

profile results in higher contact pressures between tool and workpiece.

From the second test graph 3, the original hardness of the disc was

43 VPN which remained almost the same with 8 encoder pulses, decreasing

to slightly below its original value as spindle spee<d decreased. With

larger increments, that is higher contact pressure between the tool and

workpiece, the hardness decreased more steeply as spindle speed

decreased.

- 115 -

In flow-turning and spinning processes the use of different

lubricants influences the hardness. The effect of the lubricants on the

hardness are shown in graph 4, test 1 and 3. Running the process with 8

encoder increments and with lubricant 1, 2 and dry condition, the

hardness remains almost the same while with grease (thicker lubricant)

the hardness has decreased considerably compared with the unworked

material. With 16 encoder increments, the hardness has shown large

decreases of similar magnitude both with and without lubricants. This

is surprising and difficult to explain since the hardness would be

expected to increase with work hardening, or at least remain the same.

In test 4 graph 5, showing the effect of using three different

feeds, the hardness value almost retained the original value with 8

encoder pulses, while it decreased by similar amount for all feed rates

with 16 as seen from the three curves.

The hardness machine was checked for possible errors, and the tests

were repeated, but both checks confirmed that the original results were

valid.

Owing to the uneveness of the surface and the curvature of the

disc, the hardness test was not easy to set up, adjust and measure. A

total of four readings was taken per sample and then these values were

averaged. If it were possible to straighten the sample to obtain an

easy method of testing this would introduce more stresses into the

sample and thus the resulting hardness would not be representative of

the after test hardness.

The surface smoothness obtained was not anticipated. From

observation it was clear that in the real tests the tool missed an

average of 2 in 5 interpolation points, which produced an uneven

surface. In contrast, in the contour testing carried out prior to the

real testing the plotted curves were acceptable and fairly accurate,

see section 6.7 chapter 6. The uneveness of the surface was quite

- 116 -

evident in the flow-turning samples having 30 degrees and to a lesser

extent with the spun samples having 35,40 and 45.

After writing the parabola software the contour was plotted as seen

in fig 6.7. The parabolic profile starts horizontal(right hand side of

the plot) and it appears that because tool movements are small there is

no significant overshoot but as the profile becomes steeper, the larger

tool movements seem to be accompained be overshoot with the result that

the steps become more uneven than expected. The contour was

subsequently tested with some samples. A full test programme was not

conducted (as with the conical contour) as it was thought that the

tests should await implementation of the major hardware and software

changes mentioned below. Two samples of A were formed successfully,

but when BS 1470 was used it was a bit soft and the samples were torn

during the forming process.

7.2 - Implementation of the control system

The research was aimed at making a suitable flow-turning process

controller, which would include both hardware and software.

A top-down design methodology was adopted in designing the

controller with the intention of clarifying the requirements in terms

of hardware and software at an early stage. A schematic layout was

drafted for the electronic circuit control followed by the individual

board details. Individual circuits were built while other necessary

complementary hardware was designed and manufactured.

After estimating the hydraulic requirements, which included the

force magnitude, calculations were performed for the required capacity

of the directional proportional control valve, the cylinder, the pump,

the motor, the relief valve and appropriate oil tank size. The circuit

was then fabricated accordingly.

- 117 -

The modifications to the SDK—85 microcomputer board were carried

out only after the estimated program memory size was determined in

order to establish the number of PROMs to be installed on the board.

In parallel with this, the software design was thought of in terms

of blocks doing specific tasks. These tasks were then divided into

subtasks to reduce the complexity involved until it was not possible to

divide any further.

The software modules were reduced to a minimum in order to give a

simple efficient design. The first six modules were written for the

conical contour and then another two were added for the parabolic

contour.

There were some problems associated with this work, which involved

both the software and the hardware. The hardware problems included the

following:

The counter board was found to be faulty on testing and gave

inconsistent readings. It was decided to have it replaced with a second

counter board which proved to operate satisfactorily.

There was an uncertainty about the transducer performance when

tested with the software debugger ICE-85. This difficulty was dealt

with by inserting a d.c. voltage follower board in the circuit.

The hydraulic power pack was wrongly placed below the cylinder

level causing air to be trapped inside. Continuous circulation of oil

has minimized this effect to an acceptable level.

The parabolic former was not in the original scheme and had to be

made for the final testing towards the end of the research. It took

more than a month to make on the CNC lathe as a program had to be

written to produce the parabolic profile.

Another difficulty faced at a later stage was a faulty EPROM chip.

It was not possible to establish the sources of error and finally

another SDK-85 board was used. As far as the software was concerned

- 118 -

the first problem encountered was the counter latching. To avoid

inputting readings to the SDK-85 whilst the counter value was changing,

a piece of software was incorporated in the ’Shaft Encoder1 routine to

sample the counter value 10 consecutive times and return a reading only

when the ten samples were all the same.

Another problem observed during program development was involved in

the tool movement technique. Implementation of a contour based on

absolute rather than relative position movement has significantly

improved the contour.

An additional problem was that the 8085 CPU integer arithmetic

caused a restriction on the calculations. The PL/M 80 compiler could

only handle 8 and 16 bit unsigned integer values, thus any real numbers

involved as coefficients in the contour equations had to be represented

as ratios of positive 16 bit integers with some loss of accuracy. Also,

if overflow occurred during the addition or multiplication of 16 bit

integers the result would be represented modulo 65535, i.e it would be

in error by 65535. To avoid overflow, the contour equations were
written such that, in general, a multiplication was followed by a

division to prevent the intermediate result from approaching 65535 (see

’Cone Interpolation’ procedure). This writing of the equations also

involved changing the values of the rational numbers representing the

real coefficients to reduce the magnitude of numerator and denominator.

This eliminated the risk of overflow at the cost of an acceptable loss

of accuracy. Finally, during division computations, the value of the

remainder was lost. The equations were written in such a way that

resulting position was rounded to the nearest integer. The above

procedure was practicable for the linear equations involved in the cone

contour, but could not be applied to the parabolic interpolations which

involved the computation of square roots. The points on the parabolic

- 119 -

contour to which the tool is required to move were therefore calculated

and stored in the program beforehand in the form of a look-up table.

7.3 - Future improvements, modifications and suggestions

A better control over the flow-turning process could be achieved if

the following suggestions, modifications and improvements were

implemented:

For the 8085 processor, it is possible to add more accuracy to the

calculations involved by incorporating a floating point software

package. However, this would make the response time slower which is

undesirable in this control application, so this idea had to be

abandoned. A more advanced processor such as the 8086 with 8087

co-processor will have a hardware floating point which is faster than

the software floating point. At the commencement of the project,

however, the 8085 was chosen for reasons given in chapter 2 section

2.4. The PL/M 80 programming language used has a simple algorithm, easy

to use, quicker to learn and efficient which made it suitable for such

an application.

In further research using floating point arithmetic, it would be

possible to obtain different parabola resolutions (instead of the

constant 16 encoder pulses) in addition to having different parabola

contours (as the parabola constant could be varied) since the points

could be directly calculated instead of being derived by use of a

look-up table. This would allow any parabolic profile to be generated

and, depending on the other controls used, an improved contour could be

obtained.

As the roller tool moved along the former and the workpiece started

to take the required contour, there was no direct way to verify whether

the CPU was acting fast enough to perform the various manipulations.

- 120 -

This possibility may be reduced by using a faster processor than the

8085 processor family. Moving up to the 16 bit 8086 processor would be

advantageous in future work, using PL/M 86 programming language which

is similar to PL/M 80.

In a future implementation with floating point arithmetic, the

’Cone Interpolation’ and ’Parabola Interpolation’ procedures would be

modified to calculate the tool position directly without the use of

data stored in look-up tables.

In addition to the above mentioned, there was no fail-safe

procedure. The absence of this precaution would cause problems if a

power failure occurred during the flow-turning process. A standby power

supply could be used.

An improvement added at a later stage of the work was the addition

of an emergency stop button which would switch off the lathe after

retracting the tool to relieve contact pressure if the tool deviated

from the prescribed path.

Conical formers with different angles could be made for further
tests since they are relatively easy to produce on an ordinary lathe,

unlike the parabolic former which needed a CNC lathe. (Note that, with

floating point arithmetic and direct calculation as mentioned above,

the cone contouring algorithm could generate cones of any angle, with

no requirement for data calculated in advance).

One possibility for further work would be the use of different

materials for flow-turning. This was not considered in this research as

the main concern was to get the controller working (which consumed most

of the time). In addition, the effect of variation in workpiece size

could be investigated by performing tests over a range of material

thickness and diameters. Using larger workpiece would enable testing

the component for ultimate tensile strength after the process, which

was not possible with the present workpiece size.

- 121 -

Another suggestion would be to employ a variable speed lathe to

establish the highest spindle speed compatible with the software

limitations since operating at higher speed would be advantageous with

respect to surface finish. Once the speed is established, it could be

used subsequently in the flow-turning process for improved results.

The hydraulics utilized performed satisfactorily and gave enough

force to form the commerically pure aluminium BS 1470/SIC. Yet, for

harder metals such as steel, harder rollers and formers would have to

be made as mentioned in chapter 3 section 3.3.

A more accurate control over the tool movement could be achieved

with the use of a better directional proportional control valve than

the present NG6 valve which determines the oil flow rate to the

cylinder which in turn determines the speed. Greater control'over

velocity in the lower tool speed range would facilitate smoother

incremental changes in tool position. Alternatively, if a means of

introducing a variable damping to the tool could be incorporated in

then probably the overshoot could be considerably reduced.
Drawing the contour prior to the tests could be done more

accurately by using electronic or electrical means instead of the

present method which cannot detect small movements such as 0.1 mm. The

plotted contour could be checked against the one obtained from real

testing and thus a close check on the effect of overshoot or tool

contact force could be made, see section 6.7 chapter 6.

The encoder increment parameter, which determines the conical step

could be improved by reducing the present minimum step of 8 equivalent

to 0.5 mm to a minimum of 2 equivalent of 0.2 mm if the new controls

were implemented as mentioned above.

- 122 -

Conclusion

A hardware/software design was produced for a microcomputer based

flow-turning process controller which after development resulted in a

fully functional flow-turning system.

The flow-turning roller tool was made to follow specific patterns

of preprogrammed movements namely conical and parabolic contours.

Experimentation and testing showed the contour to be successfully

reproduced on the product.

The workpiece was also successfully formed to cone angles of 35, 40

and 45 degrees without a supporting former. In addition, flow-turning

of a 30 degree cone angle was also achieved with a former.

Flow-turning of the 30 degree angle cones resulted in reductions of

wall thickness of 25% - 31%.

The use of a higher spindle speed during forming would have been

beneficial to give an improved surface finish. However, the present

processor had limitations in terms of response time, therefore in order

to achieve an improved quality of surface, a processor with faster

response should be used.

- 123 -

REFERENCES

CHAPTER 1

1- SHEET METAL INDUSTRIES

Mar. 1975, Vol. 52, No.3, pg. 140-145

2- C.F.NOBLE & K.S.LEE

"A study in flow-turning"

Proc. of the int. conf. on Rotary Metal Working

Processes (1st) 1979

3- Design & Components in Engineering

Mar. 11 1965, pg. 6-13

4- SHEET METAL INDUSTRIES
May 1977, pg. 485-492

5- Modern Machine Shop

Mar. 11 1965, pg. 6-13

6- B.H.AMSTEAD & M.L.BEGEMAN

"Manufacturing Processes"

pg. 302-305 & pg. 383-401, Sixth Edition , 1969

'7- R.A.C. SLATER & A.JOORABCHIAN

"An experimental study of the spin-forging of sheet metal cones

using a mandrel of constant cone angle"
U. of Birmingham, 1976, pg. 531-537

- 124 -

8- SHEET METAL INDUSTRIES

Apr. 1977, pg. 382-389

9- R.A.PAULTON & B.N.COLDING

"Two industrial processes for plastic deformation of metals

Inst, of Mech, Engineers, Conf. on Eng’g

Manufacturing Technology, paper no.57, London.
Mar. 1958 pg. 54-62

10- SHEET METAL INDUSTRIES

Feb. 1970, Vol.47, No.2, pg. 131-136 & 144

11- SHEET METAL INDUSTRIES

July 1981, pg. 505-511

12- SHEET METAL INDUSTRIES

Feb. 1975, Vol. 52, No.2, pg. 72-75

13- SHEET METAL INDUSTRIES

Dec. 1975, pg. 749

CHAPTER 2

14- G.L. Simons

"The uses of microprocessors"

pg. preface, 22, 97
H. Charlesworth & Co. Ltd, Huddersfield, 1980

15- ICE-85 Instruction Manual

Intel corp. 1978

16- PL/M 80 programming manual
Intel corp. 1978

18

19

CHAPTER 3

20- SHEET METAL INDUSTRIES

"Spin forming using Meehanite mandrels"

Nov. 1974, pg. 702-704

- 126 -

- PL/M 80 compiler operators manual
rxIntel corp. 1977

.r VAV /
/

- Daniel D. McCRACKEN / (\/
/

"A guide to PL/M 80 programming for microcomputer applications"
Addison-Wesley, 1978

- MCS-80/85TM family user1 s manual

Intel corp. 1979

APPENDICES

Appendix I : Software test programs (8 sheets)

Appendix II : Main program modules (80 sheets)

Appendix III : A Basic program to find the integer ratios (2 sheets)

Appendix IV : Results (13 sheets)

- A1 -

PL/H-SO COMPILER PfiBE

ISIS-II PL/M-80 V3.1 COMPILATION OF MODULE TEST1
OBJECT MODULE PLACED IN :F2:progl.0BJ
COMPILER INVOKED BY: plaBO :F2:progi.pIa DEBUG

SWORXFILES(:F2:,:F2:)
$PASE«IDTH(BO)
$PABELENBTH(55)

1 TEST$1:
DO;

' i t FILESNAME *rROBl* t l

i t n t i
i t t i
i t t t t t t TESTS! DECLARATIONS t t t t t t l
i t t i
i n t t m t t t t n m u t m t t i

2 i DECLARE READSPULSES ADDRESS;
3 1 DECLARE DUMMY ADDRESS;
4 i DECLARE UPDAD ADDRESS DATA(0363H);
5 1 DECLARE FOREVER LITERALLY ’WHILE 1*;
6 1 DECLARE DATASDIRECTIGNSBYTES2 LITERALLY ’OOOCSOOIOB';
7 i DECLARE CCHMANDSSTATUSSREGS2 LITERALLY '2SH';
8 i DECLARE P0RTS2AH LITERALLY '2AH';

/ i n t t t t t H t t m m t n n t t t t t t i t t i t n t t t t t t t n t t t t t t t n t t
i t t
i t t t t t t TESTS1 PROCEDURES t t t t t t
i t t
/ t t t n t n t t t t m i t t n t t t t t t t m t t t t t t t t t t t t t H t t t t t t t t t t t

i t t t t m t t t t t t t t t t t t m t m t t t t t t t t t t
i t FUNCTION: SHAFT$ENCODER (ENCODER 3-BIT INPUT) t
i t PARAMETER INPUT: READSPULSES t
i t OUTPUTS: 16-BIT VALUE IN (.READSPULSES) t
i t PROCEDURE: PUBLIC t
i t CALLS: NOTHING t
i t DESCRIPTION: THE VALUE OF THE COUNT HILL BE STORED I
i t IN TWO BYTES(16-BIT), THE HIGH AND THE LOW. t
i t P0RTS29H WILL BE READ, THE COUNT WILL BE STORED I
i t IN THE LOW BYTE WHICH IS UPDATED CONTINUOUSLY. I
i t WHEN THE VALUE EXCEEDS 255 THEN 1 WILL BE ADDED TO t
i t THE HIGH BYTE. PULSE.HIGH AND PULSE.LOW ARE STORED I
I t IN MEMORY WHERE THEY CAN BE TESTED.- I
i t t t t t t t t t t t l t

PL/M-80 COMPILER PAGE 2

SEJECT
9 1 SHAFTIENCODER:

PROCEDURE ADDRESS PUBLIC;
10 2 DECLARE PULSE STRUCTURE(LOW BYTE,HIGH BYTE) AT (.READSPULSES);
11 2 DECLARE COUNTER BYTE;
12 2 DECLARE rORT$29H LITERALLY *29H*j

13 2 CGUNTER=INPUT(P0RT$29H); It READ CARRIAGE POSITION ti
14 2 IF COUNTER<PULSE.LOW THEN
15 2 PULSE.HIGH=PULSE.HIGH*1;
16 2 PULSE.LQH=CGUNTER;
17 2 RETURN READIPULSES;
18 2 END SHAFTIENCODER;

i t t t t t n m t t t t n t t t t m x x m x t m t t t x t t t m t t t t t x t t t t t t t t /
n %/
/ t m n PORTS INITIALISATION X t X t t l /
i t t i
i t i t t t t m t t t t t m t t t t m t t t t t t t t t t m t m t t t t t i t i t t t t t t t t f

ft EXPANSION RAH if

19 i OUTPUT(C0HHAND$3TATUS$RES$2)=DATA$D1RECTI0N$BYTE$2;

f t PORT A (29H) INPUT (SHAFT ENCODER) t i

i m t m t t t t m t t t t t t t n
a t i
i t t t t t COUNTER INITIALISATION t t t t t f
i t t i
n n t t t t n n t n t t m t t t t t t t t t t n t t t m t t t t t t t t t t t m m t t t t i

20 1 OUTPUT(P0RT$2AH)=00; f t INITIALISE RESET LINE TO FALSE t f
21 1 OUTPUTCPORTS2AH)=01; f t (OV). GENERATE COUNTER RESET t f
22 1 OUTPUT(P0RT$2AH)-00;

/ t t t t t t t t n t f
f t t f
i t t t t t t MAIN PROGRAM t t t t t t f
i t t f
I t t t t t t m t f

A 3

PL/H-80 COMPILER PABE 3

$EJECT
23 1 READ$PULSES=0; /* INITIALISE THE 16-BIT VARIABLE TO 0 1/
24 1 DO FOREVER;
25 2 CALL UPDAD(DUMMY,SHAFTIENCODER);
26 2 END; it END OF DO FOREVER */

27 1 END TESTIl;

MODULE INFORMATION:

CODE AREA SIZE = 004BH 75D
VARIABLE AREA SIZE = 0005H 5D
MAXIMUM STACK SIZE = 0002H 2D
90 LINES READ
0 FROBRAM ERROR(S)

END OF PL/H-30 COMPILATION

A 4

PL/H-80 COUP H E R PAGE 1

ISIS-II PL/H-80 V3.1 COMPILATION OF HODULE TEST2
OBJECT HODULE PLACED IN :F2:prog2.0BJ
COMPILER INVOKED BY: piiBO :F2:prog2,pln DEBUS

$WORKFILES(:F2:,:F2:)
$PASENIDTH(80)
fPABELENGTH(55)

TE8T$2:
DO;

i t FILEINAHE *PR0B2' i f

/ t m i t t t t i t n m t t m t t t t t t t t m t t t t t t t t m t t t t t t m t t m t t t t t /
i t t i
I t t t t t t TEST$2 DECLARATIONS t t t t t t l
i t t i
/ n m n n m m n m m t t t t m n n t t t t i t t t m m t t t t t m n m t i

DECLARE DATA$DIRECTiGN$BYTE$l LITERALLY '0000$0010B';
DECLARE DATA$DIRECT10N$BYTE$2 LITERALLY 'OOOOJOOiOB';
DECLARE C0HHANB$3TATUS$REB$1 LITERALLY '20H';
DECLARE CDHMAND$5TATUS«REG$2 LITERALLY *23H#;

6 i DECLARE DUMMY ADDREES;
7 1 DECLARE UPDAD ADDRESS DATA(0363H);
3 1 DECLARE FOREVER LITERALLY 'WHILE 1';
9 I DECLARE PULSE$HIGH LITERALLY 'OOOOIOOiOB';

10 i DECLARE PULSE$LOH LITERALLY 'OOOOIOOOOB'j
11 1 DECLARE PQRTI2AH LITERALLY *2AH';

DECLARE COUNT BYTE;

/m m m m m m m m m m m t m m m t m m m m m m /
i t t i
I t t t t t t TEST$2 PROCEDURES t t t t t t l
I t t i
/ t t n m t i m m m t t m t t n m m m m t m n m t i t m m m t t i

i n n n m n m n n n t n t t n t n t m m t n n n m n t m t n n t t t t !
it FUNCTION: ADCIINPUT (12-BIT ADC) ti
It PARAHETERS INPUT: ANALOGE SIGNAL ti
it OUTPUTS: 12-BIT DIGITAL VALUE t /
It PROCEDURE: PUBLIC tf
It CALLS: NOTHING I /
It DESCRIPTION: TO INITIALISE CONVERSION A HIGH PULSE IS ti
It GIVEN FOLLOWED BY A LON PULSE, THIS IS DONE BY II
It BITIi P0RT$2AH.A CERTAIN TIME HAS TO ELAPSE I /
It BEFORE READING THE PORTS ti
It 21H (8-BIT) LSB ti
It 23H (9-12BIT) HSB I /
f t t t t t t t t n i t t t i t i t t t i t t t t t t i t t t t t t t t t t t t t t t i t t t t t t t t t t t t i t t t t t !

PL/H-80 COMPILER PAGE

SEJECT
13 1 ADCIINPUT:

PROCEDURE ADDRESS PUBLIC;
14 2 DECLARE P0RTS21H LITERALLY '21H*;
15 2 DECLARE P0RT*23H LITERALLY '23H';
16 2 DECLARE ADCtlNSWORD ADDRESS;

17 2 OUTPUT(PORTI2AH)=PULSE$LOK;
19 2 OUTPUT(P0RTI2AH)=PULSE*HI6H;
19 2 CALL TIHE(l); /» A DELAY OF 100 MICROSECONDS UNTIL tf

It CONVERSION IS COMPLETED %(

it READ PORT 23H, MASK OFF 4 MSB'S, DOUBLE 1T(I.E M
ft ADD 8 ZEROS TO THE LEFT) AND THEN ROTATE LEFT tf
ft 8 DIGITS. tf

20 2 ADCWN$HORD=SHL(DOUBLE(INPUT(P0RTI23H) AND 0000*11118),8);

ft ADD THIS VALUE TO THE INPUT OF P0RT$21H AND THEN tf
it ROTATE RIGHT 2 DIBITS (TO RID OFF 2 LSB'S). tf

21 2 ADCSIN$WORD=SHR((ADC$IN$HORD+INPUT(PGRTS21H)),2)5

RETURN ADCINwORD; f t RETURN 10-BIT VALUE t f
END ADC*INPUT;

i m t t i t t t t t t t t m t t t t t t t t m t t t t t t m t t t t t t t t t t i t t t t t t t t t t m t /

i t f
n t i
i t t t t t t PORTS INITIALISATION t t t t t t i
i t t i
i t t t t t m t f

ft BASIC RAH tf

24 1 OUTPUT(CDMKANDSSTATUSREG1)=DATA$D1RECTION«BYTE$1;

f t PORT 2111 INPUT ADC (8 LSB) t f
f t PORT 23H INPUT ADC (4 MSB) t f

ft EXPANSION RAH tl

25 1 0UTPUT(C0HHAND$STATUS$REG$2)=DATA$DIRECTI0N$BYT£$2;

f t PORT 2AH OUTPUT (START ADC COMMAND) t f

PL/H-80 COMPILER PAGE 3

SEJECT
ixxxttxxittxxxtxtxxxxxxtxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxi
n xi
! % % % % % % ADC INITIALISATION t t tttt/
It t /
/ txxxxtxxxxxxxxxxxxxxxxixxxxxxxxxxxxxxxxxxxxxxtxxxxxxxtxx/

26 1 OUTPUT(P0RT$2AH)=PULSE$HIGH; It START COMMAND TO FALSE XI

intxtxtmttxxxxxxxtxxxxtxxxxxtxtxxxxxxxxxxxxtxxxxxxxtxxi
IX XI
IXXXXXX MAIN PROSRAH XXXXXXI
It XI
/ t m m m t x t m m m m t t x x x t x t x t x x x x x x x x x t t x n x x x t x x x i

27 1 DO FOREVER;

28 2 CALL UPDAD(DUMMY,ADCSINPUT);

IX A DELAY OF 1 SECOND XI

29 nL C0UNT=1;
30 7 DO WHILE COUNT<=25;
31 7•jk CALL TIME(200);
\2 3 C0UN'T=C0UNT+1;
33 3 END; it DO WHILE XI

34 oi. END; it END OF DO FOREVER ?/

35 i END TEST*2;

HODULE INFORMATION:

CODE AREA SIZE = 006AH 106D
VARIABLE AREA SIZE = 0005H 5D
MAXIMUM STACK SIZE = 0004H 4D
122 LINES READ
0 PROSRAH ERROR(S)

END OF PL/H-80 COMPILATION

A7

PL/H-80 COMPILER PfiSE

ISIS-II PL/H-BO V3.1 COMPILATION OF HODULE TEST3
OBJECT HODULE PLACED IN :F2:prog3.0BJ
COMPILER INVOKED BY: pla80 :F2:prog3.pla DEBUG

«W0RKFILES(:F2:,:F2:)
$PAGEHIDTH(BO)
$PA6ELENGTH(55)

1 TE3T$3:
DO;

I t FILEJNAHE 'PR0G3' XI

n t i
i t t i
I t t t t t t TEST$3 DECLARATIONS t t t t t t t l
i t 11
f t n t t t t t t t t t n t t n t t t t t t t t i t t t t i t t t t n m m t t t t t t t t t t t t t t t t t i

2 1 DECLARE DATA$DIRECTXON$BYTE$l LITERALLY '0000$00103';
3 1 DECLARE COHNAND$STATUSiREG$l LITERALLY '20H';
4 1 DECLARE DUHHY ADDRESS;
5 i DECLARE FOREVER LITERALLY 'WHILE

i t u t t t t t t t t t t t t t t t t t t t i
i t t i
i t t t t t t TESTS3 PROCEDURES t t t t t t l
i t t i
/ u m m t u t m t t t t m m t t t t m n t n u t t n t m t t t m t m t m i

6 1 VALUE:
PROCEDURE PUBLIC;

7 2 DECLARE I BYTE;
8 2 DECLARE P0RT$22H LITERALLY *22H';

9 2 DD 1=0 TO 255;
10 3 OUTPUT(P0RT$22H)=I ;
11 3 END;

12 2 END VALUE;

/ t i i t i
i t t i
i t t t t t t PORTS INITIALISATION W i l l /
i t t i
i t t t t i t n t t t t i t t t t t t t t t t t t t t t t t t i

PL/H-BO COMPILER PAGE 2

SEJECT
It BASIC RAM »/

13 1 OUTPUT{C-DMMAND$STATUS$RES$1)=DATA$DIRECTIGN$BYTE$1;

It PORT 22H OUTPUT (8 BIT) DAC 1/

/ n m m m t m m t m m m n t t m t m m m t m m x m m /
It M
Itt t t t t MAIN PR06RAM ttttttl
It tf
/ m n m m t m n m m u m n m m m m t n u m m n t m i

14 1 DO FOREVER;
15 2 CALL VALUE;
16 2 END; /* END FOREVER I!

17 1 END TEST$3;

MODULE INFORMATION:

CODE AREA SIZE = 002AH 42D
VARIABLE AREA SIZE = 0003H 3D
MAXIMUM STACK SIZE = 0002H 2D
60 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-SO COMPILATION

A 9

PL/H-80 COMPILER PA5E 1

ISIS-II PL/H-80 V3.1 COMPILATION OF HODULE FLONTURNINGHAIN
OBJECT HODULE PLACED IN :F2:flo«.0BJ
COMPILER INVOKED BY: pl»BO :F2:flo*.pli DEBU6

$W0RKFILES(:F2:,:F2:)
$PA6EWIDTH(B0)
$PAGELEN6TH(55)

1 FLON$TURNING$MAIN:
DO;

I t MAIN MDDULE X!

f t FILESNAHE 'FLOW' t f

f t t t t t t t t t t t t t t t m t t t t t t i t i t t
f t t f
I t t t t t t EXTERNAL VARIABLES DECLARATIONS t t t t t l f
f t t f
/ m t t t t m t t t t t t t t t t t m t m t t t t t m m t t t t t t t m m t t f

f t NONE t f

/ t m m t t t t t m t m m m t t t t t t t t m m t t t t m m t t t t t /
f t M
i t t t t t t PUBLIC VARIABLES DECLARATIONS t t t t t t l
f t t f
f t t t t t t t t t t t t t t t t t n t t t t t t t t t t t t t t t t i t t t t t t t t t t t t t t t t t t f

f t NONE t f

/ t t t m t t m t t t t t t t t t t t t m m t t t n t f
f t t f
I t t t t t t LOCAL VARIABLES DECLARATIONS t t t t t t f
f t t f
f t t t t t t m t m t t t t t t t t i f

2 1 DECLARE FOREVER LITERALLY 'WHILE 1';
3 1 DECLARE SELECTIBYTE BYTE;

/ t t t t t t t t t t t t t t i t t i t i t t t t t t m t i f
f t t i
I t t t t t t EXTERNAL PROCEDURES DECLARATIONS t t t t t t l
f t t f
I t i t t t t t t t t i t t t t t t t t t t t f

4 1 INITIALISATION .‘PROCEDURE EXTERNAL;
5 2 END INITIALISATION;
6 1 HACHINE$SETUP:PROCEDURE EXTERNAL;
7 2 END HACHINE4SETUP;

A10

PL/H-80 COMPILER PA6E 2

8 1 SHAPEISELECT:PROCEDURE BYTE EXTERNAL;
9 2 END SHAPESSELECT;

10 1 CDNES6ENERATIONiPROCEDURE EXTERNAL;
11 2 END C0NE$BENERAT1GN;

12 1 MACHINE*CONE*CONTROL:PROCEDURE EXTERNAL;
13 2 END MACHINESCONESCDNTRDL;

14 1 PhRABOLA$GENERATION:PROCEDURE EXTERNAL;
15 2 END PARA30LA$6ENERATION;

16 1 HACHINE$PARABQLA$CONTROL:PROCEDURE EXTERNAL;
17 2 END MACHINE$PARABOLA$CuNTRQL;

ixxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxxxxxxxxxxxxxxxi
IX XI
/ t l t t t t LOCAL PROCEDURES DECLARATIONS t t t t t t /
IX XI
nxxxxxxxxtxxxxxxxxxxxxxxxxxxxxxx txxxxxxxxxxxxxxxxxxxxi

I t NONE XI

i t uxt t xt t xut xxt t t xxxxxxxt xxt xxt xxnt t t t x t xxxxxxxxxxxi
it XI
i X X X X X X PUBLIC PROCEDURES DECLARATIONS t t t t t t I
IX XI
/xxtxxtxtxtxxxxxxxxxxxxtxxxxtxxxxtxxtxxxxxxxxxxxxxxxxxi

It NONE XI

/xxxxxxxxxxxxtxxxxxxxxxxxxxxxxxtxtxtxxxxxxxxtxxxxxxxxxi
IX XI
I X X X X X X MAIN PROGRAM t t t t t t /
It I /
/ t m m m m m t t m m m m m t t m m m m m m /

18 1 CALL INITIALISATION;
19 1 CALL HACHINESSETUP;

20 1 DO FOREVER;

21 2 SELECT$BYTE=SHAPE«ELECT; It SELECT A CONTOUR t/
22 2 IF SELECT$BYTE='A* THEN It IF CONE IS SELECTED THEN 1/
23 2 DO;
24 3 CALL C0NE46ENERATI0N; I t ENTER CONE PARAMETERS 1/
25 3 CALL MACHINEtCONEICONTROL; It FL0H-TURNIN6 PROCESS V
26 3 END;

ELSE It OTHERWISE SELECT A PARABOLA tl
27 2 DO;

All

PL/H-80 COMPILER PAGE 3

28 3
29 3

CALL PARAB0LAI6ENERATI0N; IX ENTER PARABOLA LENGTH XI
CALL HACHlNEiPARABDLAfCONTROL; I t FLOH-TURN1N6 PROCESS X

30 3 END;
31 2 END; IX DO FOREVER XI

/ m m m m m m m m m m m m t m m m t m m /
32 1 END F L 0 W T U R N I N 6 S H A I N ;

MODULE INFORMATION:
CODE AREA SIZE = 002BH 43D
VARIABLE AREA SIZE = 0001H ID
MAXIMUM STACK SIZE = 0002H 2D
107 LINES READ
0 PROGRAM ERROR(S)

END OF PL/H-80 COMPILATION

A12 ;
i

ISIS-II PL/H-80 V3.1 COMPILATION OF MODULE INITIALISATIONHDDULE
OBJECT MODULE PLACED IN :F2:initia.0BJ
COMPILER INVOKED BY: pldBO :F2:initia.pl« DEBUS

SHORKFILESC sF2s f:F2:)
$PAGEWIDTH(80)
$PASELENBTH(55J

1 INITIALISATIONSHQDULE:
DO;

I t FILE$NAHE 'INITIA* */
i n t n t t t t t t t n t t t t m t w i t t t t m i t t n u t t i t t t t m t t t t t t t t i
I t t!
/****** EXTERNAL VARIABLES DECLARATIONS 111*11/
I t </
/ m m n n m n m n m m m u n t m n m m t m m i m i t /

It NONE */

n t t t t t t t m t t t m t t m m t m t t t u t m m m t t m t t t t t t n t i
i t 1/
I t t t t t t PUBLIC VARIABLES DECLARATIONS ******/
It t!
n t n m u m t i m m m t m n i t t t i m H i m m t t t m t t t t t t i

2 1 DECLARE P0RT$2AH$0UTPUT BYTE PUBLIC:

/ m t t m n m m t t t m m H t m m m n n n t m t t t m t m t i
i t */
I t m t t LOCAL VARIABLES DECLARATIONS ******/
it a
u t t i n t t t t m n n n t n x t n n m u n i n i n n n n t t t t t t m t t i

I t ASCII CODE CHARACTERS t l

3 1 . DECLARE ESC LITERALLY *1BH';
4 1 DECLARE CLEARSSCREEN LITERALLY '1AH';
5 1 DECLARE QUOTE LITERALLY '27H';

I t ACIA$1 RESET, COMMAND AND CONFIG VALUES */
6 1 DECLARE ACIA$1*C0MHAND$REG BYTE AT (OEOOOH);
7 1 DECLARE ACIA1RESET LITERALLY *0 3 H ' ;
8 1 DECLARE ACIA$C0NFIG$1 LITERALLY '1 5 H ' ;

I t RAM'S AND PORTS DESIGNATION */
I t BASIC RAH t l

9 1 DECLARE DATA$DIRECTI0N$BYTE$1 LITERALLY 'OOOOIOOIOB';

PAGE 2

10 1 DECLARE CDMMAND$STATUS*REG$i LITERALLY *20H* ;

f t EXPANSION RAH H

11 1 DECLARE DATA$DIRECTI0N$BYTE$2 LITERALLY 'OOOOSOOiOB';
12 1 DECLARE C0HHAND$STATUS$REG$2 LITERALLY '28H';

I t PORTS DESIGNATION t l

13 1 DECLARE P0RT$22H LITERALLY '22H';
14 1 DECLARE P0RT$2AH LITERALLY '2AH’ ;
15 1 DECLARE P0RT$2AH$0FF«LATHE LITERALLY 'UimOilB ';
16 1 DECLARE P0RT*28H$EXTENDED LITERALLY '0000$0001B';
17 1 DECLARE ADC$IDLE LITERALLY *0000$0010B*;

18 1 DECLARE KBDSDPLYICONTROL BYTE AT (1900H);
19 1 DECLARE KHODE LITERALLY 'O';
20 1 .DECLARE ONIT LITERALLY 'OCCH';

21 1 DECLARE CLEAR$DATAfFIELD LITERALLY 'O';
22 i DECLARE CLEhR$ADDRESS$FIELD LITERALLY 'O';

i n n m m m m t m m m n n u t m m t t t m m t m t t n t t t t t i
i t . t i
f i t t U t EXTERNAL PROCEDURES DECLARATIONS t t t t t t I
i t t l
/ m m t m m m m m n m m n m m t m t m m m t m n n t i

23 1 CONBOLE$OUT:
PROCEDURE(CHAR) EXTERNAL;

24 2 DECLARE CHAR BYTE;
25 2 END CONSOLEIOUT;

f n m u m n n m n m m m m t n m m t t m u m m t t m m /

26 1 MESSAGE:
PROCEDURE{POINTER,LASTIELEMENT) EXTERNAL;

27 2 DECLARE POINTER ADDRESS;
28 2 DECLARE LftSTIELEHENT ADDRESS;
29 2 END MESSAGE;

/ n m t m t m m m m t t t m u t m n m n m n m n t t m m t /

30 1 GET:
PROCEDURE(TAR6ETSCHAR) EXTERNAL;

31 2 DECLARE TARGET$CHAR BYTE;
32 2 END GET;

i m t n t /

33 1 UPDDT:
PRDCEDURE(PAR$1) EXTERNAL;

A 1 4

LunriLtK PAGE

DECLARE PARti BYTE;
END UPDDT;

i t m t t i

UPDAD:
PROCEDURE(PARI2) EXTERNAL;

DECLARE PAR$2 ADDRESS;
END UPDAD;

i t t t t m t t t t t t x t t t x t x t t x t t t t t x x t t t t t t x t x x x x x x t t x x x x t x x t t x x x x i

INITs
PROCEDURE EXTERNAL;
END INIT;

/ m m m m t m m m m m m m m t m m m m m m m /
it ti
/ t t l t t t LOCAL PROCEDURES DECLARATIONS ttttttI
It tl
ittmttttttttttttttttttttxtttttxttttttttttttttttttttttmtt/

It NONE tl

/xtttttmttttttmttt/
n XI
I t t i t t t PUBLIC PROCEDURES DECLARATIONS tit III/
I t t l
ittttttttttttttttttttttttttttttttttttxttttxnxttttttttxttttt!

i t i
It FUNCTION: INITIALISATION (INITIALISE COMPONENTS) tl
It PARAMETERS INPUT: NONE I /
It OUTPUTS; TWO PASES OF TEXT ON THE VDU 1/
it PROCEDURE: PUBLIC tl
It CALLS: CONSOLESOUT, MESSAGE, GET tl
it DESCRIPTION: A PROCEDURE TO OUTPUT TO THE SCREEN TWO XI
It PASES OF TEXT ONE AFTER ANOTHER. THE tl
It OPERATOR IS TO PRESS THE SPACE BAR TO PROMOTE I /
it FURTHER PAGE. THE PASES SHOW AN IDEA ABOUT THE t!
It PROJECT. 1/
Itttttttttttttttittti

INITIALISATION;
PROCEDURE PUBLIC;

It INITIALISATION FIRST PAGE OF TEXT XI

I I I I ESC,'=*, TWO BYTES TO ADDRESS CURSOR ON SCREEN
TWO BYTES TO INDICATE NUMBER OF RON AND COLUMN

RESPECTIVELY, IN THIS CASE RON 2 COLUMN 15 SEE TABLE tttl .

It 1st page of text tl

42 2 DECLARE PAGE*l(t) BYTE DATA
(ESC, I t R2 CIS t!
'MICROPROCESSOR AIDED FLOW-TURNING'
,ESC, I t R3 CIS tl
x t t t t t t t t t t t t n t t t t t t t t t t t t t t t t t t

,ESC,'='f *, It R4 Cl tl
'OBJECT: To control the FLOW-TURNING PROCESS by an SDK-85 sicrocoa
puter.'

,E S C , ', It R5 Cl tl

,ESC, i t R7 Cl tl
'DESCRIPTION: A process to aake an axisyaaetric coapcnents out of
circular’

,ESC,'= ',QUOTE,' ’ , /t R8 Cl tl
' discs. A roiler is to aove and to press the rotati
ng disc'

,E S C , /* R9 C14 tl
'against the forser. The final shape is dependent upon the'
,ESC, I t RIO C14 tl
' former shape which could be one of the following:'
,ESC, I t R12 C9 tl
' i-CDNICAL contour'
,ESC,' = /I R13 C9 1/
'2-PARABOLIC contour'
, esc v r, i t m z i t i
' Nall thickness is to be reduced after the process.'
,E5C,'= ','4 ',' ', It R21 Cl tl
'Here!! depress SP to proceed');

It 2nd page of text tl

43 2 DECLARE PAGE$2(i) BYTE DATA
(esc,'=y y r , it ri cs a
' x m t m i m n n n n n m m n m n n m m t x n t t t t t t t t m t t ,
,E5C,' = y , It R2 C12 tl
'M.Phii Project BY ALADDIN H. MOHAMAD’
,Esc,'=ysy r , n R3 C6 ti
i n t t t i t i i t t m i \ t t m i t t t n t i t t t i i t \ t i t i t i t t i u m t t u t t t t t

,ESC, I t R4 C12 tl
'Mechanical and Production Engineering Departaent'
,E S C , , It R6 C7 tl
'Supervisors :-'
, E S C , ' = ' 5', It R7 C22 tl
'1-Dr H.SARWAR (Mech. & Production Eng.)'
,ESC,'s',QUOTE,'5', It R8 C22 tl
'2-Dr M.S.J. HASHM1 (Mech, & Production Eng.)'
,ESC,'=’ , ' (* , '5', It R9 C22 tl
'3-Dr J.R. TRAVIS (Elec. & Electronics Eng.)'
,ESC,'= ' , ') ' , ' (' , It RIO C9 tl
'TITLE - Microprocessor Aided Flow-Turning.'

A16

PL/M-BO COMPILER PAGE 5

,E S C , ft Rll C5 tl
'DESCRIPTION -'
,E S C , ’3', /I R12 C20 1/
‘The prograa will control roller soveient according to a'
,E S C , ','6', ft R13 C23 tf
'prescribed path.'
,E S C , Q U O T E , It R14 C8 tf
'Calls - Initialisation, Hachine$Setup, Console$Input$Dutput,'
,E S C , ' O ' , /I R15 C17 1/
'Shape$Select, ConeSSeneration, Machine$Cone$Ccntrol,'
,E S C , ' O ' , it R16 C17 tf
'Parabola$Generation, Machine$Parabola$Control.'
,ESC,'= ', 'O',QUOTE, ft R17 CB tf
'Prograa Requireaents 11K bytes of seaory’
,E S C , Q U O T E , ft RIB C8 tf
'I/O Requirements 2 (S-BIT) Input Ports'
,E5C,'=','2','B', ft R19 C35 tf
'2 (B-BIT) Output Ports'
,ESC,*=y3*,'B', /* R20 C35 ti
'2 (6-BIT) Input Ports'
,ESC,'= ', ’4 ',QUOTE, ft R21 CB tf
'Programing Language PL/M 80'
,ESC,''= ', '5 ',QUOTE, ft R22 CB 1/
‘Microcomputer Used INTEL-85 aith 8085 CPU',
ESC,'= ', ’7 ','+ ', /* R24 C12 1/
'Press SP to proceed please');

i t t t m t m t t t t t t t t t t PORTS INITIALISATION tttttttttttttttttttf

44 2 OUTPUT(C0nHAND$STATUS$RE6$i) =DATA$DIRECTIONfBYTEtl;
it BASIC RAM CONFIGURATION (BITS FROM RIGHT TO LEFT)

PORT A (21H) INPUT (ADC) 1-8 BIT
PORT B (22H) OUTPUT (DAC) 1-8 BIT
PORT C (23H) INPUT (ADC) 9-12 BIT

tl

45 2 0UTPUT(C0HMAND$STATUS$REB$2) =DATA$DIRECTI0N$BYTE$2;
ft EXPANSION RAH CONFIGURATION (BITS FROM RIGHT TO LEFT)

PORT A (29H) INPUT (COUNTER)
PORT B (2AH) OUTPUT (SIGNALS)
PORT C (2BH) INPUT (SNITCHES)

1/
It
BASIC RAM (8155)

INPUT PORT 21H:INDICATOR BITS (ADC B LEAST SIGNIFICANT BITS)
BITSO:
BIT*1:
BiT$2:
6IT$3: ALL USED
BIT$4:
BITI5:

A17

rL/M-80 COMPILER PAGE 6

BIT$6:
BIT$7:

OUTPUT PORT 22H;INDICATOR BITS (DAC)
BIT$0:
BITIl:
BIT$2:
BITI3: ALL USED
Bim:
BIT$5:
BITS6:
BIT$7:

INPUT PORT 23H:INDICATOR BITS (ADC 4 MOST SIGNIFICANT BITS)
BITSOs ADC BIT$B
B!T$1: ADC BIT$9
BIT$2: ADC BIT$10
BIT$3: ADC BITtll
BIT$4; NOT USED
BIT$5: NOT USED

EXPANSION RAH (8155)

INPUT PORT 29H:INDICATOR BITS (COUNTER)
BIT$0:
BIT$1;
BIT$2:
B1TI3: ALL USED
BITI4:
BIT$5:
BIT*6:
BIT$7;

OUTPUT PORT 2AH:INDICATOR BITS (SIGNALS)
BIT$0: (COUNTER RESET BIT)
BIT$1: (START CONVERSION ADC BIT)
BIT$2: (ON/OFF LATHE BIT)
B1T$3: (ON/OFF OIL PUMP BIT)
BIT$4: NOT USED
BITI5: NOT USED
BITI6: NOT USED
BIT$7: NOT USED

INPUT PORT 2BH:INDICATOR BITS
BIT$0: CYL1NDER$ADVANCE$SHITCH
BITil: NOT USED
BIT*2: CARRIAGESLIHITSSWITCH
BIT$3: NOT USED
BIT$4: NOT USED
BIT$5: NOT USED

tl
/ t t m t n n m m t acia initialisation t t m m m t t t t t t t t t /

A18

PL/H-80 COMPILER PAGE 7

46 2
47 2

48 2

4? 2
50 2

51 2
52 2

53 2

54 2
55 2

56 2
57 2

/t AC1AI1 1/
ACIAiC0HMAND$RE6 = ACIA41SRESET; / I RESETS ACIA41 tl
ACIA1CQHMAND$RE6 = ACIA$CONFIS$i; I t ACIA41 CONFIGURATION 116

- BAUD RATE tl

n n m t t u n components initialisation m m t t m m w

It INTERRUPT ENABLE RST 6.5 AND RST 7.5 tl

CALL INIT;

/ m m t m t m m t m m m u n n m u m m t m t t t m t w

It INITIALISE THE OUTPUT BYTE OF PORT 2AH TO 1 1/
ft I.E COUNTER INHIBITED, LATHE OFF AND t l
I t ADC CONVERT LOW t l

PDRT$2AH$DUTPUT=1;
OUTPUT(P0RT$2AH)=PQRT$2AH$0UTPUT;

/ i t m m n n t m m m m m n m n m m u m m m m m i

lit ADC (CONVERTOR COMMAND) ttl
i t INITIALISE THE START COMMAND TO TRUE (5V) 1/

PORT$2AHIOUTPUT=PORT$2AH$OUTPUT OR ADC*IDLE;
OUTPUT(P0RTS2AH)=P0RT $2AH$0UTPUT;

/ u n n m m u n t t n m n m i m m t u m t n m m m n t m /

lit DAC INITIALISE ttl
It INITIALISE DAC TO OV i.e 128 tl

OUTPUT(P0RT$22H)=12B;

/ t mu t mt t i

I t t INITIALISE SDK-85 KEYBOARD DISPLAY t t l

KBDtDPLY*CONTROL=KMODE;
KBD$DPLY*CONTROL=KBNIT;

i t mt i

I t t CLEAR SDK-85 DISPLAY 11/

CALL UPDDT(CLEAR$DATA$FIELD);
CALL UPDAD(CLEAR*ADDRESS*FIELD);

/ m t t t t t t m m m t t t t i t m t t t t t t t t t m t m t t t t t t t t t t t t t t t t t t i

iA19 I

PL/H-80 COMPILER PAGE 8

58 2 CALL CONSOLE$OUT(CLEAR$SCREEN);

/ I FIRST PAGE OF TEXT M

59 2 CALL MESSAGE(.PAGEfl,LAST(PA6E*1)); It PAGE 1 tl
60 2 CALL GET(* *); /* GET SP */
61 2 CALL CONSOLE$OUT(CLEAR$SCREEN); It CLEAR SCREEN tl

It SECOND PAGE OF TEXT tf

62 2 CALL MESSAGE!.PA0E$2,LAST(PAGE$2)); /* PAGE 2 tl
63 2 CALL GET{' '); It GET SP tl
64 2 CALL CONSOLE$OUT(CLEAR$SCREEN); ft CLEAR SCREEN tl

65 2 END INITIALISATION;

n t t m m t t m m t n t m t t t t t t t t n t t t i t m t t i

66 1 END INITIAL1SATIDN$HDDULE;

MODULE INFORMATION:

CODE AREA SIZE = 0668H 1640D
VARIABLE AREA SIZE = 0001H ID
MAXIMUM STACK SIZE = 0002H 2D
374 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

PL/M-8G COMPILER PAGE 1

ISIS-II PL/H-BO V3.1 COMPILATION OF MODULE CONSOLEINPUTOUTPUTHODULE
OBJECT MODULE PLACED IN :F2:consol.OBJ
COMPILER INVOKED BY: pIiBO :F2:consol.pla DEBUG

$NORKFILES(:F2:,:F2:)
IPAGEIUDTH(BO)
$PA6ELEN6TH(55)

1 CONSOLESINPUT SOUTPUTIHODULE:
DO;

It FILEINAME ‘CONSOL' tl

n t i
it ti
/ t t t t t t EXTERNAL VARIABLES DECLARATIONS U t t t t /
It tl
i t i

It NONE tl

/ m m m t t m m m n t m t n t t t m m m m n m m t w
ft ti
nttxtx p u b l i c v a r i a b l e s d e c l a r a t i o n s t txttxi
ix t i
i n t n n t n t n n m n n m n m t t n n n n t n n m u n m i

It NONE XI

/xttxttxxtxttxtxtxxxxxtttttxttxtxttxttttttttxtttttxxxtxxi
it t/
/ t ttttt LOCAL VARIABLES DECLARATIONS t t t t t t /
It tl
/ t t t t t t t t i t t i t t t t t m t t t t t m t t n t t t t t t t m m t t t t t t t m i

It ASCII CODE CHARACTERS tl

2 1 DECLARE ESC LITERALLY *1BH*J
3 1 DECLARE BELL LITERALLY W ;
4 1 DECLARE SPACE LITERALLY *20H'j
5 1 DECLARE BACKSPACE LITERALLY *OBH‘ ;
6 1 DECLARE CARRIAGESRETURN LITERALLY W ;
7 1 DECLARE DELETE LITERALLY ‘7FH‘ ;

It ACIAS1 FLAGS, COMMANDS AND DATA VALUES I /

B 1 DECLARE RXRDYSl LITERALLY '01H';
9 1 DECLARE TXRDYIl LITERALLY '02H';

10 1 DECLARE ACIAMCOHHAND*REG BYTE AT (OEOOOH);
11 1 DECLARE ACIA1DATA(RE6 BYTE AT (0E001H);

PL/H-BO COMPILER PAGE 2

I X NODULE VARIABLES X I

12 1 DECLARE I ADDRESS;
13 1 DECLARE NESS$l(t)BYTE DATA

(E S C , T) ; It START INVERSE XI
14 1 DECLARE MESS$2(t)BYTE DATA

(ESC,'k‘); It END INVERSE $/
/m m m m m m m m m m m m m m m m m m m t/
it ti
I X X X X X X EXTERNAL PROCEDURES DECLARATIONS X X X X X X I
It XI
/m m m m m m m m m m m tm m m m m m m m /

IX NONE XI

/m m m tm mtmm mm m mm msm mm tm m/
IX XI
I X X X X X X LOCAL PROCEDURES DECLARATIONS X X X X X X I
IX tl
/m m m m m m m m m m m tm m m m m m m m /

IX NONE XI

/m m m m m m m m m m m m m m m m m m m t/
IX XI
I X X X X X X PUBLIC PROCEDURES DECLARATIONS XXX X X X I
IX XI
I X I

/m m m m m m m m m m m m m m m m m m m t/
IX FUNCTION: CDNSOLESOUT (CONSOLE OUTPUT TO SCREEN) XI
IX PARAMETERS INPUT: CHAR(BYTE) XI
IX OUTPUTS: CHAR XI
IX PROCEDURE: PUBLIC XI
IX CALLS: NOTHING XI
IX DESCRIPTION: SENDS A CHARACTER TO SCREEN ' XI
n x x ttm m m m m m m m m m m m m m m ttttttm t

15 1 C0NS0LE40UT:
PROCEDURE(CHAR) PUBLIC;

16 2 DECLARE CHAR BYTE;
17 2 DO WHILE NOT ((ACIA1C0MHAND$RE6 AND TXRDY$1)=2);
18 3 END;
19 2 ACIA1DATA$REG=CHAR;
20 2 END CONSOLESOUT;

/m m m m tm ttm tm m ttm tm tt x

I X I

A 2 2 !

PL/H-80 COMPILER PA6E 3

I t FUNCTION: MESSAGE (MESSAGE DISPLAYED ON SCREEN) t l
I t PARAMETERS INPUT: POINTER(ADDRESS), LASTSELEMENT(ADDRESS) t l
I t OUTPUTS: MESSAGE CHARACTERS CHAR t l
I t PROCEDURE: PUBLIC t l
I t CALLS: CONSOLESOUT t l
I t DESCRIPTION: OUTPUTS A TEXT MESSAGE ON SCREEN VIA ACIAS1 t l
I t l

I t t l
21 1 MESSAGE: I t t l

PROCEDURE(POINTER,LASTIELEMENT)PUBLIC; I t t l
22 2 DECLARE POINTER ADDRESS; I t 1/
23 2 DECLARE TEXT$NE55AGE BASED P0INTER(2000) BYTE; I t t l
24 2 DECLARE LAST4ELEMENT ADDRESS; I t t l
25 2 DO 1=0 TO LASTIELEHENT; I t t l
26 3 CALL CONSOLE$DUT(TEXTIHESSAGE(I)); I t t l
27 3 END; I t t l
28 2 END MESSAGE; I t t f

I t t l
I t l

i t i
f t FUNCTION: CONSOLESIN (OBTAIN A CHAR) $/
I t PARAMETERS INPUT: NONE t l
I t OUTPUTS: NONE I/
I t PROCEDURE: TYPED(BYTE), PUBLIC t l
I t CALLS: NOTHING t l
I t DESCRIPTION: WAITS UNTIL A CHARACTER IS ENTERED FROM t l
I t KEYBOARD THEN ASSIGNS THE VALUE TO A VARAIABLE CHAR t l
n t i

i t t i
29 1 CONSOLE$IN: I t t l

PROCEDURE BYTE PUBLIC; I t t l
30 2 DECLARE CHAR BYTE; I t t l
31 2 DO WHILE NOT ((ACIA1C0HMAND$REG AND RXRDY$1)=1); I t t l
32 3 END; I t t l
33 2 CHAR=ACIA1DATA$RE6 AND 7FH ;/t STRIP OFF PARITY BIT t f
34 2 RETURN CHAR; I t t l
35 2 END C D N S O L E M N ; I t t l

I t t l
n t i t i i

/ t i t t t t t t t x t n n t t t t t i
f t FUNCTION: BET (GET THE APPROPRIAT CHARACTER FROH KEYBOARD) I/
I t PARAMETERS INPUT: THE REQUIRED PARAMETER (' ') 1/
I t OUTPUTS: NONE t l
I t PROCEDURE: PUBLIC t l
I t CALLS: CONSOLEIOUT, CQN50LEIIN t l
I t DESCRIPTION: READS A CHAR, IF IT IS THE TARGET ONE THEN t l
I t IT RETURNS TO THE CALLING PROGRAM, OTHERWISE t l
I t HILL RING A BELL AND THE OPERATOR SHOULD NON t l

A23

PL/H-BO COMPILER PA6E 4

It P R E S S THE 7AR6ET CHAR tl
ittutttttttttttttttttti

it ti
36 1 GET: It tl

P R O C E D U R E (T A R B E T $ C H A R) PUBLIC; It tl
37 2 DECLARE TAR6ET4CHAR BYTE; It tl
38 2 D E CLARE CHAR BYTE; It tf
39 2 CHAR=CONSOLE$IN; It READ A CHARACTER FROH KEYBOARD tl
40 2 DO WHI L E C H A R O T A R G E T t C H A R ; It tf
41 3 CALL CO N S O L E $ O U T (B E L L) ; It RING A BELL tl
42 3 CHAR=CONSOLEIIN; It READ A CHARACTER FROH KEYBOARD tl
43 3 END; It tl
44 2 END GET; It tl

It tl
/ t m t t i i t i i t t u t t t t t t t i t t t t t t t t t t t m t t t /

i t t t t t t t t t i t t t t t i t i t i t f
I t FUNCTION: DECIHALIVALUEIINPUT (ONE OR TWO DECIHAL DIGIT) t f
I t PARAHETERS INPUT: NONE t l
I t OUTPUTS: NONE I/
I t PROCEDURE: TYPED(BYTE), PUBLIC t I
I t CALLS: CDNSOLESCUT, CONSDLEtlN t l
I t DESCRIPTION: TO INPUT A NUMBER CONSISTING OF ONE OR TWO t l
I t DIGITS FROH THE KEYBOARD FOLLOWED BY CARRIAGE t l
I t RETURN. IF DIGIT PRESSED IS (0 TO 9) THEN IT t l
I t WOULD BE ACCEPTED, OTHERWISE A BELL WILL RING, THE t l
I t NUMBER HILL BE DELETED FROH THE SCREEN AND THE CURSOR t l
I t WILL RETURN TO THE INITIAL POSITION AND THE OPERATOR 11
I t CAN NOW ENTER THE RIGHT DIGITS. I/
/ m i m t t t t t n n t m t t t t t t m t t m n i t t m t t t t t i t n t m t t t t t n t t /

i t t i
45 1 DECIHALtVALUEtlNPUT: I t t f

PROCEDURE BYTE PUBLIC; i t t f
46 2 DECLARE VALUE BYTE; I t t l
47 2 DECLARE NOtDIGITS BYTE; I t t l
48 2 DECLARE CHAR BYTE; I t t f
49 2 DECLARE DECIHAL$DIGIT BYTE; I t t l

I t t l
50 2 VALUE=0; It INITIALISE I/
51 2 N0$DI6ITS=0; It INITIALISE tl

I t t l
52 2 CHAR=C0NS0LE*IN; It READ A CHARACTER FROH KEYBOARD tl

I t t l
53 2 DO WHILE CHAR <> CARRIAGEIRETURN; I t t f

Ittt IF CHAR^DECIHAL DIGIT tit/
54 3 IF CHAR>='0' AND CHAR<=*9' THEN I t ANY DIGIT 0 TO 9 t l
55 3 DO; It tl
56 4 N0IDI6ITS=ND!DI6ITS*1; It tf
57 4 IF N0tDI6ITS<=2 THEN It tf
58 4 DO; It tl
59 5 CALL CONSOLEIOUT(CHAR); It CHAR ON SCREEN tl

A24 I

PL/H-BO COHPILER PAGE 5

60
61
62
63
64
65
66
67
6B

69
70
71
72
73
74
75
76
77
78
79
30

81 3
B2 3
83 3
84 2
85 2

DECIHAL$DI6IT=CHAR-'0’;
VALUE=VALUEI10;
VALUESVALUE+DECIHAL$DI6IT;

END; ft END IF
ELSE

DD;
N01DI6ITS=2;
CALL CONSOLE$OUT(BELL); /I RING A BELL

END; ft END ELSE
END; / I I I END IF CHAR=DECIHALIDIGIT

ft I
ft I
ft I

I
ft I
ft I
ft I

I
I

I I I
ft I
I I I

ft I
ft I
ft I
/ I I
ft I

I

/ I I I IF CHAR-DELETE
ELSE IF CHAR=DELETE THEN

IF N01DIGITS>0 THEN
DO;

VALUE*VALUE-DECIKALiDIGIT;
VALUE=VALUE/10;
DECIHALIDIGIT=VALUE; ft OK FOR MAX 2-DIGITS ONLY
N0IDI61TS=ND4D16ITS-1; ft I
CALL C O N S D L E I O U T (B A C K S P A C E) ;/ I GO ONE SPACE BACK I
CALL CONSDLEIOUT(SPACE); ft DELETE DIGIT I
CALL CGNSOLEIOUT(BACKISPACE); ft GO BACK AGAIN I

END; ft END IF I
ELSE ft NDIDIBITS=0 I

CALL CONSOLEIOL)T(BELL); ft RING A BELL I
/III END CHAR=DELETE
/III CHAR=ANY OTHER CHAR

ELSE

111
ft I
III

ft I
CALL C0N50LE$0UT(BELL); ft RING A BELL

/III END CHAR=ANY OTHER CHAR
CHAR=C0NS0LE1IN; ft READ A CHAR FROH KEYBOARD

END; ft WHILE
RETURN VALUE;

END DECIHALIVALUEIINPUT;

I
111
I
1

ft I
ft 1
ft I
ft tf

ftttttttttttlttf

86 1 END CQNSOLEIINPUTIOUTPUTIHODULE;

HODULE INFORHATION:
CODE AREA SIZE = 014AH 330D
VARIABLE AREA SIZE = OOOEH 14D
HAXIHUH STACK SIZE = 0004H 4D
243 LINES READ
0 PROGRAH ERROR(S)

A25 III

PL/H-80 COMPILER PAGE 1

ISIS-II PL/H-80 V3.1 COMPILATION OF MODULE HACHINESETUPHODULE
OBJECT HODULE PLACED IN :F2:setup.OBJ
COMPILER INVOKED BY: pliBO :F2:setup.pIi DEBUG

$W0RKFILES{:F2:,:F2:)
$PAGENIDTH(80)
$PA6ELEN6TH(55)

1 HACHINEISETUPIHODULE:
DO;

It FILEINAHE 'SETUP' 1/

/ tm t m m m m m tm m m m m m m m m m m m m it /
it ti
/t ttttt EXTERNAL VARIABLES D E C LARATIONS t t tttt/
It tl

2 1 DECLARE P0RTI2AHI0UTPUT BYTE EXTERNAL;

It tl
/tttttt PUBLIC VARIABLES DECLARATIONS tt t t t t /
it t!
i t l

It NONE tl

i t l
It tl
itttttt LOCAL VARIABLES DECLARATIONS tt t t t t /
It tl
i t l

It ASCII CODE CHARACTERS 1/

3 1 DECLARE BELL LITERALLY W ;
4 1 DECLARE B A C K S P A C E LITERALLY 'OBH';
5 1 DECLARE LINEIFEED LITERALLY 'OAH1;
6 1 DECLARE CARRIAGEIRETURN LITERALLY *ODH*;
7 1 DECLARE CLEARISCREEN LITERALLY 'IAH'j
8 1 DECLARE ESC LITERALLY '1BH';
9 1 DECLARE HOHE LITERALLY '1 EH';

10 1 DECLARE SP LITERALLY '20H';
11 1 DECLARE DELETE LITERALLY '7FH';
12 1 DECLARE QUOTE LITERALLY *27H'; / I SINGLE QUOTE •/
13 1 DECLARE DQUOTE LITERALLY '22H*; It DOUBLE QUOTE 1/
14 1 DECLARE P0RTI2BH LITERALLY '2BH';
15 1 DECLARE P0RT42BHIINPUT BYTE;

^

^

PL/H-BO COMPILER PAGE 2

16 1 DECLARE PORT$2BH$ADVANCED LITERALLY 'OOOOfOOOlB';
17 1 DECLARE P0RT$2AHtSTART$PUHP LITERALLY 'OOOOtlOOOB';
IB 1 DECLARE P0RTI2AH LITERALLY *2AH';

I t MODULE VARIABLES t l

19 1 DECLARE LETTER BYTE;

i t i
n ti
/ t t t t t t EXTERNAL PROCEDURES DECLARATIONS t t t t t t /
It tl
/ t i

it ti
20 1 MESSAGE: It tl

PROCEDURE(POINTER,LASTtELEHENT) EXTERNAL; It tl
21 2 DECLARE POINTER ADDRESS; It tl
22 2 DECLARE LASTtELEHENT ADDRESS; It tl
23 2 . END HESSASE; It tl

It tl
n t t t t i t t t t t t t t t t t t t m t t n t t t t t n t t i t t t t t t t t t t t u t i t t t t t t t t t t n t i

it ti
24 1 GET: It tl

PROCEDURE(TARGETtCHAR) EXTERNAL; It tl
25 2 DECLARE TARBETtCHAR BYTE; It tl
26 2 END GET; It tl

It tl
/ t t t t tm t t tm m tt /

n t t t t t t t t t t t t t t t u t i
it ti
/ t t t t t t LOCAL PROCEDURES DECLARATIONS tttttt/
It tl
/tttttttttttttttttttttttttttt /

It NONE tl

i t t t t t t t t t t t t t m t t t t t t t t u t m t t t t t t t n t i
it ti
/ t t t t t t PUBLIC PROCEDURES DECLARATIONS t t t t t t /
It tl
i t t t t i t l

i t i t m t t t t t t t t t t t t t t t t f
I t FUNCTION: SETUP t/
I t PARAMETERS INPUT: NONE t l
I t OUTPUTS: NONE t/
I t PROCEDURE: PUBLIC t /
I t CALLS: MESSAGE, GET t /
I t DESCRIPTION: A PROCEDURE PR0DUCIN6 COMMANDS TO OPERATOR TO t /
I t SET UP THE EQUIPMENTS AND HAKE THEM READY FOR t I

A 2 8

PL/H-80 COMPILER PAGE 3

It OPERATION. THE COMMAND HILL BE DISPLAYED ONE BY ONE tf
It HHILE THE OPERATOR IS EXPECTED TO DO AS TOLD AND THEN tl
It PRESS SPACE KEY AFTER CARRINB OUT EACH ONE. ALSO THE TEXT tl
It HILL BE DISPLAYED FLASHING AND THEN HILL TURN TO NORHAL tl
It VIDEO AFTER PRESSING SPACE. I /
/ t i

27 1 HACHINEISETUP:
PROCEDURE PUBLIC;

ft HESSAGES TO BE OUTPUTED TO THE VDU SCREEN. tl
It THESE INCLUDE MACHINE SETUP INSTRUCTIONS AND tl
It OTHER HESSAGES. tl

It TEXT IN REVERSE VIDEO if

28 2 DECLARE PAGE$3(t) BYTE DATA
(ESC,'=',SP,'l*,
ESC,'j *, It START REVERSE tl
'MICROPROCESSOR AIDED FLOH-TURNING'
ESC,'k*, It END REVERSE 1/
E S C , '1',
ESC,'j', It START REVERSE tl
t '

ESC,'k', / I END REVERSE */
ESC,'= 'jDDUOTE,DOUOTE,
ESC,’j ' , It START REVERSE tl
'H.Phil project',
ESC,'k', It END REVERSE tl
ESC,' = ' , , ’X',
ESC,' j *, It START REVERSE tl
'ALADDIN H. MOHAMAD*,
ESC,' k', It END REVERSE tl
ESC,'= ', '$ ', '8 ',
'MACHINE SET-UP',
E 5 C ,'= ',T ,'8 \
'----------- ■);

29 2 DECLARE BLINK(t) BYTE DATA
(ESC,’A'); It BLINKING CHARACTERS 1/

30 2 DECLARE NORMAL!t) BYTE DATA
(ESC,'q*); It STOP BLINKING tl

31 2 DECLARE ERASE(I) BYTE DATA
(ESC,'y'); It ERASE TO END OF SCREEN HITH NUL

- LS t /
32 2 DECLARE STSERA(I) BYTE DATA

(E S C , '8 ');
33 2 DECLARE HESS$lR8C5(t) BYTE DATA

(ESC,'=',QUOTE,
34 2 DECLARE HESS$1(I) BYTE DATA

('1-Place norkpiece in position and
35 2 DECLARE HESS*2R9C5(I) BYTE DATA

(ESC,'= •,*(*,•♦ ');

It R5 C25 tl

It R8 C5 t/.

depress SP.');

ft R9 C5 1/

It R1 C18 tl

It R2 C1B tl

It R3 C3 tl

It R4 C57 I /

It R5 C25 tl

It R6 C25 tl

A29 I
I

PL/H-BO COMPILER PABE 4

36 2 DECLARE H£SS*2(t) BYTE DATA
('2-Start oil puip and depress SP.'lj

37 2 DECLARE HESS<3R10C5(t) BYTE DATA
(ESC, I t RIO C5 tl

3B 2 DECLARE HESSI3(t) BYTE DATA
('3-Energi5e valve controller V/I then SP.’ };

39 2 DECLARE HESS$4R11C5(I) BYTE DATA
(ESC,'=yty$')} I t Rll C5 t l

40 2 DECLARE MESSM(t) BYTE DATA
(’4-Switch on ADC, DAC, encoder and SDK-85, then SP.');

41 2 DECLARE HESSI5R12C5(t) BYTE DATA
(ESC, I t R12 C5 tl

42 2 DECLARE HESS$5(t) BYTE DATA
(* 5-Check tool is at datui position, if not eove to datu* then SP.

- ');
43 2 DECLARE HESS$6(t) BYTE DATA

(ESC,'=','4','$', It R21 C5 tl
'Press SP to proceed.');

i t i

It MAIN PROBRAH tl

n t u t i

It A SERIES OF CALLS WHICH DISPLAY THE INSTRUCTIONS ON tl
It THE VDU SCREEN. tl

44 0L CALL MESSAGE(.PABE$3,LAST(PABE$3));
45 2 CALL MESSAGEf.HESS$1RBC5,LAST(HESS$1RBC5));
46 2 CALL MESSAGE!.BLINK,LAST(BLINK));
47 2 CALL MESSAGE(.MES5$1,LAST(MESS$1));
48 ni. CALL GETC ');
49 2 CALL MESSAGE(.MESS$1R8C5,LAST(MESS$1R8C5));
50 2 CALL MESSABE(.NORMAL,LAST(NORMAL));

51 2 CALL MESSA6E(«MESSS2R9C5,LAST(MESS$2R9C5));
52 2 CALL MESSABEf.BLINK,LAST(BLINK));
53 2 CALL MESSAGE!.HESS$2,LAST(HESS$2));

It SWITCH ON THE OIL PUMP 1/

54 2 P0RT$2AH$0UTPUT=P0RT$2AH$0UTPUT OR P0RT$2AHfSTART
55 2 OUTPUT(P0RT42AH)=P0RT$2AH$0UTPUT;

56 2 CALL GETC ');
57 2 CALL MESSAGE!.HESS$2R9C5,LAST(HESS$2R9C5));
58 2 CALL MESSAGE!.NORMAL,LAST(NORMAL));

59 2 CALL NESSA6E(.MESSf3R10C5,LAST(HESS$3R10C5));
60 2 CALL MESSAGE!.BLINK,LAST(BLINK));
61 2 CALL MESSAGE!.MESS$3fLAST(HESS43));

A 3 0

PL/H-80 COMPILER PAGE 5

62 2 CALL GETC ');
63 2 CALL MESSAGE!.MESSI3R10C5,LAST(MESSI3R10C5));
64 2 CALL MESSAGE(.NORMAL,LAST(NORMAL));

65 2 CALL MESSAGE!.HESS$4R11C5,LAST(HESS$4R11C5));
66 2 CALL MESSAGE!. BLINK, LAST(BLINIC));
67 2 CALL MESSAGE!.HESS$4,LAST(MESSS4));
68 2 CALL GETC ');
69 2 CALL MESSAGE!.MESS$4R11C5,LAST(HESS$4R11C5));
70 2 CALL MESSAGE!.NORMAL,LAST(NORMAL));

71 2 CALL MESSAGE!.NESS$5R12C5,LAST(HESSI5R12C5));
72 2 CALL MESSAGE!. BLINK, LAST (BLIN1C));
73 2 CALL MESSAGE!.HESS$5,LAST(HESS$5));
74 2 CALL GETC ');
75 2 CALL MESSAGE!,MESS$5R12C5,LAST(HESS$5R12C5));
76 2 CALL MESSAGE(.NORMAL,LAST(NORMAL));

/u m m t m m m m m m m m m m m t m m m t tm /

It Check that PISTON*ADVANCED$SWITCH is closed, 1/
It if not then advance the piston t i l l it is closed tl
It i.e tool is at datui. tl

77 2 P0RT$2BH4INPUT=INPUT(P0RT$2BH); It READ PORT tl
78 2 IF {PDRT$2BH$INPUT AND P0RT$2BH$ADVANCED)=O THEN
79 2 DO;
80 3 OUTPUT(22H)=59; It START ADVANCE 1/
81 3 P0RT$2BH$INPUT=INPUT(PDRT$2BH); It READ AGAIN t /

It CONTINUE TO ADVANCE TILL SNITCH IS CLOSED 1/
82 3 DO WHILE (P0RT$2BH$INPUT AND P0RT$2BH$ADVANCED)=0;
83 4 P0RT$2BH$INPUT=INPUT(P0RT$2BH);
84 4 END; It DO WHILE tl
85 3 END; It DO tl
86 2 GUTPUT(22H)=128; It STOP PISTON ADVANCE tl

i t m t t t t t t t t t t n t t t t t t t t i

G E T C ');

END MACHINEISETUP;

t t
- /

92 1 END HACHINEISETUPtHDDULE;

87 2 CALL
88 2 CALL
89 2 CALL
90 2 CALL

91 2 END 1

A 3 1

PL/H-BO COMPILER PAGE 6

MODULE INFORMATION:

CODE AREA SIZE = 031EH
VARIABLE AREA SIZE = 0002H
MAXIMUM STACK SIZE = 0002H
249 LINES READ
0 PROBRAH ERROR(S)

END OF PL/H-80 COMPILATION

798D
2D
2D

A32

PL/H-80 COMPILER PAGE 1

ISIS-II PL/H-80 V3.1 COMPILATION OF HODULE SHAPESELECTHODULE
OBJECT HODULE PLACED IN :F2:shape.0BJ
COMPILER INVOKED BY: plaBO :F2;shape.pla DEBUS

$W0RKFILES(:F2:,:F2:)
$PAGENIDTH(80)
$PAGELEN6TH(55)

1 SHAPE$SELECT$MDDULE:
DO;

It FILE$NAHE 'SHAPE* */
itt/
it ti
m u t t EXTERNAL VARIABLES DECLARATIONS tttttt/
It tl
nttittttttttttttttttttttttttttttttttntttttttttttttttttttttttti

ft NONE 1/
/ n t m t m t m t t t t t t t m m t t t t t t u i t t m t t t t t t t t t t t t u t t t t t t t i
it ti
IttitII PUBLIC VARIABLES DECLARATIONS ttttttI
It tl
/ t m n m m n m m m m t m t t m t m t m m m t t m m t t t t t i

It NONE t!

n m m m t n t t t m t m t t m t t t t m i t t t t t u t m t t i m u t t n t t i !
n ti
/tttttt LOCAL VARIABLES DECLARATIONS Uttttl
It tl
i m t t t m t t m m t t n t t t t t t t t t t t t u m t t m t t t m n t t t t t t t t t t t i

It ASCII CODE CHARACTERS tl
2 1 DECLARE BELL LITERALLY '07H';
3 1 DECLARE B A C K S P A C E LITERALLY W ;
4 1 DECLARE LINEIFEED LITERALLY *OAH';
5 1 DECLARE CARRIASE$RETURN LITERALLY W ;
6 1 DECLARE CLEARSSCREEN LITERALLY * 1A H ‘;
7 1 DECLARE ESC LITERALLY '1BH';
8 1 DECLARE HOME LITERALLY *1EH*;
9 1 DECLARE SP LITERALLY '20H*;
10 1 DECLARE DELETE LITERALLY ’7FH';
11 1 DECLARE QUOTE LITERALLY '27H*; It SINGLE QUOTE 1/
12 1 DECLARE DQUOTE LITERALLY '22H1; It DOUBLE QUOTE t!

It MODULE VARIABLES tf

PL/H-80 COMPILER PA6E 2

13 1

14 1

15 2
16 2

17 i

IB 2
19 2
20 2

21 1

22 2

23 1

24 2
25 2

26 1

DECLARE LETTER BYTE;

n t u t t t t t t t t t t t t m t t t t t i
it ti
/ t m t t EXTERNAL PROCEDURES DECLARATIONS tt t t t t /
It tl
/ m m t m m t m t m m m m t m u m t u t m n t m m t m m n /

n ti
C0NSQLEI0UT: It tl
PROCEDURE(CHAR) EXTERNAL; It tf

DECLARE CHAR BYTE; It tl
END CDNS0LE$0UT; It tl

It tl
/tti

it ti
MESSAGE: It tl
PROCEDURE(POINTER,LASTSELEMENT) EXTERNAL; It tl

DECLARE POINTER ADDRESS; It tl
DECLARE LASTtELENENT ADDRESS; It tl

END MESSAGE; It tl
It tl

/tttttttttttttttttmtttttmttttttittttttttttttttttttttttttttttti
it ti

CONSOLES IN: It tl
PROCEDURE BYTE EXTERNAL; It tl
END CONSOLES IN; ft tl

It tf
/ u t m t n n t i t t i t m m t i t i t n m i i t t t m t t t i t n t n i t t t t m t t t t t i

it ti
GET: It tl
PROCEDURE(TARGETICHAR) EXTERNAL; It tl

DECLARE TARGETICHAR BYTE; It tl
END GET; it tl

ftnttttttttttttttttnttti
it ti
Itttttt LOCAL PROCEDURES DECLARATIONS tt t t t t /
It ti
/itttttttttttitttttttttitttf

It NONE ti

fttf
it tl
Itttttt PUBLIC PROCEDURES DECLARATIONS tttttt/
It tl
Itttttttttittl

SHAPESSELECT:
PROCEDURE BYTE PUBLIC;

27 2 DECLARE PABES4(t) BYTE DATA

PL/H-80 COHPILER PA6E 3

(ESC,'= ', ’* ' , ' 8 ', It R5 C25 tl
'SHAPE SELECT',
E S C ,'= y r,'8 ', /I R6 C25 1/

E SC ,'= ','I','(', it Rll C9 1/
'A-CGNICAL',
ESC, I t R13 C9 tl
'B-PARABOLIC',

ESC,'= ', '2 ', '$ ', It R19 C5 tl
'type A or B');

28 2 DECLARE NQT$l(t}BYTE DATA!
ESC,'= ', '7 ', '$ ', It R24 C5 tl
'Press SP to proceed please');

29 2 DECLARE POS$l(t)BYTE DATA
{ESC,'= ','4 ' It R21 Cll tl

30 2 DECLARE ERR$i(t)BYTE DATA
(ESC,'= ', '6 ' , '$ ', It R23 C5 tl
ESC,'•*•', It BLINKING CHARACTER tl
'This is a bad character, reenter one froa the oenu please.',
ESC, 'q‘); It END BLINKING */

31 2 DECLARE DELERR1{i)BYTE DATA
i E S C 6 ' , '4 ', ft R23 C5 tl
ESC,'T'); It ERASE TO END OF LINE tl

It SHAPE SELECTION TEXT DISPLAY PAGE tl

32 2 CALL MESSAGE(,PA6E$4,LAST(PASE$4));

it KEY IN A LETTER, CHECK THAT IT IS ONE OF THE Tk'O tf
It LETTERS 'A' OR *B' . IF NOT RING A BELL AND tl
it ISSUE A BLINKING ERROR MESSAGE. tl

33 2 LETTER=CONSOLE$IN; It GET LETTER tl
34 2 DO WHILE LETTERO'A' AND LETTERO'B'; it TEST IF FALSE'1/
35 3 CALL CONSOLESOUT(BELL); It RING A BELL tl
36 3 CALL MESSAGE!.ERR$i,LAST(ERR$l));
37 3 LETTER=CONSOLE$IN; it GET NEW LETTER tl
38 3 END; it WHILE tl

39 2 CALL MESSAGE(.DELERR1,LAST(DELERR1));
40 2 CALL MESSAGE(.P0S$1,LAST(POSf1))5

41 2 IF LETTER='A‘ THEN CALL COHSOLESOUT{* A')5
43 2 ELSE CALL CONSDLEiOUT{'B'); '

44 2 CALL MESSAGE(.NOTil,LAST{NOTIl));
45 2 CALL GETC*);

I
A 3 5 ‘i

PL/H-80 COMPILER PABE

46 2 RETURN LETTER}

47 2 CALL CONSOLE$DUT(CLEAR$SCREEN);

m t t m t u m m m t m t t m m t t m m m t m m t m m m w

48 2 END SHAPESSELECT;

49 1 END SHAPE$SELECT$HODULE;

HODULE INFORMATION:

CODE AREA SIZE = 0135H 309D
VARIABLE AREA SIZE = OOOiH ID
NAXIHUH STACK SIZE = 0002H 2D
160 LINES READ
0 PROGRAM ERROR(S)

END OF PL/H-80 COMPILATION

PL/H-80 COMPILER PAGE i

ISIS-II PL/H-80 V3.1 COMPILATION OF MODULE CONEGENERATIONMDOULE
OBJECT MODULE PLACED IN :F2:conege.0BJ
COMPILER INVOKED BY: piiBO :F2:conege.pli DEBUG

$W0RKFILES(:F2:f :F2:)
$PA6EHIDTH(80)
$PAGELENGTH(55)

1 CDNEISENERATIONIMODULE:
DO;

it FILEINAME 'CONEEE' 1/

/ t i
it ti
/ % U m EXTERNAL VARIABLES DECLARATIONS U U t /
It 1/
/ t i

It NONE 1/

/ m m m m m m m m m m m t t m m m i m m m m t m /
it ti
I t t t t t t PUBLIC VARIABLES DECLARATIONS t t t t l t l
it ti
i u t t t t t t t t t t m t /

2 1 DECLARE FDRMILENGTHINM BYTE PUBLIC;
3 1 DECLARE INCREHENTSIENCODERIPULSES BYTE PUBLIC;
4 1 DECLARE CONE$ANGLE$DE5REES BYTE PUBLIC;
5 1 DECLARE ROLLER$POSITION$ADC$STEPS ADDRESS' PUBLIC;

/ m m t t i m m m m m t m m m m m u m m m m t m m /
/1 $/
/ m i l LOCAL VARIABLES DECLARATIONS H i l l /
It ti
i t i

it ASCII CODE CHARACTERS 1/

6 1 DECLARE ESC LITERALLY '1BH';
7 1 DECLARE QUOTE LITERALLY '27H'; It SINGLE QUOTE 1/
8 1 DECLARE DQUOTE LITERALLY '22H'; It DOUBLE QUOTE 1/

9 1 DECLARE SPACE LITERALLY *20H*;
10 1 DECLARE BACKSPACE LITERALLY W ; •
11 1 DECLARE BELL LITERALLY '07H';
12 1 DECLARE CLEARISCREEN LITERALLY *1AH*;

13 1 DECLARE ROLLERIADJUST BYTE;
14 1 DECLARE INCREMENTS BYTE;

A37 |

PL/H-80 COMPILER PAGE 2

15 1

16 1

17 1

18 1

19 2
20 2

21 1

22 2
23 2
24 2

25 1
26 2

27 1

28 2
29 2

30 1

31 2

DECLARE DIRECTION BYTE;

It 592 ADC STEPS IS EQUIVALENT TO 74 MM OF 1/
/I TRANSDUCER LENGTH 1/
DECLARE FORMERITIPIADCISTEPS LITERALLY *592*;

DECLARE TESTSPOSITION BYTE;

/ t i
/» i/
/H i l l EXTERNAL PROCEDURES DECLARATIONS H i l l /
/ I 1/
/ t i l l l l l l l l l t t l l l l l l t l l t l l l l l l l l l l l l l l lH I IH t lH H IH t i l l I l l l t l l /

/H H H II IH II IH IH H it H il l H I H H I H 111111/
/I 1/

CGNSDLEIOUT: / I 1/
PROCEDURE(CHAR) EXTERNAL; / I 1/

DECLARE CHAR BYTE; /I 1/
END CDNSQLEIOUT; / I 1/

/I 1/
/! tH H H H ttH H H H H H H t H I! /

/ I 1/
MESSAGE: / I 1/
PROCEDURE(POINTER,LASTSELEMENT) EXTERNAL; / I I /

DECLARE POINTER ADDRESS; / I 1/
DECLARE LASTIELEMENT ADDRESS; / I 1/

END MESSAGE; / I 1/
/I 1/

/ t l t l l t H I I I I I IH I I IH I I I I IH H I I I I I I I IH I I I IH I IH I t l l lH IH H H /
/ I 1/

C0NS0LE$IN:PR0CEDURE BYTE EXTERNAL; ft ti
END CONSOLEIIN; it ti

It ti
i t f

It ti
GET: it ti
PROCEDURE(TARGET$CHAR) EXTERNAL; it ti

DECLARE TAR6ETSCHAR BYTE; it ti
END GET; it ti

it ti
m t f

it t/
DECIHAL$VALUES INPUT: it ti
PROCEDURE BYTE EXTERNAL; It ti
END DECIMAL$VALUE$INPUT; It ti

It 11
ittf

itti
It ti

PL/ri-BO COMPILER PA6E 3

/ t t t t l LOCAL PROCEDURES DECLARATIONS Stilt
It I
n t

i t
ft FUNCTION: BACKSDELETESPOSITION I
It PARAMETERS INPUT: NONE I
It OUTPUTS: NONE I
It PROCEDURE: I
It CALLS: CONSOLEiOUT I
It DESCRIPTION: A PROCEDURE TO BACKSPACE TWO POSITIONS, DELETE I
It TNO CHARACTERS FROM SCREEN, THEN BACKSPACE THO I
It POSITIONS, WHERE IT HAS INITIALLY. THIS PROCEDURE t
It THEN REQUESTS OPERATOR TO ENTER THE CORRECT NUMBER $
It AFTER A NUMBER NOT HITH IN THE SHOHN RANGE HAS EEEN TYPED t
It IN. I
i t

It t
32 1 BACKSDELETESPOSITION: ft t

PROCEDURE; ft tl
33 2 CALL CONSDLESOUT (BACKSPACE); It t
34 2 CALL CONSDLESOUT (BACKSPACE); It
35 Ti. CALL CONSOLESOUT(SPACE); It t
36 2 CALL CONSDLESOUT(SPACE); ft t
37 2 CALL CONSDLESOUT (BACKSPACE); It I
38 2 CALL CONSDLESOUT (BACKSPACE); It
39 2 END BACKSDELETESPOSITION; It t

It t
/ t m t t t t t t t t t t t t t t n t n t t t t t t

i t n t
it t
Ittttt PUBLIC PROCEDURES DECLARATIONS ttttt
It t
i t t t t t t t t t m t

i t
It FUNCTION: CONE$GENERATION I
It PARAMETERS INPUT: CONICAL PARAMETERS FROM KEYBOARD I
It OUTPUTS: NONE t
It PROCEDURE: PUBLIC t
It CALLS: MESSAGE, DECIMALSVALUESINPUT, BACKSDELETESPOSITION, I
It CONSDLESOUT I
It DESCRIPTION: A PROCEDURE TO DISPLAY CONICAL PARAHETES ON t
It SCREEN, THEN OPERATOR IS REQUIRED TO FILL IN THE I
It VARIABLES HITH APROPRIATE VALUES SELECTED FROM EACH t
It VARIABLE LIMITS SHOHN ON THE SCREEN. FAILING TO DO SO t
It HILL RING A BELL AND OPERATOR IS REQUESTED TO ENTER THE I
It RIGHT VALUE A6AIN. t
I t

40 1 CONESGENERATION:

A3 9

PL/H-80 COMPILER PAGE 4

PROCEDURE PUBLIC;

ft CONICAL CONTOUR PARAMETERS DISPLAY 1/

41 2 DECLARE PA6E$5(t) BYTE DATA
(E S C , '7' , It R2 C24 1/
'CONICAL CONTOUR PARAMETERS',
ESC,'~' , DQUOTE,*7’ , It R3 C24 1/

ESC,'s' , 'Z ' , ') ' ,
'Fore Length (ei)
ESC,
'(30 to 74)

ESC,'= ',QUOTE,',',
ESC,'j',
ESC,' = ' , QUOTE,*/',
ESC,'k',
ESC,'= ',QUOTE,'N',
ESC,'j',
ESC,'= ',QUOTE,'Q',
ESC,'k',

It R6 CIO 1/
Increments (Encoder Pulses)',
It R7 CIO tl
(8 to 16)',

It R8 C13
It START REVERSE VIDEO
It R8 C16
It END REVERSE VIDEO
It RB C47
It START REVERSE VIDEO
It R8 C50
It END REVERSE VIDEO

It R12 C7 tl

It R13 C7 tl

E S C , ,
‘Cone Angle (Degrees)*,
ESC,
'(30 to 45)’ ,

ESC,
ESC,T,
tSC, = , - , , ,
ESC,' k',

ESC,' = ','6','It', It R23 C7 tl
'After each parameter press RETURN please.',
ESC,'= ', '7 ', ’ ! ', It R24 C2 tl
' I f incorrect value is entered, use DEL key to erase before RETURN

It R14 CIO tl
It START REVERSE VIDEO if
It R14 C13 tl
It END REVERSE VIDEO tl

42 2 DECLARE NOT$l(t)BYTE DATA(
ESC,'=',‘7 ','& ', It R24 C7 tl
'Press SP to proceed please’);

43 2 DECLARE POSH(I) BYTE DATA
(ESC,'= ',QUOTE,'-'); It R8 C14 tl

44 2 DECLARE P0S$2($) BYTE DATA
(ESC,'= ',QUOTE,'0 '); It R8 C48 tl

45 2 DECLARE P0S$3(t) BYTE DATA
(E S C , ' I ') ; It R14 Cll I /

PL/H-BO COMPILER PA6E 5

46 2 DECLARE ERR$1($) BYTE DATA
(ESC,'= ','5 ' , It R22 C7 tl
ESC,'A' , It BLINKING CHARACTER tl
'Paraaeter not Mi thin liaits, reenter please.',
ESC,' q'); / I END BLINKING 1/

47 2 DECLARE ERR$2(I) BYTE DATA
(ESC,'= ', '5 ', '4 ', It R22 C7 tl
ESC,’A' , / I BLINKING CHARACTER $/-
'Enter either "Y " or "N" please.',
ESC,'T’); It ERASE TO END OF LINE 1/

4B 2 DECLARE ERR*3(») BYTE DATA
{ESC,'= ', '5 ', '4 ', IX R22 C7 tl
ESC,'*', It BLINKING CHARACTER 1/
'Enter either "F " or "R" please.',
ESC,'T '); It ERASE TO END OF LINE 1/

49 2 DECLARE DELIERR(t) BYTE DATA
(ESC,'= ','5 ',*4 ', It R22 C7 tl
ESC.T);

50 2 DECLARE ADJ$1(I) BYTE DATA(
E S C , Q U O T E , /» R16 C8 tl
'Do you require roller adjustaent ? (Y/N)‘);

51 2 DECLARE ADJ$2(t) BYTE DATA(
ESC,'= ', '1 ',QUOTE, It RIB CB XI
‘Ho* aany increments ? (1-80) (1 incresentsl/B aa)');

52 2 DECLARE ADJI3H) BYTE DATA(
ESC,'= ', '3 ',QUOTE, It R20 CB tl
'Forward or reyerse ? (F/R)');

53 2 DECLARE P0S$4(I) BYTE DATA(
ESC,'3 ','O ’ , ') ') ; It R17 CIO tl

54 2 DECLARE PQSI5(t) BYTE DATA(
ESC,'s' , '2 ' , ‘) '); It R19 CIO tl

55 2 DECLARE PQS$6(I) BYTE DATA(
ESC,'= ', '4 ', ') ') ; It R21 CIO 1/

56 2 DECLARE P0S$7($) BYTE DATA(
ESC,'=','1','4'); It RIB C7 tl

57 2 DECLARE TESTfl(t) BYTE DATA(
ESC,'3 ' , 'O ', '4 ', It R17 C7 tl
'Do you require the roller test position (Y/N) ?');

58 2 DECLARE DELIT(t) BYTE 0ATA(

A 4 1 i

PL/H-BO COMPILER PA6E 6

E S C j ^ y o y i ' , I X R17 C7 1/
ESC,'T y
ESC,'5 ','1 ’,'I * , I X RIB C7 1/
ESC,'T',
E SC,'=','7',' *, I X R24 Cl X I
E S C , * T ');

59 2 DECLARE D ELSF{f) BYTE DATA(
E S C , I X R23 Cl X I
E S C , * T *,
E S C , * = y 7 y I X R24 Cl X I
E S C . T) ;
ixtxxxi

60 2 CALL CGNSOLESOUT(CLEARSSCREEN);
i n t m t m t x t t t t t t x m m t t t x t x t x t t t t t t x x t t t t t x t x x x x x x x t x t x x t x i

61 2 CALL MESSAGE!,PAGE$5,LAST(PAGE$5));
ixxxxxxxxxxxxxxxxxxxxtxxxi

I X CDNE PARAMETERS INPUT XI

/ m m m m m t m m m m m m m m t m u m m m m t m /
I X INPUT FCRHSLENGTHSMM X I

62 2 CALL MESSAGE(.R O S S I ,LA S T (POSS1)); I t POSITION X I
63 2 FDRHSLENGTHSHH=DECIMALSVALUESINPUT; I t GET VALUE X I
64 2 DO WHILE FDRMSLENGTHSMM<30 OR F0RHSLEN6THSHH>74; I X CHECK X I
65 3 CALL BACKSDELETESPOSITION;
66 3 CALL MESSAGE(.E R R S 1 ,L A S T (ERRS1)); I X ERROR MESSAGE X I
h i 3 CALL CONSOLESOUT(BELL); I X RING A BELL X I
66 3 CALL MESSAGE!.P0SS1,LAST(P0SS1)); I X REPOSITION X I
69 3 FORMSLENGTHSMM=DECIMALSVALUESINPUT; I X GET NEW VALUE X I
70 3 END; I X WHILE 1/
71 2 CALL MESSAGE!.DELSERR,L A S T {DELSERR)};

I X INPUT INCREHENTSSENCODERSPULSES X I

72 2 CALL MESSAGE!.P0S$2,LAST(P0SS2)); I X POSITION X I
73 2 INCREHENTSSENCODERSPULSES=DECIHALSVALUESINPUT; I X GET VALU

- E X I
74 2 DO WHILE INCREMENTS$ENC0DERSPULSES>16 OR INCREHENTSSENCODERSP

- ULSES<B;
75 3 CALL BACKSDELETESPOSITION;
76 3 CALL MESSAGE(.ERRS1,LAST(ERRSi)); I X ERROR MESSAGE X I
77 3 CALL CONSOLESOUT(BELL); I X RING A BELL X I
7B 3 CALL MESSAGE!.POSS2,LAST(POSS2)); I X REPOSITION X I
79 3 1NCREHENTSSENC0DERSPULSES=DECIHALSVALUESINPUT; I X 6ET NEW

A42 |

PL/H-BO COHPILER PAGE 7

- VALUE XI
80 3 END; IX WHILE I I
91 2 CALL HESSAGEt.DELfERR,LAST(DELfERR));

IX INPUT CONEfANGLEfDEGREES XI

B2 2 CALL HESSA6E(.POSf3,LAST(P05f3)); IX POSITION XI
83 2 CCNEfAN6LEfDE6REES=DECIHALfVALUEfINPUT; IX GET VALUE XI
B4 2 DO WHILE C0NEfANGLEfDEGREES<30 OR CDNEfAN6LEfDE6REES>45;
85 3 CALL BACKfDELETEfPOSITION;
86 3 CALL HESSAGEt.ERR$1,LAST(ERR$1)); IX ERROR HESSAGE XI
87 3 CALL CONSOLEfOUT(BELL); IX RING A BELL XI
88 3 CALL HESSAGEt.P0Sf3,LAST(P0SS3)); IX REPOSITION XI
89 3 C0NEfAN6LEfDEGREES=DECIHALfVALUEfINPUT; IX GET NEW VALUE I

- /
90 3 END; It WHILE XI
91 2 CALL HESSAGEt.DELfERR,LAST(DELfERR));

ixxi

It TO COHPENSATE FOR THE ROLLER RADIUS, THIS DISTANCE HAS TO XI
IX BE ADDED TO THE INITIAL POSITION XI
IX R(1-C0S(30)) = 9(1-0.866) XI
IX =1.2 HH WHICH IS EQUIVALENT OF 10 ADCfSTEPS Xf

fxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxxtxxxtxxxxtxxxxtxxxxxxxxxxxxxxxti

92 2 ROLLERfrOSITIDNfADCfSTEPS=F0RHERfTIPfADCfSTEPS+10;

I X I

93 2 CALL HESSAGEt.DELfF.LAST(DELfF)); IX DELETE FOOTNOTE XI

f X t X X X X X X X X X X X t X X X X X t X X X X X X X X I

IX ROLLER TEST POSITION REQUIRED ? XI

94 2 CALL HESSAGEt.TESTf1,LAST(TESTf1));
95 2 TESTfPOSITION=CONSOLEfIN;
96 2 DO WHILE TESTfPOSITIDNO'Y' AND TESTfPOSITlONO'N';
97 3 CALL CONSOLEfOUT(BELL);
98 3 CALL HESSAGE(.ERRf2,LAST(ERRf2));
99 3 TESTfPOSlTIQN=CONSDLEfIN;

100 3 END; IX DD WHILE XI
101 2 CALL HESSAGEt.DELfERR,LAST(DELfERR)); .
102 2 IF TESTfPOSITION='N‘ THEN
103 2 DO;
104 3 CALL HESSAGE(.POSf7,LAST(POSf7));
105 3 CALL CGNSOLEfOUT(TESTfPCSITION);
106 3 CALL HESSAGEt.N0Tfl,LA5T(N0Tfl));
107 3 CALL GET(' ');

PL/H-80 COMPILER PAGE B

108 3 CALL HE5SA6E(.DELIT,LAST(DELIT));

i t t t t m m m t m m m m m t m t m t t t t m m m t /

It ROLLER ADJUSTMENT REQUIRED ? tl

109 3 CALL HESSAGEt.ADJS1,LAST(ADJS1));
no 3 RQLLERSADJUST=CONSOLESIN;
111 3 DO WHILE RDLLERf AD JUST <>' Y' AND RDLLERSADJUSTO'I
112 4 CALL CONSOLESOUT(BELL);
113 4 CALL HESSAGE(.ERRS2,LAST(ERRS2});
114 4 ROLLERSADJUST=C0N50LESIN;
115 4 END;
116 3 CALL HESSAGE(.DELfERR,LAST(DELfERR));
117 3 CALL HESSAGE(.POSf4,LAST(P0SS4});
118 3 CALL CONSOLESOUT(ROLLERSADJUST);

119 3 IF ROLLERSADJUST='Y* THEN
120 3 DO;

It INPUT RDLLER ADJUSTMENT I /

CALL MESSAGE(.ADJS2,LAST(ADJS2));
CALL HESSAGEt.P0S$5,LAST(P03S5));
INCREMENTS=DECIMAL$VALUES INPUT;
DO WHILE INCREMENTS<1 DR INCREHENTS>BO;

CALL BACKSDELETESPOSITION;
CALL HESSAGEt.ERRS1,LAST(ERRS1));
CALL CONSOLESOUT(BELL);
CALL MESSAGE!.PDSS5,LAST(P0SS5));
INCREHENTSsDECIHALSVALUESINPUT;

END;
CALL HESSAGE(.DELfERR,LAST(DELfERR));

it INPUT ADJUSTMENT DIRECTION M

CALL HESSAGE(.ADJf3,LAST(ADJS3));
DIRECTION=CONSOLESIN;
DO WHILE DIRECTIONO'F’ AND DIRECTIONO’R*;

CALL CONSOLESOUT(BELL);
CALL HESSAGEt.ERRS3,LAST(ERRS3));
DIRECTIQN=CONSOLESIN;

END;
CALL HESSAGEt.DELfERR,LAST(DELSERR));
CALL HESSAGEt.P0SS6,LAST(P0SS6));
CALL CONSOLESOUT(DIRECTION);

IF DIRECTIONS* THEN
ROLLERSPOSITIONSADCSSTEPS=ROLLERSPOSITIONSADCSSTEPS-INCREHENTS

i

ELSE

A 4 4 i

132
133
134
135
136
137
138
139
140
141

142
143

121
122
123
124
125
126
127
128
129
130
131

PL/H-80 COMPILER PA6E 9

144 4 ROLLER$POSITION$ADC$STEPS=ROLLER$POSITIONADCSTEPS*INCREKENTS
— |

145 4 END; ft IF ROLLER ADJUST = T tl

146 3 CALL MESSAGE(.NOTil,LAST(NOT$l));
147 3 CALL BETC '};
148 3 CALL CGNSOLE$OU7{CLEAR43CREEN);

149 3 END; /* IF TEBT$PDSITION=*N' tl
ELSE It IF TEST$POSITION='Y’ THEN 1/

150 2 DO;
151 3 CALL HESSABEI,P0S$7,LAST(P0S$7));
152 3 CALL CONSOLESDUT(TESTSPOSITION);
153 3 CALL HESSABEI.NDT$1,LAST(NDT$1));
154 3 CALL BETC *)}

It 552 ADC STEFS IS EQUIVALENT TO 69 HH OF tl
ft TRANSDUCER LENBTH XI

155 3 R0LLERSP0SITI0N$ADC*STEPS=552;
156 3 END;

/ m m m m i m m m m m m m m s m t m m m m m m m /

157 2 END CONEIGENERATION;

158 1 END CONE$BENERATION$KDDULE;

MODULE INFORMATION:

CODE AREA SIZE = 0612H 1554D
VARIABLE AREA SIZE = 0009H 9D
MAXIMUM STACK SIZE = 0004H 4D
429 LINES READ
0 PROBRAH ERROR IS)

END OF PL/H-80 COHPILATION

PL/H-BO COMPILER PABE 1

ISIS-11 PL/H-BO V3.1 COHPILATION OF HODULE HACHINECONECONTROLHODULE
OBJECT HODULE PLACED IN :F2:coneac.DBJ
COHPILER INVOKED BY: plaBO :F2:coneac.pla DEBU6

$NDRKFILES(;F2:,:F2:)
$PABEWIDTH(BO)
$PAGELEN6TH(55)

1 HACHINE$CONE$CONTROL*HODULE:
DO;

It FILESKAME 'CONEHC' X!

i t i
it ti
I t t t t t X EXTERNAL VARIABLES DECLARATIONS t t t t t t l
It tl
I t i t l

2 1 DECLARE FORH$LENSTH$HH BYTE EXTERNAL;
3 1 .DECLARE INCREHENTSSENCODERfPULSES BYTE EXTERNAL;
4 1 DECLARE CCNE$ANBLE$DEBREES BYTE EXTERNAL;
5 1 DECLARE ROLLERSPOSITIDNIADCISTEPS ADDRESS EXTERNAL;

6 1 DECLARE P0RT$2AH$0UTPUT BYTE EXTERNAL;

i t t t t t t t t t t u t t t t t t t t t t t t i t t t t t t t t i t t t t t t t t t t t t t t t n t t t t t t x t t t t t i
it ti
I t t t t t t PUBLIC VARIABLES DECLARATIONS t t t t t t l
it tl
i t t t t t t t t m t t t t t t t t t t t t t t t t t t m i t t t t i t t t t t t t i t t t t t t t t t t t t t t t t t i

It NONE tl

I t f
It tl
I t t t t t t LOCAL VARIABLES DECLARATIONS t t t t t t l
It tl
I t f

7 1 DECLARE I BYTE; It GET THE CONE$ANGLE$DEGREES INDEX tl

B 1 DECLARE CARRlAGE$POSITION$ENCODER$PULSES ADDRESS;

9 1 DECLARE TAN$NUH(16)BYTE DATA(
26,3,78,37,56,7,53,49,25,17,47,73,9,
69.28.1);

10 1 DECLARE TAN$DEN(16)BYTE DATA(
45,5,125,57,83,10,73,65,32,
21.56.84.10.74.29.1);

AA6

PL/H-BO COMPILER

It ASCII CODE CHARACTERS 1/

11 1 DECLARE ESC LITERALLY *1BH";
12 1 DECLARE QUOTE LITERALLY ‘27H*;
13 1 DECLARE CLEARSSCREEN LITERALLY '1AH';
14 1 DECLARE BELL LITERALLY '07H';
15 1 DECLARE CARRIASEIRETURN LITERALLY 'ODH'*,

16 1 DECLARE TURNINSSREQU1RED BYTE;
17 1 DECLARE TRUE LITERALLY 'OFFH';
IB 1 DECLARE FALSE LITERALLY 'O';
19 1 DECLARE ANSWER BYTE;

20 1 DECLARE COUNTERIRESET LITERALLY '0000S0001B';
21 1 DECLARE COUNTERSENABLE LITERALLY '1111$1110B'

22 1 DECLARE CLEAR$DATA$FIELD LITERALLY 'O';
23 1 DECLARE CLEARSADDRESS4FIELD LITERALLY 'O';

24 1 DECLARE KBD$DPLY$CONTROL BYTE AT (1900H);
25 1 DECLARE KHODE LITERALLY 'O';
26 1 DECLARE KBNIT LITERALLY 'OCCH';

27 1 DECLARE PAEE$7(t) BYTE DATA
(ESC,' = V ’ j ’8 ’ , It Ri C25 I /
‘Flow-turning roller ioveisents',
ESC,'=',‘ ! ','B ', /t R2 C25 M

j
E S C , , It R4 C5 tl

1- Roller advancing (4-5),
ESC,*=‘ , * $ ' , It R5 C5 tl

'2- Lathe snitched on, carriage loving left (5-1)',
ESC, I t R6 C5 1/

'3- Conical contour path (1-2)',
ESC,' ' If', ‘ , It R7 C5 tl

'4- Lathe snitched off, roller retracted (2-3)',
ESC,'= ',QUOTE,'*', It R8 C5 tl

‘ 5- Hanual aovenent to datu* (3-4)',
ESC, I t RIO C30 tl

'1 5',
E S C , It R12 C30 tl

ESC, I t R13 C2B tl
*+
E S C , '9' , It R14 C26 tl
'+
E S C , ' , '7' , It R15 C24 tI

ESCI '= , , 7 ' , ' 3 ' , It R16 C20 tl
*2 ♦ +',
E S C , ' = y o y 3 ‘ , It R17 C20 1/

PABE 2

$i
i

iI

A47

PL/H-BO COMPILER PAGE 3

*+
ES C , *=*,*1','3', I t RIB C20 t f
•+ ♦

• E S C , '=','2','3'f f t R19 C20 t f
'+m+*mm+++m++++*m+mm+++m+'f
E S C , ‘= ', '4 ','3', f t R21 C20 t l

'3 4 DATUM ');

28 1 DECLARE PAGESBU) BYTE DATA(
ESC,'2' , ' ! ' , ' : ' , f t R6 C27 t/
'Flow-turning is completed',
E S C , :*, f t R7 C27 $/

»

E S C , f t RIO C5 t f
'1- Please reaove the finished coaponent.',
E S C , , f t R12 C5 t f
'2- Disengage the carriage and return to datui by
the handwheel.’ ,

ESC,'=' , ' 3 ' j / I R20 C5 t f
'Another identical cone ? {Y/N) then RETURN');

29 1 DECLARE HESSS1(<) BYTE DATA(
ESC,'= ', '5 ', '$ '); f t R22 C5 t f

30 1 DECLARE ERR0R$1(I) BYTE DATA(
ESC,'A*, / I BLINKING STARTS t f
ESC,' = * , * 7 ' , , f t R24 C5 t f
'Enter either Y DR N please');

31 1 DECLARE DELETE$ERROR$l(t) BYTE DATA(
ESC,'= ', '7 ', ’$', f t R24 C5 i f
ESC,'T'); f t ERASE TO END OF LINE i f

/ t n u m m m t t m m t i t i t t m m n t m u t t t t t n m t t t t t m m /
f t t i
f i t t t t t EXTERNAL PROCEDURES DECLARATIONS ttttttl
f t t f
f t i t t t t t t i t t i t t t i t t t t t t i t t t t t t i i t t t t i t t t t t i t f

32 1 UPDDT:
PROCEDURE(PARSl) EXTERNAL;

33 2 DECLARE PARIl BYTE;
34 2 END UPDDT;

f t l

35 1 UPDAD:
PR0CEDURE(PAR$2) EXTERNAL;

36 2 DECLARE PARS2 ADDRESS;
37 2 END UPDAD;

/ t i t i t t t t t t t t t t l

3B 1 CONSOLEIOUT:
PROCEDURE(CHAR) EXTERNAL;

PL/H-80 COHPILER PAGE 4

39 2 DECLARE CHAR BYTE;
40 2 END CONSOLESOUT;

i m m m m m m m t m t m m m m m m m m m m m m i

41 1 HESSAGE:
PROCEDURE(PD1NTER,LASTIELEHENT) EXTERNAL;

42 2 DECLARE POINTER ADDRESS;
43 2 DECLARE LAST4ELEMENT ADDRESS;
44 2 END HESSAGE;

i t m i

45 1 CONSOLEIINjPROCEDURE BYTE EXTERNAL;
46 2 END C0N50LE4IN;

i t m i

47 1 GET:
PROCEDURE(TARGETICHAR) EXTERNAL;

48 2 DECLARE TARGET4CHAR BYTE;
49 2 END 6ET;

/ m m m m m t m m m m m m m m t m m m m m t m t /

i t t t t m t t t t t t m m t m t t t t t t m m m m t t t m m m m t t m m
it i
I X t X X X X LOCAL PROCEDURES DECLARATIONS ttttft
/% t
/ m m m m m m m m m m m m m m m m m t m m m m

/ t m
It FUNCTION: SHAFT$ENC0DER (ENCODER 8-BIT INPUT) t
/% PARAMETERS INPUT: NONE %
It OUTPUTS: 16-BIT VALUE IN (.CARRIABEiPOSITIONSENCODERIPULSES) I
It PROCEDURE: LOCAL I
It CALLS: NOTHING I
/% DESCRIPTION: THE ACCUMULATIVE VALUE OF THE COUNTER HILL EE t
It STORED IN THO BYTES(16-BIT), THE HIGH AND THE I
IX LOH. P0RTS29H HILL BE READ, THE LOH BYTE HILL ALL I
It THE TIME BE READ AND UPDATED, IF THE VALUE EXCEEDS t
It 256 THEN 1 HILL BE ADDED TO THE HIGH BYTE. PULSE.HIGH I
It AND PULSE.LOH ARE STORED IN HEHORY HHERE THEY ARE REFERED I
It TO BY THE GLOBAL VARIABLE CARRIAGE$POSITION$ENCODER$PULSES. X
i m m m m m m m m m m m m m m m m m t m m m m

it t
50 1 SHAFTIENCODER: It t

PROCEDURE ADDRESS; It t
51 2 DECLARE PULSE STRUCTURE(LOH BYTE,HIGH BYTE) AT It X

(.CARRIAGE$POSITION$ENCODER$PULSES); IX I
52 2 DECLARE READ4C0UNT BYTE; , It X
53 2 DECLARE NOOFREADS LITERALLY *10*j IX X

A 4 9

PL/H-BO COMPILER PAGE 5

54 2 DECLARE COUNTER BYTE; It tl
55 2 DECLARE COUNTERIl BYTE; It tl
56 2 DECLARE PDRTS29H LITERALLY ’29H'; / I I /

It tl
It THE CODE DEBOUNCES COUNTER BY SOFTWARE tl

57 2 RETRY;
READ$COUNT=ND$OF$READS;

5B 2 C0UNTER=INPUT(P0RT$29H);
59 2 DO WHILE READ$CDUNT>0;
60 3 C0UNTER$1-INPUT(P0RTS29H);
61 3 IF COUNTEROCOUNTER41 THEN GDTO RETRY;
63 3 READICDUNT=READ$C0UNT-1;
64 3 END; It WHILE 1/

65 2 IF C0UN7ER<PULSE.L0W THEN It tl
66 2 PULSE.HIGH=PULSE.HIGH+1; It tl
67 2 PULSE.LOW=COUNTER; It tl

It DISPLAY CGUNTER'S VALUE ON SDK-85 LED'S 1/
68 2 CALL UPDDT(COUNTER);
69 2 CALL UPDAD(CARRIABEIPOSITIONIENCODERIPULSES);

70 2 RETURN CARRIAGEIPOSITIONIENCODERIPULSES; It tl
71 2 END SHAFTIENCODER; It tl

It tl
I t t t t t t t t t l t t i l t t t t l t i t t t t t l t l

I t i t l
It FUNCTION; ADCIINPUT (12-BIT ADC) tl
it PARAMETERS INPUT: ANALOGUE VOLTAGE (0-10) VOLTS tl
It OUTPUTS: DIGITAL VALUES (0 - 1023) 1/
It PROCEDURE; LOCAL tl
It CALLS: TIME tl
It DESCRIPTION: OUTPUT PULSE LOW (00) AND THEN OUTPUT I /
It PULSE HIGH (02) VIA P0RTI2AH BITIl TO START tf
It CONVERSION, WAITS TILL CONVERSION IS COMPLETED, 1/
It THEN INPUTS THE VALUES FROM PORTS tl
It 21H (8-BIT) 8 LSB’S tl
It 23H (9-12 BIT) 4 MSB'S tl
I t l

It tl
72 1 ADCIINPUT: It tl

PROCEDURE ADDRESS; It tl
73 2 DECLARE ADCICONVERT LITERALLY '1111I1101B'; It tl
74 2 DECLARE ADCIIDLE LITERALLY 'OOOOIOOIOB'; / I t /
75 2 DECLARE P0RTI21H LITERALLY ‘21H*; It ADC 1-8 BIT 1/
76 2 DECLARE P0RTI23H LITERALLY '23H'; It ADC 9-12 BIT tl
77 2 DECLARE P0RTI2AH LITERALLY *2AH'; It START CONVERSION 1/
78 2 DECLARE ADCIINIWORD ADDRESS; It tl

PL/H-BO COMPILER PAGE 6

79 2 OUTPUT(P0RTS2AH)=P0RT$2AH$0UTPUT AND ADCfCDNVERT; I t t l
BO 2 Ol)TPUT(PORT$2AH)sPORT$2AH$OUTPUT OR ADM IDLE; I t I/
81 2 CALL TIHE(l); / I A DELAY OF 100 MICROSECONDS UNTIL t /

I t CONVERSION IS COMPLETED t l

I t READ PORT 23H, MASK OFF 4 MSB'S, DOUBLE IT(i.e ADD 8 ZERO t l
I t TO THE LEFT) AND THEN ROTATE LEFT 8 DIGITS. t l

82 2 ADCINK0RD=SHL(D0UBLE(INPUT(PDRT423H) AND 0000$1111B),B);/* t f

I t ADD THIS VALUE TO THE INPUT OF PDRT$21H AND THEN ROTATE t l
I t RIGHT 2 DIGITS (TO RID OFF 2 LSB'S). I /

83 2 ADMIN$W0RD=5HR((ADC$IN$WORD+INPUT(PDRT$21H)),2); I t t f

84 2 RETURN ADCINWQRD; f t RETURN 10-BIT VALUE (POSITION) t l
85 2 END ADCIINPUT; I t t l

I t t l
/ m m m m t m t t m m t m t m m m m t m t t t m m t t t t m m /

/ m t m t t t t t m t t t t t t m t t t t t m t t t t t t t t m t t t t t m m t t n t m t t /
f t FUNCTION: ADVANCE THE ROLLER A GIVEN DISTANCE. t l
I t PARAMETERS INPUT: ADVANCE DISTANCE IN ADC STEPS. t l
I t OUTPUTS:NONE. t l
I t PROCEDURE: LOCAL t l
I t CALLS: ADC*INPUT. t l
I t DESCRIPTION: t f
I t THE CURRENT TOOL POSITION IS INPUT AND TOOL t f
I t ADVANCE INITIATED IF REQUIRED. TOOL POSITION I /
I t IS CONTINUALLY MONITORED AND TOOL ADVANCE I /
I t TERMINATED WHEN THE SPECIFIED POSITION IS ACHIEVED, t l
/ n t m t m t t t t t t u t m t t t t m t t t n t t t t t n t t t t i t t t x t t t m t m t m /

86 1 TOQL$ADVANCE:
PROCEDURE!ABSDLUTESPDSITIDNSADCSSTEPS);

87 2 DECLARE ABSOLUTESPOSITIONSADCSSTEPS ADDRESS;
88 2 DECLARE PRESENT$P0S1TI0N$ADC$STEPS ADDRESS;
89 2 DECLARE ADVANCE*DAC*VALUE LITERALLY '183';
90 2 DECLARE STOP*DAC*VALUE LITERALLY '12B';
91 2 DECLARE PDRTS22H LITERALLY '22H';

I t IF ABSOLUTE POSITION IS LESS THAN THE MAXIMUM VALUE t l
I t (03FFH), GO THROUGH THE ROUTINE. t f

92 2 IF ABS0LUTE*P0SITIDNIADC*STEPS<03FFH THEN .
93 2 DO;

f t READ PRESENT POSITION 1/
94 3 PRESENT$P0SITI0N$ADC4STEPSsADC$INPUT; .

I t ADVANCE TOOL t l

A 5 1 i

PL/H-BO COMPILER PABE 7

95 3

96 3

97 4

9B 4

99 3

100 3

101 2

102 1

103 2
104 2
105 2
106 2
107 2

10B 2

109 2

110 2

OUTPUT(P0RT$22H)=ADVANCEfDACS VALUE;

It ADVANCE AND COMPARE THE TWO DISTANCES tl
DO WHILE PRESENT$POSITION$ADC$STEPS<

AB50LUTE$P0SITIDN$ADC$STEPS;

It READ AGAIN tl
PRESENT$P0S1TI0N$ADC$STEPS=ADC$INPUT;

END; It DO WHILE tl

It STOP TOOL tl
OUTPUT(P0RT$22H)=ST0P$DAC$VALUE;

END; It DO tl

END TOOLSADVANCE;

itti

n t i
It FUNCTION: RETRACT THE ROLLER A GIVEN DISTANCE. tl
It PARAMETERS INPUT: RETRACT DISTANCE IN ADC STEPS. I /
It OUTPUTS: NONE. tl
It PROCEDURE: LOCAL. tl
It CALLS: ADCS INPUT. tl
It DESCRIPTION: 1/
It THE CURRENT TOOL POSITION IS INPUT AND TOOL tl
It RETRACT INITIATED IF REQUIRED. TOOL POSITION IS tl
It CONTINUALLY MONITORED AND TOOL RETRACT TERMINATED tl
It WHEN THE SPECIFIED POSITION IS ACHIEVED. tf
Itttttttttttttttttttttittttttltttttttttttttttttttttttttttttttttttl

TOOLSRETRACT:
PROCEDURE!ABSOLUTE$POSITION$ADC$STEPS);

DECLARE ABSOLUTESPOSITIONSADCSSTEPS ADDRESS;
DECLARE PRESENTSPOSITIONSADCSSTEPS ADDRESS;
DECLARE RETRACTSDACSVALUE LITERALLY '73';
DECLARE STDPSDACSVALUE LITERALLY '128';
DECLARE P0RTS22H LITERALLY '22H';

It READ PRESENT POSITION tl
PRESENT$POSITION$ADC$STEPS=ADC$INPUT;

It RETRACT TOOL tl
OUTPUT(P0RT$22H)=RETRACT$DAC$VALUE;

It RETRACT AND COMPARE THE TWO DISTANCES tl ■
DO WHILE PRESENTIPOSITIONSADCfSTEPS)

ABSOLUTESPOSITIONSADCSSTEPS;

It READ AGAIN tl

PL/H-80 COMPILER PAGE B

111 3

112 3

113 2

114 2

115 1

116 2
117 2
118 2
119 2
120 2

121 2

122 2

123 3

124 3

PRESENTIPOSITION$ADC«STEPS=ADC$INPUT;

END; It DO NHILE tl

It STOP TOOL tl
OUTPUT(P0RT$22H)=ST0P$DAC$VALUE;

END T0DL4RETRACT;

i t t t t t t t t t t t t t t
- /

i t t m m m t m m m t n t m m t m t m t t t t t i m t t t t t t n t t m m i
It FUNCTION: CONE INTERPOLATION tl
It PARAMETERS INPUT: INTERPOLATION$ENCODER$PULSES(ADDRESS), I /
ft INCREHENTS$ENCQDER$PULSES (BYTE). tl
It OUTPUTS: CONICAL CONTOUR tl
It PROCEDURE: tl
It CALLS: SHAFT4ENC0DER, TODLIRETRACT tl
It DESCRITPION: A PROCEDURE TO DESCRIBE THE CONICAL CONTOUR. tI
It THE PROCEDURE MDINTORS THE CARRAIGE POSITION AND I /
/ 1 AT'PREDETERMINED INTERVALS (8 ,9 , 16 ENCODER PULSES) tl
It CALCULATES THE ROLLER POSITION REQUIRED TO MAINTAIN THE tl
It CONICAL CONTOUR AND RETRACTS THE ROLLER. 1/
/ t t t n t t t x t t t t x t /

CGN4INTERP0LATI0N:
PROCEDURE!INTERPOLATIDNSENCODERSPULSES);

DECLARE INTERPOLATJONSENCODERSPULSES ADDRESS;
DECLARE MOVEDSDISTANCESENCODERSPULSES ADDRESS;
DECLARE ABSOLUTESADCSSTEPS ADDRESS;
DECLARE Y1ADCSTEPS ADDRESS;
DECLARE Y14TEMP ADDRESS;

It INITIALISE THE MOVED DISTANCE 1/
M0VED$DISTANCE$ENC0DER$PULSES=0;

ft CALCULATE AND THEN RETRACT TO THE NEXT ABSOLUTE tl
It POSITION AND UPDATE THE CURRENT CARRIAGE tl
It POSITION FOR EACH REQUIRED INCREMENT OF CARRIAGE tl
It POSITION. 1/

DO WHILE MOVED$DISTANCE$ENCODER$PULSES<=
INTERPOLATION$ENCODER$PULSES;

It UPDATE THE MOVED DISTANCE tl
MOVEDSDISTANCESENCODERSPULSES-

M0VED$D1STANCE$ENC0DER$PULSES
♦INCREMENTS$ENCODER*PULSES;

DO NHILE CARRIA6E$PDSITION$ENCODER$PULSES<

A53

PL/H-BO COHPILER PABE 9

125 4
126 4

127 3

128 3

129 3

130 3
131 3
132 3
133 3

134 3

135 3

136 3

137 2

HOVEDSDISTANCEIENCDDERIPULSES;
CARR1AGE$PDS1TIDN$ENC0DER*PULSES=SHAFT$ENC0DER;

END; It DO NHILE CARRIAGE POSITION 1/

/% CALCULATE THE NEXT RETRACT DISTANCE 1/
Y1ADCSTEPS=(HQVED$DISTANCE$ENC0DER$PULSES

tTAN$NUH(I))/TAN$DEN(I);
IF (2t((M0VED$DISTANCE$ENC0DER$PUL5ESITAN$NUH(I)} HOD

TAN$DEN(I)))>STAN$DEN(I) THEN
Y1ADCSTEPS=Y1ADCSTEPS+1;

It CONVERT FROH PULSES TO ADC4STEPS 1/
Y1$TEHP=(Y1$ADC$STEPSI32)/63;
IF (2I((Y1ADCSTEPSI32) HOD 63))>=63 THEN

Y1$TEHP=Y1$TEHP+1;
Y1ADCSTEPS=Y1$TEHP;

It CALCULATE THE NEXT ABSOLUTE POSITION 1/
ABSDLUTEADCSTEPS=R0LLER$P0S1TI0N$ADC$STEPS-Y1$ADC$STEPS

5

It RETRACT TO THE NEXT ABSOLUTE POSITION 1/
CALL TQOLIRETRACT(ABSOLUTEADCSTEPS);

END; It DO WHILE HOVED DISTANCE 1/

END CON$INTERPOLATION;

/ u m m m m m m m m m m m m m m m m m m m t t m /
/ m t m m m t t m m t t n t t t m m t n t t t m m m t m t m n m n i
it ti
I t t m t PUBLIC PROCEDURES DECLARATIONS t tt t t t l
It tl
i m t u t u m m t m t m u t t t n m n n m t m t m t m m m t t m t i

i t m m n t m m n t m m t t t m t m t m m t m m t u m t t n t m t i
It FUNCTION: HACHINESCONESCONTRDL (CONTROL TOOL HOVEHENT) tl
It PARAMETERS INPUT: DEFINED IN PREVIOUS PROCEDURES tl
It OUTPUTS: DEFINED IN PREVIOUS PROCEDURES tl
It PROCEDURE: PUBLIC tf
It CALLS: SHAFTiENCODER, T00L4ADVANCE, INTERPOLATION, tl
It TOOLSRETRACT, C0NS0LE40UT, MESSAGE. tl
It DESCRIPTION: TOOL HOVEHENT CAN BE SUBDIVIDED INTO THE I /
I t FOLLOWING SEGEHENTS:- tI
It tl
It (4 TO 5) ADVANCE TOOL (LATHE IS OFF) tl
It OPERATE LATHE, INITIALISE COUNTER I /
It (5 TO 1) HOVEHENT WHILE TOOL IS HELD IN POSITION tl
It (1 TO 2) CONTOUR SHAPE (CONICAL,ECT) tl
It SWITCH OFF LATHE tl
It (2 TO 3) RETRACT TOOL tl

A54 ji

PL/H-80 COMPILER PAGE 10

n t m t m t
/!
It 1 4444444444444444444444444

It ♦ 4
it 4 4
it ♦ 4
it 4 4
it ♦ 4
it 4 +
it 2 + ♦
it 4 4
it 4 4
it 4 4
it 4 4
it 4 4
it 3 444444444444444444444444444444444444444
it
it
ittt

13B 1 HACHINEICDNEiCDNTROL:
PROCEDURE PUBLIC;

139 2 DECLARE FORM$LENGTH$ENCGDER$PULSES(45)ADDRESS DATA(472,4B8
,504,519,535,551,567,582,598,614,630,645,661,677,693
,708,724,740,756,771,7B7,803,819,B35,850,866,8B2,898
,913,929,945,961,976,992,100B,1024,1039,1055,1071
,1087,1102,1118,1134,1150,1165);

140 2 DECLARE INTERPOLATION$ENCODER$PULSES ADDRESS;

141 2 DECLARE P0RTJ2AH LITERALLY '2AH*;
142 2 DECLARE J BYTE; /» GET THE FORHtLENSTHSMM INDEX ti

it MASKS TO CONTROL LATHE ti
143 2 DECLARE P0RT$2AH$START$LATHE LITERALLY ’OOOOSOIOOB';
144 2 DECLARE P0RT$2AH$STDP$LATHE LITERALLY 'llliflO H B ';

It DAC CONTROL VALUES tf
145 2 DECLARE RETRACTSDACIVALUE LITERALLY '73*;
146 2 DECLARE STOPDACVALUE LITERALLY *128';

147 2 DECLARE PQRTI2BH LITERALLY *2BH';
148 2 DECLARE P0RT$2BH$INPUT BYTE;
149 2 DECLARE PQRTI2BHSADVANCED LITERALLY '0000I0001B*;
150 2 DECLARE P0RT$2BH$CARRIAGE LITERALLY 'OOOOIOIOOB';

151 2 DECLARE OLD$POSITION$ENCODER$PULSES ADDRESS; •
152 2 DECLARE NEN$POSITION(ENCODER*PULSES ADDRESS;
153 2 DECLARE COUNTIl BYTE;
154 2 DECLARE C0UNTS2 BYTE;

A55 II

PL/H-BO COMPILER PAGE 11

155 2
156 2
157 2
158 2
159 2
160 3
161 3

162 3
163 3

164 3
165 3

166 3
167 3

16B 3

169 3

i x i

i x i

l=C0NE$AN6LE$DEGREES-30j IX GET THE CONEIANGLEIDEGREES INDEX XI
J-F0RM$LENGTH$MM-30; IX GET THE FORHILENGTHSHH INDEX XI
INTERPDLATI0N$ENC0DER$PULSES=F0RH$LEN6TH$ENC0DER$PULSES(J);
TliRNING$REQUIRED=TRUE;
DO WHILE TURNINGSREQUIRED;
CALL CONSOLE$DUT(CLEAR$SCREEN); IX CLEAR SCREEN XI

CALL HESSAGE(.PAGES7,LAST(PAGE$7)); IX PAGE 7 XI

I X I

IXXX INHIBIT COUNTER UNTIL INTERPOLATION BEGINS, INITIALISE XI
/ I I I SET LINE TO TRUE (5V) XI

PORT$2AH$0UTPUT=P0RT$2AH$0UTPUT OR COUNTERSRESET; .
OUTPUT(P0RT$2AH)=P0RT$2AH$0UTPUT;

/ t m m m m m m m m m m s m m m m m m t m m m /

Ittt INITIALISE SDK-85 KEYBOARD DISPLAY XXXI

KBD$DPLY$CGNTRGL=KHODE;
KBD$DPLY$CDNTROL=KBNIT;

n t x t t x t x t t t x x t x t t x x x x x x x t t t x t t x x x x x t x t m t x x t x t t x x x x m x t m i

IXXX CLEAR SDK-85 KEYBOARD DISPLAY XXXI

CALL UPDDT(CLEAR$DATA$FIELD);
CALL UPDAD(CLEAR$ADDRESS$FIELD);

i x x x t x x x t x x x x x x x x x x x x x x x x t x x x x x x x x x x x x x x t x t x x x x x x x x x x x x t x x x x x i

I XXX DAC INITIALISE $11/
O U TPUT(2 2 H)=STOPDACVALUE;

I X I

I XXX INITIALISE ADDRESS POSITION XXXI

CARRIAGE$P0SITI0N$ENC0DER$PULSES=0;
I X I

IX
I X X X X X X
IX

CALCULATIONS PRIOR TO THE PROCESS
XI

XXXXXXI
XI

A56

PL/H-BO COHPILER PAGE 12

I t 11
I t t t t THE HAIN PROGRAM t t t t f
I t t l
i t t m m m t t m m x t t t t t m u m t n t n t t t m t m m t t t n i

i t t t t t t t t t t m t t m t
- i

I t t t ADVANCE TOOL (POSITION 4-5) I 11/
170 3 CALL TOOLSADVANCE(ROLLERSPOSITIDNADCSTEPS); I t t l

I t t l
n t t t t t t t m t t t t t t t t i t t x t n t t t t m t t t t t t t t t t t t t t t t t m t t t t t t t t t t t /

I t t t SNITCH LATHE ON It t l

171 3 PDRT$2AHS0UTPUT =P0RT$2AH$0UTPUT OR PDRT$2AH$START$LATHE; I t t l
172 3 OUTPUT(P0RT$2AH)=P0RT$2AH$0UTPUT; I t t l

/ t t t t t t t t t t t t t t t n t t t t t t t t t t t t m t i

I t t t CARRIAGE HILL START MOVING LEFT (POSITION 5-1) t t t l

I t HAIT TILL CARRIAGE SHITCH IS CLOSED 1/
173 3 P0RT$2BH$INPUT=INPUT(P0RT$2BH); I t READ PORT t l
174 3 DO WHILE (P0RT$2BH$INPUT AND P0RT$2BH$CARRIAGE)=0;
175 4 P0RT$2BH$INPUT=INPUT(P0RT$2BH); I t READ AGAIN t f
176 4 END; I t DO HHILE 1/

I t t f
/ n t t t t t t t t n t t t m t t t t t t t t t t m t i

I t t t ENABLE COUNTER tttt/
177 3 P0RT$2AH$0UTPUT=P0RT$2AH$0UTPUT AND COUNTERSENABLE;178 3 OUTPUT(PORT $ 2 A H)=P0RT$2AH$0UTPUT;

/ t n t i t i

I t t t CONICAL CONTOUR (POSITION 1-2) t t t l

I t t l
179 3 CALL C0N$INTERP0LATI0N(INTERP0LAT10N$ENC0DER$PULSES); I t t l

I t t l
/ t /

I t t l
I t SHITCH OFF THE LATHE t l

I t t l
1B0 3 P0RTI2AHt0UTPUT =P0RT$2AH$0UTPUT AND PORT$2AH$STOP$LATHE; I t t l
1B1 3 OUTPUT(P0RTt2AH)=P0RT$2AH$0UTPUT; I t t l

i t t t n t t t t t t t t t m t t m t t t t t t t t t t t m t i

A57

PL/H-BO COMPILER PABE 13

/ I I I RETRACT TOOL (POSITION 2-3) t i t /
/ I I I RETURN TO DATUH I I I /

182 3 PDRT$2BHIINPUT=INPUT(PORTI2BH); I t READ PORT 1/
I t ADVANCE PISTON TILL IT REACHES DATUH t l
I t HOVE PISTON TILL IT HITS ADVANCED SHITCH t l

183 3 IF (P0RTI2BHIINPUT AND P0RT$2BHIADVANCED)=0 THEN
184 3 DO;
185 4 OUTPUT(22H)=RETRACTDACVALUE; I t START ADVANCE TO DATUH 1/
IBS 4 P0RT$2BH$INPUT=INPUT(P0RTS2BH); I t READ PORT 1/
187 4 DO WHILE (PORT$2BH$INPUT AND P0RT$2BH$ADVANCED)=0;
IBB 5 PDRT$2BHIINPUT=INPUT(P0RT$2BH); I t READ AGAIN t l
1B9 5 END; I t DO WHILE 1/
190 4 END; I t DO t l
191 3 OUTPUT(22H)=5T0rDACVALUE; I t STOP PISTON ADVANCE t f

i t n t m t m m t m m m m u n t m n t t m m m t t m n t t m t t i t f

I t A ROUTINE TO DISPLAY THE CARRIABE POSITION ON THE SDK-85 1/
i t EVERY 0.5 SECONDS TILL LEADSCREW IS STATIONARY t l

192 3 OLD$POSITICN$ENCODER$PULSES=SHAFT$ENCODER;
193 3 COUNT!1=0;
194 3 DO WHILE C D U N T I K 1 0 ;
195 4 CDUNT$2=1;
196 4 DO WHILE CDUNT$2<=25;
197 5 CALL T I M E (200);
198 5 C0UNT$2=C0UNT$2+1;
199 5 END; I t DO WHILE 1/
200 4 NEW$POSITION$ENCODER$PULSES=SHAFT$ENCODER;
201 4 IF NEW$POSITIONIENCODERIPULSES=OLD$PQSITION$ENCODER$PULSES THEN
202 4 C0UNT$1=C0UNT$1+1;

ELSE
203 4 DO;
204 5 C0UNT$1=0;
205 5 OLD$POSITION$ENCODERIPULSES=NEW$POSITION$ENCODER$PULSES;
206 5 END; I t ELSE t l
207 4 END; I t DO WHILE 1/

n t t t t t t t m t t t t t m t t t t m m t t t t t t t t t t t t t t m t t t t u m t t t t t t t t t t
- /

20B 3 CALL CONSOLEIOUT(CLEARISCREEN); I t CLEAR SCREEN t l

209 3 CALL HESSAGEt.PABE$B,LAST(PAGE$B)); It PAGE 8 tl
210 3 ANSWER=C0N50LE$IN; It GET REPLY tl
211 3 DO WHILE A N S H E R O T AND A N S W E R O T ;

A 5 8

PL/H-BO COMPILER PAGE 14

212 4 CALL CDNSOLEIDUT(BELL);
213 4 CALL HESSAGE(.ERRORIl,LAST(ERRORfl]);
214 4 ANSNER=CONSOLE$IN;
215 4 END; It DO NHILE 1/
216 3 CALL HESSAGE(.DELETESERRORf1,L A S T (DELETE$ERROR$l));
217 3 CALL HESSAGEf.HESSil,LAST(«ESS$1));
218 3 CALL CQNSOLE$OUT(ANSWER);
219 3 CALL 6ET(CARRIAGE$RETURN);
220 3 IF A N S W E R I N ' THEN
221 3 TURNIN6*REQUIRED=FALSE;
222 3 END; It DO NHILE tl

223 2 CALL CDNSOLE$OUT(CLEAR$SCREEN);
224 2 END MACHINEICONEHCQNTRQL;

/ t m m m m m m m m m m m m m m m m m t m m m t /
225 1 END HACHINE$CONE$CONTROLfHODULE;

HODULE INFORMATION:

CODE AREA SIZE = 077EH 1912D
VARIABLE AREA SIZE = 0026H 3BD
MAXIMUM STACK SIZE = OOOBH 8D
685 LINES READ
0 PROGRAM ERROR(S)

END OF PL/H-BO COMPILATION

A 5 9

PL/H-80 COMPILER PABE

1SIS-II PL/H-BO V3.1 COHPILATION OF HODULE PARABENERATIONHODULE
OBJECT HODULE PLACED IN :F2:parage.0BJ
COHPILER INVOKED BY: plaBO :F2:parage.pli DEBUG

$W0RKFILES(:F2:,:F2:)
IPAGEWIDTH(80)
$PAGELENGTH(55)

1 PARAIGENERATIQNIHODULE:
DO;

It FILEINAHE 'PARAGE' 1/

/ t m m m n n t t m m n m m m m m t m t m u m m m n t /
it ti
/ l l l l l l EXTERNAL VARIABLES DECLARATIONS 11111/
/ I I /
f t i

/ I NONE 1/

/ t i
it ti
itt t t t t PUBLIC VARIABLES DECLARATIONS t t t t t t i
It ti
i m t m i t t t t t t t t !

2 1 DECLARE F0RHSLEN6TH BYTE PUBLIC;
3 1 DECLARE ROLLERIPOSITION ADDRESS PUBLIC;

/ t m t i t t t t t t t t t t i
it tf
Ittttt LOCAL VARIABLES DECLARATIONS ttttti
It ti
/ t t t l l t l t t t t t t t t t t t i

it ASCII CODE CHARACTERS tl

A 1 DECLARE ESC LITERALLY ' 1BH’ ;
5 1 DECLARE QUOTE LITERALLY '27H'; / I SINGLE QUOTE 1/
6 1 DECLARE DQUOTE LITERALLY '22H'; it DOUBLEQUOTE 1/
7 1 DECLARE SPACE LITERALLY '20H';
8 1 DECLARE BACKSPACE LITERALLY W ;
9 1 DECLARE BELL LITERALLY '07H';

10 1 DECLARE CLEARISCREEN LITERALLY ’1AH';

11 1 DECLARE ROLLERIADJUST BYTE;
12 1 DECLARE INCREHENTS BYTE;
13 1 DECLARE DIRECTION BYTE;

It 592 ADC STEPS IS EQUIVALENT TO 74 HH OF tl

PL/H-BO COMPILER PAGE 2

ft TRANSDUCER LENGTH XI

14 1 DECLARE FORHERtTIPIADCISTEPS LITERALLY '5 9 2 ';

15 1 DECLARE TESTIPOSITION BYTE;

ittttttittti
ft t/
fttttt EXTERNAL PROCEDURES DECLARATIONS tttttf
ft tf
/ttltttttttttf

ftttlttl
It tl

16 1 CONSOLESOUT: ft tl
PROCEDURE(CHAR) EXTERNAL; ft tl

17 2 DECLARE CHAR BYTE; ft tf
18 2 END CONSOLESDUT; It tf

ft tf
fttf

ft tf
19 1 HESSAGE: ft tf

PROCEDURE(POINTER,LASTtELEHENT) EXTERNAL; It tf
20 2 DECLARE POINTER ADDRESS; ft tl
21 2 DECLARE LASTJELEHENT ADDRESS; It tf
22 2 END HESSASE; ft tl

It tl
ittttttttttttitttttttttttttitttttttttttttttttttmttttttttttttttti

It tl
23 1 CONSOLE!IN:PROCEDURE EYTE EXTERNAL; It tl
24 2 END CDNSOLEtIN; it ti

ft tl
Itttttttlttl

ft tf
25 1 GET: ft tf

PROCEDURE(TARGET$CHAR) EXTERNAL; ft tf
26 2 DECLARE TARSETSCHAR BYTE; It tf
27 2 END GET; ft tf

ft tf
fttf

It tf
28 1 DECIHAL$VALUE$INPUT: ft tf

PROCEDURE BYTE EXTERNAL; ft tf
29 2 END DECIHALtVALUEtlNPUT; ft tf

ft tf
/ttttttttttttttttittitttttittttttttttttttttttttitttttitttttttttttf

i t t t t t t t t m t m t t t m t t t t t t t t t m u /
ft tf
Ittttt LOCAL PROCEDURES DECLARATIONS tttt!/
ft tf
fttf

A 6 1 1

PL/H-80 COMPILER PAGE 3

itti
It FUNCTION: BACKiDELETEiPOSITION tl
It PARAMETERS INPUT: NONE tl
/ I OUTPUTS: NONE tl
It PROCEDURE: 1/
It CALLS: CDNSOLEIOUT tl
/t DESCRIPTION: A PROCEDURE TO BACKSPACE TWO POSITIONS, DELETE tl
/I TWO CHARACTERS FROM SCREEN, THEN BACKSPACE TWO 1/
It POSITIONS, WHERE IT NAS INITIALLY. THIS PROCEDURE tl
/* IS THEN REQUESTS OPERATOR TO ENTER THE CORRECT NUMBER tl
It AFTER A NUMBER NOT N1TH IN THE SHGNN RANGE HAS BEEN TYPED tl
It IN. tl
ittl

tl
I t

30 1 BACK$DELETE$POSITION: I t
PROCEDURE; I t t l

31 2 CALL CONSOLE$OUT(BACK-SPACE); I t
32 2 CALL CONSOLEiOUT(BACKSPACE); I t
33 2 CALL CONSOLE$OUT(SPACE); It
34 2 CALL CONSOLESOUT(SPACE); I t
35 2 CALL CONSOLE$OUT(BACK$SPACE); I t
36 2 CALL CONSOLE$DUT(BACKSPACE); It
37 2 END BACKSDELETESPOSITION; It

It

tl
tl

tl
tl
tl
tl

n t m t n t u u t m t u t t t t t i t i t t t t u t m t t m i t m n t n m t t t m t t i

/ m t t t t n t n t t t t t t t t t t t t t t t t t t m t t m t t t t t t m m m u t m m t t i
it ti
Ittttt PUBLIC PROCEDURES DECLARATIONS tttttl
It tl
i m t u m t m t t t t t u t t t t t t t t t t t t t m t t t t t t t m m t m i m m t t t t i

/ m n i m t t m t n m t t n t t t t t t t t n t n m u t m t t t t t m t m t m t t i
It FUNCTION: PARASSENERATION tl
It PARAMETERS INPUT: PARABOLA PARAMETERS FROM KEYBOARD tl
It OUTPUTS: NONE tl
It PROCEDURE: PUBLIC tl
It CALLS: MESSAGE, DECIMALSVALUESINPUT, BACK$DELETE$POSITION, tl
It CONSOLEIOUT 1/
It DESCRIPTION: A PROCEDURE TO DISPLAY PARABOLA PARAHETES ON tl
I t SCREEN, THEN OPERATOR IS REQUIRED TO FILL IN THE t l
I t VARIABLES NITH APROPRIATE VALUES SELECTED FROM EACH t /
I t VARIABLE LIMITS SHONN ON THE SCREEN. FAILING TO DO SO t l
ft NILL RING A BELL AND OPERATOR IS REQUESTED TO ENTER THE t l
I t RIGHT VALUE AGAIN. t l
i t i t t t t n t t t t t t t t t t t t t t t t t i

38 1 PARABOLAIGENERATION:
PROCEDURE PUBLIC;

I t PARABOLA CONTOUR PARAMETERS DISPLAY t l

I

A62 'i

PL/M-BO COMPILER PAGE 4

39 2 DECLARE PAGE$6 (t) BYTE DATA
(ESC,'=','!','7', n R2 C24 1/
’PARABOLA CONTOUR PARAMETERS',
ESC,'s',DQUDTE,'7', /I R3 C24 1/

i
ESC,'s' , 'Z ' , ') ', ft R6 CIO %f

'For* Length (»■)’ ,
ESCj'syiy)', n R7 cio i /
'(30 to 74)’ ,

ESC,'= ',QUOTE,',', It RB C13 tf
ESC,' j *, ft START REVERSE VIDEO tl
ESC,'= ',QUOTE,'/', ft R8 C16 tf
ESC,'k', ft END REVERSE VIDEO tf

ESC,’= ' , ' I ’ ,'M’ , ft Rll C46 tf
•2',
E S C , ’8 ', ft R12 C25 tl
'Parabola equation y= 4alx',
E S C , ' A ' , ft R13 C34 tf
'and with a= 68.45',

ESC,'= ', '6 ', '4 ', ft R23 C7 tf
'After each paraeeter press RETURN please.',
ESC,'= ', '7 ',* ! ', ft R24 C2 1/
' I f incorrect value is entered, use DEL key to erase before RETURN

-
40 2 DECLARE NOT$l(t) BYTE DATA(

ESC,’= ', '7 ', '6 ', ft R24 C7 tf
'Press SP to proceed please'};

41 2 DECLARE ERRSl(t) BYTE DATA
(ESC,'=','5’ ,'4 ‘ , ft R22 C7 tl
ESC,'A’ , ft BLINKING CHARACTER tf
'Paraieter not within li iits , reenter please.’ ,
ESC,'q'}; ft END BLINKING 1/

42 2 DECLARE ERR$2(t) BYTE DATA
(ESC,'= ', '5 ', '6 ', ft R22 C7 tf
ESC,'A', ft BLINKING CHARACTER tf
'Enter either "Y " or "N " please.',
ESC,'T')5 ft ERASE TO END OF LINE 1/

43 2 DECLARE ERRI3(t) BYTE DATA
(ESC,'= ', '5 ', '4 ', ft R22 C7 1/
ESC,'A', ft BLINKING CHARACTER tf
'Enter either "F " or "R " please.',
ESC,'T'); ft ERASE TO END OF LINE 1/

A63

PL/H-80 COMPILER PAGE 5

44 2 DECLARE DELtERR(t) BYTE DATA
(ESC,'=Y5y&'f I t R22 C7 t l
ESC,'T')j

45 2 DECLARE ADJIl(t) BYTE DATA(
E S C , Q U O T E , It R16 CB 1/
'Do you require roller adjustient ? (Y/N)');

46 2 DECLARE ADJ$2(t) BYTE DATA(
ESC,'= ', ’1 ',QUOTE, / I RIB CB 1/
’How »any increments ? (1-80) (1 incre*ent=l/B ■■)');

47 2 DECLARE ADJ$3{t) BYTE DATA(
ESC,'= ', ’3 ',QUOTE, It R20 C8 tl
'Forward or reverse ? (F/R)');

4B 2 DECLARE P0S$1(I) BYTE DATA(
ESC,'= ',QUOTE,'-'); It RB C14 tl

49 2 DECLARE P0S42U) BYTE DATA(
ESC,'= ', 'O', ') ') ; It R17 CIO tf

50 2 DECLARE P0S«3(t) BYTE DATA(
ESC,'= ', '2 ', ') ') ; It R19 CIO 1/

51 2 DECLARE POS$4(») BYTE DATA{
ESC,'=’ , '4 ' , ') ') ; / I R21 CIO 1/

52 2 DECLARE P0S$5(t) BYTE DATA(
ESC,' = ' , '1 ' , 'It'); It RIB C7 1/

53 2 DECLARE TEST$l(t) BYTE DATA(
ESC, '=', '0', ' I t ' , It R17 C7 tl
'Do you require the roller test position (Y/N) ?');

54 2 DECLARE DEL4T(t) BYTE DATA(
ESC,'-','0','lt', ft R17 C7 1/
ESC,'T’ ,
ESC ,'= ','1 ',T , It RIB C7 tl
ESC,'T *,
ESC,’=‘ , '7 ', ' ', It R24 Cl tl
ESC,'T');

55 2 DECLARE DELIF(I) BYTE DATA(
ESC,’= ', '6 ' , ' ', I t R23 Cl t l
ESC,'T',
ESC,'= ', '7 ', ' ', I t R24 Cl t f
ESC, ’T *);

I t U t t t t t t t t t t t l

56 2 CALL CONSOLEIOUT(CLEARISCREEN);

PL/H-80 COHPILER PAGE 6

/ t m t t i

57 2 CALL HESSA6E(.PAGE$6,LAST(PA6E$6));
i t i

I t PARABOLA PARAMETERS INPUT t f

/ m m m t m m m t m m m t m t m t m m t t m m m m /
I t INPUT F0RH$LENGTH$HH 1/

58 2 CALL MESSABE(.P D S $ 1 ,LAST{P0SS1));
59 2 FORH$LENGTH=DECIKAL$VALUESINPUT; I t GET VALUE M
60 2 DD WHILE F0RM$LENGTH<30 OR F0RH$LEN6TH>74; f t CHECK t l
61 3 CALL BACK$DELETE$PDSITION;
62 3 CALL MESSAGE!.ERRS1,LAST(ERRIl)); I t ERROR MESSAGE t l
63 3 CALL CONSOLESOUT(BELL); I t RING A BELL t l
64 3 CALL MESSAGE!.P0SS1,LAST(PDS$1)); I t REPOSITION t f
65 3 FDRH$LENSTH=DECIHAL$VALUE$!NPUT; I t GET NEK VALUE t l
66 3 END; I t WHILE t l
67 2 CALL MESSAGE!.DEL$ERR,LAST(DEL$ERR));

/ t n n m m m m n t m t t t t t n m t t t t t t t t i t t u t m m t m n t t i

68 2 CALL MESSAGE!.DEL$F,LAST(DEL$F)); I t DELETE FOOTNOTE 1/
/ u m t t t t t t t t t t t t t t n m t t t t t t t i t t t t t t t t t t t m t i n u m t t t t t t i

I t ROLLER TEST POSITION REQUIRED ? t l

69 2 CALL MESSAGE!.TEST$l,LAST(TEST$i));
70 2 TEST$PDSITIDN=CONSOLE$IN;
71 2 DO WHILE TESTSPOSITIONO*Y' AND T E S T S P D S I T I O N O *N * ;
72 3 CALL CONSOLEIOUT(BELL);
73 3 CALL MESSAGE!.ERR$2,LAST(ERR$2));
74 3 TEST$P0SITI0N=C0NS0LE$IN;
75 3 END; I t DO WHILE 1/
76 2 CALL MESSAGE!.DEL$ERR,LAST(DELSERR)};
77 2 IF TEST$POSITION=’N' THEN
78 2 DO;
79 3 CALL MESSAGE!,P0S$5,LAST(P0S$5));
80 3 CALL CONSOLE$OUT(TEST$POSITION);
81 3 CALL MESSAGE!.N0T$1,LAST(N0T$1));
82 3 CALL G ET!* *);
83 3 CALL MESSAGE(.DELST f LAST());

I t l

I t ROLLER ADJUSTMENT REQUIRED ? t f

A65 i

PL/H-80 COMPILER PAGE 7

84 3 CALL MESSAGEI. ADJii,LAST(ADJ$i)) ;
85 3 ROLLER(ADJUST-CONSOLE$IN;
86 3 DO WHILE RQLLERIADJUSTO'Y* AND ROLLERIADJUSTO'N';
87 4 CALL CCNSOLEIOUT(BELL);
88 4 CALL MESSAGE!.ERRI2,LAST(ERR$2));
89 4 ROLLER$ADJUST=CONSQLE*IN;
90 4 END;
91 3 CALL MESSAGE!.DEL$ERR,LAST(DEL$ERR))j
92 3 CALL MESSAGE!.P0Sf2,LAST(P0S$2));
93 3 CALL CONSDLESDUT(ROLLER$ADJUST);

94 3 IF ROLLER$ADJUST='Y' THEN
95 3 DO;

!X INPUT ROLLER ADJUSTMENT t l

96 4 CALL MESSAGE!.ADJ$2,LAST(ADJ$2));
97 4 CALL MESSAGE!.P0S$3,LAST(P0S$3));
98 4 INCREMENTS=DECIMAL$VALUE$INPUT;
99 4 DO WHILE INCREMENTS<1 OR INCREMENTS>80;

100 5 CALL BACK$DELETE$POSITION;
101 5 CALL MESSAGE!.ERR$1,LAST(ERR$1));
102 5 CALL CONSOLEIOUT(BELL);
103 5 CALL MESSAGE!.PDS$3,LAST(PDS$3));
104 5 INCREMENTS=DECIMAL$VALUE$INPUT;
105 5 END;
106 4 CALL MESSAGE!.DEL$ERR,LAST(DEL$ERR));

IX INPUT ADJUSTMENT DIRECTION tl

107 4 CALL MESSAGE!.ADJ$3,LAST(ADJ$3));
10B 4 DIRECT10N=C0NS0LE$IN;
109 4 DO WHILE DIRECTION'S' AND DIRECTIONO'R';
110 5 CALL C0NS0LE$0UT(BELL);
111 5 CALL MESSAGE!.ERR$35LAST(ERR$3));
112 5 DIRECTI0N=C0NS0LE$IN;
113 5 END;
114 4 CALL MESSAGE!.DEL$ERR,LAST(DEL$ERR));
115 4 CALL MESSAGE!.P0S$4,LAST(P0S$4))j
116 4 CALL C0NS0LE$0UT(DIRECTION);

117 4 IF DIRECTIONS' THEN
118 4 R0LLER$P0SIT10N=FDRMER$TIPADCSTEPS-INCREMENTS;

ELSE
119 4 ROLLER$POSITIDN=FORHER$TIPADCSTEPS+INCREMENTS;

120 4 END; I t END IF ROLLER$ADJUST= *Y' t l

ELSE
121 3 ROLLER$POSITION=FORMER$TlPiADC$STEPS;
122 3 CALL MESSAGE!.NDTIl,LAST(NOTIl)) ;

!
A 6 6 |

PL/H-80 COMPILER PAGE 8

123 3 CALL GET(' ') j
124 3 CALL CONSOLESOUT{CLEARiSCREEN);

125 3 END; IX IF TEST$PDSITION='N' XI
ELSE IX IF TEST$POSITION=T THEN XI

126 2 DO;
127 3 CALL MESSAGE!,P0S$5,LAST(P0SS5));
12B 3 CALL CCNSOLE$DUT(TEST$POSITION);
129 3 CALL MESSAGE!.NOT$l,LAST(NOT$l));
130 3 CALL GET!' ') ;

IX 552 ADC STEPS IS EQUIVALENT TO 69 MM OF XI
IX TRANSDUCER LENGTH XI

131 3 R0LLER$PDSITIDN=552;
132 3 END;

i x t t x t x i

133 2 END PARAB0LA4GENERATI0N;

134 1 END PARA$GENERATIDN4MDDULE;

MODULE INFORMATION;

CODE AREA SIZE = 0516H 1302D
VARIABLE AREA SIZE = 0007H 7D
MAXIMUM STACK SIZE = 00Q4H 4D
379 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-SO COMPILATION

PL/H-80 COMPILER PAGE 1

IS IS - I I PL/H-80 V3.1 COMPILATION OF MODULE MACHINEPARABOLACONTROLMODULE
OBJECT MODULE PLACED IN :F2:paraac.0BJ
COMPILER INVOKED BY: pIiBO :F2:paraac.p Ii DEBUS

$H0RKFILES(:F2:,:F2:)
$PAGEMDTH(80)
$PAGELENBTH(55)

1 HACHINE$PARABOLA$CONTROL$MODULE:
DO;

I t FILE4NAME 'PARAMC* t l

i t t t t t t t m t i t t t t t t t t t t n t t t t t t t t t t i t t t t t t t t t t t t t t i t t t t t t t t t t t t t /
I t t l
I t t t t t t EXTERNAL VARIABLES DECLARATIONS t t t t t t l
I t t l
f t t t t i t t t t t t t t n t t m t m t t t t n t i t i

2 1 DECLARE FGRNSLENGTH BYTE EXTERNAL;
3 1 DECLARE ROLLERfPOSITIGN ADDRESS EXTERNAL;
4 1 DECLARE P0RT$2AH$0UTPUT BYTE EXTERNAL;

l i t i t t t t n t t t t t t t t t t t n t t t t t t f
i t t i
ItUm PUBLIC VARIABLES DECLARATIONS t t t t t t l
I t tl
/ t m t i

I t NONE tl

I t l
I t t l
I t t t t t t LOCAL VARIABLES DECLARATIONS t t t t t t l
I t tl
Ht i

5 1 DECLARE CARRIAGE$POSITION$ENCODER$PULSES ADDRESS;

I t ASCII CODE CHARACTERS tl

6 1 DECLARE ESC LITERALLY '1BH*;
7 1 DECLARE QUOTE LITERALLY '27H*;
8 1 DECLARE CLEAR$SCREEN LITERALLY '1AH';
9 1 DECLARE BELL LITERALLY W ;

10 1 DECLARE CARRIAGESRETURN LITERALLY

11 1 DECLARE TURNIN6$REQUIRED BYTE;
12 1 DECLARE TRUE LITERALLY 'OFFH';
13 1 DECLARE FALSE LITERALLY *0*;
14 1 DECLARE ANSWER BYTE;

PL/M-80 COMPILER PAGE 2

15 1 DECLARE COUHTERiRESET LITERALLY 'OOOOfOOOlB';
16 1 DECLARE COUHTERSENABLE LITERALLY 'llllSlliOB';

17 1 DECLARE CLEAR$DATA$FIELD LITERALLY 'O';
IB 1 DECLARE CLEAR$ADDRESS$FIELD LITERALLY 'O';

19 1 DECLARE KBD$DPLY$C0NTROL BYTE AT (1900H);
20 1 DECLARE MODE LITERALLY 'O';
21 1 DECLARE KBNIT LITERALLY

22 1 DECLARE PAGE$9(t) BYTE DATA
(ESC,'=y ' , ' 8 ', / I R1 C25 XI
'Flow-turning roller aoveaents',
E S C , '8 ', IX R2 C25 XI

ESC, IX R4 C5 XI
’1- Roller advancing (4-5)’ ,
ESC, = , $, $, IX R5 C5 XI

'2- Lathe switched on, carriage eoving left (5-1)'
ESC, s , X , $, IX R6 C5 XI

'3- Parabolic contour path (1-2)',
ESC, IX R7 C5 XI

*4- Lathe switched off, roller retracted (2-3)',
ESC,'= ',QUOTE,'$', IX RB C5 1/

'5- Manual soveaent to datua (3-4) «
ESC, IX RIO C30 XI

'1 5',
ESC, IX R12 C32 XI

'++++++++++++++++++++++++++++',
ŜC, = , , , ; , IX R13 C28 XI

1
ESC, = , - , 8 , IX R14 C25 XI
' +
ESC, = , . , 5 , IX R15 C22 XI
' + + >
E S C , '3', IX R16 C20 XI
'2 + + »
ESC,'=’,'0 ','3 ', IX R17 C20 XI
' +
ESC,1 -‘,'1 ',‘3*, IX RIB C20 XI
’ +
ESC,'=’,'2 ','3 ', IX R19 C20 XI

ESC,'= ','4 ','3 ', IX R21 C20 XI
'3 4 DATUM ');

23 1 DECLARE PAGE$10(t) BYTE DATA(
ESC,'=yX',':,5 IX R6 C27 1/
'Flow-turning is completed',
ESC,'= ', '4 ', ': ' , / I R7 C27 XI

A69 j

PL/H-80 COMPILER PAGE 3

E S C , / I R 1 0 C 5 t l
*1- Please reiove the finished coiponent.',
E S C , / I R 1 2 C 5 1/
*2- Disengage the carriage and return to datua by
the handaheel.',

ESC,*s ' , * 3 V $ ’, / I R 2 0 C 5 1/
‘Another identical parabola ? (Y/N) then RETURN');

24 1 DECLARE HESSSl(t) BYTE DATA I
ESC,'=','5',‘$‘); I t R22 C5 t l

25 1 DECLARE ERROR$l(t) BYTE DATAf
ESC,‘A‘ , I t BLINKING STARTS t l
ESC,‘= ', '7 ', '$ ', I t R24 C5 t l
'Enter either Y OR N please');

26 1 DECLARE DELETE$ERR0R$1(I) BYTE DATA(
ESC,'= ', '7 ', '$ ', I t R24 C5 t l
ESC,'T'); I t ERASE TO END OF LINE 1/

i m m m t t i t m t t t m t t t n t t t t t t t t t t t t t t m m t n t t m t t t t t t i t i
ft t /
I t t t t t t EXTERNAL PROCEDURES DECLARATIONS t t t t t t l
I t t l
I t l

•27 1 UPDDT:
PROCEDURE(PAR$1) EXTERNAL;

28 2 DECLARE PAR$1 BYTE;
2? 2 END UPDDT;

n t m m n t t t t n m m n t t i t n u t u u t u m t n n t t m t t m t t t t t i

30 1 UPDAD:
PROCEDURE(PARI2) EXTERNAL;

31 2 DECLARE PARI2 ADDRESS;
32 2 END UPDAD;

n t t n t t m t t t t i t i

33 1 CONSOLESOUT:
PROCEDURE(CHAR) EXTERNAL;

34 2 DECLARE CHAR BYTE;
35 2 END CDNS0LE4DUT;

/ m t i t t t t t t t t t m t i

36 1 HESSAGE:
PROCEDURE(POINTER,LASTiELEHENT) EXTERNAL;

37 2 DECLARE POINTER ADDRESS;
38 2 DECLARE LAST4ELEHENT ADDRESS;
39 2 END HESSAGE;

I t l t t t f

A 7 0

PL/H-80 COMPILER PAGE 4

40 1 CONSOLESIN:PROCEDURE BYTE EXTERNAL;
41 2 END CONSOLESIN; '

m m m m m m t m m m m m m m t m m t t m m m m t /

42 1 6ET:
PROCEDURE(TARBETICHAR) EXTERNAL;

43 2 DECLARE TARGETICHAR BYTE;
44 2 END GET;

/ i t t m m m m m m m m m t t m m m m m n t m t m im /

nxxx

/i x
I X X X X X X LOCAL PROCEDURES DECLARATIONS tttt lt
IX X
nxxx

ixx
IX FUNCTION: SHAFTSENCODER {ENCODER 8-BIT INPUT) I
it PARAMETERS INPUT: NONE X
IX OUTPUTS: 16-BIT VALUE IN (.CARRIAGE$POSITION$ENCODER$PULSES) X
IX PROCEDURE: LOCAL *
IX CALLS: NOTHING I
IX DESCRIPTION: THE ACCUMULATIVE VALUE OF THE COUNTER HILL BE I
IX STORED IN TWO BYTES!16-BIT), THE HIGH AND THE X
IX LOH. P0RTS29H HILL BE READ, THE LOH BYTE HILL ALL X
IX THE TIME BE READ AND UPDATED, IF THE VALUE EXCEEDS X
iX 256 THEN 1 HILL BE ADDED TO THE HIGH BYTE. PULSE.HIGH t
IX AND PULSE.LOH ARE STORED IN MEMORY HHERE THEY ARE REFERED I
IX TO BY THE GLOBAL VARIABLE CARRIABESPOSITIONSENCODERSPULSES. I
ixxxxxxxxxxxxxxxxtxxxnxxxttxtxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

IX X
45 1 SHAFTSENCODER: IX X

PROCEDURE ADDRESS; IX X
46 2 DECLARE PULSE STRUCTURE(LOH BYTE,HIGH BYTE) AT IX X

(.CARRIAGE$POSITION$ENCODER$PULSES); IX X
47 2 DECLARE READ4C0UNT BYTE; IX X
48 2 DECLARE NOSOFSREADS LITERALLY ‘lO*; IX X
49 2 DECLARE COUNTER BYTE; IX X
50 2 DECLARE COUNTERS BYTE; IX X
51 2 DECLARE P0RTI29H LITERALLY ’29H'; IX X

IX X
IX THE CODE DEBOUNCES CDUNTER BY SOFTHARE XI

52 2 RETRY:
READ$COUNT=NO$OF$READS;

53 2 COUNTER=INPUT(PORT$29H);
54 2 DO HHILE READ$C0UNT>0;
55 3 C0UNTER$1-INPUT(P0RT$29H);
56 3 IF COUNTEROCOUNTERS1 THEN GOTO RETRY;
5B 3 READ$COUNT=READ$COUNT-1;

A71

PL/H-80 CDHPILER PAGE 5

59 3 END; IX WHILE 1/

60 2 IF C0UNTER<Pl)LSE.L0N THEN IX 1/
61 2 PULSE.HIGH=PULSE IX 1/
62 2 PULSE.L0H=C0UNTER; IX tf

ft DISPLAY COUNTER'S VALUE ON SDK-85 LED'S tf
63 2 CALL UPDDT(CDUNTER);
64 2 CALL UPDAD(CARRIAGESPQSITIDN$ENCODER$PULSES);

65 2 RETURN CARRIABE$POSITION$ENCODER$PULSES; ft tf
66 2 END SHAFTiENCODER; / I $/

/I t/
/ t t i t t i u t t t t t t t t t t t t u t t x t t t t t t t t t t t t t x t t t t t t t t x x t t t i t t x x t u t u t /

/ t m m t x t t x t t t x t t x x t t x t n m m m x t m t t x x t t t t t x x t t t t x t x t t t t t t f
ft FUNCTION: ADCSINPUT (12-BIT ADC) 1/
ft PARAHETERS INPUT; ANALOGUE VOLTAGE (0-10) VOLTS XI
IX OUTPUTS: DIGITAL VALUES (0 - 1023) tf

’ IX PROCEDURE: LOCAL $/
IX CALLS: TIHE I/
IX DESCRIPTION: OUTPUT PULSE LOH (00) AND THEN OUTPUT XI
IX PULSE HIGH (02) VIA P0RTS2AH BITfl TO START X/
iX CONVERSION, WAITS TILL CONVERSION IS COMPLETED, Xf
IX THEN INPUTS THE VALUES FROM PORTS 1/
/I 21H (8-BIT) 8 LSB'S XI
IX 23H (9-12 BIT) 4 MSB'S XI
n x t x x x x x x x x x x x t x x x t x x t x x x x x x x x x t x x x x x x x x x x x x x i

IX XI
67 1 ADCMNPUT: IX XI

PROCEDURE ADDRESS; IX X!
68 2 DECLARE ADC$CONVERT LITERALLY 'llllS llO lB '; IX XI
69 2 DECLARE ADCIIDLE LITERALLY 'OOOOIOOIOB'; IX XI
70 2 DECLARE P0RTS21H LITERALLY *21H*; / I ADC 1-8 BIT XI
71 2 DECLARE P0RT$23H LITERALLY '23H'; IX ADC 9-12 BIT XI
72 2 DECLARE PDRT$2AH LITERALLY '2AH'; IX START CONVERSION XI
73 2 DECLARE ADCIINSHORD ADDRESS; IX XI

74 2 OUTPUT(P0RT$2AH)=P0RT$2AH$0UTPUT AND ADCICONVERT; IX X!
75 2 OUTPUT(P0RT$2AH)=P0RT$2AH$0UTPUT OR ADCilDLE; IX XI
76 2 CALL TIHE(l); IX A DELAY OF 100 MICROSECONDS UNTIL XI

IX CONVERSION IS COHPLETED XI

It READ PORT 23H, MASK OFF 4 MSB'S, DOUBLE IT(i.e ADD 8 ZERO XI
IX TO THE LEFT) AND THEN ROTATE LEFT 8 DIGITS. XI

77 2 ADCIIN$H0RD=SHL(D0UBLE(INPUT(P0RT$23H) AND 0000$llllB),8);/t XI

IX ADD THIS VALUE TO THE INPUT OF P0RTI21H AND THEN ROTATE 1/
IX RIGHT 2 DIGITS (TO RID OFF 2 LSB'S). XI

A72

PL/H-BO COMPILER PABE 6 ii

7B 2 ADCINW0RDsSHR((ADCINW0RD*INPUT(P0RTI21H)),2); f t 1/
79 2 RETURN ADCINWORD; f t RETURN 10-BIT VALUE (POSITION) t f
80 2 END ADC$INPUT; f t t f

f t t f
f t t t t t t t t t t t i t i t t t i t t t t t t t t t t t t t m t t t t t t t i t f

f u t t t m t t t t t t t t t t t t t t t t t t m t f
f t FUNCTION: ADVANCE THE ROLLER A GIVEN DISTANCE. 1/
f t PARAMETERS INPUT: ADVANCE DISTANCE IN ADC STEPS. t f
f t OUTPUTS-.NDNE. ■ t f
f t PROCEDURE: LOCAL t f
f t CALLS: ADC4INPUT. t f
f t DESCRIPTION: t f
f t THE CURRENT TOOL POSITION IS INPUT AND TOOL t f
f t ADVANCE INITIATED IF REQUIRED. TOOL POSITION IS t f
f t CONTINUALLY MONITORED AND TOOL ADVANCE TERMINATED t f
f t WHEN THE SPECIFIED POSITION IS ACHIEVED. t f
f m m t m m m t t u t m m m m t n m t m t m m m u m t t t m f

81 1 TOOLIADVANCE:
PROCEDURE(ABSDLUTE4P0SITI0N$ADCSSTEPS);

82 2 DECLARE ABS0LUTE$P0SIT10N$ADC$STEPS ADDRESS;
83 2 DECLARE PRESENT$POSITION$ADC$STEPS ADDRESS;
84 2 DECLARE ADVANCEIDACIVALUE LITERALLY '183';
85 2 DECLARE STDPDACVALUE LITERALLY '128';
86 2 DECLARE PDRT$22H LITERALLY ‘22H*;

f t IF ABSOLUTE POSITION IS LESS THAN THE MAXIMUM VALUE t f
f t (03FFH), BO THROUGH THE ROUTINE. t f

87 2 IF ABSDLUTE$P0SITI0N*ADC$STEPS\03FFH THEN
88 2 DO;

f t READ PRESENT POSITION t f
89 3 PRESENT$POSITION$ADC$STEPS=ADC*INPUT;

f t ADVANCE TOOL t f
90 3 OUTPUT(PDRT$22H)=ADVANCE$DACSVALUE;

f t ADVANCE AND COMPARE THE TWO DISTANCES t f
91 3 DO WHILE PRESENT$POSITION$ADC$STEPS<

ABSOLUTE$POSITION$ADC$STEPS;

f t READ AGAIN t f
92 4 PRESENT$PDSITION$ADC$STEPSsADC$INPUT;

93 4 END; f t DO WHILE 1/

f t STOP TOOL t f
94 3 OUTPUT IPORTS22H)=STOPIDAC$VALUE;

A73

PL/H-80 COMPILER PAGE 7

95 3

96 2

97 1

98 2
99 2

100 2
101 2
102 2

103 2

104 2

105 2

106 3

107 3

108 2

109 2

END; It DO !/

END TOOLSADVANCE;

/mmmmmttmmmmmmmmtmmmmmmtm/

i t i
It FUNCTION; RETRACT THE ROLLER A GIVEN DISTANCE. tl
/t PARAHETERS INPUT; RETRACT DISTANCE IN ADC STEPS. 1/
/ I OUTPUTS; NONE. tl
It PROCEDURE; LOCAL. tl
It CALLS; ADCilNPUT. tl
It DESCRIPTION; tl
It THE CURRENT TOOL POSITION IS INPUT AND TOOL tl
It RETRACT INITIATED IF REQUIRED. TOOL POSITION IS I /
it CONTINUALLY HONITORED AND TOOL RETRACT TERMINATED tl
It WHEN THE SPECIFIED POSITION IS ACHIEVED. tl
/ m m t t m i t t m t i t t t t t t u t t t t t t i t n t f

TDOLIRETRACT;
PROCEDURE(ABSOLUTESPOSITlDNSADCSSTEPS);

DECLARE ABSOLUTE$POSITION$ADC$STEPS ADDRESS;
DECLARE ?RESENT*PDSITIDNADCSTEPS ADDRESS;
DECLARE RETRACTDACVALUE LITERALLY '73';
DECLARE STOPDACVALUE LITERALLY '128';
DECLARE P0RT$22H LITERALLY '22H';

/* READ PRESENT POSITION tl
PRESENT$PDSITIQN$ADC*STEPS=ADC$INPUT;

It RETRACT TOOL tf
OUTPUT(P0RT$22H)=RETRACT$DAC$VALUE;

It RETRACT AND COMPARE THE TWO DISTANCES 1/
DO WHILE PRESENT$P05ITI0N$ADC$STEPS>

ABSOLUTE*POSITION$ADC*STEPS;

ft READ A6AIN tf
PRESENT$POSITION$ADC$STEPS=ADC$!NPUT;

END; It DO WHILE tl

It STOP TOOL 1/
OUTPUT(P0RT$22H)=ST0P$DAC$VALUE;

END TOOLIRETRACT;

I t i t t t t t t t t t t t t i t t t t t t t t t t t t t t t t i t t t t t t t t
- /

/tmmtmmmtmmmttmmmmmmmmmttmm/

A74

PL/H-80 COMPILER PABE B

110 1

111 2
112 2
113 2
114 2
115 2
116 2

117 2

118 2

119 2

120 2

It FUNCTION: PARABOLA INTERPOLATION
- 1/

It PARAMETERS INPUT: INTERPOLATIONIENCODERfPULSES(ADDRESS)
It OUTPUTS: PARABDLIC CONTOUR
ft PROCEDURE:
It CALLS: SHAFTSENCODER, TOOL$RETRACT
It DESCRITPION: A PROCEDURE TO DESCRIBE THE PARABDLA CONTOUR.
It THE PROCEDURE MONITORS THE CARRIA6E POSITION AND
It AT INTERVALS OF 16 ENCODER PULSES EXTRACTS THE ROLLER
ft POSITION REQUIRED TO MAINTAIN THE PARABOLIC CONTOUR FROM THE
It LOOK-UP TABLE AND RETRACTS THE ROLLER TO THAT POSITION.
/ t n m m m n m m m t n m t m t t t m m t m t t m t t t m n t t n

PARfINTERPOLATION:
PROCEDURE!INTERPOLATION*ENCODER$PULSES);

DECLARE INTERPDLATION$ENCODER$PULSES ADDRESS;
DECLARE MOVED$DISTANCE$ENCODER$PULSES ADDRESS;
DECLARE ABSOLUTEIADCSSTEPS ADDRESS;
DECLARE YIIADCSSTEPS ADDRESS;
DECLARE ADCIRESDLUTION LITERALLY ’O';
DECLARE J BYTE; It PARABOLA RADUIS, NUMERATOR AND tf

It DENOMENATOR INDEX tl
DECLARE INCREHENTS*ENCODER*PULSES LITERALLY '16' ;

DECLARE PARA$NUM(72) ADDRESS DATA(131,524,651,45,
961,704,806,90,52B,961,937,405,295,852,123,360,
961,193,377,656,685,177,355,010,205,813,863,869,
929,492,471,637,583,292,956,386,160,969,367,1B7,
995,685,718,708,710,710,533,443,869,820,961,367,
646,1000,479,934,49,799,958,95,491,942,823,803,
223,739,897,523,359,351,19,B99);

DECLARE PARA$DEN(72) ADDRESS DATA(34747,34747,
19186,746,10196,5187,4363,373,1729,2549,2054,
746,463,1153,145,373,882,158,277,435,412,97,178,
373,87,319,314,294,293,145,130,165,142,67,207,
79,31,178,64,31,157,103,103,97,93,89,64,51,96,
87,98,36,61,91,42,79,4,63,73,7,35,65,55,52,14,
45,53,30,20,19,1,46);

It VALUES OF THE RADIUS COMPENSATION ALONG THE tl
It PARABOLIC CONTOUR (ADC STEPS) tl

DECLARE RAD$C0H(72) BYTE DATA(0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,

M»2»2,2,2,2,2,2,3,3,3,3,3,3,3,>̂̂»̂»̂»̂j »̂**j 5,5,5,5,5,
6,6,6,6,6,7,7,7,7,7,7);

It INITIALISE THE MOVED DISTANCE tl

PL/H-BO COMPILER PAGE 9

121 2
122 2

123 2

124 3

125 3
126 4
127 4

128 3
129 3
130 3

131 3

132 3
133 3
134 3
135 2

M0VED$DISTANCE$ENC0DER$PULSES=0;
3=0;

I t CALCULATE AND THEN RETRACT TO THE NEXT ABSOLUTE t l
I t POSITION AND UPDATE THE CURRENT CARRIAGE t l
I t POSITION FOR EACH REQUIRED INCREMENT OF CARRIAGE t l
I t POSITION. tf

DO WHILE MOVED$DISTANCE$ENCODER$PULSES<=
INTERPDLATION$ENCODER$PULSES;

ft UPDATE THE MOVED DISTANCE tl
MOVED$DISTANCE$ENCODER$PULSES=

HOVEDIDISTANCEIENCODERSPULSES
* INCREHENTS$ENCODER$PULSES;

DO WHILE CARRIAGE$POSITION$ENCODER$PULSES<
N0VED4DISTANCE* ENCDDERWJLSES;

CARRIA6E$PDSITI0N$ENC0DER$PULSES=SHAFTIENC0DER;
END; I t DO WHILE CARRIAGE POSITION 1/

I t CONVERT FROM MILLIMETERS TO ADC$STEP5 1/
Y1ABCSTEPS=PARA$NUM(J)IADC$RES0LUTI0N/PARA$DEN(J);

IF (2l((PARA$NUH(J)tADC$RES0LUTI0N) MOD PARAIDEN(J)))
' >=PARA«DEN(J) THEN

YiADCSTEPS=Yl$ADC*STEPSflj

ft CALCULATE THE NEXT ABSOLUTE POSITION tl
ABS0LUTEADCSTEPS=R0LLER$P0SITI0N-Y1$ADl$STEPS+RAD$C0M(J

);

I t RETRACT TO THE NEXT ABSOLUTE POSITION tf
CALL TOOL$RETRACT(ABSOLUTE$ADC$STEPS);

J=J+l; I t UPDATE THE PARABOLA INDEX tl

END; I t DO WHILE HOVED DISTANCE tl

END PARS INTERPOLATI ON;

f t l

I t l
I t t l
I t t t t t t PUBLIC PROCEDURES DECLARATIONS t t t t t t l
I t t l
I t l

I t t t i t t t l t l
I t FUNCTION: MACHINE$PARABOLA$CONTROL (CONTROL TOOL MOVEMENT) I /
I t PARAMETERS INPUT: DEFINED IN PREVIOUS PROCEDURES t l

A 7 6 j

PL/H-BO COMPILER PAGE 10

i t OUTPUTS: DEFINED IN PREVIOUS PROCEDURES 1/
i t PROCEDURE: PUBLIC 1/
i t CALLS: SHAFTSENCODER, TOOLfADVANCE, PAR$INTERPDLATION, t i
i t TOOLSRETRACT, CONSOLEIOUT, MESSAGE. t !
i t DESCRIPTION: TOOL MOVEMENT CAN BE SUBDIVIDED INTO THE t i
i t FOLLOWING SEGEHENTS:- t l
i t t i
ft {4 TO 5) ADVANCE TOOL (LATHE IS OFF) t i
i t OPERATE LATHE, INITIALISE COUNTER t i
i t (5 TO 1) MOVEMENT WHILE TOOL IS HELD IN POSITION ti
i t (1 TO 2) CONTOUR SHAPE (PARABOLA) ti
i t SWITCH OFF LATHE t i
i t (2 TO 3) RETRACT TOOL ti
i t i t i t t t t t t t t t i
i t t i
i t 1 4444444444444444444444444 5 ti
i t 4 4 t i
i t 4 4 t i
i t 4 4 t i
i t 4 4 t i
it 4 4 ti
i t 4 4 ti
ft 2 + 4 t i
i t 4 4 ti
i t 4 4 t i
i t 4 4 tf
i t 4 4 tf
i t 4 4 ti
i t 3 444444444444444444444444444444444444444 4 t i
i t ti
i t tl
/ t t t t t t t t i t t t t n t t t t t t n i t t t t t t t i t i t u u t t t t t t t t t t t t t t t t u m t t t t f

136 1 HACHINEIPARABDLASCONTRDL:
PROCEDURE PUBLIC;

137 2 DECLARE FQRNtLEN6TH$ENC0DER$PULSES(45)ADDRESS DATA(472,4BB
,504,519,535,551,567,582,598,614,630,645,661,677,693
,708,724,740,756,771,767,803,819,835,B50,866,B82,B98
,913,929,945,961,976,992,1008,1024,1039,1055,1071
,1087,1102,1118,1134,1150,1165);

138 2 DECLARE INTERPOLATIONSENCODERFPULSES ADDRESS;

139 2 DECLARE P0RTI2AH LITERALLY '2AH';
140 2 DECLARE J BYTE; i t BET THE FORHJLENGTHIHH INDEX 1/

i t MASKS TO CONTROL LATHE tf
141 2 DECLARE P0RTI2AHISTARTFLATHE LITERALLY 'OOOOIOIOOB';
142 2 DECLARE P0RT$2AHfSTOPSLATHE LITERALLY 'U llflO llB ';

i t DAC CONTRDL VALUES 1/

i

PL/H-80 CDHPILER PAGE 11

143 2 DECLARE RETRACTSDACSVALUE LITERALLY '73';
144 2 DECLARE ST0P4DACIVALUE LITERALLY *128';

145 2 DECLARE P0RTS2BH LITERALLY ’2BH';
146 2 DECLARE P0RT$2BH$INPUT BYTE;
147 2 DECLARE P0RT42BHIADVANCED LITERALLY 'OOOOIOOOIB'
148 2 DECLARE P0RT42BH4CARR1AGE LITERALLY 'OOOOSOIOOB*

149 2 DECLARE OLDIPOSITIONfENCODERiPULSES ADDRESS;
150 2 DECLARE NEH$POSITION$ENCODER$PULSES ADDRESS;
151 2 DECLARE C0UNT41 BYTE;
152 2 DECLARE C0UNT42 BYTE;

/ t t m t m t m m m m m m m m m m m m m m m m m m /
it ti
itttttt CALCULATIONS PRIOR TO THE PROCESS tttttti
it ti
/tti

153 2 J=F0RH$LENGTH-30; it GET THE F O R M L E N B T H $ H H INDEX tf
154 2 INTERPDLATIDN$ENCODER$PULSES=FORH$LENGTH$ENCODER$PULSES(J);
155 2 TURNING$REGUIRED=TRUE;
156 2 DO WHILE TURNIN64RE9U1RED;
157 3 CALL CONSGLE$OUT(C-LEhRSSCREES); i t CLEAR SCREEN t i

158 3 CALL HESSAGE(.PAGE$9,LAST(FA&E$9)); i t PAGE 9 t i

f n t t t t t t t t t t x m m n m n u n n n t t m t t m t t t t n t t n n t t t t i

ittt INHIBIT COUNTER UNTIL INTERPOLATION BEGINS, INITIALISE tl
ittt SET LINE TO TRUE (5V) ti

159 3 F0RT$2AH$0UTPUT=P0RT$2'AH$0UTPUT OR CDUNTER4RESET;
160 3 OlJTPUT(PORT$2AH)=PORT$2AH$OUTPUT;

i t n n t t t n t t t t t t n t t t t n n t t t t t n t t t t t t t /

ittt INITIALISE SDK-85 KEYBOARD DISPLAY ttti

161 3 KBD$DPLY$CDNTRDL=KHODE;
162 3 KBD$DPLY$CONTROL=KBNIT;

ftti

ittt CLEAR SDK-85 KEYBOARD DISPLAY ttti

163 3 CALL UPDDT(CLEAR$DATA$FIELD);
164 3 CALL UPDAD(CLEAR4ADDRESS4FIELD);

ittl

I
A 7 8 1

PL/H-BO COMPILER PAGE 12 j
itJ
!

/tit DAC INITIALISE ttt/
165 3 OUTPUT(2 2 H)=STDP DACVALUE;

/ m m m t m t m t m m m t t m m t m m m m t t m t m m /
/tit INITIALISE ADDRESS POSITION ttt/

166 3 CARRIAGE$P0SITI0N$ENC0DERtPULSES=0;
/ttmtt/
/t t/
/Ittt THE HAIN PROGRAH tttt/
/t t/
n x t i i«
i x x x x x x x x x x x x x t t t x x x t x x x x x x x x x x x x x x x x x t x t x t

- /

/ m * ADVANCE TOOL (POSITION 4-5) ttt/
167 3 CALL TOOL$ADVANCE(ROLLERtPOSITIQN); /X XI

ft XI
/ x x x x x x x x x t x t x x x x x x x x x x /

/lit SWITCH LATHE ON XXX/

166 3 P0RT$2AK$OUTPUT =P0RT$2AH$0UTPUT OR P0RT$2AH$START$LATHE; IX XI
169 3 OUTPUT(PDRT$2AH)=P0RT$2AH$DUTPUT; IX XI

IXXI

/XXX CARRIAGE WILL START MOVING LEFT (POSITION 5-1) XXXI

IX WAIT TILL CARRIAGE SWITCH IS CLOSED XI
170 3 PDRT$2BH$INPUT=INPUT(PDRT$2BH); IX READ PORT XI
171 3 DO WHILE (P0RT$2BH$INPUT AND P0RT*2BH$CARRIASE)=0;
172 4 P0RT$2BH$INPUT=INPUT(P0RT$2EH); It READ ASAIN XI
173 4 END; IX DO WHILE XI

It XI
f t t x t x t x x x x t x x x x x x x t x x x x x x x x x x x x t x i

n x t ENABLE COUNTER tttt/
174 3 P0RT$2AH$0UTPUT=P0RT$2AH$0UTPUT AND COUNTERtENABLE;
175 3 OUTPUT(P0RT$2AH)=P0RTt2AH$DUTPUT;

/ttt/
Ittt PARABOLIC CONTOUR (POSITION 1-2) ttti

A79

PL/H-BO COMPILER PABE 13

176 3

177 3
178 3

179 3

1BO 3
1B1 3
1B2 4
183 4
184 4
185 5
186 5
187 4
188 3

1B9 3
190 3
191 3
192 4
193 4
194 5
195 5
196 5
197 4
198 4
199 4
200 4
201 5

/I tl
CALL PAR$INTERP0LATION(INTERPOLATION$ENCODER$PULSES); It tl

It tl
i t t t t t t t t t t t t t t t t t t i t t t t m t t t t t t m t i t t t t t t t t t t i t t t t t t m t t t t t t t i

it ti
It SWITCH OFF THE LATHE tl

It tl
P0RT$2AH$0UTPUT =P0RT$2AH$0UTPUT AND P0RT$2AH$ST0P$LATHE; ft tl
OUTPUT(P0RT$2AH)=P0RT$2Ah‘$DUTPUT; It tl

/ t t t t t t t t t t i t t t n i u t t u t t t t t t t t t i t t t t t m t t t t t t t t t t t t t t t t t t m u /

Ittt RETRACT TOOL (POSITION 2-3) ttti
Ittt RETURN TO DATUM ttti

PORT$2BH$INPUT=INPUT(PDRTS2BH); It READ PORT tl
It ADVANCE PISTON TILL IT REACHES DATUM tf
It MOVE PISTON TILL IT HITS ADVANCED SWITCH tl

IF (P0RT$2FH$INPUT AND PDRT$2BH$ADVANCED)=0 THEN
DO;

OUTPUT(22H)=RETRACTDACVALUE; It START ADVANCE TO DATUM tl
PGRT$2BH$INPUT=INPUT(P0RT$2BH); / I READ FORT tl

DO WHILE (P0RT$2EH$INPUT AND P0RTS25HSADVANCED)=0;
P0RT$2BH$INPUT=INPUT(P0RT42BH); ft READ AGAIN tf

END; It DO WHILE 1/
END; ft DO tl
OUTPUT(2 2 H)=STDPDACVALUE; ft STOP PISTON ADVANCE tl

/ m t t t t t m t u t t t t t t t t t i t t t t i

It A ROUTINE TO DISPLAY THE CARRIAGE POSITION ON THE SDK-85 tf
It EVERY 0.5 SECONDS TILL LEADSCREW IS STATIONARY 1/
OLD$PDSITIGN$ENCODER$PULSES=SHAFT$ENCDDER;
C0UNT$1=0;
DO WHILE C 0 U N T S K 1 0 ;
C0UNT$2=1;
DO WHILE C0UNT$2<=25;

CALL TIME(200);
C0UNT$2=C0UNT$2+1;

END; It DO WHILE 1/
NEW$POSITIDN$ENCODER$PULSES=SHAFT$ENCODER;
IF NEW$PDSITION$ENCODER$PULSES=OLD$POSITION$ENCODER$PULSES THEN

C0UNT$1SC0UNT$1+1;
ELSE

DO;
C0UNTI1S0;

A80

PL/H-80 COMPILER PAGE 14

202 5 OLD$PDSITION$ENCODER$PULSES=NEW$POSITION$ENCODER$PULSES;
203 5 END; It ELSE 1/
204 4 END; It DO WHILE tl

n t t t t t t m t t m m m m m m t m t t t t m t t m t t t t m m m t t m t

CALL CONSOLESOUTfCLEARSSCREEN); It CLEAR SCREEN 1/
CALL HESSAGEf.PAGE$10fLAST(PAGEI10)); It PAGE 10 tl

ANSWER=C0NS0LE4IN; It GET REPLY 1/
DO WHILE A N S W E R O T AND A N S W E R O ' N ' ;

CALL C0NS0LE$0UT(BELL);
CALL HESSAGEf.ERRORil,LASTfERRORSl));
ANSWER=CONSDLE$IN;

END; It DO WHILE tl
CALL HESSAGE(.DELETE$ERR0R$1,LAST(DELETEIERRDRSl));
CA L L .HESSAGEf,HESS$1,LAST(HESS$1));
CALL CONSOLESOUTfANSWER);
CALL B E T (CARRIAGESRETURN);
IF A N S W E R I N ’ THEN

TURNING$REGUIRED=FALSE;
END; It DO WHILE tl

CALL CONSQLESOUT{CLEARSSCREEN);
END HACHINESPARABOLAICONTROL;

f t t m m m t n t t t n m t m n m n m t m n m t n m t t m m n w

222 1 END HACHINESPARABOLASCONIROLSHODULE;

MODULE INFORMATION:

CODE AREA SIZE = 0BA5H 2213D
VARIABLE AREA SIZE = 0024H 36D
HAXIMUM STACK SIZE = 0008H 9D
697 LINES READ
0 PROGRAH ERROR(S)

205 3
206 3
207 3
208 3
209 4
210 4
211 4
212 4
213 3
214 3
215 3
216 3
217 3
218 3
219 3
220 2
221 2

END OF PL/H-BO COMPILATION

55*30 :f2:disply.ass debug

ISIS-II 8080/8035 MACRO ASSEMBLER, V4.1 DI5PLA PAGE 1

LOC OBJ LINE SOURCE STATEMENT
1 $PA6EHIDTH(80)
2 $PASELENBTH{55)
3
4 fm m n m t m m t n m n n n m n m n t m m m m t
5 .
6 NAME DISPLAY
7
9

10 PUBLIC UPDDT
11 PUBLIC UPDAD
i 1
XL

13 . m m m m n m n n m m t n m m m t n m m t m n
14

20F9 15 OBUFF E3U 20F9H
0001 16 DTFLD EQU 01H
0090 17 ADI3P EQU 90H
0094 18 DDISP ESU 94H
1900 19 CNTRL EOU 1900H
0008 20 DTHSK ECU 08 H
1800 21 DSFLY EQU 1S00H

00
L L

23 \ n m n n m n m n u m m m t n m n m m m n m t
24 CSES
25 \ m m i m u u m n n n i t m n n n n i m m t m n m t
26 HXDSP:

0000 7A 27 MOV A,B ; SET FIRST DATA BYTE
0001 OF 28 RRC ; CONVERT 4 HIGH ORDER BITS
0002 OF 29 RFC ; /TO A SINGLE CHARACTER
OOOo uF
0004 OF

v'U
31

RRC
RRC

0005 E60F 32 ANI OFH
0007 21F920 33 LXI H,OBUFF : GET ADDRESS OR OUTPUT BUFFER
OOOA 77 34 MOV M,A ; STORE CHARACTER IN OUTPUT

35 ; BUFFER
OOOB 7A 36 MOV A,D ; GET FIRST DATA BYTE AND

37 ; CONVERT 4 LOH ORDER
OOOC E60F 38 ANI OFH ; /BITS TO A SINGLE CHARACTER
OOOE 23 39 INX H ; NEXT BUFFER POSITION
OOOF 77 40 MOV M, A ; STORE CHARACTER IN BUFFER
0010 7B 41 MOV A,E ; GET SECOND DATA BYTE
0011 OF 42 RRC ; CONVERT 4 HIGH ORDER BITS
0012 OF 43 RRC ; /TO A SINGLE CHARACTER

A82

1SIS-1I S080/8085 MACRO ASSEMBLER, V4.1 DISPLA PAGE 2

LOG OBJ LINE SOURCE STATEMENT
0013 OF 44 RRC
0014 OF 45 RRC
0015 E60F 46 AN'I OFH
0017 23 47 INX H ; NEXT BUFFER POSITION
0018 77 48 MOV H,A ; STORE CHARACTER IN BUFFER
0019 78 49 MOV A,E ; SET SECOND DATA BYTE AND

50 ; CONVERT51 ; LOw ORDER
001A E60F 52 ANI OFH ; /4 BITS TO A SINGLE CHARACTER001C 23 53 INX H ; NEXT BUFFER POSITION
001D 77 54 HDV M,A ; STORE CHARACTER IN BUFFER
001E 21F920 55 LXI H,OBUFF ; RETURN ADDRESS OF OUTPUT

56 ; BUFFER IN H 4 L
0021 C9 57 .RET 458

59 \ U n t i m m n m m t m t m t m m m m m m m t m t
60 QuTFT:

0022 OF 61 RPC ; USE DATA FIELD ?
0023 DA2D00 0 62 JO 0UT05 ; YES-00 SET UP TO USE DATA

63 ; FIELD
0026 0E04 64 MVI C,4 ; NO-COUNT FOR ADDRESS FIELD
0023 3E90 65 MVI A ,ADISP ; CONTROL CHARACTER FDR OUTPUT

66 ; TG/ADDRESS FIELD OF DISPLAY
002A 033100 0 67 JMP GUT 10 5002D OE02 68 0UTC5: m C,2 ; COUNT FOR DATA FIELD
002F 3E94 69 m v i A, l'D IS? ; CONTROL CHARACTER FOR OUTPUT

70 TO DATA FIELD/ OF DISPLAY
0031 320019 71 DUT10: STA CNTRL ;0034 7E 72 0UT15: MOV A,M GET OUTPUT CHARACTER
0035 EB 73 XCHS ! SAVE OUTPUT CHARACTER ADDRESS

74 IN D 4 E
0036 216600 c 75 LXI H.DSPTB SET DISPLAY FORMAT TABLE

76 ADDRESS0039 85 77 ADD L USE OUTPUT CHARACTER AS A
78 POINTER TO

003A 6F 79 MOV L,A /DISPLAY FORMAT TABLE
003B 7E 80 MOV A,H GET DISPLAY FORMAT CHARACTER

81 FROM TABLE
0030 61 82 MOV H,C TEST COUNTER WITHOUT CHANGING

83 IT
003D 25 84 DCR H IS THIS THE LAST CHARACTER ?
003E 024700 c 85 JNZ 0UT20 NO-GO OUTPUT CHARACTER AS IS
0041 05 86 DCR B YES-IS DOT FLAG SET ?
0042 C24700 c 87 JNZ 0UT20 NO-GO OUTPUT CHARACTER AS IS

A83

ISIS-II 8080/8085 MACRO ASSEMBLER, V4.1 DISPLA PAGE 3

LOG OBJ LINE SOURCE STATEMENT
0045 F608 88 ORI DTMSK ; YES-OR IN MASK TO DISPLAY DO

89 ; WITH/ LAST CHARACTER
0047 2F 90 0UT20: CHA j COMPLEMENT OUTPUT CHARACTER
0048 320018 91 STA DSPLY ; SEND CHARACTER TO DISPLAY
004B EB 92 XCHB ; RETRIEVE OUTPUT CHARACTER

93 ; ADDRESS
004C 23 94 INX H ; NEXT OUTPUT CHARACTER
004D OD 95 DCR C : ANY MORE OUTPUT CHARACTERS ?
004E C23400 C 96 JNZ 0UT15 ; YES-60 PROCESS ANOTHER

97 ; CHARACTER
0051 C9 98 RET ; NO - RETURN

99
ioo i m m t m m n n n m n m m m m t m m m t m m
101 UPDDT:

0052 51 102 MOV D Cil < U <

CO53 CDOOOO C 103 CALL HXDSP ;
0056 3E01 104 MVI A,DTFLD ;
0058 CD2200 r* 105 CALL OUTPT ?
005B 09 106 SET 4

107
i d s i m m m m m m m m m m t t m m m m m m m
109 UFDAD:

005C 50 110 HDV D.B ;
CO50 59 111 ■10 V EjC ;
005E CDOOOO c 112 CALL HXDSP ;
0061 AF 113 XRA a ;0062 CD2200 c 114 CALL OUTPT ;
0065 C9 115 RET 5116

117
113 ;
119 DSPTB: ; TABLE FOR TRANSLATING CHARACTERS FOR OUTPUT
120 ;
121 ; DISPLAY
122 ; FORMAT CHARACTER
123 ;
124 ;

0066 F3 125 DB 0F3H ; 0
0067 60 126 DB 60H ; 1
0068 B5 127 DB 0B5H ; -2
0069 F4 128 DB 0F4H ; .3
006A 66 129 DB 66H ; 4
006B D6 130 DB 0D6H ; 5 AND S
006C D7 131 DB 0D7H :. 6

ISIS-II”B080/8085 MACRO ASSEMBLER, V4.1 DISFLA PABE 4

LOC OBJ LINE SOURCE STATEMENT
006D 70 132 DB 70H ; 7
006E F7 133 DB 0F7H ; 8
006F 76 134 DB 76H ; 9
0070 77 135 DB 77H ; A
0071 C7 136 DB 0C7H ; B (LOWER CASE)
0072 93 137 DB 93H ; C
0073 E5 138 DB 0E5H ; D (LOWER CASE)
0074 97 139 BB 97H ; E
0075 17 140 DB 17H ; F

141
142 ;m m m m m m t m m m m t m m m m m m t t
143 END J

PUBLIC SYMBOLS
UPDAD C 005C UPDDT C 0052
EXTERNAL SYMBOLS

USER SYMBOLS
AD ISP A 0090 CNTRL A 1900 DDI3P A 0094 DSPLY A 1800
DSPTB C 0066 DTFLD A 0001 DTMSK A 0008 HXDSP C 0000
OBUFF A 20F9 0UT05 C 002D OUTIO C 0031 0UT15 C 0034
0UT20 C 0047 OUTPT C 0022 UPDAD C 005C UPDDT C 0052
ASSEMBLY COMPLETE, NB ERRORS

A85 I

asnSO :f2:inro.ass debug

ISIS-II B0B0/3085 MACRO ASSEMBLER, V4.1 IHRO PAGE 1

LOC OBJ LINE SOURCE STATEMENT
1 $PAGEWIDTH(80)
2 $PAGELENSTH(55)
3
4 ’t m t m m m t n m m t m m m m m t t m
5
6 NAME INRG
7g i n m m m m m m n m m t m m m m m9

10 PUBLIC INRO
11

. 12 ;m m m n m m n m u n m n m t m m m
13
14 CSEG ; CODE RELOCATABLE
1516 ’t t m m m t m n n m m t m m m t x t u t m
t 7 •
13 ; RETRACT TOOL TO DATUM
< 5 •- / <20 \ t m n t m m t m t m m m t n m n n m n n
21

0000 3E49
0002 D322
0004 DB2B
0006 E601
0003 CA0400 C
000B 3E60
000D D322

2930 \ n m t m m m m n t n m m m m n m m m
31 ;
32 ; SWITCH OFF THE LATHE AND THE OIL P'JMP
33 ;
34
35

OOOF 3E00 36 HVI A,OH ; OUTPUT TOOL RETRACT
0011 D32A 37 OUT 2AH ; COMMAND

38
39 i m t t m m m m m m t t m n m m t n n m t t
40 ;
41 ; RETURN TO MONITOR
42 ;
43 i t t m m m m m m m u t t t m m t m u u m t

22 INRO: My I A, 4?H ; OUTPUT TOOL
zio OUT 22H ; RETRACT COMMAND
24 LABI: IN 25H ; WAIT TILL TOOL
25 ANI 1H ; FULLY RETRACTED
26 JZ LABI
27 HVI A, BOH ; STOP
25 OUT 22H ; TOOL

A 8 6

ISIS-II B0B0/B0B5 MACRO ASSEMBLER, V4.1 INRO PAGE 2

LOC OBJ LINE SOURCE STATEMENT
44

0013 CF 45 RST 1
46
47
48
49 END

PUBLIC SYMBOLS
INRO C 0000
EXTERNAL SYMBOLS

USER SYMBOLS
INRO C 0000 LABI C 0004
ASSEMBLY CGHFLETE, NO ERRORS

A87

ascSO :f2:invect.asB debug

ISIS-II B080/8085 MACRO ASSEMBLER, V4.1 INVECT PAGE 1

LDC OBJ LIKE SOURCE STATEMENT
1 $PfiSEHIDTH{80)
2 $PAGELENSTH(55)7
4 \ m n m n t m m m m t n m m m t m t t m
5
6 NAME INVECT
7
e i t m t m m t t m n m n m t m n t m m n m
?

10 EXTRN INRO
1112 ;m n m n t u n n m m m t m n m m m m
13
14 ; RSI 6.5 INTERRUPT VECTOR

20C8 15 CRB 20CBH
20CS C30000 E 16 JMP INRO ; JUMP TO INTERRUPT

17 ; SERVICE ROUTINE
IB ; RST 7.5 INTERRUPT VECTOR

20CE 19 ORB 20CEH
20CE C30000 E 20 JMP INRO ; JUMP TO INTERRUPT

21 ; SERVICE ROUTINE
2223 \ n m n m m m m m m u m t m u m m t m t
24
25 END

PUBLIC SYMBOLS

EXTERNAL SYMBOLS
INRO E 0000
USER SYMBOLS
INRO E 0000
ASSEMBLY COMPLETE, NO ERRORS

ISIS-II 80B0/B085 MACRO ASSEMBLER, V4.1 INIT PASE 1

LOG OBJ LINE SOURCE STATEMENT

0002 30
0003 FB
0004 C9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

$PAGEHIDTH(BO)
$PA5ELENBTH(55)
$M0D85

I *.... ,

NAME INIT

- m m t t m m n t n m n m m t m t n m t m m i u n

PUBLIC INIT

;tm n m n m u n n m m m m m n m m m t u m

CSES ; CODE RELOCATABLE

• M t t m t m t m t m n m m u t t m u m t t u m i m t

INIT:

MVI
SIM
El
RET

A,09H
; UNMASK R5T 7.5 AND 6.5
; ENABLE ALL INTERRUPTS
; RETURN TO INITIALISATION MODULE

END

PUBLIC SYMBOLS
INIT C 0000

EXTERNAL SYMBOLS

USER SYMBOLS
INIT C 0000

ASSEMBLY COMPLETE, NO ERRORS

^

10 LPRINT "Y VALUE'V'X VALUE","X RATIO"
20 LPRINT "----------- “
30 FOR Y=0 TO 74 STEP 1.016
40 X=(Y~2)/273.8
30 IF Y=0 THEN LPRINT Y fX* GOTO 180
60 FOR 1=1 TO 1000
70 J=I/X
80 J(I)=INT<J+.5)
90 D (I)=ABS(I/J (I)—X)
110 NEXT I
120 T=999jTI=0
130 FOR 1=1 TO 1000
140 IF D(I)<T THEN T=D(I)sTI=I
150 NEXT I
160 I=T I
170 LPRINT Y,X,l5"/"5J(I)
180 NEXT Y
190 END

Y VALUE X VALUE X RATIO

2.032 1.508044E—02
3.048 3.393099E—02
4.064 6.032176E—02
5.08 9.425274E—02
6.096 .1357239 704 / 5187
7.112 .1847353 806 / 4363
8.128 .241287 90 ,/ 373
9.143999 .3053788 528 / 1729
10.16 .3770109 961 / 2549
11.176 .4561832 937 / 2054
12.192 .5428957 405 / 746
13.208 .6371484 295 / 463
14.224 .7389413 852 / 1153
15.24 .8482745 123 / 145
16.256 .9651479 360 / 373
17.272 1.089562 961 / 882
18.288 1.221516 193 / 158
19.304 1.36101 377 / 277
20.32 1.508044 656 / 435
21.336 1.662619 685 / 412
22.352 1.824734 177 / 97
23.36801 1.994389 355 / 178
24.38401 2.171584 810 / 373
25.40001 2.35632 205 / 87
26.41601 2.548595 813 / 319
27.43201 2.748412 863 / 314
28.44801 2.955768 869 / 294
29.46401 3.170664 929 / 293
30.48001 3.393101 492 / 145
31.49601 3.623078 471 / 130
32.51201 3.860595 637 / 165

A3.1: Basic program to find the integer

524 /
651 /
45 /
961 >

34747
19186

746
10196

i
A90 I,

I

33.52801
34.54401
35.56001
36.57601
37.592
38.608
39.624
40.64
41.656
42.672
43.688
44.704
45.72
46.73599
47.75199
48.76799
49.78399
50.79999
51.81599
52.83199
53.84799
54.86399
55.87998
56.89598
57.91198
58.92798
59.94398
60.95998
61.97598
62.99198
64.00798
65.02397
66.03997
67.05597
68.07197
69.08797
70.10397
71.11996
72.13596
73.15196

4.105652
4.358248
4.618386
4.686063
5.161281
5.444039
5.734337
6.032175
6.337554
6.650473
6.970932
7.298931
7.634471
7.97755
8.32817
8.68633
9.052029
9.425269
9.80605
10.19437
10.59023
10.99363
11.40458
11.82306
12.24908
12.68264
13.12374
13.57238
14.02857
14.49229
14.96355
15.44236
15.9287
16.42258
16.92401
17.43297
17.94947
18.47352
19.0051
19.54423

583 / 142
292 / 67
956 / 207
386 / 79
160 / 31
969 / 178
367 / 64
187 / 31
995 / 157
685 / 103
718 / 103
/08 / 97
710 / 93
710 / 89
533 / 64
443 / 51
869 / 96
820 / 87
961 / 98
367 / 36
646 / 61
1000 / 91
479 / 42
934 / 79
49 / 4
799 / 63
958 / 73
95 / 7
491 / 35
942 / 65
823 / 55
803 / 52
223 / 14
739 / 45
897 / 53
523 / 30
359 / 20
351 / 19
19 / 1
899 / 46

A3.2: Basic program to find the integer ratios (2)

Max imum Minimum Mean Range Microscope Hardness Reduc t/on

am
pl
e

Nu
mb
er th i cfcness th icfcness th i ckness in

thickness
reduction

reading
at 10 Kg

Load
V H N

in
th ? ckness
(percentage)

LO (mm) (mm) (mm) (mm) (mm) A

1 1 . 120 0.850 1. 012 0.270 0.973 1 9 . 59 36. 75
2 1 . 198 0.841 1.019 0.357 0.888 23.95 36.31
3 1 . 20 5 0 . 8 4 2 1.039 0.363 0.886 23.62 35.06
4 1 . 67 5 1. 178 1 .382 0 . 4 9 7 0.871 2 4 . 4 4 13.62
5 1. 734 1 . 156 1. 417 0 . 5 7 8 0 . 87 8 2 4 . 0 6 11 . 43
6 1 .646 1 .166 1.364 0 . 4 8 0 0 . 91 6 22. 10 1 4 . 7 5
7 1 . 67 5 1 . 308 1. 492 0 . 3 6 7 0 . 89 7 2 3 . 0 5 6.75
8 1 . 678 1 . 295 1 A 5 7 0 . 3 8 3 0.886 2 3 . 6 2 8.93
9 1. 664 1 . 267 1 .446 0 . 3 9 7 0 . 8 7 2 2 4 . 3 9 9.62
10 1 . 670 1.416 1 .551 0 . 254 0 . 8 9 2 23.31 3.06
11 1 . 6 26 7 . 425 1 .509 0.201 1 .018 17 . 89 5.68
12 1 .535 1 . 428 1 .501 0. 157 1. 023 17. 72 6. 18
13 1.611 1. 360 1. 449 0.251 1 .022 17. 75 9.43
14 1 . 6 25 1. 403 1. 496 0 . 2 2 2 1 .018 1 7 . 89 6.50
15 1 .621 1 . 395 1 .489 0 . 2 2 6 1 . 016 17. 96 6.93
16 1 . 608 1. 370 1.^88 0 . 2 3 8 1 . 013 18 . 07 7.00
17 1 .689 1. 320 1 . 465 0.369 0 . 88 3 23. 78 8. 43
18 1 . 694 1 . 342 1.474 0 . 3 5 2 0 . 88 2 2 3 . 8 4 7.87
19 1 . 643 7.318 1 .4 68 0 . 3 2 5 0 . 814 2 7 . 9 9 8 . 2 5
20 1 .621 1 .294 7 . 467 0 . 3 2 7 0 . 8 1 6 2 7 . 8 5 8. 31
21 1 . 65 5 1 .296 1 .463 0 . 3 5 9 0 . 8 1 5 2 7 . 9 2 8 . 5 6
22 1 . 250 0 . 9 6 6 1 .084 0 . 284 0. 789 29. 79 32.25
23 1 . 296 0 . 9 6 9 1 .106 0 . 3 2 7 0. 792 2 9 . 5 6 3 0 . 8 7
24 1 . 279 1 .006 1 .104 0 . 2 7 3 0. 780 3 0 . 4 8 3 1 . 0 0
25 1 . 68 5 1 .180 1.405 0 . 5 0 5 0 . 8 7 7 24. 11 12. 18
26 1 . 660 1 . 165 1 .369 0 . 4 9 5 0 . 894 2 3 . 2 0 14 . 43
27 1 . 688 1 .114 1. 368 0 . 574 0 . 8 8 7 2 3 . 5 7 14 . 50
28 1.631 1 . 290 1 .440 0.341 0 . 893 2 3 . 2 5 10 . 00
29 1 . 669 1 . 359 1.511 0 . 3 1 0 0 . 8 8 6 2 3 . 6 2 5 . 5 6
30 1 . 680 1 . 343 1. 488 0 . 3 3 7 0 . 8 7 9 2 4 . 0 0 7 . 0 0
31 1 . 649 1 . 408 7.531 0.241 0 . 8 7 5 2 4 . 2 2 4.31
32 1. 700 1 . 437 1.568 0 . 2 6 3 0 . 884 23. 73 2 . 0 0
33 1 . 6 31 1.411 1 . 526 0 . 2 2 0 0 . 8 2 8 2 7 . 0 5 4.62
34 1 . 266 1 . 000 1 . 135 0 . 2 6 6 0 . 8 7 5 2 4 . 2 2 29.06
35 1.333 0 . 9 0 3 1. 124 0 . 4 3 0 0 . 8 9 3 2 3 . 2 5 2 9 . 7 5
36 1 . 3 0 5 1 . 010 1. 150 0 . 2 9 5 0 . 86 4 2 4 . 8 4 28. 12
37 1 . 686 1 . 188 1. 392 0 . 4 9 8 0 . 8 7 3 2 4 . 3 3 1 3 . 0 0
38 1 . 658 1 . 100 1 . 359 0 . 5 5 8 0 . 8 7 7 24. 11 15.06
39 1 . 654 1 . 140 1.351 0 . 514 0 . 8 7 2 2 4 . 3 9 15.56
40 1 . 620 1 . 283 1.454 0 . 3 3 7 0 . 8 8 8 23.52 9. 12
41 1 . 650 1 . 276 1. 433 0 . 37 4 0.896 23. 10 1 0 . 4 3
42 1 . 62 7 1. 294 1 . 457 0 . 3 3 3 0 . 874 24.28 8 . 9 3
43 1 . 714 1 . 412 1 . 537 0 . 3 0 2 0 . 9 0 7 22.54 3 . 9 3

T a b Le 1: Results from the test samples CD

-A92-

Sa
mp
le

Nu
mb
er

Maximum
thickness

Cmm)

Minimum
thickness

C mm)

Mean

thickness

Cmm)

Range
in

thickness
redjction

Cmm)

Microscope
reading
at 10 Kg

Load

Cmm)

Hardness

VHN
Redact ion

in
thickness
(percentage)

%

44 1.656 1 . 38 7 1.533 0 . 2 6 9 0.895 2 3 . 1 5 A. 18
AS 1.681 1 . 390 1.521 0.291 0.884 2 3 . 7 3 A . 93
AS 1.214 0.893 1.036 0.321 0 . 8 7 3 24.33 3 5 . 2 5
A7 1.290 0.914 1 . 077 0 . 3 7 6 0.869 24. 56 32.68
A8 1.292 0.998 1.1 AA 0.29A 0.887 23.57 28.50
A9 1.701 1.086 1.352 0.615 0.890 23.41 15.50
50 1. 738 1.13 4 1.3 79 0.604 0.885 23.68 13.81
51 1.731 1. 123 1 .367 0.608 0.890 23.41 14.56
52 1 .694 1 .304 1.474 0.390 0 . 8 7 9 24.00 7.87
53 1.682 1 .248 1.435 0.434 0 . 9 0 0 22.89 10.30
5A 1.724 1 . 332 1.476 0.392 0 . 8 8 A 23. 73 7.75
55 1.678 1. 386 1.516 0.292 0 . 8 8 5 23.68 5.25
56 1.676 1 . 377 1.509 0.299 0.884 23.73 5.68
57 1.659 1.3 66 1.511 0.293' 0.883 23.78 5.56
58 1.549 1 .249 1.A16 0.300 0.892 23.31 11. 50
59 1.739 1 .410 1 .546 0 . 3 2 9 0 . 8 8 A 23.73 3 . 3 7
60 1 . 747 1 .432 1.586 0.315 0 . 8 9 3 23.25 0 . 8 7
61 1.756 1 .523 1 . 612 0.233 0.897 23.05 1. 20
62 l . * 7 6 1 .095 1 .282 0.381 0.889 23.46 19.87
63 1 . 706 1 .365 1 .493 0.341 0.891 23.36 6.68
64 1.699 1 .^24 1 .556 0 . 2 7 5 0.889 23.46 2.75
65 1 .674 1. ̂ 50 1.557 0 . 2 2 A 0 . 8 7 6 24. 17 2.68
66 1. 430 0.937 1 . 175 0.49 3 0 . 8 8 5 23.68 26.56
67 1 .664 1 .170 1 .367 0.494 0 . 9 1 7 22.05 1A.56
68 1.701 1 . 257 1 . 458 0. 444 0 . 8 7 0 24.50 8 . 8 7
69 1 . 826 1.381 1.5 24 0. 445 0 . 8 9 2 23.31 A. 75
70 1 . 5 27 0.960 1. 185 0.567 0 . 8 7 3 24.33 2 5 . 9 3
71 1.A06 1 .027 1 .206 0 . 3 7 9 0 . 8 7 9 24.00 24.62
72 1.418 1.061 1 .230 0 . 3 5 7 0 . 8 6 9 24. 56 23. 12
73 1 .683 1 .099 1.371 0 . 5 8 A 0 . 87 8 24. 06 14.31
74 1.6 70 1 . 149 1. 376 0.521 0 . 8 8 0 23. 95 o o
75 1 . 763 1. 163 1 . 406 0.600 0 . 8 7 A 2A. 28 12. 12
76 1 .733 1. 273 1.451 0.460 0.891 23.36 9.31
77 1.693 1.314 1 . A67 0.379 0.87A 24.28 8.31
78 1 .641 1 .535 1.473 0.288 0 . 8 7 9

oo■srr\j 7.93
79 1 . 724 1 .341 1 .^72 0 . 3 8 3 0 . 8 8 6 23.62 8.00
80 1 .661 1.3 42 1 .480 0 . 3 2 0 0 . 8 8 3 23. 78 7.50
81 1 .693 1. 297 1 .445 0.396 0 . 6 7 2 41 . 10 9.68
82 1 .695 1. 303 1.469 0 . 3 9 2 0.670 A 1 . 30 8. 18
83 1 .670 1.295 1 .472 0 . 3 7 5 0 . 6 6 8 41 .60 8.00
84 1. 728 1.315 1 .483 0.413 0.664 42. 10 7.31
85 1 .714 1.271 1.459 0.443 0.661 42.40 8.81
86 1 . 726 1 . 282 1 .464 0.444 0 . 6 7 2 41. 10 8.50

Table 2: Results from the test samples (2)
-A S 3 -

Max imum Mini mum Mean Range Microscope Hardness Reducti onc<1><U -Q E
thickness thickness th i ckness in

thickness
reading

at 10 Kg V H N
:n

thickness
Q- £E 2 reduct i on Load I'perrtfntaga)
CO Cmm) Cmm) Cmm) Cmm) Cmm) %
87 1 .756 1 .339 1 .500 0.417 0.658 42.8 6.25
88 1. 756 1 . 246 1 . 437 0.510 0.659 42. 7 10. 18
85 1 . 724 1 . 315 1. 482 0 . 4 0 9 0.662 42.3 7.37
90 1. 442 1 .010 1 .229 0 . 4 3 2 0.650 43.9 23. 18
91 1 .458 1 . 010 1.221 0 . 4 4 8 0.671 47.2 2 3 . 6 8
92 1 . 5 15 0 . 97 4 1 .234 0.541 0 . 6 5 6 43. 1 2 2 . 8 7
93 1 . 772 1 . 176 1. 390 0.596 0 . 6 5 8 42.8 13. 12
94 1 .805 1 .208 1. 437 0.597 0.654 43.4 10. 18
95 1 . 713 I . 150 1 . 37 5 0.563 0.650 43.9 14.06
96 1 .659 1. 258 1 .421 0.401 0.670 47 .3 11.18
97 1 . 757 1 . 308 1 . 466 0 . 4 4 9 0.665 41.9 8.37
98 1 .697 1. 230 1 .438 0 . 4 6 7 0.685 39.5 10. 12
99 1 . 772 1 .421 1 .547 0.351 0 . 67 9 40.2 3.31
100 1 . 761 1 .388 1 .521 0.373 I 0 . 6 6 2 4 2 . 3 4.93
101 1 . 735 1 .366 1 .494 0.369 0 . 667 41.7 6.62
102 1 .262 0.949 1 . 121 0 . 31 3 0 . 638 45.6 29.93
103 1.3 66 0.905 1 . 168 0.461 0.653 43.5 27.00
104 1.372 1 .016 1 . 186 0.356 0.644 44.7 2 5 . 8 7
105 1 . 732 1 .102 1 .376 0,630 0 . 6 6 5 41.9 14 . 00
106 1 .664 1.14 3 1 . 362 0.521 0 . 64 9 44.0 14 . 87
107 1 .687 1 .149 1 .387 0 . 5 3 8 0 . 6 5 8 42.8 13. 31
108 1.734 1 .263 1 . 456 0.471 0.653 43.5 9.00
109 1. 652 1 . 295 1.474 0.357 0.653 43.5 7.87
110 1 .689 1.271 1 . 460 0 . 41 8 0 . 654 43.4 8. 75
111 1 . 719 1 . 355 1.511 0 . 364 0 . 664 42. 1 5.56
112 1.663 1 .401 1. 520 0 . 26 2 0 . 6 7 3 40.9 5.00
113 1 .683 1. 398 1 . 546 0 . 2 8 5 0.661 42.4 3.37
114 1.393 0 . 9 7 5 1 . 188 0 . 41 8 0 . 6 4 7 44.3 25.75
115 1.415 0.989 1.188 0 . 42 6 0 . 6 4 7 44.3 25.75
116 1 . 393 0.934 1 . 152 0 . 4 5 9 0 . 6 5 3 43.5 28.00
117 1. 701 1.094 1.334 0 . 6 0 7 0.653 43.5 16.62
118 1 . 685 1 . 125 1 . 362 0.560 0.651 43.8 1 4 . 8 7
119 1. 702 1 . 173 1 .404 0 . 5 2 9 0 . 6 5 6 43. 1 12.25
120 1 . 672 1 . 278 1 .453 0 . 394 0 . 6 6 3 42.2 9. 18
121 1 . 702 1 . 275 1.474 0 . 4 2 7 0 . 6 7 6 40.6 7.87
122 1 . 747 1 . 272 1 .466 0 . 4 7 5 0 . 6 7 0 41.3 8.37
123 1 . 665 1 . 418 1 .558 0 . 24 7 0.659 42.7 2.62
124 1. 704 1 . 349 1 . 493 0 . 3 5 5 0.671 47.2 6.68
125 1 . 669 1 . 390 1.521 0 . 2 7 9 0 . 6 5 8 42.8 4.93
126 1 . 547 1 . 225 1.384 0 . 3 2 2 0.666 41.8 13.5
127 1.519 1 . 307 1.384 0 . 2 1 2 0 . 6 7 8 4 0 . 3 13.5
128 1.472 1 . 249 1 . 357 0 . 2 2 3 0 . 7 2 2 3 5 . 6 15. 18
129 1.732 1.406 1.541 0.326 0.729 3 4.9 3.68

Table 3: Results from the test samples (3)

-A94-

Sa
mp
le Nu
mb
er

Max i mum
thickness

Cmm)

Mini mum
thickness

Cmm)

Mecn
th i ckness

Cmm)

Range
in

thickness
reduct i on
Cmm)

M i crosccoe
reading
at 10 Kg

Load

Cmm)

Hardness

V H N
Reduct i on in
thickness(percentage)

X
130
131 1.731 1 . 366 1 . 553 0.365 0 . 7 4 2 3 3 . 6 8 2.93
132 1 . 742 1 . 388 1 . 566 0 . 3 5 4 0. 715 3 6 . 3 0 3. 40
133 1 . 727 1 . 518 1. 634 0 . 2 0 9 0 . 7 2 9 3 4 . 9 0 2. 12
134 1 . 785 1 . 469 1 . 599 0 . 3 1 6 0 . 6 6 2 4 2 . 3 0 0.06
135 1 . 741 1 . * 6 3 1.590 0 . 2 7 8 0.681 4 0 . 0 0 0.62
136 1 . 795 1 . 496 1 .596 0 . 2 9 9 0 . 6 6 3 4 2 . 2 0 0.25
137 1 .674 1 . 503 1 . 585 0. 171 0 . 6 7 2 41 . 10 0.93
138 1 . 728 1 . 526 1 . 626 0 . 2 0 2 0 . 6 6 8 41 . 60 1 .62
139 1. 452 1 . 126 1 . 287 0 . 3 2 6 0.653 4 3 . 5 0 19.56
140 1 .538 1 . 156 1 . 320 0 . 3 8 2 0 . 6 5 8 4 2 . 8 0 17. 50
141 1 .514 1 . 161 1 . 310 0 . 3 5 3 0 . 6 5 4 43. 40 18. 12
142 1 . 701 1 . 286 1 .463 0 . 4 1 5 0 . 6 4 8 4 4 . 2 0 8 . 5 6
143 1. 724 1 . 302 1 . 503 0 . 4 2 2 0 . 6 5 2 4 3 . 6 0 6 . 0 6
144 1 . 774 1. 297 1 . 482 0 . 4 7 7 0. 704 37. 40 7 . 3 7
145 1 . 710 1 .424 1 . 543 0 . 2 8 6 0.653 4 3 . 5 0 3 . 5 6
146 1 . 753 1. 408 1 .546 0 . 3 4 5 0.665 41 . 90 3 . 3 7
147 1 . 719 1 .492 1 .608 0 . 2 2 7 0.664 42. 10 0 . 5 0
148 1 . 704 1 .463 1 .562 0.241 0.658 4 2 . 8 0 2 . 3 7
149 1.695 1 .483 1 .571 0.212 0.661 4 2 . 4 0 1 .81
150 1. 689 1 .460 1 .576 0.229 0 . 6 4 8 4 4 . 2 0 1. 50
151 1.4 33 0 . 9 9 2 1 . 208 0.441 0.641 45. 10 2 4 . 5
152 1 .311 0 . 9 9 7 1 . 150 0 . 31 4 0 . 64 4 ' 4 4 . 7 0 28. 12
153 1.452 0.91 1 1 . 148 0.541 0 . 6 4 8 4 4 . 2 0 2 8 . 2 5
154 1 . 726 1. 123 1 . 342 0 . 6 0 3 0 . 6 4 6 4 4 . 4 0 16. 12
155 1 . 685 1 . 161 1 . 416 0 . 52 4 0 . 6 4 3 4 4 . 9 0 11 . 50
156 1 . 657 1 . 120 1 . 377 0.537 0 . 6 5 7 4 3 . 0 0 13 . 93
157 1.694 1 . 252 1 . 448 0 . 4 4 2 0 . 6 5 4 4 3 . 4 0 9.50
158 1. 670 1. 296 1 . 483 0 . 37 4 0 . 6 5 2 4 3 . 6 0 7.31
159 1 . 667 1 . 258 1. 454 0 . 4 0 9 0 . 6 6 3 4 2 . 2 0 9. 12
160 1. 728 1 . 352 1 . 489 0 . 3 7 6 0 . 6 5 8 4 2 . 8 0 6 . 9 3
161 1.6 81 1 . 409 1 . 522 0 . 2 7 2 0 . 6 6 5 41 . 90 4 . 8 7
162 1 . 662 1 . 362 1.505 0 . 3 0 0 0.666 41 . 80 4 . 8 7

Table 4: Results from the test samples (4)
-A3 5-

Sa
mp
le Nu
mb
er

Input
AngLe

Measured
AngLe

Mean
value
for the
two sides

Mean
value
for the

three samples

Angle
diFFerence

("degrees) ("degrees)
s i de 1 s / de 2 (degrees) (degrees) (degrees)

1 30 33.50 32.25 3 2 . 8 7
2 30 34.00 32.00 33.00 33.41 3.41
3 30 33.50 35.25 3 4 . 3 7
4 35 3 4 . 8 0 37.60 3 6 . 2 0
5 35 34.90 3 7 . 6 0 3 6 . 2 5 3 6 . 2 0 1. 20
6 35 3 4 . 9 0 3 7 . 4 0 36. 15
7 40 4 2 . 5 0 3 9 . 8 0 41. 15
8 40 4 2 . 0 0 3 9 . 8 0 4 0 . 9 0 4 0 . 9 7 0 . 9 7
5 40 42 . 0 0 39.75 4 0 . 8 7
10 45 44 . 0 0 46.50 4 5 . 2 5
11 45' 43 . 5 0 4 6 . 5 0 45.00 4 4 . 9 5 0 . 0 5
12 45 43 . 5 0 45. 70 44.60
13 40 40.90 3 8 . 5 0 39. 70
14 40 41 .00 38. 50 39. 75 39. 73 0 . 2 7
15 40 41 .00 3 8 . 5 0 39. 75
16 40 38.50 4 1 . 2 5 39.87
17 40 39.50 42 . 0 0 40. 75 4 0 . 6 2 0.62
18 40 40.00 42 . 5 0 41 . 25
19 40 4 2 . 5 0 40 . 5 0 41 . 50
20 40 42 . 0 0 40 . 00 41 . 00 41.50 1.5 0
21 40 43 . 0 0 4 1 . 0 0 4 2 . 0 0
22 30 3 3 . 0 0 3 5 . 5 0 3 4 . 2 5
23 30 32. 70 3 5 . 0 0 3 3 . 8 5 3 4 . 0 6 4.06
24 30 32. 70 3 5 . 5 0 3 4 . 1 0
25 35 3 6 . 8 0 34. 75 35. 77
26 35 36 . 8 0 3 4 . 0 0 35. A0 35.51 0.51
27 35 36.50 3 4 . 2 5 3 5 . 3 7
28 40 40.50 4 3 . 0 0 4 1 . 7 5
29 40 4 0 . 2 5 4 3 . 2 5 4 1 . 7 5 • 4 1 . 5 5 1 . 55
30 40 3 9 . 8 0 4 2 . 5 0 41 . 15
31 45 4 6 . 2 5 4 4 . 5 0 4 5 . 3 7
32 45 4 6 . 5 0 4 4 . 5 0 4 5 . 5 0 4 5 . 8 4 0 . 8 4
33 45 4 8 . 8 0 4 4 . 5 0 4 6 . 6 5
34 30 3 2 . 2 5 3 3 . 5 0 3 3 . 3 7
35 30 3 4 . 5 0 32.50 3 3 . 5 0 33.45 3 . 4 5
36 30 3 4 . 5 0 32.50 3 3 . 5 0
37 35 3 7 . 0 0 34.50 35. 75
38 35 3 7 . 5 0 35.00 3 6 . 2 5 3 6 . 0 8 1 . 08
39 35 3 7 . 5 0 35.00 3 6 . 2 5
40 40 3 9 . 2 5 42.50 4 0 . 8 7
41 40 3 9 . 0 0 42.50 40. 75 4 0 . 9 9 0 . 9 9
42 40 4 0 . 0 0 4 2 . 7 5 4 1 . 3 7

Table 5: Results from the test samples (5)
-A96-

Sa
mp
le

Nu
mb
er

Input
Angle

Measured
AngLe

Mean
value
for the

Mean
value
for the
three samples

A n g L e
difference

(“degrees) (degrees) two sides
side 1 side 2 (degrees) (degrees) (degrees)

43 A5 A7.50 A3. 60 45.55
44 A 5 A6.50 44.50 45.50 45.47 0.A7
AS A5 46.50 44.25 A5.37
A 6 30 33.00 35.00 34.00
A7 30 32.50 35.00 33. 75 33.83 3.83
Ad 30 32.50 35.00 33. 75
A9 35 37.25 35.00 36. 12
50 35 36.50 3A.50 35.50 35.70 0. 70
51 35 36.50 34. 50 35.50
52 AO AO.00 A1.80 40.90
53 AO 39. 75 A 1.80 40. 77 AO. 90 0.90
5A AO 39.60 A2.50 A1.05
55 A 5 46. 50 45.00 45. 75
56 45 46. 75 44.50 A5.62 45.62 0.62
57 45 46. 75 44.25 45.50
58 30 33.00 35. 40 3A.20 A. 20
59 35 38.50 35.25 36.87 1 .87
60 AO AO. 50 43.50 A2.00 2.00
61 45 47.00 A6.50 46. 75 1. 75
62 30 32.50 35.00 33. 75 3. 75
63 35 37.25 35.50 36.37 1.37
BA AO A1 .00 42.50 A 1.75 1 . 75
65 A 5 A8.25 45.00 AS. 62 1.62
66 30 32.50 3A. 80 33.65 3.6 5
67 35 37.25 35.00 36. 12 1. 12
68 40 41.00 A2.50 A 1.75 7. 75
69 45 46.75 AA.75 45. 75 0.75
70 30 32. 70 3A.75 33. 72
71 30 32.50 3A.75 33.62 33.78 3. 78
72 30 32.50 35.50 34.00
73 35 37.25 34.50 35.87
7A 35 37.00 35.00 36.00 36. 0A 7.04
75 35 37.00 35.50 36.25
76 AO AO. 50 A2.50 A1.50
77 AO AO.00 42.50 47.25 AO.91 0.91
78 AO A1.00 39.00 AO. 00
79 45 46.00 A7.50 46. 75
80 45 45.40 47.50 46.45 46.48 1.48
81 45 45.00 A7.50 A6.25
82 AO A 1.75 AO. 00 AO. 87
83 AO AO. 80 42. 70 A1.75 41.34 1.34
8A AO A2.30 AO. 50 41.40

Table 6: Results from the test samples (6)

-A97-

Sa
mp
le

N
um

be
r Input

Angle
Measured
Angle

Mean
value
for the

Mean
value
for the

three
samples

A n g L e
diFFerence

(degrees) (degrees) two sides
side 1 side 2 Cdegrees) (degrees) (degrees)

85 40 40.75 42.50 41.62
86 40 42.00 40.40 41.20 41.52 1.52
87 40 40.50 43.00 41.75
88 40 43.00 40.25 41.62
83 40 40.00 42.80 41.40 41.26 1.26
90 40 41.80 39.75 40. 77
91 30 33.00 35.00 34.00
92 30 35.00 33.00 34.00 33.83 3.83
93 30 32.50 34.50 33.50
94 35 37.00 35.50 36.25
95 35 35.50 37.50 36.50 36.33 1.3 3
96 35 37.00 35.50 36.25
97 40 40.50 42.50 41 .50
98 40 42.60 40.50 41.55 41 .51 1.51
99 40 40.50 42.50 41 .50
100 45 46. 70 45.00 45.85
101 45 45.30 46.50 45.90 46. 15 1 . 15
102 45 48.00 45. *0 46. 70
103 30 32.80 34. 70 33. 75
104 30 34.50 32. 70 33.60 33. 73 3. 73
105 30 32. 70 35.00 33.85
106 35 36.50 35.50 36.00
107 35 35.50 37.00 36.25 36.25 1.25
108 35 37.00 35.00 36.00
109 40 40.50 42.50 41.50
1 10 40 42.50 40.00 41 .25 41.41 1.41
111 40 40.00 43.00 41.50
112 45 46.00 44.00 45.00
113 45 44.00 47.25 45.62 45.62 0.62
114 45 47.50 45.00 46.25
115 30 32.50 35.00 33. 75
116 30 34.50 32.50 33.50 33. 70 3. 70
117 30 32.70 35.00 33.85
118 35 37.50 35.00 36.25
119 35 35.00 37.50 36.25 36.33 1.33
120 35 37.50 35.50 36.50121 40 40.50 42.50 41.50122 40 42.25 39. 75 41.00 41.41 1.41
123 40 40.00 43.50 41.75
124 45 46.50 45.50 46.00
125 45 45.50 47.50 46.50 46.08 1 .08
126 45 46.5 45.00 45.75

Table 7-. Results from the test samples (7)
-A98-

Sa
mp
le

Nu
mb
er

Input
AngLe

Measured
AngLe

Mean
value
for the
two sides

Mean
value
for the
three samples

A n g L e
di fTerence

(degrees) (degrees)

side 1 side 2 (degrees) (degrees) (degrees)
127 30 33.50 34.80 34. 15
128 30 35.00 32.50 33. 75 33.80 3.80
129 30 33.25 33.75 33.50
130 35 38.00 35.50 36. 75
131 35 34. 50 37.50 36.00 36.00 1.00
132 35 36.00" 34.50 35.25
133 40 40. 75 42.50 41 .62
134 40 43. 70 40.00 41.85 41 . 74 1 . 74
135 40 40.00 43.50 41.75
136 45 47.00 45.50 46.25
137 45 45.00 48.25 46.62 46.45 1 .45
138 45 48.00 45.00 46. 50
139 30 33.00 35.00 34.00
140 30 35.00 32 . 50 33. 75 33.83 3.83
141 30 32.50 35.00 33. 75
142 35 I 36.00 35.00 35.50
143 35 I 35.00 36.50 35. 75 35.83 0.83
144 35 I 36.50 36.00 36.25
145 40 40.50 42.50 41 .50
146 40 42.00 40.50 41.2 5 41 .00 1 .00
147 40 39.00 41.50 40.25
148 45 46. 00 45.50 45. 75
149 45 45.. 50 47.50 46.50 45.95 0.95
150 45 46.50 44. 75 45.62
151 30 32.80 33.50 33. 15
152 30 32.50 31 .50 32.00 32. 75 2. 75
153 30 32.25 34.00 33. 12
154 35 36.50 35.50 36.00
155 35 35.00 37.50 36.25 36. 16 1 . 16
156 35 37.00 35.50 36.25
157 40 40.00 42.80 41.40
158 40 43.00 40.00 41 .50 41.30 1 .30
159 40 40.00 42.00 41.00
160 45 47.00 44.50 45.75
161 45 45.00 47.00 46.00 45.92 0.92
162 45 46.80 45.25 46.02

TabLe 8: Results from the test samples (8)

-A99-

Actual
semi-cone angle

Cdegrees)

First Test

8 encoder pulses

45 -
actual
angle40

35 - input
angle30 ~

30 35 40 45
Input

semi-cone angle
Cdegrees)

Actual
semi-cone angle

Cdegrees)

First Test

16 encoder pulses

45
actual
angle40

35
input
angle30

30 35 40 45
Input

semi-cone angle
Cdegrees)

G r a p h 1: T h e a c t u a l a g a i n s t t h e i n p u t cone a n g l e
-A100-

R e d u c t i o n in
th i c k n e s s %

30
F i r s t T e s t

8 e n c o d e r p u l s e s
20 -

10 ~

i-------1—'—i------r
30 35 40 45

Sem;-cone a n g l e
C d e g r e e s)

R e d u c t i o n in
th i c k n e s s %

F i r s t T e s t---------- 40
301 6 encoder p u l s e s
20

10

30 35 40 45

Semi-cone a n g l e
C d e g r e e s)

G r a p h 2s T h e r e d u c t i o n in th i c k n e s s a p a i n s t t h e cone a n g l e

- A 1 0 1 -

Second Test

8 encoder pulses

Second Test

16 encoder pulses

o r iginaL
Hardness hardness

CVHN)

50

— o "— 0 440 ~

30

20

200100

Speed
AngLe= 40 degrees Cr.p.m.)

or iginaL
Hardness hardness

CVHN)

SO

40 -

30 -

20 -

200100

Speed
Anale= 40 degrees r

Cr.p.m.)

G r a p h 3: The h a r d n e s s a g a i n s t the s p e e d
- A 1 0 2 -

Hardness

First and Third Tests

8 encoder pulses

orig i nal
hardness

CVHN)

50

40

30 " dry
Hub 1
Hub 2
grecse

20

30 35 40 45

sem:-cone angle
Cdegrees)

Hardness

First and Third Tests

16 encoder pulses

origincl
hardness

CVHN)

40 -

30 - ■ dry
-Lub 1
• Lub 2
grease

20 -

30 35 40

semI-cone angle
Cdegrees)

Graph 4: The hardness against the cone angle with
different lubricants

-AT 03-

Hardness

Fourth Test

8 encoder pulses

o r i gincL
hardness

CVHN)

5 0

AO

30

\ 1.27 mm/rev
^ 0.552 mm/rev
x 0.226 mm/rev

20
0

30 35 40 45
sem:-cone angle

Cdegrees)

Hardness

Fourth Test

16 encoder pulses

original
hardness

CVHN)

AO -

30

- 1.27 mm/rev
0.552 mm/rev
0.226 mm/rev

20 -

30 35 40

sem/-cone angle
Cdegrees)

Graph 5: The hardness against the cone anql
different Feeds

- A T 0 4 -

