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Abstract

Distribution and parallelism are historically important approaches for the
implementation of artificial intelligence systems. Research in distributed problem
solving considers the approach of solving a particular problem by sharing the problem
across a number of cooperatively acting processing agents. Communicating problem
solvers can cooperate by exchanging partial solutions to converge on global results.

The purpose of this research programme is to make a contribution to the field of
Artificial Intelligence by developing a knowledge representation language. The project
has attempted to create a computational model using an underlying theory of cognition
to address the problem of finding clusters of relevant problem solving agents to provide
appropriate partial solutions, which when put together provide the overall solution for a
given complex problem. To prove the validity of this approach to problem solving, a
model of a distributed production system has been created.

A model of a supporting parallel architecture for the proposed distributed production
problem solving system (DPSS) is described, along with the mechanism for inference
processing. The architecture should offer sufficient computing power to cope with the
larger search space required by the knowledge representation, and the required faster
methods of processing. The inference engine mechanism, which is a combination of
task sharing and result sharing perspectives, is distinguished into three phases of
initialising, clustering and integrating. Based on a fitness measure derived to balance the
communication and computation for the clusters, new clusters are assembled using
genetic operators. The algorithm is also guided by the knowledge expert. A cost model
for fitness values has been used, parameterised by computation ration and
communication performance.

Following the establishment of this knowledge representation scheme and
identification of a supporting parallel architecture, a simulation of the array of PEs has
been developed to emulate the behaviour of such a system. The thesis reports on
findings from a series of tests used to assess its potential gains.

The performance of the DPSS has been evaluated to verify the validity of this
approach by measuring the gain in speed of execution in a parallel environment as
compared with serial processing. The evaluation of test results shows the validity of the
proposed approach in constructing large knowledge based systems.
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Introduction

Distribution and parallelism are important aspects of the history of Artificial
Intelligence (AI). Indeed the history of AI goes back to when the question ‘Can
machines think?’ was first posed. This question put forward the idea that a specific form
of behaviour, which is associated with human beings, may also be associated with
machines. At that time (the early 1950s), computation was considered as a form of
machine behaviour [Boden 1990]. The idea of machines behaving like humans released
the question of whether computational capability of digital computers could expand
enough to enable them to exhibit intelligent behaviour. In other words, whether

computers could act more than just number crunchiers.

Two different visions, each viewing the computer from different perspectives, began
to develop. The first of these visions is about creating artificial intelligence by
modelling the mind’s symbolic representation of the world, and is called strong Al
[Searle 1990]. It views the computer as a system for manipulating mental symbols,
through which intelligent tasks can be implemented. This idea takes problem solving as
its paradigm of intelligence, and utilises logic. According to this vision the computer is
not only a tool in the study of the mind, but also an appropriately programmed

computer, is in fact, a mind. This means that computers that are given the right
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programs can be said to understand and have other cognitive states. The main idea here
is that intelligent tasks can be implemented by reasoning processes operating on

symbolic internal models.

The second vision is about creating artificial intelligence by modelling the brain
rather than the mind’s symbolic representation of the world, and is called weak Al
[Searle 1990]. It considers the computer as a tool for modelling the brain as the only
truly intelligent system. It uses a computer as a tool for simulating the interactions of
neurones, and draws its roots not only from philosophy but also from neuroscience. This
idea takes learning as its paradigm of intelligence, and utilises statistics. According to
this vision, the principal value of the computer in the study of the mind is that it
provides a very powerful tool for scientists to test hypotheses about brain function in a
more precise way. Here the basic idea is that intelligence appears from the interactions
of large numbers of simple processing units. This idea was directly inspired by the work
of D. O. Hebb [1949]. He suggested that neurones, which connected by synapses, could
learn when are simultaneously excited. This excitation increases the strength of the
connections between them, leading to a process of learning. Rosenblatt [1962] followed
Hebb’s notion of synaptic modification [Pfeifer et al 1989] and studied a simple neural
model, called a ‘perceptron’, for many years [Minsky and Papert 1969]. He intended to
build a physical device, or to simulate such a device on a digital computer, that could
then generate its own abilities. He was able to train the perceptron to classify certain
types of patterns. Connectionism or neural network modelling refers to a class of
models in which information is stored in the states of connections between computing
elements. These models are frequently described as neural-like or brain-like modelling
by similarity of them on computation in networks of simple processing elements, which

designed in some ways to resemble neurones and their links.

Following publication of the book called ‘Parallel Distributed Processing’ by
Rumelhart and Zipser [1985], interest in connectionism was increased. In the beginning
of the 1960s, in addition to symbolic Al, connectionism was one of the two paradigms
for Al-research [Pollack 1989]. Connectionist networks with their inherent parallelism

could be the best answer for reducing the time of computation.
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About 1955 Newell and Simon [1972] concluded that strings of bits, which are
manipulated by a digital computer, could represent numbers and also features of the real
world. Moreover, they concluded that programs could be used as rules to represent the
relations between physical symbols. They assumed that the human brain and the digital
computer, while being totally different in structure and mechanism, have a common
functional description. Both may be seen as two different instances of a single device
that exhibits intelligent behaviour by manipulating symbols using formal rules. They
stated that ‘intelligence is the work of symbol systems, and symbols lie at the root of
intelligent action’. Newell and Simon stated their view as a general scientific
hypothesis, called the physical symbol system hypotheses. According to this hypothesis,
a physical symbol system can be intelligent, and any intelligent system should be
implemented via a physical symbol system. A physical symbol system is an instance of
a universal machine that uses physical symbols. This hypothesis specifies a general
class of those systems, which are capable of intelligent action, and implies that

intelligence would be exhibited by a universal computer.

One of the strongest claims of the cited hypothesis is that the symbolic behaviour of
a human arises because it has the characteristics of a physical symbol system [Newell

and Simon 1990]. It explains human intelligent behaviour in terms of symbol systems.

Today, the physical symbol system hypothesis is a dominant view of behaviour in
symbolic Al In fact the roots of this hypothesis go back to the program of Whitehead
and Russell [1910-1913] for formalising logic [Searle 1990]. The sense of formalising
logic is avoiding from what seems relevant to meaning and human symbols. Whitehead
and Russell’s efforts to treat all mathematics as the purely formal derivation of theorems
from basic axioms, are indeed the roots of the oldest branch of Al, automatic theorem
proving [Bledsoe and Loveland 1984]. Due to the generality of logic, a wide variety of
problems can be attacked by this field. The problem description and relevant
background information is represented as logical axioms and problem instances are

treated as theorems to be solved.

One of the inefficiency of early automated theorem provers was that they proved

large number of irrelevant theorems before achieving the correct one. The reason is that

3
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purely formal, syntactic methods of guiding search are inherently incapable of dealing
with a large space. Many argued that the only alternative relies on the formal, ad hoc
strategies that humans use in solving problems. This is the approach underlying the
development of expert system, and it has proved to be a fruitful one [Luger and
Stubbefield 1989].

In 1943, Post introduced production systems to model intelligence [Franklin 1995].
Newell and Simon [1972] were the first to employ production systems. Since then,
production systems have played a major role in several symbolic Al systems, such as
SOAR ([Laird et al 1987], and they are used to model cognitive processes. Production
systems provide a model of encoding human expertise in the form of rules and
designing pattern-driven search algorithms, tasks that are central to the design of the
rule based expert systems. Production systems while apply an AI programming
language, provide the theoretical foundations of rule based expert systems [Buchanan
and Shortliffe 1984]. Rules in rule based symbolic systems are in the form of ‘if A then
B’ and traditional AI programs typically rely on the von Neumann type computer as

hardware.

After several decades of research on Al, rule based production systems have
emerged as one of the most important and widely employed tools for the
implementation of expert systems and other Al programs. The proof for this claim can
be the increasing numbers of programs, starting with game playing, and early expert
systems such as MYCIN [Shortliffe 1976] and DENDERAL [Buchanan et al 1969] for
problem solving. DENDERAL is a program that infers the structure of an unknown
chemical compound from various data about this compound. MYCIN is a program that

diagnoses certain blood infections and prescribes courses of antibiotics.

Early rule based problem-solving systems clearly suffered from an insufficient
knowledge base, and tended to fail when tested outside a narrow problem domain. Some
people believed that insufficient knowledge was the most important deficiency of rule
based systems, and attempted to improve it by constructing larger collections of
everyday facts, which are expressed as formal production rules. The other disadvantage

of using production systems is that the matching involved in the match-select-execute is

4
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an inherently inefficient computational process, and about 90% of run time processing
is wasted in this stage [Gupta 1985]. Another drawback is that they cannot be used for
partial matches between facts and rules. In most rule-based systems, the search strategy
is embedded in the code. This limits the range of applications for which the system can
be used. The other is concerned with the format of knowledge as a set of production
rules, which is not always as easily understood as it would be expressed in some other

forms.

Interesting properties of rule based production systems are the modularity and the
simplicity of modification and augmentation, which offer potential advantages in the
execution of many large-scale Al tasks. On the other hand, the use of these systems in
such applications is very expensive in execution time. For example, OPS5 production
system programs, using the LISP based interpreter, execute at a speed of only 8-40
working memory element changes per second (WME-changes/sec) on a VAX-11/780
[Gupta 1987]. The slow speed of execution poses particular problems in the case of real
time applications, such as real-time speech recognition, that require the program be able

to execute at a rate of about 200,000 WME-changes/sec.

Researchers have investigated several different methods to remove the limitations
and speeding up the execution of production systems such as the use of faster
technology, the use of better architectures, the use of better algorithms, and the use of
parallelism. The aim of this thesis is to focus on the use of parallelism for the following

reasons:

(1) Production systems appear to be more capable of utilising large amounts of
parallelism. The parallelism in rule based systems was motivated by the advantages of
separating the knowledge, stored in the knowledge base, from inference, and of

modularising knowledge into identifiable and meaningful parts.

(2) It is always possible to use parallel processing techniques to achieve higher

execution speeds.

(3) Conventional von Neumann computers are not suitable for real world Al

applications. Indeed the von Neumann bottleneck leads directly to a hardware crisis. A

5
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von Neumann architecture, with a centralised control, presents a processor/memory

bottleneck to intensive and irregular memory access patterns.

(4) Although the advancement of VLSI technology has improved the performance of
single-processor machines, these machines are still not fast enough to perform certain
applications within a reasonable time period, such as real time pattern recognition, or
real-time speech recognition. There are physical limitations in VLSI technology and we
should accept the fact that physical laws limit the maximum speed of the processor’s

clock, which governs how quickly instructions can be executed [Zargham 1996].

The possibility of using parallel hardware to reduce the execution time of production
systems is thus of considerable interest. Over time, serial processing problem solving
methods were generalised into parallel symbol processing models. Blackboard systems
[Ensor and Gabbe 1985, Nii 1986] are examples of problem solving systems, which
evolved from the applying parallel/distributed techniques to the production system
approach. In the late 1970s, works on systems such as Contract Net Protocol [Smith
1980] began, which can be considered as the first phase of research into the Distributed
Artificial Intelligence. The roots of DAI are lodged in biological and social metaphors
and are related to the brain theory, where different neuronal subsystems combine and

exchange signals to work together.

Today, some of the earliest disadvantages of production systems, such as the ability
to automatically modify or add to the rule base, or dealing with approximate reasoning
and uncertainties have been improved by systems such as classifier systems [Kitano et
al 1991] and fuzzy production systems [Kandel 1992]. Yet applying parallel processing
techniques on production rule systems, parallel production systems [Kuo and Moldovan
1992] and developing parallel match algorithms, such as RETE algorithm [Forgy 1982]
and parallel search techniques [Lamont and Shakley 1988] have had great value in
reducing some of the drawbacks of production systems. On the other hand, developing
neural networks offers partial match and flexibility. Further development of the
production systems paradigm can be investigated by combining both symbolic
production systems and fuzzy production systems on a connectionist architecture; a

connectionist fuzzy production system [Kandel 1992].

6
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1.1 Objective of the thesis

The aim of this research programme is to develop a self-organising knowledge
representation language and a corresponding investigation of a suitable parallel
architecture to support it. The mechanism of self-organisation is a selection operating on
populations of production rule-sets, inspired by the role of neuronal groups in the theory
of neuronal group selection (TNGS) [Edelman 1989, 1992].

The theory suggests that the primary mechanism of self-organisation in the brain is a
selection operating on populations of synapses, generated with a high degree of a pre-
existing variance during the development of the brain. The mechanism of selection is
proposed to be changes in the strengths of synapses connecting neural circuits. This
mechanism changes the relative contribution of each such circuit, or neuronal group, to
behaviour, depending on the evaluation of that behaviour by innate mechanisms, known

as value systems [Reeke and Sporns 1993].

After the establishment of the knowledge representation scheme, and the
identification of a supporting parallel architecture, a simulation will be developed to
emulate the behaviour of such a system, which will then undergo a series of tests to
assess its potential benefits. The architecture should offer sufficient computing power to
cope with a larger search space provided by the knowledge representation and suitably
fast methods of processing. After the completion of the simulation, a test-bed will be
defined. The benchmark of the tests to be performed is to assess the suitability of the
language developed and its corresponding parallel architecture. The results will then be

evaluated, and overall conclusions presented.

1.2 Outline of the thesis

Two major research areas of this project are concurrent production systems and
genetic algorithms. The first field provides a background of related work done by other
researchers in the area of parallel/distributed production systems. These are related to
the development of the knowledge representation within this research work. The second
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area, genetic algorithms, has been studied to establish a good understanding of the
theme, and consequently adopting a supporting selectionist mechanism for problem

solving.

The outline of this thesis is as follows. Chapter 2 provides a discussion of recent
research in the field of parallel/distributed production systems. We discuss two popular
methods for improving the slow execution of the production systems, i.e., match level
parallelism and multiple rule firing. Whilst the implementation of match level
parallelism causes no problem for the system, in multiple-rule firing the serialisation
problem may lead to incorrect results. This chapter also presents discussions on
concurrent production rule systems, including parallel production systems, distributed
production systems, and multiple production systems. In Chapter 3, we look at the
Genetic Algorithms as heuristic search methods which have been widely used in many
applications [De Jong and Spears 1989, Matwin et al 1991, Mansour and Fox 1992,
Miller and Todd 1989]. We begin this chapter by highlighting advantages and
disadvantages of the algorithm and present a brief discussion on traditional genetic
algorithm. Important parameters in design of the algorithm are discussed in more detail.
Various implementations including hybridisation and parallelisation, and applications of
the algorithm in task allocation, clustering and automated theorem proving are also
introduced. Chapter 4 introduces the model of inference and problem solving. The
knowledge representation scheme, the inference mechanism for manipulation of the
knowledge, and the structure of knowledge base are also discussed along with a
description of the design of the system. Verification and validation of the simulated
system, testing methodology, criteria for evaluating the behaviour of the system, and
results evaluation are presented in Chapter 5. Chapter 6 is the concluding chapter, in
which we discuss overall conclusions of the project and provide suggestions and

conditions for achieving improved results.



Parallelism in Production Systems

2.1 Introduction

Production rule representation was initially intended as a model of human
information processing, and it continues to occupy a prominent place in artificial
intelligence [Kuo and Moldovan 1992]. Production systems have computationally high
costs and consume significant time for their knowledge processing. It has also been
discovered that as the scale of rule based expert systems increases, the efficiency of
production systems significantly decrease. These drawbacks have restricted the
applicability of production systems to large-scale applications and real time Al tasks
[Moldovan and Parisi-Presicce 1986, Morgan 1988]. Consequently, researchers have
attempted to introduce parallelism into large production systems to extend their
usefulness in practical applications. Several multiple processor architectures and
algorithms have been developed to improve the efficiency of production systems.

Parallel execution of production systems can be investigated in the following ways:

e Parallelism within a rule, which is simultaneous processing of elements forming
a rule, including condition level parallelism in which all of the conditions of a
single production are matched in parallel, and action level parallelism in which
all of the actions of a single production are executed in parallel.

9
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Parallelism between rules; two kinds of parallel algorithms have been developed
to more effectively utilise the parallel processing hardware. One is simultaneous
matching (parallel rule matching) of production rules, which aims to improve the
performance of the match phase of production cycles that consumes up to 90%
of total processing time. Another kind of parallel algorithm is simultaneous
firing (parallel rule firing) of production rules, which intends to remove the
sequential bottleneck made by conflict resolution strategies that fire a single rule
instantiation per cycle, by executing multiple matched rules simultaneously on a
multiple processor system. Production systems, which implement the
synchronous parallel rule firing approaches are known to parallel production
systems, where multiple rules are fired in parallel and globally synchronised in

each production cycle.

Task level parallelism, in which a number of cooperating but loosely coupled
production system tasks execute in parallel. This approach is another way for
scaling up production system technology and deals with developing interaction
mechanisms that allow multiple production systems to work together to solve a
single problem. Research in this area can be classified into two categories: First,
asynchronous parallel production system or distributed production systems,
where multiple rules are fired in parallel without global synchronisation. Second,
multiagent production systems, where multiple production system programs

compete or cooperate to solve a single problem or multiple problems.

Other sources of parallelism in production systems are potentially available, such as
overlapping between phases of the production system cycle. Hierarchies of production
systems may be considered for the purpose of operating at several levels of abstraction
in large knowledge bases. Also, parallelism may be implemented in the control portion

of production systems [Moldovan 1993].

Parallelism in rule matching does not create any problem, in terms of the correctness
of the final solution, whilst parallelism in multiple rule firing may. Only independent

rules can be applied in parallel. These sets of rules will result from the study of the
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interdependencies between rules. Parallelism and distribution in production systems
have been studied by many authors, such as Gupta [1985, 1987], Xu and Hwang [1991],
Dixit and Moldovan [1990], Neiman [1994], Ishida et al [1994, 1992, 1990], Kuo and
Moldovan [1991, 1992], Schmolze [1991], and Stolfo et al [1991].

This chapter provides the descriptions of the work done by others in the area of
parallel execution of production systems. It focuses on recent research efforts, ranging
from research on parallel processing techniques to distributed processing techniques, for

improving the performance of production systems.

Parallel processing techniques, which concern with developing parallel computer
architectures, languages, and algorithms, are directed toward solving the performance
problems of production systems. Distributed systems ranges from tightly coupled
systems, in which there is a completely centralised control mechanism and a shared

knowledge base, to ones in which both control and knowledge are fully distributed.

We begin by discussing the architecture of production systems in the next section.
Section 2.3 describes the structure of various parallel processing systems and presents a
detailed description of one of the early parallel architectures to support the parallel
execution of production rule representation. Section 2.4 introduces the concept of
parallel rule matching in production systems. Section 2.5 is devoted to the topic of
parallel rule firing, including rule interdependencies, compatibility and convergence
problems, which are normally discussed in the parallel rule firing processing. Section
2.6 focuses on distributed production systems and overviews some distributed
production systems. Section 2.7 describes multiagent production systems. The final
section briefly introduces the proposed architecture of the system developed in this

research.

2.2 The architecture of production systems

Production rules are knowledge representation languages used for modelling human

problem solving, and are particularly useful in classification problems [Ringland and
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Duce 1989]. In production rule systems, knowledge is represented by propositions in
the form of working memory elements and rules that are closely related to logical

implications. The architecture of a production rule system includes three components.

The first component is called working memory. It contains a set of working memory
elements representing facts and information about the current state of the problem being
solved. Data in working memory comes from the reasoning that the system has

performed so far, or from the user of the system.

The second component is the rule base that holds general knowledge about a domain.
Rules contain permanent information that applies to all problems that the system may be
asked to solve. A production rule is a condition-action pair C = A, where C is a set of
conditions, and A is a sequence of actions. The production rules can be expressed in
equivalent pseudo-code IF THEN formats. If all conditions in a production rule are

satisfied, then the sequence of actions is executed.

The inference engine or interpreter is the third component in a production rule
system, and is utilised to execute the rules. It must determine which rule(s) should be
executed on each cycle, because working memory may match the patterns in more than
one production rule. The inference engine may be described as consisting of three action
states, match-rules, select-rule, and execute-rule. Two global control decisions made by
the inference engine are forward and backward chaining. Forward chaining is the most
natural global method for production rule systems [Barr et al 1989]. Forward chaining is
breadth-first search facilitated and backward chaining is depth-first search facilitated.
EMYCIN [van Melle 1981] uses a rule based knowledge representation scheme with
backward chaining mechanism. OPS5 [Browrston et al 1985] is a general-purpose
knowledge engineering language, which uses a rule based representation scheme that

works using forward chaining as its inference method.

In the match-rules state, the inference engine matches the data in working memory
against the conditions of the rule set. Those rules whose conditions match are put into
the conflict set. In the second state, select-rule, one of the rules in the conflict set is

selected (conflict resolution) for execution. Various strategies have been suggested for
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conflict resolution. For example, a simple strategy is to take the first rule in the rule
base that matches. Others include exploring all the applicable rules in parallel, choosing
a rule arbitrarily, selecting a different rule in successive stages, and firing rules
according to their priorities. McDermott and Forgy [1978] have concluded that a simple
conflict resolution strategy cannot be completely satisfactory. Different systems use
different combinations of the conflict resolution methods. Conflict resolution strategies,
such as the OPS5 LEX and MEA strategies, uniquely determine the execution path for a
given production system program in a depth-first fashion based on the recency of

working memory time tags and the specificity of the rules.

In the execute-rule state, the action part of the selected rule is performed. This leads
to the addition of new elements to working memory and the deletion or modification of

existing facts.

The advantages of using production rules lie in their naturalness for expressing the
type of heuristic knowledge, or rules of thumb. Production rule systems are very
modular. Permanent knowledge stored in a rule base is distinguished from the
temporary knowledge represented by working memory elements. The inference engine
is independent of the knowledge encoded in the rule base and working memory. Each
production rule represents a specific piece of knowledge that is completely independent
of other rules. Thus, updating the knowledge base becomes much easier. The
modularity of the knowledge base simplifies constructing and maintaining rules. The
only way in which rules in a rule base can communicate with each other is through the
working memory. Production rule systems can have explanation facilities, which are

used for debugging or learning purposes.

One of the disadvantages of using production systems is that the matching involved
in the match-select-execute is an inherently inefficient computational process, and

nearly all of run time processing is wasted in this stage [Gupta 1985].

Before discussing parallel processing of production systems, it seems to be

appropriate to first review several classes of parallel architectures.
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2.3 Parallel architectures

Within the four categories of Flynn’s [1972] classification of computer architectures,
three architectures identify the parallel processing systems: SIMD (single instruction
stream, multiple data stream), MISD (multiple instruction stream, single data stream),
and MIMD (multiple instruction stream, multiple data stream) architectures. In a SIMD
architecture, many identical processors simultaneously execute the same instructions on
different data. Processors can also transfer data amongst themselves through an
interconnection network. In a MISD architecture, several instructions would apply to a
single piece of data. This class of machines has been considered as impractical or
impossible [Trew and Wilson 1991]. An alternative is to consider a class of machines in
which the data flows through a series of processing units [Zargham 1996]. These types
of machines are considered as pipeline architectures. Pipeline architectures perform a
series of stages, each of which performs a particular function during a specified period
of time, producing an intermediate result. In a MIMD architecture, several independent
processing units intercommunicate over an interconnection network. MIMD machines

have the ability to perform multiple tasks in the same time, concurrent to each other.

Most proposed taxonomies consider the SIMD and MIMD classes of Flynn’s
classification as two general classes of parallel processing [Hord 1993]. However,
advances in computer technologies have created new architectures, such as hybrid
architectures and artificial neural networks [Maren et al 1990] that cannot be clearly

defined by Flynn’s taxonomy.

The parallel systems of the MIMD class fall into two categories: Shared memory
multiprocessor (tightly coupled) and message passing multicomputers (loosely
coupled). A tightly coupled multiprocessor can be considered as a parallel computer
consisting of several interconnected processors that share a memory system. The
processors in a multiprocessor system communicate with each other through shared
variables in a common memory. The interconnection network connects each processor
to some subset of the memory modules. Direct interprocessor communications are
supported by optional interprocessor communication networks, instead of through the
shared memory. Each processor can execute a different part of a program or they can all
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execute different programs simultaneously. A transfer instruction causes data to be
moved from each processor to the memory to which it is connected. Distributed
memory multicomputers correspond to loosely coupled MIMD systems with distributed
local memories attached to each processing element. A multicomputer system can be
viewed as a parallel machine in which each processor has its own local memory. In
multicomputers the main memory is distributed among the processors. This means that
a processor only has direct access to its local memory and cannot access the local
memories of other processors. The interconnection network connects each processing
node, consisting of a processor and a local memory, to some subset of the other
processing nodes. Message passing is the most popular communication method used to

transfer data between the computing nodes in a multicomputer system.

Hwang et al [1987] have presented a taxonomy of computer architectures for
artificial intelligence processing. One of the AI machines in this taxonomy are
knowledge-based machines, which support particular knowledge representations such as
semantic networks, production rules, or frames. In particular, production systems are a
type of knowledge-based machine, supporting production rule representation. To
improve the efficiency of production systems, several parallel architectures have been
investigated. For instance, the parallel architecture for executing production rules has
been implemented by Stolfo and Miranker [1986] for DADO, Shaw [1985] for NON-
VAN machine, Moldovan [1989] for RUBIC, and others. Other parallel systems such as
PARS [Winston 1984], PSM [Acharya and Tambe 1989] and CREL [Miranker et al
1990] have been simulated. A survey of parallel architectures for executing production

systems can be found in [Kuo and Moldovan 1992].

Although there have been attempts to implement production systems on SIMD
machines [Bahr et al 1991], MIMD architectures better match the needs of production
system algorithms [Gupta and Tambe 1988]. In the following section we review the
DADO machine, which is designed as a production rule based system, using a database

of productions to derive conclusions and a database of facts with a method of inference.
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2.3.1 DADO architecture

DADO2 [Stolfo 1987] is the second implementation of a class of machine
architectures, termed DADO [Stolfo et al 1981] and uses a forward-chaining strategy.
The DADO class of machines is characterised by a binary tree topology, fast broadcast
from root to leaf and the ability to segment the tree into sub-trees working in multiple
SIMD fashion. Different implementations differ in the number of processing elements
(PEs) and the granularity, memory capacity, and processing power of each PE. DADO2
is a medium grained tightly coupled parallel machine with 1023 nodes arranged in a 10-
level binary tree. Each node consists of an 8-bit microprocessor, 64K of RAM, and a
switch. The switches can broadcast 1 byte from root to leaf in one instruction cycle.
DADO?2 can divide itself into sub-trees that can then work independently on matching
productions. Each node can operate in either MIMD or SIMD mode. In MIMD mode, a
node will ignore all instructions from nodes higher up the tree and execute instructions
stored in local RAM independently of the other PEs. In SIMD mode, it executes
instructions from higher nodes. The upper levels of the tree perform the select and fire
phases, together with synchronisation. The middle level of the tree operates in MIMD
mode during the match phase, and the leaves store the facts and carry out the lower
level pattern matching. When the leaves complete their tasks, the results of successful
matches are sent back up the tree. In effect DADO2 can function as a multiple-SIMD
machine. A single conventional host processor adjacent to the root of the DADO tree

controls the operation of the entire set of PEs.

2.4 Parallel rule matching

Investigations into speeding up the match-state of production systems can be divided
into two categories: Speeding up the match phase by faster sequential match algorithms,

and speeding up the match phase by parallel processing techniques.

Moldovan [1993] has divided the match algorithms into two types of state-saving

and non-state-saving algorithms. In a non-state-saving algorithm, each rule is matched
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with every working memory element in each match-select-execute cycle. As a result,
the performance for these kinds of algorithms is very slow. The basic idea behind a
state-saving match algorithm is that the state of the match is stored. Then, by updating
the changes to the match state caused by the changes to the working memory, a new set
of eligible rules is easily determined without redundant matching. The state-saving
algorithms are faster sequential match algorithms. The RETE match algorithm [Forgy
1982], used by uniprocessor implementations of OPS5 [Browrston et al 1985] and
SOAR [Laird et al 1987], is an example of a state-saving algorithm. The RETE
algorithm uses a special kind of a data-flow network compiled from the left-hand sides
of productions to perform a match. Because only a small fraction of the working
memory component changes in each cycle, the algorithm stores results of match from
previous cycles and uses them in subsequent cycles. The RETE algorithm also utilises
the similarity between condition elements of productions and then performs common
tests only once. These two features combined together make the RETE a very efficient
algorithm for match. Other improved sequential algorithms such as YES/RETE |
[Highland and Iwaskiw 1989] have been proposed. Miranker [1987] has proposed the
TREAT match algorithm, which was designed for fine-grained parallel processor
systems. The RETE and TREAT algorithms are the best known state saving algorithms,
which avoid recomputations of comparisons done in previous match-select-execute
cycles. Both algorithms map the patterns of the LHSs of the rules to nodes of a network.
Speedups of 4 to 10-fold were reported for a number of production systems when faster

match algorithms were used.

Another approach to improve the match phase is to apply parallel processing
techniques. The parallel match systems enhance the performance of production
programs by parallelising the match phase. Many efforts have tried to parallelise the
match state, while leaving the system to continue executing only one rule at a time.
Research on parallel rule matching started with the DADO project [Stolfo et al 1981]
followed by the PSM project [Gupta et al 1986]. Stolfo and Miranker [1986] offered
parallel match algorithms for DADO. Since the parallel rule matching does not affect
the semantics of the production system programs, most of the research has focused on

partitioning the RETE network and mapping the partitions to parallel processors. Forgy,
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who first proposed the RETE algorithm for speeding up the matching operations in
uniprocessor production systems, then adopted it for parallel environments [Harvey et al
1991].

Parallel match algorithms have been investigated on shared memory multiprocessors
and message passing multicomputers. The PSM machine, on which Gupta implemented
the paralleled RETE algorithm, is a shared memory multiprocessor and exploits very
fine-grained parallelism. Paralleled RETE algorithm has also been developed by Gupta
and his colleagues and simulated on the Nectar simulator, a message-passing computer
[Kuo and Moldovan 1992]. For most of these works, maximum speedups realised by
these approaches are about 10 times the fastest sequential version of OPS35, independent
of the number of processors used [Gupta 1987]. However, there are some exceptional
cases such as DRETE [Kelly and Serviro 1989], where speedups of 23-fold for match
algorithms are reported. One reason for limited speedups for parallel match systems is
that only a small number of changes to working memory occur in each cycle. These
investigations have shown that the total speed up available from this source is
insufficient to improve the problem of slow execution in large-scale production system
implementations [Xu and Hwang 1991]. Then continuing to speed up the match phase
alone will not provide significant overall performance improvement for production
systems [Kuo and Moldovan 1992]. This problem can be further improved by allowing

multiple rules to fire concurrently.

2.5 Parallel production systems

Parallel production systems are the results of efforts that have aimed to reduce the
total number of sequential production cycles by executing multiple matching rules
simultaneously on multiprocessor architectures. In a parallel rule firing system, many
rule instantiations are fired in parallel to reduce the total number of sequential cycles
and these are globally synchronised at the select phase. In a parallel firing model, it is
not assumed that only one rule is chosen in the select phase, rather the firing of multiple

rules simultaneously on multiple processors will be proposed. Firing multiple rules in
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parallel produces a larger number of changes to the working memory in one cycle,
where the whole conflict resolution set is fired in each cycle. The SOAR production
system language takes the parallel rule firing approach [Gupta 1985]. In SOAR there is
no conflict resolution phase and multiple productions can fire in parallel. The SOAR
production system programs can also improve their performance over time by adding

new productions at run time.

Synchronous production firing systems require synchronisation in the select phase of
the match-execute cycle. All the productions can be matched in parallel but
synchronisation must occur in the resolve phase in order to select the production or set
of productions to fire next. In the execute phase, the selected productions can be fired in

parallel.

The parallel rule firing mechanism was first investigated by Ishida and Stolfo [1985],
followed by Moldovan [1986]. Later Schmolze [1991], Kuo and Moldovan [1992],
Kuo, Miranker, and Browne [1991] addressed this problem. Parallel rule firing systems
can be coupled with parallel match algorithms to obtain further performance
improvement in addition to the speedups from the match phase, by firing multiple rule

instantiations in a production cycle.

Since the parallel firing model allows multiple rules to be fired in parallel,
programmers are thus not required to prioritise rules or assume any particular conflict
resolution strategy [Ishida 1994]. Unlike parallel rule matching, results from parallel
rule firing may differ from the sequential firing of those rules in an arbitrary order. To
solve this problem interference analysis techniques should be applied and detected in
the select phase. Parallel rule firing explores medium grain parallelism between rules.
This method is often implemented on a message passing multicomputer with distributed

memories [Xu and Hwang 1991].

Understanding the parallel rule firing approach requires discussion on the following

topics.
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2.5.1 Rule interdependencies

Rule dependencies were first proposed independently by Ishida and Stolfo [1985],
and Tenorio and Moldovan [1985]. The main results were the formulation of
dependencies between production rules. The graph grammar theory [Ehrig 1979]
provided the mathematical foundation for studying rule interdependencies and

subsequent parallelism.

For a pair of rules three types of dependencies can be defined: Inhibit dependence,
output dependence, and enable dependence [Moldovan 1993]. Inhibit dependence
occurs when the firing of one production rule deletes or adds working memory elements
such that the condition part of another production rule is no longer satisfied. Output
dependence occurs when the working memory elements that are added by the firing of
one production rule are deleted by the firing of another production rule. Enable
dependence occurs when the firing of one production rule deletes or adds working
memory elements such that the condition part of another production rule may then be
satisfied. Two rules are said to be compatible if they are neither inhibit-dependence nor
output-dependence. It has been proved that for any two compatible rules the result of
sequential and parallel processing of rules is equivalent. The above discussion is also
valid for inter rule instantiation dependencies [Kuo and Moldovan 1992]. Data

dependence analysis is sufficient to determine compatible rules.

2.5.2 Compatibility problem

In a serial production system, a conflict resolution strategy selects one instantiation
to execute in each cycle, while in multiple rule production systems, a subset of
matching instantiations is selected to fire. This can yield results that are impossible for a
serial system to produce, leading to erroneous behaviours. This problem can be
addressed by the compatibility and convergence problems. The problem of finding a set
of compatible rules that are allowed to fire simultaneously, i.e., the resulting working

memories are the same in both sequential and parallel is called the compatibility
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problem by Moldovan [1986], serialisation problem by Schmolze [1991], and
synchronisation problem by Ishida and Stolfo [1985].

Most work in this area is based on data dependency graphs to detect interference
among rules. Early works regarding this problem are based on compile time analysis to
determine which rules may be fired in parallel from the conflict set. Ishida and Stolfo
[1985] first identified the compatibility problem underlying parallel rule execution.
They defined synchronisation as a solution for the serialisation problem by
synchronising certain pairs of instantiations, i.e., prohibiting certain pairs from co-
execution. These authors produced, at compile time, a compatibility matrix. Rules that
could potentially interfere with each other were labelled as incompatible. At run time,
incompatible rules were prevented from being executed simultaneously. The select
phase makes sure that no two instantiations are executed simultaneously for rules that
cannot coexecute, i.e., a pair of rules that cannot simultaneously execute are
synchronised. This approach, which is based solely on compile time analysis does not

guarantee the serialisable behaviour in the system.

Later Schmolze [1989] and Ishida [1990] independently improved this framework.
Their work was based on an additional run time analysis to detect interference amongst
instantiations, rather than amongst rules, by combining compile time and run time
analysis. Therefore, if interference could be roughly analysed at compile time, then run
time analysis process would not take much time. Schmolze developed a number of
algorithms, with various increasing degrees of precision and cost. These algorithms
require obtaining the binding of variables by tests that have to be executed at run time.
He synchronises instantiations not only rules whose instantiations might interference.
One instantiation disables another if executing the first would cause the second to match
no longer. This occurs if the first one deletes (adds) a WME that the second one
matched positively (negatively). Run time analysis consumes considerably more time
than compile time analysis. The trade-off is to perform less work at run time and more
work at compile time. Combining compile and run time analysis is a formal solution to
the problem of guaranteeing serialisable behaviour in synchronous parallel production
systems that executes many rules simultaneously. Ishida’s model of a parallel firing
system [1991] guaranteed serialisability by combining the compile and run time
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analysis techniques based on data dependency analysis to permit efficient and accurate
interference detection. His model detects interference in the select phase, choosing as
many instantiations as possible as long as interference does not occur among selected

instantiations, firing rules according to the selected instantiations simultaneously.

Most parallel rule firing systems reported in the literature employ some form of rule

interaction analysis [Kuo et al 1991, Kuo and Moldovan 1992, Stolfo et al 1991].

The advantage of compile time analysis is that the computations are done before
processing. The disadvantage is that only partial data dependence analysis is possible,
due to the presence of variables in production systems. These ambiguities can be
resolved at run time when the variables are explicitly bound. Compile time analysis
checks the dependencies between rules and then introduces less parallelism. This
checking process alone cannot definitively determine whether two rule instantiations are
in conflict, but rather it can determine that they may be in conflict. This approach
usually refuses concurrent execution of two rule instantiations that believed to be in

conflict if they are actually not.

Run time analysis is more complete than compile time analysis. At run time all
variables are bound and it is possible to analyse the data dependencies between rule
instantiations instead of just between rules. This increase in parallelism comes at the
cost of increasing computation time. As a result, most researchers propose a mixture of
compile time and run time analysis. The idea is to use the compile time result for most
of the compatibility checks and to use the run time analysis only when the compile time
analysis does not give a precise answer. Run time analysis approaches suffer from
synchronisation, and testing of possible rule conflicts is expensive in time and

decreasing parallel performance.

2.5.3 Convergence problem

In a parallel rule firing system, finding a solution for the compatibility problem is not

sufficient to guarantee the correctness of the final solution. Correct solutions are not
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always reached when multiple compatible rules are fired [Moldovan 1993]. This is
because not all compatible rules in an inference cycle should be fired if they are to
produce correct solutions. Kuo and Moldovan [1992] first pursued the convergence
problem. Their motivation is to ensure the correctness of the parallel rule firing. The
convergence problem is concerned with firing only rules that achieve correct solutions.
Correctness of parallel rule firing in parallel production systems is called the
‘convergence problem’ [Kuo and Moldovan 1992]. The convergence problem is caused
by violation of the problem solving strategy. Firing compatible rules arbitrarily without
taking into consideration the problem solving strategy can result in incorrect solutions.
The convergence problem can be resolved by applying the idea of nondeterministic

execution system or by developing a parallel conflict resolution strategy.

In a nondeterministic production system, a rule instantiation is chosen arbitrarily and
fired without the help of conflict resolution strategy. The correctness of a
nondeterministic program is guaranteed by proving that all possible execution
sequences reach the correct solution. Since all execution sequences reach the correct
solution, firing a set of compatible rule instantiations in a nondeterministic production

program is guaranteed to reach the correct solution [Kuo et al 1991].

One solution for the convergence problem is developing a parallel conflict resolution
strategy in the format of a set of meta rules. The inputs to the meta rules are the matched
rule instantiations [Stolfo et al 1991]. A set of noninterfering rule instantiations can be

selected by meta rules and fired.

2.5.4 Rule distribution

Parallel rule firing explores medium-grain parallelism between rules. This method is
often implemented on a message passing multicomputer architecture with distributed
memory. The execution of a production system on a multicomputer involves the
problem of partitioning the rules among the processors, where each production set has
its own conflict set. The production system program is partitioned into several parts so

that the processing required by productions in each partition is almost the same, and
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then each partition is allocated to one processor. Each processor works from its local
memory and communication between processors is required. The aim is to partition the
rules to processors such that the total cost of communication is minimised. In the
extreme case, the number of partitions equals the number of productions in the program,
so that the matching for each production in the program is performed in parallel. In
general, the number of rules in an expert system is often much greater than the number
of nodes in a multicomputer system. Thus many rules may be allocated to a single node.
The assignment of production rules to nodes has a great impact on the overall system
performance. For example, if two rules have to communicate with each other, assigning
them to different nodes will take longer to communicate. The task of partitioning is
difficult because good models are not available for estimating the processing required
by productions, and also because the processing required by productions varies over
time. Another difficulty is to find partitions of the production system that require the
same amount of processing, i.e., assigning a balanced workload to all nodes. To find an
optimal allocation of the production rules has been proven as an NP-complete problem
[Harvey et al 1991].

This distribution could be done automatically or with the help of the user [Miranker
et al 1990]. A decomposition algorithm is proposed to find an optimal partition or
distribution of given production rules onto multiple processor elements, so that the gain
of parallel rule firing increases as much as possible. Ishida and Stolfo [1985] have
outlined a method of decomposing production system based on the data dependency
graph. Dixit and Moldovan [1990] have proposed a method to solve the allocation
problem using a heuristic method, the A* algorithm. However, their method introduces
an overhead, which increases rapidly with the number of rules in a system. Xu and
Hwang [1991] have presented a simulated annealing method to achieve a balanced
processing of rule-based systems on a multicomputer. Their main purpose is to
minimise communication costs in message passing among nodes. Their method is an
improvement over previous approaches. A cost function is introduced to minimise load

‘imbalance and expected communication cost.
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2.5.5 Parallel rule firing models

Several parallel rule-firing models have been proposed, but few simulation and
implementation results have been presented [Kuo and Moldovan 1992]. This is because
the problems associated with parallel rule firing have not been thoroughly investigated.
Problems to be considered are how to select a set of rules which do not interfere with
each other, and how to ensure that the parallel execution reaches the goal states.
Implementations of parallel rule firing on hardware systems include PARULEL [Stolfo
et al 1991], CREL [Kuo et al 1991] and RUBIC [Moldovan 1989]. Moldovan designed
RUBIC and used synchronisation at the rule level to guarantee serialisability, allowing
two rules to execute simultaneously if, and only if, neither can disable the other. CREL
(Concurrent Rule Execution Language) has been developed by Miranker et al [1990].
CREL addresses the compatibility problem by analysing the inter rule data
dependencies at compile time. Rules are divided into clusters such that rule
instantiations for rules belonging to different clusters can be executed in parallel. Run
time analysis is needed to select and fire instantiations in the same cluster
simultaneously. The convergence problem is resolved by ensuring that all eligible serial
execution paths reach correct goals. It is the programmer’s responsibility to write a

CREL program and to ensure that it is correct.

PARULEL [Stolfo et al 1991] focus on rule instantiations and not simply the rules
themselves. It does not perform compatibility or convergence checks, but allows these
requirements to be encoded as the meta-reaction rules. The meta rules give the
programmer finer control of production program execution. First, all rules that are
matched and whose instantiations enter the conflict set are intended to be fired in
parallel. It uses a set of meta rules, called reaction meta rules, to eliminate rule
instantiations from the conflict set prior to parallel firing. Meta rules constitute a
programmable conflict resolution scheme. The programmer provides meta-level rules
that dictate the conditions when two rule instantiations are in conflict, and which
instantiations need to be deleted from the conflict set. It is the programmer’s
responsibility to write correct meta rules such that the selected rule instantiations do not

interfere with each other. The selected rule instantiations are fired in parallel. The
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advantage of this approach is that there is no need to add run time synchronisation
control, eliminating the associated overhead. The disadvantage of this approach is that a
programmer may not specify a complete set of correct meta-rules, thus developing a

program that is not conflict-free.

Kuo and Moldovan [1992] present three multiple-rule firing models: The rule
dependence model (RDM), the single context-multiple rules model (SCMR), and the
multiple-contexts-multiple-rules model (MCMR). The RDM model, fires a set of
noninterfering rules by analysing the inter rule data dependencies. This model provides
speed advantages, but sometimes fails to reach the correct solution as provided by
sequential firing. The SCMR model addresses the convergence problem by restricting
the number of parallel rules fired. A production program is divided into its constituent
tasks, called contexts. In the SCMR model, the contexts are fired one at a time. Parallel
rules within a context may fire simultaneously. The MCMR model improves the
parallelism over the SCMR model by executing multiple contexts at a time. The RDM
model addresses the compatibility problem using inter rule data dependence analysis.
The SCMR and MCMR models address both the compatibility (caused by interfering
rules) and convergence problems (correctness of parallel solutions). The MCMR model
has been simulated on the RUBIC simulator. The MCMR model addresses the
compatibility and convergence problems at two levels, the context and program levels.
Production rules can be divided into rule sets (contexts) according to the tasks that they
perform. A control flow diagram is derived by analysing the interactions between
different contexts. At context level, the conflict resolution can be eliminated and
compatible rule instantiations can be fired concurrently for converging contexts. For a
sequential context, rule instantiations are executed serially. At the program level only
compatible contexts can be activated. Two contexts are compatible if they do not
contain rule instantiations that have data dependence with rule instantiations in the other

context, and executing the contexts concurrently does not violate the control flow.

Parallel production model proposed by Ishida [1990] resolves the compatibility
problem by data dependence analysis coupled with a selection algorithm and the

convergence problem by grouping rules into parallel and sequential rule sets. It is the
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programmer’s responsibility to ensure that rule instantiations in a parallel rule set do not

interfere with each other.

A number of other works have concentrated on multiple rule execution production
systems, not all of which guarantee serialisability. For example, BLITZ [Morgan 1988]
provides mechanisms to control which rules can simultaneously execute but leaves this

responsibility to the programmer.

The evaluation results of several production system applications show that the degree
of concurrency can be increased by a factor of 2 to 9 by introducing parallel rule firing
[Ishida et al 1992].

2.6 Distributed production systems

Distributed production systems (asynchronous production systems) are a special case
of distributed problem solving systems. Research in distributed problem solving
systems considers how the work of solving a particular problem can be divided among a
number of nodes that cooperate and share knowledge about the problem and about the
developing solutions. There are many reasons for distributing intelligence. First, many
Al applications are inherently distributed, especially functionally or temporally. Second,
to increase the speed of the system or efficiency and achieving faster problem solving
by exploiting parallelism. Third, desire to distribute control to reduce the degree of tail.
Forth, to simplify the development and design of systems by building these as

collections of separate, but interacting parts (modular design and implementation).

A distributed production system is composed of a set of separate modules or
production system agents and a set of communication paths between them. Each module
is usually expected to behave as a problem solving entity in its own right. To perform
domain problem solving by multiple production system agents however, each agent
needs knowledge that represents the necessary interactions amongst production system

agents. Each production system agent is a production system capable of interacting with
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other agents. It consists of an interpreter, a part of the domain knowledge and domain

data. Each production agent has its own conflict set.

For asynchronous execution of production systems, the theory of parallel rule firing
is extended to distributed rule firing, where problems are solved by a society of
production system agents using distributed control. In asynchronous production firing
systems, rules are distributed amongst multiple processors and fired in parallel without
global synchronisation in production systems. Thus, these systems do not have distinct
match, select, and execute phases across the parallel system. Distributed production
systems achieve speedup over synchronous parallel production systems by eliminating
synchronisation bottlenecks [Schmolze and Goel 1990]. In a collection of distributed
production system agents, rules are asynchronously fired by distributed agents.
Advances in hardware technology make it possible to connect large numbers of

processing units that execute asynchronously.

As already described in previous sections, interference exists among rule
instantiations when the result of parallel execution of rules is different from the results
of sequential execution applied in any order. For distributed production systems, only
compile time analysis has benefit because run time analysis requires global

synchronisation, which is too expensive in distribute situations.

Schmolze and Goel [1990], Ishida [1994], Ishida et al [1990], and Neiman [1994]
have studied distributed rule firing to eliminate synchronisation overheads in parallel
rule firing. Schmolze [1990] has proposed an asynchronous distributed production
system, called PARS. Production rules and WMEs are distributed amongst the
processors, and each processor executes the inference cycle asynchronously. The inter
rule data dependence are analysed at compile time. To ensure that incompatible rule
instantiations are not fired simultaneously, disable messages are sent between
processors. Each processor selects a rule instantiation from its locally matched rule
instantiations. Before firing a rule instantiation in a processor, the set of rules that are
incompatible must be disabled. Disabled messages are only sent to processors that
contain incompatible rules with higher priority. To prevent a cyclic disable message

between production rules, they are prioritised and higher priority rules may fire as soon
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as they matched. The selected rule instantiations are fired in the act phase and the
changes to the working memory are updated by message passing. One way to improve
the performance of the system is to allow each processor to select and fire multiple rule
instantiations in a cycle. In addition, the PARS system also needs to address the

convergence problem.

Neiman [1994] presents an asynchronous rule firing approach that allows rules to
execute as soon as they become instantiated, therefore avoiding synchronisation delays.
In his model, eligible rules are placed in an eligibility set, undergo processing or
working memory locking scheme to ensure that they do not conflict with other eligible
rules, and then placed on an execution queue. A single dedicated processor is
responsible for the conflict resolution/locking/scheduling phases. The rate at which
rules can be processed depends on the rate at which this scheduling process can place
rules into the execution queue. The working memory-locking scheme presents a number
of advantages. The overhead of maintaining correctness during rule firing is low. It is
not necessary to compare each eligible rule against all others, so rules may fire
asynchronously and the synchronisation bottleneck is removed. No compile time
analysis is required. The primary disadvantage of the working memory-locking scheme
is that it does not guarantee serialisable problem. Serialisable executions will result by
prohibiting cyclical disabling relationships from rule instantiations. However, a locking
scheme cannot prevent rule instantiations due to negated condition elements in rules.

The programmer is responsible to ensure the correctness of the program.

Ishida [1994] defined a production cycle model of distributed production system
agents by extending the conventional match-select-execute cycle to solve inter agent
data transfers and synchronisation. Inter agent inconsistency caused by distribution is
locally resolved by using temporary synchronisation via rule deactivation. His
distributed firing protocol for each agent is as follows: Each agent may receive/send a
synchronisation request, a synchronisation release and a MW modification message
from another agent. When an agent receives a synchronisation request message from
some agent, it deactivates the corresponding rule until receiving a synchronisation
release message from the same agent. When receiving a WM modification message, it
updates the local working memory to reflect the change made in another agent’s WM.
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For each rule, match the conditions with the current WM. Choose one instantiation of a
rule that is not deactivated. Using interference knowledge, send synchronisation request
message to the agents requiring synchronisation and handle all WM modification
messages that have arrived during synchronisation. If the selected instantiation is
deactivated send synchronisation release messages and restart the production cycle.
Otherwise, fire the selected rule instantiation. Using the data dependency knowledge,
inform dependent agents with WM modification messages. Send synchronisation

release message to all synchronised agents.

The organisation self design approach proposed by Ishida et al [1992], is a technique
for building problem solving production systems capable of adapting to changing
environmental conditions. This approach can complement other approaches currently
developed for real time expert systems, such as approximate processing techniques and
adaptive intelligent system [Hayes-Roth et al 1989]. Ishida’s approach is based on
reorganisation of a collection of problem solvers, where problems solved by a society of
distributed problem solving agents, with the aim to achieve adaptive real time
performance. Authors introduced new reorganisation primitives, composition and
decomposition of agents, and reported an actual performance of reorganisation in real-
time. Organisation self design is performed in the following way: Initially, only one
agent knows about all domain and knowledge about relationships among agents (data
dependencies, interference, and locations of domain rules), exists in the organisation.
The organisation knowledge for the initial agent is prepared by analysing its domain
knowledge before execution. For effective reorganisation, agents implement the
decomposition or composition primitives for each situation. Decomposition divides one
agent into two, to increase parallelism. Composition combines two agents into one, to
save computing resources for cost-effective problem solving or to reduce response time
(when communication overheads cannot be ignored). Composition and decomposition,
which change the population of agents and the distribution of knowledge, can be
performed simultaneously in different parts of the organisation. These primitives are
made solely on the basis of firing ratios, and the choice of rules to transfer is made

arbitrarily. Moreover, partial knowledge transfer among existing agents can be
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combined with the composition and decomposition to provide a flexible and distributed

task-sharing system.

Previous research on reorganisation typically aimed at changing agent roles or inter
agent task ordering, such as the contract net [Davis and Smith 1983] and [Durfee and
Lesser 1987]. The contract net framework utilises the negotiation as a fundamental
mechanism for interaction. Blackboard systems are organisation self design systems that

inherently decomposable and consist of independent knowledge components.

The blackboard architecture is a problem solving approach initially developed for the
HEARSAY-II [Fennel and Lesser 1981] speech-understanding systems and applied to
the variety of other problem domains, such as vision [Hayes-Roth 1985]. It considers
problem solving as an incremental process of assembling a satisfactory configuration of
partial solutions. It is based on three basic assumptions: (1) All partial solutions
generated during problem solving are recorded in a global database called the
blackboard. (2) Partial solutions are generated and recorded on the blackboard by
independent processes called knowledge sources (KSs). (3) On each problem solving
cycle a control mechanism chooses a single KS activation record to execute its action.
The common mechanism is a sophisticated scheduler that uses a variety of criteria such

as expected value of the knowledge sources action.

In a blackboard system, the rule base is divided into different KSs, each of which can
be regarded as a representation of the knowledge relevant to a particular subsystem
within the larger problem that the system is trying to solve. Each knowledge source has
its own interpreter. Knowledge sources communicate with each other through the shared
blackboard. The blackboard thus has a similar function to working memory in a
traditional production system. In computational terms, the blackboard is a shared
memory and each KS is a modular piece of software, an expert on processing
hypotheses that satisfy a particular pattern. When a hypothesis matches a particular
pattern in the KS, the KS does some amount of processing and then sends new
hypotheses to the blackboard. This will then cause another KS to be invoked. Detecting
and responding to a suitable solution can be the task of a dedicated KS that compares

hypothetical solutions against thresholds for completeness and confidence, or it can be

31



Chapter 2. Parallelism in Production Systems.

itself be a distributed process. The blackboard controlled by having a prioritised agenda
of potential KS executes, each rated by how well the KS expects to perform on the
current data. On each cycle, each knowledge source notifies a global interpreter where
there is new information on its partition of the blackboard that it can use to derive yet
more information. The global interpreter then makes a control decision about which
knowledge source to execute. The global interpreter selects one of the knowledge

sources for execution.

The blackboard architecture has the advantage of providing an asynchronous
communication link (the blackboard) among independent KS modules. Expertise can be
added to the overall system incrementally by introducing more and more KSs. Because
KSs are involved based on patterns of entries on the blackboard, KSs never have to be

aware of other KSs.

2.7 Multiagent production systems

Multiagent systems have been considered as another arena of DAI [Bond and Gasser
1988]. Research on multiagent systems is concerned with coordinating intelligent
behaviour among a collection of autonomous intelligent agents, how they can
coordinate their knowledge, goals, skills and plans jointing to take action or solve
problems. Agents in a multiagent system may be working on a single task or separate
individual tasks that interact. Ishida [1994] first extended the theory of parallel and
distributed production systems to create a basis for multiagent production systems.
Similarly, in a multiagent production system multiple production system agents
compete or cooperate to solve a single problem or multiple problems. According to the
distribution of production rules and/or working memory over the processors, multiagent
systems can be classified into shared memory and distributed memory multiagent
production systems [Ishida 1994]. In a shared memory multiagent production system,
production system interpreters access to their own production memories and to one
shared working memory. A transaction manager executes transactions concurrently

produced by the multiple production system interpreters. In a distributed memory
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multiagent production system, production system interpreters access to their own
production memories and working memories. Shared information is distributed among
different working memories. In this case, multiple transaction managers, corresponding
to production system interpreters, provide an integrated view of distributed working
memories. Then, the consistency of distributed working memories is maintained
through cooperation between multiple transaction managers. The main issue, in both
models, is how to provide a transaction model that guarantees the consistency of shared
working memory or shared information distributed among multiple production system
interpreters. Ishida has proposed a transaction model based on a shared working
memory information architecture. An efficient concurrency control protocol called the
lazy lock protocol is introduced that guarantees inter agent consistency. A new problem
in multiagent production systems is the inter-transaction consistency problem. A
solution to overcome this problem is presented. However, it needs to guarantee inter-

transaction consistency.

At the end of this chapter, it is appropriate to review the aim of this research more
technically and introduce the parallel architecture suitable for this model of problem
solving. Research in this project has focused on a distributed problem solving
architecture and considers how the work of solving a particular problem can be divided
among a number of production systems that cooperate and share knowledge about the
developing solutions. The domain knowledge, in the format of production rules, is
distributed over the processors. Shared information is distributed among clusters of
different processors. Clusters’ supervisors cooperate with each other to provide an

integrated view of distributed shared information among the clusters.

2.8 Appropriate parallel architecture

The parallel architecture suitable for this model of knowledge representation, which
could be used as the basis for developing a parallel language, can be suggested by

treating several major considerations. Theses include network topology, timing method,
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switching methodology and a control strategy [Almasi 1985]. Static topologies are
appropriate for problems whose communication patterns can be predicted reasonably
well, whereas dynamic topologies (switching networks) are suitable for a wider class of

problems.

Timing methods are available in synchronous and asynchronous modes. When the
network requires a synchronous stream of instruction or data, a synchronous
communication system is required. Synchronous communication seems an appropriate
choice for SIMD machines, because most SIMD machines transmit data at the same
time. When connection for an interconnection network is proposed dynamically, an
asynchronous communication system is required. In MIMD machines, processors are

free to execute separate instructions and this means they are inherently asynchronous.

The three main types of switching methodology are circuit switching, packet
switching, and integrated switching. Circuit switching establishes a complete path
between source and destination and holds this path for the entire transmission. It is best
suited for transmitting large amounts of continuous data. In packet switching, data items
are partitioned into fixed sized packets. Packet switching has no dedicated physical
connection setup. It is most useful for transmitting small amounts of data. Most SIMD
machines use circuit switching, while packet switching is most suited for MIMD
machines. The combination of circuit and packet switching is called integrated

switching.

All dynamic networks are composed of switch boxes connected together through a
sequence of links. The states of the switches of a network can be set by a central
controller or by each individual switch. The first state is a centralised control system,
while the second state is a distributed control system. Thus we have two modes of

control strategy, centralised and distributed.

Following this short discussion on criteria for choosing an appropriate parallel
architecture, we consider the structure of the proposed system in this research
programme as a two dimensional mesh-based message-passing multicomputer (MIMD),

using a physically distributed memory. Thus the system offers higher memory
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bandwidth and potentially higher scalability than a shared memory architecture. Two-
dimensional meshes provide a good structure for applications that require strong local
communication. The major components of the system are the user interface, secondary

storage, switching network, controller, and the array of processing elements.

2.9 Summary

This chapter has attempted to familiarise the reader with research on the field of
parallel/distributed production systems. While production systems have the advantages
of modularity and ease of enhancement; they suffer from slow execution, especially in
large-scale Al applications and real time tasks. Researchers have consequently
investigated systems, using parallel processing techniques or distributed problem
solving techniques that gain more speedups. These researches can be divided to parallel
rule matching systems, parallel rule firing systems, distributed production systems, and
multiagent production systems. The chapter starts by describing the architecture of
production systems and has a glance of the field of parallel processing architectures. It
continues with a discussion on the speeding up of the match phase of production
systems in two directions; applying faster sequential match algorithms and parallel
processing techniques. Parallel production systems are described in the next section.
There exists the case where the result of parallel execution of rules is different from the
results of sequential executions, leading to erroneous behaviours. This problem can be
addressed by the compatibility and convergence problems. The next section
concentrates on distributed production systems, where there is no requirement for
synchronisation in the select phase across processors. To perform domain problem
solving by multiple production system agents however, each agent needs knowledge
that represents the necessary interactions between production systems agents. The
theory of multiagent production systems is briefly discussed. An appropriate parallel

architecture for the proposed system in this research programme is introduced.
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Genetic Algorithms

3.1 Introduction

Genetic algorithms, evolutionary strategies, and evolutionary programming are three
main branches of evolutionary computation [Fogel 1995]. These techniques are
generally similar and apply to a set of possible solutions of the problem. The differences
between these methods are concerned with the evolution being modelled. A genetic
algorithm models evolution as the changes in gene frequencies, while evolutionary
strategies and evolutionary programming model evolution as a process of adaptive
behaviour of individuals or species [Back 1995]. Genetic algorithms are more familiar

than other evolutionary methods.

Genetic algorithms (GAs) were first introduced by Holland [1975] and have been
widely applied as a search technique to find some suitable solution (not necessarily the
best solution) for various problems. They have been used in searching for better
solutions in function optimisation problems or discovering better solutions in machine

learning problems.

With recent advancements in technology and the utility of various parallel

architectures, there have been several studies on parallel version of GAs. The
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motivations for exploring parallel genetic algorithms are to improve the speed and
efficiency of the algorithm by employing parallel architectures, to apply the GA for
larger problems, and to follow the biological metaphor more closely by introducing

structure and geographic locations into the population [Chipperfield and Fleming 1994].

Many researchers, notably Goldberg [1988], Davis [1989, 1991], [Koza 1992],
Michalewicz [1996], Whitley [1989] and Grefenstette [1986, 1989] among others, have
studied genetic algorithms and its applications. The aim of this chapter is to provide
background information about the algorithm and its application, especially in the field
of NP-complete problems, such as task allocation and clustering. These two applications
are the targets to be used in the proposed system in this research. Section 3.2 highlights
some of the advantages and drawbacks of genetic algorithms. Section 3.3 overviews
traditional genetic algorithms and outlines the pseudo-code to show the steps of the
algorithm. Discussion about determining the parameter values required for running a
genetic algorithm, encoding representations, selection methods, crossover and mutation
operators is provided. Section 3.4 describes the hybrid genetic algorithms. Section 3.5
presents a different model for implementing parallel genetic algorithms, including the
global model, the island model and the fine-grained model. We have devoted the next
section to discussion on the application of genetic algorithms in the field of task

allocation and clustering, which are relevant to what we have done in this research.

3.2 Advantages and disadvantages of genetic algorithms

Many advantages are associated with genetic algorithms, including;:

o They traverse a search space with more than a single point in parallel. The need
to efficiently exploit this parallelism becomes fundamental for systems applied to
real world tasks [Kitano 1993].

e GAs operate on several solutions simultaneously. Their ability to maintain
multiple solutions concurrently makes them less likely to be influenced by the

problems of local optimum and noise [Buckles et al 1990].
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e GAs work with encoding of the parameter set (genotype) rather than the

parameter set itself (phenotype), which are also easy to implement.

e GAs provide a set of efficient domain-independent search heuristics, which are a
significant improvement over traditional search methods, without the need for
incorporating highly domain-specific knowledge [De Jong 1989]. Only the
objective function and fitness values influence the directions of search. GAs
consistently outperform both gradient techniques and various forms of random

search on more difficult problems, such as optimisation problems.

¢ GAs use genetic operators based on probabilistic rules rather than deterministic

ones.

e GAs optimise the trade-off between exploring new points in the search space and

exploiting the information discovered thus far.

Disadvantage of GAs is in their computational times, which can be implement slower
than some other methods. On the other hand, choosing encoding and appropriate fitness
functions could be difficult. Other problems are premature convergence and
convergence to the local optimum rather than to global optimum. During the following

sections, we note to some adopted techniques for improving these disadvantages.

3.3 Traditional genetic algorithm

Genetic algorithms transform a population of possible solutions, each similar to
chromosomes associated with a fitness value, into a new population. This is motivated
by the expectation that the new population will generate new solutions with increased
average fitness. Therefore, solutions will be improved over successive generations. This
improvement will be obtained by using operations of reproduction and survival of the

fittest and other genetic operations that might naturally occur.

Holland [1975] first proposed the use of GA as a search technique in adaptive
systems. He designed a procedure to utilise the operators crossover and inversion. The
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crossover operator defined by Holland is known as the one-point crossover. It takes two
sequence of strings as parent individuals and exchanges portions of their internal
representations, made by a randomly chosen position, among the two parents. Inversion
operation was defined as taking a random section of a sequence and reversing its
indices. Inversion has been suggested as an important genetic operator by Holland,
although it has not been in general found to be useful in practice [Davis 1991]. Later,
Fraser proposed an algorithm similar to Holland’s genetic algorithm, which operated
based on operations crossover, inversion and mutation for operating genetic changes
[Fogel 1995].

A typical genetic algorithm starts with a population consisting of randomly created
individuals. Three operations usually used in GAs are reproduction, crossover and
mutation. Each individual in the population is assigned with a fitness value to use as a
measure for evaluation of individual performance in the population, according to an
objective function inherent in the problem. The interpretation of fitness in the natural
world is the ability of an individual to survive in its environment. Thus, the objective
function provides a criterion for selection of those individuals, with higher fitness

values more often for the reproduction stage.

During the reproduction phase, each individual is assigned a fitness value, used to
direct the selection of individuals towards more fits for doing genetic recombination
operators. Each fitness value is a probability, showing the individual’s likelihood of
being selected, proportional to its fitness relative to other chromosomes in the
population. The fittest individuals in the population have a higher probability to being
selected and less fit individuals have a low probability. According to the assigned
probabilities of reproduction, for each individual, a new population of chromosomes is
probabilistically generated by choosing individuals from the current population. The
chosen individuals generate offspring by means of genetic recombination operators. The

most important recombination operator is called crossover.

The aim of using the crossover operator is to exchange genetic information between
pairs or larger groups of individuals. Crossover is a reproduction technique that takes

two parent individuals and mates them to produce two child chromosome. The simplest
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recombination operator is the one-point crossover, however other recombination
techniques are also available [Section 3.3.5]. The crossover operator need not to be
performed on all individuals in the population. Instead, it is applied with a frequency

specified with the probability of P, to generate new offspring.

The mutation operation occasionally changes single bits, in a chromosome style
representation of individuals, with a small probability Py, The aim of mutation
operation is increasing the genetic diversity of the population by creating new
individuals. Mutation is considered to ensure that the probability of searching a
particular subspace of the problem space is never zero. The influence of mutation
operation on the algorithm is to inhibit the possibility of converging to a local optimum,

instead to the global optimum.

Briefly, in each generation, each individual in the population is evaluated in order to
determine its fitness in the environment. Individuals for reproduction are selected based
on fitness information. The GA then iteratively performs the operations of reproduction,
crossover and mutation with the frequencies specified by the respective probability
parameters P, P and P, on each generation of individuals to produce new populations

of individuals until some termination criteria are satisfied.

A typical implementation of a GA is performed for tens or hundreds of generations.
Because the GA is a stochastic search method, it is not generally possible to formally
specify termination criteria. Depending on the nature of the problem, there exist several
stopping criteria for the algorithm. For problems where a perfect solution can be
recognised once it is encountered, the algorithm can terminate when such an individual
is found. Another common method is to specify the termination criterion in terms of a
maximum number of generations to be completed. However, determination of the
maximum number of generations does not follow any specific rule. Then, the best
individual in the current generation of the population is considered as the result of the
genetic algorithm. If the result of the GA is not acceptable in comparison to the problem
definition, the GA may be restarted or a fresh search initiated. Termination of the GA

may also be triggered when all individuals in a generation are identical, when fitness
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values for all individuals are the same, when the difference between any two fitness

values is less than some small value, or some other application dependent criterion.

The following pseudo-code outline illustrates the basic components of a simple

genetic algorithm.

1. Initialisation: Generate randomly initial population of individuals.

2. Evaluation: Evaluate fitness of individuals in the initial population.

3. ‘Reproduce a new population by applying the recombination operators.
4. Evaluate fitness of individuals in the new population.

5. Preserve the fittest individual so far.

6. Go to step 3 until the algorithm terminates.

Figure 3.1. The outline of a genetic algorithm.

3.3.1 Parameters of the GA

Running a genetic algorithm requires the correct specification of values for a number
of parameters, such as operator probabilities, which control the frequencies of
recombination operators, and the population size. The performance of a GA can be
impacted by poor settings of parameters. Finding settings that work well on a problem is
not a trivial task due to limited resources with which one has to solve the problem
[Davis 1989].
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Davis asserts determining robust parameter settings for population size and operator
probabilities, valid for all representations schemes, for all range of possible operators,
and for a number of different problems of different types is a hard problem for two
reasons: First, we are asking for good values for the parameters, but measuring how
good such values are obtained is not trivial. Second, the GAs are stochastic and the
same parameter settings used on the same problems by the same genetic algorithm
generally yield different results, due to a noisy evaluation function. Consequently, it
could take longer to derive parameter values designed for one’s problem than the time

available for solving the problem itself.

Several strategies have been employed by researchers in the genetic algorithm field
to find out good operator probabilities. Davis [1991] classified the techniques for setting
good parameters values for GAs into four classes: Carrying out hand optimisation [De
Jong 1985], using the genetic algorithm [Grefenstette 1986], carrying out brute force
search [Schaffer at al 1989], and adapting parameter settings [Davis 1989, 1991].

De Jong [1985] first solved this problem by choosing a test suite for function
optimisation problems to stand in for the full range of possible domains. De Jong, due to
noisy evaluation function, derived parameter values for single-point crossover and

mutation by hand. He considered constant size populations, at 100 individuals.

Grefenstette [1986] later derived new values for the parameters by using a genetic
algorithm, as a metalevel optimisation technique. The result was a new set of parameter
settings that outperformed De Jong’s settings. Grefenstette’s new settings have become

a default standard for researchers using binary representation.

Schaffer et al [1989] sampled the possible parameter settings for a range of values,
using the De Jong test bed. Their new parameter settings were well for the range of
problems, which they had considered. Another important result was that the optimal
parameter settings depends on the problem, also population size, the representation

technique, the selection procedure, and the method of crossover and mutation operators.

Davis [1989] introduced a technique for adapting the probabilities of genetic

operators during the running of a genetic algorithm. The problem of adapting genetic
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algorithm parameters in general was simplified, in that the only chromosomal
representation technique used was the bit string, and only two operators were
considered, mutation and crossover. The background GA differed from the one that
Grefenstette used. Davis’s technique for setting the parameters involves adapting the
operator probabilities, based on their observed performances, as the run proceeds.
Periodically, operator fitnesses are adjusted so that the fitness reflects recent operator
performance. Using an adaptive mechanism leads to performance slightly inferior to
that of carefully derived interpolated parameter settings on the test problems reported in
[Davis 1989]. The adaptive technique finds good parameter values quickly and
effectively [Davis 1991].

Premature convergence is an important concern in genetic algorithms. This occurs
when the population of chromosomes reaches a configuration such that crossover no
longer produces offspring that can outperform their parents. Under such circumstances,
all standard forms of crossover regenerate the current parents. A suggestion for
premature convergence is offered by Schradolph and Belew [1992]. Their method is
based on dynamically resizing the range of each parameter. When a heuristic suggests
that the population has converged, the minimum and maximum values for the range are
resized to a smaller window and the process is iterated. In this manner, dynamic
parameter encoding, DPE, can zoom in on solutions that are closer to the global

optimum than provided by the initial precision.

The population size affects the performance and efficiency of GAs. Choosing a
suitable population size is a key decision for developers of genetic algorithms. If a small
population size is selected, the GA will converge too quickly with insufficient
processing of search. On the other hand, a large population is more likely to contain
representatives from a large number of search spaces. Hence, the GAs can perform a
more informed search. As a result, a large population discourages premature
convergence to sub-optimal solutions. On the other hand, a large population requires
more evaluations per generation, possibly resulting in unacceptably long waiting times
for significant improvement. Some research shows that best population size depends on

encoding, and on size of encoded string [Goldberg 1989]. Goldberg’s computations
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have suggested that relatively small populations are appropriate for serial

implementations, and large populations are appropriate for parallel GAs.

The crossover rate controls the frequency with which the crossover operator is
applied. In each new population, (P, * population-size) of individuals undergo
crossover. The higher crossover rates result in introducing more quickly new
individuals into the population. Therefore, if the crossover rate is too high, high
performance structures are discarded faster than selection can produce improvements. If
the crossover rate is too low, the search may become inactive due to the lower

exploration rate [Goldberg 1988]. Crossover rates generally should be high.

After selection, each bit position of each individual in the new population undergoes
a random change with a probability equal to the mutation rate P, Consequently,
approximately (P,,* population-size * length-individual) mutations occur per
generation. A low level of mutation prevents any given bit position of individuals from
remaining forever to a single value in the entire population. A high level of mutation
yields an essentially random search. The probability of mutation should be set at a very
small number [Goldberg 1988, Davis 1991].

3.3.2 Objective and fitness functions

The objective function, f, is used to provide a measure of the individuals’
performance in the problem domain. If the problem at hand is a maximisation problem,
the most fit individuals will have the highest numerical value of the corresponding
objective function. In the case of the minimisation problem, the most fit individuals will
have the lowest numerical value. The objective function is often inherent in a problem
and must be capable of evaluating every individual that it encounters. In many real
applications the objective function is likely to be a heuristic that simply indicates which
individuals are better than others. In most cases it may not be realistic to use the value
generated by the objective function to judge relative differences in fitness, because most
objective functions do not yield an exact measure of fitness [Whitley 1989]. The fitness

function is then used to assign a fitness value to each possible individual in the
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population. The fitness function, F, maps the value of the objective function, for each
individual, to a nonnegative number showing the relative fitness. This mapping is
always necessary when the objective function is to be minimised or when the objective
function can take on negative values [Grefenstette and Baker 1989]. A commonly used
fitness function is the proportional fitness assignment. The individual fitness, F(x;), is

computed as the individual’s raw performance, f(x;), relative to the whole population:

F(Xi) = f(Xi) / Zin f(Xi) (3. 1)

3.3.3 Encoding

Chromosome representation should contain information about solution, which it
represents and highly depends on the problem. It is a mapping that expresses each
possible point in the search space of the problem as a character string. Binary encoding
is the most used method of encoding, mainly because first works about genetic
algorithm used this type of encoding. In binary encoding [Koza 1992] every

chromosome is a string of bits, 0 or 1.

Chromosome 11010011010001

Figure 3.2. Binary encoding.

The use of binary strings is not accepted in the genetic algorithm by all researchers,
because this encoding is often not natural for many problem. For some problems the
binary encoding is in fact deceptive in that it obscures the nature of the search. For some
problems integer representation provides a natural way of expressing the mapping from
representation to problem domain. For instance, Michalewicz [1996] indicated that for
real valued numerical optimisation problems, floating-point representations outperform

binary representations.
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Permutation encoding can be used in ordering problems, such as the travelling
salesman problem [Michalewicz 1996]. In permutation encoding, every chromosome is
a string of numbers, which represents numbers in a sequence. One of the possible
application domains of this encoding is solving‘ clustering problems by genetic

algorithm, genetic clustering.

Chromosome 143286579

Figure 3.3. Permutation encoding.

Value encoding can be used in problems where some complicated values, such as
real numbers, are used. In value encoding, every chromosome is a string of some
values. Values can be anything connected to problem, such as numbers, real numbers or
characters to some complicated objects. Value encoding is very good in design of neural
network topologies, and finding weights for their connections. Value encoding is

applicable to the information retrieval problems.

Chromosome 1.23 0.452.953.33 5.87 0.67 2.61 1.67

Chromosome ACBDIIDAEFLICDPLMNDSAIHIC

Chromosome (back), (back), (left), (forward), (right)

Figure 3.4. Value encoding.
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3.3.4 Selection

The individuals participating in the crossover operation are chosen according to a
selection method. Selecting individuals based on fitness value is a major factor in the
strength of GAs as search algorithms. Grefenstette and Baker [1989] partitioned the
selection phase into two distinct processes: The selection algorithm and the sampling
algorithm. The selection algorithm assigns to each individual a non-negative number,
called the target sampling rate, which indicates the expected number of offspring to be
generated from that individual. The sampling algorithm produces a new population by
creating copies of individuals based on the target sampling rates. The first part is
concerned with the fitness assignments (fitness function). The second part is the
probabilistic selection of individuals for reproduction based on the fitness of individuals

relative to one another.

There are many methods for selecting the best individuals, for example roulette
wheel selection [Davis 1991], elitist selection [Grefenstette 1986], tournament selection
[Michalewicz 1996], rank selection [Backer 1985], steady state selection [Whitley
1989] and others.

Roulette wheel selection is a popular approach for implementing selection [Davis
1991] which randomly copies individuals from the current generation into the next
generation with a probability proportional to their fitness, F(x;) = f(x;) / X" f(x;). In
other words, each individual in the current population is reproduced a number of times
proportional to its performance. The better individuals have more chances to be selected
more times. A parent is then randomly selected based on this probability. The roulette

wheel selection method is stochastic sampling with replacement.

A second method, called deterministic sampling, assigns to each individual, i, a value
Ci = RND (F; * pop-size) + 1 (RND means round to integer and pop-size means
population size). The selection operator then assures that each individual participates as

a parent exactly C; times [Buckles et al 1990].
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One problem with selection proportional to fitness is that this method cannot ensure
convergence to a global optimum [Rudolph 1994]. Grefenstette [1986] employed a
heuristic, known as elitist selection, to resolve the drawback of selecting parents in
proportional selection. Elitist selection always copies the individual with the best
performance or a few of the best individuals unaltered from the current generation into
the next generation, created by crossover and mutation. This procedure guarantees
asymptotic convergence but at various rates depending on the problem [Grefenstette
1986]. In the absence of such a strategy, it is possible that the best individual in the
population lost, due to sampling errors, or applying crossover and mutation operators.
Elitism can very rapidly increase performance of the GA, because it prevents the

disappearance of the best found solution.

Another approach to implementing the selection operator is ranking. Backer [1985]
first reported experiments where reproductive trails were allocated according to the rank
of individuals in the population rather than by the individual fitness relative to the
population average. In ranking, the population is sorted in increasing order by fitness
values. That is, the worst individual is assigned to Min, the best is assigned to Max, and
the target sampling rate for each of the other individuals is interpolated according to its
rank. The main idea behind introducing the ranking is that the premature convergence is
caused by the presence of super individuals, which are much better than the average
fitness of the population. Such super individuals have a large number of offspring and
due to the constant size of the population, prevent other individuals from contributing
any offspring in subsequent generations. Hence, in a few generations a super individual
can eliminate desirable chromosomal material and cause a rapid convergence to
possibly local optimum [Michalewicz 1996]. The primary advantage of ranking over
proportional selection is that the algorithm is less affected by the premature

convergence caused by individuals that are far above average.

Whitley [1989] also used a rank based genetic algorithm, GENITOR, and argued that
allocating reproductive trails according to rank is superior to fitness proportional
reproduction. He states that selective pressure and population diversity should be
controlled as directly as possible. Calculating fitness as a function of rank is an effective

way to obtain a greater degree of control over selection pressure. Allocating
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reproductive trails according to rank can be used to speed up genetic searching.
Allocating reproductive trails according to rank prevents scaling problems (lacking the
selective pressure and premature convergence), since ranking introduces a uniform
scaling across the population. Ranking acts as an objective function transformation that
assigns a new fitness value to an individual based on its performance relative to other

genotypes.

Steady state selection is a reproduction technique, which replaces only one or two
individuals at a time rather than all individuals in the population. Some of the low
fitness valued individuals are removed and the new offspring, which are generated from
the high fitness valued of parents, are put in their place. The rest of the population
survives to a new generation. This technique was first described by Whitley [1989], as a
one-at-a-time reproduction scheme used in his GENITOR algorithm. GENITOR is a
rank based genetic algorithm which the generational approach and reproduces new
individuals on an individual basis. GENITOR only produces one new individual at a
time. This reproduction scheme has also been described in Syswerda [1989], where it is
called steady state reproduction. The generational replacement is the special case of
steady state reproduction, in which the number of new individuals created equals the
size of the population [Davis 1991]. The main difference between steady state GAs and
generational replacement algorithms is that within each generation, only a few members
of the population are changed [Syswerda 1989]. Some researchers have found that
steady state reproduction is inferior to generational replacement [Davis 1991]. Another
technique that leads to improved performance is called steady state without duplicates,
Davis [1991]. However, this technique is not worthwhile considering for real time
applications due to the additional execution time spent by the algorithm using this

technique.

An additional selection method is called tournament selection [Michalewicz 1996].
This method, in a single iteration selects some number of individuals and selects the
best one from this set of elements into the next generation. This process is repeated for

the size of population times.
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3.3.5 Crossover and mutation operators

The crossover operation exchanges sub-strings between two individuals with
crossover probability p. for creating new offspring, with fitness values higher than their
two parents. New offspring are indeed new points in the search space that is to be
tested. Crossover is a basic operator in GA. We quote the following sentences from
[Davis 1991] in supporting the importance of crossover operation. ‘Crossover is an
extremely important component of a genetic algorithm. Many genetic algorithm
practitioners believe that if we delete the crossover operator from a genetic algorithm
the result is no longer a genetic algorithm. Genetic algorithm researchers have shown
that when crossover is deleted from a genetic algorithm, performance is degraded on a

variety of problems.’

There are many ways to do crossover for problems, especially for problems using the
binary encoding, such as one-point crossover, two-point crossover, multi-point
crossover and uniform crossover. There are three principal choices for permutation
problems: Order crossover, PMX (partially matched) crossover and cycle crossover
[Buckles et al 1990].

Crossover methods can be categorised according to two kinds of biases that affect the
exploratory power: Positional bias, and distributional bias [Eshelman et al 1989]. One-
point crossover selects a position along the length of individual at random with a
uniform distribution and exchanges the segments to the right of this position between
two parents to produce two offspring. One-point traditional crossover has a strong

positional bias but it is unbiased with respect to the distribution of material exchanged.

Two-point crossover considers the chromosome string as a ring. It selects two unique
points at random along the length of the string and divides the ring into two segments.
The segments are exchanged between the parents to produce two offspring. Traditional
two-point crossover reduces positional bias without introducing distributional bias.

Two-point crossover has been shown to be consistently better then one-point crossover.

Uniform crossover [Syswerda 1989] exchanges bits rather than segments. For each

bit position in the string, the bits from two parents are exchanged with fixed probability.
50



Chapter 3. Genetic Algorithms.

Uniform crossover has not positional bias but has a strong distributional bias. It has
been shown that in almost all cases of function optimisation problem, uniform crossover
is more effective than either one or two-point crossover. However, there are some

exceptions [Eshelman et al 1989].

Multi-point crossover is the natural extension of two-point crossover. Increasing the
number of crossover points reduces positional bias but it also introduces some
distributional bias. Experimental results of Eshelman et al [1989] indicate that it is
better to have more distributional bias toward higher disruption rates and less positional

bias in crossover operations.

The mutation operator offers the opportunity for new genetic material to be
introduced into a population. The new genetic material does not originate from the
parents and is not introduced into the child by crossover. Rather, it occurs a small
percentage of the time after crossover. Mutation is implemented by one of two methods
[Fogel 1995]: By considering each element of each individual in the population and a
certain probability, either flipping it to the complementary value or replacing it by a
randomly chosen element with a certain probability. Both methods of mutation
implementation can be made equivalent by adjusting the mutation rate. Mutation is
employed to ensure that all bits have some probability of entering the population. It

assures that, given any population, the entire search space is connected.

Inversion operates on a single individual. It changes the order of elements between
two randomly chosen points in an individual without changing their meaning. Inversion
attempts to reduce the error rate and increases the combination rate of crossover. With
uniform crossover, use of inversion is not necessary and will not have any effect
[Syswerda 1989]. Davis claims inversion has not been found to be useful in practice
[Davis 1991]. However, some researchers believe inversion is a useful operator for

longer individuals.
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3.4. Hybrid genetic algorithms

One of the problems that traditional genetic algorithms are involved with is the
premature convergence to local optima, otherwise a long time may be required for the
GA to find an optimal or near to optimal solution. Some methods for overcoming this
problem and increasing the efficiency of GAs, which depend on the selection algorithm
or parameter settings have been discussed in previous sections. Another method is based
on the incorporation of problem-specific knowledge to direct the blind search of the GA
to the fruitful regions of the search space for improving the efficiency. The resulting
algorithm is referred to as a hybrid genetic algorithm [Goldberg 1988, Davis 1991].
Hybridising the GA with other domain-based heuristics, such as hill climbing, and
simulated annealing can produce an algorithm better than the GA. There are many
reports in the literature on using hybrid GAs for various problems. For example,
Mansour [1992, 1991], Booker [1987], Grefenstette [1987], Schoneveld et al [1997],

Muhlenbein [1989] have generated a number of successful optimisation algorithms.

3.5 Parallel genetic algorithms

GAs are inherently parallelisable and many researchers have studied techniques for
implementing them on multiprocessor machines. These studies suggest that even if we
are not using a parallel architecture, we may enhance the performance of GAs if we
simulate parallel runs by maintaining multiple populations and controlling the
interactions among them carefully [Davis 1991]. Several approaches have been
proposed for distributing the required computations in GAs that are classified around
three approaches: The global model [Chipperfield and Fleming 1994], the island
(migration) model, and the fine grained (diffusion) model [Stender 1993]. Most of the
major differences are encountered in the population structure and the method of
selecting individuals for reproduction. These categories reflect the different ways in
which parallelism is exploited in the GA and the nature of the population structure and

recombination mechanisms used.
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3.5.1 Global model

The global model [Chipperfield and Fleming 1994] treats the entire population as a
single breeding unit and aims to exploit the inherent parallelism in the GA. A dedicated
processing node, called farmer, initialises and holds the entire population, performs
selection and assigns fitness to individuals. Other nodes, workers, apply the crossover
and mutation operations and evaluate the objective function for the resulting offspring.
In computational terms, a number of identical processors independently perform genetic
operators and objective function evaluations on a population stored in a shared memory.
This method, in cases where the objective function is computationally expensive, is a
useful method of reducing the execution time of the GA, because most of the time spent
by a genetic algorithm is spent in function evaluation [Davis 1991]. In particular, when
the objective function is of low computational cost, then there is potentially a bottleneck
at the farmer while fitness assignment and selection are performed. Goldberg [1989]
describes a similar scheme, synchronous master-slave using a hybrid GA. He also
suggests two alternative models to overcome this drawback: Semi-synchronous master-

slave and asynchronous, concurrent GA [Goldberg 1989].

3.5.2 Island model

In the island model, a large population is distributed into many smaller isolated sub-
populations evolved in parallel, and periodically each sub-population swaps its worst
individual(s) with the best one(s) of its neighbours. Each sub-population uses local
selection and reproduction rules to locally evolve the species. The pattern of migration
of individuals limits how much genetic diversity can occur in the global population.
Additional routines are included to exchange individuals between sub-populations
according to the communications topology employed. This model is based on the
hypothesis that several competing sub-populations could be more search-effective than
a wider one in which all the members were held together. The island model is utilised

on MIMD machines [Stender 1993].
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Grosso, in 1985, first introduced an island model and founded improvement in the
performance of the GA in terms of the quality of solution [Chipperfield and Fleming
1994]. He also asserted that limited migration of individuals between sub-populations
was more effective than either complete sub-population interdependence or

independence.

Later, Petty et al [1987] presented a migration GA influenced by earlier work done
by others. Pettey’s parallel genetic algorithm (PGA), consists of a group of identical
nodal GAs (NGA), one per node of the Intel iPSC message passing multiprocessor
system, with ncube interconnection topology. An NGA communicates with its
neighbouring NGAs in each generation by sending the best individual in the local
population to each neighbour’s population. The insertion of new individuals from
neighbours into the local population can be done by replacing randomly chosen
individuals, the worst individuals, or the individuals most like the incoming individuals
(i.e., the smallest Hamming distance) strategies. They tested the worst individual
replacement policy. Petty et al found a significant performance improvement for
numerical optimisation problems selected from De Jong’s test-bed functions. They
reason that in a sequential GA an individual is selected based on its performance in the
whole population but in a PGA an individual is selected based on its performance in its
local sub-population. This difference in selection could result in premature convergence.
On the other hand, this difference might lead to a slow down of the convergence and
ultimately produce better results. Another result was that the population size for a PGA

should be set with the optimal population size in mind.

[Tanese 1987, 1989] also worked on an island GA model, where each processor runs
the GA on its own sub-population and periodically replaces bad individuals in its own
sub-population with neighbour’s good individuals. The neighbour with which this
exchange takes place will vary over time: Each exchange will take place along a
different dimension of a hypercube topology. He used two new parameters to specify
the frequency of exchange, at which generation migration should take place, and the

migration rate, which is the number of individuals exchanged between sub-populations.

In [Tanese 1987], it is assumed that individuals are probabilistically selected for

migration from the subset of the sub-population, whose fitness was at least equal to the
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average fitness of the sub-population. Likewise, individuals were selected for
replacement by immigrants probabilistically from the subset of individuals whose

fitness was no greater than the average for that sub-population.

Later, Tanese [1989] developed a parallel genetic algorithm, called the distributed
genetic algorithm, and adopted a new strategy. At a migration generation, each sub-
population produces extra offspring than the current sub-population size. The migrants
were then uniformly selected from the offspring and removed from the sub-population,
to maintain the correct sub-population size. When a sub-population receives migrants
from another sub-population, it selects individuals to be replaced by incoming migrants
selected randomly from its sub-population. The results presented by Tanese showed a
near linear speed up when compared against a sequential GA with a population size
equal to the sum of the individual’s sub-populations. The distributed GA achieves
higher average fitness for the entire population, without detracting from its ability to

find filter individuals than the traditional genetic algorithm.

3.5.3 Fine grained model

An alternative model of a distributed GA is the diffusion GA. In fine grained (or
diffusion) model, a single population evolves, each individual of which is placed in a
cell of a planar grid. Selection and crossover are applied only between neighbouring
individuals on the grid, according to a pre-defined neighbouring structure. The use of
local selection and reproduction rules lead to a continuous diffusion of individuals over
the population. The diffusion GA is usually utilised on SIMD parallel machines and

array processors.

Spiessens and Manderick [1989] have proposed a fined-grained parallel genetic
algorithm, FG-algorithm, on DAP [Trew and Wilson 1991], a massively parallel
computer. An extra parameter denotes the size of the neighbourhood. In the FG-
algorithm, the individuals of the current population are put on a plannar grid. Each
individual is assigned with a fixed-size neighbourhood, by an extra parameter. For

instance, if range equals one then the neighbourhood of a given individual consists of
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nine individuals (including the individual itself). The next generation is calculated as
follows: First, replace each individual by an individual selected from its neighbourhood
on the grid. Second, do the crossover operation for each individual with a randomly
selected mate from its neighbourhood with a certain probability, and third, do the
mutation operation for each individual depending on the mutation rate. The
neighbourhood experiments indicate that FG is able to obtain satisfactory results with

moderate sized neighbourhoods.

Spiessens and Manderick [1989] also compared the performance of the FG-algorithm
to Robertson’s algorithm [1987] for the Connection Machine [Hills 1985]. The
Robertson algorithm is also fine-grained. Each individual is put on a separate processor
but it uses global selection and random mating. Consequently, Robertson’s algorithm
has to make heavy use of communication, whilst the FG-algorithm requires local

communication.

3.6 Applications of genetic algorithms

Genetic algorithms have been successfully applied to many problems, such as
practical optimisation problems, task allocation, clustering, neuronal network design,
classifier systems, and machine learning [Carbonell 1989]. Their usefulness has been
proved not only by comparison with other traditional search methods, but also by a
large number of practical applications in domains such as biology, chemistry, physics,
medicine and computer aided design [Back 1995]. In the following subsections, we
briefly review task allocation problem and clustering for the purpose of relevancy to

work in this research.

3.6.1 Task allocation

The task allocation problem consists of partitioning a problem into tasks (sub-
problems), and allocating these tasks into processors of a given distributed memory

machine so that an objective function is minimised, and the optimal allocation of tasks

56



Chapter 3. Genetic Algorithms.

is found. The quality of an allocation is measured by the execution time of the
application, which depends on communication and calculation components. Finding the
global optimum is a NP-hard problem. This problem can be solved statically or
dynamically [Shirazi et al 1995]. Several cost models can be found in the literature [Chu
et al 1980, Efe 1982]. Many researchers have used genetic algorithms as a heuristic to
solve this problem. For example, Mansour and Fox [1991, 1992] introduced a hybrid
genetic algorithm for task allocation problem in distributed memory multicomputers,

which used the following cost function as its objective function.
f=7y ¥, W2(n) + PR 3 2 C(k, 1) (3.2)

Where R is a machine-dependent communication to calculation time ratio, tcomm/ tfioat-
v and B are scaling factors expressing the importance of the calculation term and the
communication term, respectively. W(n) is the number of data elements allocated to

processor n. C(k, 1) is the Hamming distance between processors k and 1.

This function can be rewritten as the following function [Schoneveld et al 1997]. In
this function, the metric for deciding on the quality of a task allocation is the execution

time.
H= B Zi Wiz + (1 - B) Zk>] Jkl (1 = 8kl) (3-3)

Where, i€{1, ..., P}, and P is the number of processors. Ji; is the communication
time between processors k and 1. Wj is the total execution time on the processor i. The
parameter Be [0, 1] is used to tune the amount of competition between the calculation

and the communication terms.
The fitness of an individual is evaluated by the objective function and represents the
cost of task allocation, and required to be minimised.

An allocation of tasks to processors is coded as a sequence, where each letter in the
sequence corresponds to a task, while the letter in the sequence corresponds to the

processor allocation number of the given task.
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3.6.2 Clustering

The primary objective of cluster analysis is to partition a given set of objects into a
fixed number of clusters such that objects within a cluster are more similar to each other
than objects belonging to different clusters. Clustering is very problem-oriented in the
sense that cluster algorithms that can deal with all situations are not yet available. The
best known and most widely used algorithm is the K-means algorithm or the Isodata
algorithm. Lately, neural networks [Simpson 1992], for example competitive-learning
networks [Intrator 1995], self-organising feature maps [Kohonen 1990], and adaptive
resonance theory (ART) networks [Carpenter and Grossberg 1988] also have been used
to cluster data. In order to mathematically identify clusters in data, it is usually
necessary to first define a measure of similarity or proximity, which will establish a rule
for assigning patterns to the domain of a particular cluster. The measure of similarity is
problem dependent. Generally, a proximity is defined either by a similarity measure or a
dissimilarity measure. The former increases in value when two data points resemble
each other, whereas the latter increases in value when two data points differs from each

other.

Solving this problem is difficult because the number of partitions of N objects into K
clusters increases with KN [Hartigan 1975]. In special cases, exact solutions are possible
in polynomial time, but in general near-optimal solutions must be found using
heuristics. GAs have been used as a technique for solving partitioning problem by many
researchers [Maulik and Bandyopadhyay 2000]. To solve this problem with GAs, one
must encode partitions in a way that allows their manipulation by genetic operators.
Jones and Beltramo [1991] considered three encoding methods. The first encodes a
partition as an N-string whose ith element is the group number assigned to object i. The
second method encodes a partition as a permutation of N objects and K-1 group
separators. The third method encodes a partition as a permutation of the N objects and
decodes this permutation with a greedy adding heuristic. The greedy heuristic uses the
first K objects in the permutation to initialise K groups. The remaining objects are then
added to these groups in the order they appear in the permutation, always adding the

object to the group that yields the best objective value. This method requires more
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knowledge about the objective function. In their experiments, the permutation encoding
with greedy decoding and PMX crossover performs better than the others, because it

incorporates additional problem knowledge.

GAs can outperform some standard heuristics on some problems. Jones and
Beltramo compared GA to switching heuristic [Hartigan 1975]. They found that a GA

outperforms the switching clustering heuristic.

3.6.3 Automated theorem proving

Automated theorem proving (ATP) aims to use computer technology to
automatically determine whether or not a given query is a logical consequence of a set
of axioms [Bledsoe and Loveland 1984]. Attempting to prove the validity of such
results typically requires traversing in a very large search space. Therefore, it is said that
ATP essentially amounts to solving search problem: The set of all objects which can be
derived from an input problem by means of the inference rules forms the search space
[[bens 1999]. Automated theorem provers, like many of the developed artificial
intelligence techniques, rely on heuristic search through large space of possible
inferences. Advances in parallel and distributed computing can potentially offer
improvements in performance of various search strategies including depth-first, breadth-
first, and A* search [Cook and Hannon 1998]. Parallelisation of different approaches in
theorem proving can be generally divided into two categories: AND-parallelism and
OR-parallelism [Stenz and Wolf 1999a].

Different search strategies may behave significantly different on a given problem. In
general, it cannot be decided which strategy is the best for a given problem. Therefore,
one is encountered with the difficult problem of selecting a good strategy that increases

the effectiveness of the reasoning program for a given task.

Stenz and Wolf [1999a, 1999b, 2000] have suggested a method for strategy selection
problem, called strategy parallelism. Strategy parallelism, where a proof task is

performed in parallel by a set of competitive agents with different strategies and
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distributed resources, is a concept for applying parallelism to automated theorem
proving. They have investigated a competition approach, where different strategies are
applied to the same problem and the first successful strategy stops all others. Different,
competitive proof agents traverse the same search space in parallel via different, ideally
non-overlapping paths. They introduced a hybrid genetic algorithm, genetic gradient
approach, that can be used to optimise a prover performance. The optimisation problem,

strategy allocation problem, can be formulated as follows:

Given a set of training problems, a set of usable strategies, a time limit, and a number
of processors. The problem is the determination an optimal distribution of resources
such as time and processors to each strategy, i.e., a combination of strategies which

solves a maximal number of problems from the training set within the given resources.

In their approach, the individuals are represented by prover schedules [Stenz and
Wolf 1999a]. The initial generation is created randomly and the fitness measure is the
number of problems in the training set solved by an individual. They used the survival
of the most successful individuals of each generation (elite selection). Based on a kill-
off-rate parameter a predetermined portion of each generation is died before
reproduction and the survivors make up the first part of the succeeding generation. The
selection strategy is followed by filling the remaining slots applying the crossover
operator to the survivors. Only new generated individuals by crossover operation are
subject to mutation with a certain probability. The number of generations is given by the

user.

The gradient method in combination with the genetic algorithm can be used to
eliminate runaway strategies from schedules by transferring their time resources to more
successful ones. In their approach, the best resulting schedule founded by the genetic

algorithm is then refined by a gradient optimisation technique.

They compared the results of the gradient method and the genetic algorithm. The
genetic algorithm performs better. Their experimental results show only a poor

scalability for the prover system. The attributes of the initial generation that are selected

60



Chapter 3. Genetic Algorithms.

at random strongly influence the overall results of the experiment. The deficiencies of

an unfit initial generation can not be wholly remedied by the subsequent optimisation.

In [Stenz and Wolf 1999b] they combined the approaches of genetic algorithm and
feature based problem analysis in a three-phased process: In the first phase, all given
problems are divided into a small number of classes according to some simple
discrimination criteria. In the second phase, for each of these classes, a set of schedules
is evaluated by the genetic algorithm. The best of these schedules are selected for
refinement in the third phase by applying the gradient method.

In order to evaluate the potential of the method, they have implemented the strategy
parallel theorem prover e-SETHEO [Stenz and Wolf 1999b]. 545 problems are
considered as the training data set and 91 different strategies as the strategy set. They
extracted all these strategies and ran each strategy on all problems. The successful
results of all runs were collected in a single list that became the database for the genetic

gradient algorithm. Then they ran the genetic gradient algorithm on the collected data.

All the results indicated that the genetic gradient approach is extremely useful for
automatically configuring a strategy parallel theorem prover. The results obtained by

their automatic prover configuration can actually be considered a success.

3.7 Summary

In this chapter, we discussed the genetic algorithm as a stochastic search method,
which is applicable to a broad spectrum of activities. Many of the variations on the
original GA have been discussed, such as different representation and selection
strategies, hybrid GAs and parallel implementation of GAs. Some of these techniques
have aimed to minimise the likelihood of premature convergence. They are based on
selection schemes, such as ranking, for reducing the stochastic sampling errors, and
other techniques have been incorporated into the reproduction scheme to control the

level of competition among individuals and to maintain diversity. The use of two point
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crossover operators has been suggested for enhancing exploration and improving the

search. Other techniques have been developed to increase the efficiency of the GAs.

The application of GAs to the task allocation problem in distributed memory MIMD
systems, clustering and strategy parallelism in automated theorem proving has been

described in more detail.
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A Distributed Problem Solving System

4.1 Introduction

Within distributed Al, a typical system is based on parallel and distributed processing
and different subsystems work together to form groups that achieve more than the
individual entities can achieve. Indeed the roots of distributed Al are actually not far
from brain theory [Durfee 1995]. The main difference is that distributed Al has focused
on coarser grain collections of agents or problem solving nodes, whereas in the brain
finer grained levels of intelligence and connectionist neural computing approaches are

evidenced.

In AI applications, rule based expert systems have emerged as an important tool in
problem solving systems. Many problems are naturally formulated in terms of rules and
rule based systems have the capability of rapid modification [Morgan 1988]. Expert
systems are generally designed to be expert in one problem domain. One way of scaling
expert system technology to more complex problem domains is to develop co-operative
interaction mechanisms that allow multiple expert systems to work together to solve a

common problem. This approach is motivated by the operation of the brain, where
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different neural subsystems combine and exchange signals to work together to yield an

overall intelligent nervous system.

Furthermore, every knowledge based system must rely on search techniques and
virtually all systems use search techniques for problem solving. Indeed problem solving
is the generation of conclusions that are not explicitly represented, but are implied by
the knowledge that is explicitly represented. In the search paradigm, each problem
solving step requires an evaluator to select the next state. Recently, genetic algorithms,
which use principles of evolution through natural selection to solve problems, have been
established as powerful searching and optimisation techniques. Genetic algorithms
conduct search by stepwise modification of a population of individuals, being candidate
solutions of the given problem. The search space of a problem can be metaphorically
considered as a fitness landscape on which genetic operators navigate the search space.
A fitness landscape is defined by the finite set of candidate solutions, a fitness function
which assigns a value to each solution, and a neighbourhood relation specified by a

modification operator [Slavov and Nikolaev 1999].

In the following sections, we describe a proposed distributed problem solving system
(DPSS) in terms of its behaviour and the structure of a parallel machine suitable for its
implementation. The DPSS can be viewed as a collection of distributed agents which
cooperate to perform automated reasoning about the domain knowledge. Many
concurrent reasoning tasks may proceed simultaneously. Since the domain knowledge is
distributed, there is no global view for agents, and each agent has its own knowledge of
the domain expressed in production rule representation. When a problem solving task is
assigned to the collection of agents, each agent begins working towards a solution based
on its local knowledge. However, since reasoning tasks are distributed amongst the
agents, each agent has incomplete knowledge and cannot solve the reasoning task

without acquiring further knowledge through communication with appropriate agents.

The system proposed here is in fact a knowledge-based system, which consists of
two components: A knowledge base for storing information about the appropriate
domains, and an inference mechanism for the manipulation of its knowledge. We

initially explain the mechanism of inference in Section 4.4 and then discuss the

64



Chapter 4. A Distributed Problem Solving System.

structure of the knowledge base in the following sections. Three stages of initialising,
clustering, and integrating are identified during the inference process. Pseudo-code,
which describes the run time processing cycle for each problem-solving agent in the
system, is presented. The detail of the developed parallel hybrid genetic algorithm, used
to compose relevant problem solving nodes into clusters, is discussed in Section 4.9.
Section 4.10 presents the computational model that describes the behaviour of the
system. The final section is devoted to the design activity of the proposed system and

presents the developed structure chart and knowledge diagram.

4.2 Goals of the system

We consider the proposed system as a multicomputer with distributed memories
(MIMD) such that processors in the network work in parallel on parts of large and
complex problems in parallel to quickly solve a given problem. The processing nodes
communicate with each other through message passing. Due to advances in message
passing computers, which have reduced the communication and message passing
overheads, these computers have become feasible candidates for implementing
production systems. The suitability of message-passing architectures for production
systems has been shown by [Gupta and Tambe 1988]. Several goals have been assumed

for the system:

e Increasing the variety of solutions by allowing processing nodes to form local

solutions.
e Increasing the solution creation rate by forming sub-solutions in parallel.

e Improving the use of individual node expertise by allowing processing nodes to

exchange their partial solutions.

e Reducing the communication overheads by allowing nodes to exchange their partial

solutions within determined clusters.
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4.3 Architecture of the system

In a loosely coupled distributed system, an agent spends most of its time in
computation as opposed to communication. Since problem solving is inherently
computation intensive, we have chosen a loosely coupled implementation for our
distributed problem solver. Each problem solving agent spends most of its time
performing match-select-fire cycles. Therefore a suitable architecture should support an
increase in processor speeds to shorten the execution times required for the
implementations of parallel production systems. The architecture also needs to be
scalable for new and complex applications to increase the available parallelism in
production system. Figure 4.1 illustrates the architecture of the DPSS as a block
diagram, showing the major subsystems and the interconnections between them. There
are several major subsystems, including the user interface, secondary storage, controller,
switching network, and an array of processing elements (PEs). Information flow

between the subsystems is shown by the arrow lines connecting these systems.

Switching network [¢———

Array of PEs
li Interface =—» Controller [€——

User

Figure 4.1. Schematic representation of the system.

66



Chapter 4. A Distributed Problem Solving System.

The user interface is a tool and provides facilities for interaction, enabling the user to
query, modify, and display the knowledge base. Queries are the means used for
information retrieval in database systems, whilst in Al oriented systems they can cause
some modifications, including additions and deletions of content of a knowledge base.
In commercial database systems, there are facilities to provide data manipulation, which
involve insertion, deletion, and retrieval of data. These facilities are embedded in
languages like SQL (structured query language) [Denn 1985]. Similar facilities are
offered by knowledge based tools. For example, Knowble [Mylopoulos et al 1993]
provides essentially three basic functions: TELL to create a fact, UNTELL to remove it,
and RETELL to update the knowledge base.

Secondary storage is a separate entity of the parallel architecture and is used to store
the large knowledge base of the system. We consider the system as a general problem
solving system that should be able to deal with different problems. Furthermore, a
complex problem concerns different problem domains, and since a problem requires
domain specific knowledge, hence the system must be provided with a global
knowledge base, including the various domains’ knowledge. Storing the large
knowledge bases in distributed memories is almost impossible, because local memories
are small in size and expensive per byte. Thus, it is necessary to store the knowledge

base on disks as an auxiliary memory (secondary storage), which have more capacity.

The controller, as a management system, does the following jobs in the proposed

system:

e It has overall control of operations related to the disk unit. These operations include
identify, retrieval, transfer, and mapping of the relevant portions of the knowledge

base from the disk to the array of PEs.

e It accepts a request from the user via the interface and tries to discover the

appropriate knowledge from the collection of data stored on the disk unit.
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e It transfers the relevant portions to the switching network. The switching network is
set by the controller to assist in the mapping operation. It is assumed that the
mapping operation is based on allocating a rule-set to a PE (the structure of the

knowledge base will be discussed later).

e It keeps the knowledge base up-to-date by accepting new knowledge, or replacing
the old knowledge with the new knowledge.

e It controls and initialises the parallel propagation of messages (data packets).
o [t has overall control over the inference mechanism and knowledge manipulation.
e [t integrates the results and returns them to the user.

Processing nodes are set in a scalable two dimensional mesh network topology and
controlled in hardware by the control unit. Each PE has direct connection to its four
neighbours. A system bus will be employed to provide the communication paths
between PEs themselves and between the controller and PEs. The PEs are the heart of
the system, providing intermediate results that are stored in their local memories. Each
local memory will be large enough to accommodate data and the appropriate software
for the inference mechanism. Registers provide temporary storage for data. Random
Access Memory (RAM) provides longer term primary storage for data. Each PE also
contains the CPU logic and an input/output (I/O) interface for exchanging data. I/O
ports provide access to peripheral devices, such as disk storage. The ALU carries out
arithmetic and logic operations (utilised for knowledge manipulation) at times specified

by the control unit.

4.4 Problem solving methodology

The adopted methodology for solving problems in DPSS is based on co-operation of
individual problem solving agents, whose local processing results should be exchanged
to produce an integrated solution. Each agent in the DPSS is assumed to be a production

rule based system, called a Problem Solver (PS), which can access a subset of the
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appropriate portions of the knowledge base. Consequently, each PS can infer an
intermediate result from the production rules and the facts that it knows. As they
progress in their problem solving, their initially identical working memories information
will begin to diverse. Thus, nodes must exchange locally generated partial results with
nodes that could be working toward related results. The exchange of information
introduces communication overheads. We have applied a selective approach, based on
the implementation of a genetic algorithm, to find clusters of relevant nodes with an
optimised value of the objective function. The objective function provides estimation
for the parallel computing overheads. After determination of clusters’ configurations,

nodes communicate with each other only within relevant clusters.

Three stages of knowledge processing in the network can be distinguished during

problem solving; including initialising, clustering, and integrating.

Initialising: After issuing a request, and according to the given information by the
query, the appropriate portions of knowledge is identified and retrieved from the |
knowledge base on the disk unit. We assume that the identified knowledge is already
partitioned into distinct sub-sets (rule-sets) and distributed, based on mapping ‘a rule-set

onto a processor’ in the array.

The controller performs the operation of broadcasting the query to the array of
processing elements i.e. multiple copies of the input are made and distributed across all
processing nodes. Hence, all working memories of PSs initially contain identical

elements.

After performing the operations of query broadcasting and knowledge mapping, PSs
are invoked and begin to process their information to find out partial results at the finest
level of granularity for the given complex problem. In this stage, each PS
asynchronously performs the match-select-fire cycles on its own data until no rules can
be matched and fired with existing data in its working memory. No message passing

communication is assumed during this stage.

Clustering: Following completion of the first stage and producing partial results by

PSs, the clustering stage begins to perform with the aim of grouping those PSs that are
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relevant to each other in some sense. This stage indeed comprises of two sub-stages.
First, performing the clustering process to specify an optimised configuration for
clusters of PSs. Second, executing communication-computation cycles within specified

clusters.

The relevant nodes within a cluster are called neighbouring nodes. After
determination of processor clustering structures, neighbouring nodes in a cluster then
exchange the local partial solutions to other neighbouring nodes in that cluster. This
process is performed in parallel for other clusters. The main objective of cluster analysis
is to search for an optimised configuration of groups of PSs such that each group can
provide appropriate results for some aspect of the given problem, and at the same time
the cost of communication overhead in the system is minimised. We have considered an
objective function as a similarity measure in clustering process, which refers to the cost
of communication and computation overheads resulted from processing nodes’
cooperations. The reason for choosing such an objective function is that the efficient
utilisation of the computational power of distributed memory parallel computers is
highly dependent on how the composite calculation-communication workload is

distributed amongst the processing nodes.

We have also assumed that the human expert (system designer) knowledge can be
used as a heuristic search method to guide the searching process of clustering so that
each cluster eventually can provide an appropriate solution in some region of the state
space, and combination of these approximations can be sufficient to yield a globally

satisfactory solution.

We have proposed a parallel hybrid genetic algorithm (PHGA) to perform cluster
analysis. Each PS in the system deals with its own population and independently
performs the genetic operations of selection, crossover, mutation, and inversion on
individuals in its own sub-population. The relevancy of any pair of rule-sets is defined
to be judged by the human expert (system designer). An expert is a person who is
sufficiently experienced to make consistent meaningful judgements of relevancy in the
context of a given domain. The expert knowledge consists of the data dependency

relationships between agents and interference between rules in different rule-sets, which
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has been analysed at compile time. In general, rule interactions in distributed production
systems are resolved at compile time, because run time analysis is expensive. We

assume a prior knowledge is not available for large knowledge based systems.

The role of natural selection is to selectively form the best configuration of PS
clusters, such that the processors having appropriate relations clustered to groups and
simultaneously inter node communications are minimised. Therefore, at the end of this
stage, we expect to have clusters of PSs, which are made by process of selection and
vary functionally. In general, we are not interested in finding in the absolute similarity
values of problem solvers, but in discovering a configuration that best preserves an
acceptable balance between the relative ordering of relevancy indicated by the expert,
and the communication and computation overheads in the network. The number of
clusters depends on important features of the input and can be determined by the expert.
Performing the PHGA leads to a specification of the structure of clusters and each PS in
each cluster communicate with their neighbouring PSs. Therefore, in each cluster the
knowledge processing continues sequentially through the communication-computation

cycles, until no further processing is possible in each cluster.

PSs clustering in this particular problem can be interpreted as a task allocation
problem in the system. Each cluster plays the role of a complex agent, with the ability to
produce coarser grain solutions, and clustering of PSs can be viewed as the process of

allocating PS-tasks to these complex agents.

Integrating stage: In our distributed problem solving network, each computing agent
is a semi-autonomous problem solving node that can communicate with a subset of
other nodes. To improve their local information, nodes must share subproblem
solutions. In a distributed system, integration of partial results to achieve an overall
solution is one of the grand challenges of Al applications [Kitano et al 1993]. In the
clustering stage, PSs interact with neighbouring nodes to find solutions for different
aspects of the problem. The solutions are constructed through the computation-
communication cycles by incremental agreement of mutually constraining or
reinforcing partial solutions in clusters. Herein, due to assumption that each cluster of

relevant agents can respond well to a feature of the complex problem, an overall
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solution can be integrated by combination of the approximations obtained from the
clusters. Combination is related to the distributed database technology and is performed

by the operation of UNION on clusters’ partial results.

So far we addressed the problem of a strategy for a network of PS co-ordination.
Corkill and Lesser [1983] state three conditions for any network co-ordination policy to

be successful:

(1) Coverage: Any given portion of the overall problem must be included in the

activities of at least one node.

(2) Connectivity: Nodes must interact in a manner which permits the covering

activities to be developed and integrated into an overall solution.

(3) Capability: Coverage and connectivity must be achievable within the

communication and computation resource limitations of the network.

The clustering approach specifies a possible coverage and connectivity pattern that
can potentially satisfy the capability condition. Genetic clustering provides an adaptive
framework, which is strongly modified by feedback from the environment (expert). The

advantages of this approach are described as follow.

The process of formation a cluster takes place in parallel with other clusters, and then
PSs work concurrently in clusters to generate an overall solution. Therefore, we obtain
an overall solution faster. Problem solving nodes share their results with neighbouring
nodes within specified clusters, which are smaller subsets of the entire set of all active
nodes in the network. Therefore, we expect to have a greater reduction in

communication delays.

Multi-agent systems often rely on preplanned, domain-specific co-ordination to
satisfy flexibility demands in complex domains for co-ordination and communication.
Firstly, it is difficult to anticipate and preplan for all possible co-ordination failures,
particularly in scaling up to complex domains. Secondly, given domain specificity,

reusability co-ordination has to be redesigned for each new domain. In contrast, the self-
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organised approach implemented in the DPSS relies less on preplanned co-ordination of

problem solvers and as a result it suffers less of the above difficulties.

4.4.1 Negotiation strategy

The subject of negotiation [Davis and Smith 1983] has been of continuing interest in
the distributed artificial intelligence community. The operation of co-operating,
intelligent agents would be greatly enhanced if they were able to communicate their
information to reach mutually beneficial agreements. There are some techniques for
helping nodes to resolve their sub-problem interactions, improve their agreement, and
reduce their inconsistency [Barr et al 1989]. Firstly, the problem can be initially
decomposed such that each node knows how its partial result should fit into complete
solutions. Secondly, a co-ordinating node can be considered such that it builds the
global view through its communications with every node. Thirdly, all the information
from each node can be exchanged with every other node. Fourthly, to give a node the
ability to predict what results it might form and need, by exchanging their plans. By this
manner nodes can co-ordinate their individual actions to more effectively form
compatible results. Fifthly, allowing nodes to selectively exchange a small subset of the

data they form if that data is indicative of the node’s eventual partial result.

The first approach cannot work when problems are inherently distributed. Therefore,
nodes do not have a view of the overall problem. In the second approach, this node
might be a bottleneck and a reliability hazard. The third suggestion is not acceptable
because, in general, nodes cannot provide the communication or computation to share
all their data. In the fourth and fifth approach, each node needs a sophisticated local
control which allows a node to understand the implications of its planned problem

solving, and communication actions on other nodes’ goals and plans.

On the other hand, co-ordination is not achieved just through exchanging
information. An alternative for co-ordination, employed in our proposed system, is to
allow nodes to compose clusters of relevant nodes, by a process of self-organisation and

to exchange their local partial solutions to each other within those clusters. Two sources
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of information are considered to cluster the relevant nodes: Inter-node correlation,
which are represented in the structure of the knowledge base, and a value function,
which represents the amount of communications between nodes. A possible way to
implement the process of self-organisation of clusters is by applying a hybrid genetic
algorithm. The algorithm uses the value function to minimise the communication

overheads and runs a simple hill-climbing procedure to find the inter-node relations.

Co-operation among the agents in the network is guided by a heuristic strategy that
specifies in a general way the information and relationships among nodes. This
heuristic, which comes from the expert knowledge, is used to provide each node with a
high level view of problem solving in the network. Clustering specifies node interaction
patterns. The fundamental motivation that drives us to use GAs in supporting
negotiation is the view that the processing of negotiation can be viewed as negotiators
jointly searching a multi-dimensional space and then agreeing on a single point in the

space.

To determine which rules can be fired in parallel, the rule-dependency graph is
examined to discover those rules which may interfere with each other. Rules from
distinct rule-sets can be fired asynchronously without violating the serializability

requirements. Within each rule-set, rules are fired sequentially.

4.5 Perspectives on the system

The overall mechanism for solving problems in DPSS is based on co-operation and
co-ordination of multi problem solving agents. In general, two perspectives on co-
operative problem solving are viewed; result sharing and task sharing [Durfee 1995].
The task sharing perépective, such as Contract Net protocol [Smith 1980] considers the
co-ordination problem as associating tasks to be done with the right agents to do them.
In the result sharing perspective, such as the blackboard architecture [Nii 1986],
problem solvers would individually solve their local sub-problems and share their
partial results. Over time, increasingly complete results would be formed and the system

would solve the entire problem.
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Task sharing can be coupled with result sharing. One way is through the assignment
of problem solving roles to the nodes such that each node becomes a specialist in terms
of a different aspect of the problem. Then, nodes co-operatively exchange and integrate
partial results to construct a consistent and complete solution. The other possible way of
coupling result sharing and task sharing, which we employ in our proposed system,
originated from the formation of neuronal groups in the theory of neuronal group
selection. In this approach, initially problem solving nodes co-operatively exchange and
integrate their fine-grained partial results within selectively determined clusters of PS
nodes to make each cluster specialist in some aspect of the given problem.
Establishment of clusters can be interpreted as a task sharing perspective in the DPSS,
because it is postulated that each cluster can satisfactorily respond to a feature of the

problem.

Controller
< >

Task sharing

Result sharing

Figure 4.2. Three levels of the distributed problem solving system.
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A node in the lowest level is an agent with the ability to solve a portion
of a complex problem. They share their results in a result sharing
perspective, to form clusters of relevant nodes. At the higher level,

clusters in a task sharing perspective find more complete solutions.

Then, the coarse-grained partial results, obtained from the clusters, are considered as
the approximate solutions which have been given by the right agents. Formation of
clusters, corresponding to a neuronal group [Edelman 1992], is based on result sharing.
Instead of sharing results in the entire network of all active nodes, the PSs exchange
their partial solutions only with their neighbouring nodes within specified clusters. We
use the term ‘distributed result sharing’ for this kind of sharing results. Associating
tasks to the right clusters is viewed as a task sharing perspective. The final result can be
obtained by combining the approximations, which would be a globally satisfactory

solution rather than an optimal result.

Each knowledge-based system relies on two principles. One is the appropriate
representation of the application domain knowledge, and another is the control of this
knowledge. These two principles are embodied in the two components of the knowledge
based system architecture; a knowledge base (KB), and an appropriate inference
mechanism for manipulation of its knowledge. In the previous section, we discussed the
inference mechanism of the DPSS. In the following sections, we first discuss the
knowledge representation paradigm and then present a model for the structure of the
KB.

4.6 The knowledge representation paradigm

The proposed DPSS can be considered as a knowledge-based system that represents
and uses knowledge. Rules are a popular paradigm for representing knowledge. We
select production rules representation as an appropriate knowledge representation. The

choice of knowledge representation lies essentially between the two broad classes of
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symbolic and connectionist-style representations. The symbolic knowledge
representation includes logic, production rules, frames, and semantic networks.
According to the similarity between logic representations and rules on one hand, and
frames and semantic networks on the other hand, we can have a choice between two
general types of symbolic knowledge representations, rules and structures. The reasons
for preferring production rules over connectionist and structure representations are as

follows:

e Qur view of Artificial Intelligence discipline is a top-down approach. By this we
mean that cognition models of brain function, such as the theory of neuronal group
selection, can be used as a tool for building intelligent systems, which help us better

solve some of the problems. Thus, biological realism does not constrain our choice.

e There is a distinction between knowledge based tasks and behaviour based tasks,
although we cannot say that all tasks executed by humans are only knowledge based
or behaviour based. In behaviour based tasks such as speech, locomotion, and
perception, the problem solver is not able to explain how the problem is being
solved. In contrast in knowledge based tasks, such as diagnosis, which involve
choice and reasoning, the problem solver is required to explain the reasoning. It
seems that the connectionist model is better suited to behaviour based tasks [Pfeifer

et al 1989].

e Production rules can resemble the structure of neurones in a connectionist structure.
Both rules and neurones conceptually carry out the same operation. Rules resemble
stimulus-response pairs in which the left-hand side can represent a stimulus of

arbitrary complexity, and the right-hand side can represent a response sequence.

e Neural computing is suitable for problems where solutions cannot be explicitly

described by a set of rules or algorithms [Tarassenko 1998].

e The implementation of features of knowledge based problem solving, such as
explanation, task verbalisation, and the declarative description of knowledge, are

limitations of a connectionist structure.
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The structure paradigm is suitable for domains consisting of a set of objects having
interrelationships that need to be explicitly modelled, whilst rules are suitable for

large and ill-structured problems.

As a consequence of the limited and indirect interactions between rules, production
systems are well suited to loosely coupled problems that are decomposable into

relatively independent sub-problems or behaviours.

Rule based systems show that the idea of using symbolic structures and symbol
manipulation coupled to theories on heuristic problem solving and logical inference
is a valid way to approach knowledge based tasks [Steels 1989]. One of the
interesting properties of rules is the property of tractability, which means that the

path of inference can be followed, unlike as in neuronal networks.

Rule based systems are more suitable in problem solving and classifications tasks,
although they have their own drawbacks. One primary drawback is that facts and
rules cannot efficiently represent the structures and relationships within even simple

concepts or objects.

Sometimes it becomes intuitively obvious to the developer that knowledge in.the

domain can be better represented by rules or by using other paradigms.

We consider rules as consisting of a left-hand side, which is a sequence of one or

more and-ed condition elements, and a right-hand side which is an action as illustrated:

IF condition-1 and condition-2, ..., and condition-n THEN action.

Or-ed conditions are considered as separate rules.

4.7 Structure of the knowledge base

Studies have shown that domain knowledge is the key to building problem solving

systems, although methods of reasoning are important [Giarratano and Riley 1989]. In
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fact, reasoning may play a minor role in an expert’s problem solving system. The KB is
one of the components of the system, stored on disk units and representing two types of
knowledge. One is general knowledge relevant to the problem domain and the other one
is specific knowledge relevant to a specific application of the system [Frost 1986].
Therefore the contents of the KB includes domain specific facts and relations, generic
facts, and general rules about these facts. Facts and relations are used to represent
characteristics of the entities and their attributes (binary relationships) in the application.
In other words, specific facts describe a class member’s properties and general rules
describe class properties. All knowledge in the KB is represented in the form of

production rules as described in the previous section.

Each large knowledge base includes the various domains of knowledge. To
effectively use knowledge, the system must be able to extract only the necessary
knowledge from the KB according to the type and domain of the problem to be solved.
For this purpose, the KB must be well organised. It seems that the hierarchical model,
as an appropriate database structure for the storage of knowledge in a very large

knowledge base system, is necessary [Frost 1986, Barr et al 1989].

O

Specific

Figure 4.3. The hierarchical model of the KB.

The possible domain is divided among sub-domains.
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In a hierarchical model, the global knowledge base that comprises of information
about all possible sub-domains is replaced with a tree of distinct databases which
correspond by related sub-domains (Figure 4.3). Each sub-domain is itself a KB.
Actually, most of the information in a given sub-domain’s database will be the same as
the local database just above it (parent). To save space, only the differences are stored.
The root of the tree, which represents the most general knowledge about the application
domain, must be a full database. The hierarchical model of the KB provides a very
efficient method of retrieving knowledge. Each sub-domain is retrieved via the other

related sub-domains.

Production rules in each sub-domain of the KB are partitioned into several rule-sets.
In general, the number of rules, representing domain and application problem, in a rule
based system is often much greater than the number of processors in an array of PEs.
Thus, many rules may be allocated to a single processor node. On the other hand, it is
desirable to assign a balanced workload to all nodes. If two rules have to communicate
with each other, assigning them to different nodes will take longer to communicate. If a
number of rules are assigned to the same processor node, they cannot be fired in
parallel. Performance of the system may be degraded by dependency between rules.
Every rule might be assigned to only one rule-set. Rarely, some duplication of necessary
information is allowed. As an example, suppose one of the sub-domains in the KB

contains a simple domain knowledge comprising of three rules:
Rule 1: IF x and y THEN z.
Rule 2: JF a and b and ¢ THEN x.
Rule 3: IF d and e THEN y.

These rules could be partitioned into two rule-sets: G; and G, as follows, and

allocated to different processor nodes.
G;: IFxandyTHEN z. Gy IF x and y THEN z.

IF aand b and c THEN x. IF d and e THEN y.
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The overlapping subsets of information among the nodes make the network more
robust. Dividing rules into rule-sets (rule level parallelism) is an important feature of
rule based representation languages. It introduces the parallelism between production

rules.

4.8 Behaviour of Problem Solving agents

The PSs are production rule based systems, which can formulate partial solutions
using only their own knowledge. Each PS contains and fires some of the problem
solving rules of the overall system, and consists of three components: Inference engine,

working memory (WM), and production memory (PM).

A problem solving agent’s PM contains a set of rules (rule-set), which represents
parts of the problem solving knowledge. For simplicity, we assume no overlap between
PMs in different agents, and assume the union of all PMs in the network is sufficient to
solve the given problem. We also assume that each processor has the capacity to store
one rule-set. According to the effects of rule-set distribution, a PS has incomplete
knowledge to locally process certain data. The PMs are stored in agents’ local memories
as local knowledge bases of each PS. PSs infer with their current information, but the

solutions to their local sub-problems are only partial.

Each agent’s WM contains a set of working memory facts regarding the status of the
problem. The contents of each agent’s WM, at the beginning of processing, is the
information gained from the user and broadcast to the problem solving agents by the
controller. As they progress in their problem solving, their initially identical working
memories information will begin to vary. Each PS in the network deals with three kinds
of data: The data given to the PS by a query, data generated by the PS itself, and data
received from another PS in the form of messages. The WMs in different PSs may
overlap, but the union of WMs in the system logically represents all the facts necessary

to solve the given problem.
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Each PS has an inference engine that asynchronously executes a serial model of
production systems [Chapter 2]. The inference engine decides which rule stored in an
agent’s PM that could be applied to the current local WM should be invoked. The
inference engine works in a forward chaining (data driven) manner, and executes the
loop of match-select-fire until no matches are found in the match cycle. The
intermediate conclusions, are new pieces of data which are placed in the agent’s WM
and copied to neighbouring agents. The choice of inference engine depends on the type
of problem. We applied forward chaining because it does better in problem solving
applications. The rule of inference used in problem solving is modus ponens. The
modus ponens is a logical rule that states ¢ if A implies B, and you know A, then infer
B’.

Each agent inference engine decides which rules’ conditional parts are satisfied by
WMESs, prioritises the satisfied rules, and executes exactly one rule with the highest
priority in each cycle. The matching operation sequentially checks conditional parts of
each rule against working memory facts. A rule whose patterns are all satisfied is
activated. A rule may have many instantiations. Multiple activated rules may be on the
conflict set at the same time. According to an adopted conflict resolution strategy,
activated rules in the conflict set are prioritised. Prioritising is based on the combination
of operations of recency, refraction, specificity and random selection of activated rules,
respectively. To perform recency, each working memory element is associated with an
integer, referred to as a time tag. This integer indicates when the element was first
entered into the working memory. The inference engine uses time tags, at conflict
resolution, to execute the rule matching the most recent working memory facts. The
main idea of applying recency is to prefer rules that match against the most recent
working memory facts. Refraction states that the same rule should not be applied twice
to the same data. Thus, after a rule has been executed once, it should not be executed
again. The main objective behind refraction is to prevent looping of those rules that do
not modify any of their own conditions. The idea behind specificity is to prefer the more
specific rules. The specificity strategy is used to make sure that exceptions to general
rules are considered before the general rule is applied. This may be especially useful in

dealing with default reasoning [Reichgelt 1991]. The main idea behind random
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selection is that if all refraction, recency and specificity attempts to find a single
dominant instantiation fail and more than one instantiation remains in the conflict set,
then an arbitrary instantiation is selected. Consequently, if the match step produces a
conflict set containing more than one rule instantiations, then the conflict resolution
strategy selects one instantiation with the highest priority for firing. This leads to the

operation of the action specified in the action part of the fired rule.

The following pseudo-code is a computational model, which summarised a problem
solving cycle of distributed production system agents (PSs) by extending the
conventional match-select-fire cycle to accommodate inter-agent data transfers. Each
agent uses the same execution model. Processors send messages to neighbouring
processors at the end of their knowledge processing and a select step is performed using
both the local data and data from neighbouring agents. However, another possibility is
that processors accept messages from neighbouring processors at the start of the match
step (end of each cycle). Processing termination occurs after the match state, due to an

halt action or once there are no more rule instantiations in the conflict set.

Repeat
Perform matching operation: If the condition part of any rules are satisfied then
activate them (put in conflict set)
Exit if the conflict set is empty or a halt was performed
Perform conflict resolution strategy to select the one with the highest priority
Perform sequentially the action on the action part of the selected rule.
End

Communicate with neighbouring nodes.

Figure 4.4. The computational model of a problem solving cycle.

The inference engine of each PS searches through possible consequences of the data,

and repeatedly executes a group of actions until no rules can be matched and fired with
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existing data in its WM. Then, PSs send messages to neighbouring agents. Another
possible option for termination the processing is that the user sets an explicit limit on

the number of rule firings.

4.9 Implementation of genetic algorithm

Each PS in the DPSS performs processing on its sub-problem and then co-operates
and communicates with neighbouring nodes to produce an overall solution, because
none of them has sufficient information to solve the entire problem. A composition
scheme of PSs into clusters of relevant nodes is performed with the hope of improving
local performance and reducing co-ordination overheads. In our system, search for
finding the best configuration of neighbouring nodes is implemented by the PHGA.
Since the initial population for the standard GA must contain many individuals to give
good results, hence generates a huge amount of computation load. The availability of a
parallel environment and the quantity of independent processing (computation of fitness

values) required for each individual suggest that the algorithm is performed in parallel.

In our implementation of the PHGA, the population is distributed in several
subpopulations on the network of problem solving nodes, so that each PS is in charge of
one island. The islands (PSs) are positioned on a two-dimensional mesh network
topology. These subpopulations increase the chances for the algorithm to find good
solutions by having many standard genetic algorithms competing, each of them
operating on small subpopulations. Distributing the individuals across several
processors could thus decrease the computation time by competing in more search

spaces evolved in parallel.

Each problem solving node in the network deals with its own population and applies
the genetic operators of reproduction, crossover, mutation, and inversion according to
their control rates, on its population to produce new generations. In this approach
populations are isolated from each other and no individual migration is considered

between them.
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Another possibility is that the fittest individuals are allowed to migrate from one
island to another. In this manner, a copy of the best individual is send to the next island
on the vertical or horizontal lines. Each island can receive a new individual that replaces
a randomly selected local individual. According to the results obtained by Calegari et al
[1997] it seems that the number of islands influences significantly the quality of the

results.

At the end of processing, PEs have candidates as their fittest individuals. The fittest
individual among these candidates will be selected as the potential solution. In order to
direct the blind search, the fittest individual is judged by the designer knowledge, which
indicates some primitive inter-relationships between PEs. If the quality of a potential
solution is acceptable, it is then considered as the solution of the PHGA, otherwise, its
elements are distributed to the array of PEs. For each element, the structure of the
appropriate cluster is changed if it can drop value of the objective function. In this case,
the solution of the PHGA is the fittest individual among the individuals of the second
stage of PEs processing. We have utilised the domain knowledge for increasing the
efficiency of search. The incorporation of problem-specific knowledge to the fruitful
regions of the search space, which directs the blind GA search, is referred to as hybrid
GA [Goldberg 1989]. In our system, we have added a simple problem-specific hill
climbing procedure for improving the efficiency of the search. We used two-point
crossover and ranking selection to reduce the likelihood of premature convergence in
our developed hybrid GA. The techniques and the procedures, which we have used, are

outlined below.
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For each processing element
Generate randomly the initial population G(0), size N
Evaluate fitness of individuals in G(0)
Set operator rates
Repeat
Rank individuals, and allocate reproduction trials in TEMP
Fori=1toN
Randomly select 2 parents from list of reproduction trials stored in TEMP
Apply crossover, mutation, and inversion
End-for;
Hill climbing by new individuals
Evaluate fitness of offspring
Preserve the fittest-so-far
Until (convergence)

Solution = Fittest.

Figure 4.5. The computational model of the HPGA.

4.9.1 Chromosome representation

An individual, i.e. a cluster instance, is encoded as a string of integers, where an
integer refers to a cluster and its position in the string representing the processor. The
length of these strings is equal to the number of PEs, required with each request. For
example, the genotype (1, 1, 2, 1, 2, 2, 3, 3, 3) indicates that processors 1, 2, and 4 are
allocated to clusters 1, processors 3, 5, and 6 are allocated to cluster 2, and processors 7,

8, 9 are allocated to cluster 3 (Figure 4.6.).
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Figure 4.6. An instantiation of chromosome representation.

4.9.2 Fitness evaluation

In general, efficient utilisation of the computational power of distributed memory
parallel computers is highly dependent on how the composite calculation-
communication workload is distributed amongst the processing nodes. Efficient
exploitation of the inherent parallelism of production systems however requires suitable
algorithms for load balancing with simultaneously increasing communication overhead.
To cope with this problem, the fitness of an individual is evaluated by the objective

function in expression (4.1).
f=B Wi +(1-PB) %iZkDG, k) 4.1

Where, ie{1, ..., P} and P is the number of clusters. W; is the total execution time on
the cluster i. The parameter f= 0.5 € [0, 1] is used to denote the amount of competition
between the calculation and the communication terms. D(i, k) is the distance between
processors i and k, positioned on a two-dimensional array, defined by the following

formula.

DG, K = | X =X+ Yi- Y] i=Xi, Vi), i = (%5, Y) (4.2)
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This function is a combination of two equations (3.2) and (3.3), which represents the
cost of parallel computing overheads in a multicomputer system, and required to be
minimised for clustering of PEs. We use Eq. 4.1 as the objective function for the

optimisation of clustering instances.

4.9.3 Reproduction scheme

The reproduction scheme is based on ranking, where the individuals are sorted by
their fitness values and a number of reproduction trials according to predetermined scale
of values is assigned. The expected number of offspring to be generated from the
individual x at time t is indicated by the function tsr(x, t), and called target sampling
rate. The sampling algorithm produces a new population by creating copies of

individuals based on the target sampling rates.
tsr(x, t) = Min + (Max - Min) (rank(x, t) - 1)/ N -1, 4.3)
with conditions: 0 < tsr(x, t), and 2. tsr(x, t) =N

Where the function rank(x, t) is the index of x, when P(t) is sorted in increasing order
in terms of fitness values. Two conditions 0 < tsr(x, t), and 2 tsr(x, t) = N require that
1< Max < 2, and Min = 2 - Max. The population P(t) is assumed to be of constant size

N.

After ranking, pairs of parents are randomly chosen from the list of reproduction
trials. The ranks assigned to the fittest and the least fit individuals are 1.2 and 0.8,
respectively. First, single copies of individuals with ranks of more than 1 are assigned.
Then, the fractional part of their ranks, and the ranks less than 1 are used as probabilities

for assignment of copies.
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4.9.4 Genetic operators

The genetic operators employed in the GA are two-point crossover, mutation, and
inversion. Mutation refers to a random reallocation of a rule-set. Inversion inverts the
allocation configuration of a segment of data in an individual. The two-point crossover
is used because it offers less potential bias than the one-point standard crossover
[Eshelman et al 1989].

4.9.5. Population size and operator rates

In the problem at hand, the population size is considered equal to the number of
active PEs. We have considered fixed rates for the genetic operators of 0.6 for

crossover, 0.002 for mutation, and 0.02 for inversion.

4.9.6. Hill climbing

Knowledge about the application can direct the blind genetic search to more
profitable regions in the adaptive space. Herein, individuals carry out a simple problem-
specific improvement strategy, known as hill climbing procedure that can increase their
fitness. Hill climbing requires little memory and computational effort [Barto 1995]. The
hill-climbing procedure can be expressed using a function which, for any feasible point
X in search space, returns either an improved feasible point, or an indication that local
improvement is not possible. Local hill climbing of the individuals is done with a
simple exchange. The placement of two PEs in a cluster is exchanged. The exchange is
accepted if it decreases the objective function that is to be minimised. This is repeated

until no improvement occurs.

Another more direct example of domain knowledge involves the choice of the initial

population used to start the search process. Although we have described the initial
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population as randomly selected, if one can permit seeding the initial population with

individuals known to have certain performance levels.

4.10 The overall behaviour of the system

We have considered a network of loosely coupled asynchronous powerful problem
solving nodes. Each PS is a production rule system capable of interacting with other
processors. Each PS system comprises of the components, interpreter, which repeats the
production cycle, domain knowledge contained in the knowledge base, which represents
a part of domain, and working memory, which represents domain data. In the collection
of distributed PS systems, rules are asynchronously fired by PSs. It was generally
assumed that overlap between knowledge bases in different PSs does not exist, except
rarely, and that the union of all knowledge bases in the system is sufficient to solve the

given problem.

The PSs are interconnected so that each PS can communicate with every other node
by sending messages and they do not share the memory. To perform domain problem
solving by multiple production systems however, each PS needs knowledge that
represents the necessary interactions among PS systems. A PS that has a relationship
with a particular PS is called agent’s neighbour. Some of the relationships between PSs
are initially obtained by analysing domain knowledge at compile time. Others are
selectively determined during run time. Composition of PSs to clusters of neighbouring
nodes, by a process of self-organisation that could be working toward related results, is
the main feature of the system. Composition changes the size of the PS population and
may reduce response time and improve local performance by reducing co-ordination

overheads.

A PS in each cluster reports a partial result to its neighbours. They use that result to
confirm or deny competing results for their sub-problems, or to aggregate partial results
of their own with the sender’s result to produce a result that is relevant to the sender’s
sub-problem as well as their own. PSs within each cluster will repeatedly execute a

group of tasks. The process continues within each cluster until all clusters reach their
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saturation points. Thus, the results of processing in clusters are more complete than the
results of processing in each PS. At the end of this stage, clusters of relevant nodes are

formed which are specialists in different aspects of the problem.

For obtaining a complete and consistent solution, the clusters must integrate partial
results. The results from clusters are transmitted to the controller. This approach ensures
that the network will generate an overall solution as rapidly as possible, typically at the
cost of some unnecessary communication of partial results and computations. The
controller integrates clusters’ results according to the concept of ‘union’ in the database

systems. The following pseudo-code describes the general behaviour of the system.
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Initialise the system
Repeat

Interact with the user to receive the query
Identify appropriate portions of KB

Determine the size of the portions
Prepare appropriate number of PEs
Retrieve the portions
Map the portions to PEs (a rule-set to a PE)
Broadcast the query to PEs
For each PE
Find partial results
End-for;
Apply the GA to find clusters of relevant PEs
For each cluster
Repeat
Communicate with neighbouring PEs in the cluster
For each PE
Process data
End-for;
Until no computation
Send the results of clusters to the controller
End-for;
Integrate result

Until no query

Figure 4.7. The computation model of the DPSS.
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4.11 Design of the system

The purpose of system design is to produce a solution to the problem. During this
phase, the designer employs a variety of tools, such as data flow diagrams, and plans
how data will flow through the system. In the case of a conceptual system, a simulation
program can be used to describe and analyse the behaviour of the system. Then, the
system is coded into an operational model, which is recognisable for the computer. This
operational form is a representation of the proposed system. Simulating the system
provides a means of analysing the behaviour of the real system by observing the

behaviour of a model representing the system [Banks 1998].

In this section, which is devoted to design of the DPSS, we first draw a model of the

simulated system using a hierarchical structure chart.

4.11.1 The structure chart

While design is a creative phase in a system life cycle, design methods can provide
overall plans that will help to determine which choice may be most appropriate in a
given situation [Budgen 1994]. The structure chart is a method of design that uses a
graphical treelike representation to describe the way in which a program is assembled
from a set of procedures. A method of design is a systematic approach for creating a
design. Structure charts and data flow diagrams, due to their procedural nature, are not
applicable to knowledge based systems [Gonzalez and Douglas 1993]. We used a
method for representing the design of the system: Modified structure chart. It is similar
to a conventional structure chart, but does not follow structure charts requirements e.g.
one-entry-one-exit and sequential flow of control. Figure 4.8 represents a structure chart
of the simulated program. This chart consists of boxes, which denote procedures, and

arcs, which denote invocations.
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main body
initialise compose produce integrate
the system PS-systems partial results partial results
set global and add rules to add facts to perform communicate-
variables rule-base fact-base the-GA calculate
generate initial associate produce . .
communicate inference
population fitness values | [next generation
reproduction X-over mutation inversion hill-climbing forward-chain
conflict pattern
resolution matching
. . random-
refraction recency specificity
selection

Figure 4.8. The modified structure chart describing the simulation program
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4.11.2 The knowledge diagram

The knowledge diagram is a graphical representation for the knowledge. For a rule
based system, the knowledge diagram details how rules connect facts together. This is
detailed as a network of interconnected nodes where each node represents a single fact.

Figure 4.9 represents a knowledge diagram for a portion of the developed KB.

b1 ps3 Ps P10 Pu P12
QO O O O

P4 123 7 P13 8

Ps P2s P21

P27 P23 P24 P29

Figure 4.9. The knowledge diagram.
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The directed arcs denote connections between nodes. Nodes at the higher level
identify the condition parts of rules, and nodes at the lower level identify the action
parts of rules. The disadvantage of this representation is that the diagram becomes

complex as the size of the KB becomes larger.

As an example, the rule R;: IF p; THEN p;, is represented by the following figure.

R;

O———0

P1 P2

Figure 4.10. Graphical representation of a simple rule.

The conjunctive rule Ry: IF p; and ps and ps THEN pe, is illustrated by Figure 4.11.

12N @)
P4 O\ Ro @m

Ps O)/

Figure 4.11. Graphical representation of a conjunctive rule.

The disjunctive rule Rs: IF q; or (q2 and q3) THEN qq is represented by the Figure
4.12.
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qi O
q2 O\ Rs >Oq4
o

qs3

Figure 4.12. Graphical representation of a disjunctive rule.

4.12 Summary

This chapter has presented an approach which attempts to exploit the benefits of
distributed processing by organising problem solvers into clusters of relevant agents
with the aim of solving complex problems. The approach described is summarised as
follows: Given a complex problem, compose production systems agents into clusters of
relevant agents by process of selection, so that each cluster provides an appropriate
solution in some region of the state space. Then, combine these approximations to yield

a globally satisfactory solution rather than extract the best solution.

The supporting architecture was considered as a loosely coupled multicomputer with
distributed memory. The central purpose in the design of this system was to increase the
solution creation rates by forming sub-solutions in parallel and gaining the many
potential benefits of distributed/co-operative problem solver systems. Co-operative
problem solvers offer advantages of speed, reliability and modularity of the system in
applications where information and expertise are naturally distributed, or where we can
distribute them. Distributed memory technology is also less expensive and more

accessible than shared memory technology.

The mechanism of inference in the proposed knowledge based system is a coupling
of task sharing and result-sharing. The genetic algorithm was considered as a means for
finding appropriate and relevant problem solvers. The expert knowledge is used to

guide the GA-clustering search.
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A hierarchical model was considered as an appropriate structure for the storage of
knowledge. Production rule representation was chosen as a suitable knowledge
representation. Where the number of rules in the knowledge base is much greater than
the number of nodes in the mulicomputer, then many rules are allocated to a single
node. This utilises the production level parallelism in our system. The assignment of
production rules to nodes has a great impact on the overall system performance. To find
an optimal allocation of the production rules has been proven as a NP-complete problem

[Xu et al 1991].

The specifications of the PHGA were discussed in more detail. Pseudo-code that

describes the behaviour of the system was presented.

The final section of this chapter presents a description of the design of the distributed
production system, proposed in this project. A modified structure chart for representing

the simulated system design has been used.

Finally, a knowledge diagram illustrating a graphical representation of the rule base

and how the rules connect facts together has also been included.
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Testing and Evaluation

5.1 Introduction

Knowledge based systems have development life cycles similar to those of
conventional software systems. They also have verification and validation processes
which resemble those for conventional software program testing [Ayel and Laurent
1991]. The basic motivation behind system testing is to control and check performance,
efficiency, and quality of the knowledge base. For computer programs, system testing is
the process of comparing the program’s results to its original objectives, i.e. what the
program should do and how well the program should do it. The objective of the
verification process is to ensure that the system performs the functions defined in the
objective specification and that it is free of errors. In contrast, expert system validation
ensures that the system meets the expert’s expectations and that the output of the system
is correct. In the case of a conceptual system, a simulation program can be used to
describe and analyse the behaviour of the system. Simulating the system provides a
means of analysing the behaviour of the real system by observing the behaviour of a
model representing that system [Banks 1998]. The system is encoded into an

operational model which can be processed on a computer, provides a representation of
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the proposed system. We have developed such a simulation program for modelling

those aspects of the proposed system which are of particular interest.

In general, during system testing, several aspects of the system need to be tested.
However, all categories are not necessarily applicable to every system [Myers 1979].
Our purposes of simulation of the system include analysis, cost effectiveness and

performance evaluation of the system prior to its implementation.

In this chapter, we first describe the structure of the simulation program and then the
activities related to verification of the simulated distributed problem solving system.
These include the verification the inference engine and the knowledge base. The
validation process, which comprises of the determination testing methodology and
validation criteria, is then discussed in Section 5.4. Several performance measurements
are considered in order to evaluate various aspects of the system. The results of
benchmarking the simulated system and discussion about comparison of genetic-based

clustering and random-based clustering are presented in Section 5.5.

5.2 Structure of the simulation program

The basic structure of the simulation program, which has been written in Lisp
[Winston 1989] functional format, contains Global definitions (global variables), data
structures and macros, the abstract program, defining the various operations performed

on the data structures.

Global variables contain the information used for various operations performed by
the program. For each PE, working memory or fact base FB, rule base RB, and conflict
resolution set or agenda AA should be visible to the entire program, considered as
global variables. The structure of fact base and agenda has been considered as the list
structures within the program. The choice was based on the simplicity of the supporting
functions for list structures. Since rules in the system are referred to in a sequential
fashion, it is better to provide a means for referring to each rule by name. We have
placed the rule base into a hash table. A hash table provides a means of mapping a set of
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objects into a set of hash codes with the ability of retrieving the original objects. The

aim is to decrease the average time to search through a linear list [Harrison 1990].

We have developed a frame-like structure for each production rule’s structure with
three slots, being: Rule, lhs, and rhs, because it has a flexible structure that can be easily
modified. The slot rule takes the rule name. The slot lhs has the conditions that support
the condition part of the rule. The slot ths has the action part of the rule as its value.
Condition elements of a rule have been considered as and-ed together, and or-ed

components have been considered as separate rules.

The abstract simulation program, which is presented in Appendix A, contains various
functions and sub-functions that execute pattern matching, conflict resolution, and the
genetic algorithm implementation. The top-level function ‘The-Program’ is a
representation of the three stages of processing in the theory: Initialising the system,
finding clusters of relevant of PEs by running an appropriate genetic algorithm, and

integrating partial results obtained from the clusters.

Initialisation is implemented by a loop structure function initialise, which sets the
global variables, adds the user inputs (facts) from a file to the fact base of each PE
(broadcasting of facts), adds domain knowledge (a rule-set) to the rule base of each PE,

and performs the forward-chaining inference for finding the initial partial results.

The parallel hybrid genetic algorithm is performed by the generation of initial-
random population and associating the fitness values to individuals. It applies the
genetic operations of reproduction, crossover, mutation, and inversion, respectively, for
each sub-population. In order to use the domain knowledge and bias the search of GA,
the individuals perform a simple hill-climbing heuristic procedure. The genetic
algorithm is performed by the iterative function find-clusters. The output of this

function is a list, which represents the clusters’ configuration.

Getting results from the clusters is performed by the function get-partial-results-
from-clusters. This function takes the value of the find-clusters function, which
represents the structure of clusters, and for each cluster, in a loop structure, performs the

communication-computation cycles until no matching rule is available for each problem

101



Chapter 5. Testing and Evaluation.

solving node. Integration of partial results is performed by the function integrate-partial-

results on the base of union of the existing results.

5.3 Verification

To ensure the correct performance of an expert system two major components, the
knowledge base and the reasoning as processed by the inference engine need to be
verified [Gonzaleaz and Douglas 1993]. Verification essentially addresses the syntactic
aspects of the knowledge base. Many researchers have discussed verification and
validation issues of knowledge based systems, particularly, rule based expert systems,
such as Jafar and Bahill [1993] and O’Keefe and O’Leary [1993]. On the other hand,
there is a lack of research software and benchmarks in the field of rule based systems
[Miranker 1991]. Therefore, we have developed a set of software and test cases unique
to the DPSS system to test our ideas. We have applied conventional software
verification techniques for our own developed inference engine component. These
include static test techniques for checking wrongful use of data, faults in declarations
such as the use of undeclared variables, and faults in control flow such as infinite loops

in the program source code.

5.3.1 Verification of the knowledge base

Verification is a white-box process that analyses the rules for sequence, structure,
and specifications. This phase of testing is usually done in a static mode. Many
available tools have verification features that detect common errors in rule redundancy
or syntax. CONKRET (Control Knowledge Refinement Tool) [Lopez 1991], and
MELODIA (Logical Methods For Checking K-Bases) [Charles and Dubois 1991] are
examples of these tools. Schmolze and Synder [1997] have presented a formal
definition of production rule redundancy and an algorithm for detecting redundant

production rules. However, due to inadequacy of automatic verification tools [Awad
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1996] we performed the verification of the knowledge base manually, although this

compounds the complexity of the verification process.

The knowledge base represents the problem domain in the form of production rules.
The basic syntax used for representing rules, has the grammar (r (lhs) (rhs)), where r
refers to the name of a rule, lhs is a sequence of the form (C; C; ... C,), and rhs takes
the form (A). The C’s refer to conditions and A is the action that is implemented when
all C’s are true. The syntax of a condition element C and the action A is ((? x) P), where
(? x) represents a variable and P is an arbitrarily property, representing a value for the

matching attribute.

The syntax grammar of the language can be expressed by the BNF notation as

follows:

terminals = { (), ?}

wif :: = (symbolic-atom (lhs) (rhs))
Ihs 1 = (variable Ihs-value)’
lhs-value :: = (constant-symbol number)
variable :: = (? character)
character =X

y
rhs :: = (variable rhs-value)
rhs-value :: =(constant-symbol number)
number :: = integer
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The symbol “ * ” indicates that the preceding item is repeated zero or more times. A
symbolic atom is any sequence of characters that is not a number and the system will
treat as a single unit. The angled brackets have been used to enclose non-terminal

symbols.

We considered a medium size of the KB containing between 250 and 1000
production rules. The maximum number of clauses in the lhs of each rule is equal to 5,
and the rhs part of a rule takes one clause. Multiple predicates on the lhs have the form
of conjuncted predicates. A large production rule is broken into smaller and independent

rules.

In our system testing, the knowledge base verification comprised of checking for the
implementation of the rule based knowledge representation paradigm and employment
of the proper reasoning technique specified in the previous chapter. Another aspect for
verification of the knowledge base was to check for semantic and syntactic errors that

might have occurred during the development of the knowledge base, including:

e Redundant rules: Two rules are considered redundant if they have identical
premises and reach identical conclusions. Redundant rules offer different
approaches to the same problem, causing a duplication of knowledge. Absence of

redundancy provides greater specificity to the notion of completeness.

o Conflict rules: Two rules are considered as conflict rules if they have identical

premises yet their conclusions contradict.

e Subsumed rules: One rule is subsumed by another if it has more constraints in the
condition statements while they have identical conclusions. If one rule is true,

one knows the second rule is always true.

e Missing rules: These rules are characterised by facts that are not used within the

inference process.

e Circular rules, which are rules causing an infinite loop of rule firings, checked by

the refraction strategy during the conflict resolution.
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These error checks involve the consistency and completeness of the knowledge base.

We have divided production rules in the knowledge base into rule-sets such that rule
instantiations for rules belonging to different rule-sets can be executed in parallel. The
assignment of production rules to nodes has a great impact on the overall system
performance. For example, if a number of rules are assigned to the same processor
node, they cannot be fired in parallel. Performance of the system may be degraded by
dependency between rules. If two rules have to communicate with each other, assigning
them to different nodes will take longer to communicate. To find an optimal allocation
of the production rules has been proven as a NP-complete problem [Xu and Hwang
1991]. Obviously, each production rule must be assigned to some processor. In order to
avoid trivial solutions and load imbalances, such as all rules being assigned to just one
processor, we assumed that each processor is capable of handling only a few

productions. Thus a processor cannot handle more rules than its production capacity.

We used compile time analysis to detect interference among multiple rules by
analysing the inter-rules data dependencies. Run time analysis requires global
synchronisation, which is too expensive in distributed systems. The compatibility
problem of rules within rule-sets, and clusters of rule-sets is also solved at run time by
sequential execution cycles of reasoning (local synchronisation). Compile time analysis
can be performed automatically or by hand. For instance, CHECK [Nguyen et al 1985]
is a program that verifies the consistency and completeness of the rule based expert
system knowledge bases, and also generates a dependency chart which shows the

dependencies among the rules and between the rules and the goals.

If a set of rule instantiations has a data dependence cycle then they are incompatible.
Interference can be identified when multiple rules destroy other rules’ preconditions in a
cyclic fashion. If incompatible rules are distributed to different rule-sets then the result
of parallel execution of the rules might be different from the results of sequential
executions. This problem is caused by the elimination of the sequential conflict

resolution strategy in the whole of the production system.
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We assumed it is the programmer’s responsibility to write correct programs and to
ensure that the parallel production system reaches the correct solution. A program is
correct if and only if all eligible serial execution paths reach correct solution.
Obviously, the disadvantage of this method is that as the size of system increases, the

programmer’s job becomes more complicated.

In a test run example, 344 production rules [Appendix B] have been divided into 10
rule-sets according to tasks that they can perform. Table 5.1 shows a distribution of rule

sets onto processors.

Processor Rules
#0 R1-R20, R327- R344
#1 R21- R40
#2 R41-R58, R307- R326
#3 R59-R77
#4 R78-R95, R247-R266
#5 R96-R112, R267-R286
#6 R113-R132,R192-R210
#7 R133-R151, R211-R228
#8 R152-R171, R229-R246
#9 R172-R191, R287-R306

Table 5.1. Representation of rule-sets.

5.4 Validation

Validation of a knowledge-based system can be accomplished by validating the
intermediate and final results of the system. Module testing was performed to validate
the intermediate results of the system. To perform a module test the specification, which
defines the module’s input and output parameters and its function, is compared to the
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function of the module. After writing source codes for each module of the simulation
program, testing of individual units has been tested by using the simple test data taken

from Winston [1989].

5.4.1 Validation methodology

Verification and validation of knowledge based systems call for informal, subjective,
and often arbitrary execution of test cases. Many methods can be employed in the
validation of knowledge based systems [Gonzalez and Douglas 1993]. One of the most
popular validation techniques is validation by testing. Validation by testing involves the
processing of prepared test cases by the knowledge based system and comparing results
with those of an expert for agreement. This method is a black-box (functional) approach
where only the system inputs and outputs are significant. In this method, the test data
has to be generated by the expert or automatic test data generating programs. Testing a
knowledge based system based on test cases has its own limitations. Generating test
cases is time consuming, and the credibility of the validation process can be undermined
if the domain expert who writes the test cases is also the tester. We have applied
program testing as the validation methodology. Test case generation was done in an ad
hoc manner. We note that expert systems with so many possible states or conditions

make exhaustive testing impossible.

5.4.2 Validation criteria

The characteristics desirable in the system are referred to as validation criteria.
Determining the appropriate validation criteria is an important consideration for the
system. Generally, system testing is impossible if the project has not produced a set of
measurable objectives for its product [Culler et al 1999]. According to the purposes and
goals of the system, the validation criteria may vary. As a general rule, all systems are

valid against certain criteria and invalid against others.

107



Chapter 5. Testing and Evaluation.

For the proposed distributed production system in this project, we considered several
criteria according to two major aspects of the system. Firstly, it falls within the
knowledge based systems category and secondly, it is a parallel/distributed system. The
adopted criteria for testing our system include the quality of the system’s answers, the
correctness of the reasoning used, the system’s efficiency and its cost-effectiveness.
Validation of knowledge based systems indeed includes the determining of factor(s) for
deciding whether the system is performing acceptably, rather than perfectly. The
definition of acceptable performance may vary depending on the particular application.
One possible definition for the acceptability of performance in the DPSS is defined as
follow: A solution of parallel/distributed execution of rules is acceptable if it agrees
with solutions proposed by an expert faced with the same problem. Consequently, we
obtain the criterion of comparison against expert performance. However, most
knowledge based systems are designed to model the designer’s knowledge and thus we
should not expect high accuracy. On the other hand, since comparison against expert
performance may include mistakes which made by the expert, it is not a precise and
highly beneficial criteria. Accuracy of the knowledge based systems also varies
depending on the conflict resolution strategy. For example, a rule based system which
executes all the activation on the agenda on each cycle would be impossible to control
for any real task, since the execution of an activation can prevent the execution of some
other activation. Therefore, we ignored this criterion in evaluating the DPSS

performance.

Another possible definition for acceptable performance is concerned with the
database serialisation problem related to the parallel execution of production systems. A
parallel execution of a set of production rules is serialisable if there exists a sequential
execution of those production rules such that both the parallel and serial execution result
in the same final database state [Ullman 1982]. Thus, another validation criterion for
evaluating the DPSS was chosen as: A solution of parallel/distributed execution of rules
is acceptable if it agrees with solutions of sequential execution of the same problem.
According to this definition we tested the system against the following criteria:

Comparison against known results.
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Another possible performance measurement for evaluating the system is related to
the main objective of applying parallel processing techniques to production rule systems
to improve the problem of slowness of execution time. Execution time is a useful metric
for testing of the DPSS system. In general, performance improvement due to parallelism
(speedup) is the most common performance metric in parallel computing. This is the
ratio of the run time of the serial solution over the run time of the concurrent software

running on n processing nodes. Thus we have:
Speedup = execution time (1 processor)/ execution time (n processor) (5.1)
1 < Speedup <n.

The execution time for a given program is the total time taken to execute the
program, and should be measured in terms of total consumed time for the workload
including all activities between, and not just the CPU time. In the case of a simulated
system, the execution time is measured in terms of the CPU time spent to implement the

program.

If speedup is equal to n, then the application is said to be perfectly parallel or has a
linear speed. Often the speedup trends towards linear speedup, but does not reach it, due
to the communications overhead between the processing elements. If speedup is greater
than n, then it is called super linear speedup. Super linear speedups have been seen in
limited and special situations. They obtain when the application is too large for a serial
system and causes certain overheads, but when implemented on a many processors

system, none of the pieces is large enough to incur the same overhead.

Speedup of a production system depends on several other parameters, which need to
be considered when evaluating the system. These parameters include the number of
production rules, the number of working memory elements or facts, the composition of
rules, including the number of clauses in the lhs and rhs of the rule, and the average
number of rules eligible for selection on a given cycle. Other characteristics depend on

the system, inference engine, and method of conflict resolution being implemented.
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Therefore, we measured another metric to evaluate the performance of the simulated
system: Performance improvement due to applying parallel processing techniques. To

test the system against this criterion, two different approaches have been examined.
e Calculating speedup in terms of production cycles

e Calculating speedup in terms of the CPU times

5.4.2.1 Calculating speedup in terms of production cycles

As mentioned in previous chapters, the main objective of applying parallel rule
processing techniques in production systems is to improve the bottleneck of sequential
execution of rules by firing multiple rules simultaneously. Therefore, it is a reasonable
assumption to estimate the execution time of a parallel or serial production system by

counting the total number of production cycles performed.

Since in our proposed system, genetic clustering of problem solving nodes is performed
at run time therefore it is needed to estimate, in some way, the execution time of the
algorithm. However, in real-world search and optimisation problems, the overall time to
run a GA is more or less dominated by the time consumed by the objective function
evaluations [Deb and Agrawal 1999]. With the assumption that the time consumed by
each objective function evaluation roughly equals the time needed for execution of a
match-select-fire cycle in the production system, we counted the total number of
function evaluations during the run of the PHGA as an estimation for the execution
time. Counting the total number of function evaluations has been suggested by
Professor Fleming at the Department of Automatic Control and Systems Engineering,
University of Sheffield, in a private conversation, in an attempt to calculate the time
required for the execution of the PHGA independent of the implementation and the

computer system.

Let S be the total number of function evaluations in a genetic algorithm with a

population size of N, and T the number of generations that GA must be run, then
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S=TN, (5.2)

because in each generation N function are evaluated. We also do not take any special
care to not count an individual appearing more than once either in one single population
or in subsequent generations. In a parallel implementation of the genetic algorithm,
where the initial population is divided into M sub-population, the total number of

function evaluations is then reduced to
S=T.N/M, (5.3)

because in each generation, M sub-populations simultaneously work in parallel. In our
implementation of PHGA, we calculated the total number of objective function

evaluations according to the Eq. 5.5.

5.4.2.2 Calculating speedup in terms of CPU times

LISP has a number of functions, which are useful for finding information about the
current LISP process. For example, the function TIME returns the amount of CPU time
and the amount of real time the evaluation required as its value. The exact output of
TIME is implementation-dependent. The other function is GET-INTERNAL-RUN-
TIME, which returns the amount of time the LISP process has consumed so far. We
inserted codes in terms of this function in appropriate places of the simulation program.
The difference between two calls of this function is the amount of internal time units,
which are expended during the computations between these calls. Internal time units are
implementation-dependent fractions of a second. In this implementation, an internal

time unit is a thousandth of second.

The execution time of a program is tied to a specific computer system and depends
on many factors [Hwang and Xu 1998]. When the program is complex or the workload
varies with different input data, such as sorting and searching, the workload can be
measured by running the application on a specific machine. Input-dependent programs

take different times on different input data, because control flow of the program could
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change with different inputs. When using execution time as the workload for such input

dependent programs, we need to use the longest processing time.

The overall processing time (in seconds) for a given test case, in the case of parallel

execution, has been calculated according to the following formula:
Teomp = Tinitiat + Tca + Tetuster (5.4)

Where Tinitia, Tga, and Teuser are the times needed to execute the first stage of
processing, the GA for clustering of relevant PEs, and the processing in clusters,
respectively. We inserted some additional codes at appropriate places of the simulation
program for the purpose of collecting information about model behaviour, in terms of
the execution and communication times and the amount of information communicated
between PEs. The program model should then be executed and the output analysed and
the dynamic model behaviour evaluated. The test program was executed more than 3
times, with timing starting on the second iteration to exclude the warm-up effect. The
minimal, maximal, and the mean time for all PEs are collected. To interpret the results
we focussed on the maximum execution time, not the average time over all PEs,
because execution of a parallel program is not finished until the last process has been

terminated.

Calculation of communication overheads

Communication was assumed to be performed in packet routing mode; a message
along with its destination address is placed in a packet that moves through the nodes of
the interconnection network. In the store-forward packet routing model, each node has a
store/send capacity, it sends a packet to its neighbour and waits for an acknowledge
message from the receiver. The transmission of a packet from one network node to any

of its neighbours takes the communication time (in ps)

Tcomm(m) = tO + m/ Teo. (5.5)
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Teomm i the communication overhead and is a linear function of the message length

m (in bytes), to is the start-up time in ps, and 1., is the asymptotic bandwidth in Mbyte/s.

In the simulation program, each packet contains a few working memory elements,
resulting from the processing of information by each PE. The size of each packet was
calculated by the function FILE-LENGTH, which returns the number of characters in
the packet (file). We assumed each character is equivalent to a byte, and 2.7 Mbyte/s is
a reasonable assumption for the transfer rate [Ishida 1994]. This amount is related to
iPSC/2 [Bomans and Roose 1989], a typical message-passing multicomputer, with start-

up time 700 ps [Culler et al 1999].

The impact of communication is best estimated not by the absolute amount of
communication but by a quantity called the communication-to-computation ratio. This
measurement gives a good indication of the overhead associated with the parallel

process. This is defined as the communication time divided by the computation time;

Teomm/Teomp (5.6)

In general, if the ratio value is small, higher speedups can be achieved with some
performance tuning. With large values, the parallel algorithm should be redesigned. The
lower values of this ratio mean that the communication mechanism is relatively more

effective than the raw computation power of the parallel system.

5.5 Evaluation of the results

To evaluate the effectiveness of the proposed approach, a simulation environment
was implemented and the generic program executed. The complete program, which
includes 344 rules, is included in Appendix B. The test cases, which are various aspects
of the program in terms of different number of rules, number of facts, and number of
PEs, have provided a range of benchmarks on a sequential compatible IBM PC, running
a LISP based environment. Knowledge processing is based on matching, selecting, and

firing of the rules. Each PE is assumed to be capable of performing those operations
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(knowledge processing). Each PE adds the results of its processing to a file or a packet
and sends the packet to its determined neighbours in the clusters. The process of passing
packets from one PE to its neighbour is based on the concept of message passing, and
hence provides communications between PEs. During execution, processors run the
same algorithm on their own sub-problem (task), and then communicate with their
relevant processors to exchange information and repeat a computation-communication
cycle until they reach their saturation points. Thus, in the model of computation,
calculation and communication do not overlap. This model of computation is repeated

asynchronously for other parallel clusters.

5.5.1 Comparison against known results

To evaluate the results of the distributed production system against known results,
we compared the result of the DPSS with the results of sequential processing of the
same programs. In the most cases of test programs the parallel firing results of
execution rules were compatible with the results of sequential executions in any order of
applying those rules. However, since the process of formation of clusters in the system
was a dynamic process implemented at run time, we obtained various instantiations of
clusters for different runs of the same program. This results in that for a given program,
after several times of running, there were cases that the conclusions of different runs
were not the same set. This problem is related to the application of sound deduction

rules in the field of automated theorem proving, which needs to be resolved.

5.5.2 Performance improvement

The simulation results for the test programs under the DPSS model, using the

production cycle counts, are summarised in the Table 5.2.
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Measurements Production programs
Test-1 Test-2 Test-3 Test-4
# of production rules 51 344 286 286
# of working memory facts 14 71 43 50
# of sequential cycles = a 16 36 15 29
# of parallel cycles = 3 9 7 8
# of function evaluations =y 8 10 10 16
Speedup = o/(B+y) 1.45 1.89 0.88 1.20
# of rule-sets (PEs) 8 10 15 15

Table 5.2. Simulation results using production cycles.

From Table 5.2, we observe that the number of parallel cycles has been sensibly
reduced in comparison to the sequential cycles, specially in the cases of large
production rule systems with large amount of working memory elements. This indicates
the potential parallelism available in production systems. However, speedups up to 2-
fold have been obtained for the DPSS. This is mainly related to the high computational
costs of genetic clustering. Speedup values depend on the number of generations which
should be run for the genetic algorithm, the number of PEs, and the population size. For
a fixed population size, higher speedups can be obtained if the number of PEs is

increased or the number of generations is reduced.
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Production Programs

Figure 5.1. Performance of the DPSS.

Figure 5.1 provides a histogram showing the achieved speedup rates for each of the

production programs. As can be seen, Test-2 resulted in the highest rates of 1.89. Test-3

provided a rate of only 0.88.

Production Programs
Measurements

A B C D E F G
# of production rules 286 326 344 286 286 | 286 | 344

# of working memory facts | 40 43 46 40 40 40 52
Sequential times (s) 6.5 9.1 15.8 6.5 6.5 6.5 | 194
DPSS time (s) 21.3 13.6 | 13.3 162 | 30.8 | 12.5] 183

# of rule-sets (PEs) 15 10 10 10 17 8 10

Table 5.3. Simulation results using execution times.

Table 5.3 summarises the simulation results, using the execution times. From this

table, the following facts can be derived, which are evaluated by various charts (Figures

5.2-5.7). In these figures, communication overhead is ignored.
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Figure 5.2. Processing times against number of PEs.

Figure 5.2 shows a plot of time (seconds) against the number of processing elements
used to implement cases where the number of rules and facts are 286 and 40
respectively. The major outcome of these computations is that the addition of more
processors on a fixed and small sized knowledge base does not decrease the processing
time of the DPSS. The reason can be explained by the fact that in our implementation,
as the number of PEs is increased, the population size becomes bigger, and
consequently the time associated with execution of genetic algorithm is also increased.
Another result is that the sequential execution of small production systems is more
efficient than the DPSS approach for processing them. Thus, to improve the efficiency
of the system employing rule-level parallelism, production rules should be divided into
larger sets of rule-sets to reduce the interactions between PEs as much as possible. This

emphasises the coarser grain level of parallelism of the production system.
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Figure 5.3. Comparison between sequential and parallel processing times.

Figure 5.3 shows the results obtained using the same number of rules and facts as in
Figure 5.2, but with the number of PEs fixed at 15. Under these conditions, the

sequential approach can be seen to be more efficient than the parallel one.
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Figure 5.4. Variances in parallel processing time.
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Figure 5.4 illustrates the time variances where processing has been carried out on
cases with the number of PEs fixed at 10, and where the size of the knowledge base
varies. The processing time is decreased as the number of rules increased. The reason is
that with a fixed number of PEs, the time related to execution of the genetic algorithm
will be constant, and as the number of rules increases, the sequential execution of
knowledge base takes more time than the multiple rule firing of production rules in
parallel. This emphasises on larger sized of knowledge bases to increase the efficiency
of the DPSS system. Thus, the appropriate type of production system for the proposed

approach in this project is a medium or large sized knowledge base.

time

sequential parallel

Figure 5.5. Comparison between sequential and parallel processing times.

In Figure 5.5, the number of rules, facts, and PEs are 344, 64 and 10 respectively. In
this case, the parallel execution time is reduced in comparison with the sequential

execution time of the same data.

119



Chapter 5. Testing and Evaluation.

time

cluster

initial

Figure 5.6. Comparison between execution times for different phases of the inference

methodology.

Figure 5.6 analyses the parallel execution time from the same conditions as given in
Figure 5.5. It indicates that the most time consuming stage in the proposed approach is
the formation of clusters of relevant PEs by the implementation of the GA. Thus, using
evolutionary computing at run time processing is not cost effective, due to the large
amount of time consumed for processing of the genetic operations on populations of
individuals. For systems where the execution time of a given program is an important

factor, off-line evolutionary computation seems more appropriate.
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Figure 5.7. Speedups against the number of production rules.

Figure 5.7, under the same conditions as given in Figure 5.3, denotes as the size of

the knowledge base increases the values of speedup also increases in the DPSS.

Communication overhead

The overall communication overhead was very small in the system. For example,
under the same situation conditions given in Figure 5.5, the total number of transferred
characters is 980 bytes. Hence, according to equation 5.4, the overall time spent to
transfer this number of bytes equals to T (980) = 700 (us) + 980 (byte) / 2.7 (Mbyte/s) =
0.001 (s).

The main reason for this can be explained by the fact that the number of changes
made to working memory per cycle is very small in production systems. On the other
hand, development of message passing machines has reduced the communication
overhead by an order of magnitude, and the communication overhead is not a problem

in current message passing machines.
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Comparison between genetic-based and random-based clustering

In our implementation, the genetic algorithm starts with a random-generated initial
population and, based on fitness measures derived, optimises the problem of
communication and computation overheads in the network of problem solvers. The
algorithm is also strongly directed by the knowledge of the system designer to reach to
the more beneficial states of the search space. We tested the proposed approach by
using a random-based algorithm to determine the patterns of communication between
problem solving nodes in the network. Due to elimination of the y factor in calculation
speedups, o/(B+y), we obtained more speedups of 2.1 to 5.3-fold. On the other hand, the
role of expert knowledge in formation of clusters, in a random-based clustering, has
been removed. The influence of this absence was as follows. The number of times that
the results of test cases and also the number of facts were different from the sequential
processing increased. The amount of communication and computation overheads were
also more than the values obtained by running a GA. Therefore, a random clustering has
more chances to produce results which are not the same as serial processing. Also, a

random clustering has more speedups at the price of more computational costs.

5.6 Summary

The central objective of this chapter was to describe the testing, along with
verification and validation of the DPSS, and evaluate the performance of the distributed
production system proposed in this thesis. Section 5.2 briefly described the structure of
the simulation program. Section 5.3 addressed the verification of the system for
syntactic aspects of the knowledge base. The validation process, composed of a
determination of a validation methodology and some appropriate criteria for evaluating
the system, is discussed in Section 5.4. Two different approaches for calculating the
speedups have been adopted. One is based on calculating the production cycles and
another on the basis of measuring the CPU times for execution of the benchmark
programs. However, since the execution time of a program is highly dependent on the

specific computer hardware and also language implementation, then applying this
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method on a computer PC has been subject to criticism by some researchers, although
there is some support for this method. Hence, in evaluation of the result we concentrate
on the first method. The simulation results indicate that the proposed approach is a valid
way to developing knowledge based systems, and the appropriate size of production
systems for the proposed approach is large sized knowledge bases with large amounts of
working memory elements. The results also indicate that genetic algorithms as a method
to determine the patterns of communication between problem solving agents are

computationally expensive to implement at run time.
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Conclusion

6.1 Introduction

In previous chapters we have briefly reviewed parallel execution of production
systems and genetic algorithms, which form the introductory topics for this research
work. We have also discussed a distributed production system (DPSS), with its problem
solving strategy inspired from the concept of self-organisation in the brain, presented by
TNGS. In this chapter, we first restate the aims of this research project, and then briefly
review the thesis. Discussions on the evaluation of simulation results and direction for

further work are the topics of the following sections of this chapter.

6.2 Restatement of the project aims

The main objective of this research programme was to develop a knowledge
representation language along with a corresponding investigation of a suitable parallel
architecture to support it. The proposed system introduced a co-operative mechanism of
problem solving based on a selection mechanism. The main concern in TNGS is related

to the role associated with groups of neurones, which selectively form and vary
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functionality. Accordingly, the problem solving system forms clusters of relevant
Problem Solvers (PS) by a process of selection, such that each cluster can provide an
appropriate solution in terms of some aspects of the given complex problem. These
approximations are then combined to yield a globally satisfactory solution. A parallel
genetic algorithm, which uses the principles of evolution through natural selection, was
developed as a search and optimisation technique to find the patterns of activities
between appropriate PSs. After the establishment of the knowledge representation
scheme and identification of the supporting parallel architecture, a simulation was
developed to emulate the behaviour of such a machine, which was then subjected to a
series of tests to assess the validity of our approach and potential benefits of the system,

including efficiency and speedups.

6.3 Summary of the thesis

In Chapter 1, we reviewed the history of Al at a glance and pointed out some
attempts which have been made during the last few decades to construct intelligent
systems. Attempts to create artificial intelligence can be categorised into two broad
classes of symbolic Al and connectionism. Although both approaches model the mind
as an information processor, there are several differences between them. In the symbolic
approach, cognition is defined as the transformation of symbols according to rules, by
any device that can manipulate the symbols. In contrast, cognition in connectionism is
defined as the emergence of global states in a network of simple components, through
local rules for individual operation and rules for changes in the connectivity among the
elements. Some attempts to combine symbolic AI techniques and connectionism

[Shavilk 1994], to gain more advantages have been undertaken.

After a long period of research activity, rule based production systems still occupy a
prominent place in Al, particularly in building programs simulating human problem
solving. We also reviewed advantages and arguments against the use of production
rules. A main disadvantage of production systems is their inherent inefficiency in the

computational process. We also pointed out that researchers have investigated several
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different methods to reduce the limitations and increase the speed of execution of
production systems. One of these methods is based on applying parallel processing
techniques to these systems. A review of these attempts formed the central subject of

Chapter 2.

Chapter 2 provides the background knowledge in the field of parallel execution of
production systems with the aim of improving the problem of slowness in execution of
large production systems. While production systems have the advantages of modularity
and ease of enhancement, they suffer from slow execution, especially in large-scale Al
applications and real time tasks. Researchers have consequently investigated systems,
using parallel processing techniques or distributed problem solving techniques that gain
more speedups. These researches can be divided to parallel rule matching systems,
parallel rule firing systems, distributed production systems, and multiagent production
systems. This chapter briefly reviewed these attempts and concluded with a discussion
on the suitable architecture supporting the proposed system in this work. We considered
the structure of the system as a mesh-based medium-grain message-passing
multicomputer (MIMD) using a physically distributed memory. The system offers
higher memory bandwidth and potentially higher scalability than a shared memory

architecture.

In Chapter 3, we discussed the genetic algorithm. Genetic algorithms represent a
class of adaptive search methods that have been widely applied in various problems.
Much of the interest in genetic algorithms is due to the fact that they provide a set of
efficient domain independent search heuristics, which offer significant improvement
over traditional methods without the need for incorporating intensive domain specific
knowledge. This chapter has provided a brief overview of various implementations of

the genetic algorithm and some of its applications relevant to work in this programme.

Chapter 4 introduced a distributed production system with the aim of addressing this
problem: Given a complex problem, compose production systems agents into clusters of
relevant agents by a process of selection so that each cluster provides an appropriate
solution in some region of the state space. Then, combine these approximations to yield

a globally satisfactory solution rather than extract the best solution. The central purpose
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in the design of this system was to increase the solution creation rates by forming sub-
solutions in parallel, thus gaining many of the potential benefits of distributed/co-
operative problem solver systems. The mechanism of inference in the proposed
knowledge based system was a coupling of task sharing and result sharing. The genetic
algorithm, which is based on the idea of natural selection, was considered as an adaptive
search technique for the problem of exploring a large state space for finding relevant
problem solvers. A hierarchical model was considered as an appropriate structure for
the storage of knowledge. Production rule representation was chosen as a suitable
knowledge representation. De Jong [1988] states one reason that production systems
have emerged as a favourite programming paradigm in both the expert system and
machine learning communities is that they provide a knowledge representation approach

that can simultaneously support two kinds of activities:

e Treating knowledge as data to be manipulated as part of a knowledge-acquisition

and refinement process,

e Treating knowledge as an executable entity to be used in performing a particular

task.

We introduced a parallel hybrid genetic algorithm that can be used to find an optimal
solution, based on certain cost criteria, for configuration of clusters. The specification of
the developed GA was discussed in more details. Pseudo-code describing the behaviour
of the system was presented. The last section of the chapter can be regarded as the
design stage of the distributed production system life cycle, proposed in this project. A
modified structure chart for representing the simulated system design was used. The
knowledge diagram, which is a graphical representation of a portion of the rule base and

details how the rules connect facts together, was presented.

The central theme of Chapter 5 was testing and evaluating the proposed system. The
structure of the simulation program in terms of global variables and data structures was
described. Testing, along with verification and validation of the proposed system
including verification of the inference engine and knowledge base, determination of
testing methodology, and specification of the validation criteria were discussed. We
tested the simulated system to verify the validity of the adopted approach. The
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performance of the system was also evaluated by calculating the performance
improvements of a set of benchmark programs on a compatible IBM PC. We gave some
experimental data, which indicates speedups up to 2-fold have been obtained for test

programs.

6.4 Discussion of the results

As aforementioned the system proposed in this thesis was considered as a distributed
production system, with its main inference mechanism motivated by the theory of
neuronal group selection. According to this theory, synaptic connections, which are
established during development, are selectively strengthened or weakened to make
circuits with strengthened synapses, called neuronal groups. Neuronal groups are local
collections of hundreds or thousands of neurones that are strongly interconnected and
vary functionally. We attempted to make a computational model of this mechanism by
the DPSS.

On the other hand production rule based systems have emerged as an important tool
for artificial intelligence researchers. Many problems are naturally formulated in terms
of rules and rule based systems are amenable to rapid modification. We used rule-based
representations to resemble neuronal groups in the brain. We developed a distributed
production system with a self-organising co-operative interaction mechanism that
allows multiple expert systems to work together to solve a complex problem. This is
similar to the brain, where different neural subsystems combine and exchange signals to

work together to yield an overall intelligent nervous system.

Distributed production systems attempt to reduce the processing time by executing
different inference phases concurrently. To ensure that the parallel solution is equivalent
to the sequential solution, two problems should be addressed: The compatibility and
convergence problems. The compatibility problem is caused by elimination of the
sequential conflict resolution strategy in the whole of the production system. Then there
is a chance of firing a set of rules, which prevent other instantiations from being fired.

Firing a set of compatible rule instantiations concurrently would reach the firing rules in
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a sequential order. On the other hand, firing a set of compatible rules does not guarantee
the correctness of the final solutions, because the right rule instantiation in a cycle may
be wrong in the following cycles. As a result, the final parallel solution does not agree
with serial solution of the program. We assumed the programmer writes programs in

which all possible execution sequences reach the correct solution.

In this thesis, we showed the applicability of genetic algorithm methods to
distributed production systems, as a search technique to cluster the relevant problem
solvers, especially in cases where the space is large and poorly understood. For many
practical domains of application, it is very difficult to construct strong domain theories
to guide the process of structural change. Particularly, if the search space is large, a
good deal of time and effort can be spent in developing domain-specific heuristics. We
exploited the key feature of GAs, i.e., the ability to exploit accumulating information
about an initially large complex, and unknown search space, in order to bias subsequent
searches into useful subspaces. In the problem of searching for a solution in a large
space, the computations tend to be unpredictably structured and have multiple solutions.
The desired solution is usually specified by certain properties, and any state satisfying
these properties is an acceptable solution. GA focuses on parallel exploration of the
search space to find optimal solutions, based on certain cost measures, that is specially
important in real-life applications. GA starts from a random generated set of possible
solutions and applies the genetic operators to transform a state of the search space to
another. Therefore, for a given problem the genetic algorithm may explore different
solutions at different runs. The influence of these variations is that for a given problem,
there are cases where the final solutions founded by the DPSS are not the same set. This
problem is caused by the elimination of communication patterns between clusters, i.e. a
processor node may request to communicate with other node(s) in another cluster. In
our implementations, the GA is guided by applying a hill-climbing procedure which

reduces differences in solutions.

Several other implications can be pointed out from the observation of the simulation
results. Firstly, the proposed approach can not perform efficiently on production system
with small sized knowledge bases. In general small production systems acceptably work

in terms of speed of execution, in a sequential approach. Secondly, we should not
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expect the addition of more processors on a fixed size knowledge base system improves
the speedup of the parallel execution of rules. Also when applying rule-level parallelism
in the system, we should concentrate on larger sized rule-sets. Thus, fine-grained rule-
level parallelism is not suitable for the system. Thirdly, using stochastic search methods,
such as genetic algorithms, are not cost effective enough to implement at run time
processing. Fourthly, communication overhead is too small in the system. Fifthly,
although the test results show that the increase in size of the knowledge base leads to
improve the speedup of the system, in general there is no reason to expect that larger
production systems will necessarily exhibit more speedups. The parallel speedups were
less than 2-fold, dependent on the implementation of genetic algorithm. The main

reasons can be explained by the following facts.

The main objective of the testing the system was to see whether the proposed
problem solving system works or not. Then in our implementation, we did not use
techniques to parallelise the match phase, which constitutes 90% of the run time and is a
bottleneck that needs to be improved. Generally, it is the inherent nature of the
computation involved in implementing production systems that prevents significant
speedup for parallelism. A production system, which employs multiple rule firing
techniques on the top of match level parallelism can obtain more speedups. In the
evaluation of the production systems we should also consider the method of conflict

resolution.

Although production systems appear to be highly parallel-able, in practice the
speedup obtainable from parallelism is quite limited. We quote the conclusion of Rice
[Neiman 1994]: ‘The blackboard model, an appealing cognitive model for concurrent
problem solving, does not necessarily work as well in practice as intuition might lead
one to expect. A consequence of this is that, although we hoped to deliver many orders
of magnitude of speedup due to parallelism, we have only been able to show off the
order of one order of magnitude with some indications that this might scale to about two

orders of magnitude.’

Another reason concermns with the formation of clusters of relevant processing

elements based on implementation of the genetic algorithm. The implementation of a
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genetic algorithm depends on several parameters, such as population size, choice of GA
operators, operator probabilities, representation of variables, and method of execution of
the algorithm, which interact in a complex way. Parallel execution of the algorithm
highly improves the execution time, however in our implementation larger population
sizes increase the execution times. This is the price to be paid for searching poorly

understood spaces.

Aside from the performance measurements, it is also important to evaluate the
complexity involved in requiring the programmer to guarantee the correctness of
production programs. In addition to the above theoretical problems, there is a lack of
research software and benchmarks in the field of production systems [Miranker 1991].
This makes it difficult to compare different research results. Because the number of
available benchmark production systems is very small, research results may not reflect
true behaviour of production systems. Even more critical is the fact that accurate
research results are difficult to obtain because most of the benchmarks are sequential in

nature.

6.5 Summary

The fields of knowledge representation and parallel processing have been the major
areas of research in the history of Al Different knowledge representation formalism and
architectural approaches to build parallel system have been developed. Production rule
systems show that the idea of using symbolic structures and symbol manipulation
coupled to theories on heuristic problem solving and logical inference is a valid
approach to knowledge based tasks. Parallel/distributed production systems are
supporting examples of this claim. On the other hand, cognitive psychology has an
important role to play. Despite the success of Al in certain areas, humans are still the
most advanced intelligent systems that we know. Better understanding of human
intelligence and knowledge representation methodologies will provide important
insights to build intelligent systems, only when it is looked for the right means not just

mimicking the brain function.
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6.6 Further work

There are some points deserving our attention in future work. First of all is the role of
knowledge in a distributed problem solving system [Conry et al 1990]. Successful
problem solving requires that agents be able to cooperate with other agents based on
their knowledge. When a reasoning task is assigned to a group of agents, each agent has
incomplete knowledge. Therefore, it is possible for each agent to perform forever, due
to incomplete knowledge, or the system can not prove a theorem that sequential systems
can determine its validity. Consequently, a distributed automated reasoning system
needs decision making intelligence heuristics to allow agents communicate to each

other based on their local knowledge.

For the DPSS, an alternative is the development of other strategies, rather than using

GA, to perform automated reasoning.

Another alternative is that we allow clusters communicate to each other, for example
in a pipelined approach, to produce the final solution rather than combining the clusters’
solutions. Therefore, the integration stage of problem solving methodology can be

implemented in following way:

After running the PHGA to specify the clusters’ configurations, PSs communicate to
neighbouring nodes in the same cluster to find approximations for a given complex
problem. As each cluster stops its computations, a corresponding cluster manager is
created. Managers, whom are production rule systems with combination of facts and
rules that each cluster member knows, communicate to each other. The process of
communication-computation between clusters’ managers continues until there is no any
matching rule for each manager. The final result is the result produced by the clusters’

mangers.

Moreover, several possible research directions can be suggested to improve the

efficiency of the system.

e Representing knowledge by other methods, such as combining symbolic and neural

networks or developing hybrid symbolic knowledge representations.
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Applying an efficient and parallel matching algorithm. The performance of the
production system may be improved by parallelising not only the act phase but also

the match phase.

Applying other sources of parallelism, such as data parallelism which is the

distribution of working memory elements over the processors.

Applying competitive interaction mechanisms rather than co-operative mechanisms

between problem solvers.
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Appendix A: The Simulation Program

A.1 Globals for the simulation program

DATA STRUCTURES

(setf rectangular-array (make-hash-table))
(defstruct PE rule-base fact-base agenda)
(defstruct rule lhs rhs)

MACROS THAT SUPPORT DATA STRUCTURES

(defmacro build-PE (name rule-base fact-base agenda)
“(setf ,name (make-PE
:rule-base ',rule-base
:fact-base ',fact-base
:agenda ',agenda)))
(defmacro build-array
(name rule-base fact-base agenda &optional rectangular-array)
*(setf (gethash ';name rectangular-array)
(make-PE

:rule-base ',rule-base
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:fact-base ',fact-base

:agenda ',agenda)))

(defmacro add-object (object variable)
*(unless (member ,object (mapcar #rest ,variable)
:test #'equal)
(setf ,variable (append ,variable
(cons (cons (add-tag) ,object)'())))))

(let ((time-tag 0))
(defun add-tag ()
(setf time-tag (1+ time-tag))))

il uff el
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REQUIERD PROCESSING ELEMENTS

(build-PE PE1 rule-base-1 fact-base-1 agenda-1)
(build-PE PE2 rule-base-2 fact-base-2 agenda-2)
(build-PE PE3 rule-base-3 fact-base-3 agenda-3)
(build-PE PE4 rule-base-4 fact-base-4 agenda-4)
(build-PE PES5 rule-base-5 fact-base-5 agenda-5)
(build-PE PEG6 rule-base-6 fact-base-6 agenda-6)
(build-PE PE7 rule-base-7 fact-base-7 agenda-7)
(build-PE PE8 rule-base-8 fact-base-8 agenda-8)
(build-PE PE9 rule-base-9 fact-base-9 agenda-9)

(build-PE PE10 rule-base-10 fact-base-10 agenda-10)

(build-array PE1 rule-base-1 fact-base-1 agenda-1)
(build-array PE2 rule-base-2 fact-base-2 agenda-2)
(build-array PE3 rule-base-3 fact-base-3 agenda-3)
(build-array PE4 rule-base-4 fact-base-4 agenda-4)
(build-array PES rule-base-5 fact-base-5 agenda-5)
(build-array PEG6 rule-base-6 fact-base-6 agenda-6)
(build-array PE7 rule-base-7 fact-base-7 agenda-7)
(build-array PES rule-base-8 fact-base-8 agenda-8)
(build-array PE9 rule-base-9 fact-base-9 agenda-9)

(build-array PE10 rule-base-10 fact-base-10 agenda-10)
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(defvar FB (list (PE-fact-base PE1)
(PE-fact-base PE2)
(PE-fact-base PE3)
(PE-fact-base PE4)
(PE-fact-base PES)
(PE-fact-base PE6)
(PE-fact-base PE7)
(PE-fact-base PES)
(PE-fact-base PE9)
(PE-fact-base PE10)))

(defvar RB (list (setf (PE-rule-base PE1) (make-hash-table))
(setf (PE-rule-base PE2) (make-hash-table))
(setf (PE-rule-base PE3) (make-hash-table))
(setf (PE-rule-base PE4) (make-hash-table))
(setf (PE-rule-base PES) (make-hash-table))
(setf (PE-rule-base PE6) (make-hash-table))
(setf (PE-rule-base PE7) (make-hash-table))
(setf (PE-rule-base PES8) (make-hash-table))
(setf (PE-rule-base PE9) (make-hash-table))
(setf (PE-rule-base PE10) (make-hash-table))))

(defvar AA (list (PE-agenda PE1)
(PE-agenda PE2)
(PE-agenda PE3)
(PE-agenda PE4)
(PE-agenda PES)
(PE-agenda PE6)
(PE-agenda PE7)
(PE-agenda PES)
(PE-agenda PE9)
(PE-agenda PE10)))

(setf DR (list
"f:\\simulati\\testing\\rset11.1sp"
"f:\\simulati\\testing\\rset12.1sp"
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"f:\\simulati\\testing\\rset13.1sp"
"f\\simulati\\testing\\rset14.1sp"
"f:\\simulati\\testing\\rset15.1sp"
"f:\\\simulati\\testing\\rset21.1sp"
"f:\\simulati\\testing\\rset22.1sp"
"f:\\simulati\\testing\\rset23.1sp"
"f:\\simulati\\testing\\rset24.1sp"
"f:\\simulati\\testing\\rset25.1sp"))

(setf files-list '("f:\\simulati\\testing\\h11.1sp"
"f:\\simulati\\testing\\h12.1sp"
"f:\\simulati\\testing\\h13.1sp"
"f:\\simulati\\testing\\h14.1sp"
"f:\\simulati\\testing\\h15.1sp"
"f:\\simulati\\testing\\h21.1sp"
"f:\\simulati\\testing\\h22.1sp"
"f:\\simulati\\testing\\h23.1sp"
"f:\\simulati\\testing\\h24.1sp"
"f:\\simulati\\testing\\h25.1sp"))

GLOBALS FOR THE GA

(defvar *population-size*)
(defvar *number-of-PEs*)
(defvar *number-of-clusters*)

(defvar *KB*)

PARAMETERS

(setf *number-of-PEs* 10)

(setf *population-size* 7)

(setf *number-of-clusters* 5)
(setf *KB*'(1142334021))
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OPERATOR RATES

(setf Pc 0.6)
(setf Pm 0.002)
(setf Pinversion 0.02)

PROCESSING ELEMENTS COORDINATES IN THE ARRAY

(setf PE-coordinates '((0 0) (1 0) (2 0)
onanemn
02)(12)(22)
03))

A.2 The program main body

(defun the-program ()
(initialise)
(print (integrate-partial-result
(get-partial-results-from-clusters
(find-clusters)))))

INITTIALISING THE SYSTEM

(defun initialise ()
(setf time-list nil)
(let (G 0)
(loop
(when (=i *number-of-PEs*)
(return-from initialise 'END-OF-THE-FIRST-STAGE))
(setf (nth i FB) nil)
(clrhash (nth 1 RB))
(setf (nth i AA) nil)
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(delete-file (nth i files-list))
(with-open-file
(str (nth i files-list) :direction :output
:if-does-not-exist :create))
(setf (nth i FB) (add-fact-from-file
"f:\\simulati\\testing\\fact.Isp" (nth i FB)))
(add-rule-from-file (nth i DR) (nth i RB))
(let ((t0 (get-internal-real-time)))
(inference-engine 1)
(reverse (push (- (get-internal-real-time) t0)
time-list)))
(incf1))))

R *

INTEGRATION OF PARTIAL RESULTS

(defun integrate-partial-result (list-of-partial-results)
(delete-duplicates (my-concatenate list-of-partial-results)

;test #'equal))

PRODUCEING PARTIAL RESULTS

(defun get-partial-results-from-clusters (list-of-clusters)
(let ((result nil))
(dolist (element list-of-clusters result)
(push (comm-comp element)
result))

(reverse result)))

(defun comm-comp (a-cluster-list)
(loop
(let ((copy-secondary
(copy-list (communicate a-cluster-list))))
(dolist (i a-cluster-list)
(inference-engine 1))

(when (equal (communicate a-cluster-list)
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copy-secondary) (return copy-secondary)))))

(defun communicate (a-cluster-list)
(et ((secondary-list nil))

(dolist (element a-cluster-list secondary-list)

(setf secondary-list
(add-fact-to-secondary
(nth element files-list) secondary-list)))

(dolist (element a-cluster-list secondary-list)

(dolist (fact-element secondary-list)

(add-object fact-element (nth element FB))))))

e S A ettt AMAEMESE & 2O T

INFERENCE-ENGINE

(defun inference-engine (i)
(loop (forward-chain i)
(if (endp (forward-chain 1))

(return-from inference-engine 'end-of-the-cycle))))

(defun forward-chain (i)
(let* ((rule-table (nth i RB))
(fact-list (nth i FB))
(B (use-rules rule-table fact-list)))
(dolist (element B result)
(setf result (fire-rule element rule-table 1)))))
(defun fire-rule (a-list rule-table 1)
(let ((result (instantiate-variables
(rule-rhs
(gethash (first a-list) rule-table))
(rest (remove-if # numberp a-list)))))
(print-to-file result (nth i files-list))
(print 1)
(print result)
(add-object result (nth i FB))))
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FORWARD CHAIN

(defun use-rules (rule-table fact-list)
(setf current-agenda nil)
(maphash #'(lambda (key value)
(let ((binding-list
(apply-filters
(rule-lhs value) '(nil) fact-list)))
(cond ((endp binding-list) current-agenda)
((= 1 (length binding-list))
(push (apply # cons key binding-list)
current-agenda))
(t (dolist (element binding-list)
(push (cons key element)
current-agenda))))))
rule-table)

(values current-agenda))

(defun apply-filters (patterns initial-input-list fact-list)
(if (endp patterns) initial-input-list
(apply-filters (rest patterns)
(filter-binding (first patterns)
initial-input-list fact-list) fact-list)))

(defun filter-binding (pattern a-list fact-list)
(my-concatenate (mapcar #'(lambda (bindings)
(match-pattern-to-facts
pattern bindings fact-list))
a-list)))

(defun match-pattern-to-facts (pattern bindings fact-list)
(delete-if # endp (mapcar #'(lambda (fact)
(try-fact
pattern fact bindings))
fact-list)))
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(defun try-fact (pattern fact bindings)
(let ((result (match pattern (rest fact) bindings)))
(if (eq 'fail result) '() (cons (first fact) result))))

(defun my-concatenate (lists)
(if (endp lists) 'nil
(if (endp (first lists))
(my-concatenate (rest lists))
(cons (first (first lists))
(my-concatenate
(cons (rest (first lists)) (rest lists)))))))

(defun instantiate-variables (pattern a-list)
(cond ((atom pattern) pattern)
((eq '? (first pattern))
(extract-value (find-binding pattern a-list)))
(t (cons (instantiate-variables (first pattern) a-list)

(instantiate-variables (rest pattern) a-list)))))

o R B e

AR EAM AL & AV O

St o &

PATTERN MATCHING

(defun match (pattern1 pattern2 &optional bindings)
(cond ((and (atom patternl) (atom pattern2))
(match-atoms patternl pattern2 bindings))
((and (listp patternl) (eq '? (first pattern1)))
(match-variable patternl pattern2 bindings))
((and (listp pattern1) (listp pattern2))
(match-pieces patternl pattern2 bindings))

(t 'fail)))

(defun match-atoms (p q bindings)
(if (eql p q) bindings 'fail))
(defun match-variable (p q bindings)
(let ((binding (find-binding p bindings)))
(if binding (match (extract-value binding) q bindings)
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(add-bindings p q bindings))))

(defun match-pieces (p q bindings)
(let ((result (match (ﬁrst p) (first q) bindings)))
(if (eq 'fail result) 'fail
(match (rest p) (rest q) result))))

(defun find-binding (pattern-variable-expression binding)
(unless (eq - (extract-variable pattern-variable-expression))

(assoc (extract-variable pattern-variable-expression) binding)))

(defun make-binding (variable datum)

(list variable datum))

(defun extract-variable (pattern-variable-expression)

(second pattern-variable-expression))

(defun add-bindings (pattern-variable-expression datum bindings)
(if (eq - (extract-variable pattern-variable-expression))
bindings
(cons (make-binding
(extract-variable pattern-variable-expression)
datum)
bindings)))

(defun extract-value (binding)
(second binding))

CONFLICT-RESOLUTION

(defun conflict-resolution (agenda-list current-agenda)
(random-selection
(specificity
(recency

(refraction agenda-list current-agenda)))))
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REFRACTION

(defun refraction (main-list current-list)
(if (endp main-list) current-list
(refraction (rest main-list)

(compare (first main-list) current-list))))

(defun compare (list c-list)
(delete-if # endp
(mapcar # (lambda (a-list)
(if (equal list a-list) nil a-list)) c-list)))

RECENCY

(defun recency (all-lists)
(cond ((null (cdr all-lists)) all-lists)
(t (remove-if # endp
(mapcar #(lambda (a-list)
(membership (find-max all-lists)
a-list)) all-lists)))))

(defun membership (arg list)

(when (member arg list) list))

(defun collect-tags (a-list)
(mapcar # (lambda (element)

(remove-if-not # numberp element)) a-list))

(defun find-max (a-list)
(apply #max (my-concatenate (collect-tags a-list))))

11-A



SPECIFICITY

(defun specificity (a-list)
(cond ((null (cdr a-list)) a-list)
(t (remove-if #'endp
(mapcar # (lambda (element)
(when (= (count-conditions element)
(max-conditions a-list))
element ))a-list)))))

(defun max-conditions (a-list)
(apply # max
(mapcar # (lambda (element)
(length
(remove-if-not # listp element)))
a-list)))
(defun count-conditions (element)

(length (remove-if-not # listp element)))

RANDOM-SELECTION

(defun random-selection (a-list)
(cond ((null (cdr a-list)) a-list)
(t (list (nth (random (length a-list)) a-list)))))

ADDING FACTS TO FACT-BASE FROM A FILE

(defun add-fact-from-file (file fact-list)
(if (probe-file file)
(with-open-file (str file :direction :input)
(read-add-loop str fact-list))))

(defun read-add-loop (stream fact-list &optional (eof (gensym)))
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(flet ((eof-p (obj)
(eq obj eof)))
(loop
(let ((exp (read stream () eof ())))
(if (eof-p exp) (return fact-list))
(add-object exp fact-list)))))

YR AS & Ao TR

ADDING RULES TO RULE-BASE FROM A FILE

(defun add-rule-from-file (file rule-table)
(if (probe-file file)
(with-open-file (str file :direction :input)
(read-add-hash str rule-table))))

(defun read-add-hash (stream rule-table &optional (eof (gensym)))
(flet ((eof-p (obyj)
(eq obj eof)))
(loop
(et ((exp (read stream () eof ())))
(if (eof-p exp) (return t))
(adding-rule exp rule-table)))))

(defun adding-rule (exp rule-table)
(setf (gethash (first exp) rule-table)
(make-rule :lhs (second exp) :rhs (third exp))))

ADDING FACTS TO SECONDARY STORAGE FROM FILE-RESULTS

(defun add-fact-to-secondary (file secondary)
(if (probe-file file)
(with-open-file (str file :direction :input)
(read-add2-loop str secondary))))

(defun read-add2-loop (stream secondary &optional (eof (gensym)))
(flet ((eof-p (obj)
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(eq obj eof)))
(loop
(let ((exp (read stream () eof ())))
(if (eof-p exp) (return (reverse secondary)))
(pushnew exp secondary :test #'equal)))))

PRINTING TO A FILE

(defun print-to-file (exp file)
(with-open-file
(str file :direction :output :if-exists :append
:if-does-not-exist :create)

(print exp str)))

THE PARALLEL GENETIC ALGORITHM

(defun PGA ()
(let* ((temp nil)
(i0)
G0)
(temp?2 nil))
(loop
(let* ((next-generation
(IMCR (fitness-of-initial-population)))
(fittest-so-far
(fittest-individual
(associate-fitness-to-individuals
next-generation))))
(push (car fittest-so-far) temp))
(incf 1)
(when (=i *number-of-PEs*) (return (print temp))))
(let ((fitl (car (fittest-individual temp))))
(cond ((< (car fitl) (objective-function *KB*)) fitl)
(t (loop
(push (apply-parallel-hill-climbing j fit1)
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temp2)

(incfj)

(when (=] *number-of-PEs*)
(return

(car (fittest-individual temp2))))
D))

(defun IMCR (pop)
(apply-inversion (apply-mutation (apply-xover

(reproduction pop)))))

RANDOM GENERATION OF INITIAL POPULATION

(defun create-initial-population ()
(let ((initial-population nil))
(do ((counter 1 (+ 1 counter)))
((> counter *population-size*) initial-population)
(if (not (member (generate-chromosom)
initial-population))
(push (generate-chromosom) initial-population)
(setf counter (- 1 counter))))))
(defun generate-chromosom ()
(let ((chromosom-string nil))

(dotimes (counter *number-of-PEs* chromosom-string)

(push (random *number-of-clusters*) chromosom-string))))

ASSOCIATION OF FITNESS-VALUES TO INDIVIDUALS

(defun fitness-of-initial-population ()

(associate-fitness-to-individuals (create-initial-population)))

(defun associate-fitness-to-individuals (a-population)
(mapcar # (lambda (element)
(cons (objective-function element)

element)) a-population))
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(defun objective-function (individual)
(let ((calculation-factor 0.5)
(communication-factor 0.5))
(+ (* calculation-factor
(calculation-time individual))
(* communication-factor

(communication-time individual)))))

SV TEEE

CALCULATION OF COMPUTATION-TIME OF INDIVIDUALS

(defun calculation-time (individual)
(let ((result 0))
(dotimes (i *number-of-clusters* result)
(setf result
(+ (square (calculation-time-cluster

(get-cluster i individual)))
result)))))

(defun get-cluster (number individual)
(let ((cluster-list nil)
(counter 0))
(dolist (element individual cluster-list)
(when (= element number)(push counter cluster-list))
(setf counter (1+ counter)))

(reverse cluster-list)))

(defun calculation-time-cluster (a-list)
(let ((result 0))
(dolist (element a-list result)
(setf result
(+ result
(file-length (nth element DR))
(file-length (nth element files-list)))))))

CALCULATION OF COMMUNICATION-TIME OF INDIVIDUALS
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(defun communication-time (individual)
(let ((result 0))
(dotimes (i *number-of-clusters* result)
(setf result (+ (communication-time-cluster

(get-cluster i individual))

result)))))

(defun communication-time-cluster (a-list)
(let ((result 0))
(dolist (i a-list result)
(dolist (j a-list)
(unless (>=1j)

(setf result (+ result (communication-pes i j))))))))

(defun communication-pes (PEi PE;j)
(let ((t-comm 0.1))
(* t-comm
(information-amount PEi PEj)
(distance PEi PEj))))

(defun information-amount (PEi PEj)
(+ (file-length (nth PEi files-list))
(file-length (nth PE;j files-list))))

(defun distance (PEi PE;)
(let ((xi (first (nth PEi pe-coordinates)))
(vi (second (nth PEi pe-coordinates)))
(xj (first (nth PE;j pe-coordinates)))
(yj (second (nth PEj pe-coordinates))))

(+ (abs (- xi xj)) (abs (- yi yj)))))

FITTEST INDIVIDUALS

(defun fittest-individual (value-population)
(let ((fittest-value
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(apply #'min (fitness-list value-population)))
(fittest-individual nil))
(dolist (element value-population fittest-individual)
(when (= fittest-value (car element))
(push element fittest-individual)))
(if (= 1 (length fittest-individual)) fittest-individual
(cons (car fittest-individual) ()))))

FLIP-FUNCTION

(defun flip (probablity)
(> probablity (random 1.0)))

RANKING REPRODUCTION SCHEME

(defun reproduction (value-population)
(let ((alist
(sort-by-reproduction-probablities value-population)))
(loop

(when (= (length *mates*) *population-size*)
(return *mates*))

(push (cdar alist) *mates*)

(setf alist (rest alist)))))

(defun sort-by-reproduction-probablities (population)
(apply-sorting (reproduction-probablities population)))

(defun apply-sorting (list-of-lists)
(let ((firsts
(delete-duplicates
(sorted-list-of-first-elements list-of-lists))))
(my-concatenate
(mapcar #(lambda (element)
(find-all element list-of-lists))
firsts))))
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(defun sorted-list-of-first-elements (a-list)
(sort (copy-list (fitness-list a-list)) #>))

(defun fitness-list (population)

(mapcar #(lambda (element)(car element)) population))

(defun find-all (no list-of-lists)
(let ((result nil))
(dolist (element list-of-lists result)
(when (equal (car element) no)

(push element result)))))

(defun reproduction-probablities (population)
(setf *mates* nil)
(mapcar # (lambda (element)
(let(( result (linear-rank
(fitness-list population)
(car element))))
(cond ((<=result 1)
(cons result (rest element)))
(t (push (cdr element) *mates*)
(cons (- result 1) (rest element))))))

population))

(defun linear-rank (list-of-fitness number)
(let ((min 0.8) (max 1.2))
(+ min (* (- max min)
(/ (- (find-index list-of-fitness number) 1)
(- *population-size* 1))))))

(defun find-index (list-of-numbers number)
(let ((rank 0)
(list-of-fitness
(remove-duplicates
(sort
(copy-list list-of-numbers) #<))))
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(if (not (member number list-of-fitness)) 0
(dolist (element list-of-fitness rank)
(when (<= element number)
(setf rank (1+ rank)))))))

TWO-POINTS CROSS OVER

(defun apply-xover (a-list)
(let ((next-population nil)
(mates (copy-list a-list)))
(loop
(cond ((= (length mates) 1)
(push (first mates) next-population)
(return next-population))
((= (length mates) 0) (return next-population))
(t (let* ((parent-1
(nth (random (length mates)) mates))
(mate-1
(delete parent-1 mates :test #'equal))
(parent-2
(nth (random (length mate-1)) mate-1))
(mate-2
(delete parent-2 mate-1 :test #'equal))
(result (children parent-1 parent-2)))
(push (first result) next-population)
(push (second result) next-population)
(setf mates mate-2)))))))

(defun children (parent-1 parent-2)
(cond ((flip Pc)

(let ((child-1 (copy-list parent-1))

‘ (child-2 (copy-list parent-2))
(n (random (length parent-1)))
(m (random (length parent-2))))

(list

(replace child-1 parent-2 :startl (min n m)
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:endl (+ 1 (max n m)) :start2 (min n m))
(replace child-2 parent-1 :start] (min n m)
:endl (+ 1 (max n m)):start2 (min n m)))))
(t (list parent-1 parent-2))))

MUTATION

(defun apply-mutation (next-population)
(mapcar #(lambda (element)

(mutation element)) next-population))

(defun mutation (individual)
(if (zerop Pm) individual
(do ((10 (+11))
((=1 *number-of-PEs*) individual)
(setf (nth i individual)
(gene-mutation (nth i individual))))))

(defun gene-mutation (gene)

(if (flip Pm) (setf gene (random *number-of-clusters*)) gene))

INVERSION

(defun apply-inversion (population)
(mapcar #(lambda (element)
(inversion element)) population))
(defun inversion (individual)

(if (flip pinversion) (invert individual) individual))

(defun invert (individual)

(let* ((n (random *number-of-PEs*))
(m (random *number-of-PEs*))
(result-1 nil)

(result-2 nil)
(result-3 nil)
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(j (min n m))

(k (max n m)))

(concatenate-lists

(loop
(if (=1 (min n m)) (return (reverse result-1)))
(setfresult-1 (cons (nth i individual) result-1))
(incf 1))

(loop
(if (=] (max n m)) (return result-2))
(setfresult-2 (cons (nth j individual) result-2))
(incf j))

(loop
(if (= k (length individual))

(return (reverse result-3)))

(setfresult-3 (cons (nth k individual) result-3))
(incf k)))))

PARALLEL HILL CLIMBING

(defun apply-parallel-hill-climbing (i ind)
(parallel-hill-climbing i ind *KB*))

(defun parallel-hill-climbing (i current-state goal-state)
(Iet ((n (nth i goal-state)))
(cond ((< (count n goal-state) 2) current-state)
(t (change-state

i (get-cluster n goal-state) current-state)))))

(defun change-state (i n-list ind)
(let* ((ind2 (copy-list (rest ind)))
(a (nth i ind2))
(new-list (remove i n-list)))
(loop
(cond ((endp new-list) (return ind2))
(= 1 (length new-list)) (setf b-(car new-list)))
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(t (setf b (cadr new-list))))
(if (= a (nth b ind2)) nil (setf (nth b ind2) a))
(setf new-list (cddr new-list)))
(let ((of2 (objective-function ind2)))
(if (< of2 (first ind)) (cons of2 ind2) ind))))

APPROPRIATE PE-CLUSTERS

(defun find-clusters ()
(et ((best-individual (cdr (PGA)))
(result-list nil))
(dotimes (i *number-of-clusters* result-list)
(push (get-cluster i best-individual)
result-list))

(reverse result-list)))

A.3 Serial genetic algorithm

(defun find-clusters ()
(let (best-individuals (SERI-GA))

(result-list nil))

(if (= 1 (length best-individuals))
(setf fittest-individual (cdar best-individuals))
(setf fittest-individual

(cdar (nth (random (length best-individuals))
best-individuals))))

(dotimes (i *number-of-clusters* result-list)

(push (get-cluster i fittest-individual)
result-list))

(reverse result-list)))

(defun SERI-GA ()
(setf generation-0 (fitness-of-initial-population))
(format t
"~2%The initial-generation with associated values is:~2%~a."

generation-0)
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(let ((next-generation (apply-genetic-operators generation-0))
i1)
(loop
(let* ((value-population
(associate-fitness-to-individuals
next-generation))
(fittest-so-far
(fittest-individuals value-population)))
(format t
"~2%The fittest individual(s) in generation ~a is:~%~a."
i fittest-so-far)
(incf 1)
(when (> i *maximum-generations*)
(return fittest-so-far))
(setf next-generation

(apply-genetic-operators value-population))))))

(defun apply-genetic-operators (population)
(apply-hill-climbing
(apply-inversion
(apply-mutation
(apply-xover
(reproduction population))))))

HILL-CLIMBING

(defun apply-hill-climbing (ind)
(hill-climbing *KB* (rest ind)))

(defun hill-climbing (goal-state current-state)
(cond ((< (objective-function current-state)
(objective-function goal-state)) current-state)
((endp goal-state) current-state)
(t (hill-climbing (remove (first goal-state) goal-state)

(new-state goal-state current-state)))))
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(defun new-state (s-space ind)
(cond ((< (count (first s-space) *KB*) 2) ind)
(t (let ((neighbours
(get-cluster (first s-space) *KB*)))
(change-elements neighbours ind)))))

(defun change-elements (n-list ind)
(let ((ind2 (copy-list ind))
(a (nth (first n-list) ind)))
(loop
(cond ((endp n-list) (return ind))
((=1 (length n-list)) (setf b (car n-list)))
(t (setf b (cadr n-list))))
(if (= a (nth b ind2)) nil
(setf (nth b ind2) a))
(setf n-list (cddr n-list)))
(if (< (objective-function ind2)
(objective-function ind))
(setf ind ind2) ind)))
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Appendix B: The KB

In this appendix, the developed knowledge base for the simulation is presented. The information
in this knowledge base is in abstract form, in an effort to capture the complexities of a real-

world knowledge base.

RI((?x) p1) (?x) P2))

(R2 (((?x) p3)) ((? x) P2))

R3 ((?x) p4) ((? x) P5))

(R4 (((?x) p6) ((? x) p7)) ((? X) P5))

(RS (((?x) p8)) ((? x) P9))

(R6 (((? %) p10) ((? x) p11) ((? x) p12)) ((? x) P9))

R7 (((?x) p2) ((? ) p13)) ((? x) P14))

R ((?x) p2) ((? %) p15)) ((? x) P14))

(RI (((? %) p2) ((? ) p9) ((? X) P16) ((? %) P17)) ((? x) P18))

(R10 (((? %) p2) ((? %) P9) ((? x) p16) ((? x) P19)) ((? x) P18))
(RI1(((? %) p14) ((? %) p21) ((? x) p22) ((? X) P17)) ((? %) P23))
RI12 (((?x) p14) ((? %) p19)) ((? x) P24))

(RI3 (((? %) p5) ((? %) p25) ((? %) p21) ((? x) p22) ((? x) P26))((? x) P27))
(R14 (((? %) p2) ((? %) p25) ((? %) p28) ((? x) p26)) ((? x) P29))

R15 (((? %) p2) ((? %) p30)) ((? x) P31))

(R16 (((? x) p31) ((? y) p32)) ((? %) P17))

(RI7 (((? ) p2)) ((? %) s85))(R18 (((? x) p14) ((? x) p38)) ((? X) p34))
(RI9 (((? x) p30) ((? %) p25) ((? X) 466)) ((? X) q77))
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(R20 (((? x) p31) (7 ) 432)) ((? X) p17))

(R21 (((?x) p33)) ((? x) P34))

(R22 (((?x) p35)) ((? x) P34))

(R23 (((? ) p36)) ((? x) P37))

(R24 (((? x) p38) ((? x) p39)) ((? x) P37))

(R25 (((? x) p40)) ((? x) P41))

(R26 (((? x) p42) ((? x) p43) ((? x) p44)) ((? x) P41))

(R27 (((? x) p34) ((? x) p45)) ((? x) P46))

(R28 (((? x) p34) ((? x) p47)) ((? x) P46))

(R29 (((? x) p34) ((? x) p41) ((? ) p48) ((? x) p49)) ((? ) P50))
(R30 (((? x) p34) ((? ) p41) ((? x) p48) ((? x) p51)) ((? X) P52))
(R31 (((? x) p46) ((? x) p53) ((? x) p54) ((? X) p49)) ((? X) P55))
(R32 (((? x) p46) ((? x) p51)) ((? X) P56))

(R33 (((? x) p37) ((? x) p57) ((? X) p53) ((? x) p54) ((? x) P58)) ((? X) P59))
(R34 (((? x) p34) ((? x) p57) ((? ¥) p60) ((? X) P58)) ((? x) P61))
(R35 (((? x) p34) ((? %) p62)) ((? ) P63))

(R36 (((?x) p63) ((? y) p64)) ((? X) p40))

R37 (((? %) p6) ((? y) p10) ((? y) p14)) ((? y) P57))

(R38 (((? %) p35)) ((? x) P12))

(R39 ((?x) p1)) ((? x) P34))

(R40 (((? x) p2) ((7 x) p63)) ((? x) P60))

(R41 (((? x) p65)) ((? x) P66))

(R42 (((? x) p67)) ((? x) P66))

(R43 (((? x) p68)) ((? x) P69))

(R44 (((? x) p70) ((? x) p71)) ((? x) P69))

(R45 (7 x) p72)) ((? x) P73))

(R46 (((? x) p74) ((? x) p75) ((? ) p76)) ((? X) P73))

(R47 (((? x) p66) ((? ) p77)) ((? x) P78))

(R48 (((? x) p66) ((? x) p79)) ((? x) P78))

(R49 (((? x) p66) ((? x) p73) ((? x) p8O) ((? x) p81)) ((? X) P82))
(R50 (((? x) p66) ((? x) p73) ((? x) p8O) ((? x) P83)) ((? x) P84))
(R51 (((? %) p78) ((? x) p85) ((? x) p86) ((? ) p81)) ((? ) P87))
(R52 (((?x) p78) ((? x) p83)) ((? x) P8R))

(R53 (((? x) p69) ((? x) p89) ((? x) p85) ((? x) p86) ((? x) p90)) ((? x) P91))
(R34 (((? x) p66) (7 x) p89) ((? x) p92) ((? X) p90)) ((? x) P93))
(R55 (((? x) p66) (7 x) p94)) ((? X) P95))

(R56 (((? %) p95) ((? y) p96)) ((? x) p81))
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(RS7 (7 x) p65)) ((? %) 938))

(R58 (((? %) p66) (7 x) p79)) (7 x) q40))

(R59 (((? %) p97)) ((? x) P98))

(RGO (((? x) p99)) ((? x) P98))

(R61 (((? x) p100)) ((? x) P101))

(R62 (((? x) p102) ((? x) p103)) ((? x) P101))

(R63 (((? x) p104)) ((? x) P105))

(R64 (((? ) p106) ((? x) p107) ((? x) p108)) ((? x) P105))

(R65 (((? ) p98) ((? x) p111)) ((? x) P110))

(R66 (((? x) p98) ((? x) p111)) ((? x) P110))

(R67 (((? %) p98) ((? x) p105) ((? x) p112) ((? ) p113)) ((? x) P114))
(R68 (((? x) p98) ((? x) p105) ((? x) p112) ((? x) p115)) (2 x) P116))
(R69 (((? %) p110) (7 %) p117) ((? x) p118) ((? x) p113)) ((? x) P119))
(R70 (((? x) p110) ((? x) p115)) ((? x) P120))

(R71 (((? ) p101) ((? %) p121) ((? %) p117) ((? x) p118) ((? ) p122)) ((? x) P123))
(R72 (((? x) p98) (2 x) p121) ((? x) p124) ((? ) p122)) ((? x) P125))
(R73 (((? ) p98) ((? x) p126)) ((? x) P127))

(R74 (((? %) p127) ((? y) p128)) ((? x) p113))

(R75 (((?x) p97) ((? %) 997))

(R76 (7 x) p109)) ((? x) q150))

(R77 (((? x) 481) ((? x) q129)) ((? x) P128))

(R78 (((? x) p129)) ((? x) P130))

(R79 (((? x) p131)) ((? x) P130))

(R80 (((? x) p132)) ((? x) P133))

(R81 (((? x) p134) ((? x) p135)) ((? x) P133))

(R82 (((? %) p136)) ((? x) P137))

(R83 (((? %) p138) (7 x) p139) ((? x) p140)) ((? x) P137))

(R84 (((? x) p130) ((? x) p141)) ((? x) P142))

(R85 (((? x) p130) ((? x) p143)) ((? x) P142))

(R86 (((? %) p130) ((? x) p137) ((? X) p144) ((? %) p145)) ((? x) P146))
(R87 (((? %) p130) ((? x) p137) ((? x) p144) ((? x) p147)) ((? X) P148))
(R88 (((? x) p142) ((? x) p149) ((? x) p150) ((? x) p145)) ((? x) P151))
(R89 (((? %) p142) ((? x) p147)) ((? x) P152))

(R90 (((? %) p133) (7 x) p153) ((? X) p149) ((? ) p150) (2 x) p154)) (2 x) P155))
(RI1 (((? x) p130) ((? x) p153) ((? X) p156) ((? x) p154)) ((? x) P157))
(R92 (((2 %) p130) ((? x) p158)) ((? x) P159))

(R93 (((? %) p159) (7 y) p160)) (7 X) p145))

28-B

ALe AL ALV

-~ il e



(R94 (((? x) p133) ((? x) p157)) ((? x) P121))

(RI5 (((? x) s98) ((? x) p141)) ((? x) s120))

(R96 (((? x) q1)) ((? x) 92))

RI7 (7 %) g3)) (? x) 92))

(R98 (((?x) ¢4) ((? x) 93))

(R99 (((? x) 46) ((? %) 47)) ((? X) 45))

(R100 (((? x) q8)) ((? x) 09))

(R101 (((? x) q10) ((? x) q11) ((? x) q12)) ((? x) 99))

(R102 (((? %) 2) ((? %) q13)) ((? x) q14))

(R103 (((? %) 42) ((? x) q15)) ((? ) q14))

(R104 (((? x) 92) ((? x) 99) ((? %) q16) ((? x) q17)) ((? ) q18))
(R105 (((? x) 92) ((? x) 99) ((? %) q16) ((? x) q19)) ((? ) q18))
(R106 (((? x) q14) ((? x) g21) ((? x) 922) ((? x) q17)) ((? X) q23))
(R107 (((? x) q14) ((? x) q19)) ((? x) 424))

(R108 (((? x) 95) ((? ) 425) ((? %) q21) ((? %) 422) ((? ¥) q26)) ((? X) q27))
(R109 (((? x) 92) ((? ) 425) ((? x) 428) ((? x) 926)) ((? x) q29))
(R110 (((? ¥) 92) ((? x) 430)) ((? x) q31))

(R111 (((? %) 31) ((? ¥) 432)) ((? %) q17))

(R112 (((? x) g24) ((? %) q12)) ((? x) p31))

R113 (((? %) 933)) ((? %) g34))

(R114 (((? x) 935)) ((? ) q34))

(R115 (((? x) q36)) ((? x) 437))

R116 (((? x) q38) ((? x) q39)) ((? x) g37))

RI17 (((? x) q40)) ((? x) q41))

R118 (((? x) q42) ((? x) q43) ((? x) ¢44)) ((? X) q41))

(R119 (((? x) 434) ((? x) g45)) ((? X) q46))

(R120 (((? x) 934) ((? x) q47)) ((? x) q46))

RI121 (((? x) 34) ((? x) q41) ((? x) q48) ((? x) q49)) ((? X) q50))
(R122 (((? x) 934) ((? x) g41) ((? %) q48) ((? x) ¢51)) ((? ¥) ¢52))
(R123 (((? x) q46) ((? x) q53) ((? x) ¢54) ((? x) 449)) ((? X) 955))
(R124 (((? x) 946) ((? x) ¢51)) ((? x) 956))

(R125 (((? x) 937) ((? x) g57) ((? x) 933) ((? ¥) 954) ((? X) 958)) ((? x) 959))
(R126 (((? x) 34) ((? x) q57) ((? %) q60) ((? x) 458)) ((? %) q61))
R127 (((? x) 934) ((? x) 962)) ((? x) 963))

(R128 (((? x) 963) ((? y) 464)) ((? x) q40))

(R129 (((? x) 952) ((? x) q40)) ((? x) p82))

(R130 (((? x) 947)) ((? x) q78))
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(R131 (((? %) 957) ((? y) 968)) ((? x) q62))

(R132 (((? x) q58)) ((? x) p65))

(R133 (((? x) g65)) ((? x) q66))

(R134 (((? x) q67)) ((? x) q66))

(R135 (((? x) q68)) ((? x) q69))

(R136 (((? x) q70) ((? x) q71)) ((? x) 469))

RI137 (((? x) 972)) ((? x) q73))

(R138 (((? x) q74) ((? x) q75) ((? X) q76)) ((? x) q73))

(R139 (((? ) 966) ((? x) q77)) ((? x) q78))

(R140 (((? x) q66) ((? x) 479)) ((? x) q78))

(R141 (((? x) 966) ((? x) q73) ((? x) q80) ((? x) q81)) ((? x) q82))
(R142 (((? x) 966) ((? x) q73) ((? x) q80) ((? x) q83)) ((? x) q84))
(R143 (((? x) q78) ((? x) q85) ((? x) q86) ((? x) q81)) ((? x) q87))
(R144 (((? x) q78) ((? x) 483)) ((? x) q88))

(R145 (((? x) 969) ((? x) 489) ((? x) 85) ((? x) 486) ((? x) 990)) ((? x) q91))
(R146 (((? x) q66) ((? x) q89) ((? x) q92) ((? x) q90)) ((? x) q93))
(R147 (((? x) q66) ((? x) 994)) ((? X) 495))

(R148 (((? x) 995) ((? ¥) 996)) ((? x) ¢81))

(R149 (((? x) 485)) ((? x) q109))

(R150 (((? x) q71)) ((? x) s46))

(R151 (((? x) q66)) ((? x) s94))

(R152 (((? x) 997)) ((? x) q98))

(R153 (((? x) 999)) ((? x) q98))

(R154 (((? x) q100)) ((? x) q101))

(R155 (((? x) q102) ((? x) q103)) ((? x) q101))

(R156 (((? x) q104)) ((? x) q105))

R157 (((? x) q106) ((? x) q107) ((? x) q108)) ((? x) q105))

(R158 (((? x) q98) ((? x) q111)) ((? x) q110))

R159 (((? x) 998) ((? x) q111)) ((? x) q110))

(R160 (((? x) 998) ((? x) q105) ((? x) q112) ((? x) q113)) ((? x) q114))
(R161 (((? x) 998) ((? x) q105) ((? x) q112) ((? %) q115)) ((? x) q116))
(R162 (((? x) q110) ((? x) q117) ((? x) q118) ((? x) q113)) ((? x) q119))
(R163 (((? x) q110) ((? x) q115)) ((? x) q120))

(R164 (((? x) q101) ((? x) q121) ((? x) q117) ((? x) q118) ((? x) q122)) ((? x) q123))
(R165 (((? x) 998) ((? x) q121) ((? x) q124) ((? x) q122)) ((? X) q125))
(R166 (((? x) 998) ((? x) q126)) ((? x) q127))

(R167 (((? x) q127) ((? y) q128)) ((? x) q113))
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(R168 (((? x) q106) ((? x) 997)) ((? x) q80))

(R169 (((? x) q122)) ((? x) p122))

R170 (((? x) p121) ((? x) p104)) ((? x) q113))

RI71 (((? x) q115) ((? ) q116) ((? x) q103)) ((? x) q72))

R172 (((? x) q129)) ((? x) q130))

(R173 (((? x) q131)) ((? x) q130))

R174 (((? x) q132)) ((? x) q133))

(R175 (((? x) q134) ((? x) q135)) ((? x) q133))

(R176 (((? x) q136)) ((? x) q137))

R177 (((? x) q138) ((? x) q139) ((? x) q140)) ((? x) q137))

(R178 (((? x) q130) ((? x) q141)) ((? x) q142))

(R179 (((? x) q130) ((? x) q143)) ((? x) q142))

(R180 (((? x) q130) ((? x) q137) ((? x) q144) ((? x) q145)) ((? x) q146))
(RI81 (((? x) q130) ((? x) q137) ((? x) q144) ((? x) q147)) ((? x) q148))
(R182 (((? x) q142) ((? x) q149) ((? x) q150) ((? x) q145)) ((? x) q151))
(R183 (((? x) q142) ((? x) q147)) ((? x) q152))

(R184 (((? x) q133) ((? x) q153) ((? x) q149) ((? x) q150) ((? x) q154)) ((? ) q155))
(R185 (((?x) q130) ((? x) q153) ((? x) q156) ((? x) q154)) ((? x) q157))
(R186 (((? x) q130) ((? x) q158)) ((? x) q159))

(R187 (((? x) q159) ((? ) q160)) ((? x) q145))

(R188 (((? x) q134) ((? x) q149)) ((? x) s124))

(R189 (((? x) q100) ((? x) q115)) ((? x) s125))

(R190 (((? x) q130) ((? x) q141)) ((? x) s150))

(R191 (((? x) s129)) ((? x) q130))

R192 (((? x) s1)) ((? x) s2))

(R193 (((? %) 53)) ((? %) 52))

(R194 (((? x) s4)) ((? x) s5))

R195 (((? x) s6) ((? x) s7)) ((? x) s5))

(R196 (((? x) s8)) ((? x) 9))

(R197 (((? x) s10) ((? x) s11) ((? x) s12)) ((? x) s9))

(R198 (((? x) s2) ((? x) s13)) ((? x) s14))

(R199 (((? x) s2) ((? x) s15)) ((? x) s14))

(R200 (((? x) s2) ((? x) s9) ((? x) s16) ((? x) s17)) ((? x) s18))

(R201 (((? x) s2) ((? x) 89) ((? x) s16) ((? x) s19)) ((? x) s18))

(R202 (((? x) s14) ((? x) s21) ((? x) s22) ((? x) s17)) ((? x) s23))

(R203 (((? x) s14) ((? x) s19)) ((? x) s24))

(R204 (((? x) s5) ((? x) s25) ((? x) s21) ((? x) s22) ((? x) s26)) ((? x) s27))
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(R205 (((? x) s2) ((? x) s25) ((? x) s28) ((? x) s26)) ((? x) 529))
(R206 (((? x) s2) ((? x) s30)) ((? x) s31))

(R207 (((? x) s31) ((? y) $32)) ((? x) 517))

(R208 (((? x) s9)) ((? ) s134))

(R209 (((? x) s159) ((? x) s31)) ((? x) s15))

(R210 (((? x) s153) ((? x) q123)) ((? x) p78))

(R211 (((? x) s33)) ((? x) s34))

(R212 (((? x) p60)) ((? x) s34))

(R213 (((? x) s36)) ((? x) s37))

(R214 (((? x) s38) ((? x) s39)) ((? x) s37))

(R215 (((? x) s40)) ((? x) s41))

(R216 (((? x) s42) ((? x) s43) ((? x) s44)) ((? x) s41))

(R217 (((? x) s34) ((? x) s45)) ((? x) s46))

(R218 (((? x) s34) ((? x) s47)) ((? x) s46))

(R219 (((? x) s34) ((? x) s41) ((? x) s48) ((? x) s49)) ((? x) s50))
(R220 (((? x) s34) ((? x) s41) ((? x) s48) ((? x) s51)) ((? x) s52))
(R221 (((? x) s46) ((? x) s53) ((? x) s54) ((? x) s49)) ((? x) s55))
(R222 (((? x) s46) ((? x) s51)) ((? x) s56))

(R223 (((? x) s37) ((? x) s57) ((? x) s53) ((? x) s54) ((? x) s58)) ((? x) s59))
(R224 (((? x) s34) ((? x) s57) ((? x) s60) ((? x) s58)) ((? x) s61))
(R225 (((? x) s34) ((? x) s62)) ((? x) s63))

(R226 (((? x) s63) ((? y) s64)) ((? x) s40))

(R227 (((7 x) s34) ((? x) s41) ((? x) 994)) ((? x) q78))

(R228 (((? x) s37) ((? x) s40) ((? x) s63) ((? x) s78)) ((? x) s68))
(R229 (((? x) s65)) ((? x) s66))

(R230 (((? x) s67)) ((? x) 566))

(R231 (((? x) s68)) ((? x) s69))

(R232 (((? x) s70) ((? x) s71)) ((? x) s69))

(R233 (((? x) s72)) ((? x) s73))

(R234 (((? x) s74) ((? x) s75) ((? x) s76)) ((? x) s73))

(R235 (((? x) s66) ((? x) s77)) ((? x) s78))

(R236 (((? x) s66) ((? x) s79)) ((? x) s78))

(R237 (((? x) s66) ((? x) s73) ((? x) s80) ((? x) s81)) ((? x) s82))
(R238 (((? x) s66) ((? x) s73) ((? x) s80) ((? x) s83)) ((? x) s84))
(R239 (((? x) s78) ((? x) s85) ((? x) s86) ((? x) s81)) ((? x) s87))
(R240 (((? x) s78) ((? x) s83)) ((? x) s88))

(R241 (((? x) s69) ((? x) s89) ((? x) s85) ((? x) s86) ((? x) s90)) ((? x) s91))

32-B



(R242 (((? x) s66) ((? x) s89) ((? x) s92) ((? x) s90)) ((? x) s93))
(R243 (((? x) s66) ((? x) s94)) ((? x) s95))

(R244 (((? x) 595) ((? y) s96)) ((? x) s81))

(R245 (((? x) s70) ((? x) s66)) ((? x) 495))

(R246 (((? x) s95) (P ¥) 472)) ((? x) q73))

(R247 (((? x) s97)) ((? x) s98))

(R248 (((? x) s99)) ((? x) s98))

(R249 (((? x) s100)) ((? x) s101))

(R250 (((? x) s102) ((? x) s103)) ((? x) s101))

(R251 (((? x) s104)) ((? x) s105))

(R252 (((? x) s106) ((? x) s107) ((? x) s108)) ((? x) s105))

(R253 (((? x) s98) ((? x) s111)) ((? x) s110))

(R254 (((? x) s98) ((? x) s111)) ((? x) s110))

(R255 (((? x) s98) ((? x) s105) ((? x) s112) ((? x) s113)) ((? x) s114))
(R256 (((? x) s98) ((? x) s105) ((? x) s112) ((? x) s115)) ((? x) s116))
(R257 (((? x) s110) ((? x) s117) ((? x) s118) ((? x) s113)) ((? x) s119))
(R258 (((? x) s110) ((? x) s115)) ((? x) s120))

(R259 (((? x) s101) ((? x) s121) ((? x) s117) ((? x) s118) ((? x) s122)) ((? x) s123))
(R260 (((? x) s98) ((? x) s121) ((? x) s124) ((? x) s122)) ((? x) s125))
(R261 (((? x) s98) ((? x) s126)) ((? x) s127))

(R262 (((? x) s127) ((? y) p128)) ((? x) s113))

(R263 (((? x) s127)) ((? x) pl44))

(R264 (((7 x) s98)) ((? x) q153))

(R265 (((? x) q130) ((? x) q131)) ((? x) s119))

(R266 (((? x) q129) ((? x) q137)) ((? x) s121))

(R267 (((? x) s129)) ((? x) s130))

(R268 (((? x) s131)) ((? x) s130))

(R269 (((? x) s132)) ((? x) s133))

(R270 (((? x) s134) ((? x) s135)) ((? x) s133))

(R271 (((? x) s136)) ((? x) s137))

(R272 (((? x) s138) ((? x) s139) ((? x) s140)) ((? x) s137))

(R273 (((? x) s130) ((? x) s141)) ((? x) s142))

(R274 (((? x) s130) ((? x) s143)) ((? x) s142))

(R275 (((? x) s130) ((? x) s137) ((? x) s144) ((? x) s145)) ((? x) s146))
(R276 (((? x) s130) ((? x) s137) ((? x) s144) ((? x) s147)) ((? x) s148))
(R277 (((? x) s142) ((? x) s149) ((? x) s150) ((? x) s145)) ((? x) s151))
(R278 (((? x) s142) ((? x) s147)) ((? x) s152))
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- a4

(R279 (((? x) s133) ((? x) s153) ((? x) s149) ((? x) s150) ((? x) s154)) ((? x) s155))
(R280 (((? x) s130) ((? x) s153) ((? x) s156) ((? x) s154)) ((? x) s157))
(R581 (((? x) s130) ((? x) s158)) ((? x) s159))

(R282 (((? x) s159) ((? y) s160)) ((? x) s145))

(R283 (((? x) s132)) ((? x) s15))

(R284 (((? x) s17) ((? x) s22)) ((? x) s154))

(R285 (((7 x) s160)) ((? x) q142))

(R286 (((? x) q142) ((? x) q136) ((? x) s129)) ((? x) s150))

(R287 (((? x) u33)) ((? x) u34))

(R288 (((? x) u35)) ((? x) u34))

(R289 (((? x) u36)) ((? x) u37))

(R290 (((? x) u38) ((? x) u39)) ((? x) u37)

(R291 (((? x) ud0)) ((? x) udl))

(R292 (((? x) ud2) ((? x) ud3) ((? x) u44)) ((? x) udl))

(R293 (((? x) s34) ((? x) u45)) ((? x) ud6))

(R294 (((? x) s34) ((? x) ud7)) ((? x) u46))

(R295 (((? x) u34) ((? x) ud1) ((? x) u48) ((? x) u49)) ((? x) us0))
(R296 (((? x) u34) ((? x) ud1) ((? x) u48) ((? x) us1)) ((? x) us2))
(R297 (((? x) ud6) ((? x) u53) ((? x) us4) ((? x) u49)) ((? x) uss))
(R298 (((? x) u46) ((? x) us1)) ((? x) us6))

(R299 (((? x) u37) ((? x) u57) ((? x) u53) ((? x) u54) ((? x) u58)) ((? x) us9))
(R300 (((? x) u34) ((? x) us7) ((? x) u60) ((? x) us8)) ((? x) uébl))
(R301 (((? x) u34) ((? x) u62)) ((? x) u63))

(R302 (((? x) u63) ((? y) u64)) ((? x) u40))

(R303 (((? x) u52) ((? x) u40)) ((? x) p82))

(R304 (((? x) ud7)) ((? x) u78))

(R305 (((? x) u57) ((? y) u68)) ((? x) u62))

(R306 (((? x) us8)) ((? x) t138))

(R307 (((? x) t129)) ((? x) t130))

(R308 (((? x) t131)) ((? x) t130))

(R309 (((? x) t132)) ((? x) t133))

(R310 (((? x) t134) ((? x) t135)) ((? x) t133))

(R311 (((? x) t136)) ((? x) t137))

(R312 (((? x) t138) ((? x) t139) ((? x) t140)) ((? x) t137))

(R313 (((? x) t130) ((? x) t141)) ((? x) t142))

(R314 (((? x) t130) ((? x) t143)) ((? x) t142))

(R315 (((? x) t130) ((? x) t137) ((? x) t144) ((? x) t145)) ((? x) t146))
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(R316 (((2 x) t130) ((? %) t137) (2 X) t144) ((? %) t147)) ((? ) t148))
(R317 (((? %) t142) ((? %) t149) ((? %) t150) ((? x) t145)) ((? ) t151))

(R318 (((? x) t142) ((? X) t147)) ((? X) t152))

(R319 (2 x) t133) ((? %) t153) (2 X) t149) ((? X) t150) ((? x) t154)) (2 X) t155))
(R320 (((? %) t130) ((? %) t153) ((? %) t156) ((? x) t154)) ((? x) t157))

(R321 (((? %) t130) ((? %) t158)) ((? X) t159))

(R322 (2 X) t159) ((? ) t160)) ((? x) t145))

(R323 (((? %) t132)) ((? X) t15))

(R324 (2 x) t17) ((? ) 122)) ((? X) t154))

(R325 (((? x) t160)) ((? x) q142))

(R326 (2 x) p142) (2 %) 5136) ((? %) t129)) ((? x) t150))

(R327 (((2 x) M65)) (2 x) M66))

(R328 (((2 x) M67)) ((? X) M66))

(R329 (((? x) M68)) ((? x) M69))

(R330 (((2 x) M70) ((? x) M71)) ((? x) M69))

(R331 (((2 x) M72)) ((? X) M73))

(R332 (((2 x) M74) ((? x) M75) ((? X) M76)) ((? x) M73))

(R333 (((2 x) M66) (2 x) M77)) (2 x) M78))

(R334 (((2 x) M66) ((2 x) M79)) (2 x) M78))

(R335 (((2 ) M66) (2 x) M73) ((? x) M80) ((? x) M81)) ((? x) M82))

(R336 (((2 ) M66) ((? x) M73) ((? x) M80) ((? x) M83)) ((? x) M84))

(R337 (((? x) M78) (2 x) M85) ((? x) M86) ((? x) M81)) (2 x) M87))

(R338 (((2 x) M78) (2 x) M83)) ((? x) M88))

(R339 (((2 x) M69) (2 x) M89) ((? x) M85) ((? x) M86) ((2 x) M90)) ((? x) M91))
(R340 (((2 x) M66) (2 ) M89) ((? x) M92) ((? x) M90)) ((? x) M93))

(R341 (((2 x) M66) (2 x) t138)) (2 x) u95))

(R342 (2 x) M95) ((? y) M96)) (2 x) M81))

(R343 (((2 x) M70) (2 x) M66)) ((? X) 995))

(R344 (7 x) M95) (7 y) q72)) ((? x) 973))
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Appendix C: Test Runs

In this appendix, we describe the testing process of the system with greater detail in a test run

example.

C.1 Sequential processing case

-The rule base consists of 344 production rules R1-R344, as presented in Appendix C.

- The fact base consists of 46 elements as follow:

(objectl p11) (objectl p10) (object] p12) (object7 p2) (objectl p15) (objectl pl) (object7 p25)
(object1 P63) (objectl p160) (objectl p141) (object7 q95) (objectl q80) (objectl s33) (objectl
s42) (object2 P6) (object2 q31) (object6 q32) (object2 q47) (object6 q67) (object2 q122)
(object2 p11) (object2 p25) (object6 p98) (object2 p17) (object2 s111) (object2 s85) (object3
s14) (object3 s40) (objectd s78) (objectd ql132) (object3 pl0) (object5 pl4) (object3 q21)
(object3 q84) (object3 s128) (object3 p80) (object3 p129) (object3 s33) (object4 p159) (objectd
s90) (object8 s90) (object8 q96) (object8 pl11l) (objectd p70) (object9 s156) (objectd g91)
(object10 pl1) (objectl0 p37) (objectl0 s116) (objectll s15) (object8 ul56) (object8 t123)
(object9 u40) (object7 ud7) (object9 u58) (objectl0 t136) (objectl0 t143) (objectl0 p142)
(object10 s127) (object11 q129) (objectl1 m89) (object1 1 m85) (objectll m86) (objectll m90)

-The implemented conflict-resolution strategy (Appendix B) is based on the combination of

operations of receny, refraction, specificity and random selection. The result of processing is as

follow:
(OBJECT7 Q130) (OBJECT7 P144) (OBJECT10 T137) (OBJECT9 T138) (OBJECT1 U78)
(OBJECT9 U41) (OBJECTI10 P34) (OBJECTI10 P2) (OBJECT10 S85) (OBJECT7 Q81)
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(OBJECT7 P128) (OBJECT7 S113) (OBJECT4 P145) (OBJECT3 S34) (OBJECT3 P130)
(OBJECT4 Q133) (OBJECT3 S41) (OBJECT2 P122) (OBJECT6 Q66) (OBJECTG S$94)
(OBJECT2 Q78) (OBJECT2 Q17) (OBJECT1 S34) (OBJECT1 U46) (OBJECT! P2)
(OBJECT!1 S85) (OBJECT1 P14) (OBJECT1 P57) (OBJECT1 P60) (OBJECT1 S34)

The result of processing without applying a conflict resolution strategy is:

(OBJECT10 P2) (OBJECT1 P2) (OBJECT1 P9) (OBJECT?7 S85) (OBJECT10 P34) (OBJECT1
P34) (OBJECT3 P130) (OBJECT4 P145) (OBJECT2 Q17) (OBJECT2 Q78) (OBJECT6 Q66)
(OBJECT7 Q81) (OBJECT2 P122) (OBJECT7 Q130) (OBJECT4 Q133) (OBJECT3 S34)
(OBJECT3 S41) (OBJECT7 P144) (OBJECT9 U41) (OBJECT1 U78) (OBJECT9 T138)
(OBJECT10 T137) (OBJECT1 P14) (OBJECT1 S85) (OBJECT10 S85) (OBJECT1 P60)
(OBJECT?7 P128) (OBJECT®6 S94) (OBJECT1 U46)

C.2 Parallel processing case

- In this case, the rule base was divided to 10 rule-sets:

RULE-SET1: R1-R20, R327-R344

RULE-SET2: R21-R40

RULE-SET3: R41-R58, R307-R326

RULE-SET4: R59-R77

RULE-SET5: R78-R95, R247-R266

RULE-SET6: R96-R112, R267-R286

RULE-SET7: R113-R132, R192- R210

RULE-SET8: R133-R151, R211- R228

RULE-SET9: R152- R171, R229- R246

RULE-SET10: R172-R191, R287- R306

-The number of PEs is 10 and equals to the number of rule-sets. The contents of working
memories of PEs in initialising stage are as follow:

PE1L:

(OBJECT10 P2) (OBJECT1 P2) (OBJECT1 P9) (OBJECT7 S85) (OBJECT1 P14)
(OBJECT!1 S85) (OBJECT10 S85)

PE2:

(OBJECT10 P34) (OBJECT1 P34)

PE3:
(OBJECT10 T137)

PE4:
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NIL

PES:
(OBJECT3 P130) (OBJECT4 P145) (OBJECT7 P144)

PE6:
(OBJECT2 Q17)

PE7:
(OBJECT2 Q78)

PES:
(OBJECT6 Q66) (OBJECT7 Q81) (OBJECT3 S34) (OBJECT1 S34) (OBJECT3 S41)
(OBJECTG6 S94)

PEO:
(OBJECT2 P122)

PE10:
(OBJECT7 Q130) (OBJECT4 Q133) (OBJECT9 U41) (OBJECT1 U78) (OBJECT9 T138)

After doing clustering according to this configuration

(0179)(342)(568))

the contents of working memories of PEs changed as follows:

PEl:

(OBJECT10 P2) (OBJECT1 P2) (OBJECT1 P9) (OBJECT?7 S85) (OBJECT1 S85)
(OBJECT10 S85) (OBJECT1 P14)

PE2:
(OBJECT10 P34) (OBJECT1 P34) (OBJECT1 P57) (OBJECT1 P60)

PE3:
(OBJECT10 T137)

PE4:
NIL
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PES:
(OBJECT3 P130) (OBJECT4 P145) (OBJECT7 P144) (OBJECT3 P130)

PE6:
(OBJECT2 Q17)

PE7:
(OBJECT2 Q78)

PES:
(OBJECT6 Q66) (OBJECT7 Q81) (OBJECT3 S34) (OBJECT1 S34) (OBJECT6 S94)
(OBJECTS3 S41)

PE9:
(OBJECT2 P122)

PE10:
(OBJECT7 Q130) (OBJECT4 Q133) (OBJECT9 U41) (OBJECT1 U78) (OBJECT9 T138)

(OBJECT! U46)

-The following is the final result, which is an integrated solution of the previous stage:
>(print (integrate-partial-result

(get-partial-results-from-clusters

'(0179)(342)(568)))
((OBJECT6 S94) (OBJECT3 S41) (OBJECT! S34) (OBJECT3 S34) (OBJECT7 Q81)
(OBJECT6 Q66) (OBJECT10 S85) (OBJECT1 S85) (OBJECT1 P14) (OBJECT7 S85)
(OBJECT1 P9) (OBJECT! P2) (OBJECT10 P2) (OBJECT10 P34) (OBJECT1 P34)
(OBJECT1 P57) (OBJECT1 P60) (OBJECT7 Q130) (OBJECT4 Q133) (OBJECTY U4l)
(OBJECT1 U78) (OBJECT9 T138) (OBJECT1 U46) (OBJECT7 P144) (OBJECT4 P145)
(OBJECT3 P130) (OBJECT10 T137) (OBJECT2 Q78) (OBJECT2 Q17) (OBJECT2 P122))

C.3 The final results of some other configurations

>(find-clusters)

((3.776651845E7 032310432 1) (4.785796905E72342343000) (4.91411326E7 13 4
4413130)(4.520797205E72022342103)(4954718015E70323422120)
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(4.123302345E743 0324043 1) (3.854217295E702 113 4 3 1 4 2) (4.07816309E7 3 14
3401402)(4.0560131E73124230431)(4.230275755E7101043234 1))
(0423104321)

(05@928)(B7N(16)

> (print (integrate-partial-result

(get-partial-results-from-clusters

W05)@ENRYBEA )N
((OBJECT10 S85) (OBJECT1 S85) (OBJECT! P14) (OBJECT7 S85) (OBJECT1 P9)
(OBJECT1 P2) (OBJECT10 P2) (OBJECT2 Q17) (OBJECT7 P144) (OBJECT4 P145)
(OBJECT3 P130) (OBJECT7 Q130) (OBJECT4 Q133) (OBJECT9 U41) (OBJECT1 U78)
(OBJECT9 T138) (OBJECT10 T137) (OBJECT2 P122) (OBJECT7 P128) (OBJECT6 Q66)
(OBJECT7 Q81) (OBJECT3 S34) (OBJECT1 S34) (OBJECT3 S41) (OBJECT6 S94)
(OBJECT1 P34) (OBJECT10 P34) (OBJECT2 Q78))

> (print (integrate-partial-result

(get-partial-results-from-clusters

017934 2568))
((OBJECT6 S94) (OBJECT3 S41) (OBJECT1 S34) (OBJECT3 S34) (OBJECT7 Q81)
(OBJECT6 Q66) (OBJECT10 S85) (OBJECT!1 S85) (OBJECT1 P14) (OBJECT7 S85)
(OBJECT1 P9) (OBJECT1 P2) (OBJECT10 P2) (OBJECT10 P34) (OBJECT1 P34) (OBJECT1
P57) (OBJECT1 P60) (OBJECT7 Q130) (OBJECT4 Q133) (OBJECT9 U41) (OBJECT1 U78)
(OBJECT9 T138) (OBJECT1 U46) (OBJECT3 P130) (OBJECT4 P145) (OBJECT7 P144)
(OBJECT2 Q78) (OBJECT10 T137) (OBJECT2 Q17) (OBJECT2 P122))

> (print (integrate-partial-result

(get-partial-results-from-clusters

(019734 2568))
((OBJECT1 P60) (OBJECT1 P57) (OBJECT1 P34) (OBJECT10 P34) (OBJECT10 P2)
(OBJECT1 P2) (OBJECT1 P9) (OBJECT7 S85) (OBJECT1 P14) (OBJECT1 S85) (OBJECT10
S85) (OBJECT7 Q130) (OBJECT4 Q133) (OBJECTY U41) (OBJECT1 U78) (OBJECT9 T138)
(OBJECT7 P128) (OBJECT6 Q66) (OBJECT7 Q81) (OBJECT3 S34) (OBJECT1 S34)
(OBJECT3 S41) (OBJECT6 S94) (OBJECT3 P130) (OBJECT4 P145) (OBJECT7 P144)
(OBJECT7 S113) (OBJECT2 Q78) (OBJECT10 T137) (OBJECT2 Q17) (OBJECT2 P122))

C.4 Calculation of time delays
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-This code calculates the time spent for sequential processing of information and returns a time
list.
(defun initialise ()
(setf time-list nil)
(et (1 0))
(loop
(when (= i *number-of-PEs*)
(return-from initialise 'END-OF-THE-FIRST-STAGE))
(setf (nth i FB) nil)
(clrhash (nth i RB))
(setf (nth i AA) nil)
(delete-file (nth i files-list))
(setf (nth i FB) (add-fact-from-file
"f:\\simulati\\testing\\fact.Isp" (nth i FB)))
(add-rule-from-file (nth i DR) (nth i RB))
(let ((t0 (get-internal-real-time)))
(inference-engine i)
(reverse (push (- (get-internal-real-time) t0)
time-list)))
(incf 1))))

> (print time-list)

(13680)

The following time-lists are the result of several executions of the code.
(16503)

(11937)

(8823)

(25547)

-In the case of parallel processing, the code returns a time-list with the length equals to the
number of PEs. The elements of the time-list are the time spent for each PE in the initialising
stage. After several execution of the function we obtained the following lists.

(33090 491 91 70 190 30 181 50 410), (max 491)

(300 90 481 90 81 190 20 140 50 471), (max 481)

(281805111803 100 18020 170 230 380), (max 1803)

(31190471 100 90 180 60 181 70 381), (max 471)

(291 9047190 111 190 60 231 40 341), (max 471)
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-The following code elements calculate the amount processing time delays for each PE, after
each cycle of performing required communications.
(defun comm-comp (a-cluster-list)
(loop
(let ((copy-secondary
(copy-list (communicate a-cluster-list))))
(dolist (i a-cluster-list)
(let ((t0 (get-internal-real-time)))
(inference-engine i)
(print (- (get-internal-real-time) t0)))
(print i))
(when (equal (communicate a-cluster-list)

copy-secondary) (return copy-secondary)))))

-This code calculates the amount of information being communicated within clusters.
(defun fire-rule (a-list rule-table 1)
(let ((result (instantiate-variables
(rule-ths
(gethash (first a-list) rule-table))
(rest (remove-if # numberp a-list)))))
(print-to-file result (nth i files-list))
(print i)
(print result)
(add-object result (nth i FB))))

-The following code calculates the execution time of the parallel genetic algorithm.
(let ((t0 (get-internal-run-time)))
(fittest-individual
(associate-fitness-to-individuals
(IMCR (fitness-of-initial-population))))
(- (get-internal-run-time) t0))
(PGA)
(let ((t1 (get-internal-run-time)))
(apply-parallel-hill-climbing j temp)

(- (get-internal-run-time) t1))
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-This code calculates the time delays for finding appropriate clusters.
(Iet ((t0 (get-internal-run-time)))
(find-clusters)
(- (get-internal-run-time) t0)))

C.5 A test-run example of the GA

The initial-generation with associated values is:
((4.53630448E73222014244)(4.534350005E74020423033)(4.590192045E720 4
4004013)(584093639E70030011210)(4973217945E71013011442)
(4.081604755E74131321230)(4.699808365E71104432144)).
The fittest individual(s) in generation 1 is:
((4.081604755E74131321230)).

The fittest individual(s) in generation 2 is:
((3.96187216E74021321230)).

The fittest individual(s) in generation 3 is:
((3.55573191E71013032442)).

The fittest individual(s) in generation 4 is:
((3.55573191E71013032442)).

The fittest individual(s) in generation 5 is:
((3.55573191E71013032442)).

The fittest individual(s) in generation 6 is:
((3.999341725E71013032242)).

The fittest individual(s) in generation 7 is:
((3.999341725E71013032242)).

The fittest individual(s) in generation 8§ is:
((3.999341725E71013032242)).

The fittest individual(s) in generation 9 is:

((3.76449917E71130004 24 2)).

((3.76449917E71130004...))

C.6 A test-run example of parallel genetic algorithm

In this example, the algorithm executes a parallel hill-climbing procedure.

The initial-generation with associated values is:
((6.29522149E70041444002)(5.50660734E73241323131)(4.648158685E72310
310223)(9.17882812E7 2023 332222)(4012105935E70221303413)
(4.203946675E73124302040)(6.719472345E7200012 3 0 0 0)).
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The fittest individual(s) in generation 1 is:

((3.75836218E70 04 13 1 02 2 4)).

The fittest individual(s) in generation 2 is:

((3.740424175E70221302134)).

The fittest individual(s) in generation 3 is:

((3.73754552E7004 133 114 2)).

The fittest individual(s) in generation 4 is:

((3.542102995E70334202 1 14)).

The fittest individual(s) in generation 5 is:

((3.55856032E7204 132013 4)).

The fittest individual(s) in generation 6 is:

((3.759123925E7021 03024 3 1)).

The fittest individual(s) in generation 7 is:

((3.732481495E7203 1200 1 3 4)).

The fittest individual(s) in generation 8 is:

((3.755242515E73 021300 1 4 2)).

The fittest individual(s) in generation 9 is:

((3.765146135E7004 432211 4)).
((3.765146135E7004 4322 ..)).
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