Sheffield
Hallam
University

Intelligent planning and control of multi-assembly systems.

KHALIL, Eiad.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19909/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19909/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Aasetts uentre uny uampus
Sheffield S1 1WB

101 895 562 3

Sheffield H??Haro University
ond ST Services
Adsettc Cenh a City Campus
Sheffield S1 1WB

REFERENCE

ProQuest Number: 10697215

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10697215

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

INTELLIGENT PLANNING AND CONTROL

OF MULTI-ASSEMBLY SYSTEMS

Eiad Khalil

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University
- for the degree of Doctor of Philosophy

May 2008

Abstract

The global trend towards cost minimisation in manufacturing has intensified
during the last two decades. Cost reduction can be achieved either directly, through
elimination of waste, or indirectly, through optimisation of production processes and
generating more reliable information regarding the costs incurred. The research
presented in this thesis considers cost reduction in three aspects: optimisation of
production processes, accurate cost estimation and accounting. Due to the increasing
" number of combinatorial optimisation problems associated with the production of
Printed Circuit Boards (PCB), it has attracted the attention of many researchers who
tried to solve these problems with the aim of minimising the production cost. Therefore,
PCB production is used in this research as a test-bed for the three aspects mentioned
above.

Regarding cost reduction in PCB manufacturing, three interrelated combinatorial
optimisation problems are considered: the component placement sequencing problem,
the feeder assignment problem and the board type sequencing problem. Solving these
problems ensures cost reduction by reducing the time required for manufacturing PCBs.
As for cost reduction in the costing and accounting aspects, the traditional standard
costing and standard accounting have some problems that make them unsuitable for
today’s manufacturing. Standard costing allocates overhead to labour or machine hours,
which leads to a distortion of product costs due to the fact that today’s manufacturing
relies more on technology and less on human power. As for standard accounting, it has
some features and characteristics that contradict with the widely spread lean
manufacturing. The deficiencies in standard costing and standard accounting may create
more waste and lead to the wrong decisions being taken.

A framework is developed to provide solution to the above-mentioned problems
in an integrated environment. A mathematical formulation for the three PCB
manufacturing-related problems is developed and solved using a metaheuristic-based
algorithm. In order to deal with the costing and accounting part of the framework
developed, Activity Based-Costing (ABC) and Lean Accounting (LA) are implemented
on a PCB manufacturing facility using a case study. ABC is used to estimate the costs
of manufacturing PCBs and provide detailed information on how the costs are incurred.
As for LA, it is used to reduce the costs associated with the accounting system, which is
achieved by eliminating and/or replacing accounting transactions and promoting lean
measures.

Simulation results obtained show an average reduction in total assembly time of
5.96% and 5.43% when Taboo Search (TS) and Genetic Algorithms (GA) meta-
heuristics are used respectively. The results also show how ABC can be used to identify
the activities used in PCB manufacturing and calculate their costs. By targeting the most
costly activities identified by ABC, the production costs can be reduced. Regarding LA,
the results indicate how the accounting system costs can be reduced by eliminating
some accounting transactions and processes or replacing them with less costly
alternatives.

Acknowledgments

Great thanks go to:
» My supervisory team:
— Prof. Sameh Saad without whom this work would not have come to light. He
has been very helpful and supportive throughout the years and would not
hesitate to help whenever possible. .

_ Dr Ivan Basarab-Horwath for his continuous support and offer to help.

> My sponsor:

— Al-Baath University for their financial support

» The staff at the. Faculty of Chemical and Petroleum Engineering, Al-Baath
University for their material and moral support, especially:
— Dr Ahmad Al-Mahmoud
— Dr Ahmad Kasser Ibrahim

— Dr Hassan Al-Khalaf

Table of contents

PN oY1 3 1o OO OO PR iii
Ackno§vledgments .. iv
NOMENCIATUTEveevenerreeriereeeeeeeentesesisesresresstsnesseseessenes reeerene et nessesre st s s e aa st nsan s ix
LISt OF tADIES ..veuverrererirererererteersesaeressesessesessentesessessesesssssetenssssssestssesassassessessessesasssensassnes xi
LiSt Of fIGUIES c.vevevereeireeerreeeesteesieiesest st sressessesssesssssssesnessssnes crerveeresneneenens xiii
CHAPTER ONE.........ouoeoeeeereresieeesressessessessessessesssssesssessessessssssesssnssstesesssssssssssssssssssnees 1
1. INTRODUCTION.......cuooreerertrenrsieneeinessienestsssssesssscsnssessestessssesssssesesssssssssssnsssassssnes 1
CHAPTER TWOeoeeeeeveeeeeenrenesnensestssesaessesesssssesssssnsssassestessesssnsssssessssssssessssssncsssnss 6
2. LITERATURE REVIEW............coooomummmumsesmmmssssmsmsssssssssssssssssssssssssssssssssssssasassasessssasens 6
2 B 113 016 L1 RS T 6
2.2. Potential problems in PCB productionc.ccueceveevirenncninerininenineneeneieenennes 6
2.2.1. Sequencing the PCB types on the assembly line..........cccoivcivnniinnncrnncninnennnn 7
~ 2.2.2. Assigning component types t0 fEeders.........uvverurrrnirrerrersinenincininceennens 9
2.2.3. Pick-and-place sequencing problem and the combined problem with feeder
| FTSET 2211141 £ LUt 11
2.3. Activity-Based COStinZ.....cc.eruereriirrererenrersnecreneenseesinesseseessnessesssssessessessasessessonsns 15
2.4. Lean Accounting........cceeeeeeerveesecceareenns eeereeeeerteseeseritenteeereeaaeesteateane e e s aareranaes 19
2.5, SUIMIMATYecvverrieeeterereesrietesesseee e st st ssats e es st etessassasssesssassasssesssessasesanessesaess 21
CHAPTER THREEcueeeeeeereeseesrrstsssassessssssssssssessassestesssssesssssesssessesssassessnesesnes 22
3. RESEARCH METHODOLOGYcocecveurrrrirnnrerensinmsnsseiorsasssssssssssssssssssesssssasses 22
3.1, INTOAUCLION. c.vcuveeerrererersereerreeeeterresnaestesraessneesessesesassnesessssesnsessesssasssessassesesssessens 22
3.2. The MEthOAOIOY «...uuvvureerrrrerrenessnsssesssessesssensssessesssssssssssssssessssssssssssssassssssssnses 22
3.3. Implementation of the methodology on PCB production problems..............c...... 24
3.3.1. Tab0O S€AICH....ccvtiririreiritecerrtretececrte et s e s s a e csa e sane e 25
3.3.2. Genetic AIGOTItIINScvveevieiieirniereeieteeerrreeesceseesaesenneeesiasdnnenesssanesassssesess 27
3.4. Implementation of the methodology on ABC and LAccoocevereneenenas vereeees 29
3.4.1. Production ProCEAUIES........cceivvvrertererreeressereseecessisessseresssessssassessessassassessesens 30
3.4.2. General PCB manufacturing PrOCESSccceveeverreereereesarsesseessessessesssasssesesnens 31
3.5, SUIIIAIY ..vvoooeeeeessesessssessessssssesessesseeesseesesesssssseseesseessssesessesssse s ssessseseesees 33
CHAPTER FOUR............. e e et 34
4. PROPOSED FRAMEWORK AND PCB ALGORITHMS.............cceccoucee JE— 34
4.1, INLOGQUCLION. c.eeuverueeerenueeeesennecetsteserseestesenestestesaresstssansanesssesasessessassessssnasssesssssnns 34

4.3. The proposed frameWOrK:......ccouriiiiiriiinniciciinitcereer e e 41
4.4. The proposed algorithm........cccouemrmivmrueeriniinieiciniese st 43
4.5. Taboo Search and Genetic AlgoTithms......c.covueueuninicuniiniecccinan, 46
4.5.1. The size of TS neighbourhoodcoceeevririincniiiinniinciccccrereeennns 47
4.5.2. Development of TS algorithm.....ccccevvevveuvvervircercriinrnscrsisrirnincrsensesessesseeens 49
4.5.3. Genetic Algorithms 51
4.6. CaSE SLUAY c.vevererererrerrerereriseseetsietesesesesst b eseessa s st s e e sseesae et sas b essses s n e aaserans 53
4.6.1. Case details............... o ses eSS RS AR R SRR RS AR AR R AR R R 53
4.6.2. Program Cod€........cveueurercmsiunsinsmsscnnnsncssinsenss , 55
4.6.3. Experimentation, results and diSCUSSIONccceevuerivrermrunsesesnniisnessissesensinnns 57
4.6.3.1. The effect of the number of mOVeS/GENETALIONSciceereverrerersresnnnne 58
4.6.3.2. The effect of the methods used for initial feeder assignment 60
4.6.3.3. The effect of other parameters of TS QIGOTItAMc.cvvuevnrireninmeecurirennenes 62
4.6.3.4. The eﬁ’e&t of other parameters of GA aIGOVItAMcueverecererenrensrinon. 63
4.6.3.5. The effect of the algorithm type (TS or GA) usedeereereverirnnnnens 65
4.7. SUMMATY....coverrerreereecnrerneneens oot 2o et 66
CHAPTER FIVEoooeteeeeeeeiiieenssteessessesiessstsssssssestssessessesssssossssssssssesssssensosssans 68
5. COST ESTIMATION AND ACCOUNTING ASPECTS.ccccocvvminiirenrerennenes 68
5.1, INtrOAUCHION. ..veeteeeerteeirerieeeeteetetectestesese st ebesseesae s s s e te e sontsnesssessessnsnesssssannans 68
5.2, BASICS OF ABC ercrseesessessrses s sssssssossesre st ses st 68
5.3. Using ABC for cost estimation in the PCB industrycccocevevmvirenseersiernennennas 69
5.4. Implementation of ABC on the case study 70
5.4.1. Determining the cost of indirect resources and their drivers........c.c..cecceuennene. 71
5.4.2. Identifying the cost centres and assigning the resources to them................... 73
5.4.3. Identifying activities, calculating their costs and the rates of their cost drivers
.. 79
5.4.4. Calculating the costs 0f PCBSccveeieiivuneinccnnniecsiinnrenesinresecesssesesssesnsnnes 85
5.5. The effects of applying the algorithmccccccvevnecininnciinnccnienicciinneiens 89
5.6. Lean Accounting basics and prinCiplesc.coevverrerienescninnicnesnenecseesesnesenes 93
5.7. How Lean Accounting SYSteIm WOTKSccccvvureirirruecreerrerneessersarecsessnescssnesinennens 94
5.8. Implementation of LA on the case study........ceccecerveeirvuicrenrenennne. reveesereneseseseenaes 95
5.8.1. Performance measurements.cceeecuereireersesernsneseesseesseesssessscessssssnecsssnsssessess 99
5.8.1. 1. Cell INEASUFEMENLS eevveeeeeeeeereresssssssssssssssssssessssssesessemeessesssssesssssmessesessssssee 99

vi

5.8.1.2. Value Stream MEASUFEINENLSccoceeeeeerrersirsessseisesssesssessesssessssessssersssssssss 102

5.8.2. Calculating the financial benefits of applying lean manufaétuﬁng 105
5.8.2.1. Calculating freed CAPACILYouiveveririnneneciiiiriisisinse s seene 107
5.8.3. Eliminating wasteful financial transactions...............ceeveereeeeseeserserseessecenans 113
5.8.3.1. Accounts payable and accounts receivable processesccceeveenne 114
5.8.3.2. The general lodger and end-of-month close processccceevveeenees. 115
5.8.4. Value Streamn COSLIMNE .eurierrereererrernrereereniestnssessiesssesseessesssesssssssssssesssesnasses 116
5.8.5. Features and characteristics COSHINGcccceeeurrerrcrecencrienninnensecniensenncseeennes 119
5.8.6. Target cos_tiné ... 123
5.8.7. Financial planningcccceevivveruesirinniimnuiisiesenteniessensesssesseessssssessssasssness 127
5.9. Activity—baéed costing versus lean accounting.......c..ceeeeeverevserecsnessnnsernsiesensenes 128
5.10. SUIMITIATY ...cceceereerreneneseenesiesiussesesissssssssssssssesssissssesssesssssssmsssssssssessssesssssssssaseses 129
0602 20343 7 5 [, 131
6. RESEARCH VALIDATION & EVALUATION...........cccecevuruunee. [131
6.1. Introductlon 131
6.2. Research vahdatlon 131
6.2.1. Validation of the work on the optimisation of production processes........... 131
6.2.2. Validation of the work on the cost estimation aspect...........ccceeverrurrnerersunanes 133
6.2.3. Validation of the work on the accountingl ASPECL vevverreerreerreceeneneenesaneseinees 135
6.3. Research eValuationceeeereeienieneenenieninninininiesteteticeesseesiseesessssssissessnssees 136
6.3.1. Evaluation of the work on the optimisation of production processes 136
6.3.2. Evaluation of the work on the cost estimation ASPECL veveeererereerrnrecrerreraeesnes 137
6.3.3. Evaluation of the work on the accounting aspect.........cceceevvrvveerversesrersesnenne 138
6.3.4. Evaluation of the work on the research as a Wholecccoeevueecrerccnvcrcnncnne 139
6.4, SUIMMATYc.covererrereerereistresesressistetssessissssessesessssesstssessssensestosesssssssstonsinssssssnens 140
CHAPTER SEVENcuooeeieereeserseetessessesessesssssssssssesssssssssessssssssssssesssssssess S 142
7. CONCLUSION.......ccoiriitretriresestesteteesestssesesssssssessesasesesssstessssasesssesssssonsasenssssen 142
7.1. Optimisation of production processes 143
7.2. Cost estimation @SPECtcveeeeeereeieesiesintnn et 143
7.3. ACCOUNEING ASPECL....viriritiiiieriiireiireeiesiesstinissessseessatsesessessseessnsssesessssssesosssssssnes 144
7.4. FINal thOUGNLS covvvvriiiiimitt e 144
7.5. FULUIE WOTK...coueeeteeerrsiienieetisitisnt ittt st ssat s saeconeesessesssesssssssssssnessasonanses 145
REFERENCES.c.oocooivieeninireerentestsstssessssssesassessessessessssassessesssssssasssessens feeereerennes 146

PUBLICATIONS ...ttt siese s ssss st saressaeesessasasesssssnesns 154

vii

APPENDICESocoiiitiieirtienteereseesessteesteseessessesessesssessesssssessssnsossnsssesasesssnsenessenes
APPENAIX L.ttt
APPENAIX Tttt s s

viii

Nomenclature

AAT: Acyclic Assembly Time
ABC: Activity-based Costing
"ABCM: Activity-based Cost Management
ACD: Activity Cost Driver
ACDR: Activity Cost Driver Rate
CDPP: Chebychev Dynamic Pick-and-Place
CCD: Cost Centres Driver
CCR: Cost Centre Rate
DPP: Dynamic Pick-and-Place
EDPP: Extended Dynamic Pick-and-Place
F Feeder |
GA Genetic Algorithms
HR: Human Resources
R Infra Red
IT Information Technology
IT: Insertion Time
JIT: Just In Time
LA: Lean Accounting
MPS: Master Production Scheduling
MRP: Material Requirements Piamiing
| OEE: Overall Equipment Effectiveness
PCB: Printed Circuit Board
PPT: Pick and Place Time
PT: Pick Time
QAP: Quadratic Assignment Problem
RD: Resource Driver '
RR: Resource Rate
" SA: Simulated Annealing
SMC: Surface Mount Component
.SMT: Surface Mount Technology
ST: Set-up Time

ix

TS:
TSP:

TPT:

TT:

Tab'obo Search

Travelling Salesman Problem
Total Processing Time |

Travel Time

Ultra Violet

Variable Neighbourhood Search

List of tables

Table 4.1. Definition of variables for the mathematical formulationcceevrerennnncne 35
Table 4.2. The size of neighbourhood for the swap and the insertion moves....... S 47
Table 4.3. Specifications of the Machineccvueuvieveineeienicintiine e 55
Table 4.4. Specifications of board types.........ccevurunenee rerfeererest et e e e e nassessasaeraeres 55
Table 4.5. Specifications of TS and GA algorithms eevseseeeeseemese e sees s see st 55
Table 4;6. The effect of initial feeder assignment on the total processing time 61
Table 4.7. The effect of move type and taboo list size on the total procéssing time...... 62
Table 4.8. The effect of algorithm type on the placement/setup times..........cccoeevreenenn. 66
Table 5.1. Specifications of board typPescuveveniiivnieiiiinn e 71
Table 5.2. Indirect resources at the PCB production facilityc.ceceeeeeereerercsnrerccnes 71
Table 5.3. The costs of indirect resources and their drivers...........cceceveeirevevrcnnireereenen 72
Table 5.4. Cost centres at the PCB production facility........icceceeervmeeiseneinnncccsecinennenns 73
Table 5.5. The costs of direct resources (type II) for the “project manager”.................. 74
Table 5.6. The costs of indirect resources (type A) for the “project manager” 76
Table 5.7. The total cost of the “administrator” pseudo-Cost CENtre...........oeererrverreresreers 77
Table 5.8. The tdtal costs of the pseudo-cost CENtIES......c.cereueererreinrrinencernsnecsennesnenanes 77 |
Table 5.9. The amounts of cost drivers of pseudo-cost centres spent...........cc....... e 78
Table 5.10. The cosfs of cost centres, their cost drivers and their rates..........cceccereeernene 79
Table 5.11. The activities that can be identified in the production of PCBs...................81
Table 5.12. Calculating the cost of “sequencing parts” ACHIVILY vovveeeesivnsonenrecneenesenneens 82
Table 5.13. The costs of activities, their cost drivers and 'their TALES coveeerrereeeeeecrerrenenens 83
Table 5.14. Calculating the production cost of one PCB of type A...... R 86
Table 5.15. The production costs of all PCB types........ccvueeeerrvenrinnnrinennncnenisnennenns 88
Table 5.16. The total production costs of all PCB types.........cocecverveeercsiesensnienenennnns 89
Table 5.17. Operating times before time reduction (HOUTS)c.ceueeurruereereeesueesseesenens 90
Table 5.18. Operating times after reduction (hours) 91
Table 5.19. The saved times of resources (00030 1 ¢) F O PO SRR 91
Table 5.20. Costs of direct utilities and the maintenance & depreciation (£)........ccccu... ‘91
Table 5.21. The new costs of cost centres, their cost drivers and their rates................... 92
Table 5.22. The new costs of activities, their cost drivers and their rates92
Table 5.23. Features of the current production SYSLEM euvververrrreeseensensresssneersresasesesenes 98
Table 5.24. Day-by-the-hour TEPOTtcccureeiriieniirereniniccinirne sttt esssessesaens 100

xi

"Table 5.25. The data of the case study before and after applying lean manufacturing. 106

Table 5.26. The box score for the PCB value stream in the case study........ccooueurnene. 107
Table 5.27. The required data for some of the SMT activitiescc.cecevererrrercveernenes 108
Table 5.28. Activities in the SMT cell and the time of each activity.......c.cceocrveerrenenene 110
Table 5.29. The data for the SMT activities after lean........c.cceeevvrerinenccnncnisecnnecnes 111
Table 5.30. Activities in the SMT cell and the time of each activity after lean............ 112

Table 5.31. Resource capacities for the SMT cell before and after implementing lean112
Table 5.32. The new box score for the case studyccovveververrercvruvnirseeneeceniicnenenn. 113 .
Table 5.33. The resources and their accounts for each department for the case study.115
Table 5.34. A financial statement for the case StUdYcccccveveeeveeirverreieerererereeseenseeeeens 116
Table 5.35. The cost of employees working in PCB value Streamc.eeeeerernevnenne 118
Table 5.36. The costs'of material, machines and other costs for PCB value stream119

Table 5.37. Categories of the features and characteristics that affect SMT production121

Table 5.38. The conversion costs for all PCB types in the PCB value stream 122
Table 5.39. Calculations of the target costs for the case Studycocecureeveumreeciirinnees 125
Table 5.40. Financial impact of the introduction of the lean improvements 127
Table 5.41. The similarities between new ABC and lean accountingcecevvvenene 129

Table 6.1. Costs of activities (in percentage) in this research and in Ong’s research... 134
Table 6.2. Improvements achieved by implementing LA on this research and on

Maskell and Baggaley’s TESEarch........ccvevevirvirerniniesersininiisiiisscsiieenesseessesesessessesens 135

xii

List of figures

Figure 2.1. One possible assignment for the QAP.......ccocvuvievvieiiniintiiniiinneienrecnnene 9
Figure 3.1. A representation of the neighbourhood solutions.........ccouveieueieieirernennnes 26
Figure 3.2. General PCB manufacturing ProCess........cecciurnuiriiirissrnseesnnissesesesnsesssassesenes 32
Figure 3.3. Flowcharts of PCB production process; a: adhesive attach-wave, b: reflow32
Figure 4.1. Layout of the board and feederscccvvvivrevinnnniennrenicreneninessseesesenes 35
Figure 4.2. Calculating the travel timescocvuireiiriirnninncinirennctcrcensn e 41
Figure 4.3. Proposed framework of the research rererreestetee et ssaesaesaesresansarens 42
Figure 4.4. Flowchart for the solution P-1020) 11114 LN PO OOURUO PR 43
Figure 4.5. Representation of centroid rule..........ceevvevcvcemvesirineecrnncesscncnsnesnsnsnenenennnn 43
Figure 4.6. Representation of proportion rule.........c.ceeveevieviienssnnnnnninseeseseenesnssens 46
Figure 4.7. Size of neighbourhood for insertion and Swap mMOVES.........cccevevuervreerenrennans 48
Figure 4.8. Flowchart of Taboo Search algorithm........co.cvveiniveencniinenicniiieenenenns 50
Figure 4.9. Flowchart of Genetic AIgOTithmscceevviviirinieninicreieiireneenreeeenn 52
Figure 4.10. A representation of the board and feederscoovuvuvvnininnnieneneniiennennne 54
Figure 4.11. Snapshot of the program interface.........ocecvuevivuvierncisivnnsncenennceneseenne 56
Figure 4.12. The effect of number of moves on processing timeoeevververerneesnennens 59
Figure 4.13. The effect of number of generations on processing time...........cocevvuevrenene 59

Figure 4.14. The relationship between processing time and number of
moves/generations for board type Acccveiviiiiinnininnn s 60
Figure 4.15. The effect of initial feeder assignment on processing time of board type A
uSIng TS AlgOTithm.....ccuecceceiiiiiciiiccincci et ae e .62
Figure 4.16. The effect of move type on processing time of board type A using TS

algorithm (random feeder assignMent)cccoeeeeriercrninininnincninieneccircsececsnesesenenne 63
Figure 4.17. The effect of the population size on processing time 63
Figure 4.18. The effect of using mutatioﬁ on the processing time.........cocveuveereverersaenne 64
Figure 4.19. The effect of using inversion on the processing time...........cocevrerecviennens 65
Figure 4.20. The effect of the algorithm type on the processing timecc.cecovevenrrunne 66
Figure 5.1. The costs 0f aCtVIHIES ...vevveeviirieriniiiinciiiicicieset et eneneneas 84
Figure 5.2. The general implementation steps of lean accounting.........ceceeccereeerscecrnnne 97

xiii

CHAPTER ONE

1. INTRODUCTION

The diversity of product types required by today’s customers has forced
manufacturing companies to introduce multi-assembly systems. This has led to some
production optimisation problems one of which is the sequence at which the product
types should pass through the assembly lines. In addition to these production problems,
there are also cost estimation and accounting issues that are associated with
manufacturing and need to be addressed. Due to the intense competition in modern-day
manufacturing, most manufacturers aim to reduce the production costs of their products.
Taking this into account and considering the widespread use of multi-assembly systems,
this research focuses on cost reduction within three aspects of manufaéturing:
optimisation of production processes, cost estimation and accounting.

The electronics industry has grown rapidly in the last two decades. The increase in
PC production is, amongst others, one reason for this growth. Due to this growth, a
global competition has emerged creating lower profit margins. As an important segment
of the electronics industry, the production of Printed Circuit Boards (PCBs) has been
i)aid considerable attention because, firstly, PCBs are found in almost all electronic
devices and, secondly, because PCB production is associated with many problems that
have the potential for optimisation. For these two reasons and for the fact that some of
the PCB production problems are more general, PCB manufacturing is the area of
industry that will be considered in this research. Given the highly automated production
processes used in response to the high demand for PCBs, the problems associated with
PCB production have become more complex and interrelated. Most of these problems
are combinatorial optimisation problems (problems that >involve identifying the best
possible; solution amongst a finite set of possible solutions), which, in some cases,
require metaheuristics (e.g. Taboo Search, Genetic Algorithms, Simulated Annealing,
etc.) to solve them. A metaheuristic is a strategy or a framework that guides heuristics to
search for solutions for hard problems. Heuristics can be defined as a methodology, tool
or a problem-solving technique that uses specific solutions, of several found, in the

successive steps to obtain more feasible solutions. They have been created and

developed throughout years of experience in solving mathematical problems. For

example, the following can be considered as heuristics (Sickafus 2004):

— Simplification: divide complex problems into small ones, take small steps, combine
functions, etc. o . '

— Extremes: vary attributes to their extremes, multiply and divide objects to extremes.

— Focus: search root causes for solution concepts, search technological contradictions,
etc.

Although metaheuristics are very successfully widespread, the way théy work is
still not widely understood and there is very little in depth research about the theory
behind them. The reason for this might be due to the fact that it is not that important to
know how they work as much as it is important to know how to use them and whether
using them gives satisfactory results or not. However, Watson (2003) argues that the
limitation of the theoretical understanding of metaheuristics obstructs researchers from
developing more effective ones. That is why he has developed theoretical behavioural
models to some of well-known metaheuristics (or local search algorithms as he calls
them). A

As for the other two aspects of cost reduction, two well-known fechniques will be
considered: Activity-Based Costing (ABC) and Lean Accounting (LA). Activity-Based
Costing has emerged as a method for estimating the costs of products (or services) in
order to overcome the limitation of the conventional cost allocation method (allocating
overhead to labour or machine houfs). Examples for these limitations are the distortion

‘of product costs resulted from the volume-based allocation of overheads to products

(Cooper 1987 (from: Innes & Mitchell 1995)), the lack of cost information for decision
making (Johnson & Kaplan 1987) and the lack of the availability of costing data at the
design stage of the product life cycle (Berliner & Brimson 1988).

‘ Although ABC is not a method designed to directly minimise the cost, the need
for it was driven by the development of new technologies in manufacturing systems and
by the introduction of automation in the early 1980s in order to provide accurate cost
estimation that may lead to better decision making and eventually to cost reduction. In
the conventional cost allocation method, the overhead is allocated to products, or
services, depending on direct labour or on volume-related factors such as machine hours
(Bellis-Jones & Develin 1999). The introduction of automation and new technologies
has meant that a higher percentage of overheads cannot be volume related. ABC method

follows a different approach in cost allocation, an approach that overcomes the

limitations of the conventional approach. The basic concept of ABC is that products and
services consume activities, which in turn consume resources that have specific costs.
For example, in a PCB manufacturing facility, producing a PCB requires performing
many activities (e.g. sequencing parts, screen printing, placing components, etc.); the
‘placing components’ activity, in turn, consumes many resources (e.g. manufacturing
engineer, operator, pick-and-place machine, etc.). This means that the costs can be
traced to products and services through the vactivitiés needed to produce them.

LA, in contrast to ABC, is directly connected to cost minimisation. Its scope is
much wider than the scope of ABC and it is not a stand-alone systém; it should ’always
be implemented by companies already implementing lean manufacturing. The
implementation of lean manufacturing principles by most companies has been
undermined by the traditional practice in the accounting departments of these
companies. The principles of standard accounting are based on the principles of mass
production. They are not wrong as such but they are not suitable for lean manufacturing,
which has principles and rules (e.g. low and consistent invenfbry, small batches, small
orders of raw-materials and other supplies, etc.) that are at odds with mass production
(Maskell 2004). In order to overcome this obstacle and show the full potential of the
implementation of lean manufacturing, a new accounting system that takes into account
the principles of lean has been developed. This new accounting system is called “Lean
Accounting”. The basic idea of LA is to change the way the standard accounting system
handles the accounting, control, measurement and management of production processes
into a way that supports lean manufacturing l?y applying the principleé of lean thinking.
LA is a necessary todl for lean manufacturing to survive; it provides better information
for the management, which helps them understand the financial impact of lean
improvements. This, in turn, helps them achieve better decision-making and save
money by reducing costs, eliminating waste and providing more control over production
processes.

The goal of this thesis is to develop a framework that can be used for process
optimisation and cost minimisation in multi-assembly systems in general and in the
PCB industry in i)articular. In order to fulfil this goal and as mentioned earlier, this
research will consider three aspects in manufacturing: optimisation of production

‘processes, cost estimation and accounting. As for the optimisation of production
processes, three problems associated with PCB assembly systems will be considered:

component placement sequencing, feeder assignment and board type sequencing. An

3

integrated approach will be developed to simultaneously solve these problems by
finding the optimal component placement sequence, the optimal component to feeder
assignment and the optimal board type sequence when working in multi-assembly
systems. In order to achieve that, the problems will be studied in detail, a mathematical
model will be developed for them and the model will be solved using metaheuristics.
Since this kind of problems cannot be practically solved using conventional
mathematics as it requires years of computational time for present-fime personal
computers to solve a medium-sized problem of this kind, two metaheuristics will be
used to solve them. The metaheuristics, Taboo Search (TS) and Genetic Algorithms
(GA), will be used to find the optimal (or near optimal) solution to the developed
mathematical model. TS will be used because it has been used widely in the literature to
solve combinatorial optimisation problems but not widely used to specifically solve
PCB related problems as will be seen later in the literature review. Since GA has been
widely used in the literature to solve combinatorial problems in general and PCB related
problems in particular, it will be used here mainly for comparison purposes.
As mentioned earlier, regarding the cost estimation and the accounting aspects,
Activity-Based Costing and Lean Accounting will be considered in this research and
they \;vill be implemented on a PCB manufacturing facility. This will allow for
establishing a relationship between the three aspects under consideration in this
research. A case study will be used in this research to help the reader easily understand
and follow the proposed framework of this thesis. In order to validate this research, the
results obtained for the three aspects considered will be compared to the results of
similar studies from the literature.
The main objectives of this research are as foliows:
~ Development of a mathematical model for the combined problem of component
sequencing, feeder assignment and board type sequencing.

~ Formation of suitable TS- and GA-based algorithms to find the optimum or near
optimum solution to the above-mentioned problem. ’

- ‘Integratioﬁ of the mathematical model and the algorithms using an appropriate
interface tool.

~ Implementation of ABC and LA on a PCB manufacturing facility to study the cost

estimation and the accounting aspects.

— Development of a framework that integrates the optimisation of production
processes, cost estimation and accounting aspects of this research.

— Test the performance of the proposed framework using a éase study.

— Verification and validation of the proposed framework.

The reminder of this thesis is organised as follows: Chapter 2 includes the
literature review on PCB manufacturing focusing on the thrée problems under
consideration in this research and on the use of TS and GA in solving these problems
where appropriate. In addition, the literature review will consider the other two aspects
of this research: cost estimation (ABC as an example) and accounting (LA as an
example). Chapter 3 explains the research mefhodology adopted in this research in
addition to some background information about PCB production procedures, PCB
production problems, TS and GA metaheuristics. In Chapter 4, the mathematical model
used to solve PCB production problems mentioned earlier is formulated and the two
metaheuristics (TS and GA) used to solvé the mathematical model are also detailed in
this chapter. ABC and LA are explained in detail, implemented on a PCB
manufacturing facility and the results are analysed in Chapter 5. The validation of the

"results obtained and a critical evaluation for the research work as a whole are presented
in Chapter 6. Finally, the thesis is concluded in Chapter 7 where the conclusion and the

future work are presented.

CHAPTER TWO

2. LITERATURE REVIEW

2.1. Introduction
In this chapter, essential background information is presented, the previously

published research on PCB, ABC and LA is summarised and the main results and
conclusions are stated in order to distinguish this research from what have been
considered before. Regarding PCB manufacturing, some proﬁlems associated with it are
listed and the three PCB production problems of board type sequencing, feeder
assignment and pick-and-place sequencing considered in this wofk. are explained in
detail. Since TS and GA are also the only metaheuristics considered in this research, the
review focuses on the publications that considered these two metaheuristics, even
though some other methods are also mentioned. As for ABC and LA, a detailed review
is considered in this chapter and a special attention is paid to the PCB related cases

whenever possible as PCB manufacturing is the area of industry considered in this

research.

2.2, Potential problems in PCB production
The area of PCB assembly has been the focus of intensive research during the last
two and a half decades. Although a detailed search has been carried out, the focus in this

section is on the problems that are under discussion in this research work. In addition, a

special attention is paid to the use of TS and GA as search techniques.

’ Crama et al (2002) listed the problems associated with the production planning
process of PCBs as follows:

1. The assignment of PCB types to product families and to machine groupé. This
means, to decide which board type should be processed by which machine (machine
group). In addition, to decide what board types (similar in terms of component

- commonality), which would be processed by one machine, should be grouped in one
family so that this family can be processed using one feeder assignment. ‘

2. The allocation of machine feeders to machines. This means, to assign the feeders to
the machines taking into consideration problem number 1 above.

3. For each board type, a partition of the set of component locations on this board type,

indicating which components will be placed by each machine. For the component

locations of each board type, it should be decided which set of locations should be
processed by which machine. This arises when the same component type is assigned
to feeders on different machines. |

4. The sequence of board types, indicating the order in which the board types will be
produced (to be explained further in subsection 2.2.1).

5. The location of feeders on the carrier or feeder assignment (to be explained more in
subsection 2.2.2).

6. The component placement sequence (to be explained more in subsection 2.23).

7. The component retrieval plan indicating from which feeder a component should be
retrieved. This problem arises when the same component type is assigned to more
than one feeder.

8. The motion control specification indicating a specification of where the pick-and-
place device should be located when it picks or places the component. This is a
machine-dependable problem. For machines with a mobile board and mobile feeder
carrier it should be determined where the machine head should meet the feeder
carrier to pick the component and where it should meet the board to place it.

Amongst the above potential problems associated with PCB assembly, problems 4, 5

and 6 are detailed thereafter.

2.2.1. Sequencing the PCB types on the assembly line
This problem is to find the sequence of board types, amongst a set of possible

sequences, which minimises the total assembly (or processing) time. Since each
different board type requires a different machine set-up, the sequence that the board
" types follow when entering the machine affects the total set-up time. The issue here is to
find the sequence of board types that minimises the set-up time. The problem of
sequencing the PCB types on the assembly line is considered an instance of the job
sequencing or job scheduling problem. For more information about job-shop scheduling
problem the reader can refer to Késchel et al (1999) and Applegate and Cook (1991).

A considerable amount of research has been devoted to solving the job scheduling
problems such as Nawaz et al (1983), Proust et al (1991) and Ji et al (2001), to mention
just a few. However, as this research is interested in the sequencing problem rather than
the general job scheduling problem, the only relevant research works are considered

here.

Logendran and Nudtasomboon (1991) proposed a new heuristic to minimise the
total completion time or makespan of the job sequencing problem. The proposed
heuristic showed, the authors claimed, a high performance relative to the other methods
proposed in the literature. Hashiba and Chang (1991) followed a three-step approach to
reduce the number of setups for PCB assembly machines by improving the assembly
sequence. The first step included grouping PCBs by applying a new heuristic grouping’
method. In the second step, they sequenced the groups by treating the problem as the
Travelling Salesman Problem. A new algorithmic method was presented in the third
step to solve the component assignment problem. The presented approach showed to be
efficient for large-size industrial problems.

Sadiq et al (1993) developed the intelligent slot-assignment algorithm (a
knowledge-based approach) to sequence a group of printed wired boards assembly jobs
on a placement machine to minimise the production time. The developed algorithm
consisted of two stages. In the first stage, new parts were assigned on the machine with
the objective of minimising the set-up time, whereas in the second stage the parts were
reassigned to minimise the runtime. Their performance evaluation studies showed that
the developed algorithm tended to obtain near-optimal solutions. Bhaskar and
Narendran (1996) introduced a new measure of similarity for PCB grouping, called the
cosine similarity coefficient, in order to reduce the total set-up time for a single
machine. They performed that by developing a heuristic, which performed very well for
a number of trial problems, based on the maximum spanning tree. The problem of
sequencing the groups was approximated to the Travelling Salesman Problem.

Rossetti and Stanford (2003) presented a heuristic for estimating the expected
number of setups from the sequencé dependent setups which may occur given a board-
feeder setup configuration. The estimates were used to measure the similarity between
boards in clustering algorithms and in nearest neighbour heuristics for group
sequencing. The results indicated that grouped sequences generated by using the
heuristic had better makespan performance compared to sequences based on the more
traditional Hamming distance. Narayanaswami and Iyengar (2005) used a heuristic that
resembled greedy tree traversal to efficiently sequence PCB groups. They proposed a
new grouping strategy that combines the feeder contents into the similarity measure for
efficient grouping, which they claimed outperformed existing methods of grouping.

As can be seen from the review, there is lack of research on the use of

metaheuristics to solve the board type séquencing (or groups sequencing) problem in

the PCB industry. Metaheuristics have proven to be successful for obtaining near-
optimal solutions for medium- to large-scale combinatorial ﬁroblems (Ong & Khoo
1999; Wan & Ji 2001; Loh et al 2001; Ho & Ji 2003; Ho & Ji 2005). This is why this
research is considering the use of TS and GA as search techniques to solve the PCB
types sequencing problem. The use of these two metaheuristics is an opportunity to test

whether or not they are successful in solving this type of problems.

2.2.2. Assigning component types to feeders ‘
The basis of this problem is to find the component assignment that minimises the

assembly time. The assignment of component types to feeders (or the location of
feeders on the carrier) can be explained as follows. Since the distance between a
component and its location on the board is variable depending on which feeder this
component is assigned to, the time needed for the machine head to travel this distance is
- also variable. A solution to this problem is to find the specific feeder assignment that
minimises the total distance between the components and their corresponding locations
on the board. This problem is an instance of a type of combinatorial problems called
Quadratic Assignment Problems (QAP). QAP is simply to assign a set of n facilities to a
set of n locations.’ The objective is to find the assignment that corresponds to the
minimum cost. The number of possible assignments in this case is n!. The cost of each
assignment is the sum of the costs of all pairs, which can be calculated by multiplying
the flow cost for each successive pair of facilities by the distance between the two
locations which that pair of facilities is assigned to. For example, for n =4, there are
four locations 1, 2, 3 and 4 and four facilities a, b, ¢ and d. A possible assignment might
be ¢, b, d and a. This means, facility c is assigned to location 1, facility b is assigned to
location 2, facility d is assigned to location 3 and facility a is assigned to location 4 as

shown in Figure 2.1.

Figure 2.1. One possible assignment for thé QAP

9

Let’s assume that the distances between the locations are as follows:
dis(1,2) =1, dis(1,3) =5, dis(2,3)=6 and dis(2,4)=8
and the costs of flows between facilities are:
Fe,b) =12, fli(c,d) =15, f1(d,b) =22 and fi(b,a)=10
This means, the cost of this assignment is:
dis(1,2)x fl(c,b) + dis(1,3) x fl(c,d) +dis(2,3)x fI(d,b) + dis(2,4)x fl(b,a) =
7x12+45x15+6x22+8x10=371

The solution for the problem is to find the assignment that corresponds to the lowest
cost. The reader can refer to Burkard et al (1997) for more information about the
Quadratic Assignment Problem.

Most of the literature related to this problem has focused on single-machine cases,
and mainly on single-machine-single-board cases. This problem was first identified by
Drezner and Nof (1984). Ahmadi et al (1995) discussed the same problem but under a
different name (the reel positioning problem). They applied their research to a dual
delivery pick-and-place machine (Dynapert MPS 500). The proposed heuristic took into
account the engineering concerns for minimising the carrier movement. The component
placement sequence was assumed to be given in this case and a 7 to 8% reduction in
cycle time was achieved. Simulated Annealing (SA) was used to solve this problem by
van Laarhoven and Zijm (1993). Other approaches were discussed by Francis et al
(1994) and Younis and Cavalier (1990).

Gronalt et al (1997) discussed the switching component problem (the component
set-up and the feeder assignment problem) on an SMT (Surface Mount Technology)
placement machine. The approach used was based on decomposing the switching
problem into the set-up problem and the assignment problem and then solving the two
problems iteratively with the solutions to the set-up problem providing the basis for
solving the assignment problem. The proposed heuristic performed well when applied
on data reflecting actual industrial application requirements.

Regarding the multi-board type problem, there have been fewer publications.
Dikos et al (1997) used Genetic Algorithm to generate a solution for the feeder
assignment problem. Another approach was used by Crama et al (1990), who

decomposed the planniﬁg problem into a number of sub-problems, where a new

10

heuristic based on the individual board characteristics was proposed. Using this
heuristic, a solution to the planning problem was achieved and, according to the
computational results, this approach worked well. Klomp et al (2000) developed a
heuristic algorithm to solve the problem (they called it “the feeder rack assignment
" problem”) for a line of placement machines and a family of boards. The algorithm was
applied to real-life examples and the authors claimed that the results showed the
superiority of the algorithm when compared to the approaches that were commonly in
use at that time. Finally, Yuan et al (2006) analyzed optimization algorithms of
‘assembly time for a multi-head machine. They developed a four-step algorithm. In the
first step, the algorithm assigns the components to feeders. In the second and third steps,
it assigns nozzles to the heads and organizes the feeder groups so that the heads can pick
and place components on a group-by-group basis. In the last step, the algorithm assigns
feeder groups to slots. The results showed that the performance of the algorithm proved

to be good in practice.

2.2.3. Pick-and-place sequencing problem and the combined problem with feeder
assignment

The pick-and-place sequencing problem is about finding the placement sequence
of components on the board so that the assembly time is minimised. This combinatorial
problem is a typical example of the Travelling Salesman Problem (TSP). TSP is simply
to find the cheapest way of visiting a number of cities once and returning to the start
city given the cost of travel between each pair of cities. For a specific feeder
assignment, the sequence that the machine head follows to place the components on the
board (which component should be placed first and which second étc.) also affects the
total distance travelled. Minimising this distance requires a unique placement sequenée, |
which is considered to be a solution to this problem. For more information about the
Travelling Salesman Problem the reader can refer to Bellmore and Nemhauser (1968),
Reinelt (1991) or Moscato (2003).

There have been a number of publications devoted to component sequencing

“problem. Ball and Magazine (1988) described some of the problems related to the PCB
production. The specific problem of determining the best sequence of insertion was
formulated as an instance of the Travelling Salesman Problem. An optimal solution was
reached under certain conditions (when the travelled path of the head was rectilinear)

using an algorithm developed for this particular problem. Sanchez and Priest (1990)

11

developed a component-insertion sequencing methodology and a “proof-of-concept”
expert system for PCBs. They applied Artificial Intelligence and Expert Systems
techniques to represent the human reasoning involved in semi-automated PCB assembly
planning. Based on established assembly criteria, sequencing decision rules and data
available from a CAD system, they claimed that the methodology optimally solved the
component-insertion sequencing problerh for semi-automated work cells.

Su and Srihari (1996) designed, implemented and validated a decision-support
system that combined the use of artificial neural networks and artificial-intelligence-
based technologies (expert system techniques) to identify a near-optimal solution for the
placement sequence problem. Khoo and Ng (1998) developed a prototype GA-based
planning system to provide near-optimal PCB component placement sequence. PCB
placement priority and sequencing decisions rules were incorporated as constraints. A
PCB model already used in the literature was used to validate the prototype system. The
results showed that an improvement of 19.80% in the total distance was possible.
Jeevan et al (2002) modelled the component placement sequence problem for a multi-
headed machine as a Travelling Salesman Problem with the tool change factor included
and the problem was optimised by Genetic Algorithms. The paper suggested that GA |
was a better alternative to other heuristic solution approaches such as Variable
Neighbourhood Search (VNS) and local optimum search since it was simple and more
promising as a global and robust method.

As for the combined problem of feeder assignment and placement sequence,
Moyer and Gupta (1996) proposed a methodology for efficient process planning of a
high speed chip shooter for surface mount assembly. They proposed an asynchronous
model which they claimed that it would strengthen the benefits of the chip shooter
features. A heuristic algorithm was developed, referred to as the Acyclic Assembly
Time (AAT) algorithm, based on the asyn.chronous model. The authors claimed that the
algorithm produced excellent results, compared to previously published problems, when
tested on real-life examples. Khoo and Ong (1998) and Ong and Khoo (1999) applied
GA in order to optimise the sequence of component placements onto a PCB and the
arrangement of component types to feeders simultaneously. They reported a 7.4%
improved results compared to Leu ez al (1993). Su ef al (1998) used a TS approach to
solve the combined problem of sequencing placement points and magazine assignment.
They applied this approach on a robotic assembly system with a moving magazine, a

moving board and a moving robot. With an average reduction of 14.26% in cycle time,

12

they concluded that TS was more effective in solving the problem of occasionally
changing coordinates than other conventional approaches.

Burke (1999) presented a new model for multi-headed placement machine. Two
heuristics were modified to be suitable for the problem presented: the nearest neighbour
tour construction heuristic and K-opt (a local search algorithm). Altinkemer et al (2000)
provided an integrzited approach which tackled the two sub-problems (component
sequence and feeder assignment) simultaneously as a single problem with the aim of
minimising the machine head movement. Khoo and Loh (2000) presented a prototype
system that used GA to generate the component placement sequence and the feeder
‘assignment for a concurrent pick and place machine equipped with a time-delay
function. The sequencing process was formulated as a multi-objective ‘optimisation
problem (a2 multi-objective function that depends on other three functions was
formulated). The prototype system was validated using examples from the literature and
the authors reported an improvement of 13.0% compared to the work of Sanchez and
Priest (1990). The two problems of assigning component types to feeder slots and the
determination of locally optimal pick and place sequences for a multi-headed
component placement machine were solved by Burke er al (2000). Up to 35%
improvement was achieved using a local search approach to improve initial solutions
determined by nearest -neighbour construction heuristic and up to 40% using the
variable neighbourhood search approach. The authors suggested the use of
metaheuristics such as TS and Simulated Annealing (SA) to overcome the problem of
local optima which they encountered. Loh et al (2001) developed an algorithm based on
GA to solve the feeder assignment and the placement sequencing problems in PCB
assembly. By comparing the performance of that algorithm to previous algorithms, they
proved its superiority especially for large problems (> 50 components). Furthermore,
they found that the possibility of assigning one component type to more than one feeder
provided additional flexibility and reduced the assembly time.

Van Hop and Tabucanon (2001b) proposed a new approach to solve the combined
problem of feeder assignment and placement sequence in a Dynamic Pick-and-Place
(DPP) model where a robot arm, a board and a magazine move together with different
speeds. Their approach was based on the trade-off between two strategies, assembly by
area and assembly by component types, to give better results. They applied the new
épproach on numerical examples, which proved to be efficient. An improvement to the

DPP, called the Extended Dynamic Pick-and-Place (EDPP) was introduced later (Van

13

Hop & Tabucanon 2001a). Deo et al (2002) developed a GA-based program for
simultaneously optimising component placement sequence and feeder assignment in the

assembly of PCBs. The program proved to be a valuable tool for providing good
~ solutions to the problem in a multiple set-up and multiple sourcing PCB assembly
machine arrangement. Ong and Tan (2002) demonstrated the application of GA to
solving the placement sequencing and feeder assignment pro‘t;lems. They focused on
solving the moving board with. time delay problem associated with high-speed turret-
head chip-shooters. The results obtained showed improvements compared to the results
of previous work carried out by Leu et al (1993) and Nelson and Wille (1995).

Ayob and Kendal (2002) used a new approach with the objectives of minimising
the robot assembly time, feeder movements and PCB table movements. Their approach
was a revised dynamic pick and place point (DPP) approach which they called
Chebychev DPP (CDPP). The difference between DDP and CDPP was that some
unnecessary movements were eliminated in the latter by taking into consideration the
next PCB coordinate when determining the current pick up and placement locations. A
3.29% improvement in the cycle time was achieved compared to the approach of Wang
et al (1998). Ho and Ji (2003) presented a hybrid Genetic Algorithm to optimise the
sequence of component placement and feeder assignment simultaneously for a chip
shooter machine with the objective to minimise the assémbly time. The search heuristics
used in the GA included nearest-neighbour, 2-opt and an iterated swap. procedure. The
hybrid GA, the authors claimed, performed better in terms of assembly time when
compared to the results obtained by other researchers. Later on, Ho and Ji (2005)
considered the case where the components of the same type were assigned to more than
one feeder. This added the retrieval problem to the feeder assignment and the placement
sequence. The three problems were solved simultaneously using a hybrid Genetic
Algorithm for a sequential pick-and-place machine. The performance of the algorithm
was compared to Leu et a/ (1993) and to Ong and Khoo (1999) where the improvements
were 7.64% and 0.23% respectively. Finally, Yilmaz and Gunther (2005) presented a
novel approach for group setup strategies for thé case of a single assembly machine with
the aim of minimising the makespan. They proposed a methodology based on applying
machine-specific algorithms for optimising feeder setups for each PCB family and
providing placément sequences for each PCB type.

As can be seen from the above-mentioned review, there has been a great deal of

research on the three PCB production problems under discussion (i.e. board type

14

sequence, feeder assignment and placement sequence). The review shows how the
previous research has considered these three problems either individually or in pairs.
However, an attempt to solve the three problems simultaneously has not yet been
considered. That is what Chapter 4 of this thesis is focusing on. The three problems are
combined and solved using two search techniques: Taboo Search and Genetic
Algorithms. These two techniques, as mentioned in subsection 2.2.1, have not yet been

considered for solving the board type sequencing problem.

2.3. Activity-Based Costing
Ever since Johnson and Kaplan (1987) wrote their book “Relevance lost: The Rise

and Fall of Management Accounting” and the term ABC came to existence, a great deal
of research has been attributed to this term. Since it is not viable to mention every
published research work about ABC, the focus in this section is on the application of
ABC in the manufacturing domain in general and on PCB manufacturing in particular.
ABC has been developed as a cost estimating technique that can be used in different
types of organisations such as manufacturing, service, retail, etc. Furthermore, the use
of ABC has not been limited to product costing but to a variety of applications; even the
term Activity-based Cost Management (ABCM) has become widespread in the
academic domain (Bellis-Jones & Develin 1999). The following are some of the
applications of ABC adopted from Innes and Mitchell (1995).

Product pricing: |

In order to price a product or service their actual cost must be known. ABC
provides the means that can be used to calculate the actual cost of a cost object. Hence,
the “cost plus” approach can be used flexibly and successfully to provide a competitive
price.

Decision making:

The make-or-buy decision is very important to the success of any organisation. By
knowing the true cost of a product or service it can be assured that the right make-or-
buy decision has been taken.

Cost reduction: o

ABC helps identify the value added and non-value added activities. This allows

the management to pay more attention to the non-value added activities and try to

eliminate them or at least to reduce their consumption for resources. As for the value

15

added activities, by knowing the way these activities consume resources, the possibility
for cost reduction becomes available.
Budgeting:

ABC provides the required details for good budgeting practice. The statistics of
cost drivers provided by ABC allow for reliable assessment for future needs of
resources.

Product design:
Considerable amount of research has been devoted to the relationship between

ABC and product design. For example, Ong (1995) developed an ABC estimating
system to help designers estimate the manufacturing cost of a PCB assembly ét the early
stage of design. Ong stated that his system would enable designers to identify the
activities that incur high cost and, hence, they would be able to make efforts to reduce
their costs. Tornbérg et al (2002) investigated the possibilities of ABC and the
modelling of design, purchasing and manufacturing processes in providing the designers
with useful cost information. They concluded that ABC and process modelling Would
provide a good starting point in heading towards cost-conscious design. Ben-Arieh and
Qian (2003) presented a methodology for using ABC to evaluate the cost of the design
and development activity for machined parts. The methodology was tested using sample
rotational parts developed in a controlled environment. The methodology proved to be
more accurate than the traditional cost estimation provided by the shop accountant. In
addition, it would provide the ability to expand the most costly activities and investigate
the causes of the cost. Giachetti and Arango (2003) developed an ABC model for PCB
cost estimation based on the design parameters. A design example. was used to verify .
the model, which revealed important relationship between cost and design parameters.
The model enabled the designers to assess the impact of their decisions on the cost and
this helped them generate lower cost alternatives.

It is widely known that 80% (Duverlie & Castelain 1999) or up to 85%, as
Whitney (1988) claimed, of product cost is determined at the design stage. This shows
how important the relationship between the design decisions and the final cost of the
product. Since ABC provides cost drivers rates, this help designers design less costly
products.

Cost modelling:
According to Cooper (1990), ABC helps structure costs into different levels which

gives a realistic representation of them (more on that in Chapter 5):

16

— Unit-level costs: costs are affected by each additional unit

— Batch-level costs: costs are affected by each additional batch

— Product-level costs: costs are affected by the existence of a product

— Facility-level costs: costs are not related to products but to the facility as a whole.

Ong and Lim (1993) developed cost models for PCB assembly taking into

consideration the activities that incurred cost due to complexity, volume and batch size
of the produced PCB. The activities were allocated into three levels: unit-level, batch-
level and product-level, where the cost of assembling one PCB was the total of all costs
in these three levels. The application of the models de‘veloped was illustrated by
presenting an example. Later on, Ong (1995) presented an ABC estimating cost system
to help estimating the cost or PCB production at the design stage. He used activity
charts, worksheets and a build-up table to calculate the activity costs. By presenting an
example, Ong illustratedA how to apply his estimation system. A case study of
successfully implementing ABC against all odds (the top management were not
convinced that the benefits would outweigh the cost of impleﬁlénting ABC) was
presented by Dedera (1996). In spite of the top management’s initial objection and
against the experts’ advice regarding the timing and the scope of the project, an
integrated ABC system was successfully implemented within nine months. Dedera
attributed the success of the project to two factors: people, where the best available were
selected, and communication, where different departments in the company were all
consulted and kept up to date regarding the implementation of the ABC system. The
successful implementation was reflected in many areas: accurate cost data to support the
decision-making process, better communication between manufacturing and
administrative departments, better financial outcome, etc. Sohal and Chung (1998)
presented two case studies on the implementation of ABC. They discussed the
introduction of ABC and the benefits and pfoblems experienced during implementation
process and identified the factors critical to successful iniplementation of ABC (e.g.
educating and training of people, commitment, acquiring external eipérience, keeping it
simple, adequate allocation of resources and continuous feed back to top management).
These factors were extensively explored by Marri and Grieve (1999) who introduced a
framework for the justification and implementation of ABC in the small- to medium-

sized enterprises.

17

The issue of combining ABC with simulation models was considered by Spedding
and Sun (1999). They argued that using a simulation model made it easier to implement
ABC on their case study. The importance of their research lies in the fact that using
simulation and ABC together provides a more powerful tool than either of them. This
can be used for providing more useful management information. Tornberg et al (2002)
produced a study on the use of ABC and process modelling in providing cost
information for designers. The result of their study suggested that using ABC alongside
process modelling was a step forward towards creating better cost-conscioﬁs design.
Gupta and Galloway (2003) showed how an ABC management system could be used as
an information system to support the decision-making processes of different operations
(product planning and design, inventory management, capacity management, etc.). They
demonstrated how their system enabled the operations manager to increase the quality
of the decision-making process. Ozbayrak et al (2004) applied ABC alongside a
mathematical and simulation model on a manufacttiring system that used either MRP or
JIT (push or pull sysfem) in order to estimate the product costs. Their work showed how
valuable ABC was as a tool for providing not only more accurate cost information
compared to the traditional cost allocation system but also important management
information. They concluded that the manufacturing planning and control strategies
greatly affected the manufacturing costs and that the pull system provided lower
manufacturing costs. Homburg (2004) argued that since ABC allocated overhead costs
proportionally it was a heuristic, therefore he used simulations and mixed-integer
programming to analyse the extent of the sub-optimality incurred by ABC-heuristics.
Homburg argued that previous research used a simple set of cost drivers, which
restricted the potential of ABC as a heuﬁstic. Therefore, he analysed the effects of
establishing a cost driver corresponding to a higher cost level (e.g. portfolio-based cost
driver). This driver was used to allocate the costs to inflexible overhead resources
proportionally, which improved the quality of ABC-heuristics significantly. Although
Homburg had reservations about generalising the results since the simulations he used
were based on simplified scenarios, he argued that the results provided some insight in
to the quality of using ABC for decision making.

The success rate of implementing ABC has been acceptable in general, however,
the fact that ABC assigns costs to products on the basis of cost drivers, which may or
may not be proportional to the volume of the outﬁut, has attracted some criticism.

Noreen and Soderstrom (1994) presented a case study in which they proved that the

18

Tl e S SRt e e § ¥ S

assumption that the overhead costs are proportional to activities is not always correct.
Therefore, there are conditions (e.g. all costs must be strictly proportional to their cost
drivers) under which ABC can provide relevant costs (Noreen 1991; Christensen &
Demski 1995). When the conditions are not met alternative solutions can be used. For
~ example, Homburg (2005) suggested an alternative to using the cost driver rates by
calculating relative profits by using “concepts of multi-criteria decision—making”..
Another example is the research work by Kim and Han (2003) in which they proposed
the use of hybrid artificial intelligence techniques. They used GA to identify optimal or
near-optimal cost drivers and used artificial neural networks to allocate indirect costs
with nonlinear behaviour to products. The results of their work revealed that their
proposed model performed better than the conventional ABC model. Furthermore, Ben-
Arieh and Qian (2003) argued that the cost estimation of the desig'n'activity has been
rather difficult. This claim is disputable since an ABC model that focused on the design
stage of PCB fabrication was developed by Giachetti and Arango (2003). In this cost
model the cost centres and cost drivers were all based on design parameters so that
model could be used as an evaluation tool by PCB designers when making design
parameter trade off decisions.

In general and as this review shows, there has been a positive attitude towards
ABC amongst researchers in spite of the existence of some scepticism. Innes and
Mitchell (1995) argued that there was a lack of ABC implementation in the industry.
This might be true at the time they conducted their survey but may not be correct
nowadays. The outcome that could be drawn from this review is that ABC can be
successfully applied with the condition that the costs must be proportional to their cost
drivers. Therefore, ABC will be implemented in this research and the pros and cons of

its implementation in PCB manufacturing industry will be highlighted.

2.4. Lean Accounting
Lean Accounting can be defined as “the general term used for the change required

to a company’s accounting, control measurement, and management processes to support
lean manufacturing and lean thinking” (Maskell 2004). In order for lean manufacturing
to succeed it has to be accompanied with a supporﬁng LA system. Lean manufacturing
has been developed and applied for a few decades now; however, LA is a more recent
subject. Ahlstrom and Karlsson (1996) argued that the need for a change in the

accounting system was realized during the 1980s; however, there were no clear-cut

19

suggestions at that time. They explored the role of management accounting in the
changes occurring to the production system by introducing lean production. They
concluded that in order for the management accounting system to create an “impetus for
change” towards lean it had to shift the focus from a machine/opefator level to the
whole production flow and from the operation level to the whole production system.
This “impetus of change” could not be created until “traditional performance measures
have reached a certain threshold” (Ahlstrém & Karlsson 1996).

A major- step forward occurred with the introduction of the principles of lean
thinking by Womack and Jones (1996). These principles (value, value stream, flow, pull
and perfection) have been the drivers for introducing new methods for management
accounting. A series of articles were then published presenting more details about LA.
For example, Baggaley (2003a) explained how standard costing was not only unsuitable
for lean manufacturing but also harmful to lean principles. Therefore, standard costing
measurements of labour efficiency, machine utilization, departmental budget focus, etc.
had to be replaced with new lean measurements such as cycle time, first time through,
value stream focus, etc. Again, Baggaley (2003b) emphasized the importance of
organizing and costing by value stream arguing that some ‘péople within the
organization might not fit into a particular value stream (e.g. plant manager, IT, human
resources, etc.). Kroll (2004) agreed that standard cost accounting was not suitable for
lean operations and using alternative accounting concepts was necessary to solve some
problems. However, she aréued that there was maybe a problem with accurately pricing
products when considering the value stream rather than the individual product. This
argument is true to some extent since ‘value stream costing’ calculates the average cost
of a family of products produced by a value stream not the cost of a particular product.

A Finally, Maskell and Baggaley (2004) presented what they called a ‘;proven path”
for lean accounting in their book “Practical lean accounting” supported by case studies
from the manufacturing industry. They explained in detail how lean manufacturing
alongside LA could transform the business. They explained step by step the path to a
lean enterprise focusing on the management accounting part.

As LA is a relatively recent subject, it has not been given the required amount of
research that makes it widely spread. Considering LA in this research is another step
towards a better understanding of this accounting system and to give the reader a better
idea of how LA could be implemented in practice. As mentioned earlier, a PCB

manufacturing facility is the example to which the three aspects of this research

20

(optimisation of production processes, cost estimation and accounting) will be applied.
This potentially helps the author make a comparison between ABC and LA if it is

deemed necessary.

2.5. Summary _
A review of past research on PCB, ABC and LA has been considered in this

chapter. The review shows how the PCB production problems consideréd in this
research have been researched in detail and how the past researchers have tried solving
them individually or in pairs. Too many approaches and-techniques have been tried each
of which was claimed to perform better than its predecessors. This has limited the
number of choices still available for research in this area; however, there is still room
for manoeuvre. An attempt to solve these production problems simultaneously has not
yet been considered before. In addition and as mentioned in subsection 2.2.1,
metaheuristics have not yet been considered for solving the board type sequencing
problem. In order to cover this area, the PCB production problems considered in this
research will be solved simultaneously using two metaheuristics: Taboo Search and
Genetic Algorithms.

The main outcome of this review is that the implementation of ABC may lead to
better results when compared to the traditional costing system. However, since the
results of implementing ABC would vary depending on whether or not the costs are
proportional to the cost drivers, this means they would depend on the type of industry
ABCis épplied to. Taking this into account and considering the fact that there is lack of
ABC implementation in the PCB industry, ABC will be considered in this research to
cover these two issues.

As for LA, the review has shown that there is a consensus between the researchers
considered in the review that the standard accounting system is no longer suitable for
companies implementing lean manufacturing; however, the debate about an alternative
is still ongoing. A good alternative would be an accounting system that is based on the
same principles as lean manufacturing. Therefore, LA will be studied in this researéh to
enrich the debate about the suitability of its implementation in manufacturing in general

and in PCB industry in particular.

21

CHAPTER THREE

3. RESEARCH METHODOLOGY

3.1. Introduction
The research methodology adopted in this research is presented in this chapter in

order to make the research easier to comprehend. The methodology is explained and
justified and, then, its implementation on the three aspects considered in this research
(optimisation of production processes, cost estimation and accounting) is explained in
detail. In addition, some essential background information with some illustrating
examples is discussed. This is mainly performed for the Taboo Search and Genetic

Algorithms search techniques and for the production process of PCBs.

3.2. The methodology

The word “methodology” is used by different researcheré io have different
meanings. Lehaney & Vinten (1994) outline the different uses of the word
“methodology” as follows:

“the ways in which hypotheses become theories — scientific methodology;

— the ways in which techniques are chosen to address a particular problem;

— the ways in which problems are chosen, which addresses the question of
sponsorship; |

— methods or techniques;

— the modelling process, which include hard and soft systems approaches, and the
ways in which the relevant variables are chosen for a model, and how reality is
concomitantly simplified;

— the chronological planning of events — the research programme.”

This means, there are many types of methodologies (e.g. surveys, experimental,

questionnaires, case studies, mathematical, comparative, etc.) a researcher can use.

Which methodology to choose depends on the nature of the research undertaken and

what outcome is expected to be achieved. It is possible to use a combination of more

than one methodology if the nature of research undertaken necessitates that.

The research undertaken here deals with three different aspects, therefore, the use

of more than one methodology is required. Since in the first aspect considered in this

22

research (the optimisation of production processes), some of the prodﬁction problems
associated with PCB manufacturing will be solved, the appropriate methodology to use
is the mathematical programming. Mathematical programming is used to formulate the
manufacturing problems considered into mathematical equations and since these
problems could be combinatorial optimisation problems, they can be solved using
‘metaheuristics. Once the problems have been solved, numerical example has to be used
to test the solutions provided by the metaheuristics; therefore, the solutions provided are
applied to a case study. This means, the methodology that will be followed, as far as the
optimisation of production processes is concerned, is a combination of mathematical
programming to formulate the production problems, metaheuristics to solve them and a
case study to test the solutions. It has to be noted that the mathematical part of this
methodology will be of greater importance and will play a bigger role than the case
study part.

The same discussion regarding the optimisation of production processes can be
applied to the other two-aspects considered in this research. The cost estimation and
accounting aspects are of different nature compared to the optimisation of production
processes; still, a similar methodology can be used. Although there are no problems to
solve regarding the cost estimation and the accounting aspects, the use of mathematical
programming is still required to solve the equations that will be used in both aspects.
ABC and LA will be implemented in this research as examples' of the cost estimation
and accounting aspects respectively and both use mathematical equations in their
implementation process. To test the performance of both ABC and LA, the
implementation procedures are applied to a case study. This means, for the cost
estimation and accounting aspects considered in this research, the methodology that will
be followed is a combination of the mathematical methodology and the case study
methodology. However, in contrast to the methodology mentioned above, the case study
part of this methodology will play a greater role compared to the mathematical part.

The case study methodology is a non-experimental method and it involves
collecting detailed data about the case under consideration. The data are mostly
descriptive and this provides the researchers with the ability to fully understand the case
but not necessarily explain it. Therefore, the conclusions drawn may not have a
satisfactory support and they may or may not be generalised since what applies to the
 case study considered does not necessarily apply to other cases (Anonymous 1989). In

spite of this limitation, choosing the case study as part of the methodology considered in

23

this research, especially for the cost estimation and accounting aspects, can be justified
due to the fact that case studies are used when a detailed investigation is required
(Feagin et al 1991 cited in Tellis 1997), which is the case in this research. The nature of
the subjects considered in this research needs in-depth investigation in order to
understand the relationship between them, especially the problems considered in the
production process optimisation. In addition, the generalisation issue has been refuted
by researchers such as Yin (1994) and Stake (1995).

There are many applications for the case study, some of which has been identified
by Yin (1994): |
1. Explaining complex causal links in real-life investigation.
2. Describing the real-life context in which the intervention has occurred.
3. Describing the intervention itself. o
4. Exploring those situations in which the intervention being evaluated has no clear set

of outcomes.

In this research the application of the case study methodology belongs to the 3™ and 4™
cases since the optimisation of production 'processes, cost estimation and accounting
aspects of this research and how they will be applied to the case study will be explained
in this research. In addition, some of the subjects considered here (e.g. TS, GA, ABC
and LA) are still being developed and more modifications are still being applied to
them. The author believes that implementing a case study to these subjects will add to

the base of knowledge that already exists. ‘

3.3. Implementation of the 'methodology on PCB production problems
In order to be able to implemerit the methodology chosen on the PCB production
problems they have to be explained first, which is already presented alongside the
literature review in Cﬁapter 2. The mathematical formulation for these'problems will
then be performed by deriving the equatibns required to calculate the total processing
time. Since the mathematical equations for the production problems cannot be solved
mathemaﬁcally because this will take a long CPU time, an algorithm based on two
search techniques will be developed to solve the equations. The two search techniques
used in the algorithm are TS and GA metaheuristics. The reason of choosing these two
techniques is that TS has been used successfully to solve combinatorial problems in
general but not widely used to solve PCB related problems. In fact, just two cases, Su et

al (1998) and Wan & Ji (2001), have used TS for PCB related problems. In addition, TS

24

has never been used to simultaneously solve the three PCB related problems considered
| in this research, which give the researcher the opportunity to test how TS performs in
this case. As for GA, it has been widely used in the literature to solve PCB related
problems (e.g. Dikos et al (1997), Khoo & Ng (1998), Khoo & Orig (1998), Deo et al
(2002), Jeevan et al (2002), Ho & Ji (2005), etc.) and it is used in this research for
comparison reasons only. Since metaheuristics do not guarantee to give the optimum
solution, therefore, the outcome of the proposed algorithmé could provide optimum or
near optimum solution for the three problems (board type sequencing, feeder
assignment and component placement sequence).

Having solved the production problems using the proposed metaheuristics-based
algorithm, the implementation of the other part of the methodology (i.e. the case study)
can be initiated now. The first step in the case study methodology is the data collections.
It would have been better to adopt a clinical methodology by collecting the data through
direct contact with the company since it would have given the researcher a chance to
collect more data than it is usually available from other sources (Schein 1987).
However, this was not possible and hypothetical data will be used instead. The proposed
algorithm will then be applied to the PCB case study using the hypothetical data, and
the results will be analysed and comparisons will be made when different parameters
are used. Finally, the conclusions, recommendations and implications will be developed

based on the evidences found.

3.3.1. Taboo Search
In order to be able to explain the TS algorithm proposed, some background

information about this search technique should be presented first. Taboo Search, which
is a search technique first proposed by Glover (1989; 1990), is a metaheuristic used
mainly to solve combinatorial problems. What differentiates TS from other search
methods is its unique memory structure that guides the search to avoid entrapments in
local optima. In its basic version, TS procedure maintains a record or a taboo list of the
characteristics of the most recently found solutions. It starts with an initial feasible
solution generated randomly (or by using other techniques) and, then, the
neighbourhood of the initial solution is then determined. The neighbourhood of a
solution is the set of solutions that can be generated from this solution using what is
called a move as presented in Figure 3.1, which shows a graphical representation of the

neighbourhood solutions and moves. The move that leads to a better (or the best)

25

solution in the neighbourhood is performed and is then added to the taboo list. The
neighbourhood of the new solution is then generated and a new move is performed and
added to the taboo list and so on. A search move will not be performed as long as it is in
the taboo list unless it leads to a specific ‘good’ solution (aspiration criterion). An
example for a good solution may be a solution that is better than the best solution found

so far. This process is repeated until the terminating condition is satisfied.

@ Neighbour solutions
@ Randomised solutions
@ Local best solutions

@ Global best solutions
— —» Randomisation
— Move

Figure 3.1. A representation of the neighbourhood solutions

TS procedure is mainly used to prevent entrapment in local optima. However, a
short-term memory structure (faboo list) does not guarantee that the principles of local
intensification, in a promising region, and global diversification, into new regions, are
considered. The local intensification is not guaranteed because the short-term memory
‘may prevent choosing a potentially good solution because it is in the taboo list.
Preventing potentially good solutions to be chosen means that the search is not
intensified in a particular area (i.e. good solutions in this area are not considered). vThis
usually happens when the taboo list is long. As for the global diversification, it is not
guaranteed because although the short-term memory may prevent small loops, it does
not guarantee preventing bigger loops (when the taboo list is short) because the size of

taboo list is limited. To overcome this weakness, intermediate and long-term memory

26

structures have been introduced. The intermediate memory is used to maintain a record
of some good solutions. These solutions, when encountered later in the search, are
forced to be the next ones to be chosen so that the search is focused on good region
(intensification). In contrast, the long-term memory is used to maintain a record of
solutions that have not been encountered for a quite long time. Using such solutions
guides the search to regions with fewer frequent visits with the aim to scout the areas of
the solution scope where potentially hidden good quality solutions might be found
(diversification). ‘

The TS algorithm used in this research, which will be detailed in Chapter 4,
adopts three different methods to provide the initial solution. The first is a random
solution and the other two are problem-specific solutions and have better quality
compared to the random one. The rationale behind this is to start the search from a good
quality solution rather than a random one. This may reduce the search time and result in
a better final solution. The best solution, rather than a better solution than the current
one, amongst the neighbourhood solutions is chosen to be the next current solution. This
is performed to reduce the search time although this may or may not affect thé quality of
the final solution. The algorithm also uses the three types of memory mentioned in the
previous paragraph, short term, intermediate and long term, to ensure that the
intensification and diversification attributes of TS are met. In addition, different taboo
list sizes are used in the algorithm in order to check the effect on the quality of the final

solution.

3.3.2. Genetic Algorithms
GA, which was first proposed by John Holland during the 1960s, is a search

technique based on the emulating of the evolutionary principles of natural selection and
survival of the fittest. The procedures of GA start with a population of chromosomes
(parents) that generates another population of chromosomes (children) usving the process
of crossover and variation operators such as mutation and inversion. The fitness
Jfunction is used to evaluate the population and offspring chrorﬁosomes so that they can
be ranked accordingly. The fittest offspring chromosomes are chosen to become
members of the population chromosomes. The process is repeated until the terminating
criterion is satisfied. The crossover procesé ensures that some characters (genes) of the
parents move to the children. By choosing the best children to become parents again it

is ensured that good genes are passed to the next generations. The mutation/inversion

27

variation operators are used to introduce new, potentially good, genes to the process.

The fbllowihg example, derived from Khoo and Ng (1998), clarifies how crossover and

mutation work.

Let us have the two following parents:
Parent 1: abcdefghij
Parent2:dijahbgcef

To generate two children from these parents using crossover, the parents are cut

randomly into three parts as follows:

Parent1:abc |def |ghij
Parent 2: dij |ahb|gcef

The first child generated by the process of crossover should maintain one of the parts of

" Parent 1. Let’s assume it is the middle part, this means Child 1 should look like:
Child1: 2?2 ?def ?77?2?
One possibility for completing Child 1 is to start filling the empty spaces in by using

genes from Parent 2 as they appear from left to right excluding already used genes (d, e

and fin this case). Child 1 should then look like:
Child 1: z'jadefhbgg

Following the same procedures, Child 2 can be derived and it should look like:
Child 2: cdeahbf gij

One possible mutation could be to randomly choose two genes in the preserved
part of a child and remove the first gene from its position, then shift all the genes
between the two chosen genes (including the second chosen gene) one position to the
left, and finally put the first chosen gene in the empty position created by the shift (the
original position of the second chosen gene). By applying this procedure to Child 2 a
mutated Child 2 is created as follows:

The two randomly chosen genes are a and b, the mutated Child 2 should then look like:

Child2: cdehbafgij

Another example for mutation could be to exchange the two randomly chosen genes.

The mutated Child 2 in such case should look like this;

28

Child 2: cdebhafgij

In order to apply GA to a problem, the solutions must be coded into strings. These
strings represent the population in GA. The fitness function is a function that evaluates
the solutions of the problem so that the best can be determined. The termination
criterion is satisfied when a particular good solution has been found or until a specified
number of iterations have been performed. For example, GA is used to find the
optimum/near optimum solution to the component placement sequencing problem in
PCB manufacturing. The fitness function in this case will be the function that calculates
the time required to place the components on the board (or the distance travelled by the
machine head). The termination condition could be to stop the search when the number
of iterations reaches 200.

The GA algorithm used in this research is similar to what has been described in
this subsection. The initial population is created randomly and the children are created
using the crossover and mutation and/or inversion described in the example above. The
best solution is updated every generation, if applicable, and the algorithm stops when
‘the predefined number of generation is reached. The detailed description of the

algorithm will be presented in Chapter 4.

3.4. Implementation of the methodology on ABC and LA

Implementing the mathematical part of the methodology adopted in this research
on ABC involves the following steps:

— Determining the cost of indirect resources and their drivers:

Once the indirect resources and their drivers have been determined and the total
cost of each resource is calculated, the resource rate is calculated according to the
following equation:

Resource rate=Total cost (per year or per product life)/indirect resource driver spent
— Identifying the cost centres and assigning the resources to them:

After the cost centres and their resources have been identified and the total cost of
each cost centre is calculated using the resource rate calculated in the previous step, the
cost centre rate is calculated according to the following equation:

Cost centre rate =total cost of cost centre/ cost centre driver spent

— Identifying activities, calculating their costs and the rates of their cost drivers:

- 29

-The activities are identified in this step and the total cost of each activity is
identified using the cost centre rate calculated in the previous step, then, the activity
cost driver rate is calculated according to this equation: .

Activity cost driver rate = cost of activity | activity cost driver spent
— Calculating the costs of products:

The cost of each product can now be calculated, using the activity cost driver rate
calculated in the previous step, for each activity involved in the manufacturing of that
product.

Similar process can be applied to implement the mathematical part of the
methodology on LA. In this case, some of the steps involved are the following:

— Performance measurements,

— Calculating the financial benefits of applying lean manufacturing,

— Eliminating wasteful financial transactions, '

— Value stream costing,

— Features and characteristics costing,

— Target costing, etc.

Each of these steps involves a great deal of calculations using many mathematical
equations, which will be detailed in Chapter 5.

Having implemented the mathematical part of the methodology on ABC and LA,
the case study part of the methodology can now be implemented. The implementation
steps for both ABC and LA can be implemented again using the same PCB case study
details used for the optimisation of production processes. Understanding the -
manufacturing process of PCB is a perquisite to implement the case study part of the
methodology adopted; therefore, the production procedures and the manufacturing
process will be explained in the next two subsections. The detailed implementation of

the case study on ABC and LA will be detailed in Chapter 5.

3.4.1. Production procedures
In general, the assembly process of PCBs consists of the following steps:

— Once the order is accepted, it is input into a Master Production Scheduling (MPS),
which provides weekly product requirements over 6 to 12 months.

— Depending on the MPS results, the Material Requirements Planning (MRP) is
calculated. The volume and timing of each order (order release and due-date) are

determined as a result of the MRP.

30

— Components are prepared (grouped into kits, marked for future tracking, etc.).

— The components are inserted onto the board according to specific sequencing,
assignment to the available machines and assignment of corresponding feeders.

— The final step includes inspection, soldering the components and performing the
final board testing. '

Amongst the previous steps, insertion is considered the most costly and time-
consuming step. Hence, the efficiency of the assembly line is largely determined by the
efficiency of this step. There are two basic factors that affect the insertion step: set-up
time and placement time. Set-up time is the time needed to prepare the machine to be
ready for operation, which basically involves assigning the component typeé to feeders
and programming the SMT machine. The set-up time is affected by the board type
sequence, which is the subject of one of the PCB production problems considered in this
research, as explained in subsection 2.2.1. The placement time is the time needed by the
machine to place the components on the board. There are two optimisation problems
that affect the placement time. These two problems are already explained in subsections
2.2.2 and 2.2.3 and they are the assignment of component types to feeders and the
sequence of placing the components on the board by the machine head. As mentioned
earlier, these three problems represent the optimisation of production processes part of

the problem considered in this research.

3.4.2. General PCB manufacturing process
The general manufacturing process of PCB is outlined in Figure 3.2. In the first

step the components and boards are prepared for assembly by cleaning and kitting them.
In the second step, the assembly is performed using pick-and-place machine for
standard components and robotic machine or manual assembly for odd-shaped
components. One of two different soldering methods is then performed in the third step,
either wave soldering (laminar or turbulent) of reflow soldering, which can be applied
using one of these methods: thérmal conduction, infra red, vapour, soldering iron, laser
and hot gas. In the forth step another assembly process is performed using either robotic
machine or manual assembly for heat-sensitive components. The board is then cleaned
and tested using in-circuit testing. Any required rework or repair is performed in the
final step. .

There are two types of components, surface-mount and through-hole. In general, a

PCB may contain both types. In this case the soldering and assembling processes can be

31

achieved through one of two main technologies: Adhesive attach-wave soldering and

reflow soldering, which are illustrated in Figure 3.3 “a” and “b” (Coombs 1988).

Prepare components and boards: Cleaning, Kitting, etc.

v

Main assembling: Pick and place (Standard components (SMC)),
Robotic/Manual (Odd-shaped components)

y

Solderingi Wave (Laminar, turbulent), Reflow (Thermal conduction,
IR, vapour, soldering iron, laser and hot gas)

v

Secondary assembling: Robotic/Manual (Heat sensitive components)

y

Cleaning and testing: In-circuit testing
¢ .

Rework: Thermal conduction, Convection

Figure 3.2. General PCB manufacturing process

Insert leaded components ' Apply solder paste
Y ‘ ' v
Invert the board and apply the adhesive Place surface-mount components.

v - v

Place surface-mount components Dry paste
v v
Cure adhesive : Insert leaded components
v v
Wave solder _ Wave solder
(a))

Figure 3.3. Flowcharts of PCB production process; a: adhesive attach-wave, b: reflow

32

— Adhesive attach-wave: According to this techniqﬁe the leaded components (through-
hole) are inserted on top of the board, then the board is inverted and the adhesive is
applied (using syringe dispensing, pin transfer or screen printing). The surface-
mount components (SMCs) are then placed and the adhesive is cured (using heat,
UV or IR). The board is then wave-soldered.

— Reflow: The solder paste is applied onto the board and used to hold the SMCs. The
paste is then dried, to remove the solvent, and reflowed (using thermal conduction,
IR or vapour phase). In the next step, the board is cleaned and the through-hole

components are inserted. In the final step, the board is wave-soldered.

3.5. Summary
The research methodology adopted in this research has been discussed in this

chapter. It has been explained that since the three aspects considered in this research
relies on mathematical calculations and equations to solve some of the production
problems and implement ABC and LA, the use of the mathematical programming is
more appropriate. The need to use numerical example to test the solutions provided by
the metaheuristics and to test the performance of ABC and LA a case study has to be
used. As a result, a two-part methodology based on the mathematical and case study
methodologies has been chosen to be adopted in this research. It has been discussed
how the mathematical part of the rriethodology has a greater relevance when the
optimisation of the production processes is considered and how the» case study part is
more relevant when the cost estimation and the accounting aspects are considered.

The case study methodology has been outlined and the justification for choosing it
has been stated. Some required background information about TS, GA and PCB
production process has also been presented in this chapter due to the fact that this
background information is required to understand the implementation of the
methodology on the subjects under consideration. The implementation of the
methodology chosen in this research on the three aspects considered has been outlined
in this chapter and the detailed implementation will be presented in Chapter 4 and

Chapter 5.

33

CHAPTER FOUR

4. PROPOSED FRAMEWORK AND PCB ALGORITHMS

4.1. Introduction
In Chapter 2, some detailed literature review and background information about

the three PCB production problems considered in this research are presented. This
chapter explains how these three problems are mathematically formulated and how the
| proposed algorithm is used to solve them. In addition, the two propqsed metaheuristic
algorithms (TS and GA) are developed and explained in detail. As mentioned in
Chapter 3, the proposed algorithm is tested using a case study. The results from the case

study are discussed and analysed, and some recommendations are made.

4.2. Mathematical formulation

In general, the processing time required to assemble the printed circuit boards is
the sum of two main parts: set-up time and placement time. Set-up time is machine
related and it depends on many factors. The only factor that is of interest in this research
is the number of feeders that are going to be replenished. Assuming that the set-up time
is proportional to the number of feeders replenished (Sadiq et al 1993), the set-up time

equation can be written as:
ST =f(f,)=af,+b : - (4.1)

where
ST is the set-up time,
f is the number of replenished feeders,
a is a constant and it is experimentally calculated, and
b is the time required to program the machine for a particular board type k and is

considered constant for all board types in this research.

The placement time is more complicated and in addition to being dependent on the
machine type, it is also dependent on the feeder assignment and the placement
Sequence. Therefore, to clarify this issue, an example of component placement is
presented here. Table 4.1 contains the definition of some of the variables used for the

mathematical formulation.

34

Table 4.1. Definition of variables for the mathematical formulation

Symbol Value Description
k 1,2,...,K | Number of board types
by 1,2, ..., By | Number of boards of type k&
f 1,2,...,F | Number of feeders
i 1,2,...,1 Number of component types
Di 1,2, ..., P; | Number of components of type i
Ck 1,2, ..., Cy | Number of components on board k

There are four types of components: 1, 2, 3 and 4 placed in 7 feeders. Assuming
that the feeder assignment and the placement sequence are given as presented in Figure |
4.1:

Feeder assignment: 0,2,1,0,4,0,3 (0 represents an empty feeder)

Placement sequence: 2,4,3,1

>

Home location

Figure 4.1. Layout of the board and feeders

The placement time (or pick and place time) is the sum of the following times, which
can be expressed according to their successive occurrences as:
— Travel Time of the machine head from the home location to the feeder that contain

the first component to be placed (feeder 2 in the example),

— Pick Time,

— Travel Time of the machine head from the first feeder to the location on which the
first component is to be placed (location 2 in the example),

— Insertion Time,

— Travel Time from the first location to the feeder which contains the second
component to be placed (feeder 5 in the example),

— Pick Time,

— Travel Time from the feeder which contains the last component to be placed (feeder
3 in the example) to the location on which the last componenf is to be placed
(location 1 in the example),

— Insertion Time, and

— Travel Time from the last location to the home location of the machine head.

It should be noted that this description is only applicable to the case where the machine

head has sequential movements (both the board and the feeder are stationary). When

other cases are considered, new considerations have to be taken into account. The reader
can refer to Egbelu et al (1996) for details about these cases as they are not considered
in this research.

The objective function is to minimise the placement time. This means, the
optimum placement sequence 7, amongst a set of possible permutations II, has to be

found for a particular feeder assignment. The number of permutatioﬁs in the set IT is:
I=C!
where

Ci is the number of components of board type £.

This optimum placement sequence provides the shortest placement time. In the example

provided, = =2,4,3,1 is one possible placement sequence of 24 (4!=24) sequénces
comprising the set IT. The placement time can now be represented by an equation as

follows:

Pick and Place Time = Travel Time(L,,F,)+ Pick Time+ Travel Time(F;,L)+
Insertion Time+ _Trdvel Time(L,, F,)+ Pick Time+Travel Time(F,,L,)+ Insertion
Time+...+Travel Time(F,,L_.)+ Insertion Time+ Travel T ime(Zc, L)

36

where
Ly, is home location of the machine head,
L; is insertion location 1 (location of component 2 in the example),
L, is insertion location 2 (location of component 4 in the example),
Lc is insertion location C (location of component 1 in the example),
F is feeder contains the 1* component to be placed (feeder No 2 in the example),
F is feeder contains the 2™ component to be placed (feeder No 5 in the example),
and |
F is feeder contains the C™ component (last components) to be placed (feeder No

3 in the example).

Let:
PPT bePick and Place Time,
T be Travel Time,
PT be Pick Time, and
IT be Insertion Time,

then, the previous equation can be rewritten as:

PPT=TIy 5, +PT+TTy, +IT+TT, . +PT+TTy +IT..
+ TT(FC'LC) +IT + TT(Lc»Lk)

or:
C-1 Cc-1
PPT =TT, . + Z_:OTT(FM oyt Z‘; TT, . +TT, .\ +C(PT+IT) 4.2)

The pick and place time required for any sequential pair of components ¢, c+1 from
the insertion of ¢ to the insertion of c¢+1 can then be calculated as:

PP, .y =TT, +PT+T]Z +IT, for ¢=0,1,2,..,C-1 4.3)

(C’C'H) L 'l"ul) Fen ’Lc-tl)

where

L, =Lh

Now, the objective function can be written as: '
Cc-1

Minimise) PPT, .., - (4.4)

c=0

37

where

PPT, is subject to equation (4.3)
#(c,c+1)
subject to
nell
PT>0
IT>0
TTy £y >0 forc=0,12,...,C-1
TIEF,,,L,,)>O forc=0,1,2,...,C-1
(FL) = CONSLANE Vrwell forc=0,1,2,...,C-1

Pick Time (PT) and Insertion Time (/7) depend on the type of the pick-and-place
machine and it is assumed that they are not affected by any other constraints of interest

in this research (e.g. the environment around the machine). However, travel times from

feeders to locations (T IE

Folen)), which are represented by plain arrows (—>) in Figure

4.1, depend on the feeder assignment but not on the placement sequence 7, whereas

‘travel times from locations to feeders (I7;, . ,), which are represented by dashed

arrows (-->) in Figure 4.1, are affected by both feeder assignment and the placement
sequence 7. Taking this into consideration and since equation (4.4) is for a particular
feeder assignment, the previous formulation has to be amended in order to take into
account the effects of different feeder assignment. To solve the objective function with
both the placement sequence and the feeder assignment taken into consideration, an
optimum feeder aésignment o (in addition to the optimum placement sequence m),
amongst a set of possible assignments X has to be found so that the placement time is

minimised. The number of possible assignments in the set X is:
X=F!E!

where
F is the total number of feeders, and

E is the number of empty feeders.

In the example above the feeder assignment o =0,2,1,0,4,0,3 is one possible feeder

assignment of an 840 (7!/3!=2840) assignments comprising the set Z.

38

Equation (4.4) can now be rewritten as:

|]Minimisecz_i PPT (o) . (4.5)
=0
where
PPT (o) 1S subject to equation (4.3)
subject to
n eIl
ceX
PT>0
IT>0 ,
TIELC@.) >0 forc=0,12,...,C-1
TTg r)>0 ‘ forc=0,1,2,...,C-1
T IZ) = CONStant Vrz ell and o =constant forc= 'O, 1,2,..,C-1

All the above discussion is for one particular board type k. However, in this
research a mixed-model case is considered and there are more than one board type. As
mentioned in subsection 2.2.1, different sequences of board types require different set-
up times as represented in equation (4.1). Therefore, to have a minimised total
processing time (Z7PT) and in addition to what is considered in equation (4.5), an
optimum board type sequence ¢ (in addition to the optimum placement sequence n and
the optimal feeder assignment ¢) amongst a set of a possible sequences ¢ has to be
found so that the total processing time is minimised. The number of possible sequences

in the set @ is:
d=K!

where

K is the number of board types.

Taking this into consideration, the final objectivé function can be written as:

K
Minimise) TPT, (4.6)
k=1 *()

39

where
TPT = PPT + 8T,
PPT is the Pick and Place Time and is subject to equation (4.5), and
ST is the Set-up Time and is subject to equation (4.1).
subject to
ped
PPT>0
ST>0

PPT = constant ¥ ¢ € ®,0 = constant and n = constant

Travel times can be calculated by dividing the distances between the feeders and
the locations by the speed of the machine head. The distances can be calculated using -

one of the following equations:

D, =|X,—X,|+|Y,-Y,| (4.7.2)

D, =max(| X, - X,|,|Y, - %) (4.7b)

Dy=\|X, - X, +|Y, L[(4.7.c)
where

Dy the distance between location / and feeder f;
X; X; the X co-ordinates of feeder f'and location / respectively, and

Y; Y1 the Y co-ordinates of feeder fand location / respectively.

Equation (4.7.a) is used when the movement of the machine head (gripper) is the
sum of two different movements performed successively: the movement of the arm of
the machine head on one hand and the movement of the gripper of the machine head on
the other hand (Manhattan metric). This is represented in Figure 4.2 by the movement
of the machine head from point A to point B first and then from point B to point C. This
situation happens when the machine head does not move diagonally. Equation (4.7.b) is
used when both movements are performed concurrently (Chebychev metric). This is
represented in Figure 4.2 by the movement of the machine head from point B to 'point C
and at the same time the gripper moves from point A to point B. This situation happens

when the machine head and the gripper move independently. Equation (4.7.c) is used

40

when the machine head (gripper) moves in a direct straight line in one movement

(Euclidean metric).

<

> Y

Figure 4.2. Calculating the travel times

4.3. The proposed framework: _

The proposed framework for this research is presented in Figure 4.3. As
mentioned in subsection 3.4.1, the multi-model manufacturing assembly process of
PCBs starts with the order acceptance. Then, it is input into a' Master Production
Scheduling, which provides the weekly product requirements over 6 to 12 months. The
next step includes calculating the Material Requirements Planning (MRP), where the
‘volume and timing of the order (order release and due-date) are determined as a result
of the MRP. The process planning system provides the required processes plans and,
then, the balancing and sequencing are achieved using information from the
optiniisation module. The optimisation module is responsible for providing the optimum
board type sequence, feeder assignment and component sequencing. Finally, ABC
- and/or LA are used to evaluate and analyse the cost related issues. The expected results
from this step are operational and financial as shown in Figure 4.3. The first part of the
proposed framework (Order acceptance, Master Production Scheduling and Material
Requirements Planning) is not discussed in this research. The focus will be on the rest

of the framework.

41

.~ Customer

Order

demand -

Acceptance

Master Production
Scheduling

(weekly product requirements) |

i SN

Work Orders

o |
) release & |-
= due-date |

| (Part List)

module |

:

Balancing &
Sequencing

module

Optimisatidn
module

| Feeder assignment
and components
sequencing

| Evaluation of Objectives |-

~ Activity-Based Costing |
.. iandlor
 Lean Accounting

| Cost related inputs |
Equipment costs |
Operating costs
Material costs
Handling costs
etc.

Economic analysis

Unit pr duction cost. |
Project completion cost-

Figure 4.3. Proposed framework of the research

42

4.4. The proposed algorithm
The proposed algorithm that is used to solve the three problems under

consideration is illustrated in Figure 4.4 and outlined as follows:

Start

Step a: Generate an initial board type sequence randomly

v

Step b: Find the best board type sequence using
TS or GA:

1. Generate an initial feeder assignment for board type &:
randomly, using centroid rule or using proportion rule

v

2. Find the best component placement sequence for board
type k using TS or GA, (TSP)

v

3. Find the best feeder assignment for board type & using

> TS or GA, (QAP)
4. Find the best component placement sequence -
for board type k using TS or GA, (TSP)
Yes

5. Any improvement?

No
k=k+1 |€Yes @
No
A 4
Output time, best placement
sequence and best feeder assignment

v

Step c: Output time, best board type
sequence, best placement sequence
and best feeder assignment

End

Figure 4.4. Flowchart for the solution algorithm

43

Step a: start with a randomly-generated board type sequence.
Step b: use the Taboo Search or Genetic Algorithms to find the optimum or near

optimum board type sequence as follows:
1. Generate an initial feeder assignment for the first board type in the sequence either
randomly, using the centroid rule or using the proportion rule:

a. The random assignment assigns the component types to feeders by randomly
choosing a component type and assigns it to the first feeder and then another
component type is randomly chosen and assigned it to the second feeder and
so on. | |

b. As for the centroid rule method, it requires the centroid location of the
components that are of the same type to be calculated as shown in Figure
4.5. For example, in the figure, there are two component types. The first type
haé four locations and is represented by a circle (o) and the second has three
locations and is represented by a diamond (¢). The centroid locations for
type o and type ¢ are calculated. They are represented in the figure by a bold
circle (0) and a bold diamond () respectively. Now, sténing with the type of
the most frequency (type o in the example), the component types are

* assigned to the empty feeders nearest to the centroid locations of the
component types. In the example, type o is assigned to feeder number 3 first
and then type 0 is assigned to feeder number 8. In the case where the nearest
feeder is occupied, the next.nearest is chosen. In the case where there are two
empty feeders located at fhe same distance from the centroid location (one to
the left and the other to the right), which one to choose depends on the
centroid location of the next type. If the centroid location of the next type is
located to the left of the centroid location of the current type then the current
type is assigned to the right feeder and vice versa. By doing that it is ensured
that the component types are assigned to the feeders so that the total distance
between the components of the same type and the feeder that hold this type
is minimised. .

c. The proportion rule, as described by Egbelu et al (1996), is similar to the
centroid rule in calculating the centroid locations for the components of the

same types. However, the assignment of component types to the feeders is

44

different. Here, starting with the component type of highest frequency, the

distance D; is calculated as follows:

Y
A
Board
1 1
; |
| |
1 1
| !
| ; >x
; E , E Feeders
LIfol P I I PPl Tll
Figure 4.5. Representation of centroid rule
D,=B,xL/B

where
D; is the distance between the beginning of the feeders to the feeder to
which the component type i is assigned,
B,- is the X-co-ordinate of the centroid location of the component type
i
L is the total length of the feeders, and
B is the length of the board.

After D; is calculated, the component type i is assigned to the empty feeder
nearest to the end of D; as shown in Figure 4.6. In the example above, type o is
assigned to feeder numbler 6 first and then type 0 is assigned to feeder number 13.
As discussed regarding the centroid rule, in the case where the nearest feeder is
occupied, the next nearest feeder is chosen. In the case where there are two empty
feeders located at the same distance from the end of D;, the same method applied

fo the centroid rule is applied here.

45

>

»X

B [
D; Feeders
HEEEECEN II,J HSHEEEEE

SN

Figure‘ 4.6. Representation of proportion rule

. The optimum or near optimum components placement sequence for the first board
type is determined using TS or GA. As mentioned earlier, this problem is an
instance of the travelling salesman problem (TSP).

. The optimum or near optimum placement sequence from step 2 is used as an input
to the'feeder assignment problem, which is also solved for the first board type using
TS or GA. This problem is an instance of quadratic assignment problem (QAP).

. A new component placement sequence is generated in this step using TS or GA to
take into consideration the new feeder assignment found in step 3.

. Steps 3 and 4 are repeated successively as long as the terminating condition (when
the placement time in step 4 is equal to the placement time in step 3) has not been
satisfied.

. If the number of processed board types £ is still smaller than the total number of
board types K, steps 1 to 5 are repeated, otherwise the assembly time, optinium or
near optimum placement sequence and optimum or near optimum feeder assignment

are output.

Step c: the final results are generated including information about assembly time, board

type sequence, feeder assignment and placement sequence.

4.5, Taboo Search and Genetic Algorithms

Some background information has been presented in Chapter 3 about TS and GA.

However, in this chapter, more detailed and more problem-related information about TS

and GA is presented.

46

<

4.5.1. The size of TS neighbourhood
As mentioned earlier in section 4.2, the number of possible permutations for the

plécement sequence problem is II=C!, for the feeder assignment problem is
L =FY/E! and for the board type sequence is ® = K!, which means that the total
number of possible permutations is [IxZx® . However, a much smaller number of
permutations will be explored by TS metaheuristic (which is the basic idea of all
metaheuristics). This number is equal to the total number of the neighbours of the
permutations generated by TS moves. A neighbour of a permutation is another
permutation generated by performing a move on the original permutation. The two
types of moves considered in this research for the board type sequence, feeder
assignment and placement sequence problems are: |

— Swap move: the two swapped items occupy the positions of each other. For example,
the series 1, 2, 3, 4, 5 becomes 1, 4, 3, 2, 5 by swapping the pair (2, 4).

— Insertion move: the inserted item occupies the position where it is inserted and the
items situated between the old and the new positions of the inserted item are shifted
one position to the left if the insertion position is on the right of the old position, and
to the right otherwise. For example, the series 1, 2, 3, 4, 5 becomes 1, 3, 4, 2, 5 by
inserting 2 in the 4" position.

The size of the neighbourhood for the swap move (Saad & Lassila 200.2) and for the

insertion move (derived experimentally) can be calculated using the equations in Table

4.2,

Table 4.2. The size of neighbourhood for the swap and the insertion moves

Move type
Swap Insertion
Board type & _ 2
 placement —C(Ll—) (C-D
sequence 2

Size of
neighbourhood

Feed FF-1) &x,(x,-1) 2 &
assiZTmint 2 _nz=l: 2 (F _1) —Z(‘X:z _IXF —1)

n=1

C is the number of components or board types
F is the number of feeders

47

Regarding the equations for the feeder assignment, N(N < F) is the number of
component types that are going to be assigned to more than one feeder (X, feeders)
each, although this case is not considered in this research but the equation is used to
take into consideration the empty feeders which are considered as feeders with dummy
components of type 0 assigned to them. The equation which calculates the size of
neighbourhood for the feeder assignment when using the insertion move can be applied
only under certain conditions. It is applicable when the component types which will be
assigned to more than one feeder each are assigned to adjacent feeders only, e.g. 2, 3, 4,
4,4,1,1,1,5,0,0, 0, 6, where O represents an empty feeder. |

Figure 4.7 illustrates the size of the neighbourhood when using both the swap and
the insertion methods for the board type sequence and placement sequence problems.
The X axis represents the number of the board types K or the number of component
locations C on the board, whereas the Y axis represents the number of possible
neighbours associated with K or C. Figure 4.7 below can also represent both the swap
and the insertion methods for the feeder assignment problem but under the .condition
that the number of feeders is equal to the number of component types. In this case the X

axis represents the number of feeders F (or the number of component types 7).

Insertion = =~ - =Swap

10000 /
8000 4 _ / _

g
2 6000
=]
= / .-
‘5 4000 - PR
- / --"
2000 : —e
0 1]) 1] ¥ ‘l = T - I- ¥) T T T T T T T T T T T
0 20 40 60 80 - 100

Board types/Component locations

Figure 4.7. Size of neighbourhood for insertion and swap moves

48

4.5.2. Development of TS algorithm

The TS algorithm used in this research was used previously by Saad and Lassila

(2002) where it proved to be successful. This algorithm is modified where necessary to

reflect the addition of the insertion move. The algorithm is explained below and its

flowchart is shown in Figure 4.8.

1.

The algorithm starts with an initial solution (provided randomly or by a previous
step in the solution algorithm (section 4.3)).

The neighbourhood for that solution is created using the swap or insertion method.

3. Determine the best neighbour in the neighbourhood (the neighbour that provides the

8.

shortest processing time) which is selected as the next solution. The move that led to
this solution is compared with the taboo list. If it is found and does not lead to a new
best solution (aspiration criterion), the second best is selected, which in turn will
undergo the same treatment until a successful move is chosen.

When a move is chosen, the solution associated with it is checked if it is after a
local best (that is if the previous move was a local best). If it is, the move is

remembered to be prevented from being chosen later when a restart from this

~ particular Jocal best is performed.

The solution is checked if it is a new local best. If yes, the local best is updated, the
non-improvement-moves counter is set to zero and the restarting is allowed from this -
point. If not, the non-improvement-moves counter is incremented.
The solution.is compared to the best solution found so far. The best solution is
updated accordingly. »
Check if the non-improvement-moves counter reaches the maximum limit.

— If yes, the restarting counter is checked to see whether restarting is still

allowed.

a. If yes, the Jocal best is used as a restart point and the move that left this
point last time is added to the taboo list in order not to follow the same

path;
b. Otherwise, a random solution is used as a restart.
— Otherwise, make the move and insert it into the taboo list
If the predefined maximum number of moves i‘s reached the search stops, otherwise,

it cycles back to the second step.

49

Initial permutation: obtained
from a previous step or randomly

v

Create neighbourhood for current

Y

permutation

v

Find the best solution in
neighbourhood that is not taboo

Yes—p Remember this move

]
Just left a local best?

No
Update the local best
Yes—»{ Non-improvement moves = 0
Allow restarting from here
No
Y
Increase non-improvement moves

L

Yes—» Update the best move

Make move
Insert move into taboo list

Too many moves w/o
improvement?

Yes

Is restarting still allowed? No—»| Restart from a random point

Yes—y
Restart from a local best
Taboo the move that left that point last time

Yes
End

Figure 4.8. Flowchart of Taboo Search algorithm

50

Since the taboo list has a limited length, it will not be able to prevent loops that
have a number of moves larger than the limited length of the taboo list. Therefore, the
number of non-improvement moves is stored and used as a criterion to restart the search
from the local best solution (intensification) or from a random solution (diversification).
The criterion that determines whether to restart from the local best or from a random
point is the number of restarts performed from that local best. When this number has
exceeded a previously specified number of restarts, the search is restarted from a
random point; otherwise, it is restarted from the local best. When the search is restarted
from a local best, the move that was performed previously just after this local best has
to be prevented from being performed again by adding it to the taboo list. This is
performed in order not to follow the same path followed before and, hence, avoiding
cycling. Therefore, the first performed move after each local best is stored in order to be

added to the taboo list whenever a restart is performed from this local best.

4.5.3. Genetic Algorithms
The GA algorithm used in this research is explained below and its flowchart is

represented in Figure 4.9.
1. Initialisation:
— Create initial population of chromosomes (solutions).
— Calculate time (the fitness function) for the chromosomes using the objective
function.
— Best solution = the best chromosome in the population.
Create children using crossover and mutation and/or inversion.
Calculate time (the fitness function) for the children using the objective function.
Compare to global best and update as appropriate.

Check termination criterion (number of generations) and go to step 2 if not fulfilled.

AN

Stop when all generations have been created and output the best solution.

The creation of initial population of chromosomes is achieved randomly or obtained
from a previous step in the solution algorithm (section 4.3). The crossover and mutation
used here for creating children are the same as explained in subsection 3.3.2, whereas
the inversion is performed by rearranging the preserved genes in the child as‘ explained .

in the following example.

51

Create initial population of
chromosomes

v

Create children using crossover
and mutation and/or inversion

v

Find the best chromosome in the
new population

—>

Update the
best splution

Created enough
generations?

Yes
\ 4

/ Return the best solution /

End
Figure 4.9. Flowchart of Genetic Algorithms

Let’s have the following two parents:
Parent 1: a.bcld eflghij
Paren; 2:dijlahblgcef

The two children creafed from them (see subsection 3.3.2) are:
Child 1:ijaldef|hbgc
Child 2: cdelahb|fgij

Performing an inversion on Child 1 reéults in the following:
Childl:ijalfedlhbgc

The reason behind performing mutation or inversion is to diversify the population and

create more alternative, and potentially better, solutions.

52

4.6. Case study
In the previous sections of this chapter, the proposed solution algorithm, TS

algorithm and GA algorithm are outlined. The next step is to validate these algorithms
by applying them to a case study. The case study allows for the algorithms to be tested
using different values for the parametefs of TS and GA algorithms. This eventually
allows for choosing the best values, which can be used when the proposed algorithm is
used in a real-life situation. The best values for parameters arc.chosen depending on the
results (total processing time, board type sequence, feeder assignment and component
placing sequence) generated by the solution algorithm. The total processing times
generated by the algorithm using different values of parameters are compared to each
other and the values of parameters that correspond to the shortest assembly time are
considered to be the best values. Since it has not:been possible to acquire real-life data
during the period of this research, hypothetical data are used. The rest of this chapter
explains in detail the hypothetical case study used, including data, parameters, tests

- performed and the results generated.

4.6.1. Case details
A pick-and-place machine is used to assemble eight types of printed circuit

boards: A, B, C, D, E, F, G and H. Each board type has a specific number of
components (some components are of the same type) to be placed on it. The
components of each board type are assigned to feeders located on the machine. Each
feeder can hold one component type only and each component type is assigned to one
feeder only. Once the first board to be assembled is placed on the machine table, the
machine head moves from its home location to the feeder which contains the first
component to be placed and picks it up. Then the head moves to the location on the
board where the component is to be placed and places it. This process is repeated for
~each component following a predefined sequence until the board is fully assembled.
This process is performed for each board and for each board type according to a
predefined sequence. Before each board type is proéessed on the machine the machine
has to be set up for this particular board type. The minimum set-up strategy (only
necessary replenishment of components is performed on the feeders) is used here. The
head of the pick and place machine moves sequentially and the Euclidean metric is
applied. Both the board table and feeders are stationary. Figure 4.10 illustrates a simple

representation of the positions of the board and feeders on the machine. In this figure

53

the board has four components: 1, 2, 3 and 4, the feeder assignment is: 4, 0, 2, 0, 0, 1, 0,
0,3,0,0,0,0,0,0, 0,0, 0 and the component placement sequence is: 2, 4, 3 and 1. The
movement of the machine head during the assembly process starts from the home

location and follows the arrows from 1 to 9 back to the home location.

—» <

Board

Locations 3

I\ .
R

Home
location

8

Feeders

[41 (21 F Jef J I3 T J PP VU] I

Figure 4.10. A representation of the board and feeders

The machine in this case study has the specifications presented in Table 4.3. The
specifications of the boards in terms of the number of component types and the number
of component locations on the board are presented in Table 4.4, whereas Table 4.5
contains the specifications of TS and GA algorithms. The number of component types
and the X- and Y-coordinates of the locations of each board type can be found in
Appendix L In Table 4.5, the ‘maximum number of moves without improvements’ is
used as a condition to restart the search from a local best (if the maximum ‘number of
restarts’ has not been reached yet) or from a random point (if the maximum ‘number of

restarts’ has been reached).

54

Table 4.3. Specifications of the machine

Discretion Value
Pick time 2 seconds
Place time 2 seconds
Average head speed 500 mm/sec
Number of feeders 24
Length of feeder 20 mm
Set-up time (per feeder) 10 sec
X-coordinate of first feeder X =+200 mm
Y-coordinate of first feeder Y =-500 mm
X-coordinate of machine head | Xy=+200 mm
Y-coordinate of machine head | Yy=-200 mm

Table 4.4. Specifications of board types

Board Type A|B|C|D|E|F|G|H
No. of Component Types | 22 | 18 | 14 | 13 | 10 | 9 7 5
No. of Locations 45 | 37 | 23 22|17 | 15 | 20 | 12
Table 4.5. Specifications of TS and GA algorithms
TS GA
Board Feeder Board Feeder -
assign. & assign. &
sequence sequence
place. seq. place. seq.
No. of
No. of moves | Upto40 | Upto 100 . Up to 20 Up to 160
generations
Taboolist | 4 ¢ 4-¢ | Population | 1y 4,96 | Upto160
size size
No. of restarts 3 3 Mutation | Up to 50%. | Up to 100%
Max. no. of
moves w/o 3 3 Inversion | Upto40% { Up to 40%
improvements

4.6.2. Program code
The solution algorithm is developed into a Windows-based program written in

C++ programming language. The full code of the program is presented in Appendix II

and a snapshot of the interface is presented in Figure 4.11.

55

Board Fesdsr - Coo

rBOARD : ; ﬂ,m..,] Timé forboard A l 292738 seconds
- Number of board types: E -5 " Time for board B . l 288.997 seconds
Total number of component types: i s <1 Time for board C: l 255.391 seconds

Masimum number of locations: E’“““‘gﬁ“‘““" | Time for boa.rd'D\ l».349.047f sepgrids

o . | - Timeforboard E I 121.493" seconds

- FEEDER SETUP " . . Time for board F l ‘0 seconds

Number of feeders: [55~ Length of feeder [rvhml'vr?ﬁw, -] Time for board G ‘ l 0. seconds
. . v : . 0 »

rdinates . dlgarithr Time S I ! o

_TimeforboadH - | seconds

~HOME CDUF.‘DINATES, — FEEDERIBOAHD DISTANCE=Y Time for board | r“ﬁ'—" seconds
X-Coordinates: {100 ‘ : -%-Coordinates: [0 [| SO - T A
: | {Processing board 0
Y- inates: [Y-Coordinates: [e R
Coordinates: [-200 _ o arnaes J 5>00,.‘ ' Optimum assembly time found -> 292.738

ALGORITHM SETUP - :
Processing board 1 -

Total number of moves:. E‘“‘“‘Tﬁ“‘“’" i | S .
: : : L EN Optimum assembly time found > 288.997

Maximum moves without improvement: E e B | R
: ' S coo v L Processing boad 2
Length of Tabu list: - ﬁ g o L

Optimum assembly time found ->-255.391

Taburestat = . H 2 o

Initial feeder assignment method: | RANDOM - : [Processing board 3 - - e
) : - : U = Dplimum assenibly timgfpun_d ;)"34'3.'04?)
- TIMING SETUP , e S

|Processing board 4. -

Feed setup time [sec): o E 10 = B iestakeditus

Optimum assembly time found -> 121,499

" Pick time (sec}) i Emnam?“‘m

Insert time fsec): .

Head speed (mm/sec):

IProcessing board 4

Figure 4.11. Snapshot of the program interface

The program is written in such a way that most of the input and output data can
easily be accessed and edited since they are provided in separate text ﬁles. These data
include: ‘

— Component types: name, number and frequency.

— Component locations: number, X- and Y-coordinates.

— Machine specifications: head speed, home lodation coordinates, pick time and
insertion time.

— Results: processing time, board type sequence, feeder assignment and placement

56

sequence.
However, the program also has some restrictions:
— Each component typeb can be assigned to one feeder only.
— Each feeder can hold one component type.
— Each feeder has sufficient capacity to process the whole board.
As mentioned earlier, the initial feeder assignment is generated using three methods:
randomly, by applying the centroid rule or by applying the proportion rule. As for the

move types, swap and insertion are used.

4.6.3. Experimentation, results and discussion

The algorithms parameters, presented in Table 4.5, are chosen by performing
several pilot test runs using different number of moves (10 to 1000) and different taboo
list sizes (3 to 12) regarding TS algorithm, and different number of generations (20 to
500) and different population sizes (20 to 300) regarding GA algorithm. Depending on
the results of these test runs the parameters of the TS and GA algorithms presented in
Table 4.5 are chosen to be used for the actual program runs. Pilot runs helped in
identifying the parameters levels that should be included in the experiments. For
example, the number of moves considered in the TS algorithm was 10 to 1000;
however, when the number of moves was increased between 100 and 1000, the results
did not show any changes to the total processing time. The same discussion applies to
all the values of parameters considered in the pilot test runs but not in the actual
program runs. The program runs are performed on a 3.2 GHz PC. Each run is performed
at least four times and the average results are considered. Different combinations of
parameters from Table 4.5 are used to study the effect of each parameter.

As mentioned in section 4.2, the set-up time depends on the number of
replenished feeders (f;), which in turn depends on the board type sequence and the
feeder assignment. However, the placement time depends on the placement sequence
and the feeder assignment (but not on the board type sequence). This means that in
order to study the effect of some parameters, it is possible to study their effects on the
placement time only (which means one board type only can be used) rather than the
total processing time (set-up and placement). For example, when studying the effect of
the type of initial feeder assignment (random, using the centroid rule or using the

proportion rule) on the processing time, the same results have been achieved when

57

considering one board type and when considering all board types. Board type A is used
when one board type only is considered. ‘ -

The reminder of this subsection will concentrate on studying the effects of
different parameter and their levels on the processing time. This includes the following:
— For TS algorithm: number of moves, methods of initial feeder assignment, taboo list

size, type of move, maximum number of moves without impro{'ements and number
of restarts.
— For GA algorithm: number of generations, methods of initial feeder assignment,
population size and mutation/inversion.
Above all, the effects of the type of algorithm used (TS or GA) will also be studied. The
results will be analysed and possible reasons about the behaviour of the algorithms will
be given when possible. In addition, a comparison between different parameters will be

made and recommendations will be presented.

4.6.3.1. The effect of the number of moves/generations

The increase in the number of moves performed by TS or the number of =~

generations performed by GA should logically increase the improvemént in the
processing time since it allows for more space to be searched and, potentially, for more
good solutions to be found. This is confirmed by the results of the program runs as can
be seen in Figure 4.12 and Figure 4.13. Figure 4.12 illustrates the results of running the
program when TS algorithm (taboo list = 6), centroid rule and swap move are chosen.
The number of moves in this figure refers to the number of moves of the TS algorithm
responsible for processing the board type sequence not the TS algorithm responsible for
processing feeder assignment and placement sequence (the number of moves for this TS
algorithm is fixed to 100). As can be seen from the figure, increasing the number of
moves from 10 to 20 led to an increase from 5.82% to 6.06% (a 0.24% increase) in the
improvement of the processing time. However, an increase in the number of moves.
from 20 to 40 resulted in a mere 0.01% increase in the improvement. This means, there
is no point of increasing the number of moves more than 20 since it hardly improves the

processing time.

58

6.10%

6.05%

6.00%

5.95%

5.90%"

5.85%

Improvement %

5.80%

5.75%

5.70%

5.65% : —
10 Moves 20 Moves 40 Moves

Figure 4.12. The effect of number of moves on processing time

5.70%
5.60%
5.50%
5.40%
5.30%

5.10%
5.00% +————
4.90% " o
4.80%

4:70% +— S S
5 generations 10 generations 20 generations

Improvement %
W
N
S
=

Figure 4.13. The effect of number of generations on processing time

Figure 4.13 illustrates the results of running the program when GA algorithm
(population size = 100 and mutation and inversion = 5% each) and proportion rule are
chosen. As explained for the TS algorithm, the number of moves here refers to the GA
algorithm responsible for processing the board type sequence not the GA algorithm
responsible for processing feeder assignment and placeinent sequence (the number of
generation for this GA algorithm is fixed to 20). Figure 4.13 shows the same trend
. explained for Figure 4.12. When the number of generations is doubled (from 5 to 10),
this led to a 0.49% increase in the improvement of the processing time, whereas this

increase is limited to 0.1% when the number of generations doubled again (from 10 to

59

20). This means that increasing the number of moves/generations leads to an
improvement in the processing time up to a certain point beyond which the
improvement is negligible. This observation is not only applicable to the total
processing time of all board types but also to the placement times of individual board
types as can be seen in Figure 4.14. It shows how TS and GA algorithms improve
(reduce) the processing time of board type A after each move/generation is performed.
As the figure clearly shows, the level of improvement is high at first then it slows down
towards the end until it reaches a point beyond which there is no improvement. The
same observation about board type A is repeated for the rest of the board types
considered in the case study. This proves that increasing the number of

moves/generations is useful up to a certain limit.

239.00
238.00
237.00
236.00
235.00 TS
2400} i GA

233.00 4
232.00 \—
231.00 L=«

230.00 \

.......

Time (Sec) .

229.00 ——r— ———T— T — T —— T T
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Moves/Generations

Figure 4.14. The relationship between processing time and number of
moves/generations for board type A

4.6.3.2. The effect of the methods used for initial feeder assignment

In the solution algorithm, three different methods for initial feeder assignment are
used as explained earlier. The aim of the two non-random methods (centroid and
proportion rules) is to start the search from a good initial solution so that the solution
algorithm would take less time to find the optimum or near optimum solution. The
program is run with random initial feeder assignment first and then using the centroid

rule and finally using the proportion rule. The rest of the parameters are left constant

60

apart from the algorithm type since both TS and GA are used. The results obtained from

running the program are presented in Table 4.6.

Table 4.6. The effect of initial feeder assignment on the total processing time

Improvement in processing time (%)
Random | Centroid | Proportion
TS 5.76 5.96 5.90
GA 5.32 5.74 5.36

As can be seen from the table, the improvement in the processing time when the
centroid rule is used is the highest (5.96% when TS algorithm is used). The next highest
improvement is achieved when the proportion rule is used (5.90% when TS algoﬁthm is
used) followed by the random rule (5.76% when TS algorithm is used). The results also
show the same trend when GA algorithm is used. The differences in the improvements
when different initialisation rules are used are quite small. For example, the percentage
of improvements recorded in the case of TS and GA were 0.2% and 0.42% respectively.

The same discussion applies to each individual board type as well as the board
types together. Figure 4.15 shows the relationship between the processing time and the
number of moves for the three different initial feeder assignments for board type A. It
shows how the program reaches the optimum or near optimum solution faster when the
centroid rule is used followed by the proportion rule then by the random assignment.
Based on the outcome of this case study, starting the search from an improved feeder
assignment not only reduces the time required by the program to find the optimum/near
optimum solution but it also produces a marginally better solution and the centroid rule

has proven to be superior cbmpared to the other two methods.

61

239.00

238.00
237.00
236.00
. 235.00 Ran.
s mioofp— 0000000 cen
s | —— —Po.
& 23300 47

232.00 4\
[\ \
231.00 -+

230.00

- e — o

229.00

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 i51 161

Moves

Figure 4.15. The effect of initial feeder assignment on processing time of board type A

using TS algorithm

4.6.3.3. The effect of other parameters of TS algorithm
The other parameters of TS algorithm are the type of move (swap and insertion),

the taboo list size (4, 5 and 6), the maximum number of moves without improvement (3)

and the number of restarts (3). As Table 4.7 shows, the results obtained from running

the program using different combinations of these parameters have not shown any

notable differences on the total processing time for all board types neither on the

placement times of the individual board types.

Table 4.7. The effect of move type and taboo list size on the total processing time

Improvement in processing time (%)

Move type Taboo list size
Swap | Insertion | 4 5 6
Total processing time 5.96 5.95 594 | 594 | 5.96
Placement time (A) 3.76 3.75 3.73 | 3.74 | 3.76

Although the use of insertion move takes slightly less CPU time to find the optimum or

near optimum solution when compared to the swap move as can be seen in Figure 4.16;

however, both moves lead to the same placement time.

62

239.00

238.00

237.00

236.00
3 235.00 — Swap
2400 Hn-——-—7-—7-—-—-— ——— """ Inser.
Q
E
I

233.00 (
232.00 L
231.00 X

230.00 —~—=——

-

........

229.00 T T T T T T T T T T T T T T

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
Moves

Figure 4.16. The effect of move type on processing time of board type A using TS
algorithm (random feeder assignment)

4.6.3.4. The effect of other parameters of GA algorithm
The population size (up to 96) is one of the parameters of GA that affects the

processing time. Increasing the population size increases the number of solutions
processed by the algorithm, which in turn increases the chance of finding a better
solution. This is reflected by the results shown in Figure 4.17. However, as discussed
regarding the number of generations, this improvement has a certain limit after which

no improvement is achieved.

7.00%

6.00%

5.00%

4.00%]

3.00%

Improvement

2.00%

1.00%

0.00% ROOO0EC .

- Population size

Figure 4.17. The effect of the population size on processing time

63

As for mutation and insertion, they would slightly affect the processing time.
Mutations and insertions are introduced to GA to diversify the solution space by
distorting the chromosomes. They are applied to a percentage of chromosomes in the
population. The results of the case study show that when the mutation percentage is
increased from 0% to 4% the improvement of the processing time increases from 5.02%
to 5.83% (i.e. by 0.81%) as shown in Figure 4.18. Any increase of the mutation
percentage above that 4% value, results in a fluctuated improvement. Regarding
iriversion, the results also show the same trend as shown in Figure 4.19, but the effect is
less épparent, since an increase in the inversion percentage from 0% to 4% leads to a

0.42% (from 5.03% to 5.45%) increase in the improvement of the processing time.

7.00%

6.00%]] — SR —

5.00% 41— ot
4.00% - A—: o e e e e

3_00%] I 5 DU 00 I O N DOt U (P N 0 NN M NN P NN o] N 5N % DUNER 355 NN I

Improvement

2.00% - t—t s e e e

1.00% - — e e

0.00% B T S T] T - T L T A% T ":'ﬁ ':' T T T T T T ,
0 2 4 6 8 10 13 16 20 30 40 60 80 100
Mration %

Figure 4.18. The effect of using mutation on the processing time

A possible reason why mutation has a better effect, albeit small, on the processing
time compared to inversion could be because of the way each approach distorts the
géneration of child chromosomes. The change that mutation makes to the preserved part
of the child is small compared to the change made by inversion. Note this on the

following placement sequence for board type A:

3023229938222126142311/42203918436122725333724|41384
403616545710]1315312817193413544

64

6.00%

5.00% - r——
U s v O O B e S e £ £ s B8 B, 150 B B8 B
g 3.00% 1— —
E 2.00% s e e

1.00% 1o

000% i: . _ . : . ': . .‘ ~ s) .

0 2 4 6 8 10 13 16 20 25 30 40
Invertion %

Figure 4.19. The effect of using inversion on the processing time

Let’s assume that the second part of this child is the preserved part from the parent.
Applying the mutation to this part (18 and 27) leads to one of the following two parts:

Insertion: |42 20 39 43 6 12 27 18 25 33 37 24|
Swap: 4220392743612 18 25 33 37 24|

However, applying an inversion to the same part leads to the following result:
[24 37 33 2527 12 6 43 18 39 20 42|

As can be seen, the inversion has completely distorted the preserved part of the child,
whereas the mutation has kept some resemblance. This complete distortion works
adversely to the basic idea of GA, which is keeping the good features of chromosomes
transferred to next generations. This could be the reason why changing the percentage
of inversion leads to a less effect on the processing time compared to when the mutation
percentage is changed. Although the aim of using mutation and/or inversion is to distort
the child in order to search otherwise unsearched regions in the solution space, this
could lead to negative results when the distortion is exaggerated (like when inversion is

used).

4.6.3.5. The effect of the algorithm type (TS or GA) used
The results from this case study presented in Figure 4.20 show that the

performance of TS algorithm is slightly better than GA. These results represent the

average results obtained by running the program several times considering all the

65

combinations in Table 4.5. TS algorithm checks all the neighbours of a particular
solution in every move performed, whereas GA checks a number of solutions equals to
the population size. Since the number of neighbours is much higher than the population
size in this éase, this allows TS to take longer time scouting more soiufions in the search
space, which gives it a better chance of finding a better solution compared to GA. This
is confirmed by the fact that, in general, TS takes around 10% to 20% more CPU time
than GA. It should be noted that the two algorithms performed better on the set-up time
compared to the placement time as presented in Table 4.8. The reason could be that the

set-up time has better margin for improvement compared to the placement time.

7.00%

6.00%

5.00%

4.00%

3.00%

Improvement

2.00%

1.00%

0.00%

Figure 4.20. The effect of the algorithm type on the processing time

Table 4.8. The effect of algorithm type on the placement/setup times

Improvement %
Placement time | Set-up time | Total processing time
TS 3.76 8.27 5.96
GA 3.74 7.22 5.43

4.7. Summary
In this chapter, the mathematical formulation for the PCB production problems

under discussion and the algorithin used to solve these problems were developed. The

solution algorithm was based on two metaheuristics, Taboo Search and Genetic

66

Algorithms, which were developed and explained. A case study was then presented
using hypothetical data since real-life data could not be obtained. The results showed an
average of 5.96% reduction in total processing time when TS was used and 5.43% when
GA was used. The reduction in processing time is calculated by comparing two
processing times: the first processing time is calculated using board type sequence,
feeder assignment and placement sequence generated by the solution algorithm, and the-
second processing time is calculated by using random board type Sequence, random
feeder assignment and random placement sequence. The use of TS proved to be
marginally preferable to GA when the goal is to obtain the best total processing time.
However, if the case is to obtain a good placement time within short CPU time, the use
of GA is preferable. The effects of the number of moves, number of generations,
population size, mutation and inversion all follow the same paﬁern. The processing time
is reduced when these parameters are increased up to a certain point after which no
reduction is noted. Interestingly, little or no noticeable difference was found in the
processing time between runs based on randomly initialised solutions and runs based on
the use of centroid rule and proportion rule to génerate the initial feeder assignment.
However, the use of the centroid rule gave a better initial solution and, hence, it required
shorter CPU time. Regarding the effects of other parameters (e.g. move type, taboo list

size) on processing time, the results showed no noticeable effects.

67

CHAPTER FIVE

5. COST ESTIMATION AND ACCOUNTING ASPECTS

5.1. Introduction
Chapter 4 focused on the optimisation of production processes where three PCB

production problems were studied and an algorithm was proposed to solve them. In this
chapter, which contains the cost estimation and accounting parts of this research, a cost
estimation method and an ac.counting system are considered. The implementation
procedures of ABC, as an example of a cost estimation method, and LA, as an example
of an accounting system, are explained in detail and applied to the same case study

presented in Chapter 4. A comparison between ABC and LA is also presented.

5.2. Basics of ABC

ABC is based on the concept that products consume activities and activities
consume resources. Taking this into consideration, the implementation of ABC involves
the following steps:

— Identification of activities,

— Identification of activity cost drivers,

— Calculation of cost rates for the cost drivers, and

— Calculation of costs of products by multiplying the cost drivers rates by the volumes
of the cost drivers consumed by the product.

In order to understand these steps some of the terms associated with ABC are explained

below. In addition, each step will be explained in detail when ABC is implemented on

the case study in section 5.4. ‘

— Activity:

An activity is a task performed to produce a product. In the ABC model, the true
relationship between activities and products is identified as a causal relationship (Bellis-
Jones & Develin 1999). According to this cause-and-effect relationship, there are four
types of activities:

1. Front-line activities: the activities that have strong relationships with the products

through the cost drivers (e.g. purchasing and order processing).

68

2. Support activities: the activities that have indirect relationships with the products
(e.g. training and payroll processing).

3. Sustaining activities: the activities that have little or no relationships with the
products (e.g. research and development and market research).

4. Infrastructure activities: these activities have no cost drivers, hence, no relationships
with the products. These activities are necessary for the company to stay in the
business (e.g. annual audit and the chairperson's lunch).

— Cost driver:

A cost driver is a cause that drives the cost. For example, the cost driver of the
activity “machine set-up” is the number of set-ups since there is a direct relationship
between the number of set-ups performed and the cost of the set;up activity. There are
cases where more than one activity is driven by one cost driver. In this case, the
activities are called a cost pool.

— Cost object:

The cost objects are the products, services, customers, etc. that the cost is assigned

to.

5.3. Using ABC for cost estimation in the PCB industry

The use of ABC for estimating the cost of PCB production has been quite rare
although other metho.dologies have been used. For example, Keys et al (1986 cited in
Giachetti and Arango (2003)), modelled the cost of PCB assembly by taking into
account the costs of materials, assembly, test, repair, overhead and maintenance.
Boothroyd and Dewhurst ('1989 cited in Ong (1995)) developed a methodology to
estimate the component assembly cost in PCB manufacturing. Russell (1986 cited in
Ong (1995)) developed a cost-estimation methodology for PCBs taking into
consideration the cost of delivery, assembly and test.

As for the use of ABC in PCB manufacturing, Ong (1995) developed an ABC-
based estimating system in which costs were allocated based on the amounts and types
of activities used. In order to determine the costs of activities, Ong used activity charts,
worksheets and a cost build-up table. The estimating procedures in his work, Ong
argued, would not help the designers to redesign the product but would help them
improve the design configurations, choosing the appropriate process and selecting the
least-cost design. Spedding and Sun (1999) combined ABC with simulation and applied

them on a PCB assembly line. They concluded that the use of a simulation model would

69

make it easier to implement ABC since without it “the number of combinations and
testing variations required by ABC would be extremely time consuming and costly”.
The authors argued that using simulation and ABC together provided a more powerful
tool for providing more useful information for the management. For example, the
graphical representation of information provided by the simulation software provided an
automatic and powerﬁil tool for the' management to analee the results. Furthermore, the
time-based animation could also help identifying some potential problems.

Locascio (2000) developed an ABC method for a PCB assembly line to help
designers calculate manufacturing costs from limited design information. This allowed
them make trade-offs between materials and manufacturing costs at the design stage
and, hence, achieve significant savings in product cots. Giachetti and Arango (2003)
argued that the cost models presented so far could not be used for PCB fabrication
because it utilised chemical processing steps. Therefore, they develdped an ABC model
which linked the cost to the design decisions made prior to the layout and routing, in
contrast to the model presented by Agrawal and Graves (1999) in which the cost
estimation was performed after the layout and routing. The model was used by
designers to compare different design alternatives in order to assess the effect of their

decisions on the final manufacturing costs of the products.

5.4. Implementation of ABC on the case study

Implementing ABC requires an understanding of the processes on which ABC is
to be implemented. In addition to the case study details mentioned in Chapter 4, other
necessary details are presented here. The specifications of the board types are shown in
Table 5.1. The number of bpards (2850 boards) produced within the production period
considered (one month) will be calculated later in subsection 5.8.5. Any further data not
méntioned in Table 5.1 are presented later when required. The implementation -
procedures are followed thereafter to calculate the cost of producing each board type.
The procedures followed here are similar to that of Cooper and Kaplan (1999) with

some modifications to suite the PCB production process.

70

Table 5.1. Specifications of board types

Board Type | A B C | D E F G H Total
Numberof 1 5, | 45 | 14 | 13 [10| 9 7 5 98
comp. types
Number of
locations

Amount 201 | 296 | 324 | 360 | 354 | 385 | 416 | 424 | 2850
produced

Number of '
batches 3 4 4 5 6 7 8 8 45

Numberof | .5 | 26 | 02 | 15 | 12 | 12 | 15| 8 | 139
joints)

45 | 37| 23| 2| 17|15 2 | 12| 191

5.4.1. Determining the cost of indirect resources and their drivers

The indirect resources that can be identified in a facility for manufacturing PCBs
are shown in Table 5.2. The resource cost driver rate (RR), which is used to calculate

the cost of the cost centres for the indirect resources, can be calculated according to the

following equation:

Table 5.2. Indirect resources at the PCB production facility

Resource Resource cost driver
5 | Administrator Labour hours
é Secretary/Receptionist Labour hours
g Human resource Labour hours
= Security Labour hours
& Rent/Construction cost Area (m°)
= % | Cleaning Area (m°)
M -8 ["Maintenance Area (m°)
- Gas Area (m?)
3% Electricity Number of people
g Water | Number of people
Phone Number of people
Computer Number of people
=) General Software Using hours
i Iy Special software package | Using hours
5 9 | Network Using hours
2 % Printing Number of people
g = Stationery Number of people
O Copying Number of projects .
Fax Number of projects

71

Resource rate =Total cost (per year or product life)/indirect resource driver spent (5.1)

The ‘indirect recourse driver spent’ is the amount of driver spent during the produétion
period considered. Since the annual salaries, utility bills, other costs and the amounts of
cost drivers spent throughout the production period are presumed to be known, as
shown in the third column of Table 5.3, the cost of each resource throughout the
production period can easily be calculated. The numbers between parentheses following
the names of some of the resources represent the numbers of individuals involved with
these resources. For example, considering the Human Resources (HR) indirect resource,
there is one employee who works 150 hours per month and receives an annual salary of

£20,160. Therefore, within fhe production period considered the total cost of the HR _

resource is:

£20,160/12 =£1,680

Table 5.3. The costs of indirect resources and their drivers

Resource Cost driver Total cost (£) | RD /month | RR™
Administrator (6) | Labour hours 11,320.00 900.00 12.58
Secretary (1) Labour hours 1,680.00 150.00 11.20
HR (1) Labour hours 1,680.00 150.00 11.20
Security (1) Labour hours 1,520.00 150.00 10.13
Rent/Construction | Area (m°) 20,356.00 580.00 35.10
Cleaning (1) Area (m°) 3,540.00 365.00 9.70
Maintenance Area (m%) 2,980.00 580.00 5.14
Gas Area (m°) 1,120.00 365.00 3.07
Electricity No. of people 879.00 45 19.53
Water No. of people 450.00 45 10.00
Phone No. of people 975.00 45 21.67
Computer No. of people 980.00 45 21.78
General Software | Using hours 347.00 1190.00 0.29
Special software Using hours 438.00 460.00 0.95
Network Using hours 256.00 450.00 0.57
Printing No. of people 246.00 45 5.47
Stationery No. of people 356.00 45 7.91
Copying No. of projects 249.00 1 249.00
Fax No. of projects 137.00 1 137.00
Total 49,509.00

* RD: Resource Driver spent.
** RR: Resource Rate (£/unit).

72

Since the resource driver spent (RD) within this period is 150 hours and using equation

(5.1), the resources rates (RR) can be calculated:

HR resource rate=1,680/150 = £11.20 per hour

The resources rates (RR) for the other indirect resources are calculated in the same way

and the results are presented in Table 5.3.

5.4.2. Identifying the cost centres and assigning the resources to them

The cost centres include any resources that involve directly in the production
process, such as human power, equipments, etc. The cost centres that can be identified
for the PCB manufacturing process are presented in Table 5.4. The cost of each cost

centre is the sum of the costs of all resources (direct and indirect) consumed in this cost

centre throughout the production period.

Table 5.4. Cost centres at the PCB production facility

Cost centres

Project manager

Design engineer _
Manufacturing engineer
Quality assurance engineer
Technician

Operator (skilled worker)
Worker

Pick and place machine
Robotic machine

Screen printing machine
Adhesive-application machine
Soldering machine
Cleaning machine
Curing machine

Set-up centre

Manual placement centre
Testing centre
Buming-in centre
Rework (repair) centre
Material handling centre
Inventory centre

Manpower based

Machine based

Mixed based

73

As for the costs related to the direct resources, they can be directly added to each
cost centre according to how much this cost centre consumes of these direct resources.
The direct resources can be divided into two types:

— Type I: the direct resources that are consumed by one cost centre, in which case
their costs are added up to form part of the total cost of that cost centre. An example
would be the direct resource “electricity” (different from the -indirect resource
“electricity” mentioned in Table 5.2 and Table 5.3) consumed by “pick-and-place
machine” cost centre.

— Type II: the direct resources that are consumed by more than one cost centre. In this
case the resources rates (RR) for these direct resources are calculated as explained in

_subsection 5.4.1. Then, the resource rates are multiplied by the corresponding cost
drivers amounts consumed in the cost centres throughout the production period. An

| example for type II would be the direct resource “engineer”, which is consumed by
quality

assurance engineer”, etc. The cost of the direct resource “engineer” consumed by the

9y ¢ 32 ¢

the following cost centres: “project manager”, “manufacturing engineer”,

“project manager” cost centre is £244.80 as will be calculated in the example below.

In order to clarify the previous discussion the “project manager” cost centre is

used as an example. Regarding the direct resources of type I, there are none. However,
there are direct resources of type II, they are: manager, eﬁgineer, technician, operator
and worker. The resource rate (RR) for each of these direct resources is calculated and
then multiplied by the corresponding cost driver amount of each resource consumed by
the “project manager” cost centre as shown in Table 5.5. The figures in the second, third
and fifth columns of the table are assumed to be known and the data in the fifth column

(RD) represent the amounts of resource drivers consumed by the “project manager” cost

centre.
Table 5.5. The costs of direct resources (type II) for the “project manager”
Resources Total cost | RD/month | RR(£/hr) | RD (hrs) | RRxRD (£)

Manager (1) 2,480.00 150.00 16.53 90 1,848.00

Engineer (3) 6,480.00 450.00 14.40 17 244.80

Technician (2) | 4,320.00 300.00 14.40 8 115.20

Operator (20) | 30,400.00 | 3000.00 10.13 10 101.33

Worker (10) 15,200.00 | 1500.00 10.13 5 50.67
Total £58,880.00 2,000.00

74

As for the costs related to the indirect resources, they can be calculated by
allocating the indirect resources identified in the previous subsection 5.4.1 to the cost
centres using the cost drivers and the resource rates of these indirect resources. For
example, for the project manager cost centre, the costs related to the manpower indirect
resources (administrator, secretary, HR, etc.) can be allocated based on the number of
hours the project manager consumes dealing with these indirect resources. The number
of hours for each indirect resource is then multiplied by the resource rate (RR) of that
particular indirect resource to give the total cost related to that indirect resource. The
total costs of the indirect resources involved are, then, added up to give the total cost of
indirect resources involved in the project manager cost centre. The indirect resources
can also be divided into two types:

— Type A: the indirect resources that are consumed by more than 6ﬂe cost centre. For
example, the indirect resource “administrator” consumed by the folloWing cost
centres: “project manager”, “manufacturing engineer”, “quality assurance engineer”,
etc. In'this case, the costs of their consumption by the cost centres can be calculated
the same way as type II of the direct resources (i.e. through calculating RR).

— Type B: the indirect resources that are consumed by more than one cost centre via
other indirect resources. For example, the indirect resource ‘rent/construction”
consumed by the indirect resource “administrator”, which in turn consumed by other
cost centres as mentioned in type A above. In this case, the indirect resources that
are consumed by the cost centres, “administrator” in the example, are considered as
pseudo-cost centres, in which case, the costs of their consumption of the indirect (or
even direct) resources, “rent/construction” in the example, are calculated the same
way as type A of indirect resources (i.e. through calculating RR). Once the costs of
these pseudo-cost centres are calculated, they are allocated to the ‘;rea > cost centres
proportidnately (i.e. according to the same proportion the “real” cost centres
consume the pseudo-cost centres).

Applying this to the “project manager” cost centre example, the cost of the
indirect resources can be calculated as follows. The indirect resources of type A that are
consumed by the “project manager” cost centre are:

— Manpower: administrator, secretary, human resources and security.

— Buildings: rent/construction cost, cleaning and maintenance.

— Utilities: gas, electricity, water and phone.

75

— Computing and network: computer, general software, network, printing, stationary,
copying and fax.

Here, the resource rate (RR) is already calculated for each of these indirect resources as

shown in Table 5.3. These resource rates are multiplied by the coﬂesponding amounts

of the cost drivers of the indirect resources consumed by the “project manager;’ cost

centre. The results are presented in Table 5.6. The figures in the fourth column of the

table represent the amounts of resources drivers consumed by the “project manager”

cost centre and assumed to be known data.

- Table 5.6. The costs of indirect resources (type A) for the “project manager”

Resource RR(£/unit) | RD (unit) | RRxRD (£)
Administrator (6) 12.58 80.00 1,006.22
Manpower | Secretary (1) 11.20 23.00 257.60
HR (1) 11.20 5.00 56.00
Security (1) 10.13 4.00 40.53
Buildings Rent/(?onstruction 35.10 30.00 1,052.90
Cleaning (1) 9.70 30.00 290.96
Maintenance 5.14 30.00 | 154.14
Gas 3.07 30.00 '92.05
Utilities Electricity 19.53 1.00 19.53
Water 10.00 1.00 10.00
Phone 21.67 1.00 21.67
Computer 21.78 1.00 21.78
General Software 0.29 50.00 14.58
Computer/ Special software 0.95 0.00 0.00
network Netw.ork 0.57 30.00 17.07
Printing 5.47 1.00 5.47
Stationery 7.91 1.00 7.91
Copying 249.00 0.10 24.90
Fax 137.00 0.10 13.70
Total 3,107.01

Regarding type B of the indirect resources, their costs that are consumed by the
“project manager” cost centre are calculated as follows. The pseudo-cost centres in this
case are: administrator, secretary, human resources and security. The total cost of the
“administrator” pseudo-cost centres is calculated as any real cost centre as shown in
Table 5.7. Again, the figures in the fourth column of the table are the amounts of the

resources drivers consumed by the “administrator” pseudo-cost centre and are assumed

76

to be known data. The same calculations are performed on the other pseudo-cost centres

and the results are presented in Table 5.8.

Table 5.7. The total cost of the “administrator” pseudo-cost centre

Resource RR(£/unit) | RD (unit) | RRXRD (£)
Manager (1) 16.53 7.00 115.73
= 8 | Engineer (3) 14.40 5.00 72.00
£ 2 | Technician (2) 14.40 14.00 7201.60
R 8 | Operator (20) 10.13 60.00 608.00
Worker (10) 10.13 20.00 202.67
Administrator (6) 12.58 283.00 3,559.51
Secretary (1) 11.20 8.00 89.60
HR (1) 11.20 10.00 112.00
Security (1) 10.13 20.00 202.67
Rent/Construction 35.10 75.00 2,632.24
Cleaning (1) 9.70 75.00 - 727.40
@ Maintenance 5.14 75.00 385.34
§ Gas 3.07 75.00 230.14
2 Electricity 19.53 6.00 117.20
E Water 10.00 6.00 60.00
8 Phone 21.67 6.00 130.00
"g Computer 21.78 6.00 130.67
- General Software 0.29 700.00 204.12
Special software 0.95 200.00 190.43
Network 0.57 150.00 85.33
Printing 5.47 6.00 32.80
Stationery 7.91 6.00 4747
Copying 249.00 0.50 124.50
Fax 137.00 0.50 68.50
Total ‘ 10,329.92

Table 5.8. The total costs of the pseudo-cost centres

The total costs of the pseudo-cost centres are allocated to the “real” cost centres

that consume them. In this case they are: “project manager”, “design engineer”,

Pseudo-cost centre | Total cost (£)
Administrator 10,329.92
Secretary 2,321.01
Human Resources 2,162.73
Security 2,230.58

77

2

“manufacturing engineer”, “quality assurance engineer”, “technician”, “operator” and
“worker”. The allocation process depends on the proportion at which each icost centre
consumes of the indirect resources (pseudo-cost centres). Table 5.9 shows the amounts
of the resource drivers (in hours) of the pseudo-cost centres consumed by the cost

centres. These figures are assumed to be known data.

Table 5.9. The amounts of cost drivers of pseudo-cost centres spent

Administrator | Secretary | H. Resources | Security
Project manager 80 23 5 4
Design eng. 50 8 7 4
Manufacturing eng. 50 8 7 4
Quality assurance eng. 50 4 7 4
Technician 80 10 15 8
Operator 130 18 21 62
Worker 80 12 15 32
Total 520 83 77 118

Taking into account the figures in Table 5.9, the costs of type B of the indirect

resources that are consumed by the “project manager” cost centre can be calculated as:
10,329.92x(80/520)+2,321.01x(23/83)+2,162.73x(5/77)+2,230.58x(4/118) = £2,448.44

Now, the total cost of the “project manager”. cost centre is the sum of the costs of the
direct resources (types I and II) and indirect resources (types A and B) consumed by the

“project manager” cost centre:

0.00+2,000.00+3,107.01+2,448.44 = £7,555.45

When the total cost for each cost centre is calculated, a cost driver is identified for
each cost centre and the cost centre rate (CCR) is calculated according to the following
equation:

Cost centre rate = total cost of cost centre/ cost centre driver spent (5.2)

The ‘cost centre driver spent’ is the amount of driver spent during the production period
considered. The final results for all cost centres are presented in Table 5.10. The fourth
column of the table represents the cost centres drivers (CCD) amounts spent during the

production period and are assumed to be known data.

78

Table 5.10. The costs of cost centres, their cost drivers and their rates

Cost centre Total cost Cost driver CCD /month | CCR™
Project manager £7,555.45 | Working hours 150 50.370
Design engineer £6,418.04 | Working hours 150 42.787
Manufacturing eng. £6,279.65 | Working hours 150 41.864
Quality ass. eng. £4,987.50 | Working hours 150 - 33.250
Technician £6,540.34 | Working hours 300 21.801
Operator £15,295.05 | Working hours 3000 5.098
Worker £9,000.16 | Working hours 1500 6.000
Set-up centre £2,280.85 | No. of set-ups. 45 50.686
Pick-&-place machine | £4,668.01 Mach. hours 155 30.116
Robotic machine £3,133.01 Mach. hours 155 20.213
Screen print. machine | £4,631.01 Mach. hours 155 29.877
Adhesive machine £4,631.01 Mach. hours 155 29.877
Soldering machine £4,638.01 Mach. hours 155 29.923
Manual place. Centre £1,688.68 No. of units 2850 0.593
Cleaning machine £2,988.01 Mach. hours 155 19.277
Curing machine £2,977.01 Mach. hours 155 19.207
Testing centre £3,991.52 No. of units 3420 1.167
Burning-in centre £5,194.02 No. of units 2850 1.822

'Rework centre £3,072.18 Faulty units 570 5.390
Material handl. centre | £4,982.56 Distance 7985 0.624
Inventory centre £5,094.92 | No of part types 98 51.989
Total £110,047.00 :

* CCD: Cost Centre Driver spent
** CCR: Cost Centre Rate (£/unit)

5.4.3. Identifying activities, calculating their costs and the rates of their cost
drivers

In this step, the activities that are used in the PCB manufacturing process are
identified. The total cost of each activity is calculated depending on the cost centres
involved in this activity. This is achieved by multiplying the cost centre rate (CCR),
calculated in the previous subsection (5.4.2), by the corresponding cost centre amount
consumed in the activity. Each activity is then assigned a cost driver, which is the factor
that explains how the activity consumes cost. For example, the cost driver for the
machine set-up activity is the number of setups performed. The final part of this step is
to calculate the activity cost driver rate (ACDR), which can be calculated according to

this equation:

Activity cost driver rate = cost of activity | activity cost driver spent (5.3)

79

The activity cost driver rates are used to calculate the cost of the PCB as will be
explained in the next step.

The activities that can be identified in the PCB manufacturing process are
obtained from Ong (1995) and presented in Table 5.11. As for facility level activities
such as sustaining activities (e.g. research and development, market research, etc.),
support activities (e.g. recruitment, training, management, etc.) and infrastructure
activities (e.g. annual audit, producing year-end statutory accounts, etc.), the cost of
these activities are arbitrarily allocated to the products (Ong 1995) or dealt with
depending on different basis (Bellis-Jones & Develin 1999).

80

Table 5.11. The activities that can be identified in the production of PCBs

Activities Cost driver Cost centres
Sequencing No. of parts Project manager, Design engineer, Manufacturing
parts sequenced engineer, Quality assurance engineer, Operator
Loading & . Project manager, Manufacturing engineer,
unloadi%lg No. of times handied Technician, Operator, Worker
Project manager, Manufacturing engineer,
Screen printing | No. of prints Quality assurance engineer, Technician,
Operator, Worker, Screen printing machine
Applyi Project manager, Manufacturing engineer,
adpﬁe;l\lrteg No. of applications Quality assurance engineer, Technician,
Operator, Worker, Adhesive application machine
Project manager, Manufacturing engineer,
Placing No. of parts Quality assurance engineer, Technician,
components ’ Operator, Worker, Pick-&-place machine,
Robotic machine, Manual placement centre
Project manager, Manufacturing engineer,
= | Soldering No. of panels Quality assurance engineer, Technician,
2 Operator, Worker, Soldering machine
- Project manager, Manufacturing engineer,
‘2 | Cleaning No. of panels Quality assurance engineer, Technician,
= Operator, Worker, Cleaning machine
Curing and N Proje.ct manager, Man}lfacturing er'lg'ineer,
baking 0. pf panels Quality assurance engineer, 'I‘eq!nmcxan,
Operator, Worker, Curing machine
Project manager, Manufacturing engineer,
Testing No. of parts Quality assurance engineer, Technician,
Operator, Worker, Testing centre
Project manager, Manufacturing engineer,
Burning-in No. of panels Quality assurance engineer, Technician,
Operator, Worker, Burning-in centre
R Project manager, Manufacturing engineer,
ework . . .,
(repair) No. of parts Quality assurance engineer, Technician,
Operator, Worker, Rework centre
Visual & No. of ioints Project manager, Manufacturing engineer,
touch-up -01] Technician, Operator, Worker
Kitting/other . Project manager, Manufacturing engineer,
operations No. of operations Quality assurance engineer, Operator, Worker
Purchase order | No. of orders Project manager, Manufacturing engineer
Acceptance S L Project manager, Manufacturing engineer,
. ampling size . .
— | sampling Quality assurance engineer, Operator
2 Inventory No. of part Project manager, Manufacturing engineer,
= | retrieval 0. ol part types Worker
§ Material Distance Project manager, Manufacturing engineer,
£ handling Technician, Worker, Material handling centre
. Project manager, Manufacturing engineer,
Setting-up II;IOS of machines/set- Quality assurance engineer, Operator, Worker,
P Setting-up Centre
Inventory Project manager, Manufacturing engineer,
. | holding No. of part types Worker, Inveitory centre 5o
o Project manager, Design engineer, Manufacturing
% Designing Time of design engineer, Quality assurance engineer
é glage-&-route Time of design PI‘OJ‘ ect manager, Design engineer, Manufacturing
2 esign engineer, Quality assurance engineer _
& Programs & No. of Pro_!ect manager, Design engineer, Manufact.m:mg
fixtures programs/fixtures engineer, Quality assurance engineer, Technician,

Operator, Worker

81

The cost of each activity is the total cost of all cost centres, each according to the
rate of its contribution, used in this activity. For example, the cost centres that are used
in the “sequencing parts” activity (as presented in Table 5.11) are: “project manager”,
' “design engineer”, “manufacturing engineer”, “‘quality assurance engineer” and
“operator”. The cost of each activity can be calculated by multiplying the cost centre
rate (CCR), obtained from Table 5.10, for each cost centre involved in the activity by
the amount of that cost centre driver (CCD) consumed in thé activity throughout the
production period. As an example, the cost of “sequencing parts” activity is calculated
as shown in Table 5.12. The data in the third column of thé table (CCD) are assumed to
be known. |

The costs of all other activities are calculated using the same way and the activity
cost driver rate (ACDR) is calculated according to equation (5.3); the results are
presented in Table 5.13. The amounts of the activity cost drivers spent during the
production period (fourth column of the table) are assumed to be known data. For the
sake of better representation the results in Table 5.13 are depicted graphically as shown
in Figure 5.1. As can be seen, the most costly activities are “placing components”,
“programs and fixtures”, “testing” and “rework”. By reducing the cost of the activities,
especially the most costly ones, the cost of PCB production is reduced. For example, it
is possible to reduce the cost of the “placing components” activity by optimising the
pick-and-place machine, which was the main subject in Chapter 4. The cost reduction is
achieved by reducing the production time through optimising the component placement
sequence and the feeder assignment. Another example would be to reduce the cost of
“rework” activity by improving the quality, which reduces the amount of reworked units
and, hence, the cost. The actual cost reduction attributed to the optimisation work
- performed on the placement machine will be calculated and discussed later in section

5.5.

Table 5.12. Calculating the cost of “sequencing parts” activity

Cost centre involved CCR | CCD (Hour) | CCRxCCD (£)
Project manager 50.370 2.00 - 100.74
Design engineer 42.787 5.00 213.93
Manufacturing engineer 41.864 4.00 167.46
Quality assurance eng. 33.250 4.00 : 133.00
Operator (skilled worker) | 5.098 100.00 509.84
Total 1,124.97

82

Table 5.13. The costs of activities, their cost drivers and their rates

Activities Activities costs Cost driver ACD™ | ACDR

Sequencing parts £1,124.97 | No-ofparts 64620 | 0.0174
~ : sequenced
Loading & £2,267.05 | No- of times 19950 | 0.1137
unloading handled
Screen printing £5,315.54 No. of prints 2850 1.8651
. . No. of
Applying adhesive £5,315.54 apphications 2850 1 .865A1
Placing £15912.06 | No. of parts 64620 | 0.2462
components
Soldering £5,702.86 No. of panels 2850 2.0010
Cleaning £3,708.41 No. of panels 2850 1.3012
Curing and baking | £3,71252 | No. of panels 2850 | 1.3026
Testing £10,307.76 | No. of parts 3420 3.0140
Burning-in £5,878.55 - | No. of panels 2850 2.0626
Rework (repair) £6,363.11 No. of parts 570 11.163
Visual & touch-up £4,600.99 No. of joints 47163 0.0976
Kitting/other £3.42590 | No. of operations | 2850 | 1.2021
operations
Purchase order £1,073.45 No. of orders 49 21.907
Acceptance £1,75438 | Sampling size 68 | 25800
sampling
Inventory retrieval £682.61 No. of part types | 98 6.9654
Material handling £5,783.81 Distance 7985 0.7243
. No. of '
Setting-up £2,795.75 machines/set-ups 45 62.128
Inventory holding £5,829.03 No. of part types 98 59.480
Designing £3,225.91 Time of design 60 53.765
gla‘?e'&'mute £2,188.78 | Time of design 40 54.720
esign
Programs & No. of programs/
fixtures £13,077.15 fixtures 45 290.60
Total £110,047.00

* ACD: Activity Cost Driver spent
** ACDR: Activity Cost Driver rate

83

]
Inventory retrieval [_] es2s61

Purchase order [__] 107345

Sequencing parts [12497

Acceptance sampling []

75438

2188.78

Place-&-route design

Loading & unloading

] 26735

] 279575

Setting-up

Designing

32591

] 34590

Kitting/other operations

Cleaning

] 70841

]im25

Curing and baking

Visual & touch-up

] 46099

Applying adhesive

Screen printing

Soldering

- Materiat handling

d

Inventory holding

] 5315.54
] s315.54

§702.86

578331

5829.03

Buming-in

5878.55

6363.11

Rework (repair)

Testing

10307.76

] 1307115

Programs & fixtures

Placing components

J115912.06

0

2,000 4,000

6,000

8,000

10,000 12,000 14,000

Activity cost (£)

Figure 5.1. The costs of activities

84

16,000

18,000

5.4.4. Calculating the costs of PCBs
The production cost of PCBs is calculated in this step depending on the activities

involved in the production process. This is achieved by multiplying the activity cost
driver rates (ACDR) obtained from the previous step by the corresponding activity cost
driver amounts spent during the production process. Usually, different types of PCBs
require different activities; hoWever, when they require same activities, they, at least,
require different amounts'of the activity cost drivers. This means, different types of
PCBs should incur different costs depending on what and how many activities are
involved in the production process. Since ABC is based on the idea of identifying the
production activities, the results of applying ABC on PCB production should accurately
reflect the real cost of the production of PCBs.

Using activity cost driver rates from Table 5.13 and data from Table 5.1, the
production cost of any particular PCB type can be calculated. Since board type A have
been used as an example throughout this chapter, it is used here again to calculate its
production cost as presented in table 5.14. The first 13 rows in the table are quite clear
and they do not require any explanation. However, the last nine rows require some
explanation as presented hereafter.

— Purchase order: assuming that the number of purchase orders during the production
period is 49 and since the total number of batches produced during the same period

is 45, this means one purchase order is equivalent to the production of:
45/49 =0.918 batches.

Since there are 3 batches of board type A, this means, one purchase order is

equivalent to:
0.918x(291 /.3) =89.081 boards

of type A. This means, one board of type A is equivalent to:
1/89.081=0.0112 purchase order,

which is the amount specified in Table 5.14.
— Acceptance sampling: assuming that the sampling size for the production period is

68 boards, this means, for all boards of type A the sampling size is equivalent to:

68x3/45=4.533 boards,

which means, for one board it is:

85

- 4.533/291=0.0156 board,

which is the amount specified in Table 5.14.

Table 5.14. Calculating the production cost of one PCB of type A

Activities ACDR | Amount | Description of amount | Cost (£)
Sequencing parts 0.0174 45 Components sequenced 0.78
Loading & unloading 0.1137 7 No. of times handled 0.80
Screen printing 1.8651 1 No. of boards 1.87
Applying adhesive 1.8651 1 No. of boards 1.87
Placing components 0.2462 45 Components placed 11.08
Soldering -2.0010 1 No. of boards 2.00
Cleaning 1.3012 1 No. of boards 1.30
Curing and baking 1.3026 1 No. of boards : 1.30
Testing 3.0140 1.2 20% tested twice 3.62
Burning-in 2.0626 1 No. of boards] 2.06
Rework (repair) - 11.1633 0.2 20% reworked 2.23
Visual & touch-up 0.0976 29 No. ofjoints . . 2.83
Kitting/other operations | 1.2021 | 1 No. of boards ' 1.20
Purchase order 21.9071 | 0.0112 | 1/((45/49)x(291/3)) 0.25
Acceptance sampling 25.7996 | 0.0156 | 1/((45/68)%(291/3)) 0.40
Inventory retrieval 6.9654 | 0.0756 | (22/291) 0.53
Material handling 0.7243 1.8293 | (7985/45)/(291/3) 1.33
Setting-up 62.1279 | 0.0103 | (3/291) 0.64
Inventory holding 59.4799 | 0.0756 | (22/291) 4.50
Designing 53.7651 | 0.0486 | (60x45/191)/291 2.61
Place-&-route design 54.7195 | 0.0324 | (40x45/191)/291 1.77
Programs & fixtures 290.6033 | 0.0103 | (45/45)/(291/3) 3.00

Total ‘ ' £47.95

— Inventory retrieval: The cost driver of the inventory retrieval is the number of
component types. According to Table 5.1, board type A has 22 component types and
since 291 boards of type A are produced during the production period, this means

one board of type A is equivalent to:
22/291=0.0756 component type,

which is the amount specified in Table 5.14.
— Material handling: assuming that the distance travelled by the material handling
system is 7985m during the production period and since 45 batches are produced

during the same period, this means one batch is equivalent to:

86

7985/45=177.44 m

Since three batches (equivalent to 291 boards) of board type A are produced, one
board of type A is equivalent to:

177.44/(291/3)=1.8293 m

which is the amount specified in Table 5.14.
Setting-up: the setting-up is performed for every batch, which means, one board for

type A is equivalent to:
3/291=0.0103 setting-up,

which is the amount specified in Table 5.14.

Inventory holding: similar to inventory retrieval.

Designing: assuming that the total time for designing all board types is 60 hours and
since the total number of locations (components) is 191, as shown in Table 5.1, this

means the designing time for each component is:
60/191=0.314 hours.

Since the number of locations for board type A is 45, this means the designing time -

for board type A is:

0.314x45=14.14 hours,

which is equivalent to the production of 291 boards. This means, one board type A

is equivalent to:

14.14/291=0.0486 hour,

which is the amount specified in Table 5.14.
Place-and-route design: assuming that the time for design is 40 hours and following
the same calculations performed for “designing”, one board of type A is equivalent

to:
40x (45/191)/291=0.0324 hour,
which is the amount specified in Table 5 14,
Programs and fixtures: assuming that the number of programs and fixtures during

the production period is 45 and since 45 batches are produced during the same

period, this means one batch is equivalent to:

87

45/45=1

Since three batches (equivalent to 291 boards) of board type A are produced, one
board of type A is equivalent to: |

1/(291/3) = 0.0103,

which is the amount specified in Table 5.14. _
The same calculations are performed to calculate the production costs for the rest of the

board types. The results are presented in Table 5.15.

Table 5.15. The production costs of all PCB types A

Board type | Production cost (£) | Amount produced | Total cost (£)

A 47.95 291 13,954.85
B 45.47 296 13,460.12
C 38.06 324 12,330.12
D 37.20 360 13,391.06
E 36.36 354 12,870.76
F 35.92 : 385 | 13,829.54
G 37.93 416 15,777.11
H 34.04 424 14,433.44

Total 2850 110,047.00

The cost of materials is usually obtained from the bill of materials. As for this
case study it is assumed that the cost of materials during the production period of the
2850 boards is £340,510. This cost is allocated to the PCB types according to the
number of locations of each board type. This means that the total cost of producing one
PCB of each board type can be calculated. For example, for one PCB of board type A,
the cost of materials can be calculated as follows.

From Table 5.1, the number of locations of board type A is 45, which means, the total

number of locations for the 291 boards is:
45%291=13095 locations.

The total number of locations for each board type can be calculated in the same way,

then, the total number of locations for all board types can be calculated:

(45%291)+(37%x296) +(23% 324) +(22x360) + (17x354)+(15x385) +(20x 416)
+(12x 424) = 64620 locations.

88

This means, for one board of type A the cost of materials is:
(340,510x13095/64620)/291 = £237.12
Now, the total cost (production and materials) for each board of type A produced is:

47.95+237.12=£285.08

The same calculations are performed for the rest of the board types and the results are
presented in Table 5.16. It should be emphasised that this cost does not include the cost

of facility level activities mentioned earlier in subsection 5.4.3.

~ Table 5.16. The total production costs of all PCB types

Board type | Total cost/board (£) | Amount produced Total (£)
A 285.08 291 82,957.92
B 240.44 296 71,170.82
C 159.25 : 324 51,597.85
D 153.12 360 55,124.87
E 125.94 354 44,582.14
F 114.96 385 44,260.45
G 143.31 416 59,618.70
H 97.27 424 41,244.25
Total 2850 450,557.00

5.5. The effects of applying the algorithm

' As mentioned in Chapter 4, the application of the algorithm reduced the time
required by the component placement process by 3.76% and the set-up time process by
8.27%. This reduction is considered in this section to see how it affects the production
costs of PCBs. The reduction in placement time means that the operating times of some
resources on the “placement machine” and the “robotic machine” cost centres are
expected to be reduced proportionally. The resources that are involved with these two
cost centres and are expected to be affected by this time reduction are: “engineer”,
“technician”, “operator” and “worker”. Less operating time for these resources means
lower total cost for the cost centres involved (“placement machine” and the “robotic
machine”), which leads eventually to lower costs for the activities these two cost centres
are linked to. In our case, there is only one activity that is affected; it is the “placing

components activity”. The same discussion applies to the reduction in the set-up time.

89

The affected resources in this case are: “engineer”, “technician”, “operator” and
“worker”. As for the cost centres and activities affected, they are “Set-up centre” and
“setting-up” respectively.

In the case study, let’s assume that the times spent by the resources on the cost
centres are known as presented in Table 5.17. Since the time reduction is expected to be
3.76% and 8.27% for the placement time and the set-up time reépéctively, the time
saved by applying the algorithm can be calculated according to these two percentages.
For example, the resource “engineer” spends 15 hours in each of the following cost
centres: “set-up centre”, “placement machine” and “robotic machine”. This means, the

E

time saved for the resource “engineer” in the set-up centre” cost centre is:

15—(15%x8.27/100) =13.76 hours,

in the “placement machine” cost centre is:

15-(15x3.76/100) =14.44 hours

and in the “robotic machine” cost centre is:

15—-(15x3.76/100) =14.44 hours

Table 5.17. Operating times before time reduction (hours)

Engineer | Technician | Operator | Worker
Set-up centre 15 10 110 . |- 20
Placement machine 15 20 300 50
Robotic machine 15 20 150 50

The same calculations can be repeated for the rest of the resources as shown in Table
5.18. The table shows the operating times of the resources in the cost centres for the
production period as would they be expected after the algorithm is applied. By
subtracting the amounts in Table 5.18 from the corresponding amounts in Table 5.17 the
times saved by the application of the algorithm can be calculated. The results are

presented in Table 5.19.

90

Table 5.18. Operating times after reduction (hours) -

Cost centre Engineer | Technician | Operator | Worker
Set-up centre 13.76 9.17 100.9 18.35
Placement machine 14.44 19.25 288.7 48.12
Robotic machine 14.44 19.25 1444 .| 48.12

Table 5.19. The saved times of resources (hours)

Cost centre Engineer | Technician | Operator | Worker
Set-up centre 1.24 0.83 9.1 1.65
Placement machine 0.56 0.75 11.3 1.88
Robotic machine 0.56 0.75 56 | 1.88
Total 2.36 2.33 26.0 5.41

From Table 5.19, the total time saved can be calculated:

2.36+2.33+26.0+5.41=36.10 hours.

In addition to the reduction in the operating times, there are also reductions in the
costs of direct utilities and the maintenance & depreciatioh of the cost centres involved.
The costs of the direct utilities of the cost centres “placement machine” and “robotic
machine” before the reduction are assumed to be known data. The costs after applying
the algorithm can be calculated in the same way the times were calculated for the

resources in the previous paragraph. The results are presented in Table 5.20.

Table 5.20. Costs of direct utilities and the maintenance & depreciation (£)

Direct utilities (£) Maintenance & depreciation (£)
before after | difference | before after | difference
placement 6500 | 62.56. | 244 | 150.00 | 14436 | 5.64
machine i
Robotic 60.00 | 57.74 2.26 140.00 | 134.74 5.26
machine
Total 5.70 11.90

The changes to operating times, the direct utilities and maintenance &
depreciation will affect the costs of the involved cost centres. The total costs of the cost

centres involved after applying the algorithm can be calculated using the same way the

91

costs were calculated before applying the algorithm, as described in subsection 5.4.2,

taking into consideration the operating times in Table 5.18 and the costs in Table 5.20.

The results are presented in Table 5.21. The cost centre driver spent (CCD) for the

“placement machine™ and the “robotic machine” cost centres can be calculated as

follows:

155—(155%3.76/100) =149.17 hours.

Table 5.21. The new costs of cost centres, their cost drivers and their rates

Cost Total cost | Total cost CCD /month | CCD /month .
08 before after Change before after CCR
centre . R . .
reduction | reduction reduction reduction
Set-up
£2,280.85 | £2,142.14 | £138.72 | 45 set-ups 45 set-ups | 47.603
centre
Pick-&-
place | £4,668.01 | £4,507.62 | £160.39 | 155 hours | 149.17 hours | 30.218
machine
Robotic | r3 13301 | £3,030.34 | £102.67 | 155 hours | 149.17 hours | 20.314
machine
Total £401.78

* CCD: Cost Centre Driver spent
** CCR: Cost Centre Rate (£/unit)

The costs of activities that are affected by the changes to the costs of cost centres

presented in Table 5.21 can be calculated as described in subsection 5.4.3 taking into

consideration the cost centre rates (CCR) in Table 5.21. The results are presented in

Table 5.22. As shown in Table 5.21 and Table 5.22 the total savings expected from

applying the algorithms during the production period of one month is £401.78.

Table 5.22. The new costs of activities, their cost drivers and their rates

e Activities costs Activities costs * -
Activities before reduction after reduction change | ACD ACDR
Placing £15,912.06 £15,648.99 £263.06 | 64620 | 0.2422
components
Setting-up £2,795.75 £2,657.04 £138.72 | . 45 59.0453
Total £401.78

* ACD: Activity Cost Driver spent
** ACDR: Activity Cost Driver rate

92

5.6. Lean Accounting basics and principles

LA is a supportive system to lean manufacturing; therefore, it cannot be
irﬁplemented alone, rather, it has to be implemented as a supplement to lean
manufacturing. As lean manufacturing is a system that implements lean principles on
the operational and production aspects, LA is a system that does the same to the
financial and accounting aspects. Therefore, in order to be able to understand LA, some
. background information about lean principles in general and about lean manufacturing

in particular has to be présented first.

Lean manufacturing has been introduced to increase customer value by
eliminating, or at least reducing, waste from the production system. Waste has many
forms and can be found in many areas in the company. For example, time, materials,
inventory, rework, idle machines can all be considered as forms of waste. Since there
are different forms of waste, lean manufacturing depends on different tools and
principles to deal with waste reduction/elimination. The following are some of these

“tools and principles:
— Cellular manufacturing.
— Pull, rather than push, system (JIT and kanban).
— Value stream mapping.
— Low inventory.
— Less rework (high quality).
— Small orders of materials.
— Continuous improvement.
The implementation of lean manufacturing depends on the state of the company and
should bé gradual and continuous. Womack and Jones (1996) preséni the principles of
lean thinking as:
— Value: the value provided to the customer.
— Value stream: the processes that contribute to manufacturing the product.
~— Flow: the flow of products and services through the value stream.
— Pull: make on demand (just-in-time system).
— Perfection: total quality management through continuous improvement.
The principles of lean thinking and lean manufacturing are being applied in most of
today’s manufacturing companies. Therefore, it is necessary that they are applied to the

accounting system as well and this is why LA has been developed.

93

The main idea of lean (whether it is lean manufacturing, lean accounting, lean
thinking, etc.) is to reduce waste, which leads to creating free capacity. If this capacity
is not used, the improvement to the financial outcome will be equivalent to the amount
of waste reduced. However, the financial outcome will improve much more when the
capacity is benefited from (e.g. laying people off, increasing sales, introducing new
products, etc.). In LA, reducing waste means reducing financial transactions and control
processes. This can be performed when the need for such transactions and processes
cease to materialize. This means that the thinking of how to usé the would-be freed
capacity should be parallel to the thinking of introducing lean principles.

LA is necessary for lean manufacturing, not only because standard accounting
system is not suitable but also because it is harmful to lean manufacturing. Standard
accounting measurements show an increase in cost and reduction in profit, as will be
seen in subsection 5.8.2, as a result of applying lean manufacturing especially at the
early stage when trying to reduce the work-in-progress inventory (Maskell & Baggaley

1 2004). Furthermore, overhead absorption (a standard accounting principle) encourages
workers/employees to do things that contradict lean manufacturing (large batch size,
high inventory, large quantities of raw materials, etc.). For this reason, any company
starting to apply lean manufacturing and keeping the standard accounting system in
place could be forced to choose to cancel the implementation of lean manufacturing
when facing negative results. Therefore, it is important to implement an accounting
system that appreciates the improvements introduced by lean manufacturing to the
company, an accounting system that shows clearly the impact of applying lean
manufacturing on the bottom line. Such an accounting system should be based on the
same lean thinking principles and culture that lean manufacturing is based on, in other

words, a lean accounting system.

5.7. How Lean Accounting system works

As mentioned earlier, eliminating transactions, which will be explained more in
section 5.8, is one of the main features of LA. Transactions in the standard accounting
system are used to control business operations. Therefore, in order for LA to be able to
eliminate these transactions it has to find a way to maintain the control over the business
operations and processes. The idea is to replace the eliminated transactions with fewer,
less detailed and simpler transactions. This process is a continuous one since the

number of new transactions is further reduced over time to even fewer transactions. In

94

other words, the journéy to a lean enterprise is a never-ending one. For example, in the
standard accounting system as a product is being made, the labour hours and the
movement of raw materials are tracked and reported. This is replaced in LA with back-
flushing, which is done, when the job is completed, by the information system. This is
achieved by reading the bill of materials and the production routings and standards.
Over time, when the inventory levels are low and consistent and when the operations
and processes are controlled, even back-flushing is not necessary and can be eliminated.

It is important to note that the process of transaction elimination should be
gradual. Most transactions inherited from standard accounting should be maintained at
the early stage of implementing LA in order to maintain the control of the business
operations. A step-by-step elimination process should, by time, be able to reduce the

number of transactions and keep the business under control.

5.8. Implementation of LA on the case study

Lean accounting has been introduced as an alternative to the standard accounting
system in companies implementing lean manufacturing. In this section, the
implementation steps of lean accounting are introduced, briefly explained and applied to
a case study. Throughout the case study, the importance of implementing lean
accounting is being emphasised by clarifying the financial benefits of such
implementation, since lean accounting is designed to help lean manufacturing cut the
production costs. In addition, it is explained how lean accounting provides better
information for the management in the company. It allows them to see the financial
benefits of lean improvements through achieving better decision-making and saving
money by reducing costs, eliminating waste and providing more control over production
processes. Lean accounting should be implemented alongside lean manufacturing since
they complement each other. However, the implementation of lean accounting should
always fall some steps behind the implementation of lean mahufacturing because most
of lean accounting tools and methods do not work unless some of lean manufacturing
tools have been established.)

In order to implement lean accounting one has to know the current state of the
organization, company, etc. In their book “Practical Lean Accounting” Maskell and
Baggaley (2004) presented a “diagnostic tool” to help assess the current status of the
organization that is preparing to implement lean accounting. They divided the “maturity

path” to lean accounting into four stages:

95

1. Traditional: just started with lean manufacturing but not lean accounting.

2. Piloting lean cells: have successfully implemented pilot lean cells and therefore can
start implementing some of lean accounting principles.

3. Managing by value stream: value streams are created to link the cells implemented

~ in the previous stage. This allows for more lean accounting principles and methods
to be implemented.

4. Lean enterprise (lean business management): the value streams are extended outside
the company walls to include suppliers and customers. At this stage some other
tools of lean accounting such as ‘target costing’, can be applied.

The diagnostic tool that Maskell and Baggaley provide is a questionnaire about
the state of the organization in different categories: “Financial accounting, Operational
accounting, Management accounting, Support for lean transformation and Business
management”. The outcome of the questionnaire is used by the team responsible for the
transition towards lean accounting to decide how to plan this transition. The
implementation steps of lean accounting differ according to the state of the company
implementing lean; however, there are general steps that could be followed as shown in
Figure 5.2. When the current state of lean manufacturing at the company under
consideration has been assessed, there are three possible options to consider:

1. If the company is at an early stage of lean manufacturing and the pilot cells are in
place, lean accounting procedures should start with the top block of steps.

2. If lean manufacturing is widespread at the company and the company has started
managing by value stream, lean accounting procedures can start with the top and
middle blocks of steps at the same time.

3. .If lean manufacturing is widespread at the company and its suppliers and customers
(where applicable), lean accounting procedures can start with the top, the middle
and the bottom blocks of steps at the same time. '

The general implementation steps of lean accounting are explained throughout this

section and most of these steps are applied to a case study in order to clarify how they

can be applied in a real-life situation. However, the order at which these steps are

explained in this chapter does not necessarily follow the order shown in Figure 5.2.

96

Implement cell performance
measurements

y

Calculate financial benefits of
lean improvements

Y

y

Eliminate wasteful operational/
financial transactions

v

Identify the value streams

!

1
Assess the status of the company:
1. lean manufacturing atearly |||
stage (pilot cells in place)
2. Lean manufacturing is
. 2
dominant at the company
3. Lean manufacturing is is
dominant at the suppliers and
customers
3

. Implement value stream
performance measurements

v

Implement value stream costing

I

‘Implement features and
characteristics costing

v

Implement financial planning

v

Implement target costing

!

Extend value streams to include
suppliers and customers

v

Eliminate wasteful control
processes

Figure 5.2. The general implementation steps of lean accounting

97

The company in the case study follows a traditional production system: push
rather than pull system, high inventory, maximum machine utilization, high rework
percentage, etc. The features of this production system are presented in Table 5.23. The
lead time is 25 days, which is quite long compared to the cycle time (37.5min). The
company employs 46 people for the PCB vaiue stream, produces an average of 2850

boards per month (45 batches), have daily shipments and weekly delivery from the

suppliers.
Table 5.23. Features of the current production system
SMT Manual/ Test/ Burn-in Package/
machine | robotic load | rework shipment
Cycle time (min.) 1.5 15 8 7 6
Set-up time (min.) 38 8 10 12 n/a
Downtime/rework 10% 1% 20% n/a n/a
No. of people 5 10 9 4 2
No. of machines 1 1 1 0 0

The company management decided to undergo a lean approach. The lean
consultant team responsible for the job started implementing lean manufacturing
principles:

— Lean pilot cells have been introduced by reorganizing and redesigning the current
cells, which led to forming the value stream.

— A pull system was introduced (kanban) to the value stream-that reflects the
customers’ real needs. ' '

— A training program in lean principles was introduced.

— Key suppliers were identified and agreements were signed to deliQer daily according
to the requirements of the SMT cell controlled by the pull system.

- Introductfon of standardized work and quality from the source.

The operational changes resulted from implementing lean manufacturing were:

— The lead time was reduced to 6.5 days.

— The required floor area reduced from 3200 m? to 2200 m?.

— Shorter cycle times and reduced rework percentage (quality increased).

— Some resources were freed up (machine hours, labour hours).

98

~ Percentage of on-time shipments increased.
As lean manufacturing and lean accounting complement each ‘other, the detailed
implementation of lean accounting is discussed and the operational and financial aspects

of the process are explained thereafter.

5.8.1. Performance measurements
There are performance measurements for both the production cells and the value

streams. The number of the measurements should not be too high since this would be
| against the principles of lean. The measurements should be visual, simple, manual and
should also be focused around the principles of lean thinking (see Womack and Jones
(1996)). The data required for these measurements should be collected following the
principles of lean (simple, effective and does not incur waste). Some examples for these
measurements, obtained from Maskell and Baggaley (2004), are explained and applied
to the case study hereafter. It should be noted that any other measurements are also

possible.

5.8.1.1. Cell measurements
— Day-by-the-hour report:

This report ensures that the cell cycle time is consistent with the customers
demahd. The produced PCBs are counted hourly and the report is presented visually so
that everyone can see it. This allows for problems to be discovered and resolved as early
and as quickly as possible. Descriptions of the problems encountered are also written
down and, over time, thc: gathered information can be used to avoid potential problems
in future. This will eventually lead to a better process quality. The planned production
rate may differ according to the type of products manufactured (mixed-model systems),
which is the case in this case study. Since the company produces different types of
PCBs, the planned hourly rate is different from one hour to another. Table 5.24 presents
an example of the day-by-the-hour report for the case study.
~ Work-in-progress to standard work-in-progress ratio:

This is used to measure the inventory in the cell. Each cell is designed to hold a
specific amount of inventory (standard work in’progress) to account for any problems
that may happen in the cell. In a lean cell, when the amount of inventory is equal to the
amount of standard inventory, this means the pull system is working smoothly;

otherwise, the system is failing. This measure is calculated by dividing the amount of

99

inventory (kanbans, items, family. of products) in the cell by the standard amount of
inventory that the cell is designed to hold. When the ratio isb less than 1 the inventory
level is low and when it is bigger than 1 the inventory level is high. Since there are too
many components (parts) to count in this case study, this measurement is calculated by
counting the number of boards rather than the number of components. The amount of
standard inventory for the SMT cell is 8 boards and the cell has 9 boards, which means

the work-in-progress to standard work-in-progress ratio in this case is:

9/8=1.13
Table 5.24. Day-by-the-hour report
. No. of boards | No. of boards Total No. of | Total No. of
Time planed manufactured boards boards
planned manufactured
09:00 - 10:00 17 17 17 17
10:00-11:00 17 16 34 33
11:00~12:00 16 16 50 49
12:00 — 13:00 16 15 66 64
13:30 - 14:30 15 15 81 79
14:30 —15:30 15 14 96 93
15:30~16:30 13 12 109 105
16:30-17:30 14 14 123 119
— First time through:

This measurement (aiso called “yield”) reports the number of reworked or rejected
items in the cell. It is a measure for the effectiveness of the cell producing the product
correctly and to the right cycle time. The data required for this measurement are
collected by the cell operators and the results are presented visually. The first time

through measurement is presented as a percentage and calculated as follows:

First time through = (correct items manufactured / total items manufactured)x100%

In the case study, assuming that the SMT cell produced 13 boards per hour and one is

rejected and one is reworked, the first time through in this case is:

((13-1-1)/13)x100% = 84.62%

100

Since rejected and reworked items are forms of waste, whenever the first time through
measurement is low, the cell has to be investigated and any problem found should be
resolved. This measurement allows the cell operators to quickly detect any quality
problems in the cell and, hence, reduces the amount of waste.

— Operational equipment effectiveness:

This measurement (can also be called Overall Equipment Effectiveness (OEE)) is
used to measure the ability of machines to do the required job according to the specified -
quality at the specified time. It is a combination of three measures: availability, first
time through (yield) and production efficiency (utilisafion). Applying this measurement
to all machines could be time consuming and wasteful, therefore, this measurement is
usually applied to the machine that determines the flow rate of the cell or of the
production line, in other words, the bottleneck machine. The first element of this

measurement can be calculated as follows:

Availability = ((total time—down time)/ total time)x100%

The total time is the time scheduled for production and the downtime is the time when
the machine is not working due to maintenance, setting-up, tooling, etc. The second
element of this measurement, first time through, is calculated as described in the

previous measurement, whereas the third element is calculated as follows:

Production efficiency = (actual flow rate/ideal flow rate)x100%

The ideal flow rate is the rate at which the machine should run to achieve the required
- cycle time, which is determined by the customer requirements. Therefore, it is not
necessarily the maximum flow rate which the machine has been designed to work at.
The actual flow rate is usually smaller than the ideal flow rate due to the unexpected
stoppages that could result from a lack of feeding materials.

In the case study, the operational equipment effectiveness of the SMT machine
(the bottleneck machine) can be calculated as follows:
Availability:

Assuming that the total scheduled time is 8 hours a day (ohe shift) and the total

down time during this period is 25 minutes, the availability is calculated as:
((8—-(25/60))/8)x100% = 94.79%

First time through:

101

It is already calculated: 84.62%

Production efficiency:
Assuming that the actual flow rate is 13 boards per hour and the ideal flow rate is

14 boards per hour, the production efficiency is calculated as:

(13/14)x100% = 92.86%

Operational effectiveness efficiency:

The operational effectiveness efficiency of the SMT machine can now be

calculated as:

94.79%x 84.62%x% 92.86% = 74.48%

5.8.1.2, Value stream measurements

Value streams are identified to include the cells (including non-production
processes such as, customer services, purchasing, production planning, etc.) that work
together to produce similar products or a family of products. In fact, the process of
value stream mapping is very important to lean manufacturing and lean accounting
because many of lean accounting elements (e.g. performance measures, value stream
costing, etc.) are based on value streams. Value stream mapping illustrates how
materials and information flow through the value stream and, hence, gives the
management a wider and clearer view of the value stream. The value stream
performance measurements for the case study are calculated for the PCB value stream
as detailed below.

— Sales per person:

This measurement is used to measure the productivity of the value stream. Salés-
per-person measurement is important to track the productivity and it should be
increased over time to increase the value stream profit. To calculate the sales per person
for a particular value stream, the value of the sales associated with that value stream
within a specific period should be known in addition to the number of full-time people
working in that value stream. In the case where there are part-time or temporary people,
the equivalent number of full-time people should be used.

In this case study, the monthly.sales for the value stream are assumed to be
£901,470 and the number of full-time people is 46, therefore, the sales-per-person

measurement is calculated as:

102

901,470/46 = £19,597.17

— On time delivery:

This measurement is used to control the value stream. It measures the percentage
of products delivered to the customers on the day the customers requested them to be
delivered. When the control over the value stream is high, the on time delivery is high
and vice versa. This measurement gives an indication when the value stream goes
beyond control and, hence, provokes an action to be taken. One way of calculating on
time delivery is by tracking the number of units delivered to the customer on a
particular date compared to the number of units requested to be delivered on that date.

~ In this case study, the number of units requested by the customers to be delivered
in a particular month is assumed to be 2750 boards. The actual number of PCBs
delivered during that month is assumed to be 2430 boards. Hence, the on time delivery

can be calculated as:

(2430/2750)x100% = 88.36%

— Dock-to-dock time:

Dock-to-dock time measures the time required for raw materials to be converted
into finished products (starting at the time they are delivered to the receiving dock and
ending at the time they are ready for shipment on the shipping dock). This is a
measurement of the flow of materials in the value stream. The aim is to increase the
ﬂox;v in the value stream in order to reduce the inventory and this requires short dock-to-
dock time. This measurement is calculated by dividing the inventory within the value
stream by the shipment rate. The shipment rate is the shipped amoﬁnf per week/month
divided by the number of hours/days in the week/month. '

In this case study, the total inventory in the value stream is calculated by counting
the number of PCBs that can be produced from the available raw materials, the PCBs
available in the work in progress and the finished PCBs. These amounts are assumed to
be 930, 1720 and 470 boards respectively. This means, the total inventory in the PCB
value stream is 3120 boards. The shipment rate is the amount of shipped units per
month divided by the number of working days in this month. Assuming that the number
of boards shipped is 2750 boards and the number of working days in the month under

consideration is 22 days, this means, the dock-to-dock days can be calculated as:

+3120/(2750/22) =25 days

103

— First time through:

This measurement is similar to that of the cell performahée measurements.
However, it is applied here to the whole value stream. It is calculated by multiplying the
first time through for all the cells (again, production and non-production cells) in the
value stream.

In this case study, the first time through for the PCB value stream is the product of
multiplying the first time through of these cells: purchase order, material purchasing,
SMT, manual/robotic assembly, test and rework, burning-in, shipping and invoicing.
The first time through for the SMT machine is already calculated before and it is
84.62%. Following the same calculations, the first time through is calculated for the
other cells. Assuming that the first time through for the purchase order, material
purchasing, manual/robotic assembly, test and rework, buming-in, shipping and
invoicing cells are 96.23%, 97.50%, 90.04%, 96.38%, 98.10%, 92.54% and 88.75%

respectively, the first time through for the PCB value stream can be calculated as:

96.23%x97.50%x 84.62%x 90.04% x 96.38%x 98.10%x 92.54%x 88.75% = 55.51%

— Average cost per unit:

Average cost per unit is calculated by dividing the total cost of the value stream
(may or may not include the cost of raw materials) by the number of units shipped to |
customers within a specific period of time. Including or not including the cost of raw
materials depends on whether or not the materials used for different products in the
value stream have similar costs. Calculating the total cost of the PCB value stream will
be detailed in subsection 5.8.4. The fmportance of this measurement lies in the fact that
it is used in both ‘features and characteristics costing’ and ‘target> costing’ methods.
Additionally, it gives an indication to the state of the value stream. When the average
cost is increasing abnormally, this means the value stream is producing more than
selling and the inventory is building up, and vice versa. In both cases, the situation
should be investigated.

The total cost of the PCB value stream in the case study is the sum of the cost of
materials and the conversion costs. The cost of materials is obtained from the bill of
materials and it is £340,510 as mentioned in subsection 5.4.4. The conversion cost is
calculated as described in subsection 5.4.4 and it is £110,047. This means, the average

cost p»er unit can be calculated as:

104

(340,510 +110,047) /2850 = £158.09

— Accounts receivable days outstanding:

This measurement gives an indication as to at what extent the process of receiving
cash from customers is properly used. It basically measures the cash flow in the value
stream. The number of outstanding days for the accounts receivable is calculated by
dividing the accounts receivable amount by the average daily sales. When the number of
days is high this means there is shortage of cash flow in the value stream and the
process of receiving cash from customers must be revised.

For this case study, the average daily sales amount is calculated by dividing the

amount of monthly sales by the number of working days per month:
901,470/22 = £40,976

Assuming that the amount of accounts receivable is £740,500, the number of

outstanding days for accounts receivable can be calculated as:

740,500/40,976 =18 days

5.8.2. Calculating the financial benefits of applying lean manufacturing

It is important to check the effects of applying lean manufacturing on the bottom
line. Improvements to the bottom line are the only way to convince the management
that lean manufacturing is not only good operationally but also financially. The standard
accounting system is unable to detect any financial improvements resulting from
implementing lean manufacturing as they are usually long term. In addition, the
standard accounting system may show that the immediate financial effects of
impleme_hting lean manufacturing are the same or even worse than before applying it.
This may raise the issue of whether implementing lean manufacturing was a good idea
in the first place. This idea is further explained while the financial benefits of applying
lean manufacturing are being identified in the case study.

The standard accounting system usually calculates the cost of sales as follows:

Cost of sales = cost of purchased materials + conversion cost + starting inventory —

ending inventory

Now, assuming that the data for the case study before and afier applying lean
manufacturing are as presented in Table 5.25, the cost of sales before lean according to

the above-mentioned equation can be calculated as:

105

340,510+110,047 + (40,020 - 40,020) = £450,557
and the cost of sales after lean can be calculated as:

317, 2404;102,977 +(40,020-9,100) = £451,137
This means, the cost after lean is higher than before lean by:

451.137-450,557 = £580

Table 5.25. The data of the case study before and after applying lean manufacturing

Before lean | After lean
Starting inventory (£) 40,020 40,020
Cost of materials (£) 340,510 317,240
Conversion cost (£) 110,047 102,977.
Ending inventory (£) 40,020 9,100

This negative result is actually not due to an increase in either the conversion cost or the
cost of materials. On the contrary, the conversion cost and the cost of materials were
reduced after applying lean manufacturing, which means, the negative result would

have been higher by:
(340,510-317,240)+ (110,047 -102,977) = £30,340

In fact, the increase in the cost of sales after applying lean is the result of a reducfion in
inventory by (40,020-9,100) = £30,920, which is a normal consequence of applying
lean manufacturing.

In order to show the real financial improvements to the value stream after
implementing lean manufacturing, the negative impact of inventory reduction should be
eliminated from the financial statements. Lean accounting presents the financial results
in a way that reflects the real changes to the value stream by eliminating the inventory
reduction effect. Lean accounting makes the value stream statement even clearer by
including not only financial information but also operational and resources information.
This new improved representation of the financial aspects is called the “Box Score”
(Maskell & Baggaley 2004). An example of the box score for the case study is
presented in Table 5.26. '

106

Table 5.26. The box score for the PCB value stream in the case study

Current | Future Long term :
state state Change fu%ure Change
Dock-to-dock days 25 ‘
'S | First time through | 55.51%
.2 | On time delivery 88.36%
& [Floor space 3200 m°
& | Sales per person 19,597
Average cost/unit 158.09
3 > Productive
g é Non productive
(O +]
R © | Available
Inventory value 40,020
-g Revenue 901,470
g | Material costs 340,510
'E Conversion costs 110,047
Value stream profit | 450,913

The operational and the financial information for the value stream have already
been discussed in subsections 5.8.1.2 and 5.8.2 respectively. Hence, the information is
filled in the table acéordingly. However, one entry of the financial information needs to
be calculated; it is the value stream profit. This can be calculated by subtracting the

material and conversion costs from the value stream revenue;
901,470-340,510-110,047 = £450,913

As for the information related to resource capacity, it has been explained before that the
implementation of lean manufacturing frees some resource capacities. The successful
exploitation of these freed capacities is what will increase the value stream profit. This
can be achieved by, firstly, calculating how much capacity has been freed and,
secondly, decidihg what to do with this capacity. This is discussed in the following two

subsections.

5.8.2.1. Calculating freed capacity
As shown in Table 5.26, resource capacity can be divided into three categories:

productive, non-productive and available; this categorisation applies to the two types of
resources (people and machines). Productive capacity is the ability to do the work that is

directly involved in manufacturing the required products (e.g. fabrication, assembly,

107

etc.). Non-productive capacity is the ability to do the work that is not directly involved
in manufacturing the required products but is necessary for the production process (e.g.
set-up, maintenance, rework, planning, administration, etc.). Available capacity is the
ability to do work during the spare time after productive and non-productive capacities
have been fulfilled (e.g. the time when the required jobs has been performed and, still,
there is time to do something else).

The freed capacity can be calculated by calculating the capacities before and after
lean for all the cells in the value stream and for all the resources. Calculating the
capacity for a particular cell requires analysing the cell and determining the types of
activities (productive or non-productive) that are performed in the cell and the time
required for each activity. The total time for the productive and non-productive
activities can then be calculated. To calculate the percentége of the productive, non-
productive and available capacities, the total available time during the period under
consideration should be calculated. The total available time is basically the total number
of hours within which the people/machines should, according to the company policy, be
working during the period under consideration. The resource capacities, therefore, can

be calculated as follows:

Productive = (total productive time/total available time)x100%
Non-productive = (fotal non-productive time/ total available time)x100%
Available =100~ Productive — Non-productive

These three equations are applied to the cells in the PCB value stréain to calculate the .
resource capacities for the box score presented in Table 5.26. The SMT cell is used as

an example to show how the resource capacity can be calculated.

The data required to calculate the time of activities for the SMT cell are assumed

to be known as presented in Table 5.27.

Table 5.27. The required data for some of the SMT activities

Activity No. of times/month | Average time (min)
Material moves 148 8
Meetings/training 6 50
Other activities (cleaning etc.) 11 45
Waiting (per product) 2850 1.391
Downtime (machine) 10 45

108

The available time for machines can be calculated as follows:

8 (hours per day)x 22 (days per month) =176 hours per month per machine

As for people, the available time (with two 10-minute breaks) can be calculated as:

(8—2x(10/60))x22 =168.67 hours per month per person

‘The machines continue to run during the breaks since not all machine operators take

their breaks at the same time. The activities performed in the SMT cell and the time of

each activity for both people and machines can now be calculated. The results are

presented in Table 5.28. Using the data from Table 5.23 and Table 5.27, the time of the

activities can be calculated as follows.

Machine set-up: This is a non-productive activity and the time of the activity can be
calculated as follows.

— For people: number of batches X set-up time x number of people

45x(38/60)x5=142.50 hours

— For machine: number of batches X set-up time

45x%(38/60) =28.50 hours

Moving materials: This is a non-productive activity and the time of the activity can
be calculated as follows.

— For people: number of times moved x average time per move

148x(8/60) =19.37 hours

Attending machine/product: This is a non-productive activity for people but
productive for machine and the time of the activity can be calculated as follows.

~ For people & machine: number of boards produced x cycle time

2850x(1.5/60) =71.25 hours

Training/meetings: This is a non-productive activity and the time of the activity can
be calculated as follows.
— For people: number of times X average time of meeting/training X

number of people

6x(50/60)x5=25.00 hours

109

Table 5.28. Activities in the SMT cell and the time of each activity

People Machine
Activity Productive proNd?l::lt-ive Productive proNd?llclt-ive

Set-up 142.50 28.50
Moving materials 19.73

Attend machine/prod. 71.25 71.25
Training/meetings 25.00

Wait/downtime 66.07 73.57
Other (cleaning, etc.) 41.25

Total 365.81 71.25 102.07

— Wait/downtime: This is a non-productive activity and the time of the activity can be
calculated as follows.

— For people: number of boards produced x average waiting time

2850%(1.391/60) = 66.07 hours
— For machine: number of boards produced X average waiting time +
number of downtimes x average time of downtime
2850x(1.391/60) +10x (45/60) = 73.57 hours
— Other (cleaning, etc.): this is a non-productive activity and the time of the activity _

can be calculated as follows.

— For people: number of times x average time X number of people
11x(45/60)x5=41.25 hours

The resource capacities (people and machine) for the SMT cell can now be
calculated.
For people:
— Productive: 0.00%

— Non-productive:

(365.81/(168.67x 5)) x100% = 43.38%

— Available:

100-0.00—-43.38 =56.62%

110

For machine:

— Productive:

(71.25/176)x100% = 40.48%

— Non-productive:

(102.07/176)x100% = 58.00%

— Available:

100-40.48~58.00=1.52%

The resource capacities for the cells in the PCB value stream are calculated again
after the implementation of lean manufacturing in order to check how much free

capacity has been achieved. Again, the SMT cell is used as an example. Assuming that

the introduction of lean manufacturing has led to the following improvements:

— Set-up time is reduced to 25 minutes and only 3 people are required to perform the

set-up activity.

— Material moves are eliminated since the suppliers provide the materials daily and

directly to the SMT cell.

— Waiting is eliminated and down time is reduced to 4 times.

Taking into consideration these new improvemenfs,' the data in Table 5.27 (before lean)
should be amended as presented in Table 5.29 (after lean). Now, using data from Table
5.29 and following the same calculations used to calculate the times of activities before

lean, the times of activities after lean can be calculated. The results are presented in

Table 5.30.
Table 5.29. The data for the SMT activities after lean
Activity No. of times/month | Average time (min) |
Material moves 0 -0
Meetings/training 6 50
Other activities 11, 45
Waiting (per product) 2850 0
Downtime (machine) 4 45

111

Table 5.30. Activities in the SMT cell and the time of each activity after lean

People Machines
Activity Productive Non- Productive Non-
productive productive

Set-up 85.50 18.75
Moving materials 0.00
Attend machine/prod. 71.25 71.25
Training/meetings 25.00
Wait/downtime 0.00 3.00
Other (cleaning, etc.) 41.25
Total 223.00 71.25 21.75

The resource capacities for the SMT cell after implementing lean manufacturing
can now be calculated following the same calculations performed above. The final
results regarding the resource capacities for the SMT cell before and after the
implementation of lean manufacturing and the changes achieved are shown in Table
5.31. As can be seen from the table, the implementation of lean manufacturing has
converted part of the non-productive capacity into an available capacity in the SMT cell.
The percentage of capacity freed by lean manufacturing is 16.93% for people and
45.64% for machines.

Table 5.31. Resource capacities for the SMT cell before and after implementing lean

People Machines
Blefore After Change Before | Afier Change
ean lean lean. lean '
Productive (%) 0.00 0.00 0.00 | 40.48 40.48 0.00
Non productive (%) | 43.38 26.44 -16.93 | 58.00 12.36 -45.64
Available (%) 56.62 73.56 16.93 1.52 47.16 45.64

The same procedures are applied to the other cells in the PCB value stream and
the capacities of the resources are calculated before and after implementing lean
| manufacturing. The complete picture can now be seen after filling the information
obtained above in the box score for the case study. Table 5.32 represent the new box

score, which includes, in addition to the information presented in the old box score, the

112

capacities of resources and the future state (after lean) for the three categories:

operational, resource capacity and financial.

Table 5.32. The new box score for the case study

Current Future Change
state state &
Dock-to-dock days 25 6.5 -18.5
'S | First time through 5551% | 91.50% | 35.99%
-2 | On time delivery 88.36% 97.20% 8.84% -
& | Floor space -] 3200m° | 2200m® | -1000 m’
8‘ Sales per person £19,597 £19,597 £0
Average cost per unit | £158.09 £147.44 -£10.65
8 = Productive 23.18% | . 21.50% -1.68%
8 & | Non productive 58.46% | 38.05% | -20.41%
[P~
M © | Available 18.36% 40.45% 22.09%
_. | Inventory value £40,020 | £9,100 -£30,920
-g Revenue £901,470 | £901,470 £0
& | Material costs £340,510 | £317,240 | -£23,270
& [Conversion costs £110,047 | £102,977 | -£7,070

Value stream profit £450,913 | £481,253 £30,340

In addition to the £30,340 improvement to the value stream profit, there are also
operational improvements (e.g. 1000m?* of freed-up floor space and 40.45% available
capacity) that can be exploited to further increase the financial profit of the value
stream. A lean optioﬁ would be to use the freed resources to increase production. The -
other option would be to sell/rent the extra resources. For example, extra people can be
made redundant, extra machines can be sold or rented to another company. The
information for long-term future state can be calculated once the decision of what to do

with the extra resources is taken and, then, the box score can be completed.

5.8.3. Eliminating wasteful financial transactions

Financial transactions and processes are used to maintain control over the
business. Accounts payable, accounts receivable and general lodger are examples for
such financial processes. As these transactions and processes incur costs, lean
accounting tries to eliminate some of them while maintaining the required control over

the business. In addition, eliminating transactions frees up more resources (mainly

113

accountants), which can then be used for lean improvements. The best way for
eliminating transactions is to eliminate the reasons behind the -existence of these
transactions in the first place, and that is what lean accounting does. In the case study,
some financial transactions will be used as examples to show how lean accounting can

eliminate these transactions.

5.8.3.1. Accounts payable and accounts receivable processes

The company accountants spend a great deal of time auditing invoices from
suppliers and producing invoices to customers. The reason for that is to match these
invoices with the purchase orders produced and receipts received. This process is time
and cost consuming and the company would do better without it. Reducing the number
of invoices, and ultimately eliminating them, is the way to eliminate this process. The
lean accounting way of dealing with this issue is explained hereafter. The accounts
payable is used as an example.

The accounts payable elimination process starts with the company examining its
suppliers to identify the key ones. Then, the key suppliers are certified and blanket
purchase orders are established with them. The blanket purchase order contains the
tefms for supplying, the prices, the amounts, etc. which are agreed with the suppliers.
The outcome of this action is that the need for invoices is reduced dramatically. The
company now has a firm relationship with a small number of certified suppliers who
will deliver the required materials daily to the production cells. Furthermore, the
matching of purchase orders with the invoices has been eliminated since the trust
between the company and its certified suppliers is now higher. Reducing the number of
invoices means less accounts payable and, hence, less wasteful transactions.
Furthermore, the number of invoices could be completely eliminated when the lean
practices mature enough in the company and the payments are made to the suppliers
when the materials are used. .

The same approach discussed éboVe can be applied to the accounts receivable
with one difference. The company takes on the role of the supplier and its customers
take on the role of the company. The company becomes a certified supplier to its main
customers, who are encouraged to create blanket purchase orders with the company.

The results achieved here are the same as discussed for the accounts payable.

114

5.8.3.2. The general lodger and end-of-month close process

In the case study, the company follows the traditional way of processing the
general ledger and end-of-month close. Since the company is organised by departments
there are resources allocated to each department. Hence, there are different accounts for
the resources of each department, as shown in Table 5.33. This leads to a complex
general ledger and end-of-month close process compared to the case when the company

is organised by value stream.

Table 5.33. The resources and their accounts for each department for the case study

Resources , Accounts
People Salary & benefits, taxes, training, travel, entertainment
Machines QOutside maintenance, depreciation
Tools Tools used, depreciation
Supplies Supplies costs
IT equipments Supplies, depreciation
Office equipments Supplies, depreciation
Utilities Electricity, gas, water, telephone
Warehouses Warehouses costs
other Property tax, land rent
Total No. of accounts | 45

Having introduced lean accounting, the company is now organised and managed
by value streams. The number of departments is now reduced to three: PCB value
stream, research & development and administration & overhead. Furthermore, the
company reduced the number of accounts per department to five (materials, people,
machines, external costs and other costs). Due to the reduction of the number of
departments and the reduction of accounts per departments the number of accounts in
the general ledger is reduced from 45 (as shown in Table 5.33) to 5x3=15. The
reduction of number of accounts in the general ledger means the way of producing
financial statements has become easier and faster and this leads to time and, hence, cost
reduction.

Table 5.34 represents the financial statement for the case study. The profit rate of
the PCB value stream is calculated by dividing the value stream profit by the revenue.
As for the other two columns (new products and admin/overheéd); the information

mentioned is assumed to be known data.

115

Table 5.34. A financial statement for the case study

Value streams

PCB New products | Admin/overhead Total
Revenue £901,470 £0 £901,470
Material Costs £340,510 £8,240 £348,750
Conversion costs £110,047 £260,255 £370,302
Value stream profit | £450,913 -£268,495 » £182,418
Employees costs £16,720 £16,720
Expenses ' £9,201 £9,201
Previous inventory £40,020
Current inventory £40,020
Change ‘ . £0
Gross profit £156,497
Profit rate 50.02% 17.36%

5.8.4. Value stream costing
The value stream includes all the cells that contribute to fulfil a customer order

starting with order entry and ending with after-sale support. Since standard costing (a
process used in standard accounting) is not suitable for lean companies due to its way of
dealing with overhead and to its non-lean characteristics (e.g. detailed data collection), a
more suitable costing method that relies on lean principles and that is easy to understand
is required. The lean accounting alternative to standard costing is value stream costing.
At the early stage of implementing lean manufacturing, back-flushing is used to
calculate the product cost without the need to track the costs while the product is being
produced. This process can gradually be eliminated and replaced with value stream
costing since value stream costing provides the appropriate information for decision-
making and it is easy to'understarnd and simple to implement as will be seen when
implemented on the case study.

The basic idea of value stream costing is to calculate the costs (direct and indirect)
incurred by the value stream. Then, the product average cost can be calculated by
dividing the total cost of the value stream by the number of items produced in that value
stream. This idea is actually not new and it is already being used in the process
industries (e.g. oil refining, petrochemical industries, etc.). In fact, because lean
companies are starting to have the characteristics of process-based companies (short

lead time, small batch size, the level of inventory is low and stable, etc.), it would be

116

suitable for them to use the same costing method. The implementation of value stream

costing can be performed when some conditions are met:

— Lean practices have progressed to a certain stage (when the level of inventory is low
and consistent, short lead time, etc.).

— The business should be organized by value streams not by departments because one
product or one product family can be produced by one value stream but not by one |
department.

— There should be as little as possible of overlap between value streams since
overlapping makes it difficult to allocate the costs to each individual value stream.

— The inventory and the production processes should be under control.

There are some costs that cannot be attributed to any particular value stream in the

business (e.g. research and development, market research, recruitment, training, annual

audit, etc.); these costs are usually, but not always, small when compared to the other
costs and are not allocated to the value streams. Instead, they are considered as
sustaining costs and treated separately.

 The cost of a product is required to be calculated by the standard accounting
system because some decisions (e.g. pricing, make/buy, etc.) are made based on it.

However, in a lean organization, the focus is on the value that the product provides to

the customer and the pﬁcing decision is made according to this value. The make/buy

decisions are made according to how the decisions will affect the profitability of the
value stream (the existence or non-existence of required capacity). The same discussion
can be applied when a new product is introduced. This means, in a lean organization,
the need to calculate the cost of a particular product is not always required. However,
when it is required other methods should be used since value stream costing does not
provide it. The solution provided by lean accounting to this problem is ‘features and

characteristics costing’, which will be studied in subsection 5.8.5.

The value stream costing method is used to calculate the average cost of the PCBs
produced by the PCB value stream in the case study. The calculated costs are for a
period of one month and calculated as follows. The costs of employees working
(directly or indirectly) in the value stream are calculated as shown in Table 5.35 in
which the number of employees and the cost per employee are assumed to be known
data. The number of employees represents the equivalent number of employees working

for the PCB value stream. For example, the number of employees working in

117

“Purchasing” is 3 but since they work for two different value streams (PCB and new _
products development), the equivalent number of employees working in the PCB value ‘
stream is less than 3. Depending on how much time these 3 employees spend working
for each value stream, the equivalent number of employees working for the PCB value
stream can be calculated. Assuming that the amount of time they spend working for the
PCB value stream is double the amount they spent working for the new products
development value stream, this means, the equivalent number of employees working in

“Purchasing” for the PCB value stream is equivalent to 3x(2/3) =2 people as shown in

Table 5.35.

Table 5.35. The cost of employees working in PCB value stream

No. of Cost per Total cost
employees employee
Manager 1 £2,480 £2,480
SMT machine 5 £1,520 £7,600
Manual load 10 £1,520 £15,200
Test/rework 9 £1,520 £13,680
Bum-in 4 £1,520 £6,080
Package/shipment 2 £1,520 £3,040
IT 1 £1,960 £1,960
Purchasing 2 £1,680 £3,360
Customer services 1 £1,680 £1,680
Human resources 1 £1,680 £1,680
Secretary 1 £1,680 £1,680
Accounting 2 £2,160 £4,320
Quality assurance 1 £2,160 £2,160
Design/manufacturing eng. 2 £2,160 £4,320
Maintenance/technical supp. 2 £2,160 £4,320
Security/cleaning 2 £1,520 £3,040
Total 46 £76,600

The costs of materials, machines and other costs are also assumed to be known as
presented in Table 5.36. The cost of materials include the costs of raw materials used in
the manufacturing processes of the PCBs; the costs of machines include maintenance,
utilities and depreciation; other costs include any outside processing costs, consumable
materials, tools, etc. The total of the costs in Table 5.35 and Table 5.36, excluding the

costs of materials, represents the conversion cost in the PCB value stream.

118

Table 5.36. The costs of material, machines and other costs for PCB value stream

Costs. of Cost.? of Other costs

materials machines
SMT machine £320,450 £999 £12,912
Manual load £7,998 £257 £5,430
Test/ rework £1,230 £142 £1,530
Burn-in £10,832 © £120 £1,056
Package/shipment £140 £3,150
Design/manufacturing eng. £5,691
Security/Cleaning £2,020
Total £340,510 £1,658 £31,789

Therefore, the conversion cost, which is used as known data earlier in this chapter, can

now be calculated:

76,600+1,658+31,789 =£110,047

Now, the total cost of the PCB value stream can be calculated:

110,047 +340,510 = £450.557

The company produces an average of 2850 PCBs per month, this means the avérage

cost of one PCB is:

450,557/2850=£158.09

5.8.5. Features and characteristics costing

Features and characteristics costing method is based on the idea that there are
some features and characteristics in the product that determine the cost of
manufacturing it. Since the value stream is designed to produces \similar but not
identical products (product family), the average cost calculated by the value stream
costing method does not accurately represent the cost of any of the products. Rather, it
represents the cost of an ‘average product’ that has the average features and
characteristics found in the other products. Therefore, the actual cost of any of the
products is probably close, but not identical, to the average cost. The difference between
the two costs depends on how much the two products are different in their features and
characteristics. Therefore, to calculate the cost of a product more accurately, the
features and characteristics that differentiate it from the ‘average product’ should be

identified and the cost generated from having them should be calculated.

119

In general, the products that require more time to be manufactured consume more
cost; this means, the cost of a product is related to its production rate of flow, which in
turn is determined by the flow at the bottleneck cell in the value stream. Therefore, aﬂ
these issues should be considered when using the features and characteristics costing
method for calculating the cost of a product. Not only can features and characteristics
costing method be used to calculate the cost of a product already being manufactured
but it can also be used to calculate the cost of products that are still in the design stage.

The features and characteristics costing method is applied to the case study to
calculate the costs of each PCB produced by The PCB value stream. The PCBs that
have high number of components require longer cycle times on the SMT machine than
the average cycle time (1.5 minutes). The same principle applies to the PCBs that have
small number of components. '

— Determining the bottleneck cell: |

The bottleneck cell in the case study is the SMT cell. The average time required
by the PCB to pass through the cell is the sum of the cycle time, waiting time and set-up
time:

1.5+1.391+(38x45/2850) = 3.491 minutes

— Determining the features and characteristics that affect the production of the
bottleneck cell: |

In PCB manufacturing, the product features that affect the SMT production time
is the number of components that have to be placed on the board and the types of these
components. In the case study, the number of components is categorised into low,
average and high, which corresponds to 1.2 min, 1.5 min and 1.9 min cycle times
respectively. Regarding the types of components, it can affect the set-up time of the
SMT machine in the case study. When the components include a high percentage of
components that are not dedicated to the SMT machine, the set-up time wil! be higher
than the average set-up time and vice versa. To take this into account, the percentage of
the non-dedicated components is, again, categorised into low, average and high, which
corresponds to 30 min, 38 min and 53 min set-up times respectively. Table 5.37 shows
the categories of the features and characteristics that affect SMT production time. It has
to be noted that for the average number of components and the average number of non-
dedicated components, the cycle time is 1.5 min and the setup time is 38 min. These two

amounts have been used previously in the case study as presented in Table 5.23.

120

Table 5.37. Categories of the features and characteristics that affect SMT production

Category Number of | Cycle time Percentage of non- Set-up time
components (min) dedicated components (min)
Low <17 1.2 <2% - 30
Average 17-25 1.5 (2-4)% ' 38
High >25 1.9 > 4% 53

— Calculating the cost of PCBs: _

The conversion costs of the PCBs are calculated taking into account the nine
combinations (3 categories for the number of components X 3 categories for the non-
dedicated components) listed in Table 5.37 as follows. The coriversion cost of an
average PCB (a PCB that has a number of compdnents of 17-25 and a percentage of
non-dedicated components of 2%-4%) is the conversion cost of the PCB value stream
divided by the average number of PCBs produced i)er month. The average number of
PCBs produced per month is calculated by dividing the production time of the SMT
machine by the cycle time. The production time is the number of working minutes per
month minus the downtime minutes. Assuming that the average number of working

days per month is:
- 5 (days per week)x 52 (weeks per year)/12 (months per year) =21.67 days
Then, the working minutes per month can be calculated:

8 (hours per day)x 60 (minutes per hour)x21.67 =10,400 minutes

Taking into account the data in Table 5.27, the downtime minutes per month can be

calculated:
10x 45 = 450 minutes

This means, the production time is:
10,400 —450 = 9950 minutes

Since the cycle time for the SMT, as calculated above, is 3.491 min, the average number

of PCBs produced per month is:
9950/3.491=2850 boards

This amount has been used in previous calculations throughout this chapter.

Now, the conversion cost of an average PCB is calculated:

121

110,047/2850 = £38.61

The same calculations can be performed for the other eight combinations taking into
consideration the cycle times and set-up times for each combination in Table 5.37. For
example, when considering a high number of components and a low percentage of non-
dedicated components, the cycle time and the set-up time for this combination are
1.9min and 30min respectively. The conversion costs for all types of PCBs are

presented in Table 5.38.

Table 5.38. The conversion costs for all PCB types in the PCB value stream

Percentage of non-dedicated components
<2% 2-9% > 4%
Number of <17 £33.15 £34.60 £37.69
components 17-25 £36.99 £38.61 £42.05
>25 £42.11 £43.95 £47.87

As can be seen from Table 5.38, the conversion cost per PCB starts with £33.15
for the easiest to manufacture and ends with £47.87 for the most difficult to
manufacture. As for the cost of materials, it is obtained for the intended PCBs from the
bill of materials. Usually, PCBs with a higher number of components tend to have a
higher cost of materials.

It has been explained above how features and characteristic costing method could
be used to calculate the cost for different PCB types. Following the same analogy, this
method could potentially be used to calculate the costs of products in other industries.
However, there is a limitation to this method that should be noted. This method
provides one cost for a range of similar products (i.e. sub-family of products). In reality,
non-identical pfoducts consume similar but not identical costs. For example, in the case
study, a board type with 18 components and 5% non-dedicated components has the
same conversion cost as a board type with 24 components and ’7% non-dedicated
components because these two board types fall into the same range according to the
classifications shown in Table 5.38 (average number of components and high
percentage of non-dedicated components). In some cases, the downside of this costing
method can be ignored due to the fact that the exact cost of a product is not al\;vays

required.

122 -

5.8.6. Target costing
Target costing is used in lean accounting to focus on customer value, which is one

of the principles of lean thinking. Target costing is used to calculate the allowable cost,
which is the cost that represents the difference between the selling price and the
required profit of a product. The allowable cost of a product should satisfy the customer
and the value stream profitability required by the company management. Target costing
is implemented by establishing the customer value by considering ’ghg product and any
other services associated with it. The allowable cost is then calculated as the customer
value (selling price) minus the required profit, and then compared to the average
product cost created by value stream costing as explained in subsection 5.8.4. If the
allowable cost is less than the average product cost, some improvemeﬂts should be
made to reduce the average product cost. These improvements may include changes to
any process in the value stream from order entry to after-sale services. Target costing
can be used for products currently being manufactured and for new products alike. It
should be noted that target costing is not just a method for calculating the cost of a
product to satisfy the customer and the cdmpany management, it is also a method for
continuous improvement across the value stream in order to increase custdmer value
and, at the same time, to increase value stream profitability.

The process of implementing target costing requires many steps. It usually starts
by understanding the customer needs through conducting surveys, then, identifying the
features and characteristics that will meet these needs. This sfep is followed by
identifying the target costs for the products and services, and finally, balancing the
value stream costs with the target costs through continuous improvement. These steps
will be applied to the case study as explained below.

- The company in the case study receives a customer order to manufacture a new
type of PCB. The rate of production will need to be 350 boards per month to fulfil the
customer demand. Having negotiated the price with the customer, it has been agreed
that the price of the new board type is to be £325.00 per board. The company
manufactures PCBs according to the requirements needed by its customers, which
means the first steps of implementing target costing (understanding customer needs and
value) are already fulfilled.

The new PCB type consists of 32 components and 3.8% of them are non-

dedicated to the SMT machine. This means that the new PCB falls into the category

123

high number of components and average percentage of non-dedicated components.
According to Table 5.38, the conversion cost for this PCB is £43.95. The cost of
materials according to the bill of materials is assumed to be £168.65, hence, the total

cost of the new PCB type can be calculated as:
43.95+168.65=£212.60

The company has decided to keep the profit rate for the PCB value stream constant (i.e.
50.02%, as shown in Table 5.34) after the new PCB type is introduced, which means the
new PCB should be sold with a proﬁt rate of 50.02%. With such profit rate, the

allowable cost can be calculated as the selling price minus required profit:
325.00—(325.00x 50.02/100) =£162.43

Since the total cost is higher than the allowable cost, improvements to the value stream

have to be made to get rid of the cost gap of:

212.60-162.43 = £50.17 per board

or:

£50.17 (per board)x 350 (boards) =£17,558 per month

for the value stream. Without bridging this gap the profit rate of the new product would
be:

profit/ revenuex100% = (325.00-212.60)/325.00x100% = 34.58%

and for the value stream as a whole it would be:
— The value stream revenue is the revenue of the value stream (from Table 5.26) plus

the revenue obtained from the new PCB type per month:

901,470+ (325.00x350) = £1,015,220

— The value stream cost is the cost of the value stream (calculated in subsection 5.8.4)

plus the cost of the new PCB type per month:

450,557 +(212.60x350) = £524,968

This means, the profit rate of the value stream without any improvements made would

be:

profit/ revenuex100% = (1,015,220~ 524,968)/1,015,220x100% = 48.29%

124

" as shown in Table 5.39.

Table 5.39. Calculations of the target costs for the case study

New product | Current value stream | Future state

Allowable cost £162.43 £158.09 £158.57
Conversion cost £43.95 £38.61 £39.19
Material costs £168.65 £119.48 £124.86
Total costs £212.60 £158.09 £164.05
Cost gap . £50.17 £0.00 £5.49
No. of products 350 2850 3200
Current value stream cost £74,411 £450,557 £524,968
Target value stream cost £56,853 £450,557 £507,410
Cost gap £17,558 £0 £17,558
Profit rate 34.58% 50.02% 48.29%

The figures in the second column of the table are already calculated above apart

from the target value stream cost, which can be calculated as follows:
162.43x350 = £56,853

As for the third column, the same calculations performed for the second column can be
performed here after calculating the average selling price, which is calculated as

follows:

901,470/2850 =£316.31

and calculating the average cost of materials, which is calculated as follows:
340,510/2850=£119.48

The revenue and the total cost of materials are assumed to be known as presented in
Table 5.26. Regarding the future state column, the number of products, the current value
stream cost, the target value stream cost and the cost gap are all calculated by adding up
the corresponding amounts of the new product and the current value stream columns.
As for the rest of the amounts, they are calculated as follows:

— The allowable cost is calculated by dividing the target value stream cost by the

number of products:

507,410/3200 = £158.57

125

The conversion cost can be calculated as follows:

(conversion cost of the new product x amount of new product + conversion
cost of the current value streamx amount of current value stream)/ amount

of the future state

(43.95x350+38.61x2850)/2300 = £39.19

The total costs is calculated by dividing the current value stream cost by the number

of products:
524,968/2300 = £164.05
The material costs is calculated by deducting the conversion cost from the total cost:

164.05-39.19 =£124.86 ‘

The following lean improvements have been introduced to the PCB value stream

in order to eliminate the cost gap in the value stream:

Reduction in the cost of materials due to lean processes (pull systems, short lead
time, etc.), which have been agreed with the suppliers.

Reduction in the conversion costs due to a reduction in the waste rate of the value
stream cells (as explained in subsection 5.8.2) and the elimination of some

transactions (as éxplained in subsection 5.8.3).

Assuming that the improvements have reduced the conversion and the material costs by

3.44% and 3.10% respectively for both the new PCB type and the current PCBs, this

means the new conversion and the material costs can be calculated:

For new PCB type:

43.95x (100 —3.44%) = £43.44
138.65% (100~3.10%) = £163.42

For current PCBs:

38.61x (100—3.44%) = £37.28

119.48x(100~-3.10%) = £115.77

Following the same calculations performed to obtain the figures presented in Table

5.39, the new figures, after the improvements have been applied to the PCB value

stream, can be obtained as shown in Table 5.40. The table shows how the cost gap in

126

the value stream is reduced to £846 and the profit rate is increased from what it would

have been without the lean improvements to 49.94%.

Table 5.40. Financial impact of the introduction of the lean improvements

New product | Current value stream | Future state

Allowable cost £162.43 £158.09 £158.57
Conversion cost £42.44 £37.28 £37.85
Material costs £163.42 £115.77 £120.98
Total costs £205.86 £153.05 £158.83
Cost gap £43.42 -£5.04 £0.26
No. of products 350 2850 3200
Current value stream cost £72,051 £436,205 £508,256
Target value stream cost £56,853 £450,557 £507,410
Cost gap £15,198 -£14,352 £846
Profit rate 36.66% 51.61% 49.94%

In general, the lean improvements introduced may not necessarily improve the
situation to the extent required by the company. In this case study, since the lean
improvementé have not been sufficient to reach the company target, the company could
decide not to introduce the new product. However, implementing lean improvements is
required even when no new products are introduced. In fact, the process of
implementing lean improvements is an ever continuous process and is necessary for the

survival of the company in an ever-competitive manufacturing world.

5.8.7. Financial planning

Lean accounting, in common with other accounting systems, requires planning so
that the future customer needs can be assessed in order to prepare the required resources
and capacities to meet these needs. Furthermore, the business should be flexible enough,
in terms of capacity, in order to cope with unexpected situations. In contrast to
traditional annual budgeting, lean planning is more flexible and can be updated when
needed (often regularly). Lean planning process gives the managers the required
information to successfully manage the business in a proactive way. Lean financial
planning is a team-work process. It involves the cooperation of cross-functional people
in the value stream: sales and marketing, finance, engineering and operations. The end

result of this cooperation is a plan that includes sales, new products introduction,

127

operation capacity and finance for each value stream. The plan is put into action, which
includes short- and long-term actiops. This plan is updated periodically (usually

monthly) in order to reflect changing customer needs.

5.9. Activity-based costing versus lean accounting

Activity-based costing and lean accounting have been the main subjects of
Chapter 5 in which they have been applied to the case study. However, here are some
problems associated with them that should be outlined. The main problem with ABC is
that it requires a great deal of work to collect the relevant data for its implementation.
This problem is more noticeable when the organisation is large and produces high
number of product types. In fact, a large organisation requires a team of full-time people
to collect the necessary data for ABC implementation. This is a wasteful and time-
consuming process and it may force organisations experimenting with ABC to abandon
it. Another problem associated with ABC is that ABC allocates costs to products on the
basis of cost drivers that may not be proportional to the volume of the output.
Furthermore, if can be argued that ABC, cOmpared to LA, is a method for cost °
estimation not for cost reduction. It helps provide better understanding of how costs aré
incurred and allocated to products but it does not provide a plan for minimising these
costs. It is up to the management to find a way of doing that having understood how the
costs are incurred. .

Kaplan, who is the cofounder of ABC, acknowledges the complexity of
implementing ABC and how it is difficult to sustain it over time (Kaplan & Anderson
2003). The solution to this problem is to find other methods that are less data
demanding and more lean based. Bearing this in mind, Kaplan suggested a new
approach to ABC. This new approach is time and capacity based and has some
similarities to lean accounting. Maskell (2006) presented those similarities as shown in .
. Table 5.41. This new approach shows that ABC is evolving so that it can solve the
problems associated with it on one hand and adopts the principles of lean on the other
hand. In other words, the gap between ABC and lean accounting is continuously
narrowing and soon a new hybrid system which has the positive features of both could
be developed.

As for lean accounting, it has also its own problems. The lean accounting way of
calculating the cost of a particular product is represented by ‘features and characteristics

costing’. As explained in section 5.8.5, this method relies on dividing the product types

128

into groups of similar prbducts depending on their features and characteristics. The cost
of the products in each group is then calculated assuming that all the products in this
group have the same cost. In reality, this assumption may or may not be accurate and

when it is not, this could eventually lead to wrong decisions being made.

Table 5.41. The similarities between iew ABC and lean accounting

New ABC Lean Accounting
Cost Collected by departments within the | Step by step allocation as in
allocation | processes value stream costing

Calculated according to the capacity | Considering the rate of flow
required to perform the job within through the bottleneck

the process operation

Productive, non-productive
and available capacity

Product
cost

Capacity | Used capacity and unused capacity

Cost Process cost Value stream cost
Activity | Incorporating activity characteristics | Features and characteristics
features | that cause processing time to vary costing
5.10. Summary

ABC and LA have been presented in this chapter as two examples for the cost
estimation and accounting aspects of this research. The implementation procedures of
bo‘th methods have been studied and applied to a case study. The implementation
process of ABC on the case showed how ABC could be used to analyse the production
process and perform the right steps to understand and potentially reduce the production
costs. In the case study, ABC was used to identify the activities used for producing
PCBs and the cost of each activity. This allowed for more attention to be paid to the
most costly ones in order to reduce their costs. The most. costly activities were found to
be “placing components”, “programs and fixtures”, “testing” and “rework”. As shown
in Chapter 4, it was possible to reduce the cost of the “placing components™ activity by
optimising the pick-and-place machine. This optimisation was achieved through
optimising the component placement sequence and feeder assignment. The use of ABC
in this case study has proven how it could be successfully used for estimating the cost of

the PCB production.

129

The importance of implefnenting lean accounting alongside lean manufacturing
and how it could be achieved were explained and the explanation was supported by
examples for illustration purposes. It was illustrated how lean accounting could help
companies implementing lean manufacturing see the financial benefits of such
implementation in addition to the operational benefits. The case study clarified the
implementation steps of lean accounting and made it easier for the reader to
comprehend what lean accounting was about. It explained the financial benefits of
implementing lean principles. Finally, the problems associated with activity-based
costing and lean accounting were outlined and how a new activity-based costing

approach was being developed.

130

CHAPTER SIX

6. RESEARCH VALIDATION & EVALUATION

6.1. Introduction
In this chapter, the validation of the results obtained in this research is presented.

This is achieved by comparing the results and the approaches used in this research to
similar research works in the literature. In addition, the importance of this research and

its contributions to the advancement of knowledge are outlined.

6.2. Research validation
In this section, the proposed algorithm to solve the PCB related three problems is

validated against other algorithms used in the literature to solve PCB related problems.
Since the three PCB problems considered in this research has not been solved
simultaneously before, the results obtained in this research will be compared, where
available, to the results obtained by researchers who simultaneously solved two (feeder
assignment and component sequencing) of the three PCB problems considered in this

research.

6.2.1. Validation of the work on the optimisation of production processes

The most similar study in the literature to the case considered in this research is
that of Su et al (1998). In their study, Su et a/ presented a TS-based approach to obtain
the shortest (or near shortest) cycle time, feeder assignment and component sequencing
based on a dynamic pick and place (DPP) robot motion model. In a DPP modevl, the
robot moves in two directions (X and Y axes) and the board and the feeders move in
one direction (X-axis). This means that Su’s study is different from the research
presented in this thesis in the number of the problems solved as Su focused on the
feeder assignment and the component sequencing problems, however, in this research
work an additional problem (board type sequencing) was considered. Another
difference between the two studies is the movement of the board and feeders (mobile in
Su’s and fixed in this researcﬁ). The comparison between the two cases, because of
these two differences, will be of limited value and importance. Therefore, the case

considered in this research is adjusted as follows so that a comparison can be made.

131

The board type sequencing is affected by the set-up time and the feeder
assignment. By setting the set-up time in the program to zero, the problem of board type
" sequence is eliminated and it is no longer affecting the results. Regarding the issue of
fixed board and feeders, equation (4.6) in Chapter 4 is still applicable, however, the set-
up time is now equal to zero and the way the time calculated in the program is adjusted

_ to take into account the movement of the board and the feeders. Now, the board and the
feeders move horizontally (){—axis) at a speed equal to the speed of the machine head
(500 mm/sec).

" Su et al compares their results to the work of Wang et a/ (1997 cited in Su ef al
(1998)) and they claim that their results are better than Wang’s (who considered the
feeder assignment problem only). In the case where the number of insertion points is 30
and the number of component types is 15, the cycle time achieved by Su’s approach is
14.26% less compared to the cycle time achieved by Wang’s approach. However, the

- average improvement for all the combinations considered is 9.08%. The average
improvement to the assembly time achieved in this research is 5.96% and after adjusting
the case to be similar to Su’s study, the imprdvement has increased to 7.87%. Although
this percentage is less than the results achieved by Su et al (1998), but this does not
necessarily mean that Su’s approach is superior to the approach adopted in this research.
Su’s TS-based approach does not comsider two of the basic attributes of TS:
intermediate and long-term memories (diversifications and intensification). Taking
these two attributes into consideration in this research means that the TS algorithm
adopted in this research should be superior to Su’s. Unfortunately, the results obtained
do not support this claim because the data used in this research are different from that of
Su’s since the author did not have access to Su’s data in order to use them.

It should be noted that the increase of the improvement in assembly time from
5.96% to 7.87% after eliminating the board type sequence problem and considering a
moving table and moving feeders, leads to the belief that the movement of the board
and feeders have positively affected the TS algorithm. A possible reason could be that
the movement of the board and feeders have provided the TS algorithm more room for
manoeuvre and, hence, more chance to improve the assembly time. '

- As for the GA algorithm, it has been used intensively in the literature to solve
PCB problems and using it here for the same goal (solving PCB problems) would be of

little usefulness. Therefore, it is used in this research mainly for comparison reasons.

132

The results obtained from using GA are compared to that obtained from using TS and
the effects of changing the parameters of the algorithm are also considered as presented
in Chapter 4. Therefore, a validation process is not necessary for GA algorithm as

performed for TS algorithm.

6.2.2. Validation of the work on the cost estimation aspect

As mentioned in Chapter 5, there has not been much work on the implementation
of ABC in PCB manufacturing facilities. However, the work of Ong (1995) is
considered to be the most suitable to compare to this work due to the fact that Ong
applied his work on a case study which is quite similar to the research presented in this
thesis. Ong uses a different way of implementing ABC compared to what is used in this
research. He uses worksheets, activity charts and a cost build-up table to calculate the
cost of PCBs with the aim of allowing designers to estimate the cost of PCBs at the
design stage. However, in this research the implementation is a four-step process as
presented in section 3.4.

Since the data used by Ong are different from the data used in this research, the
comparison between the results obtained in both research works can be carried out only
when the costs of activities are represented as percentage values as shown in Table 6.1.
For reasons beyond the author’s knowledge, some of the activities in the example
presented in Ong’s research have no cost (e.g. Burning-in, Applying adhesive,

- designing, etc.). In spite of this and in addition to the 10-year gap in time between the
two research works, there are similarities between the costs of activities in Ong’s
example and the costs of activities in the case study presented in this research. As can
be seen from Table 6.1, the three activities of the highest costs are the same (Placing
components, Programs & fixtures and Testing) in both cases. However, the notable
difference is that the cost percentage is higher in Ong’s example which could be due to

" the technological advantage available these days. As for the rest of activities, there are

some similarities in the costs (e.g. Rework, Soldering, loading & uhloading, etc.) and
some differences (e.g. Inventory holding, Screen printing, Curing & baking, etc.), which
is bound to exist due to the differences in the data used (e.g. different number of
components, different layout, etc.) between Oﬁg’s example and the case study presented
in this research.

The problem with Ong’s approach is its dependence on worksheets and activity

charts that have to be updated continuously and the fact that they are suitable for PCB

133

cases only. The worksheets, which describe the components, their placement, set-up
costs, etc., have to be updated since new types of components are introduced
continuously. In addition, the continuous technological advancement means that the
costs of components are continuously changing. The same discussion applies to the
activity charts since they require updating when new components or new placement
machines are introduced. Updating the worksheets and activity charts is not an easy

process; it requires intensive experimentation to obtain accurate information.

Table 6.1. Costs of activities (in percentage) in this research and in Ong’s research

Activity This research | Ong’s research
Placing components 14.46% 26.83%
Programs & fixtures 11.88% 25.82% °
Testing 9.37% 12.80%
Rework (repair) 5.78% 6.04%
Burning-in 5.34% 0.00%
Inventory holding 5.30% 1.91%
Material handling 5.26% n/a
Soldering 5.18% 4.94%
Screen printing 4.83% 0.43%
Applying adhesive 4.83% 0.00%
Visual & touch-up 4.18% 7.61%
Curing and baking 3.37% 0.14%
Cleaning 3.37% 1.13%
Kitting/other operations 3.11% 6.37%
Designing 2.93% 0.00%
Setting-up 2.54% 0.88%
Loading & unloading 2.06% 2.56%
Place-&-route design 1.99% 0.00%
Acceptance sampling 1.59% 1.41%
Sequencing parts 1.02% 0.00%
Purchase order 0.98% 0.96%
Inventory retrieval 0.62% 0.17%
Total 100.00% 100.00%

The deficiency of Ong’s approach explained in the previous paragraph is not an
issue in the approach used in this research. Any changes to the component types or to
the machines used, or even any changes introduced to the facility which affect the
production cost, are reflected during the implementation of the four-step process

explained in section 5.4. In addition, the implementation process can be tailored to suit

134

different manufacturing facilities other than the manufacturing of PCBs. These
advantages give the implementation process considered in this research the upper hand

when ABC implementation is considered.

6.2.3. Validation of the work on the accounting aspect
Lean Accounting has been considered in this research as an example to show how

it is possible to improve the accounting system in order to reduce the cost on one hand
and show the financial benefits of implementing lean manufacturing on the other hand.
Since LA is a relatively recent subject, not much research has been designated to it. In
fact, the only substantial work about LA with a full detailed case study is the work of
Maskell and Baggaley (2004). In their work, Maskell and Baggaley present what they
call “a proven system for measuring and managing the lean enterprise”. The LA
implementation process considered in this research is adopted from Maskell and
Baggaley’s work. Table 6.2 summarises the improvements achieved after implementing
LA on the case studies presented in this research and in Maskell and Baggaley’s. The
improvement percentage is calculated by dividing the amount of change between the
future state and the current state in the box score presented in Chapter 5 (Table 5.32) by
the current state. For example, the improvement percentage for the Dock-to-dock days

can be calculated as follows:

Table 6.2. Improvements achieved by implementing LA on this research and on
Maskell and Baggaley’s research

This research | Maskell and Baggaley’s research

Dock-to-dock days -74.00% ; -78.05%

'S | First time through 64.84% 100.00%
-% On time delivery 10.00% 10.00%

5 | Floor space -31.25% -50.00%
& | Sales per person 0.00% 4.56%
Average cost per unit -6.73% ' -5.99%

§ z Productive -7.25% -15.00%

g g Non productive -34.91% -41.94%

R4 © | Available 120.32% 161.11%

_ | Inventory value -77.26% -76.07%
- | Revenue 0.00% 0.00%
S | Material costs -6.83% -6.83%
-',E Conversion costs -6.42% -4.45%
Value stream profit 6.73% 7.36%

135

(~18.5/25)x100% =-74.00%,

which means the Dock-to-dock days were reduced by 74%.
As can be seen from the table, the improvements achieved in both research works are
similar to some extent. In both case studies, the implementation of LA improved the

status of the company considered in the case study financially and operationally.

6.3. Research evaluation

The evaluation of this research is presented in this section, where alternatives to
how it is introduced are considered and its importance and the contribution it has made
to the advancement of knowledge are also discussed. Eéch of the three aspects of this
research is considered separately at first and the three aspects are then considered as a

whole.

6.3.1. Evaluation of the work on the optimisation of production processes

The optimisation of production processes part of this research focuses on process
optimisation and, hence, on cost reduction in the manufacturing industry. PCB
manufacturing has been chosen as an example and three production problems have been
solved using the proposed algorithm in Chapter 4. The problems associated with PCB
manufacturing have been considered by many researchers, as presented in the literature
review. Some of these problems are interrelated and should be solved simultaneously
rather than individually. Therefore, most researchers have solved PCB assembly
problems in pairs such as the component placement and feeder assignment problems. A
further step has been considered in this research by considering a three-problem
situation. Since the problem of board type sequence is affected by the set-up time, this
means it is related to the component placement and feeder assignment problems and any
solution to this problem should take the other two problems into consideration. This
research considers solving the three problems simultaneously, which is a developmeﬁt
to what other researchers have considered before.

The algorithm used to solve the three production problem is based on two
metaheuristics: TS and GA. Other metaheuristics (sixﬁulated annealing, mimetic
algorithms, random optimisation, local search, greedy algorithm, etc.) could have also
been used instead. TS is used because it has been successfully used to solve
combinatorial problems (Saad & Lassila 2002; Wan & Ji 2001; Su et a/ 1998) on one

~hand and it has been rarely used to soive PCB related problems so it is used here to

136

assess its potential on the other hand. GA is used mainly for comparison reasons. Since
GA has been used frequently to solve PCB manufacturing problems (Ho & Ji 2005; Ho
& Ji 2003; Jeevan et al 2002; Deo et al 2002; Ji et al 2001; Loh et al 2001), it is used in
this research in order to compare the results obtained from using it to the results
obtained from using TS algorithm. This comparison between TS and GA, and even
between different parameters within each metaheuristic, is a new subject that provides
' recommendations to which metaheuristic to use and which values to be used for the

parameters of the metaheuristic used.

6.3.2. Evaluation of the work on the cost estimation aspect

Cost estimation can be calcified into four types (Rabufial & Dorado 2005):

— Analogical: the cost of a product is estimated by comparing it to the cost of a similar
product whose cost is known. .

- Ahalytical: the product cost is estimated by analysing the product manufacturing
process and dividing the process into small tasks whose costs are either known or

" can be calculated easily compared to the whole process. The information gathered is

then integrated to provide the cost of the product.

— Intuitive: this type of cost estimation depends on experience. A person experienced
in cost estimation estimates the cost of a product depending on his past knowledge.

— Parametric: this method relies on the parameters used by the designers of the
product. The relationships between the parameters and the cost of the product are
represented by equations, which are then used to calculate the cost of the product
depending on the values of the parameters used to design the product.

Each of the four types has its own pros and cons. The analogical method provides
good estimation but it is limited to the existence of a similar product to the product that
its cost being estimated. The proBlem with the intuitive method is its reliance on
personal judgments; whereas the problem with the parametric method is the lack of
accuracy since the equations used are approximate. As for the analytical method, it has
.attracted more attention than the other types of cost estimation methods due to the fact
that it lacks the deficiencies associated with them. For this reason, ABC, which is an
analytical method, is used in this research as an example for cost estimation. In

addition, since ABC is more suitable for small and medium-sized enterprises

137

(Gunasekaran et al 1999), it is therefore more suitablé for the PCB manufacturing
example considered in this research. |

The ABC implementation procedures adopted to in this research can also be used
~ to further examine the activities identified and decompose them into sub-activities (Ben-
Arieh & Qian 2003). This is important because it helps study costly activities in more
detail and, hence, identify the exact cause of the high cost, which ultimately leads to a

reduction in the cost of these activities.

6.3.3. Evaluation of the work on the accounting aspect

The standard accounting system has been used successfully for mass productions
for few decades now. However, the introduction of lean manufacturing as an alternative
to mass production has led to changes in the accounting system to reflect the new
features of lean manﬁfacturing. A new accounting system, called Lean Accounting, that
takes into consideration the features of lean manufacturing has been developed. This
research has considered LA because of the following reasons:

— TItis arelatively recent subject and quite limited research has been devoted to it.

— It is the only alternative for standard accounting.

— It is designed to suit lean manufacturing, which is rapidly replacing mass
production. .

— It has the potential of reducing the cost of production by implementing lean
techniques and eliminating financial transactions (or replacing them with less costly
ones).

The implementation of LA in this research has shown how it can reduce the
production cost as follows:

— Cell and value stream performance measures provide visual indications about the
operational state of the cells and value streams. This allows for solving any
emerging problems at an early stage before they become more costly to solve. In
addition, performance measures promote continuous lean improvements throughout
the company.

— Calculating the free capacity of cells generated by the implementation of lean
manufacturing. The freed capacity can be used to increase the value stream profit as
explained in subsection 5.8.2.

— - Eliminating wasteful financial transactions. This leads to eliminating the costs

required to perform these transactions.

138

. — The use of value stream costing provides more accurate and easily-understood
information, when compared to standard costing, for decision-making. Butter
decisions lead, amongst other things, to cost reductions.

In addition to the cost reduction, LA provides better understanding to the financial

information due to the simplification of the accounting reports and statements. For

example, the box score provides a simple but comprehensive view of the state of value
stream: operational, financial and capacity usage. Therefore, LA can be defined as an
accounting system thaf implements the principle of lean thinking leading to more
accurate and understandable information for decision making and leading also to the

elimination of some of the transactions associated with standard accounting.

6.3.4. Evaluation of the work on the research as a whole

The intense competition between companies has led cost reduction to be
considered as a necessity rather than a luxury. There are two different types for cost
reduction, direct and indirect, and each type can be applied to. different areas in the
" company. Therefore, this research has considered cost reduction in the manufacturing
industry by studying three aspects: optimisation of production processes, cost estimation
and accounting. These three aspects inchide most of the areas in a company that cost
reduction can be applied to. The cost reduction in the production area has been
considered by optimising three production problems in the PCB industry. However, the
TS- and GA-based algorithm used to provide the near optimum solution to the problems
can also be applied to other combinatoriél problems in other types of industry. The
scheduling problem, for example, is a combinatorial problem that can be found in many
types of industries such as the chemical industry, the automotive industry, the
manufacturing industry, the food industry, etc. Therefore, the algorithm used in this
research cén be modified to suit optimisation problems other ‘than the problems
mentioned in this research.

As for the cost reduction in the cost estimation and accounting areas, this research
has considered ABC as a cost estimation method and LA as an accounting system to
reduce the cost in these two areas. ABC can reduce the cost by providing the right
costing information for the management. This is achieved by analysing the production
processes and studying the activities required to manufacture the product. By
calculating the costs of these activities, the product cost can be calculated depending on

how much the activities contribute to the manufacturing of the product. ABC shows

139

exactly how the costs are incurred, therefore allowing the management to pay more
attention to costly activities and try to reduce their costs. This means, in addition to
being a cost estimation method, ABC reduces the production cost indirectly. Regarding
LA, it reduces the cost directly and indirectly as mentioned in subsection 6.3.3.

The importance of this research lies also in the fact that it has presented a
framework for PCB manufacturing process. As described in Chapter 4 and Chapter 5,
the framework provides an integrated and comprehensive description of the processes
that can be used to help solve the production problems, optimise the work and reduce
the production cost. The framework can also be used for other products when the
production problems associated with PCB are replaced with the productioﬁ problems

associated with the other products.

6.4. Summary

In order to validate this research, the results obtained in this research were
compared, where poséible, to the results obtained by other researchers. Regarding the
optimisation of production processes, the case considered in this research had to be
modified so that it could be compared to that of Su et al (1998). Since the data used in
Su’s research were different from the data used in this research, the comparison between
the two sets of results was found to be inconclusive. However, the use of intensification
and diversification (two important attributes of TS) in this research and ignoring them
by Su et al should indicate that the TS-based algorithm used in this research is better
than that of Su’s. As for the cost estimation aspect, when the results obtained in this
research were compared to the work of Ong (1995), the similarities that were found
surpassed the dissimilarities. It was also noted that the approach used here to implement
ABC was better than the approach used by Ong because it could be uséd for products
other than PCBs and it did not require continuous updating as was required for Ong’s
approach. Finally, regarding the accounting aspect, the results obtained in this research
were similar to the results obtained by Maskell and Baggaley (2004) since the same
implementation process was used. The results in both research works revealed how LA
could help reduce the production costs directly and indirectly.

The evaluation of this research was also considered in this chapter. Some
alternatives to the approaches and methods used were considered and the reasons of
considering some particular techniques were explained. For example, it has been

explained that TS was used instead of other metaheuristics because it was used

140

successfully to solve combinatorial optimisation problems but rarely used to solve PCB
related problems. In addition, the importance of this research has been identified and
explaihed. It has been explained how the algorithm presented in this research could be
used to solve PCB related problems in particular and other combinatorial optimisation
probléms fof other types of industry in general. Furthermore, the framework presented
in this research for PCB manufacturing ‘can also be applied to other products by
changing the part that deals with the production problems and generalise it to suit other

manufacturing processes.

141

CHAPTER SEVEN

7. CONCLUSION

The issue of cost reduction is a necessity for today’s industries due to the high
competition created by the advancement of technology and the emergence of new
economic powers. Cost reduction can be achieved either directly (waste elimination) or
indirectly- (process optimisation). The majority of research on cost reduction has been
devoted to specific and individual aspects rather than considering multiple aspects. The
research presented in this thesis has attempted to fill this gap by considering the issues
associated with the optimisation of production processes, cost estimation and
accounting aspects of manufacturing in general and multi-assembly systems in
particular with the aim of achieving process optimisation and cost reduction.

PCB manufacturing has been used in this research as a platform for
experimentation for the three aspects considered in this research. The reason behind
using PCB manufacturing is mainly related to the ioptimisation of production processes
part of this research. The vast collection of PCB related production problems provides
an ideal test-bed for the optimisation of production processes part of this research. All
the researchers who considered PCB production problems have focused on these
production problems individually or in pairs. Therefore, a further step has been taken
here by studying three interrelated problems. Additionally, two examples for the cost
estimation and accounting aspects considered in this research have been applied to PCB
manufacturing. This is achieved by implementing ABC, as an example for the cost
estimation aspect, and LA, as an example for the accounting aspect, on a PCB
manufacturing facility. Ultimately, the goal has ‘been to develop a framework that
integrates the optimisation of production processes, cost estimation and accounting
aspects for PCB manufacturing in particular and for manufactufing in general in order
to achieve cost reduction.

For the rest for this chapter, the main findings of this research are stated for each
of the aspects considered and the contributions to the literature are summarised. In
addition, the suggestions for future work including the reasons behind these

suggestions, the methods involved and the expected outcomes are presented.

142

7.1. Optimisation of production processes

A proposed algorithm for concurrently solving the components sequencing, feeder
assignment and board sequencing problems has been developed based on two search
~ techniques: TS and GA. The results obtained from the case study show that the use of
TS is preferable to GA when the goal is to obtain a better assembly time, whereas GA is
preferable if the goal is to obtain acceptable results within short time. Regarding the
parameters of the search techniques such as the number of moves in TS and number of
generations and the population size in GA, the results obtained showed a reduction in
the assembly time when these parametefs were increased. The reduction in the assembly
time was limited to a certain level after which no improvement was achieved in spite of
the increase of the number of moves in TS and number of generations and:the
population size in GA. It could be concluded that the ideal values for the parameters are
dependent on the type of the case study and thé data used and should be obtained
experimentally.

The use of different data in the case study has limited the comparison to the other
research work used to validate this research. However, the use of intensification and
diversification in the TS-based algorithm in this research has given it an advantage over
the TS-based approach adopted in the research work used for validation. Unfortunately,
this could not be proved by comparing the two research works- due to the use of

different sets of data in each one.

7.2. Cost estimation aspect
ABC has been used as an example for cost estimation and it has been applied to a

PCB production facility. The results obtained from the case study show how ABC can
be used to calculate the costs of activities so that the most costly ones can be given more
attention and mere effort can be taken to reduce their costs. A reduction in the costs of
the most costly activities would achieve more cost reduction than the reduction in the
less costly activities because the margin for reduction is higher. ABC is not a method
for cost reduction as such but it leads to cost reduction indirectly by identifying the
costs of activities.

There ar¢ some downsides for ABC; for example, in order for the application of
ABC to be accurate, there must be a linear relationship between the cost drivers and the

volume of the product. In addition, ABC is not suitable for large companies due to the

143

resources it requires to collect required data. In spite of these downsides, ABC is still a

better alternative to standard costing.

7.3. Accounting aspect
Lean accounting has recently been introduced as an accounting system for those

companies which have chosen to implement lean manufacturing. The research
explained the basic ideas behind lean accounting and illustrated how lean accounting
could help companies identify the financial benefits of implementing lean
manufacturing. The results from implementing LA on a case study show how
implementing lean accounting can help identify the financial benefits of implementing
lean manufacturing and how lean accounting itself could lead to cost reduction through
eliminating some financial transactions. .

Standard accounting relies heavily on a huge number of transactions whereas LA
tries to eliminate some of these tfansactions or replace them with less costly ones. This,
hence, does not only lead to creating capacity but also leads to saving money by
eliminating the direct and indirect costs that are associated with the transactions
eliminated. LA, in contrast to standard accounting, motivates people towards actions
that are in accordance with lean manufacturing principles. This allows lean
manufacturing imprdvements to continue smoothly and gives a better chance for lean
manufacturing to succeed and for the company to prosper. LA provides also more
accurate and more useful information for decision-making because better tools, such as
value stream costing, target costing and sales, operations and financial planning, are
used in LA.

It can also be concluded from this research that there is a deficiency in calculating
the exact costs of products using “features and characteristics costirig;’, which is an LA
tool. Some might argue that the exact product cost is not required in lean companies
since they focus on the customer value and the value stream profitability rather than the
profitability of a product when making pricing decisions. However, there are cases
when the exact cost of a product is required and the inaccuracy in calculating this cost

by “features and characteristics costing” might lead to the wrong decision being made.

7.4. Final thoughts
Cost minimisation has been forced on manufacturers due to the development of

new technologies and the high competition created by the emergence of new

144

competitors. The research presented here represents a good first step towards cost
minimisation and process optimisation in the production, cost estimation and accounting
aspects of the manufacturing industry. The framework developed presents an integrated
approach that can help solve production problems, with the aim of minimising the
production cost, and provide helpful information for the management in order to make
the right decisions. Some of the solutions provided are problem specific; therefore, the
generalisation issue needs to be addressed. In addition, regarding the accounting aspect,
this research has considered the companies that adopt lean manufacturing; therefore,

what has been discussed here is not applicable otherwise.

7.5. Future work
Although the research undertaken has provided a step forward towards cost

reduction and process optimisation in different areas of manufacturing, there are some .
issues that can still be addressed in order to add more value and benefit to the issues
considered in this research.

This research has considered the area of PCB manufacturing only. Therefore, the
generalisation issue can be proposed as the subject of future research. This can be
achieved by applying this research project on products of different nature to PCBs, and
the use of real-life data will be an added benefit. Naturally, the proposed algorithm that
deal with the production problems will have to be modified to suit the production
problems associated with thé new products under consideration. Additionally, search
techniques other than TS and GA can also be used. If the outcome of the future research
is similar to the outcome of the research presented in this thesis, the research can be
generalised and confidently applied to different industries.

In this research, the proposed algorithm has dealt with the problems associated -
with the pick-and-place machine only and the improvements achieved are related to this
machine only. However, any effects caused by the improvements to the pick-and-place
machine on other cells have not been considered in this research. By modelling the
whole PCB assembly line using computer simulation, the effects of the improvements to
the pick-and-place machine on other cells can be studied. Additionally, introducing
simulation can also help implement ABC (Spedding & Sun 1999) and improve the
accuracy of cost estimation as well (Homburg 2004; Ozbayrak et al 2004). Therefore,
integrating simulation into this research can be considered as a potentially good subject

for any future work.

145

'REFERENCES

Agrawal, A. & Graves, R.J., (1999). A distributed systems model for estimation of
printed circuit board fabrication costs. Production Planning & Control, 10(7), p.650-

658.

Ahlstrém, P. & Karlsson, C., (19'96). Change processes towards lean production — the
role of management accounting system. International Journal of Operations &
Production Management, 16(11), p.42-56.

Ahmadi, J.H., Ahmadi, R., Matsuo, H. & Tirupati, D., (1995). Component fixture
positioning for printed circuit board assembly with concurrent operations. Operations
Research, 43(3), p.444-457.

Altinkemera, K., Kazazb, B., Kéksalanc, M. & Moskowitza, H., (2000). Optimization _
of printed circuit board manufacturing: Integrated modeling and algorithms. European
Journal of Operational Research, 124(2), p.409-421.

_ Anonymous: Maricopa Center for Learning and Instruction, (1989). Research methods
[Online]. (Updated 26 Oct 2001) Available at:
http://www.mcli.dist. maricopa.edu/proj/res_meth/login.html [accessed 08 Oct 2007].

Applegate, D. & Cook, W., (1991). A Computational Study of the Job-Shop Scheduling
Problem. ORSA Journal on Computing, 3(2), p.149-157.

Ayob, M. & Kendall, G., (2002). A new dynamic point specification approach to
optimise surface mount placement machine in printed circuit board assembly. In: IJEEE

ICIT'02, Bangkok.

Baggaley, B., (2003a). Solving the standard costing problem [Online]. Available at: -
http://www.maskell.com/SolvingStdCost.htm [accessed 15 May 2005].

Baggaley, B., (2003b). Value Stream Management for Lean Companies. The Journal of
Cost Management, 17(2), p.23-27.

Ball, M.O. & Magazine, M.J., (1988). Sequencing of Insertions in Printed Circuit Board
Assembly. Operations Research, 36(2), p.192-201."

Bellis-Jones, R. & Develin, N., (1999). No Customer — No Business: The true value of
activity based cost management. Chippenham, UK: Antony Rowe Limited.

Bellmore, M. & Nemhauser, G.L., (1968). The traveling salesman problem: a survey.
Operations Research, 16(3), p.538-558.

Ben-Arieh, D. & Qian, L., (2003). Activity-based cost management for design and
development stage. International Journal of Production Economics, 83(2), p.169-183.

Berliner, C. & Brimson, J.A., (1988). Cost Management for Today's Advanced

Manufacturing: The Cam-I Conceptual Design. Harvard: Harvard Business School
Press. '

146

http://www.mcli.dist.maricopa.edu/proi/res
http://www.maskell.com/SolvingStdCost.htm

Bhaskar, G. & Narendran, T.T., (1996). Grouping PCBs for set-up reduction: a
maximum spanning tree approach International Journal of Production Research 34(3),

p.621-632.

Burkard, R.E., Karisch, S.E. & Rend], F., (1997). QAPLIB — A Quadratic Assigmhent
Problem Library. Journal of Global Optimization, 10(4), p.391-403.

Burke, E., Cowling, P.I. & Keuthen, R., (1999). New Models and Heuristics for
Component Placement in Printed Circuit Board Assembly. In: International Conference
on Information Intelligence and Systems

Burke, E., Cowling, P.I. & Keuthen, R., (2000). Effective Heuristic and Metaheuristic
Approaches to Optimize Component Placement in Printed Circuit Board Assembly. In:
The 2000 Congress on Evolutionary Computation CECOO.

Christensen, J. & Demski, J.S., (1995). The classical foundations of ‘Modern’ costing.
Management Accounting Research, 6(1), p.13-32.

Coombs, J., C. f., (1988). Printed Circuits Handbook. 3" ed. New York: McGraw-Hill,
Inc.

Cooper, R., (1990). Cost classification in unit-based and activity-based manufacturing
cost systems. Journal of Cost Management for the Manufacturing Industry, 4(3), p.4-
14.

Cooper, R. & Kaplan, R.S., (1999). The design of cost management systems : text and
cases. 2nd Edition ed. Upper Saddle River, NJ: Prentice Hall.

Crama, Y., Klunder, J.V.D. & Spieksma, F.C.R., (2002). Production planning problems
in printed circuit board assembly. Discrete Applied Mathematics, 123(1-3), p.339-361.

Crama, Y., Kolen, A.W.J., Oerlemans, A.G. & Spieksma, F.C.R., (1990). Throughput
rate optimization in the automated assembly of printed circuit boards. Annals of
Operations Research 26(1-4), p.455-480.

Dedera, C.R., (1996). Harris Semiconductor ABC: worldwide implementation and total
integration. Journal of Cost Management, 10(1), p.44-58. '

Deo, S., Javadpourb, R. & Knapp, G.M., (2002). Multiple setup PCB assembly planning
using genetic algorithms. Computers and Industrial Engineering, 42(1), p.1-16.

Deoa, S., Javadpourb, R. & Knapp, G.M., (2002). Multiple setup PCB assembly
planning using genetic algorithms. Computers and Industrial Engineering, 42(1), p.1-
16. ‘

Dikos, A., Nelson, P.C., Tirpak, T.M. & Wang, W., (1997). Optimization of High-mix

printed circuit card assembly using genetic algorithms. Annals of Operations Research,
75, p.303-324.

147

Drezner, Z. & Nof, S., (1984). On optimizing bin picking and 1nsert10n plans for
assembly robots. IIE Transactions, 16, p.262-270.

Duverlie, P. & Castelain, J.M., (1999). Cost Estimation During Design Step: Parametric
Method versus Case Based Reasoning Method The International Journal of Advanced

Manufacturing Technology, 15(12), p.895-906.

Egbelu, P.J., Wu, C. & Pilgaonkar, R., (1996). Robotic assembly of printed circuit
boards with component feeder location consideration. Production Planning and

Control, 7(2), p.162-175.

Francis, R.L., Hamacher, HW., Lee, C.Y. & Yeralan, S., (1994). Finding placement
and sequences and bin locations for Cartesian robots. IIE Transactions, 26, p.47-59.

Giachetti, R.E. & Arango, J., (2003). A Design-centric Activity-based Cost Estimation
Model for PCB Fabrication. Concurrent Engineering: Research and Applications,
11(2), p.139-149.

Glover, F., (1989). Tabu Search — Part I. ORSA Journal on Computing, 1(3), p.190-206.
Glover, F., (1990). Tabu Search — Part II. ORSA Journal on Computing, 2(1), p.4-31.

Gronalt, M., Grunow, M., Giinther, H.O. & Zeller, R., (1997). A heuristic for
component switching on SMT placement machines. International Journal of
Production Economics, 53(2), p.181-190.

Gunasekaran, A., Marri, H.B. & Grieve, R.J., (1999). Justification and implementation
of activity based costing in small and medium-sized enterprises. Logistics Information
Management, 12(5), p.386-394.

Gupta, M. & Galloway, K., (2003). Activity-based costing/management and its
implications for operations management. Technovation, 23(2), p.131-138.

Hashiba, S. & Chang, T., (1991). PCB assembly setup reduction using group
technology. Computers & Industrial Engineering, 21(1-4), p.453-457.

Ho, W. & Ji, P., (2003). Component scheduling for chip shooter machines: a hybrid
genetic algorithm approach. Computers & Operations Research, 30(14), p.2175-2189.

Ho, W. & Ji, P., (2005). A genetic algorithm to optimise the component placement
process in PCB assembly The International Journal of Advanced Manufacturing
Technology, 26(11-12), p.1397-1401.

Homburg, C., (2004). Improving activity-based costing heuristics by higher-level cost
drivers. European Journal of Operational Research, 157(2), p.332-343.

Homburg, C., (2005). Using relative profits as an alternative to activity-based costing.
International Journal of Production Economics, 95(3), p.387-397.

148

Innes, J. & Mitchell, F., (1995). A survey of activity-based costing in the U.X.’s largest
companies. Management Accounting Research, 6(2), p.137-153.

Jeevan, K., Parthiban, A., Seetharamu, K.N., Azid, [.A. & Quadir, G.A., (2002).
Optimization of PCB Component Placement using Genetic Algorithms. Journal of
Electronics Manufacturing, 11(1), p.69-79.

Ji, P., Sze, M.T. & Lee, W.B., (2001). A genetic algorithm of determining cycle time
for printed circuit board assembly lines. European Journal of Operational Research,
128(1), p.175-184.

Johnson, H.T. & Kaplan, R.S., (1987). Relevance Lost: The Rise and Fall of
Management Accounting. Boston, MA: Harvard Business School Press.

Kaplan, R.S. & Anderson, S.R., (2003). Time-Driven Activity-Based Costing [Online].
Available at: http://www.hbs.edu/research/facpubs/workingpapers/papers2/0304/04-
045.pdf [accessed 18 Oct 2006]. '

Kischel, J., Teich, T., Kébernik, G. & Meier, B., (1999). Algorithms for the Job Shop
Scheduling Problem - a Comparison of Different Methods. In: European Symposium on
Intelligent Techniques, Crete, Greece

Khoo, L.P. & Loh, K.M,, (2000). A Genetic Algorithms Enhanced Planning System for
Surface Mount PCB Assembly. The International Journal of Advanced Manufacturing
Technology, 16(4), p.289-296.

Khoo, L.P. & Ng, T.K., (1998). A genetic algorithm-based planning system for PCB
component placement. International Journal of Production Economics, 54(3), p.321-
332.

Khoo, L.P. & Ong, N.S., (1998). PCB assembly planning using genetic algorithm. The
International Journal of Advanced Manufacturing Technology, 14, p.363-368.

Kim, K. & Han, I., (2003). Application of a hy‘brid genetic algorithm and neural
network approach in activity-based costing. Expert Systems with Applications 24(1),
p.73-77.

Klomp, C., van de Klundert, J., Spieksma, F.C.R. & Voogt, S., (2000). The feeder rack
assignment problem in PCB assembly. International Journal of Production Economics,
64(1-3), p.399-407.

Kroll, K.M., (2004). The Lowdown on Lean Accounting. Journal of Accountancy, -
198(1), p.69-76.

Lehaney, B.A. & Vinteﬁ, G., (1994). “Methodology”: An Analysis of Its Meaning and
Use. Work Study, 43(3), p.5-8.

Leu, M.C., Wong, H. & Ji, Z., (1993). Planning of component placement/insertion

sequence and feeder setup in PCB assembly using genetic algorithm. Journal of
Electronic packaging, 115(4), p.424-432.

149

http://www.hbs.edu/research/facpubs/workingpapers/papers2/0304/04-

Locascio, A., (2000). Manufacturing Cost Modeling for Product Design. The
International Journal of Flexible Manufacturing Systems, 12, p.207-217.

Logendran, R. & Nudtasomboon, N., (1991). Minimizing the makespan of a group
scheduling problem: a new heuristic. International Journal of Production Economics,

22(3), p.217-230.

Loh, T.S., Bukkapatnam, S.T.S., Medieros, D. & Kwon, H., (2001). A genetic algorithm -
for sequential part assignment for PCB assembly. Computers and Industrial
Engineering, 40(4), p.293-307.

Marri, H.B. & Grieve, R.J., (1999). Justification and implementation of activity based
costing in small and medium-sized enterprises. Logistics Information Management,
12(5), p.386-394.

Maskell, B.H., (2004). What is lean accounting? [Online]. Available at:
http://www.maskell.com/PDF_Files/What%20is%20Lean%20A ccounting.pdf [accessed

15 May 2005].

Maskell, B.H., (2006). Lean accounting & Activity-Based Costing [Online]. Available
at: http://www.maskell.com/LeanAcctg ABC.htm [accessed 18 Oct 2006].

Maskell, B.H. & Baggaley, B., (2004). Practical Lean Accounting: a proven system for
measuring and managing the lean enterprise. New York, NY, USA: Productivity Press.

Moscato, P., (2003). TSPBIB Home Page [Online]. Available at:
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html [accessed 08 Jun 2003].

Moyer, L.K. & Gupta, S.M., (1996). Simultaneous component sequencing and feeder
assignment for high speed chip shooter machines. Journal of Electronics
Manufacturing, 6(4), p.271-307.

Narayanaswami, R. & Iyengar, V., (2005). Setup reduction in printed circuit board
assembly by efficient sequencing. The international journal of advanced manufacturing
technology, 26(3), p.276-284.

Nawaz, M., Enscore, E.E. & Ham, 1., (1983). A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1), p.91-95.

Nelson, K.M. & Wille, L.T., (1995). Comparative study of heuristics for optimal printed
circuit board assembly. In: Conference Record for Southcon, Fort Lauderdale, FL, USA.

Noreen, E., (1991). Conditions under which activity-based cost systems provide
relevant costs. Journal of Management Accounting Research, 3, p.159-168.

Noreen, E. & Soderstrom, N., (1994). Are overhead costs strictly proportional to
activity? Journal of Accounting and Economics, 17(1-2), p.255-278.

150

http://www.maskell.com/PDF
http://www.maskell.com/LeanAcctg
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB

Ong, N.S., (1995). Manufacturing cost estimation for PCB assembly: An activity-based
approach. International Journal of Production Economics, 38(2-3), p.159-172.

Ong, N.S. & Khoo, L.P., (1999). Genetic algorithm approach in PCB assembly.
Integrated Manufacturing Systems, 10(5), p.256-265.

Ong, N.S. & Lim, L.E.N., (1993). Activity-based cost-modelling procedures for PCB
assembly. The International Journal of Advanced Manufacturing Technology, 8(6)
p-396-406.

Ong,N.S. & Tah, W.C., (2002). Sequence placement planning for high-speed PCB
assembly machine. Integrated Manufacturing Systems, 13(1), p.35-46.

Ozbayrak, M., Akgiin, M. & Tiirker, A.K., (2004). Activity-based cost estimation in a
push/pull advanced manufacturing system. International Journal of Production
Economics, 87(1), p.49-65.

Proust, C., Gupta, J.N.D. & Deschamps, V., (1991). Flowshop scheduling with set-up,
processing and removal times separated. International Journal of Production Research,
29(3), p.479-493.

Rabuiial, J.R. & Dorado, J., (2005). Artificial Neural Networks in Real-life Applications.
Hershey, PA: IGI Global.

Reinelt, G., (1991). TSPLIB- A Traveling Salesman Problem lerary ORSA Journal on
Computmg, 3(4), p.376-385.

Rossetti, M.D. & Stanford, K.J.A., (2003). Group sequencing a PCB assembly system
via an expected sequence dependent setup heuristic. Computers & Industrzal
Engineering, 35(1), p.231-254.

Saad, S.M. & Lassila, A.M., (2002). Sequencing for Mixed-model Assembly Lines with
Bottleneck Resources Using Tabu Search. In: International Conference on Flexible
Automation & Intelligent Manufacturing (FAIM), Dresden, Germany.

Sadiq, M., Landers, T.L. & Taylor, G., (1993). A heuristic algorithm for minimizing
total production time for a sequence of jobs on a surface mount placement machine.
International Journal of Production Research, 31(6), p.1327-1341.

Sanchez, J.M. & Priest, J.W., (1990). Optimal component-insertion sequence planning
methodology for the semiautomatic assembly of printed circuit boards. Journal of
Intelligent Manufacturing, 2(3), p.177-188.

Schein, E.H., (1987). The Clinical perspective in fieldwork. Beverly Hills, CA: Sage.

Sickafus, E., (2004). Heuristics for Solving Technical Problems - Theory, Derivation,
Application. Grosse Ile, MI: Ntelleck, LLC.

Sohal, A.S. & Chung, W.W.C., (1998). Activity based costing in manﬁ,facturing: two
case studies on implementation. Integrated Manufacturing Systems, 9(3), p.137-147.

151

Spedding, T.A. & Sun, G.Q., (1999). Application of discrete event simulation to the
activity based costing of manufacturing systems. International Journal of Production
Economics, 58(3), p.289-301.

Stake, R.E., (1995). The Art of case study research. Newbury Park, CA: Sage
Publications.

"~ Su, C.,Ho, L. & Fu, H,, (1998). A noyel tabu based approach to find the best placement
sequence and magazine assignment in dynamic robotics assembly. Integrated
Manufacturing Systems, 9(6), p.366-376.

'Su, Y. & Srihari, K., (1996). Placement sequence identification using artificial neural
networks in surface mount PCB assembly. International journal of advanced
manufacturing technology, 11(4), p.285-299.

Tellis, W., (1997). Application of a case study methodology. The Qualitative Report
[Online serial] 3(3), Available at: http://www.nova.edu/ssss/QR/QR3-3/tellis2.html.

Tornberg, K., Jamsen, M. & Paranko, J., (2002). Activity-based costing and process
modeling for cost-conscious product design: A case study in a manufacturing company.
International Journal of Production Economics, 79(1), p.75-82.

Van Hop, N. & Tabucanon, M.T., (2001a). Extended dynamic point specification
approach to sequencing robot moves for PCB assembly. International Journal of
Production Research, 39(8), p.1671-1687.

Van Hop, N. & Tabucanon, M.T., (2001b). Multiple criteria approach for solving feeder
assignment and assembly sequence problem in PCB assembly. Production Planning &
Control, 12(8), p.736-744. ' '

van Laarhoven, P.J.M. & Zijm, W.H.M., (1993). Production preparation and numerical
control in PCB assembly. International Journal of Flexible Manufacturing Systems,
5(3), p.187-207.

Wan, Y.F. & Ji, P., (2001). A tabu search heuristic for the component assignment
problem in PCB assembly. Assembly Automation, 21(3), p.236-240.

Wang, C., Ho, L. & Cannon, D.J., (1998). Heuristics for assembly sequencing and
relative magazine assignment for robotic assembly. Computers and Industrial
Engineering, 34(2), p.423-431.

Watson, J.-P., (2003). Empirical Modeling and Analysis of Local Search Algorithms for
the Job-Shop Scheduling Problem. Department of Computer Science. Fort Collins,
Colorado, Colorado State University. Doctor of Philosophy.

Whitney, D.E., (1988). Manufacturing by design. Harvard Business Review, 66(4),
p.83-91.

152

http://www.nova.edu/ssss/OR/OR3-3/tellis2.html

Womack, J.P. & Jones, D.T., (1996). Lean thinking: banish waste and create wealth in
your corporation. New York, NY: Simon & Schuster.

Yilmaz, 1.O. & Giinther, H.O., (2005). A Group Setup Strategy for PCB Assembly on a
Single Automated Placement Machine. In: The Annual International Conference of the
German Operations Research Society, Bremen, Germany, Springer Berlin Heidelberg.

Yin, R., (1994). Case study research: design and methods. 2" ed. Thousand Oaks, CA:
Sage Publishing.

Younis, T.A. & Cavalier, T.M., (1990). On locating part bins in a constrained layout
area of an automated assembly process. Computers and Industrial Engineering, 18(2),
p.111-118.

Yuan, P., Hu, Y., Liu, H. & Gao, H., (2006). Feeder assignment optimization algorithm
for multi-head mounter. Journal of Control Theory and Applications, 4(3), p.223-228.

153

PUBLICATIONS

Two publications have been ;‘)roducedv based on this research:

Saad, S., Khalil, E., Fowkes, C., Basarab-Horwath, I. & Perera, T., (2004). Component
and board sequencing - A simultaneous taboo search approach. 2 international

Conference on Advances in Manufacturing Technology (ICRM), Sheffield, UK.
Saad, S., Khalil, E., Fowkes, C., Basarab-Horwath, I. & Perera, T., (2006). Taboo

Search vs. Genetic Algorithms in Solving and Optimising PCB Problems. Journal of
Manufacturing Technology Management, 17(4), p.521-536.

154

APPENDICES

Appendix I

The component types and the co-ordinates of their locations of the case study
(dimensions in mm).

Board type A :
Comp. X-Co-ordinate Y-Co-ordinate
type 1 2 3 4 5 6 1 2 3 4 5 6

1 386 | 123 | 23 | 670 | 677 75 | 55 | 288 | 341 | 354

2 345 | 35 | 32 | 498 | 598 454 | 23 | 190 | 10 | 499

3 65 | 55 | 654 | 568 | 679 459 | 98 | 480 [34 | 443

4 354 | 23 1245 (600 O 751 | 551 | 208 | 301 | O

5 359 | 98 | 59 0 0 414 | 13 [100 | O 0

6 456 | 654 | 450 | O 0 409 [118 [420 O 0

7 400 | 255 | 55 0 0 - 156 | 454 | 469 | O 0

8 27 | 54 0 0 0 35512551 0 0 0

9 49 [151 O 0 0 47 | 24 0 [-0 0

10 2451 0 0 0 0 286 { 0O 0 0 0

11 2581 0 0 0 0 2451 0 0 0 0

12 228 | O 0 0 0 1521 0 0 0 0

13 278 | 0O 0 0 0 25541 0 0 0 0

14 208 | O 0 0 0 248 | 0O 0 0 0

15 134 0 0 0 0 2451 0 0 0 0

16 248 | O 0 0 0 258 1 0O 0 0 0

17 268 | O 0 0 0 124 | O 0 0 0

18 1341 0 0 0 0 74 0 0 0 0

19 76 0 0 0 0 35 0 0 0 0
20 36 0 0 0 0 42 0 0 0 0
21 45 0 0 0 0 163 | 0 0 0 0
22 1731 0 0 0 0 103] 0 0 0 0

Board type B

4 75 | 55 [288] 98 | 45 | 55 [454 | 23 | 190 | 35 | 123 | 65
8 454 | 23 [190 | 35 [123 | 65 | 459 | 98 | 589 | 167 | 213 | 154
9 459 | 98 [589 | 167 [213 | 0 | 156 | 153 | 475 | 41 [457 | O
13 156 | 454 | 569 | 24 0 0 |355] 55 {127 | 397 | 0O 0
17 355 1255|1454 0 0 0 65 | 35 | 65 0 0 0
18 69 | 55 | 542 0 0 0 69 | 55 [542]| 0 0 0
5 344 | 23 0 0 0 0 | 344] 23 0 0 0 0
1 399 0 0 0 0 0 (256 | O 0 0 0 0
11 356 | O 0 0 0 0 [128 | O 0 0 0 0
34 108 | O 0 0 0 0 | 198 O 0 0 0 0
41 398 0 0 0 0 0 35 0 0 0 0 0
15 186 | O 0 0 0 0 56 0 0 0 0 0
14 3451 0 0 0 0 0 |156| O 0 0 0 0
52 75 0 0 0 0 0 [265] O 0 0 0 0
55. 58 0 0 0 0 0 [268| O 0 0 0 0
58 1511 0 0 0 0 0 (245] 0 0 0 0 0
22 52 0 0 0 0 0 |268| O 0 0 0 0
21 111 | 0 0 0 0 0 [-125] O 0 0 0 0

155

Board type C

- Comp. X-Co-ordinate Y-Co-ordinate
type 1 2 3 4 5 6 1 2 3 4 5
1 295 | 55 | 259 | 98 694 | 23 | 248 | 354
5 65 | 55 | 298) 219 259 | 98 | 648 | 104
6 694 | 23 | 248 | 0 624 | 63 324 | O
8 259 | 98 0 0 269 | 48 0 0
11 256 | O 0 0 156 | 0 0 0
14 298 | 0 0 0 2181 0 0 0
18 125 1 0 0 0 145 | 0O 0 0
22 127 | 0 0 0 167 | 0 0 0
52 95 0 0 0 94 0 0 0
34 65 0 0 0 2551 0 0 0
55 2551 0 0 0 2551 0 0 0
58 248 | 0O 0 0 248 | 0 0 0
44 654 | 0 0 0 6541 0 0 0
46 687 | 0 0 0 6871 0 0 0
Board type D
3 55 | 65 | 444 | 128 216 | 143 | 344 | 245
11 624 | 63 | 98 | 245 345 | 34 | 95 [434
13 269 | 548 | 623 | 0 55 1 65|24) 0
2 156 | 214 | O 0 624 | 63 0 0
58 218 0 | O 0 269 O 0 0
34 145 | 0 0 0 156 | 0 0 0
40 3051 0 0 0 218 0 0 0
41 65 0 0 0 335 O 0 0
5 254 1| O 0 0 35 0 | 0 0
52 459 | 0 0 0 244 | 0 0 0
54 256 | O 0 0 449 | 0 0 |0
55 123 | O 0 0 246 | 0 0 0
15 245 | 0O 0 0 133 (0 0 0
Board type E
3 345 | 634 | 195 | 434 345 | 434 | 195 | 434
9 664 | 63 | 75 0 464 | 63 [75 0
15 269 | 548 | 0 0 269 | 548 | O 0
56 156 1214 | O 0 156 1214 | 0 0
48 5551 0 0 0 4551 0 0 0
44 35 0 0 0 35 0 0 0
20 544 | O 0 0 5441 0 0 0
79 698 | 0 0 0 498 | 0 0 0
31 646 | O 0 0 446 | 0 0 0
36 133 { 0 0 0 1331 0 0 0
Board type F
11 645 | 434 | 195 345 | 434 | 195
41 464 | 63 | 75 464 | 63 | 75
23 669 | 548 | 0 369 | 5481 0O
8 156 {264 | O 156 | 264 | 0O
12 455 | 0 0 3551 0 0
35 65 0 0 65 0 0
79 564 | 0O 0 364 | O 0
45 698 | 0 0 3984 O 0
2 446 | O 0 346 | O 0

156

Board type G

Comp. X-Co-ordinate Y-Co-ordinate
type 1 2 3 4 5 6 1 2 3 4 |.5
55 454 | 23 [190 | 35 354 | 23 | 190 [35
4 459 | 98 | 589 | O 359 1 98 {389 O
21 156 | 545 | 569 | O 156 | 354 | 369 | O
35 69 | 55 [542] 0 69 | 55 13421 0
48 399 | 98 | 654] 0 399 1 98 [354]| O
79 356 | 154 1 0 0 356 1154 | 0O 0
56 108 {219 0 |- 0O 108 | 219} O 0
Board type H
20 295 | 55 | 259 235 | 55 | 259
73 694 | 23 | 248 394 | 23 | 348
46 | 256 ({254 O 256 1254 | 0O
12 298 1219 0O 298 [319 | - 0
1 127 | 24 0 127 | 34 0

157

Appendix II

The program code written in MS Visual C++.

Header Files:

Algorithmplg.h

#if
| defined (AFX_ALGORITHMDLG_H__93B376F0_C755_4FC5_9213_DB5809544088__INC

LUDED_.)
#define
AFX_ALGORITHMDLG_H__93B376F0_C755_4FC5_9213_DB5809544088__INCLUDED_

#f _MSC_VER > 1000

#pragma once

#end1f // _MSC_VER > 1000 .
;; Algorithmblg.h : header file

%;ﬁ;;///
// CAlgorithmplg dialog '
class CAlgorithmDlg : public cDialog

private:
int choice;
CButton& centroid();
cButton& random();
int MaxMoves;
int TabuRestart;
int TabuSize;
int MaxNoImp;
// construction
public:
void set_para(const int _MaxMoves, const int _MaxNoImp, const
int _Tabusize, const int _TabuRestart, const int _choice);
BOOL onInitDialog();
void UpdateBox(const int _ID, const int _Data);
int Get_choice();
int Get_TabuRestart();
int Get_Tabusize();
int Get_MaxNoImp();
int Get_MaxMoves();
int GetItem(const int _ID);
CAlgorithmdDlg(Cwnd* pParent = NULL); // standard constructor

// Dialog Data
//%{AFX_DATA(CA1gorithmD1g)
enum { IDD = IDD_ALGORITHM }; . :
// NOTE: the Classwizard will add data members here

//}}AFX_DATA

// overrides
// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(CATgorithmblg)
protected: ‘
virtual void DobDataExchange(CDataExchange* pDX); // DDX/DDV
support
//3}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions

158

//{{AFX_MsG(CATgorithmD1g)
virtual void onok();
afx_msg void onRad1oMethodc11ck(),
//3}}YAFX_MSG
} ' DECLARE_MESSAGE_MAP()
//{{AFX_INSERT_LOCATION}}
// Microsoft visual C++ will dinsert additional declarations
immediately before the previous Tine.

#endif //
ldefined (AFX_ALGORITHMDLG_H__93B376F0_C755_4FC5_9213_ 085809544088 INC

LUDED_)

159

boarddlg.h

#if
!d§fined(AFX_BOARDDLG_H__S81c98AB_8162_4BZE_95A5_4c103079781A__INCLUDE
D_

#define
AFX_BOARDDLG_H__581C98AB_B162_4B2E_95A5_4C10BD79781A__INCLUDED_

#include <fstream>)
#include "Board.h" // Added by Classview
using namespace std;

#if _MSC_VER > 1000
#pragma once

#endif // _MSC_VER > 1000
;; boarddlg.h : header file

LILLLLLII1T17111717777777717777717177777777777777177177771777777777777

1111177 L
// CBoardblg dialog

class CBoardblg : public cbialog

// construction
public:
CBoard *get_pBoardAarray(Q); C
bool CompCompareMax(const int _NewComp, const int _Count);
bool CompCompareBoard(const int _NewComp, const int _Board,
const int _Comp);
bool compCompare(const int _NewComp, const int _Next);
int get_number(const char *_file, const int _next);
void UpdateBox(const int _ID, const _Data);
void load_files(const char *_file);
void clearBox(const int _ID);
int Get_NumOfBoardTypes();
int Get_MaxNumofLocations();
int Get_MaxNumOfCompTypes(); _
cBoardDlg(Cwnd* pParent = NULL); // standard constructor

// Dialog Data
//%{AFX_DATA(CBoardD1g)
enum { IDD = IDD_BOARD };
// NOTE: the Classwizard will add data members here
//}}AFX_DATA

// overrides
// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(CBoardD1g)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support
//}}AFX_VIRTUAL

// Implementation
protected:

// Generated message map functions
//{{AFX_MsG(CBoardDlg) .
afx_msg void onSelchangeCombo();
//}}IAFX_MSG
DECLARE_MESSAGE_MAP()

private: '
CBoard *pBoardArray;
int NumOfBoardTypes;
int MaxCompFreq;
int MaxNumOfCompTypes;
int MaxNumofLocations;
int *pCompTypes;

160

1

//{{AFX_INSERT_LOCATION}} o
// Microsoft visual C++ will insert additional declarations

immediately before the previous line.

#endif //
'def‘lned(AFX_BOARDDLG H__581C98AB_B162_4B2E_95A5_4C10BD79781A__INCLUDE

D_)

161

Comps.h
// Comps.h: interface for the CComps class.

//
LI1111771717777777777777777177717777777777777777777777777777777777777/

#if
Idefined (AFX_COMPS_H__7428CEC8_1140_41FE_9A2F_BCODDDEB98B8__INCLUDED_)
#define AFX_COMPS_H__7428CEC8_1140_41FE_9A2F_BCIDDDEB98B8__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CComps

public:
float X_Co;
float Y_cCo;
int CompType;
int CompFreq;
CComps(g;
virtual ~CComps();

1

#endif //
ldefined (AFX_COMPS_H__7428CEC8_1140_41FE_9A2F_BCIDDDEB98B8__INCLUDED_)

162

Feederblg.h

.F
|de§1ned(AFX_FEEDERDLG _H_ E8AD6481_341C 430B_B840_8362521D3E30_INCLUD
ED

#define
AFX_FEEDERDLG_H__E8AD6481_341C_430B_B840_8362521D3E30__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000
;; FeederDlg.h : header file

;///
// CFeederDlg dialog '
class CFeederDlg : public cpialog

// Construction

public .
vo1d set_para(const int _NumOfFeeders, const int _LengofFeeder);

BOOL OnInitDialog();

void UpdateBox(const int _ID, const int _Data);

int Get_LengOfFeeder();

int Get_NumOfFeeders();

int GetItem(const int _ID);

CFeederblg(Cwnd* pParent = NULL); // standard constructor

// Dialog Data
%{AFX_DATA(CFeederD]g)
enum IDD = IDD_FEEDER };
// NOTE: the classwizard will add data members here

//}}AFX_DATA

// overrides
// Classwizard generated virtual function overrides’

//{{AFX_VIRTUAL(CFeederblg)

protected:

virtual void DoDatatExchange(CDataExchange* pDX); // DDX/DDV
support ;
//3}}AFX_VIRTUAL '

// Implementation
protected:

// Generated message map functions
//{{AFX_MSG(CFeedern1g)
virtual void onoK(Q);

//}IAFX_MSG .

DECLARE_MESSAGE_MAP()
private:

int NumOfFeeders;

int LengOfFeeder;

//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional declarations
immediately before the previous Tine.

#endif //
'def1ned(AFx_FEEDERDLG H__E8AD6481_341C_430B_B840_8362521D3E30__INCLUD"

ED_)

163

PcbDlg.h
‘;; Pcbblg.h : header file

#if
|defined (AFX_PCBDLG_H_CAF577C4_2DE2_49F9_AB42_8453F4330153_TNCLUDED..
#define AFX_PCBDLG_H__C4F577C4_ZDE2_49F9_A842_8453F4330153__INCLUDED_

#include <strstream>
#include "Permutation.h" // Added by Classview
#include "Feederbdlg.h" // Added by Classview
#include "coordinatesDlg.h” // Added by Classview
- #include "TimeDlg.h" // Added by Classview
#include "Algorithmblg.h" // Added by Classview
#include "BoardDlg.h" // Added by Classview ,
#include "Positions.h" // Added by Classview
#include "TabuList.h" // Added by Classview
#include "Board.h" // Added by Classview
using namespace std;)

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

////%;///

// CPcbDlg dialog
class cPcbbDlg : public cDialog

{
// Construction
public:
void ClearTime();
void UpdateTime(const int _cBoard, const float _BestTime);
//void UpdateProgress(Q);
void ClearBox(const int _ID);
void UpdateTextBox(ostrstream _stream);
void UpdateStatusBox(ostrstream _stream);
void UpdateBox(const int _ID, char *_data);
int GetItem(const int _ID);
void UpdateBox(const int _ID, const int _data);

CPcbD1g(Cwnd* pParent = NULL); // standard constructor
// Dialog Data

//%{AFX_DATA(CPcbD1g)

enum { IDD = IDD_PCB_DIALOG };

CButton m_GoButton; :

CProgressCtrl _m_ProgressStatus;

Ccstring m_StringData;

cstring m_TextData;

float m_Board_A_Time;

float m_Board_B_Time;

float m_Board_C_Time;

float m_Board_D_Time;
float m_Board_E_Time;
float m_Board_F_Time;
float m_Board_G_Time;
float m_Board_H_Time;
float m_Board_I_Time;
//3}AFX_DATA

// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(CPcbD1g)

protected: -

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV

support
//}}AFX_VIRTUAL

164

// Implementation
protected:
HICON m_hIcon;

// Generated message map functions
//{{AFX_MsG(CPcbD1Q) |

virtual BOOL onInitDialog(); .
afx_msg void onSysCommand(UINT nID, LPARAM 1Param);
afx_msg void onPaint();

afx_msg HCURSOR oOnQueryDragIcon();

afx_msg void onBoard();

afx_msg void onFeeder();

afx_msg void onCoordinates();

afx_msg void onTime();

afx_msg void onAlgorithm();

virtual void OnOK();

afx_msg void onGo();

afx_msg void onSetfocusTextout();

virtual void onCancel();

//3}IAFX_MSG

private:
CEdit *pDisplay;
char *Test;
int Size;
CString *CompNames;
bool Finalopen;
double Board_Time;
double Setup_Time;
bool ResultOpen;
bool allowed;
bool flag;
bool Repeat;
int choice;

int Total_Time;
int solution;

int NoImpMoves;
int RestartMoves;

ofstream FinalFile;
ofstream ResultFile;
ofstream FedNeighFile;
ostrstream str;
ostrstream strText;
ostrstream strBuffer;

CPermutation LocalBest;
CPermutation Best;
CPermutation current;

cBoard *pBoardArray;
CTabuList *tabu;
CPositions *pBest_EXit;
CPositions move;

CBoardD1ﬁ BoardDlg;
CAlgorithmblg AlgorithmDlg;
CTimeDlg TimeDlg;
CCoordinatesblg CoordinatesDlg;
CFeederDlg FeederdDlg;

, DECLARE_MESSAGE_MAP()

//{{AFX_INSERT_LOCATION}} __
// Microsoft visual C++ will insert additional declarations
immediately before the previous line.

165

#endif // '
)!defi ned (AFX_PCBDLG_H__C4F577C4_2DE2_49F9_A842_8453F4330153__INCLUDED_

166

Positions.h

// Positions.h: interface for the CPositions class.

//

I ITII I I 7 7777771117777 1777777 77777777777177777777177
#if
!ée§ined(AFX_POSITIONS_H__A3653BZD_41FE_4783_891E_652FE307FA54__INCLUD
ED_

#define
AFX_POSITIONS_H__A3653B2D_41FE_4783_891E_652FE307FA54__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CPositions

i .
public:
int b;
int a;
CPositions();
virtual ~CPositions();
s
#endif //

!de§ined(AFx_PosxTIONs_H__A3653BZD_41FE_4783_8915_652F5307FA54__INCLUD
ED_

167

stdafx.h

// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
7 are changed infrequently

#if .
;defined(AFX_STDAFX_H__233F957B_59B4_4819_83D4_14C71A77B818__INCLUDED_
#define AFX_STDAFX_H__233F957B_5984_4819_83D4_14C71A77BB18__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER.> 1000

#define VC_EXTRALEAN // Exclude rarely-used stuff from
windows headers

#include <afxwin.h> // MFC core and standard components

#include <afxext.h> // MFC extensions

#include <afxdisp.h> // MFC Automation classes

#include <afxdtctl.h> // MFC support for Internet Explorer 4
Common Controls - '

#ifndef _AFX_NO_AFXCMN_SUPPORT

#include <afxcmn.h> // MFC support for windows Common
Controls

#endif // _AFX_NO_AFXCMN_SUPPORT

//{{AFX_INSERT_LOCATION}} _ | _
// Microsoft visual C++ will insert additional declarations
immediately before the previous line. _

#endif // o
;defined(AFX_STDAFX_H__233F957B_59B4_4819_83D4_14C71A77BBlS__INCLUDED_

168

TiméD1g;h

#if
Idefined (AFX_TIMEDLG_H__1CA23F63_5380_4CD6_BE2D_F61517975501__INCLUDED

)
#define AFX_TIMEDLG_H__1CA23F63_5380_4CD6_BE2D_F61517975501__INCLUDED_

#f _MSC_VER > 1000
#pragma once

#endif // _MSC_VER > 1000
;; TimeDlg.h : header file

;///
/7 CTimeplg dialog
%1ass CTimeDlg : public cbialog

// Construction
public: :
void set_para(const int _FeedSetupTime, const int _PickTime,
const int _InsertTime, const int _HeadSpeed);

BOOL onInitbialog(Q);

void UpdateBox(const int _ID, const int _Data);

int Get_HeadSpeed();

int Get_InsertTime();

int Get_PickTime(Q);

int Get_FeedSetupTime();

int GetItem(const int _ID);

CTimeDlg(Cwnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CTimeD1g)
enum { IDD = IDD_TIME };
// NOTE: the Classwizard will add data members here

//}}YAFX_DATA

// overrides
// Classwizard generated virtual function overrides
//{{AFX_VIRTUAL(CTimeD1g)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support o
//}IAFX_VIRTUAL

// Implementation
protected: :

// Generated messa?e map functions
//{{AFX_MSG(CTimeD1g)
afx_msg void onChangeFeedsetuptime();
afx_msg void onchangePicktime();
afx_msg void onChangeInserttime();
afx_msg void onchangeHeadspeed();
//}IAFX_MSG
DECLARE_MESSAGE_MAP()

private:
int HeadSpeed;
int PickTime;
int InsertTime;
int FeedSetupTime;

//{{AFX_INSERT_LOCATION}} __ |
// Microsoft visual C++ will insert additional declarations
immediately before the previous Tine.

169

#endif //
Idefined (AFX_TIMEDLG_H__1CA23F63_5380_4CD6_BE2D_F61517975501__INCLUDED

170

Board.h

;; Board.h: dinterface for the CBoard class.
1111111771177777777717777777717777777777777777777/7777777/77777777/77/7/777

#if
Idefined (AFX_BOARD_H__DE3D2410_58B6_472E_9ACD_EES5DFDF2A25E__INCLUDED_)
#define AFX_BOARD_H_ DE3D2410_58B6_472E_9ACD_EESDFDF2A25E__INCLUDED_

#include "comps.h" // Added by Classview
#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

class CBoard

{

public:
CComps *pComps;
int NumOfBoards;
int NumofComps;
int NumOfCompTypes;
int NumOfLocations;
int MaxCompFreqonBoard;
int *TypesOofComps;
CBoard(g;
virtual ~CBoard();

1

#endif //
ldefined (AFX_BOARD_H_. DE3D2410_58B6_472E_9ACD_EESDFDF2A25E_ _INCLUDED_)

171

Buffer.h
// Buffer.h: interface for the CBuffer class.

/
/;//

#if
!defined (AFX_BUFFER_H__04580654_ECA2_458C_8978_192B7F660FBC__INCLUDED_

)
#define AFX_BUFFER_H__04580654_ECA2_458C_8978_192B7F660FBC__INCLUDED_
#include <cassert>

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class cBuffer

public: .
//void Buffer_Init(const int _TabuSize);
void clear_buffer();

void push_buffer(int max, int item);

int pop_buffer(int max);

int get_size() const;

int %et_pointef(1nt —k) const;
cBuffer(const int _Tabusize);

virtual ~cBuffer();

private:
int *pProd;
int BufferLast;
int BuffersSize;

#endif //
;def1ned(AFX_BUFFER_H__O4580654_ECA2_458C_8978_192B7F660FBC__INCLUDED;

172

CoordinatesDlg.h

#if '

ldefined (AFX_COORDINATESDLG_H __DC57ESD8_E44B 4C77_AB3E_E263EOC7348F I
NCLUDED_)

#define
AFX_COORDINATESDLG_H__DCS57ESD8_E44B_4C77_AB3E_E263E0C7348F__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

;; CoordinatesDlg.h : header file

;5;;;;;///
-/ ccoordinatesDlg dialog
class CCoordinatesbDlg : public CDialog

// Construction

public

vo1d set_para(const int _X, const int _Y, const int _X_Home,
const int _Y_Home);

BOOL OnInitDialog(Q);

void UpdateBox(const 1nt _ID, const int _Data);

int Get_Y_Home();

int Get_X_Home(),

int Get_Y(Q;

" int Get_x(Q); ‘
int GetItem(const int _ID);
CCoordinatesDlg(Cwnd* pParent = NULL); // standard.constructor

-// Dialog Data
%{AFX_DATA(CCoord1natesD]g)
enum IDD = IDD_COORDINATES };
// NOTE: the Classwizard will add data members here

//}}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CCoordinatesDlg)
protected:
virtual void DoDataExchange(CbataExchange* pDX); // DDX/DDV
support
//3IAFX_VIRTUAL

//'Imp1ementat1on
protected:

// Generated message map functions

//{{AFX_MsG(cCoordinatesbD1g)

afx_msg void oncChangex();

afx_msg void oncChangeY();

afx_msg void onchangeXxHome();

afx_msg void OnChangeYHome(),

//IIAFX_MSG

DECLARE_MESSAGE_MAP()
private:

int Y;

int X;

int Y_Home;

int X_Home;

.
¥

//{{AFX_INSERT_LOCATION}}
// Microsoft visual C++ will insert additional declarations

immediately before the previous line.

173

#endif // ‘
!defined§AFX_COORDINATESDLG_H__DCS7ESD8_E44B_4C77_AB3E_E263EOC7348F__I
NCLUDED_

174

Pcb.h
// Pcb.h : main header file for the PCB application

#if
Idefined (AFX_PCB_H__76D9CB6F_3 FF5_467A_BBFD_48C0OCB5CEA71__INCLUDED_)
#define AFX_PCB_H__76D9CB6F_3FF5_467A_BBFD_48COCBSCEA71__INCLUDED_

#f _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef _AFXWIN_H__
#error include 'stdafx.h' before including this file for PCH

#endif
#include "resource.h" // main symbols

;;;;;;;///

// CPchpg:
;; See Pcb.cpp for the implementation of this class

class CPcbApp : public CwinApp

{
public:
CPcbAppQ;

// overrides
// ClassWizard generated virtual function overrides

//{{AFX_VIRTUAL(CPcbApp)

public
v1rtua1 BOOL InitInstance();

//3IAFX_VIRTUAL
// Implementation

//{{AFX—MSG(CPCbAE
NOTE - the Classwizard will add and remove member

functions here
// DO NOT EDIT what you see in these blocks of
generated code !
//}IAFX_MSG
) DECLARE_MESSAGE_MAP()

;7;;;///

{{AFX_INSERT_LOCATION}} __ _
// Microsoft visual C++ will insert additional declarations
immediately before the previous Tine.

#endif //
ldefined (AFX_PCB_H_76D9CB6F_3FF5_467A_BBFD_48COCB5CEA71__INCLUDED_)

//
//
//

175

Permutation.h

// Permutation.h: interface for the CPermutation class.

;5//

#if
I defined (AFX_PERMUTATION_H__930F4ABA_DEDF_4571_9871_B768B8633648__INCL

UDED_)

#define
AFX_PERMUTATION_H__93OF4ABA_DEDF_4571_9871_376888633648__INCLUDED_

#include <fstream>

#include <math.h> .
#include "Positions.h” // Added by Classview
#include "Board.h" // Added by Classview
using namespace std;

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class CPermutation

{
public:
void write_NumofFeeders(); ,
int find_best_f(const int start, const CBoard *_pBoardArray,
const int _Board);
int find_best_s(const int start, const CBoard *_pBoardArray,
const int _Board);
void initialise(const CBoard *_pBoardArray, const int _Board);
dgoid pick_random_s(const CBoard *_pBoardArray, const int
_Board);
dgoid pick_random_f(const CBoard *_pBoardArray, const int
,_Board);
d§0id generate_assign(const CBoard *_pBoardArray, const int
_Board);
d§0id calculate_time(const CBoard *_pBoardArray, const int
_Board);
int create_neigh_s(const CBoard *_pBoardArray, const int _Board,
const CPermutation _current, ofstream & _OutFile); :
int create_neigh_f(const CBoard *_pBoardArray, const int _Board,
const CPermutation _current, ofstream & OutFile);
~void poison();
int* get_pFeeder();
int* get_pSeq();
double get_time(Q);
int get_position_a(int _count);
int get_position_b(int _count);
int get_S_Neigh_Size(const CBoard *_pBoardArray, const int
_Board);
int get_F_Neigh_size(Q);
friend CPositions compare_s(const CPermutation &pl, const
CPermutation &p2, const CBoard *_pBoardArray, const int _Board);
friend CPositions compare_f(const CPermutation &pl, const
CPermutation &p2); o
int Get_NumOfFeeders();
cPermutation();
virtual ~CPermutation();

CPermutation operator = (const CPermutation &source);
private: .

bool FedNeighopen;

ofstream FedNeighFile;

ofstream SeqNeighFile;

CPositions *pCoordinates;

int Numofseq;

176

int *pFeeder;
int *pSeq;

double time;
#endif //

!défi9ed(AFX_PERMUTATION_H__930F4ABA_DEDF_4571_9871_B76888633648__INCL
UDED._ '

177

resource.h

//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Pcb.rc ‘

//
#define IDM_ABOUTBOX 0x0010
#define IDD_ABOUTBOX ‘ 100
#define IDS_ABOUTBOX : 101
#define IDD_PCB_DIALOG 102
#define IDR_MAINFRAME 128
#define IDR_MENU 129
#define IDD_BOARD 132
#define IDD_FEEDER 134
#define IDD_COORDINATES 135
#define IDD_TIME 136
#define IDD_ALGORITHM 137
#define IDD_PROGRESS i 138
#define IDC_TEXTOUT 1001
#define IDC_STATUSBOX 1002
#define IDC_NUMOFBOARDTYPESOUT 1004
#define IDC_COMBO 1005
#define IDC_X_HOME 1006
. #define IDC_Y_HOME 1007
#define IDC_X 1008
#define IDC_Y 1009
‘#define IDC_NUMOFFEEDERS 1010
#define IDC_LENGOFFEEDER - 1011
#define IDC_FEEDSETUPTIME 1012
#define IDC_PICKTIME 1013
#define IDC_INSERTTIME 1014
#define IDC_HEADSPEED 1015
#define IDC_MAXMOVES 1016
#define IDC_MAXNOIMP 1017
#define IDC_TABUSIZE ' 1018
#define IDC_TABURESTART 1019
#define IDC_NUMOFBOARDS_A1l 1020
#define IDC_NUMOFBOARDS_A2 1021
#define IDC_NUMOFBOARDS_A3 1022
#define IDC_NUMOFBOARDS_A4 1023
#define IDC_NUMOFBOARDS_AS 1024
#define IDC_NUMOFBOARDS_AG 1025
#define IDC_NUMOFBOARDS_A7 1026
#define IDC_NUMOFBOARDS_AS 1027
#define IDC_NUMOFBOARDS_A9 1028
#define IDC_NUMOFCOMPS_A1 1029
#define IDC_NUMOFCOMPS_A2 1030
#define IDC_NUMOFCOMPS_A3 1031
#define IDC_MAXMOVESOUT 1031
#define IDC_NUMOFCOMPS_A4 1032
#define IDC_MAXNOIMPOUT 1032
#define IDC_NUMOFCOMPS_AS 1033
#define IDC_TABUSIZEOUT 1033
#define IDC_NUMOFCOMPS_AG 1034
#define IDC_TABURESTARTOUT - 1034
#define IDC_NUMOFCOMPS_A7 1035
#define IDC_X_HOMEOUT "1035
#define IDC_NUMOFCOMPS_AS 1036
#define IDC_Y_HOMEOUT 1036
#define IDC_NUMOFCOMPS_A9 1037
#define IDC_XOUT 1037
#define IDC_MAXCOMPTYPES 1038
#define IDC_YoOUT 1038
#define IDC_NUMOFFEEDERSOUT 1039
#define IDC_LENGOFFEEDEROUT 1040
#define IDC_FEEDSETUPTIMEOUT 1041
#define IDC_PICKTIMEOUT 1042
#define IDC_INSERTTIMEOUT 1043
#define IDC_HEADSPEEDOUT 1044
#define IDC_MAXCOMPTYPESOUT 1045

178

#define IDC_MAXNUMOFLOCATIONS
#define IDC_INITIALMETHODOUT
#define IDC_MAXNUMOFLOCATIONSOUT
#define IDC_GO

#define IDC_PROGRESS

#define IDC_BOARD_A_TIME
#define IDC_BOARD_B_TIME
#define IDC_BOARD_C_TIME
#define IDC_BOARD_D_TIME
#define IDC_BOARD_E_TIME
#define IDC_BOARD_F_TIME
#define IDC_BOARD_G_TIME
#define IDC_BOARD_H_TIME
#define IDC_BOARD_I_TIME
#define RANDOM

#define CENTROID

#define IDC_BOARD

#define IDC_FEEDER

#define IDC_COORDINATES
#define IDC_TIME

#define IDC_ALGORITHM
#define IDC_CENTROID

#define IDC_RANDOM

// Next default values for new objects

//

#ifdef APSTUDIO_INVOKED

#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE
#define _APS_NEXT_COMMAND_VALUE
#define _APS_NEXT_CONTROL_VALUE
#define _APS_NEXT_SYMED_VALUE
#endif

#endif

1046
1046
1047
1055
1059
1062 -
1063
1064
1065
1066
1067
1068
1069
1070
8888
9999
32771
32772
32773
32775
32777
32779
32780

140
32781
1072
101

179

TabuList.h
// TabuList.h: interface for the CTabulList class.

//
I117717777777777777777

#if
ldefined (AFX_TABULIST_H__8BE4B658_9AB8_4571_BF87_C76A4187C1F4__INCLUDE

D_
#define
AFX_TABULIST_H_ 8BE4B658_9AB8_4571_BF87_C76A4187C1F4__INCLUDED_

#include "pPositions.h" // Added by Classview
#include "Buffer.h" // Added by Classview
#if _MSC_VER > 1000

#pragma once ,

#endif // _MSC_VER > 1000

class CTabulList

public:
void clear_Tist();)
void push_list(CPositions &move);
void pop_1ist(); _
int Tist_size(Q);
bool Tist_find(CPositions &move) const;
CTabuList(const int _TabuSize);
virtual ~CTabuList(Q);

private: ,
int Tabusize;
CBuffer *b;
cBuffer *a;

#endif //

!dgfined(AFX;TABULIST_H__SBE48658_9A88_4571_BF87_C76A4187C1F4__INCLUDE
D .

180

Source Files:

Algorithmblg.cpp

;; Algorithmdlg.cpp : implementation file

#include "stdafx.h"
#include "pPcb.h"
#include "Algorithmblig.h"

#1fdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE__;
#endif

;;;;;;;///
// CAlgorithmblg dialog

CA1gor1thmD1?::CA1?ori§hmD1?(CWnd* pParent /*=NULL*/)
: cpialog(cAlgorithmblg::IDD, pParent)

MaxMoves = 10;

TabuRestart = 2;

TabuSize = 4;

MaxNoImp = 3;

//{{AFX_DATA_INIT(CAlgorithmDlg) .
. // NOTE: the Classwizard will add member initialization
ere
} //3IAFX_DATA_INIT

void CAlgorithmDlg: :DoDataExchange(CDataExchange* pDX)

cbialog: :DoDataExchange (pDX) ;
//{{AFX_DATA_MAP(CAlgorithmblg)
// NOTE: the Classwizard will add bbx and DDV calls here

//}YAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CATgorithmDlg, CDialog)
//{{AFX_MSG_MAP(CATgorithmblg)
ON_BN_CLICKED(IDC_CENTROID, onRadioMethodcCl1ick)
ON_BN_CLICKED(IDC_RANDOM, OnRadioMethodcClick)
//}IAFX_MSG_MAP

END_MESSAGE_MAP()

}nt CAlgorithmdlg: :GetItem(const int _ID)
const TEXT_SIZE = 16; ‘
char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pGet = (CEdit *)(GetDlgItem(_ID));

pGet->GetWindowText(szText, TEXT_SIZE);
return atoi(szText);

LITIITIITIITITT LTI 7T TI I 7777717707 77777777777777777777777777777

gorithmDlg message handiers

g

TgorithmbD1g: :Get_MaxMoves ()

return MaxMmoves;

181

: }nt CAlgorithmDlg: :Get_MaxNoImp ()

return MaxNoImp;

int CAlgorithmblg::Get_Tabusize()

return TabuSize;

int CAlgorithmblg::Get_TabuRestart()

return TabuRestart;

¥oid CAlgorithmblg: :0noK(Q)

MaxMoves = GetItem(IDC_MAXMOVES);
MaxNoImp = GetItem(IDC_MAXNOIMP) ;
TabuSize = GetItem(IDC_TABUSIZE);

TabuRestart = GetItem(IDC_TABURESTART) ;

; Cbialog: :0n0K();

void CAlgorithmDlg::0nRadioMethodClick()
if (random() .GetCheck() == 1)
RANDOM;

choice

}f (centroid() .Getcheck() == 1)
choice = CENTROID;

}
CButton& CAlgorithmDlg::random()
return *(CButton*) GetDlgItem(IDC_RANDOM) ;

CButton& CAlgorithmbDlg::centroid()
return *(CButton*) GetDl1gItem(IDC_CENTROID);

}nt CAlgorithmDlg: :Get_choice()

return choice;

void CAlgorithmD1g::UpdateBox(const int _ID, const int _Data)

const TEXT_SIZE = 16; -
char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pDisplay = (CEdit *)(GetDlgItem(_ID));
itoa(_bata, szText, 10);
pDisplay->SetWindowText(szText) ;

}
?OOL CAlgorithmblg: :onInitbialog()

UpdateBox (IDC_MAXMOVES, MaxMoves);
UpdateBox (IDC_MAXNOIMP, MaxNoImp);
UpdateBox(IDC_TABUSIZE, TabuSize);
UpdateBox{IDC_TABURESTART, TabuRestart);

182

if (choice == RANDOM)
random() . SetCheck (RANDOM) ;

%f (choice == CENTROID)

¢ centroid() .SetCheck(CENTROID) ;

return true;

}

void CAlgorithmDlg::set_para(const int _MaxMoves, const int _MaxNoImp,
const int _TabuSize, const int _TabuRestart, const int -_choice)

'~ MaxMoves = _MaxMoves;
MaxNoImp = _MaxNoImp;
TabuSize = _TabuSize;

TabuRestart = _TabuRestart;
choice = _choice;

183

BoardbDlg.cpp

;4 anrdD]g.cpp : implementation file

' #include "stdafx.h"
#include "Pcb.h"
#include "boarddlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE__;
#endif

%%;ﬁ///
// cBoardbdlg dialog

CBoardD1g :CBoardDlg(Cwnd* pParent /*=NULL*/)
: CD1a1og(CBoardD1g :IDD, pParent)

{
, NumofBoardTypes =.0;
MaxCompFreq = 0;
MaxNumofCompTypes = 0;
MaxNumofLocations = O;
pCompTypes = 0;
//{{AFX_DATA_ INIT(CBoardD1g)
H // NOTE: the Classwizard will add member initialization
ere
} //}}AFX_DATA_INIT

void CBoardDlg: :DobDataExchange(CDataExchange* pDX)

Cbialog:: DoDataExchange(qDX),

//{{AFX_DATA_MAP(CBoardD
/ NOTE: the C1assW1zard will add pbx and pbv calls here

//}}AF§_DATA_MAP

BEGIN_MESSAGE_MAP(CBoardplg, Cbialog)

//{{AFX_MSG_MAP(CBoardplg)

ON_CBN_SELCHANGE (IDC_ COMBO onselchangeCombo)

//PIAFX_MSG_MAP
END_MESSAGE_MAP()
%;Z%///
// cBoardDlg message handlers
}nt CBoardD]Q::Get_MaxNumofCompTypes()

return MaxNumOfCompTypes;

int CBoardDlg: :Get_MaxNumOfLocations()

return MaxNumOfLocations;

}nt CBoardDlg: :Get_NumofBoardTypes()

return NumofBoardTypes;

void CBoardDlg::ClearBox(const int _ID)

184

CEdit *pClear = (CEdit *)(GetD]gItem(_ID));
pClear->SetWindowText(" B H

void CBoardDl1g::Toad_files(const char *_file)

int j = 0;

int next = 0;
int CompFreq;
int CompType;

ifstream in(_fi]é, ios::in); // file dinput variable
if(lin)
{

MessageBox("Unable to open file!”, "Fail”,
MB_ICONWARNING) ; ’
return;

char item[20];
char command[20];

in >> dtem >> ditem >> item >> item >> ditem >> item >> item >>
item; ;

for (int board = 0; board < NumOfBoardTypes; board++)

pBoardArray[board] .NumofCompTypes = 0;
" pBoardArray[board] .NumofComps = get_number(_file, board);
" UpdateBox (IDC_NUMOFCOMPS_AL + T
next,pBoardArray[board].NumofComps) ;
pBoardArray[board].pComps = new CComps
[pBoardArray[board] .NumofComps + 1];
for (int k=0; k<=pBoardArray[board].NumofComps; k++)

pBoardArray[board].pComps[k].X_Co = 0;
pBoardArray[board].pComps{k].Y_Co = O;
pBoardArray[board] . pComps[k].CompType = O0;
pBoardArray[board].pComps[k].CompFreq = 0;

]

in >> pBoardArray[board].NumofBoards;
UpdateBox(IDC_NUMOFBOARDS_Al +
next,pBoardArra¥[boardJ.NumofBoards);

hile(1)

w
{.
in >> pBoardArray[board].pComps[j].CompType;
CompType = pBoardArray[board].pComps[j].CompType;
%f (pBoardArray[board{.pComps[J].COmpType == §

in >> command;
}f (command[0] == 'N')

} next += 1; // increment next
}f (command[0] == 'E")
MessageBox("End of file","end of file

reached" ,MB_ICONINFORMATION) ;
return;
break;
) break;
}f ((compType!=0) && (CompCompare(CompType,board)))

MaxNumofCompTypes += 1;

185

if ((CompType!=0) &&
(CompCompareBoard(%ompType,bqard,J)))

pBoardArray [board] .NumofCompTypes += 1;

in >> pBoardArray[board].pComps[j].CompFreq;
CompFreq = pBoardArray[board].pComps[j].CompFreq;

for (int i=0; i<CompFreq; 1i++)

pBoardArray[board].pComps[j].CompType
compType;

pBoardArray[board] .pComps[j].CompFreq
CompFreq;

in >> pBoardArray([board].pComps[j].X_Co >>

pBoardArray [board] .pComps[j].Y_Co;
J++s

X
} // end while Toop
pBoardArray[board] .TypesofComps = new int

[pBoardArray[board].NumofcompTypes];
for (k = 0; k < pBoardArray[board].NumofCompTypes; k++)

pBoardArray[board] .Typesofcomps[k] = 0;

int cComps = 0;

int TempFreq = 0;

for (int cTypes = 0; cTypes <
pBoardArray[board] .NumofCompTypes; cTypes++)

if
(CompCompareBoard(pBoardArray[board] .pComps[cComps] .CompType,board, cTy
5

pes) .

pBoardArray[board] . TypesofComps[cTypes] =
pBoardArray[board] .pComps[cComps].CompType;

TempFreq =
pBoardArray[board] .pComps[cComps] .CompFreq;

cComps =.cComps + TempFreq;

}
pBoardArray[board] .NumOfLocations = g; ; .
if (MaxNumOfLocations < pBoardArray[board].NumOfLocations)

MaxNumoOfLocations =
pBoardArray[board] .NumofLocations;
UpdateBox (IDC_MAXNUMOFLOCATIONS ,MaxNumOfLocations) ;
for (int board = 0; board < NumOfBoardTypes; board++)

for (int comp = 0; comp <
pBoardArray[board] .NumofComps; comp++)

if (MaxCompFreq <
pBoardArray[board].pCompf[comp].CompFreq)

MaxCompFreq =
pBoardArray[board] .pComps[comp].CompFreq;

if (pBoardArray[board] .MaxCompFreqonBoard <
pBoardArray[board].pComp?[comp].CompFreq)

BoardArray[board] .MaxCompFreqonBoard =
pBoardArray[board].pCompi[compg.CompFreq;

; }
UpdateBox (IDC_MAXCOMPTYPES ,MaxNumOfCompTypes) ;

186

pCompTypes = new int [MaxNumofcompTypes],

for (int i = 0; i< MaxNumOfCompTypes, T++)
pCompTypes[i] =

Jj=0;

int comp = 0;
int TempFreq = 0;
for (int cBoard = 0; cBoard < NumofBoardTypes, cBoard++)

for (int cComp = 0; cComp <
pBoardArray[cBoard] .NumOfComps; cComp++)
{ ¢
i
(CompCompareMax(pBgardArray[cBoard].pCcmps[cComp].CompType,comp))

pCompTypes[comp] =
pBoardArray[cBoard] . pComps[cComp] .CompType;
TempFreq =
pBoardArray[cBoard] . pComps [cComp] .CompFreq;
comp++;
~ cComp = cComp + TempFreq - 1;
}
in.close();
return;

} |
void cBoardDl1g::UpdateBox(const int _ID, const int _Data)

const TEXT_SIZE = 16;

char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pDisplay = (CEdit *)(GetDIgItem(_ID));
itoa(_bata, szText, 10);

pDisplay- >SetW1ndowText(szText),

}

int CBoardDlg::get_number(const char *_file, const 1int _next)

char item[20];

char command[20];

int number;

int types;

int x_co;

int y_co;

int total_number[10] = {0, O, O, O, O, O, O, O, O, 0};
int next = 0;

ifstream in(_file); // file input variable

1f (lin)
MessageBox("Cannot open file!", "Fail", MB_ICONWARNING);
return 1;

in >> item >> item >> item >> jitem >> item >> item >> item >>
item;

fbr (int board = 0; board < NumOfBoardTypes; board++)
in >> pBoardArray[board].NumofBoards;
?hi1e(1)

in >> types;
1f (types == 0)

187

in >> command;
}f (command[0] == 'N')

next += 1;
break;

in >> number;
total_number[board] += number;

for (int i=0; i<number; i++)

in >> X_Co >> Yy_CoO;

}
in.close();
return total number[_next],
bool cBoardDlg::CompCompare(const int _NewComp, const int _Next)
for (int board = 0; board < _Next+l; board++)
for (int j = 0; j < pBoardArray[board].NumofComps; j++)
if (pBoardArray[board].pcComps[j].CompType != 0)

if (_NewComp == pBoardArray[board].pComps[j-
1].CompType) :

//MessageBox("Same
CompType", "Same" ,MB_OK) ;

}

return false;

}

return true;
bool cBoardblg: :CompCompareBoard(const 1nt _NewComp, const int _Board,
const int comp)
for (int cComp = 0; cComp < _Comp; cComp++)
if (pBoardArray[_Board].pComps[cComp].CompType != 0)

: if (_NewComp == pBoardArray[_Board].pComps[cComp-
1].CompType)

//MessageBox(''Same CompType on

board", "Same" ,MB_OK) ;
return false;

}
}
return true;

}

bool cBoardblg::CompCompareMax(const int _NewComp, const int _Count)
for (int i = 0; i < _Count+1; i++) ‘
}f (i > 0 & _NewComp == pCompTypes[i-1])

return false;

188

¥

return true;

3
void CBoardD1g: :0nSelchangeCombo()

const TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1];

MaxNumOfCompTypes =
MaxNumOfiLocations = O;
pCompTypes = 0; ‘

ccomboBox *pBoard = (CComboBox *) (GetD1gItem(IDC_COMBO));
for (int 1 = 0; 1 < 9; i++)

ClearBox (IDC_NUMOFBOARDS_Al+i);
ClearBox (IDC_NUMOFCOMPS_Al+i);

} .
int icursel = pBoard->Getcursel();

pBoard->GetLBText(icursSel, szText);
NumOfBoardTypes = atoi(szText);

pBoardArray = new CBoard [NumOfBoardTypes];

for (i = 0; i < NumOfBoardTypes; i++)
pBoardArray[i].NumOfBoards = 0;
pBoardArray[i].NumofComps = 0O;

pBoardArray[i] .NumofCompTypes
pBoardArray[i].NumofLocations

nn
o

}
load_files("Coordinates.txt");

CBoard* CBoardDlg::get_pBoardArray()

return pBoardArray;

189

comps .cpp
// Comps.cpp: implementation of the CComps class.

//
LI171177777777777777777077171777177777777771777771777717777777177777777

#include "stdafx.h"
#include "Pcb.h"
#include "Comps.h"

#ifdef _DEBUG

#undef THIS_FILE :
static char THIS_FILE[]=_ FILE__;
#define new DEBUG_NEW

#endif

LTI 777 7711717777717 0777771777777777171777777777777777

/ Construction/Destruction

/
[117717777711777777777777777777777/777777777/7//777/777/7//7////777/77777/
%Comps::CComps()

}
%Comps::~ccomps()

}

190

FeederDlg.cpp

// FeederDlg.cpp : implementation file

#include "stdafx.h"
#include "pPcb.h"
#include "FeederDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE ,
static char THIS_FILE[] = __FILE__;
#endif

;;;///
// CFeederDlg dialog

CFeederDlg: :CFeederDlg(CwWnd* pParent /*=NULL*/)
: cbialog(CFeederDlg::IDD, pParent)

//{{AFX_DATA_INIT(CFeederDl1g)
// NOTE: the Classwizard will add member initialization

here
//3IAFX_DATA_INIT

void CFeederDlg: :DoDataExchange(CbataExchange* pDX)
cbialog: :bDoDataExchange(pDX) ;

//{{AFX_DATA_MAP(CFeederD1g) C
/ NOTE: the classwizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CFeederblg, Cbialog)
//{{AFX_MSG_MAP(CFeederbDlg)
//}IAFX_MSG_MAP
END_MESSAGE_MAP()
;;;;;;;///
// CFeederDlg message handlers
int CFeederDlg::GetItem(const int _ID)
const TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pGet = (CEdit *)(GetDIgItem(_ID)); _
pGet->GetwWindowText(szText, TEXT_SIZE);
return atoi(szText);

}
int CFeederDlg::Get_NumOfFeeders()

return NumofFeeders;

int CFeederDlg::Get_LengOfFeeder()

return LengOfFeeder;

void CFeederDlg: :0n0K()
NumOfFeeders = GetItem(IDC_NUMOFFEEDERS);

191

LengofFeeder = GetItem(IDC_LENGOFFEEDER) ;

Cbialog::0noK(Q);

void CFeederDlg: :UpdateBox(const int _ID, const int _Data)

const TEXT_SIZE = 16;

char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pDisplay = (Cedit *)(GetDlgItem(_ID));
itoa(_Data, szText, 10);
pDisplay->SetWindowText(szText) ;

}
BOOL CFeederblg::onInitbialog()

UpdateBox(IDC_NUMOFFEEDERS, NumOfFeeders);
UpdateBox (IDC_LENGOFFEEDER, LengOfFeeder);
return true;

}

void CFeederDlg::set_para(const int _NumOfFeeders, const int
_LengofFeeder)

_NumofFeeders;
_LengofFeeder;

NumOfFeeders
LengofFeeder

192

PcbbDlg.cpp
;; PcbD1g.cpp : implementation file

#include "stdafx.h"
#include "pPcb.h"
#include "PcbDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE__;
#endif

;;;;;;5///

// Declaration of global variables
int NumofFeeders = 40;
int LengOfFeeder = 20;
int TabuSize = 4;

int TabuRestart = 2;
int MaxMoves = 10;
int MaxNoImp = 3;

int FeedSetupTime = 0;
int InsertTime = 2;
int PickTime = 2;

int HeadSpeed = 500;
int X = 300;

int Y = -500;

int X_Home = 100;

int Y_Home = -200;

int MaxNumOfLocations;
int MaxNumofCompTypes;
int NumOfBoardTypes;
int F_Neigh_Size;

int S_Neigh_size;
CPermutation *neigh_s;
Cpermutation *neigh_f;

LILLILIIIIIIITI 77 777710077717107777777777777777777777777777777777771777

Y .
// caboutDlg dialog used for App About

class CAboutDlg : public CDialog

public:
caboutdlg(Q);

// Dialog Data
//{{AFX_DATA(CAboutD1g)
enum { IDD = IDD_ABOUTBOX };
//}AFX_DATA

// Classwizard generated virtual function overrides

//{{AFX_VIRTUAL(CAboutD1g)

protected: .

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV

support. : ' .
//}}AFX_VIRTUAL

// Implementation

protected:
//{{AFX_MSG(CAboutD1g)
//IIAFX_MSG
DECLARE_MESSAGE_MAP()

CAboutD1g: :CAboutD1g() : CDialog(CAboutDlg: :IDD)

193

//{{AFX_DATA_INIT(CAboutD1g)
// Y YAFX_DATA_INIT

}
void cAboutD1g: :DoDataExchange(CDataExchange* pDX)

Cbialog:: DoDataExchange(?Dx),
//{{AFX_DATA_MAP (CAboutD
//3}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CAboutD1g, CD1a10g)
//{{AFX_MSG_| MAP(CAboutD1?
// No message handlers
//3IAFX_MSG_MAP
END_MESSAGE_MAP()

;;é;;;;///
// cPcbDlg dialog

CPcbD1g: :CPcbD1g(CwWnd* pParent /~—NULL*/)
¢ : CD1a1og(CPcbD1g :IDD, pParent)

0;

0;

MaxNumOfLocations
MaxNumOofCompTypes
NumOfBoardTypes =
NumOfFeeders = 40;
X_Home = 100;
Y_Home = -200;

= 300;
Y = -500;
choice = RANDOM;
ResultOpen = fa1se,
Finalopen = false;
flag = true;
RestartMoves
NoImpMoves
Total_Time
Setup_Time
Board_Time

(=2

0;
0;
0;

O

//{{AFX_DATA_INIT(CPCbD1g)
m_Stringbata = _T("'
m_TextData = (""),
m_Board_A_T1me
m_Board_B_Time
m_Board_C_Time
m_Board_D_Time
m_Board_E_Time
m_Board_F_Time
m_Board_G_Time
m_Board_H_Time
m_Board_I_Time = 0 Of
//}}AFX_DATA_INIT
o 3é Note that LoadIcon does not require a subsequent DestroyIcon
in win
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME) ;

OOOO

ThIhThIhoh

(LI T I A1 1
OOOOOO

o
o
h=h

¥oid CPcbD1g: :DoDataExchange(CDataExchange* pDX)

Cbialog: :DobataExchange(pDX);

//{{AFX_DATA_MAP (CPcbDTg

DDX_cControl(pbX, IDC_GO, m_GoButton);
DDX_Control(pbX, IDC_ PROGRESS m_ProgressStatus) ;
DDX_Text(pDX, IDC_STATUSBOX, m Stringbata);
DDX_Text(pDX, IDC_TEXTOUT, m_TextData);
DDX_Text(pDX, IDC_ BOARD_A_TIME m_Board_A_Time);

194

DDX_Text(pDX, IDC_BOARD_B_TIME, m_Board_B_Time);
DDX_.Text(pDX, IDC_BOARD_C_TIME, m_Board_C_Time);
DDX_Text (pDX, IDC_BOARD_D_TIME, m_Board_D_Time);
DDX_Text (pDX, IDC_BOARD_E_TIME, m_Board_E_Time);
DDX_Text (pDX, IDC_BOARD_F_TIME, m_Board_F_Time);
DDX_Text(pDX, IDC_BOARD_G_TIME, m_Board_G_Time);
DDX_Text(pDX, IDC_BOARD_H_TIME, m_Board_H_Time);
DDX_Text (pDX, IDC_BOARD_I_TIME, m_Board_I_Time);
//}YAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CPcbDlg, CDialog)
//{{AFX_MSG_MAP(CPcbD1g)
ON_WM_SYSCOMMAND (O
ON_WM_PAINTQ)
ON_WM_QUERYDRAGICON()
ON_COMMAND (IDC_BOARD, OnBoard)
ON_COMMAND (IDC_FEEDER, OnFeeder)
ON_COMMAND (IDC_COORDINATES, OnCoordinates)
ON_COMMAND (IDC_TIME, OnTime)
ON_COMMAND (IDC_ALGORITHM, OnAlgorithm)
ON_BN_CLICKED(IDC_GO, OnGo)
ON_EN_SETFOCUS (IDC_TEXTOUT, OnSetfocusTextout) .
//IIAFX_MSG_MAP

END_MESSAGE_MAP()

;;;;;55///
// cpcbDlg message handlers
?OOL Cpcbp1g: :onInitbialog()

cpiatlog::onInitDialog();

UpdateBox (IDC_X_HOMEOQUT, X_Home);

UpdateBox (IDC_Y_HOMEOUT, Y_Home) ;

UpdateBox (IDC_XOUT, X);

UpdateBox (IDC_YOUT, Y);

UpdateBox (IDC_FEEDSETUPTIMEOUT, FeedSetupTime);
UpdateBox (IDC_PICKTIMEOUT, PickTime); _
UpdateBox (IDC_INSERTTIMEOUT, InsertTime);
UpdateBox (IDC_HEADSPEEDOUT, HeadSpeed);
UpdateBox (IDC_MAXMOVESOUT, MaxMoves);
UpdateBox (IDC_MAXNOIMPOUT, MaxNoImp);
UpdateBox (IDC_TABUSIZEOUT, TabuSize);
UpdateBox (IDC_TABURESTARTOUT, TabuRestart);
UpdateBox (IDC_INITIALMETHODOUT, "RANDOM") ;
UpdateBox (IDC_NUMOFFEEDERSOUT, NumOfFeeders);
UpdateBox (IDC_LENGOFFEEDEROUT, LengOofFeeder);

LengOfFeeder = 20;
TabuSize = 4;
TabuRestart = 2;
MaxMoves = 10;
MaxNoImp = 3;
FeedSetupTime = 0;
InsertTime = 2;
PickTime = 2;
HeadSpeed = 500;

X = 300;
Y = -500;
X_Home = 100;

Y_Home = -200;

tabu = new CTabuList(Tabusize);

// Add "About...” menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT ((IDM_ABOUTBOX & OXFFFQ) == IDM_ABOUTBOX) ;
ASSERT (IDM_ABOUTBOX < OXxF000);

195

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)

cstring strAboutMenu;
strAboutMenu. Loadstring(IDS_ABOUTBOX) ;
}f (!straboutMenu.IsEmpty())

pSysMenu->AppendMenu (MF_SEPARATOR) ;
pSysMenu->AppendMenu (MF_STRING, IDM_ABOUTBOX,

strAboutMenu%;

}

// set the icon for this dialog. The framework does this

automatically o L . .
when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // set big_icon
SetIcon(m_hIcon, FALSE); // set small dicon
// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a
control
void cPcbD1g::0nSysCommand (UINT nID, LPARAM TParam)

}f ((nID & OXFFFQ) == IDM_ABOUTBOX)

CAboutDlg dlgAbout;
d1gAbout.DoModal();

else ‘
cpialog: :onSysCcommand(niD, Tparam);
}

// If you add a minimize button to your dialog, you will need the code

beTlow
// to draw the icon. For MFC applications using the document/view

?7delﬁis is automatically done for you by the framework.
void CPcbD1g::OnPaint()
if (IsIconic())
{ CPaintDC dc(this); // device context for painting

SendMessage (WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(),

0;
// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect; :
GetClientRect(&rect);
int x = (rect.width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;
// Draw the icon
) dc.prawIcon(x, y, m_hIcon);
else
} cpialog::0onPaint();
}

196

// The system calls this to obtain the cursor to display while the
user drags -

// the minimized window.

HCURSOR CPcbD1g: :0nQuerybragIcon()

return (HCURSOR) m_hIcon;

void CPcbD1g::0nBoard()

str<<"Setting boards parameters."<<ends;
UpdatestatusBox(str);

BoardD1g.DpoModal(); // run Board dialog box
m_GoButton.SetFocus();

str<<"Board details updated.'<<ends;
UpdateStatusBox(str);

pBoardArray = BoardDlg.get_pBoardArray();
NumofBoardTypes = BoardDlg.Get_NumOfBoardTypes();

MaxNumofCompTypes = BoardDlg.Get_MaxNumOfCompTypes();
MaxNumofLocations = BoardDlg.Get_MaxNumOfLocations();

UpdateBox (IDC_NUMOFBOARDTYPESOUT, NumOfBoardTypes);
UpdateBox (IDC_MAXCOMPTYPESOUT, MaxNumOfCompTypes) ;
UpdateBox (IDC_MAXNUMOFLOCATIONSOUT, MaxNumOfLocations);

}
void CPcbDlg::0nFeeder()

str<<'"setting feeder parameters."<<ends;

UgdateStatusBox(str);

? ile(1)
FeederDlg.set_para(NumofFeeders, LengofFeeder);
FeederDTlg.boModal1(Q); // run Feeder dialog -box

m_GoButton.SetFocus();

NumOfFeeders = FeederDlg.Get_NumOfFeeders();
LengOfFeeder = FeederDlg.Get_LengOfFeeder();
if (NumOfFeeders >= MaxNumOfCompTypes)

break;

‘else

MessageBox ("Number of feeders must be greater than

the maximum number of component types!",
; "Warning",MB_ICONWARNING);

}

UpdateBox (IDC_NUMOFFEEDERSOUT, NumOfFeeders);
UpdateBox (IDC_LENGOFFEEDEROUT, LengOfFeeder);
str<<"Feeder parameters updated."<<ends;
UpdateStatusBox(str);

} _
¥oid CPcbD1g: :0nCoordinates()

str<<"Setting coordinates."<<ends;

UpdateStatusBox(str); ,
CoordinatesDlg.set_para(X, Y, X_Home, Y_Home);
coordinatesDlg.DoModal(); // run Coordinates dialog box

m_GoButton.SetFocus(Q);

X = CoordinatesDlg.Get_X();

Y = CoordinatesDlg.Get_Y();

X_Home = CoordinatesDlg.Get_X_Home();
Y_Home = CoordinatesDlg.Get_Y_Home();

197

UpdateBox (IDC_XOUT, X);

UpdateBox (IDC_YOUT, Y);

UpdateBox (IDC_X_HOMEOUT, X_Home) ;
UpdateBox (IDC_Y_HOMEOUT, Y_Home) ;
str<<"coordinates updated."<<ends;
UpdateStatusBox(str?;

}
¥oid CPcbD1g: :0onTime()

str<<"Setting timing parameters. "<<ends;
’

UpdateStatusBox(str

TimeD1g.set_para(FeedSetupTime, PickTime, InsertTime,
HeadSpeed) ;

TimeDlg.DoModal(Q); // run Time dialog box

m_GoButton.SetFocus();

FeedSetupTime = TimeDlg.Get_FeedSetupTime();
PickTime = TimeDlg.Get_PickTime();
InsertTime = TimeDlg.Get_InsertTime();
HeadSpeed = TimeD1g.Get_HeadSpeed();

UpdateBox (IDC_FEEDSETUPTIMEOUT, FeedSetupTime);
UpdateBox (IDC_PICKTIMEOUT, PickTime);

UpdateBox (IDC_INSERTTIMEOUT, InsertTime);
UpdateBox (IDC_HEADSPEEDOUT, HeadSpeed);
str<<"Timing parameters updated."<<ends;
UpdateStatusBox(str);

}
¥oid,CPcbD1g::OnA1gorithm()

str<<"sSetting Tabu Search algorithm."<<ends;

U?dateStatusBox(str); .
hos § gorithmDlg.set_para(MaxMoves, MaxNoImp, TabuSize, TabuRestart,
choice);

Algorithmblg.poModal(); // run Algorithm dialog box

m_GoButton.SetFocus();

MaxMoves = AlgorithmDlg.Get_MaxMoves(); .

MaxNoImp = AlgorithmDlg.Get_MaxNoImp();

TabuSize = Algorithmblg.Get_TabuSize();

delete [] tabu;

tabu = new CTabuList(TabuSize);

TabuRestart = Algorithmblg.Get_TabuRestart();

choice = Algorithmblg.Get_choice();

UpdateBox (IDC_MAXMOVESOUT, MaxMoves) ;
UpdateBOX(IDC_MAXNOIMPOUT, MaxNoImp) ;
UpdateBox (IDC_TABUSIZEOUT, TabuSize);
UpdateBox (IDC_TABURESTARTOUT, TabuRestart);

if (choice == CENTROID)
UpdateBox (IDC_INITIALMETHODOUT, "Centroid");

else
UpdateBox (IDC_INITIALMETHODOUT, "Random");

str<<"Tabu Search algorithm updated.'<<ends;
} UpdateStatusBox(str);

void CPcbD1g: :UpdateBox(const int _ID, const int _data)

const TEXT_SIZE = 16;

char szText[TEXT_SIZE + 1]; // buffer for conversions
pDisplay = (CEdit *)(GetDIlgItem(_ID));

itoa(_data, szText, 10);
pDisplay->SetwindowText(szText) ;

UpdateData(TRUE) ;

198

}
void CPcbD1g::UpdateBox(const int _ID, char *_data)

ppisplay = (CEdit *)(GetDlgItem(_ID));
pDisplay->SetwindowText(_data);
Updatebata(TRUE) ;

int CPcbD1g: :GetItem(const int _ID)

const TEXT_SIZE = 16;

char szText[TEXT_SIZE + 1]; - // buffer for conversions
CEdit *pGet = (CEdit *)(GetDlgItem(_ID));
pGet->GetwindowText(szText, TEXT_SIZE);

return atoi(szText);

}
void CPcbD1g: :0noK(Q)

cbialog::0n0K(Q);

void cPcbD1g: :UpdateStatusBox(ostrstream _stream)

m_StringData = _stream.str();
UpdateData(FALSE);
Updatewindow(Q);

void CcPcbD1g::0nGo()

m_ProgressStatus.SetRange(0, NumOfBoardTypes+1);
ClearBox (IDC_TEXTOUT) ;
if (Finalopen == false)

FinalFile.open("Final.txt", ios::out);
FinalOpen = true;
}f (FinalFile.fail1Q))

) MessageBox("Unable to open final result file",
"Fail", MB_ICONWARNING) ;
return;

}
if (ResultoOpen == false)

. ResultFile.open("results.txt", i0s::out);
ResultOpen = true;
}f (ResultFile.fail())

MessageBox("Unable to open result file", "Fail",

MB_ICONWARNING) ;
return;

}
if (NumOfFeeders < MaxNumOfCompTypes)

MessageBox("Number of feeders < Total number of component
types", "warning", MB_ICONWARNING);
return;

ResultFile<<"Total number of

feeders:\t\t\t"<<NumofFeeders<<"\n";
\n" ResultFile<<"Length of each feeder:\t\t\t\t"<<LengofFeeder<<"

mm\n"';

ResultFile<<"Home coordinates:\t\t\t\t\t"<<X_Home<<" x
"<<Y_Home<<"\n";

ResultFile<<"Feeder-to-board distance:\t\t\t"<<X<<" X
"<<Y<<"\n";

199

dRssu]tFi1e<<“Feed setup time:\t\t\t\t\t"<<FeedSetupTime<<"
seconds\n";
ResultFile<<"Pick time:\t\t\t\t\t\t\t"<<PickTime<<" seconds\n";
ResultFile<<"Insert time:\t\t\t\t\t\t'"<<InsertTime<<"
seconds\n";
Resu1tF11e<<"Head speed:\t\t\t\t\t\t\t"<<HeadSpeed<<"
mm/seconds\n";
Resu1tF11e<<"Tota1 number of moves: \t\t\t\t"<<MaxMoves<<"\n"
Resu1tF11e<< Maximum moves without.)
improvement:\t" <<MaxNoIm <<"\n";
ResultFile<<'"Len of Tabu 1ist: \t\t\t\t“<<TabuS1ze<<"\n
ResultFile<<"Num er of Tabu restart
allowed:\t\t"<<TabuRestart<<"\n";

//de1ete [] pBest_Exit;
pBest_Exit = new CPos1t1ons[TabuRestart+l],- '
srand((uns1gned)t1me(NULL)), // initiate random number

generator
/*CompNames = new CStr1ng [pBoardArray[0] .NumofCompTypes];
CompNames[0] = "Res_1"
CompNames[1] = "Res_ 2"
CompNames[2] = "Cap_l"'
CompNames[3] = "Diode_1";
CompNames[4] = "Cap_2";
CompNames[5] = "Res_3";
CompNames[6] = "Diode_2";
CompNames[7] = "Cap_3";
CompNames[8] = "Res_4";*/

B Y L L R R e R LR R R R R R R T T T T T T R L X R Y LX)
* %
// Start processing one board at a time

B3

B L S R T e E e T e L T

da e
ww

for (int cBoard = 0; cBoard < NumOfBoardTypes; cBoard++)

m_ProgressStatus.SetPos(cBoard+1) ;
UpdateData(FALSE) ;

Updatewindow() ;

current. 1n1t1a11se(pBoardArray, cBoard);
Best. 1n1t1a11se(?BoardArray, cBoard);
LocalBest.initia 1se(pBoardArray, cBoard);

str<<"Processing board "<<cBoard<<ends;

UpdatestatusBox(str);

strrext<<’—-===--mccmmm oo \r'<<endl<<"Processing
board "<<cBoard<<"\r"<<endl;

strrext<<’—==-=-c—c--mmmem oo \r"<<endl<<ends;

UpdateTextBox(strText);

ReSUTEFiTe<< " \N\n#*#sdsdsdsdthhihohahodhhhdhdndsn,

ResultFile<<"\n***** PROCESSING BOARD "<<cBoard<<" FEREEEN

Resu]tF11e<<"\n******************************\n"

ResultFile<<"\nNumber of
board: \t\t\t“<<pBoardArra [cBoard] .NumOfBoards;
ResuTtFile<<"\nNumber of component
types:\t"<<pBoardArray[cBoard].NumofCompTypes;
ResultFile<<"\nNumber of
Tocations:\t\t"<<pBoardArray[cBoard] .NumofLocations;
Resu]tF11e<<"\nNumber of
components:\t\t"<<pBoardArray[cBoard] .NumofComps;
Resu]tF11e<<"\nIn1t1a11s1ng An";

R L T L L e R L R X T L R L
// Generate initial placement sequence randomly

200

A AR R R R R R R R R R AR R A AR AR TR

current.pick_random_s(pBoardArray, cBoard);

*************4**
// Generate initial feeder assignment either randomly or

using centroid .
// rule

B R R R L R T T R L R R L g g L L AT

if (choice == RANDOM)

~

Gedh It L RN TR LRkt kd bk hf kst h bt bt hdihhhhhhihhkh)
// Generate initial feeder assignment randomly

Gekdehhhhdhhhh bkt hhhhhhhhhhhhhhhhhhhkikik®
rrent.pick_random_f(pBoardArray, cBoard);

// calculate time based on initial feeder assignment
and placement

// sequence
L R R R R L L L T L T L T L T e e L E

current.calculate_time(pBoardArray, cBoard);
ResultFile<<"\nInitial generated time Randomly = ";

else if (choice == CENTROID)

Exhhwhh bt rh b hhdh kb hhdhdhhhdhhhhhh bk hhhhhhhhihhhhhhhhihhkkk
// Generate initial feeder assignment using Centroid
Rule

T L T g R R A AR 2 R L o e e 2 o R T T L T
current.generate_assign(pBoardArray, cBoard);

R L AR R R R R R X 2 R R R R R R R R L L T R R T T)
// calculate time based on initial feeder- assignment
and placement
// sequence
fhkdhhdhhhdkdhdhhhhhdhhhhhhkhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhihiik
'

current.calculate_time(pBoardArray, cBoard)]
ResultFile<<"\nInitial generated time using Centroid

Rule = ";
ResultFile<<current.get_time()<<" seconds\n";
F_Neigh_Size = current.get_F_Neigh_Size();
S_Neigh_Size = current.get_S_Neigh_Size(pBoardArray,
cBoard);

ResultFile<<"\n\nF_Neigh_Size = "<<F_Neigh_size;
ResultFile<<"\nS_Neigh_Size = "<<S_Neigh_Size<<"\n";

delete [] neigh_s;

delete [] neigh_f;

neigh_s = new CPermutation[S_Neigh_Size];

neigh_f = new CPermutation[{F_Neigh_Size];

for (int i = 0; i < S_Neigh_Size; i++)
neigh_s[i].initialise(pBoardArray, cBoard);

for (i = 0; i < F_Neigh_Size; i++)

201

neigh_f[i].initialise(pBoardArray, cBoard);

}
int *pTest = current.get_pFeeder();
for (i = 0; i < NumOfFeeders; i++)

Resu]tFi1e<<"\nFeeder["<<i<<"] = "<<pTest[i];

ResultFile<<"\n";

nnnnnnn

// Current feeder ass1gnment and p1acement sequence are
both the Best

// LocalBest

R L L L R L L R T st R T T L P L 2

Best = current;
LocalBest = current;

*

Tkhhhh bk htht kb h bkt bt hhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhfhhhhhhkhh®

// Clear tabu list before making moves

st

Gk ddekdhhhdhhdhhh kbbb hhhhh ik hhhh kb hhhhhhkhdhkhkhihhdr®k

tabu-s>clear_1ist(Q);

ThhhkhhhhhhhhhhfhhhhhhhhhhhhhhhhkhkhhhhdhdhhdhhhhhhhhhhhhhdhddrhidhiX

// Start making moves to determine the opt1m1sed feeder
assignment and ,

// placement sequence
fhdhhdhihhd ********************* KrRhhhbhhthshhhhithhihhhhhihhhdhdhdk
for (int cMoves = 1; cMoves <= MaxMoves; cMoves++)

UpdateTime(cBoard, Best.get_ t1me());
Resu]tF11e<<"\nMove <<cMoves<< :";
//strText<<"Move_L "<<cMoves<<" : "<<ends;
//UpdateTextBox(strText);

B T T T T L L R o g e o Y L 25

// Create neighbourhood based on the initial feeder

assignment and
// placement sequence generated. Then, report

position of the best
// neighbour found.

Khhdhhhhhbhhhhhdihhhhhhhhhhdhdhhhdhdhhhddhhhhdhddhdddhdhdhddkhhhdld

solution = current.create_neigh_s(pBoardArray,
cBoard, current, ResultFile);

Ahdhkhhhdehdhhhhhhkfhhhhhhhhhdhhhhhhhhhhhkfihhhhfhhdhkhkhhkdhhkihkrhikt®
// Is the solution found the best?

fhhhkdhhhhhhhkdhhhhhhhhhhhhhdehhdhhdhhhhhhhhd ki dhhhhhhhdhihk

do
{

hkudekkdkdfhhdhhfekdhhRdhhhkhd kel hhdhdhkhdhdehhdhhd ke hhhhdkhkk

. // Compare the performance of the new solution
with the current :

// one
// Identify the move

khhhhhdhhhbhhhhdhhdhhhhdhihhhhhhhhhhdhhhhfhhhhdhhhhhhdhhihds

move = compare_s(neigh_s[solution], current,
pBoardArray, cBoard);

202

, allowed = true; // assume that the move is
allowed

: if (tabu->Tist_find(move)) // check if the
move 1is taboo

// Aspiration criteria
‘ if (Best.get_time() <=
neigh_s[solution].get_time()) :

)) neigh_s[solution].poison(Q); //
make this move unattractive

21322 222 T T T T R X L L T T P R e .
// Find a new so1ut1on from the
neighbourhood

I 2 2222 T T T PR ELLL LT LI L LT L EER PR TP PR R T
solution =

current.find_best_s(solution, pBoardArray, cBoard);
allowed = false; // repeat to.

check the new so1ut10n

} while (allowed == false);
I I I TR T **44*** L L L T T L Ty]
// Is the move just after a local best?
. A NN PR,
if (flag == true)

pBest_Exit[RestartMoves] = move;
flag = false;

Sehdededhe ki h ikt hth kAR Rk hhhh kb hdhhhhh kb ihhk
// Is the current solution a new 1oca1 best7

hhkkhkdekhfhkdhkhdkdkfhhfdhhhhhdkdhhhdhhddehdhdd

if (neigh_s[solution].get_time(} <
LocalBest.get_time())

Fedededdehdehhkdedhdehhhhd

{ A

LocalBest = neigh_s[solution]; // Set
Tocal best

flag = true; //
The next move is after a Tlocal best

NoImpMoves = O; : //
Reset the number of NoImpMoves

RestartMoves = 0; // Allow

all restart attempts

else

Sehededededehefehhtdddhhhhkdhhfkdhhhhdhhddd b dihhhdhh kit

// If the current solution is not better than

the previous, L]
// then, it is considered as the 'Non-

Improvement Move'. Hence,
// increate the NoImpMoves counter.

**
NoImpMoves++; // loose some 'patience'

Y Y L L LR LR L L L L L R R T e R R R o TR P R TR SR L

203

// check if the current solution is even the best
// > If YES, set it as the best
// -> If NOo, proceed

nnnnnnnnnnnnnnnnnnnnnn

if (neigh_s[solution].get_time() < Best.get_time())

{
Best = neigh_s[solution]; // Set new Best
}
//
Tk Ltk h bkttt hhhkhhhhd kit hh kbl kb hh ki hhhhhhhhkk
] // Have we exceeded the max non-improvement moves
imit? : _
// -> If YES, try to restart, else RANDOMISE again
// -> If NO, make the move
******************44**
}F (NoImpMoves > MaxNoImp)
) tabu->clear_1ist(); ~// clear tabu
Tlist .
. NoImpMoves = 0; // 'be patient’
again c
//
B L L L T Y Y Y 33 R 22 22 4
// Restart, if the restarting limit has not
been reached
B L R L L R R L T g L S LS R A T A X L

if (RestartMoves < TabuRestart)

RestartMoves++; // Remember that we
have restarted

el

fekhhddhhthhhdehhdhhh il

// Fi1l the tabu Tist with pBest_Exit

Yededhdehdhhhdhhhhhkhhdkdehhhkdhdhd®

(we don't want to
// follow the same path)

Tdekfhkdefhhhdhhhhhhhhkhhthhhhhkhhhnhhhhhhhifhkhidhhkhfhhhdihhhihk
., ResuTtFile<<" RESTART "<<RestartMoves<<"
: Taboo -> "; . ; .
' //strText<<" RESTART "<<RestartMoves<<
-) .
: Taboo -> "; . .
for (int x = 0; X < RestartMoves; X++)

fhkdhhdkhhdh bbbk hhhhhhhhdhhdhhddhhdhhddhdhiik oo

// Make move that left local best

dedededhthdhfkhhhkdhfhdhdhhhhhdkhhhhhhdihhrhhhhhhhhhhhhh®

tabu->push_Tlist(pBest_Exit[x]);

ResultFile<<"<"<<pBest_Exit[x].a<<","<<pBest_Exit[x].b<<"> ;

//strText<<"<"<<pBest_Exit[x].a<<","<<pBest_Exit[x].b<<"> ";

ResultFile<<"\n";
//strText<<"\r"<<end1<<ends;
//UpdateTextBox(strText);

hkkthhkdhhhh bl hhhhhhhhhdhhhddhdddedhdehhddkdehedhddedhhitd®x

// The move we are going to make should

be appended to
// pBest_EXxit

204

R R R R R P T T e 2 2 2 L e T e T L L L
flag = true;
current = LocalBest; // go back to
Tocal best D

D T R T Y R X T T R T T RO

WRR WRE

/
*
; If can't restart, RANDOMISE

R T P X X L R e 2 2 2L X L e
%1se
ResultFile<<" RANDOMISE\n";
//strText<<" RANDOMISE\r'"<<endl<<ends;
//UpdateTextBox(strText);
) current.pick_random_s(pBoardArray,
cBoard); // pick random placement sequence
_current.calculate_time(pBoardArray,
cBoard); // calculate time

LocalBest = current;
// reset LocalBest
RestartMoves = 0;
// allow restart again

[X - X 2323 %
has not been

Fhddhd Nk d ke hkhhhhhhhhhhhhhhdhhhhk Txhhhkk Tk
the MaxNoImp

// Make the move if
reached

P R R 3 T T T e a2 L T T L L)
else '
{
current = neigh_s[solution]; // make move
ResultFile<<" Swaping "<<move.a<<" with
"<<move.b<<" -> "<<current.get_time()<<" seconds\n";
//strText<<" Swaping "<<move.a<<" with

"<<move.b<<"\t->\t"<<current.get_time()<<" seconds\r'"<<endl<<ends;
//UpdateTextBox(strText); ,

T T R Y T R R LT L T T R P R L R R

// Update the tabu list

kVvekdhfhdhfhdhdhdehdhhhhddhhhddfhkddd

*
f (tabu—>1ist_size() == TabusSize)

tabu->pop_list(); // remove oldest move
from the tabu 1ist

) . tabu->push_1ist(move); // insert current move
into the tabu Tist

}
] ResultFile<<"\nBest components placement sequence
found\nTime = "<<Best.get_time()<<" secondsgn\n"; o

Resu1tFi1e<<"************k**************************************
FkdkkakRRREE\n',
_ ResultFile<<"start finding optimum placement sequence and
feeder assignment.\n";

Resu]tFi]e<<"***

Khdkhhdehhr® n"-

//s{rText<<"\r"<<end1<<ends;~
//UpdateTextBox(strText);

205

//MessageBox ("Finished making initial
placement”,"Test",MB_OK);
int cycle = 1;

D R R L LA e T T g e R L 2 T T R T 1)
// Now, find the best feeder assignment repeatedly, based

// placement sequence found

D L L L L L g R s T T T T T e)

go
ResultFile<<"\n Cycle "<<cycle<<"\n -------- \n";
//strText<<" Cycle "<<cycle<<"\r'"<<endl<<"---====---
----- \r'"<<endl<<ends; o
//quateTextBox(strText);
7¥c e++; :

Gekddehdhtdkd btk bk kbt hhkhhhhdhhdh kil hhkdhhdhhdhihdd

// First, find the best feeder assignment
// -> Reset some variables

B R R R R o T L R g L L L R T LT

NoImpMoves = O0;

RestartMoves = 0;

flag = true;

for (int n = 0; n < TabuRestart+l; n++)

0;
0;

current = Best; // start from the best placement

pBest_Exit[n].a
pBest_Exit[n].b

seq found
LocalBest = current;

tabu->clear_list();

Stk ALk hfhh bkt hhhhhhhhhhhdfhhdhfhhfhhdlitdehdhh bk khlhhhfidkid
// start making moves

T T e e L e R T e T L L L Ty
for (cMoves = 1; cMoves <= MaxMoves; cMoves++)

UpdateTime(cBoard, Best.get_time());
ResultFile<<'"\nMove_f "<<cMoves<<" : ";
//strText<<"Move_F '"<<cMoves<<" : "<<ends;
//UpdateTextBox(strText);

ThLdhhhhhhhd bk hhdhhhhhhh kR hhdhhhdhdhh ki hhhhhh k%

// Create neighbourhood based on the initial

feeder) o
// assignment generated. Then, report position

of the best
;/ neighbour found.

Kxhhthhhhhhhhhhhhtdihhhhhhhhhddfhhdhhdhhhhhhddehhdhhhlhhdhiird
. solution = current.create_neigh_f(pBoardArray,
cBoard, current, FedNeighFile);

fedexhfh kS hhdhd bt hdhhhh kb bk it hhr bt hhhdhhhbhthkt
// Is the solution found the best?
Gk hhhhdhhdhh kb h b it hhhh bkt hhhhhhh b hhhhhhhhihhkthi®

do
{

Thdhdddekdekdhhddhd ke hhdkddekfhdhfhdkdhdthdhdhhhhhdhdhhidid

206

. // Compare the performance of the new
found solution .
// with the current one
I R R R R R R R e e e R R T L e Y Ay X

move = compare_f(neigh_f[solution],

allowed = true; // assume that the
move is allowed

N

D T I L R R R R T R e T e T L

// Check if the move 1is taboo .
// -> If YES, check if the move is

~

better .
// -> If NO, check if it is just after

a local best

B R R Ry Y a2 A 3T T e T T X
if (tabu->1ist_find(move))

Sttt hhhhhkufhhfhhhkhdhhhfhhkhhhdhhhhdhhhhihfhihkis
// check if the tabooed move is

worse than the best
// -> If YES, make the move

unattractive, then])
// find a better solution.
B R R R a2 2 2 T T LT L L e 2 L
. . if (Best.get_time() <=
neigh_f[solution].get_time())

* neigh_f[solution].poison();
solution =

current.find_best_f(solution, pBoardArray, cBoard);
' allowed = false;

} .
} while (allowed == false);
D R N I T Y Y Y L T T T T L)
// Check if the move is just after a Tocal

// -> If YES, remember the move
// > If NO, proceed

hkdkhdh ki hhh kR hh bk hhhhh bk d kbbb hhdhhhhdhhhhhdhhhwk
if (flag == true)

pBest_Exit[RestartMoves] = move;
flag = false; _
/*FedNeighFile<<"\nMove is after a Local
Best.\n\t";

int *pTest4 =
neigh_f[solution].get_pFeeder();
‘ for (i = 0; i < NumOfFeeders; 1i++)

FedNeighFile<<pTest4[i]<<" ;

}

FedNeighFile<<" ->
("<<move.a<<","<<move.b<<") : Time ->
"<<neigh_f[so1ut1on].getTt1me()<<" seconds\n";*/

D L R R L R R T L R Y L S L LRk

// Check if the current solution is better
than Tlocal best

207

// -> If YES, set it as the new LocalBest
// -> If NO, increment NoImpMoves

Gkt khkh kS kit hhhd ke h btk hhhhhhhh kb hhhh s
) if (neigh_f[solution].get_time() <
LocalBest.get_time()))

LocalBest = neigh_f[solution]; //
Set local best

found:\n\t";

/*FedNeighFile<<"=> Local Best solution

int *pTest3 = LocalBest.get_pFeeder();
for (i = 0; i < NumOfFeeders; i++)

FedNeighFile<<pTest3[i]<<" :

}
FedNeighFile<<" ->)
("<<mgve.a<<","<<move.b<<") : Time -> '"<<LocalBest.get_time()<<"
seconds\n";*
’ flag = true; // The next move

is after a Tocal best
NoImpMoves = 0; // Reset the

number of NoImpMoves
RestartMoves = 0; // Allow all restart

attempts)

else

G AL E AR A SR RSN n Skt R hh Nk kh bk hhhhhhhhhihhik
// If the current solution is not better

than the . L .
// previous, then, it is considered as

the 'Non- .
// Improvement Move'. Hence, <increase

the NoImpMoves
// counter.

Sedehde etk hdehhd ke hhhdhhhhh bbb dehhh ik kdhhihid

NoImpMoves++;

B T g R T T e e T T

// check if the current solution is even the

best .
// ~-> If YES, set it as the new Best
// =-> If NO, proceed

LR 3 X L L R R X L R R X X R S S L R R R L R R R R R L R R

: if (neigh_f[solution].get_time() <
Best.get_time())

Best = neigh_f[solution]; // Set new

Best
/*FedNeighFile<<"=> Best =\n\t";
int *pTest2 = Best.get_pFeeder();
for (i = 0; i < NumOfFeeders; 1+4+)

FedNeighFile<<pTest2[i]<<" ;

}
‘FedNeighFile<<" ->
("<<move.a<<","<<move.b<<") : Time -> '"<<Best.get_time()<<"

}

seconds\n";*

L L L R L X T L X X I X T
- // Have we exceeded the max non-improvement
moves 1imit?

208

// -> If YES, try to restart, else RANDOMISE
// -> If NO, make the move

ket d kN hd bbbtk Sk ket hdhhdhhdkdhdhd

}f‘(NoImpMoves > MaxNoImp)
- tabu->clear_1ist(); // clear the
tabu Tist
: NoImpMoves = O;
if (RestartMoves < TabuRestart)
, RestartMoves++; // Remember that
we have restarted)
ResultFile<<" RESTART
"<<RestartMoves<<" : Taboo -> ";
. //strText<< " RESTART
"<<RestartMoves<<" : Taboo -> ";)]
//FedNeighFile<<" RESTART
"<<RestartMoves<<" : Taboo -> "; .
for (int x = 0; x < RestartMoves;
X++)
Py L R R R R R R L LR PR A L R
~) // Taboo move that left
local best last time
Y R LR R T TR R T P L P T e T P T T T 1)

) tabu-
>push_list(pBest_Exit[x]);

ResultFile<<"<"<<pBest_Exit[x].a<<","<<pBest_Exit[x].b<<"> ";

//strText<<"<"<<pBest_Exit[x].a<<","<<pBest_Exit[x].b<<"> ;

//FedNeighFi1e<<"("<<pBest_Exit[x].é<<","<<pBest_Exit[x].b<<")

ResultFile<<"\n";
//strText<<"\r"<<endl<<ends;
//UpdateTextBox(strText);
//FedNeighFile<<"\n";

flag = true;
current = LocalBest;

}

else

L L L T T T TR XL TP R T

// Cannot restart, RANDOMISE

Tedd Rt dhhthhhhhd b hdhfhdhhhedhhddfedhhdedhfhtdhtfNd
ResuTltFile<<" RANDOMISE\n";
//strText<<"

RANDOMISE\r"<<endl<<ends;
//UpdateTextBox(strText);
current.pick_random_f(pBoardArray,

cBoard);

current.calculate_time(pBoardArray, cBoard);
LocalBest = current;
RestartMoves = 0;

}

else
current = neigh_f[solution];

ResultFile<<" sSwaping "<<move.a<<" and
"<<move.b<<" -> "<<current.get_time()<<" seconds\n"; - -

209

//strText<<" Swaping "<<move.a<<" and
) ping

"<<move.b<<"\t->\t"<<current.get_time()<<" seconds\r'"<<endl<<ends;
//UpdateTextBox(strrext);

'
RxRhhuhhhhhhhkhhhhhkhhhhdhhhkhnhddhhhdh i i

// MaxNoImp has not reached, make move

L L L R T T T T T A e E AT L

if (tabu->list_size() == TabuSize)
tabu->pop_T1istQ);

}
tabu->push_Tist(move);

}

//strText<<"\r"<<endl<<ends;
//UpdateTextBox(strText); i _ .
ResultFile<<"\nBest feeder assignment found\nTime =

"<<Best.get_time()<<" seconds\n";]
ResultFile<<"Finding optimum placement sequence.\n";

double time = Best.get_time(); // variable to
control the repeatition o

Lhhhhhhhhhkhhhhhhhhhdkhhhhhkhdhdkthhdhdkkhtkh

fhdhdhdhdkdhtt ittt
// second, find the best component placement

sequence .
// -> Reset some variables

Ak R hhhu b b ki bt bbb i kb hhhh ki h ki hkh kb hdhhhhhdk

NoImpMoves = 0;

RestartMoves = 0;

flag = true; .

for (int m = 0; m < TabuRestart+l; m++)

0; // Initialise

pBest_Exit[m].a
0; // Initialise

pBest_Exit{m].b

current = Best;
LocalBest = current;

tabu->clear_1ist(Q);
for (cMoves = 1; cMoves <= MaxMoves; cMoves++)

UpdateTime(cBoard, Best.get_time());
ResultFile<<"\nMove_s "<<cMoves<<" : ";
//strText<<"Move_S "<<cMoves<<" : "<<ends;
//UpdateTextBox(strText);

solution = current.create_neigh_s(pBoardArray,

cBoard, current, Resu]th1e);
- do

{

: move = compare_s(neigh_s[solution],
current, pBoardArray, cBoard); .

allowed = true;
if (tabu->Tist_find(move))

if (Best.get_time() <=
neigh_s[solution].get_time())

neigh_s[solution].poison();
solution =

current.find_best_s(solution, pBoardArray, cBoard);
allowed = false; -

}
} while (allowed == false);
'if (flag == true)

210

pBest_Exit[RestartMoves] = move;
flag = false;

}

‘ if (neigh_s[solution].get_time() <
LocalBest.get_time())

LocalBest = neigh_s[solution];

flag = true; -

NoImpMoves = 0;
RestartMoves = 0;

else
{
NoImpMoves++;

if (ne%gh_s[so]ution].get_time() <
Best.get_time())

Best = neigh_s[solution];

if (NoImpMoves > MaxNoImp)

{
tabu->clear_list(Q);
NoImpMoves = 0;
if (RestartMoves < TabuRestart)
_RestartMoves++;
ResultFile<<" RESTART
"<<RestartMoves<<" : Taboo -> ";

//strText<<" RESTART

"<<RestartMoves<<" : Taboo -> ";

’ for (int x = 0; X < RestartMoves;
X++) . :

tabu-
>push_Tlist(pBest_Exit[x]);

ResultFile<<"<"<<pBest_Exit[x].a<<","<<pBest_Exit[x].b<<"> ";

, "<<pBest_Exit[x].b<<"> ";

//strText<<"<"<<pBest_Exit[x].a<<

Resu]tFi1e<<"\n";
//strText<<"\r"<<endl<<ends;
//UpdateTextBox(strText);
flag = true;

current = LocalBest;

else

ResultFile<<" RANDOMISE\n";

//strText<<"
RANDOMISE\r'"<<endl<<ends;

//UpdateTextBox(strText);

current.pick_random_s(pBoardArray,
cBoard);

current.calculate_time(pBoardArray, cBoard);
LocalBest = current;
RestartMoves = 0; -

}

else
current = ne1gh s[so]ut1on],

Resu]tF11e<< Swaping "<<move.a<<" and
" " "
<<move.b<<" -> "<<current.get_time()<<" seconds\n";

211

//strText<<" Swaping "<<move.a<<" and
"<<move.b<<"\t->\t"<<current.get_time()<<" seconds\r'"<<endl<<ends;

//UpdateTextBox(strText);

if (tabu->1ist_size() == TabuSize)

tabu->pop_list(Q);

}
tabu->push_Tist(move);

}

//strText<<"\r"<<endl<<ends;

//UpdateTextBox(strText);

ResultFile<<"\nBest components placement sequence
found\nTime = "<<Best.?et_t1me()<<" seconds\n";

ResultFile<<"Finding optimum feeder assignment.\n";

if (Best.get_time() == time) // no more

improvement?
{ Repeat = false; // stop repeating
else
Repeat = true;
} while (Repeat == true); // if repeat is still

allowed

Setup_Time = pBoardArray[cBoard].NumOofCompTypes *
FeedSetupTime;
Board_Time = (Setup_Time + Best.get_time()) *
pBoardArray[cBoard] .NumofBoards;
ResultFile<<"\nTotal time for board "<<cBoard<<" 1is :
<<Board_Time/pBoardArray[cBoard] .NumofBoards<<"

seconds\n";

) ' //strText<<"\r'"<<end1<<"Total time for board "<<cBoard<<"
is " '
// <<Board_Time/pBoardArray[cBoard] .NumofBoards<<"
seconds\r'"<<endl<<"\r"<<endl<<"\r"<<endl<<ends;
//UpdateTextBox(strText);

Total_Time += Board_Time;

strText<<"OPtimum assembly time found ->
"<<Best.get_time()<<"\r"<<endl<<"\r"<<endl<<endl<<ends;

UpdateTextBox(strText);

FinalFile<<"Optimum feeder assignment for board
"<<cBoard<<":"<<endl; :

int *pFinalFeeder = Best.get_pFeeder();

for (A = 0; i < NumOfFeeders; i++)

FinalFile<<pFinalFeeder[i]<<"\t";

}

FinalFile<<"\n\nOptimum component placement sequence for
board "<<cBoard<<":"<<endl;

int *pFinalSeq = Best.get_pSeq();

for (i = 0; i < pBoardArray[cBoard].NumofLocations; i++)
//FinalFile<<hex<<CompNames[pFinalseq[i]]<<"\t";

_ FinalFile<<pBoardArray[cBoard].pComps[pFinalSeq[i]].CompType<<"\
tll;

}
FinalFile<<"\n\nAssembly time -> "<<Best.get_time()<<"
seconds\n\n\n\n";"

} // end for (int cBoard = 0; cBoard < NumOfBoardTypes;
cBoard++)
int t1 = Total_Time/3600;

n

int t2 (Total_Time%3600)/60;

212

int t3 = (Total_Time%3600)%60;

Resu]tFi]e<<"********************k***************
o,
ResuTtFile<<"\n\nTotal time for all boards is :
<<":"<<t3<<" -him:s\n";

ResultFile.close();

Resu1t0? en = fa1se°

FinalFile.close();

Finalopen = false;
m_ProgressStatus.SetPos(NumOfBoardTypes+1) ;
MessageBox(""Repetition completed. 0pt1mum feeder

placement sequence found!",
"Finish", MB ICONINFORMATION),

m_ProgressStatus SetPos(0);
m_GoButton.SetFocus();
delete [] pBest_EXxit;
return;

void CPcbD1g: :UpdateTextBox(ostrstream _stream)

pDisplay = (CEdit *)(GetDlgItem(IDC_TEXTOUT));
Size = pDisplay->GetwindowTextLength();
Test = new char [Size+l];)
pDisplay->GetwWindowText(Test,Size+l);
char *buffer = _stream.str(Q;
}f (5ize == 0)

m_TextData.Format("%s", buffer);

}

else

) m_TextData.Format("%s %s", Test, buffer);
UpdateData (FALSE) ;

Updatewindow();

} delete [] Test;

void CPcbD1g::0nSetfocusTextout()
pDisplay = (CEd1t *) (GetD1gItem(IDC_TEXTOUT));
pDisplay->SetFocus();

void CPcbD1g::ClearBox(const int _ID)
m_TextData.Empty();
UpdateData(FALSE) ;
//updatewindow();

void CPcbD]g-'Oncance1()

de]ete [] pBoardArray;
cDialog: :0oncancel();

}

void CPcbD1g::UpdateTime(consf int _cBoard, const float
if (_cBoard == 0)
{ m_Board_A_Time = _BestTime;
if (_cBoard == 1)

213

Tkt kdedehdekhdhdd

"ectle<" 1 "e<t2

ass1gnment and

—BestTime)

m_Board_B_Time = _BestTime;
%f (_cBoard == 2)
¢ m_Board_C_Time = _BestTime;
%f (_cBoard == 3)
¢ m_Board_D_Time = _BestTime;
gf (_cBoard == 4)
¢ m_Board_E_Time = _BestTime;
%f (_cBoard == 5)

m_Board_F_Time = _BestTime;
%f (_cBoard == 6)
b m_Board_G_Time = _BestTime;
%f (_cBoard == 7)

m_Board_H_Time = _BestTime;
%f (_cBoard == 8)
¢ m_Board_I_Time = _BestTime;

¥
UpdateData(FALSE);
Updatewindow();

}
void cpcbDl1g::ClearTime()
for (int i = 0; i < NumofBoardTypes; i++)

ClearBox(IDC_BOARD_A_TIME + i);

214

Positions.cpp

// positions.cpp: implementation of the CPositions class.

//
111111711777 77707 7777707777777 77

#include "stdafx.h"
#include "Pcb.h"”
#include "pPositions.h"”

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=_FILE__
#define new DEBUG_NEW

#endif

;///

/ Construction/Destruction

LITTT1IT717 7777077770770 7777770777777 0777777777777777777777777/7/777

Crpositions::CPositions()

}

CpPositions: :~CPositions()

2

215

TabuList.cpp

// TabuList.cpp: implementation of the CTabuList class.

/
;///

#include "stdafx.h"
#include "pPcb.h"
#include "TabuList.h"

- #ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;
#define new DEBUG_NEW

#endif

L1111717717711777777777711777777777777777777777777777717777/771777777/
// construction/Destruction .
117177777771717717771771777777777777777777777777777777/777777177777777
CTabuList::CTabuList(const int _TabuSize)

TabuSize = _TabuSize;

a = new CBuffer(Tabusize);
) b = new cBuffer(Tabusize);
CTabuList: :~CTabulList()

delete a;

delete b;

bool cTabuList::1ist_find(CPositions &move) const

int end = a->get_size(); .
for (int i =0; 1 < end; i++)

if (a->get_pointer(i) == move.a && b->get_pointer(i) ==
move.b)

return true;

return false;

}
int CTabulList::1ist_size()

return a->get_size();

-goid CTabuList: :pop_1ist()
. a->pop_buffer(Tabusize);
b->pop_buffer(Tabusize);
void CTabulList::push_list(CPositions &move)
a->push_buffer(Tabusize, move.a);
b->push_buffer(Tabusize, move.b);
¥oid CTabuList::clear_1ist()

a->clear_buffer();
b->clear_buffer();

216

Board.cpp
// Board.cpp: implementation of the CBoard class.

// ‘
I1117177/1777/1777777777777777777

#include "stdafx.h"
#include "pPcb.h"
#include "Board.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE _;
#define new DEBUG_NEW

#endif

LITTTIITILTLLL LTI T 7777771777 77777777777777777777777777

/ Construction/Destruction

/
[1111777777777777777777777777/77777777777/77//7/7/7/77/777//7/77/77/777/7
CBoard: :cBoard()

} |
%Board::~CBoard()

}

217

Buffer.cpp

;; Buffer.cpp: implementation of the cBuffer class.
I111111777777777777771771777
#include "stdafx.h"

#include "Pcb.h"

#include "Buffer.h"

#ifdef _DEBUG

#undef THIS_FILE

static char THIS_FILE[]=__FILE__;

#define new DEBUG_NEW

#endif

//int *pProd;

//int BufferLast;

//int Buffersize;
//
// Construction/Destructio
//
CBuffer::cBuffer(const int _TabuSize)

pProd = new int [_TabuSize];

cBuffer: :~cBuffer()
delete pProd;

}nt cBuffer::get_pointer(int _k) const

return pProd[_k];

}nt cBuffer::get_size() const

return BufferSize;

}nt cBuffer: :pop_buffer(int max)

int 1;
assert(Buffersize > 0); // verify that buffer is not empty
i = BufferLast - Buffer51ze,

?{f G <0
i += max;

Buffersize--;
} return pProd[i];
void CBuffer::push_buffer(int max, int item)
011 assert(Buffersize < max); // verify that the buffer is not
u .

Buffersize++; // increment the size of the
buffer ,

pProd[BufferLast] = item; // 'insert' the +item into the
buffer

BufferLast++; // increment the buffer's
address

if (BufferLast >= max)

218

. BufferLast = 0; // start from the first
Tocation (overwrite)

return;

}

¥oid cBuffer::clear_buffer()
BufferSize = 0;
BufferLast = 0;
return;

/*void cBuffer::Buffer_Init(const int _TabuSize)

pProd = new int [_TabuSize];

¥*/

219

CoordinatesDlag.cpp

/; coordinatesDlg.cpp : implementation file

#iﬁc1ude "stdan.h“
#include "Pcb.h"
#include "CoordinatesbDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE v

static char THIS_FILE[] = _FILE__;
#endif

;;;;;;5///
// CCoordinatesDlg dialog

CcoordinatesD1g: :CCoordinatesD1g(Cwnd* pParent /*=NULL*/)
: cpialog(CCoordinatesD1g::IDD, pParent)

{
: X = 300;
Y = -500;
X_Home = 100;
Y_Home = -200;
//{{AFX_DATA_INIT(CCoordinatesD1g)]
H // NOTE: the Classwizard will add member 1initialization
ere
} //}}AEX_DATA_INIT

void CCoordinatesDlg: :DoDataExchange(CDataExchange* pDX)

CDialog: :DoDataExchange (pDX) ; .
//{{AFX_DATA_MAP (CCoordinatesD1g)
// NOTE: the Classwizard will add DDX and DDV calls here

//}}AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CCoordinatesbDlg, Cbialog)
//{{AFX_MSG_MAP(CCoordinatesblg)
ON_EN_CHANGE(IDC_X, onChangeX)
ON_EN_CHANGE (IDC_Y, oOnChangeY)
ON_EN_CHANGE (IDC_X_HOME, oncChangeXHome)
ON_EN_CHANGE (IDC_Y_HOME, oOnChangeYHome)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

}nt CCoordinatesDlg: :GetItem(const int _ID)

const TEXT_SIZE = 16; .

char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pGet = (CEdit *)(GetDlgItem(_ID));
pGet->GetwindowText(szText, TEXT_SIZE);

return atoi(szText);

;;;;///)/////////////////////
C

CoordinatesD1g message handlers

/
/
/
oid ccoordinatesDlg::0onchangeX()
X = GetItem(IDC_X);

oM NN W

220

void CCoordinatesD1g: :0nChangeY()

) Y =-GetItem(IDC_Y);

void CCoordinatesDlg: :0nChangexHome()
X_Home = GetItem(IDC_X_HOME);

void cCoordinatesDlg: :0nChangeYHome()

) Y_Home = GetItem(IDC_Y_HOME);

}nt ccoordinatesDlg: :Get_X()

return X;

}nt CcoordinatesDlg: :Get_Y()

return Y;

int CCoordinatesDlg: :Get_X_Home()

return X_Home;

int CcoordinatesDlg: :Get_Y_Home()

return Y_Home;

void CCoordinatesDlg: :UpdateBox(const int _ID, const int _bata)

const TEXT_SIZE = 16; .

char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pbDisplay = (CEdit *)(GetD]gItem(_ID)),
itoa(_Data, szText, 10);

pDisplay- >SetW1ndowText(szText),

}
%00L CCoordinatesDlg::0onInitDialog()

UpdateBox(IDC_X, X);
UpdateBox(IDC_Y, Y);
UpdateBox(IDC_X_HOME X_Home) ;
UpdateBox (IDC_Y_HOME, Y_ Home),
return true;

}

void CCoordinatesDlg::set_para(const int _X, const int _Y, const int
_X_Home, const int _Y_Home)

X = _X;
Y = _Y;
X_Home = _X_Home;
Y_Home = _Y_Home;

221

Pcb.cpp
;; Pcb.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "Pcb.h"
#include "PcbDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE__;
#endif

' .;;;;;;;///

// CPcbApp

BEGIN_MESSAGE MAP(CPchpp, CW1nApp)
"/ /{{AFX_MSG_MAP(CPcb A?
// NOTE - the Classwizard will add and remove mapping

macros here.
// DO NOT EDIT what you see in these blocks of

generated code!
//}IAFX_MSG

ON_COMMAND (ID_| HELP CWinApp: 0nHe1p)
END_MESSAGE_MAP()
;;7;;;;///
// CPcbApp construction

CPcbApp: :CPcbApp ()

// ToDO: add construction code here,)
// Place all significant initialization in InitInstance

[

5555/;;///
// The one and only CPcbApp object
CPcbApp theApp;
;;/;;;;///
// cpcbApp initialization
BOOL CPcbApp::InitInstance()

AfxEnablecontrolcContainer();

// Standard initialization
// If you are not using these features and wish to reduce the

. size

// of your final executable, you should remove from the

following
// the specific initialization routines you do not need.

#ifdef _AFXDLL

Enable3dcontrols(); // call this when using MFC
in a shared DLL
#else
. Enable3dcontrolsstatic(); // call this when Tinking to MFC
;ta§1%a11y
endi

CpcbDl1g dlg;
m_pMainwnd = &dlg;

222

int nResponse = dlg.DoModal();
}f (nResponse == IDOK)

// Topo: Place code here to handle when the dialog is
// dismissed with OK

?1se'if (nResponse == IDCANCEL)

// ToODO: Place code here to handle when the dialog is
// dismissed with Cancel

) // Since the dialog has been closed, return FALSE so that we
exit the . : : L
// application, rather than start the application's message
pump.
return FALSE;

223

Permutation.cpp

// Permutation.cpp: implementation of the CPermutation class.

“;é//

#include "stdafx.h"
#include "Pcb.h"
#include "Permutation.h"

#i1fdef _DEBUG

#undef "THIS_FILE

static char THIS_FILE[]=__FILE__
#define new DEBUG_NEW

#endif

//
// Declaration of global variables
extern int NumoOfFeeders;
extern int LengOfFeeder;
extern int TabuSize;

extern int TabuRestart;
extern int MaxMoves;

extern int MaxNoImp;

extern int FeedSetupTime;
extern int InsertTime;

extern int PickTime;

extern int HeadSpeed;

extern int X;

extern int v;

extern int X_Home;

extern int. Y_Home;

extern int MaxNumOfLocations;
extern int MaxNumofCompTypes;
extern int NumofBoardTypes;
extern int F_Neigh_size;
extern int S_Neigh_Size;
extern CPermutation *neigh_s;
extern CPermutation *neigh_f;

;;/éééé{ﬁéé{{éé;éé4446//
[1177777777717717777777777

CPermutation::CPermutation() :time(0)

FedNeighopen = false;
 CcPermutation: :~CPermutation()

}

CPermutation CPermutation: :operator =(const CPermutation &source)

time = source.time;)
for (int i = 0; i < NumofSeq; i++)

pseq[i] = source.pSeq[i];
for (i = 0; i < NumOfFeeders; i++)
pFeeder[i] = source.pFeeder[i];

return *this;

}
int CPermutation::Get_NumOfFeeders()

224

return NumOfFeeders;

CPositions compare_f(const CPermutation &pl, const CPermutation &p2)

int i = 0;
CPositions move;
move.a = -1;
move.b = -1;

while (i < NumofFeeders &% move.b < 0)
if (pl.pFeeder[i] != p2.pFeeder[i])
if (move.a < 0)
move.a = 1i;

}

else

move.b = i;

}

T4+

return move;

CPositions compare_s(const CPermutation &pl, const CPermutation &p2,
const CBoard *_pBoardArray, const 1int

_Board)

L
int i = 0;
CPositions move;
move.a = -1;

move.b = -1;
while (i < _pBoardArray[_Board].NumofLocations && move.b < 0)

if (pl.pseq[i] != p2.pseqlil])
if (move.a < 0)

move.a = 1i;

il

else

move.b = i;

fl

}
i44;
}

return move;
}
}nt CPermutation::get_F_Neigh_Size()
int F_Neigh_Size = 0;
int i, j = 0;
for (i = 0; 1 < NumOffFeeders-1; i++)
for (j = i+1; j < NumOfFeeders; j++)
}f (pFeeder[i] != pFeeder[j])

F_Neigh_sSize++;

}

v

}

return F_Neigh_Size;

225

int CPermutation::get_S_Neigh_sSize(const CBoard *_pBoardArray, const
int _Board) .

int S Ne1gh S1ze = 0;

int i, j =

for (1 = 0' i< _pBoardArray[_Board] .NumofLocations-1; i++)

for (j = i+1; j < _pBoardArray[_Board].NumofLocations;
j++) :
S_Neigh_Size++;

}
return S_Neigh_Size;
int CPermutation::get_position_b(int _count)

return pCoordinates[_count].b;

int CPermutation::get_position_a(int _count)

return pCoordinates[_count].a;

goub1e CPermutation::get_time(Q)

return time;

}nt* Cpermutation::get_pSeq(Q)

return pseq; // return pointer

int* CPermutation::get_pFeeder()

return pFeeder; // return pointer

void CPermutation::poison()

time *= 10;
}

int CPermutation::create_neigh_f(const CBoard *_pBoardArray, const int
_Board, const CPermutation _current, ofstream &_OutFile)

int x = 0;
int i, j, BestX = 0;
double BestTime;
for (i = 0; i < NumofFeeders-1; i++)
for (j = i+1; j < NumOfFeeders; j++)
if (_current.preeder[i] != _current.pFeeder[j])

for (int m=0; m <
_pBoardArray[_Board] .NumOfLocations; m++)

neigh_f[x].pseq[m] = _current.pseq[m];
for (int z = 0; z < NumOfFeeders; z++)

neigh_f[xj.pFeeder[z] =
_current.pFeeder{z];

226

neigh_f[x].pFeeder[i] = _current.pFeeder([j];
neigh_f[x].pFeeder[j] = _current.pFeeder[1];
neigh_f[x].calculate_time(_pBoardArray,

if (x == 0)

{

BestTime = neigh_f[x].time;

_Board);

}
%1se
if (BestTime > neigh_f[x].time)
BestTime = neigh_f[x].time;
BestX = Xx; :
}

X++3
}

return BestX;

}

int CPermutation::create_neigh_s(const CBoard *_pBoardArray, const int
_Board, const CPermutation _current, ofstream & OutFile)

int x = 0;

int i, j, BestX = 0;

double BestTime;

for (i = 0; i < (_pBoardArray[_Board].NumofLocations)-1; i++)

" for (j = i+l; j < _pBoardArray[_Board].NumOfLocations;

J++ -

for (int m = 0; m < NumOfFeeders; m++)
neigh_s[x].pFeeder[m] = _current.pFeeder[m];

~for (int z = 0; z <
_pBoardArray[_Board] .NumofLocations; z++)

neigh_s[x].pSeq[z] = _current.psSeq[z];
neigh_s[x].pSeq[i] = _current.pSeq[j};
ne1gh_s[x].p5eq[%] = _current.pseqfi];
neigh_s[x].calculate_time(_pBoardArray, _Board);
}f x == 0)

BestTime = neigh_s[x].time;

1]

}
$1se
}f (BestTime > neigh_s[x].time)
BestTime = neigh_s{x].time;
BestX = X;
}
X++;

}
}
return BestX;
- void CPermutation::calculate_time(const CBoard *_pBoardArray, const
int _Board) :
int h =0, 1, j;

double t1 = O,
t2 = 0,

227

t3 =0,

t4 = 0;
int *pCompType = new int [_pBoardArray[_Board].NumOfLocations];
int *pFeederNo = new int [_pBoardArray[_Board].NumOfLocations];
pCoordinates = new CPositions

[_pBoardArray[_Board].NumOfLocations]; . .
for (i = 0; i < _pBoardArray[_Board].NumOfLocations; i++)

0;
0;

¥
for (i = 0; i < _pBoardArray[_Board].NumofComps; 1i++)

pCompTypel[i]
pFeederNo[i]

_pBoardArray[_Board] .pComps[i].X_Co;

pCoordinates[h].a
_pBoardArray[_Board] .pComps{i].Y_Co;

pcoordinates[h].b
h++;

¥
for (int k = 0; k < _pBoardArray[_Board] .NumofLocations; k++)
for (i = 0; i < _pBoardArray[_Board] .NumofLocations; i++)

int Freq = _pBoardArray[_Board].pComps[i].CompFreq;
for (j = 0; j < Freq; j++)

if (_pBoardArray[_Board].pComps[i+j].X_Co ==

pcoordinates[pSeq[k]].a &&
_pBoardArray[_Board].pComps[i+j].Y_Co ==

pCoordinates[pSeq[k]].b){

pCompTypel[k] =
_pBoardArray[_Board].TypfsofComps[i];
}
for (i = 0; i < NumOffFeeders; i++)

i if (pFeeder[i] == peompType[k)

pFeederNo[k] = i + 1;

t3 += PickTime + InsertTime +
sqrt(pow((pFeederNo[k]*Leng0ofFeeder - LengOfFeeder/2 -
pCoordinates[pSeql[k]].a), 2.0))

+ pow((pCoordinates[pSeqlk]].b - Y),
2.0))/Headspeed;

for (k = 0; k < _pBoardArray[_Board].NumOofLocations-1; k++)

12 += sqrt(pow((pFeederNo[k+1]*LengOfFeeder -
LengofFeeder/2 -
) pCoordinates[pseql[k]].a),2.0) +
pow((pCoordinates[psSeql[k]l].b - Y),2.0))/HeadSpeed;

tl = sqrt(pow((X+pFeederNo[0] * LengOfFeeder - LengOfFeeder/2 -

X_Home),2.0) +
pow((Y - Y_Home),2.0))/HeadSpeed;

t4 = o
sqrt(pow((pCoordinates[pseq[_pBoardArray[_Board] .NumOfLocations-1]].a
- X_Home),2.0) +

pow((pCoordinates[pSeq[_pBoardArray[_Board].NumOfLocations-1]].b
- Y_Home),2.0))/HeadSpeed;

time = tl + t2 + t3 + t4;

delete pCompType;

delete pFeederNo;

delete [] pCoordinates;

return;

228

void CPermutation::generate_assign(const CBoard *_pBoardArray, const
int _Board)

int 1;
cstring Type;
int k = 0;

CPositions *pFeed = new CPositions [NumOfFeeders+1];
for (i = 0; i < NumOfFeeders; i++)

pFeeder[i] = 0;
pFeed[1i]. a = 0;
pFeed[i].b = 0;

for (i = 0; i < _pBoafdArray[_Board].NumOfComps;~i;+)

int Freq = _pBoardArray[_Board].pComps[i].CompFreq;
int temp = _pBoardArray[_Board].pComps{i].X_Co;
for @int j = 0; j < Freq; j++))

pe = _pBoardArray[_Board].pComps[i+j].CompT pe
1f (_pBoardArray[_Board] pComps[1+J] X_Co >0

temp = (temp <
_pBoardArray[_Board]. pComps[1+%] XfCo ?
ab
_pBoardArray[_Board].pComps[i+j]. X_Co)/(3+1)) + temp :
(abs(temp -
_pBoardArray[_Board] .pComps[i+]j].X_C0o)*j/(j+1)) +
_pBoardArray[_Board] pC0m¥SE1+J] f_co),
if (Type !=
_pBoardArray[_Board].pComps[i+j+1].CompType)
float location = (temp -
X)/LengOfFeeder;
pFeed[k].a =

_pBoardArray[_Board] .pComps[i+j]. COmETyg
Feed[k].b = 1ocat1on,

++
}
o,
) i=1+ Freq - 1;
for (int j = _pBoardArray[_Board].NumofCompTypes-1; j > 0; j--)
for (int cFeed = 0; cFeed < j; cFeed++)
if (pFeed[cFeed].b > 0)

}f (pFeed[cFeed].b > pFeed[cFeed+1].b)
float TempB = pFeed[cFeed+1].b;
pFeed[cFeed+1].b = pFeed[cFeed].b;
pFeed[cFeed].b = TempB;
int TempA = pFeed[cFeed+1] a;

pFeed[cFeed+1l].a = pFeed[cFeed] a;
pFeed[cFeed].a = TempA;

}
%or (j = _pBoardArray[_Board].NumofCompTypes-1; j > 0; j--)
for (int cFeed = 0; cFeed < j; cFeed++)
if (pFeed[cFeed].b < 0)
if (pFeed[cFeed].b < pFeed[cFeed+1].b)
{ float TempB = pFeed[cFeed+1].b;

229

pFeed[cFeed+1].b = pFeed[cFeed].b;
pFeed[cFeed].b = TempB;

int TempA = pFeed[cFeed+l].a;
pFeed[cFeed+1l].a = pFeed[cFeed].a;
pFeed[cFeed].a = TempA;

}
}

%or (i = 0; i < _pBoardArray[_Board].NumofCompTypes; i++)
if (pFeed[i].b < 0)
if (pFeeder[0] == 0)
pFeeder[0]

pFeed[i].a;
else v
for (int k = 1; k < NumoOfFeeders; k++)

; while (pFeeder[k] == 0 && pFeeder[0] !=
0 ‘

pFeeder[k] = pFeeder[k-1];
EFeeder[k—l] = 0;

}
gFeeder[OJ = pFeed[i].a;

else
if (pFeed[i].b > NumofFeeders)
if (pFeeder[NumOfFeeders-1] == 0)
pFeeder[NumOfFeeders-1] = pFeed[i].a;
else
for (int k = NumofFeeders-2; k > 0; k--)

while (pFeeder[k] == 0 &&
pFeeder[NumOofFeeders-1] != 0)

pFeeder[k] = pFeeder[k+1];

Feeder[k+1] = .0;
++3

}
pFeeder [NumOfFeeders-1] = pFeed[i].a;

else
}F (pFeeder[pFeed[i].b] == 0)
pFeeder[pFeed[i].b] = pFeed[i].a;
else
int *pEmptyFeeder = new int
[NumofFeeders];
for (int j = 0; j < NumOfFeeders; j++)

}f (pFeeder([j] == 0)

230

pEmptyFeeder([j]

}

else

{

abs(pFeed[i].b - j);

pEmptyFeeder[j] 0;

int temp = NumOfFeeders;
for (j = 0; j < NumOfFeeders; j++)

if (pEmptyFeeder([j] > 0 &&
pEmptyFeeder[j] < temp)

temp = pEmptyFeeder[j];
pFeed[iﬁ.b = 3J;

}

pFeeder[pFeed[i].b] = pFeed[i].a;
delete pEmptyFeeder;

//delete (pEmptyFeeder);

}

}
delete [] pFeed;
return;

}

void CPermutation::pick_random_f(const CBoard *_pBoardArray, const int
TBoard)

int i, item, feeder;

int *pLimiter = new int [_pBoardArray[_Board].NumofcCompTypes];
int *pFLimiter = new int [NumOfFeeders];

for (i = 0; i < _pBoardArray[_Board] .NumofCompTypes; i++)

{

}’ pLimiter[i] = 0;

€0F (i = 0; i < NumofFeeders; i++)
pFLimiter[i] = O;

} pFeeder[i] = 0;

gor (i = 0; i < _pBoardArray[_Board] .NumofCompTypes; i++)
do
{

item = rand() % _pBoardArray[_Board].NumofCompTypes;
} while (pLimiter[item] != 0);
gLimiter[item]++;
0

feeder = rand() % NumOfFeeders;
} while (pFLimiter[feeder] != 0);
pFLimiter[feeder]++;
pFeeder[feeder] = _pBoardArray[_Board].TypesOfComps[item];

delete pLimiter;
delete pFLimiter;
return;

}

void cpermutation::pick_random_s(const CBoard *_pBoardArray, const int
_Board)
.
int i, item;
int *pLimiter = new int [_pBoardArray[_Board].NumofLocations];
for (i = 0; i < _pBoardArray[_Board].NumOfLocations; i++)

231

pLimiter[i] = O;

for (i = 0; i < _pBoardArray[_Board] .NumofLocations; i++)

pseq[i]l = 0;

for (i = 0; 1 < _pBoardArray[_Board].NumOfLocations; i++)
do
{

item = rand() % _pBoardArray[_Board].NumofLocations;
} while (pLimiter[item] != 0);
pLimiter[item]++;
pseqli]l = item;

delete pLimiter;
return;

3

void g;ermutation::initia1ise(const CcBoard *_pBoardArray, const int
_Boar)

Numofseq = _pBoardArray[_Board].NumOfLocations;

pSeq = new int [NumOfseq];
for (int i = 0; 1 < NumofSeq; i++)

pseq[i] = -

pFeeder = new int [NumOfFeeders];
for (i = 0; i < NumOfFeeders; i++)

pFeeder[i] =
}

int CcPermutation::find_best_s(const int start, const CBoard
*_pBoardArray, const int _Board).

int Best = start;
for (int i = 0; 1 < get_S_Neigh_Size(_pBoardArray, _Board), i++)

}f (neigh_s[i].get_time() < neigh_s[Best].get_t1me())
’ Best =
}

return BeSt;

}

int CPermutation::find_best_f(const int start, const CBoard

*_pBoardArray, const int _Board)
¢ ~ 1int Best = start;
for (int i = 0; i < get_F_Neigh_size(Q); i++)
if (neigh_f[i].get_time() < neigh_f[Best].get_time())
¢ Best = i;
3 return Best;

232

stdAfx.cpp
// stdafx. cpﬁ source file that includes just the standard 1nc1udes
wi

Pcb.pc 11 be the pre-compiled header
stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

233

TimeDlg.cpp
// TimeDlg.cpp : implementation file
// ‘

#include "stdafx.h"
#include "pPcb.h"
#include "TimeDlg.h"

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _FILE__;
#endif

;///
// CTimeDlg dialog '

CTimeD1g: :CTimeDIg(Cwnd* pParent /*=NULL*/)
‘ : cbialog(CTimeD1g::IDD, pParent)

//{{AFX_DATA_INIT(CTimeD1g)
H / NOTE: the Classwizard will add member initialization
ere

//3}}AFX_DATA_INIT

void CTimeD1g::DobDataExchange(CDataExchange* pDX)

cbialog: :DoDataExchange (pDX) ;
//{{AFX_DATA_MAP(CTimeD]g)
/ NOTE: the ClassWizard will add DbX and DDV calls here

//}YAFX_DATA_MAP

BEGIN_MESSAGE_MAP(CTimeDlg, CDialog)
//{{AFX_MSG_MAP(CTimeD1g)
ON_EN_CHANGE (IDC_FEEDSETUPTIME, OnChangeFeedsetuptime)
ON_EN_CHANGE (IDC_PICKTIME, oncChangePicktime)
ON_EN_CHANGE (IDC_INSERTTIME, oOnChangeInserttime)
ON_EN_CHANGE (IDC_HEADSPEED, OnChangeHeadspeed)
/ /3 }IAFX_MSG_MAP

END_MESSAGE_MAP()

int CTimeDlg::GetItem(const int _ID)

const TEXT_SIZE = 16;

char szText[TEXT_SIZE + 1]; // buffer for conversions
CEdit *pGet = (CEdit *)(GetDlgItem(_ID));
pGet->GetwWindowText(szText, TEXT_SIZE);

return atoi(szText);

;;7;;///

CTimeDlg message handlers

NN

oid CTimeD1g: :0nChangeFeedsetuptime()
FeedSetupTime = GetItem(IDC_FEEDSETUPTIME);

oid CTimeDlg: :0onChangePicktime()
PickTime = GetItem(IDC_PICKTIME);

WM W Mg NN W

234

void CTimeDlg::0nChangeInserttime()
. InsertTime = GetItem(IDC_INSERTTIME);

zoid CTimeD1g: :0nChangeHeadspeed()
HeadSpeed = GetItem(IDC_HEADSPEED) ;

}nt CTimeD1g: :Get_FeedSetupTime()

return FeedSetupTime;

}nt CTimeD1g: :Get_PickTime()

return PickTime;

}nt CTimeD1g: :Get_InsertTime()

return InsertTime;

}nt CTimeD1g: :Get_HeadSpeed()

return HeadSpeed;

void CTimeDlg::UpdateBox(const int _ID, const int _Data)

const TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1]; //_buffer for conversions
CEdit *pDisplay = (CEdit *)(GetDlgItem(_ID));
itoa(_Data, szText, 10);

} pDisplay->SetwindowText(szText);

%OOL CTimeDlg::0nInitDialog()

UpdateBox(IDC_FEEDSETUPTIME, FeedSetupTime);
UpdateBox(IDC_PICKTIME, PickTime);

UpdateBox (IDC_INSERTTIME, InsertTime);
UpdateBox (IDC_HEADSPEED, HeadSpeed);

return true;

}

void CTimeDlg::set_para(const int _FeedSetupTime, const int _PickTime, -
const int _InsertTime, const int _HeadSpeedg

FeedSetupTime = _FeedSetupTime;
PickTime = _PickTime;
InsertTime = _InsertTime;
HeadSpeed = _HeadSpeed;

235

