
Intelligent planning and control of multi-assembly systems.

KHALIL, Eiad.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19909/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19909/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Aasetts uentre uny uampus
Sheffield S1 1WB

1 0 1 8 9 5 5 6 2 3

Sheffield H??Haro University
ond ST Services

Adsettc Cenh a City Campus
Sheffield S1 1WB

REFERENCE

ProQuest Number: 10697215

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10697215

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

INTELLIGENT PLANNING AND CONTROL

OF MULTI-ASSEMBLY SYSTEMS

Eiad Khalil

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Philosophy

May 2008

Abstract

The global trend towards cost minimisation in manufacturing has intensified
during the last two decades. Cost reduction can be achieved either directly, through
elimination of waste, or indirectly, through optimisation of production processes and
generating more reliable information regarding the costs incurred. The research
presented in this thesis considers cost reduction in three aspects: optimisation of
production processes, accurate cost estimation and accounting. Due to the increasing
number of combinatorial optimisation problems associated with the production of
Printed Circuit Boards (PCB), it has attracted the attention of many researchers who
tried to solve these problems with the aim of minimising the production cost. Therefore,
PCB production is used in this research as a test-bed for the three aspects mentioned
above.

Regarding cost reduction in PCB manufacturing, three interrelated combinatorial
optimisation problems are considered: the component placement sequencing problem,
the feeder assignment problem and the board type sequencing problem. Solving these
problems ensures cost reduction by reducing the time required for manufacturing PCBs.
As for cost reduction in the costing and accounting aspects, the traditional standard
costing and standard accounting have some problems that make them unsuitable for
today’s manufacturing. Standard costing allocates overhead to labour or machine hours,
which leads to a distortion of product costs due to the fact that today’s manufacturing
relies more on technology and less on human power. As for standard accounting, it has
some features and characteristics that contradict with the widely spread lean
manufacturing. The deficiencies in standard costing and standard accounting may create
more waste and lead to the wrong decisions being taken.

A framework is developed to provide solution to the above-mentioned problems
in an integrated environment. A mathematical formulation for the three PCB
manufacturing-related problems is developed and solved using a metaheuristic-based
algorithm. In order to deal with the costing and accounting part of the framework
developed, Activity Based-Costing (ABC) and Lean Accounting (LA) are implemented
on a PCB manufacturing facility using a case study. ABC is used to estimate the costs
of manufacturing PCBs and provide detailed information on how the costs are incurred.
As for LA, it is used to reduce the costs associated with the accounting system, which is
achieved by eliminating and/or replacing accounting transactions and promoting lean
measures.

Simulation results obtained show an average reduction in total assembly time of
5.96% and 5.43% when Taboo Search (TS) and Genetic Algorithms (GA) meta
heuristics are used respectively. The results also show how ABC can be used to identify
the activities used in PCB manufacturing and calculate their costs. By targeting the most
costly activities identified by ABC, the production costs can be reduced. Regarding LA,
the results indicate how the accounting system costs can be reduced by eliminating
some accounting transactions and processes or replacing them with less costly
alternatives.

Acknowledgments

Great thanks go to:

> My supervisory team:

- Prof. Sameh Saad without whom this work would not have come to light. He

has been very helpful and supportive throughout the years and would not

hesitate to help whenever possible.

- Dr Ivan Basarab-Horwath for his continuous support and offer to help.

> My sponsor:

- Al-Baath University for their financial support

> The staff at the Faculty of Chemical and Petroleum Engineering, Al-Baath

University for their material and moral support, especially:

- Dr Ahmad Al-Mahmoud

- Dr Ahmad Kasser Ibrahim

- Dr Hassan Al-Khalaf

Table of contents

Abstract..iii

Acknowledgments..iv

Nomenclature.. ix

List of tables...xi

List of figures... ,..................... xiii

CHAPTER ONE.............................. 1

1. INTRODUCTION..................................... 1

CHAPTER TWO .. 6

2. LITERATURE REVIEW... 6

2.1. Introduction...6

2.2. Potential problems in PCB production... 6

2.2.1. Sequencing the PCB types on the assembly line................ 7

2.2.2. Assigning component types to feeders...9

2.2.3. Pick-and-place sequencing problem and the combined problem with feeder

assignment..11

2.3. Activity-Based Costing... 15

2.4. Lean Accounting................................... 19

2.5. Summary... 21

CHAPTER THREE .. 22

3. RESEARCH METHODOLOGY.. 22

3.1. Introduction...22

3.2. The methodology..22

3.3. Implementation of the methodology on PCB production problems..................... 24

3.3.1. Taboo Search..25

3.3.2. Genetic Algorithms.. 27

3.4. Implementation of the methodology on ABC and LA 29

3.4.1. Production procedures..30

3.4.2. General PCB manufacturing process... 31

3.5. Summary...33

CHAPTER FOUR................ 34

4. PROPOSED FRAMEWORK AND PCB ALGORITHMS................................... 34

4.1. Introduction...34

v

4.2. Mathematical formulation..34

4.3. The proposed framework:................. 41

4.4. The proposed algorithm..43

4.5. Taboo Search and Genetic Algorithms...46

4.5.1. The size of TS neighbourhood...47

4.5.2. Development of TS algorithm................. 49

4.5.3. Genetic Algorithms................ 51

4.6. Case study...53

4.6.1. Case details................. :.. 53

4.6.2. Program code.. 55

4.6.3. Experimentation, results and discussion..57

4.6.3.1. The effect o f the number o f moves/generations 58

4.6.3.2. The effect o f the methods used for initial feeder assignment...................60

4.6.3.3. The effect o f other parameters o f TS algorithm.......................................62

4.6.3.4. The effect o f other parameters o f GA algorithm......................................63

4.6.3.5. The effect o f the algorithm type (TS or GA) used 65

4.7. Summary...66

CHAPTER F IV E 68

5. COST ESTIMATION AND ACCOUNTING ASPECTS................................... 68

5.1. Introduction...68

5.2. Basics of ABC... 68

5.3. Using ABC for cost estimation in the PCB industry.. 69

5.4. Implementation of ABC on the case study... 70

5.4.1. Determining the cost of indirect resources and their drivers.......................... 71

5.4.2. Identifying the cost centres and assigning the resources to them...................73

5.4.3. Identifying activities, calculating their costs and the rates of their cost drivers

........................ 79

5.4.4. Calculating the costs of PCBs.. 85

5.5. The effects of applying the algorithm... 89

5.6. Lean Accounting basics and principles...................... 93

5.7. How Lean Accounting system works... 94

5.8. Implementation of LA on the case study....,.................................. 95

5.8.1. Performance measurements..99

5.8.1.1. Cell measurements... 99

5.8.1.2. Value stream measurements...102

5.8.2. Calculating the financial benefits of applying lean manufacturing..............105

5.8.2.1. Calculating freed capacity...107

5.8.3. Eliminating wasteful financial transactions.. 113

5.8.3.1. Accounts payable and accounts receivable processes................ 114

5.8.3.2. The general lodger and end-of-month close process............................. 115

5.8.4. Value stream costing... 116

5.8.5. Features and characteristics costing...119

5.8.6. Target costing...123

5.8.7. Financial planning..127

5.9. Activity-based costing versus lean accounting... 128

5.10. Summary.............................. 129

CHAPTER SIX................. 131

6. RESEARCH VALIDATION & EVALUATION..131

6.1. Introduction...131

6.2. Research validation ... 131

6.2.1. Validation of the work on the optimisation of production processes...........131

6.2.2. Validation of the work on the cost estimation aspect................................... 133

6.2.3. Validation of the work on the accounting aspect... 135

6.3. Research evaluation.. 136

6.3.1. Evaluation of the work on the optimisation of production processes.......... 136

6.3.2. Evaluation of the work on the cost estimation aspect.................................. 137

6.3.3. Evaluation of the work on the accounting aspect... 138

6.3.4. Evaluation of the work on the research as a whole...................................... 139

6.4. Summary... 140

CHAPTER SEVEN .. ,.............142

7. CONCLUSION.. 142

7.1. Optimisation of production processes.. 143

7.2. Cost estimation aspect.. 143

7.3. Accounting aspect... 144

7.4. Final thoughts... 144

7.5. Future work... 145

REFERENCES.. 146

PUBLICATIONS...154

APPENDICES... 155

Appendix I ... 155

Appendix II..158

Nomenclature

AAT: Acyclic Assembly Time

ABC: Activity-based Costing

ABCM: Activity-based Cost Management

ACD: Activity Cost Driver

ACDR: Activity Cost Driver Rate

CDPP: Chebychev Dynamic Pick-and-Place

CCD: Cost Centres Driver

CCR: Cost Centre Rate

DPP: Dynamic Pick-and-Place

EDPP: Extended Dynamic Pick-and-Place

F: Feeder

GA: Genetic Algorithms

HR: Human Resources

IR: Infra Red

IT: Information Technology

IT: Insertion Time

JIT: Just In Time

LA: Lean Accounting

MPS: Master Production Scheduling

MRP: Material Requirements Planning

OEE: Overall Equipment Effectiveness

PCB: ' Printed Circuit Board

PPT: Pick and Place Time

PT: Pick Time

QAP: Quadratic Assignment Problem

RD: Resource Driver

RR: Resource Rate

SA: Simulated Annealing

SMC: Surface Mount Component

SMT: Surface Mount Technology

ST: Set-up Time

ix

TS: Taboo Search

TSP: Travelling Salesman Problem

TPT: Total Processing Time

TT: Travel Time

UV: Ultra Violet

VNS: Variable Neighbourhood Search

X

List of tables

Table 4.1. Definition of variables for the mathematical formulation.............................35

Table 4.2. The size of neighbourhood for the swap and the insertion moves................ 47

Table 4.3. Specifications of the machine..55

Table 4.4. Specifications of board types......................... 55

Table 4.5. Specifications of TS and GA algorithms............................... 55

Table 4.6. The effect of initial feeder assignment on the total processing tim e.............61

Table 4.7. The effect of move type and taboo list size on the total processing time 62

Table 4.8. The effect of algorithm type on the placement/setup times...........................66

Table 5.1. Specifications of board types...71

Table 5.2. Indirect resources at the PCB production facility..7l

Table 5.3. The costs of indirect resources and their drivers..72

Table 5.4. Cost centres at the PCB production facility :..73

Table 5.5. The costs of direct resources (type II) for the “project manager”74

Table 5.6. The costs of indirect resources (type A) for the “project manager”76

Table 5.7. The total cost of the “administrator” pseudo-cost centre...............................77

Table 5.8. The total costs of the pseudo-cost centres.. 77

Table 5.9. The amounts of cost drivers of pseudo-cost centres spent.............................78

Table 5.10. The costs of cost centres, their cost drivers and their rates..........................79

Table 5.11. The activities that can be identified in the production of PCBs...................81

Table 5.12. Calculating the cost of “sequencing parts” activity..., :...........................82

Table 5.13. The costs of activities, their cost drivers and their rates.............................. 83

Table 5.14. Calculating the production cost of one PCB of type A 86

Table 5.15. The production costs of all PCB types... 88

Table 5.16. The total production costs of all PCB types... 89

Table 5.17. Operating times before time reduction (hours).. 90

Table 5.18. Operating times after reduction (hours)... 91

Table 5.19. The saved times of resources (hours)... 91

Table 5.20. Costs of direct utilities and the maintenance & depreciation (£).................91

Table 5.21. The new costs of cost centres, their cost drivers and their rates..................92

Table 5.22. The new costs of activities, their cost drivers and their rates...................... 92

Table 5.23. Features of the current production system... 98

Table 5.24. Day-by-the-hour report.. 100

Table 5.25. The data of the case study before and after applying lean manufacturing. 106

Table 5.26. The box score for the PCB value stream in the case study........................107

Table 5.27. The required data for some of the SMT activities.....................................108

Table 5.28. Activities in the SMT cell and the time of each activity............................110

Table 5.29. The data for the SMT activities after lean.. I l l

Table 5.30. Activities in the SMT cell and the time of each activity after lean 112

Table 5.31. Resource capacities for the SMT cell before and after implementing leanl 12

Table 5.32. The new box score for the case study 113 .

Table 5.33. The resources and their accounts for each department for the case study. 115

Table 5.34. A financial statement for the case study.. 116

Table 5.35. The cost of employees working in PCB value stream...............................118

Table 5.36. The costs of material, machines and other costs for PCB value stream.... 119

Table 5.37. Categories of the features and characteristics that affect SMT productionl21

Table 5.38. The conversion costs for all PCB types in the PCB value stream 122

Table 5.39. Calculations of the target costs for the case study..................................... 125

Table 5.40. Financial impact of the introduction of the lean improvements................127

Table 5.41. The similarities between new ABC and lean accounting..........................129

Table 6.1. Costs of activities (in percentage) in this research and in Ong’s research... 134

Table 6.2. Improvements achieved by implementing LA on this research and on

Maskell and Baggaley’s research.. 135

List of figures

Figure 2.1. One possible assignment for the QAP..9

Figure 3.1. A representation of the neighbourhood solutions...26

Figure 3.2. General PCB manufacturing process..32

Figure 3.3. Flowcharts of PCB production process; a: adhesive attach-wave, b: reflow32

Figure 4.1. Layout of the board and feeders...35

Figure 4.2. Calculating the travel times..41

Figure 4.3. Proposed framework of the research................ 42

Figure 4.4. Flowchart for the solution algorithm..43

Figure 4.5. Representation of centroid rule ...45

Figure 4.6. Representation of proportion rule...46

Figure 4.7. Size of neighbourhood for insertion and swap moves..................................48

Figure 4.8. Flowchart of Taboo Search algorithm... 50

Figure 4.9. Flowchart of Genetic Algorithms... 52

Figure 4.10. A representation of the board and feeders 54

Figure 4.11. Snapshot of the program interface..56

Figure 4.12. The effect of number of moves on processing tim e................................... 59

Figure 4.13. The effect of number of generations on processing time........................... 59

Figure 4.14. The relationship between processing time and number of

moves/generations for board type A ... 60

Figure 4.15. The effect of initial feeder assignment on processing time of board type A

using TS algorithm..62

Figure 4.16. The effect of move type on processing time of board type A using TS

algorithm (random feeder assignment)... 63

Figure 4.17. The effect of the population size on processing time................................. 63

Figure 4.18. The effect of using mutation on the processing time.................................. 64

Figure 4.19. The effect of using inversion on the processing time................................. 65

Figure 4.20. The effect of the algorithm type on the processing time............................ 66

Figure 5.1. The costs of activities84

Figure 5.2. The general implementation steps of lean accounting.................................. 97

CHAPTER ONE

1. INTRODUCTION

The diversity of product types required by today’s customers has forced

manufacturing companies to introduce multi-assembly systems. This has led to some

production optimisation problems one of which is the sequence at which the product

types should pass through the assembly lines. In addition to these production problems,

there are also cost estimation and accounting issues that are associated with

manufacturing and need to be addressed. Due to the intense competition in modern-day

manufacturing, most manufacturers aim to reduce the production costs of their products.

Taking this into account and considering the widespread use of multi-assembly systems,

this research focuses on cost reduction within three aspects of manufacturing:

optimisation of production processes, cost estimation and accounting.

The electronics industry has grown rapidly in the last two decades. The increase in

PC production is, amongst others, one reason for this growth. Due to this growth, a

global competition has emerged creating lower profit margins. As an important segment

of the electronics industry, the production of Printed Circuit Boards (PCBs) has been

paid considerable attention because, firstly, PCBs are found in almost all electronic

devices and, secondly, because PCB production is associated with many problems that

have the potential for optimisation. For these two reasons and for the fact that some of

the PCB production problems are more general, PCB manufacturing is the area of

industry that will be considered in this research. Given the highly automated production

processes used in response to the high demand for PCBs, the problems associated with

PCB production have become more complex and interrelated. Most of these problems

are combinatorial optimisation problems (problems that involve identifying the best

possible solution amongst a finite set of possible solutions), which, in some cases,

require metaheuristics (e.g. Taboo Search, Genetic Algorithms, Simulated Annealing,

etc.) to solve them. A metaheuristic is a strategy or a framework that guides heuristics to

search for solutions for hard problems. Heuristics can be defined as a methodology, tool

or a problem-solving technique that uses specific solutions, of several found, in the

successive steps to obtain more feasible solutions. They have been created and

1

developed throughout years of experience in solving mathematical problems. For

example, the following can be considered as heuristics (Sickafus 2004):

- Simplification: divide complex problems into small ones, take small steps, combine

functions, etc.

- Extremes: vary attributes to their extremes, multiply and divide objects to extremes.

- Focus: search root causes for solution concepts, search technological contradictions,

etc.

Although metaheuristics are very successfully widespread, the way they work is

still not widely understood and there is very little in depth research about the theory

behind them. The reason for this might be due to the fact that it is not that important to

know how they work as much as it is important to know how to use them and whether

using them gives satisfactory results or not. However, Watson (2003) argues that the

limitation of the theoretical understanding of metaheuristics obstructs researchers from

developing more effective ones. That is why he has developed theoretical behavioural

models to some of well-known metaheuristics (or local search algorithms as he calls

them).

As for the other two aspects of cost reduction, two well-known techniques will be

considered: Activity-Based Costing (ABC) and Lean Accounting (LA). Activity-Based

Costing has emerged as a method for estimating the costs of products (or services) in

order to overcome the limitation of the conventional cost allocation method (allocating

overhead to labour or machine hours). Examples for these limitations are the distortion

of product costs resulted from the volume-based allocation of overheads to products

(Cooper 1987 (from: Innes & Mitchell 1995)), the lack of cost information for decision

making (Johnson & Kaplan 1987) and the lack of the availability of costing data at the

design stage of the product life cycle (Berliner & Brimson 1988).

Although ABC is not a method designed to directly minimise the cost, the need

for it was driven by the development of new technologies in manufacturing systems and

by the introduction of automation in the early 1980s in order to provide accurate cost

estimation that may lead to better decision making and eventually to cost reduction. In

the conventional cost allocation method, the overhead is allocated to products, or

services, depending on direct labour or on volume-related factors such as machine hours

(Bellis-Jones & Develin 1999). The introduction of automation and new technologies

has meant that a higher percentage of overheads cannot be volume related. ABC method

follows a different approach in cost allocation, an approach that overcomes the

2

limitations of the conventional approach. The basic concept of ABC is that products and

services consume activities, which in turn consume resources that have specific costs.

For example, in a PCB manufacturing facility, producing a PCB requires performing

many activities (e.g. sequencing parts, screen printing, placing components, etc.); the

‘placing components’ activity, in turn, consumes many resources (e.g. manufacturing

engineer, operator, pick-and-place machine, etc.). This means that the costs can be

traced to products and services through the activities needed to produce them.

LA, in contrast to ABC, is directly connected to cost minimisation. Its scope is

much wider than the scope of ABC and it is not a stand-alone system, it should always

be implemented by companies already implementing lean manufacturing. The

implementation of lean manufacturing principles by most companies has been

undermined by the traditional practice in the accounting departments of these

companies. The principles of standard accounting are based on the principles of mass

production. They are not wrong as such but they are not suitable for lean manufacturing,

which has principles and rules (e.g. low and consistent inventory, small batches, small

orders of raw materials and other supplies, etc.) that are at odds with mass production

(Maskell 2004). In order to overcome this obstacle and show the full potential of the

implementation of lean manufacturing, a new accounting system that takes into account

the principles of lean has been developed. This new accounting system is called “Lean

Accounting”. The basic idea of LA is to change the way the standard accounting system

handles the accounting, control, measurement and management of production processes

into a way that supports lean manufacturing by applying the principles of lean thinking.

LA is a necessary tool for lean manufacturing to survive; it provides better information

for the management, which helps them understand the financial impact of lean

improvements. This, in turn, helps them achieve better decision-making and save

money by reducing costs, eliminating waste and providing more control over production

processes.

The goal of this thesis is to develop a framework that can be used for process

optimisation and cost minimisation in multi-assembly systems in general and in the

PCB industry in particular. In order to fulfil this goal and as mentioned earlier, this

research will consider three aspects in manufacturing: optimisation of production

processes, cost estimation and accounting. As for the optimisation of production

processes, three problems associated with PCB assembly systems will be considered:

component placement sequencing, feeder assignment and board type sequencing. An

3

integrated approach will be developed to simultaneously solve these problems by

finding the optimal component placement sequence, the optimal component to feeder

assignment and the optimal board type sequence when working in multi-assembly

systems. In order to achieve that, the problems will be studied in detail, a mathematical

model will be developed for them and the model will be solved using metaheuristics.

Since this kind of problems cannot be practically solved using conventional

mathematics as it requires years of computational time for present-time personal

computers to solve a medium-sized problem of this kind, two metaheuristics will be

used to solve them. The metaheuristics, Taboo Search (TS) and Genetic Algorithms

(GA), will be used to find the optimal (or near optimal) solution to the developed

mathematical model. TS will be used because it has been used widely in the literature to

solve combinatorial optimisation problems but not widely used to specifically solve

PCB related problems as will be seen later in the literature review. Since GA has been

widely used in the literature to solve combinatorial problems in general and PCB related

problems in particular, it will be used here mainly for comparison purposes.

As mentioned earlier, regarding the cost estimation and the accounting aspects,

Activity-Based Costing and Lean Accounting will be considered in this research and

they will be implemented on a PCB manufacturing facility. This will allow for

establishing a relationship between the three aspects under consideration in this

research. A case study will be used in this research to help the reader easily understand

and follow the proposed framework of this thesis. In order to validate this research, the

results obtained for the three aspects considered will be compared to the results of

similar studies from the literature.

The main objectives of this research are as follows:

- Development of a mathematical model for the combined problem of component

sequencing, feeder assignment and board type sequencing.

- Formation of suitable TS- and GA-based algorithms to find the optimum or near

optimum solution to the above-mentioned problem.

- Integration of the mathematical model and the algorithms using an appropriate

interface tool.

- Implementation of ABC and LA on a PCB manufacturing facility to study the cost

estimation and the accounting aspects.

4

- Development of a framework that integrates the optimisation of production

processes, cost estimation and accounting aspects of this research.

- Test the performance of the proposed framework using a case study.

- Verification and validation of the proposed framework.

The reminder of this thesis is organised as follows: Chapter 2 includes the

literature review on PCB manufacturing focusing on the three problems under

consideration in this research and on the use of TS and GA in solving these problems

where appropriate. In addition, the literature review will consider the other two aspects

of this research: cost estimation (ABC as an example) and accounting (LA as an

example). Chapter 3 explains the research methodology adopted in this research in

addition to some background information about PCB production procedures, PCB

production problems, TS and GA metaheuristics. In Chapter 4, the mathematical model

used to solve PCB production problems mentioned earlier is formulated and the two

metaheuristics (TS and GA) used to solve the mathematical model are also detailed in

this chapter. ABC and LA are explained in detail, implemented on a PCB

manufacturing facility and the results are analysed in Chapter 5. The validation of the

results obtained and a critical evaluation for the research work as a whole are presented

in Chapter 6. Finally, the thesis is concluded in Chapter 7 where the conclusion and the

future work are presented.

5

CHAPTER TWO

2. LITERATURE REVIEW

2.1. Introduction
In this chapter, essential background information is presented, the previously

published research on PCB, ABC and LA is summarised and the main results and

conclusions are stated in order to distinguish this research from what have been

considered before. Regarding PCB manufacturing, some problems associated with it are

listed and the three PCB production problems of board type sequencing, feeder

assignment and pick-and-place sequencing considered in this work are explained in

detail. Since TS and GA are also the only metaheuristics considered in this research, the

review focuses on the publications that considered these two metaheuristics, even

though some other methods are also mentioned. As for ABC and LA, a detailed review

is considered in this chapter and a special attention is paid to the PCB related cases

whenever possible as PCB manufacturing is the area of industry considered in this

research.

2.2. Potential problems in PCB production
The area of PCB assembly has been the focus of intensive research during the last

two and a half decades. Although a detailed search has been carried out, the focus in this

section is on the problems that are under discussion in this research work. In addition, a

special attention is paid to the use of TS and GA as search techniques.

Crama et al (2002) listed the problems associated with the production planning

process of PCBs as follows:

1. The assignment of PCB types to product families and to machine groups. This

means, to decide which board type should be processed by which machine (machine

group). In addition, to decide what board types (similar in terms of component

commonality), which would be processed by one machine, should be grouped in one

family so that this family can be processed using one feeder assignment.

2. The allocation of machine feeders to machines. This means, to assign the feeders to

the machines taking into consideration problem number 1 above.

3. For each board type, a partition of the set of component locations on this board type,

indicating which components will be placed by each machine. For the component

6

locations of each board type, it should be decided which set of locations should be

processed by which machine. This arises when the same component type is assigned

to feeders on different machines.

4. The sequence of board types, indicating the order in which the board types will be

produced (to be explained further in subsection 2.2.1).

5. The location of feeders on the carrier or feeder assignment (to be explained more in

subsection 2.2.2).

6. The component placement sequence (to be explained more in subsection 2.2.3).

7. The component retrieval plan indicating from which feeder a component should be

retrieved. This problem arises when the same component type is assigned to more

than one feeder.

8. The motion control specification indicating a specification of where the pick-and-

place device should be located when it picks or places the component. This is a

machine-dependable problem. For machines with a mobile board and mobile feeder

carrier it should be determined where the machine head should meet the feeder

carrier to pick the component and where it should meet the board to place it.

Amongst the above potential problems associated with PCB assembly, problems 4, 5

and 6 are detailed thereafter.

2.2.1. Sequencing the PCB types on the assembly line
This problem is to find the sequence of board types, amongst a set of possible

sequences, which minimises the total assembly (or processing) time. Since each

different board type requires a different machine set-up, the sequence that the board

types follow when entering the machine affects the total set-up time. The issue here is to

find the sequence of board types that minimises the set-up time. The problem of

sequencing the PCB types on the assembly line is considered an instance of the job

sequencing or job scheduling problem. For more information about job-shop scheduling

problem the reader can refer to Kaschel et al (1999) and Applegate and Cook (1991).

A considerable amount of research has been devoted to solving the job scheduling

problems such as Nawaz et al (1983), Proust et al (1991) and Ji et al (2001), to mention

just a few. However, as this research is interested in the sequencing problem rather than

the general job scheduling problem, the only relevant research works are considered

here.

7

Logendran and Nudtasomboon (1991) proposed a new heuristic to minimise the

total completion time or makespan of the job sequencing problem. The proposed

heuristic showed, the authors claimed, a high performance relative to the other methods

proposed in the literature. Hashiba and Chang (1991) followed a three-step approach to

reduce the number of setups for PCB assembly machines by improving the assembly

sequence. The first step included grouping PCBs by applying a new heuristic grouping

method. In the second step, they sequenced the groups by treating the problem as the

Travelling Salesman Problem. A new algorithmic method was presented in the third

step to solve the component assignment problem. The presented approach showed to be

efficient for large-size industrial problems.

Sadiq et al (1993) developed the intelligent slot-assignment algorithm (a

knowledge-based approach) to sequence a group of printed wired boards assembly jobs

on a placement machine to minimise the production time. The developed algorithm

consisted of two stages. In the first stage, new parts were assigned on the machine with

the objective of minimising the set-up time, whereas in the second stage the parts were

reassigned to minimise the runtime. Their performance evaluation studies showed that

the developed algorithm tended to obtain near-optimal solutions. Bhaskar and

Narendran (1996) introduced a new measure of similarity for PCB grouping, called the

cosine similarity coefficient, in order to reduce the total set-up time for a single

machine. They performed that by developing a heuristic, which performed very well for

a number of trial problems, based on the maximum spanning tree; The problem of

sequencing the groups was approximated to the Travelling Salesman Problem.

Rossetti and Stanford (2003) presented a heuristic for estimating the expected

number of setups from the sequence dependent setups which may occur given a board-

feeder setup configuration. The estimates were used to measure the similarity between

boards in clustering algorithms and in nearest neighbour heuristics for group

sequencing. The results indicated that grouped sequences generated by using the

heuristic had better makespan performance compared to sequences based on the more

traditional Hamming distance. Narayanaswami and Iyengar (2005) used a heuristic that

resembled greedy tree traversal to efficiently sequence PCB groups. They proposed a

new grouping strategy that combines the feeder contents into the similarity measure for

efficient grouping, which they claimed outperformed existing methods of grouping.

As can be seen from the review, there is lack of research on the use of

metaheuristics to solve the board type sequencing (or groups sequencing) problem in

8

the PCB industry. Metaheuristics have proven to be successful for obtaining near-

optimal solutions for medium- to large-scale combinatorial problems (Ong & Khoo

1999; Wan & Ji 2001; Loh et al 2001; Ho & Ji 2003; Ho & Ji 2005). This is why this

research is considering the use of TS and GA as search techniques to solve the PCB

types sequencing problem. The use of these two metaheuristics is an opportunity to test

whether or not they are successful in solving this type of problems.

2.2.2. Assigning component types to feeders
The basis of this problem is to find the component assignment that minimises the

assembly time. The assignment of component types to feeders (or the location of

feeders on the carrier) can be explained as follows. Since the distance between a

component and its location on the board is variable depending on which feeder this

component is assigned to, the time needed for the machine head to travel this distance is

also variable. A solution to this problem is to find the specific feeder assignment that

minimises the total distance between the components and their corresponding locations

on the board. This problem is an instance of a type of combinatorial problems called

Quadratic Assignment Problems (QAP). QAP is simply to assign a set of n facilities to a

set of n locations.'The objective is to find the assignment that corresponds to the

minimum cost. The number of possible assignments in this case is n\. The cost of each

assignment is the sum of the costs of all pairs, which can be calculated by multiplying

the flow cost for each successive pair of facilities by the distance between the two

locations which that pair of facilities is assigned to. For example, for n = 4, there are

four locations 1, 2, 3 and 4 and four facilities a, b, c and d. A possible assignment might

be c, b, d and a. This means, facility c is assigned to location 1, facility b is assigned to

location 2, facility d is assigned to location 3 and facility a is assigned to location 4 as

shown in Figure 2.1.

3

Figure 2.1. One possible assignment for the QAP

9

Let’s assume that the distances between the locations are as follows:

dis{ 1,2) = 7, dis(1,3) = 5, dis(2,3) = 6 and dis{2,4) = 8

and the costs of flows between facilities are:

fl{c,b) = 12, fl(c,d) = 15, fl{d,b) = 22 and f l& a) = 10

This means, the cost of this assignment is:

efcs(l,2)x fl(c,b) + dis(l,3)x fl(c,d) + dis(2,3)x fl(d,b) + dis(2,4)x fl(b , a) =

7x12+5x15 + 6x22+8x10 = 371

The solution for the problem is to find the assignment that corresponds to the lowest

cost. The reader can refer to Burkard et al (1997) for more information about the

Quadratic Assignment Problem.

Most of the literature related to this problem has focused on single-machine cases,

and mainly on single-machine-single-board cases. This problem was first identified by

Drezner and Nof (1984). Ahmadi et al (1995) discussed the same problem but under a

different name (the reel positioning problem). They applied their research to a dual

delivery pick-and-place machine (Dynapert MPS 500). The proposed heuristic took into

account the engineering concerns for minimising the carrier movement. The component

placement sequence was assumed to be given in this case and a 7 to 8% reduction in

cycle time was achieved. Simulated Annealing (SA) was used to solve this problem by

van Laarhoven and Zijm (1993). Other approaches were discussed by Francis et al

(1994) and Younis and Cavalier (1990).

Gronalt et al (1997) discussed the switching component problem (the component

set-up and the feeder assignment problem) on an SMT (Surface Mount Technology)

placement machine. The approach used was based on decomposing the switching

problem into the set-up problem and the assignment problem and then solving the two

problems iteratively with the solutions to the set-up problem providing the basis for

solving the assignment problem. The proposed heuristic performed well when applied

on data reflecting actual industrial application requirements.

Regarding the multi-board type problem, there have been fewer publications.

Dikos et al (1997) used Genetic Algorithm to generate a solution for the feeder

assignment problem. Another approach was used by Crama et al (1990), who

decomposed the planning problem into a number of sub-problems, where a new

10

heuristic based on the individual board characteristics was proposed. Using this

heuristic, a solution to the planning problem was achieved and, according to the

computational results, this approach worked well. Klomp et al (2000) developed a

heuristic algorithm to solve the problem (they called it “the feeder rack assignment

problem”) for a line of placement machines and a family of boards. The algorithm was

applied to real-life examples and the authors claimed that the results showed the

superiority of the algorithm when compared to the approaches that were commonly in

use at that time. Finally, Yuan et al (2006) analyzed optimization algorithms of

assembly time for a multi-head machine. They developed a four-step algorithm. In the

first step, the algorithm assigns the components to feeders. In the second and third steps,

it assigns nozzles to the heads and organizes the feeder groups so that the heads can pick

and place components on a group-by-group basis. In the last step, the algorithm assigns

feeder groups to slots. The results showed that the performance of the algorithm proved

to be good in practice.

2.2.3. Pick-and-place sequencing problem and the combined problem with feeder
assignment

The pick-and-place sequencing problem is about finding the placement sequence

of components on the board so that the assembly time is minimised. This combinatorial

problem is a typical example of the Travelling Salesman Problem (TSP). TSP is simply

to find the cheapest way of visiting a number of cities once and returning to the start

city given the cost of travel between each pair of cities. For a specific feeder

assignment, the sequence that the machine head follows to place the components on the

board (which component should be placed first and which second etc.) also affects the

total distance travelled. Minimising this distance requires a unique placement sequence,

which is considered to be a solution to this problem. For more information about the

Travelling Salesman Problem the reader can refer to Bellmore and Nemhauser (1968),

Reinelt (1991) or Moscato (2003).

There have been a number of publications devoted to component sequencing

problem. Ball and Magazine (1988) described some of the problems related to the PCB

production. The specific problem of determining the best sequence of insertion was

formulated as an instance of the Travelling Salesman Problem. An optimal solution was

reached under certain conditions (when the travelled path of the head was rectilinear)

using an algorithm developed for this particular problem. Sanchez and Priest (1990)

11

developed a component-insertion sequencing methodology and a “proof-of-concept”

expert system for PCBs. They applied Artificial Intelligence and Expert Systems

techniques to represent the human reasoning involved in semi-automated PCB assembly

planning. Based on established assembly criteria, sequencing decision rules and data

available from a CAD system, they claimed that the methodology optimally solved the

component-insertion sequencing problem for semi-automated work cells.

Su and Srihari (1996) designed, implemented and validated a decision-support

system that combined the use of artificial neural networks and artificial-intelligence-

based technologies (expert system techniques) to identify a near-optimal solution for the

placement sequence problem. Khoo and Ng (1998) developed a prototype GA-based

planning system to provide near-optimal PCB component placement sequence. PCB

placement priority and sequencing decisions rules were incorporated as constraints. A

PCB model already used in the literature was used to validate the prototype system. The

results showed that an improvement of 19.80% in the total distance was possible.

Jeevan et al (2002) modelled the component placement sequence problem for a multi

headed machine as a Travelling Salesman Problem with the tool change factor included

and the problem was optimised by Genetic Algorithms. The paper suggested that GA

was a better alternative to other heuristic solution approaches such as Variable

Neighbourhood Search (VNS) and local optimum search since it was simple and more

promising as a global and robust method.

As for the combined problem of feeder assignment and placement sequence,

Moyer and Gupta (1996) proposed a methodology for efficient process planning of a

high speed chip shooter for surface mount assembly. They proposed an asynchronous

model which they claimed that it would strengthen the benefits of the chip shooter

features. A heuristic algorithm was developed, referred to as the Acyclic Assembly

Time (AAT) algorithm, based on the asynchronous model. The authors claimed that the

algorithm produced excellent results, compared to previously published problems, when

tested on real-life examples. Khoo and Ong (1998) and Ong and Khoo (1999) applied

GA in order to optimise the sequence of component placements onto a PCB and the

arrangement of component types to feeders simultaneously. They reported a 7.4%

improved results compared to Leu et al (1993). Su et al (1998) used a TS approach to

solve the combined problem of sequencing placement points and magazine assignment.

They applied this approach on a robotic assembly system with a moving magazine, a

moving board and a moving robot. With an average reduction of 14.26% in cycle time,

12

they concluded that TS was more effective in solving the problem of occasionally

changing coordinates than other conventional approaches.

Burke (1999) presented a new model for multi-headed placement machine. Two

heuristics were modified to be suitable for the problem presented: the nearest neighbour

tour construction heuristic and K-opt (a local search algorithm). Altinkemer et al (2000)

provided an integrated approach which tackled the two sub-problems (component

sequence and feeder assignment) simultaneously as a single problem with the aim of

minimising the machine head movement. Khoo and Loh (2000) presented a prototype

system that used GA to generate the component placement sequence and the feeder

assignment for a concurrent pick and place machine equipped with a time-delay

function. The sequencing process was formulated as a multi-objective optimisation

problem (a multi-objective function that depends on other three functions was

formulated). The prototype system was validated using examples from the literature and

the authors reported an improvement of 13.0% compared to the work of Sanchez and

Priest (1990). The two problems of assigning component types to feeder slots and the

determination of locally optimal pick and place sequences for a multi-headed

component placement machine were solved by Burke et al (2000). Up to 35%

improvement was achieved using a local search approach to improve initial solutions

determined by nearest neighbour construction heuristic and up to 40% using the

variable neighbourhood search approach. The authors suggested the use of

metaheuristics such as TS and Simulated Annealing (SA) to overcome the problem of

local optima which they encountered. Loh et al (2001) developed an algorithm based on

GA to solve the feeder assignment and the placement sequencing problems in PCB

assembly. By comparing the performance of that algorithm to previous algorithms, they

proved its superiority especially for large problems (> 50 components). Furthermore,

they found that the possibility of assigning one component type to more than one feeder

provided additional flexibility and reduced the assembly time.

Van Hop and Tabucanon (2001b) proposed a new approach to solve the combined

problem of feeder assignment and placement sequence in a Dynamic Pick-and-Place

(DPP) model where a robot arm, a board and a magazine move together with different

speeds. Their approach was based on the trade-off between two strategies, assembly by

area and assembly by component types, to give better results. They applied the new

approach on numerical examples, which proved to be efficient. An improvement to the

DPP, called the Extended Dynamic Pick-and-Place (EDPP) was introduced later (Van

13

Hop & Tabucanon 2001a). Deo et al (2002) developed a GA-based program for

simultaneously optimising component placement sequence and feeder assignment in the

assembly of PCBs. The program proved to be a valuable tool for providing good

solutions to the problem in a multiple set-up and multiple sourcing PCB assembly

machine arrangement. Ong and Tan (2002) demonstrated the application of GA to

solving the placement sequencing and feeder assignment problems. They focused on

solving the moving board with time delay problem associated with high-speed turret-

head chip-shooters. The results obtained showed improvements compared to the results

of previous work carried out by Leu et al (1993) and Nelson and Wille (1995).

Ayob and Kendal (2002) used a new approach with the objectives of minimising

the robot assembly time, feeder movements and PCB table movements. Their approach

was a revised dynamic pick and place point (DPP) approach which they called

Chebychev DPP (CDPP). The difference between DDP and CDPP was that some

unnecessary movements were eliminated in the latter by taking into consideration the

next PCB coordinate when determining the current pick up and placement locations. A

3.29% improvement in the cycle time was achieved compared to the approach of Wang

et al (1998). Ho and Ji (2003) presented a hybrid Genetic Algorithm to optimise the

sequence of component placement and feeder assignment simultaneously for a chip

shooter machine with the objective to minimise the assembly time. The search heuristics

used in the GA included nearest-neighbour, 2-opt and an iterated swap procedure. The

hybrid GA, the authors claimed, performed better in terms of assembly time when

compared to the results obtained by other researchers. Later on, Ho and Ji (2005)

considered the case where the components of the same type were assigned to more than

one feeder. This added the retrieval problem to the feeder assignment and the placement

sequence. The three problems were solved simultaneously using a hybrid Genetic

Algorithm for a sequential pick-and-place machine. The performance of the algorithm

was compared to Leu et al (1993) and to Ong and Khoo (1999) where the improvements

were 7.64% and 0.23% respectively. Finally, Yilmaz and Gunther (2005) presented a

novel approach for group setup strategies for the case of a single assembly machine with

the aim of minimising the makespan. They proposed a methodology based on applying

machine-specific algorithms for optimising feeder setups for each PCB family and

providing placement sequences for each PCB type.

As can be seen from the above-mentioned review, there has been a great deal of

research on the three PCB production problems under discussion (i.e. board type

14

sequence, feeder assignment and placement sequence). The review shows how the

previous research has considered these three problems either individually or in pairs.

However, an attempt to solve the three problems simultaneously has not yet been

considered. That is what Chapter 4 of this thesis is focusing on. The three problems are

combined and solved using two search techniques: Taboo Search and Genetic

Algorithms. These two techniques, as mentioned in subsection 2.2.1, have not yet been

considered for solving the board type sequencing problem.

2.3. Activity-Based Costing
Ever since Johnson and Kaplan (1987) wrote their book “Relevance lost: The Rise

and Fall of Management Accounting” and the term ABC came to existence, a great deal

of research has been attributed to this term. Since it is not viable to mention every

published research work about ABC, the focus in this section is on the application of

ABC in the manufacturing domain in general and on PCB manufacturing in particular.

ABC has been developed as a cost estimating technique that can be used in different

types of organisations such as manufacturing, service, retail, etc. Furthermore, the use

of ABC has not been limited to product costing but to a variety of applications; even the

term Activity-based Cost Management (ABCM) has become widespread in the

academic domain (Bellis-Jones & Develin 1999). The following are some of the

applications of ABC adopted from Innes and Mitchell (1995).

Product pricing:

In order to price a product or service their actual cost must be known. ABC

provides the means that can be used to calculate the actual cost of a cost object. Hence,

the “cost plus” approach can be used flexibly and successfully to provide a competitive

price.

Decision making:

The make-or-buy decision is very important to the success of any organisation. By

knowing the true cost of a product or service it can be assured that the right make-or-

buy decision has been taken.

Cost reduction:

ABC helps identify the value added and non-value added activities. This allows

the management to pay more attention to the non-value added activities and try to

eliminate them or at least to reduce their consumption for resources. As for the value

15

added activities, by knowing the way these activities consume resources, the possibility

for cost reduction becomes available.

Budgeting:

ABC provides the required details for good budgeting practice. The statistics of

cost drivers provided by ABC allow for reliable assessment for future needs of

resources.

Product design:

Considerable amount of research has been devoted to the relationship between

ABC and product design. For example, Ong (1995) developed an ABC estimating

system to help designers estimate the manufacturing cost of a PCB assembly at the early

stage of design. Ong stated that his system would enable designers to identify the

activities that incur high cost and, hence, they would be able to make efforts to reduce

their costs. Tomberg et al (2002) investigated the possibilities of ABC and the

modelling of design, purchasing and manufacturing processes in providing the designers

with useful cost information. They concluded that ABC and process modelling would

provide a good starting point in heading towards cost-conscious design. Ben-Arieh and

Qian (2003) presented a methodology for using ABC to evaluate the cost of the design

and development activity for machined parts. The methodology was tested using sample

rotational parts developed in a controlled environment. The methodology proved to be

more accurate than the traditional cost estimation provided by the shop accountant. In

addition, it would provide the ability to expand the most costly activities and investigate

the causes of the cost. Giachetti and Arango (2003) developed an ABC model for PCB

cost estimation based on the design parameters. A design example was used to verify

the model, which revealed important relationship between cost and design parameters.

The model enabled the designers to assess the impact of their decisions on the cost and

this helped them generate lower cost alternatives.

It is widely known that 80% (Duverlie & Castelain 1999) or up to 85%, as

Whitney (1988) claimed, of product cost is determined at the design stage. This shows

how important the relationship between the design decisions and the final cost of the

product. Since ABC provides cost drivers rates, this help designers design less costly

products.

Cost modelling:

According to Cooper (1990), ABC helps structure costs into different levels which

gives a realistic representation of them (more on that in Chapter 5):

16

- Unit-level costs: costs are affected by each additional unit

- Batch-level costs: costs are affected by each additional batch

- Product-level costs: costs are affected by the existence of a product

- Facility-level costs: costs are not related to products but to the facility as a whole.

Ong and Lim (1993) developed cost models for PCB assembly taking into

consideration the activities that incurred cost due to complexity, volume and batch size

of the produced PCB. The activities were allocated into three levels: unit-level, batch-

level and product-level, where the cost of assembling one PCB was the total of all costs

in these three levels. The application of the models developed was illustrated by

presenting an example. Later on, Ong (1995) presented an ABC estimating cost system

to help estimating the cost or PCB production at the design stage. He used activity

charts, worksheets and a build-up table to calculate the activity costs. By presenting an

example, Ong illustrated how to apply his estimation system. A case study of

successfully implementing ABC against all odds (the top management were not

convinced that the benefits would outweigh the cost of implementing ABC) was

presented by Dedera (1996). In spite of the top management’s initial objection and

against the experts’ advice regarding the timing and the scope of the project, an

integrated ABC system was successfully implemented within nine months. Dedera

attributed the success of the project to two factors: people, where the best available were

selected, and communication, where different departments in the company were all

consulted and kept up to date regarding the implementation of the ABC system. The

successful implementation was reflected in many areas: accurate cost data to support the

decision-making process, better communication between manufacturing and

administrative departments, better financial outcome, etc. Sohal and Chung (1998)

presented two case studies on the implementation of ABC. They discussed the

introduction of ABC and the benefits and problems experienced during implementation

process and identified the factors critical to successful implementation of ABC (e.g.

educating and training of people, commitment, acquiring external experience, keeping it

simple, adequate allocation of resources and continuous feed back to top management).

These factors were extensively explored by Marri and Grieve (1999) who introduced a

framework for the justification and implementation of ABC in the small- to medium

sized enterprises.

17

The issue of combining ABC with simulation models was considered by Spedding

and Sun (1999). They argued that using a simulation model made it easier to implement

ABC on their case study. The importance of their research lies in the fact that using

simulation and ABC together provides a more powerful tool than either of them. This

can be used for providing more useful management information. Tomberg et al (2002)

produced a study on the use of ABC and process modelling in providing cost

information for designers. The result of their study suggested that using ABC alongside

process modelling was a step forward towards creating better cost-conscious design.

Gupta and Galloway (2003) showed how an ABC management system could be used as

an information system to support the decision-making processes of different operations

(product planning and design, inventory management, capacity management, etc.). They

demonstrated how their system enabled the operations manager to increase the quality

of the decision-making process. Ozbayrak et al (2004) applied ABC alongside a

mathematical and simulation model on a manufacturing system that used either MRP or

JIT (push or pull system) in order to estimate the product costs. Their work showed how

valuable ABC was as a tool for providing not only more accurate cost information

compared to the traditional cost allocation system but also important management

information. They concluded that the manufacturing planning and control strategies

greatly affected the manufacturing costs and that the pull system provided lower

manufacturing costs. Homburg (2004) argued that since ABC allocated overhead costs

proportionally it was a heuristic, therefore he used simulations and mixed-integer

programming to analyse the extent of the sub-optimality incurred by ABC-heuristics.

Homburg argued that previous research used a simple set of cost drivers, which

restricted the potential of ABC as a heuristic. Therefore, he analysed the effects of

establishing a cost driver corresponding to a higher cost level (e.g. portfolio-based cost

driver). This driver was used to allocate the costs to inflexible overhead resources

proportionally, which improved the quality of ABC-heuristics significantly. Although

Homburg had reservations about generalising the results since the simulations he used

were based on simplified scenarios, he argued that the results provided some insight in

to the quality of using ABC for decision making.

The success rate of implementing ABC has been acceptable in general, however,

the fact that ABC assigns costs to products on the basis of cost drivers, which may or

may not be proportional to the volume of the output, has attracted some criticism.

Noreen and Soderstrom (1994) presented a case study in which they proved that the

18

assumption that the overhead costs are proportional to activities is not always correct.

Therefore, there are conditions (e.g. all costs must be strictly proportional to their cost

drivers) under which ABC can provide relevant costs (Noreen 1991; Christensen &

Demski 1995). When the conditions are not met alternative solutions can be used. For

example, Homburg (2005) suggested an alternative to using the cost driver rates by

calculating relative profits by using “concepts of multi-criteria decision-making”.

Another example is the research work by Kim and Han (2003) in which they proposed

the use of hybrid artificial intelligence techniques. They used GA to identify optimal or

near-optimal cost drivers and used artificial neural networks to allocate indirect costs

with nonlinear behaviour to products. The results of their work revealed that their

proposed model performed better than the conventional ABC model. Furthermore, Ben-

Arieh and Qian (2003) argued that the cost estimation of the design activity has been

rather difficult. This claim is disputable since an ABC model that focused on the design

stage of PCB fabrication was developed by Giachetti and Arango (2003). In this cost

model the cost centres and cost drivers were all based on design parameters so that

model could be used as an evaluation tool by PCB designers when making design

parameter trade off decisions.

In general and as this review shows, there has been a positive attitude towards

ABC amongst researchers in spite of the existence of some scepticism. Innes and

Mitchell (1995) argued that there was a lack of ABC implementation in the industry.

This might be true at the time they conducted their survey but may not be correct

nowadays. The outcome that could be drawn from this review is that ABC can be

successfully applied with the condition that the costs must be proportional to their cost

drivers. Therefore, ABC will be implemented in this research and the pros and cons of

its implementation in PCB manufacturing industry will be highlighted.

2.4. Lean Accounting
Lean Accounting can be defined as “the general term used for the change required

to a company’s accounting, control measurement, and management processes to support

lean manufacturing and lean thinking” (Maskell 2004). In order for lean manufacturing

to succeed it has to be accompanied with a supporting LA system. Lean manufacturing

has been developed and applied for a few decades now; however, LA is a more recent

subject. Ahlstrom and Karlsson (1996) argued that the need for a change in the

accounting system was realized during the 1980s; however, there were no clear-cut

19

suggestions at that time. They explored the role of management accounting in the

changes occurring to the production system by introducing lean production. They

concluded that in order for the management accounting system to create an “impetus for

change” towards lean it had to shift the focus from a machine/operator level to the

whole production flow and from the operation level to the whole production system.

This “impetus of change” could not be created until “traditional performance measures

have reached a certain threshold” (Ahlstrom & Karlsson 1996).

A major step forward occurred with the introduction of the principles of lean

thinking by Womack and Jones (1996). These principles (value, value stream, flow, pull

and perfection) have been the drivers for introducing new methods for management

accounting. A series of articles were then published presenting more details about LA.

For example, Baggaley (2003a) explained how standard costing was not only unsuitable

for lean manufacturing but also harmful to lean principles. Therefore, standard costing

measurements of labour efficiency, machine utilization, departmental budget focus, etc.

had to be replaced with new lean measurements such as cycle time, first time through,

value stream focus, etc. Again, Baggaley (2003b) emphasized the importance of

organizing and costing by value stream arguing that some people within the

organization might not fit into a particular value stream (e.g. plant manager, IT, human

resources, etc.). Kroll (2004) agreed that standard cost accounting was not suitable for

lean operations and using alternative accounting concepts was necessary to solve some

problems. However, she argued that there was maybe a problem with accurately pricing

products when considering the value stream rather than the individual product. This

argument is true to some extent since ‘value stream costing’ calculates the average cost

of a family of products produced by a value stream not the cost of a particular product.

Finally, Maskell and Baggaley (2004) presented what they called a “proven path”

for lean accounting in their book “Practical lean accounting” supported by case studies

from the manufacturing industry. They explained in detail how lean manufacturing

alongside LA could transform the business. They explained step by step the path to a

lean enterprise focusing on the management accounting part.

As LA is a relatively recent subject, it has not been given the required amount of

research that makes it widely spread. Considering LA in this research is another step

towards a better understanding of this accounting system and to give the reader a better

idea of how LA could be implemented in practice. As mentioned earlier, a PCB

manufacturing facility is the example to which the three aspects of this research

20

(optimisation of production processes, cost estimation and accounting) will be applied.

This potentially helps the author make a comparison between ABC and LA if it is

deemed necessary.

2.5. Summary
A review of past research on PCB, ABC and LA has been considered in this

chapter. The review shows how the PCB production problems considered in this

research have been researched in detail and how the past researchers have tried solving

them individually or in pairs. Too many approaches and-techniques have been tried each

of which was claimed to perform better than its predecessors. This has limited the

number of choices still available for research in this area; however, there is still room

for manoeuvre. An attempt to solve these production problems simultaneously has not

yet been considered before. In addition and as mentioned in subsection 2.2.1,

metaheuristics have not yet been considered for solving the board type sequencing

problem. In order to cover this area, the PCB production problems considered in this

research will be solved simultaneously using two metaheuristics: Taboo Search and

Genetic Algorithms.

The main outcome of this review is that the implementation of ABC may lead to

better results when compared to the traditional costing system. However, since the

results of implementing ABC would vary depending on whether or not the costs are

proportional to the cost drivers, this means they would depend on the type of industry

ABC is applied to. Taking this into account and considering the fact that there is lack of

ABC implementation in the PCB industry, ABC will be considered in this research to

cover these two issues.

As for LA, the review has shown that there is a consensus between the researchers

considered in the review that the standard accounting system is no longer suitable for

companies implementing lean manufacturing; however, the debate about an alternative

is still ongoing. A good alternative would be an accounting system that is based on the

same principles as lean manufacturing. Therefore, LA will be studied in this research to

enrich the debate about the suitability of its implementation in manufacturing in general

and in PCB industry in particular.

21

CHAPTER THREE

3. RESEARCH METHODOLOGY

3.1. Introduction
The research methodology adopted in this research is presented in this chapter in

order to make the research easier to comprehend. The methodology is explained and

justified and, then, its implementation on the three aspects considered in this research

(optimisation of production processes, cost estimation and accounting) is explained in

detail. In addition, some essential background information with some illustrating

examples is discussed. This is mainly performed for the Taboo Search and Genetic

Algorithms search techniques and for the production process of PCBs.

3.2. The methodology
The word “methodology” is used by different researchers to have different

meanings. Lehaney & Vinten (1994) outline the different uses of the word

“methodology” as follows:

- “the ways in which hypotheses become theories - scientific methodology;

- the ways in which techniques are chosen to address a particular problem;

- the ways in which problems are chosen, which addresses the question of

sponsorship;

- methods or techniques;

- the modelling process, which include hard and soft systems approaches, and the

ways in which the relevant variables are chosen for a model, and how reality is

concomitantly simplified;

- the chronological planning of events - the research programme.”

This means, there are many types of methodologies (e.g. surveys, experimental,

questionnaires, case studies, mathematical, comparative, etc.) a researcher can use.

Which methodology to choose depends on the nature of the research undertaken and

what outcome is expected to be achieved. It is possible to use a combination of more

than one methodology if the nature of research undertaken necessitates that.

The research undertaken here deals with three different aspects, therefore, the use

of more than one methodology is required. Since in the first aspect considered in this

22

research (the optimisation of production processes), some of the production problems

associated with PCB manufacturing will be solved, the appropriate methodology to use

is the mathematical programming. Mathematical programming is used to formulate the

manufacturing problems considered into mathematical equations and since these

problems could be combinatorial optimisation problems, they can be solved using

metaheuristics. Once the problems have been solved, numerical example has to be used

to test the solutions provided by the metaheuristics; therefore, the solutions provided are

applied to a case study. This means, the methodology that will be followed, as far as the

optimisation of production processes is concerned, is a combination of mathematical

programming to formulate the production problems, metaheuristics to solve them and a

case study to test the solutions. It has to be noted that the mathematical part of this

methodology will be of greater importance and will play a bigger role than the case

study part.

The same discussion regarding the optimisation of production processes can be

applied to the other two aspects considered in this research. The cost estimation and

accounting aspects are of different nature compared to the optimisation of production

processes; still, a similar methodology can be used. Although there are no problems to

solve regarding the cost estimation and the accounting aspects, the use of mathematical

programming is still required to solve the equations that will be used in both aspects.

ABC and LA will be implemented in this research as examples of the cost estimation

and accounting aspects respectively and both use mathematical equations in their

implementation process. To test the performance of both ABC and LA, the

implementation procedures are applied to a case study. This means, for the cost

estimation and accounting aspects considered in this research, the methodology that will

be followed is a combination of the mathematical methodology and the case study

methodology. However, in contrast to the methodology mentioned above, the case study

part of this methodology will play a greater role compared to the mathematical part.

The case study methodology is a non-experimental method and it involves

collecting detailed data about the case under consideration. The data are mostly

descriptive and this provides the researchers with the ability to fully understand the case

but not necessarily explain it. Therefore, the conclusions drawn may not have a

satisfactory support and they may or may not be generalised since what applies to the

case study considered does not necessarily apply to other cases (Anonymous 1989). In

spite of this limitation, choosing the case study as part of the methodology considered in

23

this research, especially for the cost estimation and accounting aspects, can be justified

due to the fact that case studies are used when a detailed investigation is required

(Feagin et a l\99 \ cited in Tellis 1997), which is the case in this research. The nature of

the subjects considered in this research needs in-depth investigation in order to

understand the relationship between them, especially the problems considered in the

production process optimisation. In addition, the generalisation issue has been refuted

by researchers such as Yin (1994) and Stake (1995).

There are many applications for the case study, some of which has been identified

by Yin (1994):

1. Explaining complex causal links in real-life investigation.

2. Describing the real-life context in which the intervention has occurred.

3. Describing the intervention itself.

4. Exploring those situations in which the intervention being evaluated has no clear set

of outcomes.

In this research the application of the case study methodology belongs to the 3rd and 4th

cases since the optimisation of production processes, cost estimation and accounting

aspects of this research and how they will be applied to the case study will be explained

in this research. In addition, some of the subjects considered here (e.g. TS, GA, ABC

and LA) are still being developed and more modifications are still being applied to

them. The author believes that implementing a case study to these subjects will add to

the base of knowledge that already exists.

3.3. Implementation of the methodology on PCB production problems
In order to be able to implement the methodology chosen on the PCB production

problems they have to be explained first, which is already presented alongside the

literature review in Chapter 2. The mathematical formulation for these problems will

then be performed by deriving the equations required to calculate the total processing

time. Since the mathematical equations for the production problems cannot be solved

mathematically because this will take a long CPU time, an algorithm based on two

search techniques will be developed to solve the equations. The two search techniques

used in the algorithm are TS and GA metaheuristics. The reason of choosing these two

techniques is that TS has been used successfully to solve combinatorial problems in

general but not widely used to solve PCB related problems. In fact, just two cases, Su et

al (1998) and Wan & Ji (2001), have used TS for PCB related problems. In addition, TS

24

has never been used to simultaneously solve the three PCB related problems considered

in this research, which give the researcher the opportunity to test how TS performs in

this case. As for GA, it has been widely used in the literature to solve PCB related

problems (e.g. Dikos et al (1997), Khoo & Ng (1998), Khoo & Ong (1998), Deo et al

(2002), Jeevan et al (2002), Ho & Ji (2005), etc.) and it is used in this research for

comparison reasons only. Since metaheuristics do not guarantee to give the optimum

solution, therefore, the outcome of the proposed algorithms could provide optimum or

near optimum solution for the three problems (board type sequencing, feeder

assignment and component placement sequence).

Having solved the production problems using the proposed metaheuristics-based

algorithm, the implementation of the other part of the methodology (i.e. the case study)

can be initiated now. The first step in the case study methodology is the data collections.

It would have been better to adopt a clinical methodology by collecting the data through

direct contact with the company since it would have given the researcher a chance to

collect more data than it is usually available from other sources (Schein 1987).

However, this was not possible and hypothetical data will be used instead. The proposed

algorithm will then be applied to the PCB case study using the hypothetical data, and

the results will be analysed and comparisons will be made when different parameters

are used. Finally, the conclusions, recommendations and implications will be developed

based on the evidences found.

3.3.1. Taboo Search
In order to be able to explain the TS algorithm proposed, some background

information about this search technique should be presented first. Taboo Search, which

is a search technique first proposed by Glover (1989; 1990), is a metaheuristic used

mainly to solve combinatorial problems. What differentiates TS from other search

methods is its unique memory structure that guides the search to avoid entrapments in

local optima. In its basic version, TS procedure maintains a record or a taboo list of the

characteristics of the most recently found solutions. It starts with an initial feasible

solution generated randomly (or by using other techniques) and, then, the

neighbourhood of the initial solution is then determined. The neighbourhood of a

solution is the set of solutions that can be generated from this solution using what is

called a move as presented in Figure 3.1, which shows a graphical representation of the

neighbourhood solutions and moves. The move that leads to a better (or the best)

25

solution in the neighbourhood is performed and is then added to the taboo list. The

neighbourhood of the new solution is then generated and a new move is performed and

added to the taboo list and so on. A search move will not be performed as long as it is in

the taboo list unless it leads to a specific ‘good’ solution {aspiration criterion). An

example for a good solution may be a solution that is better than the best solution found

so far. This process is repeated until the terminating condition is satisfied.

Neighbour solutions

Randomised solutions

Local best solutions

© Global best solutions
 ► Randomisation
 ► Move

Figure 3.1. A representation of the neighbourhood solutions

TS procedure is mainly used to prevent entrapment in local optima. However, a

short-term memory structure {taboo list) does not guarantee that the principles of local

intensification, in a promising region, and global diversification, into new regions, are

considered. The local intensification is not guaranteed because the short-term memory

may prevent choosing a potentially good solution because it is in the taboo list.

Preventing potentially good solutions to be chosen means that the search is not

intensified in a particular area (i.e. good solutions in this area are not considered). This

usually happens when the taboo list is long. As for the global diversification, it is not

guaranteed because although the short-term memory may prevent small loops, it does

not guarantee preventing bigger loops (when the taboo list is short) because the size of

taboo list is limited. To overcome this weakness, intermediate and long-term memory

26

structures have been introduced. The intermediate memory is used to maintain a record

of some good solutions. These solutions, when encountered later in the search, are

forced to be the next ones to be chosen so that the search is focused on good region

(intensification). In contrast, the long-term memory is used to maintain a record of

solutions that have not been encountered for a quite long time. Using such solutions

guides the search to regions with fewer frequent visits with the aim to scout the areas of

the solution scope where potentially hidden good quality solutions might be found

(diversification).

The TS algorithm used in this research, which will be detailed in Chapter 4,

adopts three different methods to provide the initial solution. The first is a random

solution and the other two are problem-specific solutions and have better quality

compared to the random one. The rationale behind this is to start the search from a good

quality solution rather than a random one. This may reduce the search time and result in

a better final solution. The best solution, rather than a better solution than the current

one, amongst the neighbourhood solutions is chosen to be the next current solution. This

is performed to reduce the search time although this may or may not affect the quality of

the final solution. The algorithm also uses the three types of memory mentioned in the

previous paragraph, short term, intermediate and long term, to ensure that the

intensification and diversification attributes of TS are met. In addition, different taboo

list sizes are used in the algorithm in order to check the effect on the quality of the final

solution.

3.3.2. Genetic Algorithms
GA, which was first proposed by John Holland during the 1960s, is a search

technique based on the emulating of the evolutionary principles of natural selection and

survival of the fittest. The procedures of GA start with a population of chromosomes

(parents) that generates another population of chromosomes (children) using the process

of crossover and variation operators such as mutation and inversion. The fitness

function is used to evaluate the population and offspring chromosomes so that they can

be ranked accordingly. The fittest offspring chromosomes are chosen to become

members of the population chromosomes. The process is repeated until the terminating

criterion is satisfied. The crossover process ensures that some characters (genes) of the

parents move to the children. By choosing the best children to become parents again it

is ensured that good genes are passed to the next generations. The mutation/inversion

27

variation operators are used to introduce new, potentially good, genes to the process.

The following example, derived from Khoo and Ng (1998), clarifies how crossover and

mutation work.

Let us have the two following parents:

Parent 1: a b c d e f g h i j

Parent 2: d i j a h b g c e f

To generate two children from these parents using crossover, the parents are cut

randomly into three parts as follows:

Parent a b c \ d e f \ g h i j

Parent 2: d i j | a h b | g c e f

The first child generated by the process of crossover should maintain one of the parts of

Parent 1. Let’s assume it is the middle part, this means Child 1 should look like:

Child 1: ? ? ? d e f ? ? ? ?

One possibility for completing Child 1 is to start filling the empty spaces in by using

genes from Parent 2 as they appear from left to right excluding already used genes (d, e

and/in this case). Child 1 should then look like:

Child 1: i j a d e f h b g c

Following the same procedures, Child 2 can be derived and it should look like:

Child 2: c d e ah b f g i j

One possible mutation could be to randomly choose two genes in the preserved

part of a child and remove the first gene from its position, then shift all the genes

between the two chosen genes (including the second chosen gene) one position to the

left, and finally put the first chosen gene in the empty position created by the shift (the

original position of the second chosen gene). By applying this procedure to Child 2 a

mutated Child 2 is created as follows:

The two randomly chosen genes are a and b, the mutated Child 2 should then look like:

Child 2: c d e h b a f g i j

Another example for mutation could be to exchange the two randomly chosen genes.

The mutated Child 2 in such case should look like this:

28

Child 2: c d e b h a f g i j

In order to apply GA to a problem, the solutions must be coded into strings. These

strings represent the population in GA. The fitness functipn is a function that evaluates

the solutions of the problem so that the best can be determined. The termination

criterion is satisfied when a particular good solution has been found or until a specified

number of iterations have been performed. For example, GA is used to find the

optimum/near optimum solution to the component placement sequencing problem in

PCB manufacturing. The fitness function in this case will be the function that calculates

the time required to place the components on the board (or the distance travelled by the

machine head). The termination condition could be to stop the search when the number

of iterations reaches 200.

The GA algorithm used in this research is similar to what has been described in

this subsection. The initial population is created randomly and the children are created

using the crossover and mutation and/or inversion described in the example above. The

best solution is updated every generation, if applicable, and the algorithm stops when

the predefined number of generation is reached. The detailed description of the

algorithm will be presented in Chapter 4.

3.4. Implementation of the methodology on ABC and LA
Implementing the mathematical part of the methodology adopted in this research

on ABC involves the following steps:

- Determining the cost of indirect resources and their drivers:

Once the indirect resources and their drivers have been determined and the total

cost of each resource is calculated, the resource rate is calculated according to the

following equation:

Resource rate=Total cost {per year or per product life)/ indirect resource driver spent

- Identifying the cost centres and assigning the resources to them:

After the cost centres and their resources have been identified and the total cost of

each cost centre is calculated using the resource rate calculated in the previous step, the

cost centre rate is calculated according to the following equation:

Cost centre rate = total cost o f cost centre/cost centre driver spent

- Identifying activities, calculating their costs and the rates of their cost drivers:

29

The activities are identified in this step and the total cost of each activity is

identified using the cost centre rate calculated in the previous step, then, the activity

cost driver rate is calculated according to this equation:

Activity cost driver rate = cost o f activity!activity cost driver spent

- Calculating the costs of products:

The cost of each product can now be calculated, using the activity cost driver rate

calculated in the previous step, for each activity involved in the manufacturing of that

product.

Similar process can be applied to implement the mathematical part of the

methodology on LA. In this case, some of the steps involved are the following:

- Performance measurements,

- Calculating the financial benefits of applying lean manufacturing,

- Eliminating wasteful financial transactions,

- Value stream costing,

- Features and characteristics costing,

- Target costing, etc.

Each of these steps involves a great deal of calculations using many mathematical

equations, which will be detailed in Chapter 5.

Having implemented the mathematical part of the methodology on ABC and LA,

the case study part of the methodology can now be implemented. The implementation

steps for both ABC and LA can be implemented again using the same PCB case study

details used for the optimisation of production processes. Understanding the

manufacturing process of PCB is a perquisite to implement the case study part of the

methodology adopted; therefore, the production procedures and the manufacturing

process will be explained in the next two subsections. The detailed implementation of

the case study on ABC and LA will be detailed in Chapter 5.

3.4.1. Production procedures

In general, the assembly process of PCBs consists of the following steps:

- Once the order is accepted, it is input into a Master Production Scheduling (MPS),

which provides weekly product requirements over 6 to 12 months.

- Depending on the MPS results, the Material Requirements Planning (MRP) is

calculated. The volume and timing of each order (order release and due-date) are

determined as a result of the MRP.

30

- Components are prepared (grouped into kits, marked for future tracking, etc.).

- The components are inserted onto the board according to specific sequencing,

assignment to the available machines and assignment of corresponding feeders.

- The final step includes inspection, soldering the components and performing the

final board testing.

Amongst the previous steps, insertion is considered the most costly and time-

consuming step. Hence, the efficiency of the assembly line is largely determined by the

efficiency of this step. There are two basic factors that affect the insertion step: set-up

time and placement time. Set-up time is the time needed to prepare the machine to be

ready for operation, which basically involves assigning the component types to feeders

and programming the SMT machine. The set-up time is affected by the board type

sequence, which is the subject of one of the PCB production problems considered in this

research, as explained in subsection 2.2.1. The placement time is the time needed by the

machine to place the components on the board. There are two optimisation problems

that affect the placement time. These two problems are already explained in subsections

2.2.2 and 2.2.3 and they are the assignment of component types to feeders and the

sequence of placing the components on the board by the machine head. As mentioned

earlier, these three problems represent the optimisation of production processes part of

the problem considered in this research.

3.4.2. General PCB manufacturing process

The general manufacturing process of PCB is outlined in Figure 3.2. In the first

step the components and boards are prepared for assembly by cleaning and kitting them.

In the second step, the assembly is performed using pick-and-place machine for

standard components and robotic machine or manual assembly for odd-shaped

components. One of two different soldering methods is then performed in the third step,

either wave soldering (laminar or turbulent) or reflow soldering, which can be applied

using one of these methods: thermal conduction, infra red, vapour, soldering iron, laser

and hot gas. In the forth step another assembly process is performed using either robotic

machine or manual assembly for heat-sensitive components. The board is then cleaned

and tested using in-circuit testing. Any required rework or repair is performed in the

final step.

There are two types of components, surface-mount and through-hole. In general, a

PCB may contain both types. In this case the soldering and assembling processes can be

31

achieved through one of two main technologies: Adhesive attach-wave soldering and

reflow soldering, which are illustrated in Figure 3.3 “a” and “b” (Coombs 1988).

Secondary assembling: Robotic/Manual {Heat sensitive components)

Cleaning and testing: In-circuit testing

Rework: Thermal conduction, Convection

Prepare components and boards: Cleaning, Kitting, etc.

Main assembling: Pick and place {Standard components (SMC)),
Robotic/Manual {Odd-shaped components)

Soldering: Wave (Laminar, turbulent), Reflow {Thermal conduction,
IR, vapour, soldering iron, laser and hot gas)

Figure 3.2. General PCB manufacturing process

Dry paste

Wave solder

Place surface-mount components

Insert leaded components

Apply solder paste

Place surface-mount components

Wave solder

Invert the board and apply the adhesive

Cure adhesive

Insert leaded components

(a) (b)
Figure 3.3. Flowcharts of PCB production process; a: adhesive attach-wave, b: reflow

32

- Adhesive attach-wave: According to this technique the leaded components (through-

hole) are inserted on top of the board, then the board is inverted and the adhesive is

applied (using syringe dispensing, pin transfer or screen printing). The surface-

mount components (SMCs) are then placed and the adhesive is cured (using heat,

UV or IR). The board is then wave-soldered.

- Reflow: The solder paste is applied onto the board and used to hold the SMCs. The

paste is then dried, to remove the solvent, and reflowed (using thermal conduction,

IR or vapour phase). In the next step, the board is cleaned and the through-hole

components are inserted. In the final step, the board is wave-soldered.

3.5. Summary
The research methodology adopted in this research has been discussed in this

chapter. It has been explained that since the three aspects considered in this research

relies on mathematical calculations and equations to solve some of the production

problems and implement ABC and LA, the use of the mathematical programming is

more appropriate. The need to use numerical example to test the solutions provided by

the metaheuristics and to test the performance of ABC and LA a case study has to be

used. As a result, a two-part methodology based on the mathematical and case study

methodologies has been chosen to be adopted in this research. It has been discussed

how the mathematical part of the methodology has a greater relevance when the

optimisation of the production processes is considered and how the case study part is

more relevant when the cost estimation and the accounting aspects are considered.

The case study methodology has been outlined and the justification for choosing it

has been stated. Some required background information about TS,, GA and PCB

production process has also been presented in this chapter due to the fact that this

background information is required to understand the implementation of the

methodology on the subjects under consideration. The implementation of the

methodology chosen in this research on the three aspects considered has been outlined

in this chapter and the detailed implementation will be presented in Chapter 4 and

Chapter 5.

33

CHAPTER FOUR

4. PROPOSED FRAMEWORK AND PCB ALGORITHMS

4.1. Introduction
In Chapter 2, some detailed literature review and background information about

the three PCB production problems considered in this research are presented. This

chapter explains how these three problems are mathematically formulated and how the

proposed algorithm is used to solve them. In addition, the two proposed metaheuristic

algorithms (TS and GA) are developed and explained in detail. As mentioned in

Chapter 3, the proposed algorithm is tested using a case study. The results from the case

study are discussed and analysed, and some recommendations are made.

4.2. Mathematical formulation
In general, the processing time required to assemble the printed circuit boards is

the sum of two main parts: set-up time and placement time. Set-up time is machine

related and it depends on many factors. The only factor that is of interest in this research

is the number of feeders that are going to be replenished. Assuming that the set-up time

is proportional to the number of feeders replenished (Sadiq et al 1993), the set-up time

equation can be written as:

ST = f (f n) = afn+b (4.1)

where

ST is the set-up time,

f„ is the number of replenished feeders,

a is a constant and it is experimentally calculated, and

b is the time required to program the machine for a particular board type k and is

considered constant for all board types in this research.

The placement time is more complicated and in addition to being dependent on the

machine type, it is also dependent on the feeder assignment and the placement

sequence. Therefore, to clarify this issue, an example of component placement is

presented here. Table 4.1 contains the definition of some of the variables used for the

mathematical formulation.

34

Table 4.1. Definition of variables for the mathematical formulation

Symbol Value Description
k 1 ,2 , . . . ,* Number of board types
bk 1, 2, ..., Bk Number of boards of type k
f 1,2, . . . ,F Number of feeders
i 1 ,2 , . . . , / Number of component types

Pi 1, 2, ..., Pi Number of components of type i
Ck 1, 2, ..., Ck Number of components on board k

There are four types of components: 1, 2, 3 and 4 placed in 7 feeders. Assuming

that the feeder assignment and the placement sequence are given as presented in Figure

4.1:

Feeder assignment: 0,2,1,0,4,0,3 (0 represents an empty feeder)

Placement sequence: 2,4,3,1

Y

Board

> X

Home location

Figure 4.1. Layout of the board and feeders

The placement time (or pick and place time) is the sum of the following times, which

can be expressed according to their successive occurrences as:

- Travel Time of the machine head from the home location to the feeder that contain

the first component to be placed (feeder 2 in the example),

- Pick Time,

35

- Travel Time of the machine head from the first feeder to the location on which the

first component is to be placed (location 2 in the example),

- Insertion Time,

- Travel Time from the first location to the feeder which contains the second

component to be placed (feeder 5 in the example),

- Pick Time,

- Travel Time from the feeder which contains the last component to be placed (feeder

3 in the example) to the location on which the last component is to be placed

(location 1 in the example),

- Insertion Time, and

- Travel Time from the last location to the home location of the machine head.

It should be noted that this description is only applicable to the case where the machine

head has sequential movements (both the board and the feeder are stationary). When

other cases are considered, new considerations have to be taken into account. The reader

can refer to Egbelu et al (1996) for details about these cases as they are not considered

in this research.

The objective function is to minimise the placement time. This means, the

optimum placement sequence n, amongst a set of possible permutations II, has to be

found for a particular feeder assignment. The number of permutations in the set II is:

n = c y

where

Ck is the number of components of board type k.

This optimum placement sequence provides the shortest placement time. In the example

provided, n = 2,4,3,1 is one possible placement sequence of 24 (4! = 24) sequences

comprising the set II. The placement time can now be represented by an equation as

follows:

Pick and Place Time = Travel Time(Lh,F:) + Pick Time + Travel Time(F1,Ll) +
Insertion Time + Travel Time(Ll,F2) + Pick Time + Travel Time(F2,L2) + Insertion
Time +... + Travel Time(Fc ,ZC) + Insertion Time + Travel Time{Lc, Lh)

36

where

Lh is home location of the machine head,

Lj is insertion location 1 (location of component 2 in the example),

L2 is insertion location 2 (location of component 4 in the example),

Lc is insertion location C (location of component 1 in the example),

Fj is feeder contains the 1st component to be placed (feeder No 2 in the example),

F2 is feeder contains the 2nd component to be placed (feeder No 5 in the example),

and

Fc is feeder contains the C*h component (last components) to be placed (feeder No

3 in the example).

Let:

PPT be Pick and Place Time,

TT be Travel Time,

PT be Pick Time, and

IT be Insertion Time,

then, the previous equation can be rewritten as:

PPT = TTM) +PT + TTIFiA) + IT + TT(LM + PT + TT(FM + IT...

+ TTiF M + IT + TTiLcM

or:

PPT=TT{hA)+ f 1TT{ F M + § 7 ^ , ■+27̂ , . + C(PT+IT) (4.2)
c=0 c=l

The pick and place time required for any sequential pair of components c, c+1 from

the insertion of c to the insertion of c+1 can then be calculated as:

P P T ^ = T T (̂ * P T + T T (FmJm)+ IT , for c = 0 ,l,2 ,...,C -l (4.3)

where

h ~Lh

Now, the objective function can be written as:

Minimise^PPT^ c+1) (4.4)
c=0

37

where

P PT^ c+]) is subject to equation (4.3)

subject to

7t e n
PT> 0

IT> 0

T T (Lc,Fc+l) > 0 for c = 0,1,2,..., C -1

TT(f t >>>0 forc = 0,1,2,...,C-1
v c+i* c+i;

TTlv , ̂= constant Vft e l l for c = 0,1,2,...,C - l
V c + l’^c+ lj

Pick Time (PT) and Insertion Time (IT) depend on the type of the pick-and-place

machine and it is assumed that they are not affected by any other constraints of interest

in this research (e.g. the environment around the machine). However, travel times from

feeders to locations (TT^F ̂L j) , which are represented by plain arrows (-») in Figure

4.1, depend on the feeder assignment but not on the placement sequence n, whereas

travel times from locations to feeders (TT(L F+i)), which are represented by dashed

arrows (-->) in Figure 4.1, are affected by both feeder assignment and the placement

sequence n. Taking this into consideration and since equation (4.4) is for a particular

feeder assignment, the previous formulation has to be amended in order to take into

account the effects of different feeder assignment. To solve the objective function with

both the placement sequence and the feeder assignment taken into consideration, an

optimum feeder assignment a (in addition to the optimum placement sequence n),

amongst a set of possible assignments D has to be found so that the placement time is

minimised. The number of possible assignments in the set E is :

E = F\/E\

where

F is the total number of feeders, and

E is the number of empty feeders.

In the example above the feeder assignment a = 0,2,1,0,4,0,3 is one possible feeder

assignment of an 840 (7!/3! = 840) assignments comprising the set S.

38

Equation (4.4) can now be rewritten as:

Minimise^PPT„ (cctl) (4.5)
c=0

where

is subject to equation (4.3)

subject to

n e n
a g E

PT> 0

IT> 0

TT,r F ,> 0 for c = 0,1,2,...,C-1
»r c+l)

TTlc , ,> 0 forc = 0 ,l,2 ,...,C -l
V C+1 * C+1 /

7T/r , x = constant V ^ g I I and a = constant for c = 0,1,2,...,C -1
Vc +i » c + i ;

All the above discussion is for one particular board type k. However, in this

research a mixed-model case is considered and there are more than one board type. As

mentioned in subsection 2.2.1, different sequences of board types require different set

up times as represented in equation (4.1). Therefore, to have a minimised total

processing time (TPT) and in addition to what is considered in equation (4.5), an

optimum board type sequence <p (in addition to the optimum placement sequence n and

the optimal feeder assignment a) amongst a set of a possible sequences $ has to be

found so that the total processing time is minimised. The number of possible sequences

in the set $ is:

O = K\

where

K is the number of board types.

Taking this into consideration, the final objective function can be written as:

K

Minimise^ T P T ^ (4.6)
* = i

39

where

TPT = PPT + ST,

PPT is the Pick and Place Time and is subject to equation (4.5), and

ST is the Set-up Time and is subject to equation (4.1).

subject to

(p e $

PPT> 0

ST> 0

PPT = constant \/q> e 0,cr = constant and n — constant

Travel times can be calculated by dividing the distances between the feeders and

the locations by the speed of the machine head. The distances can be calculated using

one of the following equations:

Xf Xi the X co-ordinates of feeder/ and location / respectively, and

Yf, Yi the Y co-ordinates of feeder/ and location I respectively.

Equation (4.7.a) is used when the movement of the machine head (gripper) is the

sum of two different movements performed successively: the movement of the arm of

the machine head on one hand and the movement of the gripper of the machine head on

the other hand (Manhattan metric). This is represented in Figure 4.2 by the movement

of the machine head from point A to point B first and then from point B to point C. This

situation happens when the machine head does not move diagonally. Equation (4.7.b) is

used when both movements are performed concurrently (Chebychev metric). This is

represented in Figure 4.2 by the movement of the machine head from point B to point C

and at the same time the gripper moves from point A to point B. This situation happens

when the machine head and the gripper move independently. Equation (4.7.c) is used

Dl f =\Xf - X , \ + \Yf -Y , \

D,f = m ^ (\ X f -X, \ , \Yf -Y,\)

(4.7.a)

(4.7.b)

(4.7.c)

where

Dif the distance between location / and feeder f

40

when the machine head (gripper) moves in a direct straight line in one movement

(Euclidean metric).

X

B

A

Y

Figure 4.2. Calculating the travel times

4.3. The proposed framework:
The proposed framework for this research is presented in Figure 4.3. As

mentioned in subsection 3.4.1, the multi-model manufacturing assembly process of

PCBs starts with the order acceptance. Then, it is input into a Master Production

Scheduling, which provides the weekly product requirements over 6 to 12 months. The

next step includes calculating the Material Requirements Planning (MRP), where the

volume and timing of the order (order release and due-date) are determined as a result

of the MRP. The process planning system provides the required processes plans and,

then, the balancing and sequencing are achieved using information from the

optimisation module. The optimisation module is responsible for providing the optimum

board type sequence, feeder assignment and component sequencing. Finally, ABC

and/or LA are used to evaluate and analyse the cost related issues. The expected results

from this step are operational and financial as shown in Figure 4.3. The first part of the

proposed framework (Order acceptance, Master Production Scheduling and Material

Requirements Planning) is not discussed in this research. The focus will be on the rest

of the framework.

41

Customer
Order ^demand

Acceptance \j

Master Production
Scheduling

(weekly product requirements)

MRP
Work Orders

(Part List

Order
release &
due-date
module

Process Planning
System

□
Balancing &
Sequencing

module

■ ^
Optimisation

module

Feeder assignment
and components

sequencing

Activity-Based Costing
and/or

Lean Accounting

A i

Ik A

L

Evaluation of Objectives

Economic analysis

Cost related inputs
Equipment costs
Operating costs
Material costs
Handling costs

etc.

1 <>
1

Line 1
Line 2

Linen /
/

Excel Files
throughput
utilisation
cost associated
Break down of the cost
material cost
depreciation cost
utilisation cost
estimated revenue
no. of components
NPV
Unit production cost
Project completion cost

Figure 4.3. Proposed framework of the research

42

4.4. The proposed algorithm
The proposed algorithm that is used to solve the three problems under

consideration is illustrated in Figure 4.4 and outlined as follows:

(S ta r t)

Step b: Find the best board type sequence using
TS or GA:

Y e s '

5. Any improvement?

No

No

Output time, best placement
sequence and best feeder assignment

Step c: Output time, best board type
sequence, best placement sequence

and best feeder assignment

(End)

4- Yes-

3. Find the best feeder assignment for board type k using
TS or GA, (QAP)

4. Find the best component placement sequence
for board type k using TS or GA, (TSP)

2. Find the best component placement sequence for board
type k using TS or GA, (TSP)

Step a: Generate an initial board type sequence randomly

1. Generate an initial feeder assignment for board type k:
randomly, using centroid rule or using proportion rule

Figure 4.4. Flowchart for the solution algorithm

43

Step a\ start with a randomly-generated board type sequence.

Step b: use the Taboo Search or Genetic Algorithms to find the optimum or near

optimum board type sequence as follows:

1. Generate an initial feeder assignment for the first board type in the sequence either

randomly, using the centroid rule or using the proportion rule:

a. The random assignment assigns the component types to feeders by randomly

choosing a component type and assigns it to the first feeder and then another

component type is randomly chosen and assigned it to the second feeder and

so on.

b. As for the centroid rule method, it requires the centroid location of the

components that are of the same type to be calculated as shown in Figure

4.5. For example, in the figure, there are two component types. The first type

has four locations and is represented by a circle (o) and the second has three

locations and is represented by a diamond (0). The centroid locations for

type o and type 0 are calculated. They are represented in the figure by a bold

circle (o) and a bold diamond (0) respectively. Now, starting with the type of

the most frequency (type o in the example), the component types are

assigned to the empty feeders nearest to the centroid locations of the

component types. In the example, type o is assigned to feeder number 3 first

and then type 0 is assigned to feeder number 8. In the case where the nearest

feeder is occupied, the next nearest is chosen. In the case where there are two

empty feeders located at the same distance from the centroid location (one to

the left and the other to the right), which one to choose depends on the

centroid location of the next type. If the centroid location of the next type is

located to the left of the centroid location of the current type then the current

type is assigned to the right feeder and vice versa. By doing that it is ensured

that the component types are assigned to the feeders so that the total distance

between the components of the same type and the feeder that hold this type

is minimised.

c. The proportion rule, as described by Egbelu et al (1996), is similar to the

centroid rule in calculating the centroid locations for the components of the

same types. However, the assignment of component types to the feeders is

44

different. Here, starting with the component type of highest frequency, the

distance Dt is calculated as follows:

Y

Board

CentroidCentroidi

> x

Feeders
0o

Figure 4.5. Representation of centroid rule

D .= B .xL /B

where

Di is the distance between the beginning of the feeders to the feeder to

which the component type i is assigned,

Bi is the X-co-ordinate of the centroid location of the component type

U
L is the total length of the feeders, and

B is the length of the board.

After Di is calculated, the component type i is assigned to' the empty feeder

nearest to the end of Dt as shown in Figure 4.6. In the example above, type o is

assigned to feeder number 6 first and then type 0 is assigned to feeder number 13.

As discussed regarding the centroid rule, in the case where the nearest feeder is

occupied, the next nearest feeder is chosen. In the case where there are two empty

feeders located at the same distance from the end of A , the same method applied

to the centroid rule is applied here.

45

Y

Board

Centroid

'Centroid

> x
B-

A ^ Feeders
o 0

^ --------- ---- L--- --------->-

Figure 4.6. Representation of proportion rule

2. The optimum or near optimum components placement sequence for the first board

type is determined using TS or GA. As mentioned earlier, this problem is an

instance of the travelling salesman problem (TSP).

3. The optimum or near optimum placement sequence from step 2 is used as an input

to the feeder assignment problem, which is also solved for the first board type using

TS or GA. This problem is an instance of quadratic assignment problem (QAP).

4. A new component placement sequence is generated in this step using TS or GA to

take into consideration the new feeder assignment found in step 3.

5. Steps 3 and 4 are repeated successively as long as the terminating condition (when

the placement time in step 4 is equal to the placement time in step 3) has not been

satisfied.

6. If the number of processed board types k is still smaller than the total number of

board types K, steps 1 to 5 are repeated, otherwise the assembly time, optimum or

near optimum placement sequence and optimum or near optimum feeder assignment

are output.

Step c: the final results are generated including information about assembly time, board

type sequence, feeder assignment and placement sequence.

4.5. Taboo Search and Genetic Algorithms
Some background information has been presented in Chapter 3 about TS and GA.

However, in this chapter, more detailed and more problem-related information about TS

and GA is presented.

46

4.5.1. The size of TS neighbourhood
As mentioned earlier in section 4.2, the number of possible permutations for the

placement sequence problem is II = C!, for the feeder assignment problem is

2, = F \/E \ and for the board type sequence is 0 = ^T!, which means that the total

number of possible permutations is IIx E x O . However, a much smaller number of

permutations will be explored by TS metaheuristic (which is the basic idea of all

metaheuristics). This number is equal to the total number of the neighbours of the

permutations generated by TS moves. A neighbour of a permutation is another

permutation generated by performing a move on the original permutation. The two

types of moves considered in this research for the board type sequence, feeder

assignment and placement sequence problems are:

- Swap move: the two swapped items occupy the positions of each other. For example,

the series 1,2, 3, 4, 5 becomes 1,4, 3, 2, 5 by swapping the pair (2, 4).

- Insertion move: the inserted item occupies the position where it is inserted and the

items situated between the old and the new positions of the inserted item are shifted

one position to the left if the insertion position is on the right of the old position, and

to the right otherwise. For example, the series 1, 2, 3, 4, 5 becomes 1, 3, 4, 2, 5 by

inserting 2 in the 4th position.

The size of the neighbourhood for the swap move (Saad & Lassila 2002) and for the

insertion move (derived experimentally) can be calculated using the equations in Table

4.2.

Table 4.2. The size of neighbourhood for the swap and the insertion moves

Move type
Swap Insertion

Siz
e

of

ne
ig

hb
ou

rh
oo

d Board type &
placement
sequence

C (C -1)
2

(C - l)2

Feeder
assignment

F { F - 1) - l)
2 £ 2

(F - l)2 - f j X „ - l ^ F - l)
n=\

C is the number o f components or board types
F is the number o f feeders

47

Regarding the equations for the feeder assignment, N (N < F) is the number of

component types that are going to be assigned to more than one feeder (Xn feeders)

each, although this case is not considered in this research but the equation is used to

take into consideration the empty feeders which are considered as feeders with dummy

components of type 0 assigned to them. The equation which calculates the size of

neighbourhood for the feeder assignment when using the insertion move can be applied

only under certain conditions. It is applicable when the component types which will be

assigned to more than one feeder each are assigned to adjacent feeders only, e.g. 2, 3, 4,

4, 4 ,1 ,1 ,1 , 5, 0, 0, 0, 6, where 0 represents an empty feeder.

Figure 4.7 illustrates the size of the neighbourhood when using both the swap and

the insertion methods for the board type sequence and placement sequence problems.

The X axis represents the number of the board types K or the number of component

locations C on the board, whereas the Y axis represents the number of possible

neighbours associated with K or C. Figure 4.7 below can also represent both the swap

and the insertion methods for the feeder assignment problem but under the condition

that the number of feeders is equal to the number of component types. In this case the X

axis represents the number of feeders F (or the number of component types I).

Insertion - - - -Swap

10000

8000

g 6000
4342bO
‘C 4000

2000

400 20 60 10080

Board types/Component locations

Figure 4.7. Size of neighbourhood for insertion and swap moves

48

4.5.2. Development ofTS algorithm
The TS algorithm used in this research was used previously by Saad and Lassila

(2002) where it proved to be successful. This algorithm is modified where necessary to

reflect the addition of the insertion move. The algorithm is explained below and its

flowchart is shown in Figure 4.8.

1. The algorithm starts with an initial solution (provided randomly or by a previous

step in the solution algorithm (section 4.3)).

2. The neighbourhood for that solution is created using the swap or insertion method.

3. Determine the best neighbour in the neighbourhood (the neighbour that provides the

shortest processing time) which is selected as the next solution. The move that led to

this solution is compared with the taboo list. If it is found and does not lead to a new

best solution (aspiration criterion), the second best is selected, which in turn will

undergo the same treatment until a successful move is chosen.

4. When a move is chosen, the solution associated with it is checked if it is after a

local best (that is if the previous move was a local best). If it is, the move is

remembered to be prevented from being chosen later when a restart from this

particular local best is performed.

5. The solution is checked if it is a new local best. If yes, the local best is updated, the

non-improvement-moves counter is set to zero and the restarting is allowed from this

point. If not, the non-improvement-moves counter is incremented.

6. The solution is compared to the best solution found so far. The best solution is

updated accordingly.

7. Check if the non-improvement-moves counter reaches the maximum limit.

- If yes, the restarting counter is checked to see whether restarting is still

allowed.

a. If yes, the local best is used as a restart point and the move that left this

point last time is added to the taboo list in order not to follow the same

path.

b. Otherwise, a random solution is used as a restart.

- Otherwise, make the move and insert it into the taboo list

8. If the predefined maximum number of moves is reached the search stops, otherwise,

it cycles back to the second step.

49

(Start)
V

Just left a local best?

No

Y e s-*

No

No
Is this a new best? •Yes— >

No

Yes

■Yes-

Moved enough?

Is this a new local best?

Is restarting still allowed?

Too many moves w/o
improvement?

Update the best move

Remember this move

Make move
Insert move into taboo list

Increase non-improvement moves

■N o-* Restart from a random point

Create neighbourhood for current
permutation

Find the best solution in
neighbourhood that is not taboo

Initial permutation: obtained
from a previous step or randomly

Restart from a local best
Taboo the move that left that point last time

Update the local best
Non-improvement moves = 0

Allow restarting from here

Yes

C m D
Figure 4.8. Flowchart of Taboo Search algorithm

50

Since the taboo list has a limited length, it will not be able to prevent loops that

have a number of moves larger than the limited length of the taboo list. Therefore, the

number of non-improvement moves is stored and used as a criterion to restart the search

from the local best solution (intensification) or from a random solution (diversification).

The criterion that determines whether to restart from the local best or from a random

point is the number of restarts performed from that local best. When this number has

exceeded a previously specified number of restarts, the search is restarted from a

random point; otherwise, it is restarted from the local best. When the search is restarted

from a local best, the move that was performed previously just after this local best has

to be prevented from being performed again by adding it to the taboo list. This is

performed in order not to follow the same path followed before and, hence, avoiding

cycling. Therefore, the first performed move after each local best is stored in order to be

added to the taboo list whenever a restart is performed from this local best.

4.5.3. Genetic Algorithms
The GA algorithm used in this research is explained below and its flowchart is

represented in Figure 4.9.

1. Initialisation:

- Create initial population of chromosomes (solutions).

- Calculate time (the fitness function) for the chromosomes using the objective

function.

- Best solution = the best chromosome in the population.

2. Create children using crossover and mutation and/or inversion.

3. Calculate time (the fitness function) for the children using the objective function.

4. Compare to global best and update as appropriate.

5. Check termination criterion (number of generations) and go to step 2 if not fulfilled.

6. Stop when all generations have been created and output the best solution.

The creation of initial population of chromosomes is achieved randomly or obtained

from a previous step in the solution algorithm (section 4.3). The crossover and mutation

used here for creating children are the same as explained in subsection 3.3.2, whereas

the inversion is performed by rearranging the preserved genes in the child as explained

in the following example.

51

Is this a new best?

N o

Created enough
generations?

Update the
best solution

Create children using crossover
and m utation and/or inversion

Create initial population o f
chromosomes

Find the best chromosome in the
________new population________

Yes
----------------------- * -------------------------------------- 7Return the best solution /
 + ---------------------

(End)

Figure 4.9. Flowchart of Genetic Algorithms

Let’s have the following two parents:

Parent 1: a b c \d e f \ g h i j

Parent 2: d i j \ a h b \ g c e f

The two children created from them (see subsection 3.3.2) are:

Child 1: i j a \ d e f \ h b g c

Child 2: c d e \ a h b \ f g i j

Performing an inversion on Child 1 results in the following:

Child 1: i j a \ f e d \ h b g c

The reason behind performing mutation or inversion is to diversify the population and

create more alternative, and potentially better, solutions.

52

4.6. Case study
In the previous sections of this chapter, the proposed solution algorithm, TS

algorithm and GA algorithm are outlined. The next step is to validate these algorithms

by applying them to a case study. The case study allows for the algorithms to be tested

using different values for the parameters of TS and GA algorithms. This eventually

allows for choosing the best values, which can be used when the proposed algorithm is

used in a real-life situation. The best values for parameters are chosen depending on the

results (total processing time, board type sequence, feeder assignment and component

placing sequence) generated by the solution algorithm. The total processing times

generated by the algorithm using different values of parameters are compared to each

other and the values of parameters that correspond to the shortest assembly time are

considered to be the best values. Since it has not.been possible to acquire real-life data

during the period of this research, hypothetical data are used. The rest of this chapter

explains in detail the hypothetical case study used, including data, parameters, tests

performed and the results generated.

4.6.1. Case details
A pick-and-place machine is used to assemble eight types of printed circuit

boards: A, B, C, D, E, F, G and H. Each board type has a specific number of

components (some components are of the same type) to be placed on it. The

components of each board type are assigned to feeders located on the machine. Each

feeder can hold one component type only and each component type is assigned to one

feeder only. Once the first board to be assembled is placed on the machine table, the

machine head moves from its home location to the feeder which contains the first

component to be placed and picks it up. Then the head moves to the location on the

board where the component is to be placed and places it. This process is repeated for

each component following a predefined sequence until the board is fully assembled.

This process is performed for each board and for each board type according to a

predefined sequence. Before each board type is processed on the machine the machine

has to be set up for this particular board type. The minimum set-up strategy (only

necessary replenishment of components is performed on the feeders) is used here. The

head of the pick and place machine moves sequentially and the Euclidean metric is

applied. Both the board table and feeders are stationary. Figure 4.10 illustrates a simple

representation of the positions of the board and feeders on the machine. In this figure

53

the board has four components: 1, 2, 3 and 4, the feeder assignment is: 4, 0, 2, 0, 0,1, 0,

0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0 and the component placement sequence is: 2, 4, 3 and 1. The

movement of the machine head during the assembly process starts from the home

location and follows the arrows from 1 to 9 back to the home location.

Y

Board
L ocations 3

► X

H om e
location

Feeders

Figure 4.10. A representation of the board and feeders

The machine in this case study has the specifications presented in Table 4.3. The

specifications of the boards in terms of the number of component types and the number

of component locations on the board are presented in Table 4.4, whereas Table 4.5

contains the specifications of TS and GA algorithms. The number of component types

and the X- and Y-coordinates of the locations of each board type can be found in

Appendix I. In Table 4.5, the ‘maximum number of moves without improvements’ is

used as a condition to restart the search from a local best (if the maximum ‘number of

restarts’ has not been reached yet) or from a random point (if the maximum ‘number of

restarts’ has been reached).

54

Table 4.3. Specifications of the machine

Discretion Value
Pick time 2 seconds
Place time 2 seconds
Average head speed 500 mm/sec
Number of feeders 24
Length of feeder 20 mm
Set-up time (per feeder) 10 sec
X-coordinate of first feeder X = +200 mm
Y-coordinate of first feeder Y = -500 mm
X-coordinate of machine head Xh= +200 mm
Y-coordinate of machine head Yh= -200 mm

Table 4.4. Specifications of board types

Board Type A B C D E F G H
No. of Component Types 22 18 14 13 10 9 7 5
No. of Locations 45 37 23 22 17 15 20 12

Table 4.5. Specifications of TS and GA algorithms

TS GA

Board
sequence

Feeder
assign. &

place, seq.

Board
sequence

Feeder
assign. &
place, seq.

No. of moves Up to 40 Up to 100 No. of
generations Up to 20 Up to 160

Taboo-list
size 4 -6 4 -6 Population

size Up to 96 Up to 160

No. of restarts 3 3 Mutation Up to 50%. Up to 100%

Max. no. of
moves w/o

improvements
3 3 Inversion Up to 40% Up to 40%

4.6.2. Program code

The solution algorithm is developed into a Windows-based program written in

C++ programming language. The full code of the program is presented in Appendix II

and a snapshot of the interface is presented in Figure 4.11.

55

: •v^-v . f-,«■ Y:V,=>.v-5v. v-,r~ q
Beard Feeder Cocrd n a tes A ^ cn tlm Time

rBOARD-

Number of board types:

T otal number of component types:

Maximum number of locations:

45

52

rFEEDER SETUP-

Number of feeders: " Length of feeder (mm):

r-HOME COORDINATES-

X-Coordinates: jToO

Y-Coordinates: 1.200

rFEEDER/BOARD DISTANCE ■

X-Coordinates:

Y-Coordinates:

Time for board A

Time for board B

Time for board C

Time for board D

Time for board E

Time for board F

Time for board G

Time for board H

Time for board I

I 292.738 seconds

| 288.997 seconds

j 255.391 seconds

j 349.047 seconds

j 121.499 seconds

I seconds

0 seconds

0 seconds

0 seconds

rALGORITHM SETUP-

Total number of moves:

Maximum moves without improvement:

Length of T abu list

Tabu restart-

initial feeder assignment method: RANDOM

rTIMING SETUP-

Feed setup time (sec):

Pick time (sec):

Insert time (sec):

Head speed (mm/sec):

10

500

Processing board 0

Optimum assembly time found -> 29Z738

Processing board 1

Optimum assembly time found •> 288.997

Processing board 2

Optimum assembly time found -> 255.391

Processing board 3

Optimum assembly time found -> 349.047

Processing board 4

Optimum assembly time found -> 121.499

[Processing board 4 GO Close OK

Figure 4.11. Snapshot of the program interface

The program is written in such a way that most of the input and output data can

easily be accessed and edited since they are provided in separate text files. These data

include:

- Component types: name, number and frequency.

- Component locations: number, X- and Y-coordinates.

- Machine specifications: head speed, home location coordinates, pick time and

insertion time.

- Results: processing time, board type sequence, feeder assignment and placement

56

sequence.

However, the program also has some restrictions:

- Each component type can be assigned to one feeder only.

- Each feeder can hold one component type.

- Each feeder has sufficient capacity to process the whole board.

As mentioned earlier, the initial feeder assignment is generated using three methods:

randomly, by applying the centroid rule or by applying the proportion rule. As for the

move types, swap and insertion are used.

4.6.3. Experimentation, results and discussion
The algorithms parameters, presented in Table 4.5, are chosen by performing

several pilot test runs using different number of moves (10 to 1000) and different taboo

list sizes (3 to 12) regarding TS algorithm, and different number of generations (20 to

500) and different population sizes (20 to 300) regarding GA algorithm. Depending on

the results of these test runs the parameters of the TS and GA algorithms presented in

Table 4.5 are chosen to be used for the actual program runs. Pilot runs helped in

identifying the parameters levels that should be included in the experiments. For

example, the number of moves considered in the TS algorithm was 10 to 1000;

however, when the number of moves was increased between 100 and 1000, the results

did not show any changes to the total processing time. The same discussion applies to

all the values of parameters considered in the pilot test runs but not in the actual

program runs. The program runs are performed on a 3.2 GHz PC. Each run is performed

at least four times and the average results are considered. Different combinations of

parameters from Table 4.5 are used to study the effect of each parameter.

As mentioned in section 4.2, the set-up time depends on the number of

replenished feeders (fn), which in turn depends on the board type sequence and the

feeder assignment. However, the placement time depends on the placement sequence

and the feeder assignment (but not on the board type sequence). This means that in

order to study the effect of some parameters, it is possible to study their effects on the

placement time only (which means one board type only can be used) rather than the

total processing time (set-up and placement). For example, when studying the effect of

the type of initial feeder assignment (random, using the centroid rule or using the

proportion rule) on the processing time, the same results have been achieved when

57

considering one board type and when considering all board types. Board type A is used

when one board type only is considered.

The reminder of this subsection will concentrate on studying the effects of

different parameter and their levels on the processing time. This includes the following:

- For TS algorithm: number of moves, methods of initial feeder assignment, taboo list

size, type of move, maximum number of moves without improvements and number

of restarts.

- For GA algorithm: number of generations, methods of initial feeder assignment,

population size and mutation/inversion.

Above all, the effects of the type of algorithm used (TS or GA) will also be studied. The

results will be analysed and possible reasons about the behaviour of the algorithms will

be given when possible. In addition, a comparison between different parameters will be

made and recommendations will be presented.

4.6.3.1. The effect o f the number o f moves/generations
The increase in the number of moves performed by TS or the number of

generations performed by GA should logically increase the improvement in the

processing time since it allows for more space to be searched and, potentially, for more

good solutions to be found. This is confirmed by the results of the program runs as can

be seen in Figure 4.12 and Figure 4.13. Figure 4.12 illustrates the results of running the

program when TS algorithm (taboo list = 6), centroid rule and swap move are chosen.

The number of moves in this figure refers to the number of moves of the TS algorithm

responsible for processing the board type sequence not the TS algorithm responsible for

processing feeder assignment and placement sequence (the number of moves for this TS

algorithm is fixed to 100). As can be seen from the figure, increasing the number of

moves from 10 to 20 led to an increase from 5.82% to 6.06% (a 0.24% increase) in the

improvement of the processing time. However, an increase in the number of moves

from 20 to 40 resulted in a mere 0.01% increase in the improvement. This means, there

is no point of increasing the number of moves more than 20 since it hardly improves the

processing time.

58

'■ S

6.10%

6.05%

6 .00%

5.95%

5.90%

5.85%

5.80%

5.75%

5.70%

5.65%

■552%

10 Moves 20 Moves 40 Moves

Figure 4.12. The effect of number of moves on processing time

5.70%

5.60%

5.50%

5.40%V®
~ 5.30%

I 5.20%

| 5.10%

5.00%

4.90%

4.80%

4.70%

:-5.00%:

5 generations 10 generations 20 generations

Figure 4.13. The effect of number of generations on processing time

Figure 4.13 illustrates the results of running the program when GA algorithm

(population size =100 and mutation and inversion = 5% each) and proportion rule are

chosen. As explained for the TS algorithm, the number of moves here refers to the GA

algorithm responsible for processing the board type sequence not the GA algorithm

responsible for processing feeder assignment and placement sequence (the number of

generation for this GA algorithm is fixed to 20). Figure 4.13 shows the same trend

explained for Figure 4.12. When the number of generations is doubled (from 5 to 10),

this led to a 0.49% increase in the improvement of the processing time, whereas this

increase is limited to 0.1% when the number of generations doubled again (from 10 to

59

20). This means that increasing the number of moves/generations leads to an

improvement in the processing time up to a certain point beyond which the

improvement is negligible. This observation is not only applicable to the total

processing time of all board types but also to the placement times of individual board

types as can be seen in Figure 4.14. It shows how TS and GA algorithms improve

(reduce) the processing time of board type A after each move/generation is performed.

As the figure clearly shows, the level of improvement is high at first then it slows down

towards the end until it reaches a point beyond which there is no improvement. The

same observation about board type A is repeated for the rest of the board types

considered in the case study. This proves that increasing the number of

moves/generations is useful up to a certain limit.

239.00

238.00

237.00

236.00

^ 235.000
& 234.00

1 233.00

TS

GA

232.00

231.00

230.00

229.00
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Moves/Generations

Figure 4.14. The relationship between processing time and number of
moves/generations for board type A

4.63,2. The effect o f the methods used for initial feeder assignment
In the solution algorithm, three different methods for initial feeder assignment are

used as explained earlier. The aim of the two non-random methods (centroid and

proportion rules) is to start the search from a good initial solution so that the solution

algorithm would take less time to find the optimum or near optimum solution. The

program is run with random initial feeder assignment first and then using the centroid

rule and finally using the proportion rule. The rest of the parameters are left constant

60

apart from the algorithm type since both TS and GA are used. The results obtained from

running the program are presented in Table 4.6.

Table 4.6. The effect of initial feeder assignment on the total processing time

Improvement in processing time (%)
Random Centroid Proportion

TS 5.76 5.96 5.90
GA 5.32 5.74 5.36

As can be seen from the table, the improvement in the processing time when the

centroid rule is used is the highest (5.96% when TS algorithm is used). The next highest

improvement is achieved when the proportion rule is used (5.90% when TS algorithm is

used) followed by the random rule (5.76% when TS algorithm is used). The results also

show the same trend when GA algorithm is used. The differences in the improvements

when different initialisation rules are used are quite small. For example, the percentage

of improvements recorded in the case of TS and GA were 0.2% and 0.42% respectively.

The same discussion applies to each individual board type as well as the board

types together. Figure 4.15 shows the relationship between the processing time and the

number of moves for the three different initial feeder assignments for board type A. It

shows how the program reaches the optimum or near optimum solution faster when the

centroid rule is used followed by the proportion rule then by the random assignment.

Based on the outcome of this case study, starting the search from an improved feeder

assignment not only reduces the time required by the program to find the optimum/near

optimum solution but it also produces a marginally better solution and the centroid rule

has proven to be superior compared to the other two methods.

61

239.00

238.00

237.00

236.00
Ran.
Cen.

^ 235.00

234.00 Pro.
•S 233.00

232.00

231.00

230.00

229.00
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Moves

Figure 4.15. The effect of initial feeder assignment on processing time of board type A

using TS algorithm

4 .6.3.3. The effect o f other parameters o f TS algorithm
The other parameters of TS algorithm are the type of move (swap and insertion),

the taboo list size (4, 5 and 6), the maximum number of moves without improvement (3)

and the number of restarts (3). As Table 4.7 shows, the results obtained from running

the program using different combinations of these parameters have not shown any

notable differences on the total processing time for all board types neither on the

placement times of the individual board types.

Table 4.7. The effect of move type and taboo list size on the total processing time

Improvement in processing time (%)
Move type Tal300 list size

Swap Insertion 4 5 6
Total processing time 5.96 5.95 5.94 5.94 5.96
Placement time (A) 3.76 3.75 3.73 3.74 3.76

Although the use of insertion move takes slightly less CPU time to find the optimum or

near optimum solution when compared to the swap move as can be seen in Figure 4.16;

however, both moves lead to the same placement time.

62

239.00

238.00

237.00

236.00

^ 235.00o
& 234.00

Swap
Inser.

C 233.00

232.00

231.00

230.00

229.00
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Moves

Figure 4.16. The effect of move type on processing time of board type A using TS
algorithm (random feeder assignment)

4.63.4. The effect o f other parameters o f GA algorithm
The population size (up to 96) is one of the parameters of GA that affects the

processing time. Increasing the population size increases the number of solutions

processed by the algorithm, which in turn increases the chance of finding a better

solution. This is reflected by the results shown in Figure 4.17. However, as discussed

regarding the number of generations, this improvement has a certain limit after which

no improvement is achieved.

7.00%

6.00%

5.00%

4.00%

3.00%

2.00%

1.00%

0.00%

:-5;3i:%:
:s.-85% :-6.'03%

12 24 48

Population size

96

Figure 4.17. The effect of the population size on processing time

63

As for mutation and insertion, they would slightly affect the processing time.

Mutations and insertions are introduced to GA to diversify the solution space by

distorting the chromosomes. They are applied to a percentage of chromosomes in the

population. The results of the case study show that when the mutation percentage is

increased from 0% to 4% the improvement of the processing time increases from 5.02%

to 5.83% (i.e. by 0.81%) as shown in Figure 4.18. Any increase of the mutation

percentage above that 4% value, results in a fluctuated improvement. Regarding

inversion, the results also show the same trend as shown in Figure 4.19, but the effect is

less apparent, since an increase in the inversion percentage from 0% to 4% leads to a

0.42% (from 5.03% to 5.45%) increase in the improvement of the processing time.

7.00%

6.00%

5.00%

4.00%

3.00%

2.00% 4-

1.00% —

0.00%
0 2 4 6 8 10 13 16 20 30 40 60 80 100

Mutation %

Figure 4.18. The effect of using mutation on the processing time

A possible reason why mutation has a better effect, albeit small, on the processing

time compared to inversion could be because of the way each approach distorts the

generation of child chromosomes. The change that mutation makes to the preserved part

of the child is small compared to the change made by inversion. Note this on the

following placement sequence for board type A:

30 2 3229 9 38 22 21 26 14 23 11|4220 39 18 43 6 12 27 25 33 3724 |41 3 84

40 36 16 5 45 7 10 |13 15 31 28 17 19 34 1 35 44

64

6 .00%

5.00% 4 -

^ 4.00% 4 -

| 3.00%

^ 2.00%-H

1.00%

0.00% T --- 1
8 10 13 16 20 25 30 40

Invertion %

Figure 4.19. The effect of using inversion on the processing time

Let’s assume that the second part of this child is the preserved part from the parent.

Applying the mutation to this part (18 and 27) leads to one of the following two parts:

Insertion: |42 20 39 43 6 12 27 18 25 33 37 24|

Swap: |42 20 39 27 43 6 12 18 25 33 37 24|

However, applying an inversion to the same part leads to the following result:

|24 37 33 25 27 12 6 43 18 39 20 42|

As can be seen, the inversion has completely distorted the preserved part of the child,

whereas the mutation has kept some resemblance. This complete distortion works

adversely to the basic idea of GA, which is keeping the good features of chromosomes

transferred to next generations. This could be the reason why changing the percentage

of inversion leads to a less effect on the processing time compared to when the mutation

percentage is changed. Although the aim of using mutation and/or inversion is to distort

the child in order to search otherwise unsearched regions in the solution space, this

could lead to negative results when the distortion is exaggerated (like when inversion is

used).

4.6.3.5. The effect o f the algorithm type (TS or GA) used
The results from this case study presented in Figure 4.20 show that the

performance of TS algorithm is slightly better than GA. These results represent the

average results obtained by running the program several times considering all the

65

combinations in Table 4.5. TS algorithm checks all the neighbours of a particular

solution in every move performed, whereas GA checks a number of solutions equals to

the population size. Since the number of neighbours is much higher than the population

size in this case, this allows TS to take longer time scouting more solutions in the search

space, which gives it a better chance of finding a better solution compared to GA. This

is confirmed by the fact that, in general, TS takes around 10% to 20% more CPU time

than GA. It should be noted that the two algorithms performed better on the set-up time

compared to the placement time as presented in Table 4.8. The reason could be that the

set-up time has better margin for improvement compared to the placement time.

7.00%-

6.00% •

5.00% -

4.00% -

3.00% -

2.00% -

1.00% -

0.00% -

TS G \

Figure 4.20. The effect of the algorithm type on the processing time

Table 4.8. The effect of algorithm type on the placement/setup times

Improvement %
Placement time Set-up time Total processing time

TS 3.76 8.27 5.96
GA 3.74 7.22 5.43

4.7. Summary
In this chapter, the mathematical formulation for the PCB production problems

under discussion and the algorithm used to solve these problems were developed. The

solution algorithm was based on two metaheuristics, Taboo Search and Genetic

66

Algorithms, which were developed and explained. A case study was then presented

using hypothetical data since real-life data could not be obtained. The results showed an

average of 5.96% reduction in total processing time when TS was used and 5.43% when

GA was used. The reduction in processing time is calculated by comparing two

processing times: the first processing time is calculated using board type sequence,

feeder assignment and placement sequence generated by the solution algorithm, and the

second processing time is calculated by using random board type sequence, random

feeder assignment and random placement sequence. The use of TS proved to be

marginally preferable to GA when the goal is to obtain the best total processing time.

However, if the case is to obtain a good placement time within short CPU time, the use

of GA is preferable. The effects of the number of moves, number of generations,

population size, mutation and inversion all follow the same pattern. The processing time

is reduced when these parameters are increased up to a certain point after which no

reduction is noted. Interestingly, little or no noticeable difference was found in the

processing time between runs based on randomly initialised solutions and runs based on

the use of centroid rule and proportion rule to generate the initial feeder assignment.

However, the use of the centroid rule gave a better initial solution and, hence, it required

shorter CPU time. Regarding the effects of other parameters (e.g. move type, taboo list

size) on processing time, the results showed no noticeable effects.

67

CHAPTER FIVE

5. COST ESTIMATION AND ACCOUNTING ASPECTS

5.1. Introduction
Chapter 4 focused on the optimisation of production processes where three PCB

production problems were studied and an algorithm was proposed to solve them. In this

chapter, which contains the cost estimation and accounting parts of this research, a cost

estimation method and an accounting system are considered. The implementation

procedures of ABC, as an example of a cost estimation method, and LA, as an example

of an accounting system, are explained in detail and applied to the same case study

presented in Chapter 4. A comparison between ABC and LA is also presented.

5.2. Basics of ABC
ABC is based on the concept that products consume activities and activities

consume resources. Taking this into consideration, the implementation of ABC involves

the following steps:

- Identification of activities,

- Identification of activity cost drivers,

- Calculation of cost rates for the cost drivers, and

- Calculation of costs of products by multiplying the cost drivers rates by the volumes

of the cost drivers consumed by the product.

In order to understand these steps some of the terms associated with ABC are explained

below. In addition, each step will be explained in detail when ABC is implemented on

the case study in section 5.4.

- Activity:

An activity is a task performed to produce a product. In the ABC model, the true

relationship between activities and products is identified as a causal relationship (Bellis-

Jones & Develin 1999). According to this cause-and-effect relationship, there are four

types of activities:

1. Front-line activities: the activities that have strong relationships with the products

through the cost drivers (e.g. purchasing and order processing).

68

2. Support activities: the activities that have indirect relationships with the products

(e.g. training and payroll processing).

3. Sustaining activities: the activities that have little or no relationships with the

products (e.g. research and development and market research).

4. Infrastructure activities: these activities have no cost drivers, hence, no relationships

with the products. These activities are necessary for the company to stay in the

business (e.g. annual audit and the chairperson's lunch).

- Cost driver:

A cost driver is a cause that drives the cost. For example, the cost driver of the

activity “machine set-up” is the number of set-ups since there is a direct relationship

between the number of set-ups performed and the cost of the set-up activity. There are

cases where more than one activity is driven by one cost driver. In this case, the

activities are called a cost pool.

- Cost object:

The cost objects are the products, services, customers, etc. that the cost is assigned

to.

5.3. Using ABC for cost estimation in the PCB industry
The use of ABC for estimating the cost of PCB production has been quite rare

although other methodologies have been used. For example, Keys et al (1986 cited in

Giachetti and Arango (2003)), modelled the cost of PCB assembly by taking into

account the costs of materials, assembly, test, repair, overhead and maintenance.

Boothroyd and Dewhurst (1989 cited in Ong (1995)) developed a methodology to

estimate the component assembly cost in PCB manufacturing. Russell (1986 cited in

Ong (1995)) developed a cost-estimation methodology for PCBs taking into

consideration the cost of delivery, assembly and test.

As for the use of ABC in PCB manufacturing, Ong (1995) developed an ABC-

based estimating system in which costs were allocated based on the amounts and types

of activities used. In order to determine the costs of activities, Ong used activity charts,

worksheets and a cost build-up table. The estimating procedures in his work, Ong

argued, would not help the designers to redesign the product but would help them

improve the design configurations, choosing the appropriate process and selecting the

least-cost design. Spedding and Sun (1999) combined ABC with simulation and applied

them on a PCB assembly line. They concluded that the use of a simulation model would

69

make it easier to implement ABC since without it “the number of combinations and

testing variations required by ABC would be extremely time consuming and costly”.

The authors argued that using simulation and ABC together provided a more powerful

tool for providing more useful information for the management. For example, the

graphical representation of information provided by the simulation software provided an

automatic and powerful tool for the'management to analyse the results. Furthermore, the

time-based animation could also help identifying some potential problems.

Locascio (2000) developed an ABC method for a PCB assembly line to help

designers calculate manufacturing costs from limited design information. This allowed

them make trade-offs between materials and manufacturing costs at the design stage

and, hence, achieve significant savings in product cots. Giachetti and Arango (2003)

argued that the cost models presented so far could not be used for PCB fabrication

because it utilised chemical processing steps. Therefore, they developed an ABC model

which linked the cost to the design decisions made prior to the layout and routing, in

contrast to the model presented by Agrawal and Graves (1999) in which the cost

estimation was performed after the layout and routing. The model was used by

designers to compare different design alternatives in order to assess the effect of their

decisions on the final manufacturing costs of the products.

5.4. Implementation of ABC on the case study
Implementing ABC requires an understanding of the processes on which ABC is

to be implemented. In addition to the case study details mentioned in Chapter 4, other

necessary details are presented here. The specifications of the board types are shown in

Table 5.1. The number of boards (2850 boards) produced within the production period

considered (one month) will be calculated later in subsection 5.8.5. Any further data not

mentioned in Table 5.1 are presented later when required. The implementation

procedures are followed thereafter to calculate the cost of producing each board type.

The procedures followed here are similar to that of Cooper and Kaplan (1999) with

some modifications to suite the PCB production process.

70

Table 5.1. Specifications of board types

Board Type A B C D E F G H Total
Number of
comp, types 22 18 14 13 10 9 7 5 98

Number of
locations 45 37 23 22 17 15 20 12 191

Amount
produced 291 296 324 360 354 385 416 424 2850

Number of
batches 3 4 4 5 6 7 8 8 45

Number of
joints 29 26 22 15 12 12 15 8 139

5.4.1. Determining the cost of indirect resources and their drivers

The indirect resources that can be identified in a facility for manufacturing PCBs

are shown in Table 5.2. The resource cost driver rate (RR), which is used to calculate

the cost of the cost centres for the indirect resources, can be calculated according to the

following equation:

Table 5.2. Indirect resources at the PCB production facility

Resource Resource cost driver
<D Administrator Labour hours
£O S ecretary/Receptionist Labour hours

1 Human resource Labour hours
2 Security Labour hours

Rent/Construction cost AreaCm^)
3 td) Cleaning Area (m2)

PQ .3 Maintenance Area (m2)
M Gas Area (m2)
<D

• H Electricity Number of people
Water Number of people

P Phone Number of people
Computer Number of people
General Software Using hours

§
GO
5 O

Special software package Using hours
Network Using hours

3 &
& 2 Printing Number of peoplea «o Stationery Number of people
V Copying Number of projects.

Fax Number of projects

71

Resource rate = Total cost (per year or product life) / indirect resource driver spent (5.1)

The ‘indirect recourse driver spent’ is the amount of driver spent during the production

period considered. Since the annual salaries, utility bills, other costs and the amounts of

cost drivers spent throughout the production period are presumed to be known, as

shown in the third column of Table 5.3, the cost of each resource throughout the

production period can easily be calculated. The numbers between parentheses following

the names of some of the resources represent the numbers of individuals involved with

these resources. For example, considering the Human Resources (HR) indirect resource,

there is one employee who works 150 hours per month and receives ah annual salary of

£20,160. Therefore, within the production period considered the total cost of the HR

resource is:

£20,160/12 = £1,680

Table 5.3. The costs of indirect resources and their drivers

Resource Cost driver Total cost (£) RD’/month RR
Administrator (6) Labour hours 11,320.00 900.00 12.58
Secretary (1) Labour hours 1,680.00 150.00 11.20
HR (1) Labour hours 1,680.00 150.00 11.20
Security (1) Labour hours 1,520.00 150.00 10.13
Rent/Construction Area (m2) 20,356.00 580.00 35.10
Cleaning (1) Area (m2) 3,540.00 365.00 9.70
Maintenance Area (m2) 2,980.00 580.00 5.14
Gas Area (m2) 1,120.00 365.00 3.07
Electricity No. of people 879.00 45 19.53
Water No. of people 450.00 45 10.00
Phone No. of people 975.00 45 21.67
Computer No. of people 980.00 45 21.78
General Software Using hours 347.00 1190.00 0.29
Special software Using hours 438.00 460.00 0.95
Network Using hours 256.00 450.00 0.57
Printing No. of people 246.00 45 5.47
Stationery No. of people 356.00 45 7.91
Copying No. of projects 249.00 1 249.00
Fax No. of projects 137.00 1 137.00
Total 49,509.00

* RD: Resource Driver spent.
** RR: Resource Rate (£/unit).

72

Since the resource driver spent (RD) within this period is 150 hours and using equation

(5.1), the resources rates (RR) can be calculated:

HR resource rate = 1,680 /150 = £11.20 per hour

The resources rates (RR) for the other indirect resources are calculated in the same way

and the results are presented in Table 5.3.

5.4.2. Identifying the cost centres and assigning the resources to them

The cost centres include any resources that involve directly in the production

process, such as human power, equipments, etc. The cost centres that can be identified

for the PCB manufacturing process are presented in Table 5.4. The cost of each cost

centre is the sum of the costs of all resources (direct and indirect) consumed in this cost

centre throughout the production period.

Table 5.4. Cost centres at the PCB production facility

Cost centres
nd Project manager
D

C?
Design engineer

J D
S-i Manufacturing engineer
o
£ Quality assurance engineer
og. Technician

Operator (skilled worker)
Worker
Pick and place machine

<i> Robotic machine
jz Screen printing machine
o0 Adhesive-application machine
‘J3o Soldering machineas Cleaning machine

Curing machine
Set-up centre
Manual placement centre

S3 Testing centre
*rd Buming-in centreo
X Rework (repair) centre
2 Material handling centre

Inventory centre

73

As for the costs related to the direct resources, they can be directly added to each

cost centre according to how much this cost centre consumes of these direct resources.

The direct resources can be divided into two types:

- Type I: the direct resources that are consumed by one cost centre, in which case

their costs are added up to form part of the total cost of that cost centre. An example

would be the direct resource “electricity” (different from the indirect resource

“electricity” mentioned in Table 5.2 and Table 5.3) consumed by “pick-and-place

machine” cost centre.

— Type II: the direct resources that are consumed by more than one cost centre. In this

case the resources rates (RR) for these direct resources are calculated as explained in

subsection 5.4.1. Then, the resource rates are multiplied by the corresponding cost

drivers amounts consumed in the cost centres throughout the production period. An

example for type II would be the direct resource “engineer”, which is consumed by

the following cost centres: “project manager”, “manufacturing engineer”, “quality

assurance engineer”, etc. The cost of the direct resource “engineer” consumed by the

“project manager” cost centre is £244.80 as will be calculated in the example below.

In order to clarify the previous discussion the “project manager” cost centre is

used as an example. Regarding the direct resources of type I, there are none. However,

there are direct resources of type n, they are: manager, engineer, technician, operator

and worker. The resource rate (RR) for each of these direct resources is calculated and

then multiplied by the corresponding cost driver amount of each resource consumed by

the “project manager” cost centre as shown in Table 5.5. The figures in the second, third

and fifth columns of the table are assumed to be known and the data in the fifth column

(RD) represent the amounts of resource drivers consumed by the “project manager” cost

centre.

Table 5.5. The costs of direct resources (type II) for the “project manager”

Resources Total cost RD/month RR(£/hr) RD (hrs) RRxRD (£)
Manager (1) 2,480.00 150.00 16.53 90 1,848.00
Engineer (3) 6,480.00 450.00 14.40 17 244.80
Technician (2) 4,320.00 300.00 14.40 8 115.20
Operator (20) 30,400.00 3000.00 10.13 10 101.33
Worker (10) 15,200.00 1500.00 10.13 5 50.67

Total £58,880.00 2,000.00

74

As for the costs related to the indirect resources, they can be calculated by

allocating the indirect resources identified in the previous subsection 5.4.1 to the cost

centres using the cost drivers and the resource rates of these indirect resources. For

example, for the project manager cost centre, the costs related to the manpower indirect

resources (administrator, secretary, HR, etc.) can be allocated based on the number of

hours the project manager consumes dealing with these indirect resources. The number

of hours for each indirect resource is then multiplied by the resource rate (RR) of that

particular indirect resource to give the total cost related to that indirect resource. The

total costs of the indirect resources involved are, then, added up to give the total cost of

indirect resources involved in the project manager cost centre. The indirect resources

can also be divided into two types:

- Type A: the indirect resources that are consumed by more than one cost centre. For

example, the indirect resource “administrator” consumed by the following cost

centres: “project manager”, “manufacturing engineer”, “quality assurance engineer”,

etc. In'this case, the costs of their consumption by the cost centres can be calculated

the same way as type II of the direct resources (i.e. through calculating RR).

- Type B: the indirect resources that are consumed by more than one cost centre via

other indirect resources. For example, the indirect resource “rent/construction”

consumed by the indirect resource “administrator”, which in turn consumed by other

cost centres as mentioned in type A above. In this case, the indirect resources that

are consumed by the cost centres, “administrator” in the example, are considered as

pseudo-cost centres, in which case, the costs of their consumption of the indirect (or

even direct) resources, “rent/construction” in the example, are calculated the same

way as type A of indirect resources (i.e. through calculating RR). Once the costs of

these pseudo-cost centres are calculated, they are allocated to the “real” cost centres

proportionately (i.e. according to the same proportion the “real” cost centres

consume the pseudo-cost centres).

Applying this to the “project manager” cost centre example, the cost of the

indirect resources can be calculated as follows. The indirect resources of type A that are

consumed by the “project manager” cost centre are:

- Manpower: administrator, secretary, human resources and security.

- Buildings: rent/construction cost, cleaning and maintenance.

- Utilities: gas, electricity, water and phone.

75

- Computing and network: computer, general software, network, printing, stationary,

copying and fax.

Here, the resource rate (RR) is already calculated for each of these indirect resources as

shown in Table 5.3. These resource rates are multiplied by the corresponding amounts

of the cost drivers of the indirect resources consumed by the “project manager” cost

centre. The results are presented in Table 5.6. The figures in the fourth column of the

table represent the amounts of resources drivers consumed by the “project manager”

cost centre and assumed to be known data.

Table 5.6. The costs of indirect resources (type A) for the “project manager”

Resource RR(£/unit) RD (unit) RRxRD (£)

Manpower
Administrator (6) 12.58 80.00 1,006.22
Secretary (1) 11.20 23.00 257.60
HR (1) 11.20 5.00 56.00
Security (1) 10.13 4.00 40.53

Buildings Rent/Construction 35.10 30.00 1,052.90
Cleaning (1) 9.70 30.00 290.96
Maintenance 5.14 30.00 154.14

Utilities
Gas 3.07 30.00 92.05
Electricity 19.53 1.00 19.53
Water 10.00 1.00 10.00
Phone 21.67 1.00 21.67

Computer/
network

Computer 21.78 1.00 21.78
General Software 0.29 50.00 14.58
Special software 0.95 0.00 0.00
Network 0.57 30.00 17.07
Printing 5.47 1.00 5.47
Stationery 7.91 1.00 7.91
Copying 249.00 0.10 24.90
Fax 137.00 0.10 13.70

Total 3,107.01

Regarding type B of the indirect resources, their costs that are consumed by the

“project manager” cost centre are calculated as follows. The pseudo-cost centres in this

case are: administrator, secretary, human resources and security. The total cost of the

“administrator” pseudo-cost centres is calculated as any real cost centre as shown in

Table 5.7. Again, the figures in the fourth column of the table are the amounts of the

resources drivers consumed by the “administrator” pseudo-cost centre and are assumed

76

to be known data. The same calculations are performed on the other pseudo-cost centres

and the results are presented in Table 5.8.

Table 5.7. The total cost of the “administrator” pseudo-cost centre

Resource RR(£/unit) RD (unit) RRxRD (£)
Manager (1) 16.53 7.00 115.73

CO

s 8 Engineer (3) 14.40 5.00 72.00
g 3o Technician (2) 14.40 14.00 201.60
Q i n Operator (20) 10.13 60.00 608.00

Worker (10) 10.13 20.00 202.67
Administrator (6) 12.58 283.00 3,559.51
Secretary (1) 11.20 8.00 89.60
HR (1) 11.20 10.00 112.00
Security (1) 10.13 20.00 202.67
Rent/Construction 35.10 75.00 2,632.24
Cleaning (1) 9.70 75.00 ■ 727.40

i n<D
8

Maintenance 5.14 75.00 385.34
Gas 3.07 75.00 230.143O

i n Electricity 19.53 6.00 117.20
<D
t-i Water 10.00 6.00 60.00
O Phone 21.67 6.00 130.00

• tN Computer 21.78 6.00 130.67
General Software 0.29 700.00 204.12
Special software 0.95 200.00 190.43
Network 0.57 150.00 85.33
Printing 5.47 6.00 32.80
Stationery 7.91 6.00 47.47
Copying 249.00 0.50 124.50
Fax 137.00 0.50 68.50

Total 10,329.92

Table 5.8. The total costs of the pseudo-cost centres

Pseudo-cost centre Total cost (£)
Administrator 10,329.92
Secretary 2,321.01
Human Resources 2,162.73
Security 2,230.58

The total costs of the pseudo-cost centres are allocated to the “real” cost centres

that consume them. In this case they are: “project manager”, “design engineer”,

77

“manufacturing engineer”, “quality assurance engineer”, “technician”, “operator” and

“worker”. The allocation process depends on the proportion at which each cost centre

consumes of the indirect resources (pseudo-cost centres). Table 5.9 shows the amounts

of the resource drivers (in hours) of the pseudo-cost centres consumed by the cost

centres. These figures are assumed to be known data.

Table 5.9. The amounts of cost drivers of pseudo-cost centres spent

Administrator Secretary H. Resources Security
Project manager 80 23 5 4
Design eng. 50 8 7 4
Manufacturing eng. 50 8 7 4
Quality assurance eng. 50 4 7 4
Technician 80 10 15 8
Operator 130 18 21 62
Worker 80 12 15 32
Total 520 83 77 118

Taking into account the figures in Table 5.9, the costs of type B of the indirect

resources that are consumed by the “project manager” cost centre can be calculated as:

10,329.92x(80/520)+2,321.01x(23/83)+2,162.73x(5/77)+2,230.58x(4/118)=£2,448.44

Now, the total cost of the “project manager” cost centre is the sum of the costs of the

direct resources (types I and II) and indirect resources (types A and B) consumed by the

“project manager” cost centre:

0.00 + 2,000.00 + 3,107.01 + 2,448.44 = £7,555.45

When the total cost for each cost centre is calculated, a cost driver is identified for

each cost centre and the cost centre rate (CCR) is calculated according to the following

equation:

Cost centre rate = total cost o f cost centre!cost centre driver spent (5.2)

The ‘cost centre driver spent* is the amount of driver spent during the production period

considered. The final results for all cost centres are presented in Table 5.10. The fourth

column of the table represents the cost centres drivers (CCD) amounts spent during the

production period and are assumed to be known data.

78

Table 5.10. The costs of cost centres, their cost drivers and their rates

Cost centre Total cost Cost driver CCD*/month CCR
Project manager £7,555.45 Working hours 150 50.370
Design engineer £6,418.04 Working hours 150 42.787
Manufacturing eng. £6,279.65 Working hours 150 41.864
Quality ass. eng. £4,987.50 Working hours 150 33.250
Technician £6,540.34 Working hours 300 21.801
Operator £15,295.05 Working hours 3000 5.098 .
Worker £9,000.16 Working hours 1500 6.000
Set-up centre £2,280.85 No. of set-ups. 45 50.686
Pick-&-place machine £4,668.01 Mach. hours 155 30.116
Robotic machine £3,133.01 Mach. hours 155 20.213
Screen print, machine £4,631.01 Mach. hours 155 29.877
Adhesive machine £4,631.01 Mach. hours 155 29.877
Soldering machine £4,638.01 Mach. hours 155 29.923
Manual place. Centre £1,688.68 No. of units 2850 0.593
Cleaning machine £2,988.01 Mach. hours 155 19.277
Curing machine £2,977.01 Mach. hours 155 19.207
Testing centre £3,991.52 No. of units 3420 1.167
Buming-in centre £5,194.02 No. of units 2850 1.822
Rework centre £3,072.18 Faulty units 570 5.390
Material handl. centre £4,982.56 Distance 7985 0.624
Inventory centre £5,094.92 No of part types 98 51.989
Total £110,047.00

* CCD: Cost Centre Driver spent
** CCR: Cost Centre Rate (£/unit)

5.4.3. Identifying activities, calculating their costs and the rates of their cost
drivers

In this step, the activities that are used in the PCB manufacturing process are

identified. The total cost of each activity is calculated depending on the cost centres

involved in this activity. This is achieved by multiplying the cost centre rate (CCR),

calculated in the previous subsection (5.4.2), by the corresponding cost centre amount

consumed in the activity. Each activity is then assigned a cost driver, which is the factor

that explains how the activity consumes cost. For example, the cost driver for the

machine set-up activity is the number of setups performed. The final part of this step is

to calculate the activity cost driver rate (ACDR), which can be calculated according to

this equation:

Activity cost driver rate = cost o f activity / activity cost driver spent (5.3)

79

The activity cost driver rates are used to calculate the cost of the PCB as will be

explained in the next step.

The activities that can be identified in the PCB manufacturing process are

obtained from Ong (1995) and presented in Table 5.11. As for facility level activities

such as sustaining activities (e.g. research and development, market research, etc.),

support activities (e.g. recruitment, training, management, etc.) and infrastructure

activities (e.g. annual audit, producing year-end statutory accounts, etc.), the cost of

these activities are arbitrarily allocated to the products (Ong 1995) or dealt with

depending oh different basis (Bellis-Jones & Develin 1999).

80

Table 5.11. The activities that can be identified in the production of PCBs
Activities Cost driver Cost centres

Sequencing
parts

No. o f parts
sequenced

Project manager, Design engineer, Manufacturing
engineer, Quality assurance engineer, Operator

Loading &
unloading

No. o f times handled
Project manager, Manufacturing engineer,
Technician, Operator, Worker

Screen printing No. o f prints
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Screen printing machine

Applying
adhesive

No. o f applications
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Adhesive application machine

Placing
components

No. o f parts

Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Pick-&-place machine,
Robotic machine, Manual placement centre

*3
>

Soldering No. of panels
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Soldering machine

• ^

$ Cleaning No. o f panels
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Cleaning machine

Curing and
baking No. o f panels

Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Curing machine

Testing No. o f parts
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Testing centre

Buming-in No. o f panels
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Buming-in centre

Rework
(repair)

No. o f parts
Project manager, Manufacturing engineer,
Quality assurance engineer, Technician,
Operator, Worker, Rework centre

Visual &
touch-up No. o f joints Project manager, Manufacturing engineer,

Technician, Operator, Worker
Kitting/other
operations No. o f operations Project manager, Manufacturing engineer,

Quality assurance engineer, Operator, Worker
Purchase order No. of orders Project manager, Manufacturing engineer
Acceptance
sampling Sampling size Project manager, Manufacturing engineer,

Quality assurance engineer, Operator
d>>
(D

Inventory
retrieval

No. o f part types Project manager, Manufacturing engineer,
WorkerX!ots

PQ

Material
handling

Distance Project manager, Manufacturing engineer,
Technician, Worker, Material handling centre

Setting-up No. of machines/set
ups

Project manager, Manufacturing engineer,
Quality assurance engineer, Operator, Worker,
Setting-up Centre

Inventory
holding No. o f part types Project manager, Manufacturing engineer,

Worker, Inventory centre
(D

<D Designing Time of design Project manager, Design engineer, Manufacturing
engineer, Quality assurance engineer

■+-»O
S3*0

Place-&-route
design Time o f design Project manager, Design engineer, Manufacturing

engineer, Quality assurance engineer
8

' P h Programs &
fixtures

No. of
programs/fixtures

Project manager, Design engineer, Manufacturing
engineer, Quality assurance engineer, Technician,
Operator, Worker

81

The cost of each activity is the total cost of all cost centres, each according to the

rate of its contribution, used in this activity. For example, the cost centres that are used

in the “sequencing parts” activity (as presented in Table 5.11) are: “project manager”,

“design engineer”, “manufacturing engineer”, “quality assurance engineer” and

“operator”. The cost of each activity can be calculated by multiplying the cost centre

rate (CCR), obtained from Table 5.10, for each cost centre involved in the activity by

the amount of that cost centre driver (CCD) consumed in the activity throughout the

production period. As an example, the cost of “sequencing parts” activity is calculated

as shown in Table 5.12. The data in the third column of the table (CCD) are assumed to

be known.

The costs of all other activities are calculated using the same way and the activity

cost driver rate (ACDR) is calculated according to equation (5.3); the results are

presented in Table 5.13. The amounts of the activity cost drivers spent during the

production period (fourth column of the table) are assumed to be known data. For the

sake of better representation the results in Table 5.13 are depicted graphically as shown

in Figure 5.1. As can be seen, the most costly activities are “placing components”,

“programs and fixtures”, “testing” and “rework”. By reducing the cost of the activities,

especially the most costly ones, the cost of PCB production is reduced. For example, it

is possible to reduce the cost of the “placing components” activity by optimising the

pick-and-place machine, which was the main subject in Chapter 4. The cost reduction is

achieved by reducing the production time through optimising the component placement

sequence and the feeder assignment. Another example would be to reduce the cost of

“rework” activity by improving the quality, which reduces the amount of reworked units

and, hence, the cost. The actual cost reduction attributed to the optimisation work

performed on the placement machine will be calculated and discussed later in section

5.5.

Table 5.12. Calculating the cost of “sequencing parts” activity

Cost centre involved CCR CCD (Hour) CCRxCCD (£)
Project manager 50.370 2.00 100.74
Design engineer 42.787 5.00 213.93
Manufacturing engineer 41.864 4.00 167.46
Quality assurance eng. 33.250 4.00 133.00
Operator (skilled worker) 5.098 100.00 509.84
Total 1,124.97

82

Table 5.13. The costs of activities, their cost drivers and their rates

Activities Activities costs Cost driver ACD* ACDR

Sequencing parts £1,124.97 No. of parts
sequenced 64620 0.0174

Loading &
unloading £2,267.95 No. of times

handled 19950 0.1137

Screen printing £5,315.54 No. of prints 2850 1.8651

Applying adhesive £5,315.54 No. of
applications 2850 1.8651

Placing
components £15,912.06 No. of parts 64620 0.2462

Soldering £5,702.86 No. of panels 2850 2.0010

Cleaning £3,708.41 No. of panels 2850 1.3012

Curing and baking £3,712.52 No. of panels 2850 1.3026

Testing £10,307.76 No. of parts 3420 3.0140

Buming-in £5,878.55 No. of panels 2850 2.0626

Rework (repair) £6,363.11 No. of parts 570 11.163

Visual & touch-up £4,600.99 No. of joints 47163 0.0976

Kitting/other
operations £3,425.90 No. of operations 2850 1.2021

Purchase order £1,073.45 No. of orders 49 21.907

Acceptance
sampling £1,754.38 Sampling size 68 25.800

Inventory retrieval £682.61 No. of part types 98 6.9654

Material handling £5,783.81 Distance 7985 0.7243

Setting-up £2,795.75 No. of
machines/set-ups 45 62.128

Inventory holding £5,829.03 No. of part types 98 59.480

Designing £3,225.91 Time of design 60 53.765

Place-&-route
design £2,188.78 Time of design 40 54.720

Programs &
fixtures £13,077.15 No. of programs/

fixtures 45 290.60

Total £110,047.00
* ACD: Activity Cost Driver spent
** ACDR: Activity Cost Driver rate

83

Inventory retrieval

Purchase order

Sequencing parts

Acceptance sampling

Place-&-route design

Loading & unloading

Setting-up

Designing

Kitting/other operations

Cleaning

Curing and baking

Visual & touch-up

Applying adhesive

Screen printing

Soldering

Material handling

Inventory holding

Buming-in

Rework (repair)

Testing

Programs & fixtures

Placing components

682.61

1073,

1 112497

754.38

15

2188.78

2267.95

2795.7;

3225 .91

3425.90

708.41

71252

4600.99

53115.54

531 5.54

702.86

>783.81

5829.03

5878.55

6363.11

10307.76

1307.15

1591206

0 2,000 4,000 10,000 12,000 14,000 16,000 18,000

Activity cost (£)

Figure 5.1. The costs of activities

84

5.4.4. Calculating the costs of PCBs
The production cost of PCBs is calculated in this step depending on the activities

involved in the production process. This is achieved by multiplying the activity cost

driver rates (ACDR) obtained from the previous step by the corresponding activity cost

driver amounts spent during the production process. Usually, different types of PCBs

require different activities; however, when they require same activities, they, at least,

require different amounts of the activity cost drivers. This means, different types of

PCBs should incur different costs depending on what and how many activities are

involved in the production process. Since ABC is based on the idea of identifying the

production activities, the results of applying ABC on PCB production should accurately

reflect the real cost of the production of PCBs.

Using activity cost driver rates from Table 5.13 and data from Table 5.1, the

production cost of any particular PCB type can be calculated. Since board type A have

been used as an example throughout this chapter, it is used here again to calculate its

production cost as presented in table 5.14. The first 13 rows in the table are quite clear

and they do not require any explanation. However, the last nine rows require some

explanation as presented hereafter.

- Purchase order: assuming that the number of purchase orders during the production

period is 49 and since the total number of batches produced during the same period

is 45, this means one purchase order is equivalent to the production of:

45/49 = 0.918 batches.

Since there are 3 batches of board type A, this means, one purchase order is

equivalent to:

0.918x (291/3) = 89.081 boards

of type A. This means, one board of type A is equivalent to:

1/89.081 = 0.0112 purchase order,

which is the amount specified in Table 5.14.

— Acceptance sampling: assuming that the sampling size for the production period is

68 boards, this means, for all boards of type A the sampling size is equivalent to:

68 x 3 / 45 = 4.533 boards,

which means, for one board it is:

85

4.533/291 = 0.0156 board,

which is the amount specified in Table 5.14.

Table 5.14. Calculating the production cost of one PCB of type A

Activities ACDR Amount Description of amount Cost (£)
Sequencing parts 0.0174 45 Components sequenced 0.78
Loading & unloading 0.1137 7 No. of times handled 0.80
Screen printing 1.8651 1 No. of boards 1.87
Applying adhesive 1.8651 1 No. of boards 1.87
Placing components 0.2462 45 Components placed 11.08
Soldering 2.0010 1 No. of boards 2.00
Cleaning 1.3012 1 No. of boards 1.30
Curing and baking 1.3026 1 No. of boards 1.30
Testing 3.0140 1.2 20% tested twice 3.62
Buming-in 2.0626 1 No. of boards 2.06
Rework (repair) 11.1633 0.2 20% reworked 2.23
Visual & touch-up 0.0976 29 No. of joints 2.83
Kitting/other operations 1.2021 1 No. of boards 1.20
Purchase order 21.9071 0.0112 1/ ((45/49) x (291/3)) 0.25
Acceptance sampling 25.7996 0.0156 l/((45/68)x(291/3)) 0.40
Inventory retrieval 6.9654 0.0756 (22/291) 0.53
Material handling 0.7243 1.8293 (7985/45)/(291/3) 1.33
Setting-up 62.1279 0.0103 (3/291) 0.64
Inventory holding 59.4799 0.0756 (22/291) 4.50
Designing 53.7651 0.0486 (60x45/191)/291 2.61
Place-&-route design 54.7195 0.0324 (40x45/191)/291 1.77
Programs & fixtures 290.6033 0.0103 (45/45)/(291/3) 3.00

Total £47.95

- Inventory retrieval: The cost driver of the inventory retrieval is the number of

component types. According to Table 5.1, board type A has 22 component types and

since 291 boards of type A are produced during the production period, this means

one board of type A is equivalent to:

22/291 = 0.0756 component type,

which is the amount specified in Table 5.14.

- Material handling: assuming that the distance travelled by the material handling

system is 7985m during the production period and since 45 batches are produced

during the same period, this means one batch is equivalent to:

86

7985/45 = 177.44 m

Since three batches (equivalent to 291 boards) of board type A are produced, one

board of type A is equivalent to:

177.44/(291/3) = 1.8293 m ,

which is the amount specified in Table 5.14.

Setting-up: the setting-up is performed for every batch, which means, one board for

type A is equivalent to:

3/291 = 0.0103 setting-up,

which is the amount specified in Table 5.14.

Inventory holding: similar to inventory retrieval.

Designing: assuming that the total time for designing all board types is 60 hours and

since the total number of locations (components) is 191, as shown in Table 5.1, this

means the designing time for each component is:

60/191 = 0.314 hours.

Since the number of locations for board type A is 45, this means the designing time •

for board type A is:

0.314x45 = 14.14 hours,

which is equivalent to the production of 291 boards. This means, one board type A

is equivalent to:

14.14/291 = 0.0486 hour,

which is the amount specified in Table 5.14.

Place-and-route design: assuming that the time for design is 40 hours and following

the same calculations performed for “designing”, one board of type A is equivalent

to:

40x(45/191)/291 = 0.0324 hour,

which is the amount specified in Table 5.14.

Programs and fixtures: assuming that the number of programs and fixtures during

the production period is 45 and since 45 batches are produced during the same

period, this means one batch is equivalent to:

87

45/45 = 1

Since three batches (equivalent to 291 boards) of board type A are produced, one

board of type A is equivalent to:

1/(291/3) = 0.0103,

which is the amount specified in Table 5.14.

The same calculations are performed to calculate the production costs for the rest of the

board types. The results are presented in Table 5.15.

Table 5.15. The production costs of all PCB types .

Board type Production cost (£) Amount produced Total cost (£)
A 47.95 291 13,954.85
B 45.47 296 13,460.12
C 38.06 324 12,330.12
D 37.20 360 13,391.06
E 36.36 354 12,870.76
F 35.92 385 13,829.54
G 37.93 416 15,777.11
H 34.04 424 14,433.44

Total 2850 110,047.00

The cost of materials is usually obtained from the bill of materials. As for this

case study it is assumed that the cost of materials during the production period of the

2850 boards is £340,510. This cost is allocated to the PCB types according to the

number of locations of each board type. This means that the total cost of producing one

PCB of each board type can be calculated. For example, for one PCB of board type A,

the cost of materials can be calculated as follows.

From Table 5.1, the number of locations of board type A is 45, which means, the total

number of locations for the 291 boards is:

45 x 291 = 13095 locations.

The total number of locations for each board type can be calculated in the same way,

then, the total number of locations for all board types can be calculated:

(45 x 291) + (37 x 296) + (23x 324)+(22x 360) + (17 x 354) + (15 x 385)+(20x 416)
+(12 x 424) = 64620 locations.

88

This means, for one board of type A the cost of materials is:

(340,510x13095/ 64620) / 291 = £237.12

Now, the total cost (production and materials) for each board of type A produced is:

47.95+237.12 = £285.08

The same calculations are performed for the rest of the board types and the results are

presented in Table 5.16. It should be emphasised that this cost does not include the cost

of facility level activities mentioned earlier in subsection 5.4.3.

Table 5.16. The total production costs of all PCB types

Board type Total cost/board (£) Amount produced Total (£)
A 285.08 291 82,957.92
B 240.44 296 71,170.82
C 159.25 324 51,597.85
D 153.12 360 55,124.87
E 125.94 354 44,582.14
F 114.96 385 44,260.45
G 143.31 416 59,618.70
H 97.27 424 41,244.25

Total 2850 450,557.00

5.5. The effects of applying the algorithm
As mentioned in Chapter 4, the application of the algorithm reduced the time

required by the component placement process by 3.76% and the set-up time process by

8.27%. This reduction is considered in this section to see how it affects the production

costs of PCBs. The reduction in placement time means that the operating times of some

resources on the “placement machine” and the “robotic machine” cost centres are

expected to be reduced proportionally. The resources that are involved with these two

cost centres and are expected to be affected by this time reduction are: “engineer”,

“technician”, “operator” and “worker”. Less operating time for these resources means

lower total cost for the cost centres involved (“placement machine” and the “robotic

machine”), which leads eventually to lower costs for the activities these two cost centres

are linked to. In our case, there is only one activity that is affected; it is the “placing

components activity”. The same discussion applies to the reduction in the set-up time.

89

The affected resources in this case are: “engineer”, “technician”, “operator” and

“worker”. As for the cost centres and activities affected, they are “Set-up centre” and

“setting-up” respectively.

In the case study, let’s assume that the times spent by the resources on the cost

centres are known as presented in Table 5.17. Since the time reduction is expected to be

3.76% and 8.27% for the placement time and the set-up time respectively, the time

saved by applying the algorithm can be calculated according to these two percentages.

For example, the resource “engineer” spends 15 hours in each of the following cost

centres: “set-up centre”, “placement machine” and “robotic machine”: This means, the

time saved for the resource “engineer” in the set-up centre” cost centre is:

15-(15x8.27/100) = 13.76 hours,

in the “placement machine” cost centre is:

15 - (15 x 3.76 /100) = 14.44 hours

and in the “robotic machine” cost centre is:

15 - (15 x 3.76 /100) = 14.44 hours

Table 5.17. Operating times before time reduction (hours)

Engineer Technician Operator Worker
Set-up centre 15 10 110 . • 20
Placement machine 15 20 300 50
Robotic machine 15 20 150 50

The same calculations can be repeated for the rest of the resources as shown in Table

5.18. The table shows the operating times of the resources in the cost centres for the

production period as would they be expected after the algorithm is applied. By

subtracting the amounts in Table 5.18 from the corresponding amounts in Table 5.17 the

times saved by the application of the algorithm can be calculated. The results are

presented in Table 5.19.

90

Table 5.18. Operating times after reduction (hours)

‘ Cost centre Engineer Technician Operator Worker
Set-up centre 13.76 9.17 100.9 18.35
Placement machine 14.44 19.25 288.7 48.12
Robotic machine 14.44 19.25 144.4 48.12

Table 5.19. The saved times of resources (hours)

Cost centre Engineer Technician Operator Worker
Set-up centre 1.24 0.83 9.1 1.65
Placement machine 0.56 0.75 11.3 1.88
Robotic machine 0.56 0.75 5.6 1.88
Total 2.36 2.33 26.0 5.41

From Table 5.19, the total time saved can be calculated:

2.36 + 2.33 + 26.0+5.41 = 36.10 hours.

In addition to the reduction in the operating times, there are also reductions in the

costs of direct utilities and the maintenance & depreciation of the cost centres involved.

The costs of the direct utilities of the cost centres “placement machine” and “robotic

machine” before the reduction are assumed to be known data. The costs after applying

the algorithm can be calculated in the same way the times were calculated for the

resources in the previous paragraph. The results are presented in Table 5.20.

Table 5.20. Costs of direct utilities and the maintenance & depreciation (£)

Direct utilities (£) Maintenance & depreciation (£)
before after difference before after difference

placement
machine 65.00 62.56 2.44 150.00 144.36 5.64

Robotic
machine 60.00 57.74 2.26 140.00 134.74 5.26

Total 5.70 11.90

The changes to operating times, the direct utilities and maintenance &

depreciation will affect the costs of the involved cost centres. The total costs of the cost

centres involved after applying the algorithm can be calculated using the same way the

91

costs were calculated before applying the algorithm, as described in subsection 5.4.2,

taking into consideration the operating times in Table 5.18 and the costs in Table 5.20.

The results are presented in Table 5.21. The cost centre driver spent (CCD) for the

“placement machine” and the “robotic machine” cost centres can be calculated as

follows:

155-(155x3.76/100) = 149.17 hours.

Table 5.21. The new costs of cost centres, their cost drivers and their rates

Cost
centre

Total cost
before

reduction

Total cost
after

reduction
Change

CCD’/month
before

reduction

CCD*/month
after

reduction
CCR

Set-up
centre £2,280.85 £2,142.14 £138.72 45 set-ups 45 set-ups 47.603

Pick-&-
place

machine
£4,668.01 £4,507.62 £160.39 155 hours 149.17 hours 30.218

Robotic
machine £3,133.01 £3,030.34 £102.67 155 hours 149.17 hours 20.314

Total £401.78
* CCD: Cost Centre Driver spent
** CCR: Cost Centre Rate (£/unit)

The costs of activities that are affected by the changes to the costs of cost centres

presented in Table 5.21 can be calculated as described in subsection 5.4.3 taking into

consideration the cost centre rates (CCR) in Table 5.21. The results are presented in

Table 5.22. As shown in Table 5.21 and Table 5.22 the total savings expected from

applying the algorithms during the production period of one month is £401.78.

Table 5.22. The new costs of activities, their cost drivers and their rates

Activities Activities costs
before reduction

Activities costs
after reduction change ACD* ACDR**

Placing
components £15,912.06 £15,648.99 £263.06 64620 0.2422

Setting-up £2,795.75 £2,657.04 £138.72 . 45 59.0453
Total £401.78
* ACD: Activity Cost Driver spent
** ACDR: Activity Cost Driver rate

92

5.6. Lean Accounting basics and principles
LA is a supportive system to lean manufacturing; therefore, it cannot be

implemented alone, rather, it has to be implemented as a supplement to lean

manufacturing. As lean manufacturing is a system that implements lean principles on

the operational and production aspects, LA is a system that does the same to the

financial and accounting aspects. Therefore, in order to be able to understand LA, some

background information about lean principles in general and about lean manufacturing

in particular has to be presented first.

Lean manufacturing has been introduced to increase customer value by

eliminating, or at least reducing, waste from the production system. Waste has many

forms and can be found in many areas in the company. For example, time, materials,

inventory, rework, idle machines can all be considered as forms of waste. Since there

are different forms of waste, lean manufacturing depends on different tools and

principles to deal with waste reduction/elimination. The following are some of these

tools and principles:

- Cellular manufacturing.

- Pull, rather than push, system (JIT and kanban).

- Value stream mapping.

- Low inventory.

- Less rework (high quality).

- Small orders of materials.

- Continuous improvement.

The implementation of lean manufacturing depends on the state of the company and

should be gradual and continuous. Womack and Jones (1996) present the principles of

lean thinking as:

- Value: the value provided to the customer.

- Value stream: the processes that contribute to manufacturing the product.

- Flow: the flow of products and services through the value stream.

- Pull: make on demand (just-in-time system).

- Perfection: total quality management through continuous improvement.

The principles of lean thinking and lean manufacturing are being applied in most of

today’s manufacturing companies. Therefore, it is necessary that they are applied to the

accounting system as well and this is why LA has been developed.

93

The main idea of lean (whether it is lean manufacturing, lean accounting, lean

thinking, etc.) is to reduce waste, which leads to creating free capacity. If this capacity

is not used, the improvement to the financial outcome will be equivalent to the amount

of waste reduced. However, the financial outcome will improve much more when the

capacity is benefited from (e.g. laying people off, increasing sales, introducing new

products, etc.). In LA, reducing waste means reducing financial transactions and control

processes. This can be performed when the need for such transactions and processes

cease to materialize. This means that the thinking of how to use the would-be freed

capacity should be parallel to the thinking of introducing lean principles.

LA is necessary for lean manufacturing, not only because standard accounting

system is not suitable but also because it is harmful to lean manufacturing. Standard

accounting measurements show an increase in cost and reduction in profit, as will be

seen in subsection 5.8.2, as a result of applying lean manufacturing especially at the

early stage when trying to reduce the work-in-progress inventory (Maskell & Baggaley

2004). Furthermore, overhead absorption (a standard accounting principle) encourages

workers/employees to .do things that contradict lean manufacturing (large batch size,

high inventory, large quantities of raw materials, etc.). For this reason, any company

starting to apply lean manufacturing and keeping the standard accounting system in

place could be forced to choose to cancel the implementation of lean manufacturing

when facing negative results. Therefore, it is important to implement an accounting

system that appreciates the improvements introduced by lean manufacturing to the

company, an accounting system that shows clearly the impact of applying lean

manufacturing on the bottom line. Such an accounting system should be based on the

same lean thinking principles and culture that lean manufacturing is based on, in other

words, a lean accounting system.

5.7. How Lean Accounting system works
As mentioned earlier, eliminating transactions, which will be explained more in

section 5.8, is one of the main features of LA. Transactions in the standard accounting

system are used to control business operations. Therefore, in order for LA to be able to

eliminate these transactions it has to find a way to maintain the control over the business

operations and processes. The idea is to replace the eliminated transactions with fewer,

less detailed and simpler transactions. This process is a continuous one since the

number of new transactions is further reduced over time to even fewer transactions. In

94

other words, the journey to a lean enterprise is a never-ending one. For example, in the

standard accounting system as a product is being made, the labour hours and the

movement of raw materials are tracked and reported. This is replaced in LA with back-

flushing, which is done, when the job is completed, by the information system. This is

achieved by reading the bill of materials and the production routings and standards.

Over time, when the inventory levels are low and consistent and when the operations

and processes are controlled, even back-flushing is not necessary and can be eliminated.

It is important to note that the process of transaction elimination should be

gradual. Most transactions inherited from standard accounting should be maintained at

the early stage of implementing LA in order to maintain the control of the business

operations. A step-by-step elimination process should, by time, be able to reduce the

number of transactions and keep the business under control.

5.8. Implementation of LA on the case study
Lean accounting has been introduced as an alternative to the standard accounting

system in companies implementing lean manufacturing. In this section, the

implementation steps of lean accounting are introduced, briefly explained and applied to

a case study. Throughout the case study, the importance of implementing lean

accounting is being emphasised by clarifying the financial benefits of such

implementation, since lean accounting is designed to help lean manufacturing cut the

production costs. In addition, it is explained how lean accounting provides better

information for the management in the company. It allows them to see the financial

benefits of lean improvements through achieving better decision-making and saving

money by reducing costs, eliminating waste and providing more control over production

processes. Lean accounting should be implemented alongside lean manufacturing since

they complement each other. However, the implementation of lean accounting should

always fall some steps behind the implementation of lean manufacturing because most

of lean accounting tools and methods do not work unless some of lean manufacturing

tools have been established.

In order to implement lean accounting one has to know the current state of the

organization, company, etc. In their book “Practical Lean Accounting” Maskell and

Baggaley (2004) presented a “diagnostic tool” to help assess the current status of the

organization that is preparing to implement lean accounting. They divided the “maturity

path” to lean accounting into four stages:

95

1. Traditional: just started with lean manufacturing but not lean accounting.

2. Piloting lean cells: have successfully implemented pilot lean cells and therefore can

start implementing some of lean accounting principles.

3. Managing by value stream: value streams are created to link the cells implemented

in the previous stage. This allows for more lean accounting principles and methods

to be implemented.

4. Lean enterprise (lean business management): the value streams are extended outside

the company walls to include suppliers and customers. At this stage some other

tools of lean accounting such as ‘target costing’, can be applied.

The diagnostic tool that Maskell and Baggaley provide is a questionnaire about

the state of the organization in different categories: “Financial accounting, Operational

accounting, Management accounting, Support for lean transformation and Business

management”. The outcome of the questionnaire is used by the team responsible for the

transition towards lean accounting to decide how to plan this transition. The

implementation steps of lean accounting differ according to the state of the company

implementing lean; however, there are general steps that could be followed as shown in

Figure 5.2. When the current state of lean manufacturing at the company under

consideration has been assessed, there are three possible options to consider:

1. If the company is at an early stage of lean manufacturing and the pilot cells are in

place, lean accounting procedures should start with the top block of steps.

2. If lean manufacturing is widespread at the company and the company has started

managing by value stream, lean accounting procedures can start with the top and

middle blocks of steps at the same time.

3. If lean manufacturing is widespread at the company and its suppliers and customers

(where applicable), lean accounting procedures can start with the top, the middle

and the bottom blocks of steps at the same time.

The general implementation steps of lean accounting are explained throughout this

section and most of these steps are applied to a case study in order to clarify how they

can be applied in a real-life situation. However, the order at which these steps are

explained in this chapter does not necessarily follow the order shown in Figure 5.2.

96

Assess the status of the company:

1. lean manufacturing at early
stage (pilot cells in place)

i 2. Lean manufacturing is
i dominant at the company

13. Lean manufacturing is is
dominant at the suppliers and
customers

Implement cell performance
measurements

Calculate financial benefits of
lean improvements

Eliminate wasteful operational/
financial transactions

Identify the value streams

Implement value stream
performance measurements

V

Implement value stream costing

V .

Implement features and
characteristics costing

Implement financial planning

Implement target costing

Extend value streams to include
suppliers and customers

Eliminate wasteful control
processes

Figure 5.2. The general implementation steps of lean accounting

97

The company in the case study follows a traditional production system: push

rather than pull system, high inventory, maximum machine utilization, high rework

percentage, etc. The features of this production system are presented in Table 5.23. The

lead time is 25 days, which is quite long compared to the cycle time (37.5min). The

company employs 46 people for the PCB value stream, produces an average of 2850

boards per month (45 batches), have daily shipments and weekly delivery from the

suppliers.

Table 5.23. Features of the current production system

SMT
machine

Manual/
robotic load

Test/
rework Bum-in Package/

shipment
Cycle time (min.) 1.5 15 8 7 6
Set-up time (min.) 38 8 10 12 n/a
Downtime/rework 10% 7% 20% n/a n/a
No. of people 5 10 9 4 2
No. of machines 1 1 1 0 0

The company management decided to undergo a lean approach. The lean

consultant team responsible for the job started implementing lean manufacturing

principles:

- Lean pilot cells have been introduced by reorganizing and redesigning the current

cells, which led to forming the value stream.

- A pull system was introduced (kanban) to the value stream that reflects the

customers’ real needs.

- A training program in lean principles was introduced.

- Key suppliers were identified and agreements were signed to deliver daily according

to the requirements of the SMT cell controlled by the pull system.

- Introduction of standardized work and quality from the source.

The operational changes resulted from implementing lean manufacturing were:

- The lead time was reduced to 6.5 days.

- The required floor area reduced from 3200 m2 to 2200 m2.

- Shorter cycle times and reduced rework percentage (quality increased).

- Some resources were freed up (machine hours, labour hours).

98

- Percentage of on-time shipments increased.

As lean manufacturing and lean accounting complement each other, the detailed

implementation of lean accounting is discussed and the operational and financial aspects

of the process are explained thereafter.

5.8.1. Performance measurements

There are performance measurements for both the production cells and the value

streams. The number of the measurements should not be too high since this would be

against the principles of lean. The measurements should be visual, simple, manual and

should also be focused around the principles of lean thinking (see Womack and Jones

(1996)). The data required for these measurements should be collected following the

principles of lean (simple, effective and does not incur waste). Some examples for these

measurements, obtained from Maskell and Baggaley (2004), are explained and applied

to the case study hereafter. It should be noted that any other measurements are also

possible.

5.8.1.1. Cell measurements

- Day-by-the-hour report:

This report ensures that the cell cycle time is consistent with the customers

demand. The produced PCBs are counted hourly and the report is presented visually so

that everyone can see it. This allows for problems to be discovered and resolved as early

and as quickly as possible. Descriptions of the problems encountered are also written

down and, over time, the gathered information can be used to avoid potential problems

in future. This will eventually lead to a better process quality. The planned production

rate may differ according to the type of products manufactured (mixed-model systems),

which is the case in this case study. Since the company produces different , types of

PCBs, the planned hourly rate is different from one hour to another. Table 5.24 presents

an example of the day-by-the-hour report for the case study.

- Work-in-progress to standard work-in-progress ratio:

This is used to measure the inventory in the cell. Each cell is designed to hold a

specific amount of inventory (standard work in progress) to account for any problems

that may happen in the cell. In a lean cell, when the amount of inventory is equal to the

amount of standard inventory, this means the pull system is working smoothly;

otherwise, the system is failing. This measure is calculated by dividing the amount of

99

inventory (kanbans, items, family, of products) in the cell by the standard amount of

inventory that the cell is designed to hold. When the ratio is less than 1 the inventory

level is low and when it is bigger than 1 the inventory level is high. Since there are too

many components (parts) to count in this case study, this measurement is calculated by

counting the number of boards rather than the number of components. The amount of

standard inventory for the SMT cell is 8 boards and the cell has 9 boards, which means

the work-in-progress to standard work-in-progress ratio in this case is:

9/8 = 1.13

Table 5.24. Day-by-the-hour report

Time No. of boards
planed

No. of boards
manufactured

Total No. of
boards

planned

Total No. of
boards

manufactured
09:00-10:00 17 17 17 17
10:00-11:00 17 16 34 33
11:00-12:00 16 16 50 49
12:00-13:00 16 15 66 64
13:30-14:30 15 15 81 79
14:30-15:30 15 14 96 93
15:30-16:30 13 12 109 105
16:30-17:30 14 14 123 119

- First time through:

This measurement (also called “yield”) reports the number of reworked or rejected

items in the cell. It is a measure for the effectiveness of the cell producing the product

correctly and to the right cycle time. The data required for this measurement are

collected by the cell operators and the results are presented visually. The first time

through measurement is presented as a percentage and calculated as follows:

First time through = {correct items manufactured / total items manufactured) x 100%

In the case study, assuming that the SMT cell produced 13 boards per hour and one is

rejected and one is reworked, the first time through in this case is:

((13 -1 -1) /13) x 100% = 84.62%

100

Since rejected and reworked items are forms of waste, whenever the first time through

measurement is low, the cell has to be investigated and any problem found should be

resolved. This measurement allows the cell operators to quickly detect any quality

problems in the cell and, hence, reduces the amount of waste.

- Operational equipment effectiveness:

This measurement (can also be called Overall Equipment Effectiveness (OEE)) is

used to measure the ability of machines to do the required job according to the specified

quality at the specified time. It is a combination of three measures: availability, first

time through (yield) and production efficiency (utilisation). Applying this measurement

to all machines could be time consuming and wasteful, therefore, this measurement is

usually applied to the machine that determines the flow rate of the cell or of the

production line, in other words, the bottleneck machine. The first element of this

measurement can be calculated as follows:

Availability = {{total time-down time) I total time)x 100%

The total time is the time scheduled for production and the downtime is the time when

the machine is not working due to maintenance, setting-up, tooling, etc. The second

element of this measurement, first time through, is calculated as described in the

previous measurement, whereas the third element is calculated as follows:

Production efficiency = (actual flow rate/ideal flow rate)x 100%

The ideal flow rate is the rate at which the machine should run to achieve the required

cycle time, which is determined by the customer requirements. Therefore, it is not

necessarily the maximum flow rate which the machine has been designed to work at.

The actual flow rate is usually smaller than the ideal flow rate due to the unexpected

stoppages that could result from a lack of feeding materials.

In the case study, the operational equipment effectiveness of the SMT machine

(the bottleneck machine) can be calculated as follows:

Availability:

Assuming that the total scheduled time is 8 hours a day (one shift) and the total

down time during this period is 25 minutes, the availability is calculated as:

((8 - (25 / 60)) / 8) x 100% = 94.79%

First time through:

101

It is already calculated: 84.62%

Production efficiency:

Assuming that the actual flow rate is 13 boards per hour and the ideal flow rate is

14 boards per hour, the production efficiency is calculated as:

(13/14)xl00% = 92.86%

Operational effectiveness efficiency:

The operational effectiveness efficiency of the SMT machine can now be

calculated as:

94.79% x 84.62% x 92.86% = 74.48%

5.8.1.2. Value stream measurements
Value streams are identified to include the cells (including non-production

processes such as, customer services, purchasing, production planning, etc.) that work

together to produce similar products or a family of products. In fact, the process of

value stream mapping is very important to lean manufacturing and lean accounting

because many of lean accounting elements (e.g. performance measures, value stream

costing, etc.) are based on value streams. Value stream mapping illustrates how

materials and information flow through the value stream and, hence, gives the

management a wider and clearer view of the value stream. The value stream

performance measurements for the case study are calculated for the PCB value stream

as detailed below.

- Sales per person:

This measurement is used to measure the productivity of the value stream. Sales-

per-person measurement is important to track the productivity and it should be

increased over time to increase the value stream profit. To calculate the sales per person

for a particular value stream, the value of the sales associated with that value stream

within a specific period should be known in addition to the number of full-time people

working in that value stream. In the case where there are part-time or temporary people,

the equivalent number of full-time people should be used.

In this case study, the monthly, sales for the value stream are assumed to be

£901,470 and the number of full-time people is 46, therefore, the sales-per-person

measurement is calculated as:

102

901,470/46 = £19,597.17

- On time delivery:

This measurement is used to control the value stream. It measures the percentage

of products delivered to the customers on the day the customers requested them to be

delivered. When the control over the value stream is high, the on time delivery is high

and vice versa. This measurement gives an indication when the value stream goes

beyond control and, hence, provokes an action to be taken. One way of calculating on

time delivery is by tracking the number of units delivered to the customer on a

particular date compared to the number of units requested to be delivered on that date.

In this case study, the number of units requested by the customers to be delivered

in a particular month is assumed to be 2750 boards. The actual number of PCBs

delivered during that month is assumed to be 2430 boards. Hence, the on time delivery

can be calculated as:

(2430/2750) x 100% = 88.36%

- Dock-to-dock time:

Dock-to-dock time measures the time required for raw materials to be converted

into finished products (starting at the time they are delivered to the receiving dock and

ending at the time they are ready for shipment on the shipping dock). This is a

measurement of the flow of materials in the value stream. The aim is to increase the

flow in the value stream in order to reduce the inventory and this requires short dock-to-

dock time. This measurement is calculated by dividing the inventory within the value

stream by the shipment rate. The shipment rate is the shipped amount per week/month

divided by the number of hours/days in the week/month.

In this case study, the total inventory in the value stream is calculated by counting

the number of PCBs that can be produced from the available raw materials, the PCBs

available in the work in progress and the finished PCBs. These amounts are assumed to

be 930, 1720 and 470 boards respectively. This means, the total inventory in the PCB

value stream is 3120 boards. The shipment rate is the amount of shipped units per

month divided by the number of working days in this month. Assuming that the number

of boards shipped is 2750 boards and the number of working days in the month under

consideration is 22 days, this means, the dock-to-dock days can be calculated as:

‘ 3120/(2750/22) = 25 days

103

- First time through:

This measurement is similar to that of the cell performance measurements.

However, it is applied here to the whole value stream. It is calculated by multiplying the

first time through for all the cells (again, production and non-production cells) in the

value stream.

In this case study, the first time through for the PCB value stream is the product of

multiplying the first time through of these cells: purchase order, material purchasing,

SMT, manual/robotic assembly, test and rework, buming-in, shipping and invoicing.

The first time through for the SMT machine is already calculated before and it is

84.62%. Following the same calculations, the first time through is calculated for the

other cells. Assuming that the first time through for the purchase order, material

purchasing, manual/robotic assembly, test and rework, buming-in, shipping and

invoicing cells are 96.23%, 97.50%, 90.04%, 96.38%, 98.10%, 92.54% and 88.75%

respectively, the first time through for the PCB value stream can be calculated as:

96.23%x97.50%x84.62%x90.04%x96.38%x98.10%x92.54%x 88.75% = 55.51%

- Average cost per unit:

Average cost per unit is calculated by dividing the total cost of the value stream

(may or may not include the cost of raw materials) by the number of units shipped to

customers within a specific period of time. Including or not including the cost of raw

materials depends on whether or not the materials used for different products in the

value stream have similar costs. Calculating the total cost of the PCB value stream will

be detailed in subsection 5.8.4. The importance of this measurement lies in the fact that

it is used in both ‘features and characteristics costing’ and ‘target costing’ methods.

Additionally, it gives an indication to the state of the value stream. When the average

cost is increasing abnormally, this means the value stream is producing more than

selling and the inventory is building up, and vice versa. In both cases, the situation

should be investigated.

The total cost of the PCB value stream in the case study is the sum of the cost of

materials and the conversion costs. The cost of materials is obtained from the bill of

materials and it is £340,510 as mentioned in subsection 5.4.4. The conversion cost is

calculated as described in subsection 5.4.4 and it is £110,047. This means, the average

cost per unit can be calculated as:

104

(340,510 + 110,047) / 2850 = £158.09

- Accounts receivable days outstanding:

This measurement gives an indication as to at what extent the process of receiving

cash from customers is properly used. It basically measures the cash flow in the value

stream. The number of outstanding days for the accounts receivable is calculated by

dividing the accounts receivable amount by the average daily sales. When the number of

days is high this means there is shortage of cash flow in the value stream and the

process of receiving cash from customers must be revised.

For this case study, the average daily sales amount is calculated by dividing the

amount of monthly sales by the number of working days per month:

901,470/22 = £40,976

Assuming that the amount of accounts receivable is £740,500, the number of

outstanding days for accounts receivable can be calculated as:

740,500/40,976 = 18 days

5.8.2. Calculating the financial benefits of applying lean manufacturing

It is important to check the effects of applying lean manufacturing on the bottom

line. Improvements to the bottom line are the only way to convince the management

that lean manufacturing is not only good operationally but also financially. The standard

accounting system is unable to detect any financial improvements resulting from

implementing lean manufacturing as they are usually long term. In addition, the

standard accounting system may show that the immediate financial effects of

implementing lean manufacturing are the same or even worse than before applying it.

This may raise the issue of whether implementing lean manufacturing was a good idea

in the first place. This idea is further explained while the financial benefits of applying

lean manufacturing are being identified in the case study.

The standard accounting system usually calculates the cost of sales as follows:

Cost o f sales = cost o f purchased materials + conversion cost + starting inventory -
ending inventory

Now, assuming that the data for the case study before and after applying lean

manufacturing are as presented in Table 5.25, the cost of sales before lean according to

the above-mentioned equation can be calculated as:

105

340,510 + 110,047 + (40,020 - 40,020) = £450,557

and the cost of sales after lean can be calculated as:

317,240 +102,977 + (40,020 - 9,100) = £451,137

This means, the cost after lean is higher than before lean by:

451.137-450,557 = £580

Table 5.25. The data of the case study before and after applying lean manufacturing

Before lean After lean
Starting inventory (£) 40,020 40,020
Cost of materials (£) 340,510 317,240
Conversion cost (£) 110,047 102,977
Ending inventory (£) 40,020 9,100

This negative result is actually not due to an increase in either the conversion cost or the

cost of materials. On the contrary, the conversion cost and the cost of materials were

reduced after applying lean manufacturing, which means, the negative result would

have been higher by:

(340,510-317,240) + (110,047 -102,977) = £30,340

In fact, the increase in the cost of sales after applying lean is the result of a reduction in

inventory by (40,020-9,100) = £30,920, which is a normal consequence of applying

lean manufacturing.

In order to show the real financial improvements to the value stream after

implementing lean manufacturing, the negative impact of inventory reduction should be

eliminated from the financial statements. Lean accounting presents the financial results

in a way that reflects the real changes to the value stream by eliminating the inventory

reduction effect. Lean accounting makes the value stream statement even clearer by

including not only financial information but also operational and resources information.

This new improved representation of the financial aspects is called the “Box Score”

(Maskell & Baggaley 2004). An example of the box score for the case study is

presented in Table 5.26.

106

Table 5.26. The box score for the PCB value stream in the case study

Current
state

Future
state Change Long term

future Change

Dock-to-dock days 2 5
cdfi First time through 5 5 .5 1 %
O • ̂ On time delivery 8 8 .3 6 %aj-iQ Floor space 3 2 0 0 m 1
O ho Sales per person 1 9 , 5 9 7

Average cost/unit 1 5 8 . 0 9

8 £>
Productive

U ’«o ctfm Cl,
Non productive

c> cd
p4 «■ Available

Inventory value 4 0 , 0 2 0
cd Revenue 9 0 1 , 4 7 0

§ Material costs 3 4 0 , 5 1 0 <

Conversion costs 1 1 0 , 0 4 7

Value stream profit 4 5 0 , 9 1 3

The operational and the financial information for the value stream have already

been discussed in subsections 5.8.1.2 and 5.8.2 respectively. Hence, the information is

filled in the table accordingly. However, one entry of the financial information needs to

be calculated; it is the value stream profit. This can be calculated by subtracting the

material and conversion costs from the value stream revenue:

901,470-340,510-110,047 = £450,913

As for the information related to resource capacity, it has been explained before that the

implementation of lean manufacturing frees some resource capacities. The successful

exploitation of these freed capacities is what will increase the value stream profit. This

can be achieved by, firstly, calculating how much capacity has been freed and,

secondly, deciding what to do with this capacity. This is discussed in the following two

subsections.

5,8.2.1. Calculating freed capacity
As shown in Table 5.26, resource capacity can be divided into three categories:

productive, non-productive and available; this categorisation applies to the two types of

resources (people and machines). Productive capacity is the ability to do the work that is

directly involved in manufacturing the required products (e.g. fabrication, assembly,

107

etc.). Non-productive capacity is the ability to do the work that is not directly involved

in manufacturing the required products but is necessary for the production process (e.g.

set-up, maintenance, rework, planning, administration, etc.). Available capacity is the

ability to do work during the spare time after productive and non-productive capacities

have been fulfilled (e.g. the time when the required jobs has been performed and, still,

there is time to do something else).

The freed capacity can be calculated by calculating the capacities before and after

lean for all the cells in the value stream and for all the resources. Calculating the

capacity for a particular cell requires analysing the cell and determining the types of

activities (productive or non-productive) that are performed in the cell and the time

required for each activity. The total time for the productive and non-productive

activities can then be calculated. To calculate the percentage of the productive, non

productive and available capacities, the total available time during the period under

consideration should be calculated. The total available time is basically the total number

of hours within which the people/machines should, according to the company policy, be

working during the period under consideration. The resource capacities, therefore, can

be calculated as follows:

Productive = (itotal productive time! total available time) x 100%

Non-productive = {total non-productive time/total available time)x 100%

Available = 100- Productive - Non-productive

These three equations are applied to the cells in the PCB value stream to calculate the

resource capacities for the box score presented in Table 5.26. The SMT cell is used as

an example to show how the resource capacity can be calculated.

The data required to calculate the time of activities for the SMT cell are assumed

to be known as presented in Table 5.27.

Table 5.27. The required data for some of the SMT activities

Activity No. of times/month Average time (min)
Material moves 148 8
Meetings/training 6 50
Other activities (cleaning etc.) 11 45
Waiting (per product) 2850 1.391
Downtime (machine) 10 45

108

The available time for machines can be calculated as follows:

8 (hours per day)x 22 (days per month) = 176 hours per month per machine

As for people, the available time (with two 10-minute breaks) can be calculated as:

(8 - 2x (10/60)) x 22 = 168.67 hours per month per person

The machines continue to run during the breaks since not all machine operators take

their breaks at the same time. The activities performed in the SMT cell and the time of

each activity for both people and machines can now be calculated. The results are

presented in Table 5.28. Using the data from Table 5.23 and Table 5.27, the time of the

activities can be calculated as follows.

- Machine set-up: This is a non-productive activity and the time of the activity can be

calculated as follows.

- For people: number of batches x set-up time x number of people

45x(38/60)x5 = 142.50 hours

- For machine: number of batches x set-up time

45x (38/60) = 28.50 hours

- Moving materials: This is a non-productive activity and the time of the activity can

be calculated as follows.

- For people: number of times moved x average time per move

148x(8/60) = 19.37 hours

- Attending machine/product: This is a non-productive activity for people but

productive for machine and the time of the activity can be calculated as follows.

- For people & machine: number of boards produced x cycle time

2850 x (1.5/ 60) = 71.25 hours

- Training/meetings: This is a non-productive activity and the time of the activity can

be calculated as follows.

- For people: number of times x average time of meeting/training x

number of people

6x (50/60) x 5 = 25.00 hours

109

Table 5.28. Activities in the SMT cell and the time of each activity

People Machine

Activity Productive Non
productive Productive Non

productive
Set-up 142.50 28.50
Moving materials 19.73
Attend machine/prod. 71.25 71.25
Training/meetings 25.00
Wait/downtime 66.07 73.57
Other (cleaning, etc.) 41.25
Total 365.81 71.25 102.07

- Wait/downtime: This is a non-productive activity and the time of the activity can be

calculated as follows.

- For people: number of boards produced x average waiting time

2850 x (1.391/60) = 66.07 hours

- For machine: number of boards produced x average waiting time +

number of downtimes x average time of downtime

2850x (1.391 / 60) +10 x (45 / 60) = 73.57 hours

- Other (cleaning, etc.): this is a non-productive activity and the time of the activity

can be calculated as follows.

- For people: number of times x average time x number of people

llx(45/60)x5 = 41.25 hours

The resource capacities (people and machine) for the SMT cell can now be

calculated.

For people:

- Productive: 0.00%

- Non-productive:

(365.81 /(168.67 x 5)) x 100% = 43.38% •

- Available:

100-0.00-43.38 = 56.62%

110

For machine:

- Productive:

(71.25/176) x 100% = 40.48%

- Non-productive:

(102.07 /176) x 100% = 58.00%

- Available:

100-40.48-58.00 = 1.52%

The resource capacities for the cells in the PCB value stream are calculated again

after the implementation of lean manufacturing in order to check how much free

capacity has been achieved. Again, the SMT cell is used as an example. Assuming that

the introduction of lean manufacturing has led to the following improvements:

- Set-up time is reduced to 25 minutes and only 3 people are required to perform the

set-up activity.

- Material moves are eliminated since the suppliers provide the materials daily and

directly to the SMT cell.

- Waiting is eliminated and down time is reduced to 4 times.

Taking into consideration these new improvements, the data in Table 5.27 (before lean)

should be amended as presented in Table 5.29 (after lean). Now, using data from Table

5.29 and following the same calculations used to calculate the times of activities before

lean, the times of activities after lean can be calculated. The results are presented in

Table 5.30.

Table 5.29. The data for the SMT activities after lean

Activity No. of times/month Average time (min)
Material moves 0 0
Meetings/training 6 50
Other activities 11. 45
Waiting (per product) 2850 0
Downtime (machine) 4 45

111

Table 5.30. Activities in the SMT cell and the time of each activity after lean

People Mac lines

Activity Productive Non
productive Productive Non

productive
Set-up 85.50 18.75
Moving materials 0.00
Attend machine/prod. 71.25 71.25
Training/meetings 25.00
Wait/downtime 0.00 3.00
Other (cleaning, etc.) 41.25
Total 223.00 71.25 21.75

The resource capacities for the SMT cell after implementing lean manufacturing

can now be calculated following the same calculations performed above. The final

results regarding the resource capacities for the SMT cell before and after the

implementation of lean manufacturing and the changes achieved are shown in Table

5.31. As can be seen from the table, the implementation of lean manufacturing has

converted part of the non-productive capacity into an available capacity in the SMT cell.

The percentage of capacity freed by lean manufacturing is 16.93% for people and

45.64% for machines.

Table 5.31. Resource capacities for the SMT cell before and after implementing lean

People Machines
Before

lean
After
lean Change Before

lean.
After
lean Change

Productive (%) 0.00 0.00 0.00 40.48 40.48 0.00
Non productive (%) 43.38 26.44 -16.93 58.00 12.36 -45.64
Available (%) 56.62 73.56 16.93 1.52 47.16 45.64

The same procedures are applied to the other cells in the PCB value stream and

the capacities of the resources are calculated before and after implementing lean

manufacturing. The complete picture can now be seen after filling the information

obtained above in the box score for the case study. Table 5.32 represent the new box

score, which includes, in addition to the information presented in the old box score, the

112

capacities of resources and the future state (after lean) for the three categories:

operational, resource capacity and financial.

Table 5.32. The new box score for the case study

Current
state

Future
state Change

1

O
pe

ra
tio

na
l

i

Dock-to-dock days 25 6.5 -18.5
First time through 55.51% 91.50% 35.99%
On time delivery 88.36% 97.20% 8.84% ■
Floor space 3200m2 2200 m2 -1000 m2
Sales per person £19,597 £19,597 £0
Average cost per unit £158.09 £147.44 -£10.65

i

Re
so

ur
ce

ca
pa

ci
ty Productive 23.18% 21.50% -1.68%

Non productive 58.46% 38.05% -20.41%

Available 18.36% 40.45% 22.09%

Fi
na

nc
ia

l Inventory value £40,020 £9,100 -£30,920
Revenue £901,470 £901,470 £0
Material costs £340,510 £317,240 -£23,270
Conversion costs £110,047 £102,977 -£7,070
Value stream profit £450,913 £481,253 £30,340

In addition to the £30,340 improvement to the value stream profit, there are also

operational improvements (e.g. 1000m2 of ffeed-up floor space and 40.45% available

capacity) that can be exploited to further increase the financial profit of the value

stream. A lean option would be to use the freed resources to increase production. The

other option would be to sell/rent the extra resources. For example, extra people can be

made redundant, extra machines can be sold or rented to another company. The

information for long-term future state can be calculated once the decision of what to do

with the extra resources is taken and, then, the box score can be completed.

5.8.3. Eliminating wasteful financial transactions
Financial transactions and processes are used to maintain control over the

business. Accounts payable, accounts receivable and general lodger are examples for

such financial processes. As these transactions and processes incur costs, lean

accounting tries to eliminate some of them while maintaining the required control over

the business. In addition, eliminating transactions frees up more resources (mainly

113

accountants), which can then be used for lean improvements. The best way for

eliminating transactions is to eliminate the reasons behind the existence of these

transactions in the first place, and that is what lean accounting does. In the case study,

some financial transactions will be used as examples to show how lean accounting can

eliminate these transactions.

5.8.3.I. Accounts payable and accounts receivable processes
The company accountants spend a great deal of time auditing invoices from

suppliers and producing invoices to customers. The reason for that is to match these

invoices with the purchase orders produced and receipts received. This process is time

and cost consuming and the company would do better without it. Reducing the number

of invoices, and ultimately eliminating them, is the way to eliminate this process. The

lean accounting way of dealing with this issue is explained hereafter. The accounts

payable is used as an example.

The accounts payable elimination process starts with the company examining its

suppliers to identify the key ones. Then, the key suppliers are certified and blanket

purchase orders are established with them. The blanket purchase order contains the

terms for supplying, the prices, the amounts, etc. which are agreed with the suppliers.

The outcome of this action is that the need for invoices is reduced dramatically. The

company now has a firm relationship with a small number of certified suppliers who

will deliver the required materials daily to the production cells. Furthermore, the

matching of purchase orders with the invoices has been eliminated since the trust

between the company and its certified suppliers is now higher. Reducing the number of

invoices means less accounts payable and, hence, less wasteful transactions.

Furthermore, the number of invoices could be completely eliminated when the lean

practices mature enough in the company and the payments are made to the suppliers

when the materials are used.

The same approach discussed above can be applied to the accounts receivable

with one difference. The company takes on the role of the supplier and its customers

take on the role of the company. The company becomes a certified supplier to its main

customers, who are encouraged to create blanket purchase orders with the company.

The results achieved here are the same as discussed for the accounts payable.

114

5.83.2. The general lodger and end-of-month close process
In the case study, the company follows the traditional way of processing the

general ledger and end-of-month close. Since the company is organised by departments

there are resources allocated to each department. Hence, there are different accounts for

the resources of each department, as shown in Table 5.33. This leads to a complex

general ledger and end-of-month close process compared to the case when the company

is organised by value stream.

Table 5.33. The resources and their accounts for each department for the case study

Resources Accounts
People Salary & benefits, taxes, training, travel, entertainment
Machines Outside maintenance, depreciation
Tools Tools used, depreciation
Supplies Supplies costs
IT equipments Supplies, depreciation
Office equipments Supplies, depreciation
Utilities Electricity, gas, water, telephone
Warehouses Warehouses costs
other Property tax, land rent
Total No. of accounts 45

Having introduced lean accounting, the company is now organised and managed

by value streams. The number of departments is now reduced to three: PCB value

stream, research & development and administration & overhead. Furthermore, the

company reduced the number of accounts per department to five (materials, people,

machines, external costs and other costs). Due to the reduction of the number of

departments and the reduction of accounts per departments the number of accounts in

the general ledger is reduced from 45 (as shown in Table 5.33) to 5x3 = 15. The

reduction of number of accounts in the general ledger means the way of producing

financial statements has become easier and faster and this leads to time and, hence, cost

reduction.

Table 5.34 represents the financial statement for the case study. The profit rate of

the PCB value stream is calculated by dividing the value stream profit by the revenue.

As for the other two columns (new products and admin/overhead), the information

mentioned is assumed to be known data.

115

Table 5.34. A financial statement for the case study

Value streams
PCB New products Admin/overhead Total

Revenue £901,470 £0 £901,470
Material Costs £340,510 £8,240 £348,750
Conversion costs £110,047 £260,255 £370,302
Value stream profit £450,913 -£268,495 £182,418
Employees costs £16,720 £16,720
Expenses £9,201 £9,201
Previous inventory £40,020
Current inventory £40,020
Change * £0
Gross profit £156,497
Profit rate 50.02% 17.36%

5.8.4. Value stream costing

The value stream includes all the cells that contribute to fulfil a customer order

starting with order entry and ending with after-sale support. Since standard costing (a

process used in standard accounting) is not suitable for lean companies due to its way of

dealing with overhead and to its non-lean characteristics (e.g. detailed data collection), a

more suitable costing method that relies on lean principles and that is easy to understand

is required. The lean accounting alternative to standard costing is value stream costing.

At the early stage of implementing lean manufacturing, back-flushing is used to

calculate the product cost without the need to track the costs while the product is being

produced. This process can gradually be eliminated and replaced with value stream

costing since value stream costing provides the appropriate information for decision

making and it is easy to understand and simple to implement as will be seen when

implemented on the case study.

The basic idea of value stream costing is to calculate the costs (direct and indirect)

incurred by the value stream. Then, the product average cost can be calculated by

dividing the total cost of the value stream by the number of items produced in that value

stream. This idea is actually not new and it is already being used in the process

industries (e.g. oil refining, petrochemical industries, etc.). In fact, because lean

companies are starting to have the characteristics of process-based companies (short

lead time, small batch size, the level of inventory is low and stable, etc.), it would be

116

suitable for them to use the same costing method. The implementation of value stream

costing can be performed when some conditions are met:

- Lean practices have progressed to a certain stage (when the level of inventory is low

and consistent, short lead time, etc.).

- The business should be organized by value streams not by departments because one

product or one product family can be produced by one value stream but not by one

department.

- There should be as little as possible of overlap between value streams since

overlapping makes it difficult to allocate the costs to each individual value stream.

- The inventory and the production processes should be under control.

There are some costs that cannot be attributed to any particular value stream in the

business (e.g. research and development, market research, recruitment, training, annual

audit, etc.); these costs are usually, but not always, small when compared to the other

costs and are not allocated to the value streams. Instead, they are considered as

sustaining costs and treated separately.

The cost of a product is required to be calculated by the standard accounting

system because some decisions (e.g. pricing, make/buy, etc.) are made based on it.

However, in a lean organization, the focus is on the value that the product provides to

the customer and the pricing decision is made according to this value. The make/buy

decisions are made according to how the decisions will affect the profitability of the

value stream (the existence or non-existence of required capacity). The same discussion

can be applied when a new product is introduced. This means, in a lean organization,

the need to calculate the cost of a particular product is not always required. However,

when it is required other methods should be used since value stream costing does not

provide it. The solution provided by lean accounting to this problem is ‘features and

characteristics costing’, which will be studied in subsection 5.8.5.

The value stream costing method is used to calculate the average cost of the PCBs

produced by the PCB value stream in the case study. The calculated costs are for a

period of one month and calculated as follows. The costs of employees working

(directly or indirectly) in the value stream are calculated as shown in Table 5.35 in

which the number of employees and the cost per employee are assumed to be known

data. The number of employees represents the equivalent number of employees working

for the PCB value stream. For example, the number of employees working in

117

“Purchasing” is 3 but since they work for two different value streams (PCB and new

products development), the equivalent number of employees working in the PCB value

stream is less than 3. Depending on how much time these 3 employees spend working

for each value stream, the equivalent number of employees working for the PCB value

stream can be calculated. Assuming that the amount of time they spend working for the

PCB value stream is double the amount they spent working for the new products

development value stream, this means, the equivalent number of employees working in

“Purchasing” for the PCB value stream is equivalent to 3x (2/3) = 2 people as shown in

Table 5.35.

Table 5.35. The cost of employees working in PCB value stream

No. of
employees

Cost per
employee Total cost

Manager 1 £2,480 £2,480
SMT machine 5 £1,520 £7,600
Manual load 10 £1,520 £15,200
Test/rework 9 £1,520 £13,680
Bum-in 4 £1,520 £6,080
Package/ shipment 2 £1,520 £3,040
IT 1 £1,960 £1,960
Purchasing 2 £1,680 £3,360
Customer services 1 £1,680 £1,680
Human resources 1 £1,680 £1,680
Secretary 1 £1,680 £1,680
Accounting 2 £2,160 £4,320
Quality assurance 1 £2,160 £2,160
Design/manufacturing eng. 2 £2,160 £4,320
Maintenance/technical supp. 2 £2,160 £4,320
Security/cleaning 2 £1,520 £3,040
Total 46 £76,600

The costs of materials, machines and other costs are also assumed to be known as

presented in Table 5.36. The cost of materials include the costs of raw materials used in

the manufacturing processes of the PCBs; the costs of machines include maintenance,

utilities and depreciation; other costs include any outside processing costs, consumable

materials, tools, etc. The total of the costs in Table 5.35 and Table 5.36, excluding the

costs of materials, represents the conversion cost in the PCB value stream.

118

Table 5.36. The costs of material, machines and other costs for PCB value stream

Costs of
materials

Costs of
machines Other costs

SMT machine £320,450 £999 £12,912
Manual load £7,998 £257 £5,430
Test/rework £1,230 £142 £1,530
Bum-in £10,832 £120 £1,056
Package/shipment £140 £3,150
Design/manufacturing eng. £5,691
Security/Cleaning £2,020
Total £340,510 £1,658 £31,789

Therefore, the conversion cost, which is used as known data earlier in this chapter, can

now be calculated:

76,600 + 1,658 + 31,789 = £110,047

Now, the total cost of the PCB value stream can be calculated:

110,047 + 340,510 = £450.557

The company produces an average of 2850 PCBs per month, this means the average

cost of one PCB is:

450,557/2850 = £158.09

5.8.5. Features and characteristics costing
Features and characteristics costing method is based on the idea that there are

some features and characteristics in the product that determine the cost of

manufacturing it. Since the value stream is designed to produces similar but not

identical products (product family), the average cost calculated by the value stream

costing method does not accurately represent the cost of any of the products. Rather, it

represents the cost of an ‘average product’ that has the average features and

characteristics found in the other products. Therefore, the actual cost of any of the

products is probably close, but not identical, to the average cost. The difference between

the two costs depends on how much the two products are different in their features and

characteristics. Therefore, to calculate the cost of a product more accurately, the

features and characteristics that differentiate it from the ‘average product’ should be

identified and the cost generated from having them should be calculated.

119

In general, the products that require more time to be manufactured consume more

cost; this means, the cost of a product is related to its production rate of flow, which in

turn is determined by the flow at the bottleneck cell in the value stream. Therefore, all

these issues should be considered when using the features and characteristics costing

method for calculating the cost of a product. Not only can features and characteristics

costing method be used to calculate the cost of a product already being manufactured

but it can also be used to calculate the cost of products that are still in the design stage.

The features and characteristics costing method is applied to the case study to

calculate the costs of each PCB produced by The PCB value stream. The PCBs that

have high number of components require longer cycle times on the SMT machine than

the average cycle time (1.5 minutes). The same principle applies to the PCBs that have

small number of components.

- Determining the bottleneck cell:

The bottleneck cell in the case study is the SMT cell. The average time required

by the PCB to pass through the cell is the sum of the cycle time, waiting time and set-up

time:

1.5 +1.391 + (38 x 45 / 2850) = 3.491 minutes

- Determining the features and characteristics that affect the production of the

bottleneck cell:

In PCB manufacturing, the product features that affect the SMT production time

is the number of components that have to be placed on the board and the types of these

components. In the case study, the number of components is categorised into low,

average and high, which corresponds to 1.2 min, 1.5 min and 1.9 min cycle times

respectively. Regarding the types of components, it can affect the set-up time of the

SMT machine in the case study. When the components include a high percentage of

components that are not dedicated to the SMT machine, the set-up time will be higher

than the average set-up time and vice versa. To take this into account, the percentage of

the non-dedicated components is, again, categorised into low, average and high, which

corresponds to 30 min, 38 min and 53 min set-up times respectively. Table 5.37 shows

the categories of the features and characteristics that affect SMT production time. It has

to be noted that for the average number of components and the average number of non

dedicated components, the cycle time is 1.5 min and the setup time is 38 min. These two

amounts have been used previously in the case study as presented in Table 5.23.

120

Table 5.37. Categories of the features and characteristics that affect SMT production

Category Number of
components

Cycle time
(min)

Percentage of non
dedicated components

Set-up time
(min)

Low <17 1.2 <2% 30
Average 17-25 1.5 (2-4)% 38
High >25 1.9 >4% 53

- Calculating the cost of PCBs:

The conversion costs of the PCBs are calculated taking into account the nine

combinations (3 categories for the number of components x 3 categories for the non

dedicated components) listed in Table 5.37 as follows. The conversion cost of an

average PCB (a PCB that has a number of components of 17-25 and a percentage of

non-dedicated components of 2%-4%) is the conversion cost of the PCB value stream

divided by the average number of PCBs produced per month. The average number of

PCBs produced per month is calculated by dividing the production time of the SMT

machine by the cycle time. The production time is the number of working minutes per

month minus the downtime minutes. Assuming that the average number of working

days per month is:

5 {days per week)x 52 {weeks per year)/12 {months per year) = 2 \.61 days

Then, the working minutes per month can be calculated:

8 {hours per day) x 60 {minutes per hour) x 21.67 = 10,400 minutes

Taking into account the data in Table 5.27, the downtime minutes per month can be

calculated:

10 x 45 = 450 minutes

This means, the production time is:

10,400-450 = 9950 minutes

Since the cycle time for the SMT, as calculated above, is 3.491 min, the average number

of PCBs produced per month is:

9950/3.491 = 2850 boards

This amount has been used in previous calculations throughout this chapter.

Now, the conversion cost of an average PCB is calculated:

121

110,047/2850 = £38.61

The same calculations can be performed for the other eight combinations taking into

consideration the cycle times and set-up times for each combination in Table 5.37. For

example, when considering a high number of components and a low percentage of non

dedicated components, the cycle time and the set-up time for this combination are

1.9min and 30min respectively. The conversion costs for all types of PCBs are

presented in Table 5.38.

Table 5.38. The conversion costs for all PCB types in the PCB value stream

Percentage of non-dedicated components
<2% (2-4)% >4%

Number of
components

<17 £33.15 £34.60 £37.69
17-25 £36.99 £38.61 £42.05
>25 £42.11 £43.95 £47.87

As can be seen from Table 5.38, the conversion cost per PCB starts with £33.15

for the easiest to manufacture and ends with £47.87 for the most difficult to

manufacture. As for the cost of materials, it is obtained for the intended PCBs from the

bill of materials. Usually, PCBs with a higher number of components tend to have a

higher cost of materials.

It has been explained above how features and characteristic costing method could

be used to calculate the cost for different PCB types. Following the same analogy, this

method could potentially be used to calculate the costs of products in other industries.

However, there is a limitation to this method that should be noted. This method

provides one cost for a range of similar products (i.e. sub-family of products). In reality,

non-identical products consume similar but not identical costs. For example, in the case

study, a board type with 18 components and 5% non-dedicated components has the

same conversion cost as a board type with 24 components and 7% non-dedicated

components because these two board types fall into the same range according to the

classifications shown in Table 5.38 (average number of components and high

percentage of non-dedicated components). In some cases, the downside of this costing

method can be ignored due to the fact that the exact cost of a product is not always

required.

122

5.8.6. Target costing
Target costing is used in lean accounting to focus on customer value, which is one

of the principles of lean thinking. Target costing is used to calculate the allowable cost,

which is the cost that represents the difference between the selling price and the

required profit of a product. The allowable cost of a product should satisfy the customer

and the value stream profitability required by the company management. Target costing

is implemented by establishing the customer value by considering the product and any

other services associated with it. The allowable cost is then calculated as the customer

value (selling price) minus the required profit, and then compared to the average

product cost created by value stream costing as explained in subsection 5.8.4. If the

allowable cost is less than the average product cost, some improvements should be

made to reduce the average product cost. These improvements may include changes to

any process in the value stream from order entry to after-sale services. Target costing

can be used for products currently being manufactured and for new products alike. It

should be noted that target costing is not just a method for calculating the cost of a

product to satisfy the customer and the company management, it is also a method for

continuous improvement across the value stream in order to increase customer value

and, at the same time, to increase value stream profitability.

The process of implementing target costing requires many steps. It usually starts

by understanding the customer needs through conducting surveys, then, identifying the

features and characteristics that will meet these needs. This step is followed by

identifying the target costs for the products and services, and finally, balancing the

value stream costs with the target costs through continuous improvement. These steps

will be applied to the case study as explained below.

The company in the case study receives a customer order to manufacture a new

type of PCB. The rate of production will need to be 350 boards per month to fulfil the

customer demand. Having negotiated the price with the customer, it has been agreed

that the price of the new board type is to be £325.00 per board. The company

manufactures PCBs according to the requirements needed by its customers, which

means the first steps of implementing target costing (understanding customer needs and

value) are already fulfilled.

The new PCB type consists of 32 components and 3.8% of them are non-

dedicated to the SMT machine. This means that the new PCB falls into the category

123

high number of components and average percentage of non-dedicated components.

According to Table 5.38, the conversion cost for this PCB is £43.95. The cost of

materials according to the bill of materials is assumed to be £168.65, hence, the total

cost of the new PCB type can be calculated as:

43.95 + 168.65 = £212.60

The company has decided to keep the profit rate for the PCB value stream constant (i.e.

50.02%, as shown in Table 5.34) after the new PCB type is introduced, which means the

new PCB should be sold with a profit rate of 50.02%. With such profit rate, the

allowable cost can be calculated as the selling price minus required profit:

325.00 - (325.00 x 50.02 /100) = £162.43

Since the total cost is higher than the allowable cost, improvements to the value stream

have to be made to get rid of the cost gap of:

212.60-162.43 = £50.17per board

or:

£50.17 (per board)x350 (boards)- £ 17,558per month

for the value stream. Without bridging this gap the profit rate of the new product would

be:

profit I revenue x 100% = (325.00-212.60)/325.00xl00% = 34.58%

and for the value stream as a whole it would be:

- The value stream revenue is the revenue of the value stream (from Table 5.26) plus

the revenue obtained from the new PCB type per month:

901,470 + (325.00 x 350) = £1,015,220

- The value stream cost is the cost of the value stream (calculated in subsection 5.8.4)

plus the cost of the new PCB type per month:

450,557+ (212.60x350) = £524,968

This means, the profit rate of the value stream without any improvements made would

be:

profit / revenue x 100% = (1,015,220 - 524,968) /1,015,220 x 100% = 48.29%

124

as shown in Table 5.39.

Table 5.39. Calculations of the target costs for the case study

New product Current value stream Future state
Allowable cost £162.43 £158.09 £158.57
Conversion cost £43.95 £38.61 £39.19
Material costs £168.65 £119.48 £124.86
Total costs £212.60 £158.09 £164.05
Cost gap £50.17 £0.00 £5.49
No. of products 350 2850 3200
Current value stream cost £74,411 £450,557 £524,968
Target value stream cost £56,853 £450,557 £507,410
Cost gap £17,558 £0 £17,558
Profit rate 34.58% 50.02% 48.29%

The figures in the second column of the table are already calculated above apart

from the target value stream cost, which can be calculated as follows:

162.43x350 = £56,853

As for the third column, the same calculations performed for the second column can be

performed here after calculating the average selling price, which is calculated as

follows:

901,470/2850 = £316.31

and calculating the average cost of materials, which is calculated as follows:

340,510/2850 = £119.48

The revenue and the total cost of materials are assumed to be known as presented in

Table 5.26. Regarding the future state column, the number of products, the current value

stream cost, the target value stream cost and the cost gap are all calculated by adding up

the corresponding amounts of the new product and the current value stream columns.

As for the rest of the amounts, they are calculated as follows:

- The allowable cost is calculated by dividing the target value stream cost by the

number of products:

507,410/3200 = £158.57

125

- The conversion cost can be calculated as follows:

(iconversion cost o f the new product x amount o f new product + conversion
cost o f the current value stream x amount o f current value stream) / amount
o f the future state

(43.95 x 350 + 38.61 x 2850) / 2300 = £39.19

- The total costs is calculated by dividing the current value stream cost by the number

of products:

524,968/2300 = £164.05

- The material costs is calculated by deducting the conversion cost from the total cost:

164.05-39.19 = £124.86

The following lean improvements have been introduced to the PCB value stream

in order to eliminate the cost gap in the value stream:

- Reduction in the cost of materials due to lean processes (pull systems, short lead

time, etc.), which have been agreed with the suppliers.

- Reduction in the conversion costs due to a reduction in the waste rate of the value

stream cells (as explained in subsection 5.8.2) and the elimination of some

transactions (as explained in subsection 5.8.3).

Assuming that the improvements have reduced the conversion and the material costs by

3.44% and 3.10% respectively for both the new PCB type and the current PCBs, this

means the new conversion and the material costs can be calculated:

- For new PCB type:

43.95 x (100 - 3.44%) = £43.44

138.65x(100-3.10%) = £163.42

- For current PCBs:

38.61x (100-3.44%) = £37.28

119.48x(100-3.10%) = £115.77

Following the same calculations performed to obtain the figures presented in Table

5.39, the new figures, after the improvements have been applied to the PCB value

stream, can be obtained as shown in Table 5.40. The table shows how the cost gap in

126

the value stream is reduced to £846 and the profit rate is increased from what it would

have been without the lean improvements to 49.94%.

Table 5.40. Financial impact of the introduction of the lean improvements

New product Current value stream Future state
Allowable cost £162.43 £158.09 £158.57
Conversion cost £42.44 £37.28 £37.85
Material costs £163.42 £115.77 £120.98
Total costs £205.86 £153.05 £158.83
Cost gap £43.42 -£5.04 £0.26
No. of products 350 2850 3200
Current value stream cost £72,051 £436,205 £508,256
Target value stream cost £56,853 £450,557 £507,410
Cost gap £15,198 -£14,352 £846
Profit rate 36.66% 51.61% 49.94%

In general, the lean improvements introduced may not necessarily improve the

situation to the extent required by the company. In this case study, since the lean

improvements have not been sufficient to reach the company target, the company could

decide not to introduce the new product. However, implementing lean improvements is

required even when no new products are introduced. In fact, the process of

implementing lean improvements is an ever continuous process and is necessary for the

survival of the company in an ever-competitive manufacturing world.

5.8.7. Financial planning

Lean accounting, in common with other accounting systems, requires planning so

that the future customer needs can be assessed in order to prepare the required resources

and capacities to meet these needs. Furthermore, the business should be flexible enough,

in terms of capacity, in order to cope with unexpected situations. In contrast to

traditional annual budgeting, lean planning is more flexible and can be updated when

needed (often regularly). Lean planning process gives the managers the required

information to successfully manage the business in a proactive way. Lean financial

planning is a team-work process. It involves the cooperation of cross-functional people

in the value stream: sales and marketing, finance, engineering and operations. The end

result of this cooperation is a plan that includes sales, new products introduction,

127

operation capacity and finance for each value stream. The plan is put into action, which

includes short- and long-term actions. This plan is updated periodically (usually

monthly) in order to reflect changing customer needs.

5.9. Activity-based costing versus lean accounting
Activity-based costing and lean accounting have been the main subjects of

Chapter 5 in which they have been applied to the case study. However, here are some

problems associated with them that should be outlined. The main problem with ABC is

that it requires a great deal of work to collect the relevant data for its implementation.

This problem is more noticeable when the organisation is large and produces high

number of product types. In fact, a large organisation requires a team of full-time people

to collect the necessary data for ABC implementation. This is a wasteful and time-

consuming process and it may force organisations experimenting with ABC to abandon

it. Another problem associated with ABC is that ABC allocates costs to products on the

basis of cost drivers that may not be proportional to the volume of the output.

Furthermore, it can be argued that ABC, compared to LA, is a method for cost

estimation not for cost reduction. It helps provide better understanding of how costs are

incurred and allocated to products but it does not provide a plan for minimising these

costs. It is up to the management to find a way of doing that having understood how the

costs are incurred.

Kaplan, who is the cofounder of ABC, acknowledges the complexity of

implementing ABC and how it is difficult to sustain it over time (Kaplan & Anderson

2003). The solution to this problem is to find other methods that are less data

demanding and more lean based. Bearing this in mind, Kaplan suggested a new

approach to ABC. This new approach is time and capacity based and has some

similarities to lean accounting. Maskell (2006) presented those similarities as shown in

Table 5.41. This new approach shows that ABC is evolving so that it can solve the

problems associated with it on one hand and adopts the principles of lean on the other

hand. In other words, the gap between ABC and lean accounting is continuously

narrowing and soon a new hybrid system which has the positive features of both could

be developed.

As for lean accounting, it has also its own problems. The lean accounting way of

calculating the cost of a particular product is represented by ‘features and characteristics

costing’. As explained in section 5.8.5, this method relies on dividing the product types

128

into groups of similar products depending on their features and characteristics. The cost

of the products in each group is then calculated assuming that all the products in this

group have the same cost. In reality, this assumption may or may not be accurate and

when it is not, this could eventually lead to wrong decisions being made.

Table 5.41. The similarities between new ABC and lean accounting

New ABC Lean Accounting
Cost

allocation
Collected by departments within the
processes

Step by step allocation as in
value stream costing

Product
cost

Calculated according to the capacity
required to perform the job within
the process

Considering the rate of flow
through the bottleneck
operation

Capacity Used capacity and unused capacity Productive, non-productive
and available capacity

Cost Process cost Value stream cost
Activity
features

Incorporating activity characteristics
that cause processing time to vary

Features and characteristics
costing

5.10. Summary
ABC and LA have been presented in this chapter as two examples for the cost

estimation and accounting aspects of this research. The implementation procedures of

both methods have been studied and applied to a case study. The implementation

process of ABC on the case showed how ABC could be used to analyse the production

process and perform the right steps to understand and potentially reduce the production

costs. In the case study, ABC was used to identify the activities used for producing

PCBs and the cost of each activity. This allowed for more attention to be paid to the

most costly ones in order to reduce their costs. The most costly activities were found to

be “placing components”, “programs and fixtures”, “testing” and “rework”. As shown

in Chapter 4, it was possible to reduce the cost of the “placing components” activity by

optimising the pick-and-place machine. This optimisation was achieved through

optimising the component placement sequence and feeder assignment. The use of ABC

in this case study has proven how it could be successfully used for estimating the cost of

the PCB production.

129

The importance of implementing lean accounting alongside lean manufacturing

and how it could be achieved were explained and the explanation was supported by

examples for illustration purposes. It was illustrated how lean accounting could help

companies implementing lean manufacturing see the financial benefits of such

implementation in addition to the operational benefits. The case study clarified the

implementation steps of lean accounting and made it easier for the reader to

comprehend what lean accounting was about. It explained the financial benefits of

implementing lean principles. Finally, the problems associated with activity-based

costing and lean accounting were outlined and how a new activity-based costing

approach was being developed.

130

CHAPTER SIX

6. RESEARCH VALIDATION & EVALUATION

6.1. Introduction
In this chapter, the validation of the results obtained in this research is presented.

This is achieved by comparing the results and the approaches used in this research to

similar research works in the literature. In addition, the importance of this research and

its contributions to the advancement of knowledge are outlined.

6.2. Research validation
In this section, the proposed algorithm to solve the PCB related three problems is

validated against other algorithms used in the literature to solve PCB related problems.

Since the three PCB problems considered in this research has not been solved

simultaneously before, the results obtained in this research will be compared, where

available, to the results obtained by researchers who simultaneously solved two (feeder

assignment and component sequencing) of the three PCB problems considered in this

research.

6.2.1. Validation of the work on the optimisation of production processes

The most similar study in the literature to the case considered in this research is

that of Su et al (1998). In their study, Su et al presented a TS-based approach to obtain

the shortest (or near shortest) cycle time, feeder assignment and component sequencing

based on a dynamic pick and place (DPP) robot motion model. In a DPP model, the

robot moves in two directions (X and Y axes) and the board and the feeders move in

one direction (X-axis). This means that Su’s study is different from the research

presented in this thesis in the number of the problems solved as Su focused on the

feeder assignment and the component sequencing problems, however, in this research

work an additional problem (board type sequencing) was considered. Another

difference between the two studies is the movement of the board and feeders (mobile in

Su’s and fixed in this research). The comparison between the two cases, because of

these two differences, will be of limited value and importance. Therefore, the case

considered in this research is adjusted as follows so that a comparison can be made.

131

The board type sequencing is affected by the set-up time and the feeder

assignment. By setting the set-up time in the program to zero, the problem of board type

sequence is eliminated and it is no longer affecting the results. Regarding the issue of

fixed board and feeders, equation (4.6) in Chapter 4 is still applicable, however, the set

up time is now equal to zero and the way the time calculated in the program is adjusted

. to take into account the movement of the board and the feeders. Now, the board and the

feeders move horizontally (x-axis) at a speed equal to the speed of the machine head

(500 mm/sec).

Su et al compares their results to the work of Wang et al (1997 cited in Su et al

(1998)) and they claim that their results are better than Wang’s (who considered the

feeder assignment problem only). In the case where the number of insertion points is 30

and the number of component types is 15, the cycle time achieved by Su’s approach is

14.26% less compared to the cycle time achieved by Wang’s approach. However, the

average improvement for all the combinations considered is 9.08%. The average

improvement to the assembly time achieved in this research is 5.96% and after adjusting

the case to be similar to Su’s study, the improvement has increased to 7.87%. Although

this percentage is less than the results achieved by Su et al (1998), but this does not

necessarily mean that Su’s approach is superior to the approach adopted in this research.

Su’s TS-based approach does not consider two of the basic attributes of TS:

intermediate and long-term memories (diversifications and intensification). Taking

these two attributes into consideration in this research means that the TS algorithm

adopted in this research should be superior to Su’s. Unfortunately, the results obtained

do not support this claim because the data used in this research are different from that of

Su’s since the author did not have access to Su’s data in order to use them.

It should be noted that the increase of the improvement in assembly time from

5.96% to 7.87% after eliminating the board type sequence problem and considering a

moving table and moving feeders, leads to the belief that the movement of the board

and feeders have positively affected the TS algorithm. A possible reason could be that

the movement of the board and feeders have provided the TS algorithm more room for

manoeuvre and, hence, more chance to improve the assembly time.

As for the GA algorithm, it has been used intensively in the literature to solve

PCB problems and using it here for the same goal (solving PCB problems) would be of

little usefulness. Therefore, it is used in this research mainly for comparison reasons.

132

The results obtained from using GA are compared to that obtained from using TS and

the effects of changing the parameters of the algorithm are also considered as presented

in Chapter 4. Therefore, a validation process is not necessary for GA algorithm as

performed for TS algorithm.

6.2.2. Validation of the work on the cost estimation aspect
As mentioned in Chapter 5, there has not been much work on the implementation

of ABC in PCB manufacturing facilities. However, the work of Ong (1995) is

considered to be the most suitable to compare to this work due to the fact that Ong

applied his work on a case study which is quite similar to the research presented in this

thesis. Ong uses a different way of implementing ABC compared to what is used in this

research. He uses worksheets, activity charts and a cost build-up table to calculate the

cost of PCBs with the aim of allowing designers to estimate the cost of PCBs at the

design stage. However, in this research the implementation is a four-step process as

presented in section 3.4.

Since the data used by Ong are different from the data used in this research, the

comparison between the results obtained in both research works can be carried out only

when the costs of activities are represented as percentage values as shown in Table 6.1.

For reasons beyond the author’s knowledge, some of the activities in the example

presented in Ong’s research have no cost (e.g. Buming-in, Applying adhesive,

designing, etc.). In spite of this and in addition to the 10-year gap in time between the

two research works, there are similarities between the costs of activities in Ong’s

example and the costs of activities in the case study presented in this research. As can

be seen from Table 6.1, the three activities of the highest costs are the same (Placing

components, Programs & fixtures and Testing) in both cases. However, the notable

difference is that the cost percentage is higher in Ong’s example which could be due to

the technological advantage available these days. As for the rest of activities, there are

some similarities in the costs (e.g. Rework, Soldering, loading & unloading, etc.) and

some differences (e.g. Inventory holding, Screen printing, Curing & baking, etc.), which

is bound to exist due to the differences in the data used (e.g. different number of

components, different layout, etc.) between Ong’s example and the case study presented

in this research.

The problem with Ong’s approach is its dependence on worksheets and activity

charts that have to be updated continuously and the fact that they are suitable for PCB

133

cases only. The worksheets, which describe the components, their placement, set-up

costs, etc., have to be updated since new types of components are introduced

continuously. In addition, the continuous technological advancement means that the

costs of components are continuously changing. The same discussion applies to the

activity charts since they require updating when new components or new placement

machines are introduced. Updating the worksheets and activity charts is not an easy

process; it requires intensive experimentation to obtain accurate information.

Table 6.1. Costs of activities (in percentage) in this research and in Ong’s research

Activity This research Ong’s research
Placing components 14.46% 26.83%
Programs & fixtures 11.88% 25.82% '
Testing 9.37% 12.80%
Rework (repair) 5.78% 6.04%
Buming-in 5.34% 0.00%
Inventory holding 5.30% 1.91%
Material handling 5.26% n/a
Soldering 5.18% 4.94%
Screen printing 4.83% 0.43%
Applying adhesive 4.83% 0.00%
Visual & touch-up 4.18% 7.61%
Curing and baking 3.37% 0.14%
Cleaning 3.37% 1.13%
Kitting/other operations 3.11% 6.37%
Designing 2.93% 0.00%
Setting-up 2.54% 0.88%
Loading & unloading 2.06% 2.56%
Place-&-route design 1.99% 0.00%
Acceptance sampling 1.59% 1.41%
Sequencing parts 1.02% 0.00%
Purchase order 0.98% 0.96%
Inventory retrieval 0.62% 0.17%
Total 100.00% 100.00%

The deficiency of Ong’s approach explained in the previous paragraph is not an

issue in the approach used in this research. Any changes to the component types or to

the machines used, or even any changes introduced to the facility which affect the

production cost, are reflected during the implementation of the four-step process

explained in section 5.4. In addition, the implementation process can be tailored to suit

134

different manufacturing facilities other than the manufacturing of PCBs. These

advantages give the implementation process considered in this research the upper hand

when ABC implementation is considered.

6.2.3. Validation of the work on the accounting aspect
Lean Accounting has been considered in this research as an example to show how

it is possible to improve the accounting system in order to reduce the cost on one hand

and show the financial benefits of implementing lean manufacturing on the other hand.

Since LA is a relatively recent subject, not much research has been designated to it. In

fact, the only substantial work about LA with a full detailed case study is the work of

Maskell and Baggaley (2004). In their work, Maskell and Baggaley present what they

call “a proven system for measuring and managing the lean enterprise”. The LA

implementation process considered in this research is adopted from Maskell and

Baggaley’s work. Table 6.2 summarises the improvements achieved after implementing

LA on the case studies presented in this research and in Maskell and Baggaley’s. The

improvement percentage is calculated by dividing the amount of change between the

future state and the current state in the box score presented in Chapter 5 (Table 5.32) by

the current state. For example, the improvement percentage for the Dock-to-dock days

can be calculated as follows:

Table 6.2. Improvements achieved by implementing LA on this research and on
Maskell and Baggaley’s research

This research Maskell and Baggaley’s research
Dock-to-dock days -74.00% -78.05%

aG First time through 64.84% 100.00%
O
-tj On time delivery 10.00% 10.00%
c3
<D Floor space -31.25% -50.00%
o Sales per person 0.00% 4.56%

Average cost per unit -6.73% -5.99%

£
Productive -7.25% -15.00%

3 o o GW Q« Non productive -34.91% -41.94%
O c3

Available 120.32% 161.11%
Inventory value -77.26% -76.07%

'si Revenue 0.00% 0.00%
S Material costs -6.83% -6.83%
.5 Conversion costs -6.42% -4.45%

Value stream profit 6.73% 7.36%

135

(-18.5 / 25) x 100% = -74.00%,

which means the Dock-to-dock days were reduced by 74%.

As can be seen from the table, the improvements achieved in both research works are

similar to some extent. In both case studies, the implementation of LA improved the

status of the company considered in the case study financially and operationally.

6.3. Research evaluation
The evaluation of this research is presented in this section, where alternatives to

how it is introduced are considered and its importance and the contribution it has made

to the advancement of knowledge are also discussed. Each of the three aspects of this

research is considered separately at first and the three aspects are then considered as a

whole.

6.3.1. Evaluation of the work on the optimisation of production processes

The optimisation of production processes part of this research focuses on process

optimisation and, hence, on cost reduction in the manufacturing industry. PCB

manufacturing has been chosen as an example and three production problems have been

solved using the proposed algorithm in Chapter 4. The problems associated with PCB

manufacturing have been considered by many researchers, as presented in the literature

review. Some of these problems are interrelated and should be solved simultaneously

rather than individually. Therefore, most researchers have solved PCB assembly

problems in pairs such as the component placement and feeder assignment problems. A

further step has been considered in this research by considering a three-problem

situation. Since the problem of board type sequence is affected by the set-up time, this

means it is related to the component placement and feeder assignment problems and any

solution to this problem should take the other two problems into consideration. This

research considers solving the three problems simultaneously, which is a development

to what other researchers have considered before.

The algorithm used to solve the three production problem is based on two

metaheuristics: TS and GA. Other metaheuristics (simulated annealing, mimetic

algorithms, random optimisation, local search, greedy algorithm, etc.) could have also

been used instead. TS is used because it has been successfully used to solve

combinatorial problems (Saad & Lassila 2002; Wan & Ji 2001; Su et al 1998) on one

hand and it has been rarely used to solve PCB related problems so it is .used here to

136

assess its potential on the other hand. GA is used mainly for comparison reasons. Since

GA has been used frequently to solve PCB manufacturing problems (Ho & Ji 2005; Ho

& Ji 2003; Jeevan et al 2002; Deo et al 2002; Ji et al 2001; Loh et al 2001), it is used in

this research in order to compare the results obtained from using it to the results

obtained from using TS algorithm. This comparison between TS and GA, and even

between different parameters within each metaheuristic, is a new subject that provides

recommendations to which metaheuristic to use and which values to be used for the

parameters of the metaheuristic used.

6.3.2. Evaluation of the work on the cost estimation aspect

Cost estimation can be calcified into four types (Rabunal & Dorado 2005):

- Analogical: the cost of a product is estimated by comparing it to the cost of a similar

product whose cost is known.

- Analytical: the product cost is estimated by analysing the product manufacturing

process and dividing the process into small tasks whose costs are either known or

can be calculated easily compared to the whole process. The information gathered is

then integrated to provide the cost of the product.

- Intuitive: this type of cost estimation depends on experience. A person experienced

in cost estimation estimates the cost of a product depending on his past knowledge.

- Parametric: this method relies on the parameters used by the designers of the

product. The relationships between the parameters and the cost of the product are

represented by equations, which are then used to calculate the cost of the product

depending on the values of the parameters used to design the product.

Each of the four types has its own pros and cons. The analogical method provides

good estimation but it is limited to the existence of a similar product to the product that

its cost being estimated. The problem with the intuitive method is its reliance on

personal judgments; whereas the problem with the parametric method is the lack of

accuracy since the equations used are approximate. As for the analytical method, it has

attracted more attention than the other types of cost estimation methods due to the fact

that it lacks the deficiencies associated with them. For this reason, ABC, which is an

analytical method, is used in this research as an example for cost estimation. In

addition, since ABC is more suitable for small and medium-sized enterprises

137

(Gunasekaran et al 1999), it is therefore more suitable for the PCB manufacturing

example considered in this research.

The ABC implementation procedures adopted to in this research can also be used

to further examine the activities identified and decompose them into sub-activities (Ben-

Arieh & Qian 2003). This is important because it helps study costly activities in more

detail and, hence, identify the exact cause of the high cost, which ultimately leads to a

reduction in the cost of these activities.

6.3.3. Evaluation of the work on the accounting aspect

The standard accounting system has been used successfully for mass productions

for few decades now. However, the introduction of lean manufacturing as an alternative

to mass production has led to changes in the accounting system to reflect the new

features of lean manufacturing. A new accounting system, called Lean Accounting, that

takes into consideration the features of lean manufacturing has been developed. This

research has considered LA because of the following reasons:

- It is a relatively recent subject and quite limited research has been devoted to it.

- It is the only alternative for standard accounting.

- It is designed to suit lean manufacturing, which is rapidly replacing mass

production.

- It has the potential of reducing the cost of production by implementing lean

techniques and eliminating financial transactions (or replacing them with less costly

ones).

The implementation of LA in this research has shown how it can reduce the

production cost as follows:

- Cell and value stream performance measures provide visual indications about the

operational state of the cells and value streams. This allows for solving any

emerging problems at an early stage before they become more costly to solve. In

addition, performance measures promote continuous lean improvements throughout

the company.

- Calculating the free capacity of cells generated by the implementation of lean

manufacturing. The freed capacity can be used to increase the value stream profit as

explained in subsection 5.8.2.

- Eliminating wasteful financial transactions. This leads to eliminating the costs

required to perform these transactions.

138

- The use of value stream costing provides more accurate and easily-understood

information, when compared to standard costing, for decision-making. Butter

decisions lead, amongst other things, to cost reductions.

In addition to the cost reduction, LA provides better understanding to the financial

information due to the simplification of the accounting reports and statements. For

example, the box score provides a simple but comprehensive view of the state of value

stream: operational, financial and capacity usage. Therefore, LA can be defined as an

accounting system that implements the principle of lean thinking leading to more

accurate and understandable information for decision making and leading also to the

elimination of some of the transactions associated with standard accounting.

6.3.4. Evaluation of the work on the research as a whole
The intense competition between companies has led cost reduction to be

considered as a necessity rather than a luxury. There are two different types for cost

reduction, direct and indirect, and each type can be applied to different areas in the

company. Therefore, this research has considered cost reduction in the manufacturing

industry by studying three aspects: optimisation of production processes, cost estimation

and accounting. These three aspects include most of the areas in a company that cost

reduction can be applied to. The cost reduction in the production area has been

considered by optimising three production problems in the PCB industry. However, the

TS- and GA-based algorithm used to provide the near optimum solution to the problems

can also be applied to other combinatorial problems in other types of industry. The

scheduling problem, for example, is a combinatorial problem that can be found in many

types of industries such as the chemical industry, the automotive industry, the

manufacturing industry, the food industry, etc. Therefore, the algorithm used in this

research can be modified to suit optimisation problems other than the problems

mentioned in this research.

As for the cost reduction in the cost estimation and accounting areas, this research

has considered ABC as a cost estimation method and LA as an accounting system to

reduce the cost in these two areas. ABC can reduce the cost by providing the right

costing information for the management. This is achieved by analysing the production

processes and studying the activities required to manufacture the product. By

calculating the costs of these activities, the product cost can be calculated depending on

how much the activities contribute to the manufacturing of the product. ABC shows

139

exactly how the costs are incurred, therefore allowing the management to pay more

attention to costly activities and try to reduce their costs. This means, in addition to

being a cost estimation method, ABC reduces the production cost indirectly. Regarding

LA, it reduces the cost directly and indirectly as mentioned in subsection 6.3.3.

The importance of this research lies also in the fact that it has presented a

framework for PCB manufacturing process. As described in Chapter 4 and Chapter 5,

the framework provides an integrated and comprehensive description of the processes

that can be used to help solve the production problems, optimise the work and reduce

the production cost. The framework can also be used for other products when the

production problems associated with PCB are replaced with the production problems

associated with the other products.

6.4. Summary
In order to validate this research, the results obtained in this research were

compared, where possible, to the results obtained by other researchers. Regarding the

optimisation of production processes, the case considered in this research had to be

modified so that it could be compared to that of Su et al (1998). Since the data used in

Su’s research were different from the data used in this research, the comparison between

the two sets of results was found to be inconclusive. However, the use of intensification

and diversification (two important attributes of TS) in this research and ignoring them

by Su et al should indicate that the TS-based algorithm used in this research is better

than that of Su’s. As for the cost estimation aspect, when the results obtained in this

research were compared to the work of Ong (1995), the similarities that were found

surpassed the dissimilarities. It was also noted that the approach used here to implement

ABC was better than the approach used by Ong because it could be used for products

other than PCBs and it did not require continuous updating as was required for Ong’s

approach. Finally, regarding the accounting aspect, the results obtained in this research

were similar to the results obtained by Maskell and Baggaley (2004) since the same

implementation process was used. The results in both research works revealed how LA

could help reduce the production costs directly and indirectly.

The evaluation of this research was also considered in this chapter. Some

alternatives to the approaches and methods used were considered and the reasons of

considering some particular techniques were explained. For example, it has been

explained that TS was used instead of other metaheuristics because it was used

140

successfully to solve combinatorial optimisation problems but rarely used to solve PCB

related problems. In addition, the importance of this research has been identified and

explained. It has been explained how the algorithm presented in this research could be

used to solve PCB related problems in particular and other combinatorial optimisation

problems for other types of industry in general. Furthermore, the framework presented

in this research for PCB manufacturing can also be applied to other products by

changing the part that deals with the production problems and generalise it to suit other

manufacturing processes.

141

CHAPTER SEVEN

7. CONCLUSION

The issue of cost reduction is a necessity for today’s industries due to the high

competition created by the advancement of technology and the emergence of new

economic powers. Cost reduction can be achieved either directly (waste elimination) or

indirectly (process optimisation). The majority of research on cost reduction has been

devoted to specific and individual aspects rather than considering multiple aspects. The

research presented in this thesis has attempted to fill this gap by considering the issues

associated with the optimisation of production processes, cost estimation and

accounting aspects of manufacturing in general and multi-assembly systems in

particular with the aim of achieving process optimisation and cost reduction.

PCB manufacturing has been used in this research as a platform for

experimentation for the three aspects considered in this research. The reason behind

using PCB manufacturing is mainly related to the optimisation of production processes

part of this research. The vast collection of PCB related production problems provides

an ideal test-bed for the optimisation of production processes part of this research. All

the researchers who considered PCB production problems have focused on these

production problems individually or in pairs. Therefore, a further step has been taken

here by studying three interrelated problems. Additionally, two examples for the cost

estimation and accounting aspects considered in this research have been applied to PCB

manufacturing. This is achieved by implementing ABC, as an example for the cost

estimation aspect, and LA, as an example for the accounting aspect, on a PCB

manufacturing facility.. Ultimately, the goal has been to develop a framework that

integrates the optimisation of production processes, cost estimation and accounting

aspects for PCB manufacturing in particular and for manufacturing in general in order

to achieve cost reduction.

For the rest for this chapter, the main findings of this research are stated for each

of the aspects considered and the contributions to the literature are summarised. In

addition, the suggestions for future work including the reasons behind these

suggestions, the methods involved and the expected outcomes are presented.

142

7.1. Optimisation of production processes
A proposed algorithm for concurrently solving the components sequencing, feeder

assignment and board sequencing problems has been developed based on two search

techniques: TS and GA. The results obtained from the case study show that the use of

TS is preferable to GA when the goal is to obtain a better assembly time, whereas GA is

preferable if the goal is to obtain acceptable results within short time. Regarding the

parameters of the search techniques such as the number of moves in TS and number of

generations and the population size in GA, the results obtained showed a reduction in

the assembly time when these parameters were increased. The reduction in the assembly

time was limited to a certain level after which no improvement was achieved in spite of

the increase of the number of moves in TS and number of generations and the

population size in GA. It could be concluded that the ideal values for the parameters are

dependent on the type of the case study and the data used and should be obtained

experimentally.

The use of different data in the case study has limited the comparison to the other

research work used to validate this research. However, the use of intensification and

diversification in the TS-based algorithm in this research has given it an advantage over

the TS-based approach adopted in the research work used for validation. Unfortunately,

this could not be proved by comparing the two research works due to the use of

different sets of data in each one.

7.2. Cost estimation aspect
ABC has been used as an example for cost estimation and it has been applied to a

PCB production facility. The results obtained from the case study show how ABC can

be used to calculate the costs of activities so that the most costly ones can be given more

attention and more effort can be taken to reduce their costs. A reduction in the costs of

the most costly activities would achieve more cost reduction than the reduction in the

less costly activities because the margin for reduction is higher. ABC is not a method

for cost reduction as such but it leads to cost reduction indirectly by identifying the

costs of activities.

There are some downsides for ABC; for example, in order for the application of

ABC to be accurate, there must be a linear relationship between the cost drivers and the

volume of the product. In addition, ABC is not suitable for large companies due to the

143

resources it requires to collect required data. In spite of these downsides, ABC is still a

better alternative to standard costing.

7.3. Accounting aspect
Lean accounting has recently been introduced as an accounting system for those

companies which have chosen to implement lean manufacturing. The research

explained the basic ideas behind lean accounting and illustrated how lean accounting

could help companies identify the financial benefits of implementing lean

manufacturing. The results from implementing LA on a case study show how

implementing lean accounting can help identify the financial benefits of implementing

lean manufacturing and how lean accounting itself could lead to cost reduction through

eliminating some financial transactions.

Standard accounting relies heavily on a huge number of transactions whereas LA

tries to eliminate some of these transactions or replace them with less costly ones. This,

hence, does not only lead to creating capacity but also leads to saving money by

eliminating the direct and indirect costs that are associated with the transactions

eliminated. LA, in contrast to standard accounting, motivates people towards actions

that are in accordance with lean manufacturing principles. This allows lean

manufacturing improvements to continue smoothly and gives a better chance for lean

manufacturing to succeed and for the company to prosper. LA provides also more

accurate and more useful information for decision-making because better tools, such as

value stream costing, target costing and sales, operations and financial planning, are

used in LA.

It can also be concluded from this research that there is a deficiency in calculating

the exact costs of products using “features and characteristics costing”, which is an LA

tool. Some might argue that the exact product cost is not required in lean companies

since they focus on the customer value and the value stream profitability rather than the

profitability of a product when making pricing decisions. However, there are cases

when the exact cost of a product is required and the inaccuracy in calculating this cost

by “features and characteristics costing” might lead to the wrong decision being made.

7.4. Final thoughts
Cost minimisation has been forced on manufacturers due to the development of

new technologies and the high competition created by the emergence of new

144

competitors. The research presented here represents a good first step towards cost

minimisation and process optimisation in the production, cost estimation and accounting

aspects of the manufacturing industry. The framework developed presents an integrated

approach that can help solve production problems, with the aim of minimising the

production cost, and provide helpful information for the management in order to make

the right decisions. Some of the solutions provided are problem specific; therefore, the

generalisation issue needs to be addressed. In addition, regarding the accounting aspect,

this research has considered the companies that adopt lean manufacturing; therefore,

what has been discussed here is not applicable otherwise.

7.5. Future work
Although the research undertaken has provided a step forward towards cost

reduction and process optimisation in different areas of manufacturing, there are some

issues that can still be addressed in order to add more value and benefit to the issues

considered in this research.

This research has considered the area of PCB manufacturing only. Therefore, the

generalisation issue can be proposed as the subject of future research. This can be

achieved by applying this research project on products of different nature to PCBs, and

the use of real-life data will be an added benefit. Naturally, the proposed algorithm that

deal with the production problems will have to be modified to suit the production

problems associated with the new products under consideration. Additionally, search

techniques other than TS and GA can also be used. If the outcome of the future research

is similar to the outcome of the research presented in this thesis, the research can be

generalised and confidently applied to different industries.

In this research, the proposed algorithm has dealt with the problems associated

with the pick-and-place machine only and the improvements achieved are related to this

machine only. However, any effects caused by the improvements to the pick-and-place

machine on other cells have not been considered in this research. By modelling the

whole PCB assembly line using computer simulation, the effects of the improvements to

the pick-and-place machine on other cells can be studied. Additionally, introducing

simulation can also help implement ABC (Spedding & Sun 1999) and improve the

accuracy of cost estimation as well (Homburg 2004; Ozbayrak et al 2004). Therefore,

integrating simulation into this research can be considered as a potentially good subject

for any future work.

145

REFERENCES

Agrawal, A. & Graves, RJ., (1999). A distributed systems model for estimation of
printed circuit board fabrication costs. Production Planning & Control, 10(7), p.650-
658.

Ahlstrom, P. & Karlsson, C., (1996). Change processes towards lean production - the
role of management accounting system. International Journal o f Operations &
Production Management, 16(11), p.42-56.

Ahmadi, J.H., Ahmadi, R., Matsuo, H. & Tirupati, D., (1995). Component fixture
positioning for printed circuit board assembly with concurrent operations. Operations
Research, 43(3), p.444-457.

Altinkemera, K., Kazazb, B., Koksalanc, M. & Moskowitza, H., (2000). Optimization
of printed circuit board manufacturing: Integrated modeling and algorithms. European
Journal o f Operational Research, 124(2), p.409-421.

Anonymous: Maricopa Center for Learning and Instruction, (1989). Research methods
[Online]. (Updated 26 Oct 2001) Available at:
http://www.mcli.dist.maricopa.edu/proi/res meth/login.html [accessed 08 Oct 2007].

Applegate, D. & Cook, W., (1991). A Computational Study of the Job-Shop Scheduling
Problem. ORSA Journal on Computing, 3(2), p.149-157.

Ayob, M. & Kendall, G., (2002). A new dynamic point specification approach to
optimise surface mount placement machine in printed circuit board assembly. In: IEEE
ICIT'02, Bangkok.

Baggaley, B., (2003a). Solving the standard costing problem [Online]. Available at:
http://www.maskell.com/SolvingStdCost.htm [accessed 15 May 2005].

Baggaley, B., (2003b). Value Stream Management for Lean Companies. The Journal o f
Cost Management, 17(2), p.23-27.

Ball, M.O. & Magazine, M.J., (1988). Sequencing of Insertions in Printed Circuit Board
Assembly. Operations Research, 36(2), p. 192-201.

Bellis-Jones, R. & Develin, N., (1999). No Customer - No Business: The true value o f
activity based cost management. Chippenham, UK: Antony Rowe Limited.

Bellmore, M. & Nemhauser, G.L., (1968). The traveling salesman problem: a survey.
Operations Research, 16(3), p.538-558.

Ben-Arieh, D. & Qian, L., (2003). Activity-based cost management for design and
development stage. International Journal o f Production Economics, 83(2), p.169-183.

Berliner, C. & Brimson, J.A., (1988). Cost Management for Today's Advanced
Manufacturing: The Cam-I Conceptual Design. Harvard: Harvard Business School
Press.

146

http://www.mcli.dist.maricopa.edu/proi/res
http://www.maskell.com/SolvingStdCost.htm

Bhaskar, G. & Narendran, T.T., (1996). Grouping PCBs for set-up reduction: a
maximum spanning tree approach. International Journal o f Production Research, 34(3),
p.621-632.

Burkard, R.E., Karisch, S.E. & Rendl, F., (1997). QAPLIB - A Quadratic Assignment
Problem Library. Journal o f Global Optimization, 10(4), p.391-403.

Burke, E., Cowling, P.I. & Keuthen, R., (1999). New Models and Heuristics for
Component Placement in Printed Circuit Board Assembly. In: International Conference
on Information Intelligence and Systems

Burke, E., Cowling, P.I. & Keuthen, R., (2000). Effective Heuristic and Metaheuristic
Approaches to Optimize Component Placement in Printed Circuit Board Assembly. In:
The 2000 Congress on Evolutionary Computation CEC00.

Christensen, J. & Demski, J.S., (1995). The classical foundations o f ‘Modem’ costing.
Management Accounting Research, 6(1), p. 13-32.

Coombs, J., C. f., (1988). Printed Circuits Handbook. 3rd ed. New York: McGraw-Hill,
Inc.

Cooper, R., (1990). Cost classification in unit-based and activity-based manufacturing
cost systems. Journal o f Cost Management for the Manufacturing Industry, 4(3), p.4-
14.

Cooper, R. & Kaplan, R.S., (1999). The design o f cost management systems : text and
cases. 2nd Edition ed. Upper Saddle River, NJ: Prentice Hall.

Crama, Y., Klunder, J.V.D. & Spieksma, F.C.R., (2002). Production planning problems
in printed circuit board assembly. Discrete Applied Mathematics, 123(1-3), p.339-361.

Crama, Y., Kolen, A.W.J., Oerlemans, A.G. & Spieksma, F.C.R., (1990). Throughput
rate optimization in the automated assembly of printed circuit boards. Annals o f
Operations Research 26(1-4), p.455-480.

Dedera, C.R., (1996). Harris Semiconductor ABC: worldwide implementation and total
integration. Journal o f Cost Management, 10(1), p.44-58.

Deo, S., Javadpourb, R. & Knapp, G.M., (2002). Multiple setup PCB assembly planning
using genetic algorithms. Computers and Industrial Engineering, 42(1), p. 1-16.

Deoa, S., Javadpourb, R. & Knapp, G.M., (2002). Multiple setup PCB assembly
planning using genetic algorithms. Computers and Industrial Engineering, 42(1), p .l-
16.

Dikos, A., Nelson, P.C., Tirpak, T.M. & Wang, W., (1997). Optimization of High-mix
printed circuit card assembly using genetic algorithms. Annals o f Operations Research,
75, p.303-324.

147

Drezner, Z. & Nof, S., (1984). On optimizing bin picking and insertion plans for
assembly robots. HE Transactions, 16, p.262-270.

Duverlie, P. & Castelain, J.M., (1999). Cost Estimation During Design Step: Parametric
Method versus Case Based Reasoning Method The International Journal o f Advanced
Manufacturing Technology, 15(12), p.895-906.

Egbelu, P.J., Wu, C. & Pilgaonkar, R., (1996). Robotic assembly of printed circuit
boards with component feeder location consideration. Production Planning and
Control, 7(2), p. 162-175.

Francis, R.L., Hamacher, H.W., Lee, C.Y. & Yeralan, S., (1994). Finding placement
and sequences and bin locations for Cartesian robots. HE Transactions, 26, p.47-59.

Giachetti, R.E. & Arango, J., (2003). A Design-centric Activity-based Cost Estimation
Model for PCB Fabrication. Concurrent Engineering: Research and Applications,
11(2), p.139-149.

Glover, F., (1989). Tabu Search-Part I. ORSA Journal on Computing, 1(3), p. 190-206.

Glover, F., (1990). Tabu Search - Part II. ORSA Journal on Computing, 2(1), p.4-31.

Gronalt, M., Grunow, M., Gunther, H.O. & Zeller, R., (1997). A heuristic for
component switching on SMT placement machines. International Journal o f
Production Economics, 53(2), p.181-190.

Gunasekaran, A., Marri, H.B. & Grieve, R.J., (1999). Justification and implementation
of activity based costing in small and medium-sized enterprises. Logistics Information
Management, 12(5), p.386-394.

Gupta, M. & Galloway, K., (2003). Activity-based costing/management and its
implications for operations management. Technovation, 23(2), p.131-138.

Hashiba, S. & Chang, T., (1991). PCB assembly setup reduction using group
technology. Computers & Industrial Engineering, 21(1-4), p.453-457.

Ho, W. & Ji, P., (2003). Component scheduling for chip shooter machines: a hybrid
genetic algorithm approach. Computers & Operations Research, 30(14), p.2175-2189.

Ho, W. & Ji, P., (2005). A genetic algorithm to optimise the component placement
process in PCB assembly The International Journal o f Advanced Manufacturing
Technology, 26(11-12), p.1397-1401.

Homburg, C., (2004). Improving activity-based costing heuristics by higher-level cost
drivers. European Journal o f Operational Research, 157(2), p.332-343.

Homburg, C., (2005). Using relative profits as an alternative to activity-based costing.
International Journal o f Production Economics, 95(3), p.387-397.

148

Innes, J. & Mitchell, F., (1995). A survey of activity-based costing in the U.K.’s largest
companies. Management Accounting Research, 6(2), p. 137-153.

Jeevan, K., Parthiban, A., Seetharamu, K.N., Azid, I.A. & Quadir, G.A., (2002).
Optimization of PCB Component Placement using Genetic Algorithms. Journal o f
Electronics Manufacturing, 11(1), p.69-79.

Ji, P., Sze, M.T. & Lee, W.B., (2001). A genetic algorithm of determining cycle time
for printed circuit board assembly lines. European Journal o f Operational Research,
128(1), p.175-184.

Johnson, H.T. & Kaplan, R.S., (1987). Relevance Lost: The Rise and Fall o f
Management Accounting. Boston, MA: Harvard Business School Press.

Kaplan, R.S. & Anderson, S.R., (2003). Time-Driven Activity-Based Costing [Online].
Available at: http://www.hbs.edu/research/facpubs/workingpapers/papers2/0304/04-
045.pdf [accessed 18 Oct 2006].

Kaschel, J., Teich, T., Kobemik, G. & Meier, B., (1999). Algorithms for the Job Shop
Scheduling Problem - a Comparison of Different Methods. In: European Symposium on
Intelligent Techniques, Crete, Greece

Khoo, L.P. & Loh, K.M., (2000). A Genetic Algorithms Enhanced Planning System for
Surface Mount PCB Assembly. The International Journal o f Advanced Manufacturing
Technology, 16(4), p.289-296.

Khoo, L.P. & Ng, T.K., (1998). A genetic algorithm-based planning system for PCB
component placement. International Journal o f Production Economics, 54(3), p.321-
332.

Khoo, L.P. & Ong, N.S., (1998). PCB assembly planning using genetic algorithm. The
International Journal o f Advanced Manufacturing Technology, 14, p.363-368.

Kim, K. & Han, I., (2003). Application of a hybrid genetic algorithm and neural
network approach in activity-based costing. Expert Systems with Applications 24(1),
p.73-77.

Klomp, C., van de Klundert, J., Spieksma, F.C.R. & Voogt, S., (2000). The feeder rack
assignment problem in PCB assembly. International Journal o f Production Economics,
64(1-3), p.399-407.

Kroll, K.M., (2004). The Lowdown on Lean Accounting. Journal o f Accountancy,
198(1), p.69-76.

Lehaney, B.A. & Vinten, G., (1994). “Methodology”: An Analysis of Its Meaning and
Use. Work Study, 43(3), p.5-8.

Leu, M.C., Wong, H. & Ji, Z., (1993). Planning of component placement/insertion
sequence and feeder setup in PCB assembly using genetic algorithm. Journal o f
Electronic packaging, 115(4), p.424-432.

149

http://www.hbs.edu/research/facpubs/workingpapers/papers2/0304/04-

Locascio, A., (2000). Manufacturing Cost Modeling for Product Design. The
International Journal o f Flexible Manufacturing Systems, 12, p.207-217.

Logendran, R. & Nudtasomboon, N., (1991). Minimizing the makespan of a group
scheduling problem: a new heuristic. International Journal o f Production Economics,
2 2 (3) , p . 2 1 7 - 2 3 0 .

Loh, T.S., Bukkapatnam, S.T.S., Medieros, D. & Kwon, H., (2001). A genetic algorithm
for sequential part assignment for PCB assembly. Computers and Industrial
Engineering, 40(4), p.293-307.

Marri, H.B. & Grieve, R.J., (1999). Justification and implementation of activity based
costing in small and medium-sized enterprises. Logistics Information Management,
12(5), p.386-394.

Maskell, B.H., (2004). What is lean accounting? [Online]. Available at:
http://www.maskell.com/PDF Files/What%20is%20Lean%20Accounting.pdf [accessed
15 May 2005].

Maskell, B.H., (2006). Lean accounting & Activity-Based Costing [Online]. Available
at: http://www.maskell.com/LeanAcctg ABC.htm [accessed 18 Oct 2006].

Maskell, B.H. & Baggaley, B., (2004). Practical Lean Accounting: a proven system for
measuring and managing the lean enterprise. New York, NY, USA: Productivity Press.

Moscato, P., (2003). TSPBIB Home Page [Online]. Available at:
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html [accessed 08 Jun 2003].

Moyer, L.K. & Gupta, S.M., (1996). Simultaneous component sequencing and feeder
assignment for high speed chip shooter machines. Journal o f Electronics
Manufacturing, 6(4), p.271-307.

Narayanaswami, R. & Iyengar, V., (2005). Setup reduction in printed circuit board
assembly by efficient sequencing. The international journal o f advanced manufacturing
technology, 26(3), p.276-284.

Nawaz, M., Enscore, E.E. & Ham, I., (1983). A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1), p.91-95.

Nelson, K.M. & Wille, L.T., (1995). Comparative study of heuristics for optimal printed
circuit board assembly. In: Conference Recordfor Southcon, Fort Lauderdale, FL, USA.

Noreen, E., (1991). Conditions under which activity-based cost systems provide
relevant costs. Journal o f Management Accounting Research, 3, p.159-168.

Noreen, E. & Soderstrom, N., (1994). Are overhead costs strictly proportional to
activity? Journal o f Accounting and Economics, 17(1-2), p.255-278.

150

http://www.maskell.com/PDF
http://www.maskell.com/LeanAcctg
http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB

Ong, N.S., (1995). Manufacturing cost estimation for PCB assembly: An activity-based
approach. International Journal o f Production Economics, 38(2-3), p.159-172.

Ong, N.S. & Khoo, L.P., (1999). Genetic algorithm approach in PCB assembly.
Integrated Manufacturing Systems, 10(5), p.256-265.

Ong, N.S. & Lim, L.E.N., (1993). Activity-based cost-modelling procedures for PCB
assembly. The International Journal o f Advanced Manufacturing Technology, 8(6),
p.396-406.

Ong, N.S. & Tan, W.C., (2002). Sequence placement planning for high-speed PCB
assembly machine. Integrated Manufacturing Systems, 13(1), p.35-46.

Ozbayrak, M., Akgiin, M. & Tiirker, A.K., (2004). Activity-based cost estimation in a
push/pull advanced manufacturing system. International Journal o f Production
Economics, 87(1), p.49-65.

Proust, C., Gupta, J.N.D. & Deschamps, V., (1991). Flowshop scheduling with set-up,
processing and removal times separated. International Journal o f Production Research,
29(3), p.479-493.

Rabunal, J.R. & Dorado, J., (2005). Artificial Neural Networks in Real-life Applications.
Hershey, PA: IGI Global.

Reinelt, G., (1991). TSPLIB- A Traveling Salesman Problem Library. ORSA Journal on
Computing, 3(4), p.376-385.

Rossetti, M.D. & Stanford, K.J.A., (2003). Group sequencing a PCB assembly system
via an expected sequence dependent setup heuristic. Computers & Industrial
Engineering, 35(1), p.231-254.

Saad, S.M. & Lassila, A.M., (2002). Sequencing for Mixed-model Assembly Lines with
Bottleneck Resources Using Tabu Search. In: International Conference on Flexible
Automation & Intelligent Manufacturing (FAIM), Dresden, Germany.

Sadiq, M., Landers, T.L. & Taylor, G., (1993). A heuristic algorithm for minimizing
total production time for a sequence of jobs on a surface mount placement machine.
International Journal o f Production Research, 31(6), p.1327-1341.

Sanchez, J.M. & Priest, J.W., (1990). Optimal component-insertion sequence planning
methodology for the semiautomatic assembly of printed circuit boards. Journal o f
Intelligent Manufacturing, 2(3), p.177-188.

Schein, E.H., (1987). The Clinical perspective in fieldwork. Beverly Hills, CA: Sage.

Sickafus, E., (2004). Heuristics for Solving Technical Problems - Theory, Derivation,
Application. Grosse He, MI: Ntelleck, LLC.

Sohal, A.S. & Chung, W.W.C., (1998). Activity based costing in manufacturing: two
case studies on implementation. Integrated Manufacturing Systems, 9(3), p.137-147.

151

Spedding, T.A. & Sun, G.Q., (1999). Application of discrete event simulation to the
activity based costing of manufacturing systems. International Journal o f Production
Economics, 58(3), p.289-301.

Stake, R.E., (1995). The Art o f case study research. Newbury Park, CA: Sage
Publications.

Su, C., Ho, L. & Fu, H., (1998). A novel tabu based approach to find the best placement
sequence and magazine assignment in dynamic robotics assembly. Integrated
Manufacturing Systems, 9(6), p.366-376.

Su, Y. & Srihari, K., (1996). Placement sequence identification using artificial neural
networks in surface mount PCB assembly. International journal o f advanced
manufacturing technology, 11(4), p.285-299.

Tellis, W., (1997). Application of a case study methodology. The Qualitative Report
[Online serial] 3(3), Available at: http://www.nova.edu/ssss/OR/OR3-3/tellis2.html.

Tomberg, K., Jamsen, M. & Paranko, J., (2002). Activity-based costing and process
modeling for cost-conscious product design: A case study in a manufacturing company.
International Journal o f Production Economics, 79(1), p.75-82.

Van Hop, N. & Tabucanon, M.T., (2001a). Extended dynamic point specification
approach to sequencing robot moves for PCB assembly. International Journal o f
Production Research, 39(8), p. 1671-1687.

Van Hop, N. & Tabucanon, M.T., (2001b). Multiple criteria approach for solving feeder
assignment and assembly sequence problem in PCB assembly. Production Planning &
Control, 12(8), p.736-744.

van Laarhoven, P.J.M. & Zijm, W.H.M., (1993). Production preparation and numerical
control in PCB assembly. International Journal o f Flexible Manufacturing Systems,
5(3), p.187-207.

Wan, Y.F. & Ji, P., (2001). A tabu search heuristic for the component assignment
problem in PCB assembly. Assembly Automation, 21(3), p.236-240.

Wang, C., Ho, L. & Cannon, D.J., (1998). Heuristics for assembly sequencing and
relative magazine assignment for robotic assembly. Computers and Industrial
Engineering, 34(2), p.423-431.

Watson, J.-P., (2003). Empirical Modeling and Analysis of Local Search Algorithms for
the Job-Shop Scheduling Problem. Department of Computer Science. Fort Collins,
Colorado, Colorado State University. Doctor of Philosophy.

Whitney, D.E., (1988). Manufacturing by design. Harvard Business Review, 66(4),
p.83-91.

152

http://www.nova.edu/ssss/OR/OR3-3/tellis2.html

Womack, J.P. & Jones, D.T., (1996). Lean thinking: banish waste and create wealth in
your corporation. New York, NY: Simon & Schuster.

Yilmaz, I.O. & Gunther, H.O., (2005). A Group Setup Strategy for PCB Assembly on a
Single Automated Placement Machine. In: The Annual International Conference o f the
German Operations Research Society, Bremen, Germany, Springer Berlin Heidelberg.

Yin, R., (1994). Case study research: design and methods. 2nd ed. Thousand Oaks, CA:
Sage Publishing.

Younis, T.A. & Cavalier, T.M., (1990). On locating part bins in a constrained layout
area of an automated assembly process. Computers and Industrial Engineering, 18(2),
p .111- 118.

Yuan, P., Hu, Y., Liu, H. & Gao, H., (2006). Feeder assignment optimization algorithm
for multi-head mounter. Journal o f Control Theory and Applications, 4(3), p.223-228.

153

PUBLICATIONS

Two publications have been produced based on this research:

Saad, S., Khalil, E., Fowkes, C., Basarab-Horwath, I. & Perera, T., (2004). Component

and board sequencing - A simultaneous taboo search approach. 2nd international

Conference on Advances in Manufacturing Technology (ICRM), Sheffield, UK.

Saad, S., Khalil, E., Fowkes, C., Basarab-Horwath, I. & Perera, T., (2006). Taboo

Search vs. Genetic Algorithms in Solving and Optimising PCB Problems. Journal o f

Manufacturing Technology Management, 17(4), p.521 -536.

154

APPENDICES

Appendix I
The component types and the co-ordinates of their locations of the case study
(dimensions in mm).

Board type A
Comp.
type

X-Co-ordinate Y-Co-ordinate
1 2 3 4 5 6 1 2 3 4 5 6

1 386 123 23 670 677 75 55 288 341 354
2 345 35 32 498 598 454 23 190 10 499
3 65 55 654 568 679 459 98 480 34 443
4 354 23 245 600 0 751 551 208 301 0
5 359 98 59 0 0 414 13 100 0 0
6 456 654 450 0 0 409 118 420 0 0
7 400 255 55 0 0 156 454 469 0 0
8 27 54 0 0 0 355 255 0 0 0
9 49 151 0 0 0 47 24 0 0 0
10 245 0 0 0 0 286 0 0 0 0
11 258 0 0 0 0 245 0 0 0 0
12 228 0 0 0 0 152 0 0 0 0
13 278 0 0 0 0 255 0 0 0 0
14 208 0 0 0 0 248 0 0 0 0
15 134 0 0 0 0 245 0 0 0 0
16 248 0 0 0 0 258 0 0 0 0
17 268 0 0 0 0 124 0 0 0 0
18 134 0 0 0 0 74 0 0 0 0
19 76 0 0 0 0 35 0 0 0 0
20 36 0 0 0 0 42 0 0 0 0
21 45 0 0 0 0 163 0 0 0 0
22 173 0 0 0 0 103 0 0 0 0

Board type B
4 75 55 288 98 45 55 454 23 190 35 123 65
8 454 23 190 35 123 65 459 98 589 167 213 154
9 459 98 589 167 213 0 156 153 475 41 457 0
13 156 454 569 24 0 0 355 55 127 397 0 0
17 355 255 454 0 0 0 65 35 65 0 0 0
18 69 55 542 0 0 0 69 55 542 0 0 0
5 344 23 0 0 0 0 344 23 0 0 0 0
1 399 0 0 0 0 0 256 0 0 0 0 0

11 356 0 0 0 0 0 128 0 0 0 0 0
34 108 0 0 0 0 0 198 0 0 0 0 0
41 398 0 0 0 0 0 35 0 0 0 0 0
15 186 0 0 0 0 0 56 0 0 0 0 0
14 345 0 0 0 0 0 156 0 0 0 0 0
52 75 0 0 0 0 0 265 0 0 0 0 0
55 58 0 0 0 0 0 268 0 0 0 0 0
58 151 0 0 0 0 0 245 0 0 0 0 0
22 52 0 0 0 0 0 268 0 0 0 0 0
21 111 0 0 0 0 0 125 0 0 0 0 0

155

Board type C
Comp.
type

X-Co-ordinate Y-Co-ordinate
1 2 3 4 5 6 1 2 3 4 5 6

1 295 55 259 98 694 23 248 354
5 65 55 298 219 259 98 648 104
6 694 23 248 0 624 63 324 0
8 259 98 0 0 269 48 0 0
11 256 0 0 0 156 0 0 0
14 298 0 0 0 218 0 0 0
18 125 0 0 0 145 0 0 0
22 127 0 0 0 167 0 0 0
52 95 0 0 0 94 0 0 0
34 65 0 0 0 255 0 0 0
55 255 0 0 0 255 0 0 0
58 248 0 0 0 248 0 0 0
44 654 0 0 0 654 0 0 0
46 687 0 0 0 687 0 0 0

Board type!D
3 55 65 444 128 216 143 344 245
11 624 63 98 245 345 34 95 434
13 269 548 623 0 55 65 24 0
2 156 214 0 0 624 63 0 0
58 218 0 0 0 269 0 0 0
34 145 0 0 0 156 0 0 0
40 305 0 0 0 218 0 0 0
41 65 0 0 0 335 0 0 0
5 254 0 0 0 35 0 . 0 0

52 459 0 0 0 244 0 0 0
54 256 0 0 0 449 0 0 0
55 123 0 0 0 246 0 0 0
15 245 0 0 0 133 0 0 0

Board type'
3 345 634 195 434 345 434 195 434
9 664 63 75 0 464 63 75 0
15 269 548 0 0 269 548 0 0
56 156 214 0 0 156 214 0 0
48 555 0 0 0 455 0 0 0
44 35 0 0 0 35 0 0 0
20 544 0 0 0 544 0 0 0
79 698 0 0 0 498 0 0 0
31 646 0 0 0 446 0 0 0
36 133 0 0 0 133 0 0 0

Board type
11 645 434 195 345 434 195
41 464 63 75 464 63 75
23 669 548 0 369 548 0
8 156 264 0 156 264 0
12 455 0 0 355 0 0
35 65 0 0 65 0 0
79 564 0 0 364 0 0
45 698 0 0 398 0 0
2 446 0 0 346 0 0

156

Board type G
Comp.
type

X-Co-ordinate Y-Co-ordinate
1 2 3 4 5 6 1 2 3 4 . 5 6

55 454 23 190 35 354 23 190 35
4 459 98 589 0 359 98 389 0
21 156 545 569 0 156 354 369 0
35 69 55 542 0 69 55 342 0
48 399 98 654 0 399 98 354 0
79 356 154 0 0 356 154 0 0
56 108 219 0 0 108 219 0 0

Board type!El
20 295 55 259 235 55 259
73 694 23 248 394 23 348
46 256 254 0 256 254 0
12 298 219 0 298 319 0
1 127 24 0 127 34 0

157
(

Appendix II

The program code written in MS Visual C++.

Header Files:

A laorithm D lq.h

!defined(AFX_ALGORITHMDLG_H 93B376F0_C755_4FC5_9213_DB5809544088 INC
LUDED_)
d e f in e
AFX_ALGORITHMDLG_H 93B376F0_C755_4FC5_9213_DB5809544088 INCLUDED_

i f _MSC_VER > 1000
#praama once
e n d i f / / _MSC_VER > 1000
/ / A lgor ithm D lg .h : header f i l e

/
/ / / / / / /
/ / CAlgorithmDlg d ia lo g

c l a s s CAlgorithmDlg : p u b l ic CDialog
{
p r iv a te :

i n t c h o ic e ;
CButton& c e n t r o i d O ;
CButton& randomC);
i n t MaxMoves;
i n t TabuRestart;
i n t TabuSize;
i n t MaxNolmp;

/ / c o n s tr u c t io n
p u b lic :

v o id s e t_ p a r a (c o n s t i n t _MaxMoves, c o n s t i n t _MaxNolmp, c o n s t
i n t _T a b u s iz e , c o n s t i n t _T ab u R estart , c o n s t i n t _ c h o i c e) ;

BOOL O n ln i t D i a lo g O ;
vo id U pdateB ox(const i n t _ID, c o n s t i n t _ D a t a) ;
i n t G e t_ c h o ic e () ;
i n t G et_ T a b u R e sta r t () ;
i n t Get_TabuSi z e () ;
i n t Get_MaxNolmp();
i n t Get_MaxMoves () ;
i n t G e t l te m (c o n s t i n t _ I D) ;
CAlgorithmDlg(CWnd* pParent = NULL); / / s tandard c o n s tr u c t o r

/ / D ia log Data
//{{AFX_DATA(CAlgori thmDlg)
enum { IDD = IDD^ALGORITHM };

/ / NOTE: th e c la s s w iz a r d w i l l add d a ta members here
/ / } } a f x _ data

/ / o v e r r id e s
/ / c la s s w iz a r d gen era ted v i r t u a l fu n c t io n o v e r r id e s
//{{AFX_VIRTUAL(CA1gorithmDlg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / DDX/DDV

support
/ / } } afx_ virtual

/ / im plem entation
p r o te c te d :

/ / G enerated message map f u n c t io n s

158

//{{AFX_MSG(CAlgorithmDlg)
v i r t u a l v o id onOKQ;
afx_msg v o id o n R a d ioM eth od c lick O ;
//}}AFX_MSG
D EC LAR E_M ES SAG E_MA P ()

};
//{{AFX_INSERT_LOCATION}}
/ / M ic r o s o f t v i s u a l C++ w i l l i n s e r t a d d i t io n a l d e c la r a t io n s
im m edia te ly b e fo re th e p rev io u s l i n e .

e n d i f / /
!defined(AFX_JU_GORITHMDLG_H 93B376F0_C755_4FC5_9213_DB5809544088 INC
LUDED_)

159

boardd la .h

i f
! d e f i ned(AFX_BOARDDLG_H 58lC98AB_Bl62_4B2E_95A5_4ClOBD7978lA INCLUDE
D_)
d e f in e
AFX_BOARDDLG_H 58lC98AB_Bl62_4B2E_95A5_4Cl0BD7978lA_INCLUDED_

in c lu d e <fstream>
in c lu d e "Board.h" / / Added by C lassView
u s in g namespace s td ;

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000
/ / b oard d lg .h : header f i l e
/ /
/
/ / / / / / /
/ / CBoardDlg d ia lo g

c l a s s CBoardDlg : p u b l ic CDialog
{
/ / c o n s tr u c t io n
p u b lic :

CBoard *get_p B oardA rray();
bool compCompareMax(const i n t _NewComp, c o n s t i n t _ c o u n t) ;
bool compCompareBoard(const i n t _NewComp, c o n s t i n t _Board,

c o n s t i n t _Comp);
bool compCompare(const i n t _NewComp, c o n s t i n t _ N e x t) ;
i n t get_num ber(const char * _ f i l e , c o n s t i n t _ n e x t) ;
v o id upd ateB ox(const i n t _ID, c o n s t _ D a t a) ;
v o id l o a d _ f i l e s (c o n s t char * _ f i l e) ;
v o id c le a r B o x (c o n s t i n t _ I D) ;
i n t Get_Num0fBoardTypesO;
i n t Get_MaxNumOfLocati o n s () ;
i n t Get_MaxNumOfCompTypesQ;
CBoardDlg(cwnd* pparent = NULL); / / s tandard c o n s tr u c t o r

/ / D ia lo g Data
//{{AFX_DATA(CBoardDlg)
enum { IDD = IDD_B0ARD };

/ / NOTE: th e c la s s w iz a r d w i l l add data members here
//}}AFX_DATA

/ / O verr id es
/ / c la s s w iz a r d .generated v i r t u a l f u n c t io n o v e r r id e s
//{{AFX_VIRTUAL(CBoardDlg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / ddx/ ddv

support
/ / } } afx_ virtual

/ / im plem entation
p r o te c te d :

/ / Generated message map fu n c t io n s
/ / {{AFX_MSG(CBoardDlg)
afx_msg v o id onSelchangeComboO ;
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

p r iv a te :
CBoard *pBoardArray;
i n t NumofBoardTypes;
i n t MaxcompFreq;
i n t MaxNumofcompTypes;
i n t MaxNumofLocations;
i n t *pCompTypes;

160

};
//{{AFX_INSERT_LOCATION}}
/ / M ic r o s o f t v i s u a l C++ w i l l i n s e r t a d d i t io n a l d e c la r a t io n s
im m edia te ly b e fo r e th e p rev io u s l i n e .

e n d i f / /
!defined(AFX_BOARDDLG_H 581C98AB_B162_4B2E_95a 5_4c10BD79781A INCLUDE
D_)

161

Comps. h

/ / Comps.h: i n t e r f a c e f o r t h e CComps c l a s s .

/ /
i f
!defined(AFX_COMPS_H 7428CEC8_1140_41FE_9a2F_BC9DDDEB98B8 INCLUDED.)
d e f in e AFX.COMPS.H 7428CEC8_1140_41FE_9A2F_BC9DDDEB98b8 INCLUDED.

i f .MSC.VER > 1000
#pragma once
e n d i f / / .MSC.VER > 1000

c l a s s CComps
{
p ub li c :

f l o a t x_co;
f l o a t Y .co;
i n t CompType;
i n t CompFreq;
CComps () ;
v i r t u a l ~ccom ps();

};
e n d i f / /
! d e f in e d (AFX.COMPS.H 7428CEC8_1140_41FE_9a2F_BC9DDDEB98B8 INCLUDED.)

162

FeederDla .h

i f
! d e f i ned(AFX_FEEDERDLG_H E8AD6481_341C_430B_B840_8362521d3E30 INCLUD
ED_)
d e f in e
AFX_FEEDERDLG_H E8AD6481_341C_430B_B840_8362521D3e30 INCLUDED.

i f _MSC_VER > 1000
#pragma once
e n d i f / / .MSC.VER > 1000
/ / FeederD lg .h : header f i l e
/ /
/
/ / / / / / /
/ / CFeederDlg d ia lo g

c l a s s CFeederDlg : p u b l ic CDialog
{
/ / c o n s tr u c t io n
p u b lic :

v o id se t_ jp ara(con st i n t _NumofFeeders, c o n s t i n t _ L e n g o fF e e d e r) ;
BOOL O n ln i t D i a lo g O ;
v o id upd ateB ox(const i n t . I D , c o n s t i n t .D a t a) ;
i n t G et_LengofFeeder0 ;
i n t Get_NumOfFeedersO;
i n t G etltem C const i n t . I D) ;
CFeederDlg(CWnd* pParent = NULL); / / standard c o n s tr u c t o r

/ / Di a loq Data
//{{AFX.DATA(CFeederDlg)
enum { id d = id d . feed er };

/ / NOTE: th e c la s s w iz a r d w i l l add data members here
/ / } } a f x _ data

/ / o v e r r id e s
/ / c la s s w iz a r d gen era ted v i r t u a l f u n c t io n o v e r r id e s
//{{AFX_viRTUALCCFeederDlg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / DDX/DDV

support
//}}AFX_VIRTUAL

/ / Im plem entation
p r o te c te d :

/ / Generated message map f u n c t io n s
//{{AFX_MSG(CFeederDlg)
v i r t u a l v o id 0n 0K ();
//}}AFX_MSG
DECLARE.MESSAGE.MAPO

p r iv a te :
i n t NumofFeeders;
i n t LengofFeeder;

/ / { {AFX.INSERT.LOCATION}}
/ / M ic r o so ft v i s u a l C++ w i l l i n s e r t a d d i t io n a l d e c la r a t io n s
im m ediate ly b e fo re th e p rev iou s l i n e .

#endi f / /
! d e f i ned(AFX_FEEDERDLG_H E8AD6481_341C_430B_B840_8362521d3 e30 INCLUD
ED.)

163

PcbDla.h

/ / PcbDlg.h : header f i l e
/ /
if
!defined(AFX_PCBDLG_H C4F577C4_2DE2_49F9_A842_8453F4330153 INCLUDED_

d e f in e AFX_PCBDLG_H_C4F577C4_2DE2_49F9^842_8453F4330153_INCLUDED_

in c lu d e <strstream >
in c lu d e
in c lu d e
in c lu d e
^ in c lu d e
in c lu d e
in c lu d e
in c lu d e
in c lu d e
in c lu d e
u s in g namespace s td ;

'Perm utation.h" / / Added by c la s s V ie w
'FeederDlg.h" / / Added by ClassView
'C o o rd in a tesD lg .h ” / / Added by C lassV iew
’TimeDlg.h" / / Added by ClassView
’A lgorithm D lg.h" / / Added by C lassV iew
’BoardDlg.h" / / Added by ClassView
’P o s i t io n s .h " / / Added by ClassView
’T abuList.h" / / Added by ClassView
’Board.h" / / Added by ClassView

i f __MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000

/
/ / / / / / /
/ / CPcbDlg d ia lo g

c l a s s CPcbDlg : p u b l ic CDialog
{
/ / C o n stru c t io n
publi c :

v o id c le a r T im e O ;
v o id updateT im e(const i n t _cBoard, c o n s t f l o a t _B estT im e);
/ / v o i d U p d a te P r o g r e ssO ;
v o id c le a r B o x (c o n s t i n t _ I D) ;
v o id U pdateT extB ox(ostrstream _stream);
v o id u p d a teS ta tu sB o x (o str s trea m _ s t r e a m) ;
v o id updateB ox(const i n t _ID, char * _ d a ta);
i n t G etI tem (con st i n t _ I D) ;
v o id upd ateB ox(const i n t _ID, c o n s t i n t _ d a t a) ;
CPcbDlg(CWnd* pParent = NULL); / / s tandard c o n s tr u c to r

/ / D ia lo g Data
/ / t { afx_ data(CPcbDlg)
enum { IDD = IDD_PCB_DIALOG };
CButton m_GoButton;
CProgressCtrl m _ProgressStatus;
C String m_StringData;
CString m_TextData;
f 1 o a t m_Boa rd_A_Ti me;
f l o a t m_Board_B_Time;
f l o a t m_Board_C_Time;
f l o a t m_Board_D_Time;
f l o a t m_Board_E_Time;
f l o a t m_Board_F_Time;
f l o a t m_Board_G_Time;
f l o a t m_Board_H_Time;
f l o a t m_Board_l_Time;
/ / } } afx_ data

/ / C lassw izard gen erated v i r t u a l f u n c t io n o v e r r id e s
//{{AFX_VIRTUAL(CPcbDlg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / DDX/DDV

support
/ / } } afx_virtual

164

/ / im plem entat ion
p r o te c te d :

HICON m_hlcon;

/ / Generated message map fu n c t io n s
/ / { {AFX_MSG(CPcbDlg)
v i r t u a l BOOL O n in itD ia lo g C);
afx_msg v o id OnSysCommanaCuiNT nlD, LPARAM iParam);
afx_msg v o id OnPaintC);
afx_msg HCURSOR OnQueryDraglconC);
afx_msg v o id OnBoardO;
afx_msg v o id onF eederO ;
afx_msg v o id O nCoordinates() ;
afx_msg v o id OnTimeO;
afx_msq v o id O nA lgorithm Q ;
v i r t u a l v o id 0n0K();
afx_msg v o id OnGoQ;
afx_msg v o id O n S e tfo c u sT e x to u tO ;
v i r tu a l vo i d O ncancel() ;
//}}AFX_MSG

p r iv a t e :
CEdit *pD isp lay;
char *T est;
i n t S iz e ;
C String *CompNames;
bool F inal open;
double Board_Time;
double setup_Time;
bool ResultOpen;
bool a l low ed ;
bool f l a g ;
bool Repeat;
i n t choi c e ;

i n t Total_Tim e;
i n t s o lu t i o n ;
i n t NolmpMoves;
i n t R estartM oves;

o fstream F inal F i l e ;
ofstream R e s u l t F i l e ;
o fstrea m FedN eighFile ;
o s tr s tr e a m s t r ;
o s tr s tr e a m s tr T e x t ;
o s tr s tr e a m s tr B u f f e r ;

CPermutation Local B est;
CPermutation B est;
CPermutation cu rren t;

CBoard *pBoardArray;
CTabuList *tabu;
C P o s i t io n s *pB est_E xit;
C P o s i t io n s move;

CBoardDlg BoardDlg;
CAlgoritnmDlg Algorithm Dlg;
CTimeDlg TimeDlg;
CCoordinatesDlg C oord in a tesD lg ;
CFeederDlg FeeaerDlg;

DECLARE_MESSAGE_MAP()
};
/ / { {AFX_INS ERT_LOCATION}}
/ / M ic r o s o f t V isua l C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s
immediate ly b e f o r e t h e prev iou s l i n e .

165

e n d i f / /
! d e f i ned (AFX_PCBDLG_H C4F577C4_2DE2_49F9_JA842_8453F4330153 INCLUDED_
)

166

P o s i t i o n s .h

/ / P o s i t i o n s .h : i n t e r f a c e f o r th e C P o s i t io n s c l a s s .

/ /
if
!d e f i ned(AFX_POSITIONS_H AB65BB2D_41FE_478B_891E_652FEB07FA54 INCLUD
ED_)
d e f i ne
AFX_POSITIONS_H A3653B2D_4lFE_4783_89lE_652FE307FA54 INCLUDED.

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000

c l a s s C P o s i t io n s
{
p u b lic :

i n t b;
i n t a ;
C P o s i t i o n s O ;
v i r tu a l ~CPosi t i ons 0 ;

};
e n d i f / /
! d e f i ned(AFX_POSITIONS_H A3653B2D_4lFE_4783_89lE_652FE307FA54 INCLUD
ED_)

167

s t d A f x . h

/ / s t d a f x .h : in c lu d e f i l e f o r standard system in c lu d e f i l e s ,
/ / or p r o j e c t s p e c i f i c in c lu d e f i l e s t h a t are used f r e q u e n t ly , but
/ / are changed in f r e q u e n t ly
/ /
if
!defined(AFX_STDAFX_H_233F957B_59B4_4819_83D4_14C7lA77BBl8 INCLUDED.
)
d e f in e AFX_STDAFX_H_233F957B_59b4_4819_83d4_14C71a 77BB18_INCLUDED_

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000

d e f in e vc_ extralean
Windows headers

in c lu d e <afxw in .h>
in c lu d e < a fx e x t .h >
in c lu d e < a fx d isp .h >
in c lu d e < a f x d t c t l .h >
Common C on tro ls
i f n d e f _afx_ no_ afxcmn_ support
in c lu d e <afxcmn.h> / / MFC support f o r Windows Common
C on tro ls
#endi f / / _AFX.NO_AFXCMN_SUPPORT

//{{AFX_INSERT_LOCATION}}
/ / M ic r o so ft v i s u a l C++ w i l l i n s e r t a d d i t io n a l d e c la r a t io n s
im m ediate ly b e fo r e th e p r e v io u s l i n e .

e n d i f / /
! d e f i ned(AFX_STDAFX_H 233F957B_59B4_4819_83D4_14C71A77BB18 INCLUDED.
)

/ / Exclude r a r e ly -u s e d s t u f f from

/ / MFC core and standard components
/ / MFC e x te n s io n s
/ / MFC Automation c l a s s e s

/ / MFC support f o r i n t e r n e t E xplorer 4

168

T im e D la . h

i f
!defined(AFX_TIMEDLG_H 1CA23F63_5B80_4CD6_BE2D_F61517975501 INCLUDED

d e fin e AFX_TIMEDLG_H 1CA23f63_5380_4CD6_BE2D_F61517975503 INCLUDEP_

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000
/ / Tim eDlg.h : header f i l e
/ /

/
/ / / / / / /
/ / CTimeDlg d ia lo g

c l a s s CTimeDlg : p u b l ic CDialog
{
/ / C o n str u c t io n
p u b lic :

v o id s e t_ p a r a (c o n s t i n t _FeedSetupTime, c o n s t i n t _PickTim e,
c o n s t i n t _ in s e r tT im e , c o n s t i n t _H ead sp eed);

BOOL o n ln i tDi a lo g 0 ;
vo id updateB ox(const i n t _ ID , const i n t _ D a ta) ;
i n t G et_H ead sp eed();
i n t G e t_ ln s e r t T im e () ;
i n t G et_P ick T im e();
i n t G et_F eed setu p T im e();
i n t G etltem C const i n t _ I D) ;
CTimeDlgCCWnd* pParent = NULL); / / s t a n d a r d c o n s tr u c to r

/ / D ia lo g D ata
//{{AFX_DATA(CTi meDlg)
enum { IDD = IDD_TIME };

/ / NOTE: th e c la s s w iz a r d w i l l add data members here
//}}AFX_DATA

/ / O verr id es
/ / c la s s w iz a r d generated v i r t u a l f u n c t io n o v e r r id e s
//{{AFX_VIRTUALCCTimeDlg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / DDX/DDV

support
//}}AFX_VIRTUAL

/ / Im plem entation
p r o te c te d :

/ / G enerated message map fu n c t io n s
/ / { {AFX_MSG(CTimeDlg)
afx_msg v o id O nC hangeFeedsetuptim eO ;
afx_msg v o id onchangeP icktim eC);
afx_msg v o id o n c h a n g e ln s e r t t im e O ;
afx_msg v o id 0nChangeHeadspeed();
/ / } } afx_ msg
DECLARE_MESSAGE_MAP()

p r iv a te :
i n t HeadSpeed;
i n t PickTime;
i n t in ser tT im e;
i n t FeedsetupTime;

//{{AFX_INSERT_LOCATION}}
/ / M ic r o s o f t V isua l C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s
imm edia te ly b e f o r e th e prev io us l i n e .

169

e n d i f / /
!d e f i ned(AFX_TIMEDLG_H 1CA23F63_5380_4CD6_BE2D_F61517975501 INCLUDED
_)

170

Board.h

/ / Board.h: i n t e r f a c e f o r th e CBoard c l a s s .

/ ^ /
i f
! d e f i ned (AFX_BOARD_H DE3D2410_58B6_472E_9ACD_EE5DFDF2A25E INCLUDED.)
d e fin e AFX_BOARD_H DE3D2410_58b6_472E_9ACD_EE5DFDF2a25E INCLUDED.

in c lu d e "Comps.h" / / Added by ClassView
i f .MSC.VER > 1000
#pragma once
e n d i f / / .MSC.VER > 1000

c la s s CBoard
{
p u b lic :

CComps *pComps;
i n t NumofBoards;
i n t NumofComps;
i n t NumOfCompTypes;
i n t Num ofLocations;
i n t MaxCompFreqOnBoard;
i n t *TypesOfComps;
CBoard O ;
v i r t u a l ~C B o ard ();

};
e n d if / /
! d e f i nedCAFX_BOARD_H_DE3D2410_58b6_472E_9ACD_EE5DFDF2A25E INCLUDED.)

171

B u f f e r .h

/ / B u f f e r .h : i n t e r f a c e f o r th e CBuffer c l a s s .

/ /
if
! d e f i ned (AFX_BUFFER_H 04580654_ECA2_458C_8978_192B7F660FBC INCLUDED.
)
d e fin e AFX_BUFFER_H 04580654_ECA2_458C_8978_192B7F660FBC INCLUDED.

in c lu d e < c a s s e rt>

i f .MSC.VER > 1000
#pragma once
e n d i f / / .MSC.VER > 1000

c la s s C B u ffe r
{
p u b lic :

/ / v o i d B u f fe r _ ln i t (c o n s t i n t .T a b u S iz e);
vo i d c le a r .b u f f e r Q ;
v o id p u s h _ b u ffe r (in t max, i n t i te m);
i n t p o p _ b u ffe r (in t max);
i n t g e t_ s iz e () const;
i n t g e t _ p o in te r (in t _ k) const;
C B u ffe r(c o n s t i n t .T a b u S iz e);
v i r t u a l ~ C B u ffe r () ;

p r iv a te :
i n t *pProd;
i n t B u ffe rL a s t;
i n t B u ffe rS iz e ;

};
e n d i f / /
!defined(AFX.BUFFER.H 04580654_ECA2_458C_8978_192b7f660FBC INCLUDED.
)

172

C o o rd in a te s D lg .h

i f
! d e f i ned(AFX_COORDINATESDLG_H DC57E5D8_E44B_4C77_J\B3E_E263E0C7348F I
NCLUDED.)
d e f i ne
AFX_COORDINATESDLG_H DC57E5d8_E44B_4C77^AB3E_E263E0C7348F INCLUDED.

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000
/ / c o o rd in a te s D lg .h : header f i l e
/ /

/
/ / / / / / /
/ / c c o o rd in a te s D lg d ia lo g

c la s s c c o o rd in a te s D lg : p u b lic C D ialog
{
/ / c o n s tru c tio n
p u b lic :

vo id s e t_ p a ra (c o n s t i n t _X , const i n t _Y , const i n t _x_Home,
const i n t _Y_Home);

BOOL o n ln i tD i a lo g () ;
vo id updateB ox(const i n t _ ID , const i n t .D a t a) ;
i n t G et_Y_Hom e();.
i n t Get_X_Home();
i n t G e t_ Y () ;
i n t G e t_ x () ;
i n t G e tlte m (c o n s t i n t . I D) ;
ccoord inatesD lg(C W nd* p p aren t = NULL); / / s tan d ard c o n s tru c to r

/ / D ia lo g Data
/ / { {A FX .D A TA (ccoord inatesD lg)
enum { id d = id d . c o o r d in a t e s } ;

/ / NOTE: th e c la s s w iz a rd w i l l add d a ta members here
/ / } } a fx _ data

/ / o v e r r id e s
/ / c la s s w iz a r d gen erated v i r t u a l fu n c t io n o v e r r id e s
/ / { {AFX.VIRTUAL(CCoordi n a te sD lg)
p r o te c te d :
v i r t u a l v o id DoDataExchange(CDataExchange* pDX); / / DDX/DDV

support
//}}AFX_VIRTUAL

/ / im plem entation
p r o te c te d ;

/ / Generated message map f u n c t io n s
/ / { {AFX.MSG(CCoordi n a te sD lg)
afx_msg v o id OnChangeX();
afx_msg v o id 0nChangeY();
afx_msg v o id onChangeXHomeO;
afx_msg v o id OnChangeYHomeQ;
//}}AFX_MSG
DECLARE.MESSAGE.MAP()

p r iv a te :
i n t y ;
i n t X;
i n t Y.Home;
i n t x_Home;

};
//{{AFX.INSERT.LOCATION}}
/ / M ic r o s o f t v i s u a l C++ w i l l i n s e r t a d d i t i o n a l d e c l a r a t i o n s
im m edia te ly b e fo re th e prev iou s l i n e .

173

e n d i f / /
! d e f i ned (AFX_COORDINATESDLG_H DC57E5D8_E44B_4C77__AB3E_E263E0C7348F I
NCLUDED_)

174

Pcb.h

/ / Pcb.h : main header f i l e f o r th e PCB a p p l i c a t io n
/ /
i f
! d e f i ned(AFX_PCB_H 76D9CB6F_3FF5_467A_BBFD_48C0CB5CEA71 INCLUDED..)
d e f in e AFX_PCB_H 76D9CB6F_3FF5_467A_BBFD_48C0CB5CEA71 INCLUDED..

i f _MSC_VER > 1000
#pragma once
e n d i f / / _MSC_VER > 1000

i f n d e f AFXWIN_H
e r r o r in c lu d e ' s t d a f x .h ' b e fo re in c lu d in g t h i s f i l e f o r PCH

e n d i f

in c lu d e " resou rce .h " / / main symbols

/
/ / / / / / /
/ / CPcbApp:
/ / See Pcb.cpp f o r th e im plem entation o f t h i s c l a s s
/ /
c l a s s CPcbApp : p u b l ic cwinApp

p u b lic :
CPcbApp Q ;

/ / O verr id es
/ / c la s s w iz a r d gen era ted v i r t u a l f u n c t io n o v e r r id e s
/ / { {AFX_VIRTUAL(CPcbApp)
p u b lic :
v i r t u a l BOOL i n i t l n s t a n c e O ;
//}}AFX_VIRTUAL

/ / im plem entation

//{{AFX_MSG(CPcbApp)
/ / NOTE - th e C lassw izard w i l l add and remove member

f u n c t io n s h ere .
/ / DO NOT EDIT what you s e e in t h e s e b lo c k s o f

gen era ted code !
//}}AFX_MSG
D EC LAR E_M E S SAG E_MAP()

};

/
/ / / / / / /
/ / { {AFX_INS ERT_LOCATION}}
/ / M ic r o so ft v i s u a l C++ w i l l i n s e r t a d d i t io n a l d e c la r a t io n s
im m ediate ly b e fo r e th e p rev io u s l i n e .

e n d i f / /
! d e f i ned (AFX_PCB_H 76D9CB6F_3FF5_467A_BBFD_48C0CB5CEA71 INCLUDED..)

175

P e rm u ta tio n .h

/ / P e rm u ta tio n .h : in te r f a c e fo r th e C Perm utation c la s s .

/ ^ /

! d e f i ned(AFX_PERMUTATION_H 930F4ABA_DEDF_4571_9871_B768B8633648 INCL
UDED_)
d e f in e
AFX_PERMUTATION_H 930F4ABA_DEDF_4571_9871_B768B8633648 INCLUDED_

in c lu d e <fstream >
in c lu d e <math.h>
in c lu d e " P o s i t io n s .h " / / Added by ClassView
in c lu d e "Board.h" / / Added by ClassView
u sin g namespace s td ;

i f _MSC_VER > 1000
#pragma once
e n d i f / / _Msc_VER > 1000

c l a s s CPermutation
{
p u b lic :

vo id write_NumOfFeeders0 ;
i n t f in d _ b e s t _ f (c o n s t i n t s t a r t , c o n s t CBoard *_pBoardArray,

c o n s t i n t _ B o a r d);
i n t f in d _ b e s t _ s (c o n s t i n t s t a r t , c o n s t CBoard *_pBoardArray,

c o n s t i n t _ B o a r d);
vo id i n i t i a l i s e (c o n s t CBoard *_pBoardArray, c o n s t i n t _ B o a r d);
vo id p ick_random _s(const CBoard *_pBoardArray, c o n s t i n t

_ B oard);
vo id p ick_random _f(const CBoard *_pBoardArray, c o n s t i n t

,_B oard);
vo id g e n e r a te _ a s s ig n (c o n s t CBoard *_pBoardArray, c o n s t i n t

_ B oard);
vo id c a lc u la t e _ t im e (c o n s t CBoard *_pBoardArray, c o n s t i n t

_ B oard);
i n t c r e a t e _ n e ig h _ s (c o n s t CBoard *_pBoardArray, c o n s t i n t _Board,

c o n s t CPermutation _ c u r r e n t , o fstrea m & _ 0 u tF ile) ;
i n t c r e a t e _ n e ig h _ f (c o n s t CBoard *_pBoardArray, c o n s t i n t _Board,

c o n s t CPermutation . .c u r r e n t , o fstream & _O utFile);
vo id p o is o n O ;
in t * g e t_ p F e e d e r () ;
in t * g e t_ p S e g () ;
double g e t _ t im e () ;
i n t g e t _ p o s i t i o n _ a (i n t _ c o u n t) ;
i n t g e t _ p o s i t i o n _ b (i n t _ c o u n t) ;
i n t g e t_ S _ N e ig h _ s iz e (c o n s t CBoard *_pBoardArray, c o n s t i n t

_ B oard);
i nt get_F_Nei gh_si z e () ;
f r i e n d C P o s i t io n s com pare_s(const CPermutation &pl, c o n s t

CPermutation &p2, c o n s t CBoard *_pBoardArray, c o n s t i n t _B oard);
f r ie n d C P o s i t io n s com p are_f(const CPermutation &pl, c o n s t

CPermutation &p2);
i n t Get_NumofFeeders() ;
CPerm utation() ;
v i r t u a l ~C P erm u ta tion ();

CPermutation o p era to r = (c o n s t CPermutation & source);

p r iv a te :
bool FedNeighopen;
ofstream FeaN eighF ile ;
o fstream se q N e ig h F ile ;

C P o s itio n s *p c o o rd in a te s ;

i n t Numofseq;

176

i n t *pFeeder;
i n t *pSeq;

double t ime;
};
e n d if / /
! d e f i ned (AFX_PERMUTATION_H 930F4ABA_DEDF_4571_9871_B768B8633648 INCL
UDED_)

177

r e s o u r c e .h

//{{NO_DEPENDENCIES}}
/ / M ic ro s o ft D eve lo p er s tu d io generated in c lu d e f i l e
/ / Used by P c b .rc

d e f in e IDM̂ ABOUTBOX 0x0010
d e f in e IDD_ABOUTBOX 100
d e f i ne IDS^BOUTBOX 101
d e f in e IDD_PCB_DIALOG 102
d e f i ne IDR_MAINFRAME 128
d e f in e IDR_MENU 129
d e f in e IDD_BOARD 132
d e f in e IDD_FEEDER 134
d e f in e IDD_COORDINATES 135
d e f in e IDD_TIME 136
d e f in e IDD^ALGORITHM 137
d e f in e IDD_PROGRESS 138
d e f in e IDC_TEXTOUT 1001
d e f in e IDC_STATUSBOX 1002
d e f in e IDC_NUMOFBOARDTYPESOUT 1004
d e f in e IDC_COMBO 1005
d e f in e IDC_X_HOME 1006
d e f in e IDC_Y_HOME 1007
d e f in e IDC_X 1008
d e f in e IDC_Y 1009
d e f in e IDC_NUMOFFEEDERS 1010
d e f i ne IDC_LENGOFFEEDER 1011
d e f in e IDC_FEEDSETUPTIME 1012
d e f i ne IDC_PICKTIME 1013
d e f in e IDC_INSERTTIME 1014
d e f in e IDC_HEADSPEED 1015
d e f i ne IDC_MAXMOVES 1016
d e f in e IDC_MAXNOIMP 1017
^ d e f in e IDC_TABUSIZE 1018
d e f in e IDC_TABURESTART 1019
d e f in e IDC_NUMOFBOARDS_Al 1020
d e f i ne IDC_NUMOFBOARDS_jA2 1021
d e f in e IDC_NUMOFBOARDS^A3 1022
d e f in e IDC_NUMOFBOARDS^A4 1023
d e f i ne idc_ numofboards_a 5 1024
d e f i ne idc_ numofboards_a 6 1025
d e f in e IDC_NUMOFBOARDS_A7 1026
d e f i ne IDC_NUMOFBOARDS_A8 1027
d e f in e IDC_NUMOFBOARDS_jA9 1028
d e f in e IDC_NUMOFCOMPS_jA1 1029
d e f in e IDC_NUMOFCOMPS^A2 1030
d e f in e IDC_NUMOFCOMPS_A3 1031
d e f in e IDC_MAXMOVESOUT 1031
d e f in e IDC_NUMO FCOM PS_A4 1032
d e f in e IDC_MAXNOIMPOUT 1032
d e f in e IDC_NUMOFCOMPS_jA5 1033
d e f in e IDC_TABUSIZEOUT 1033
d e f in e IDC_NUMOFCOMPS_A6 1034
d e f in e IDC_TABURESTARTOUT 1034
^ d e f in e IDC_NUMOFCOMPS_A7 1035
d e f i ne lDC_X_HOMEOUT 1035
^ d e f in e IDC_NUMOFCOMPS_A8 1036
d e f i ne IDC_Y_HOMEOUT 1036
d e f in e IDC_NUMOFCOMPS_y\9 1037
d e f i ne IDC_XOUT 1037
d e f in e IDC_MAXCOMPTYPES 1038
d e f in e IDC_YOUT 1038
d e f in e IDC_NUMOFFEEDERSOUT 1039
d e f i ne IDC_LENGOFFEEDEROUT 1040
d e f in e IDC_FEEDSETUPTIMEOUT 1041
d e f in e IDC_PICKTIMEOUT 1042
d e f in e IDC_INSERTTIMEOUT 1043
d e f in e IDC_HEADSPEEDOUT 1044
d e f in e IDC_MAXCOMPTYPESOUT 1045

d e f in e IDC_MAXNUMOFLOCATIONS 1046
d e f in e IDCJENITIALMETHODOUT 1046
d e f in e IDC_MAXNUMOFLOCATIONSOUT 1047
d e f in e IDC_GO 1055
d e f in e IDC_PR0GRESS 1059
d e f in e idc_ board_a _time 1062
d e f in e idc_ board_ b_time 1063
d e f in e IDC_B0ARD_C_TIME 1064
d e f in e IDC_BOARD_D_TIME 1065
d e f i ne idc_ board_ e_ time 1066
d e f in e IDC_BOARD_F_TIME 1067
d e f in e IDC_BOARD_G_TIME 1068
d e f in e IDC_B0ARD_H_TIME 1069
d e f in e idc_ board_ i _TIME 1070
d e f in e RANDOM 8888
d e f in e CENTROID 9999
d e f in e IDC_BOARD 32771
d e f in e IDC_FEEDER 32772
d e f in e IDC_C00RDINATES 32773
d e f in e IDC_TIME 32775
d e f in e IDC_ALGORITHM 32777
d e f in e IDC_CENTROID 32779
d e f i ne IDC_RANDOM 32780

/ / Next d e f a u l t v a lu e s f o r new o b j e c t s
/ /
#1f d e f APSTUDIO_INVOKED
i f n d e f APSTUDIO_READONLY_SYMBOLS
d e f in e _J^PS_NEXT_RES0URCE_VALUE 140
d e f in e _APS_NEXT_COMMAND_VALUE 32781
d e f in e _APS_NEXT_CONTROL_VALUE 1072
d e f in e ^APS_NEXT_SYMED_VALUE 101
#endi f
e n d i f

179

TabuLis t .h

/ / T ab uL is t .h : i n t e r f a c e f o r t h e CTabuList c l a s s .

/ /
i f
! d e f i ned (AFX_TABULIST_H 8BE4B658_9AB8_4571_BF87_C76A4187ClF4 INCLUDE
D_)
•# d e fin e
AFX_TABULIST_H 8BE4B658_9AB8_4571_BF87_C76A4187ClF4 INCLUDED_

in c lu d e " P o s it io n s .h " / / Added by C lassV iew
in c lu d e " B u ffe r .h " / / Added by C lassV iew
i f _MSC_VER > 1000
#praqma once
e n d i f / / _MSC_VER > 1000

c la s s C TabuList
{
p u b lic :

v o id c l e a r _ l i s t O ;
v o id p u s h _ lis t(C P o s it io n s &move);
v o id p o p _ l is t () ;
i n t l i s t _ s i z e () ;
bool l is t_ f in d (C P o s it io n s «&move) co n st;
C T ab u L is t(co n s t i n t _ T a b u S ize);
v i r t u a l ~ C T a b u L is t() ;

p r iv a te :
i n t TabuS ize;
C B u ffe r *b ;
C B u ffe r *a ;

};
e n d if / /
! d e f i ned(AFX_TABULIST_H 8BE4B658_9AB8_4571_BF87_C76a4187C1F4 INCLUDE
D_)

180

Source Files:

A lgorithm D lq . cpp

/ / A lgorithm D lg .cpp : im plem entation f i l e
/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e "Algorithm Dlg.h"

i f d e f _DEBUG
d e f in e new debug_ new
undef THIS_FILE
s t a t i c char THIS_FILE[] = FILE ;
e n d i f

/
/ / / / / / /
/ / CAlgorithmDlg d ia lo g

CAlgorithmDlg::CAlqorithmDlq(CWnd* pParent /*=NULL*/)
: CDiaiog(CAlgorithm Dlg::IDD, pParent)

{
MaxMoves = 10;
TabuRestart = 2;
TabuSize = 4;
MaxNoimp = 3;
/ / { { afx_ data_ i n i t (ca1gorithm Dlg)

/ / note: t h e c la s s w iz a r d w i l l add member i n i t i a l i z a t i o n
here

}
/ / } }AFX_DATA_INIT

vo id CAlgorithmDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
/ / { { AFX_DATA_MAP(CAlgo rithmDlg)

/ / NOTE: t h e c la s s w iz a r d w i l l add DDX and DDV c a l l s here
/ / } }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAlgori thmDlg, CDi a lo g)
//{{AFX_MSG_MAP(CAlgori thmDlg)
on_ bn_ c l ic k e d Cid c _ c e n t r o id , onRadi oM ethodcli ck) .
0N_BN_CLICKED(id c _ random , OnRadi oM ethodcli ck)
/ / } } a fx _ msg_ map

end_ m essa g e_ m ap()

i n t C A lgorith m D lg::G etItem (const i n t _ID)

c o n s t TEXT_SIZE = 1 6 ;
char s z T e x t [t e x t _ s i z e + 1] ; / / b u f f e r f o r c o n v e r s io n s
CEdit *pGet = (CEdit *) C G etD lg ltem (_ iD));
pGet->GetW indowText(szText, TEXT_SIZE);
return a t o i (s z T e x t) ;

}
/
/ / / / / / /
/ / CAlgorithmDlg message hand lers

i n t CAlgori thmDlg: : Get_MaxMoves 0

return MaxMoves;
}

181

i n t CAlgorithmDlg::Get_MaxNolmpC)
{

return MaxNolmp;
}
i n t C A lgorithm D lg::G et_T abuSize()

return TabuSize;
}
i n t C A lgorithm D lg::G et_T abuR estart()
{

return TabuRestart;
}
vo id CAlgorithmDlg::OnOK()

MaxMoves = Getltem(IDC_MAXMOVES);
MaxNolmp = Getltem(lDC_MAXNOlMP);
TabuSize = Getltem(lDC_TABUSIZE);
TabuRestart = Getltem(IDC_TABURESTART);

CDialog: :0n0K O ;
}
v o id C A lgorithm D lg::OnRadioM ethodclick()

i f (randomO .GetcheckC) == 1)
{

c h o ic e = random;
}
i f (centroidO.GetcheckC) == 1)
{

c h o ic e = centroid;
}

CButton& C A lgorithm D lg:: randomO

return *(CButton*) GetDlgitem(lDC_RANDOM);

CButton& C A lg o r ith m D lg ::c e n tr o id ()

return *(CButton*) GetDlgltem(IDC_CENTROlD);

nt C A lgor ith m D lg::G et_ch o ice()

return c h o ic e ;

v o id C A lgorithm D lg::updateB ox(const i n t _ID, c o n s t i n t _Data)

c o n s t TEXT_SIZE = 1 6 ;
char szText[TEXT_SIZE + 1] ; / / b u f f e r f o r c o n v e r s io n s
CEdit *pD isp lay = (CEdit *) (G e tD lg I te m (_ lD)) ;
i to a C -D a ta , s z T e x t , 10);
pDi sp lay -> S etw i nd ow T ext(szT ex t);

BOOL CAlgori thmDlg: : on ln i tDi a l o g ()

UpdateBox(lDC_MAXMOVES, MaxMoves);
updateBox(idc_ maxnoimp, MaxNolmp);
UpdateBox(IDC_TABUSIZE, T a b u S iz e) ;
UpdateBox(idc_ taburestart, T a b u R e s ta r t) ;

182

i f (c h o ic e == RANDOM)

randomO .S e tC h eck (random) ;
}
i f (c h o ic e == CENTROID)
{

c e n t r o id O .SetCheck(CENTROlD);
}
return t r u e ;

}
v o id C A lg o r ith m D lg : :se t_ p a r a (c o n st i n t _MaxMoves, c o n s t i n t _MaxNolmp,
c o n s t i n t _T abuSize , co n st i n t _T abuR estart , c o n s t i n t . . c h o ic e)
{

MaxMoves = _MaxMoves;
MaxNolmp = _MaxNolmp;
TabuSize = _TabuSize;
TabuRestart = _T ab u R estart;
c h o ic e = _ c h o ic e ;

}

183

B oardD la.cpp

/ / BoardDlg.cpp : im plem entation f i l e
/ /
in c lu d e " std a fx .h "
in c lu d e "Pcb.h"
in c lu d e "boarddlg.h"

i f d e f _DEBUG
d e f in e new DEBUG_NEW
#undef THIS_FILE
s t a t i c char t h is_ f i l e [] = FILE ;
e n d i f

/
/ / / / / / /
/ / CBoardDlg d ia lo g

CBoardDlg::CBoardDlg(CWnd* pParent /*=NULL*/)
: CDialogCCBoardDlg::IDD, pParent)

{

here

}

NumofBoardTypes = 0 ;
MaxCompFreq = 0;
MaxNumofCompTypes = 0;
MaxNumofLocations = 0;
pCompTypes = 0;
//{{AFX_DATA_INIT(CBoardDlg)

/ / NOTE: th e c la s s w iz a r d w i l l add member i n i t i a l i z a t i o n

/ / } }AFX_DATA_INIT

vo id CBoardDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CBoardDlg)

/ / NOTE: th e c la s s w iz a r d w i l l add DDX and DDV c a l l s here
/ / } }AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CBOardDlg, CDi a lo g)
//{{AFX_MSG_MAP(CBoardDlg)
ON_CBN_SELCHANGE(IDC_COMBO, OnSelchangeCombo)
//}}AFX_MSG_MAP

END_MESSAGE_MAPC)

/
/ / / / / / /
/ / CBoardDlg message h an d lers

i n t CBoardDlg::Get_MaxNumOfcompTypes()
{

return MaxNumofCompTypes;
}
i n t CBoardDlg::Get_MaxNumofLocations()

return MaxNumOfLocations;
}
i n t CBoardDlg::Get_NumofBoardTypes()
{

return NumofBoardTypes;

vo id C B oardD lg::C learB ox(const i n t _ID)

184

 ̂ C E d it * p c le a r = (C E d it *) (G e tD lg lte m (_ lD)) ;
p c ie a r -> s e tw i ndowText(" ') ;

}
v o id C B o a r d D lg : : lo a d _ f i l e s (c o n s t char * _ f i l e)
{

i n t j = 0;
i n t n e x t = 0;
i n t CompFreq;
i n t CompType;

i f s t r e a m i n (_ f i l e , i o s : : i n) ; / / f i l e in p u t v a r ia b le

i f (! i n)

NiessageBox("unable to open f i l e ! ” , " F a i l " ,
MB_ICONWARNING);

re tu rn ;
}
char i t e m [2 0];
char command[2 0];

in » item » item » item » item » item » item » i tem »
item ;

f o r (i n t board = 0; board < NumofBoardTypes; board++)

pB oardArray[board]. NumOfCompTypes = 0;
' pBoardArray[board].NumOfcomps = g e t_ n u m b e r (_ f i le , board);

UpdateBOX(IDC_NUMOFCOMPS_^l +
n e x t , pBoardArray[board]. NumOfcomps);

pBoardArray[board].pComps = new CComps
[pBoardArray[board].NumOfcomps + 1];

f o r (i n t k=0; k<=pBoardArray[board].NumOfcomps; k++)

pBoardArray[board]. pComps[k].X_co = 0;
pBoardArray[board]. pComps[k].Y_co = 0;
pBoardArray[board]. pComps[k].CompType = 0 ; ,
pBoardArray[board].pComps[k].CompFreq = 0;

in » pBoardArray[board].NumofBoards;
UpdateBox(IDC_NUMOFBOARDS_Al +

n e x t , pBoardArray[board]. NumofBoards);
w h i l e (l)
{ ,

in » pBoardArray[board].pComps[j].CompType;
CompType = pBoardArray[board].pComps[j].CompType;
i f (pBoardArray[board].pComps[j].CompType == 0)

in » command;
i f (command[0] == 'N ')
{

next += 1; / / increm ent n ex t
}
i f (command[0] == ' £ ')
{

MessageBox("End o f f i l e " ," E n d o f f i l e
reached" , m b _ ic o n in f o r m a t io n) ;

return;
break;

}
break;

}
i f ((CompType!=0) && (compcompare(CompType,board)))

MaxNumofCompTypes += 1;

185

i f C(CompType!=0) &&
(CompCompareBoard(CompType, board , j)))

pBoardArray[board].NumOfCompTypes += 1;
}
in » pBoardArray[board].pComps[j].CompFreq;
CompFreq = pBoaraArray[board].pComps[j].CompFreq;

fo r (i n t i= 0 ; i<CompFreq; i+ +)

pBoardArray[board]. pComps[j].CompType =

pBoardArray[board].pComps[j].CompFreq =
CompType;

CompFreq;

in » pB oardA rray[board].pC om ps [j] .X_Co »
p B o a rd A rra y [b o a rd]. pComps[j] .Y_Co;

} 3++’
} / / end while loop
pBoardA rray[board].TypesofC om ps = new i n t

[pBoardArray[board].Num O fCom pTypes];
f o r (k = 0; k < pBoardArray[board].Num OfCom pTypes; k++)

p B oardA rray[board].Typeso fcom ps[k] = 0;

i n t cComps = 0;
i n t TempFreq = 0 ;
f o r (i n t cTypes = 0; cTypes <

pBoardArray[board].NumOfCompTypes; cTypes++)
{

i f
(Com pCom pareBoard(pBoardArray[board]. pComps[cComps]. CompType, b o a rd , cTy
p e s);

p B oardA rray[board] .Typesofcomps [cTypes] =
pBoardArray[board].pCom ps[cCom ps].Com pType;

TempFreq =
pBoardArray[board].pCom ps[cCom ps].Com pFreq;

cComps = cComps + TempFreq;

p B oardA rray[board].N um ofLocations = i ;
i f (MaxNumOfLocations < pBoardArray[Board].NumOfLocations)

MaxNumOfLocations =
p B o a rd A rra y [b o a rd]. NumofLocati ons;

updateBox(id c _ m a x n u m o f lo c a t io n s .MaxNum OfLocations) ;

f o r (i n t board = 0; board < NumofBoardTypes; board++)
{

fo r (i n t comp = 0; comp <
pBoardArray[board].Num Ofcom ps; comp++)

i f (MaxCompFreq <
pBoardArray[board].pCom ps[com p].Com pFreq)

MaxCompFreq =
pBoardArray[board].pCom ps[com p].Com pFreq;

i f (pBoardArray[board].M axCom pFreqOnBoard <
pBoardArray[board].pCom ps[com p].Com pFreq)

pBoardArray[board].M axCom pFreqOnBoard =
pBoardArray[board].pCom ps[com p].Com pFreq;

} }
}
UpdateBox(id c _ m a x c o m p ty p e s , MaxNumofCompTypes);

186

pCompTypes = new i n t [MaxNumOfCompTypes];
f o r (i n t i = 0 ; i < MaxNumOfCompTypes; i+ +)

pCompTypes[i] = 0 ;

] = 0 ;
}
i n t comp = 0;
i n t TempFreq = 0 ;
f o r (i n t cBoard = 0; cBoard < NumofBoardTypes; cBoard++)
{

fo r (i n t cComp = 0; ccomp <
pBoardArray[cBoard]. NumOfComps; cComp++)

i f
(compCompareMax(pBoardArray[cBoard]. pcomps[ccomp]. CompType, comp))

pCompTypes[comp] =
pBoardArray[cBoard].pcomps[cComp].CompType;

TempFreq =
pBoardArray[cBoard]. pcomps[ccomp].compFreq;

comp++;
cComp = ccomp + TempFreq - 1;

}
}

i n . c l o s e O ;
return;

}
vo id CBoardDlg::UpdateBox(const i n t _ID, c o n s t i n t _Data)
{

c o n s t TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1] ; / / b u f fe r f o r c o n v e r s io n s
CEdit *pD isp lay = (CEdit *) (G e tD lg l t e m (_ lD)) ;
i t o a (_ D a ta , sz T e x t , 10);
pDi sp la y -> s e tw i n d ow T ext(szT ex t) ;

i n t CBoardDlg::get_num ber(const char * _ f i l e , c o n s t i n t _ n e x t)

char i t e m [2 0];
char command[2 0];
i n t number;
i n t ty p e s ;
i n t x_co;
i n t y_co;
i n t to ta i_num ber[10] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 };
i n t next = 0;

i f s t r e a m i n (_ f i l e) ; / / f i l e in p u t v a r ia b le

i f (J in)

MessageBox("cannot open f i l e ! ” , " F a i l" , m b _ ic o n w a r n in g) ;
return 1;

}

i tem ;
in » item » item » item » item » item » item » item »

f o r (i n t board = 0; board < NumofBoardTypes; board++)

in » pBoardArray[board].NumOfBoards;

w h i l e (l)
{

in » ty p e s ;
i f (ty p e s == 0)

187

in » command;
i f (command[0] == 'N ')
{

next += 1;
}
break;

in » number;
tota l_num ber[board] += number;

f o r (i n t i= 0 ; icnumber; i++)
{

in » x_co » y_co;
}

}

}

i n . c l o s e () ;
return t o ta l_ n u m b e r [_ n e x t] ;

bool CBoardDlg::CompCompare(const i n t _NewComp, c o n s t i n t _N ext)

f o r (i n t board = 0; board < _N ext+ l; board++)

f o r (i n t j = 0; j < pBoardArray[board].Numofcomps; j++)

i f (pBoardArray[board].pcomps[j].CompType != 0)

i f (_NewComp == pBoardArray[board].pC om ps[j-
1] . CompType)

//M essageBox("Same

return f a l s e ;

{
CompType", "same", MB_OK);

}
}

}
}
return t r u e ;

}
bool CBoardDlg::CompCompareBoard(const i n t _NewComp, c o n s t i n t _Board,
c o n s t i n t _comp)
{

fo r (i n t ccomp = 0; cComp < _Comp; cComp++)

i f (pBoardArray[_Board].pcomps[ccomp].CompType != 0)

i f (_NewComp == pBoardArray[_Board].pcomps[cComp-
1] . CompType)

//M essageBox("Same CompType on
board", "Same",MB_OK);

return f a l s e ;
}

}
}
return t r u e ;

}
bool CBoardDlg: .-CompCompareMax (c o n s t i n t _NewComp, c o n s t i n t _Count)

fo r (i n t i = 0 ; i < _Count+l; i++)

i f (i > 0 && _NewComp == pCompTypes[i- 1])
{

return f a l s e ;
}

188

}
return t r u e ;

}
voi d CBoardDlg: : OnselchangeCombo0
{

const t e x t _ s iz e = 16;
char szText[TEXT_S IZE + 1] ;

MaxNumOfCompTypes = 0 ;
MaxNumofLocations = 0;
pCompTypes = 0 ;

CComboBox *pBoard = (CComboBox *) (G etD lg ltem (ID C _C O M B O));

f o r (i n t i = 0 ; i < 9 ; i++)

clearBox(lDC_NUMOFBOARDS_Al+i) ;
c l earBox(lDC_NUMOFCOMPS_jM+i);

}
i n t iC urse! = pBoard->GetCurSelC);

p B o a rd -> G e tL B T e x t(ic u rS e l, s z T e x t) ;
NumofBoardTypes = a t o i (s z T e x t) ;

pBoardArray = new CBoard [Num ofBoardTypes];

f o r (i = 0 ; i < NumofBoardTypes; i+ +)
{

p B o a rd A rra y [i] .NumofBoards = 0;
pBoardArray[i].Num OfCom ps = 0 ;
pBoardArray[i].Num OfCom pTypes = 0;
p B o ard A rray [i].N u m O fL o catio n s = 0;

1o a d _ f i1e s ("c o o rd i n a te s . t x t ") ;
}
CBoard* C B o ard D lg ::g e t_p B o ard A rray ()

re tu rn pBoardArray;

189

Comps.cpd

/ / Comps.cpp: im plem entation o f th e ccomps c l a s s .

/ /
in c lu d e " s td a fx .h "
in c lu d e "p cb .h"
in c lu d e "comps.h"

i f d e f _DEBUG
#undef TH IS_FILE
s t a t ic char T H IS _ F IL E []= f il e ;
d e fin e new debug_ new
endi f

/
/ / C o n s tru c tio n /D e s tru c tio n
/ /
CComps:: CComps()
{

}
ccomps: : ~CComps Q

}

190

FeederD la .cpp

/ / FeederD lg .cpp : im p lem en ta tio n f i l e
/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e "F ee d e rD lg .h "

i f d e f _DEBUG
d e fin e new DEBUG_NEW
#undef TH IS_FILE
s t a t ic char T H IS _ F IL E [] = FILE ;
e n d if

/
/ / / / / / /
/ / CFeederDlg d ia lo g

C FeederD lg::CFeederD lg(CW nd* pP arent /*= N U L L * /)
: C D ia lo g (C F eed erD lg :H D D , p P aren t)

/ /{{A FX _D A TA _lN iT (C FeederD lg)
/ / NOTE: th e c la s s w iz a rd w i l l add member i n i t i a l i z a t i o n

here
/ / } }AFX_DATA_INIT

}

v o id CFeederD lg::DoDataExchange(CDataExchange* pDX)

CDi a lo g : : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CFeederDlg)

/ / NOTE: th e c la s s w iz a rd w i l l add DDX and DDV c a l ls here
/ / } } a f x _ data_ map

}

BEGlN_MESSAGE_MAP(CFeederDlg, C D ia lo g)
/ / { { a fx _ msg_ m a p (CFeed erD lg)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

/
/ / / / / / /
/ / CFeederDlg message h an d le rs

i n t C F e e d e rD lg ::G e tlte m (c o n s t i n t _ ID)
{

c o n s t TEXT_SIZE = 1 6 ;
char szText[TEXT_SIZE + 1] ; / / b u f fe r f o r co n vers io n s
C E d it *pG et = (C E d it *) (G e tD lg lte m (_ lD)) ;
p G et->G etw indow Text(szText, TEXT_S IZE);
re tu rn a t o i (s z T e x t) ;

}
i n t C FeederD lg::G et_N um ofFeeders()

re tu rn NumofFeeders;
}
i n t C FeederD lg ::G et_LengO fFeeder()
{

re tu rn LengO fFeeder;
}
vo id CFeederD lg::O nO K ()

NumofFeeders = Getltem(lDC_NUMOFFEEDERS);

191

LengofFeeder = Getitem(lDC_LENGOFFEEDER);

CDialog::OnOK();
}
vo id C F eederD lg::U pdateB ox(const i n t _ID, c o n s t i n t _Data)
{

c o n s t TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1] ; / / b u f f e r f o r c o n v e r s io n s
CEdit *pD isp lay = (CEdit *) (G e t D lg l t e m (_ lD)) ;
i to a (_ D a t a , s z T e x t , 10);
pDi splay->SetW i n d ow T ext(szT ex t);

BOOL C F ee d e r D lg : :O n in itD ia lo g ()

UpdateBox(lDC_NUMOFFEEDERS, N um ofFeeders);
updateBox(lDC_LENGOFFEEDER, L en g o fF eed er);
return t r u e ;

v o id C F ee d e r D lg : :se t_ p a r a (c o n s t i n t _NumofFeeders, c o n s t i n t
.L en g o fF eed er)

NumOfFeeders = _NumOfFeeders;
LengofFeeder = _LengofFeeder;

192

PcbDlq.cpp

/ / PcbDlg.cpp : im plem entation f i l e
/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e "P cbD lg .h"

i f d e f _DEBUG
d e f in e new DEBUG_NEW
u n d ef THIS_FILE
s t a t i c char T H IS _F IL E [] = FILE ;
e n d i f

/
/ / / / / / /
/ / D e c la r a t io n o f g lob a l v a r ia b le s
i n t NumofFeeders = 40;
i n t LengofFeeder = 2 0 ;
i n t TabuS ize = 4;
i n t T ab u R es ta rt = 2;
i n t MaxMoves = 10;
i n t MaxNolmp = 3 ;
i n t FeedSetupTime = 0 ;
i n t in ser tT im e = 2;
i n t PickTime = 2 ;
i n t HeadSpeed = 500;
i n t X = 300;
i n t Y = -500;
i n t x_Home = 100;
i n t Y_Home = -200;
i n t MaxNumOfLocations;
i n t MaxNumOfCompTypes;
i n t NumofBoardTypes;
i n t F_Nei gh_si z e ;
i n t s_ N e ig h _ s iz e ;
C Perm utation *n e ig h _s ;
C Perm utation *n e ig h _ f;

/
/ / / / / / /
/ / CAboutDlg d ia lo g used f o r App About

c la s s CAboutDlg : p u b lic C D ialog
{
p u b lic :

CAboutDlgO;

/ / D ia lo g D ata
//{{AFX_D A TA (C A boutD lg)
enum { IDD = IDD_ABOUTBOX } ;
//}}AFX_DATA

/ / C lassw izard gen erated v i r t u a l f u n c t io n o v e r r id e s
//{{A FX_V IR TU A L(C A boutD lg)
p ro te c te d :
v i r t u a l v o id DoDataExchangeCCDataExchange* pDX); / / DDX/DDV

support
//}}A FX_VIR TU A L

/ / im p !em en ta ti on
p ro te c te d :

/ / { {AFX_MSG(CAboutDlg)
//}}AFX_M SG
DECLARE_MESSAGE_MAP()

};
CAboutDlg::CAboutDlgO : CDialog(CAboutDlg::IDD)

193

//{{AFX_DATA_INIT(CAb0UtDlg)
/ / } }AFX_DATA_INIT

}
v o id CAboutDlg:: DoDataExchangeCCDataExchange* pDX)

CDi a l o g : : DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAboutDIg)
/ / } }AFX_DATA_MAP

}
BEGIN_MESSAGE_MAP(CAboutDlg, CDi a lo g)

/ / { {AFX_MSG_MAP(CAboutDlCj)
/ / No message hand lers

/ /}}afx_m sg_m ap
EN D_M E S SAG E_MA P()

/
/ / / / / / /
/ / CPcbDlg d ia lo g

CPcbDlg::CPcbDlg(cwnd* pParent /*=NULL*/)
: CDialogCGPcbDlg::IDD, pParent)

MaxNumofLocations = 0;
MaxNumOfCompTypes = 0;
NumofBoardTypes = 0 ;
NumofFeeders = 40;
X_Home = 100;
Y_Home = -200;
X = 300;
Y = -500;
cho ice = RANDOM;
R esultopen = f a l s e ;
F in a l Open = fa ls e ;
f la g = t ru e ;
RestartM oves = 0;
NolmpMoves = 0;
Total_Time = 0;
Setup_Time = 0 ;
Board_Time = 0 ;

/ / { { afx_ data_ i n i t CcPcbDlg)
m _stringData = _TC,,U) ;
m_TextData = _TC"");
m_Board_A_Time = 0 ;
m_Board_B_Time = 0 ;
m_Board_c_Time = 0 ;
m_Board_D_Time = O.Of;
m_Board_E_Time = O.Of;
m_Board_F_Time = O.Of;
m_Board_G_Time = O.Of;
m_Board_H_Time = O.Of;
m_Board_l_Time = O.Of;
/ / } }AFX_DATA_INIT
/ / Note t h a t Loadlcon does not req u ire a subsequent D e s tr o y lc o n

in Win32
m_hIcon = AfxGetApp()->LoadlconClDR_M AlNFRAME);

}
v o id CPcbDlg::DoDataExchange(CDataExchange* pDX)

C D ia lo g : :DoDataExchange(P D X);
/ / { {afx_ data_ map(CPcbDlg)
DDX_control(pDX, IDC_G0, m_GoButton);
DDX_ControlCpDX, IDC_PR0GRESS, m _ P r o g r e s s s ta t u s) ;
DDX_TextCpDX, IDC_STATUSB0X, m_stri n g D a ta);
DDX_Text(pDX, idc_ textout, m _TextData);
DDX_Text CpDX, IDC_BOARD_A_TiME, m_Board_^_Time);

194

}

DDX_TextCpDX, IDC_BOARD_B_TIME, m_Boa rd_B_Time)
DDX__Text(pDX, id c_ board_C_t im e , m_Board_C_Time)
DDX_Text(pDX, id c_ board_ d_ t im e , m_Board_D_Time)
DDX_TextCpDX, id c_ board_ e_ t im e , m_Board_E_Time)
ddx_t e x t CpDX, id c_ board_ f_ t im e , m_Board_F_Time)
DDX_TextCpDX, IDC_B0ARD_G_TIME, m_Board_G_Time)
ddx_t e x t CpDX, id c_ board_ h_TIME, m_Board_H_Time)
DDX_TextCpDX, IDC_BOARD_I_TIME, m_Board_i_Time)
/ / } } afx_ data_ map

BEGIN_MESSAGE_MAPCCPcbDlg, CDi a lo g)
//{{AFX_MSG_MAPCCPcbDlg)
ON_WM_SYSCOMMAND C)
ON_WM_PAINTC)
ON_WM_QU E RYDRAGICONC)
on_ commandCid c _ bo ard , onBoard)
on_ commandCid c _ f e e d e r , onFeeder)
on_ commandCid c _ c o o r d in a t e s , oncoordi n a te s)
ON_COMMAND ClDC_TIME, onTi me)
on_ commandCid c _ a l g o r it h m , onA lg o rith m)
ON_BN_CLICKEDClDC_GO, OnGo)
on_ en_ s e t f o c u s Cid c _t e x t o u t , o n s e tfo c u s T e x to u t)
//}}AFX_MSG_MAP

end_ message_ m apO

/
/ / / / / / /
/ / CPcbDlg message h an d lers

BOOL CPcbDlg: .-OnlnitDialogC)

CDi a l o g : : on ln i tDi a lo g 0 ;
UpdateBox ClDC__x_HOMEOUT, x_Home);
updateBoxCiDC_Y_HOMEOUT, Y_Home);
updateBoxCiDC_xouT, x);
UpdateBox Cid c _ y o u t , Y) ;
UpdateBoxClDC_FEEDSETUPTiMEOUT, F eedsetup T im e);
UpdateBoxC id c _ p ic k t im e o u t , P ickT im e);
UpdateBoxC id c _ in s e r t t im e o u t , in s e r tT im e) ;
UpdateBoxCid c _ h e a d s p e e d o u t , H eadspeed);
UpdateBoxClDC_MAXMOVESOUT, MaxMoves);
UpdateBoxC id c _ m a x n o im p o u t , MaxNoimp);
UpdateBoxCIDC_TABUSI2E0UT, TabuSize);
UpdateBoxClDC_TABURESTARTOUT, T a b u R e s ta r t) ;
UpdateBOXClDC_INITIALMETHODOUT, "RANDOM");
UpdateBoxClDC_NUMOFFEEDERSOUT, Num ofFeeders);
UpdateBoxC id c _ le n g o ffe e d e r o u t , L e n g o fF e e d e r);

LengofFeeder = 20;
TabuSize = 4 ;
TabuRestart = 2 ;
MaxMoves = 1 0 ;
MaxNoimp = B;
FeedsetupTime = 0 ;
InsertT im e = 2;
PickTime = 2;
Headspeed = 500;
X = 300;
Y = -500;
X_Home = 100;
Y_Home = -200;

tabu = new CTabuListCTabusize);

/ / Add " A b o u t . . ." menu item t o system menu.

/ / iDM_ABOUTBOX must be in th e system command range.
ASSERTCClDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
a s s e r t Cid m _ aboutbox < OxFOOO);

195

CMenu* pSysMenu = GetsystemMenuCFALSE);
i f (pSysMenu != NULL)

c s t r i n g strAboutMenu;
strAboutMenu. L oadstr i ng(lDS^ABOUTBOX);
i f (! strAboutMenu. isE m p tyO)

pSysMenu->AppendMenu(mf_ separator) ;
psysMenu->AppendMenu(MF_STRINGf IDNLABOUTBOX,

strAboutM enu);
}

}
/ / S e t th e ico n f o r t h i s d i a lo g . The framework does t h i s

automati c a l l y
/ / when th e a p p l i c a t i o n ' s main window i s not a d ia lo g
se t lc o n (m _ h lc o n , true) ; / / S e t b ig ic o n
s e t lc o n (m _ h lc o n , FALSE); / / S e t small i c o n

/ / TODO: Add e x tr a i n i t i a l i z a t i o n here

return TRUE; / / return TRUE u n le s s you s e t th e fo c u s t o a
c o n tro l
}
vo id CPcbDlg::OnsysCommand(ulNT niD, LPARAM iParam)

* i f CCnID & OxFFFO) == IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;
dlgA bou t. DoModal() ;

e l s e

CDi a l o g : : Onsyscommand(niD, 1Param);
}

}
/ / I f you add a m inim ize button t o your d i a l o g , you w i l l need th e code
below
/ / t o draw th e ic o n . For MFC a p p l i c a t i o n s u s in g th e docum ent/view
m odel,
/ / t h i s i s a u t o m a t ic a l ly done f o r you by th e framework,

voi d CPcbDlg: : On Pai n t C)

i f (i s i c o n i c O)

CPaintDC d c (t h i s) ; / / d e v ic e c o n te x t f o r p a in t in g

sendMessage(WM_lCONERASEBKGND, (WPARAM) d c .G e t s a fe H d c O ,
0);

/ / c e n te r icon in c l i e n t r e c t a n g le
i n t cx lc o n = GetSystemMetrics(SM_CXlCON);
i n t c y lco n = GetsystemMetrics(SM_CYiC0N);
CRect r e c t ;
G e t c l i e n tR e c t (& r e c t) ;
i n t x = (r e c t .w id th C) - cx lc o n + 1) / 2;
i n t y = (r e c t .H e ig h t () - cy lc o n + 1) / 2;

/ / Draw th e icon
d c .D raw lcon(x , y , m _h lcon);

}
e l s e
{

CDi al o g :: On Pai nt () ;

} }

196

/ / The system c a l l s t h i s t o o b ta in th e cu rsor t o d i s p la y w h i le th e
u ser drags
/ / th e m in im ized window.
hcursor CPcbDlg: .-onQueryDragiconO

return (HCURSOR) m_hlcon;
}
v o id CPcbDlg::OnBoard()

s t r « " s e t t i n g boards p a r a m e te r s ." « e n d s ;
u p d a te S t a tu s B o x (s t r) ;
BoardDlg.DoModal() ; / / run Board d ia lo g box
m_GoButton. S e tF o cu s() ;
s t r « " B o a r d d e t a i l s u p d a te d ." « e n d s ;
u p d a te S t a tu s B o x (s t r) ;

pBoardArray = B oard D lg .get_pB oardA rray();

NumofBoardTypes = B oardD lg .G et_N um ofB oardTypes();
MaxNumOfCompTypes = BoardDlg.Get_M axNum ofcom pTypes();
MaxNumOfLocations = BoardDlg.G et_M axNum0fLocations();

UpdateBox(lDC_NUMOFBOARDTYPESOUT, NumofBoardTypes);
UpdateBox(id c _ m axco m ptypeso ut , MaxNumOfCompTypes);
UpdateBox(id c _ m a x n u m o flo c a tio n so u t , MaxNumOfLocations);

}
v o id CPcbDlg::OnFeeder()

s t r « " S e t t i n g fe e d e r p a r a m e te r s ." « e n d s ;
U p d a te S ta tu s B o x (s tr) ;
w n i l e (l)

FeederD lg .set_para(N um O fFeeders, L e n g o fF e e d e r);
FeederDlg.DoModal() ; / / run Feeder d ia lo g box
m jsoB utton . S e tF o c u s() ;
NumofFeeders = FeederD lg.G et_Num O fFeeders() ;
LengofFeeder = F eed erD lg .G et_L en g o fF eed er() ;
i f (NumofFeeders >= MaxNumOfCompTypes)
{

break;
}
e l s e

MessageBox("Number o f f e e d e r s must be g r e a te r than
th e maximum number o f component t y p e s ! " ,

"Warni ng", MB_lCONWARNING);
}

}
UpdateBox(id c _NUMOFFEEDERSOUT, Num ofFeeders);
UpdateBox(lDC_LENGOFFEEDEROUT, L en g o fF eed er);
s t r « " F e e d e r parameters u p d a te d ." « e n d s ;
u p d a te S t a tu s B o x (s t r) ;

vo id C P cbD lg ::O nC oord inates()

s t r « " s e t t i ng coordi n a te s . " « e n d s ;
u p d a te S ta tu s B o x (s tr);
C o o rd in a te s D lg .s e t_ p a ra (X , Y, x_Home, Y_Home);
C oord inatesD lg .D oM odal() ; / / run C o o rd in a tes d ia lo g box
m_GoButton. SetFocus() ;
X = c o o rd in a te s D lg .G e t_ X () ;
Y = c o o rd in a te s D lg .G e t_ Y () ;
X_Home = coord inatesD lg .G et_X_H om e() ;
Y_Home = C oord inatesD lg .G et_Y _H om eQ ;

197

UpdateBoxCidc_xout , X);
UpdateBox(IDC_Y0UT, Y) ;
UpdateBox(idc_ x_ homeout, x_Home);
UpdateBoxClDC_Y_HOMEOUT, Y_Home);
s t r « " C o o r d in a t e s upd ated . " « e n d s ;
u p d a te S t a tu s B o x (s t r) ;

vo i d CPcbDlg: : OnTi me 0
* . • „s t r « " s e t t i n g t im in g param eters. « e n d s ;

u p d a te S t a tu s B o x (s t r) ;
T im eD lg .se t_p ara (FeedsetupTim e, PickTime, In ser tT im e,

H ead sp eed);
TimeDlg.DoModal() ; / / run Time d ia lo g box
m_GoButton. S e tF o cu s() ;
FeedsetupTime = T im eD lg .G et_FeedSetupT im e();
Pi ckTi me = Ti meDlg. Get_Pi ckTi me() ;
InsertT im e = T im e D lg .G e t_ ln se r tT im e () ;
Headspeed = T im eD lg .G et_H eadspeed();

UpdateBox(id c _ f e e d s e t u p t im e o u t , F eedsetup T im e);
UpdateBox(IDC_PICKTIME0UT, P ickT im e);
UpdateBox(id c _INSERTTIMEOUT, I n s e r t T im e) ;
UpdateBox(id c _ h e a d s p e e d o u t , H ead sp eed);
s t r « " T i mi ng param eters updated . " « e n d s ;
U p d a te s t a tu s B o x (s t r) ;

v o id C P cb D lg ::O n A lg o rith m ()

s t r « " S e t t in g Tabu Search a lg o r ith m ." « e n d s ;
u p d a te s ta tu s B o x (s tr) ;
A lgorithm Dlg.set_para(M axM oves, MaxNoimp, T ab uSize , T abuR estart ,

choi c e) ;
A lg o rith m D lg .D o M o d a l() ; / / run A lg o rith m d ia lo g box
m_GoButton. SetFocus() ;
MaxMoves = A lgorithm Dlg.Get_M axM oves(); .
MaxNoimp = Algorithm Dlg.Get_M axNolm p();
TabuSize = A lg o r ith m D lg .G e t_ T a b u s iz e () ;
d e l e t e [] tabu;
tabu = new C T abuL ist(T abuSize);
TabuRestart = A lg o r ith m D lg .G et_ T a b u R esta r t() ;
c h o ic e = A lg o r i tn m D lg .G e t_ c h o ic e () ;

UpdateBox(lDC_MAXMOVESOUT, MaxMoves);
UpdateBox(IDC_MAXN0IMP0UT, MaxNoimp);
UpdateBox(IDC_TABUSIZE0UT, T abuSize);
UpdateBox(iDC_TABURESTARTOUT, T a b u R e s ta r t) ;

i f (c h o ic e == c e n t r o id)

UpdateBox(id c _ in it ia l m e t h o d o u t , " c e n t r o id ") ;
}
e l s e

UpdateBox(id c _INITIALMETHODOUT, "Random");

s tr « " T a b u Search a lgor ith m u p d a t e d ." « e n d s ;
U p d a te S ta tu s B o x (s tr) ;

v o id CPcbDlg:: UpdateBox(const i n t _ID, c o n s t i n t _ d a ta)

c o n s t TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1] ; / / b u f fe r f o r c o n v e r s io n s
pD isp lay = (CEdit *) (G e tD lg ltem (_ lD)> ;
i t o a (_ d a t a , sz T e x t , 10);
pDi sp lay -> S etw i n d o w T ext(szT ex t);
UpdateData(TRUE);

198

v o id CPcbDlg::U pdateB ox(const i n t _ID, char *_data)

p D isp lay = (CEdit *) (G e tD lg l t e m (_ lD)) ;
pDi splay->SetW i ndow T ext(_data);
updateData(TRUE);

nt C P cb D lg ::G etltem (con st i n t _ID)

c o n s t TEXT_SIZE = 16;
char szText[TEXT_SIZE + 1] ; / / b u f fe r f o r c o n v e r s io n s
CEdit *pGet = (CEdit *) (G e tD lg l t e m (_ iD)) ;
pG et->GetwindowText(szText, text_ s i z e) ;
return a t o i (s z T e x t) ;

vo id CPcbDlg::OnOK()

CDialog::OnOK();

vo id C P cb D lg::U pd ateStatusB ox(ostrstream _stream)

m_StringData = _ s t r e a m . s t r () ;
updateData(FALSE);
updateWi ndow Q ;

voi d CPcbDl g :: OnGo ()

m _ P r o g r e ss s ta tu s .se tR a n g e (0 , NumOfBoardTypes+1);
c le a r B o x (id c _t e x t o u t) ;
i f (FinalOpen == f a l s e)

F i n a l F i l e .o p e n (" F in a l . t x t " , i o s : : o u t) ;
Final Open = tru e ;

. i f (F i n a l F i l e . f a i l ())

MessageBox("Unable t o open f i n a l r e s u l t f i l e " ,
"F a i1", MB_ICONWARNING);

return;
}

}
i f (R esu ltop en == f a l s e)

R e s u l t F i l e . o p e n (" r e s u l t s . t x t " , i o s : : o u t) ;
R esu ltopen = tru e;
i f (R e s u l t F i1e . f a i 1 ())

MessageBox("unable t o open r e s u l t f i l e " , " F a i l" ,
MB_ICONWARNING);

return;
} }
i f (NumofFeeders < MaxNumOfCompTypes)

MessageBox("Number o f f e e d e r s < T ota l number o f component
ty p e s" , "warning", mb_ICONWARNING);

return;
}
R e s u l t F i l e « " T o t a l number o f

f e e d e r s : \ t \ t \ t " « N u m O f F e e d e r s « " \ n " ;
R e s u l t F i l e « " L e n g t h o f each f e e d e r : \ t \ t \ t \ t " « L e n g O f F e e d e r « "

mm\n";
Resul tF i le « " H o m e coordi n a tes : \ t \ t \ t \ t \ t " « x _ H o m e « " x

”« Y _ H o m e « " \n " ;
R e s u l t F i l e « " F e e d e r - t o - b o a r d di s ta n c e : \ t \ t \ t " « X « " x

" « Y « " \ n " ;

199

Resul t F i l e « " F e e d se tu p t i m e : \ t \ t \ t \ t \ t " « F e e d s e t u p T i m e « "
s e c o n d s \n " ; , % „

Resul tF i l e « " P i c k t i m e : \ t \ t \ t \ t \ t \ t \ t " « P i c k T i m e « " s e c o n d s \n ;
R esu ltF i 1 e « " l n s e r t t im e :\ t \ t \ t \ t \ t \ t " « l n s e r t T i m e « "

seco n d s \n " ;
Resul tF i 1 e«" H ead s p e e d : \ t \ t \ t \ t \ t \ t \ t ,,« H e a d S p e e d « ,,

m m /seconds\n";
Resul tF i l e « " T o t a l number o f m oves: \ t \ t \ t \ t " « M a x M o v e s « " \ n
Resul tF i le « " M a x i mum moves w ith o u t

i mprovement: \ t" « M a x N o lm p « " \n " ;
Resul tF i l e « " Length o f Tabu l i s t : \ t \ t \ t \ t " « T a b u S i z e « ,,\ n " ;
Resul tF i le«"N um ber o f Tabu r e s t a r t

al 1 owed: \ t \ t " « T a b u R e s t a r t « " \ n " ;

/ / d e l e t e [] p B est_E xit;
p B est_ E x it = new C P o s i t io n s [T a b u R e s ta r t+ l] ;
sran d ((u n s ign ed)t im e(N U L L)); / / i n i t i a t e random number

g e n e r a to r
/*compNames = new CString [pBoardArray[0] .NumOfCompTypes];
CompNames[0] = "Res_l";
CompNames[l] = "Res_2";
CompNames[2] = "Cap_l";
CompNames[3] = "Diode_l";
CompNames[4] = "Cap_2";
CompNames[5] = "Res_3";
CompNames[6] = "Diode_2";
CompNames[7] = "Cap_3";
CompNames[8] = "Res_4"; * /

^ ̂ ̂ ^ ̂ £ j* ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ^ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ “iC “2? "fc "i? "2c 'Zz “i? "ft “rC
JL J*

/ / S t a r t p r o c e ss in g one board a t a tim e

f o r (i n t cBoard = 0; cBoard < NumofBoardTypes; cBoard++)

m _ P r o g r e ssS ta tu s .S e tP o s (c B o a r d + l) ;
UpdateData(FALSE);
UpdatewindowQ;
c u r r e n t . in i t ia l i s e C p B o a r d A r r a y , cBoard);
B e s t . in i t ia l i s e (p B o a r d A r r a y , c B o a r d);
Local B e s t . in i t ia l i s e (p B o a r d A r r a y , cB o a rd);

s t r « " P r o c e s s i n g board " « c B o a r d « e n d s ;
u p d a te S t a tu s B o x (s t r) ;

s t r T e x t « " -- \ r l,« e n d l « " P r o c e s s i ng
board " « c B o a r d « " \ r " « e n d l ;

s t r T e x t « " -- \ r " « e n d l « e n d s ;
U p d ateT ex tB ox(s trT ex t) ;

R esu ltF11 e « \ n \ n * * . . •
Resul tF i l e « " \ n * * * * * PROCESSING BOARD " « C B o a r d « " *****";
Resul tF i 1 e « " \ n * * * * **************************\n" *
Resul tF i le«" \n N u m b er o f

b o a r d : \t \ t \ t" « p B o a r d A r r a y [c B o a r d] .NumOfBoards;
Resul tF i le«" \n N u m b er o f component

t y p e s : \ t n«pB oardA rray [cBoard] . NumOfCompTypes;
Resul tF i le«" \n N u m b er o f

l o c a t io n s : \ t \ t " « p B o a r d A r r a y [c B o a r d] .NumofLocations;
Resul tF i le«" \n N u m b er o f

com ponents: \ t \ t" « p B o a r d A r r a y [cB o a r d] . NumOfcomps;
Resul tF i l e « " \ n i n i t i a l i s i n g . . . \ n " ;

/ / Generate i n i t i a l placem ent sequence randomly

200 \

j - j . j - j . j1- j * ̂ j * j * J- a ̂ ^ ju J- ^ j . ^ ^ ^ ^ f f ; f ; ^ ^ ^ ^ V* ^ 'i; f ; ^ f r ^ ̂ ^ f? ^ ^ ^ f? o

current.p ick_random _s(pB oardA rray, cB o a rd);

^ «L J . J* J . J . JU J . J . J< J . J U ^ j!

/ / Generate i n i t i a l f e e d e r assignm ent e i t h e r randomly or
u sin g c e n tr o id

/ / r u le
/ /
i f (c h o ic e == RANDOM)
{

/ /**
/ / Generate i n i t i a l f e e d e r ass ignm ent randomly
/ /
current.p ick_random _f(pB oardA rray, c B o a r d);

/ /
/ / C a lc u la te t im e based on i n i t i a l f e e d e r assignm ent

and placem ent
/ / sequence
/ /
c u r r e n t .c a lc u la te _ t im e (p B o a r d A r r a y , c B o a r d);
Resul tF i l e « " \ n l n i t i a l gen era ted t im e Randomly = ";

}
e l s e i f (c h o ic e == CENTROID)
{

/ /**
/ / G enerate i n i t i a l f e e d e r ass ignm ent u s in g c e n tr o id

Rule
/ /
c u r r en t .g e n e r a te _ a ss ig n (p B o a r d A r r a y , c B o a r d);

/ /**
/ / C a lc u la te t im e based on i n i t i a l f e e d e r assignm ent

and placem ent
/ / sequence
/ /**
c u r r e n t .c a lc u la te _ t im e (p B o a r d A r r a y , c B o a r d);
Resul tF i l e « " \ n l n i t i a l gen era ted t im e u s in g c e n tr o id

Rule = ";

cB oard);

}
Resul tF i 1 e « c u r r e n t . g e t _ t i m e () « " s e c o n d s \n " ;

F_N eigh_size = c u r r e n t .g e t _ F _ N e ig h _ S iz e () ;
S_N eigh_Size = c u r r e n t .g e t_ s_ N e ig h _ s iz e (p B o a r d A r r a y ,

Resul tF i l e « " \n \n F _ N e ig h _ S iz e = " « F _ N e ig h _ s iz e ;
Resul tF i l e « " \ n s _ N e i g h _ S i z e = M« s _ N e i g h _ s i z e « " \ n " ;

d e l e t e [] n e igh _s;
d e l e t e [] n e ig h _ f;
n e ig h _ s = new C P e r m u ta t io n [s_ N e ig h _ s iz e] ;
n e ig h _ f = new C P erm u ta tio n [F _ N eig h _ s ize] ;

fo r (i n t i = 0 ; i < s_ N eigh _S ize ; i+ +)

n e i g h _ s [i] . i n i t i a l i s e (p B o a r d A r r a y , c B o a r d) ;

fo r (i = 0 ; i < F _N eigh_size; i+ +)

201

n e i g h _ f [i] . i n i t i a l i s e (p B o a r d A r r a y , cBoard);

i n t *pT est = c u r r e n t .g e t _ p F e e d e r () ;
f o r (i = 0 ; i < NumofFeeders; i+ +)

Resul tF i l e « " \ n F e e d e r [" « i « "] = " « p T e s t [i] ;

Resul tF i l e « " \ n " ;

JU »>. J . J . J . JU J , JU JL JU JU JU JU JU Jg. JU J . JU JU JU JU J . JU JU JL J . JU JU *jj* J* J* a£U J * JU JU JU JU J* JU J » JU J* »J*

/ / Current f e e d e r assignm ent and placem ent sequence are
both th e B est

/ / Local B est
/ /
B est = cu rren t;
Local B est = cu rren t;

/ /
JU JU JU JU J . JU JU JU JU JU JU JU JU JU JU JU JU JU JU JU JU J . JU J« JU JU JU J . JU JU JU JU JU JU J - JU JU JU JU JU JU J « JU JU J - JU JU J* J . JU A JU JU JU JU JU JU J - JU JU JU JU JU JU

/ / C lear tabu l i s t b e fore making moves
/ /
t a b u - > c l e a r _ l i s t O ;

/ /
/ / s t a r t making moves t o determ ine th e o p t im ise d f e e d e r

assignm ent and
/ / placem ent sequence
/ /
f o r (i n t cMoves = 1; cMoves <= MaxMoves; cMoves++)
{

updateTime(cBoard, B e s t . g e t _ t i m e ()) ;
Resul tF i le « " \n M o v e " « c M o v e s « " :";
/ /s t r T e x t« " M o v e _ L ,,« c M o v e s « " : " « e n d s ;
/ /u p d a te T e x t B o x (s t r T e x t) ;
/ /

J« JU JU JU JU J ^ JU JU JU JU ^U JU JU ^U JU JU JU J a ^U J a JU JU JU a û JU JU JU ^U JU JU JU a£a J* J< a£a JU JU JU a£a JU aU JU ^U ^U JU JU â U ^ a JU JU â U â U ^U a^ JU ^U JU JU JU â a a ^ â a J a

/ / c r e a t e neighbourhood based on th e i n i t i a l f e e d e r
assignm ent and

/ / p lacem ent sequence g e n e r a te d . Then, rep ort
p o s i t i o n o f th e b e s t

/ / neighbour found.
/ /*»{ f i r f ^ r f r f “f\ r f rT TnT <Sf V* rT V* r f r f r i r̂T tnT r f r ? «T r? i* rT rT <V rT *V rT ^ ^ Vv #V rT rT r f ^ iV Vf r f rT r? rT

s o lu t i o n = c u r r en t .c r ea te _ n e ig h _ s(p B o a rd A r r a y ,
cBoard, c u r r e n t , R e s u l t F i l e) ;

/ /****************************'************ Vf***********************
/ / I s th e s o lu t io n found t h e b e s t?
/ /**
do
{

/ /
JU J ^ â U J a JU JU J ^ JU JU JU JU JU J a JU JU J a JU J« a£U â U J a a ^ ^U a ^ aJU J ^ ^ a J* a ^ â a J a a ^ i^a i^a â U J a a^ J a a^ a^a ^U ^ a ^ a ^ ^ a J* J a ^ JU ^U JU ^ ^ ^ â U ^U ^U J a JU ^U

/ / Compare th e perform ance o f th e new s o l u t i o n
w ith th e cu rren t

/ / one
/ / I d e n t i f y th e move
/ /
move = c o m p a r e _ s (n e ig h _ s [s o lu t io n] , c u r r e n t ,

pBoardArray, cBoard);

202

allow ed = t r u e ; / / assume t h a t th e move i s
a l 1 owed

i f (t a b u - > l i s t _ f in d (m o v e)) / / check i f th e
move i s taboo

{
/ / A s p ira t io n c r i t e r i a
i f (B e s t .g e t_ t im e () <=

n e ig h _ s [s o lu t io n] .g e t_ t im e ())

nei g h _ s [s o lu t i o n] . poi son O ; / /
make t h is move u n a t t r a c t iv e

I I
JU JU J a JU J a JU JU JU JU JU JU JU J a J a J a JU J a JU JU J a J a J a J - J a JU JU J - J a JU JU «£a JU J a J a JU J a J a J a J a JU JU J a J^a J a JU JU J a JU JU JU l^a J a

/ I Find a new s o lu t io n from th e
neighbourhood

/ /
s o lu t io n =

c u r r e n t . f in d _ b e s t_ s (s o lu t io n , pB oardA rray, cB oard);
a llo w ed = f a ls e ; / / re p e a t to

check th e new s o lu t io n
}

}
} w h ile (a llo w e d == f a ls e) ;

I I Is th e move ju s t a f t e r a lo c a l best?
/ /

J a ^ ^ ^ J . J U J U J U J U J U J U J U J U J U J U J U J U J U J a J U J a J U ^ a J U ^ U J a J f J U ^ J - J U J U J » ^ » J U J a J a JU J a JU JU «£U JU J a JU J a J a J a a^a ^ J a ^ a J a ^ a J a J a J a J a a ^ a « ^ J a JU

i f (f la g == t r u e)

p B e s t_ E x it[R e s ta rtM o v e s] = move;
f la g = fa ls e ;

}

/ /
J a J a ^U ^ a J a J a J a â a JU J a J a J a J a JU J a J a J a J a «̂ a J a J a JU JU J a JU JU JU JU JU JU J a JU JU JU J a JU JU J a J a JU JU JU JU ^ a J a JU J a J a J a J a J a JU *£a ĴU J a JU JU â U a â JU JU â U JU JU

/ / Is th e c u rre n t s o lu t io n a new lo c a l best?
I I***
i f (n e ig h _ s [s o lu t io n] .g e t_ t im e () <

Local B e s t. g e t_ t im e ())

Local Best = n e ig h _ s [s o lu t io n] ; / / S et
lo c a l best

f la g = t r u e ; I I
The n ex t move is a f t e r a lo c a l best

NolmpMoves = 0 ; I I
R eset th e number o f NolmpMoves

RestartM oves = 0 ; / / A l l o w
a l l r e s t a r t a ttem p ts

e l s e
{

I I
JU JU JU J f JU «̂ U JU ^U JU J# â U JU ^ u JU ^ JU aU ^ <̂ U JU ^ ^U J^» A J a J a ^ J ji J* JU J^a JU â U ^ ^ J a J a JU J a J a JU JU ^ ajU J a J a ^ a ^ a ^U ^U ^ a «̂ ya ^U

/ / I f th e c u rre n t s o lu t io n is no t b e t t e r than
th e p r e v io u s ,

I I th en , i t i s c o n s id er e d as th e 'Non
improvement Move'. Hence,

I I in c r e a t e th e NolmpMoves co u n te r .
I I

JU JU JU JU JU JU JU JU JU JU JU JU JU J a JU *£a JU JU JU J a ^ J a J a ^ a ^U JU JU ^U J a ^ a J a J a J a ^U J a ^ JU J a ^ JU J a ^U JU ^ ^ a J a ^ JU J a J a ^ a J» JU ^ ^U ^U JU

NolmpMoves++; / / lo o se some 'p a t ie n c e '

203

/ / check i f th e cu rren t s o l u t i o n i s even th e b e s t
/ / -> I f YES, s e t i t as th e b e s t
/ / -> I f NO, proceed
/ /

J- JU JU JU JU JU âa JU JU JU JU JU JU

i f (n e i g h _ s [s o l u t i o n] . g e t _ t i m e () < B e s t . g e t _ t i m e ())

B est = n e i g h _ s [s o l u t i o n] ; / / s e t new B est
}

/ /
JU Ja Ja Ja JU Ja JU JU JU JU Ja Ja JU ̂ U JU JU JU JU JU Ja JU JU Ja JU JU JU Ja Ja Ja Ja Ja Ja JU Ja Ja Ja âa âa JU Ja Ja Ja JU Ja JU JU JU Ja Ja JU Ja JU JU Ja Ja Ja JU JU JU JU Ja JU Ja

/ / Have we exceeded th e max non-improvement moves
l im i t ?

/ / -> i f YES, t r y t o r e s t a r t , e l s e RANDOMISE again
/ / -> I f NO, make th e move
/ /
i f (NolmpMoves > MaxNoimp)

t a b u - > c l e a r _ l i s t () ; / / c l e a r tabu
l i s t

agai n
NolmpMoves = 0 ; / / 'be p a t ie n t '

/ /■ ***'*******

been reached
* * * * * * * * * * * *:

/ / R e s ta r t , i f th e r e s t a r t i n g l i m i t has not

/ /

have r e s t a r te d

i f (RestartM oves < T abuR estart)
{

RestartMoves++; / / Remember t h a t we

/ /
Ja Ja ̂ a JU Ja Ja JU Ja JU Ja JU Ja JU ̂ U JU JU Ja JU Ja Ja JU JU Ja Ja Ja Ja Ja Ja Ja Ja JU JU JU Ja ̂ JU Ja JU Ja Ja JU Ja JU Ja Ja Ja Ja Ja Ja *£a Ja JU *£a JU Ja Ja

/ / F i l l the tabu l i s t w ith p B est_ E x it
(we d o n 't want t o

/ / f o l l o w th e same path)
/ /

JU Ja JU JU Ja JU JU JU JU JU JU JU JU JU Ja JU JU JU JU JU JU JU Û JU JU a£U Ja JU JU JU JU JU Ja JU Ja *̂a JU Ja ^ Ja ̂ Ja «|U ̂ JU Ja J* Ja ̂ «̂a JU

Resul tF i l e « " RESTART ,,« R e s t a r t M o v e s « ,
: Taboo ->

/ / s t r T e x t « " RESTART " « R e s t a r t M o v e s « "
: Taboo -> ";

fo r (i n t x = 0; x < RestartM oves; x++)
{

/ /
Ja ̂ U Ja Ja Ja JU Ja JU Ja JU JU Ja JU Ja JU JU JU Ja Ja JU JU JU JU Ja JU JU Ja Ja JU Ja Ja Ja JU JU Ja JU JU JU Ja JU JU Ja JU JU JU Ja JU JU JU JU JU JU

/ / Make move t h a t l e f t l o c a l b e s t
l a s t t im e taboo

/ /
Ja JU ̂ U JU JU JU JU JU Ja JU Ja Û JU Ja JU ̂ ̂ U Ja ̂ ̂ U ̂ U ̂ U JU Ja J ̂̂ ̂ a JU JU Ja Ĵ ̂ JU JU JU Ja JU JU Ja JU JU JU «£a JU Ja JU Ja Ja ^ Ja •£#

tab u -> p u sh _ l i s t (p B e s t_ E x i t [x]) ;

Resul tF i 1 e « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t_ E x i t [x] . b « " > ";

/ / s t r T e x t « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t_ E x i t [x] . b « " > ";

Resul tF i l e « " \ n " ;
/ / s t r T e x t « " \ r " « e n d l « e n d s ;
/ /u p d a t e T e x t B o x (s t r T e x t) ;

/ /^ ^ ^ J a ^ ^ ^ J a ^ ^ ^ ^ ^ J a ^ ^ ^ J a ^ ^ ^ ^ J U J a J U ^ '̂ U ^ ’ JU^U ĵUJUJUJ '̂Ja l̂U '̂JaJ'̂ Ja^UJa^aJUJaJa^aJU ̂ JU ̂ U Ja ̂ U JU

/ / The move we a re go in g t o make should
be appended to

/ / p B est_E x it

204

/ /
f la g = t r u e ;
c u rre n t = Local B est; / / go back to

l o c a l b e s t
}
/ /i; i: it * it it it V' i tit it it it it it it it it it * * itit itit * it it it it it it i t i t i t it it it it it i t i t i t i t i t i t i t it i tit it i t i t i t i t i t i t it itit

/ / i f c a n 't r e s t a r t , r a n d o m ise
/ /
e ls e

Resul t F i l e « " RANDOMlSE\n";
/ / s t r T e x t « " R ANDO M lSE\r"«endl « e n d s ;
/ /U p d a te T e x tB o x (s t rT e x t) ;
c u r r e n t . p i ck_random _s(pB oardA rray,

cB oard); / / p ic k random placem ent sequence
c u r r e n t . c a lc u la t e _ t i m e(pB oardA rray,

cB oard); / / c a lc u la te tim e
Local Best = current;

/ / re s e t Local Best
R estartM oves = 0;

/ / a llo w r e s t a r t a g a in
}

}

/ /
/ / Make th e move i f th e MaxNoimp has n o t been

reached
/ /
e ls e
{

c u rre n t = n e ig h _ s [s o lu t io n] ; / / make move
Resul tF i l e « " Swaping " « m o v e .a « " w ith

" « m o v e .b « " -> " « c u r r e n t .g e t _ t im e () « " seco n d s \n ";
/ / s t r T e x t « " swaping " « m o v e .a « " w ith

" « m o v e . b « " \ t - > \ t " « c u r r e n t . g e t _ t im e () « ” s e c o n d s \r " « e n d l« e n d s ;
//U p d a te T e x tB o x (s t rT e x t) ;

/ /
JU JU JU JU J * JU JU J a JU JU JU JU JU ■£. JU JU Ju JU J> JU JU JU J * JU JU JU JU JU JU JU JU JU JU JU JU â U JU

/ / Update th e tabu l i s t
/ /

JU JU JU J a JU JU J< J< JU J« JU JU JU JU â U JU J . JU J a J a JU ^ JU J a J a JU ^ â U JU a^a J a JU JU JU JU J a JU ^ J a J a ^ a ^ a JU JU JU JU J a J a JU JU JU JU JU ^ ^ ^U JU JU JU JU

i f (t a b u - > l is t _ s iz e () == T ab u S ize)
{

t a b u - > p o p _ l is t () ; / / remove o ld e s t move
from th e tabu l i s t

in to th e tabu l i s t
}

}

}
ta b u -> p u s h _ lis t(m o v e); / / in s e r t c u r re n t move

Resul t F i l e « " \n B e s t components p lacem ent sequenceplacem
\ n \ n " ;found\nTim e = " « B e s t .g e t _ t im e () « " seconds

R e s u l t F i l e « " * * * * *
JU JU JU J* JU JU JU JU Û JU JU JU ^^ It ,

Resul t F i l e « " s t a r t f in d in g optimum placem ent sequence and
fe e d e r a s s ig n m e n t.\n " ;

RgSlj"] -£p-j"] 6 « " ******* ***************************** ****** ***********

/ / s t r T e x t « " \ r " « e n d l « e n d s ; •
/ /u p d a te T e x tB o x (s t rT e x t) ;

205

/ /M essa g eB o x (" F in ish ed making i n i t i a l
p iacem en t" , " T est" , MB_OK);

i n t c y c l e = 1;
/ /

Ja Ja Ja Ja Ja Ja Ja JU Ja JU JU JU ^U JU JU JU Ja JU Ja JU JU JU JU Ĵ Ja ̂ U Ja JU Ja ̂ a JU Ja Ja Ja ̂ U ^ JU JU JU JU JU JU ^ JU â JU Ja â JU Ja Ja Ja â JU Ĵ ^U JU JU ^ J ̂JU â Ja

/ / Now, f in d th e b e s t f e e d e r a ss ignm ent r e p e a te d ly , based
on th e

/ / p lacem ent sequence found
/ /

Ja Ja JU Ja Ja Ja JU Ja Ja Ja Ja Ja JU Ja JU JU JU JU JU JU Ja JU JU JU JU JU Ja Ja JU JU Ja JU JU Ja JU JU â Ja ̂ Ja Ja JU JU JU Ja Ja Ja Ja JU âa Ja JU Ja ajU Ĵ JU JU JU JU Ja JU Ja Ja

do

Resul tF i l e « " \ n C ycle " « c y c l e « " \ n --------------\ n " ;
/ / s t r T e x t « " C ycle " « c y c l e « " \ r " « e n d l « " -----------------

 \ r " « e n d l « e n d s ;
/ /u p d a te T e x t B o x (s t r T e x t) ;
cyc le++;
/ /
/ / F i r s t , f in d th e b e s t f e e d e r ass ign m en t
/ / -> R eset some v a r ia b le s
/ /

JU Ja Ja Ja Ja Ja JU Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja JU Ja Ja Ja JU JU JU JU JU JU JU JU ^U JU JU Ja JU Ja JU JU JU Ja JU Ja JU JU Ja JU Ja Ja Ja JU Ja JU Ja JU «U JU Ja «JU

NolmpMoves = 0 ;
RestartMoves = 0;
f l a g = t r u e ;
f o r (i n t n = 0; n < TabuRestart+1; n++)
{

p B e s t _ E x i t [n] .a = 0;
p B e s t _ E x i t [n] .b = 0 ;

curren t = B es t; / / s t a r t from th e b e s t placem ent
seq found

Local B est = cu rren t;

ta b u - > c le a r _ l i s t 0 ;

/ /**
/ / S ta r t making moves
/ /

Ja JU JU JU Ja Ja JU JU ^U Ja Ja JU Ja Ja Ja Ja Ja Ja JU JU JU «£a Ja JU Ja JU JU Ja Ja JU «̂a Ja JU Ja «£a JU *£a «£a JU «̂ U JU Ja >̂a JU âa Ja JU JU JU JU JU JU JU JU JU JU *£a JU Ja

f o r (cMoves = 1; cMoves <= MaxMoves; cMoves++)
{

UpdateTime(cBoard, B e s t . g e t _ t i m e ()) ;
Resul tF i l e « " \n M o v e _ f " « c M o v e s « " : ";
/ / s t r T e x t« " M o v e _ F " « c M o v e s « " : " « e n d s ;
/ /u p d a te T e x t B o x (s t r T e x t) ;

/ / C reate neighbourhood based on th e i n i t i a l
f e e d e r

/ / a ss ignm ent g e n e r a te d . Then, r e p o r t p o s i t i o n
o f th e b e s t

/ / neighbour found.
/ /**
s o lu t i o n = c u r r e n t .c r e a te _ n e ig h _ f(p B o a r d A r r a y ,

cBoard, c u r r e n t , F e d N e ig h F i le) ;

/ /
JU Ja Ja JU Ja JU Ja Ja JU Ja Ja JU JU ^U JU JU JU Ja Ja JU JU JU Ja JU â ^U Ja «£a Ja X JU JU Ja Ja Ja Ja Ja Ja Ja JU JU Ja Ja JU Ja A Ja Ja JU Ja JU «£a Ja ̂ U âa

/ / I s th e s o lu t i o n found th e b e s t?

/ / compare th e perform ance o f th e new
found s o lu t i o n

/ / w ith th e cu rren t one
/ /vu ju ^ "ft 'ft 'if "if “if 'k

move = c o m p a r e _ f (n e ig h _ f [s o lu t io n] ,
c u r r e n t) ;

a llow ed = tr u e ; / / assume t h a t th e
move i s a llow ed

/ /
Ja JU J< J< J< J« Ja J< JU J« JU JU JU JU JU JU JUJUJUJUJUJUJaJU JU J< J< JU J« J< JU J* JU JU JU JU J« J< J* J* JU JU JU JU JU JU J* JU JU JU

/ / Check i f th e move i s taboo
/ / -> i f YES, check i f th e move i s

b e t t e r
/ / -> i f NO, check i f i t i s j u s t a f t e r

a l o c a l b e s t
/ /
i f (t a b u - > l i s t _ f in d (m o v e))
{

/ /
J, JU J« JU JU JU JU JU JU JU Ĵ Ja JU JU A JU JU JU ̂ JU J< JU JU JU JU JU JU J« JU «U J< JU «U JU JU JU J< JU JU JU J* âU JU JU JU JU JU

/ / Check i f th e tabooed move i s
worse than th e b e s t

/ / -> i f YES, make th e move
u n a t t r a c t iv e , then

/ / f in d a b e t t e r s o l u t i o n .
/ /

Jg. JU JU JU JU JU JU JU JU JU JU JU JU JU JU JU Ĵ JU JU JU Û JU JU JU JU JU J j Ja JU JU â JU JU JU Ja JU aJU Ja Ja Ja Ja JU Ja Ja JU ja Ja Ja

i f (B e s t .g e t _ t i m e () <=
n e ig h _ f [s o l u t io n] .g e t _ t i m e O)

■ n e i g h _ f [s o l u t i o n] .p o i s o n 0 ;
s o lu t i o n =

c u r r e n t . f i n d _ b e s t _ f (s o l u t i o n , pBoardArray, cBoard);
a llow ed = f a l s e ;

}
}

} w h i le (a llow ed == f a l s e) ;

/ /
JU JU JU JU â JU JU Ja Ja JU Ja Ja ̂ ^a^^JUJUJUJaJU^UJUJU Ja JU JU Ja JU Ja Ja JU Ja JU JU JU Ja JU Ja Ja Ja Ja JU a£a JU Ja Ja JU Ja Ja JU JU a£U JU

/ / Check i f th e move i s j u s t a f t e r a l o c a l
b e s t

/ / -> I f YES, remember th e move
/ / -> I f NO, proceed
/ /************************** ■A'****************************'*
i f (f l a g == t r u e)
{

p B est_E x it[R estartM oves] = move;
f l a g = f a l s e ;
/* F e d N e ig h F ile « " \n M o v e i s a f t e r a Local

B e s t . \ n \ t " ;
i n t *pTest4 =

n e i g h _ f [s o l u t i o n] . g e t _ p F e e d e r () ;
fo r (i = 0 ; i < NumofFeeders; i+ +)

F e d N e i g h F i l e « p T e s t 4 [i] « " ";

F e d N e ig h F i le « " ->
(" « m o v e . a « " , " « m o v e .b « ") : Time ->
" « n e i g h _ f [s o l u t i o n] . g e t _ t i m e () « " s e c o n d s \n " ; * /

/ /
Ja JU JU Ja Ja JU JU JU JU JU JU JU JU JU JU JU JU J ̂Ja â Û Ja JU Ja Ja ̂ U ̂ ^ JU âa â Ja Ja Ja Ja Ja Ja Ja aU JU Ja Ja Ja âa Ja a£a JU Ja a£a Ja Ja âa Ja âa Ja âa

/ / check i f th e cu rren t s o l u t i o n i s b e t t e r
than lo c a l b e s t

207

/ / -> i f y e s , s e t i t as th e new Local B est
/ / -> i f NO, increm ent NolmpMoves
/ /
i f (n e i g h _ f [s o l u t i o n] . g e t _ t i m e () <

Local B e s t . g e t _ t i me C))

S e t l o c a l b e s t

f o u n d : \ n \ t " ;

{
L ocalB est = n e i g h _ f [s o l u t i o n] ; / /

/* F e d N e ig h F i le « " = > Local B est s o lu t i o n

i n t *pTest3 = Local B e s t .g e t _ p F e e d e r () ;
fo r (i = 0 ; i < NumofFeeders; i+ +)

F e d N e i g h F i l e « p T e s t 3 [i] « "
}
F e d N e ig h F i le « " ->

C,,« m o v e . a « " , " « m o v e . b « n) : Time -> " « L o c a l B e s t . g e t _ t i m e Q « "
s e c o n d s \n " ; * /

i s a f t e r a l o c a l b e s t

number o f NolmpMoves

a ttem p ts

f l a g = t r u e ; / / The n ex t move

NolmpMoves = 0 ; / / R ese t th e

RestartM oves = 0; / / A llow a l l r e s t a r t

}
e l s e
{

/ /
JU JU JU JU JU JU JU JU JU JU JU JU JU JU J< J j J * ^ JU JU J - ^U JU JU J * JU J * JU JU JU JU JU JU JU J * JU J« JU J< JU a£U JU afU JU JU JU JU

/ / i f th e cu rren t s o l u t i o n i s n o t b e t t e r
than th e

/ / p r e v io u s , th e n , i t i s c o n s id e r e d as
th e 'Non-

/ / improvement Move'. Hence, in c r e a s e
th e NolmpMoves

/ / co u n te r .
/ /
NoimpMoves++;

}
/ /

J« JU J« JU JU J« JU JU ^U JU JU J # JU JU JU JU JU JU JU JU JU JU JU JU JU JU JU ^ J ^ JU «̂ U JU JU a ^ ^U aU JU JU JU ^U ^U JU a ^ JU JU JU JU JU â «i JU JU

/ / Check i f th e cu rren t s o l u t i o n i s even th e
b e s t

/ / -> i f y e s , s e t i t as th e new B est
/ / -> I f NO, proceed
/ /

JU JU JU JU JU JU Û JU JU JU JU JU JU JU JU ̂ U JU JU JU JU JU JU JU JU âU JU JU JU JU JU JU JU JU JU JU JU JU JU JU JU a|U J* â JU JU â JU J« JU JU JU JU a£U JU

i f (n e ig h _ f [s o l u t io n] . g e t _ t im e Q <
B e s t .g e t _ t im e ())

{
Best = n e i g h _ f [s o l u t i o n] ; / / S e t new

B est
/* F e d N e ig h F i le « " = > B est = \ n \ t " ;
i n t *pTest2 = B e s t .g e t _ p F e e d e r () ;
fo r (i = 0 ; i < NumOfFeeders; i+ +)
{

F e d N e ig h F i le « p T e s t2 [i] « " ";

F ed N eig h F ilecc" ->
C " « m o v e .a « " ," « m o v e .b « ") : Time -> " « B e s t .g e t _ t im e () « "
s e c o n d s \n " ;* /

}
/ /

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

/ / Have we exceeded th e max non-im provem ent
moves l i m i t ?

208

/ / -> i f y e s , t r y t o r e s t a r t , e l s e randomise
/ / -> I f NO, make t h e move
/ /
i f (NolmpMoves > MaxNoimp)

t a b u - > c l e a r _ l i s t () ; / / c l e a r th e
tabu l i s t

we have r e s t a r t e d

" « R e s t a r t M o v e s « "

" « R e s t a r t M o v e s « "

,,« R e s t a r t M o v e s « "

x++)

NolmpMoves = 0;
i f (RestartM oves < T abuR estart)

RestartM oves++; / / Remember t h a t

Taboo -> "

Taboo -> "

Taboo -> "

Resul tF i l e « " RESTART

/ / s t r T e x t « " RESTART

/ /F ed N e i ghFi 1 e « " RESTART

f o r (i n t x = 0; x < RestartM oves;

{
/ /

j< j u j u j u j u j u j « j « j u j u j u a j u JU JU J< ^ ^U A JU JU *U JU »U JU ^U JU JU JU »U JU JU JU JU JU JU JU JU

/ / Taboo move t h a t l e f t
l o c a l b e s t l a s t tim e

/ /
JU JU JU JU JU JU JU JU JU JU J> ̂ J« JU A JU JU JU J< J« JU JU JU JU JU JU J» J* JU J< JU JU JU JU J» JU JU JU JU kU J< JU JU

ta b u -
> p ush_ li s t (p B e s t_ E x i t [x]) ;

Resul tF i 1 e « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t_ E x i t [x] . b « " > ";

/ / s t r T e x t « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t _ E x i t [x] .b « " > 11;

/ /F ed N eigh F i 1 e « " (" « p B e s t_ E x i t [x] . a « " , " « p B e s t_ E x i t [x] . b « ")
if ,

}
Resul tF i l e « ,,\n";
/ / s t r T e x t « " \ r " « e n d l « e n d s ;
/ /u p d a t e T e x t B o x (s t r T e x t) ;
/ /F ed N e i ghFi 1 e « l,\ n " ;

f l a g = t r u e ;
c u rren t = Local B est;

}
e l s e
{

/ /
/ / Cannot r e s t a r t , RANDOMISE

RANDOMlSE\r"«endl « e n d s ;

cB oard);

Resul tF i l e « " RANDOMlSE\n";
/ / s t r T e x t « "

/ /U p d a t e T e x tB o x (s t r T e x t) ;
c u r r e n t . pi ck_random_f(pBoardArray,

cu r r e n t .c a lc u la te _ t im e (p B o a r d A r r a y , cBoard);
Local B est = c u rren t;
RestartM oves = 0;

}
}
e l s e
{

cu rren t = n e i g h _ f [s o l u t i o n] ;
Resul tF i l e « " swapina " « m o v e .a « " and

" « m o v e .b « " -> " « c u r r e n t . g e t _ t i m e () « " s e c o n d s \n ,

209

/ / s t r T e x t « " Swaping " « m o v e .a « " and
" « m o v e . b « " \ t » \ t " « c u r r e n t . g e t_ _ t im e ()« " s e c o n d s \ r " « e n d l « e n d s ;

/ /u p d a te T e x tB o x (s t r T e x t) ;

/ /
/ / MaxNoimp has not reached , make move

taboo
/ /
i f (t a b u - > l is t _ s iz e () == T ab u S ize)
{

ta b u -> p o p _ li s t () ;

ta b u -> p u sh _ li s t (m o v e) ;
} }
/ / s t r T e x t « II\ r " « e n d 1 « e n d s ;
/ /U p d a te T e x tB o x (s t r T e x t) ;
Resul tF i l e « " \ n B e s t f e e d e r ass ignm ent found\nTime =

”« B e s t . g e t _ t i m e 0 « " s e c o n d s \n M;
Resul tF i l e « " F i n d i n g optimum placem ent seq u en ce . \ n " ;

double t im e = B e s t . g e t _ t i m e () ; / / v a r ia b le t o
c o n tr o l th e r e p e a t i t i o n

/ /**
/ / second , f in d th e b e s t component p lacem ent

sequence
/ / -> R eset some v a r ia b le s
/ /

JU JU JU *U JU JU JU JU JU JÛ U JU JU JU JU ̂ JU JU J. JU ̂ ̂ U JU «U J. J. JU JU JU J . JU JU JU »U JU JU JU «U J< JU JU JU J. *U J. JU *U J» JU JU JU »U J. J» »U JU

NolmpMoves = 0;
RestartMoves = 0;
f l a g = t r u e ; .
fo r (i n t m = 0; m < TabuRestart+1; m++)

p B es t_ E x it [m] .a = 0 ; / / i n i t i a l i s e
p B est_ E x it[m].b = 0 ; / / i n i t i a l i s e

c u rren t = B est;
Local B est = cu rren t;
t a b u - > c l e a r _ l i s t () ;
fo r (cMoves = 1; cMoves <= MaxMoves; cMoves++)
{

UpdateTime(cBoard, B e s t . g e t _ t i m e ()) ;
Resul tF i le « " \n M o v e _ s " « c M o v e s « " : ";
/ / s t r T e x t « " M o v e _ s ,l« c M o v e s « " : " « e n d s ;
/ /U p d a te T e x tB o x (s t r T e x t) ;
s o lu t i o n = c u r r e n t .c r e a te _ n e ig h _ s(p B o a r d A r r a y ,

cBoard, c u r r en t , R e s u l t F i l e) ;
do
{

move = c o m p a r e _ s (n e ig h _ s [s o lu t io n] ,
c u r r e n t , pBoardArray, cBoard);

a llow ed = t r u e ;
i f (t a b u - > l i s t _ f in d (m o v e))
{

i f (B e s t .g e t _ t i m e () <=
nei g h _ s [s o l u t i o n] . g e t _ t i me())

n e i g h _ s [s o l u t i o n] . p o i s o n () ;
s o l u t i o n =

c u r r e n t . f i n d _ b e s t _ s (s o l u t i o n , pBoardArray, cBoard);
a l lo w ed = f a l s e ;

}
}

} w h i le (a llow ed == f a l s e) ;
i f (f l a g == t r u e)

210

Local B e s t . g e t _ t i me())

B e s t .g e t _ t im e O)

p B est_E x it[R estartM oves] = move;
f l a g = f a l s e ;

f (n e i g h _ s [s o l u t i o n] . g e t _ t i m e () <

Local B est = n e i g h _ s [s o l u t i o n] ;
f l a g = t r u e ;
NolmpMoves = 0;
RestartM oves = 0;

I s e

NolmpMoves++;

f (n e i g h _ s [s o l u t i o n] . g e t _ t i m e () <

B est = n e i g h _ s [s o l u t i o n] ;

f (NolmpMoves > MaxNoimp)

t a b u - > c l e a r _ l i s t () ;
NolmpMoves = 0;
i f (RestartM oves < TabuR estart)
{

RestartMoves++;
Resul tF i l e « " RESTART

" « R e s t a r t M o v e s « " : Taboo -> "

" « R e s t a r t M o v e s « " : Taboo -> "

x++)

/ / s t r T e x t « " RESTART

f o r (i n t x = 0; x < RestartM oves;

{
tabu-

> p u s h _ l i s t (p B e s t _ E x i t [x]) ;

Resul tF i 1 e « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t_ E x i t [x] . b « " > ";

/ / s t r T e x t « " < " « p B e s t _ E x i t [x] . a « " , " « p B e s t _ E x i t [x] .b « " > ";

Resul tF i l e « ,,\n";
/ / s t r T e x t « " \ r " « e n d l « e n d s ;
/ /u p d a t e T e x t B o x (s t r T e x t) ;
f l a g = t r u e ;
cu r r en t = Local B est;

}
e l s e
{

Resul tF i l e « M RANDOMISE\n";
/ / s t r T e x t « "

R A N D O M lS E \r"« en d l«en d s ;

cB o a rd);

/ /U p d a t e T e x tB o x (s t r T e x t) ;
cu r r e n t . pi ck_random_s(pBoardArray,

c u r r e n t .c a lc u la te _ t im e (p B o a r d A r r a y , cB oard);
Local B est = cu r r en t;
RestartM oves = 0 ;

}
}
e l s e
{

cu rren t = n e i g h _ s [s o l u t i o n] ;
Resul tF i l e « " Swaping " « m o v e . a « " and

" « m o v e .b « " -> " c c c u r r e n t .g e t _ t im e () « " s e c o n d s \n ' ;

211

/ / s t r T e x t « " Swaping " « m o v e .a « " and
" « m o v e . b « " \ t - > \ t " « c u r r e n t . g e t _ t i m e () « " s e c o n d s \ r " « e n d l « e n d s ;

/ /u p d a t e T e x t B o x (s t r T e x t) ;
i f (t a b u - > l i s t _ s i z e () == T ab u size)

tabu->pop_l i s t O ;
}
ta b u -> p u sh _ li s t (m o v e) ;

} }
/ / s t r T e x t « " \ r " « e n d l « e n d s ;
/ /u p d a te T e x t B o x (s t r T e x t) ;
R e s u l t F i l e « " \ n B e s t components p lacem ent sequence

found\nTime = " « B e s t . g e t _ t i m e () « " seco n d s \n " ;
R e s u T tF i le « " F in d in g optimum f e e d e r a s s ig n m e n t . \n " ;

i f (B e s t .g e t _ t im e Q == t im e) / / no more
improvement?

Repeat = f a l s e ; / / s to p r e p e a t in g

e l s e
{

Repeat = tru e ;

} w h i le (Repeat == t r u e) ; / / i f r e p e a t i s s t i l l
a l 1 owed

setup_Time = pBoardArray[cBoard]. NumofCompTypes *
FeedSetupTime;

Board_Time = (Setup_Time + B e s t . g e t _ t i m e ()) *
pBoardArray[cBoard]. NumofBoards;

R e s u l t F i l e « " \ n T o t a l tim e f o r board " « c B o a r d « " i s : "
«B oard_T im e/pB oardA rray[cB oard]. NumofBoards«"

secon d s\n " ;
/ / s t r T e x t « " \ r " « e n d l « " T o t a l t im e f o r board " « c B o a r d « "

i s : "
/ / «B oard_T im e/pB oardA rray[cB oard]. NumofBoards«"

s e c o n d s \r " « e n d l « " \ r " « e n d l « " \ r " « e n d l « e n d s ;
/ /U p d a te T e x tB o x (s t r T e x t) ;
Total_Time += Board_Time;

strT ext«"O ptim um assem bly tim e found ->
" « B e s t . g e t _ t i m e () « " \ r « e n d l « " \ r " « e n d l « e n d l « e n d s ;

L)pdateT extB ox(strT ext);
F in a lF ile«" O p tim u m fe e d e r ass ignm ent f o r board

" « c B o a r d « " : " « e n d l ;
i n t *pF inalF eeder = B e s t .g e t _ p F e e d e r () ;
f o r (i = 0 ; i < NumofFeeders; i++)

Fi nal Fi 1 e « p F i nal Feeder [i] « " \ t " ;

F in a lF ile « " \n \n O p t im u m component p lacem ent sequence f o r
board " « c B o a r d « " : " « e n d l ;

i n t *p F in a lseq = B e s t .g e t _ p S e q () ;
f o r (i = 0; i < pBoardArray[cBoard].Num ofLocations; i+ +)
{

/ / F i nal Fi 1 e«hex«Com pNam es [pFi nal seq [i]] « " \ t ";

Fi nal Fi 1 e«pB oardA rray [cB oard] . pcomps [pFi nal Seq [i]] . CompType«"\
t" ; }

F in a lF i l e « " \n \n A s s e m b ly t im e -> " « B e s t . g e t _ t i m e () « "
s e c o n d s \n \n \n \n " ;

} / / end f o r (i n t cBoard = 0; cBoard < NumofBoardTypes;
cBoard++)

i n t t l = T otal_T im e/3600;
i n t t2 = (Total_Time%3600)/6 0 ;

212

i n t t3 = (Total_Time%3600)%60;

Resul tF i 1
Vr11 •

Resul t F i l e « " \ n \ n T o t a l t im e f o r a l l boards i s : " « t l « " : " « t 2
« " : M« t 3 « " •h:m:s\n";

R e s u l t F i l e . c l o s e O ;
R esu ltop en = f a l s e ;
Final F i l e , c l o s e () ;
Final open = f a l s e ;
m_Prog r e s s s t a t u s . SetPos(NumofBoardTypes+1);
M essageB ox("R epetit ion com pleted , optimum f e e d e r a ss ignm ent and

placem ent sequence found!" ,
"F in iSh" , MB_ICONINFORMATION);

m _ P r o g r e s s s ta t u s .S e tP o s (0) ;
m _G oB utton .SetF ocus(); •
d e l e t e [] p B est_E xit;
return;

}
v o id C PcbD lg::U pdateTextBox(ostrstream _stream)

pD isp lay = (CEdit *) (GetDlgltem(IDC_TEXTOUT));
S iz e = pD isplay->G etW indowTextLength();
T e s t = new char [s i z e + 1] ;
pDi splay->GetWi ndow T ext(T est , s i z e + 1) ;

char * b u ffe r = _ s t r e a m . s t r () ;

i f (s i ze = = 0)

m_TextData.Format("%s", b u f f e r) ;
}
e l s e

m_TextData.Format("%s %s", T e s t , b u f f e r) ;

UpdateData(FALSE);
UpdateWindowO;
d e l e t e [] T est;

o id C P cbD lg::O nSetfocusT extout()

p D isp lay = (CEdit *) (GetDlgitem(lDC_TEXTOUT));
p D is p la y -> s e tF o c u s () ;

o id C P cbD lg::C learB ox(const i n t _ID)

m_TextData. Empty() ;
UpdateData(FALSE);
/ /u p d a te w i ndow ();

voi d CPcbDlg: : O ncancel()

d e l e t e [] pBoardArray;
C D ia lo g : :O ncancel() ;

v o id CPcbDlg::UpdateTim e(const i n t _cBoard, c o n s t f l o a t _BestT im e)

i f (_cBoard == 0)
{

m_Board_A^Time = _BestTime;
}
i f (_cBoard == 1)
{

213

m_Board_B_Time = _BestT im e;
}
i f (_cBoard == 2)
{

m_Board_C_Time = _B estTim e;
}
i f C_cBoard = = 3)
{

m_Board_D_Time = _B estTim e;
}
i f (-CBoard == 4)
{

m_Board_E_Time = _BestTime;

i f (_cBoard == 5)

m_Board_F_Time = _B estT im e;
}
i f (_cBoard = = 6)

m_Board_G_Time = _B estT im e;
}
i f (_cBoard == 7)
{

m_Board_H_Time = _BestT im e;
}
i f (_cBoard == 8)
{

m_Board_l_Time = _B estTim e;
}
U pdateD ata(FA LSE);
UpdateWi n d o w ();

v o id C P c b D lg ::c le a rT im e ()

f o r (i n t i = 0 ; i < NumofBoardTypes; i+ +)

clearBOX(IDC_BOARD_A_TIME + i) ;
}

}

214

P o s i t i o n s . c p p

/ / P o s i t i o n s . c p p : implementat ion o f t h e C P o s i t io n s c l a s s .

/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e " P o s it io n s .h "

i f d e f _DEBUG
#undef TH IS_FILE
s t a t ic char T H IS _ F IL E []= FILE ;
d e f in e new debug_ new
e n d if

/
/ / C o n s tru c tio n /D e s tru c tio n
/ /
C P o s itio n s : :C P o s it io n s ()
{

}
CPosi t i ons: : ~CPosi t i ons O
{

}

215

T a b u L i s t . cpp

/ / T a b u L i s t . cpp: implementation o f t h e CTabuList c l a s s .

^ /
in c lu d e " s td a fx .h "
in c lu d e "pcb .h"
in c lu d e " T a b u L is t.h "

i f d e f _DEBUG
#undef t h is _ f il e
s t a t i c char T H IS _ F IL E []= FILE ;
d e f in e new debug_ new
endi f

/
/ / C o n s tru c tio n /D e s tru c tio n
/

C T a b u L is t:: C T a b u L is t(co n s t i n t _T ab u S ize)

Tab u s ize = _TabuS ize;
a = new C B u ffe r (T a b u s iz e);
b = new C B u ffe r (T a b u s iz e);

}
C T a b u L is t::~ C T a b u L is t()
{

d e le te a;
d e le te b;

}
bool C T a b u L is t : : l is t_ f in d (C P o s it io n s &move) const

in t end = a - > g e t _ s iz e () ;
fo r (i n t i = 0 ; i < end; i+ +)

i f (a -> g e t _ p o in te r (i) == move.a && b -> g e t _ p o in te r (i) ==
move. b)

{
re tu rn t r u e ;

}
}
re tu rn f a ls e ;

n t C T a b u L is t : : l is t_ s iz e ()

re tu rn a - > g e t _ s iz e () ;

vo id C T a b u L is t : :p o p _ lis t ()

a -> p o p _ b u ffe r (T a b u S iz e);
b -> p o p _ b u ffe r (T a b u s iz e);

v o id C T a b u L is t::p u s h _ lis t(C P o s it io n s &move)

a -> p u s h _ b u ffe r(T a b u s iz e , m o v e .a);
b -> p u s h _ b u ffe r(T a b u s ize , m o v e .b);

vo i d CTabuLi s t : : c le a r _ l i s t ()

a - > c le a r _ b u f f e r () ;
b - > c le a r _ b u f f e r () ;

216

Board . cpp

/ / Board.cpp: implementation o f th e CBoard c l a s s .

/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e "B oard .h"

i f d e f _DEBUG
#u n d ef TH IS_FILE
s t a t i c char T H IS _ F IL E []= FILE ;
d e f in e new DEBUG_NEW
e n d if

/
/ / C o n s tru c tio n /D e s tru c tio n
/ /
C B oard::C B oard ()
{

}
C B oard ::~C B oard ()
{

}

217

B u f f e r . cpp

/ / B u f fe r .c p p : implementat ion o f th e CBuffer c l a s s .

/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e " B u ffe r .h "

i f d e f _DEBUG
#undef TH IS_FILE
s t a t ic char T H IS _ F IL E []= FILE ;
d e fin e new debug_ new
e n d if

/ / i n t *pProd;
/ / i n t B u ffe rL a s t;
/ / i n t B u ffe rs iz e ;

/
/ / C o n s tru c tio n /D e s tru c tio n
/ /
C B u ffe r : : C B u ffe r(c o n s t i n t _TabuS ize)

pprod = new i n t [_ T a b u s ize];

C B u ffe r : :~ C B u ffe r ()

d e le te pProd;

n t C B u f fe r : :g e t_ p o in te r (in t _k) const

re tu rn pProd[_k] ;

n t C B u ffe r : :g e t_ s iz e () const

re tu rn B u ffe rs iz e ;

n t C B u f fe r : :p o p _ b u f fe r (in t max)

i n t i ;
a s s e r t (B u f fe r s iz e > 0); / / v e r i f y th a t b u f fe r is n o t empty
i = B u ffe rL a s t - B u ffe rs iz e ;
i f (i < 0)
{

i += max;
}
B u ffe r s iz e — ;
re tu rn p P ro d [i] ;

vo id C B u f fe r : :p u s h _ b u ffe r (in t max, i n t ite m)
{

a s s e r t (B u f fe rS iz e < max); / / v e r i f y t h a t th e b u f fe r is not
f u l l

B u ffe rs iz e + + ; / / in c rem en t th e s iz e o f th e
b u ffe r

pprod [B u ffe rL a s t] = ite m ; / / ' i n s e r t ' th e ite m in to th e
b u ffe r

B u ffe rL a s t+ + ; / / in crem en t th e b u f f e r 's
address

i f (B u ffe rL a s t >= max)
{

218

B u fferL a st = 0; / / s t a r t from th e f i r s t
o c a t io n (o v e r w r i t e)

}
retu rn ;

v o id C B u f fe r : : c le a r _ b u f f e r ()

B u f f e r s i z e = 0;
B u ffe rL a st = 0;
re tu rn ;

*void C B u f fe r : : B u f f e r _ i n i t (c o n s t i n t _ T a b u size)

pprod = new i n t [_TabuSize];

219

Coordi n a t e s D l a . cpp

/ / c o o rd in a te s D lg .c p p : im p lem en ta tio n f i l e
/ /
in c lu d e " s td a fx .h "
in c lu d e "pcb .h"
in c lu d e "c o o rd in a te s D lg .h "

i f d e f _DEBUG
d e f in e new DEBUG_NEW
#u n d ef TH IS_FILE
s t a t i c char T H IS _F IL E [] = f il e ;
#endi f

/
/ / / / / / /
/ / c c o o rd in a te s D lg d ia lo g

C C oord inatesD lg ::C C oord inatesD lg (C W nd* p P aren t /*= N U L L * /)
: C D ia lo g (c c o o rd in a te s D lg :: ID D , p P aren t)

{

here

}

X = 300;
Y = -500;
x_Home = 100;
Y_Home = -200;
//{{A F X _D A T A _ lN IT (C C o o rd in a tesD lg)

/ / NOTE: th e C lassW izard w i l l add member i n i t i a l i z a t i o n

/ / } }AFX_DATA_INIT

v o id ccoord inatesD lg ::D oD ataE xchange(C D ataE xchange* pDX)

C D ia log::D oD ataE xchange(pD X);
//{{AFX_DATA_MAP(CCoordi n a te s D lg)

/ / NOTE: th e C lassW izard w i l l add DDX and DDV c a l ls h ere
/ / } } AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(ccoordinatesDlg, C D ia lo g)
/ / { { a f x _msg_ m ap(CCoo rd in a te s D lg)
on_ en_ change (id c _x , Onchangex)
on_ en_ change (id c _y , onchangeY)
on_ en_ change (id c _X_h o m e , onchangeXHome)
ON_EN_CHANGE(lDC_Y_HOME, onChangeYHome)
/ / } } a f x _msg_ map

END_MESSAGE_MAP()

i n t c c o o rd in a te s D lg ::G e tlte m (c o n s t i n t _ ID)

const TEXT_SIZE = 1 6 ;
char szText[TEXT_SIZE + 1] ; / / b u f fe r fo r convers io n s
C E d it *pG et = (C E d it *) (G e tD lg lte m (_ ID)) ;
pGet->GetW i n d o w T ext(szT ext, TE X T_S IZE);
re tu rn a t o i (s z T e x t) ;

}

/
/ / / / / / /
/ / c c o o rd in a te s D lg message h an d le rs

v o id cco o rd inatesD lg ::O nC hangeX ()

X = G e tIte m (ID C _ X);
}

220

v o id ccoord inatesD lg::O nC hangeY ()

Y = G e t lte m (lD C _ Y);
}
v o id ccoordinatesDlg::OnchangeXHome()

x_Home = Getltem(lDC_X_HOME);
}
v o id ccoordinatesDlg::OnchangeYHome()

Y_Home = GetItem(lDC_Y_HOME);
}
i n t c c o o r d in a te sD lg : :G et_xO
{

return X;
}
i n t c c o o r d in a te sD lg ::G e t_ Y ()
{

return Y;
}
i n t ccoord inatesD lg::G et_X _H om e()
{

return x_Home;
}
i n t c c o o r d in a t e s D lg : :Get_Y_Home()
{

return Y_Home;
}
v o id cco o rd in a te sD lg ::U p d a te B o x (c o n s t i n t _ID, c o n s t i n t _Data)
{

co n st TEXT_SIZE = 1 6 ;
char s z T e x t [text_ s i z e + 1] ; / / b u f fe r f o r c o n v e r s io n s
CEdit *pD isp lay = (CEdit *) (G e tD lg ite m (_ I D)) ;
i to a (_ D a ta , sz T e x t , 1 0);
pDi splay->SetW i n d ow T ext(szT ex t) ;

BOOL c c o o r d in a t e s D lg : : O n ln i t D ia lo g ()

updateBox(idc_ x , x) ;
UpdateBox(IDC_Y, Y) ;
UpdateBox(lDC_X_HOME, x_Home);
updateBox(lDC_Y_HOME, Y_Home);
return tr u e ;

}
v o id c c o o r d in a t e s D lg : : s e t _ p a r a (c o n s t i n t _X, c o n s t i n t _Y, c o n s t i n t
_X_Home, c o n s t i n t _Y_Home)
{

x = _x;
Y = _Y;
X_Home = _X_Home;
Y_Home = _Y_Home;

}

221

Pcb. cpp

/ / Pcb.cpp : D e f in e s th e c l a s s b eh av iors f o r th e a p p l i c a t i o n .
/ /
in c lu d e " s td a fx .h "
in c lu d e "Pcb.h"
in c lu d e "PcbDlg.h"

i f d e f _DEBUG
d e f in e new DEBUG_NEW
#undef THIS_FILE
s t a t i c char THIS_FILE[] = FILE ;
e n d i f

/
• / / / / / / /

/ / CPcbApp

BEGIN_MESSAGE_MAP(CPcbApp, CWi nApp)
//{{AFX_MSG_MAP(CPcbApp)

/ / NOTE - th e ClassWizard w i l l add and remove mapping
macros h ere .

/ / DO NOT EDIT what you s e e in t h e s e b lo c k s o f
g en era ted code!

//}}AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

/
/ / / / / / /
/ / CPcbApp c o n s tr u c t io n

CPcbApp::CPcbApp()

/ / TODO: add c o n s tr u c t io n code h ere ,
/ / P la ce a l l s i g n i f i c a n t i n i t i a l i z a t i o n in i n i t l n s t a n c e

}

/
l l l l I I I
/ / The one and o n ly CPcbApp o b je c t

CPcbApp theApp;

l / l l l l l l l l l l l l l l f i l l H U H I l l / I l l I I I I I I I I I I I I I I I H U l l l l l l l l l l l l l l l I I I
/ / / / / / /
/ / CPcbApp i n i t i a l i z a t i o n

BOOL CPcbApp::I n i t l n s t a n c e ()

A fx E n a b leC o n tro lC o n ta in er() ;

/ / Standard i n i t i a l i z a t i o n
/ / I f you are not u s in g t h e s e f e a t u r e s and w ish t o reduce th e

s i z e
/ / o f your f i n a l e x e c u ta b le , you should remove from th e

fo l lo w in g
/ / th e s p e c i f i c i n i t i a l i z a t i o n r o u t in e s you do not need .

i f d e f _AFXDLL
E n a b le 3 d c o n t r o ls () ; / / C all t h i s when u s in g MFC

in a shared DLL
e l s e

E n a b le 3 d c o n t r o l s S t a t i c () ; / / Call t h i s when l in k in g t o MFC
s t a t i c a l l y
#endi f

CPcbDlg d ig ;
m_pMainWnd = &dlg;

222

i n t nResponse = d lg .D oM odal() ;
i f (nResponse == IDOK)
{

/ / t o d o : P lace code here to handle when th e d ia lo g is
/ / d ism issed w ith OK

}
e ls e i f (nResponse == IDCANCEL)

/ / TODO: P lace code h ere to handle when th e d ia lo g is
/ / d ism issed w ith Cancel

}
/ / S in ce th e d ia lo g has been c lo s e d , re tu rn FALSE so th a t we

e x i t th e
/ / a p p lic a t io n , ra th e r than s t a r t th e a p p l ic a t io n 's message

pump.
re tu rn FALSE;

}

223

P erm u ta t ion . cpp

/ / Permutation.cpp: implementation of the CPermutation class.

/ /
in c lu d e " std a fx .h "
in c lu d e "Pcb.h"
in c lu d e "Permutation.h"

i f d e f _DEBUG
#undef THIS_FILE
s t a t i c char THIS_FILE[]= FILE ;
d e f in e new DEBUG_NEW
e n d i f

/ /
/ / D e c la r a t io n o f g lo b a l v a r ia b le s
e x te r n i n t NumOfFeeders;
e x te r n i n t LengofFeeder;
e x te r n i n t T abusize;
e x te r n i n t TabuRestart;
e x te r n i n t MaxMoves;
e x te r n i n t MaxNolmp;
e x te r n i n t FeedsetupTime;
e x te r n i n t in ser tT im e;
e x te r n i n t PickTime;
e x te r n i n t Headspeed;
e x te r n i n t X;
e x te r n i n t Y;
e x te r n i n t X_Home;
e x te r n i n t Y_Home;
e x te r n i n t MaxNumofLocations;
e x te r n i n t MaxNumofCompTypes;
e x te r n i n t NumofBoardTypes;
e x te r n i n t F_N eigh_size;
e x te r n i n t s_N eigh _S ize ;
e x te rn CPerm utation *n e ig h _s ;
e x te r n CPermutation * n e igh _ f;

/
/ / C o n s tru c tio n /D e s tru c tio n
/ /
CPermutation: :CPerm utation() :t i’meC0)

FedNeighOpen = f a l s e ;

C P erm utation : :~C P erm u ta tio n Q

CPermutation C P erm utation::o p era to r = (c o n s t CPermutation &source)

t im e = s o u r c e .t im e ;
f o r (i n t i = 0 ; i < Numofseq; i++)
{

p S eq [i] = s o u r c e .p S e q [i] ;

f o r (i = 0 ; i < NumofFeeders; i++)
{

p F e e d e r [i] = s o u r c e .p F e e d e r [i] ;

return * t h i s ;
}
i n t CPermutation::Get_NumOfFeedersQ

224

return NumofFeeders;
}
C P o s it io n s com p are_f(con st CPermutation &pl, c o n s t CPermutation &p2)
{

i n t i = 0;
C P o s i t io n s move;
move.a = -1 ;
move.b = -1 ;
w h ile (i < NumofFeeders && move.b < 0)

i f C p l.p F e e d e r [i] != p 2 .p F e e d e r [i])

i f (move.a < 0)
{

move. a = l ;
}
e l s e
{

}

}
i++;

}
return move;

}
move. b = i ;

C P o s i t io n s com p are_s(con st CPermutation &pl, c o n s t CPermutation &p2,
c o n st CBoard *_pBoardArray, c o n s t i n t

_Board)
{

i n t i = 0;
C P o s i t io n s move;
move.a = -1 ;
move.b = -1 ;
w h ile (i < _pBoardArray[_Boar.d] .NumofLocations && move.b < 0)

i f Cpl.pSeqCi] != p 2 .p S e q [i])

i f (move.a < 0)
{

move.a = i ;

}

}
i++;

}
return move;

}
e l s e
{

}
move. b = i ;

i n t C P erm u ta tio n ::g e t_ F _ N eig h _ s ize ()

i n t F_N eigh_Size = 0;
i nt i , j = 0;
fo r (i = 0; i < NumOfFeeders-1; i+ +)

f o r (j = i+ 1 ; j < NumOfFeeders; j++)

i f CpFeeder[i] != p F e e d e r [j])
{

F_Neigh_size++;

} }
}
return F _N eigh_size;

}

225

i n t C P e r m u ta t io n : :g e t_ s_ N e ig h _ s iz e (c o n s t CBoard *_pBoardArray, c o n s t
i n t _Board)

i n t s _ N e ig h _ s iz e = 0;
i n t i , j = 0;
f o r (i = 0; i < _pBoardArray[_Board]. NumOfLocations-1 ; i+ +)

f o r (j = i+ 1; j < _pBoardArray[_Board].Num ofLocations;
(

S_Neigh_Size++;
}

}
return s_ N eigh _S ize ;

}
nt C P e r m u ta t io n : :g e t_ p o s i t io n _ b (in t _cou n t)

return p c o o r d in a te s [_ c o u n t] .b ;

n t C P e r m u ta t io n : :g e t_ p o s i t io n _ a (in t _ co u n t)

return p c o o r d in a te s [_ c o u n t] .a ;

o u b le C P er m u ta tio n : :g e t_ t im e ()

return t im e;

nt* C P erm u tation ::ge t_p S eq ()

return pseq; / / return p o in t e r

nt* C P erm u tation ::ge t_p F eed er()

return pFeeder; / / return p o in t e r

v o id C P erm utation::poisonC)

t im e * = 1 0 ;

n t C P e r m u ta t io n : :c r e a te _ n e ig h _ f(c o n s t CBoard *_pBoardArray, c o n s t i n t
Board, c o n s t CPermutation _ c u r r e n t , o fs trea m & _0utF ile)

i n t x = 0;
i n t i , j , B estx = 0;
double BestTime;

f o r (i = 0 ; i < NumOfFeeders-1; i+ +)

f o r (j = i+1; j < NumofFeeders; j++)

i f (_ c u r r e n t .p F e e d e r [i] != _ c u r r e n t .p F e e d e r [j])

f o r (i n t m = 0; m <
_pBoardArray[_Board].NumofLocations; m++)

n e ig h _ f [x] .p s e q [m] = _ c u r r e n t .p s e q [m] ;

f o r (i n t z = 0; z < NumofFeeders; z++)
{

n e ig h _ f [x] .p F e e d e r [z] =
_ c u r r e n t .p F e e d e r [z] ;

}

226

_ B o a r d);

n e i g h _ f [x] .p F e e d e r [i] = _ c u r r e n t .p F e e d e r [j] ;
n e ig h _ f [x] .p F e e d e r [j] = _ c u r r e n t .p F e e d e r [i] ;
nei g h _ f [x] . c a l c u l a t e _ t i me(_pBoa rdAr r a y ,

i f (x == 0)
{

}
e l s e
{

}

}
}

}
return B estx;

}
x++:

BestTime = n e i g h _ f [x] . t i m e ;

i f (BestTime > n e i g h _ f [x] . t i m e)
{

BestTime = n e i g h _ f [x] . t i m e ;
B estx = x;

}

i n t C P e r m u ta t io n : :c r e a te _ n e ig h _ s (c o n s t CBoard *_pBoardArray, c o n s t i n t
_Board, c o n s t CPermutation _ c u r r e n t , o fstream & _0u tF ile)
{

i n t x = 0;
i n t i , j , B estx = 0 ;
double BestTime;
fo r (i = 0; i < (_pBoardArray[_Board]. N um ofL ocations)- 1 ; i+ +)

f o r (j = i+ 1 ; j < _pBoardArray[_Board].NumOfLocations;
j « > {

f o r (i n t m = 0; m < NumofFeeders; m++)

n e i g h _ s [x] . pFeeder[m] = _ c u r r e n t .p F e e d e r [m] ;

f o r (i n t z = 0; z <
_pBoardArray[_Board]. Num ofLocations; z++)

n e ig h _ s [x] .p S e q [z] = _ c u r r e n t . p s e q [z] ;

n e i g h _ s [x] .p s e q [i] = _ c u r r e n t .p S e q [j] ;
n e i g h _ s [x] .p s e q [i] = _ c u r r e n t .p S e q [i] ;
n e ig h _ s [x] .c a lc u la te _ t im e (_ p B o a r d A r r a y , _Board);
i f (x == 0)
{

BestTime = n e ig h _ s [x] . t im e ;

e l s e
{

i f (BestTime > n e i g h _ s [x] . t i m e)

BestTime = n e i g h _ s (x] . t i m e ;
B estx = x;

}
x++;

}

}
}
return Bestx;

}
v o id C P e r m u ta t io n : :c a lc u la te _ t im e (c o n s t CBoard *_pBoardArray, c o n s t
i n t _Board)
{

i n t h = 0, i , j ;
double t l = 0,

t2 = 0 ,

227

t3 = 0 ,
t4 = 0;

i n t *pCompType = new i n t [_pBoardArray[_Board].Num O fLocations];
i n t *pFeeaerNo = new i n t [_pBoardArray[_Board] .N u m ofL ocations];
p c o o r d in a te s = new C P o s i t io n s

[_pBoardA rray[_Board].N um ofLocations];
f o r (i = 0; i < _pBoardArray[_Board].Num ofLocations; i++)

pCompType[i] = 0 ;
pFeederN o[i] = 0;

f o r (i = 0; i < _pBoardArray[_Board].Numofcomps; i+ +)

p c o o r d in a t e s [h] .a = _pBoardArray[_Board].pC om ps[i].x_C o;
p c o o r d in a te s [h] .b = _pBoardArray[_Board].pC om ps[i].Y _co;
h++;

f o r (i n t k = 0; k < _pBoardArray[_Board].Num ofLocations; k++)

fo r (i = 0; i < _pB oardA rray[_B oard].N um ofLocations; i++)

i n t Freq = _pBoardArray[_Board].pComps[i].CompFreq;
f o r (j = 0 ; j < Freq; j++)

i f C_pBoardArray[_Board].pcom ps[i+j].x_Co ==
p c o o r d in a te s [p S e q [k]] .a &&

_pBoardArray[_Board].pCom ps[i+j].Y_Co ==
pcoordi n a te s [p S e q [k]] . b)

pCompType[k] =
_pB oardA rray[_B oard].T ypesofC om ps[i];

} } }
fo r (i = 0 ; i < NumofFeeders; i+ +)

i f (p F e e d e r [i] == pCompType[k])

pFeederNo[k] = i + 1;

} }
t3 += PickTime + in ser tT im e +

sqrt(pow ((pFeederNo[k]*LengO fFeeder - LengOfFeeder/2 -
p c o o r d i n a t e s [p s e q [k]] . a) , 2 .0)

+ p o w ((p c o o r d in a te s [p s e q [k]] .b - Y),
2 .0)) /H e a d sp e e d ;

f o r (k = 0 ; k < _pBoardArray[_Board].N um ofLocations-1; k++)

t2 += sqrt(pow ((pFeederN o[k+l]*L engO fFeeder -
LengofFeeder/2 -

p c o o r d in a te s [p S e q [k]] . a) , 2 . 0) +
p o w ((p C o o rd in a te s [p S eq [k]] .b - Y) ,2 .0)) /H e a d S p e e d ;

t l = sqrt(pow ((x+pFeederN o[0] * LengOfFeeder - L engofF eeder/2 -
X_Home), 2 . 0) +

pow((Y - Y_H om e),2.0))/HeadSpeed;
t 4 =

sqrt(pow ((pcoord in ates[pSeq[_pB oardA rray [_ B o a r d] . NumofLocati o n s - 1]] . a
- x_Home),2 . 0) +

pow((pcoordi nates[pSeq[_pBoardArray [_ B o a r d] . NumOfLocati o n s - 1]] . b
- Y_H om e),2.0))/HeadSpeed;

t im e = t l + t2 + t3 + t4 ;
d e l e t e pCompType;
d e l e t e pFeederNo;
d e l e t e [] p c o o r d in a te s ;
return;

}

228

v o id C P e r m u ta t io n : :g e n e r a te _ a s s ig n (c o n s t CBoard *_pBoardArray, c o n s t
i n t _Board)
{

i n t i ;
C String Type;
i n t k = 0;
C P o s i t io n s *pFeed = new C P o s i t io n s [Num ofFeeders+1];
f o r (i = 0 ; i < NumofFeeders; i++)
{

p F e e d e r [i] = 0;
p F e e d [i] . a = 0
p F e e d [i] .b = 0;

f o r (i = 0; i < _pBoardArray[_Board].Numofcomps; i+ +)

i n t Freq = _pBoardArray[_Board].pComps[i].CompFreq;
i n t temp = _pB oardA rray[_B oard].pC om ps[i] .x_co;
fo r (i n t j = 0; j < Freq; j++)

Type = _pBoardArray[_Board].pCom ps[i+j].com pType;
i f (_pBoardA rray[_Board].pC om ps[i+j].x_C o > 0)
{

temp = (temp <
_ p B o a rd A rra y [_ B o a rd].p C o m p s [i+ j].x _ c o ?

(abs(tem p -
_ p B o a rd A r r a y [_ B o a rd] .p C o m p s[i+ j] .X _ c o) /(j+ l)) + temp :

(abs(tem p -
_ p B o a rd A r ra y [_ B o a rd] .p C o m p s [i+ j] .X _ c o)* j / (j+ l)) +
_p B oard A rray [_B oard].p C om p s[i+ j] .x_co);

i f (Type !=
_p B o ard A rray [_B o ard].p C o m p s[i+ j+ l].C o m p T yp e)

f l o a t l o c a t i o n = (temp -
x)/L engO fFeeder;

p F e e d [k] .a =
_pB oardA rray[_B oard].pC om ps[i+ j].C om pType;

pFeed[k].b = locat ion;
k++;

}
}

}
i = i + Freq - 1;

fo r (i n t j = _pBoardArray[_Board].NumOfCompTypes-1; j > 0; j —)
{

f o r (i n t cFeed = 0; cFeed < j ; cFeed++)

i f (p F eed [cF eed] .b > 0)

i f (p F eed [cF eed] .b > p F eed [cF eed + 1] .b)

f l o a t TempB = p F eed [cF eed + 1] .b ;
pF eed[cF eed+1] .b = p F eed [cF eed] .b ;
p F eed [cF eed] .b = TempB;
i n t TempA = p F eed [cF eed + 1] .a ;
p F eed [cF eed + 1] .a = p F e e d [c F ee d] .a ;
p F e e d [c F ee d] .a = TempA;

} }
}

fo r (j = _pBoardArray[_Board].NumOfCompTypes-1; j > 0; j —)

f o r (i n t cFeed = 0; cFeed < j ; cFeed++)

i f (p F eed [cF eed] .b < 0)

i f (p F eed [cF eed] .b < p F eed [cF eed + 1] .b)

f l o a t TempB = p F eed [cF eed + 1] .b ;

229

0)

pFeed[c F e e d + 1] .b = p F e e d [c F e e d] .b ;
p F eed [cF eed] .b = TempB;
i n t TempA = p F eed [cF eed + 1] .a ;
p F eed [cF eed + 1] .a = p F e e d [c F e e d] .a ;
p F e e d [c F ee d] .a = TempA;

} }
}

fo r (i = 0; i < _ p B o a rd A rra y [_ B o a rd]. NumOfcompTypes; i+ +)

i f CpFeed[i] . b < 0)

i f (p F eed er [0] == 0)

p F eed er[0] = p F e e d [i] .a ;
}
e l s e

f o r (i n t k = 1; k < NumofFeeders; k++)

w h ile (pF eeder[k] == 0 && p F eed er[0] !=

p F eed er[k] = p F e e d e r [k - l] ;
j3 F e e d e r [k - l] = 0;

}
pFeeder[0] = p F e e d [i] .a ;

}
}
e l s e

i f (p F e e d [i] .b > NumofFeeders)

i f (p F eed er [NumofF eed ers -1] == 0)

pFeeder[N um O fFeeders-l] = p F e e d [i] .a ;
}
e l s e

f o r (i n t k = NumofFieeders-2; k > 0; k—)

w h ile (pF eeder[k] == 0 &&
pF eeder [NumofF eed ers-1] != 0)

pFeeder[k] = p F e e d e r [k + l] ;
□Feeder[k+1] = 0 ;
k++;

' }
pFeeder [NumofF e e d e rs -1] = p F e e d [i] . a ;

}
e l s e
{

[NumofFeeders]

i f (p F e e d e r [p F e e d [i] .b] == 0)

p F e e d e r [p F e e d [i] .b] = p F e e d [i] . a ;

e l s e
{

i n t *pEmptyFeeder = new i n t

fo r (i n t j = 0 ; j < NumofFeeders; j++)
{

i f (p F e e d e r [j] == 0)

230

a b s (p F e e d [i] .b - j) ;

p E m p tyF eed er[j] < temp)

pEmptyFeeder[j] =

}
e l s e

pEmptyFeeder[j] = 0;
} }
i n t temp = NumofFeeders;
f o r (j = 0 ; j < NumofFeeders; j++)

i f (pEm ptyFeeder[j] > 0 &&

temp = p E m p tyF eed er [j] ;
p F e e d [iJ .b = j ;

p F e e d e r [p F ee d [i] . b] = p F e e d [i] . a ;
d e l e t e pEmptyFeeder;
/ / d e l e t e (pEmptyFeeder);

}

}
}

d e le te [] pFeed;
re tu rn ;

v o id C P e rm u ta tio n :: p ick_ran d o m _f(co n st CBoard *_p B o ard A rray , const i n t
_B oard)

i n t i , ite m , fe e d e r ;
i n t *p L im ite r = new i n t [_pB oardA rray[_B oard].N um ofcom pTypes];
i n t *p F L im ite r = new i n t [Num ofFeeders];
fo r (i = 0; i < _ p B o a rd A rra y [_ B o a rd]. NumOfCompTypes; i+ +)

* p L in n te r [i] = 0;

fo r (i = 0 ; i < NumofFeeders; i+ +)

p F L im ite r [i] = 0;
p F e e d e r[i] = 0;

fo r (i = 0; i < _pBoardArray[_Board].Num OfCom pTypes; i+ +)
{

do

item = ran d Q % _pBoardArray[_Board].Num OfCom pTypes;
} w h ile (p L im ite r [i te m] != 0);
pLi mi t e r [i tern]++;
do

fe e d e r = ra n d () % NumofFeeders;
} w h ile (pFLim i t e r [f e e d e r] != 0);
p F L im ite r [fe e d e r]++;
p F e e d e r[fe e d e r] = _ p B o a rd A rray [_B o a rd].T y p e sO fC o m p s[item];

}
d e le te p L im ite r ;
d e le te p F L im ite r ;
re tu rn ;

}
v o id C P e rm u ta tio n :: p ick_random _s(const CBoard *_p B o ard A rray , const i n t
_Board)
{

i n t i , i tern;
in t *p L im ite r = new i n t [_p B o ard A rray [_B o ard].N u m o fL o ca ti ons] ;
fo r (i = 0; i < _pB oardA rray[_B oard].N um O fLocations; i+ +)
{

231

}

p l_ im ite r [i] = 0;

f o r (i = 0; i < _pBoardArray[_Board] .Num ofLocations; i+ +)

 ̂ p S e q [i] = 0;

f o r (i = 0; i < _pBoardArray[_Board].Num ofLocations; i+ +)
{

do

item = randQ % _pBoardArray[_Board].Num ofLocations;
} w h i le C pLim iter[item] != 0) ;
pLi mi t e r [i tern]++;
p S e q [i] = item ;

d e l e t e pL im iter;
return;

vo id C P e r m u t a t i o n : : i n i t i a l i s e (c o n s t CBoard *_pBoardArray, c o n s t i n t
_Board)

NumofSeq = _pBoardArray[_Board].NumOfLocations;
pSeq = new i n t [NumofSeq];
fo r (i n t i = 0; i < NumofSeq; i++)
{

p S e q [i] = -1 ;
}
pFeeder = new i n t [NumofFeeders];
f o r (i = 0 ; i < NumofFeeders; i++)
{

p F e e d e r [i] = 0;

} }

i n t C P e r m u ta t io n : : f in d _ b e s t_ s (c o n s t i n t s t a r t , c o n s t CBoard
*_pBoardArray, c o n s t i n t _Board)

i n t B est = s t a r t ;
f o r (i n t i = 0; i < ge t_ s_N eigh _s ize (_p B oard A rray , _ B o a r d) ; i+ +)

i f (n e i g h _ s [i] . g e t _ t i m e () < n e i g h _ s [B e s t] . g e t _ t i m e ())

B est = i ;
}

}
return B est;

}
i n t C P e r m u ta t io n : : f in d _ b e s t_ f (c o n s t i n t s t a r t , c o n s t CBoard
*_pBoardArray, c o n s t i n t _Board)
{

i n t B est = s t a r t ;
f o r (i n t i = 0 ; i < g e t_ F _ N e ig h _ s i z e () ; i++)
{

i f (n e i g h _ f [i] . g e t _ t i m e () < n e i g h _ f [B e s t] . g e t _ t i m e ())

B est = i ;
}

}
return B est;

}

232

stdAfx . cpp

/ / s t d a f x .c p p : sou rce f i l e t h a t in c lu d e s j u s t th e standard in c lu d e s
/ / Pcb.pen w i l l be th e p re-com piled header
/ / s t d a f x .o b j w i l l co n ta in th e p re-com p iled type in fo r m a tio n

in c lu d e " s td a fx .h "

233

TimeDlq.cpp

/ / Tim eDlg.cpp : im plem entation f i l e
/ /
in c lu d e " std a fx .h "
in c lu d e "Pcb.h"
in c lu d e "TimeDlg.h"

i f d e f _DEBUG
d e f in e new DEBUG_NEW
#und ef THIS_FILE
s t a t i c char t h is_ f i l e [] = FILE ;
e n d i f

/
/ / / / / / / ,
/ / CTimeDlg d ia lo g

CTimeDlg::CTimeDlg(cwnd* pParent /*=NULL*/)
: CDialog(CTimeDlg::IDD, pParent)

//{{AFX_DATA_INIT(CTi meDlg)
/ / note: th e ClassW izard w i l l add member i n i t i a l i z a t i o n

here
/ / } } AFX_DATA_INIT

}

v o id CTimeDlg::DoDataExchange(CDataExchange* pDX)

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CTimeDlg)

/ / NOTE: th e ClassW izard w i l l add DDX and DDV c a l l s here
//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CTi meDlg, CDi a lo g)
/ / { {afx_ msg_ map(CTimeDlg)
ON_EN_CHANGE(lDC_FEEDSETUPTlME, onC hangeFeedsetuptim e)
ON_EN_CHANGE(iDC_PlCKTIME, onchangePicRtim e)
0N_EN_CHANGE(IDC_INSERTTIME, O nch an ge ln ser tt im e)
ON_EN_CHANGE(lDC_HEADSPEED, OnChangeHeadspeed)
/ / } } afx_ msg_ map

END_MESSAGE_MAP()

i n t C T im eD lg::G etltem (const i n t _ID)

c o n s t TEXT_SIZE = 1 6]
char szText[TEXT_SIZE + 1] ; / / b u f f e r f o r c o n v e r s io n s
CEdit *pGet = (CEdit *) (G e tD lg l t e m (_ lD)) ;
pGet->GetWi ndow T ext(szT ext, TEXT_SIZE);
return a t o i (s z T e x t) ;

}
/
/ / / / / / /
/ / CTimeDlg message hand lers

vo id CTimeDlg::OnChangeFeedsetuptime()

 ̂ FeedSetupTime = Getltem(lDC_FEEDSETUPTlME);

voi d CTi meDlg: : OnchangePi c k t i me()
{

PickTime = GetItem(iDC_PlCKTlME);
}

234

v o id C T im eD lg ::O n ch an g e ln serttim eO

in s e rtT im e = G etItem (lD C _IN S E R TTlM E);

vo i d CTi meDlg: : OnChangeHeadspeed()

Headspeed = GetItem(lDC_HEADSPEED);

n t C T im eD lg ::G et_FeedS etupT im e()

re tu rn FeedsetupTim e;

n t CTi meDlg: : G et_Pi ckTi me()

re tu rn P ickTim e;

n t C T im e D lg ::G e t_ ln s e rtT im e ()

re tu rn In s e rtT im e ;

n t C Tim eD lg::G et_H eadSpeed()

re tu rn Headspeed;

vo id C Tim eD lg ::U pdateB ox(const i n t _ ID , const i n t _D a ta)

const TEXT_SIZE = 1 6 ;
char szText[TEXT_SIZE + 1] ; / / b u f fe r f o r conversions
C E d it *p D is p la y = (C E d it *) (G e tD lg ite m (_ lD)) ;
i to a (_ D a ta , s zT e x t, 10);
pDi s p la y -> s e tw i n d o w T e x t(s zT e x t);

BOOL C T im e D lg ::O n ln itD ia lo g ()

updateBox(lDC_FEEDSETUPTiME, Feed setu p T im e);
UpdateBox(lDC_PICKTiME, P ic k T im e);
UpdateBox(lDC_lNSERTTiME, In s e r tT im e) ;
UpdateBox(iDC_HEADSPEED, H eadspeed);
re tu rn t ru e ;

v o id C T im e D lg ::s e t_ p a ra (c o n s t i n t _FeedSetupTim e, const i n t _P ickT im e ,
const i n t _ ln s e r tT im e , const i n t _HeadSpeed)

FeedsetupTime = _FeedSetupTim e;
P ickTim e = _P ickT im e;
In s e rtT im e = _ ln s e rtT im e ;
Headspeed = _Headspeed;

235

