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Abstract

A Comparison of Flow Cytometry and Conventional 

Microbiology in the Study of Biofilms

Xiangrong Jian.

A comprehensive study on the application of flow cytometry (FCM) for the analysis of 
biofilms has been undertaken and the results presented in this thesis have shown that 
flow cytometry can been successfully used to enumerate, sort and image the bacteria 
and amoebae in biofilms and water distribution systems as a rapid and sensitive semi
automated technique compared with conventional microbiology.

It has been shown that the results of flow cytometric analysis of total Legionella 
pneumophila cells have a strong statistical correlation with the numbers of Legionella 
cfu by BCYE plate counting (BCYE PC) methods for biofilms and planktonic phases. 
There are also strong statistical correlations between flow cytometric analysis and 
epifluorescent microscopic (EFM) analysis (direct counting) for determination of 
bacteria, including Legionella, Escherichia coli, Salmonella, Pseudomonas and 
amoebae, and total and viable cells in pure cultures, water distribution systems and 
biofilms.

The flow cytometric protocols have been set up and optimised for the analysis of 
environmental microorganisms. The novel fluorescent dyes and immunofluorescence 
antibodies from the most current commercial dyes also have been screened and the 
staining protocols have been optimised and adopted for flow cytometric analysis and 
direct counting by epifluorescent microscopy. The tap water biofilms and river water 
biofilms were analysed by the flow cytometer and direct counting methods as well as by 
conventional microbiological methods (plate counting). The bacterial populations in 
real water distribution systems have been fully investigated and the total, viable bacteria 
were determined by the above methods.

The findings of this work have practical implications with respect to the rapid and 
automatic detection and predictions of Legionella spp. and the risk assessment from 
biofilms and water environments.
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1.0 INTRODUCTION

1.1 THE CULTURAL PROBLEM

The standard methods for counting bacteria in aquatic environmental 

samples involve plating with nutrient media in order to produce colonies for 

counting. The cultural methods will however only detect a proportion o f the total 

population or obtain a "total culturable count" with the growth medium used. Many 

bacteria once in water become stressed or injured and fail to replicate in nutrient 

media although they may still be viable (Roszak and Colwell, 1987). Others 

become adapted to a low nutrient and low temperature environment and find culture 

media too nutrient rich or the incubation temperature too high, e.g. the aquatic 

pathogens such as Vibrio cholerae 01 that have adapted to their environment and 

associated conditions of stress (Huq et al., 1990). Traditional culture detection 

methods may involve relatively high incubation temperatures (35-37 °C), plus the 

use o f selective agents. Indirect measurements of metabolic activity such as 

respiration, photosynthesis, and enzyme activity have shown large differences in 

numbers of bacteria capable of growing on solid media compared with those 

actually present and metabolically active (Fiy and Zia, 1982; Sleightholme and 

Roberts., 1994; McKay, 1992). Xu and colleagues (1982) suggested that the 

conventional view of bacterial growth and death should be re-evaluated.

The total population of environmental samples will consist of bacteria 

which are viable and can be cultured (VC) and bacteria which are viable but cannot 

be cultured (VNC) together with bacteria which are not viable (NV). The VNC state 

has been defined as a state in which bacterial cells are intact and alive when tested by 

one or more of the specific methods of metabolic activity, but do not grow on 

routinely employed bacteriological media (Sleightholme and Roberts, 1994).

There has been considerable interest recently in the possible existence of 

organisms that cannot form colonies on laboratory media but which are believed to 

be viable by other criteria. This so-called viable but not culturable state (VNC) has 

been described for a range of human pathogens, including some Gram-negative
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species such as Escherichia coli, Salmonella enteritidis and Legionella pneumophila 

(McKay, 1992; Bovill et ah, 1994). Colboume and Dennis (1989) were able to 

demonstrate the presence and viability of

L. pneumophila in drinking waters despite not being able to culture the organism. 

Xu, et al., (1982) have done a substantial amount of work on the existence o f viable 

but non-culturable bacteria. Initially, cells of E. coli and V cholerae suspended in 

water rapidly became non-culturable. Their continued presence was demonstrated 

by staining with acridine orange and their viability demonstrated by the ability of 

cells to elongate in a nutrient medium containing a DNA gyrase inhibitor (nalidixic 

acid). The combination of this work with bacteria-specific monoclonal antibodies 

enabled Huq et al., (1990) to demonstrate viable V cholerae in waters where 

traditional culture failed to detect them. This type of work has done much to 

establish the understanding of the survival of bacteria (particularly the Gram- 

negative bacteria) in water. The survival strategy (Roszak and Colwell, 1987) has 

improved the understanding of endemic cholera in certain areas of the world.

Similar techniques have been used to study Salmonella spp. (Roszak, et. ah, 1984) 

and Aeromonas salmonicida (Pickup and Rhodes, 1997). Bogosian et al., (1998) 

reported that the non-culturable bacteria do not enter the viable but non-culturable 

state and were dead by using the novel mixed culture recovery method.

Once in a hostile environment, the bacterial cell shrinks in size to become 

coccoid. Rapid transcription of DNA produces proteins which are designed to 

protect the cell against external factors such as salinity, pH, and temperature. 

Exposure of S. typhimurium to reduced levels of pH induces the production o f 

proteins which protect the cell against low pH (Hickey and Hirshfield, 1990, Foster 

and Hall, 1991). These allow the cell to tolerate much lower level o f acidity 

through the production of forty-three acid shock proteins and outer membrane 

proteins. Recovery of these bacteria may fail through cultural techniques because the 

medium may be too nutritionally rich or it may not contain the correct co-factors to 

allow recovery to take place. This theme will be enlarged later in the thesis. Culture 

will only identify a proportion of the total microbial population. It will not give any 

indication of the total numbers of cells present in a water sample nor will it give any
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information about their state, for example whether they are dead, actively respiring 

or whether their membrane is intact.

A number of culture media are used for the general isolation of bacteria
/

from the water environment e.g. yeast extract agar (Anon, 1982) is the standard 

method for counting bacteria from water samples in the United Kingdom; colony 

count agar (APHA, 1989) and diluted colony count agar are also standard methods 

and have been used for the detection of bacteria in mineral waters (Mavridon, 1992). 

A low - nutrient medium (R2A) was specifically developed for counting water 

bacteria (Reasoner and Geldrich, 1985). These media can be used in the pour plate 

method where the water is added to the plate together with molten agar medium. 

Alternatively, the agar may be poured first, allowed to set and the water spread on 

the surface of the plate. The second method does not expose the bacteria to elevated 

temperatures needed to keep agar molten and therefore does not run the risk of 

killing them by heat shock.

There have been some significant changes in cultural techniques in recent 

years and these have been reviewed by Watkins and Jian, (1997). The need for a 

more gentle recussitation through buffered media and lower incubation temperatures 

are well documented (Anon 1994), Such conditions help to recover environmentally 

stressed or damaged organisms. Media can also be adapted to help recovery. 

Addition of a small amount of sodium pyruvate was shown by Sartory, (1995) to 

enhance the recovery of chlorine-stressed organisms from water samples. The 

reduction of nutrient together with a more appropriate nutrient balance and lower 

temperature of incubation gave improved recoveries with water bacteria (Reasoner 

and Geldreich, 1985). Specific enzymes can also be targeted. The glycosidase 

enzymes of the enterobacteriacae have been used to create media that will identify 

coliforms and E. coli specifically (Edberg and Allen, 1988; Sartory and Howard,

1992). Many of these chromogenic or fluorogenic substrates were first designed for 

histological purposes but these have now been extended to produce commercial 

media for use in the water industry as well as having applications in food and 

clinical analysis.
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1.2 BIOFILMS

Most waters contain planktonic bacteria. Some will be derived from the 

normal water flora whereas others will be present as contaminants from discharge of

sewage and farm effluents, soil and surface run-off. Many of these bacteria are able
/

to attach to solid surfaces and rapidly form biofilms. Clean surfaces, when placed 

into water containing planktonic bacteria can become covered within a matter of 

hours. Gradually, depending upon the nutrient levels available, (usually organic 

carbon derived from surface waters), microcolonies form held together in a matrix 

of excreted polymer glycocalyces. Biofilms are .a complex diversity o f microbial 

populations including aerobic and anaerobic bacteria, fungi, yeasts, algae and 

protozoa. With thin biofilms, there is no diffusion gradient and nutrient and oxygen 

can penetrate easily. As the biofilm becomes thicker, a diffusion gradient develops 

and availability of nutrient and particularly oxygen will be poor and microaerobic or 

anaerobic conditions will exist. This permits the growth of specific anaerobes such 

as sulphate reducing bacteria. Biofilms form readily in water distribution systems 

from bacteria supplied in the treated water. As they accumulate, they may cause 

taste and odour complaints as well as dirty water problems. They also provide a 

source of nutrient for animals such as Asellus aquaticus. The anaerobic bacteria can 

also cause corrosion problems. Biofilms by their nature protect microorganisms 

from the effects of biocides such as chlorine. They also have amoebae as a 

proportion of their population. Amoebae graze on the biofilm and ingest bacterial 

cells by a process of endocytosis. Ingested cells may be able to survive and even 

replicate. Once protected inside amoebal trophozoites, coliform bacteria were 

shown to be protected from chlorine levels as high as 50 mg/1 (Schotts and Wooley,

1990). Barker et al., (1992, 1995) reported that when L. pneumophila is grown in 

amoebae or in human monocytic cells, the activities of biocides such as 

polyhexamethylene (PHMB), benzisothiazolone ( BIT), and 5-chloro-N- 

methylisothiazolone(CMIT) and rifampin were greatly reduced against the 

bacterium.

Analysis of biofilm formation by conventional culture is limited.

Extraction of biofilms from solid surfaces is often difficult. Once extracted, the 

numbers counted will only be a proportion of the total population. In addition, as



shown by Watkins and Jian, (1997) the numbers counted by conventional 

microbiology will be a rapidly decreasing proportion of the total population as the 

biofilm develops. Most researchers have studied the formation o f biofilms using

small fermentation systems and recirculated water. Keevil et al., (1987), Rogers et
/

al., (1991,1994a, 1994b), Rogers and Keevil, (1992) used such a system - a two- 

stage chemostat biofilm model with controlled temperature. They suspended 

numerous tiles of different material into the fermenter to study the formation and 

development of dental plaque on aciylic surfaces, and the incorporation of 

Legionella and Cryptosporidium oocysts in biofilms on different material surfaces. 

This type of reactor allows steady-state conditions to be established, similar to those 

of water distribution systems where water is flowing, with the removal of samples at 

regular time intervals without disrupting the experiment. deBeer et al., (1994) 

used a continuous flow reactor that incorporated 12 removable stainless-steel slides 

to study the direct measurement of chlorine penetration into biofilms. Stewart et a i, 

(1998) reported the analysis of biocide transport limitation in an alginate gel bead 

artificial biofilm system.

Biofilms may act as a reservoir for potentially pathogenic bacteria such as 

Pseudomonas aeruginosa, Aeromonas hydrophila and L. pneumophila (Lee and 

West, 1991). They may also support the growth of coliforms and this brings about 

another problem. Coliforms are used as indicators of drinking water quality and 

their presence implies that water may have become contaminated and therefore be 

unfit for drinking (Anon, 1994). Coliforms may get into the drinking water system 

by repair of the main, ingress in the distribution system, back-syphonage or 

breakdown in the water treatment processes. Once in the system, coliforms can 

survive and grow slowly in low levels of nutrient in biofilms (Block et al., 1997; 

Packer et al., 1997) and may be isolated from drinking water samples occasionally 

when the biofilm breaks up.

1.3 ALTERNATIVES TO BACTERIAL CULTURE

A method for the rapid assessment of microbial viability is a major 

requirement in many areas of public health, the water and food industries. Methods
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for direct counting do not rely on the culturability of bacteria in samples and 

consequently give higher counts than colony counting procedures. Direct counting 

of bacteria on black membrane filters by epifluorescence microscopy has become 

the most frequently used method for total bacterial population counts and permits a 

rapid quantitative estimation of aquatic bacteria (Hall et a l, 1990). Epifluorescence 

is achieved by using a range of nucleic acid or protein stains that fluoresce when 

excited by light of a suitable wavelength. Immunofluorescence microscopy has 

been also widely applied to the detection and enumeration of particular 

microorganisms when conventional methods have proved difficult. The 

development of monoclonal antibodies (Kohler and Milstein, 1975; Makin and Hart, 

1989; McClelland and Pinder 1994) has greatly enhanced the technique of 

immunofluorescence in making specific antibodies for a wide range of bacteria 

available.

A number of DNA specific fluorochromes are available for the detection of 

microorganisms. Some of these can differentiate between viable and non-viable 

bacteria. Additionally, monoclonal antibodies are available not only for specific 

bacteria, but also for protozoa (Vesey, et al., 1993; Watkins, et al., 1995).

1.3.1 Acridine Orange (AO)

Acridine orange (AO) has been available for over 100 years and is one 

of the most commonly used fluorogenic dyes in microbial ecology and 

environmental microbiology as a part of the acridine orange direct count (AODC) 

or the direct total microbiological count methods (APHA, 1989). In the UK, the 

AODC has also been used as a standard method for detecting all viable and non- 

viable bacteria, yeasts and moulds in a water sample, which is to give a rapid 

estimate of the total microbial biomass, living and dead (Anon, 1994).

Acridine orange binds to the charged phosphate molecules o f single

stranded RNA with the RNA-AO complex fluorescing orange-red while it 

intercalates with double-stranded DNA and the DNA-AO complex fluoresces 

green. Some (McFeters et al., 1995; APHA, 1989; Anon, 1994) have suggested 

that the reaction of AO with bacterial DNA or RNA will allow the discrimination 

of living or dead cells. The hypothesis is based on the fact that RNA has a



relatively short life in the cell and dead cells contain very little o f it. Cells which 

fluoresce red contain relatively large amounts o f RNA and are therefore viable 

whilst cells which fluoresce green contain only DNA and are therefore non-viable 

(Yu, etal., 1995).

Acridine orange is a relatively cheap and easy stain to use and is widely 

used to stain microorganisms for microscopic examinations, but for flow 

cytometric analysis, there are only a few reports (Darzynkiewicz et al., 1975, 1980, 

1994; Darzynkiewicz and Chrissman, 1990; Tragnos et al., 1977) most of which 

are for staining eukaryotic cells in cellular biology.

1.3.2 4',6'-diamidino-2-phenylindole (DAPI)

DAPI (4',6'-diamidino-2-phenylindole, FW; 350) as a fluorescent DNA- 

specific dye was first used for rapid determination of DNA contents o f the 

eukaryotic cells in cellular biology. Dann et al., (1971) first reported that DAPI 

passed through the nuclear envelope to bind stoichiometrically with the AT-rich 

regions of intact DNA molecules. DAPI was first used to stain the cell's DNA for 

flow cytometric analysis by Stohr et al., (1977) in cellular biology.

DAPI has a very high quantum efficiency and is stable in ultra-violet 

(UV) light. The DNA-DAPI complex is maximally excited at 365 nm and the 

complex fluoresces at 465 nm with about a 20-fold increase in fluorescence as 

compared to DAPI alone. Recent studies have shown that the DAPI interacts not 

only with DNA but also with extracted and synthetic biopolymers such as double

stranded RNA (Watson, 1991), proteins (Mazzini, et al., 1992) and phospholipids 

(Favilla et al., 1993). Since the 1980s, DAPI has also been widely used to stain 

bacteria and environmental microorganisms mainly for direct enumeration or 

counting by epifluorescent microscopy. DAPI direct counting (DAPI DC) 

technique has been widely adapted to replace the AODC in most of the published 

papers (Kepner and Pratt 1994). Porter and Feig (1980) reported using DAPI for 

identifying and counting aquatic microflora and McCoy and Olsen (1985) adapted 

DAPI for determining DNA concentrations in municipal drinking water. In 1995, 

Zweifel and Hagstrom reported that DAPI could be also used to stain non- 

nucleoid-containing bacteria (ghosts).



Though DAPI was used for FCM as a DNA dye as early as in 1977 

(Stohr et a l), the applications of DAPI by FCM have been exploited in only a 

limited number of environmental microbiology studies. The one limitation to the 

further use o f the dye is that the UV units need high power laser or duel lasers 

which are more complex and more expensive equipment compared with the single 

low power laser in a flow cytometer just for visible light and red light sources, and 

of course includes the expensive flow cytometer itself. Robertson and Button 

(1989) presented a detailed discussion which included using DAPI for detecting 

marine bacteria by flow cytometry; Monger and Landry (1993), and Lebaron and 

Joux (1994) for staining the DNA content o f S. typhimurium, and Lange et al.,

(1997) for total sorting of airborne bacteria using flow cytometry.

The main roles of DAPI staining for environmental microbiology are for 

enumerating or counting the total number o f cells, detecting viable cells by dual 

staining with other dyes, and labelling the DNA contents of biomass and 

demonstrating subpopulations.

1.3.3 Propidium Iodide (PI)

Propidium iodide (PI, FW 668.4, C27H31N4 I2), like most 

phenanthridinium dyes, is polar, highly soluble in water and does not readily cross 

functionally intact external cell membranes. Unlike DNA specific stains such as 

DAPI, PI can bind both DNA and RNA in two binding modes. Propidium iodide 

fluoresces red with a maximum emission at 610nm when excited at 520nm. 

Propidium iodide was introduced by Hudson et al., (1969) in a procedure to 

distinguish between the dye-dependent density of linear and closed circle DNA. 

Since then, PI has been widely used in the cell biology for staining non-viable 

cells for the flow cytometric analysis of cell viability and nucleic acid content 

(Watson, 1991).

As a nucleic acid specific stain with red fluorescence, PI also is used in 

microbiology for labelling dead cells which do not exclude PI entry in dual 

staining to detect viability. Donnelly and Baigent (1986) combined PI with 

immunofluorescence staining for the detection of Listeria monocytogenes in milk.
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Diaper and Edwards (1994a) reported on the correlation between PI fluorescence 

and cellular RNA of Staphylococcus aureus in lakewater by flow cytometry.

1.3.4 Fluorescein Diacetate (FDA)

Fluorescein diacetate (FDA) is non-fluorescent but is broken down by 

esterase enzymes in the cell with the release of fluorescein which excites at 488 nm 

and emits at 530nm. Fluorescein accumulates inside the cell and allows viable cells 

to be visualised. Jorgensen et al., (1992) reported that FDA had been used to 

determine (staining) viable biomass in water and waste water treatments and Diaper 

et al., (1992) also reported that rapid assessment of the viability of pure cultures of 

bacteria stained with FDA by using flow cytometry. FDA was also used to stain 

living microorganisms in soil (Tsuji et al., 1995).

1.3.5 Rhodamine 123 (Rhl23)

Rhodamine-123 (Rhl23, FW 380.8, C21H 17CIN2O3) is a class o f cationic 

dye which partitions into electronegative environments and has been described as 

a mitochondrial specific dye and the indicator of membrane potential for 

assessment of eukaryotic cells' viability in cell biology (Weiss and Chen, 1984). 

Matsuyama, (1984) first reported that living bacteria were stained with R hl23 and 

it could be used as a fluorescence probe for detecting the viability of 

microorganisms by microscopy. Resnick et al., (1985) reported the flow 

cytometric analysis of Rhl23 stained Mycobacterium smegmatis and Kaprelyants 

and Kell (1992); Diaper et al., (1992); Diaper and Edwards, (1994b) also 

described using Rhl23 and flow cytometry for the rapid assessment o f the 

viability of pure bacterial cultures. However, for Gram-negative bacteria, the cell 

envelope is only slightly permeable to Rhl23 and a permeation procedure such as 

EDTA treatment is used to obviate this problem (Matsuyama 1984). Another 

limitation of using Rhl23 is its non-specific binding to non-cellular structures 

which results in extensive background fluorescence. This limits the application o f 

Rhl23 for staining environmental samples. Rhl23 is a polar, water-soluble 

cationic fluorescent dye and has been considered the best one for staining viable 

bacteria (Pinder et al., 1993). It is limited for staining Gram-negative bacteria



because of cell membrane permeability problems. For Ps. aeruginosa, the Rhl23 

staining percentage was only 7 % even when treated with Tris-EDTA (Diaper et 

a l,  1992).

1.3.6 Hoechst 33342 (HOE342)

Hoechst 33342 (HOE342, MW 652) dyes are benzimidazole derivatives 

that have a high specificity for double-helical DNA and bind preferentially to A-T 

base regions, but do not intercalate. They emit blue fluorescence when excited by 

ultraviolet light (UV) at 346nm. Like DAPI, the fluorescent dyes were also first 

used for staining eukaryotic cells in cellular biology since the late 1960s. Hilwig 

and Gropp (1973) used HOE33258 in mouse chromosome-banding studies. Latt 

(1973) showed that the dye was quenched when bound to bromodeoxyuridine- 

substituted DNA (BrdUrd) and developed a method for detecting regions of sister 

chromatid exchange in metaphase chromosomes labelled with BrdUrd. Arndt- 

Jovin and Jovin (1977) using flow cytometry, first demonstrated the use of 

HOE258 and HOE342 for the quantitative DNA staining and sorting o f viable 

cells.

Hoechst dyes have been used in microbiology to stain bacteria for 

epifluorescence microscopy analysis since the 1980s. In the 1990s Hoechst dyes 

started to be used in environmental microbiology to stain bacterial DNA contents 

for flow cytometric analysis. Monger and Landry (1993) reported that they used 

HOE342 to stain marine bacteria for flow cytometric analysis (EPICS 753). 

Lebaron and Joux (1994) demonstrated that HOE342 was used as a DNA-specific 

dye for flow cytometry (ACR1400SP) to discriminate between DNA 

subpopulations o f Salmonella and Alteromonas during starvation and recovery in 

seawater. HOE342 was also used for staining pure cultures o f E. coli cell DNA 

by Monfort and Baleux (1996). It was clear that most of the Hoechst staining 

work was focused on marine cells.

1.3.7 5-cyano-2,3-ditoIyltetrazoIium Chloride (CTC)

5-cyano-2,3-ditolyltetrazolium chloride (CTC) is a dye and has been 

applied to visualise respiring aerobic and facultative bacteria in environmental
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samples (Rodriguez et al., 1992). CTC has also been used with flow cytometry to 

determine the respiratory activity and dormancy in individual Micrococcus luteus 

cells (Kaprelyants and Kell, 1993) as well as respiring autochthonous bacteria in

drinking water and biofilms (Schaule et al., 1993). CTC acts as an electron
/

acceptor and is reduced to red fluorescing crystal particles in the cells from 

colourless. An aqueous solution of CTC is nearly colourless and non-fluorescent, 

while the corresponding formazan product [CTF] fluoresces in the red range at 

approximately 620 nm when excited at 520 nm. Soluble CTC is readily reduced 

to the water-insoluble fluorescent CTF product via the microbial electron transport 

system and indicates a mainly respiratory activity. CTF is deposited 

intracellularly like other formazans in a time-dependent manner and provides an 

indication of cumulative respiratory activity.

1.3.8 Immunofluorescence and staining Legionella pneumophila

It is over twenty years since Kohler and Milstein (1975) first described 

the production of antibodies from a single cell-line using cell-fusion techniques 

(Harrison and Talor, 1988). Since 1975 the technique has been widely applied 

and the production of monoclonal antibodies (mAbs) is now common. Although 

polyclonal antibodies offer some degree of specificity, the development of 

monoclonal antibodies gives the potential to recognise a single antigen type. The 

antigen-binding site may be a conformation of five or six amino acids of a protein 

or five or six sugar residues of a polysaccharide (Kohler and Milstein 1975). 

Fluorescent antibody (FA) immunofluorescence techniques have been used in 

environmental and ecological studies to detect a range of different bacteria 

including coliforms, Salmonella spp. (McClelland and Pinder, 1994), Legionella 

spp. (Harrison and Talor, 1988) and other species.

To detect the antibodies, and therefore the cells they recognise, they must 

be labelled with a fluorescent marker. Antibodies can be fluorescence-labelled for 

flow cytometry and epifluorescence microscopy by three essentially different 

methods, direct, indirect and avidin-biotin. The direct method for labelling 

antibodies is when the antibody is conjugated directly to the fluorophore in one of 

three ways including conjugation with isothiocyanates, with succinimidyl esters or
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with phycobiliproteins. Although the procedures are comparatively complex, 

direct labelling produces covalent, and therefore, stable bonds with the antibody. 

Multi-colour detection of different antibodies poses no major problems, because

there are no appreciable cross-reactions between labels. Fluorescent
/

isothiocyanates such as fluorescein or rhodamine are reactive reagents for the 

modification of aromatic amines, such as lysine residues or free terminal amino 

groups on the antibody protein, and have been widely used to conjugate with 

antibodies e.g., FITC-mAbs. Makin and Hart, (1989) reported that they used the 

fluorescein-conjugated monoclonal antibody to detect Legionella pneumophila in 

environmental samples from the sites which had a history of colonisation with 

legionellae. The results show that direct fluorescent monoclonal antibody 

detection of L. pneumophila was more sensitive and more rapid than the indirect 

method and the cultural methods in detecting L. pneumophila in environmental 

water samples.

Though the most common application of flow cytometry is the 

measurement o f surface antigens by immunofluorescence labelling using 

monoclonal antibodies, most of the detection of Legionella stained with 

monoclonal or polyclonal antibodies has been carried out by fluorescence 

microscopy (Makin and Hart, 1989; Rogers and Keevil, 1992; Lee, 1994 

(unpublished data); Palmer et al., 1995; Luck et al., 1995; Faude and Hofle, 

1997). Lee (1994, unpublished data) suggested that using flow cytometry it 

should be possible to detect fluorescently labelled legionellae whilst using 

microscopy such techniques are extremely laborious.

1.4 APPLICATIONS OF MOLECULAR PROBES IN 

MICROBIOLOGY

Acridine orange has always been an easy stain to use to assess microbial 

populations. The stain was used by Pettipher et al., (1980) for the rapid 

enumeration of bacteria in milk. Modifications to this staining protocol have 

allowed Sierra et al., (1997) to use AO for assessing the degree of microbial 

contamination of lamb carcasses. Results were available in 15 minutes meaning
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that hazard assessment and critical control points (HACCP) could be applied 

directly in slaughter houses. The direct count was also found to correlate well 

with colony counts. Similar protocols have been used to monitor the quality of 

pork and minced beef.

The bis-benzamide derivative Hoechst 33342 (HOE342), (Monger and 

Landiy, 1993), has been used to detect bacteria in fresh and marine waters. 

Rhodamine 123 (Rhl23) (Morgan et al., 1993, Kaprelyants and Kell, 1993) and 

fluorescein diacetate (FDA) (Jorgensen et al., 1992) have been used to determine 

viable biomass in water and waste water treatment. CTC, (Stellmach, 1984), has 

been used to detect viable bacteria in pure culture (Kaprelyants and Kell, 1993), and 

in secondary treated effluent (Rodriguez et al., 1992). CTC has also been used to 

quantify planktonic and sessile respiring bacteria in drinking water (Schaule et al., 

1993). Bovill et al., (1994) reported that CTC was used to detect metabolic activity 

in heat-stressed cells. Ullrich et al., (1996) published the only paper up to now on 

the toxic effects of CTC on bacterial metabolism in environmental samples. 

Yamaguchi et al., (1997) described the flow cytometric analysis of bacterial 

respiration with CTC in natural waters. In more recent years the green nucleic acid 

stain SYTOX was reported to stain pure cultures of bacteria for detecting viability by 

flow cytometry (Roth et a l, 1997), and now, many studies have been focused on the 

green fluorescent protein (GFP), which has been used to label bacteria for genetic 

methods for Legionella (Kohler et al., 2000). All the above fluorescence dyes have 

been used in direct counting methods by epifluorescence microscopy and/or flow 

cytometry.

1.5 FLOW CYTOMETRY

1.5.1 History and Development of Flow Cytometry

Flow cytometry, like most scientific developments, has its roots firmly 

grounded in history. The Coulter blood cell counter is generally considered to be the 

precursor of the modem flow cytometer, in fact it was the coming together of the 

technologies of microscopy, inkjet technology, the Coulter counter, as well as flow 

technology, which provided the basis for the first flow cytometers.
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In 1934, Andrew Moldayan in Montreal took a first step from static 

microscopy toward a flow system (Givan, 1992). He suggested the development of 

an apparatus to count red blood cells and neutral red stained yeast cells as they were 

forced through a capillary on a microscope stage. A photodetector attached to the 

microscope eyepiece would register each passing cell. Although it is unclear from 

Moldovan’s paper whether he actually built this cytometer, the development of 

staining procedures made it obvious that the technique he suggested could be used 

for not only counting the number of cells but also for assessing their characteristics. 

In 1938, Caspersson and Schultz reported that primitive photodetectors could be 

used to quantify the stained images from their study of the nucleic acid metabolism 

in Drosophila melanogaster salivary gland chromosomes. It has been said that the 

qualitative aspects of flow cytometry take their origins from Caspersson’s work in 

the 1930s (Givan, 1992).

In the 1950s, the Coulter technology was developed for the analysis of 

blood cells and soon Coulter counters became essential equipment in hospital 

laboratories for the rapid automated counting of white and red blood cells. These 

first commercial flow systems by Coulter in 1954 were used to count cells as they 

flowed in a stream of liquid. Analysis was based on the amount by which cells 

increased the electrical resistance of an orifice as they displaced isotonic saline' 

solution while flowing through it. Cells were thereby classified more or less on the 

basis of their volume, since larger cells have greater electrical resistance. The 

Coulter counter actually incorporated many of the features of analysis that we now 

think of as being typical of flow cytometry; the rapid flow of single cells in file 

through an orifice, the detection of electrical signals from those cells and the 

automated analysis of those signals.

In 1953, Crossland-Taylor, working at the Middlesex Hospital in London, 

developed ‘a device for counting small particles suspended in a fluid through a 

tube’. He applied the principles of laminar flow to the design of a flow system. A 

suspension of red blood cells was injected into the centre of a fast-flowing stream, 

thus allowing the cells to be aligned in a narrow central file within the core of the 

wider stream prior to electronic counting. This principle of hydrodynamic focusing 

was pivotal to the further development of flow cytometry (Givan, 1992).
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In the mid-1960s, as a result of a desire to automate cervical cytology 

screening, Louis Kamentsky et ah, (1965) in New York developed a microscope- 

based spectrophotometer (on the pattern of one suggested by Moldavan (1934) that

measured and recorded the two parameters of UV adsorption and the scatter of blue
/

light from cells flowing ‘at rates exceeding 500 cells per second’ past a microscope 

objective. In 1965, at the same time as Kamentsky’s work on cervical screening, 

Fulwyler (1969) at the Los Alomos laboratory developed the first cell sorter using 

electrostatically charged droplets, a development of Sweet’s invention for ink-jet 

writing (1965). The technique that Fulwyler developed for sorting erythrocytes 

combined Coulter methodology with ink-jet technology and produced the first 

instrument that would charge droplets containing suspended cells, thereby allowing 

deflection of the cells within the droplets as dictated by signals based on the cells' 

measured Coulter volume (electrical resistance). Fulwyler’s contribution to flow 

cytometry development was very important, allowing the flow cytometer a sorting 

ability.

Kamentsky and Melamed (1967) also elaborated this design into a sorting 

flow cell that provided for electronic actuation of a syringe to pull cells with high 

adsorption/scatter ratios out of the stream flow. Sorted cells could then be subjected 

to detailed microscopical analysis. In 1969, Dittrich and Gohde in Germany 

described a flow chamber for a microscope-based system whereby fluorescence 

intensity histograms could be generated based on the ethidium bromide fluorescence 

of alcohol-fixed cells. Also in 1969, Van Dilla and other members of the Los 

Alomos group reported development of the first fluorescence-detection cytometer 

that utilised the principle of hydrodynamic focusing (Crossland-Taylor, 1953). 

Unlike the microscope-based system, this had the axes of flow, illumination and 

detection all orthogonal to each other and also used an argon laser as the light 

source. Dilla’s flow cytometer could support both the illumination and detection 

electronics of Kamentsky’s device as well as the rapid flow and vibrating fluid jet o f 

Fulwyler’s sorter. Shortly afterwards, the Herzenberg group at Stanford 

demonstrated the use of a similar cytometer to sort fluorescent cells stained with 

fluorescein isothiocyanate (Givan, 1992).
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During the late 1960s and early 1970s, major developments took place in 

fluorescence activated cell sorting at Stanford University. The sorting cytometers 

were able to sort lymphocytes and granulocytes into highly purified states. At the 

same time, these instruments began to be seen as commercially marketable objects. 

Up to now, the main commercial manufacturers of flow cytometers are Coulter 

(USA), Becton Dickinson (USA) and Ortho (USA). Modem machines are capable 

of sorting with five different parameters and accurately at rates o f up to 10,000 cells 

per second. Their applications, initially based on clinical immunology, have 

widened into biomedical research, food and environmental microbiology. -

1.5.2 Basic Principles of Flow Cytometry

Flow cytometry (FCM) combines the advantages of microscopy and 

biochemical analysis for the measurement of physical and chemical characteristics 

o f individual cells as they move in a fluid stream one by one past optical or 

electronic sensors (Table 1.1; Figure 1.1). The technique has found widespread 

applications for eukaryotic cells and, more recently, the technique has been 

directed to the study of microorganisms. All flow cytometers work on the 

principle of presenting individual cells, in single file, into a focused light beam 

within a sensing region. This is achieved by introducing cells into the centre o f a 

fast flowing continuous stream of liquid (usually water or buffered saline) termed 

the sheath fluid.

Table-1.1 A Comparison of Flow Cytometry and Solid Phase Cytometry

Specification Flow Cytometry Solid Phase Cytometry

Epifluorescence Microscopy
FACS Vantage (Becton Dickinson) Image Analysis

Laser scanning microscopy;
EPICs XL (Coulter) Confocal Laser scanning

Microscopy (CLSM)
Orthocyte (Ortho) Laser Scanning Cytometry;

LSC (CompuCyte)
ChemScan (Chemunex)
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Light source: Lasers 
Arc lamp
(microscope based instruments)

Lasers 
Arc lamp 
(microscope based 
instruments)

Detectors: Multiple photo tubes (MPT) 
Electrical impedance 
Photo diode

Multiple photo tubes (MPT) 
Video camera

Parameters: Fluorescence
Light scattering
Coulter volume (impedance)

Fluorescence 
Light Absorption 
Light scattering

Sample: Suspended cells in liquid phase 
(Laminar flow system)
Rapid flow in single file

Cells on “solid phase” 
(slide, filter surface) 
Scanning o f stage and/ laser 
beam

Characteristics Single cell suspension 
High speed (2000 cells/S)
Rapid, large number of cells (Kinetics 
for population)
Multiparameter analysis 
Automation
Analytical + preparative: sorting

Attached cells 
(Solid phase e.g., biofilms 
without detachment) 
Repeated measurement of 
same cell possible 
(Kinetics for one cell) 

Spatial information (2- or 
3-D)

(After Nebe-Von Caron, G. and Wall, G., 1998)
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Figure-1.1 A flow cytometer. Illustration of the sample stream of a flow cytometer 
intersecting a laser beam. Also shown arc portions of the beam-shaping optics, dicbroi< 
beam splitters, light scatter and fluorescence detectors, and the droplet generating and 
deflecting portions of the sorting apparatus (Alter Grogan W 1990).

’ /.Fluorescence I
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The speed of flow is_usually about 10 m/second, which permits the analysis of 

approximately 2,000 to 10,000 cells/second. The light beam can be generated either 

by a laser or a mercury lamp. With mercury lamps, insertion of different filters into

the beam can vary the wavelength of light which serves as excitation light for
/

fluorescent dyes used to stain the cells. In contrast, the laser excitation beam can be 

tuned to the desired wavelength (e.g. 300,488 or 514nm). A cell or particle 

travelling at 10 m/second traverses the light beam in 0.5 to 5 ps and, as it does so, 

light is scattered and detected by one or more detectors in the sensing region. Most 

instruments have two light scatter detectors, one measures low angle scatter (LAS) 

the other high angle scatter (HAS). LAS comes from light scattered at the cell 

surface and because larger cells have greater surface area, LAS gives a measure of 

size. HAS arises from light bent after passage through cells and is thought to give a 

measure of cell reffactivity and therefore internal structure. LAS and HAS 

measurements can be made on cells irrespective of whether they have been stained 

with a fluorescent dye. One or more fluorescent light detectors are also supplied and 

they measure fluorescence emitted from stained cells as they pass through the 

excitation light source. In the case of the FACS Vantage, fluorescence in region of 

470, 535, 575 and >630 nm is routinely detected after light has passed through a 

series of dichroic mirrors and band-pass filters. There is now a wide choice of 

fluorescent agents (chemicals and fluorochromes attached to antibodies and nucleic 

acids) that are specific for different cell structures or where fluorescence is 

dependent on some cellular activity. The fluorescence emission, within 

predetermined limits, will be proportional to the amount bound to particular cell 

components.

The sensitivity of the scatter and fluorescence detectors can be varied to 

suit the cell type under observation. Sensitivity of the detectors has to be much 

higher for bacteria than for eukaryotic cells. The detector can collect light in either 

linear or logarithmic modes (high sensitivity). The light intensity (scatter or 

fluorescence) measured by the detectors is converted into electrical signals which 

are sorted in increasing order of magnitude into a number of electronic channels.

The higher the channel number the greater the light intensity. All information from 

detectors accumulates and is stored in the computer using appropriate software. The
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results can be represented by histogram distributions of range of channels or as 

contour maps or dotplots or as a three dimensional distribution.

1.5.3 Modern Applications of Flow Cytometry
/

Flow cytometry’s primary use to date was in eukaryotic cell biology (Steen 

et al., 1994; DeLeo, 1996). Recently, flow cytometry has been used successfully in 

the studies o f the bacterial cell cycle (Monfor and Baleux; 1996) and its potential as 

a tool for use in microbial ecology has been recognised (Burkill, 1987; Edwards et 

al., 1992; Diaper and Edwards 1994a; 1994b; Nebe-Von Caron et al., 1998a, 1998b; 

Clarke and Pinder,1998). Flow cytometry also has been used to analyse the biomass 

in phytoplankton (Hofstraat et al, 1991; Jonker et al., 1995; DeLeo et a l ., 1996). 

Recently, flow cytometry has been shown to be capable of enumerating marine 

viruses stained with SYBR Green I (Marie, et al., 1999) and SYBR Gold (Chen et 

a l, 2001).

Work by Kaprelyants and Kell, (1992) has demonstrated that Rhl23, 

which is taken up in response to membrane potential can be used as a dye to detect 

and enumerate viable bacteria in pure culture by flow cytometry. Diaper and 

Edwards, (1994a) reported that he was able to detect and enumerate viable bacteria 

(S. aureus) using flow cytometry during survival studies in a lakewater microcosm. 

Porter et al., (1993) reported using flow cytometry to enumerate and sort mixtures of 

S. aureus and E. coli labelled with fluorescence antibody (FITC-IgG). Flow 

cytometry can be used as a rapid and sensitive method for the analysis of bacterial 

populations and a number of fluorescence probes have been screened. No single 

stain is universally applicable, e.g. Rhl23 works well for most Gram positive 

bacteria, but its staining of Gram-negative bacteria is limited because of the cells' 

outer membrane permeability. CTC as a new stain was reported in few cases for 

pure cultures of bacteria seeded in the laboratory (Kaprelyants and Kell, 1993) and 

bacteria in the river environment (Yamaguchi and Nasu, 1997). Flow cytometry has 

found applications in the food industry. Pinder et al., (1990) describe a method for 

counting bacterial cells in pure culture by permeating cells with benzalkonium 

chloride and staining the DNA and RNA with ethidium bromide. Counts obtained 

by flow cytometry agreed well with those obtained by direct plating but were
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obtained in a few minutes as opposed to several days. This was further developed to 

detect Salmonella (Pinder et al., 1994; Clarke and Pinder, 1998) using fluorescent 

antibodies and to differentially sort S. enteritidis and S. typhimurium based on a 

polyclonal and monoclonal antibody. One was labelled with FITC and the second 

with phycoerythrin giving a two-colour sort in green and red (Pinder et al., 1993). 

Rhl23 was also assessed as a viability stain and found to accumulate rapidly in cells 

without reducing viability. Stained cells could be sorted on the flow cytometer and 

grown. The sort facility gives the ability to assess the viable state of individual cells 

in a suspension as opposed to studying populations through cytograms. Brailsford 

and Gatley (1993) describe the use of flow cytometry for detecting and enumerating 

viable yeasts and bacteria in fruit and vegetables using a commercially available 

intracellular viability stain (Chemunex) based on esterase activity and intracellular 

accumulation of fluorochrome.

Vesey et al., (1993) described a new use for flow cytometry for the 

detection of the parasites Cryptosporidium and Giardia in water. These two 

parasites have been responsible for a number of waterborne outbreaks o f disease. 

Detection in water samples is difficult and time consuming and requires a 

substantial amount of microscopy. Flow cytometry was found to give specific 

detection, reduce the amount of microscopy and speed up the analysis time. The 

technique was used by Watkins et al., (1995) for the examination of an upland 

catchment for Cryptosporidium during heavy rainfall. Hoffmann et al., (1997) 

discuss the use of flow cytometry compared with direct microscopy for the 

detection of Giardia and Cryptosporidium in water samples. Flow cytometry was 

found to take less time, cost less, and could analyse a greater volume of sample.

An increase in sensitivity of almost three times was observed for both parasites. 

Medema (1997) describes the detection o f Cryptosporidium and Giardia in river 

and reservoir water using flow cytometry. Viability was demonstrated by DAPI/PI 

staining before sorting and could easily be assessed. A number o f oocysts were 

observed to be DAPI and PI negative but internal contents could not be resolved. 

Deere et al., (1997) discuss the use of two antibodies specific for Cryptosporidium  

labelled with different coloured fluorochromes to minimise non-specific sorting in 

flow cytometry together with a specific DNA probe to identify at genus or sub
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species level and demonstrate viability. Harf, et al., (1997) used flow cytometry 

to study the endocytosis o f viable L. pneumophila cells by the amoeba 

Acanthamoebapalestinensis. Live cells were used instead o f fluorescent beads 

and were labelled with the lipophilic probe Cell-TrackerCM™ Dil (CM-Dil) 

which labelled the cells but did not affect their viability nor their ability to be 

taken up by the amoebae. Flow cytometry could show that endocytosis increased 

with the size of the amoebae and that cells did not bind to the amoebae in the 

presence of azide. Flow cytometry allowed the quantification of large number of 

amoebae to generate the data.

Nebe-von Carron et al., (1998a) have identified four different states of 

the bacterial cell. These are cells which are actively growing, that is there is cell 

division; cells with metabolic activity whether there is biosynthesis or enzyme 

activity; cells with membrane integrity in that they are able to exclude membrane 

permeable dyes such as propidium iodide; and cells which are membrane 

permeable. This type of concept differs from the viable and viable but non- 

culturable state of cells although the first group relates to the culturable cells, and 

the last group to the dead cells. These different groups can be demonstrated by 

different molecular probes where cell function specific reagents are used. Esterase 

and dehydrogenase activity can be demonstrated in metabolically active cells 

together with membrane potential dyes such as Rhl23, but fail to stain with 

ethidium bromide (EB). Cells with an integral membrane but lacking metabolic 

activity fail to stain with propidium iodide but do take up HOE342 and EB. By 

the use of a combination of a number of probes, each with specific excitation and 

emission spectra, multi-colour sorting can be used to differentiate these groups. 

Nebe-von Caron et al., (1998b) used this technique to establish the viability status 

of individual bacterial cells using flow cytometry and single cell sorting. Cells 

were labelled simultaneously with ethidium bromide, propidium iodide and Bis- 

oxonol (BOX). Cells were sorted on the basis of exclusion of ethidium bromide 

(metabolically active cells), uptake of ethidium bromide but exclusion of BOX 

(de-energised but with a polarised cell membrane), uptake of both dyes 

(depolarised) and permeated cells which stained with ethidium bromide. Single 

cells were sorted directly onto agar plates. Eighty five percent of de-energised
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cells and 34% of depolarised cells could be recovered by culture. Permeabolised 

cells could not be cultured. This type o f exercise can be used to design culture 

media to give the best possible recovery of environmentally damaged cells and in 

addition look at the media preparation and storage on the recovery of 

environmentally damaged cells.

An alternative stain to propidium iodide for permeabolised cells has been 

described by Roth et al., (1997). SYTOX green, a nucleic acid stain which stains 

double-stranded DNA strongly and single-stranded DNA and RNA less strongly 

can be excited at 488nm and emits in the green at 502 -  523 nm. These effect of 

p-lactam antibiotics in producing permeabolised cells in E. coli were studied using 

microscopy, fluorimetry and flow cytometry.

Mason, et al., (1998) describe the use of two fluorescent probes, 

hexidium iodide (HI) and SYTO 13 to differentiate Gram-positive and Gram- 

negative bacteria. Both bind to DNA and RNA but HI fluoresces red and SYTO 

13 fluoresces green. Both can be excited at 488 nm and are therefore suitable for 

laser excitation and flow cytometry. Gram-negative organisms were found to 

exclude HI and therefore stain green. Gram-positive organisms stain red because 

the green fluorescence of SYTO 13 was quenched. Fixing Gram-negative 

organisms with ethanol rendered the cells permeable to HI. The authors conclude 

that HI could be used as an indicator o f membrane integrity. The technique 

successfully predicted the Gram reaction of 45 strains of bacteria and was able to 

differentiate Gram-positive from Gram-negative bacteria in mixtures by flow 

cytometry. Flow cytometry was used by Xavier et al., (1998) to detect rotavirus in 

faecal and environmental samples. The human colon carcinoma cell line CaCo-2 

was used for infection and reverse transcription-PCR used to confirm infected 

cells. The method was found to be more sensitive than immunofluorescence and 

direct microscopy for detection.

1.6 LEGIONELLA PNEUMOPHILA

Legionella pneumophila is one member of the large family of 

Legionellacae. The family was initially proposed for one single genus Legionella
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and species L. pneumophila. There are, at present, 41 validly described species and 

62 serogroups that have been isolated from both clinical and environmental sources 

(Miyamoto et al., 1997) and at least 14 serogroups of L. pneumophila and 3 sub

groups of L. pneumophila serogroup 1. Legionella pneumophila serogroup 1 is the 

most common cause of Legionnaires' disease in Britain and is responsible for over 

95% of cases. Other serogroups of L. pneumophila and several other Legionella 

spp. occasionally cause pneumonia in humans.

Legionnaires’ disease was first recognised in July 1976 (Dowdle, 1993) 

when an outbreak occurred amongst delegates attending an American Legion 

convention at the Bellevue Stratford Hotel in Philadelphia. The cause of the 

outbreak eluded scientists for several months, but in January 1997, the Centre for 

Disease Control (CDC) in Atlanta reported the isolation of the etiological agent 

which they named L. pneumophila. Diagnostic tests were developed and reviews of 

stored specimens in laboratories revealed earlier outbreaks of the disease and 

sporadic cases dating back to the early 1940s. This data demonstrated that the 

disease was not new but had managed to escape recognition because conventional 

media used in hospital laboratories to isolate respiratory bacteria would not grow the 

organism.

Legionnaires’ disease is an illness characterised mainly by pneumonia. It 

begins quite abruptly with high fever, chills, headaches and muscle pains followed 

by an acute pulmonary pneumonia. Additional symptoms may include diarrhoea 

and involvement of the brain giving confusion and delirium. The incubation period 

is 2 - 7days and symptoms usually persist for a further 7 days. The mortality is 

usually around 10%. A second set of symptoms may appear with a rapid onset 

(usually within hours), is relatively short-lived and total recovery is observed. This 

second type of infection is called Pontiac fever. The route of infection is through 

inhalation of the bacterium into the lungs in the form of a fine aerosol generated in 

water in which the Legionella are growing. Legionnaires’ disease is uncommon 

with between 100 - 200 cases being reported each year to the Communicable 

Disease Surveillance Centre (CDSC) and 50% of these are acquired abroad.

Legionella are Gram-negative, aerobic rods, 0.3 - 0.9 pm in width and 2 -  

20 pm in length and they may be highly pleomorphic. They are motile with one,
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two or occasionally more polar flagella. They do not grow on blood agar, do not 

reduce nitrates and have a non-fermentative metabolism. Iron salts are required for 

growth in vitro. Most species are defined on the basis of DNA-DNA hydridisation 

which has resulted in the proposal to divide the family Legionnellacae into three 

genera, namely Legionella sensu stricto, Fluribacter and Tatlockia (Hookey, 1995; 

Harrison and Taylor, 1988).

Legionella spp. are widespread in natural fresh waters, including rivers, 

lakes, streams and ponds and may also be found in wet soil (Atlas, 1999; Rittard et 

al. 2001). The first isolation of L. pneumophila from a natural habitat was from the 

mud of a stream (Morris et al., 1979). Tison et al., (1983) reported that after an 

outbreak of illness of unknown aetiology among workers exposed to lakes and 

streams in Mount St Helens blast zone in the USA, they examined waters inside and 

outside of the blast zone for Legionella and several species, including L. 

pneumophila, were detected by direct immunofluorescence microscopy. In lakes 

and rivers outside the blast zone, numbers ranged from <10 4 to 10 5 cells/1., whereas
c n

within the blast zone, aquatic habitats contained 10 to 10 cells/1.

In the absence of deliberate control measures for Legionella, the 

concentration of Legionella in water is usually less than or equal to 104/1 and rarely 

exceeds Kf/l, the level at which there may be a real risk of infections. When 

operating well, control measures are capable of keeping the numbers below the 

current limit of detection by culture i.e. about 100 cfu/1 (Lee, 1994). The counts 

were highest in lakes receiving water from hydrothermal seeps (Lee and West,

1991). In Puerto Rico, L. pneumophila and other species were detected by 

immunofluorescence microscopy in all the samples examined, ranging from pristine 

fresh water to polluted estuarine and marine waters (Ortiz-Roque and Hazen, 1987). 

Man-made buildings have tended to create environments where the organism can 

grow readily, and where these environments create aerosols, outbreaks of disease 

can occur. There is a strong possibility of very low concentrations of the bacterium 

existing in all open water systems including groundwater and treated drinking water 

(Colboume and Dennis, 1989). Outbreaks of Legionnaires’ disease have been 

traced to a number of potable water sources, including contaminated water in 

cooling towers and air conditioning units, hot tubs, whirlpool baths, showerheads,
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public fountains and even a supermarket vegetable misting machine (McEvoy 2000; 

Szewzyk et al 2000). The optimum temperature for multiplication is 37 °C, below 

20 °C and above 46 °C multiplication ceases. The organism survives for a matter of 

hours at 50 °C, one minute at 60 °C and is killed almost instantly at 70 °C. The 

bacterium can become dormant at temperatures below 20 °C and return to active 

multiplication when higher temperatures occur. The organism appears to be 

insensitive to pH and has been found in cold water systems having a wide range of 

pH values.

Legionella pneumophila, as a primary cause of Legionnaires’ disease can 

infect and multiply in free-living amoebae such as Acanthamoebae, Naegleria and 

Hartmannella species (Rowbotham, 1980). These species of amoebae are 

ubiquitous in the biofilms of the moist soil and water environments. Biofilms are a 

major source of Legionella spp. in both man-made and natural aquatic systems 

(Rowbotham, 1993; Marrao et al., 1993; Schwartz et al. 1998; Sessa et al. 2000; 

Murga et al. 2001;). Legionella and other environmental bacteria such as Listeria 

have evolved so that they are capable of surviving and multiplying within biofilm 

predators such as amoebae which offer protection against adverse conditions. 

Kilvington et al., (1990) suggest that resistance to digestion by predator protozoa 

was a pre-requisite of bacterial pathogenicity and a survival mechanism for bacteria 

in aquatic environments. Legionella can multiply within the cytoplasm of 

Acanthamoeba, evading host lysosomal attack so that after 36 -48  hours a single 

vesicle o f motile Legionella fills most o f the cell. The cell will eventually lyse and 

release many motile bacteria into the environment. Legionella pneumophila is 

known to infect five genera of amoeba (Fields et al., 1993), whereas other species of 

Legionella have a more specialised host range (Fields et al., 1990). Rohr et al.,

(1998) reported that they isolated four Hartmannella and two Saccamoeba species 

from hot water systems at 40 -  60 °C and found that they could be cultured at 53 °C. 

They considered that, in the hot water system, Legionella pneumophila could be 

supported and survive in Hartmannella and Saccamoeba but not by Acanthamoeba, 

which did not colonise the central area of the hot water system investigated and 

which is often used as a host organism for legionellae in vitro (Barker et al., 1992; 

Moffat and Tompkins, 1992; Neumeister et al., 1997). Bacteria internalised by
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protozoa may be given unique protection when the protozoa form cysts.

Rowbotham (1986) observed that Acanthamoeba containing Legionella encyst, 

leading to the formation of a precyst or a mature thick-walled cyst which traps 

motile Legionella. Vogel and Isberg (1999) and Steinert et al (2002) outline genetic 

mechanisms in Legionella, which enable it to survive inside amoebae and alveolar 

macrophages.

Legionella species have been detected in sewage and concentrations were 

not appreciably reduced by primary or secondary treatment processes (Palmer et al.,

1993). This finding could be related to the protection provided by protozoa which 

are ubiquitous inhabitants of sewage treatment works. Not only does the amoebal 

cyst offer a mechanism for bacteria to evade hostile environmental conditions, but it 

also provides a means by which the bacteria can spread and colonise new habitats by 

being blown through the air (Barker and Brown, 1994). Although some bacterial 

species survive ingestion by protozoa, under certain environmental conditions the 

same organisms are eradicated. Anand et al., (1983) reported that at low 

temperatures Acanthamoeba may phagocytose and digest L. pneumophila as food, 

or evict the phagosomes containing Legionella as faecal vesicles.

1.7 DETECTION OF LEGIONELLA

Routine testing for Legionella has now been recommended in the UK for 

testing cooling towers on a quarterly basis, and more frequent sampling is 

required when commissioning a system and establishing a treatment system. 

Testing is recommended for hot and cold water systems where control levels of 

treatment are not consistently achieved or when an outbreak o f Legionnaires' 

Disease is suspected (HSC, 2001). The methods for the detection of Legionella 

are culture; direct immunofluorescence; rRNA-directed fluorescent 

oligonucleotide and polynucleotide probes; and the polymerase chain reaction 

(Lee, 1994; Walker et al. 1999).

27



1.7.1 Culture

The usual method of testing for Legionella is by culture and this requires 

up to 14 days for a result. The background flora normally outnumber Legionella 

considerably, therefore selective media and other pre-treatments such as acid (pH

2.2 for 5 minutes) or heat (50 °C for 30 minutes) are required to suppress the 

background flora.

1.7.2 Direct Immunofluorescence

Direct immunofluorescence has been used to detect L. pneumophila in 

clinical and environmental samples almost since the organism were first recognised 

(Cheny, et al., 1978; Palmer, et al., 1993, 1995). However a concentration step is 

still needed for water samples, quantification is relatively difficult and scanning 

slides can be time consuming and tiring particularly when numbers are low. 

Although this method has sometimes proven valuable for research and in outbreak 

investigations for screening a number of possible sources, it is not really practicable 

for routine monitoring. Although capable of providing a result within a day of 

collection of the sample, the technique can require more labour than culture and 

sensitivity depends on the experience and care of the operator. Using microscop}7 

such techniques are extremely laborious but in conjunction with flow cytometry7 may 

offer a way forward to a semi automated system (Lee, 1994).

1.7.3 rRNA-directed Fluorescent Oligonucleotide and Polynucleotide 

Probes

Fluorescence-labelled rRNA-targeted oligonucleotide and polynucleotide 

probes have been used as a tool for the in situ identification of bacteria (Manz et al., 

1993, 1995; Amann et al., 1995) and such probes have been developed for 

Legionella spp. (Manz et al., 1995) and host Amoebae (Grimm et al. 2001). The 

advantages of these probes are that they can be designed to be genus specific and the 

degree of labelling depends on the number of ribosomes in the cell and thus can 

indicate viability.
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1.7.4 Detection by Polymerase Chain Reaction ( PCR)

The PCR method detects both culturable and non-culturable cells and the 

commercial PCR based kit for the detection of Legionella species and L. 

pneumophila in water samples is now available and has been used successfully in an 

outbreak investigation in a hospital (Lee, 1994). Since the result is available in 

hours this meant that time and costs could be saved by not having to close the ward 

and disinfect the water system. Some water samples contain substances inhibitory to 

PCR detection.

1.8 THE OBJECTIVES OF THE RESEARCH PROJECT

The aims of this project are to assess the “conventional” 

microbiological techniques of culture, colony counting and epifluorescence 

microscopy for the analysis of microorganisms in water supply systems and 

compare these with the use of flow cytometry. Enumerating bacteria by 

culture requires long incubation times. In addition these techniques will 

only isolate those bacteria capable of growing on the isolation media.

Newer staining methods are allowing the methodology to be speeded up 

since specific stains can link to areas of the bacterial cell which are 

concerned with metabolic processes. In this way, simple staining techniques 

can allow the differentiation of viable from non-viable cells. The use of 

flow cytometry with specifically stained cells allows a rapid and perhaps 

more accurate method of enumerating viable cells than traditional 

microscopical methods. In addition, the use of monoclonal antibodies 

linked to fluorescent dyes can help in the rapid detection of specific 

microorganisms in water and related materials.

The first part of this research project is the optimisation of stain 

concentrations, staining times and temperatures to ensure that counting is 

accurate and reproducible. This information will then be used to stain 

bacteria in suspension for rapid flow cytometric analysis. The data obtained 

will allow a comparison between microscopical analysis, colony counting
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and information obtained by flow cytometry. In this way we can be sure that 

flow cytometry will give us counts which are comparable to those obtained 

by with and determine the differences in counts when compared with 

conventional culture.

This information will be extended to the study of the formation of biofilms 

in the laboratory. In particular, the development of biofilms on glass slides 

in a bioreactor can be studied using the different counting techniques. The 

study will also focus on the development of Legionella spp. within the 

biofilm both from seeding laboratory cultures into the biofilm reactor and by 

trying to grow Legionella from natural water samples in the biofilm. The 

techniques should demonstrate whether rapid detection by epifluorescence 

or flow cytometry is more sensitive than conventional microbiology in the 

study of biofilms and the isolation of Legionella. If these are successful, it 

should be possible to use flow cytometry as a rapid and specific method for 

detecting Legionella in biofilms and water distribution system.
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2.0 MATERIALS AND METHODS

2.1 MICROORGANISMS

All species of bacteria were obtained from the Yorkshire Water Bradford 

Laboratory and were stored at -70 °C. Acanthamoeba polyphaga was obtained from 

Dr John Barker, Sheffield Hallam University and was maintained axenically at 35 °C 

in PYG broth in 75 cm tissue culture flasks.

Table 2.1 Organisms

Escherichia coli NCTC 9001

Pseudomonas aeruginosa NCTC 10332

Staphylococcus aureus NCTC 8532

Salmonella typhimurium NCTC 0074

Legionella pneumophila Serogroup 1 NCTC 12821

Acanthamoeba polyphaga

2.1.1 Growth of Bacteria and Protozoa

All bacterial species except L. pneumophila were maintained and grown in 

nutrient broth (filtered with 0.2 pm pore size syringe filter three times before using) 

and incubated for 18 hours at 37 °C.

Overnight broth cultures of bacteria (1ml) were added to Eppendorf tubes, 

centrifuged for 2 minutes (10,000 r.p.m.) at room temperature and washed twice with 

and resuspended in phosphate buffered saline (PBS -Sodium chloride 8.0 g/1;

Potassium chloride 0.2 g/1; Disodium hydrogen phosphate 1.15 g/1; potassium
8

dihydrogen phosphate 0.2 g/1 pH 7.3). The concentration of cells was between 10 -
9 i

10 ml' by colony count on nutrient agar.

Legionella pneumophila was cultured using the Yorkshire Environmental 

Solutions' method (50.9.0) which was based upon the British Standards Institute 

method DD211:1992 [but has now been superceded by BS 6068 - Part 4.12, 1998; 

which is comparable to ISO 11731 1998]. This defines the isolation of Legionella 

spp., by culture on buffered charcoal yeast extract agar (BCYE supplemented with
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SRI 10) plates with Legionella growth supplement at 37 °C for three days and 

harvested in suspension with reverse osmosis (RO) water.

Yeast extract (YE) broth was also used for the growth of Legionella (Baker, 

1986) and the composition of the YE broth was similar to that of the BCYE agar with 

the important exception that neither agar nor charcoal was added to the medium. The 

YE broth cannot be autoclaved due to the fact that sterilisation by autoclaving could 

result in the release of toxic compounds which inhibit the growth of the legionellae in 

the absence of charcoal. The problem was overcome by filter sterilising the YE broth 

by passage through a syringe filter (0.22 pm) after the addition of the supplements. 

The medium was stored at 4 °C and was used within one month of production. All 

media was checked for pH, sterility and growth of target organisms before use.

Free-living amoebae were cultured using the method described by Anon 

(1989) by using non-nutrient agar (NNA) E.coli plates at 30 °C for up to 7 days.

2.1.2 Biofilms

Biofilms were prepared in the biofilm formation system set up in the 

Sheffield Hallam University’s laboratory. These biofilms were set up for detecting 

Legionella spp. and other organisms using the flow cytometer.

2.1.2.1 Biofilm Formation System

The biofilm formation system consisted of a biofilm vessel with a 

recirculated water supply and two pumps (Modular Fermenter, Gallenkamp), air 

supply and environmental condition control unit (Plate-2.1). The biofilm vessel had a 

retention volume of 5 1. The flow rate from the recirculated water supply container 

into the biofilm vessel was 5ml min*1 with the same effluent flow rate from the 

biofilm vessel back to the supply container. The biofilm cultural conditions of the 

vessels were controlled using the environmental control unit.

The temperature of the biofilm vessel was maintained at 25 +/-1 °C, or 

30 +/-1 °C for different experiments, and the temperature was measured using a metal 

temperature probe inserted into the aqueous phase of the vessel and the temperature 

was corrected using an external heating control. The dissolved oxygen (DO %) was 

maintained at 60% via the stirrer speed of 100 r.p.m and corrected by the air control 

system. pH was monitored using the glass pH probe inserted into the vessel.
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2.1.2.2 Inocula

The inocula for the biofilm culture work were derived from the river Aire as 

as a suitable surface water supply or with L. pneumophila (NCTC 12821) seeded in 

the biofilm formation system. The inoculum using Aire river water contained a range 

of microorganisms including bacteria algae, fungi and protozoa.

2.1.2.3 Culture media for biofilm growth

The biofilm formation system was supplied with Aire river water for growth 

of the biofilms. The water was taken from the River Aire at Esholt and transferred in 

ten litre sterile plastic containers to the Sheffield Hallam University laboratory to be 

used as a recirculated supply for biofilm development. The river water was found to 

contain Legionella spp., by culture on BCYE and staining with monoclonal antibody, 

and able to support bacterial growth in a mixed population of biofilm. The 

recirculated water was replaced every three days, weekly or monthly with the fresh 

river water depending upon the experiment.

2.1.2.4 Biofilm generation

Biofilms were generated on slides made of glass, plastic (uPVC), stainless 

steel or copper. Each slide had a surface area of 37 cm (both sides) and slides were 

suspended in the biofilm vessel with wire except the glass slides which were fixed 

into a moulded plastic strip within the vessel. The materials were cleaned with 

ethanol (99%) to remove any dirt or oil before inserting into the vessel. Glass slides 

could be in the same vessel with the plastic or stainless steel slides, but the copper 

slides were separated from other kinds of slide in case any copper ions released into 

the vessel affected the biofilm formation on the other materials.

2.1.3 Processing Biofilm Samples

Biofilm formation was investigated at 25 °C and 30 °C after 3, 5, 7, 14, and 

28 days or more growth period. The slides with biofilm were removed from the vessel 

and washed by complete immersion in 10 ml of the sterile RO water in 50 ml sterile 

centrifuge tubes with gentle movement to ensure that unwanted planktonic organisms 

were removed. At least two slides of each material were used; one for making the
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biofllm suspension sample and other for staining, direct reading and photography. 

The biofilm suspension was made by scraping the whole of the slide surface with a 

sterile knife and resuspending in 10 ml of sterile RO water in 50ml sterile centrifuge 

tubes. The slide was left in the tube and then mixed with a vortex mixer for 5 minutes 

to disperse the organisms.

2.1.4 Environmental Samples

Treated water samples were obtained from across the Yorkshire Water 

distribution system and river samples from the River Aire at Esholt. Samples were 

either fixed and stained in suspension for total counting or filtered unfixed and stained 

with CTC or Rhl23 for viable counting

2.1.5 Sample Fixation

Environmental and biofilm samples for AO, DAPI and PI staining were 

fixed, in a fume cupboard, with glutaraldehyde (0.5%) for 20 minutes at room 

temperature. The fixed sample could be kept for several weeks at 4 °C. Viable 

staining with CTC, Rhl23 or HOE342 needed fresh or unfixed samples for staining. 

The environmental samples were directly stained or fixed and stored as above for 

staining.

2.1.6 Sample Staining

Samples were stained in suspension or for CTC staining, samples were 

filtered and stained on membranes. Suspensions were stained as described in Section 

2.2. Washing was by centrifugation at 10,000 r.p.m. followed by removal of the 

supernatant and replacing with fresh RO water or PBS. Samples stained on 

membranes were washed filtering a small volume of RO water or PBS through the 

membrane.

2.1.7 Direct Counting by EFM with Filtration.

Direct counting by epifluorescence microscopy with membrane filtration was 

assessed using the method of Anon (1994). The microscope was calibrated using a 

certified 1mm slide micrometer on a monthly basis.

2.1.7.1 Materials

Membrane filter funnels, 25 mm and vacuum flask
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Vacuum pump 

Forceps

Membrane filters; 25 mm diameter 0.2 pm pore size, black, polycarbonate 

membranes, Poretics USA.

Universal and Eppendorf containers, sterile 

Vortex mixer

Microscope with UV attachment and oil immersion lens (xlOO)

2.1.7.2 Fluorescence Microscopy and staining with filtration

Fluorescence microscopy is widely used in microbiology and initially it was 

started in the late 1930s, and now the direct counting techniques with epifluorescence 

microscopy play an important role in environmental microbiology.

2.1.7.3 Filtration and direct counting

Samples were stained and mixed thoroughly using a vortex mixer. 1 - 10 ml 

of sample was added to the membrane filter, filtered at a constant filter rate 

(2 ml min'1) to keep an even distribution of bacteria over the surface of the membrane. 

5 ml PBS was used for washing. The filter was allowed to dry for 2 min. and viewed 

under oil immersion for direct counting by EFM.

Determination of Effective Filtration Area (EFA) was carried out by using the 

formula:

EFA = 7ir2 ( 7i= 3.142, r = radius of the EFA).

EFA = 3.142 x (10 mm)2 = 314.2 mm2

Using a xlOO oil immersion lens at least 10 fields were examined to ascertain an even 

distribution of cells on the filter and 20 squares of a calibrated counting graticule were 

counted.

Final results were calculated by using the formula:

EFA x number of cells per graticule

Number bacteria ml'1 = ___________________________

Area of graticule x filtered volume

Direct counting (DC) of stained samples with different dyes was obtained as follows:
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AODC Green, red, orange 510nm, 590nm

CTCDC Red, viable with respiring activity 590nm

DAPIDC Blue 450nm

HOE342DC Blue 450nm

PIDC Red, non-viable 590nm

Rhl23DC Green, viable 510nm

mAb-FITC Green, for Legionella spp only 510 nm .

2.2 STAINING PROTOCOLS

All staining and washing solutions were filtered by 0.22 pm pore size

syringe filter three times before using for staining.

2.2.1 Acridine Orange (AO) Staining

2.2.1.1 Fixative

Glutaraldehyde 5% stock solution (use in fume cupboard).

2.2.1.2 Staining solution

AO stock (Sigma) solution 1 .Omg ml'1 (in distilled water)

AO working solution 0.1 mg ml"1 (in distilled water)

2.2.1.3 Staining procedure

AO working solution was diluted to give a range of concentrations from 5-20 

pg ml"1 Fixed samples were stained for 3 minutes at room temperature. The samples 

were washed with PBS (pH 7.2) after filtration to remove the remaining dye on the 

black polycarbonate membranes for direct counting using epifluorescence 

microscopy.

2.2.2 5-cyano-2,3-ditolyltetrazolium Chloride (CTC) Staining

2.2.2.1 Staining solution

Sodium pyruvate (80 mM) solution in distilled water 

CTC stock solution 5mM in distilled water
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2.2.2.2 Staining procedure

CTC staining solution was diluted in distilled water to give a range of 

concentrations from 0-5 mM. Samples were stained at 37 °C for 1 hour incubating in 

the dark. Sodium pyruvate could be added to the CTC at the start of staining to 

increase bacterial respiration. The stained samples were washed in PBS solution 

twice for direct analysis or used for further staining (dual staining) or for analysis by 

flow cytometry.

2.2.2.3 Dual Staining

CTC-DAPI staining

After incubation with CTC and washing twice in distilled water, DAPI 

working solution (final concentration 2.0 pg ml'1) was added to the CTC stained 

sample. The samples were then incubated 20 minutes at room temperature and 

washed in distilled water as above. PBS was not used for washing because of 

precipitation of the stain.

CTC-Rhl23 staining

Rhl23 working stain was added to the CTC stained sample at a final 

concentration of 5pg ml'1, incubated at 37° C for 30 minutes and washed twice in 

PBS.

CTC-HOE342 staining

After staining with CTC and washing, HE0342 (2.0 pg ml’1 final 

concentration) was added to the CTC stained samples with 30 minutes incubation at 

37° C, then washed in distilled water. For flow cytometry, the stained sample was 

centrifuged at 10,000 r.p.m. for 2 minutes, washing twice in distilled water.

2.2.3 4,,6f-diamidino-2-phenylindole (DAPI) Staining

2.2.3.1 Staining solution

DAPI stock solution l.Omg/ml in distilled water 

DAPI working solution O.lmg/ml in distilled water

2.2.3.2 Staining procedure

DAPI working solution was diluted to give a range of concentrations from 

0.5-5.0 pg ml’1. Samples were incubated at room temperature for 20 minutes, washed
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and resuspended twice in distilled. DAPI tended to precipitate in PBS solution and 

any dilution made was in distilled water.

2.2.4 Hoechst 33342 (HOE342) Staining

2.2.4.1 Staining solution

HOE342 stock solution 1 .Omg ml"1 in distilled water.

HOE342 working solution 0.1 mg ml'1 in distilled water 

The HOE342 working solution was diluted to give a range of concentrations 

from 0.25-4.0 pg ml"1 in distilled water and samples were incubated at 37 °C for 30 

minutes, washed and resuspended in dH^O. HOE342 could be used in dual staining 

with CTC or PI and also tended to precipitate in PBS solution like DAPI.

2.2.5 Propidium Iodide (PI) Staining

2.2.5.1 Staining solution

Propidium iodide (PI) stock solution l.Omg ml'1 in distilled water 

PI working solution 0.1 mg ml"1 in distilled water

2.2.5.2 Staining procedure

PI working solution was diluted to give a range of concentrations from 0.5- 

10.0 pg ml'1, added to the samples and incubated at room temperature for 20 minutes, 

centrifuged at 10,000 r.p.m., washed and resuspended in distilled water. Dual 

staining of PI with Rhl23, HOE342 or DAPI was performed as outlined above always 

adding PI (final concentration 5pg ml"1) in the last step for PI staining.

2.2.6 Rhodamine 123(Rhl23) Staining 

2.2.6.I. Staining solution

Glutaraldehyde 25% solution (use in fume cupboard).

Tris-EDTA buffer solution (Tris 10 mmol I'1, EDTA 1 mmol I'1, PBS pH 

7.3)

Rhl23 stock solution, 1.0 mg ml'1 in PBS 

Rhl23 working solution 0.1 mg ml'1 in PBS

2.2.6.2 Staining procedure

Staining for Gram-positive bacteria
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Rhl23 working solution was diluted in PBS to give a range of concentrations 

from 0.5-10.0 fig ml'1, added to the samples, incubated for 30 minutes at 37 °C and 

washed twice in PBS before counting.

2.2.6.3 Staining for Gram- negative bacteria

(a) Rhl23 -Tris EDTA staining: Tris-EDTA-Rhl23 solution was added to 

the sample at a final Rhl23 concentration of 5.0 pg ml'1, incubated at 37 °C for 30 

minutes, then washed as above for measurement.

(b) Rhl23 -glutaraldehyde staining: glutaraldehyde (final concentration 

0.01-0.015%) and Rhl23 working solution at a final concentration of 5.0pg ml'1 was 

added to the sample, incubated at 37 °C for 30 minutes, washing twice in PBS.

2.2.6.4 Dual staining

(a) CTC-Rhl23 Staining: Rhl23 working solution was added to the CTC 

stained sample as in 2.2.2.3.

(b) Rhl23- PI Staining: PI working solution was added to the Rhl23 

stained sample and incubated at room temperature for 20 minutes and washed twice in 

PBS.

(c) Rh 123-DAPI Staining: DAPI working solution was added to the Rhl23 

stained sample, incubated at room temperature for 20 minutes and washed twice in 

distilled water.

2.2.7 Monoclonal Antibody Staining

Monoclonal antibody conjugated with fluorescein isothiocyanate (mAb- 

FITC) was used to stain Legionella spp. for determination by flow cytometry and 

epifluorescence microscopy.

For pure cultures of Legionella spp., colonies of Legionella on BCYE 

medium were resuspended in 10 ml filtered RO water in universal containers and then 

fixed with glutaraldehyde (final concentration 0.5%). A 1 ml aliquot of suspension 

was centrifuged at 10,000 r.p.m for 2 minutes. Pellets were resuspended in 0.1 ml of 

PBS, 0.1 of mAb-FITC dye and incubated at 37 °C for 30 minutes. The incubation 

period for FCM samples was increased to 60 minutes to improve staining. Samples 

were washed once with distilled water.
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Environmental samples from distribution systems, rivers or biofilms were 

concentrated by filtration with 0.2 pm pore size membranes and stained on the 

filtration membranes with mAb-FITC dye at 37 °C for 30 minutes in Eppendorf tubes, 

washed with 1 ml RO water resuspended by vortexing for further analysis.

For the direct reading of Legionella spp. in the biofilms the slides were 

drained in air for 3 -  5 minutes, fixed with formalin (2%) for 10 minutes, rinsed 

carefully with distilled water and then treated with mAb at 37 °C for 30 minutes in a 

container with a moist tissue to maintain humidity. The slides were then washed with 

RO water and stained with DAPI in working stock solution (2.2.3.1), washed in 

distilled water before mounting for microscopy.

For dual staining Dual staining of mAb with DAPI, PI or HOE33342 was 

performed by using mAb firstly and then with DAPI, PI or HOE33342 at working 

strength solutions, but for viable staining with CTC the samples were incubated with 

CTC initially and stained with mAb using the same protocol as described in 2 2 2 2 .

The majority of the slides were attained unfixed. Suspensions of pure 

cultures and filtered distilled water were used as positive and negative controls in the 

stainings.

2.3 MEASUREMENT METHODS

2.3.1 The FACS Vantage Flow Cytometer

The machine used for the study was a Becton Dickinson FACS Vantage flow 

cytometer. This is a ‘state of the art’ machine capable of rapid cell detection and 

sorting. The soft ware operating the machine and permitting data analysis is called 

Lysis II. The sample is injected under pressure into a stream of liquid (the sheath 

fluid) and emerges from the ceramic nozzle with an opening of 70 pm. 

‘Hydrodynamic focusing’ occurs just below the nozzle where particles in the stream 

of liquid are presented to the light source in single file.

The light source is an argon ion laser with a power range from 25 -  250 mW. 

The principal wavelength of light from the laser is blue light at 488 nm. A second 

wavelength at 365 nm can be used to excite dyes in the ultra-violet (UV) wavelength 

range. Particles passing through the light may scatter it forward (or low angle 

scattered light). Forward scattered light is detected by a photodiode and the detector
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is designated FSC. The amount of light that is scattered will depend on the length of 

time that the particle stays in the light which is related to the size of the particle. 

Light may also be scattered to the side (side scattered or high angle scattered light). 

This is light which has passed through the particle and is therefore a measure of its 

refractivity. Side scattered light is detected by a photomultiplier tube (PMT) and this 

is designated SSC. The machine also has four other PMTs capable of detecting light 

emitted from stained cells. The wavelength of light depends upon band pass filters 

which permit only a certain wavelength of light through. In the FACS Vantage, the 

detectors are labelled as FL1 detecting green light at 530 nm, FL2 detecting light at 

560 nm, FL3 detecting red light at greater than 600 nm and FL4 detecting light at 400 

nm.

Each particle passing through the laser emits light and the data is gathered by 

the detectors. The data can be plotted graphically as a dot plot or a dot histogram. An 

example of a dot plot and a dot histogram is given in Figure 2.1. The machine is 

capable of analysing up to 20,000 events per second, but the flow of sample into the 

sheath fluid can be adjusted using differential pressure to optimise the rate at which 

events are being monitored.
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Figure-2.1 Calibration of FACS VANTAGE flow cytometer
FSC-HCV; 1.9. SSC-HCV;5;8. FL1-HCV; 1.9.FL2-HCV;1.8.FL3-HCV;2.4
FL4-I1CV; 6.6.
Laser power; .200mW. Threshold; FSe-H:(56 V). 10pm DNA check bead.
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Particles with similar size and fluorescence characteristics will cluster on a dot 

plot (see Figure 2.1). An electronic gate can be drawn around clusters and the machine 

asked to sort particles in these clusters out of the sheath fluid. Sorting is accomplished 

by vibrating the nozzle on the machine to produce individual droplets in the flow. 

When a particle of interest passes through the laser and the machine recognises that 

particle as fitting into the gated region on the dot plot, the droplet containing the particle 

can be charged and then deflected from the main stream of liquid by passing it past an 

electrically charged plate. This allows the machine operator to sort particles of interest 

from a complex mixture of unwanted particles. In practice, three drops are sorted, the 

drop containing the particle and one either side in case the particle itself is missed. 

Particles can be sorted into tubes, onto slides for microscopy or onto agar plates for 

culture.

The detectors are veiy sensitive to scattered light and a background noise level 

exists for each of the detectors. Their sensitivity can be increased by increasing the 

voltage supplied to each detector. Background noise can be reduced electronically by 

applying threshold voltages to each detector to minimise any unwanted signals. Particle 

characteristics may be interpreted by the computer in linear or logarithmic modes. 

Linear mode may give poor resolution if peaks are close together whereas logarithmic 

mode is better for separating peaks.

The nature of the particle and the fluorochromes used to stain the particle will 

determine the detectors that are used for analysing samples. For example, 

Cryptosporidium parvum can be stained with a fluorescein derived fluorochrome 

conjugated to a monoclonal antibody. It also has a characteristic size of 5 pm. Green 

fluorescence at 530 nm means that it can be sorted using the forward scattered light 

detector FSC and the green fluorescence detector FL1. The pulse of light produced by 

particles can be analysed in different ways. The height of the pulse can be measured 

e.g. FL1-H, the width of the pulse, FL1-W, the area under the pulse, FL1-A or the ratio 

of one parameter to another FL1-R. This is called pulse processing.

There are four different sort modes on the FACS Vantage, designed to give 

either maximum purity (but some particles may be lost) or maximum recovery but there 

may be of some loss in purity. The four sort modes are normal C, normal R, count and 

enrich. The enrich mode was used for sortings because this gives the best recovery.
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2.3.2 Instrument Optimisation

In order for the machine to operate correctly, the hydrodynamic focusing has to 

be optimal, the laser power, focusing and position have to be optimal and the voltage 

levels on the detectors have to be correct. This is achieved firstly by aligning the nozzle 

optimally in the laser light and then using minimal voltages on the detectors (minimum 

sensitivity) to achieve detection of particles. The alignment was done using dot 

histograms which could be focused to give a maximum fluorescence channel with a 

minimum coefficient of variance for the histogram (Figure 2.1).

2.3.3 Setting up the Flow Cytometer

2.3.3.1 Alignment

Alignment is achieved by running beads through the machine. All the beads 

have the same light scattering and fluorescence characteristics. If the machine is 

properly aligned, they will fall into a tight cluster on a dot plot or fall into a narrow dot 

histogram. The machine was calibrated with orange 10 pm DNA beads. This allowed 

optimisation of FSC, SSC, FL1-H, FL2-H and FL3-H at the same time. For FL4-H, the 

UV PMT, Hoechst beads were used for alignment.

Effects of the laser power levels on the calibration was investigated (Table 2.2, 

Figure 2.2) and suitable laser power levels with lower CVs were observed. When the 

laser power was 200 mW and over, the CVs of forward scatter (FSC) were maintained 

at 2.0% and the fluorescence detector's CVs could be below 2.0% (FL1 CV 1.5%; FL2 

CV 1.2% and FL3 CV 1.8%), in order to run the flow cytometer under the good 

alignment conditions. A power setting of 200 mW for the laser power was selected for 

all flow cytometric analysis.
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2.3.4 Quality Control Following Alignment

Fluorescence beads of 2 pm and 6 pm diameter were used as standards for 

quality control of FACS Vantage operations. In order to check the correct alignment 

of the flow cytometer and optimisation of the fluidics and sorting, 2.0 pm beads (with 

the same size as bacteria) were counted by the machine and also sorted on the slide 

and checked by epifluorescence microscopy.

The daily routine checking was also carried out by adding 10 pi of 6 pm 

fluorescence beads (25 beads in 10 pi) into one ml of particle-free sheath solution or 

RO water and sorting the beads onto slides for checking by epifluorescence 

microscopy. For more accurate quality control, the 10 pi of beads added into the tube 

was directly counted first by microscopy by putting the tube on the microscope stage, 

counting the beads in a small spot in the tube, then diluting in sheath solution to 1 ml 

for running by FCM. The recovery percentage of beads was over 95% in duplication 

(at least two AQC bead standard material were sorted) and, if below 95%, the flow 

cytometer was realigned with 10 pm beads again. The AQC beads were sorted 

before, after and during running samples e.g. after every five samples for checking the 

flow cytometer operation.

2.3.5 Measuring the Fluorescence Intensity

In order to quantify the fluorescence from the stained cells by flow 

cytometry, a series of fluorescence quantitation kits has been developed which were 

previously known as Quantitative Standards Kits, and are now called the Quantum ™ 

Series by Flow Cytometry Standards Corporation (FCSC). Each kit contains a set of 

calibrated fluorescence standards, with four populations of standards having different 

levels of fluorescence intensity (FI) and matching the emission and excitation spectra 

of specimens labelled with the same fluorochrome, and one reference blank 

population. Quantitative fluorescence standards matched for dyes used in samples 

allow for the direct measurement of the FI of a sample in terms of numbers of 

molecules o f equivalent soluble fluorochrome {MESF). The correct use of the 

standards allows 1) quantitation of the FI of samples in terms of MESF, 2) 

determination of the flow cytometry fluorescence threshold, 3) determination of the 

flow cytometry linearity and stability, and 4) data comparison over time and between 

instruments.
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The Quantum™ Series 24, 25 and 26 were routinely used as standard 

materials to quantitate the fluorescence intensities from stained cells by mAb-FITC 

and to determine the threshold levels as well as the sorting regions at the different 

conditions used during FCM runs.

The effects of the voltages on the Quantum ™ Series was investigated and 

Figure 2.3 shows the effects of the voltages of the detectors FL1-H on the standard 

beads (jQuantum™ 26) fluorescence and the threshold levels. In dot plots of FSC-W 

against FL1-H, the threshold levels (blank beads’ fluorescence levels) were increased 

from 3.2 to 12.0 on average following the voltage increasing from 500v to 600v. The 

region of left lower area (LL) with 10 *10 in the dot plot of FL1 against FSC-W was 

adopted as a background area at the 600v voltage levels. This testing was done to 

find the right region to be used for monoclonal antibody sorting cells stained with and 

is the upper left (UL) region on Figure 2.3 was used.
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Figure-23 Quantification of the fluorescence intensity by Flow cytometry. 
Threshold; FSC-H ( 56V) with 500v, 550v and 600vFLl PMT levels. Laser power; 
200mW. Standard FITC fluorescence quantitation beads; Quantum™ 26. In dot 
plots; X; light Forward scatter signals, Y; Green fluorescence signals (4 different 
fluorescence densities’ standard beads with a blank beads).
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2.3.6 Optimisation of Threshold Level

Threshold is an electronic device in flow cytometry by which the flow 

cytometer can be made to ignore signals below a certain intensity, e.g., for ignoring 

background noise. The level of the threshold can affect the sorting or counting results. 

If the threshold is too high, the machine will ignore the signals produced by antibody 

stained cells and if the threshold is too low, unwanted particles may be sorted. The 

optimal level must be selected with the different parameters and the voltage levels. 

The forward scatter and FL1-H as well as FL3-H were set as thresholds and their 

levels were determined under the yarious conditions.

2.3.6.1 Effects of the threshold levels and sampling rates on the background 

noise

The level of threshold was determined by running filtered PBS solution as 

control sample at 488nm wavelength and 200 mW. Table 2.3 shows that for the 

green fluorescent detector (FL1); when the level rose from 50V to 210V the 

background noise decreased from 37744/s to 8 or 10/s with the sampling rate

6.6 pl/min (DIFF=1.0); and 250v or more high level with low background when

90.6 pl/min (DIFF=2.0). For the FSC detector, when the sample rate was

6.6 pl/min(1.0 DIFF), the threshold level over 41V, the background was reduced to a 

low level (2/s). When DIFF was 90.6 pl/min (DIFF 2.0), the threshold level over

53 V, the background was low, the optimal threshold level was shown in Table 2.3.

Table 2.3 Effects of the Threshold Levels and Sampling Rates on the

Background

Detectors Voltages FL1-H 600 V FSC-H 600 V; Laser Power 200 mW 488 nm

Thresholds Sample Rate Optimal Threshold Background*

Level

FL1-H (green) 6.6 pl/min (DIFF; 1.0) >210V < 8-10/s

FL1-H (green) 90.6 pl/min (DIFF;2.0) >250V <8-20/s

FSC-H (Forward scatter) 6.6 pl/min (DIFF; 1.0) >41V <2/s

FSC-H (Forward scatter) 90.6 pl/min (DIFF;2.0) >53V <12/s

* Note; background noise level; FCM counting numbers of particles per second
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The optimal threshold levels were adapted with different detectors and 

sampling rates in flow cytometric analysis for reducing the background with the 

minimum noise levels and keeping the high sensitivities.

2.3.6.2 Effects of the PMT voltage levels on the threshold levels

The effects of the detectors’ (PMT) voltages on the threshold levels were investigated 

for choosing the optimal threshold levels with different voltages of the detectors. 

There was a strong linear correlation between the optimal FL1-H threshold levels and 

PMT voltage levels (r=1.0, n=5). From Table 2.4 and Figure 2.4, the strong linear 

relationship (Y= 0.625X+443.75; r=1.0 n=5) between the levels (X) of green 

fluorescence detector (FL1) as threshold and PMT voltages (Y) is shown. When FL1- 

H was adopted as threshold, following the increasing of PMT voltages from a range of 

500V to 600V, the threshold levels which made the minimum background noise were 

also increased from 90V to 250V separately. For the sorting of green fluorescence 

labelled bacteria, the voltage of the FL1-H was often at the range of 550V to 600V 

and the optimal threshold levels were from 170V to 250V in flow cytometric analysis. 

Effects of PMT’s voltage levels on the side scatter (SSC) threshold were also tested 

and also gave a positive correlation relationship of PMT levels with SSC levels (r= 

0.92, n=5) as shown in Table 2.5 and Figure 2.5.

Table 2.4 Effects of the PMT Voltages on Threshold Levels

PMT Voltages 500 525 550 575 600 Correlation

FL1-H Threshold Levels 90 1340 170 210 250 1.0

Background No. per Sec 1-10 1-10 1-10 1-10 1-10
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Figure 2.4 FL1-H Threshold Levels

300

250 -

FL1 H Threshold Levels

50 -

525500 550 600575

PMT Voltage

Table 2.5 Effects of PMT Voltages on Threshold Levels

(Threshold;SSC-H)

PMT Voltages 300 350 [00 450 500 Correlation

SSC Threshold Levels 0 30 ;o 100 250 0.92

Background No. per Sec 0 0 1-6 0-6 0.6
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Figure 2.5 Effects of PMT Voltages on Threshold Levels
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In flow cytometric analysis, the forward scatter threshold (FSC) is most 

commonly used to exclude very small particles, debris, and electronic noise from 

acquisition. Here, the fluorescence detectors such as FL1-H and FL3-H were also 

used as thresholds for detecting the FITC-mAb stained and PI stained target cells 

separately. The selections of the thresholds depended on the targets’ characteristics 

such as fluorescence colour, cell size, as well as background noise. In enumerating 

and sorting mAb-FITC stained cells, the suitable threshold was FL1-H, which could 

overcome the background noise and offered accurate counting results.

2.3.6.3 Effects of laser power on threshold

The effects of laser power levels on the threshold (FL1-H) were investigated 

and the results are given in the Table 2.6, and Figure 2.6. When the laser power was 

increased from 100 mW to 200 mW, the optimal threshold levels were also increased 

from 190V to 230V for FL1-H threshold (PMT 600v). In the current work, the laser 

power was fixed at 200 mW for most of flow cytometric analyses.

Red parameter FL3-H was also used as threshold for analysis of the red 

fluorescence cells stained by CTC or PI. The effects of the PMT voltages and the laser 

powers levels on the threshold levels (FL3-H) were investigated and the results are 

given in Table 2.7. The optimal threshold level for FL3-H was >120 for 150 mW
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power and >140 for 180 mW when the voltage was 550V for FL3-H; and for the 

voltage 600 V, the threshold FL3-H was >140 for 150 mW laser power and >160 for 

180 mW laser power.
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2.3.7 Selections of the Flow Cytometric Parameters (Detectors)

Modem flow cytometer such as FACS Vantage could have six main 

detectors and also could use all these detectors (up to eight parameters) at the same 

time. The information from targets could be dealt with by computers and directly 

viewed or saved on disks for review and reanalysis.

The selection of the detectors was dependent on the target size, shape, 

fluorescence colours, and other properties. The histogram (single parameter data) and 

the dot plot (bit map, two dimensional diagram), as well as three-dimensional 

diagrams were used for showing the flow cytometric analysis results. In reanalysis of 

the results saved in the computer, the changing parameters in dot plots were observed 

to be very useful, for example, when amoeba samples were sorted and the image (dot 

plot) of sub populations was labelled in different colours by the computer in the initial 

parameters, if the parameters of the dot plot were changed, amoebae sub-populations 

could be moved and separated depending on the parameters in dot plot. Figure 2.7 

shows the FACS sorting Acanthamoeba samples, in the dot plot of the FSC-H/ FL1- 

H, the amoebae were focused on the red regular sharp sub-population on the right- 

hand side of the dot plot. When parameters were changed with FSC-W/ FL1-H in 

another dot plot, the purple colour dot amoebal subpopulation moved. They now 

became a separate cluster of dots around which an electronic sorting gate could be 

drawn.
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Figure 2.7 Flow Cytometric Imaging and Sorting of Legionella and 
Amoebae by mAb-FITC and DAPI Dual Staining and 
Multi-colour Gate Technique. Rl;mAb-FITC Stained 
Region for Sorting Legionella (Red Dots). R2 Non- 
Legionella and Background Region (Green and Dark 
Dots). R3; Amoebae in Sorting Region (Blue Dots).
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2.3.8 Operations

The FACS Vantage flow cytometer was calibrated before operations by using 

the standard fluorescence beads.

2.3.8.1 Sorting recovery testing

10 pi of fluorescence beads containing 25 of 6  pm beads was diluted to 1 ml 

with RO water and sorted onto a microscope slide using the cytometer. Recovery of 

more than 95% was obtained and checked using epifluorescence microscopy and carried 

out in duplicate at least. The flow cytometer must be re-optimised if the recovery was 

lower less than 95% by readjusting the nozzle and the detectors.

2.3.8.2 Operation

In all analyses the laser output was set at 200 mW at an excitation wavelength 

of 488 nm and at 60 mW with a UV excitation wavelength of 350 nm. The flow 

cytometer was set up and aligned with both the 0 . 2  pm and 1 0 . 0  pm fluorescent beads 

as described in 2.3.3.1. Before each sorting, sodium hypochlorite solution (10%v/v) 

was passed through sample fluid tubes and nozzle to keep the system clean. The nozzle 

diameter for all the analyses was 70- pm. Sorting was performed in enrich mode. 

Samples were sorted into sterile polystyrene tubes (Flacon, Becton Dickinson) or slides 

or black membrane filters

Sheath and sample pressures were kept constant, and an analytical rate of 

approximately 1,000 events s' 1 was maintained by sample dilution. Fluorescence at 

525 nm (green) was used to detect Rhl23 and mAB-FITC stained bacteria using 

fluorescence detector FL1 set at a photomultiplier tube voltage of 500-600 V with 

logarithmic gain. Fluorescence at 600 nm was used to detect CTC and PI stained 

bacteria using fluorescence detector FL3 set at a photomultiplier tube voltage of 

550-600 V with logarithmic gain. Fluorescence at 450 nm was used to detect DAPI or 

HOE342 stained bacteria through fluorescence detector FL4 set at a photomultiplier 

tube voltage of 550 V with logarithmic gain. The threshold level for FSC was 50, and 

230 for FL1 was 230 and for FL3 was 230-290. The machine was found to be difficult 

to align and calibrate for FL4 and when sorting with FSC and FL4, thresholds were set 

on FSC.
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Samples were sorted by using the FACS Vantage flow cytometer, and defined 

parameters were set by using FACS Star LYSYS II software around the bacterial 

population(s) of interest, using stained and unstained, pure or environmental samples. 

Sort mode was enrich and sample flow rate was 100-1000 cells /second. The targeted 

cells were sorted onto slides or membrane filters or into sterile tubes for checking by 

EFM or running again by FCM. Sorted bacteria were immediately reanalysed by FCM, 

and the proportion of the targeted cells in each gated area and total count were 

enumerated and stored by the computer.

2.4 COLONY COUNTING

2.4.1 Colony count for Total Bacteria

2.4.1.1 Apparatus and Reagents

Incubator 22 °C +/-1 °C

Incubator 37 °C +/-1 °C

YEA medium (Yeast Extract 3.0g/l; Peptone 5g/l; Agar 15 g/1; pH 7.2+/- 0.2) 

R2A medium (Yeast Extract 0.5g/l; Tryptone 0.25 g/1; Peptone 0.75 g/1; 

Dextrose 0.5 g/1; Starch 0.5 g/1; Di-potassium phosphate 0.3 g/1; Magnesium 

sulphate 0.024 g/1; Sodium pyruvate 0.3 g/1 Agar 15 g/1; pH 7.2 +/- 0.2)

Petri dishes, sterile 90mm

2.4.1.2 Method

All colony counting for total viable colonies was performed using standard 

methods (Anon, 1994). YEA media and R2A media were used to enumerate the colony 

forming units (cfu) for detecting viable and cultured bacteria in pure cultures and 

environmental samples. The effect of the fluorescence dyes on the viable counts was 

tested using the YEA and R2A colony counting methods. The incubation time and 

temperature was 3 days at 22 °C and 24 hours at 37 °C for YEA colony counting and
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22 °C for 7 days for R2A colony counts.

2.4.2 Buffered Charcoal Yeast Extract Agar (BCYE) Colony count for 

Legionella spp.

Legionella spp. were cultured and detected using the buffered charcoal yeast 

extract agar (BCYE). The bacteria were concentrated by membrane filtration or 

centrifugation for low density of Legionella. Legionella spp. were evaluated by 

counting the number of typical colonies growing on the culture medium.

Table 2. 8  Composition of BCYE Agar

Component g/litre

ACES 1 0 . 0

KOH 2 . 2

a-ketoglutarate monopotassium salt 1 . 0

Yeast Extract 1 0 . 0

Fermtech Agar 1 0 . 0

Activated Charcoal 0.5

RO water to 1 litre

pH 6.9 ±0.1

Growth Supplement SR 110

ACES|Buffer/Potassuim Hydroxide 1 0 . 0

Ferric Pyrophosphate 0.25

L-Cysteine HCL 0.4

a-ketoglutarate 1 . 0

2.4.2.1 BCYE medium preparation

BCYE base (Oxoid) was added to the RO water and autoclaved at 121 °C for 

15 min, cooled to 50 °C, and the growth supplement (SRI 10) was added at the rate of 

17g BCYE base to 1000 ml distilled water to 100 ml growth supplement. The medium 

was dispensed into sterile Petri dishes, the plates dried and stored at 4 °C for a 

maximum of 4 weeks. BCYE without growth supplements medium was made using the 

same protocol but excluded Legionella growth supplement. For the isolation of
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Legionella from river water selective supplements SR 111 (BMPA, Oxoid) or SR 118 

(MWY, Oxoid) were added.

2.4.2.2 Sample preparation

Samples were concentrated by membrane filtration using the 142mm, 0.22pm 

nylon membranes for river water and cooling tower samples. The filter was cut into 

small pieces and organisms were removed by shaking in 2 0  ml of the filtered sample 

for 30 minutes. Samples with high concentrations of bacteria were directly inoculated 

without concentration treatment.

2.4.2.3 Culture for Legionella growth

The concentrated sample was divided into three portions. One portion was 

inoculated onto BCYE agar plate without treatment, one was heated and the third 

treated with an acid buffer at pH 2.2.

(a) Heat treatment

A minimum of 2 ml of sample was placed into a sterile universal container and 

heated in a water bath at 50 +/-1 0 C for 30 min.

(b) Acid treatment

A 10 ml sample was centrifuged at lOOOg for 20 min. The supernatant was 

discarded and the same volume of the HC1-KC1 buffer (pH 2.2) was added and 

resuspended by gentle shaking. The sample was left to stand for 5 min.

2.4.2.4 Inoculation of BCYE plates

Plates of BCYE were inoculated with a range of volumes from 0.05-0.5 ml of 

untreated sample and spread over the surface with a sterile spreader ensuring that all of 

the mixture was absorbed by the agar. The heat-treated samples and the acid treated 

samples were inoculated individually in the same way.

2.4.2.5 Incubation

All plates were incubated in a humid atmosphere at 37 °C for up to ten days .

2.4.2.6 Examination of plates

Plates were examined on days 3, 5, 7 and 10 for typical colonies using a plate 

microscope. Colonies of Legionella had a grey-blue, purple, brown, lime green or red
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colour. They were smooth with an entire edge and had a characteristic ground glass 

appearance. Each plate was carefully examined and the number of colony forming units 

was recorded.

2.4.2.7 Verification of Legionella colonies

Legionella-\\\iG colonies were selected for subculture onto BCYE with and 

without growth supplement. A L. pneumophila culture (NCTC 12821) was included as 

a positive control. The plates were incubated at 37 +/-1 0 C for two days and examined 

for growth. Colonies which had grown on BCYE without growth supplement were 

discarded. Those which had grown on BCYE but failed to grow on BCYE without 

growth supplement and showing typical colonial morphology were presumptive 

Legionella. Confirmation of isolates was by immunofluorescence.

2.5 NNA-E.coli TECHNIQUE FOR DETECTING AMOEBAE

2.5.1 Equipment

Filter holders- for 47 mm diameter membranes, manifold unit, vacuum 

pump and silicone connecting tubing.

47 mm diameter 0.45 pm pore size cellulose acetate membranes.

Inverted light microscope with x 10 and x 20 objectives.

Vortex (optional).

Incubators set at 30 °C, 37 °C, 42 °C and 44 °C.

90mm polystyrene Petri dishes, glass universal containers, plastic Pasteur 

pipettes, flat-bottomed 96-well microtitre plates.

Sterile swabs, wax crayons or marker pens, scalpel blades.

2.5.2 Materials

Page's amoeba saline (PAS) at pH 6 . 8  - 6.9 was prepared (0.12 g NaCl, 0.004 g

MgS04. 7H20 , 0.004 g CaCl2, 0.142 g Na2HP04, 0.136 g KH2P 0 4 in 1 litre of distilled

water). The solution was autoclaved at 121 °C for 15 minutes and stored at room

temperature.

63



Non-nutrient agar - Escherichia coli (NNA -E. coli) plates were prepared by 

seeding non-nutrient agar with a lawn of E. coli on which the amoebae feed. These 

were prepared as follows:

2.5.3 Non-nutrient agar plates (NNA).

1.5% w/v bacteriological grade agar (OXOID) in PAS was autoclaved at 121 

°C for 15 minutes. The medium was distributed at 25 ml volumes into Petri dishes and 

dried at 37 °C for 24 hours. Plates should not be allowed to dry uncovered as cysts of 

free-living amoeba (FLA) may be present in the air of the laboratory. Plates were stored 

in sealed polyethylene bags at room temperature for up to 14 days.

Escherichia coli NCTC 10418 was grown on nutrient agar plates at 37 °C for 

24 hours. A stock culture plate could be stored at 4 °C for up to 1 month. This was 

used to seed the entire surface area of several nutrient agar plates. Following 

incubation, the seeded plates were stored at room temperature in sealed polyethylene 

bags for up to 7 days, or at 4 °C for two weeks.

A thick portion of E. coli was taken from a seeded nutrient agar plate using a 

sterile swab and spread over the entire surface of one NNA plate. The plates could then 

be stored at room temperature in sealed polythene bags for up to 7 days.

2.5.4 Isolation methods

There are two methods which are recommended for the isolation of FLA. The 

method of choice is determined by the nature of the sample to be examined.

2.5.4.1 Filtration

The water sample was thoroughly mixed and 1-100ml (depending upon 

sample type) filtered through a 0.45 pm pore size cellulose acetate membrane by 

suction at a flow rate not exceeding 30 ml a minute. The membrane was not allowed to 

dry and filtration was stopped when 2 to 3 ml of sample remained above the membrane. 

The membrane was carefully washed in situ with the residual water sample, using a 

plastic Pasteur pipette. The whole of the residual sample used to wash the membrane 

was transferred into a sterile glass universal container. The membrane was placed in the 

same universal, and rolled so that the upper or sample surface was inward and not in 

contact with the wall of the universal. The universal tube was then shaken vigorously 

with a vortex mixer for 1 0  seconds.
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The whole of the fluid obtained from the above technique was distributed over 

the surface of 2 or 3 NNA-is. coli plates and allow to dry at room temperature. 

Alternatively, the fluid was poured onto the surface of a single NNA-A. coli plate and 

left at room temperature for 2 hours. The excess fluid was then pipetted off and the plate 

allowed to dry. Plates should not be dried uncovered, as cysts of FLA may be present in 

the air of the laboratory. Uninoculated lawn plates were used as controls.

The membranes were divided into halves and each placed, face down, on the surface of 

a single NNA-fs. coli plate.

2.5.4.2 Direct plating of samples

Untreated water samples may contain large numbers of FLA. This can result 

in failure to obtain isolates of individual amoebae because of overcrowding in the 

plates. To avoid this possibility, unconcentrated sample volumes should be inoculated 

directly onto the surface of NNA-is. coli plates.

1.0ml volumes of the water were pipetted onto each of 3 NNA-is. coli plates 

and left at room temperature for 2 hours. The excess fluid was pipetted off and the 

plates allowed to dry. The plates were covered while drying. Uninoculated plates were 

used as controls. Solid material was inoculated directly onto NNA-£. coli plates.

Swab samples were vortexed in 2ml of PAS and the liquid cultured as above. 

The upper limit (ceiling) temperatures for incubation are determined by the type of 

amoeba to be isolated.

2.5.4.3 Incubation

Potentially pathogenic Acanthamoeba will grow at 37 °C. Naegleria 

australiensis will not grow above 42 °C. Naegleria fowleri and N. lovaniensis will 

grow at 44 °C. The following incubation temperatures are therefore recommended:

30 °C for total Acanthamoeba and Naegleria.

37 °C for pathogenic Acanthamoeba.

42 °C for N. australiensis, N. lovaniensis and N. fowleri.

44 °C for N. lovaniensis and N. fowleri.

Plates were incubated inverted in sealed polythene bags.
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2.5.4.4 Detection of free-living amoebae

Plates were examined daily for up to 7 days with the x 10 objective of the 

inverted light microscope.

Free-living amoebae were observed as feeding trophozoites producing tracks 

and clearings in the E. coli lawn. Areas of amoebal growth were noted as they appeared 

by marking the underside of the Petri dish with a marker pen or a wax crayon. The 

marked areas of agar were cut out with a sterile scalpel blade and placed, seeded side 

down, on a fresh NNA- E. coli plate and incubated at the original temperature of 

isolation.

2.5.4.5 Provisional identification of Acantham oeba  and Naegleria.

A  small area of trophozoite growth was removed using a wire loop and 

inoculated into one well of a microtitre plate containing 100 pi of PAS. The plate was 

sealed and incubated at 30 °C for 30 minutes (Anon 1989).

Trophozoite morphology was observed using the x20 objective of the inverted 

microscope.

2.5.4.6 Morphological characteristics of Acantham oeba  and Naegleria  

Acanthamoeba trophozoites are approximately 25 to 40 pm in length and show

numerous needle-like projections from the trophozoite body termed acanthopodia. A 

central contractile vacuole is present in the cytoplasm. Trophozoite movement is slow 

and polydirectional with a hyaline pseudopodium that slowly stretches out and widens.

Acanthamoeba cysts are formed on prolonged incubation on NNA-E. coli 

plates. Sizes range from approximately 15 to 28 pm depending on the species, and are 

double-walled. The intermittent joining of the inner wall to the outer gives rise to a 

polygonal arrangement. This feature enables differentiation from other FLA.

2.6 CHEMICAL ANALYSES

All chemical analyses were done at the Yorkshire Environmental Bradford 

Laboratory by Yorkshire Environmental’s analysts as follows:
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ICP (VG Plasma Quad/UK) was used for analysing the Fe, Mn, SO4 , Al, Ca, 

Mg, P content of biofilm samples.

CaCCb, NH3-N, NH2 -N, Cl, NH4 -N. were analysed by Auto analyser 

Perspective®Analyzel, UK

The total organic carbon (TOC) of biofilms was analysed by TOC analyser 

( Model 700 TOC Analyser, College Station, Texas)

2.7 MATERIALS AND SUPPLIERS

Yeast extract agar, Merck. Merck KgaA, 64271 Darmstadt, Germany.

Yeast extract, Oxoid L21. Oxoid LTD., Basingstoke.UK.

R2A agar, Becton Dickinson DCM, USA.

Legionella CYE agar base, Oxoid CM655. Oxoid LTD., Basingstoke,UK. 

BCYE growth supplement, Oxoid SRI 10. Oxoid LTD., Basingstoke 

Legionella selective supplement, Oxoid SRI 18 or SRI 11 

Nutrient broth No.2, Oxoid CM67.0xoid LTD., Basingstoke,UK.

Nutrient Agar. Oxoid CM3. Oxoid LTD., Basingstoke, UK.

Bacteriological grade agar, Agar No. 1 (Oxoid, Basingstoke, UK)

Phosphate buffered saline, Oxoid Code BR/4a. Oxoid LTD., Basingstoke, UK. 

5-Cyano-2,3-di-4-tolyl-tetrazolium chloride (CTC), CAT#19292.Lot # 473951 

Polysciences, Inc. Warrington, PA,USA.

Propidium Iodide (PI), Lot 57H3642. Sigma, USA.

Rhdamine 123 (RH123), Lot 51H0529. Sigma,USA.

DAPI (Sigma, USA)

Hoechst 33342 (Sigma, USA)

Acridine orange (Sigma, USA)

Bacteriological Filters (Gelman, UK)

Legionella specific Monoclonal antibody (Sanofi, France)

Hoechst alignment beads (Coulter Electronics)

Flow cytometer (Becton Dickinson, USA)

Black polycarbonate filters 25 mm, 0.2 pm(Poretics, USA))

67



3.0 SCREENING AND OPTIMAL STAINING FOR

FLOW CYTOMETRY

3.1 CYTOMETRIC ANALYSIS

Enumeration of microorganisms and characterisation o f their physical features 

(size and shape, etc.) are routine practices in environmental microbiology. The 

progenitors o f some of today’s enumeration techniques go back to the days when Robert 

Koch incorporated agar-agar into plating media (Hitchenes and Leikind, 1939). A 

number of enumeration protocols still popular at present were developed decades ago, 

such as the direct counting o f bacteria using the light microscope (Baldwin 1927; Breed 

and Brew, 1925) and the most probable number technique (Colwell, 1979; Halvorson 

and Ziegler, 1933). Although these techniques are routinely used they have a number o f 

limitations and are often extremely labour intensive. Even the comparatively simple 

most probable number (MPN) method requires extensive preparation. Bright-field or 

phase contrast direct counting methods are also in common usage but have the 

disadvantages of not distinguishing between bacteria and similarly shaped particles or 

between viable and non-viable organisms. The use of fluorescent dyes with various 

specificities in epifluorescence microbiology proved to be a vast improvement for 

enumeration (Daley 1979; Watkins and Jian 1997). Nucleic acid-specific dyes provide 

differentiation of cells from other microbiological materials, and dyes exist which 

permit one to distinguish between viable and non-viable cells (DeLeo and Baveye,

1996). Very specific immunofluorescent monoclonal antibodies allow the identification 

of target organisms. In spite of these recent improvements, epifluorescence direct count 

techniques still require a sizeable effort to obtain satisfactory results.

During the recent years there has been a rapid growth of interest in the 

application of fluorescent dyes to study environmental microbiology. There are two 

factors which have facilitated this: firstly the synthesis of a range o f highly selective 

fluorochromes, and secondly, the availability of computer linked commercial 

instruments such as flow cytometry, capable of detecting and quantifying the weak 

signals emanating from single cells (Macey, 1994).

As stated previously, some fluorescence dyes such as AO, CTC, DAPI, R hl23, 

PI, FDA and HOE342 have been used for mammal cells, and antibodies have been used
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in detecting bacteria, but most of the studies are based on solid staining and microscopic 

analysis (Watkins and Jian, 1997). As far as it is known, no more detailed studies o f 

staining for the flow cytometric analysis of biofilms and Legionella and amoeba have 

been published.

The aim of this work was to screen the reliable dyes available commercially 

and optimise the staining protocols for the flow cytometric analysis of microorganisms 

from both pure culture and biofilms as well as environments, and include dyes for 

enumerating total and viable cells, and specific targets. In order to achieve this aim, it 

was necessary to screen and optimise the staining protocols from the current 

commercial dyes.

3.2 STAINING

3.2.1 Acridine Orange (AO) Staining

Acridine orange (AO) has been used in staining for a long time. The advantages 

are the staining speed of AO is very rapid (a few minutes at room temperature) and the dye 

is inexpensive. AO has also been reported to be used in the flow cytometric analysis of 

cancer cells with three major types of applications: (1) supravital cell staining; (2) 

differential staining of double-stranded versus single-stranded DNA; (3) differential 

staining of RNA and DNA (Darzynkiewce et al., 1990, 1994). The acridine orange direct 

counting (AODC) is adopted as the standard method for direct counting total and viable 

bacteria based on the machanism that AO could stain both RNA and DNA with red and 

green fluorescent colours. So far as it is known no there has been no detailed study o f AO 

for the flow cytometric analysis of bacteria.

3.2.1.1 AO staining

The overnight pure cultures of the E. coli and S. aureus and environmental 

samples which included raw, and treated water samples were stained by the methods in 

Section 2 using the acridine orange with the range of 5.0 mg/1 to 30 mg/1 at room 

temperature. The results (Table 3.1) show that the proportions o f the red-orange and 

green bacterial cells were changed with the increasing concentrations of AO. The 

optimum concentration of AO staining was 10 pg/ml in three minutes using the 

epifluorescence microscope for direct counting of total bacteria, but for the viable
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determinations, the results demonstrate that it is very difficulty to assay or enumerate 

the numbers of dead or living cells by red-orange or green fluorescences. This is 

because even if  we keep all the same staining conditions, the proportion o f red-orange 

and green fluorescence can be different for the same bacterial samples. This agrees 

with the results of Burton and Lanza (1985) who reported that the cells’ fluorescence 

from AO staining (orange-red or green) is only a crude activity indicator. It agrees with 

the opinions of the APHA (1989), who state that ‘staining cannot differentiate microbial 

cells on the basis of metabolic activity or viability’. In the staining performance, AO 

tends to remain in the fluidics system of the flow cytometer and cannot easily be 

washed out. For this reason, it was not used as a stain for FACS analysis.

The latest report about the AODC technique was written by Gabriel Bitton et 

al., (1993) and they modified the direct counting method for total bacterial counts in 

environmental samples. They observed that the colour o f the fluorescing cells (green or 

orange-red cells) depends on the level of the moisture on the filter and that the 

percentage of the green fluorescing cells decreases when the filter was dry. Moreover, 

an increasing number of papers published in recent years adapted the DAPI DC 

techniques for direct counting total microorganisms from pure and environmental 

samples instead of AODC.

In conclusion, AO staining could be used for total counting o f bacteria by 

epifluorescence microscopy at a final concentration of 10 pg/ml at RT, and is not 

suitable for viable counting as well as for flow cytometric analysis.

Table 3.1 Effect of AO concentration on the Staining of E.coli and other Bacterial 
Cells

AO pg/ml Green Cells (%) Red Cells (% )
W eak Bright

5.0 100 0 0
10.0 36 64 0
20.0 40 23 37

3.2.2 CTC Staining

Determination of the number of actively metabolising bacteria is an important

objective of aquatic microbiologists. Several methods have been applied in this field,

but none of them have been proved to be fully adequate. Many methods are available
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for this analysis. Three general approaches have been used to determine bacterial 

numbers: (1) the number o f culturable bacteria has been determined by the colony count 

or most-probable-number techniques; (2) direct counts have been made with stains 

specific to biological molecules to enumerate the total bacterial numbers and (3) direct 

counts have been made by using stains or microautoradiography to determine the 

number of active bacteria.

Previous investigations have shown that the number o f metabolically active 

bacteria is underestimated by the colony count method. A more realistic approach is the 

use o f nalidixic acid, a specific DNA gyrase inhibitor, which suppresses cell division in 

many Gram-negative bacteria. Growing cells become elongated and can be detected 

microscopically (King et al., 1988). Viable counts detected by this method (DVC) were 

up to 3 orders of magnitude greater than colony count (Kogure et al., 1979; Ullrich et 

al., 1996). The problem with this technique (DVC) is that elongation may occur too 

slowly in the absence of exogenously supplied carbon source, or it may be insufficient 

for microscopic detection (Ullrich et al., 1996; Rodriguez et al., 1992). Another 

method, microautoradiography, a tracer technique based on the assimilation of 

radiolabeled organic solutes, combined with epifluorescence microscopy has been 

applied as an alternative approach for enumeration of active heterotrophic bacteria 

(Hoppe 1976; Tabor and Neihof, 1982; Ullrich et al., 1996). There are potential 

problems with substrate selectivity and standardisation of the procedure (Ullrich et al., 

1996; Peele and Colwell, 1981). Counts comparable to those reported for the nalidixic 

acid and microautoradiographic technique resulted from measurements of electronic 

transport system (ETS) activity (Maki et al., 1981; Ullrich et al., 1996). The 

universality of ETS in living cells allows this indirect measurement of respiratory 

activity (Ullrich et al., 1996; Packard, 1971) in a wide range of organisms, including 

prokaryotes and eukaryotes (reviewed by Savenkoff et al., 1995). Tetrazolium salts are 

used as artificial electron acceptors which are reduced within the respiratory chain. This 

results in the intracellular formation of coloured formazans, equivalent to the respiratory 

activity of cells. The Tetrazolium dye 2-(p-iodophenyl)-3-p-(nitrophenyl)-5 

phenyltetrazolium chloride (INT) was mainly used for this purpose in aquatic 

environments (Ullrich et al., 1996; Aristegui et al., 1995; Dufour et al., 1992; King et 

al., 1988; Maki et al., 1981; Tabor and Neihof, 1982). Zimmermann et al., (1978), first 

combined the INT assay with the acridine orange (AO) direct count method for the



simultaneous determination of total bacteria numbers and the numbers of INT-reducing 

(actively respiring) bacterial cells by counterstaining INT-treated samples with acridine 

orange. This method was later modified to improve visual detectability (Ullrich et al., 

1996 ; Tabor and Neihof, 1982; Dufour et al., 1992). In recent publications, the 

tetrazolium dye 5-cyano-2,3-ditolyltetrazolium chloride (CTC) was introduced to 

determine the number of metabolically active bacteria. CTC had been described as an 

indicator of respiratory activity in tumour cells (Severin et al., 1985; Stellmach, 1984) 

and was first applied in ecological studies by Rodriguez et al., (1992) in natural and 

nutrient amended water samples. The advantage of CTC compared with other dyes such 

as INT, is simple detection due to the red fluorescence in the reduced form (Rodriguez 

et al., 1992). The CTC method has been used extensively in studies o f several aquatic 

environments, including municipal wastewater and groundwater (Rodriguez, 1992), 

seawater (Gasol et al., 1995; Rodriguez et al., 1992), drinking water (Schaule et al., 

1993; Coallier et al., 1995), biofilms (Schaule et al., 1993), as well as soil samples 

(Winding et al., 1994; Yu et al., 1995). The CTC assay has been applied to determine 

the viability of coliform bacteria exposed to Antarctic conditions (Smith et al., 1994), 

and was also used in combination with a fluorescent antibody to detect E. coli in water 

(Pyle et al., 1995). Furthermore, CTC reduction combined with Rhodamine 123 

(Rlil 23) and [3H] uridine uptake has been applied in the assessment o f disinfections on 

metabolic activity of bacteria with biofilms (Yu et al., 1994). The only CTC toxic study 

on bacteria was reported by Ullrich et al., (1996). As far as it is known, no detailed 

studies on CTC stained Legionella and biofilms as well as drinking water and water 

distribution system samples for flow cytometric analysis have been published.

The aim of this work was to investigate the application of CTC for the viable 

staining for flow cytometric analysis of biofilms and water distribution system samples . 

The CTC’s advantages have been documented (Rodriguez et al., 1992; Schaule et al., 

1993; Yu et al., 1995; Ullrich et al., 1996; Yamaguchi et al., 1997) and the one o f them 

is that its red fluorescence could be very suitable for the dual staining combined with the 

fluorescent antibody which is usually linked with FITC (green fluorescence) and with 

other DNA dyes such as DAPI for flow cytometric analysis.
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3.2.2.1 CTC Staining

(i) Effect of CTC concentration on staining

A range o f CTC concentrations were tested for optimising the CTC 

concentration for staining microorganisms from pure cultures and environmental 

samples using the methods outlined in Section 2. The results show that the CTC 

concentration was adequate between 2.0 and 4.0 mM final concentration. The 

maximum fluorescence density and CTC-staining percentage (80%) appeared at the 

range o f 2.0mM to 4.0mM in CTC stained S. aureus and Ps. aeruginosa populations 

separately by flow cytometry with the incubation time from one and a half to three 

hours at the incubation temperature 37 °G (Table 3.2, Table 3.3, Figure 3.1).

Table 3.2 Effect of Stain Concentration on CTC and DAPI Staining Using S. 

aureus and FCM

CTC

(mM)

Red (%) 

(1.5 hours)

Blue (%) 

(1.5 hours)

Red (%) 

(3.5 hours)

Blue (%) 

(3.5 hours)

0.0 0.1 99.8 0.1 99.8

0.25 6.6 93.4 4.1 95.9

0.50 11.9 88.1 8.1 91.2

1.0 18.2 81.7 15.1 84.8

2.0 37.1 62.8 31.6 68.3

3.0 56.7 43.2 51.1 48.8

4.0 73.2 24.4 80.0 20.0
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Table 3.3 Effect of Stain Concentration on CTC Staining Using Ps.

aeruginosa and FCM

CTC

(mM)

CTC Stained 

(Red Cells %)

Fluorescence Density 

FL3CHANNEL

0.0 0 102

0.25 44 335

0.50 37 315

1.0 47 334

2.0 66 440

3.0 62 448

4.0 66 412

5.0 64 367

7.0 58 355

(ii) Effect of the incubation time on the CTC staining

The effect of the incubation time on the CTC staining was investigated using 

the methods outlined in the Section 2. The CTC assay was performed with incubation 

times ranging from 0.5 to 4 hours using flow cytometry and epifluorescence microscopy 

(Table 3.2, Table 3.4; Figure 3.2).
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Figure 3.1 Effect of CTC Concentrations on Staining

CTC concentration (mM); 0.0, 0.25, 0 .5 ,2 .0 ,3 .0 , 4.0. 

Staining Time 0-1.5 h and 0-3.5 h. Bacteria S. aureus
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Table 3.4 Effect of Incubation Times on CTC Staining Using S. aureus and

FCM

Time

(Hours)

Peak Channel Fluorescence Density 

(Red)

0.5 50 491

1.0 86 512

1.5 93 525

2.5 92 520

3.5 105 545

4.0 116 544

Control 21 134
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Figure-3.2 Effects of incubation time on the CTC staining

Incubation time; O.Oh, 0.5h, l.Oh, 1.5h, 2.5h, 3.5h, 4.0h at 37°C in dark. 
CTC concentrations; 4mM. Bacteria; S. aureus.
Flow cytometry; 200mW laser power, threshold FSC.
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The flow cytometric analysis results show that the stained S. aureus cells with 

4mM CTC concentration fluoresced the maximum red colour after 2 hours and up to 4 

hours incubation time at 37 °C, which agreed with the epifluorescence microscopic 

checking. At least one and half hours incubation time was suitable and chosen for both 

flow cytometry and epifluorescence microscopy and to ensure that diffusion and uptake 

o f the CTC were not time limited.

(iii) Effect of the incubation temperature on the CTC staining

Further investigation was carried on testing the effect o f incubation temperature 

on the CTC staining. The CTC staining was performed at the room temperature, 37 °C 

and 44 °C with the same CTC concentration (4 mM), same incubation time (2hours).

The results show that there were no differences either from the stained Ps. aeruginosa or 

the stained S. aureus as well as raw water samples and treatment water* samples from the 

water distribution system (Table 3.5).

Table 3.5 Effects of the Incubation Temperature on CTC Staining

Temperature

(°C)

S. aureus 

(% red)

Ps. aeruginosa 

■ (% red)

Raw Water 

(% red)

Treated Water 

(% red)

22 73 65 0.8 - 4.0 0.2

37 73 66 0.9 - 4.0 0.2

44 70 62 © V© 1 v© 02.

Note: The pure culture bacteria were stained in suspension. The raw and treated water 

samples were stained on membranes after filtration. All final CTC concentrations were 

4 mM with 2 to 4 hours incubation times. DAPI was used for total cell staining.

(iv) Effect of the sodium pyruvate and glucose supplements on the CTC 
staining

It was reported that some reagents such as sodium pyruvate or glucose as well 

as R2A liquid medium (Schaule et al., 1993) may play an activation role to the electron
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acceptors in the electron chain reactions in bacteria. In the commercial R2A solid 

medium, there is 0.03% of sodium pyruvate (0.3 g/litre total weight).

The effect of the sodium pyruvate on CTC staining was investigated using

flow cytometry and epifluorescence microscopy. The result (Table 3.6) show that for
/

the fresh pure cultures there were no differences with or without added sodium 

pyruvate; but for environmental samples, such as raw water, sodium pyruvate increased 

the cells' fluorescent density. Large size (0.5 pm diameter) red CTC-formazan crystal 

particles were found in the bacterial cells stained with CTC plus sodium pyruvate, and 

smaller size (0.1-0.2 pm diameter) particles only with CTC without sodium pyruvate.

Table 3.6 Effects of Sodium Pyruvate on CTC staining

Samples
Size

Na pyruvate 
(mM)

CTC
(mM)

Red Cells* 
(%)

CTC Formazan 
Particles

E. coli 4.0 3 80 0.5 pm
E. coli 0 3 80 0.4 -  0.5 pm

S. aureus 4.0 3 73 Whole cell red
S. aureus 0 3 72 Whole cell red

Raw water 4.0 3 1 .9 -1 6 0.2 -  0.4 pm
Raw water 0 3 0 .8 -4 0.1 -  0.2 pm
Final water 4.0 3 0.7 0.2 -  0.4 pm
Final water 0 3 0.2 0.1 -  0.2 pm

*Pure cultures gave stable counts; raw waters were found to give a wider range of counts 

Samples were stained at 37 °C for 3 hours.

The effect of glucose on the CTC staining was also investigated using pure 

culture and raw water samples. The microscopical studies have shown that there is not 

much difference between with and without using glucose in the CTC staining from 

enumeration results and morphological characteristics. This result does not agree with 

the report from Schaule et al., (1993) who found that glucose enhanced CTC staining.

. Yamaguchi et al., (1997) reported that in the CTC staining, supplementation with R2A 

medium or Meldola’s blue resulted in an increase of background noise signals for pure 

cultures of bacteria. This was also seen in distribution samples containing significant 

amounts of iron. This non-specificity could be a problem with certain samples.
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(v) Staining Legionella by CTC

As far as it is known there is are no detailed reports for the staining o f 

Legionella by using CTC for the viable determinations by both flow cytometer and 

epifluorescence microscopy. The aim of this work was to investigate the application of 

CTC for staining the viable Legionella for the flow cytometric analysis.

The staining of Legionella spp. with CTC was investigated using different 

incubation temperatures (room temperature, 37 °C and 44 °C) and times, as well as a 

range of CTC concentrations with or without supplements.

Table 3.7 Effects of Temperature on the CTC Staining of Legionella

Temperature

(°C)

Glucose

(mM)

Sodium Pyruvate 

(mM)

Growth 

Supplements (%)

Staining

Result

4 0 0 0 -

4 1 0 0 -

4 0 4.0 0 -

4 0 0 1 -

20 0 0 0 -

20 1 0 0 -

20 0 4.0 0 -

20 0 0 1 -

37 0 0 0 -

37 1 0 0 -

37 0 4.0 0 -

37 0 0 1 -

42 0 0 0 -

42 1 0 0 -

42 0 4.0 0 -

42 0 0 1 -

CTC concentration 0.5 -  4 mM, staining times 3-24 h.
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The results show (Table 3.7) that pure cultures o f Legionella cells from three- 

day colonies or up to ten days using BCYE colony counting methods did not stain with 

CTC staining under experimental conditions. The L. pneumophila cultured by YE 

broth were stained by CTC but the positive proportion was only 20% by flow 

cytometric analysis. By reading both FACS sorting and manually made slides, the CTC 

stained Legionella cells were mostly of fresh and smaller size cells and longer cells and 

filaments of Legionella were negative for CTC staining. So, CTC staining for the 

Legionella would be not suitable for the determination of its viability. The original hope 

was that if  CTC was suitable for the staining o f Legionella cells, the dual staining by 

CTC with mAb-FITC could be very easy for determining the total and viable cells by 

flow cytometry. In reality, only low number cultural Legionella cells could be stained 

under the current conditions, so other dyes would be considered for adoption in the dual 

staining such as mAb-FITC with PI, and the details will be given later. No explanation 

has been found in the literature for this phenomenon.

In conclusion, CTC staining can be used for staining most pure cultures o f 

bacteria and real samples e.g. raw water, at the range of 2.0 mM to 4.0 mM final

concentration and at least 2 hours incubation times at room temperature or 37°C for 

both epifluorescence microscopy and flow cytometric analysis. Sodium pyruvate could 

be used to increase the CTC staining speed for the water distribution system samples 

and environmental samples. For the Legionella species, CTC staining is not suitable due 

to the fact that the Legionella cells from the BCYE cultural medium cannot been stained 

and secondly that only a low proportion o f CTC stained Legionella cells were achieved 

using the yeast extract (YE) broth.

3.2.3 DAPI Staining

DAPI staining was investigated using the method outlined in Chapter 2 and the 

results are given in Table 3.8.

81



Table 3.8 Effect of the Concentration and Incubation Times on DAPI

Staining

Sample DAPI

(pg/ml)

Incubation Time at 37 °C 

15 min 30 min 60 min

E. co li 

108/ml

0.5 - - -

1.0 + + +

2.0 ++ ++ ++

3.0 ++ ++ +++

5.0 +++ +++ +++

Ps. aeruginosa  

108/ml

0.5 - -

1.0 - - -

2.0 ++ ++ ++

3.0 ++ ++ ++

5.0 +++ +++ +++

S. aureus  

108/ml

0.5 - - -

1.0 + + +

2.0 ++ ++ ++

3.0 ++ ++ ++

5.0 +++ +++ +++

S a lm onella  spp. 

108/ml

0.5 - - -

1.0 + + +

2.0 ++ ++ ++

3.0 ++ ++ +++

5.0 +++ +++ +++

Raw waters and 

treated waters 

10s -  106/ml

0.5 - - -

1.0 + + +

2.0 ++

3.0 ++ ++ +++

5.0 +++ +++ +++

Comments - poor staining ++ good staining - easy reading
+ weak staining +++ good staining - bright background staining
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3.2.3.1 Effects of DAPI concentrations on the staining

To determine the optimal concentrations for various samples, a range of 

0.5,1.0, 2.0, 3.0, and 5.0 pg/ml DAPI (final concentrations) were tested by the methods 

outlined in Chapter 2. The blue fluorescence of DAPI-stained bacteria increased with an 

increase in the dye's concentration from 2.0 pg/ml to 5.0 pg/ml for both pure cultures 

and environmental samples. The optimal concentration was observed at 3.0 pg/ml and 

concentrations over 5.0 pg/ml caused stronger background (Table 3.8) using 

epifluorescence microscopy. Lebaron et al., (1994) adopted 2.5 pg/ml as the optimal 

concentration.

3.I.3.2 Effects of the incubation time and temperature on the DAPI staining

The incubation time conditions were chosen from 15 minutes and 30 minutes 

up to one hour at 37 °C. The optimal incubation factor was observed by epifluorescence 

microscopy (EFM) from fifteen to thirty minutes (Table 3.8) for both pure cultures and 

environmental samples and the fifteen minute incubation time was essential for DAPI 

staining.

Further staining was carried out at 37 °C and at room temperature (data not 

presented and there was no difference in staining. This agrees with most other 

published literature (Kepner et al., 1994; Zweifel et al., 1995; Lang et al., 1997). The 

optimal staining conditions for DAPI were chosen at room temperature (in the dark) and 

for at least fifteen minutes with the final concentrations between 2.0-5.0 pg/ml for both 

epifluorescence microscopy and flow cytometric analysis for pure cultures and 

environmental samples. DAPI direct counting (DAPI DC) has more suitable advantages 

than AODC and this will be discussed in a later chapter. Such staining conditions were 

also suitable for labelling the walls of the amoeba cysts and Cryptosporidium oocysts 

which agrees with the fact that DAPI is not only specific for the DNA, but also for 

bacteria without nucleoids (Zweifel et al., 1995).

Lower DAPI concentrations could be adopted but these need a longer 

incubation time e.g. at least two hours with 0.5 pg/ml for marine bacteria (Monge et al., 

1992).

DAPI is generally believed to bind to DNA preferentially at the AT-rich region 

within the minor groove of B-DNA in solution, but the specificity of DAPI toward
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nucleic acids has been questioned by the finding that the dye interacts not only with 

DNA but also with extracted or synthetic biopolymers such as double-stranded RNA, 

proteins and phospholipids as well as staining the bacteria which are without nucleoids. 

It is also questioned that DAPI staining intensity, especially from the environmental 

samples such as chlorinated water samples, was variable and shows poorly and highly 

fluorescence bacteria with different subpopulations using flow cytometry (Saby et al.,

1997). The reason is that the DAPI staining of bacterial cells varied with the DNA- 

DAPI complex and the cell envelope (Matsunaga, et al., 1995; Saby et al., 1997). 

Fortunately, all the samples were fixed first with 2% formalin to increase cell membrane 

permeability prior to DAPI staining in our testing.

3.2.4 HOE342 Staining

3.2.4.1 Effect of the concentrations and staining time

To determine the optimal concentration for both pure cultures o f bacteria and 

environmental samples, a range of 0.25, 0.50, 1.0, 2.0, 4.0 pg/ml final concentrations of 

H0342 were tested in the methods outlined in Section 2. The blue fluorescence of 

HOE342 stained bacteria increased slightly with dye concentrations from 0.25 to

1.0 pg/ml, but it was unclear for reading or counting because o f the poor and weak blue 

fluorescence. A range of HOE342 concentrations from 2.0 to 4.0 pg/ml were chosen 

for staining most bacteria and environmental samples because it gave a bright blue 

fluorescence from the stained cells which were easily read and counted. A dye 

concentration of 2.0 pg/ml was chosen for HOE342 staining (Table 3.9).

The incubation times were investigated at 37 0 C. From 15 minute to 30 

minutes, the blue fluorescence was stable and increased when incubated up to one hour. 

The optimal incubation time was chosen at 30 minutes at 37 °C with the

2.0 pg/ml of final concentration of HOE342 (Table 3.9).
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Table 3.9 Effects of the Concentrations and Incubation Times on HOE342

Staining

Sample HOE342

(pg/ml)

Incubation Time at 37 °C 

15 min 30 min 60 min

0.25 - - -

0.5 - - -

E. coli 1.0 + + ++

108/ml 2.0 ++ ++ +++

4.0 ++ +++ +++

0.25 - -

0.5 - - -

Ps. aeruginosa 1.0 + + ++

108/ml 2.0 ++ ++ +++

4.0 ++ +++ +++

0.25 - - -

0.5 - -

S. aureus 1.0 + + ++

108/ml 2.0 4*+ ++ +++

4.0 ++ +++ +++

0.25 - - -

0.5 - - -

Sa lm onella  spp. 1.0 + + ++

108/ml 2.0 ++ ++ +++

4.0 ++ +++ +++

0.25 - - -

Raw waters and 0.5 - ■ - -

treated waters 1.0 - + ++

10s -  106/ml 2.0 ++ ++ ++

4.0 ++ +++ +++

Comments - poor staining ++ good staining - easy reading
+ weak staining +++ good staining - bright background staining
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The lower concentrations o f HOE342 (0.5 pg/ml) have been used for staining 

marine bacteria with at least 2 hours incubation time for flow cytometric analysis 

(Monger et al., 1993; Lebaron et al., 1994). Unfortunately, for the fresh water samples 

and pure cultures, the 0.5 pg/ml concentration was too low with weak blue fluorescence 

to be seen in our conditions. It was necessary not only for epifluorescence microscopy 

but also for flow cytometry to adopt 2 pg /ml of final concentration o f HOE342 for 

staining for our purpose. So the choice of optimal conditions must be considered with 

both analysis methods, and the microscopic analysis is the only way for checking or 

viewing the sorted target samples.

In conclusion, the Hoechst 33342 could.be used to stain the pure bacterial cultures and 

environmental samples with 2.0 pg/ml at 37 °C in 30 minutes incubation.

3.2.5 PI Staining

A ranging of PI concentrations were tested for staining pure cultures and 

environmental samples using epifluorescence microscopy and flow cytometry by the 

methods outlined in Section 2. The results show that the optimum PI concentrations 

were found to be from 5.0 pg to 10.0 pg /ml (final concentration) for staining both heat 

treated E. coli and S. aureus (Table 3.10) by epifluorescence microscopy. The flow 

cytometric analysis of the PI staining showed the same result (Table 3.11) that when the 

PI concentrations ranged from 5.0 to 15.0 pg/ml, the positive percentages o f  stained 

Legionella remained at 92-93%. The optimum concentration o f PI was observed at 5 

pg/ml (Table 3.11).
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Table 3.10 Effect of stain concentration on PI staining using heat-treated 

bacteria (10 minutes at 100 °C)

PI

(Fg/ml E. coli S . a ureus

0.0 - -

0.5 - -

1.0 ± ±

2.0 + +

3.0 +/++ +/++

4.0 +/++ +/++

5.0 ++ ++

7.5 ++ ++

10.0 +++ +++

Poor staining 
+ Weak staining 

++ Good staining - easy to read 
+++ Good staining - bright background

Table 3.11 Effects of PI Concentration on the Staining of Legionella by FCM

PI
(fag/ ml)

Total count 
(0.5 ml cells)

RI
Background

R2 
+ve Area

Mean
Fluorescence

Peak 
Channel *

0.0 2685 1473 54% 1136 42.3% 237 168
1.0 6630 1247 18% 5407 81% 359 171
5.0 10000 932 8.0% 9269 92% 414 251
10.0 10000 754 7.54% 9313 93% 413 222
15.0 10000 795 7.95% 9222 92% 412 251

FACS Vantage Threshold FL3-H 140V, FL3-H Detector 600V.* Peak channel level

# Legionella suspension 0.5 ml for each testing.

Propidium iodide has been used to stain eukaryotic cells to determine the 

viability of cells for a long time. In order to see if PI could be used for viable staining 

for bacteria, the effects o f the PI on the dual staining were investigated.
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The effect of the PI on the RH132 staining was shown in Table 3.12 and the 

numbers o f green labelled cells (Rhl23 positive) were reduced from 100% to 50% or 

0% for Ps. aeruginosa  and E. coli when the concentrations o f PI was increased from 3.0 

to 4.0 pg/ml, This means that dual staining of Rhl23 with PI was not suitable for 

detecting the viability of bacteria.

Propidium iodide has been used for the direct staining of non-viable cells and 

also for viable staining with HOE342 (dual staining). It was suggested that dual staining 

with the Rhl23 could also be used for viable staining (Grogan et al., 1990). The effect of 

PI on viable staining in conjunction with Rhl23 was investigated and the results are given 

in Table 3.12.

Table 3.12 Effect of Stain Concentration (PI) on Viability Staining of a Culture 

of Ps. aeruginosa  and E. coli

Rh 123 

(pg/ml)

PI

(pg/ml)

Ps. aeruginosa  

(108/ml)

E. coli 

(108/ml)

5.0 1.0 100% green 100% green

5.0 2.0 100% green 25% red/75 % green

5.0 3.0 25% red/75% green 50% red/50% green

5.0 4.0 50% red/50% green 100% red

In conclusion, PI could be used for the staining of non-viable bacterial cells by 

the flow cytometry. The optimal staining concentration is 5 pg /ml in final concentration 

at room temperature (Table 3.11). In viable staining via dual staining, the DAPI-PI could 

be used to indicate the viable cells (Blue with DAPI only), while the Rh 123-PI due 

staining could not be used for the viable staining due to the unstable results. For the 

Legionella cells, the mAb-FITC with PI could be used for viable staining by flow 

cytometry.



3.2.6 Rhl23 Staining

Rhl23 is a polar, water-soluble cationic fluorescent dye and can be 

concentrated rapidly in living cells as a membrane potential indicator. Rhl23 has been 

considered the best one for staining viable bacteria (Pinder et al., 1994). It is limited 

for staining Gram-negative bacteria because of cell membrane permeability. For Ps. 

aeruginosa, the Rhl23 staining percentage was only 7% even when treated with Tris- 

EDTA (Diaper et al., 1992).

To try to overcome this problem, glutaraldehyde was first used for staining 

Gram- negative bacteria with Rhl23. The effect of glutaraldehyde on the Rhl23 

staining was investigated by flow cytometry and EFM. The optimum concentration was 

determined as 0.01 to 0.015% for Ps. aeruginosa (Table 3.13 and 3.14), and also for E. 

coli (Table 3.15). At the above range, the staining percentage was from 90 to 100% and 

with higher fluorescence density. Since the first use of Rhl23 for staining bacteria 

(Matsuyama, 1984), the application of Rhl23 has been limited to pure cultural species 

only (Diaper et al., 1992; Kroll et al., 1993; Pinder et al., 1994), one of the main 

reasons is that Rhl23 is only suitable for staining the Gram-positive bacteria, this can 

be overcome using gluteradehyde which will largely extend the application of Rhl23 in 

the determination of the bacterial viability for both Gram- negative and positive species.

Effects of Rhl23 concentrations, incubation time and temperature were also 

investigated and the optimum concentration was 5 pg/ml (Table 3.14) in final 

concentration which agreed with other reports (Kroll et al., 1993) and for 30 minutes 

incubation at RT or 37 °C.
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Table 3.13 Effect of Rh 123 Concentration on Staining on Ps. aeruginosa using

FCM

Rh 123 

(pg/ml)

Gluteraldehyde

(%)

Fluorescence Density 

(Green)

0 00.01 149

0 0.01 159

0.5 0.01 233

1.0 0.01 272

2.0 0.01 307

3.0 0.01 326

4.0 0.01 343

5.0 0.01 360

7.5 0.01 347

10.0 0.01 372

Table 3.14. Effect of Gluteraldehyde Concentration on the Staining of Ps. 

aeruginosa

Rh 123 

(pg/ml)

Glutaraldehyde

(%)

Staining

(%)

Direct Count 

(No per ml EFM)

5 0.0025 6 1.26 x 108

5 0.005 10 1.96 x 108

5 0.01 100 1.96 x lOv

a 1.70 x 10y
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Table 3.15 Effect of Glutaraldehyde on RH 123 Staining (5.0 ng/ml) (FCM) 

Using E. coli

Gluteraldehyde

(%)

Fluorescence Density 

(Green)

0 204

0.005 251

0.0075 292

0.01 410

0.15 458

0.02 446

0.04 450

0.05 427
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Figure-3.3 Effect o f  glutaraldehyde on the Rh 123 staining o f  G(-) bacteria.
Rhl23 concentration; 5gg/ml. Glutaraldehyde % ( v:v); 0.0%  0.005%, 0.0075%0.01%, 0.015%. 0.02%,
0.05%. Bacteria; E. coli. Flow cytomeier; laser power 200mW; threshold; FSC.

In conclusion, Rhl23 staining can be used for detecting and enumerating 

bacterial viability at a final concentration 5 pg/ml for 30 minutes at RT, and for Gram- 

negative species, the glutaraldehyde could be used (0.01 -  0.015%) to improve the 

membrane permeability and extend Rhl23 viable staining to the Gram-negative 

bacterial species.

3.2.7 Staining Legionella Using mAb-FITC Immunofluorescence Probe

The commercial monoclonal antibody kit ( Sanofi, France) was chosen as the 

special dye for staining L. pneumophila from water samples after screening three kinds 

of antibodies which were used in the routine testing of water samples at Yorkshire 

Environmental Solutions' pathogen laboratory (Bradford).
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3.2.7.1 Effects of the concentration on the staining

The effect of the monoclonal antibody's concentration (%) was investigated by 

the methods outlined in the Chapter 2. Table 3.16 shows the flow cytometry o f a

range of mAb concentrations from 3.1 to 50% for staining the suspension o f a pure
/

culture of L. pneumophila (NCTC 12821) and the optimal concentration o f mAb was 

between 12.5% and 25% for both 30 minutes and 60 minutes incubation time at 

37 °C. Flow cytometry demonstrated that when using 50% of monoclonal antibody 

(1:1,V/V, final %), the background noise was very high and this concentration would 

not be suitable for the flow cytometric analysis of Legionella spp.

Table 3.16 Effect of mAb Concentrations (%) on Staining L. pneumophila by 

FCM Counting

MAb

(%) 3.1 6.25 12.5 25 50

Incubation Time 

(min)

T-Count 1711 6459 16485 23720 33041 30

+ve Count 1343 5340 14584 19005 14506 30

+ve/T-C 71% 77% 80.6% 76.6% 38% 30

/
T-Count 4062 11511 25280 28840 53066 60

+ve Count 3166 9641 22735 23650 26463 60

+ve/T-C 70.4% 78% 86.6% 82% 49% 60

Further investigations by comparison of the flow cytometry o f mAB staining 

with epifluorescence microscope analysis using DAPI direct counting (Table 3.17) 

indicated that when L. pneumophila was stained with the monoclonal antibody kit 

using 12.5 - 25% concentrations at 37 °C for 60 minutes incubation time, the 

enumeration results were very close (Table 3.16, 3.17 ); DAPI DC: 2.18 x 104 ; mAb- 

FITC by FCM: 2.1-2.3 x 104 and 2.06-2.2 X 104 by EFM for the same pure culture o f 

L. pneumophila.
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Table 3.17 Effect of mAb (%) on Staining for L. pneumophila by Direct

Counting

mAb

(%)
/

Incubation Time/Direct Counting

30 min No. x 103 60 min No. x 103

0 - 0 - 0

3.1 ++ 2.4 ++ 4.4

6.25 ++ 6.24 ++ 12.4

12.5 ++/+++ 13.2 ++/+++ Good 20.64

25 ++/+++ 20.6 +++ Good 22.3

50 +++ 17.8 +++ Good 20.6

DAPI total counting 2.18 x 104

3.2.7.2 Effects of the incubation time on the staining

The effects of the incubation time on the mAb staining for Legionella spp. 

were investigated by flow cytometry (Table 3.18, Figure 3.4). The results show that 

from 15 to 120 minutes of incubation times, the highest positive percentage (80%) of 

mAb labelled Legionella cells is from the 60 minutes incubation time, which agreed 

with results obtained by comparison with epifluorescence microscopic analysis (Table 

3.18). Flow cytometry of the mAb staining for Legionella show that the 30 minutes 

incubation time suggested by the manufacturers of the mAb Kit should be extended to 

60 minutes.
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Table 3.18 Effect of Incubation Time on the mAbs-FITC Staining

Voltage/Time 15’ 30' 45' 60f 75’ 90’ 105’ 120’ -VE

600V No.+VE 66% 70% 68% 80% 69% 73% 64% 78% 14% FCM

550V No. +VE 41% 39% 37% 40% 51% 51% 41% 46% 5.5% FCM

500V No.+VE 12% 25% 21% 31% 32% 33% 28% 32% 1.3% FCM

EFM BG/Tot. 42% 45% 70% 68% 65% 61% 55% 60% 0% EFM

Figure 3.4 Effect of Incubation Time on the mAb FITC Staining for

Legionella X; incubation time (min). Y; percentage of mAb FITC 

stained cells
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3.2.7.3 Dual staining of Legionella for detecting total and viable cells

The original hope was that CTC-mAB-FITC could be ideal for the viable 

analysis but in fact the CTC could not be used due to the difficulty in staining 

Legionella species. So the PI-mAb FITC duel staining was investigated for the viable 

staining of Legionella by flow cytometry. Figure 3.5 shows that heat killed Legionella 

cells were stained by the PI (with strong red fluorescence) and mAb FITC (with green 

fluorescence also) and the viable cells were only stained by mAb-FITC with green 

colour. The current limited work only show the viable analysis, and in the staining, full 

washing must be carried out to wash out the remaining PI on the cells after the PI 

staining. For accurate viable enumerating, further work would be needed.
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Figure-3.5 Dual staining by PI and mAb-FITC for heated Legionella 
MAb-FITC; 12.5% (V:V). PI; 5.0pg/ml.
Flow cytometer; laser power; 200mW, threshold; FSC, PMT levels; 550v, 600v, 
650v. Bacteria; L  pneumophilla.
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The comparisons of different dyes for staining of Legionella cells were carried 

out by using AO, DAPI, Rhl23, PI, and CTC, mAb-FITC and the results are given in 

the Table 3.19 and Figure 3.6. The average percentage of the stained L. pneumophila 

cells by the four dyes (AO, Rhl23, DAPI, mAb-FITC) is 96.23% compared with 

BCYE colony counts (CFU), the Rhl23 direct count and DAPI count shown the higher 

counting results (98.7% Rhl23, 97.4% DAPI), mAb-FITC direct counting shows 

96.23%. CTC staining was negative for the Legionella suspension from the three-day 

CFU by BCYE media. PI direct counting showed only 16.7% of Legionella cells had 

been stained with PI.

The current work indicated that the flow cytometry of monoclonal antibody 

staining for L. pneumophila demonstrated suitable mAb staining conditions, and the 

12.5-25% of mAb concentrations (final %) at 37° C with 60 minutes incubation time 

showed the best fluorescence intensity with less background noise for both flow 

cytometry and epifluorescence microscopy and were subsequently used in further 

studies for staining legionellae from water samples.

3.3 DISCUSSION

AO and DAPI worked well for rapidly staining bacteria for direct counting of the 

total population by EFM and flow cytometry (for DAPI only). CTC, Rhl23 and HOE342 

were used to directly count viable bacteria in pure cultures, raw waters and final treated 

waters from the water works by EFM and flow cytometry.

The CTC stained bacteria were very easy to count because the CTC-formazan 

fluoresces primarily in the red region of the visible spectrum. It was readily 

distinguishable from most background fluorescence and autofluorescing abiotic particles, 

which typically emit in the blue-green region of the visible spectrum in most natural water 

samples. The CTC-DAPI dual stained samples in the same preparation could be viewed 

simultaneously with a 365nm excitation filter and a 450 nm emission filter, both viable 

(with respiring activity) bacteria with red crystal CTC-formazan particles and the total 

population (with blue colour) were clearly read by epi-fluorescence microscopy.

In the raw water samples, the CTC microscopic counts exceeded the YEA and

R2A colony counts by nearly 3 orders of magnitude and 1 order of magnitude respectively.

These data suggest that the CTC staining method might provide a more sensitive indicator

of viable (i.e. actively respiring) bacteria in environmental samples. Sodium pyruvate was
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first used to improve the CTC staining for the environmental samples and it largely 

increases the CTC staining speed.

Fluorescein diacetate (FDA) had been tested for the determination of living cells 

in the current work and the main disavantage was that the dye must be dissolved by using 

the organic solution acetone and the FDA stock and working solution could not be filtered 

by using the membranes or syringe filter (0.22 pm size) for keeping the particles free 

before staining the bacteria. The fluorescence density from the stained bacterial cells was 

weak and so FDA was not suitable for staining the bacteria in environmental samples 

under the current limited work (data not presented). Tsuji et al. (1995) also reported that 

the FDA method has the disadvantage that many species o f soil microorganisms fail to 

stain and FDA does not efficiently penetrate some types of membranes, and the fluorescein 

produced from FDA tends to leak from cells. The new fluorescence probe 5-(and 6-) 

sulfofluorescein diacetate (SFDA) has been adopted to replace the FDA (Tsuji et al.,

1995).

Rhl23 and HOE324 were also good stains for the direct counting of viable 

bacteria with a greater number being counted than with colony counts and CTC counts, 

which might contain total viable bacterial populations (VC+VNC). The DAPI direct 

count was for total bacterial population and gave the highest number o f cells which 

included all viable and non-viable bacteria (VC+VNC+NV). Rhl23-CTC dual stained 

samples also could be counted in the same preparation (black filter membrane filtration) 

simultaneously with a 510 nm emission filter for detecting and enumerating viable 

bacteria.

The direct counting by EFM was a very useful and fast method for the rapid 

detection and enumeration of bacteria stained with fluorescent dyes, and the CTC-DAPI 

dual staining was very suitable for viable detection and enumeration o f both pure 

cultures and environmental samples. The dual stain CTC-DAPI will be used in this 

study. It might be possible that different viable stains will reflect different metabolic 

states in environmental bacteria and this will be considered in future work.

In conclusions work has been undertaken to screen and determine the dyes and 

their staining conditions for the flow cytometric analysis o f bacteria from pure culture 

and environmental samples (Table 3.20). The following dyes and conditions have been 

adopted for the purposes o f this thesis:
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DAPI will be adopted for the total direct counting o f bacteria as well as 

protozoa by flow cytometry and epifluorescence microscopy. DAPI will also be used in 

the determination of viability by the dual staining with CTC (CTC-DAPI), and Rhl23 

(Rhl23-DAPI), as well as PI (DAPI-PI). The CTC-DAPI dual staining can be the best 

way for the viable staining.

CTC will be adopted for the determination of the bacterial viability (respiring 

viability) by both flow cytometry and epifluorescence microscopy. The 2-4mM final 

concentration with as least 2 hours incubation time in the dark can make most viable 

bacterial species show their respiring activity. The CTC (reduced CTC) with red 

fluorescence can be easy used with blue (DAPI, HOE342), green (Rhl23, mAb-FITC) 

in dual fluorescence staining. Sodium pyruvate can be used in the CTC staining for 

increasing the CTC staining speed for the environmental bacteria. CTC will not be used 

in the staining of Legionella under the current conditions.

Rhl23 will be adopted in staining both Gram-positive and Gram-negative 

bacteria for the viable staining by flow cytometry and microscopy. The pre-treatment of 

Gram-negative bacterial cell walls by using the glutaraldehyde will extend the 

application of the Rhl23 for staining viable Gram-negative bacteria.

PI will be used for staining the dead cells and also can be adopted in the total counting 

o f the bacteria after the pre-treatment (heat treatment, or fixing). In the dual staining PI 

can be used with DAPI (DAPI-PI) for viable staining, or with mAb-FITC for 

determining special targets such as Legionella. PI can be used in both flow cytometry 

and microscopy. The Rhl23- PI dual staining will not be adopted in the project due to 

the unstable staining.

In conclusion of the flow cytometry of monoclonal antibody staining for L. 

pneumophila in this study demonstrated suitable mAb staining conditions, and the 12.5- 

25% mAb concentrations at 37 °C with 60 minutes incubation time showed the best 

fluorescence intensity with less background noise for both flow cytometry and 

epifluorescence microscopy and were subsequently used in further studies for staining 

legionellae from water samples.

The current work to screen the dyes and staining of microorganisms for flow 

cytometric analysis of bacteria was demonstrated that the AO, CTC, DAPI, PI, Rhl23 

and mAb can be used in the determination of bacteria and the conclusion is in Table 

3.20.
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Table 3.20 Outlook for the Dyes for Staining Bacteria for Flow Cytometry

Name of Dye Total Sorting Viable Sorting Special Target 

Sorting

AO EFM N/A N/A

DAPI FCM/EFM N/A N/A

CTC N/A FCM/EFM N/A

CTC -DAPI FCM/EFM FCM/EFM N/A

CTC-Rh 123 N/A FCM/EFM N/A

PI FCM/EFM N/A N/A

DAPI/PI FCM/EFM FCM/EFM N/A

Rh 123 N/A FCM/ECM N/A

Rh 123-PI N/A N/A N/A

mAb-FITC N/A FCM/EFM FCM/EFM

mAb-FITC-CTC N/A FCM/EFM FCM/EFM

DAPI-mAb-FITC FCM/EFM N/A FCM/EFM

PI-mAb-FITC FCM/EFM EFM/EFM FCM/EFM

DAPI-CTC-mAB-FITC FCM/EFM FCM/EFM FCM/EFM
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4.0 DETERMINATION OF BACTERIA IN WATER 
DISTRIBUTION SYSTEM AND TAP WATER 
BIOFILMS

4.1 Introduction

The microbiological quality of drinking water is an issue o f global concern. 

Among the possible sources of microbial contamination are surface-associated biofilms, 

which are common in drinking water systems. The methods required for evaluation o f 

the bacteriological quality o f potable water are often based on cultivation of planktonic 

bacteria in a sample, such as heterotrophic colony counts (HPC), such as YEA and R2A. 

However, subculture techniques often require lengthy incubation times o f several days 

or more, thus, there is a need for more rapid and convenient monitoring methods for 

quantitative assessment o f the viability of microorganisms and total biomass.

The evolution of the bacterial quality of drinking water in the water 

distribution systems (Networks) is a major interest. Many studies dealt with this 

problem and attempted to correlate bacterial regrowth with turbidity, free disinfectant 

residual and temperature (Goshko et al., 1983; McCoy and Olson, 1986). However, the 

correlation coefficients were low. In order to better understand the development of 

bacteria in the system, more recent investigations into the formation of biofilms Manz et 

al, 1993; Rogers et al., 1994a, b) and of biodegradable dissolved organic carbon 

(BDOC) in distribution systems (Servais et al., 1992; Norton and LeChevallier, 2000) 

have taken into account the residence time of water in the system on the water 

biological quality (Kernel's et al., 1995).

Recently, some novel methods have been reported to be used in determination 

of bacteria in aquatic environments (Watkins and Jian, 1997) which include direct 

counting methods by using novel DNA probes with EFM, and flow cytometry. But for 

the water distribution system, there are a few papers have been reported. Schaule et 

al., (1993) reported that CTC was used to quantify the planktonic and sessile respiring 

bacteria in drinking water and biofilms. Watkins and Jian (1997) reported the use of the 

flow cytometer with PI staining for enumerating bacteria in water distribution systems.

The aim of this work is to assess conventional microbiological methods for 

analysis o f microorganisms in water distribution system and to compare these with the
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applications o f the flow cytometer. Real water distribution system samples and tap 

water biofilms will be have been investigated and are reported here.

4.2 DETERMINATION OF BACTERIA IN WATER DISTRIBUTION
SYSTEMS

4.2.1 Colony counting bacteria in water distribution system

The water distribution system samples were analysed by conventional 

microbiological methods i.e. colony counts. The results are given in Table 4.1 and 

shown that all 90 samples from the nine different water distribution systems, replicated 

10 times,did not contain coliform bacteria in 100ml and met the drinking water standard 

(coliform <lcfu/100ml), but with high cfu numbers of total bacteria. For the YEA 1 

day testing, the average density of cfu/ml was 2 cfu/ml in 90 samples, and 5 cfu/ml by 

YEA 3 day colony counts; 256 cfu/ml by the R2A colony counts. The ratios o f three 

colony counting methods (n=90) were 0.78% (YEAld/R2A), 2% (YEA3d/R2A). The 

statistical analysis shows no correlation between YEA Id PC with YEA3d PC (r=- 

0.0832 n=90), but good positive correlation between YEA 3d PC with R2APC 

(r=0.6090, n=90). The average CVs o f these colony counting results for total bacterial 

cfu in three methods was 106.3%.

4.2.2 Direct Counting of Bacteria in Water Distribution Systems

The samples from water distributions systems were analysed by the direct 

counting methods outlined in the Chapter 2 and the results were shown in the Table 4.1 

and Table 4.2.

The direct counting of the DAPI stained bacteria gave the total densities o f the 

bacterial population in the water distributions systems. The average bacterial numbers 

were high, up to 174525 cells /ml in a total o f 90 samples from ten different water 

distribution systems, with 10.4% CV in average. The DAPI DC results were 680 times 

higher than the R2A colony counting results and the ratio of the R2A with DAPI DC 

was 0.15%. The similar results was reported by Schaule, et al., (1993) and their total 

counting numbers by DAPI direct counting were from lO5 to 106 /ml. The relationship 

between R2A PC (total cfu) and DAPI DC (total cells) was not very significant and the r
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value ranged from 0.2995 (sample 3, n = 10) to 0.8744 (sample 9, n = 3) with an 

average o f 0.5734 in a total o f 9 samples.

Table 4.1 Determinations of Bacteria in Water Distribution Systems by Direct
/

Counting and Colony counting Methods

Sample Mean Value 

(n = 10)

Correlation

Ratio

Sample 1

YEA ID cfu/ml 0

YEA 3D cfu/ml 7.3 0.5583 YEA 3D/DAPI

R2A 7D cfu/ml 212.7 0.9570 R2A 7D/YEA 3d

DAPI DC No/ml 195,586 0.4884 R2A 7D/DAPI

Sample 2

YEA ID cfu/ml 0.4

YEA 3D cfu/ml 0.7 -0.2492 YEA 3D/DAPI

R2A 7D cfu/ml 46.6 -0.2297 R2A 7D/YEA 3d

DAPI DC No/ml 191,300 0.7984 R2A 7D/DAPI

Sample 3

YEA ID cfu/ml 0

YEA 3D cfu/ml 0.7 0.3131 YEA 3D/DAPI

R2A 7D cfu/ml 104.1 0.6614 R2A 7D/YEA 3d

DAPI DC No/ml 168,044 0.2995 R2A 7D/DAPI

Sample 4

YEA ID cfu/ml 0.3

YEA 3D cfu/ml 0.7 0.4320 YEA 3D/DAPI

R2A 7D cfu/ml 86.7 0.6386 R2A 7D/YEA 3d
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Table 4.1 continued

Sample Mean Value 

(n=10)

Correlation Ratio

DAPI DC No. ml 160,148 0.4318 R2 A/D API

Sample 5 •

YEA ID cfu/ml 0

YEA 3D cfu/ml 1.5 -0.4285 YEA 3D/DAPI

R2A 7D cfu/ml 248 -0.1122 R2A 7D/YEA 3d

DAPI DC No/ml 176,890 0.6481 R2A 7D/DAPI

Sample 6

YEA ID cfu/ml 0.4

YEA 3D cfu/ml 3.9 0.3351 YEA 3D/DAPI

R2A 7D cfu/ml 304 0.5709 R2A 7D/YEA 3d

DAPI DC No/ml 164,170 0.3126 R2A 7D/DAPI

Sample 7

YEA ID cfu/ml 0.8

YEA 3D cfu/ml 9.1 -0.3136 YEA 3D/DAPI

R2A 7D cfu/ml 803 -0.1021 R2A 7D/YEA 3d

DAPI DC No/ml 171,570 0.4757 R2A 7D/DAPI

Sample 8

YEA ID cfu/ml 0

YEA 3D cfu/ml 18 0.3786 YEA 3D/DAPI

R2A 7D cfu/ml 393 0.6059 R2A 7D/YEA 3d

DAPI DC No/ml 198,710 0.8639 R2A 7D/DAPI

Sample 9

YEA ID cfu/ml 0.4

YEA 3D cfu/ml 2.1 0.592 YEA 3D/DAPI

R2A 7D cfu/ml 102 0.3346 R2A 7D/YEA 3d

DAPI DC No/ml 143,940 0.8744 R2A 7D/DAPI
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The individual data points for this Table can be found in Appendix A

Table 4.2 Analysis of the Bacteria in Water Distribution System by Direct

Counting and Colony counting, Total Samples 9; n=10 for Each Overall 

Mean Result

Test Total Mean 

Value

S.D CV

(%)

Correlation Ratio

YEA ID cfu/ml 0.26 0.278887 109 -080832 YEA ID/YEA 3D

YEA 3D cfu/ml 4.9 5.791469 118 0.6090 YEA 3D/R2A

R2A 7D No. ml 256 234.9409 92 0.1423 R2 A/D API DC

DAPI/DC No/ml 174,525 18067.32 10.40 0.4990 YEA 1D/R2A

The determination of the bacterial viability in water distribution systems was 

carried out by CTC viable staining and direct counting by EFM. The results are given in 

Table 4.3 and show that, for the raw water samples, the ratio of CTC positive cells 

against DAPI stained cells was 0.5 -  72.9% and the ratio o f R2A PC with CTC DC was 

1.5% - 33%. For the final samples, the ratios of CTC with DAPI DC was 0.4% - 9.2% 

(ratio R2A PC/CTC DC). The calculated CTC positive cells removal rate between raw 

and treated water was 94%, DAPI DC cells removal rate was 86%, and cfu (by R2A PC) 

removal rate was 99.6% high.
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4.2.3 Flow cytometric analysis of the bacteria in water distribution system

The water distribution systems samples were analysed by flow cytometry 

and the results are given in Table 4.4, Figure 4.1, Table 4.5 and Figure 4.2. The 

fresh samples were fixed by using 2% formalin (final concentration), stained with 

PI by the methods outlined in Chapter 2, and then sorted using the FCM. Tables

4.4 and 4.5 show that most of the FCM counting results agree well with the EFM 

results apart from samples 160806 and 160807. The higher counting could be 

from tiny particles stained by PI, which may be smaller in size than the cells.
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Figure 4.1 A Comparison Between FCM and EFM Analyses of Bacteria 

in Water Samples

60000 n
FCM

EFM50000 -

40000 -

30000 -
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1 2 3 4 5 6 7 8

Sample Number

Table 4.5 Flow Cytometry Analysis of the Bacteria in the Water 

Distribution System

Sample

Number

Counts (No/ml)

FCM -TC FCM-Target-C EFM EFM/FCM

16113433 1,660,000 880,000 760,000 86.3%

16113434 120,000 70,000 24,000 34%

16113435 600,000 168,000 117,000 70%

16113436 850,000 560,000 504,000 90%

16113444 536,000 284,000 212,000 74%

FCM - TC = Flow cytometry, total counting

FCM - Target - C = Flow cytometry, bacterial counts in the sort region 

EFM = Epifluorescent microscopy total bacterial counting
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Figure 4.2 Flow Cytometric Analysis of Bacteria in Water Distribution

Systems
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Note: PI staining 10 pg/ml, DAPI staining 5 pg/ml. Samples were fixed with  

2% formalin. Laser power 160mW, 488 nm, FL3-H 600V, threshold 140 V.

The statistics results show that there is a strong positive correlation relationship 

(r = 0.9972, n = 13) between flow cytometric analysis and epifluorescence 

microscopic direct counting for counting bacteria in the water distribution 

systems using samples stained with PI and DAPI.( Figure 4.3).
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BFCM -Target-C

□  EFM-C

1 2 3 4 5

Sample Number

113



Figure 4.3 Comparison of the FCM Analysis with EFM Direct Counting
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4.3 THE FLOW CYTOMETRIC ANALYSIS OF LEGIONELLA AND

AMOEBAE IN TAP WATER BIOFILMS

The biofilms in a tap water supply were formed with seeded L. 

pneumophila and maintained for 4 weeks at 30 °C, and aerated with filtered air 

and the pH, DO and temperature were monitored on-line. Both planktonic and 

biofilm samples were collected for colony counting, microscopic and flow 

cytometric analysis.

The tap water biofilms with seeded Legionella (NCTC12821) were 

analysed by using the FACS flow cytometer and BCYE colony counting methods 

as well as epifluorescence microscopy.
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Table 4.6 Recoveries of Flow Cytometric Sorting of L. pneumophila on Slides

from Tap Water Biofilms

Days 30° C in water 0 3 7 14 21 28 Mean Corr.

Biofilm Sample No. If I f 3f 5f 6f I f

No. cells FCM 0 836 122 231 171 122 247 0.9929

No. cells EFM 0 769 112 231 120 36 211

Recovery (%) N/A 92 92 100 68 29 76

Days 30 °C 0 3. 7 14 21 28

Planktonic Sample No. IP 2p 3p 5p 6p 7p

No. cells FCM 0 778 573 884 193 39 411 0.9980

No. cells EFM 0 784 523 908 180 39 406

Recovery (%) N/A 100.8 91.5 102 93 100 98.3

N/A = Not applicable

Figure 4.4a Recoveries of FCM Sorting of L. pneumophila Cells From Tap 

Water Biofilms

900 -r

♦—No. Cells from Biofilm FCM Counts

■b— No. Cells from Biofilm EFM 
Counting

0 3 7 14 21 28

Incubation (days)
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Figure 4.4b Recoveries of FCM Sorting of L. pneumophila Cells from Tap

Water Planktonic Phase
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Note: Both biofilms and planktonic samples were stained with mAb (1:3 V:V) 

and DAPI at 5 p,g/ml.

Table 4.6, Figures 4.4a, 4.4b show the results of the Legionella bacteria 

in both biofilm samples and planktonic samples taken from a range of 0 to 28 days 

biofilms. The recovery of the FCM sorting against rechecking by EFM for 

counting Legionella cells sorted on the slides was 68 - 100% (EFM/FCM x 100) 

for most of the biofilm samples (r = 0.9929, n = 6), and at 91.5 - 102% (r =

0.9980, n =6) for all planktonic samples. The recovery of the 28 day biofilm 

sample was lowest at 29%, implying that the flow cytometer could be easier to use 

to sort planktonic samples with good recovery rates (92-102%) because o f the 

uniform suspension of cells in it. For sorting biofilm samples, the recovery rate 

had a bigger range due to the non-uniform nature of the cellular contents.

—♦—No. Cells from Planktonic 
Phase by FCM

—b—N o. of Cells from
Planktonic Phase by EFM

1 2 3 4 5 6
Incubation (days)
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Table 4.7a Flow Cytometric Analysis of Tap Water -  Planktonic Phase

of Biofilm Generator

Days 0 3 7 14 21 28
Total Count 

for Planktonic 

Bacteria

71,240 40,260 38,049 7,538 2,702 8,108
74,473 38,150 35,228 7,689 2,699 5,010
72,416 34,358 31,681 6,713 3,019 6,163

Average 72,710 37,589 34,986 7,313 2,807 6,727
SD 1,636 2,991 3,191 525 184 1,203
CV (%) 2.2 8 9 7 7 18
Mab-FITC 

iorLegionella 

in Planktonic

34,142 6,149 7,585 3,591 205 45
35,500 6,441 7,204 3,295 214 44
34,685 6,175 7,040 3,024 200 50

Average 34,776 6,345 7,276 3,309 206 46
SD 684 148 280 275 7 3.2
CV (%) 2 2 4 8 3 7

Table 4.7b Flow Cytometric Analysis of Tap Water -  Biofilm Phase of 

Biofilm Generator

Days 0 3 7 14 21 28
Total Count 

for Biofilm 

Bacteria

0 27,121 1,066 15,572 17,354 4,062
0 33,767 1,000 17,987 19,978 3,809
0 31,990 1,082 15,960 20,400 3,993

Average 0 30,959 1,049 16,506 19,244 3,955
SD 0 3,441 43 1,297 1,650 131
CV (%) 0 11 4 8 9 3
Mab-FITC 

iorLegionella 

in Biofilm

0 1,149 127 319 154 120
0 1,074 122 313 137 123
0 956 124 306 136 121

Average 0 1,060 124 313 142 121
SD 97 2.5 6.5 10 1.5
CV (%) 9 2 2 7 1
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The precision of flow cytometric analysis of Legionella cells in the 

planktonic and the biofilm phases was conducted by sorting at least three times for 

each biofilm sample and the results are given in Tables 4.7a and 4.7b). For the 

planktonic samples, the average CV is 6% for total counting and 3% for the 

Legionella cells in the target sorting region, while for biofilms samples the 

average CV is 7% for total counting and 4.2% for Legionella cells in the target 

sorting region.
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The Legionella cells and amoebae in biofilms and planktonic samples from 0 to 28 days 

were analysed by using FCM and compared with EFM counting and BCYE colony 

counts. The results are given in Table 4.8 and Figures 4.5a, 4.5b and 4.5c. The

Legionella density in tap water biofilms peaked at the third day (737.8 cfu/cm ) and then
2 ^decreased down to 32.4 cfu/cm by the seventh day, then increased again to 305.4 

cfu/cm2 at the 21st day. Up to 28days the density fell to 258.5 cfu/cm2. The average 

o f the density o f Legionella in biofilms over 28 days was 273 cfu/cm2. The average 

culturable Legionella (BCYE PC) in the total Legionella population (mAb-FITC FCM 

or EFM) was 8.76% and the highest level which was obtained was on the 21st day 

(16.6%). For the flow cytometric analysis of Legionella in biofilms, in comparison with 

EFM direct reading, the average of EFM DC/FCM counting was 108% in the range 

from 95% to 122%. The amoebae in biofilms were also analysed by both FCM and 

EFM and the results are given in Table 4.8. The recovery for comparison of FCM with 

EFM for detecting amoebae in biofilms was 71.4% (EFM DC/ FCM sorting) on 

average, and the results of rechecking the sorted amoebae on the slides is close to the 

direct reading by EFM methods (EFM DC/ rechecking amoebae sorted by FCM on the 

slides: 99.7%). The flow cytometer, therefore, could recover 99% of amoebae from the 

tap water biofilms samples.

4.4 DISCUSSION

The water in the water distribution system can be thought o f as a 

perishable product, which has a shelf life, packaging, and a preservative. For 

potable water, the shelf life is the time the water spends in the distribution system, 

including storage, on its way to the customer’s tap. The packaging is the piping 

and storage facilities used to convey the water, and the preservative could be the 

disinfectant, either free chlorine or chloramines. To preclude water quality 

problems, the following aspects need to be addressed: microbiological, chemical, 

physical, and aesthetic, and all these categories of problems can occur in 

distribution systems.

From a microbiological standpoint, bacteria can grow within the water

distribution system, creating a potential regulatory compliance problem. Coliform

and heterotrophic colony count organisms would be of greatest concern to system

operators. Nitrification of ammonia in chloraminated water can result in increases
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in heterotrophic bacteria and depletion of the residual chloramine. Both the re

growth of bacteria and nitrification are partially caused by longer retention times 

in piping and storage facilities in the distribution system (Kirmeyer 2000).

From a physical and chemical standpoint, the loss of residual chlorine is 

perhaps the most serious and prevalent problem. In the United States, 

maintenance o f a secondary disinfectant residual throughout the distribution 

system is crucial to meeting regulations and maintaining low bacterial counts. In 

addition, with time and in the presence of free chlorine in the distribution system, 

disinfection by-products can increase due to the interaction of naturally occurring 

organic matter with the chlorine. Leaching of inappropriate or inadequately cured 

linings and coatings from pipes and stordge facilities can result in volatile organic 

chemicals entering the water, with both health and aesthetic consequences. In 

addition, pH can fluctuate in the water distribution system, resulting in increased 

uptake of metals by the water. These pH variations are often attributed to low 

buffering intensity (capacity) of the treated water as well as the corrosion reactions 

themselves. Sediment and suspended particles, such as iron and manganese can 

settle in the piping system and in storage facilities, where they can harbour micro

organisms or be re-suspended and enter the piping on the customer’s premises.

From an aesthetic standpoint, distribution systems can cause yellow, red, 

or rusty water as the water picks up iron from ferrous materials such as unlined 

cast iron, steel or galvanised pipe. In addition, the taste and odour of the water can 

be affected as the water travels through the piping and storage system.

Data obtained in the current study has shown that flow cytometry is a far 

more rapid and sensitive method than the colony counting methods as well as 

direct counting by microscopy. As far as it is known, no detailed study has been 

undertaken on the flow cytometric analysis of bacteria, particularly Legionella and 

amoeba in the water distribution systems and drinking water biofllms.

4.4.1 Colony counting Bacteria

The colony count methods are a conventional approach for quantification 

o f viable heterotrophic bacteria in drinking water and aquatic environmental 

samples. A disadvantage of the colony count method is, however, the long 

incubation time required for the colony growth. The direct counting methods with
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fluorescent dyes, as described here may provide a much more sensitive and rapid 

approach for enumerating total and viable cells in drinking water. The results 

presented show that for the water distribution system samples, up to 7 days 

incubation, the total bacterial cfu densities could increase from 2 (2 cfu/ml in 

lday) to 5 (5 cfu/ml in3 days) and up to 256(256 cfu/ml in 7 days) in average (n = 

90) and the ratio of the YEA PC Id/YE A PC 3d/ R2A PC 7D was 0.8/2/100. 

Although the coliform bacteria and Legionella spp. were not detected from all 

these water distribution systems, the total viable and cultural bacterial densities 

ranged from 0 tol054 cfus /ml. Similar results were reported by Schaule et al., 

(1993) and the R2A PC’s numbers ranged from about 10 to 103 cfu/ml. Though 

HPC bacterial density has no direct impact on human health, it has sometimes 

been reported to promote the development of coliform bacteria, protozoa and of 

macro-invertebrates such as Asellus and Nais (Kernel's et al., 1995).

4.4.2 Direct Counting of Bacteria

Direct counting of bacteria by staining and with epi-fluorescence 

microscopy from water distribution systems has provided a very useful way for 

studying the bacteria in water distribution systems. Many authors (Manz et al., 

1993; Schaule et al., 1993; Saby et al., 1997; Norton and LeChevallier, 2000) 

have reported their work on biological regrowth and biological qualities, in water 

distribution systems, and the vast majority of these have concentrated on pilot 

scale experiments and laboratory devices. The work described in this thesis was 

based on the real water distribution systems via 9 different sampling sites in the 

whole drinking water network systems. The DAPI direct counting o f the total 

bacteria has been investigated and the results show that the total bacterial density 

was high, up to 105 cells/ml on average (n = 90, CV% = 10%) and a similar result 

of 105 to 106 cells /ml was reported by Schaule et al., (1993).

The CTC staining has been successfully used to detect the viable bacteria 

in the water distribution systems from the current work. The CTC direct counting 

showed that in the treated water there were 0.7% (density; 10 cells/ml) o f total 

cells (by DAPI DC) with respiratory activity. And in total of active respiratory 

cells (CTC positive cells), only 0.2% could be detected by the colony counting 

method.
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The direct counting method has provided a more reliable and sensitive 

way for studying the water distribution system and also allowed the total 

assessment o f the biomass and the density changes in the microbiological 

populations if combined with colony count methods. The current work has shown 

that the analysis of both raw and treated samples in the water distribution system 

by direct counting and colony count methods together have given a clear view o f 

total biomass and viable species before and after process treatments. In the present 

data, the density of DAPI DC expressed the total bacteria (both dead and alive 

species) in the system and it remained a constant density (CV was about 10%) and 

the CTC DC and colony counts indicated the changes in viable species.

4.4.3 Flow Cytometry Analysis of Bacteria in Water Distribution Systems

Water distribution system samples, which include raw and treated water 

samples, were analysed by flow cytometry in the current work. The results showed 

that flow cytometry could be used for enumerating and sorting the water 

distribution system samples at fast analysis speed (1ml sample /min and with the 

events rate 1000 events/s). A count can be obtained in 30 seconds to a minute for 

each sample. In comparison with the epifluorescence microscopic analysis, the 

average percentage of the FCM sorting against EFM direct counting for the PI 

stained samples was 148%. There is a strong correlation between flow cytometry 

counting with epi-fluorescence microscopic direct counting ( r = 0.9972, n = 13).

PI and DAPI could be used for staining dead and total cells by single or dual 

staining to detect the total and viable cells in samples. CTC staining was also 

used successfully to label the living cells in water distribution system samples.

The CTC positive cells in the total population were 1.9-16% in raw samples and

0.7% in treated samples (CTC DC/ DAPI DC) by both flow cytometric and 

epifluorescence microscopic analysis. The ratio of CTC positive cells between 

treated and raw samples was 6% which means that the removal rate for respiring 

bacteria could be 94% by current water treatment processes. The ratio of total 

viable cells (TVC) by R2A colony counts was 0.4% between treated and raw 

samples, while the removal rate of TVC could be 99.6%. The above results show 

that even after the treatment process, there are still high densities of viable bacteria
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(6833 cells for CTC +ve/ml) in final treated samples from water distribution 

system.

The CTC staining method was modified by using filtration membranes 

(0.2pm pore size) for concentrating the cells, and filtering any reducing substances 

which could reduce the CTC to CTF and which could form bacteria-like particles 

in staining. Staining the concentrated samples on the filtration membranes was 

carried out in the dark in moist conditions in cabinets at 37 °C for at least 2 hours. 

These methods could also reduce the applied volume of CTC which is very 

expensive.

Detecting the total and viable cells, which includes viable and culturable 

cells (VC) and viable but not culturable bells (VNC), and biomass would be very 

useful in water microbiology for drinking water quality. Direct counts can be 

obtained very quickly and because there is a good correlation between direct count 

and colony count, the colony count could be predicted. The colony count only 

gives a small proportion of the total count and does not reflect what is happening 

in water in the distribution system.

The current preliminary work using flow cytometric analysis combined 

with the CTC, PI and DAPI staining offered a fast and reliable method. Further 

work will need to be done, especially screening the novel dyes for viable labelling 

which will greatly improve both FCM and EFM analysis.

4.4.4 Conclusion

The current work presented here has indicated that flow cytometry could 

be used as a rapid and sensitive technique to detect bacteria in water distribution 

systems. The comparison of the flow cytometric analysis with direct counting 

methods as well as colony counts has shown that the flow cytometric analysis 

combined with novel fluorescence dyes such as CTC, and DAPI or PI could 

elucidate both total and viable enumeration and provide sorting or selection of the 

microorganisms in the water distribution systems. A strong statistical correlation 

o f flow cytometric analysis with direct counting was observed (r = 0.999, n = 13,

p<0.01).
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The study of bacteria in water distribution systems has shown that 

traditional microbiological methods could only demonstrate 0.15% of the total 

bacteria in water distribution systems (R2A PC/D API DC) up to 7 days and there 

was a good correlation relationship between R2A PC and DAPI direct counting. 

The CTC direct counting indicated that even in the final effluent samples, there 

are still high numbers (103) of viable bacteria per ml on average, and cfu densities 

about 10/ml by R2A PC and 0 cfu /ml by YEA Id and 3d colony counts.

Coliform cfu also was 0/100 ml. The current limited study shows that flow 

cytometry and direct counting methods are the best methods to study the 

microorganisms in water distribution systems.

Flow cytometry can be used to quickly and accurately detect the bacteria 

and other microorganisms in water samples from water distribution systems, and 

can include total counting and sorting and viable counting by combining staining 

with DNA probes and monoclonal antibodies. A further application o f flow 

cytometry could be on-line monitoring and analysing of biomass in water 

distribution systems.

4.4.5 Flow Cytometric Analysis of Tap Water Biofilms

The aim of this work was to see if flow cytometry could be used for 

analysis of tap water biofilms and provide a practical method for determining the 

content of biofilms in water distribution systems.

4.4.5.1 Flow cytometric analysis of tap water biofilms

Data obtained in the current study has shown that flow cytometric 

analysis is suitable for detecting and counting bacteria in tap water biofilms. The 

recovery of Legionella cells using flow cytometry counting and sorting on to 

slides for rechecking by epifluorescence microscopy was at the range of 68-100% 

(r = 0.9929,n = 6) for most of the biofilm samples, and at 92-101% (r = 0.9980, n 

= 6) for planktonic samples. For the biofilm samples, the flow cytometric counts 

were all higher than the microscope counts which were used for rechecking the 

sorting results. This meant that flow cytometry could recover nearly all o f the 

target cells from tap water biofilm samples using the sorting function such as 

enrich sort mode, which can give high recovery but with high background noise.
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The recovery of amoebae from tap water biofilm samples was 99% by sorting in 

comparison with EFM results.

For the comparison of flow cytometric analysis with epifluorescence 

microscopic direct counting, the average ratio of FCM counting with 

epifluorescent microscopic counting was 93.45% (r = 0.9993,n = 6) for Legionella 

from tap water biofilms samples. For the amoebae, the comparison o f FCM 

sorting with EFM direct counting showed the average percentage was 145% 

(FCM/EFM, r = 0.8927, n = 6). The recovery rate for amoebae by flow 

cytometry was 99% on average (r = 0.9656,n = 6).

In the 28 days of biofilms formation, the average number of Legionella 

cfu was 297.6 /cm2 and the highest number of Legionella cfu was obtained at 21 

days on glass surfaces at 30 °C. Rogers et al., (1994a) reported 1700 cfu /cm2 at 

30 °C with glass surfaces and the highest numbers of Legionella were also 

achieved at 21 days. The highest ratios of viable Legionella cells (cfu) against 

total Legionella populations were achieved on the 21st day with 16.5% for 

biofilms and 4.63% for planktonic phase, and averages were 8.76% (biofilms; r = 

0.9026,n = 6) and 1.46% (planktonic phase; r = 0.9560,n = 6) by flow cytometry 

and R2A colony counts. The highest amoebal density (3251/cm ) was achieved 

on day 14 (average density 1321 amoebae/cm ) from the biofilms.

4.4.5.2 Conclusion

Work has been undertaken to determine the Legionella and amoebae as 

well as other biomass in tap water biofilms and has compared the flow cytometer 

with other microbiological methods. The results have been shown that:

1. The flow cytometer was suitable for analysing tap water biofilms.

The recovery rates of the flow cytometer were 86% (r = 0.9929, n = 6) at the range 

o f 68 to 100% for sorting Legionella cells and 99% (r = 0.9980, n = 6) for sorting 

amoebae in biofilms. The flow cytometric analysis of Legionella in biofilms in 28 

days strongly correlated with the epifluorescence microscopic analyses and colony 

counts by BCYE ( FCM-EFM, r = 0.9993,n = 6; for BCYE-FCM, r = 0.9026, n 

= 6). For Legionella cells, the average ratio was 93.4% for FCM-FEFM and 100- 

145% for amoebae by FCM/EFM.
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2. Viable Legionella cells in biofilms were higher than in the planktonic 

phase in the biofilm systems. The ratios of the cfu against total cells for 

Legionella were 8.76% in biofilms and 1.46% in the planktonic phase.

3. In seeded tap water biofilm systems at 30 °C, Legionella cells 

achieved their highest density after 3 days, then fell, then gradually increased over 

three weeks. The current work for tap water biofilms provided an indication that 

flow cytometry could be used to analyse biofilm bacteria and protozoa in water 

distribution systems

4. Monoclonal antibody fluorescence dye (mAb-FITC) has been first 

reported to stain tap water biofilms for the flow cytometry analysis of Legionella 

spp. The optimal staining conditions may be extended for use in the study o f the 

environmental biofilms.

5. The strong statistical correlation relationship between numbers of 

Legionella cfu by BCYE PC and by mAB FCM and EFM could provide a method 

for predicating the Legionella cfu number by flow cytometric analysis with mAb 

staining.
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5.0 FLOW CYTOMETRIC ANALYSIS OF 

MICROORGANISMS IN BIOFILMS

5.1 INTRODUCTION

5.1.1 History of Biofilms

Most bacteria or other microorganisms in natural habitats can exist in two 

distinct physical environments; the planktonic state, whereby they function as 

individuals, and the sessile state, whereby they attach to surfaces to form biofilms 

and function as an integrated community. Biofilms can be defined as 

microorganisms and their extracellular products associated with a substratum 

(McFeters, 1984). In natural environments, the bacteria in the biofilms immobilised 

at a substratum surface are typically embedded in an organic-polymer matrix of 

bacterial origin. The matrix of exopolymers has been defined as “ those materials 

which can be removed from microorganisms without disrupting the cells and without 

which the microorganisms are still viable" (Gehr and Henry, 1983). Such biofilms 

are ubiquitous in flowing aqueous environments, are not necessarily uniform in time 

and space, and may trap inorganic and organic substances within the polymer matrix. 

Biofilms develop on virtually all surfaces immersed in natural aqueous environments 

irrespective of whether the surface is biological (aquatic plants and animals) or 

abiological (stones, particles, metal, concrete, etc.).

Biofilms form particularly rapidly in flowing systems where a regular 

nutrient supply is provided to the bacteria and other microorganisms. Extensive 

bacterial growth, accompanied by excretion of copious amounts of extracellular 

polymers, leads to the formation of visible slimy layers (biofilms) on the solid 

surfaces.

Biofilms play a crucial role in a variety of disciplines, including medicine, 

immunology, biotechnology, biocorrosion, biofouling, biodeterioration and process 

engineering. Biofilms have been successfully used in water treatment for over a 

century (Atkinson, 1975). It was not until the early 1980s, however, that the

131



advantages o f the biofilm reactors became a focus of interest for a considerable 

number o f researchers, not only in the field o f water and waste water treatment, but 

also in many other areas o f biotechnology (Adler, 1987; Bryers, 1993). Biofilms or

immobilised cell systems have also been successfully used in the production of
/

substances such as acetic acid, polysaccharides, ethanol, cellulose production, 

biosensor applications and recombinant gene expression (Bryers, 1993).

Biofilms play a very important role in the maintenance and survival o f 

microorganisms in both the general water environment and man-made water systems 

(Costerton et.al., 1987; Characklis et al., 1990). Biofilms not only serve to allow for 

the growth of micro-organisms in water systems but also protect them from 

antimicrobial substances (Keevil et al., 1987; 1995; Brown and Gilbert., 1993). 

Biofilms can be a major source of Legionella species and other pathogenic 

microorganisms such as free-living amoeba in both man-made water systems 

(Rowbotham, 1993) and natural aquatic environments (Marrao et a l , 1993). The 

concentration of bacteria within the biofilms provides excellent opportunities for 

attack by predators such as protozoa, and parasites such as bacteriophages and 

Bdellovibrio species (Characklis et al., 1990). The biofilm/water interface also 

attracts ciliates, flagellates and amoebae which graze the surface, seeking food. The 

bacterial pathogens capable o f survival and/or multiplication in the protozoa in 

biofilms include Legionella, Listeria, Mycobacterium and Vibrio (Barker and Brown,

1994) which cause human diseases. Colonisation of water systems by pathogenic 

bacteria such as L. pneumophila have been implicated as a cause o f water-born 

diseases and these microorganisms are known to be widely distributed in the biofilms 

of water distribution systems , cooling towers and hot water systems as well as being 

present in untreated waters and groundwaters (Colbourne and Dennis, 1989). They 

can also grow on fittings within buildings.

Most sections of human and animal gastrointestinal tracts are colonised by 

specific groups of bacteria (the normal microbiota) giving rise to natural biofilms that 

provide a degree of protection from pathogenic species. Insertion o f prosthetic 

devices into the human body often leads to the formation of biofilms on the surface of 

the devices by Staphylococcus epidermidis, other coagulase-negative staphylococci, 

and Gram-negative bacteria (Marshall, 1992). These normal skin inhabitants possess
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a high degree of adhesiveness to the inanimate prosthetic device surfaces. Within a 

biofilm they are protected from the effects o f antibiotics, and hence the biofilm 

continues to provide a source of infection to other parts of the body by bacterial 

detachment and biofilm sloughing. A well publicised example o f this problem was 

the deaths following massive infections of patients receiving total artificial hearts 

(Jarvik hearts). Similarly, in cystic fibrosis patients, the production of large amounts 

o f alginate exopolymer by strains of Ps. aeruginosa limits diffusion and thus 

prevents effective control by antibiotics (Marshall, 1992). Other examples of 

biofilms of medical importance include water reticulation systems, wherein 

potentially pathogenic bacteria may be protected from the effects of chlorination in 

biofilms; teeth, where the dental plaque represents a biofilm that can lead to tooth 

decay; Legionella contamination of dental unit waters (Atlas, et al., 1995) and 

contact lenses, where the bacterial biofilm formed on the contact lenses and storage 

cases may induce severe eye irritation and inflammation (Mclaughlin-Borlace, et al., 

1998).

5.1.2 Current Methods for Detection of Biofilms

The methods used to study biofilms have been reviewed by Characklis 

(1973, 1981, 1990); Guezennec and Fera, (1987) and Lazarova and Manem, (1995) 

who describe various methods for direct and indirect biofilm estimation. Biomass 

quantity is one of the most important parameters in characterising biofilms in 

drinking water distribution systems and environmental water quality. On the other 

hand, the key parameter from the viewpoint of water and waste water treatments, 

public health and drinking water quality is the active biomass or biofilm activity.

Total biofilm amount can be estimated either by physical or biochemical parameters 

such as biomass, density, thickness and TOC, COD and BOD. Physical and 

biochemical properties mainly determine the mass transfer properties o f the biofilm 

and include nutrient diffusion and frictional resistance measurements. Biofilm 

composition also can be described in more detail by measuring different specific 

biofilm constituents (exopolysaccharides, proteins), total cell count or various cellular 

components such as peptidoglycan, lipopolysaccharides and lipids.
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5.1.2.1 Parameters for studying biofilms

The total biofilm amount is often measured either in terms o f dry weight 

(Bratbak and Dundas, 1984; Bratbak, 1985; Nouvion et al., 1987) or o f volatile solids 

(Oga et al., 1991). The main disadvantage of using these parameters for biofilm 

characterisation is that their estimation includes not only active microorganisms, but 

also inert mass, exopolymers and adsorbed organic matter. Biofilm density is 

usually calculated from experimental values of biolume (biofilm thickness) and 

biofilm mass. Several reports have pointed out the correlation between the biofilm 

thickness and density. Biofilm density could increase up to 105 mg/cm3 during the 

initial steps of the growth and after a ‘’critical ”  thickness of 100 pm to a relatively 

stable value of 25-30 mg/cm (Bhamidimarri et al., 1987, Hoehn and Ray, 1973).

Biofilm thickness depends on the volume of fixed biomass and varies 

during the different steps of biofilm growth. Biofilm thickness has been determined 

using various methods such as direct measuring by using light microscopy and 

indirect methods such as image analysis (Senthilnathan et al., 1989), or by 

determining the thermal resistance (Vieira et al., 1993), or electrical conductance 

(Hoehn and Ray, 1973) of biofilms. Santegodes and Ferdleman, (1998) reported that 

the biofilm thickness could be determined by positioning a thin glass needle mounted 

on a micromanipulator on the surface of the biofilm, moving the needle down until it 

touched the substratum, which was detected by the bending of the needle when 

viewed through a dissection microscope. The biofilm thickness was inferred from 

micromanipulator readings.

The biochemical parameters for biofilms include TOC, COD and BOD. 

Total organic carbon (TOC) represents approx. 50% of cell biomass (Harris and Kell, 

1985) and can also be used for indirect quantification of total biofilm amount. The 

sensitivity and precision o f the TOC method are high (2.0 + 0.45 pg/cm3) 

respectively (Characklis et al., 1982). Over the last few years there has been an 

increasing interest in the measurement of biodegradable dissolved organic carbon 

(BDOC) in the water distribution systems or in drinking water ( Frias, 1994).

Bacterial growth in the biofilms of distribution network may occur even at low 

amounts of BDOC, so the drinking water may harbour a large variety of bacteria.

The measurement of the oxidisable matter in biofilms, expressed by the chemical
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oxygen demand (COD), is another physico-chemical method used for the indirect 

estimation o f the fixed biomass (Bryers and Characklis, 1981; Murgel et al., 1991). 

The method offers the same advantages as the TOC, that is to say high precision, +
9 9 '0.1 pg 0 2 /cm and a low detection limit, 6 pg 0 2 /cm (Characklis et al., 1982). BOD 

and BDOC for measuring the biochemical properties of biofilms have a drawback in 

that the time taken between the time of sampling and the availability of the results is 

at least 5 days, which is not compatible with appropriate monitoring of the biofilms.

Three specific cellular components are present in bacterial envelopes: 

peptidoglycan (PG), lipopolysaccharides (LPS in Gram-negative cells) and lipids . 

and have been used for estimation of the bacterial mass in biofilms (Lazarova and 

Manem, 1995). PG is a part o f the cell wall and is composed of chains o f N-acetyl- 

glucosamine and of N-acetyl-muramic acid (NAM), linked by short chains o f specific 

amino acids, such as D-alanine and diaminopimelic acid. NAM and D-alanine are 

universal components of all types of bacteria and with considerable variations in 

specific quantities depending on the type of bacteria (Geesey and White, 1990). The 

main disadvantages of the analytical procedures are their complexity and long 

duration (hydrolysis, followed by chromatographic separation). LPS are situated in 

the upper part of the outer membrane and are only present in Gram-negative bacteria. 

An important advantage of measuring LPS is that they are found in remarkably 

constant quantities in the various strains and under various physiological conditions 

(Lazarova and Manem, 1995). The LPS in biofilms can be determined by the use o f 

the limulus amebocyte lysate (LAL) test or by GC/MS analysis (Geesey and White, 

1990). Lipids are cell membrane components and the main advantage of measuring 

them is the high specific content which is relatively constant Up to 90-98% of 

bacterial membrane lipids are present in the form of phospholipids and their 

determination can be done by colorimetric methods which are simple, reproducible 

and sensitive (Geesey and White, 1990).

The main components of biofilms are bacterial cells as well as other 

microorganisms (total cells) and their activities (viable cells). The increasing control 

and monitoring as well as use of biofilms requires the development o f new analytical 

approaches for detecting and enumerating microorganisms in biofilms.
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Biofilm cellular mass can be selectively estimated by the total cell count consisting of 

direct or indirect cell enumeration after a preliminary step of fixed biomass removal 

and aggregate disintegration. Several approaches have been used for the cell 

counting, which include colony counts and microscopy techniques such as light 

microscopy, epifluorescence microscopy, electron microscopy, image analysis, 

atomic force microscopy, confocal laser scanning microscopy, and the novel 

technique flow cytometry.

Biofilm cellular mass can be estimated by the standard colony count of 

colony forming units (CFU), one of the best known and oldest microbiological 

techniques (Wood et al., 1996). The main disadvantage of the colony count method 

is analytical procedure length (ten days for Legionella spp), high cost and the 

underestimation of the total number of microorganisms by viable but non- culturable 

(VNC) species. Biofilm cellular mass also can be directly or indirectly estimated by 

the total cell count after staining then using microscopy. Fluorescence staining is far 

superior to traditional stains for direct counting of cells in biofilms by microscopy.

The other staining techniques such as monoclonal antibody labelled with fluorescent 

dyes, 16s rRNA probe, and FISH, have also been successfully used in labelling 

microorganisms in biofilms for more sensitively and more accurately detecting the 

cellular mass by microscopy and flow cytometry (Manz et al., 1993; Christensen et 

al., 1998).

A key parameter in monitoring and control, as well as use of biofilms, is the 

biomass activity. Common techniques for estimation of the biomass activity consist 

o f biochemical tests to measure either certain specific enzymes or specific products of 

the bacterial metabolism such as ATP, DNA and RNA, or measurement of the 

electron transport system activity. The measurement of substrate removal rate is a 

conventional technique for determining biofilm activity. In recent years, many 

research works have focused on directly targeting and viewing the viable cells in 

biofilms.

For bacterial activity characterisation, Strange et al., (1963) and Holm- 

Hanson and Booth (1966) have developed an ATP determination test and it was over 

fifty years ago McElroy in 1947 (Lappalainen, 2001) firstly made the finding that 

insect luciferase enzyme reaction requires adenosine triphosphate (ATP). ATP is a
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fundamental component if  living matter which is involved in metabolic activities and 

disappears immediately after the death o f the cells (White et al., 1979; Atlas, 1982; 

Lappalainen, 2001). Jorgensen et al., (1992) reported that the estimation o f viable

biomass in waste water and activated sludge by determination o f ATP and oxygen
/

utilization rate and FDA hydrolysis. Kooij et al., (1995) adapted the ATP and AOC 

(assimilable organic carbon) to study on the biofilm formation on the surfaces o f 

glass and teflon in water treatments. The principle o f the test is based on the 

measurement of the quantity of light produced when luciferin is oxidised in the

presence, of ATP by the enzyme luciferase.
2+

Mg

D-Luciferin + ATP + 0 2 —> CO2 + Oxyluciferin + AMP + Ppi + Light ( 560 nm)
Luciferase

The method is not standardised (Stevenson et al., 1979; Lazarova and 

Manem, 1995; Lappalainen, 2001) and the major disadvantages are its extreme 

sensitivity to the extraction procedure and in environmental monitoring the low toxin 

concentrations may cause a general increase in metabolism resulting in depleted ATP 

pool (Lappalainen, 2001). Additional difficulties are experienced in extracting ATP 

from biofilms. On the other hand, ATP is still an indirect parameter for biofilm 

activity which does not meet the demand of water standards in saying how many 

viable pathogenic species are in it.

DNA and RNA are other fundamental components of bacterial cells whose 

synthesis is proportional to the growth rate. One approach used to measure DNA is 

spectrophotometrically, after extraction and purification (Lazarova and Manem,

1995). Another technique is the incorporation of radioisotopes. The radioisotope 

methods are highly sensitive, enabling the detection of the slightest changes in 

bacterial activity (Karl, 1981). Nevertheless, the requirements o f assay safety and 

versatility have fostered the development of other detection systems like nucleic acid 

probes which can be labelled by fluorescent dyes, enzymes, monoclonal antibodies, 

and other novel probes. In recent years, flow cytometry has been used to detect 

bacterial DNA. Lebaron and Joux, (1994) reported that the cellular DNA content of

S. typhimurium and A. haloplanktis in artificial seawater was analysed by using an 

ACR 1400 flow cytometer with DAPI and HE0342 staining. They considered that
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flow cytometry may provide a new approach to understanding dynamic and 

physiological changes in bacteria by detecting cellular heterogeneity in response to 

different growth conditions.

The direct viable count (DVC) method has been used for detecting the
/

viable microorganisms in marine environments and in food such as milk (Harris and 

Kell, 1985; Buchrieser and Kaspar, 1993; Joux and Lebaron, 1997). Kogure et al., 

(1979) first reported using the DVC method for determining living marine bacteria by 

microscopy, and recently Joux and Lebaron, (1997) improved this method by using 

an antibiotic cocktail for marine bacteria.. The original DVC method is based on the 

incubation of samples with a single antibiotic (nalidixic acid or ciprofloxacin) as a 

specific inhibitor of DNA synthesis which prevents cell division without affecting 

other cellular metabolic activities (Goss et al., 1964; Buchrieser and Kaspar, 1993). 

The resulting cells can continue to metabolise and become elongated after incubation, 

then the elongated viable cells can be directly read by microscopy. The main 

disadvantage of the DVC method is the long time for incubation and it cannot be used 

to detect the slow-growing bacterial dormant cells (Joux and Lebaron, 1997). In fact, 

there could be a potential use if the DVC method was combined with flow cytometry.

Compared with other biochemical parameters used to estimate bacterial 

activity, the measurement of the electron transport system activity (ETS) offers a 

specific advantage in that it enables the use of microscopy techniques to directly read 

the viable cells in biofilms. All active cells have a dehydrogenase activity resulting 

from a set of respiratory chain enzyme activities (Haddock and Jones, 1997). The 

principle o f dehydrogenase activity determination consists of deviating the ETS 

electron flow for the reduction of a chemical indicator under determined conditions. 

Various chemical compounds are used as indicators; triphenyl tetrazolium chloride 

(TTC), 2-(p-iodophenyl)-3-(p-nitrophenyl-5-phenyltetrazolium chloride (INT) or 5 

cyano-2,3 diotolyl-tetrazolium chloride (C TC ). These substances are colourless and 

after reduction, are transformed into monoformazans of a strange and stable red 

colour which can easily be quantified by both spectrophotometry and microscopy. 

Rodriguez et al., (1992) reported a new technique for the direct counting o f respiring 

cells after staining with the fluorochrome CTC. de Beer et al., (1994) and Huang et 

al., (1995) detected the bacterial respiratory activity within biofilms during
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disinfection process by using CTC and the fluorescence microscope. The main 

advantages of this CTC staining method in comparison with conventional microbial 

techniques are its relative simplicity and rapidity.

5.1.2.2 Instrumentation for determining biofilms

The techniques of light (including fluorescence) and electron microscopy 

have been and continue to be the basic methods of investigation for biofilm structure 

and formation, composition, as well as biofilm activity estimation. The new 

microscopic techniques include transmission electron microscopy (TEM), scanning 

electron microscopy (SEM), environmental scanning microscopy (ESEM), episcopy 

differential interference contrast microscopy (DIC) with and without florescence, 

Hoffman modulation contrast microscopy (HMC), atomic force microscopy (AFM), 

and scanning confocal laser microscopy (SCLM). Surman et a l , (1996) compared 

different microscope techniques for the examination of biofilms and they found that 

TEM analysis gave useful information about the spatial relationships o f 

microorganisms within the biofilm matrix, whilst SEM enabled the surface topology 

of the biofilms to be examined at high magnification. But the preparation required 

for TEM and SEM may, however, result in the inclusion of artefacts. ESEM and 

AFM allow direct visualisation of intact hydrated specimens at high magnifications. 

AFM images may be rotated and manipulated to provide accurate measurements of 

individual microorganisms with relative ease. SCLM can be used to investigate not 

only the presence and the viability of the biofilm’s consortium but also 

biofilm/substrata interactions (Surman et al., 1996). HMC allows the in situ 

examination of biofilms and a clear image is produced in the examination of intact 

biofilms. DIC may be used to examine biofilms on opaque surfaces and if  used in 

conjunction with fluorescent vital stains can be used to assess the viability of the 

microbial population. Light or fluorescence microscopy can be useful as preliminary 

step in biofilm studies supplying information on the general appearance o f the fixed 

biomass ( Kristensen and Christensen, 1982; Robinson et a l ,  1984; Lazarova et al., 

1992, 1994). Rogers and Keevil, (1992) reported that the L. pneumophila in biofilms 

could be directly observed by episcopic differential interference contrast 

microscopy. Santegoeds and Ferdleman, (1998) observed the sulphate reducing
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bacteria in biofilms by epifluorescence microscopy. Following the developments o f 

the applications of the new dyes or stains (DAPI, INT, CTC), monoclonal antibodies, 

or rRNA targeting probes, light microscopy, especially epifluorescence microscopy 

has been used as an essential tool in the study of biofilms in most laboratories.

The main advantages of light microscopy are simplicity, rapidity and the 

possibility o f directly or indirectly observing the biomass immediately without 

preliminary treatment. Resolution, however, is relatively low and close to the limit of 

bacterial cell dimensions i.e. 0.345 pm/pixel (Sieracki et a l, 1985).

The development of confocal scanning laser microscopy (CSLM) has 

recently extended the possibilities of in-depth visual observation of biofilm structure 

by means of 3-D images which provide a bridge between light microscopy and 

electron microscopy (Caldwell et al., 1992; Caldwell et al., 1993). Peshwa et al., 

(1993) reported that using the confocal microscopy with 3-D image technique, they 

could clearly view the difference in the structure of bacterial aggregates as a function 

of the concentration of calcium and biomass age and with a non-homogeneous spatial 

distribution of active and dead cells stained by fluorescence dyes. CSLM was also 

used by de Beer et a l, (1994) to demonstrate the complex structure of aerobic 

biofilms formed by discrete aggregates of densely packed cells and interstitial voids. 

Moller et al., (1997) reported using CSLM and 16s rRNA targeting probe (in situ 

hybridisation) and AO dye to detect P. putida in biofilms.

The use of scanning electron microscopy (SEM) for studying biofilms 

avoids the drawbacks of the previous technique by providing very high image 

resolution (McLaughlin-Borlace et al., 1998). Furthermore, this technique could be 

coupled with the X-ray microanalysis to determine the elemental cell and biofilm 

composition. Krambeck et al., (1981) developed a computer system enhancing cell 

size measurements from scanning electron micrographs, and the hydraulic resistance 

of immobilised cells was studied by Fowler and Robertson, (1991) using a similar 

technique. TEM can also be used to study internal biofilm structures such as the 

gram-negative cell wall structure and the types of exopolymer matrix in biofilms 

(Eighmy et al., 1983; Surman et al., 1996).

The major disadvantage of SEM or TEM is the slow, complex and 

expensive sample preparation procedure which may induce specimen damage,
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distortion or biofilm loss (Chang and Rittmann, 1986). A better micrograph quality 

could be obtained without gold coating by means of low voltage observation using a 

field emission gun (Lazarova et a l,  1992).

Image analysis (IA) can be defined as the acquisition o f an image followed 

by the quantification and classification of the components within it (Magennis, 1997) 

and the automated image analysers usually include microscopy, CCD camera, 

personal computer and monitor. The computer-enhanced technology is a powerful 

tool for the analysis of light and electron microscopic images which facilitates and 

improves cell count and biomass estimations. Early absorbency systems used 

ultraviolet (UV) light, but modem analysers work in the visible range. Sieracki et 

a l,  (1985) and Pemthaler et al., (1997) applied image cytometry analysis to 

epifluorescence microscopy for counting and cell measurements of bacteria. The 

greatest advantage mentioned is the rapidity of this method. By using the same 

approach, Siebel and Characklis, (1991) were able to determine bacterial cell 

dimensions in various biofilms. The potential of image analysis is the continuous in 

situ characterisation of the initial surface colonisation (Lawrence et al., 1987; Escher 

and Characklis, 1988; Caldwell et al., 1993; Pemthaler et a l, 1997). By observing 

the biofilm development over time, they determined that different types of bacteria 

utilise different attachment manoeuvres resulting in colony growth as monolayers or 

perpendicularly to the surface. The major drawback of IA coupled with bright-field 

and phase-contract microscopy is its limited application to transparent surfaces.

Over recent years, flow cytometry has been successfully used for 

enumerating and characterising bacteria and other microorganisms from both pure 

cultures and environmental samples in laboratories and man-made or natural 

environments, e.g. for water samples: Cryptosporidium (Vesey et al., 1993), activated 

sludge with rRNA probe (Wallner et a l,  1995), bacterial respiratory and enzymatic 

activity in the river (Yamaguchi and Nasu, 1997), bacteria in mineral water and river 

water (Lebaron et al., 1998); airborne bacteria in the atmosphere (Lange et a l ,  

1997); Gram-negative aerobic bacteria in soil samples (Thomas et al., 1997). For 

biofilm studies, however, most of the methods are based on the traditional 

microbiological and microscope techniques. There is an increasing use of 

enumeration and characterisation of the microorganisms and their physical features
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(size and shape, etc.) from water, food and medical fields by using novel automated 

techniques. Flow cytometry will offer more contributions which include fast, 

accurate counting and sorting total biomass and viable cells, and characterising 

special targets in biofilms, determining DNA contents, and also for determining 

components in biopolymers for studying biofilms combined with other methods. It is 

true that the modem staining, targeting and labelling methods for microscopy used to 

study biofilms have provided proof and possibility for adapting flow cytometry for 

determining biofilms.

5.2 FLOW CYTOMETRIC ANALYSIS OF THE MICROORGANISMS

IN WATER ENVIRONMENTS AND BIOFILMS

5.2.1 Introduction
Flow cytometric analysis performed in environmental microbiology

laboratories is often more stringent than that required for the analysis of mammalian 

cells and can push sensitivities close to limits of operation. This is because the 

volume, nucleic acid and protein content of bacteria are approximately 1 OOOx less 

than in mammalian cells. Since detection involves identification o f light scatter, the 

signals produced by bacteria are generally several orders of magnitude lower than 

those from eukaryotic cells. For example, the DNA content of the E. coli 

chromosome is some 1400 times less than that of diploid human cells (Steen et a l.,

1994) This means that measurement of the bacterial DNA content with sufficient 

precision for applications like determination o f cell-cycle distribution, i.e., with 

coefficients of variation (CV) of the order of a few percent, requires a combination of 

highly fluorescent staining and a sensitive instrument.

On the other hand, bacteria in some situations have relatively much higher RNA 

content than typical mammalian cells, notably when they grow under optimal 

conditions. This means that dyes with some affinity for RNA, like ethidium bromide 

and propidium iodide, are not suitable, except if RNA has been removed, for 

example, by treating the cells with RNase.

Bacteria differ from eukaryotic cells in that the chromosome does not 

contain histones and other proteins which inhibit the binding o f many DNA-specific
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dyes and thereby destroy the stoichiometry of the staining. Presumably the 

bacterial DNA is more loosely packed so that “ chromatin structure “ may not be 

expected to affect the staining o f such cells.

Many bacterial species, such as E. coli, are rods rather than spheres and may 

therefore create orientation artefacts in some flow cytometers, especially laser-based 

instruments with near-parallel excitation light. In contrast to mammalian cells which, 

with few exceptions, are spherical in suspension and with a nucleus which is roughly 

concentric with the cell membrane and with a size roughly constant relative to that o f 

the cell, bacteria may vary greatly with respect to the intracellular distribution o f the 

their DNA, depending on growth conditions and other factors. Thus, while under 

certain conditions the DNA appears to be evenly distributed in all o f the cytoplasm, it 

may be concentrated into a minor portion of the cell volume in other cases (Steen, et 

a l , 1994).

The volume of bacteria is typically three orders of magnitude smaller than 

that of mammalian cells. In some instruments this creates problems with the light 

scattering measurement; the large angle (90°) detection especially does not have 

sufficient sensitivity. The cell wall of Gram-negative bacteria is quite different from 

that of mammalian cell membrane. In addition to the cytoplasmic membrane which is 

similar to that of mammalian cells, bacteria exhibit a complex cell wall consisting 

primarily of peptidoglycans, lipoproteins, and lipopolysaccharides. The permeability 

o f this envelope is significantly different from that of the plasma membrane; hence, 

the knowledge one may apply to the staining of mammalian cells, and especially 

living cells, is not necessarily applicable to bacteria.

Vital staining of bacteria is further complicated by the fact that some 

bacteria have the ability to excrete some dyes very efficiently. Thus, as demonstrated 

by Steen et a l , (1994), even some DNA binding dyes which permeate the cell wall 

are pumped out so efficiently that hardly any staining occurs.

It may appear that the main reason that flow cytometry has been limited to 

applied bacterial studies can be found in some of the above problems from the 

viewpoint o f the bacteria. On the other hand there are some problem from the 

viewpoint o f flow cytometry: traditionally they are amongst the more expensive o f 

laboratory instruments and require highly skilled personnel to operate them; there is
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poor overlap between the emission lines o f the argon laser, and the absorption spectra 

o f the most DNA- specific dyes may cause weak fluorescence yields.

Recently flow cytometers have been used to great effect for microbiological 

diagnosis and even more recently (DeLeo and Baveye, 1996; Walner et al., 1997; 

Wilkins et al., 1999; Gunasekera et al., 2000) they have been applied in 

environmental microbiology. However, applications o f the flow cytometric analysis 

of Legionella and amoebae are very few and some reports were only limited to 

analysis of pure cultures in laboratories (Ingram et al., 1982; Harf et al., 1997; 

Borazjani et al., 2000). As far as it is known there are no details reported on the flow 

cytometric analysis of the Legionella from biofilms, as well on amoebae.

The objective of this work was to apply flow cytometry to detect Legionella, 

amoebae as well as other microorganisms in biofilms and compare the flow 

cytometric results with conventional microbiological methods.

5.2.2 Analysis of Flow Cytometer for Detecting Microorganisms in Biofilms 

and Water Environments

5.2.2.1 Images of the pure cultures of bacteria and Amoeba by flow cytometry

The image of the pure culture of amoebae and seeded L. pneumophila was 

obtained by FACS and is given in Figure 5.1 In the dot plot of FSC-W with FL1-H, 

the green dots in the sort region R1 is the Legionella sub-population which has the 

lower forward scatter light due to the smaller size and the purple dots in the sort 

region R3 are the amoeba subpopulation with higher forward scatter light because of 

their bigger size. In the dot plot of FSC-H with FL1-H, following the parameters 

forward scatter change from FSC-Width to FSC-Height, the dots in the R1 and R3 as 

well as the R2 regions are separated by their forward scatter-High signal levels. The 

dot plots of the FL1-H / FSC-W were used for sorting Legionella and Amoeba 

samples in the current work.
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Figure 5.1 Flow Cytometry of Legionella and Amoeba
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5.2.2.2 Flow cytometric analysis of pure cultures of bacteria and amoeba

Pure cultures of S. aureus cells stained with CTC and DAPI were counted 

and sorted onto slides by FCM and rechecked by EFM (see Table 5.1). The results
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show that the FCM counting is very accurate (r= 0.9999 n=5, for sorting CTC stained 

cells) and can also sort the target cells from the mixture populations.

Table 5.1 Flow Cytometry Sorting of CTC-DAPI Stained Bacteria

Left Sort for CTC Stained Cells Right Sort for DAPI Stained Cells

68 68 8 6

46 44 7 6

41 39 12 12

65 62 15 10

256 257 33 31

Correlation 0.9999 Correlation 0.9803

In order to see if flow cytometry could be used for detecting Legionella spp, 

the mAb stained pure culture L . pneumophila suspension in a range of densities was 

sorted using flow cytometry and the results (correlation; r= 0.9887 n=4) are given in 

Table 5.2 and Figure 5.2 . Following the Legionella cells density (volume) increasing 

from 10 pi up to 40 pi of L. pneumophila cells suspended in the same 0.5ml o f RO 

water, the total counting of FCM kept in the linear ranges, and comparison with EFM 

(lxlO pl =1.48 x l0 5'and BCYE colony count (1x10 p l= l.49 x 105) results, FCM 

total counting results including background was 20% higher than the both EFM and 

PC results. The counting numbers in the target region (R2) of L. pneumophila is very 

close to the epifluorescence microscope results (99— 100% FACS: EFM Ratio) at 

ranges of 10 pi to 20 pi. Over 30 pi, the FCM counting result were higher than the 

EFM counts, the reason being that the optimal counting speed for FCM should be 

below 2000 particles a second. With 10 to 20 pi of Legionella suspension in 0.5 ml o f 

RO water, the counting speeds were below 2000/S (600-1200/S), for the 30 to 40 pi, 

the counting speeds were over the optimal range (>2200/S), so the results were not in 

the linear range. The sorting speed has been kept tol000/S in the following FCM 

analyses.
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Table 5.2 Flow Cytometer Counting of L. pneumophila Cells

Sample

Volumes

Total Counting 

(Particles)

Target Cells 

(FCM)

Target Cells 

(EFM)

FCM /EFM

(%)

1  x 0 . 0 1  ml 230,000 148,000 148,000 1 0 0

2  x 0 . 0 1  ml 550,000 478,000 482,000 99

3 x 0.01 ml 850,000 744,000 744,000 1 1 2

4 x 0.01 ml 1,490,000 1,320,000 988,000 133

Confirmations Total Counting 

No.

Legionella

Cells

Legionella

Cells

Correlation

0.9887

Figure-5.2. Flow Cytometer Counting of Legionella
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The pure culture of L. pneumophila suspension was also analysed by 

FCM to sort a range of dilutions from 1CT10 to 10'4. Table 5.3 and Figure 5.3 

show that between the concentrations of 10'7 to 10'4, the target counting for 

Legionella cells was increased ten times.
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5.2.2.3 Flow cytometric analysis of Legionella and amoeba in biofilms

The Aire river water was used to maintain biofilm formation with or 

without seeding L. pneumophila. pH, DO, and temperature were monitored on 

line. Both biofilms and planktonic samples were collected every three to five 

days for analysis of biomass by colony count methods (YEA, R2A, BCYE) and 

stained with mAb-FITC, DAPI, PL, and CTC for FCM and EFM analysis.

(i) Aire river water biobackground

Aire River water was used as a water supply for biofilms and the river 

water biobackground was investigated., The results are given in the Table 5.4. 

The river water pH was in the range of 7.56 to 7.73 and the temperature was 11 to 

14° C. The BCYE colony count results were positive with 4 cfu/ml or less during 

the sampling period in November and December 1995.

Table 5.4 Aire River Water Background

Date pH Temperature

°C

BCYE

(cfu/ml)

YEA 3D 

(cfu/ml)

R2A 7D

(cfu/ml)

17/10/95 7.50 11.9 2.5 4 x 104 5 x 104

23/11/95 7.75 11.1 4

27/11/95 7.73 12.0 <4

30/11/95 7.69 14.0 <4 2 x 1 0 s 2 x 1 0 s

05/12/95 6.61 13.0 <4 6 x 1 0 s

12/12/95 7.72 11.8 <4 1.2 x 104 7 x 104

(ii) Flow cytometric analysis of the biofilms (25 °C) with Aire river water 

recirculated supply.

The aim of this work after analysis of the tap water biofilms by FCM was 

to attempt to see if the real Legionella-positive river water could be used for 

producing biofilms with bacteria and other microorganisms including Legionella
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species, and then analyse this biofilm by FCM and other microbiological methods 

as well as comparing them with each other.

The Aire river water (total 13.5 litres, 3.5 litres in reactor, 10 litres in 

supply tank) was used as a recirculated supply (flow rate in/out 300 ml/h) for 

biofilms growing up to 34 days at 25 °C , with dilution rate 0.37/h. The DO % 

was monitoring on line and controlled to keep the DO >60 % (Table 5.5).
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Table 5.5 The Maintenance Conditions of the Biofilm System Supplies 

with River Aire Water

Sample

Number

Days PH , DO

(%)

Temperature

(°C)

Stirring

Speed

(rpm)

1 0 7.07 80 18 0

2 1 7.87 68 25 150

3 2 7.82 68 25 125

4 3 7.80 v 58 25 100

5 4 8.0 70 25 100

6 5 8.12 62 25 100

7 6 8.14 66 25 130

8 7 8.12 67 25 140

9 8 8.13 54 25 130

10 9 8.04 60 25 100

11 10 8.12 58 25 140

12 11 8.13 64 25 130

13 12 8.13 66 25 140

14 13 8.09 64 25 110

15 14 7.97 61 25 110

16 15 7.93 62 25 140

17 16 7.92 68 25 120

18 17 7.92 62 25 120

19 18 7.93 64 25 140

20 19 7.93 64 25 150

21 20 7.95 65 25 125
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Both planktonic phase samples and biofilms were analysed by colony 

counting on YEA (3 days), R2A (7 days) and BCYE for detecting the total bacteria 

and Legionella species. The results are given in the Tables 5.6a and b and Figures

5.4a, b and c. In the planktonic phase, Legionella numbers increased from an
/

initial 2.5 cfu/ml to 356 cfu/ml after 16 days at 25 °C, then decreased to 36 cfu/ml 

at 19 days. Total bacterial numbers decreased for the first three days for both YEA 

(41,000 down to 28,000 cfu/ml) and R2A (52,000 down to 34,000 cfu/ml), and 

then increased for R2A at six days up to 19 days (250,000 cfu/ml) - a four fold 

increase. For the river water supply tank, the Legionella numbers slowly increased 

from 2.5 cfu/ml initial density to 20 cfu/ml at the ninth day then decreased to 8  

cfu/ml at the 19th day. The main reason could have been that the river water 

supply tank was at a lower temperature (room temperature 18 to 20 °C).

Table 5.6a Detection of Total Bacteria and Legionella in Planktonic 

Phase of River W ater Supply

Days BCYE

(cfu/ml)

R2A 7D 

(cfu/ml)

YEA 3D 

(cfu/ml)

BCYE/R2A

(% )

0 2.5 52,000 41,300 0.005

3 1 0 600,000 95,400 0 . 0 0 2

6 16 160,000 42,100 0 . 0 1 0

9 2 0 278,000 48,000 0.007

13 15 250,000 2 0 , 0 0 0 0.006

16 1 0 171,000 8,570 0.009

19 8 180,000 553,000 0.004
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Table 5.6b Detection of Total Bacteria and Legionella in Planktonic

Phase of Biofilm Tank

Days BCYE

(cfu/ml)

R2A 7D
/

(cfu/ml)

YEA 3D 

(cfu/ml)

BCYE/R2A

(%)

0 2.5 52,000 41,300 0.005

3 20 54,000 28,000 0.059

6 32 122,000 18,000 0.026

9 48 244,000 71,000 0.020

13 200 176,000 19,500 0.114

16 356 250,000 65,000 0.142

19 36 245,000 497,000 0.02

Figure 5.4a Legionella in Planktonic Phase of Biofilm Tank
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Figure 5.4b Legionella (%) in Total Bacterial Population in Planktonic

Phase
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Figure 5.4c Total Bacteria in Planktonic Phase of Biofilm Tank
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Table 5.7a Counts of Legionella in Biofilm

Days BCYE

(cfu/cm2)

EFM

(No./cm2)

FCM

(No./cm2)

0 0 0 0

3 5 4,000 5,400

6 15 4,900 6,480

9 49 8 , 0 0 0 7,300

13 75 13,400 13,800

16 1 0 0 11,600 1 2 , 0 0 0

19 32 9,000 7,700

34 23 na na

Fig.5.5a Legionella in Biofilms
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Table 5.7b Detection of Total Bacteria in Biofilms

Days YEA 3D 

(cfu/cm2)

R2A 7D 

(cfu/cm2)

DAPI DC

(No./cm2)

CTC DC 

(No. /cm2)

0 0 0 0 0

3 60,000 43,200 777,000 2 0 0 , 0 0 0

6 7,400 17,300 364,000 1 2 0 , 0 0 0

9 27,000 71,000 754,000 350,000

13 29,000 87,000 3,510,000 750,000

16 15,000 75,500 4,860,000 400,000

19 135,000 2 0 0 , 0 0 0 3,100,000 600,000

34 410,000 460,000 2,400,000 800,000

Fig.5.5b Comparison of Counts Obtained from Biofilms Using Direct 

Counting, CTC DAPI
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The biofilm was analysed and the results are given in Tables 5.7a and b 

and Figures 5.5 a, b. The flow cytometric analysis results for Legionella in
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biofilms strongly correlated with the direct counting results by epifluorescent 

microscope (r = 0.9746, n = 8 ) and the ratio of EFM DC with FCM sorting was 

96%. The density o f Legionella cells detected by using BCYE colony count
9 9increased from the initial zero cfu/cm to 1 0 0  cfu/cm at sixteen days which was 

in agreement with the planktonic phase results where the highest density o f 

Legionella also appeared at sixteen days, and then decreased to 23 cfu/cm at 34 

days. The total bacterial densities detected by both YEA and R2A PCs kept 

increasing during the 34 days. The ratio of Legionella against total bacteria in 

biofilms was 0.058% (BCYE PC: R2A PC; r = -0.0177, n = 8 ) on average, and the 

highest rate (0.132%) was obtained at day sixteen. The direct reading of 

Legionella and total bacteria in biofilms (biofilms slides) stained with CTC, mAb 

as well as DAPI were carried out by using EFM and the results are presented in 

Table 5.7a and b and Figure 5.5 a and b showing that the percentage o f respiring 

bacteria against total bacteria (CTC/DAPI DC) was 27 % (r = 0.6863, n = 8 ) on 

average and the total Legionella cells (mAb DC) was 0.4 % of the total bacterial 

population (DAPI DC) of biofilms. The viable and culturable Legionella cells 

(CFU) was low (0.47% in total Legionella populations by mAb DC) and the 

BCYE DC strongly correlated with the total Legionella cells by flow cytometry 

(ratio; 0.47% BCYE PC: mAb FCM sorting, r = 0.8757, n = 8 ) and epifluorescent 

microscopic counting (ratio; 0.471%, BCYE PC: mAB EFM DC, r = 0.8940,n = 

8 ). The strong correlation relationship of Legionella cfu and total Legionella cells 

stained by mAb FITC implied that flow cytometry of total Legionella cells could 

be used to predict the culturable Legionella density in biofilms as well as in the 

planktonic phase.

In the comparison of the FCM with EFM counting of total Legionella 

cells stained with mAb-FITC, the average percentages of BCYE PC against FCM 

counting (0.465%) was close to BCYE PC against EFM counting (0.47%). The 

total culturable bacteria (R2A PC) was 25% (Ratio; R2A/CTC; r = 0.7605, n = 8 ) 

on average of total viable with respiring cells (CTC DC).

158



(iii) Flow cytometric analysis of Legionella in biofilms incubated at 30 °C
with Aire water supply

The aims of this work were to analyse biofilms at the moderate 

temperature condition (30° C) by using flow cytometry and other microbiological 

methods to focus on Legionella and amoeba. L. pneumophila (NCTC 12821) was 

seeded into the biofilm system in order to achieve a high density of the cells for 

taking more samples for analysis. Biofilms were formed in the same systems 

outlined in Chapter 2 and the incubation temperature was changed to 30 °C. The 

Aire river water was still recirculated into the system and the Legionella 

(NCTC 12821) was seeded into the system. The biofilms were incubated up to 28 

days and the maintenance conditions and biomass in both planktonic and biofilms 

were analysed by taking samples on different days.

1. Analysis of the maintenance conditions in biofilm systems

The maintenance conditions in biofilm systems were monitoring and the 

results are shown in Table 5.8. The maintenance conditions were monitored by 

analysing TOC, NH4-N, N 0 3 , NO2 , CaC0 3 , conductivity, Fe, Al, Mn, CaS0 4 , P, 

pH, temperature, DO from the planktonic phase.

Table 5.8 shows the changes in the conditions. Changes of ammonia, 

nitrite and nitrate were as followings; in the 28 days, ammonia decreased from the 

initial 2.42 mg/1 down to the 0.03 mg/1 at the 7th day, and then remained level 

(0.03 mg/1) to day 28. The average of the ammonia concentration was 0.54 mg/1. 

Nitrite and nitrate were increased to their highest levels at the 7th day and then fell 

slowly to the 28 day. The changes of the nitrogenous substances in the system 

show that the nitrification process was taking place and this is usual under the 

aerobic conditions of the fermenter.

The total organic carbon (TOC) was not changed much and was 

marginally down from the initial 6 . 8 8  mg/1 to 5.3 mg/1 at the 28th day and the 

average of the TOC concentration was 5.7 mg/1. The lowest level of TOC 

appeared on the 7th day with the 5.2 mg/1 concentration. The pH changed from an 

initial 7.82 to 8.36 on the 7th day and rose to 8.4 by the 28th day. The average 

conductivity was 514 ps/cm , and the level decreased from an initial 544 to 516
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(as/cm2 by the 28th day. The ICP analysis of the inorganic ions is also given in 

Table 5.8. Fe concentration decreased from an initial 0.46 mg/1 down to <0.01 

mg/1 at the 7th day and was similar on the 28th day. P also decreased from an 

initial 0.408 mg/1 down to <0.1 mg/1 at the 28th day with 0.23 mg/1 average 

concentration.
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From the above results, it appeared that the seventh day was a key period 

when some conditions such as ammonia, nitrite and nitrate, Fe, pH, changed up or 

down in the planktonic phase of biofilms. It is clear that the nitrification process 

was taking place in the biofilm system which can be seen from the decreasing 

levels of ammonia and with the increasing levels of nitrite and nitrate. Further 

analysis o f the relationships of these changes with those of the biomass will be 

discussed later.

2. Flow cytometric analysis of the biofilms

The biofilms (slides in the system) were taken every three days and 

analysed immediately by flow cytometry and colony counting, and epifluorescence 

microscopy with or without pretreatments such as fixing and staining.

(1) Analysis of planktonic phase.

The planktonic phase was analysed by direct counting methods outlined 

in Chapter 2 and the results are given in Table 5.9 and Figure 5.6.
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The viable culturable Legionella cells in initial river water were unable to 

be detected and 20 cfu/ml were found in the planktonic phase after seeding the 

Legionella cells (NCTC 12821) on the first day. The highest density o f Legionella 

cfu in planktonic phase also appeared on the 7th day with 5300 cfu/ml, falling to 

800 cfu/ml at 28 days at 30 °C. The average percentages of Legionella (cfu/ml by 

BCYE PC) in all the viable culturable bacterial population (CFU by YEAPC or 

R2APC)) was 1.7% for BCYE/YE A and 0.5% for BCYE/R2A. To compare with 

total direct counting by DAPI DC method, Legionella (cfu) was only 0.17% 

(BCYEPC/DAPI DC), total viable culturable bacteria by YEA PC was 9.6% 

(YEAPC/DAPI DC) and 33.4% by R2A (R2APC/DAPI PC). The YEA colony 

counting showed a lower recovery for detecting the culturable bacteria with a 28% 

ratio of YEA/R2A counting (YEAPC/R2APC).

Statistical analysis showed that there was a good linear correlation 

between R2A colony counts with DAPI direct counting over the first 11 days (r = 

0.8231, n = 5), but for the total 28 days there was not a linear correlation for the 

R2A PC with DAPI DC (r = 0.2899, n = 9).

(2) Analysis of the Biofilms

The biofilms formed at 30 °C with seeded Legionella and Aire water 

supply were also analysed by flow cytometry, colony counting methods and direct 

counting by using epifluorescence microscopy for detecting total viable bacteria, 

Legionella and amoeba. Results are given in Table 5,10 and Figures 5.7a,b,c and 

d.
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Figure 5.7a Determination of Legionella and Amoebae in Biofilms
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Figure 5.7c Direct Counting of Total Bacteria by DAPI Staining
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Total direct counting by DAPI DC demonstrated that total cell numbers at 

7 days (977,400 cells/cm2) is 1.87 times more than average one (522,113 cells/cm
9 9in 28 days) and the initial total bacterial number was 432,000/cm and then down 

to 405,000 cells /cm2 at day 11, remaining to day 28 at a constant level. Viable 

culturable bacteria detected by the R2A colony counting also at 7 days were

324,000 cfu/cm2 which is 3.7 times and 10 times more than average (87,143 

cfu/cm ) and the initial density respectively, then decreased quickly to 19,980 

cfu/cm which is only 22.9% of average density after 28 days. Legionella (cfu) 

peaked in biofilms at day 20 (10260 cfu/cm ) which is 4.16 times more than
9 • • • 9average one (2469 cfu/cm ) from initial 43 cfu/cm after a day. The maximum 

percentage ratio of BCYE PC/R2APC (ratio of the Legionella against total 

bacteria) was 14.62% at day 20 and the initial only 0.13%, and the average ratio 

was 5.1%. Direct counting o f biofilms on slides was carried out for total counting 

o f all bacteria by DAPI DC and by CTC DC methods for total active bacteria 

(respiring) and for total Legionella cells by mAB-FITC stained and counting. 

Amoebae were also counted directly on biofilms. Direct readings of total 

Legionella in biofilms stained by mAb FITC were carried out and the highest
• 9 • *density (29,700 cell/cm ), which is 2.18 times and 11 times more than average one 

and initial ones was achieved at 15 day. The highest level, 67.9% (cfu/total cells 

per cm ) of viable culturable Legionella in the total Legionella population also 

appeared at day 20 in biofilms at 30 °C with Aire river water supply. Amoebal 

species were directly counted on the biofilms (slides) and the highest density also 

appeared at day 20 (34,800 /cm ) which is 2.31 times more than the average 

amoebal count at 28 days and is 7.58 times more than the initial 4590/cm2.

Total average active bacteria in biofilms by CTC DC methods was 22,515 

cells/cm2 which is only 2% (CTC DC/D API DC) of total average bacteria by 

DAPI DC (1,093,713cells/cm2 in 28 days). Total average Legionella cells 

(13,607cells/cm2) was 1.2% of the total average bacteria (mAb DC/D API DC).

Flow cytometric analysis of biofilms which were formed at 30 °C results 

are given in Table 5.11 and Figure 5.8. There was strong correlation between the 

flow cytometric analysis of total bacteria in biofilms and those by EFM (r =

0.8600, n = 8) and as well as by R2A colony counts (r=0.7100, n=8).

168



Table 5.11 FCM Analysis of Biofilms (30 °C)

Days R2A

(CFU/cm2)

EFM

(N0/cm2)

FCM

No/cm2

R2A/EFM R2A/FCM FCM/EFM

1 3.2 x 104 4.3 x 105 4.3 x 105 7.50% 7.50% 100%

4 1.5 x 105 7.6 x 105 7.3 x 10s 19.74% 21.0% 96%

7 3.2 x 105 9.8 x 105 1.05 x 106 32.65% 30.84% 107%

11 4.3 x lO 4 4.1 x 10s 4.7 x 10s 10.94% 9.15% 115%

15 2.4 x 104 4.2 x 10s 4.5 x 105 5.71% 5.0% 107%

20 7.0 x 104 8.1 x 105 1.03 x 106 8.64% 6.8% 127%

24 3.3 x 104 3.5 x 105 7.0 x 105 9.0% 5.0% 200%

28 2.0 x 104 4.3 x 10s 3.7 x 105 5.0% 5.41% 86%

Correlation ® (n=8) 0.8631 0.7172 0.8600
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Figure 5.8 Analysis of Bacteria in Biofilms
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To compare with colony counting methods and epifluorescence 

microscopic direct counting, the average percentages of viable culturable bacteria 

in total bacterial populations was 15% (R2A PC/EFMDC) and 13.2% (R2A 

PC/FCM sorting), and for total counts, the average percentage of FCM/ EFM DC 

in 28 days with 8 times sampling was 117%. The FCM result is 17% higher than 

EFM DC results which basically agreed with each other in tendency (Figure 5.8), 

but flow cytometric analysis is faster and more accurate. Flow cytometric analysis 

of Legionella in biofilm samples (10 pi for each sample only) stained by mAb- 

FITC was investigated and the results (Table 5.12 and Figure 5.9) show that the 

average percentage of the viable and culturable Legionella cells by BCYE colony 

counting in 28 days is 11% in total Legionella population. The ratio (Table 5.12) 

of flow cytometric analysis of Legionella against those by EFM was 108% on 

average for the 30° C biofilms (r=0.9811, n=9). The amoebae in biofilms were 

analysed by both flow cytometer (FACS) and direct reading (EFM) on biofilms 

(slides) and the results in Table 5.12 show that the flow cytometric analysis results
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of amoebae by EFM is only 53% of the flow cytometric result. Legionella density 

against amoebae was 188% on average (Ratio: Legionella by FCM/amoeba by 

FCM).
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Figure 5.9a Enumeration of Legionella in Biofilms
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5.3 DISCUSSION OF FLOW CYTOMETRIC ANALYSIS OF
BIOFILMS

/

The primary objective o f this project was to study the application o f flow 

cytometry to determine micro-organisms in biofilms, to focus on Legionella and 

other species, and to compare flow cytometry with conventional microbiological 

methods such as colony counts. For such a comparison to be meaningful, it was 

necessary to establish the operational conditions of flow cytometric analysis, o f the 

flow cytometer and produce biofilms under different conditions.

5.3.1 Imaging of Bacteria and Other Microorganisms by flow Cytometry

The flow cytometer as an advanced instrument cannot only be used for 

enumerating and sorting, but also for imaging bacteria and other biomass and their 

sub-populations in whole samples. In previous work, the flow cytometric 

images were often used to view the targets by using light scatter detectors such as 

side scatter (SSC) and forward scatter (FSC). Allman et a i ,  (1992) reported that 

a mixture of pure culture bacterial species which included E. coli and Legionella, 

could be imaged by flow cytometry to recognise each subpopulation by light 

scatter characteristic and autofluorescence.

This work for flow cytometric images has shown that the best way to 

view the targets is to label or stain them initially using mAb to stain the L. 

pneumophila. The population in the mixture was then very easily viewed by 

fluorescent detectors and light scatter detectors and by setting up the sort region. It 

proved very, difficult to set up the target region by using light scatter detectors only 

for the same mixture without staining.

Multicolour gates are one of very useful function for FCM images. 

Normally all dots which present the events are white, multicolour gates show 

events (dots) in colours representing the different gates (built-up regions). The 

colours show the distributions of sub-populations in data plots. In a certain image 

picture, such as a 2-D plot, with the multicolour gate which makes up to 8 regions

174



with different colours, each individual region has the same colour dots (events). 

When the parameters of the plot are changed by other ones, the dots' colour 

remains but the dots' distributions could be rebuilt by their characteristics. In this 

way, it is very easy to view and trace the sub-populations and their changes 

following parameter changes and to find which parameters could be suitable for 

imaging and further analysis.

Following computer technique developments, the imaging technique, 

which includes the data analysis, would be more useful for FCM analysis and 

make the flow cytometric analysis more perfect (Jonker et al., 1995). An 

Artificial Neural Network (ANN) is a computational method inspired by the 

remarkable pattern recognition abilities of the biological brain. The ANN is able 

to learn to recognise and classify such data through the use of a set of training 

examples and an appropriate training procedure. Once an ANN has trained it is a 

very computationally efficient procedure for classifying novel data. This makes it 

a very suitable method for application to the rapid analysis of flow cytometry data. 

Artificial neural networks can be of great help in discrimination of single species 

(Balfoort et al., 1992; Wilkins et al., 1994). Wilkins et al., (1999) reported that 

they identified phytoplankton from flow cytometric data by using Radial Basis 

function neural networks. The optimised Gaussian Radial Basis Function (RBF) 

network could recognise 34 species of marine and freshwater phytoplankton with a 

91.5% success overall.

5.3.2. Flow Cytometric Analysis of Pure Cultures of Bacteria and Other

Microorganisms

Many workers have analysed pure cultures of bacteria (Ingram et al., 

1982; Diaper et al., 1992; Jepras et al., 1995; DeLeo and Baveye, 1996) as well as 

fungi (Brailsford and Gatley, 1993) and algae (Premazz et al., 1989; Jonker et al., 

1995) using flow cytometry, but for Legionella species (Ingram et al., 1982; Harf 

et al., 1997) and for protozoa such as amoebae (Flores et al., 1990; Harf et al., 

1997; Avery et al., 1995; Borazjani et al., 2000) few papers have been published.

The work of Ingram et al., (1982) was to detect pure cultures of L. 

pneumophila stained with polyclonal antibody by flow cytometry, and the work
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mainly focussed on viewing the histogram of pure cultures of L. pneumophila cells 

only. Harf et al.,- (1997) detected the endocytosis of viable Legionella cells by 

Acanthamoebapalestinensis. Borazajani et al., (2000) reported the detection of 

cultures of Acanthamoeba spp. in contact lens disinfecting solutions by using flow 

cytometry and duel staining with PI and FDA.

In the current work, pure cultures of mAb labelled L. pneumophila were 

fully analysed using flow cytometry under different conditions. The results have 

shown that the flow cytometer could be successfully used to accurately enumerate 

and recognise pure cultures of Legionella species. By comparison with 

epifluorescence microscopy and BCYE colony counting, the FCM results 

correlated well (Table 5.13).

Table 5.13 Comparison of FCM Analysis with EFM and BCYE Colony 

counting

Test Method Counts/ml

FCM 1.48 x 109

EFM 1.48 x 109

BCYE 1.44 x 109

Note n = 3. MAb-FITC staining for both FCM and EFM. BCYE PC; 3 day cfu.

The monoclonal antibody (mAb) is superior to polyclonal antibodies 

and other dyes for labelling the Legionella species for detection with flow 

cytometry. The mAb is suitable for staining Legionella cells in suspension though 

it is normally used for the solid stage staining (staining the fixed cells on the 

slides) within the range 12.5% to 25% final concentrations (V:V). Higher 

concentrations (50% or higher) of stain would cause high background noise. 

Further tests showed that there were no cross-reactions when using the mAb to 

discriminate L. pneumophila in a mixed population from E. coli or Ps. 

aeruginosa.
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Current work for flow cytometric analysis of pure cultures o f E. coli, Ps. 

aeruginosa, and S. aureus have shown that flow cytometry also can be used to 

enumerate and sort the other bacterial cells which were stained by R hl23; and that 

after treatment by glutaraldahyde, it could be extended to staining o f Gram- 

negative bacteria by DAPI, as well as PI and CTC dyes. Direct total counting o f 

single or mixed pure cultures o f bacteria could be easily done by flow cytometry 

due to the similar size and low background noise.

Pure cultures of amoeba cysts were analysed by flow cytometry and the 

work showed that the amoeba cysts could be quickly and accurately sorted by flow 

cytometry after staining with DAPI dye. For the mixed samples o f amoeba with 

bacteria and environmental samples, the flow cytometer can also clearly image, 

sort, and enumerate the bacterial and amoeba sub-populations by light scatter and 

fluorescent detectors.

Flow cytometry has been used for analysis of bacterial DNA content, as 

well as cell membrane potentials (Lebaron and Joux, 1994; Robertson et al., 1998) 

for flow cytometry of marine bacterial DNA content by DAPI staining. In this 

work, the different growth time Legionella cfus were analysed by flow cytometry 

after staining with mAb-FITC, and DAPI in suspension. Unfortunately, the 

preliminary work showed that only the numbers of the larger size sub-populations 

were increasing with incubation time, which was due to the increasing number o f 

filaments of Legionella cells, as confirmed by epifluorescent microscopy after 

sorting these sub-populations onto slides by flow cytometry.

5.3.3 Flow Cytometric Analysis of Biofilms

River water is far more complex than the tap water in microbiological 

species, nutrients and general background. The current work was to produce the 

biofilms in river water, with or without seeding with Legionella cells, and sorting 

the biomass by flow cytometry and other microbiological methods. The aim o f the 

work was to see if the flow cytometry could be successfully used for analysis of 

biofilms from the natural environment. The work focused on Legionella and 

amoebae, as well as total biomass population.
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5.3.3.1 Flow cytometric analysis of the biofilms incubated in river water at

25 °C

The biofilms were incubated in the river water which contained the 

Legionella for up to 34 days. In the planktonic phase o f the biofilm system 

(biofilm tank 25 °C, supply tank 20 °C), the Legionella densities increased at 

different rates. In the biofilm tank the average density was 99.2 cfu/ml and the 

highest level (356 cfu/cm) at day 16 was 141 times that o f the initial density 

(2.5cfu/ml); and in the supply tank, the average density was 11.6 cfu/ml and the 

highest level was only 7 times higher than the initial density (2.5cfu/ml). The 

temperature conditions could be the main reason affecting the Legionella growth 

rate. It has been widely reported that the optimum temperature for multiplication 

of Legionella in the laboratory is around 37 °C and below 20 °C multiplication can 

be considered insignificant. (Anand et al., 1983; Mauchline et al., 1994). It is 

possible that temperature may have affected the Legionella gene expression which 

products determine virulence, as Acanthamoeba can kill and digest L. 

pneumophila at 20° C (Anand et al., 1983). The current work was in very close 

agreement with the above ones. At 20 °C, Legionella grew very slowly and in 19 

days the density was only increased 3.5 times on average from the initial level.

For the Legionella density in aquatic environments, Lee and West, (1991) reported 

that the numbers ranged from <104 to 105/ 1. In the current work the density in 

Aire river water was 2.5 - 4 x 1 0  3/l.

For the biofilms at 25 °C the current work showed that flow cytometric 

analysis of Legionella in biofilms was in very close agreement with the 

microscopic direct counts (average percentage o f EFM/FCM was 96%; the 

correlation; r = 0.9744, n = 8). The highest number of Legionella was also 

obtained at day 16 (100 cfu/cm2) and the average density was 43 cfu/cm2 after 34 

days. The numbers of

Legionella (cfu) in biofilms was 0.058% of the total bacterial population (total 

counts were determined by R2A PC) on average, and the ratio was close to the one 

in the planktonic phase (0.061%). For the CTC direct counts, the average ratio of
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the total viable and culturable cells (cfu from R2A PC) against cells with 

respiratory activity (CTC +ve) was 17% (R2APC/CTC DC). The ratio o f CTC 

positive cells was 27% of the total bacterial population by DAPI direct count.

Conclusion

1. The flow cytometer can be used for analysis of river water biofilms. The 

comparison of flow cytometric analysis with epifluorescence microscopic counting 

showed the average percentage of EFM DC against FCM sorting for mAb stained 

Legionella cells was 96% (Ratio of EFM/FCM) for the biofilms at 25 °C with 

river water. There is a statistic correlation between flow cytometric analysis with 

epifluorescent microscopic analysis for enumeration of Legionella cells in biofilms 

( r =.0.9744, n = 8; density 8x103 cells/cm2).

2. The viable Legionella cfu was 0.058% of the total bacterial population 

(cfu by R2A PC) in biofilms and 0.054% in planktonic phase on average. The 

viable Legionella cfu in total Legionella cells (counting by flow cytometer and 

epifluorescence microscopy) was 0.47% in biofilms on average. Total respiring 

bacteria (CTC +ve) in the total bacterial population (by DAPI DC)) was 27% and 

the viable, culturable bacteria (cfu by R2A PC) was 17% compared with the 

respiring bacteria.

3. The Legionella numbers of cfu in both biofilms and planktonic phase 

needed 16 days to achieve the highest densities at 25 °C from the initial 2.5 cfu /ml 

density in river water at 11 °C.

4. The biofilm formation system in the current work could be used to 

recover Legionella from the river water at 25 °C. However, for flow cytometry 

analysis the

amounts of the samples that could be used from these conditions were low and 

limited. The higher temperature, and seeding the Legionella cells in such biofilms 

system would be needed and this work was carried out in next stage.
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5.3.3.2 Flow cytometric analysis of the river water biofilms with seeding 

Legionella cells at 30 °C

The aim of this work was to provide more target Legionella cells as well as

other microorganisms for using the flow cytometer to analyse the biofilms by (i)
/

increasing the cultural temperature from 25 to 30 °C and the latter would be 

considered the best condition for both Legionella and amoebal growth; (ii) seeding 

the Legionella cells (L. pneumophila NCTC 12821) into the biofilms systems with 

the Aire river water. The planktonic phase, chemical and physical characteristic in 

the biofilm system was monitored in all cultural process.

(i) Maintenance conditions

The current investigation has shown that in the planktonic phase of 

biofilms system, the seventh day was a key day and that some conditions such as 

ammonia, nitrite and nitrate, Fe and pH changed up or down during the first 

week. The nitrification process was taking placed in the biofilm system which was 

shown by decreasing ammonia concentration and increasing nitrate concentration. 

The TOC concentration, with 5.7 mg/1 on average, was at a high level, which 

means the river water or planktonic phase was in a pollution situation (the Aire 

river flowed into the effluents of a waste water treatment works upstream of the 

sampling point). Yamaguchi (1997) reported that TOC levels of polluted river 

waters were at 6-. 1 mg/1 with numbers of cfu 104 to 106 /ml; and in unpolluted river 

waters the TOC values were from 1.0 to 1.8 mg/1 with the 103 cfu/ml of bacteria.

In our planktonic phase, the total bacterial count was 1.4xl04 for YEA colony 

counting (average 1.1 x K f cfu/ml) and 3.3 x 104 cfu /ml for R2A colony counting 

(average 3.8 xlO5 cfu/ml) initially.

The above results show that the planktonic phase in the curent biofilm 

systems had a high oganic substance level and aerobic condition (nitrification 

process must be in aerobic phase) for supporting the biofilm formation.
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(ii) Flow cytometric analysis of biomass in 30 °C biofilms

1. Planktonic phase

The number of Legionella cfu was negative for the initial river water and 

after seeding with the L. pnuemophila (NCTC12821) the numbers of the 

Legionella cfu was achieved at 20 cfu/ml at the start o f the biofilms. The highest 

level (5300cfu/ml) of Legionella cfu which was more than 264 times as high as the 

initial density and was also achieved at day 7 and, in comparison to 25 °C biofilm 

system, the latter's highest level appeared at day 16 with 141 times higher than the 

initial level. The fast growth rate of Legionella in the planktonic phase at 30 °C 

indicated that the temperature altered the'Legionella growth which is in general 

agreement with other workers (Rogers and Keevil, 1992; Rogers et a l, 1994). The 

ratio of the Legionella cfu against total bacterial cfu was 1.7% (BCYE PC/YEA 

PC) and 0.5% (BCYE PC/R2A PC) in the planktonic phase of biofilms system at 

30 °C.

2. Analysis of the bacteria and amoeba in biofilms 

Flow cytometric analysis.

In the 28 days incubation period, the average percentage of flow 

cytometric analysis of total bacteria against direct counting by epifluorecsence

microscopy was 117% (ratio FCM/EFM; r = 0.8600; n = 8) for biofilms at 30 °C
• • • •  ̂ 0with the high bacterial density (10 cells/cm ). For the Legionella, flow cytometric

analysis showed that the average density of the cells in biofilms was 21636 

cells/cm (n=8) while the density of Legionella in tap water biofilms was 4445 

cells /cm . The average numbers of amoebae in biofilms by flow cytometer was 

25028 cells /cm2 and the ratio of EFM DC /FCM for amoebae was 53%. In the 

tap water biofilms (at 30 °C), the amoebal density was 1811 cells /cm2 and the 

ratio was 71.4% (EFM DC/FCM). The ratio of cfu (total bacteria by R2A PC) 

against flow cytometric analysis (total bacterial cells numbers by FCM) was 13.2% 

which was 1.8% less than the ratio of R2A PC/EFM DC (15%). The ratio of 

Legionella against amoeba was 203% in this biofilm by flow cytometric analysis 

while in tap water biofilms the ratio was 245% at 30 °C. To compare the results
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by direct reading of Legionella cells in biofilms with those in suspensions by EFM 

and flow cytometry, the direct reading on biofilms was lower and was only 68% of 

EFM and 63% of FCM results.

Direct counting was carried out in analysing the biofilms with DAPI, 

CTC, mAb-FITC by directly counting the cells in the biofilms on the slides. The 

average numbers of active bacteria (CTC positive cells) was 2% of total by DAPI 

direct counting. The total Legionella cells by mAb-FITC direct counting was 

1.2% of total numbers of bacteria by DAPI DC.

To compare the counting results of Legionella cells by the BCYE PC 

against flow cytometric analysis of the numbers of FITC-mAb stained cells, at 

30 °C, the ratios range from 5.4% (Aire river water biofilms) to 8.8% (tap water 

biofilms), while for the 25 °C biofilms (without seeding with Legionella), the ratio 

was very low percentage (0.47%), which means that the temperature of 30 °C 

largely supported increasing numbers of the active Legionella in whole 

populations more than at 25 °C.

The culurable Legionella numbers achieved highest density at day 20 

(BCYE PC; 2600 cfu/cm2) which was close to the tap water biofilms (at day 21). 

The total activated bacterial count reached its highest level at 7 days (R2A cfu; 

3.24xlOs /cm2).

(iii) Conclusion for the FCM analysis of the 30 °C biofilms

1. The data obtained from the current work have further indicated that flow

cytometry can be succesfully used in the study of organisms on the biofilms. By 

analysis of 30 °C biofilms with seeded high numbers of Legionella (density; 

104/cm2) show that flow cytometric analysis of both Legionella as well as total 

bacteria have a good statistical correlation with direct counting by epifluorescent 

microscopy. The ratio of FCM with EFM is 117% (r=0.8600, n=8) for the 

enumeration of total bacteria in biofilms at 30 °C. The ratio of FCM with EFM 

for Legionella (density; 2 x 104 cells/cm2) is 110% ( r=0.9811, n=9) for the 30° C 

biofilms.
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Table 5.14 Comparison of Flow Cytometric Analysis of Biofilms with 

EFM Direct Counting

Biofilms Ratio% FCM/EFM for Legionella Ratio % for total

Bacteria

30 °C seeding 110% r = 0.9811, n = 9 (2 x l0 4/cm2) 117%, r = 0.8600, n = 8,

(6x l05/cm2)

25 °C No seeding 104%, r = 0.9745, n = 7 (8xl03/cm2) N/A

30 °C Tap seeding 93% r = 0.9993, n = 6 ( 4x l03/cm2) N/A

Pure Culture 99-133% r = 0.9887 n = 4 (l-9 x l0 5/ml)

N/A = Not applicable

2. The current data (Table 5.15) show that in different biofilms, the ratios 

of the bacteria are different, the 25 °C biofilms contain lower densities o f viable 

Legionella (cfu) which is close to natural environmental biofilms. The density 

(9.9 x 104cfu/l) in the planktonic phase is in the normal range <104 to 105cfu/l 

(Lee and West 1991), the culturable Legionella cfu is at the low level ratio 

(0.475% cfii/total cells) in the total Legionella population. The 30 °C biofilms 

contain higher densities o f Legionella while the planktonic phase density reached 

the highest level (1.87xl06cfu/l), which is in the risk range (103 to 107cfu/l). The 

ratio of cfu/ total Legionella cells is at a high level (6.7% cfu/ total Legionella 

cells). The tap water biofilms are also in the high level of Legionella density
f \  0  • •(3.1x10 cfu/cm ) and its ratio of Legionella cfii/total Legionella cells is also at the 

same high level (6.6%) within the 30 °C biofilms.
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Table 5.15 Comparison of Bacterial Densities in the Biofilm

Biofilms 30° C (river water) 
seeded

25° C (river water) 
unseeded

30° C (tap water) 
seeded

Legionella (FCM 
cells/cm2)

21600 8000 4000

Legionella BCYE 
(cells/cm2)

2470 43 297

BCYE/FCM (%) 11 0.47 6.6

BCYE /R2A (%) 5.1 0.06 na

Legionella BCYE 
(cells/ml)

1870000 99000 3100000
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6.0 GENERAL DISCUSSION

6.1 GENERAL DISCUSSION

A comprehensive study on the application of flow cytometry for the 

analysis of biofilms has been undertaken and the results presented in this thesis. It 

has been shown that flow cytometry can been successfully used to enumerate, sort 

and image the bacteria and amoebae in biofilms and water distribution systems as a 

rapid and sensitive semi-automated technique compared with the conventional 

microbiology. The novel fluorescent dyes and (fluorescein-labelled monoclonal 

antibodies) from the most current commercial dyes also have been screened and the 

staining protocols have been optimised and adopted for flow cytometric analysis and 

direct counting by EFM. Optimisation was done using pure cultures and samples 

from drinking water distribution systems. Biofilms were generated using both treated 

drinking water and river water with and without seeding with L. pneumophila. The 

tap water biofilms and river water biofilms were analysed by the flow cytometer and 

direct counting methods as well as by conventional microbiological methods (colony 

counting). The bacterial populations in real water distribution systems have been 

fully investigated and the total, viable bacteria were determined by the above 

methods.

It has been shown that the results of flow cytometric analysis of total L. 

pneumophila cells have a strong statistical correlation with the numbers of Legionella 

by BCYE colony counting methods for biofilms and planktonic phases. There are 

also strong statistical correlations between flow cytometric analysis and 

epifluorescent microscopic analysis (direct counting) for determination of bacteria, 

including Legionella, E. coli, Salmonella, Pseudomonas and amoeba, and total and 

viable cells in pure cultures. A similar statistical correlation was seen with bacteria 

in water distribution systems and biofilms.

6.2 OPTIMISATION OF THE FLOW CYTOMETER

Threshold and its levels of selection are very important for flow cytometric 

analysis. Optimal threshold and its levels optimise the results with lower background 

noise and give accurate counting and high recovery sorting. For the same samples,
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for example mAb-FITC stained L. pneumophila suspension, results using fluorescent 

detector FL1-H at 530 nm as threshold could give 100% of real cells in the samples, 

but only 10% of cells if using forward scatter detector FSC-H as threshold. Current 

work for threshold parameters shows that for counting or sorting bacteria stained 

with certain dyes, it is better to choose the same fluorescence colour parameter with 

the dye used to stain the target cells as the threshold for the flow cytometric analysis 

(Table 6.1).

Table 6.1 Selections of Parameters as Threshold for Different Staining

Stain Threshold Detector

CTC FL3 Red detector (600 nm)

DAPI FL1-H Green detector (530 nm)

HOE33342 FL1-H Green detector (530 nm)

PI FL3 Red detector (600 nm)

Rhl23 FL1-H Green detector (530 nm)

Mab-FITC FL1-H Green detector (530 nm)

Note: DAPI is often used in dual staining with green or red fluorescent dyes so the 

threshold detector should be FL1-H or better still FL2-H.

Threshold levels could be affected by laser power levels, PMT voltage levels 

as well as sample flow rates. For the green fluorescence threshold (FL1), the 

relationship between PMT voltage(Y) and the threshold levels (X) could be described 

as the strong linear correlation (Y = 0.625X + 443.75, r = 1.0, n = 5). For the sample 

flow rate, the optimal is at the rate of 1000 events /second for both accurate 

enumerating and sorting under our experimental conditions. The laser power was 

fixed at 200 mW and PMT level was at 600 V in this study.

6.3 OPTIMISATION OF MOLECULAR STAINS FOR FLOW 

CYTOMETRY

The thesis set out to optimise a variety of stains for the detection and 

enumeration of bacteria. Some stains will provide total counting and other stains
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which can be transformed by bacteria can give an indication of viability. A list of the 

stains together with their excitation and emission spectra are given in Table 6.2 

together with data on optimum times and staining concentrations for EFM and FCM 

analysis.

Table 6.2 List of Stains used in the Study Together with their Excitation 

and Emission Spectra and Optimal Time/temperature for 

Staining.

Stain Excitation

(nm)

Emission

(nm)

Concentration Time

(min)

Tempertature

(°C)

AO 503 530 (DNA) 

640 (RNA)

10 pg/ml

5

RT

CTC 530 600 2-4mM 120 RT/37

DAPI 372 455 2-5 pg/ml 15 RT

FDA 505 530 Unsuitable for environmental samples

HOE342 395 450 2 pg/ml 30 37

mAb 490 530 12.5-25% 60 37

PI 500 630 5 pg/ml 20 RT

Rhl23 485 546 5 30 RT

The best stain for counting total bacteria was found to be DAPI. The best 

stain for counting viable bacteria was CTC although L. pneumophila stained very 

poorly with CTC. CTC staining was shown to improve with the addition of sodium 

pyruvate (4 mM). As far as it is known there are no details of CTC staining of 

Legionella which have been published, but the CTC’s toxic effects on the bacteria 

has been reported by Ullrich (1996). The data from the current staining work have 

shown that even for pure cultures of bacteria, the highest CTC positive cell numbers 

never reached 90% or more of the total count and ratios ranged from 60% to 80% 

(Tables 3.2, 3.5 and 3.6). The reasons for this could be due to the CTC toxicity, or, 

the fact that in pure bacterial populations some bacteria could be dead or lose their
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metabolic activity. The traditional colony count methods can only show the viable 

and culturable cells (VC) and direct counting by flow cytometry could detect all the 

cells including VC cells, viable non-culturable cells as well as dead cells in the whole 

population. One explanation of the failure of staining L. pneumophila by using 

CTC could be that Legionella expels the CTC by the efflux pumps on its cell 

membrane. The further investigation using the lower temperature 4 °C to reduce the 

membrane pump’s ability, has shown that in normal staining time (4 h) up to three 

days, CTC was still negative for staining L. pneumophila. By incubating for a few 

weeks and up to two months at 4 °C (keeping the slides in the fridge), microscopic 

examination could find very low numbers of CTC positive Legionella cells in view 

fields which included the normal small size cells and the Legionella filaments. This 

would tend to indicate that there is not a pumping mechanism involved in the failure 

of CTC to stain the cells and it might be a subject for future research.

AO could be used for total cell counting by EFM but is not suitable for 

viability staining or flow cytometry. The proportion of red (viable cells) was found 

to increase with stain concentration. Fluorescein diacetate stained bacteria in 

environmental samples poorly and was therefore not used for studying biofilms using 

EFM or FCM. Rhl23 and HOE342 were also found to be good for counting viable 

bacteria and Rhl23 could be used as a dual stain with CTC. Propidium iodide was 

found to be useful for staining non-viable cells for both EFM and FCM and it could 

be used in combination with DAPI to give total and viable counts. Combining PI 

with Rhl23 gave unstable staining. CTC and DAPI combined well for counting total 

and viable cell counts and it was decided to use these two stains for the study of the 

biofilms. Monoclonal antibody (mAb) is suitable for detecting L. pneumophila in 

biofilms and water samples by flow cytometry and the data from the current work 

have demonstrated there were no cross reactions by using the mAb for labelling the 

L. pneumophila. The mAb FITC labelling of L. pneumophila could be used to 

predict the viable cultural cells (CFU) due to the strong correlation between the two 

methods. The literature for the applications of flow cytomety to determine 

Legionella and amoebae is mainly limited to pure culture studies on these organisms. 

Flores et al. (1990) reported the use of mAb and flow cytometry for the 

differentiation of Naegleria fowled  from Acanthamoeba species. Muldrow (1982) 

described the use of flow cytometry for the study of free-living amoebae and,
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recently, Harf et al., (1997) reported the use of flow cytometry to study the 

endocytosis of pure culture, viable L. pneumophila by Acanthamoeba palestinensis 

and his work provided a valuable method for the recovery of viable Legionella. 

Avery et al., (1995) reported the application of flow cytometry to sort soil amoebae. 

As far as it is known there are no details of flow cytometric analysis of amoeba and 

Legionella from tap water biofilms and environmental water biofilms.

6.4 COMPARISON OF CULTURAL, MICROSCOPIC AND FLOW 

CYTOMETRY METHODS FOR THE DETECTION OF BACTERIA

Counting using the standard colony counting media is the basic method for 

assessing the hygienic quality of treated waters and the numbers of bacteria in 

environmental waters. It can also be used to assess the quality of water in buildings 

and installations such as cooling towers. One disadvantage of this technique is the 

long incubation required for growth and EFM or FCM can be used to reduce this 

significantly. •

6.4.1 In Pure Cultures

Flow cytometry of pure cultures was shown to give very good correlation 

with EFM. Cells of S. aureus counted using FCM and at the same time sorted onto 

microscope slides for EFM gave very accurate results (Table 5.1). Similar results 

were obtained for counting stained cells of L. pneumophila (Table 5.2).

6.4.2 In Environmental Samples

The current work has indicated that for colony counting methods the R2A 

colony count method is more sensitive than the YEA colony count methods using 1 

day and 3 days incubation. The ratio is 2:5:256 (0.8:2:100 = YEA Id cfu: YEA 3d 

cfu: R2A 7d cfu) for the determination of bacteria in water distribution systems. 

The coliform and Legionella spp were negative in the water distribution system 

samples in the current work, but the total viable and culturable bacteria (VC) was 256 

cfu /ml on average and the highest density was 1054 cfu /ml. Though HPC bacterial
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density has no direct impact on human health, it has sometimes been reported to 

promote the development of coliform bacteria and of macro-invertebrates such as 

Asellus and Nais (Kernel's, et al 1995).

This study of bacteria in water distribution systems has shown that the 

traditional microbiological methods could only show 0.15% of total bacteria in water 

distribution systems when comparing R2A colony counts with DAPI counts using 

EFM (Tables 4.1 and 4.2) within up to 7 day testing and there was a good correlation 

between R2A PC and DAPI direct counting. The CTC direct counting indicated that 

even in treated water samples, there are still high numbers (103) viable bacteria per 

ml on average while the cfu densities were 10.7/ml by R2A PC and 3.25 cfu /ml by 

YEA Id and 2.3 by 3d colony counts (Table 4.3). The coliform cfu = 0/100 ml. The 

current study shows that flow cytometry and direct counting methods can be used to 

quantify microorganisms in water distribution systems combined with the traditional 

microbiology in future. The big advantage here is that direct counting using EFM or 

FCM can provide data in as little as 60 minutes. One disadvantage is the cost of 

buying and running the flow cytometer compared with conventional culture methods.

6.4.3 In Biofilms

Colony counting of bacteria in biofilms was compared with direct counting 

for the river Aire generated biofilms. Like the water distribution samples, direct 

counting with DAPI and CTC gave a much higher recovery than conventional colony 

counts. In addition, R2A gave higher counts than YEA (Table 5.9, Figure 5.7b). The 

difference in counts is clearly demonstrated in Figure 5.5b where development of the 

biofilm can be seen much more clearly by direct counting using DAPI. Similar data 

can be seen in Table 5.9 and Figure 5.6 although bacteria decrease rather than 

increase.

6.5 COMPARISON OF CULTURAL METHODS AND FLOW

CYTOMETRY FOR THE DETECTION OF LEGIONELLA

6.5.1 Tap Water Biofilms

One biofilm experiment was done using tap water seeded with Legionella at

30 °C. Recoveries from tap water biofilm when analysed by FCM and EFM gave
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good correlation (Table 4.6). The analysis was repeated on three occasions (Table 

4.7a and 4.7b) for both the planktonic and biofilm phases and again there was good 

correlation. Legionella peaked in the tap water biofilms after 3 days and then 

numbers fell until a peak at 14 days (Table 4.8). Numbers in the planktonic phase 

declined. Significantly lower results are obtained by culture in both planktonic and 

biofilm phases compared with direct counting.

6.5.2 In River Aire Water Biofilms

Two biofilms were generated using river Aire Water. The first was not 

seeded and incubated at 25 0 C because low numbers of L. pneumophila were 

detected in the source water (Table 5.4). The second was seeded with L. 

pneumophila and the temperature increased to 30 ° C. In the first experiment, the 

numbers of Legionella in the recirculated water remained low (probably because the 

recirculated water was only at 18 0 C, the numbers in the planktonic phase increased 

from 2.5 cfu/ml to 365 cfu/ml in 16 days (Table 5.6a) and to 100 in the biofilm 

(Table 5.7a). However, numbers detected in the biofilm by both EFM and FCM were 

three orders of magnitude higher (Table 5.7a, Figure 5.5a) than those obtained by 

direct counting. There is also good agreement between counting by EFM and FCM.

In the seeded biofilm at 30 0 C the numbers of Legionella peaked at day 7 

(5,300 cfu/ml) with a second peak at day 15 (4,960 cfu/ml) before declining 

to 800 cfu/ml in 28 days (Table 5.10). The numbers in the biofilm peak on day 20 by 

using culture (10,260 cfu/cm ) whereas they peak at day 15 by mAb direct counting 

(29,700 cfu/cm2). Direct counting always gives higher results but at the higher 

temperature, the difference between the two is much smaller, particularly beyond the 

initial stages of the experiment.

191



Figure 6.1 Comparison of Legionella Counting in the Biofilm at 30 0 C

Using BCYE Culture and mAb Direct Counting
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This would suggest that at the higher temperature of 30 0 C the Legionella 

are more active in their growth and that because of this better recoveries have been 

obtained on BCYE.

Rogers (1994 a and b) reported the study of Legionella biofilms by using 

colony counting and microscopy. She showed that in the biofilm system, the 

planktonic flora contained a total microbial flora of 104 to 106 cfu/ml by using R2A 

PC, with numbers of Legionella CFU by BCYE PC between 103 to 104/ml. In her 

biofilms (on glass material), the total flora was 1.9xl06 cfu/cm2 and Legionella cfu 

was 1.7xl03/cm2 on average in 28 days in tap water at 30 °C. The ratio of 

Legionella with total flora was 0.9%.

The current work by flow cytometry shows that for Legionella in tap water 

biofilms, the number of cfu was 2.9x102/cm2 which is lower than those of Rogers and 

in the 30 °C river water biofilms, Legionella cfu was 2.4x103/cm2 (Table 6.3). The 

ratios of numbers of Legionella cfu in biofilms and the planktonic phase were 

different; in the tap water biofilms system, the current result was 9.6% compared 

with Rogers results of 101%. In the 30° C biofilms, the ratio from the current work 

was 132%, and in the 25° C river water biofilms, was 43%. Rogers only adopted the
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colony counting methods (BCYE PC and R2A PC) to enumerate the cfu numbers of 

total bacteria and Legionella and there have been no details about the relationship 

between direct counting by flow cytometry or epifluorescent microscopy and colony 

counting for Legionella published up to now.

For the relationship between total bacteria and Legionella in a biofilm 

system, Rogers (1994 a and b) concluded that no direct relationship existed between 

total biofouling and the number of L. pneumophila cfu. The current work shows 

(Table 6.3) that in the river water biofilms seeded with Legionella (30 °C), the ratio 

of Legionella cfu to total bacteria (BCYE PC/R2A PC%) was 0.13% to 14.62% with 

5.1% average, and the correlation between Legionella cfu and total bacteria cfu (R2A 

PC) was not good (r = 0.2107, n = 9); and 0.06% (r = -0.0177, n = 8) in 25 °C 

biofilms. The Legionella cfu could not be predicted accurately from the total 

bacterial cfu present in the biofilms. But the current work (Table 5.12; Table 6.3) has 

shown that there were strong relationships between Legionella cfu and total 

Legionella cells in biofilms.

In 30 °C river biofilms with seeded Legionella, the ratio of BCYE PC/ 

FCM count (total count with mAb) ranged from 0.36% to 21% with 6.68% average 

with a strong statistic correlation (r = 0.8572, n = 8) (Table 5.12). The further work 

by direct reading of Legionella cells stained on the biofilms directly with mAb-FITC 

in the biofilms show very poor correlation between Legionella cfu and total cells in 

biofilms (r = 0.2861, n = 8) and the ratio was ranged from 1.6% to 68% (19% 

average) for BCYE DC/mAb DC (Table 5.10 ).
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Table 6.3 Comparison of Ratios of BCYE PC and mAb FCM (EFM) in

Biofilms

Biofilm System Ratio of BCYE PC mAb FCM Counting

% r n

30 °C river water seeded FCM 8 0.8752 8

30 °C river water seeded EFM 9 0.8163 8

25 °C river water unseed FCM 0.47 0.8757 8

25 °C river water unseed EFM 0.47 0.8940 8

30 °C tap water seeding FCM 8.74 0.9026 6

30 °C tap water seeding EFM 8 0.9084 6

Average 0.8788

Ratio olf BCYE PC/R2A PC

30 °C river water seeded FCM 5.1 -0.0023 9 Biofilm

30 °C river water seeded FCM 0.5 -0.4490 9 Planktonic

25 °C river water unseed FCM 0.06 -0.0177 8 Biofilm

25 °C river water unseed FCM 0.05 0.5219 7 Planktonic

In the 25 °C river water biofilms without seeding with Legionella cells, the 

ratio of BCYE/ mAb FCM strongly correlated (r = 0.8757, n = 8) with an average of 

0.47% (BCYE PC/ mAb FCM). The ratio of BCYE PC/ mAb EFM DC was 0.47% 

on average (r = 0.8940, n = 8). Again, in tap water biofilms (30°C with seeded 

Legionella cells), the ratio (BCYE PC/ mAb FCM) was 8.74% on average (r = 

0.9026, n = 6). So, it is clear that the current work indicates that there is a direct, 

strong statistical correlation between the number of Legionella CFU and total number 

of Legionella cells in the Legionella population both in biofilms and planktonic 

phases at different temperatures and it may provide a method to predict the culturable 

Legionella (CFU) in tap water biofilms and river water biofilms by using flow 

cytometry or microscopy with mAb labelling.
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6.6 COMPARISON OF CULTURAL METHODS AND FLOW 

CYTOMETRY FOR THE DETECTION OF AMOEBAE

The literature for the applications of flow cytomety to determine Legionella 

and amoebae is mainly limited to pure culture studies on these organisms. Flores et 

a l, 1990 reported the use of mAb and flow cytometry for the differentiation of 

Naegleria fowleri from Acanthamoeba species. Muldrow (1982) described the use 

of flow cytometry for the study of free-living amoebae and, recently, Harf et al., 

(1997) reported the use of flow cytometry to study the endocytosis of pure culture, 

viable L. pneumophila by Acanthamoeba palestinensis and his work provided a 

valuable way for the recovery of viable Legionella by growing the Legionella in 

amoebae. Avery et al., (1995) reported the application of flow cytometry to sort soil 

amoebae. As far as it is known there are no details of flow cytometric analysis of 

amoeba and Legionella from tap water biofilms and environmental water biofilms.

6.6.1 In the Tap Water Biofilms

Amoebae could be counted in biofilms by both EFM and FCM. Numbers 

were seen to increase to a maximum of 2,946 cells per cm2 in the biofilm phase by 

day 14 and 2,581 in 28 days by FCM (table 4.8). This corresponds to a decrease in 

the numbers of Legionella.

6.6.2 In River Aire Water Biofilms

Amoebae were counted in the Aire river biofilms at 30 °C. Counts were 

maximum at day 20 at 34,830 cells per cm2 (Table 5.10).

6.6.3 Determination of Biofilm Development on Surfaces Other than Glass

Attempts were made to generate biofilms on other surfaces (uPVC, copper 

and stainless steel. It was found to be difficult to read biofilm development on the 

other materials because uPVC in particular was white and reflected too much light. 

Also, it was difficult to remove biofilms from the other materials. uPVC in particular 

was very soft and scraping removed the base material. Only low numbers developed 

on copper.
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6.7 FURTHER WORK

Referring back to the objective of this project, results have been obtained 

which clearly indicate that flow cytometric analysis was successful for the 

enumerating, sorting and imaging of bacteria and protozoa in pure culture, water 

distribution systems, and biofilms as a more rapid and accurate method than the 

conventional microbiology. Further work should be carried out as follows:

6.7.1 Flow Cytometry

In the preliminary flow cytometric analysis reported in the thesis only the 

green detector (FL1-H, 530nm), red detector (FL3-H, 590 nm) and forward scatter 

detector (FSC-H) were chosen as thresholds for the analysis. The UV detector 

should also adopt 390 nm as a threshold, which may offer the two and three multiple 

colour detectors together to image the target samples stained with two or three 

different dyes, and give more accurate 2-D and 3-D total population, viable 

subpopulation images for enumerating and separate sorting. In the current work, the 

UV fluorescence has not been accurately detected by the flow cytometer due to the 

fact that the UV detector could not be accurately calibrated, and the UV fluorescence 

was mainly viewed by the epifluorescent microscope. Better detection of UV could 

be achieved by using a specific UV laser as opposed to a dual laser with UV as the 

second line. This would allow a more accurate calibration of the UV fluorescence 

detector.

The flow cytometric auto-recognising target technique will be very useful 

and reliable for determination of environmental microorganisms. In this study, the 

preliminary work was only carried out using the multiple colour gating technique to 

view, trace and image the target cells and population changes, distributions and 

recombinations following changing parameters in two D or three D plots.

6.7.2 Staining and Screening New Dyes for FCM Application

In the current work, commercial dyes, which are usually used for solid 

staining have been screened for flow cytometric analysis. For total enumeration, 

DAPI and PI have been recognised as the best dyes for flow cytometric analysis, and 

CTC as a best probe for detecting the viability. Rhl 23 has been successfully used for 

Gram-negative bacteria staining by using glutaraldehyde pre-treatment. CTC for
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staining Legionella was not successful in the current study and further work would be 

needed to find the reasons which could identify the mechanisms of Legionella 

metabolism and understand why the cells can live in the low nutrient and high 

temperature environments. Novel dyes for detecting the viability of Legionella could 

also be screened.

The current work has shown that there is a strong correlation between 

BCYE PC (CFU) with mAb-FITC-stained total L. pneumophila cells by flow 

cytometry in biofilms and in the planktonic phase. Similar studies on the relationship 

between BCYE PC and flow cytometry with mAb FITC in environmental samples 

should be carried out.

6.7.3 Applicability of these Findings to the Future Analysis of Water and

Environmental Samples

Flow cytometry can be used to obtain a more accurate and faster count than 

colony counting. In addition, it can detect cells which cannot be grown by 

conventional cultural techniques. Its application would be in the study of the 

development of the organisms in biofilms and the rapid screening of samples which 

might contain sufficient organisms to be a public health problem.
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Plate-2a Biofilms formation system.

Plate-2b Filtration device for the direct counting.
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Plate-3 CTC-Rhl23 dual viable staining of E. coli

Top: Red cells stained by CTC and photo by EFM (570nm filter).
Bottom: Green cells stained by Rhl23 and photo by EFM ( 510 nm filter).
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Plate-4 L. pneumophila and Amoeba cysts stained by mAb-FITC and DAPI.
Top: Green cells and cysts by mAb-FITC staining ( Photo by EFM 
510nm filter).

Bottom: Blue cells and cysts stained by DAPI ( Photo by EFM with 
410nm filter).



Plate-5 Amoeba cysts in biofilm stained by DAPI.
Top: Blue cys with thick wall stained by DAPI ( Photo by EFM ). 
Bottom: Amoeba cysts stained by DAPI in biofilm ( Photo by EFM ).
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Plate-6 FCM sorting Amoeba stained by DAPI.

Top: Amoeba sorted on the slide by FCM ( Photo by Light Microscope). 
Bottom: Amoeba sorted on the slide by FCM ( Photo by EFM ).
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The following paper was produced as a consequence of this research work. The 
reference is given below together with a copy o f the paper

Watkins, J., and Xiangrong Jian. (1997) Cultural methods o f detection: recent 
advances and successes. In The Microbiological Quality of Water, edited by 
Sutcliffe, D. W. 19-27. Freshwater Biological Association, 1997.
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Cultural methods of detection for microorganisms: 
recent advances and successes

J o h n  W a t k i n s  a n d  X i a n g r o n g  J i a n  
■■ Yorkshire Environmental, Alcontrol UK, Bradford Laboratory, George Street, 

Bradford, BD1 5PZ, UK

Most microbiological methods require culture to allow organisms to recover or to selectively 
increase, and target organisms are identified by growth on specific agar media. Many cultural 
methods take several days to complete and even then the results require confirmation. 
Alternative techniques include the use of chromogenic and fluorogenic substances to identify 
bacteria as they are growing, selective capture using antibodies after short periods of growth, 
molecular techniques, and direct staining with or without flow cytometry for enumeration and 
identification. Future microbiologists may not use culture but depend on the use of specific 
probes and sophisticated detection systems.

Introduction
In the beginning there was the Most Probable Number (MPN) or multiple tube technique for the 
solation of coliforms and Escherichia coli from water. The test was based upon a nutrient 
nedium (MacConkey Broth) containing lactose and bile salts as an enrichment medium (Anon 
1956). This was replaced at a later date by the introduction of the chemically-defined medium, 
Minerals Modified Glutamate Medium (PHLS 1969), as the standard for water testing. Both 
nedia detected bacteria by the fermentation of lactose in the presence of a surfactant, with the 
production of acid and gas. Incubation was at 37°C for up to 48 h. A lack of total specificity in 
he .medium necessitated the requirement of subculture and confirmation, and this took a further 
18 h. Hence a confirmed result took 4 days and this has always been seen as unsatisfactory. In 
iddition the test was labour intensive and open to interpretation by, in particular, the failure to 
produce gas. The final result was based on the analysis of 100 ml of water.

In 1953, Windle-Taylor et al. described a membrane filtration test for the analysis of drinking 
vater and by the mid-1970s this had gained wide acceptance. The isolation medium was still 
>ased on surfactant and lactose but now typical colonies could be identified and counted, 
vlembranes could be read in as little as 14 h although a presumptive result took 18 h to obtain. 
The medium still lacked specificity and confirmation taking a further 24' b was still required. 
Nevertheless, results became available at the beginning of the next working day. The method 
equired less preparation but was still labour intensive. It was also open to interpretation, 
lolonies which failed to ferment lactose, even though they might be indicators, were not 
ounted, and any which failed to confirm by acid, gas or indole production were discarded. 
Newly developed biochemical testing kits designed for the medical microbiologist were of 
ome help in sorting out problems, although they were not defined as part of the testing 
irocedure. We still manage to confirm the occasional strain of Yersinia pestis. Membrane 
titration is based on the analysis of 200 ml of water, albeit for two separately identified tests.

Plate counts (Anon 1994) are a standard method for detecting microorganisms in water, 
'hese rely on the growth of bacteria in a nutritionally rich culture medium. Such bacteria are 
mder stress from being in nutritionally deplete water and may be additionally damaged 
hrough water treatment or disinfection. It has long been recognised that cultural methods only 
.etect 0.01 to 1% of the total bacterial population present in any water sample.
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In-situ  testing
Colonies that grow on selective media contain a wide range of enzymes which can be utilised 
for the purpose of biochemical confirmation. Dufour & Cabelli (1975) described an "in-situ" 
test procedure for differentiating coliforms within the colifoi'm group. These tests were based 
on urease, oxidase and indole, all Conducted on the colony on the membrane. The same 
principle was applied to clostridia (Bisson & Cabelli 1979) and Aeromonas hydrophila 
(Rippey & Cabelli 1979), and can be seen in the confirmation of enterococci by the hydrolysis 
of aesculin' (Anon 1983). This type of test may reduce the total analysis time to 24 h. 
Biochemical test kits have also been produced with an incubation time of 2 to 4 h. We still, 
however, rely on presumptive counts for any decisions we may take about water quality.

Utilisation of specific enzymes 
The need for less labour intensive analysis, together with utilisation of specific enzymes for 
easier interpretation and an earlier confirmed result, has lead to a return to the principles of the 
multiple tube technique. There is a range of chromogenic substrates which can be incorporated 
into media to give enzyme-based colour changes (Table 1). The enzyme [3-galactosidase 
cleaves lactose into glucose and galactose, and is an essential stage in lactose fermentation. 
Substrates such as ortho-nitrophenol-(3-D-galactopyranoside, when cleaved by the enzyme, 
produce the yellow colour of ortho-nitrophenol. The enzyme p-galactosidase is found in 
coliforms, including E. coli, and therefore a simple colour test for coliforms becomes 
available. An additional enzyme, {3-glucuronidase, is found in E. coli, Salmonella spp. and 
Shigella spp. An additional substrate, methyl umbelliferyl-|3-D-glucuronide, can also be added 
to the medium. The substrate is broken down by the enzyme and free methyl umbelliferone 
can be demonstrated by fluorescence in the medium under ultra-violet light. Edberg et al.
(1988) developed the combination of the two substrates in a chemically-defined medium, 
providing the basis for a qualitative detection system for coliforms and E. coli. The test, 
originally a 24 h test and now designed for 18 h incubation, provides a confirmed result, is less 
labour intensive than membrane filtration, and uses only 100 ml of water. Although originally 
only qualitative, its use has been validated through extensive trials (Edberg et al. 1989; 
Cowburn et al. 1994) and was found to give comparable results to standard methods. The test 
method has now been modified to provide quantitative results in the form of the Quantitray 
(Idexx, USA) and national trials are now being run to validate this.

Table 1. A  list o f  som e o f  the chrom ogenic and fluorogenic substrates available commercially.

Pnra-nitrophenol-P-D-galactopyianoside (PNPG) 
O rtho-nitrophenol-P-D-gnlactopyranoside (ONPG) 

4-inetliylum belliferyl-P-D-galactopyranoside (M UGAL)
4-iiiethylumbeUiferyl-p-D-glucuionide (MUG)

8-hydroxyquinoliiie-p-gJucuionide (BCIG)
5-bt'om o-4-etiJoro-3-indolyl-P-D -galactopyranoside' 

5-brom o-4-chloro-3-indolyI-p-D -glucuronide (BCIG)
4-m ethylum belliferyl phosphate (MUP)

5-bt'oii)o-4-chloro-3-indolyl phosopliate (BC1P)
4-m ethyhinibelliferyl-p-glucoside

There are other chromogenic substrates. Sartory & Howard (1992) described die use of-5- 
bromo-4-chloro-3-indolyi-|3-D-glucuronide as a marker for (3-glucuronidase in the isolation of 
E. coli from water, in a single membrane filtration test incubated at 37°C. The principle has 
now been adopted by a number of manufacturers and a wide variety of media are now 
available containing chromogenic substrates. Some of these are listed in Table 2. Although die 
test still takes 18 h, analysis is reduced to a single membrane and the results obtained are 
confirmed results. Like Colilert, the test volume has been reduced to 100 ml.
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Table 2. Some examples o f  com m ercially available chromogenic an d  fluorogenic media.

Product N am e Type of medium M anufacturer

Colilert Liquid Indexx, USA
Colilert (Quantitray) Liquid Index*. USA
Enterolert Liquid Indexx, USA
Coli sure Liquid M illipore, USA
Coli Form Test kit M illipore, USA
CH RO M agar ECC Agar Chrom agar, France
CH RO M agar U rinary Paths Agar Chrom agar, France
C H RO M agar Candida Agar Chrom agar, France
Fluorocult Liquid M erck, Germany
Chrom ocult Coliform Agar M erck, Germany
C hrom ocult Enterococcus Agar M erck, G erm an y .
M icrosure E. coli Agar Gelm an, USA
Coli 1 D Agar Biom erieux, France
EM X Agar' Agar Biotest. Germany
C L-EC-M F Agar Agar B iolife, Italy

A number of questions have been raised about the ability of environmentally or disinfectant- 
damaged organisms to grow on selective media with high levels of nutrients, and to express 
the enzymes P-galactosidase and (3-glucuronidase. The addition of sodium pyruvate to 
isolation media (Sartory 1995) will improve the recovery of organisms. In trials at Yorkshire 
Environmental as part of a national trial comparing the method of Sartory & Howard (1992) 
with conventional membrane filtration, -a significant number of samples failed on the test 
medium (m-LGA) with 100 ml of treated water, but were found to be satisfactory by 
conventional membrane filtration on the same sample (Anon 1983). In addition, there was an 
increase in the number of coliforms isolated on the new medium compared with the numbers 
isolated by the standard method when both were positive. Pyruvate was not the only factor in 
m-LGA that was different but an increased sensitivity was noted.

The expression of the enzyme P-glucuronidase by E. coli is variable (Lewis & Mak 1989; 
Clarke et a l  199.1; Schets et al. 1993). Environmentally-derived E. coli from surface waters 
was found to be poor at expressing P-glucuronidase. This was one point highlighted in a report 
prepared for the Department, of the Environment, on the comparison of a number of media 
with simulated and environmental samples done by the Public Health Laboratory Service. An 
additional problem may be environmental coliforms which possess P-galactosidase but fail to 
ferment lactose on primary isolation. Such isolates would be positive by chromogenic 
substrate analysis but negative by lactose fermentation. Increasing the sensitivity of the 
detection method, whilst important in detecting faecal contamination, will apparently lead to a 
decrease in water quality and in water quality statistics. It is therefore important that new 
methods are comparable with existing methods in their sensitivity and that this is properly 
validated. It is equally important to understand that different sources of water may give 
varying results with chromogenic and fluorogenic media. Trials in any water company are 
therefore important to assess the sensitivity of any new test method with a cross-section of 
waters. What then becomes unclear is to what extent the trials should be conducted. How 
many different water types should be examined and how many samples should be tested for 
each water type? To compound matters further, potable water analysis produces a low failure 
rate. Many thousands of samples may need to be analysed to produce a significant number of
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positive samples for statistical analysis. The question of the analysis of a single 100 ml water 
sample instead of 200 ml of water must also be considered carefully, in that any apparent 
improvement in water quality statistics might be interpreted as being due to a change in the 
test procedure or a reduction in the test volume.

It is not difficult to produce new media using the widely available chromogenic substrates. 
For example, detection of Clostridium peifringens is based on the production of hydrogen 
sulphide from the reduction of sulphite, producing black colonies on isolation media. This 
feature is variable (Oldham 1995; Rushby personal communication) and typical colonies are 
often colouriess. Adding BCIP for phosphatase in the selective medium will give blue colonies 
or MUP will give fluorescent colonies.

Whilst these newer test methods are designed to be less labour intensive (more cost 
effective) and provide confirmed results, they still require 18 h incubation to produce a result. 
In some respects this is convenient because samples are analysed on one afternoon and results 
are available at the beginning of the following working day. Reduction of the analytical time 
to provide results on the same working day, in the form of a 6 to 8 h test (Sidorowicz & 
Whitmore 1995), may seem desirable but is not practicable. Without altering current sampling 
regimes, results would be available about midnight. Reduction of the analysis time to 1 to 2 h 
would provide same-day results but there is insufficient time for culture. As an alternative, 
assessment for viability now becomes important. Raw waters contain coliforms and E. coli. 
Treatment is designed to remove some and render the remainder non-viable (non-culturable). 
These organisms will not be detected by standard cultural techniques but may be detected by 
viability assessment and their significance needs to be clearly established.

Alternative methods of detection

Newer techniques for detecting microorganisms in drinking water have been reviewed by 
Sidorowicz & Whitmore (1995). Some of these have limited culture as part of the technique. 
The short-term culture of target organisms in noil-selective culture media (eliminating the need 
for pre-enrichment) may be followed by a method of labelling cells specifically and a highly 
sensitive method of detection.

A number of DNA-specific fiuorochromes are available for the detection of microorganisms. 
Some of these can differentiate between viable and non-viable bacteria. Acridine orange is 
commonly used to detect and count bacteria in water by direct microscopy (Fry 1988). 
Alternatives are 4’6’-diamidino phenylindole (DAPI) and the bis-benzamide derivative 
Hoechst 33342, used by Monger & Landry (1993) to detect bacteria in fresh and marine 
waters. Rhodamine 123 (Kaprelyants & Kell 1993; Morgan et al. 1993) and fluorescein 
diacetate (Jorgensen et al. 1992) have been used to determine viable biomass in water and 
waste water treatment. A tetrazolium salt, 5-cyano-2,3-ditolyltetrazolium chloride (CTC), has 
been.used to detect viable bacteria in culture (Kaprelyants & Kell 1993) and in secondary 
treated effluents (Rodriguez et al. 1992). It has also been used to count planktonic and sessile 
respiring bacteria in drinking water (Schaule et al. 1993). Bovill et al. (1994) also reported the 
use of CTC for detecting metabolic activity in heat-stressed cells. Deere et al. (1995) used bis- 
(1,-3-dibutylbarbituric acid) trirriethine oxonol for assessing bacterial viability, and Porter et 
al. (1995) describe the use of a range of viability dyes for analysis of indigenous bacteria from 
soil. The incorporation of additional specific labels in the form of fluorescent antibodies 
enables specific bacterial species to be detected and their viability assessed.

The lluorochromes listed in Table 3 can be used to study bacteria in water. When results of 
direct counting are compared with plate counts on nutrient media for the formation of biofilms, 
two very different pictures emerge. Figure 1 shows the accumulation of bacteria in a biofilm
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over a period of 2 weeks. Counts were made using yeast extract agar (3 days at 22°C; Anon 
1994), R2A agar (7 days at 20°C; Reasoner & Geldreich 19S5) and staining with DAPI. 
Values obtained by direct counting are always higher than cultural techniques but after 9 days 
there is a significant increase in the biofilm that can only be detected by DAPI staining.
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Tabic 3. Som e examples offluorochrom es with their fluorescent properties.

R eagent W avelength ' 
Excitation Emission

A cridine orange 487 510
Fluorescein isothiocyanate 488 530
Phycoerythrin (PE) 488 575
D iam idino phenylindole (DAPI) 345 455
Propidium  iodide (PI) 493 639
Rhodam ine 123 505 543
Fluorescein d iacetate (FDA) 505 530
Trim ethine oxonol 535 560
H oechst 33343 350 500
C yanoditolyl tetrazolium  chloride (CTC) 530 600

Immunological methods
immunofluorescence, based on detection by labelling antibodies with a fluorochrome (direct 
immunofluorescence) or the detection of an antibody antigen complex with a labelled anti
species (indirect immunofluorescence), has been used widely to detect and serotype specific 
microorganisms. The development of mouse monoclonal antibodies has further enhanced this 
technique. Immunofluorescence has been used to detect a wide variety of microorganisms in 
food and water and provides a quick way of establishing their presence. Colbourne & Dennis
(1989) demonstrated Legionella pneumophila serogroup 1 in waters abstracted for drinking. 
Brayton et al. (1987) described the enumeration of Vibrio cholera in tropical waters using 
immunofluorescence as a more sensitive tool than culture. More recently Pyle et al. (1995) 
have described a combined immunofluorescence and fluorogenic probe to detect and assess the 
viability of E. coli 0157:H7 in water.

Immunofluorescence is one of many methods to be used for the detection of bacteria. 
Enzyme-linked immunosorbant assay (ELISA) has also been used, after a short period of 
growth, to detect Salmonella spp. in foods. However, with the exception of the detection of 
rotavirus, the technique is not used in the water industry. The test is relatively insensitive, 
requiring ca. 104 cells for a positive response.

Immunocapture using latex-coated magnetisable beads has shown more promise. Used 
primarily for the isolation of bacteria from food (Cudjoe et al. 1994), the technique has been 
adapted for the isolation of E. coli 0157:H7 from food (Wright et al. 1994) and water, and has 
been used to concentrate Cryptosporidium  from water. The principle is based on using 
antibody-coated magnetisable particles to capture target organisms from a heterogenous 
mixture of microorganisms. Once the organisms are captured, the beads can be separated from 
the mixture using a magnet. The captured organisms can be subjected to conventional culture 
or detected by microscopy, ELISA, molecular techniques or ATP assay. The period of culture 
by pre-enrichment before detection can be substantially reduced to ca. 4 to 5 h incubation, 
where only low numbers of organisms are present. With rapid detection techniques, organisms 
can be detected in as little as 8 hours.

1 Flow cytometry
Flow cytometry was originally developed for use in the study of eukaryotic cells and, in 
particular, leucocytes in mammalian blood. More recently attention has been turned to the 
study of microorganisms. Flow cytometry has been used in the study of the bacterial cell cycle 
(Skarstad et al. 1983) and its potential as a tool for microbial ecology has been recognised by
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Edwards et al. (1992) who review the principles of flow cytometry. Diaper & Edwards (1994) 
reported the use of (low cytometry for the detection and enumeration of viable Staphylococcus 
aureus during survival in a lakewater microcosm, and Porter e t al. (1.995) were able to 
enumerate and sort mixtures of S. aureus and E. coli labelled with fluorescent antibody.

Flow cytometry can be used as a rapid and sensitive method for the analysis of bacterial 
populations and for detecting small numbers of target microorganisms within a heterogenous 
population (Watkins et al. 1995). There is a wide range of fluorescent probes available (Table 
3) for both total and viable counts, and for specific detection using labelled monoclonal or 
polyclonal antibodies. In comparing flow cytometric counting with direct epifluorescence 
:ounting on the same suspension, results would appear to be reproducible under the correct 
operating conditions (Table 4). Detection of small numbers of target organisms was 
leinonstrated by Pinder et al. (1994), counting Aeromonas salmonicida in survival studies and 
letecting Salmonella typhimurium in a mixed Salmonella population. Industrial applications 
nclude analysis of yeast in wine and fruit preparations, total viable counts on vegetables, and 
.ntibiotic sensitivity testing (Brailsford & Galley 1994). Studies on drinking water, by 
omparing propidiun iodode (PI) staining and counting by epifluorescence, and PI staining and 
ounting by flow cytometry, have given good comparative results (Table 5).

Table 4. Comparison o f  counts  o f  Staphylococcus aureus stained with CTC and DAPI, 
obtained by flo w  cytom etiy (FCM ) and by sorting and d irect counting (EFM ).

CTC Stain D API Stain
FCM EFM FCM EFM

68 68 8 6
46 44 7 .6
41 39 12 (2
65 62 15 10

256 257 31 33

Table 5. Comparison o f  counts on drinking water sam ples stained with propidiun iodide 
and enum erated by direct epifluorescence m icroscopy (EFM ) and flo w  cytom etiy  (FCM).

Sample N um ber Total Count (cells per ml)
FCM EFM

16113433 880,000 760,000
16113343 70.000 28,000
16113435 168,000 117,000
16113436 560,000 504,000
16113444 284.000 212,000

There is a wide range of applications for rapid-flow cytometric analysis following a short 
riod of pre-enrichment. Salmonella and Listeria monocytogenes could be analysed 
nultaneously from the same broth using antibodies conjugated with different fluorochromes. 
e incubation period could be as little as 4 h, and with a sort facility target organisms can be 
:ted for culture, ELISA, or confirmation with molecular probes. Rapid detection of 
%ionella pneumophila from environmental samples also becomes easy and determination of 
.bility is easy. Having a short period of culture followed by flow cytometric analysis and 
ifirmation. immunological or molecular techniques will reduce analysis time down to less 
n 8 It.
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Discussion
A number of rapid methods are available for the detection and enumeration of 
microorganisms. Most of these have been developed for, and, are used in, the food industry. In 
the water industry, current attention is focused on chromogenic and fluorogenic substrates as a 
way of getting confirmed results after primary incubation. A similar trend is developing in 
clinical microbiology. To be effective in water analysis, a reduction to 8 h for the time 
between sampling and result is not really applicable. A reduction to between 1 and 2 h is a 
possibility but culture becomes impossible and we have to rely on enzyme-based detection 
methods. There are substrates for the enzymes P-galactosidase and P-glucuronidase which 
emit light when broken down. Detection systems for light emission can detect single cells on a 
membrane and can therefore detect faecal indicators without growth.

Direct comparisons with cultural techniques are important if meaningful comparisons are to 
be made about water quality. The technology is available and being developed, and perhaps 
one day microbiologists will have to accept a change in culture, throwing away the humble 
Petri dish for rapid detection of microorganisms "in-situ".

The authors w ish to thank Alcontrol U K  for permission to publish this article. The opinions expressed  
here are those o f  the authors and not necessarily those o f  the company they represent.,For Harry Fennell 
and Frank Jones.
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