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Abstract

This thesis presents an investigation into the application of optical fibre sensors to a 
tomographic imaging system for use with gas/water mixtures. Several sensing 
techniques for measurement of two component flow using non-intrusive techniques are 
discussed and their relevance to tomographic applications considered. Optical systems 
are shown to be worthy of investigation.

The interaction between a collimated beam of light and a spherical bubble is described. 
Modelling of different arrangements of projections of optical sensing arrays is carried 
out to predict the expected sensor output voltage profiles due to different flow regimes 
represented by four models. The four flow models investigated are: a single pixel flow, 
two pixels flow, half flow and full flow models.

The response of the sensors is based on three models: optical path length, optical 
attenuation and a combination of optical attenuation model and signal conditioning. In 
the optical path length model, opaque solids or small bubbles, which are conveyed, may 
totally or partially interrupt the optical beams within the sensing volume. In the optical 
attenuation model, the Lambert-Beer’s Law is applied to model optical attenuation due 
to the different optical densities of the fluids being conveyed. The combination of 
optical attenuation model and signal conditioning is designed to improve the visual 
contrast of the tomograms compared with those based on the optical attenuation model.

Layergram back-projection (LYGBP) is used to reconstruct the image. A hybrid 
reconstruction algorithm combining knowledge of sensors reading zero flow with 
LYGBP is tested and shown to improve the image reconstruction. The combination of a 
two orthogonal and two rectilinear projections system based on optical fibres is used to 
obtain the concentration profiles and velocity of gas bubbles in a vertical column.

The optical fibre lens is modelled to determine the relationships between fibre 
parameters and collimation of light into the receiver circuit. Modelling of the flow pipe 
is also carried out to investigate which method of mounting the fibres minimises 
refraction of the collimated light entering the pipe and the measurement cross-section. 
The preparation of the ends of the optical fibre and design of the electronics, which 
process the tomographic data, are described.

Concentration profiles obtained from experiments on small bubbles and large bubbles 
flowing in a hydraulic conveyor are presented. Concentration profiles are generated 
using the hybrid reconstruction algorithm. The optical tomographic system is shown to 
be sensitive to small bubbles in water of diameter 1-10 mm and volumetric flow rates up 
to 1 1/min, and large bubbles in water of diameter 15-20 mm and volumetric flow rates 
up to 3 1/min. Velocity measurements are obtained directly from cross correlation of 
upstream and downstream sensors’ signals as well as from upstream and downstream 
pixel concentration values.

Suggestions for further work on optical tomographic measurements are made.
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Chapter 1 

Introduction

1.1 Process Tomography

Direct analysis of the internal characteristics relating to multicomponent flow in a 

process plant is vital in order to improve the design and operation of the production and 

control equipment. In such applications, the measuring instruments should employ 

robust, non-invasive sensors that can be used in aggressive and fast moving fluids and 

multi-phase mixtures [Beck, 1997].

Process tomography is a technique still in its infancy, but it has the potential for 

enabling great improvements in efficiency and safety in process industries, while 

minimising waste and pollution in a range of applications. It can be used to obtain both 

qualitative and quantitative data needed in modelling a multi-fluid flow system. In 

tomography, multiple projections are used to obtain sets of data from various views 

(typically, across a pipeline or a process vessel). These data are used to provide 

tomographic images representing the contents of the pipeline or vessel. The 

tomographic imaging of objects provides an opportunity to unravel the complexities of 

structure without invading the object [Plaskowski et al,1995].

Process tomography involves the use of instruments which provide cross-sectional 

profiles of the distribution of materials in a process vessel or pipeline. By analysing two 

suitably spaced images it is also feasible to measure the vector velocity profile 

[Abdullah et al, 1992]. From this knowledge of material distribution and movement, 

internal models of the process can be derived and used as an aid to optimising the



design of the process. This promises a substantial advance on present empirical methods 

of process design, often based on input/output measurements, with only a limited 

amount of information about the detailed internal behaviour of the process [Dickin, 

1992].

Process tomography should enhance an understanding of particle dynamics for both 

steady and unsteady flow and further, assist in the validation of fundamental design 

equations through accurate determination of parameters such as phase mass flowrate and 

flow velocity. The spatial variation of solids concentration and velocity should be 

readily determined, along with concentration profiles as a function of concentration, 

particle size distribution and flow velocity [Bidin, 1993].

The operation and design of processes handling multi-component mixtures can be 

improved with the application of process tomography by enabling boundaries between 

different components in a process to be imaged, often in real-time using non-intrusive 

sensors [Beck et al, 1997]. Identification of phase sizes and boundaries within process 

vessels will provide significant information in the elucidation of fundamental reaction 

kinetics and for optimum geometric design of large-scale equipment. The advances in 

sensor technology and related computation can be combined with tomographic 

techniques in order to enhance component discrimination in complex process mixtures. 

For example, tomography can be used to distinguish the relative proportions as well as 

the velocities of oil, water and gas in a pipe bringing up oil from an undersea production 

well [Beck et al, 1997].
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Information obtained from tomography will enable concentration, velocity and flowrate 

to be determined over a wide range of flow regimes by providing better averaging in 

time and space through multi-projections of the same observation [Abdul Rahim, 1996]. 

Tomography will provide an increase in the quantity and quality of information when 

compared to many earlier measurement techniques [Abdul Rahim, 1996].

1.2 Multiphase and fluid flows

Multiphase specifically refers to two or more phases of a substance, however, in the 

process industry it is used more generally to refer to mixtures of substances in the 

gaseous, liquid, or solid state. Hence air in water, or water in oil is called two phase 

flows [Dugdale, 1994]. The traditional approach to mutliphase flow measurement has 

been to separate the mixture first, and then measure the individual components using 

conventional flowmeters. This solution may be both expensive and inconvenient. 

However, an industrial multiphase meter may currently cost £ 150,000.

Fluid flows are widespread in the oil industry, chemical engineering, energy and 

biological engineering, where the operating efficiency of such a process is closely 

concerned with flow regime [Fordham et al, 1999]. When two immiscible fluid 

components are mixed, the boundary between the phases is affected by the motion of 

the two fluids. The flow pattern generated as a result of the motion of the two fluids is a 

function of the velocity of the flow constituents, the viscosities of the components, and 

the dimensions and the cross-section of the flow pipe [Govier & Aziz, 1970]. The 

operating conditions in a fluid flow for various applications may vary widely. For 

example, the pressure can vary from as low as a few bar in water transportation, to as



high as up to 1000 bar in slurry conveying operations. Characteristics of the fluids may 

range from clean water to highly abrasive cement slurries, viscous gel suspensions, or 

erosive and dangerous chemical solutions. In such conditions, accurate measurement 

and on-line monitoring of processes are extremely difficult [Hou et al, 1999].

Offshore oil production platforms produce oil, water, gas and sediment in the form of a 

suspended multiphase mixture [Southern and Deloughry, 1993]. This mixture is fed to 

oil separation vessels to recover the oil and gas. Water and sediment are removed and 

can be returned to the environment when there is a minimum of oil contamination. This 

ensures maximum extraction of the oil and minimum pollution of the environment 

[Southern and Deloughry, 1993]. It is important that the sampling method employed to 

measure the percentage of water contained in the crude oil be as accurate as possible in 

order to optimise oil production and separation. This will reduce the operating cost and 

enable the early detection of faults in the process ensuring safer operation [King et al, 

1983].

In measuring flowrate, the flowmeters which are currently available commercially 

cannot operate independently of the properties of the fluid [Hou et al, 1999]. Most of the 

meters require a homogenous mixture of components in the measurement section in 

order to obtain measurement stability and the required accuracy whereas in reality, it is 

usually impossible to obtain such a mixture, especially in horizontal or inclined pipes. 

Mixers are sometimes utilised in the pipes (one out of three in the market) but these 

result in a pressure drop [Hammer & Johansen, 1997]. Several types of meters are based 

on vertically upwards flows and utilise the natural mixing of such flows. However, at
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high gas fractions, the gas bubbles tend to collect in the centre of the pipe resulting in 

measurement error [Hammer & Johansen, 1997].

The performance of turbine flowmeters can be seriously affected by the viscosity 

changes and the presence of solid particles in the flow. Similar degradation also happens 

when differential pressure instruments are used [Hou et al, 1999]. Electromagnetic 

flowmeters, which are widely applied, cannot be operated if the conductivity of the fluid 

drops below 10"4 S/m [Bevir, 1970]. As most sensors currently used in multiphase 

flowmeters are affected by the distribution of components in the mixture, tomographic 

imaging may possibly improve the accuracy and provide a wider measurement range.

1.3 Aims and objectives of the thesis

This project aims to investigate the use of tomographic measurement for on-line 

monitoring of gas bubbles or oil droplets having low concentration when being 

conveyed by a liquid. A typical example is the measurement of crude oil being 

discharged by tankers flushing their oil storage tanks. This project aims to combine the 

sensitivity of optical sensors with the area monitoring potential of process tomography.

The specific objectives of this thesis are to:-

(1) Investigate the interaction between a collimated beam of light and a spherical 

bubble. Develop mathematical models of the optical system using optical path length 

and optical attenuation models.
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(2) Investigate a range of projections using the models from (1) and basing 

reconstructions on the layergram back-projection algorithm.

(3) Investigate the use of a hybrid reconstruction algorithm using knowledge of sensors 

reading zero flow and the layergram back-projection algorithm.

(4) Model and construct optical fibre lenses.

(5) Specify, design and construct an optical tomography measurement system consisting 

of a combination of two orthogonal and two rectilinear projections.

(6) Test this system on a hydraulic flow conveyor by injecting small and large gas 

bubbles into a water column and then determine the gas concentration profiles for a 

range of flow rates.

(7) Investigate the use of sensor-to-sensor correlation and pixel-to-pixel correlation in 

order to obtain the velocity of gas bubbles flowing in water.

(8) Consider the work presented in this thesis and provide suggestions for further 

research.

1.4 Organisation of the thesis

Chapter one presents an introduction to process tomography and multiphase flow. 

Chapter two presents a brief review of several sensing mechanisms for use with fluid 

conveying such as capacitance, ultrasonic, nuclear magnetic resonance and optical 

tomography.

Chapter three presents an investigation on the interaction between a collimated beam of 

light and a spherical bubble. Modelling of the optical system is also described using the 

optical path length and the optical attenuation methods. Image reconstruction using the 

layergram back-projection and hybrid reconstruction algorithms is discussed. This is
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followed by modelling of lensed optical fibres and includes a brief discussion on 

velocity measurement by cross correlation.

Chapter four discusses the design of the complete optical tomographic measurement 

system, including preparation of the optical fibre and design of the receiver circuit. 

Chapter five presents results of concentration measurements for a range of gas volume 

flow rates.

Chapter six presents results of velocity measurement using sensor-to-sensor and pixel- 

to-pixel cross correlation.

Lastly, chapter seven discusses the conclusions to be drawn from this work and makes 

suggestions for future research.
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Chapter 2

Brief Review of Tomographic Sensors for Fluid Conveying

A process tomography system can be subdivided into three main sub-systems: the 

sensor, the data acquisition system and the image reconstruction and display (figure 

2.1). The sensor is probably the most critical part. There are many sensing methods for 

tomography based on transmission and diffraction of sound and radiation, and electrical 

measurement. Several methods of sensing are discussed in this chapter.

Optical Fibre 
Transmitters

Process
Vessel

Data
Acquisition

System

Image
Reconstruction

System

Optical Fibre 

Receivers

Display

Figure 2.1 A process tomography system employing two arrays of optical fibre 

transducers



2.1 Electrical capacitance tomography

In an electrical capacitance tomography (ECT) system, a number of electrodes are 

mounted around the process of interest. These electrodes can be mounted either inside 

or outside the vessel depending on the wall material and the conveying fluid. The 

measured capacitance between two electrodes depends on the dielectric constant of the 

medium in between. The changes in the capacitive value are due to the variations in the 

permittivity of the material inside the process vessel [Beck et al, 1997].

ECT is suitable for imaging industrial multi-component processes involving non

conducting fluids, or mixtures of conducting and non-conducting fluids, where the 

major carrier is non-conducting, e.g. water droplets in oil, however it is difficult to 

obtain accurate quantitative information [Williams & Beck, 1995]. The electrode length 

required to provide measurable capacitances means that its resolution is limited and it 

results in ‘smearing’ and ‘averaging’ effects [Daniels, 1996]. It cannot produce 

meaningful images when the conveyed component loading decreases below 

approximately 5% due to the relatively low signal to noise ratio of the capacitance to 

voltage transducer and non-uniform sensing fields [Xie et al, 1992]. Its relatively low 

spatial bandwidth also restricts its application in velocity determination [Rahmat, 1996]. 

The number of independent readings obtained using ECT is small (less than 100) in 

existing capacitive systems because the electrode size cannot be decreased without limit, 

due to the field fringe effects [Isaksen and Nordtvedt, 1992]. However, Process 

Tomography Limited has produced many ECT system for the industry.
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2.2 Electrical impedance tomography (special case ERT)

Electrical Impedance Tomography (EIT) generates a cross-sectional image of the 

impedance profile of a process. An electric field is produced if a potential difference is 

induced between two electrodes on the external boundary of a conductive medium. 

Other electrodes located around the boundary measure the intensity of this field which is 

a function of the impedance profile of the enclosed medium. The distinction between 

EIT and Electrical Resistance Tomography (ERT) is that the former uses both 

magnitude and phase components of the measured electrodes whereas the latter uses 

only the magnitudes [Daniels, 1996].

Generally, most projects have simplified the investigation to measurement of resistance. 

For example, Daniels [Daniels, 1996] investigated both the resistance and impedance of 

a conducting carrying fluid. In that project, the complex impedance was very much 

smaller than the resistive component of the circuit. Excitation sources for use with ERT 

systems are generally at frequencies below 5 MHz [Dyakowski, 1996].

The ERT technique is of great potential in industry process monitoring because of its 

advantages, such as visualisability, high temporal resolution, low cost, no radiation 

hazard, etc. ERT has been employed as a visualisation tool for mixing processes, multi

phase flow and aqueous-based separation in chemical engineering [Wang, 1999]. For 

example, it has been applied to measure solid concentration profile and stability of the 

air core in a 20 mm industrial separator [Williams et al, 1995], leakage detection from 

nuclear waste storage tanks [Daily et al, 1995], and gasoline plume imaging [Daily et al, 

1995].
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The accuracy of the technique is restricted by its complexity in sensor modelling and 

image reconstruction. The fact that the electrodes make electrical contact with the fluid 

limits the type of material from which they can be fabricated. The limited number of 

measurements and the presence of electrical noise cause difficulties in obtaining images. 

Additionally, the applied electrical fields are ‘soft’ so that complex (e.g. iterative) 

reconstruction algorithms may be needed to reduce image distortion. Compensation may 

be needed to increase sensitivity near the centre of the image [Dyakowski, 1996].

Several designs of ERT sensors have been adapted for different applications in the 

University of Manchester Institute of Science and Technology (UMIST). They comprise 

from one to eight sensing planes sized from 6 to 1500 mm in diameter. The ERT could 

achieve spatial resolution, conductivity resolution and distinguishability of 5%, 10% 

and 20% respectively for a system with a pre-error of 1% using an adjacent sensing 

strategy with a 16 electrode ring [Wang et al, 1997].

2.3 Ultrasonic acoustic tomography

Ultrasound waves are acoustic waves of the order of 1 to 100 MHz. Wherever there is 

an interface between one substance and another, the ultrasound wave is strongly 

reflected. Ultrasound has been successfully used for ocean tomography at the scale of 

hundreds of kilometres [Menemenlis et al, 1997].

Ultrasonic waves are difficult to collimate and problems occur due to reflections within 

enclosed spaces, such as metal pipes. The use of ultrasound to identify solids within 

sewage flows is restricted because the conveying liquid cannot be distinguished from
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some of the solid material such as rubber and paper [Daniels, 1996]. Other problems 

arise due to the mismatch between the low acoustic impedance of the continuous 

(liquid) component of the flow and conventional piezoceramic material which results in 

significantly reduced performance of the transducer [Rahmat, 1996]. It may produce 

erroneous results if  not used properly, since reflection and/or diffraction effects may 

dominate, depending on the properties of the object being interrogated and on the 

operating frequencies of the ultrasonic waves.

An ultrasound reflection tomographic system with a circular array of 36 transducers 

which can generate reconstructed images at an average of 30 frames per second has been 

developed. To achieve this speed of image reconstruction intensive use of processing 

resources was required. The system has a resolution of 100 x 100 pixels [Schlaberg et 

al, 1997].

2.4 Nuclear magnetic resonance tomography

The Nuclear Magnetic Resonance Tomography (NMRT), also called magnetic 

resonance tomography, is widely used in medicine for diagnostic purposes and has also 

been applied in process and biochemical engineering. In NMRT, an external magnetic 

field is imposed on the atomic nuclei. This will result in the oscillation of the nuclei due 

to their magnetic nature. The relationship between the magnetic field and the frequency 

of the nuclei oscillation can be expressed as

co =  y  P

in which to = 2 n f  

f  = the Larmor frequency (Hz)
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y = magnetogyric ratio (rad T'1 s'1)

P = the strength of external magnetic field (T)

The main advantage of NMRT is its specificity to chemical composition and the high 

resolution of images obtained. Problems can arise in applying NMRT directly to the 

process industry due to sensor volume and its inability to function if significant 

quantities of iron are present. The sensors also have a slower dynamic response and are 

more complicated to manufacture compared to the sensors used in electrically-based 

tomographic techniques such as resistive and capacitance tomography. In addition, the 

cost of the NMRT system is expensive due to the cost of magnets and presently it is 

only suitable for laboratory investigations and not suitable for imaging flows in large 

process vessels or pneumatic conveyors [McKee, 1995].

In two-phase flow measurements, there has been a lot of research applying NMRT in 

investigating solid-fluid suspensions, where there is a need to understand suspension 

rheology and flow-induced microstructural changes [Gladden and Alexander, 1996]. For 

example, non-uniform velocity and concentration distributions have been reported for 

suspensions of small, negatively buoyant particles suspended in a 80 W gear lubricant 

oil of density 0.875 gem'3 and flowing in a horizontal acrylic plastic tube of inside 

diameter 2.54 cm and length 1.82 m [Altobelli et al, 1991].

2.5 X-Ray tomography

X-ray transmission tomography is widely used in diagnostic medicine, but it is bulky 

and the presence of its ionising radiation is dangerous. Images of a section or thin slices
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through an object at different depths are obtained by carefully computed and controlled 

relative motion of the X-ray source and the detector during the exposure. This technique 

is known as computerised tomography (CT).

Heavy shielding is required for safety and to collimate the beam. As such, it is not a 

suitable tool for flow imaging in an industrial setting [Williams & Beck, 1995]. It is also 

bulky, expensive and not suitable for real-time industrial processes, but it does offer a 

very high resolution. The slow rate of data acquisition associated with conventional X- 

ray systems makes them unsuitable for flow visualisation.

An x-ray tomography system consisting of a 60 keV x-ray source and an x-ray detector 

has been developed to investigate flow structures of circulating fluidized beds. The 

system can measure average solids concentration up to 20 Vol-% in a tube with 0.19 m 

inner diameter with a minimum spatial resolution of 0.2mm. The results obtained are 

reliable within an error range of about 5% [Grassier et al, 1999].

2.6 Gamma ray tomography

Gamma ray tomography is based on the measurement of the attenuation of photon 

beams traversing in various directions through an object. The gamma ray densitometer 

has been increasingly used in the oil industry to determine flow regime and void 

fraction [Abro et al, 1999]. The transmitted gamma rays are usually detected by a 

scintillation counter or a lithium germanium detector. The following formula describes 

the attenuation of gamma rays

I = I„e-w
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where

I = transmitted intensity (Wm'2)

I0 = initial incident intensity (Wm'2)

N = thickness of the absorbing material (m) 

p = linear absorption coefficient (m'1)

The transmitted signal is heavily dependent on the flow regime because of the narrow 

beam (compared with the pipe diameter) utilised in these densitometers. This can 

probably be solved by using a multi-detector system. The frequency response is quite 

poor (typically 0.05 Hz) due to the required counting statistics needed for the detector to 

obtain accurate measurement of the transmitted beam intensity. The frequency response 

can be increased by increasing the source intensity and a frequency response of 50 Hz 

can be obtained with a reduction in counting statistics frequency [Hammer, 1983]. 

However, careful screening and handling have to be implemented for high intensity 

gamma radiation source.

A gamma-ray tomography system with five radiation sources and eighty-five compact 

detectors has been used to discriminate between the gas and liquid phases for an 82mm 

inner diameter perspex pipe. The system is used along with an 8-electrode capacitance 

tomography system (used to distinguish between oil and water) as part of a dual mode 

tomograph for three-component flow imaging [Johansen et al, 1994]. Another multi

beam gamma-ray tomography system with four detectors has been used to determine the 

void fraction in two- and multi-phase pipe flows in an aluminium pipe having an inner 

and outer diameter of 80mm and 90mm respectively. The system which made use of a
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neural network trained by simulated data was able to determine the void fraction with an 

average error of 3 % [Abro et al, 1999].

2.7 Positron emission tomography

In positron emission tomography (PET), tracer species are added into the process under 

investigation. These tracers emit an appropriate and detectable signal to the sensor(s) 

installed at the periphery of the vessel. A function of position and time in relation to the 

emitters is obtained from external coincidence measurements. The fundamental 

measurement is the coincidence detection of two almost anti-parallel photons, which are 

emitted due to the annihilation of a positron with an electron. The imaging systems 

make use of either circular geometry, with rings of sensors around the flow to be 

imaged, or position sensitive detectors, such as gamma cameras or multiwire proportion 

chambers. The use of positron-emitting radiolabels for flow imaging in engineering 

studies has been pioneered at the University of Birmingham [Clarke et al, 1997].

The advantage of PET imaging is that it pinpoints the locations of individual particles in 

the medium, and not bulk masses as in X-ray tomography. The drawbacks include 

health hazards which arise from the use of radioactive isotopes needed to produce the 

positron emissions as well as the cost and the size of the detectors. Although a major 

strength of positron-based imaging is that studies can be performed on actual plant, 

provided sufficient access is possible for the detection equipment, to date its application 

has been restricted to that of a research tool, rather than for process monitoring, mainly 

due to the capital cost of current positron cameras.
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A PET system has been developed to follow the trajectories of individual particles in a 

laboratory-scale jig. The system employs two detectors. The jig has a dimension of 150 

x 100 x 250 mm and contains more than 300,000 particles [Clarke et al, 1997].

2.8 Optical tomography

Optical tomography is an attractive method since it is conceptually straightforward and 

relatively inexpensive, has a better dynamic response and can be more portable for 

routine use in process plant than other radiation-based tomographic techniques such as 

positron emission, gamma photon emission and X-ray tomography [Hartley et al, 1992]. 

It is better than many other approaches to tomographic imaging by dint of being an 

active, linear system whose reconstructed images should relate directly to visual images 

seen in transparent sections of the process vessel. It has negligible response time relative 

to the process variations, has high resolution due to its small wavelengths, and emitters 

and detectors which have good immunity to electrical noise and interference are readily 

available [Jackson, 1995]. It makes use of the ‘hard field’ sensor principle, which is 

similar to gamma ray tomography in which the sensing field is based on the 

measurement of the attenuation or absorption of radiation. Optical fibre sensors provide 

a very wide bandwidth which enables measurements to be performed on high speed 

flowing particles.

Three methods of detecting particles can be used: light absorption, light attenuation and 

light scattering. Scattering of light is complex to describe mathematically due to the 

random positioning of the particles responsible [Daniels, 1996], but absorption and 

attenuation may be quantified by relatively simple mathematical models (sections 3.3
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and 3.4). Absorption occurs when incident light energy passes through a medium and is 

converted to heat causing attenuation; some materials exhibit selective absorption to 

specific frequencies of light [Daniels, 1996]. Attenuation arises because opaque material 

interrupts the beam. Different materials cause varying levels of attenuation and 

scattering and it is this fact that forms the basis of optical tomography [Daniels, 1996], 

For bigger particles i.e. equal to and greater than 1 pm, light extinction is employed 

when the detector is aligned directly into the light source and the size of the particle 

shadow is measured as it crosses the light path. For particles less than 1 pm, light 

scattering is employed in which the detector looks at the light ray from the side of the 

flow channel [HIAC-ROYCO, 1998]. In both methods of detection, the fluctuation in 

the light intensity is measured by the detector and converted to an electrical signal.

2.8.1 The proposed optical tomography system

This project aims to investigate the use of optical fibre detectors arranged in multiple 

projections around a vertical transparent flow pipe for measurement of gas bubbles 

being conveyed by water. Light is injected through the measurement section and 

detected by fibre optic sensors, which transfer the light energy to photodiodes. These 

provide an electrical output, which is amplified, signal processed and fed to a PC for 

further analysis. The sensors measure the changes in absorption or attenuation of the 

conveyed material and information obtained in this way allows an image of the cross- 

section of the flow to be reconstructed by a computer. Details of the optical tomographic 

measurement system are described in chapter four. The next chapter investigates a series 

of possible optical projection arrays, two methods of optical modulation and four flow 

models.
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Chapter 3

Mathematical Modelling

3.1 Introduction

Modelling is carried out to predict the spatial and temporal behaviour of a process and it 

becomes more significant as the inherent complexity of a process increases [Mann, 

1995]. Generally, the following three important stages are involved in sensor modelling 

[Khan et al, 1995].

(a) Identify the mathematical model of the sensor, and determine the governing 

equations and associated boundary conditions.

(b) Establish the geometric model of the sensor taking into consideration the significant 

aspects and special features of the problem domain so as to minimise the amount of 

data.

(c) Choose an efficient numerical method (discretisation scheme) so as to realise a 

computer solution of the problem.

In practice, several projections are needed to reduce aliasing which occurs when two 

particles intercept the same view [Nordin, 1995]. The forward problem for the 

individual sensors is modelled to solve the inverse problem and derive the layergram 

back-projection algorithm [Rahmat, 1996].

Modelling is carried out based on 2 parameters affecting the measured output of the 

sensor:-

(a) Optical attenuation due to changes in optical density within the pipeline.
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(b) Path length of the sensing beam within the pipeline projections [Bums, 1994].

In a gas/liquid system for large bubbles, when the incident beam passes through the 

centre of the bubble, the major effect is optical attenuation, because the bubble, being 

gas, attenuates the optical energy less than water. In this model, the measurement 

section consists of a square, thin walled clear plastic section containing water (figure 

4.15a). The plastic wall is 2mm thick and is neglected in all the following calculations. 

The path length between the incident beam entering the measurement section to the 

receiver is 100mm. The path length for the beam when no gas bubble is present is 

80mm in water (ie water in pipe of diameter 80mm) and 20mm in air (the length of the 

aperture stop) (figure 4.15a). The output beam is attenuated according to Lambert-Beer's 

law,

Vm=Vinexp[-awlw- a alj

where:

Vm = voltage of the receiving sensor (V)

Vin = voltage of the receiver when no gas bubble present (V)

a a = absorption coefficient of air (mm*1)

a w = absorption coefficient of water (mm'1)

la = path length of air (mm)

lvv = path length of water (mm)

lb = path length through bubble (mm)

and lw + la = 100 mm.

When a bubble is present in the path, then la=lb + 20 (mm) where lb is the path length 

through the bubble and the path length in water lw becomes lw=80 - lb (mm).

Hence,

V„,=Vi„ exp[ -(80-lb)cxw - (20+lb)a, ] (3.a)
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However, in general, the interaction between the beam of light and a spherical bubble 

involves reflection, refraction and optical attenuation [Dugdale, 1994],

The optical path length model was originally developed for solid, opaque particles 

[Abdul Rahim, 1996]. He showed empirically that the output voltage from an optical 

fibre sensor was proportional to the optical path length of the sensor within the 

conveyor and the volume flow rate of uniformly distributed solids. As the bubble size 

decreases and reduces the amount of light it directly transmits, it behaves in a similar 

manner to the solid particle i.e. it prevents light energy arriving at the sensor.

However, small bubbles (say 2mm or less in diameter (section 3.2.1)) will often reflect 

or refract the optical beam away from the receiver completely. In this case the system is 

similar to the path length model. The overall model should combine both principles (see 

chapter seven). In previous projects, Abdul Rahim [Abdul Rahim, 1996] concentrated 

on the path length model whereas Ramli [Ramli, 1998] focussed effort on the optical 

attenuation model. This project investigates both models, which enables a comparison 

between the performance of both methods to be made.

3.2 Model for single spherical bubble

This section investigates how the position and size of a single gas bubble will affect the 

amount of light energy being received by the detector. The incident light consists of a 

1mm collimated beam, which travels 100mm between source and detector (which 

consists of a 1mm diameter sensor).
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When a collimated beam of light is directed through a medium, the reduction in the 

intensity of the beam is due to absorption, scattering and dispersion. All media show 

absorption, some absorb all wavelengths equally (general absorption), others show 

selective absorption. Lambert Beer's law states that equal paths in the same absorbing 

media absorb equal fractions of the radiation that enters them. The scattering of light by 

a bubble that is large compared to its wavelength, consists of a mixture of diffraction, 

diffused reflection (reflection in all directions) and refraction. Scattering from a cloud of 

such bubbles is independent of wavelength, unlike the scattering of light by very small 

bubbles (Rayleigh scattering) [Dugdale, 1994] which is proportional to the square of the 

bubbles' volume and 1/L4. Since gas/liquid flow regimes involve bubbles with 

dimensions much larger than the wavelength of radiation incident on them, the majority 

of attenuation is caused by wavelength independent scattering [Dugdale, 1994].

Interfaces between phases can present many boundaries in the path of the radiation. On 

crossing such boundaries Fresnel [Jalie, 1977] has shown that the fraction of radiation 

reflected at normal incidence, irrespective of polarisation is p where

P
n -n
n' +n

where n is the refractive index of the first medium and n' the refractive index of the

second. Thus for water and gas

P =
1-1.33 
1 + 1.33

0.02 or 2%.

At the other extreme when light is incident at the polarising angle, 15% of the 

component perpendicular to the plane of incidence is reflected and none of the parallel 

component [Longhurst, 1967].
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All the optical processes described above play a part in attenuating the radiation so a 

method of predicting their combined effect is useful in determining the response to be 

expected when measurements are made in gas/liquid flows. The following section 

describes several models relating to a single spherical bubble.

3.2.1 Bubble size

The model of two phase flow starts with the case of a single gas bubble moving 

vertically up the pipe of the laboratory flow rig. The effect of the size and position of the 

bubble on the transducer in the measurement cross-section is to be determined. This 

section investigates the effect of a spherical gas bubble in water when a collimated beam 

of light, 1 mm in cross section, is incident on it. Four conditions are considered

(i) bubble amplitudes greater than 1.33 mm diameter and the light beam passing 

through the optical centre of the bubble (no total internal reflection).

(ii) bubble amplitude between 1.33 mm and 1 mm diameter and the light beam 

passing through the optical centre of the bubble (outer edge of incident beam 

attenuated by total internal reflection).

(iii) bubble amplitudes less than 1 mm diameter and the light beam passing through 

the optical centre of the bubble.

(iv) bubble of various amplitudes and the light beam off the principal axis.

For all these cases, the bubble acts effectively as a gas lens in water. Since the bubble is 

spherical it must be considered as a thick lens [Tunnecliffe & Hirst, 1981]. A gas bubble 

in water behaves as a diverging lens (figure 3a.2) when a beam of light passes through 

it. For a thin diverging lens, a beam of light parallel to the principal axis, appears to 

come from the principal focus of the lens after refraction. A spherical gas bubble in
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water forms a thick diverging lens. To analyse how collimated light is refracted by the 

bubble, it is convenient to determine the equivalent thin lens power and equivalent thin 

lens focal length of the bubble. The model (figure 3a. 1) allows the equivalent thin lens 

power/focal length to be calculated.

First surface second surface

water
nw=4/3

air
n = l

Optical axis

Figure 3a.l The bubble as a thick lens.

centre

Refracted ray
incident ray

Principal/optical axis

Centre of lens 
(bubble)

Figure 3a.2 Equivalent thin lens

The focal length, f(m), and the power of a spherical surface F (dioptres) [Tunnecliffe &



where n2 is the refractive index of the second medium, the refractive index of the first 

and r is the radius of the bubble.

For the first surface,

na - n w 1 - 4 / 3  1 . . .Fx =----------= ---------- = -  — (it has a diverging power)
r r 3r

Using the sign convention shown in Tunnecliffe & Hirst [Tunnecliffe & Hirst, 1981],

r? nw~ na 4 / 3 - 1  1F2 =---------- = ---------= -  — (also diverging)
-  r - r  3r

The equivalent thin lens power, Fe, is

F e =  F |  + F 2 - t F | F 2

where t is the axial separation between the first and second surfaces.

I V  1Fc = - - -----  —
3 r 3 r

2 r\ -■
{ 3 r 3 r 9 r

The equivalent thin lens focal length, fe, is

fe = 1/Fe = -9r/8 = -1.125r (3.b)

The thin lens is positioned at the centre of the bubble [Tunnecliffe & Hirst, 1981], so the 

equivalent thin lens focal point lies 1.125r to the left of the centre of the bubble (figure 

3a.3).

-1.125r

Principal axis

optical centre

Figure 3a.3
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Now consider rays passing through the bubble. All the incident beams are 1mm in 

cross-section (because of the system design (section 4.4)) and are parallel to the 

principal axis of the bubble. For a diverging lens, a ray initially parallel to the principal 

axis appears to come from the equivalent thin lens focal point (figure 3a.4).

actual path o f ray

refracted ray
incident ray

construction rays

Figure 3a.4 Refraction by a bubble

This construction is important, because all the light rays entering the bubble with the 

optical system used in this thesis must be parallel to the principal axis.

The optical system used in this thesis is arranged to accept collimated beams of 1 mm 

diameter. The sensor spacing of 8mm, combined with the aperture stop, prevents light 

beams that arrive at the conveyor exit wall (figure 3a.5) which have been deviated 

through an angle 0a (greater than 2.9°) from the principal axis from entering the sensor, 

because of the geometry of the aperture stop, which is 1mm in diameter by 20mm long. 

The acceptance angle of the stop is
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e  = tan-' —  = 2.9° (3.6.1)
20

From figure 3a.5, for the light beam, initially incident at sensor 2, to be refracted to 

reach the aperture containing sensor 1 it must be deviated by a minimum of 

6 = tan-1 (8/80) = 5.7°

sensor 1

bubble
aperturemm

1mm

20mm
sensor 2

Pipe diameter = 80mmpipe wall exifwall

Figure 3a.5 Angular deviation of beam by refraction

For all bubbles, when the angle of the incident ray to the bubble reaches the critical 

angle, 9C, the ray is totally internally reflected (figure 3a.6). Total internal reflection 

occurs when a light ray goes from an optically more dense medium (water) to an 

optically less dense medium (air) [Tunnecliffe & Hirst, 1981]. At the critical angle, part 

of the incident beam is refracted and passes along the surface of the interface just inside 

the bubble and the remainder of the incident beam is reflected. When the incident angle 

exceeds the critical angle, all the light is reflected (total internal reflection) [Tunnecliffe 

& Hirst, 1981].

reflected ray

incident beam refracted ray

water

gas

Figure 3a.6 Total internal reflection at the surface of the bubble
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According to Snell's law, nw sin 0C = na sin 90°

where nw = refractive index of water = 4/3 and na = refractive index of air = 1.

Hence, sin 0C = l/nw = 3/4 = 0.75. 0C = 48.6° (3.c)

Also, in terms of the bubble radius, sin 0C = h/r = 0.75. Hence, h = 0.75r.

If h=0.5 mm, r= 2/3mm and the diameter of the bubble is 2r = 4/3 = 1.33mm.

This means that for the 1mm diameter incident beam if the bubble is centred on the 

beam and greater than 1.33mm in diameter the beam will not suffer total internal 

reflection from the surface of the bubble.

Case (i) : Bubble amplitudes greater than 1.33 mm diameter and the light beam 

passes through the optical centre of the bubble

Now consider case (i) where the diameter of the bubble is greater than 1.33 mm and the 

light beam passes through the optical centre of the bubble (figure 3a.7). For these 

bubbles no total internal reflection occurs.

incident
beam

<
0.5 mm

0.5 mm

image R

Figure 3a.7 Refraction of beam

Neglecting losses due to reflection, the energy in the incident beam at X is now spread 

over an area 7tR2. By similar triangles,
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R

1.125r 0.5
1.125r + / _ R

_ 0.5(1.125r + l)
1.125 r

Then the ratio of initial beam area to final beam area equals the fractional loss of 

intensity due to refraction (8r).

Sr 7r0.52 0.52(1.125r): 1.125r 
1.125r+ /ttR 2 0.52(1.125r + /)2 

The loss of intensity at each air/water boundary, assuming normal incidence is 2%. For 

a single bubble there are two boundaries. So the correcting factor due to crossing 

boundaries is 8b = 0.96. (It should be noted that some of the incident beam will not 

strike the bubble normally, so more light energy than 2% will be lost by reflection. This 

change in loss will depend upon bubble size but is neglected in this model.)

For the change is absorption due to the path lengths in water (lw) and air (la) refer to 

figure 3 a. 8.

bubble

source detector
1 2r \

100 mm

Pipe diameter = 80 m m a i r  gap = 20 mm 

Figure 3a.8 Absorption path lengths

The intensity due to path length absorption, I is related to the initial intensity I0 by,

I=I„ exp[-<xwlw - a al j

Where a a and a w are absorption coefficients of air and water. From experimental work 

[Dugdale, 1994], these were found to be 0.0142/mm and 0.0287/mm respectively. So
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the detected intensity if the beam travels 100 mm between source and detector (80mm in 

water and 20mm in air) (figure 3a.8 and figure 4.15a) as on the flow rig is,

I=I0 exp -(80 x 0.0287 + 20 x 0.0142) = 0.0758 I0 

This is the initial intensity at the sensor as a fraction of the radiation from the source 

when no bubble is present.

The correcting factor for the decrease in absorption caused by a bubble of radius r is,

_ I 0 exp- (0.0287/, +0.0142/ J  
0.0758/0

but la = 2r + 20 and lw = 80 - 2r.

Hence, da = 13.2ex p -[0.0287(80- 2 r )  + 0.0142(2r + 20)] =13.2exp-(2.58-0.029r)

The ratio of the detected intensity to the emitted intensity for case (i) is,

= SrxSbxSa 1.12 5r 
1.125/' + /

-i2
(0.96)(13.2 ex p -[2.58-0.029r])

= 12.67 1.125r 
1.125r + /

ex p -(2.58-0.029r)

Thus the fraction of the original beam arriving at the sensor is a function of both bubble 

size, r, and the distance between the exit wall and the centre of the bubble, /.

The graph in figure 3a.9 shows the relative intensity Id/Ie of bubbles of various radii for 

various values of / for case (i).

= 10 m m0.8
= 20 mm

0.4 = 30 mm

= 40  mm

= 50 mm0 20 

B u b b l e  r a d i u s  ( m m )

30 40

Figure 3a.9 Relationship between relative intensity, bubble radius and bubble 
position
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Case (ii): Bubble amplitude between 1.33mm and 1mm diameter and the light 

beam passes through the optical centre of the bubble (outer edge of incident beam 

attenuated by total internal reflection)

For bubbles between 1.33 mm and 1 mm in diameter (case (ii)), refer to figure 3a. 10, the 

edges of the bubble produce total internal reflection.

incident
beam

normal

image
0.5 mm

1.125r

Figure 3a.l0 Beam spread by a 1 mm diameter bubble

So when the bubble diameter equals the beam diameter, from (3.b), 

fe= 1.125r= 1.125 x 0.5 = 0.5625.

From equation (3.c) and figure 3a. 10, for the critical angle, 0;, 

sin Oj = 3/4 = h/0.5. Hence, h = 0.375 mm.

Parts of the beam between r=0.375mm and r=0.5mm are totally internally reflected and 

cannot arrive at the sensor. The part of the incident beam where r is less than 0.375mm 

passes through the bubble and is refracted.

Then, by similar triangles, R / 0.375 = (1.125 x 0.5 + /) / 0.5625.

R = (1.125 x 0.5 + /) 0.375 / (1.125 x 0.5) = 0.67 (0.5625 + /)

The fractional loss of intensity due to refraction (8r) is
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_ ^0.52 _ xQ.S2 0.56
r ~ tiR 2 ~ ^[0.67(0.5625 + 7)]2 ~ (0.5625 + /)2

As in the previous model, the correcting factor due to crossing air/water boundary 8b = 

0.96 and the correcting factor for the decrease in absorption caused by a bubble of 

radius r is 5a=13.2exp-(2.58-0.029r)

Since r=0.5, 8a = 1.01

Hence, the ratio of the detected intensity to the emitted intensity for bubbles 1 mm in

diameter is

Id/Ie = Sr x 8b x 8a

= ___ — ___ (0.96)(1.01) = ____^ ___
(0.5625+ /)2 (0.5625 + 7 ) 2

The graph in figure 3 a. 11 shows the relative intensity Id/Ie of bubbles of 1 mm diameter 

for various values of /.

0.5

0.4

0.3

0.2

20 40 

I (mm)

60 80

Figure 3a .ll Variation in relative intensity with bubble position for 1 mm bubble

Case (iii): Bubble amplitudes less than 1mm diameter and the light beam passes 

through the optical centre of the bubble

In the case of bubbles less than 1 mm in diameter, refer to figure 3a. 12.
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sensor
—

1 mm reflecting area

bubble0.5 mm

incident
beam

incident beam

Figure 3a.l2 Diagram of axial bubble of diameter less than 1mm with image of 
bubble projected onto sensor surface

The beam (1mm diameter) is wider than the bubble (diameter < 1mm) so part of the 

beam is not intercepted by the bubble. Hence some of the light passes the bubble 

without any interaction. The unmodified beam area is ^(O.S2-*2). The intensity of this 

part of the beam is altered only by absorption.

With no bubble present, the correction factor for the change in absorption of the 

radiation from the source is one. But, because of the reduced area caused by the bubble, 

6a’= l. tc(0.52—i*2)/ tlO.52 = 4.(0.52-r2)

The light striking the periphery of the bubble is reflected. The area of the reflected 

beam is ^[^-(O.ySr)2]. The light passing through the centre of the bubble is diverged. 

From figure 3a. 13,

incident beam

1 mm R

image

Figure 3a.l3 Beam spread by small bubble
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Using similar triangles,

R _ / + 1.125r 
h ~ \.\25r

R = (/ + 1.125r)0.75r / 1.125r = 0.67(/ + 1.125r)

For the light passing through the bubble, the fractional loss of intensity due to refraction 

is

7th2 n(0.15r)2 1.25r2
or = — — =  r- = --------------------r-

7iR ;r[(/ + 1.125r)/0.67]2 (/ + 1.125r)2
As in the previous model, the correcting factor due to crossing air/water boundary 5b =

0.96 and the correcting factor for the decrease in absorption caused by a bubble of

radius r is 5a=13.2exp-(2.58-0.029r)

Hence, the ratio of the detected intensity to the emitted case for bubbles less than 1 mm 

in diameter consists of two parts, one due to the part of the beam that misses the bubble 

and the second due to the effects of the bubble.

Id/Ie = 5r x 5b x 5a + 5a’ (3.d)

1 2 5r2=----- :----------(0.96)13.2exp- (2.58 -  0.029r) + 4.(0.52 -  r 2)
(/ + 1.125r) '  V 7

The graph in figure 3 a. 14 shows the relative detected intensity Id/Ie of bubbles of various 

radii for / = 50mm,
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Figure 3a.l4 Effect on relative intensity for bubbles less than 1 mm diameter.

Case (iv): Bubble of various amplitudes and the light beam off the principal axis

For off axis beams the model is shown in figure 3a. 15. When the collimated incident 

beam is displaced parallel to principal axis, the two rays defining the boundary of the 

beam still appear to come from the equivalent principal focus of the bubble.

image

1 mm sensor

1.125r

Figure 3a.l5 Off axis bubble
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This model will prevent any light arriving at the bubble, because all sensors have an 

aperture which will only accept approximately 2.9° off axis light, 

sin a=h/r

and if a  exceeds 2.9°, no sensor will accept the light beam (equation (3.b.l)).

3.2.2 Moving bubble

This section briefly discusses what happens at the sensor as the bubble crosses the light 

beam. Two cases are outlined

1. Bubbles less than 1mm diameter.

As described earlier small bubbles never totally prevent light energy arriving at the 

sensor. As the bubble crosses the light beam, the light level is reduced, reaches a 

minimum (equation 3.d) and then increases again.

2. Bubbles greater than 1mm diameter.

For convenience it is assumed that the optical centre of the bubble will pass through the 

centre of the incident beam. As the bubble rises into the beam, the top of the bubble will 

totally reflect the light incident on it reducing transmission to zero. As this part of the 

beam clears the reflecting area, the light intensity will grow until the centre of the 

bubble passes through the beam. The process will then reverse (figure 3a. 16).
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Received
intensity

total /
reflection c*ntre

position
of sensor

total
reflection

Figure 3a.l6 Typical signal arriving at sensor due to moving bubble

The maximum value of the received intensity depends on the bubble diameter. For 

large bubbles the intensity may exceed eighty percent of the intensity when water alone 

is present and is shown in figure 3a.9.

3.3 Projection geometry

Different arrangements of the fibre sensors are considered for different types of 

projections. These consist of

(a) two orthogonal projections consisting of several parallel views (figure 3.1).

(b) two rectilinear projections consisting of several parallel views inclined at 45° to a 

horizontal axis (figure 3.2).

(c) a combination of one orthogonal and two rectilinear projections (figure 3.3).

(d) a combination of two orthogonal and two rectilinear projections (figure 3.4).

(e) three fan-beam projections (figure 3.5).

(f) four fan-beam projections (figure 3.6).

In figures 3.1 to 3.6, Sj stands for sensor i and pk stands for projection k. For example; s2l 

, p3 corresponds to sensor 21 which is located in the third projection.
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Figure 3.1 Two orthogonal projections Figure 3.2 Two rectilinear projections
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Figure 3.3 Combination of one Figure 3.4 Combination of two orthogonal 
orthogonal and two rectilinear and two rectilinear projections 
projections

For the two orthogonal projections, each projection provides eight light beams (views) 

which are parallel and equally spaced to each other. The light emitters and detectors are 

arranged in a one-to-one basis i.e. each emitter has a corresponding detector. Similarly 

in the rectilinear projections, the emitters and detectors are also positioned on a one-to- 

one basis. In the case of the two rectilinear projections, the projections are inclined at
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45° to the horizontal whereas in the case of the combination of one orthogonal and two

rectilinear projections several parallel views are inclined at 120° to one another.

In cases (e) and (f) above, a series of angular projections of the light source and 

detectors are used to interrogate the measurement section; these are termed fan beam 

projections. In the case of three fan-beam projections, three light sources are used. Each 

light source will supply twelve light beams which are spaced at 10° intervals. This 

results in the cross-section of the pipe being interrogated by a total of thirty six light 

beams as shown in figure 3.5.

Figure 3.5 Three fan-beam projections

In the case of four fan-beam projections, four light sources are utilised and the light 

sources are placed 90° apart as shown in figure 3.6 resulting in a total of forty eighth 

light beams.

s i , p i
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Figure 3.6 Four fan-beam projections

All the projection geometries are investigated for both the path length and the optical 

attenuation models.

3. 4 Optical path length model

This model is based on the length of the optical sensing beam within the conveyor, the 

greater the active length (section 3.1), the greater the probability of an effectively 

opaque small bubble intercepting the beam [Abdul Rahim, 1996]. Empirically, it has 

been shown that the relationship between particle/bubble concentration and sensor 

voltage is linear for low conveyed material flow rates [Abdul Rahim, 1996]. The voltage 

of each individual path length sensor increases with increased bubble flow rate or in 

other words the more bubbles that intersect a light beam the greater the output voltage 

[Abdul Rahim et al, 1995]. It is assumed that the relationship between the number of 

small bubbles passing through a beam and the corresponding sensor output voltage is 

linear; tests by Abdul Rahim [Abdul Rahim, 1996] support this assumption. The output 

voltage from the sensors in this thesis are conditioned to be proportional to the rate at 

which the beam is intercepted by small bubbles (section 4.3.2). For a given uniform 

flow rate the output voltage from each sensor will be directly proportional to its optical
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path length. A cross section of the pipe is considered and a rectangular array consisting 

of 8 x 8 equal size pixels projected onto it. Some pixels lie outside the pipe, some are 

intersected by it, but the majority are located within the pipe cross section (figure 3.7).

diameter o f  pipe =  
 80 mm----------

X

/ \/
/ \

\ )
\ /

N-

Figure 3.7 A cross-section of the pipe fitted into a rectangular array of 8 x 8 pixels

3.4.1 Forward problem for the optical path length model

The forward problem provides the theoretical output of each sensor under no-flow and 

flow conditions, when the sensing area is considered to be two dimensional. Solution of 

the forward problem generates a series of sensitivity matrices. Each matrix is associated 

with a specific sensor and relates to the sensor output under flow conditions.

To simplify the model, it is assumed that light beams travel in straight lines. It is 

assumed that for each light beam, the distance between emitter and detector is 100 mm 

and the beam width is 1 mm (i.e. the model neglects beam spread). It is also assumed 

that the beam in each pixel has a rectangular shape which simplifies the calculation of 

the area of the light beam in each pixel. Each pixel is designated as P  ̂ ,where i is the 

row number and j is the column number. The dimension of each pixel is 10mm x 10mm.

The area of each pixel enclosed by the circle is calculated. Then the area occupied by a 

specific light beam in each pixel is determined. Pixels outside the circle (representing
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the flow pipe) and pixels through which the specified light beam does not pass are 

assumed to contain air. Based on this a priori knowledge all such pixels will be 

assigned zero sensitivity values [Abdul Rahim, 1996]. The sensitivity matrix for each 

light beam (or for each sensor) is formed by calculating the ratio of the area of the light 

beam in each pixel to the area of the corresponding pixel. Each pixel is evaluated 

separately and the contribution from each pixel forms the sensitivity map [Abdul 

Rahim, 1996]. Each sensor is considered separately. As an example, for the two 

orthogonal projections system, the sensitivity matrix, s7, for sensor 7 (figure 3.5) is

o o o o o o o o
2.5/18 10/91.45 10/100 10/100 10/100 10/100 10/91.45 2.5/18

si =

0 
0 
0 
0 
0 
0

Matrix 3.1

3.4.2 Inverse Problem for the optical path length model

The inverse problem estimates the distribution of material within the pipe which 

provides the measured sensor outputs. Due to the limited number of views (i.e. 36 for 

the three projection system) and the larger number of pixels inside the pipe (i.e. 60), an 

analytic solution is not possible, so a layergram (LYG) back-projection (LYGBP) is 

used to solve the inverse problem (section 3.6).

3.5 The optical attenuation model

The optical attenuation model assumes both conveyed and conveying mediums are 

transparent, but possess different optical attenuation coefficients.
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3.5.1 Forward problem for the optical attenuation model

As in the optical path length model (section 3.3.1), the forward problem for the optical 

attenuation model is that of mapping a set of theoretical ‘parameters’ into a set of 

experimentally measured ‘results’. Solution of the forward problem generates a series of 

sensitivity matrices. Each matrix is associated with a specific sensor and relates to the 

sensor output under flow conditions. The same assumptions are made as in the case of 

the optical path length model in that it is assumed that light beams travel in straight 

lines. It is assumed that for each light beam, the distance between emitter and detector is 

100 mm and the beam width is 1 mm (i.e. the model neglects beam spread).

In the optical attenuation model the output value of the sensor is a function of the 

medium which the light traverses en route from the emitter. This model neglects light 

scattering and beam divergence. It is based on absorption of the beam by the medium 

within the pipe as defined by equation (3.1) (Lambert-Beer’s law) [Ramli, 1998]

V m=Vinex p [-a wlw- a , y  

but la = 2r + 20 (mm) and lw = 80 - 2r (mm). Note that the pipe diameter is 80 mm, the 

aperture stop has a length of 20 mm and r = radius of bubble.

Hence,

Vn=Vin exp-[ 0.0287(80-2r) + 0.0142(2r + 20)] (3.1)

where:

Vm = voltage of the receiving sensor (V)

Vin = voltage of the receiver when there is no beam attenuation (empty pipe) (V)

a a = absorption coefficient of air (mm-1)

a w = absorption coefficient of water (mm'1)
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la = path length of air (mm)

lvv = path length of water (mm)

Assuming the attenuation coefficient of air, a a = 0.0142 mm' 1 [Daniels, 1996] and the 

attenuation coefficient of water, a vv = 0.0287 mm' 1 [Daniels, 1996], the path length 

traversed by the light in air and water, la + lw = 1 0 0  mm, and when there are no bubbles 

in the water, r = 0  mm, the voltage of the sensor when no bubble flows through the pipe 

is,

Vm = Vin exp -(0.0287 x 80 + 0.0142 x 20) = 0.0758 Vin (3.2)

Now consider one pixel to contain a bubble with an attenuation coefficient of 0.0142 

mm'1. The output voltage for each sensor is calculated. This process is repeated until all 

pixels within the pipe have been considered. As an example, consider the two 

orthogonal projections (figure 3.1) case. For sensor 7 the calculation is as follows 

Light going to sensor 7 passes through pixels P21, P2 2 P23, P24> P255 P26, P27 and P2s- 

Pixel P2I is assumed to contain bubbles with a 0 = 0.0142 mm'1 whereas all other pixels 

contain water (aw = 0.0287 mm'1). Hence for pixel P21, the path length of the light in the 

bubbles is 2.5 mm and the resulting voltage is

Vm=Vin exp-[ 0.0287(80 - 2.5) + 0.0142 (20 + 2.5)]= 0.0786 Vin (3.3) 

Now pixel P21 is filled with water and pixel P22 with bubbles. Hence for pixel P22, the 

path length of the light in the bubbles is 10 mm and the resulting voltage is

Vn=Vin exp[ 0.0287(80 - 10) + 0.0142 (20 + 10) ]= 0.0876 Vin (3.4) 

This process is repeated for the remaining pixels in the path to sensor 7 as shown in the 

following calculations.

For pixels P23, P24, P25, P26 and P27 the path length of the light in the bubbles is 10 mm in 

each pixel and the resulting voltage is
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Vn=Vin exp[ 0.0287(80 - 10) + 0.0142 (20 + 10) ]= 0.0876 Vin (3.5) 

For pixel P28, the path length of the light in the bubbles is 10 mm and the resulting 

voltage is

Vn=Vin exp-[ 0.0287(80 - 2.5) + 0.0142 (20 + 2.5)]= 0.0786 Vin (3.6) 

The other pixels, which the light to sensor 7 does not traverse, are neglected at this time. 

The voltages calculated for sensor 7 are normalised by dividing each calculated value by 

the sensor output with no bubble present e.g.

0.0758Vin is the unattenuated voltage with no bubble present. 0.0786Vin is the calculated 

voltage for pixel P21 filled with gas. The sensitivity term for P21 i.e. S21 = 0.0786Vin / 

0.0758Vin. Similarly for pixel P22, the calculated voltage is 0.0876Vin and the 

corresponding sensitivity term, S22, is S22 = 0.0876Vin / 0.0758Vin.

This means for each pixel in the sensitivity matrix, the value in each pixel is the ratio of 

the attenuated voltage due to a bubble in that pixel to the sensor voltage when no bubble 

flows in the pipe. The resulting sensitivity matrix, s7, for sensor 7 in the two orthogonal 

projections system is,

0 0 0 0 0 0 0 0
0.0786 0.0876 0.0876 0.0876 0.0876 0.0876 0.0876 0.0786
0.0758 0.0758 0.0758 0.0758 0.0758 0.0758 0.0758 0.0758

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0

which is independent of Vjn.

The output voltage for each sensor is calculated for each pixel in turn. This process is 

repeated until all pixels within the pipe have been considered. This process is also
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repeated for all the sensors resulting in n 8 x 8 matrices, where n is the number of views 

(sensors).

3.5.2 Inverse problem for the optical attenuation model

The solution to the inverse problem involves the process of combining the computed 

sensitivity maps with the measured data (sensors’ readings) to obtain an image of the 

material concentration distribution within the conveyor. The layergram back-projection 

calculations for the optical attenuation model are similar to those for the path length 

model (section 3.3.2).

3.6 Models of flowing objects

In order to investigate the effectiveness of the reconstruction algorithms, four flow 

models are considered

(a) A single pixel within the pipe is assumed to be affected by the flowing medium.

(b) Two pixels within the pipe are assumed to be affected by the flowing medium. This 

model can be used to test aliasing effect.

(c) Half flow where all the pixels on one side of the pipe diameter are assumed to be 

equally affected by the flowing medium where as the remaining pixels are unaffected.

(d) Full flow where all the pixels within the pipe are equally affected.

3.6.1 Single pixel flow model

In this model, only a single pixel contains an object. The pixel chosen for this model is 

P33 as shown in figure 3.8.
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Figure 3.8

3.6.1.1 Path length model

The sensor readings for various projections for the path length model in the case of the 

single pixel model are tabulated in table 3.1. The sensor voltage is calculated from the 

following expression,

Vr = ^ x  Vs (3.8)
h

where

Ip = length of light beam in the pixel occupied by the bubble 

It -  total beam length (i.e. 100 mm)

Vr = sensor voltage 

Vs = supply voltage = 5V.
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Sensor
Number

Estimated sensor’s reading (V)
2 Ortho

gonal
2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0 0 0 0 0 0
s2 0 0 0 0 0 0
s3 0 0 0 0 0.15 0.15
s4 0 0 0 0 0.475 0.475
s5 0 0 0 0 0.025 0.025
s6 0 0.7 0.5 0.5 0 0
s7 0 0 0 0 0 0
s8 0 0 0 0 0 0
s9 0 0 0 0 0 0

slO 0 0 0 0 0 0
si 1 0.5 0 0.15 0 0 0
sl2 0 0 0.25 0 0 0
sl3 0 0 0 0 0 0
sl4 0.5 0.7 0 0 0 0
s 15 0 0 0 0 0 0.3
s l6 0 0 0 0 0 0.55
s l7 - 0 0 0.5 0 0
si 8 - 0 0.25 0 0 0
s l9 - 0 0.15 0 0.5 0
s20 - 0 0 0 0 0
s21 - 0 0 0 0 0
s22 - 0 0 0 0 0
s23 - - 0 0 0 0
s24 - - 0 0 0 0
s25 - - - 0.5 0 0
s26 - - - 0 0 0
s27 - - - 0 0 0
s28 - - - 0 0.625 0
s29 - - - 0 0 0.525
s30 - - - 0 0 0
s31 - - - 0 0 0
s32 - - - 0 0 0
s33 - - - 0.5 0 0
s34 - - - 0 0 0
s35 - - - 0 0 0
s36 - - - 0.7 0 0
s37 - - - 0 - 0
s38 - - - 0 - 0
s39 - - - - - 0
s40 - - - - - 0
s41 - - - - - 0.5
s42 - - - - - 0
s43 - - - - - 0
s44 - - - - - 0
s45 - - - - - 0
s46 - - - - - 0
s47 - - - - - 0
s48 - - - - - 0

Table 3.1 Estimated sensor readings for single pixel flow model based on the path
length model
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3.6.1.2 Optical attenuation model

The sensor readings for various projections for the optical attenuation model in the case 

of the single pixel model are tabulated in table 3.2. The sensor voltage is calculated 

from equation (3.1):

Vn^Vj,, exp[ -100a„ + la(aw - a,) ] (3.1)

in which

the attenuation coefficient of air, a a = 0.0142 mm'1, and 

the attenuation coefficient of water, a w = 0.0287 mm'1.

Vin is assumed to be 5 V.
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Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s2 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s3 0.2835 0.2835 0.2835 0.2835 0.2961 0.2961
s4 0.2835 0.2835 0.2835 0.2835 0.3254 0.3254
s5 0.2835 0.2835 0.2835 0.2835 0.2856 0.2856
s6 0.3277 0.3473 0.3277 0.3277 0.2835 0.2835
s7 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s8 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s9 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835

slO 0.2835 0.2835 0.307 0.2835 0.2835 0.2835
s l l 0.3277 0.2835 0.294 0.2835 0.2835 0.2835
sl2 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
sl3 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
sl4 0.2835 0.3473 0.2835 0.2835 0.2835 0.2835
sl5 0.2835 0.2835 0.2835 0.2835 0.2835 0.3093
s l6 0.2835 0.2835 0.2835 0.2835 0.2835 0.3325
sl7 - 0.2835 0.2835 0.2835 0.2835 0.2835
si 8 - 0.2835 0.2835 0.2835 0.2835 0.2835
sl9 - 0.2835 0.2835 0.2835 0.3277 0.2835
s20 - 0.2835 0.3349 0.2835 0.2835 0.2835
s21 - 0.2835 0.2835 0.2835 0.2835 0.2835
s22 - 0.2835 0.2835 0.3473 0.2835 0.2835
s23 - - 0.2835 0.2835 0.2835 0.2835
s24 - - 0.2835 0.2835 0.2835 0.2835
s25 - - - 0.2835 0.2835 0.2835
s26 - - - 0.2835 0.2835 0.2835
s27 - - - 0.2835 0.2835 0.2835
s28 - - - 0.2835 0.3398 0.2835
s29 - - - 0.2835 0.2835 0.3301
s30 - - - 0.3473 0.2835 0.2835
s31 - - - 0.2835 0.2835 0.2835
s32 - - - 0.2835 0.2835 0.2835
s33 - - - 0.2835 0.2835 0.2835
s34 - - - 0.2835 0.2835 0.2835
s35 - - - 0.2835 0.2835 0.2835
s36 - - - 0.2835 0.2835 0.2835
s37 - - - 0.2835 - 0.2835
s38 - - - 0.2835 - 0.2835
s39 - - - - - 0.2835
s40 - - - - - 0.2835
s41 - - - - - 0.3048
s42 - - - - - 0.2835
s43 - - - - - 0.2835
s44 - - - - - 0.2835
s45 - - - - - 0.2835
s46 - - - - - 0.2835
s47 - - - - - 0.2835
s48 - - - - - 0.2835

Table 3.2 Estimated sensor readings for single pixel flow model based on the
optical attenuation model
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3.6.2 Two pixels flow model

In this model, two pixels contain objects. The pixels chosen for this model are P33 and 

P66 as shown in figure 3.9.

Figure 3.9

3.6.2.1 Path length model

The sensor readings based on equation (3.8) for various projections for the path length 

model in the case of the two pixels flow model are tabulated in table 3.3.
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Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
12 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0 0 0 0 0 0
s2 0 0 0 0 0 0
s3 0.5 0 0.5 0.5 0.15 0.15
s4 0 0 0 0 0.48 0.48
s5 0 0 0 0 0.03 0.03
s6 0.5 1.4 0.5 0.5 0 0
s7 0 0 0 0 0 0
s8 0 0 0 0 0 0
s9 0 0 0 0 0 0

slO 0 0 0 0 0 0
s l l 0.5 0 0.15 0.7 0 0
sl2 0 0 0.3 0 0 0
si 3 0 0 0.4 0 0 0
sl4 0.5 0.7 0 0 0 0
sl5 0 0 0 0 0 0.3
s l6 0 0 0 0 0 0.55
sl7 - 0 0 0.7 0 0
si 8 - 0 0.25 0 0 0
sl9 - 0 0.15 0 0.5 0
s20 - 0.7 0 0 0 0
s21 - 0 0 0 0 0
s22 - 0 0.15 0.5 0 0
s23 - - 0.25 0 0 0
s24 - - 0 0 0 0
s25 - - - 0.5 0 0
s26 - - - 0 0 0
s27 - - - 0 0 0
s28 - - - 0 0.63 0
s29 - - - 0 0 0.53
s30 - - - 0 0 0
s31 - - - 0 0 0
s32 - - - 0 0 0
s33 - - - 1.4 0 0
s34 - - - 0 0 0
s35 - - - 0 0 0
s36 - - - 0 0 0
s37 - - - 0 - 0
s38 - - - 0 - 0
s39 - - - - - 0
s40 - - - - - 0
s41 - - - - - 0.5
s42 - - - - - 0
s43 - - - - - 0
s44 - - - - - 0
s45 - - - - - 0
s46 - - - - - 0
s47 - - - - - 0
s48 - - - - - 0

Table 3.3 Estimated sensor readings for two pixels flow model based on path
length model
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3.6.2.2 Optical attenuation model

The sensor readings based on equation (3.1) for various projections for the optical

attenuation model in the case of the two pixels flow model are tabulated in table 3.4.

Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
12 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s2 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s3 0.3277 0.2835 0.3277 0.3277 0.2961 0.2961
s4 0.2835 0.2835 0.2835 0.2835 0.3254 0.3254
s5 0.2835 0.2835 0.2835 0.2835 0.2856 0.2856
s6 0.3277 0.4255 0.3277 0.3277 0.2835 0.2835
s7 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
s8 0.2835 0.2835 0.2835 0.2835 0.3301 0.3301
s9 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835

slO 0.2835 0.2835 0.307 0.2835 0.2835 0.2835
s l l 0.3277 0.2835 0.294 0.3277 0.2835 0.2835
sl2 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
si 3 0.2835 0.2835 0.2835 0.2835 0.2835 0.2835
sl4 0.3277 0.3473 0.2961 0.3277 0.2835 0.2835
sl5 0.2835 0.2835 0.307 0.2835 0.2835 0.3093
sl6 0.2835 0.2835 0.2835 0.2835 0.2835 0.3325
sl7 - 0.2835 0.2835 0.2835 0.3254 0.2835
s 18 - 0.2835 0.2835 0.2835 0.3349 0.2835
sl9 - 0.2835 0.2835 0.2835 0.3398 0.2835
s20 - 0.3473 0.2835 0.2835 0.2835 0.3277
s21 - 0.2835 0.3349 0.2835 0.2835 0.2835
s22 - 0.2835 0.2835 0.4255 0.2835 0.2835
s23 - - 0.2835 0.2835 0.2835 0.2835
s24 - - 0.2835 0.2835 0.2835 0.2835
s25 - - - 0.2835 0.2835 0.2835
s26 - - - 0.2835 0.2835 0.2835
s27 - - - 0.2835 0.2835 0.2835
s28 - - - 0.2835 0.3398 0.2835
s29 - - - 0.2835 0.2835 0.3301
s30 - - - 0.3473 0.2835 0.2835
s31 - - - 0.2835 0.2835 0.2835
s32 - - - 0.2835 0.2835 0.2835
s33 - - - 0.2835 0.3277 0.3301
s34 - - - 0.2835 0.2835 0.294
s35 - - - 0.2835 0.2835 0.2835
s36 - - - 0.3473 0.2835 0.2835
s37 - - - 0.2835 - 0.2835
s38 - - - 0.2835 - 0.2835
s39 - - - - - 0.2835
s40 - - - - - 0.2835
s41 - - - - - 0.3277
s42 - - - - - 0.2835
s43 - - - - - 0.2835
s44 - - - - - 0.2835
s45 - - - - - 0.3349
s46 - - - - - 0.3026
s47 - - - - - 0.2835
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s48 0.2835

Table 3.4 Estimated sensor readings for two pixels flow model based on optical 
attenuation model

3.6.3 Half flow model

In this model, the left-hand side of the pipe is filled with particles as shown in figure 

3.10.

Figure 3.10

3.5.3.1 Path length model

The sensor readings based on equation (3.8) for various projections for the path length 

model in the case of the half flow model are tabulated in table 3.5.
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iSensor 
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan-beam 4 fan-beam

si 0.95 1.85 1.3 0.95 1.425 1.425
s2 1.55 2.8 1.75 1.55 2.400 2.400
s3 1.75 2.725 1.85 1.75 2.2750 2.2750
s4 1.9875 2.55 1.95 1.9875 2.125 2.125
s5 1.9875 2.3 1.95 1.9875 2.0250 2.0250
s6 1.75 1.975 1.85 1.75 2.000 2.000
s7 1.55 1.6 1.75 1.55 2.050 2.050
s8 0.95 1.15 1.3 0.95 2.1250 2.1250
s9 1.9 0.625 2.55 0 2.3250 2.3250

slO 3.1 0 3.4 0 2.6000 2.6000
si 1 3.5 0 2.85 0.65 2.3000 2.3000
sl2 3.975 1.85 2.05 1.2 1.6000 1.6
sl3 0 2.8 1.15 1.6 0 1.5
s l4 0 2.725 0.1 2 0.8250 2.5
sl5 0 2.55 0 2.1 1.4750 3.075
sl6 0 2.3 0 2.6 1.9000 3.475
sl7 - 1.975 1.75 2.75 2.1250 3.475
sl8 - 1.6 3.15 2.9 2.1250 2.8
s l9 - 1.15 3.15 2 1.8250 0
s20 - 0.625 2.4 0 1.2000 0
s21 - 0 1.55 0 0.0250 0
s22 - 0 0.55 0 0 0
s23 - - 0 0 0 0
s24 - - 0 4 0 0
s25 - - - 3.5 0.8750 0
s26 - - - 3.1 1.5750 0
s27 - - - 1.9 2.1000 0.425
s28 - - - 0 2.4500 1.2
s29 - - - 0 2.5500 1.7
s30 - - - 0.65 2.4250 1.95
s31 - - - 1.2 1.8500 1.975
s32 - - - 1.6 0.2500 1.8
s33 - - - 2 0 1.4
s34 - - - 2.1 0 0.725
s35 - - - 2.6 0 0
s36 - - - 2.75 0 0
s37 - - - 2.9 - 1.425
s38 - - - 2 - 2.325
s39 - - - - - 2.95
s40 - - ' - - - 3.425
s41 - - - - - 3.75
s42 - - - - - 3.95
s43 - - - - - 0.9
s44 - - - - - 0.3
s45 - - - - - 0.1
s46 - - - - - 0
s47 - - - - - 0
s48 - - - - - 0

Table 3.5 Estimated sensor readings for half flow model based on the path length
model
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3.6.3.2 Optical attenuation model

The sensor readings based on equation (3.1) for various projections for the optical 

attenuation model in the case of the half flow model are tabulated in table 3.6.

Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0.3734 0.4848 0.3734 0.3734 0.4286 0.4286
s2 0.4444 0.6385 0.4444 0.4444 0.5686 0.5686
s3 0.4848 0.6248 0.4848 0.4848 0.5484 0.5484
s4 0.5027 0.5939 0.5027 0.5027 0.5250 0.525
s5 0.5027 0.5524 0.5027 0.5027 0.51 0.51
s6 0.4848 0.5027 0.4848 0.4848 0.5063 0.5063
s7 0.4444 0.4509 0.4444 0.4444 0.5137 0.5137
s8 0.3734 0.3957 0.3734 0.3734 0.525 0.525
s9 0.4919 0.3398 0.499 0.4919 0.5564 0.5564

slO 0.6966 0.2835 0.7017 0.6966 0.6026 0.6026
s l l 0.829 0.2835 0.7068 0.829 0.5524 0.5524
sl2 0.8913 0.4848 0.5686 0.8913 0.4509 0.4509
sl3 0.2835 0.6385 0.4444 0.2835 0.2835 0.438
sl4 0.2835 0.6248 0.3301 0.2835 0.3601 0.5853
sl5 0.2835 0.5939 0.2835 0.2835 0.4348 0.6916
sl6 0.2835 0.5524 0.2835 0.2835 0.4919 0.7766
sl7 - 0.5027 0.499 0.4848 0.525 0.7766
sl8 - 0.4509 0.6966 0.6385 0.525 0.6385
sl9 - 0.3957 0.829 0.6248 0.4813 0.2835
s20 - 0.3398 0.5686 0.5939 0.4015 0.2835
s21 - 0.2835 0.4444 0.5524 0.2856 0.2835
s22 - 0.2835 0.3301 0.5027 0.2835 0.2835
s23 - - 0.2835 0.4509 0.2835 0.2835
s24 - - 0.2835 0.3957 0.2835 0.2835
s25 - - - 0.3398 0.3654 0.2835
s26 - - - 0.2835 0.4476 0.2835
s27 - - - 0.2835 0.5212 0.3207
s28 - - - 0.4848 0.5769 0.4015
s29 - - - 0.6385 0.5939 0.4641
s30 - - - 0.6248 0.5727 0.499
s31 - - - 0.5939 0.4848 0.5027
s32 - - - 0.5524 0.3048 0.4778
s33 - - - 0.5027 0.2835 0.4255
s34 - - - 0.4509 0.2835 0.3498
s35 - - - 0.3957 0.2835 0.2835
s36 - - - 0.3398 0.2835 0.2835
s37 - - - 0.2835 - 0.4286
s38 - - - 0.2835 - 0.5564
s39 - - - - - 0.6669
s40 - - - - - 0.7654
s41 - - - - - 0.8411
s42 - - - - - 0.8913
s43 - - - - - 0.368
s44 - - - - - 0.3093
s45 - - - - - 0.2918
s46 - - - - - 0.2835
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s47 - - - - - 0.2835
s48 - - - - - 0.2835

Table 3.6 Estimated sensor readings for half flow model based on the optical 
attenuation model

3.6.4 Full flow model

In this model, the whole pipe contains particles as shown in figure 3.11.

Figure 3.11

3.6.4.1 Path length model

The sensor readings based on equation (3.8) for various projections for the path length 

model in the case of the full flow model are tabulated in table 3.7.
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Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan-beam 4 fan- 
beam

si 1.9 1.85 2.6 1.9 1.425 1.425
s2 3.1 2.8 3.5 3.1 2.400 2.400
s3 3.5 3.35 3.7 3.5 3.025 3.025
s4 3.975 3.7 3.9 4 3.525 3.525
s5 3.975 3.9 3.9 4 3.725 3.725
s6 3.5 3.95 3.7 3.5 3.950 3.950
s7 3.1 3.9 3.5 3.1 3.625 3.625
s8 1.9 3.7 2.6 1.9 3.700 3.700
s9 1.9 3.35 2.55 1.95 3.450 3.450

slO 3.1 2.8 3.4 2.85 2.875 2.875
s l l 3.5 1.85 3.85 3.4 2.300 2.300
sl2 3.975 1.85 4 3.8 1.600 1.600
sl3 3.975 2.8 3.85 3.95 1.075 1.5
sl4 3.5 3.35 3.5 4 5.600 2.5
sl5 3.1 3.7 2.85 3.95 2.950 3.1
sl6 1.9 3.9 0.8 3.8 3.400 3.675
sl7 - 3.95 1.75 3.4 3.750 3.925
sl8 - 3.9 3.15 2.85 3.650 3.975
sl9 - 3.7 3.7 1.95 4.0 3.95
s20 - 3.35 4 1.9 3.900 3.725
s21 - 2.8 3.95 3.1 3.375 3.45
s22 - 1.85 3.7 3.5 2.875 2.875
s23 - - 3.1 4 2.150 1.75
s24 - - 1.95 4 1.225 1.2
s25 - - - 3.5 1.400 1.525
s26 - - - 3.1 2.275 2.4
s27 - - - 1.9 2.950 3.075
s28 - - - 1.95 3.425 3.4
s29 - - - 2.85 3.850 3.45
s30 - - - 3.4 3.900 4.05
s31 - - - 3.8 3.975 3.95
s32 - - - 3.95 3.825 3.75
s33 - - - 4 3.650 3.4
s34 - - - 3.95 3.250 3.0
s35 - - - 3.8 2.650 2.325
s36 - - - 3.4 1.975 1.4
s37 - - - 2.85 - 1.425
s38 - - - 1.95 - 2.325
s39 - - - - - 2.95
s40 - - - - 3.425
s41 - - - - - 3.75
s42 - - - - - 3.95
s43 - - - - - 3.85
s44 - - - - - 3.80
s45 - - - - - 3.575
s46 - - - - - 3.125
s47 - - - - - 2.425
s48 - - - - - 1.45

Table 3.7 Estimated sensor readings for full flow model based on the path length
model
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3.6.4.2 Optical attenuation model

The sensor readings based on equation (3.1) for various projections for the optical 

attenuation model in the case of the full flow model are tabulated in table 3.8.

Sensor
Number

Estimated sensor’s reading (V)
2 Ortho 
-gonal

2 Recti 
-linear

1 Orthogonal/
2 Rectilinear

2 Orthogonal 
/2 Rectilinear

3 fan- 
beam

4 fan- 
beam

si 0.4919 0.4848 0.4919 0.4919 0.4286 0.4286
s2 0.6966 0.6385 0.6966 0.6966 0.5686 0.5686
s3 0.829 0.749 0.829 0.829 0.6816 0.6816
s4 0.8913 0.829 0.8913 0.8913 0.788 0.788
s5 0.8913 0.8785 0.8913 0.8913 0.835 0.835
s6 0.829 0.8913 0.829 0.829 0.8913 0.8913
s7 0.6966 0.8785 0.6966 0.6966 0.8111 0.8111
s8 0.4919 0.829 0.4919 0.4919 0.829 0.829
s9 0.4919 0.749 0.499 0.4919 0.771 0.771

slO 0.6966 0.6385 0.7017 0.6966 0.6526 0.6526
s l l 0.829 0.4848 0.829 0.829 0.5524 0.5524
sl2 0.8913 0.4848 0.8978 0.8913 0.4509 0.4509
sl3 0.8913 0.6385 0.9109 0.8913 0.3872 0.438
sl4 0.829 0.749 0.823 0.829 0.5405 0.5853
sl5 0.6966 0.829 0.7017 0.6966 0.6669 0.6916
si 6 0.4919 0.8785 0.4919 0.4919 0.7599 0.7766
sl7 - 0.8913 0.499 0.4848 0.8411 0.7766
si 8 - 0.8785 0.6966 0.6385 0.817 0.6385
sl9 - 0.829 0.829 0.749 0.9043 0.2835
s20 - 0.749 0.8978 0.829 0.8785 0.2835
s21 - 0.6385 0.9043 0.8785 0.7544 0.2835
s22 - 0.4848 0.829 0.8913 0.6526 0.2835
s23 - - 0.7068 0.8785 0.5288 0.2835
s24 - - 0.4919 0.829 0.4044 0.2835
s25 - - - 0.749 0.4044 0.2835
s26 - - - 0.6385 0.5484 0.2835
s27 - - - 0.4848 0.6669 0.3207
s28 - - - 0.4848 0.7654 0.4015
s29 - - - 0.6385 0.8658 0.4641
s30 - - - 0.749 0.8785 0.499
s31 - - - 0.829 0.8978 0.5027
s32 - - - 0.8785 0.8596 0.4778
s33 - - - 0.8913 0.817 0.4255
s34 - - - 0.8785 0.7276 0.3498
s35 - - - 0.829 0.6114 0.5564
s36 - - - 0.749 0.5027 0.4255
s37 - - - 0.6385 - 0.4286
s38 - - - 0.4848 - 0.5564
s39 - - - - - 0.6669
s40 - - - - - 0.7654
s41 - - - - - 0.8411
s42 - - - - - 0.8913
s43 - - - - - 0.8658
s44 - - - - - 0.8534
s45 - - - - - 0.7995
s46 - - - - - 0.7017
s47 - - - - - 0.5727
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s48 - - - - - 0.4317

Table 3.8 Estimated sensor readings for full flow model based on the optical 
attenuation model

3.7 Basic layergram back-projection (LYGBP) technique

To produce a cross sectional image from the measurements of the object, a 

reconstruction process is needed. Many types of reconstruction techniques can be 

encountered in the papers and books on tomography [Plaskowski et al, 1995]. The 

layergram back-projection technique is a simple "layergram", where projections are 

back projected into the image plane from different angles and superimposed [Xie, 

1993].

Suppose the object distribution on a cross section is as shown in figure 3.1 la(i). The two 

projections of the object taken in perpendicular directions can be expressed by two one 

dimensional arrays V,(I) and V2(I), with the sample values in each projection as their 

components. To back project Vl5 each sample is painted as a straight strip running 

through the whole cross section in the direction of the projection being taken, and V2 is 

back projected in the same way. Since the directions of the two projections are 

perpendicular, such a back-projection procedure produces an image composed of 

orthogonal grids (figure 3.11a (iii)). Similarly, this image can be expressed as two 

dimensional array Img(U,V), where U is the line index of the grid and V the column, 

with the values of each grid as its components. By filtering Img(U,V) with an 

appropriate threshold level, an image that is an approximation of the real field can be 

obtained (figure 3.11a (iv)).
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Figure 3.11a Basic layergram back-projection (LYGBP): (i) Original cross 
section; (ii) Two projections of object; (iii) Projection layergram; and (iv) 
Reconstructed cross section image.

For this project the back-projection algorithm is in the form of a "layergram" [Xie, 

1993] where the concentration profile is generated by combining the voltage reading 

from each sensor (measured data) with its computed sensitivity map. To reconstruct the 

image, each sensitivity map matrix is multiplied by its corresponding sensor reading.
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This results in n 8 x 8 matrices, where n is the number of sensors. Corresponding terms 

in these matrices are summed and divided by the sum of the sensitivity coefficients to 

provide the back projected voltage distributions. This process can be expressed 

mathematically as shown in equation (3.9)

n -m

IX*.
vlj = ^ r —  (3-9)

n = 1

where

Vy = voltage distribution in 8 x 8 matrix 

V. = voltage for nth sensorsn

sn = sensitivity map for nth sensor in the form of an 8 x 8 matrix. 

m = the total number of sensors used.

The voltage distributions, Vy should be converted to concentration values. However, this 

has not been done for this section as it only requires rescaling of the voltage 

distributions. The voltage distributions are available as matrices (useful for quantitative 

information). The values in the matrix can be represented either on grey levels or in 

colour to provide an image. The resulting images are termed grey level images or 

pseudo colour images respectively [Plaskowski et al, 1995].

These images may be improved by filtering and thresholding. Thresholding causes 

problems since bubble amplitude varies and causes Vs to fluctuate. High pass filtering 

can improve the edges of the image. These filters may take the form of convolution- 

filter masks. A typical 3 x 3  high pass mask is shown below [Plaskowski et al, 1995]
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-1  -1  -1  
-1  9 -1
-1  -1  -1

This filter is applied to the centre of the single pixel image shown in figure 3.1 lb (or 

figure 3.17a) and the results are shown in matrix 3.10.1.0 and figure 3.11c.

0 0 0.05 0 0 0 0 0 '
0 0 0.05 0 0 0 0 0

0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0

Matrix representing unfiltered LYGBP

X X X X X X X X

X - 0.3 0.2 - 0.3 - 0.15 - 0.15 - 0.15 X

X 0.2 0.7 0.2 0.35 - 0.15 - 0.15 X

X - 0.3 0.2 - 0.3 - 0.15 - 0.15 - 0.15 X

X - 0.15 0.35 - 0.15 0 0 0 X

X - 0.15 0.35 - 0.15 0 0 0 X

X - 0.15 0.35 - 0.15 0 0 0 X

X X X X X X X X

Matrix 3.10.1.0

Figure 3.11b Unfiltered LYGBP for 
two orthogonal projections: single pixel 
flow model

Figure 3.11c Filtered LYGBP for two 
orthogonal projections: single pixel flow 
model

The results of this filter show some improvement over the unfiltered LYGBP. Further 

filtering may be carried out on the resulting images and the filter may take other values, 

however, in this thesis a different approach is investigated.

This alternative approach is termed the hybrid algorithm. This is a hybrid algorithm

because it combines knowledge of sensors which indicate zero with the normal
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layergram technique. The reconstruction is as follows. All the sensors are sampled. If a 

sensor reads zero, then all pixels associated with it are fixed at zero until a new sample 

is taken. Calculations are then made using the layergram back-projection to determine 

the remaining pixel contents. This approach produces pixels with zero content without 

using either pixel thresholding or filtering. Compared to a filtered layergram, the hybrid 

algorithm uses less calculations which is necessary in order to do on line velocity 

correlation of pixel concentrations.

3.8 Modelling of optical fibre

For optical fibre sensors the way both ends of the fibre are terminated is important as the 

termination effects both the acceptance and emission angles of the light energy. A fibre 

collimator/focuser is a suitable tool to couple light in and out of optical devices by 

collimating light or focusing light exiting a fibre to a desired beam diameter or spot size 

[Fiber Collimators/Focusers, 1998]. However, the cost of a collimator/focuser is 

expensive and this project requires many collimators/focusers and hence, it was not 

utilised; an alternative method has to be developed which is cheaper and yet effective in 

collimating the light beam.

In a previous project carried out by Ramli [Ramli, 1998], the fibre optic lens was 

modelled for three combinations of fibre optic terminations: (a) flat - flat, (b) flat - 

lensed, and (c) lensed - lensed. In the lensed - lensed model, it was assumed that the 

radii for both ends are identical. In the following model (figure 3.12), the radii of the 

fibre optic lenses are different and only the receiver fibre is modelled as the transmitter 

utilises light projectors. The main objective is to determine the relationship between the 

lens curvature and the divergence of the output beam.
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The maximum output divergence of the beam coming out of the fibre optic is 

represented by the emission angle, 0O. It is undesirable to have a large divergent beam, 

because it reduces the energy centred in the beam and can reduce the optical energy 

being transmitted to the individual receivers.

The fibre cladding is neglected in the modelling, as it is assumed that it is thin compared 

to the central fibre. However, it is noted that total internal reflection occurs inside the 

fibre due to the cladding material. The refractive index of the core is higher than that of 

the cladding, so light in the core that strikes the boundary with the cladding at an angle 

in excess of the critical angle is confined in the core by total internal reflection [Hecht, 

1999].

n o r m a l  t r a n s m i t t e d

i n c i d e n t

l i g h t

l i g h t

c l a d d i n g
t a n g e n tt a n g e n t d i v e r g e n t

a n g l e

m
C o r e

n. = 1.492

Figure 3.12 A side view of the fibre optic model

The following symbols are designated for various parameters associated with light and 

the properties of the optical fibre :

a = the angle between the incident light and the horizontal axis.

0t = the incident angle.
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P = angle of transmitted light (emergent ray).

60 = divergent angle or angle between the incident light and the horizontal axis. 

nm = refractive index of the medium (i.e. air) in front of the front end of the fibre = 1. 

nl = refractive index of the optical fibre core. 

n2 = refractive index of the fibre cladding.

nQ = refractive index of the medium (i.e. air) after the optical fibre =1. 

h = radius of the fibre optic core = 0.5 mm.

Rx = radius of the lens at the front end of the fibre optic.

R2 = radius of the lens at the back end of the fibre optic.

0 , 0ri, 4>i and 4>2 are construction angles shown on figure 3.12.

Consider a ray of light incident on the edge of the fibre.

Applying Snell’s law,

The incident angle of the light, 6i , must be smaller or equal to the acceptance angle of 

the fibre, 28°, to ensure that total internal reflection occurs. The refracted ray inside the 

optical fibre is continuously reflected along the fibre until it reaches the other end of the 

fibre.

nm sin#, =«, sin#,.

(3.10)

sin^j = —
R,

(3.11)

Applying Snell’s law again,

nx sin#r2 =/z0 sin/?
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P = sin-i w. . „ —  sin 6r
V«n

' k 
Sln^2 = TXvo

(j) 2 = sin-i ' A '

Divergent angle, #0 = ^ 2  “  P

0O = sin 1
h_

\R 2
-  sm -1 sin#

\ n .

90 -  (^j -  0r ) = Ori + (9 0 -  )

^  =(t)2 ~ (l)\ +

From (3.10),(3.11) and (3.13),

“1 *1 —1 — 1f nsm -  sm + sin —ULsin 0.
\R \; \ n ] IJ

From (3.14),

# 0 = sin -1 f  h )  • -> n \ •
f

• -1 f h )  • f h )
• -1 ' n m s i n # . V—  - s i n —  s m s m —  - s i n +  s m

n 0 U J I  « ,  JJ

(3.12)

(3.13)

(3.14)

(3.15)

Suitable values for Rj and R2, in order to produce a collimated output beam are 0.8 mm 

and 0.63 mm respectively.

3.9 Modelling of flow pipe

Three possible arrangements for the collimated light entering the flow pipe are 

considered:-

(1) The light enters a transparent cylindrical flow pipe.
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(2) The light enters a transparent cylindrical flow pipe enclosed by a square-shaped 

transparent perspex box.

(3) The light enters a square-shaped transparent perspex section which forms part of the 

flow pipe.

In order to assess which arrangement can minimise refraction of the collimated light 

entering the pipe and the measurement cross-section, the effect of using each 

arrangement is studied. It is assumed that the thickness of the cylindrical pipe wall and 

the square-shaped perspex is negligible. The maximum divergent angle of the light 

projector is assumed to be 2.15°(measured using the light source).

Transparent perspex in the form of sheets and rods are widely used for aircraft windows. 

It has outstanding optical properties and weatherability and is easily machined. 

Colourless perspex is as transparent as the finest plate glass and is capable of giving 

almost complete transmittance of visible light. It has white light transmittance of up to 

92%, with the remaining 8% being the reflection loss [Abel & Thomas, 1988]. As such 

perspex is a suitable material to be used as an enclosure for the measurement section.

3.9.1 Light entering a transparent cylindrical flow pipe

Figure 3.13 shows light paths in air, inside a flow pipe containing water and going out 

of the flow pipe into air. For simplicity, the thickness of the flow pipe is ignored. The 

maximum divergent angle of the light projector is 2.15°. The diagram shows that two 

out of three light paths going out of the flow pipe into air have an angle of refraction 

(i.e. 51.4° and 33.5°) greater than 28° which is the acceptance angle of the EH4001 fibre
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optic. This arrangement is not suitable as a tomographic system as some views will be 

not be ‘captured’ by the optical fibre receivers facing the light projectors.

2.15 51.2 "

' U s 1 331 r /  3 5 . 9  \ 51'4’
-----------  2.15 17-4' / , 3 2, 1.2 ---

2.15 I
A i r

\\

\
W a t e r

Figure 3.13 Light entering a transparent cylindrical flow pipe

3.9.2 Light entering a cylindrical flow pipe enclosed by a transparent perspex 
square

Figure 3.14 shows the light paths in air, inside the transparent perspex square and the 

flow pipe containing water and finally out into the air again. Again for simplicity, the 

thickness of the flow pipe is ignored. It clearly shows that not all of the outgoing light 

comes out from the exit side of the perspex as shown by one of the light paths going out 

of the top of the perspex. As such, this arrangement is not suitable because some light 

will be missed by the optical fibre receivers which are placed facing towards the light 

projectors and some vital information pertaining to the flow will be lost.

24,5'
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Refractive Index = 1 . 5 1

2.15

'35 .51.43

2 0 .4’
Air

Water

Perspex

Air

Figure 3.14 Light entering a cylindrical flow pipe enclosed by a transparent 
perspex square

3.9.3 Light entering a hollow perspex square moulded onto the flow pipe

It can be seen in figure 3.15 that light coming out of the perspex square has the same 

angle as when it enters the box when the perspex box is filled with fluid. The EH 4001 

optical fibre receivers have an acceptance angle of 28 ° and are able to receive all the 

light coming out of the perspex box. This is the best arrangement compared to the two 

previous arrangements discussed in sections 3.8.1 and 3.8.2. This is the arrangement 

selected for the experimental aspects of this project.

1.622.15
2.151.622.15
2 . 15"1.62 ' t2.15

Air

Water Air

Figure 3.15 Light entering a hollow perspex square moulded onto the flow pipe
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3.10 Cross correlation

To determine volume flow rates of gases experimentally using tomographic 

measurements it is necessary to combine concentration and velocity profiles. To 

measure velocity, cross-correlation is used.

The flowmeter employs two arrays of optical fibre sensors which are utilised to monitor 

the flow, one being positioned downstream of the other. The output signal of each 

sensor is modulated by the conveyed particles or droplets, in an apparently random 

manner. However, assuming that the arrangement of particles or droplets remains 

constant between sensors, the signal generated by the downstream sensor is a time- 

delayed replica of the upstream sensor’s output (in practice the arrangement of particles 

or droplets changes but there is a recognisable part of the pattern conveyed between the 

sensors).

Fl»v v«toc[ly r

Figure 3.16 Cross-correlation of upstream and downstream sensors
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If x(t) and y(t) represent the signals from the upstream and downstream sensors 

respectively, then the cross correlation function of x(t) and y(t) is given as:

The peak in the R(t) versus time plot corresponds to the most probable time required for 

the flow to travel between the upstream and downstream sensors, zm. Hence, the mean 

flow velocity can be obtained from the following expression:

where L is the spacing between upstream and downstream sensors.

The following operations are carried out by the optical tomography system :

(a) Analogue flow noise signals generated by the flowmeter’s two arrays of sensors are 

converted into digital form and concentration profiles determined, which are then used 

to enable their cross-correlation function to be computed.

(b) The cross-correlation function of these two signals is computed and the peak 

position of the resulting correlogram is detected to give an estimate of the fluid transit 

time between the two sensors. The time delay of the maximum value of the cross 

correlation function gives an indication of the flow transit time between upstream and 

downstream pixels. This process is repeated for all the pixels enabling the actual flow 

velocity profile to be obtained.

A programme coded in MATLAB cross-correlates two different sets of data (ie pixel 

concentration profiles). Experiments were carried out to capture data from the sensors

0
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using the data acquisition system and the data is processed using off line to obtain the 

cross correlation function. The computation requires two sets of data as inputs in order 

to perform the cross correlation. The programme listing is as follows :-

function x=kxcorr(u,y); 

if  nargin~=2 ,

error('kxcorr must have two arguments')

end

L=length(u); 

if length(y)~=L,

error('kxcorr - arguments are not of the same length')

end

for i=l :L 

if i = l ,  

ushft=u; 

else

ushft=[ushft(L, 1 );ushft( 1: L-1,1)]; 

end

x(i)=sum(y. *ushft)/L; 

end

plot(x)

x=x';

[z,it]=max(x)

v=0.15/(it*0.01)

In the above programme, data from the upstream sensor are represented by u whereas 

the downstream sensor is represented by y. The programme will only proceed if  the data 

length of both u and y are the same, x represents the cross correlation function. The 

method used to calculate the cross-correlation function is a point-to-point method. The
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maximum value of matrix x is computed using the command [z,it]=max(x) in which z is 

the value of the maximum cross correlation coefficient and ‘it’ is the index time 

corresponding to the z value. The distance between the upstream and downstream 

sensors is 0.15m. Hence, the velocity of the bubbles is

v=0.15/(it*0.01)

in which 0.01 is the sampling time (sampling frequency of 100 Hz).

3.11 Results of LYGBP using the path length model

This section presents results obtained using modelling for several types of projection 

systems using the path length model. The results are presented as follows :-

(a) Results for two orthogonal projections are shown in sections 3.10.1 and 3.10.2.

(b) Results for a combination of two orthogonal and two rectilinear projections are 

shown in section 3.10.3.

(c) Results for three fan-beam projections are shown in section 3.10.4.

Results for two rectilinear, a combination of one orthogonal and two rectilinear, and 

four-fan beam projections systems are presented in Appendix A.

3.11.1 Results for two orthogonal projections system

In this section the results of implementing LYGBP (section 3.6) are presented for the 

two orthogonal projections system for four flow models :-

(a) Single pixel flow model.

(b) Two pixels flow model.

(c) Half-flow model.

(d) Full-flow model.

All results presented in this section are discussed in section 3.14.
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3.11.1.1 Single pixel flow model

If the object is in the pixel P 13 the matrix shown in matrix 3.10.1.1, is obtained after the 

products of the sensitivity matrices and voltages for each sensor are summed (section 

3.6). The numerical values of matrix 3.10.1.1 are converted to a grey scale range where 

white represents the maximum value in the matrix and black zero. This plot is shown in 

figure 3.17a.

' 0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0

0.05 0.05 0.1 0.05 0.05 0.05 0.05 0.05
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0
0 0 0.05 0 0 0 0 0

Matrix 3.10.1.1 Figure 3.17a LYGBP for two 
orthogonal projections: single pixel 
flow model

3.11.1.2 Two pixels flow model

Matrix 3.10.1.2 represents the calculated concentration profiles for the two pixels flow

model. The plot of matrix 3.10.1.2 is shown in figure 3.17b.

Matrix 3.10.1.2 Figure 3.17b LYGBP for two
orthogonal projections: two pixels flow 
model
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3.11.1.3 Half flow model

For the half-flow model, matrix 3.10.1.3 is obtained after the products of the sensitivity 

matrices and voltages for each sensor are summed. The plot of matrix 3.10.1.3 is shown 

in figure 3.17c.

0 0.17 0.44 0.56 0.11 0.11 0 0
0.09 0.54 0.51 0.55 0.16 0.16 0.18 0.09
0.39 0.49 0.53 0.57 0.18 0.18 0.18 0.16
0.45 0.51 0.55 0.60 0.20 0.20 0.20 0.22
0.45 0.51 0.55 0.60 0.20 0.20 0.20 0.22
0.39 0.49 0.53 0.57 0.18 0.18 0.18 0.16
0.09 0.54 0.51 0.55 0.16 0.16 0.18 0.09

0 0.17 0.44 0.56 0.11 0.11 0 0

Matrix 3.10.1.3 Figure 3.17c LYGBP for two 
orthogonal projections: half flow model

3.11.1.4 Full flow model

For the full flow model, the matrix 3.10.1.4 is obtained after the implementation of the 

LYGBP algorithm. The plot of matrix 3.10.1.4 is shown in figure 3.17d.

0 0.17 0.56 0.68 0.68 0.56 0.17 0
0.17 0.72 0.66 0.71 0.71 0.66 0.72 0.17
0.56 0.66 0.70 0.75 0.75 0.70 0.66 0.56
0.68 0.71 0.75 0.80 0.80 0.75 0.71 0.68
0.68 0.71 0.75 0.80 0.80 0.75 0.71 0.68
0.56 0.66 0.70 0.75 0.75 0.70 0.66 0.56
0.17 0.72 0.66 0.71 0.71 0.66 0.72 0.17

0 0.17 0.56 0.68 0.68 0.56 0.17 0

Matrix 3.10.1.4 Figure 3.17d LYGBP for two 
orthogonal projections: full flow model
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3.11.3 Results of the combination of two orthogonal and two rectilinear
projections system

In this section the results of implementing LYGBP are presented for the combination of 

two orthogonal and two rectilinear projection systems in the case of the path length 

model for the same four flow models as in section 3.10.1. All results in this section are 

discussed in section 3.14. The plots of the single pixel flow, two pixels flow, half flow 

and lull flow models using the LYGBP algorithm are shown in figures 3.18a, 3.18b, 

3.18c and 3.18d respectively.

Figure 3.18a LYGBP for a
combination of two orthogonal and two 
rectilinear projections: single pixel flow 
model

Figure 3.18b LYGBP for a
combination of two orthogonal and two 
rectilinear projections: two pixels flow 
model

Figure 3.18c LYGBP for a
combination of two orthogonal and two 
rectilinear projections: half flow model

Figure 3.18d LYGBP for a
combination of two orthogonal and two 
rectilinear projections: full flow model

77



3.11.4 Results for three fan-beam projections system

In this section the results of implementing LYGBP are presented for the three fan-beam 

projections system for the same four flow models as in section 3.10.1. All results in this 

section are discussed in section 3.14. The plots of the single pixel flow, two pixels flow, 

half flow and full flow models using the LYGBP algorithm are shown in figures 3.19a, 

3.19b, 3.19c and 3.19d respectively.

....

Figure 3.19a LYGBP for three fan- Figure 3.19b LYGBP for three fan- 
beam projections: single pixel flow beam projections: two pixels flow 
model model

P ■ ■ 1i
■ IS?■ ipii1 1 IS
■ H I HHHI

Figure 3.19c LYGBP for three fan- Figure 3.19d LYGBP for three fan- 
beam projections: half flow model beam projections: full flow model

3.12 Results of LYGBP using the optical attenuation model

This section presents results for several types of projection systems using the optical

attenuation model. The results are divided into several parts :-

(a) Results for two orthogonal projections are in section 3.11.1.
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(b) Results for combination of two orthogonal and two rectilinear projections are 

presented in section 3.11.2.

(c) Results for three fan-beam projections are presented in section 3.11.3.

Results for two rectilinear, a combination of one orthogonal and two rectilinear, and 

four-fan beam projections systems are given in Appendix B.

3.12.1 Results for two orthogonal projections system

In this section the results of implementing LYGBP are presented for the two orthogonal 

projections system for the same four flow models as in section 3.10.1. All results in this 

section are discussed in section 3.14. The plots of the single pixel flow, two pixels flow, 

half flow and full flow models using the LYGBP algorithm are shown in figures 3.20a, 

3.20b, 3.20c and 3.20d respectively.

Figure 3.20a LYGBP for two 
orthogonal projections: single pixel 
flow model

Figure 3.20b LYGBP for two 
orthogonal projections: two pixels flow 
model

Figure 3.20c LYGBP for two 
orthogonal projections: half flow 
model.

Figure 3.20d LYGBP for two 
orthogonal projections: full flow model
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3.12.2 Results for a combination of two orthogonal and two rectilinear projections 

system

In this section the results of implementing LYGBP are presented for the combination of 

two orthogonal and two rectilinear projections system in the case of the optical 

attenuation model for the same four flow models as in section 3.10.1. All results in this 

section are discussed in section 3.14. The grey level plots of the single pixel flow, two 

pixels flow, half flow and full flow models using the LYGBP algorithm are shown in 

figures 3.21a, 3.21b, 3.21c and 3.2Id respectively.

Figure 3.21a LYGBP for a
combination of two orthogonal and two 
rectilinear projections: single pixel flow 
model

Figure 3.21c LYGBP for a
combination of two orthogonal and two 
rectilinear projections: half flow model

Figure 3.21b LYGBP for a
combination of two orthogonal and two 
rectilinear projections: two pixels flow 
model

Figure 3.21d LYGBP for a
combination of two orthogonal and two 
rectilinear projections: full flow model
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3.12.3 Results for three fan-beam projections system

In this section the results of implementing LYGBP are presented for the three fan-beam 

projections system for the same four flow models as in section 3.10.1. All results in this 

section are discussed in section 3.14. The grey level plots of the single pixel flow, two 

pixels flow, half flow and full flow models using the LYGBP algorithm are shown in 

figures 3.22a, 3.22b, 3.22c and 3.22d respectively.

Figure 3.22a LYGBP for three fan- Figure 3.22b LYGBP for three fan- 
beam projections: single pixel flow beam projections: two pixels flow 
model model

+1

Figure 3.22c LYGBP for three fan- Figure 3.22d LYGBP for three fan- 
beam projections: half flow model beam projections: full flow model
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3.13 Results of LYGBP using a combination of optical attenuation model and 

signal conditioning

The optical attenuation modelling gives a very low contrast images due to its low 

sensitivity compared with the path length model. By combining both optical attenuation 

model and signal conditioning, the following operations will occur :- 

When light does not intercept any bubbles/droplets, the sensor voltage will have a 

steady-state value of zero instead of the current minimum value of Vmin (0.2835 V). 

Passage of a bubble or droplet through the beam produces a change in level, which can 

be amplified by the circuit (figure 4.14). This results in a large contrast in grey level 

between carrier and conveyed component.

This section presents results for several types of projection systems using the 

combination of optical attenuation model and signal conditioning. The results are 

divided into several parts :-

(a) Results for two orthogonal proj ections are in section 3.12.1.

(b) Results for combination of two orthogonal and two rectilinear projections are

presented in section 3.12.2.

(c) Results for three fan-beam projections are presented in section 3.12.3.

Results for two rectilinear, a combination of one orthogonal and two rectilinear, and 

four-fan beam projections systems are given in Appendix C.

3.13.1 Results for two orthogonal projections system

In this section the results of implementing LYGBP are presented for the two orthogonal 

projections system in the case of the combination of optical attenuation model and 

signal conditioning for the same four flow models as in section 3.10.1. All results in this 

section are discussed in section 3.14 . The grey level plots of the single pixel flow, two
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pixels flow, half flow and full flow models using the LYGBP algorithm are shown in 

figures 3.23a, 3.23b, 3.23c and 3.23d respectively.

Figure 3.23a LYGBP for two Figure 3.23b LYGBP for two 
orthogonal projections: single pixel orthogonal projections: two pixels flow 
flow model model

Figure 3.23c LYGBP for two Figure 3.23d LYGBP for two 
orthogonal projections: half flow model orthogonal projections: full flow model

3.13.2 Results for a combination of two orthogonal and two rectilinear projections 

system

In this section the results of implementing LYGBP are presented for the combination of 

two orthogonal and two rectilinear projections system in the case of the combination of 

optical attenuation model and signal conditioning for the same four flow models as in 

section 3.10.1. All results in this section are discussed in section 3.14. The grey level 

plots of the single pixel flow, two pixels flow, half flow and full flow models using the 

LYGBP algorithm are shown in figures 3.24a, 3.24b, 3.24c and 3.24d respectively.
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Figure 3.24a LYGBP for a Figure 3.24b LYGBP for a
combination of two orthogonal and two combination of two orthogonal and two 
rectilinear projections: single pixel flow rectilinear projections: two pixels flow
model model

Figure 3.24c LYGBP for a Figure 3.24d LYGBP for a
combination of two orthogonal and two combination of two orthogonal and two 
rectilinear projections: half flow model rectilinear projections: full flow model

3.13.3 Results for three fan-beam projections system

In this section the results of implementing LYGBP are presented for three fan-beam 

projections system in the case of the combination of optical attenuation model and 

electronic measurements for the same four flow models as in section 3.10.1. All results in 

this section are discussed in section 3.14. The grey level plots of the single pixel flow, 

two pixels flow, half flow and full flow models using the LYGBP algorithm are shown in 

figures 3.25a, 3.25b, 3.25c and 3.25d respectively.
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Figure 3.25a LYGBP for three fan- Figure 3.25b LYGBP for three fan- 
beam projections: single pixel flow beam projections: two pixels flow 
model model

Figure 3.25c LYGBP for three fan- Figure 3.25d LYGBP for three fan- 
beam projections: half flow model beam projections: full flow model

3.14 Hybrid reconstruction algorithm

Optical sensors are hard field sensors and so, in the models used for this thesis, the 

material in the flow is assumed only to vary the intensity of the received signal. For the 

optical sensor, when no objects block the path from transmitter to receiver, the sensor is 

designed to produce a zero output value, neglecting the effect of noise inherent in the 

system. This is taken into account in the development of a hybrid reconstruction 

algorithm which combines knowledge of sensor reading zero flow and LYGBP in order 

to improve the accuracy of the image reconstruction. This algorithm was developed 

using the C programming language. The programme is listed in Appendix F.
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The algorithm is designed for two, three or four projections systems based on 

orthogonal and rectilinear projections. The algorithm initially assumes binary values 

from the sensors, either zero for no material or one for the presence of material. All 

pixels associated with sensors indicating zero are set and held at zero for the rest of the 

calculation. The LYGBP then uses numerical values as in section 3.6. Briefly, the steps 

involved in the algorithm are

(1) Generate the sensitivity maps for the horizontal, vertical and diagonal sensors.

(2) Initialise all sensors to zero.

(3) Read in each sensor value.

(4) If the sensor reading = 0, then any pixels traversed by that sensor’s beam are set to 

zero and omitted from further calculations.

(5) Perform LYGBP in the normal way.

The flow chart representing the steps involved in the algorithm is shown in figure 3.26.

Start'

Get each 
sensor value

No
Sensor= 1 ? -

Yes

Set pixel = 0

No
> Final pixel

Yes

( S top')

Perform LBP

Generate
Sensitivity

Maps

Figure 3.26 Flow chart for the hybrid reconstruction algorithm
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This algorithm results in significant improvements in the measured errors. For two 

rectilinear projections the single pixel, half and full flow models are perfectly recovered 

i.e. accuracy is 100 %. However, with only two projections the two pixels model results 

in aliasing and four pixel images are produced (figure 3.27a). With the combination of 

two orthogonal and two rectilinear projections system all flow all flow models are fully 

reproduced (figure 3.27b).

Figure 3.27a Two orthogonal Figure 3.27b Combination of two 
projections and the hybrid orthogonal and two rectilinear projections 
reconstruction algorithm: two pixels and the hybrid reconstruction algorithm: 
flow model two pixels flow model

For flow regimes having a void in the centre e.g. an annular flow in which the liquid 

flows on the wall of the pipe as a film as the gas phase flows in the centre, the hybrid 

algorithm is unlikely to improve image reconstruction. However, optical sensors are 

intended for use where the conveyed component ratio is less than 10% vol./vol. In this 

type of conveying, the material being monitored is well dispersed and experience shows 

that sensor outputs are often in the noise level (effectively zero).

3.15 General discussion of the results obtained using the LYGBP and hybrid 

algorithms

All the results shown in sections 3.10, 3.11 and 3.12 demonstrate the typical smearing 

effect generated by LYGBP. A measure of the accuracy of the image was obtained by
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summing all the voltages in the relevant matrix and dividing it by the voltage 

appropriate to the correct pixels. Thresholding was investigated as possible methods of 

improving the image.

Simple thresholding models were applied to both the LYGBP results to investigate if 

they merited further investigation. The thresholds were applied by observing the peak 

voltage, Vp, in the matrix and then setting elements with V̂ - < KVp to zero, where K = 

0.5. Results are shown in tables 3.9, 3.10 and 3.11 and appendix D.

A quantitative evaluation of the LYGBP is obtained by summing the terms in the 

reconstructed matrix and comparing it with the numerical value provided by the ideal 

solution. The error percentage is calculated from the expression,

„  v-i value o f all pixels-value o f ideal pixels . ^Error = >          x 100 %
value o f ideal pixels

The resulting errors are tabulated in tables 3.9, 3.10, 3.11 and appendix D in order to

compare the accuracy of each projection. The complete set of results for the path length

modelling for the single pixel flow model is shown in table 3.9. The following

abbreviations and designations are used

Th = threshold level

peak = the highest value in the sensitivity matrix



Projections Algorithm No. o f
sensors

Error % 
(No threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 688 0
2 Orthogonal Hybrid 16 0 0
2 Rectilinear LYGBP 22 451.4 106.3
2 Rectilinear Hybrid 22 0 0
2 Rectilinear/ 
2 Orthogonal

LYGBP 38 531.3 0

2 Rectilinear/ 
2 Orthogonal

Hybrid 38 0 0

1 Orthogonal/
2 Rectilinear

LYGBP 24 824.7 0

1 Orthogonal/
2 Rectilinear

Hybrid 24

3 fan-beam LYGBP 36 639.5 233.3
4 fan-beam LYGBP 48 732.6 0

Table 3.9 Estimated reconstruction errors: path length model

The complete set of results for the optical attenuation modelling for the single pixel 

flow model is shown in table 3.10.

Projections Algorithm No. o f  
sensors

Error % 
(No threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 4786.7 4521
2 Orthogonal Hybrid 16 0 0
2 Rectilinear LYGBP 22 4479.8 4197.3
2 Rectilinear Hybrid 22 0 0
2 Rectilinear/ 
2 Orthogonal

LYGBP 38 4624.5 4332

2 Rectilinear/ 
2 Orthogonal

Hybrid 38 0 0

1 Orthogonal/
2 Rectilinear

LYGBP 24 4408.4 4090.1

1 Orthogonal/
2 Rectilinear

Hybrid 24 0 0

3 fan-beam LYGBP 36 2816.2 1463.3
4 fan-beam LYGBP 48 3178.7 2394.5

Table 3.10 Estimated reconstruction errors: optical attenuation model

The complete set of results for a combination of optical attenuation model and signal 

conditioning for the single pixel flow model is shown in table 3.11.
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Projections Algorithm No. o f  
Sensors

Error % (no 
threshold)

Error % (Th > 
0.5 xpeak)

2 Orthogonal LYGBP 16 722.7 722.7
2 Orthogonal Hybrid 16 0 0
2 Rectilinear LYGBP 22 464.9 214.9
2 Rectilinear Hybrid 22 0 0

2 Rectilinear/2 Orthogonal LYGBP 38 585.4 0
2 Rectilinear/2 Orthogonal Hybrid 38 0 0
1 Orthogonal/2 Rectilinear LYGBP 24 1052.7 204.5
1 Orthogonal/2 Rectilinear Hybrid 24 0 0

3 fan-beam LYGBP 36 993.7 487.8
4 fan-beam LYGBP 48 935.2 269.9

Table 3.11 Estimated reconstruction errors: a combination of optical attenuation 
model and signal conditioning

In general, LYGBP result in significant errors as shown in tables 3.9, 3.10, 3.11 and 

appendix D. It was expected that increasing the number of projections and, hence, the 

number of measurements would provide more accurate estimates of the models, but this 

is not supported by the results. The single pixel and two pixels flow models show larger 

errors than the half flow and full flow models due to the significant smearing effect of 

the LYGBP. In some cases thresholding the results for the single pixel and the two 

pixels flow models reduced the errors significantly. However, the problem with 

applying thresholding is that it tends to be arbitrary and setting suitable levels is difficult 

with a dynamic system. Some of the large errors obtained using the LYGBP algorithm 

arise from the significant smearing effect in the image caused by the back-projection 

type of reconstruction.

Significant error is introduced if all the sensors do not carry the same weighting in the 

calculations. The weighting refers to the total path length of light beams intercepting 

each pixel e.g. two orthogonal projections gives a weighting of 2  x 1 0  = 2 0  mm per 

pixel; two orthogonal and two rectilinear projections give a pixel weighting of ( 2  x 1 0 ) 

+ (2 x 14.1) = 48.2 mm. This non-uniform weighting in sensitivity was very noticeable
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with the fan beam systems, where pixels close to the light sources are more heavily 

weighted than those further away. Optimum reconstructions occur when each pixel has 

the same path length. For this reason the experimental arrangement is based on a 

combination of orthogonal and rectilinear projections with the projections carefully 

arranged so that the weighting is uniform (section 4.4).

Aliasing in the image is observed when using the two orthogonal projections system 

(figures 3.17b and 3.17f). The previous work carried out by Dugdale [Dugdale, 1994] 

and Ramli [Ramli, 1998] clearly shows that it is not sufficient to have only two 

projections as this will result in aliasing of the image, which occurs when two particles 

intercept the same view, resulting in the ambiguity of the location of some particles. 

This is due to the fact that the two projections system produces insufficient information, 

leading to the lack of image resolution and aliasing. As such, it is important to have 

more than two projections to minimise such problems.

Based on the design study presented in this chapter, an optical tomography system with 

four projections, which consist of a combination of two orthogonal and two rectilinear 

projections, was constructed. The conditioned sensor outputs are sampled as digital 

integers so that the calculations are simplified and high speed is more easily achieved.
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Chapter 4

The measurement system

4.1 Introduction

In this chapter, the design of the individual components, which combine to form the 

optical tomography system, are described.

4.2 The light source

Ideally, it would be preferable to use a laser as the light source because of its degree of 

coherence, but because of the high cost, it is not used [Durrani & Greated, 1977]. 

Related previous work [Abdul Rahim, 1996] used a halogen bulb as the light source 

aligned with arrays of optical fibre transmitter sensors arranged as a two orthogonal 

projection system. The optical fibre transmitters were arranged on a one-to-one basis 

with the receivers. Such an arrangement is suitable in an industrial application. In this 

project an alternative approach is investigated. Four 35mm projectors, which can provide 

collimated light beams, are used as the light source and light guide. This arrangement is 

suitable in a laboratory environment. The projectors use 24V d.c., 150W halogen lamps, 

which removes the 100 Hz ripple from the light source. The angle of divergence of the 

beams from the projectors was measured and found to be approximately 2.15°, which is 

much better than that obtained with optical fibre sources. In the case where there is no 

particle or bubble flowing in the pipe, light from the projector is received by the optical 

fibre which has an acceptance angle of 56°.

92



4.3 The receiving system

The receiver optical fibres were designed using equation (3.15). The front lens of the 

fibre has a radius of 0.8 mm and the exit lens has a radius of 0.63 mm. The exit radius 

helps ensure all light from the fibre is passed to the PIN diode receiver.

4.3.1 Preparation of the optical fibre

Modifications have to be made to the cut optical fibres before they are assembled into 

the measurement system in order to ensure that all fibres have smooth surfaces and 

similar lens radii resulting in near identical characteristics with minimum differences in 

transmitted intensity and emission angle. To achieve these characteristics, the optical 

fibres undergo two processes

(a) Polishing.

(b) Construction of lens.

4.3.1.1 Polishing

Three types of loss are associated with the surface state of the fibre end:-

(a) the orthogonality of the face with respect to the axis of the fibre;

(b) convexity;

(c) roughness.

A good surface is one which is as flat as possible, orthogonal to the axis of the fibre and 

optically polished. The polishing operation generally uses three different grits; the final 

finish is provided by the use of a diamond lap. The advantage of this method is that 

good orthogonality of the face can be obtained and impairments due to convexity and 

roughness are minimised; the major disadvantage is the number of stages and the 

duration of each stage in the process [Ungar, 1997].
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An aluminium block was constructed to hold the fibres tightly in a vertical manner 

during the polishing process [Ramli, 1998]. The block is 5.6 cm high, 3.8 cm wide and

10.2 cm long. It has twenty vertical holes each of diameter of 2.3mm allowing ten fibres 

(or twenty terminations) to be polished simultaneously (figure 4.1). The fibres are 

inserted into the holes located in the block so that approximately 5 mm of the fibre end 

protrudes from the bottom of the block. “Blu Tack” is used to trap the fibres between 

the removable and the fixed aluminium blocks. “Blu Tack” is chosen instead of silicon 

glue because the latter glued the fibre to the aluminium block and as a result it is 

difficult to remove the fibre after the completion of the polishing process resulting in 

damage to the fibre.

The top aluminium block is then tightened to ensure that the fibres are clamped in 

position tightly. The block containing the fibre is then placed on top of silicon carbide 

paper mounted on a moving rotor. Initially the fibres are polished with a 300 grit paper, 

followed by 400, 600 and finally 1200 grit paper. The fibre terminations are assessed 

after completing each polishing grit to assess their smoothness using a projection 

microscope. The polishing process is completed when the fibre ends are flat and the 

rough surfaces are removed. The ends of the fibres are then cleaned with industrial 

methylated spirit and dried. The fibres can be polished with a diamond paste to obtain 

the best finish.
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Optical

Fibres

Upper Aluminum Plate

Blu Tack

Lower Aluminium Block

Silicon CarbidBaper

Polishing
Wheels

Figure 4.1 Apparatus for polishing optical fibre

4.3.1.2 Construction of lens

Green light [ 
Red light [

Tl

. . .

Optical
Fibre
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5*n

Power Mosfe

Temperature
Setting

Linearising
Amplifier

PWM
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Figure 4.2a Lens making fixture

To maximise the beam intensity into the receiver diode, the beam of light must 

converge. This is achieved by using an optical lens. Optical lenses available in the 

market are either large in diameter compared with an optical fibre, or expensive.
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Therefore, a temperature platform (figure 4.2a) is used to construct the lens on the 

optical fibre ends.

The temperature platform provides a means of heating small (20mm diameter) 

aluminium or other thin plates to allow suitably prepared plastic fibre samples to be 

formed into an appropriate shape by partial melting. The temperature of the aluminium 

platform can be controlled over the range 90 - 150 °C; and to operate it requires a 24 

V/2A d.c. power supply. The platform is heated by two 33Q, 50W power resistors 

which are fed through a power MOSFET. A red LED is illuminated if the temperature 

of the platform becomes excessive, i.e. greater than 150 °C. Illumination of the green 

LED indicates that the supply voltage is at a steady value of 24 V.

Before a fibre is placed in the lens making fixture, the polished, flat end of the fibre has 

3 mm of the outer sheath stripped from it. The stripped end is positioned in the pre

heated, lens making tool and a controlled pressure applied to the fibre (figure 4.2a). The 

fixture ensures that the optical axis of the lens is aligned with the optical axis of the 

fibre. The movement of the fibre is controlled as the plastic melts to ensure close 

similarity in the shape and size of the resulting lenses. A spherical lens shaped mould in 

the heating fixture enables the plastic to be melted.

The lens mould was constructed using a steel ball bearing held in a sliding guide which 

positions the ball coaxially with the position of the optical fibre. The mould is made 

from a polished aluminium disc having a diameter of 20mm. The disc is clamped to the 

top surface of the heating block. To form an indentation on the disc, the ball bearing is
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pressed into the disc by a controlled amount. This method provides a low cost approach 

to the production of optical lenses on plastic optical fibres.

4.3.1.3 Emission pattern measurement

To ensure that the optical fibres have identical optical characteristics, measurements on 

the fibres’ emission patterns were performed.

Each lensed optical fibre was tested by illuminating them with light coming from a 

halogen bulb placed 20 cm away. The fibre was connected to a photovoltaic detector 

and an amplifying stage. The results show that there is only slight variations between 

the output voltage given by each fibre. The mean of the results is 7.19 V and the 

standard deviation is 0.1 V. This shows that the fibres have closely matched 

characteristics.

It is also important to measure the alignment of the axis of the optical fibre and the lens 

as well as the angular divergence of the beam from the fibre. The latter measurement is 

important to ensure that the optical power in the centre of the beam is maximised. The

;; actual beam

ideal
collimationemergent) 

beam /
lensed-end 6f fibre

Figure 4.2b Light beam paths coming out of the lens
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test rig in figure 4.3 was used for this purpose. It is equipped with two protractors 

placed horizontally and vertically respectively in order to measure the angle through 

which the fibre is rotated. The fibre is inserted into a hole in the fixture so it can be 

rotated about its optical axis relative to a fixed photodiode measurement head, and 

simultaneously can be rotated horizontally relative to the sensor. It is linked to an 

optoelectronic circuit which converts the optical signal to an electrical signal and then 

amplifies it.

A vertical emission test was carried out on each lensed optical fibre. The fibre was 

placed 20 cm from a halogen light source powered by a power supply delivering 5 V. 

The fibre was aligned with the photodetector incorporated into a current-to-voltage 

converter and subsequently amplified. The optical intensity was measured as the fibre 

was rotated axially through 360°. The results for three fibres are depicted in figure 4.4. 

The results show that the intensities of the optical fibres are reasonably independent of 

the fibre orientation. This indicates that the fibre tennination is normal to the optical 

fibre axis.

Vertical

Protractor

Vertical 
, Protractor

H a lo g e n  b u lb

Optical
Fibre

Optical 
/  Fibre Photodiode

Current

Voltage 
Converter 

+ Amplifier
Horizontal / I  
P ro trac to r/ J

/ /
Horizontal
Protractor

a. Front view b. Side view

Figure 4.3 Test rig for optical fibre
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A similar test was conducted on the lensed fibre for the horizontal emission pattern. The 

fibre was positioned 20 cm from a halogen bulb. The bulb was connected to a d.c. 

power supply delivering 5 V. The fibre was rotated through 180° horizontally, 90° either 

side of the axis between the fibre and the receiver, and for each angle, the intensity was 

recorded. The same set up used for the vertical emission test was used for this purpose. 

The results for three of the fibres are shown in figure 4.5. The intensities of all the fibres 

are nearly identical to each other.
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Fig. 4.5 Horizontal emission pattern of optical fibres
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The method described in this section is a low cost approach to the production of optical 

lenses on plastic optical fibres. This method enables the lens power to be controlled and 

ensures that the optical fibres and the lens share a common axis. The lens is acceptably 

concentric and it helps to collimate the light beam. A fiilly collimated beam cannot be 

achieved due to chromatic and lens aberrations.

4.3.2 The receiver circuit

The receiver circuit is designed for signal conditioning using amplifiers and filters. The 

input of the sensor is a physical signal represented by light, while the outputs of the 

sensor are electrical signals consisting of a rectified voltage and an averaged voltage 

(figure 4.6). The rectified output enables unipolar data acquisition and consequent signal 

processing. The long time constant provides some averaging. The output of the 

amplifier should be proportional to the gas flow rate passing the associated sensor. If all 

the amplifier outputs are summed, they should be proportional to the gas flow rate 

indicated by the gas rotameter. The circuit is placed in an earthed metal box to minimise 

electrical noise pick-up. The analogue signals from an array of optical transducers, 

covering a cross-section of the pipe, are converted into digital form and passed into an 

image reconstruction system. Data acquired in this way enable an image of the cross- 

section of the flow regime to be created [Nordin, 1995].

P hysical Signal
Optical --------------- — R ectified  V oltage

Transducer
L ight Beam -----------------  A veraged V oltage

- 1 5 V  O V  +  15 V

Figure 4.6 Optical Transducer
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Light traversing the flow pipe passes through an optical fibre and reaches the current-to- 

voltage converter (figure 4.7), which then converts it to current by the PIN photodiode. 

The BPX65 photodiode used in this experiment is a planar 1mm2 silicon PIN 

photodiode, which is hermetically sealed with an integral plain glass window. It has a 

low junction capacitance, short switching time and, because of its high frequency 

response, is capable of detecting wide bandwidth signals. It has a peak spectral response 

of 850 nm and, at that wavelength its responsivity is 0.55 A/W. The rise time of the 

photo current is 3.5 ns.

If the flow containing droplets traverses the light beam, the portion of the light reaching 

the photodiode may be reduced due to scattering and reflection. For small droplets, the 

projected area is proportional to the amount of signal lost. Hence, the signal lost is 

detected as a voltage, which is proportional to the particle area detected [Chin et al, 

1988].

% = 1

r - y ^
R, =

bn

Y  BPX65

Figure 4.7 Current-to-voltage converter

Dual Bi-FET TL072CN operational amplifiers costing £0.28 each are used for the 

receiver circuit. Among the electrical characteristics of the TL072CN are

IK R2 = 68K

\/Y
!K

1 + : : eo
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Noise voltage = 18nV 4Hz Typ 

Input bias current = 30 pA Typ (at 25 °C)

Input offset current = 5 pA Type (at 25 °C)

Input offset voltage = 3 mV Typ (at 25 °C)

The circuit (figure 4.7) produces an output voltage which is proportional to the input 

current as expressed mathematically by,

e„=-W i+f-

68 K

' W

1 M

— w -
Cj = 220 pF

+
68 K

Figure 4.8 Buffer

The second operational amplifier stage (figure 4.8) acts as buffer and provides a dc gain 

o f -14.7. The system is to be used for water/gas or water-conveyed slurries so a signal 

bandwidth of 800 Hz is chosen for the system, as a compromise between the required 

signal bandwidth related to the flow, approximately 200 Hz for 2 mm diameter bubbles 

travelling at 0.5 m/s [Green & Cunliffe, 1983] and limiting the noise inherent in any 

measurement system. Hence,

oo = 2n (800) = 5.03 x 103 rad/s

Time constant, r  = — « 2 x 10'4s 
co
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I = CR and R = 1 MCI 

Hence, C = 200 pF (220 pF was used in this project)

The output of the second stage is connected to the following stage via an a.c. coupling 

network (figure 4.9) effectively producing a band pass filter. The time constant of this

a.c. coupling network is r  = CR = 1 second. As such the comer frequency is f c = ——
2 nr

= 0.159 Hz. A polycarbonate capacitor is used as the coupling capacitor because of its 

low loss, high stability, and close tolerances. It also exhibits better characteristics than a 

polyester capacitor, particularly the insulation resistance and temperature coefficient 

[Famell Catalogue, 1999]. It also provides excellent accuracy, temperature stability and 

high accuracy [Horowitz & Hill, 1993].

1 uF

1 M

Figure 4.9 AC coupling network

68 K

1 M 1 M

A /V
220  pF 220  pF

68 K

n
68 K

'1

Figure 4.10 The third and fourth stage
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1MThe third stage (figure 4.10) has a gain = 1 + ------= 15.7 whereas the fourth stage
6SK

(figure 4.10) provides a gain of 14.7. The comer frequencies of the third and fourth 

stages are both 723.4 Hz.
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Voltage
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■ ' + \  +  - + +
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R1
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D2
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R6, 10IC

—
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■ A /— - \ t \ r
5K. 10K
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Figure 4.11 Precision Full Wave Rectifier

The next stage of the circuit consists of a precision full wave rectifier (figure 4.11). The 

output voltage of the rectifier is given by the following expression:

R
Output, e0 = +\ei | —  , for R, = R2 = R6 = 2R4

Rr.
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Figure 4.12 Low pass filter

The output from the rectifier circuit is directly coupled to the low pass filter circuit

(figure 4.12) which has an upper cut off frequency of /  = — =0.159 Hz. This circuit
2 7 tT

provides averaging or smoothing for the preceding stage. The gain of this low pass filter 

circuit is set to 1.

The overall receiver circuit diagram is shown in Figure 4.14.

4.3.3 Calibration and tests on the receiver circuit

Three tests were carried out on the receiver system. A gain check was made by injecting 

a low amplitude sine wave (5 mV peak-to-peak, frequency of 100Hz) into the summing 

junction of the buffer amplifier (Figure 4.14) via a 10 kQ resistor. The outputs of each 

of the following stages were checked with an oscilloscope for amplitude and distortion. 

The stage gains were calculated and in agreement with predicted values (section 4.3.2).

The frequency of the sine wave was varied from 0.5 Hz to 3 kHz with a constant input 

voltage of 5 mV peak-to-peak. The results of this frequency response are plotted in
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figure 4.13. Note, only the amplitude response is shown, because the final stage of the 

system produces rectification.

Frequency Response

cqTS

10 -

0.01 0.1 1 10 100 1000 10000 
Frequency (Hz)

Theoretical 
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0 Electrical 
Input (dB)

@ Optical Input 
(dB)

Figure 4.13 Frequency response of the circuit

In order to obtain an overall calibration of the receiver circuit (figure 4.14), a special 

arrangement was set up in which an optical fibre, linked to each receiver circuit in turn, 

was illuminated by light coming from a dichroic halogen bulb. A rotating disc 

containing a series of slits is placed between the bulb and the optical fibre. When the 

source of light, a slit and the fibre are aligned, a pulse of light energy flows from the 

light source into the optical fibre. The output of the circuit, as observed on an 

oscilloscope, displays flat-topped pulses. In order to ensure that each circuit produces 

similar outputs, the potentiometer, RF (figure 4.14), of each circuit is adjusted, varying 

the gain.

Changes in overall gain system gain due to uneven illumination of optical fibres in the 

practical measurement set up and drift in working point of the electronics due to effects 

such as temperature change, were compensated for in software (section 5.2).
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4.4 Design of the overall optical tomography system

The light receiver consists of an array of optical fibre sensors arranged in a combination of 

two orthogonal and two rectilinear projections (figure 4.15b). The orthogonal projections 

(figure 4.15a) consist of an 8 x 8 array of optical fibre sensors whereas the rectilinear 

projections consist of an 11 x 11 array of optical fibre sensors (the number of sensors are 

chosen so that they will give a balanced sensitivity). Thus the total number of optical fibre 

sensors used is thirty eight for each plane and for cross-correlation purposes, the total number 

of optical fibre sensors is doubled to seventy six as there are two planes placed axially along 

the flow pipe. The optical fibres are positioned adjacent to each other to provide a large 

number of views. Ideally the two orthogonal and two rectilinear projections system should be 

in the same plane. However, if they were they would overlap each other and so two of the 

projections have to be placed in a separate plane. These planes are separated by only a few 

mm with the two orthogonal projections system placed on top of the rectilinear projections. 

Each optical fibre receiver has a length of 200 cm from the flow pipe to the electronic circuit.

20 mm gap as optical stop
Fibre 1

mm Fibre 2

Pipe Fibre 4

Fibre 5Collimat ̂ d 

input bez m

80 mm
Fibre 6

Fibre 7

Fibre
water

Figure 4.15a Arrangement of the optical fibres around the flow pipe - top view
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Projector 2

c
Projector 3

Optical Fibre Receivers

Figure 4.15b Arrangement of the optical fibres around the flow pipe - isometric view

4.5 The data acquisition system

The Keithley Instruments DAS-1800HC data acquisition system was used in this project. It is 

a high-performance data acquisition board, which is suitable for an IBM-compatible PC. It 

can be configured for 64 single-ended or 32 differential inputs and can measure up to 

333ksample/s maximum input rate.
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For concentration measurements (chapter 5) the band pass amplifier of the transducer has a 

cut off frequency of approximately 800 Hz. So a sampling frequency of 500 Hz per channel 

was chosen as the velocities and flow rates associated with this project are relatively low (i.e. 

0.2 - 0.3 m/s). This enables two hundred and twenty two points to be collected for each of the 

thirty eight channels, which allows 0.44 seconds of flow data to be obtained. For velocity 

measurements (chapter 6), the sampling frequency must be fast enough (100 Hz in the case of 

large bubbles) to record the transit time of the bubbles between upstream and downstream 

sensors).

4.6 The hydraulic flow rig

The system was tested on a hydraulic flow rig shown in figure 4.15. The measurement system 

is built around a vertical pipe, 1.27m long, with a circular cross-section, 80mm in diameter. 

Control of the water flow is effected by the use of a pump and by various valves installed in 

the rig. Bubbles are injected into the measurement section through two bubble injectors 

placed at the base of the vertical section. The two small air injectors are utilised to blow 

different sized gas bubbles from the bottom of the pipe. Control of bubble flow is achieved 

through the use of two valves linked to the two bubble injectors. The valves can control the 

size of the bubbles as well as generating various flow regimes. The air pressure supply to the 

bubble injectors can be varied from 0 to 420 kPa. Throughout the experiment, a constant 

pressure of 50 kPa was applied.
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The flow pipe is made of perspex to enable visual observation of the flow. The lower 

measurement section, consisting of thirty eight sensors, is placed 62 cm above the gas 

injection points and the second sensing array, which also consists of thirty eight sensors, is 

placed 15 cm (approximately two pipe diameter) downstream of the former. The 

measurement section is of modular construction and comprises a series of perspex blocks 90 

mm square with an 80 mm diameter central bore so that when bolted together they provide a 

continuous 80 mm diameter internal flow passage. The square shape of the section allows 

optical observation and measurement to be made without optical distortion - as would be the 

case if a circular pipe was used [King et al, 1983]. The flow rig is equipped with two 

rotameters: a water rotameter ( 0 - 7  1/min) and a gas rotameter ( 0 - 7  1/min). Each rotameter 

provides direct readings of the total flow rate of water and bubbles respectively. For the 

experiments described in this thesis water always formed the continuous phase and the gas 

flow was always in the bubbly regime. The volumetric flowrate of bubbles ranged from 0 to 7 

1/min.

In the measurement section (sections 5.2 and 5.3) and associated discussions (section 5.4) 

small bubble and large bubble flows are mentioned. For the purposes of this thesis small 

bubbles are generated by a porous plug in the base of the flow rig, producing bubbles which 

visually appear to be in the range 1 - 1 0  mm. Large bubbles are produced by direct gas 

injection into the flowing water. These bubbles are about 15-20 mm in diameter.
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Figure 4.15 The hydraulic flow rig
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Chapter 5

Concentration measurement

5.1 Introduction

The aim of this section is to investigate the use of the optical tomographic system for 

obtaining concentration information of the bubbles in the flow pipe. Two approaches are 

investigated. The first aims to obtain an average gas concentration at the measurement 

section, the second aims to obtain a gas distribution profile by using tomographic 

imaging. The hybrid reconstruction (section 3.13) algorithm is used to generate the 

tomographic images of the measurement cross-section using the measured data.

5.2 Average concentration measurement

The measurements presented in this section consider the results from each sensor as a 

continuous sample of the gas concentration within its sensing field. The method was to 

obtain two hundred and twenty two samples for all thirty eight sensors; each sensor was 

sampled at 500 Hz. The mean value for each sensor was calculated at the specified flow 

rate. The standard layergram back-projection algorithm was applied and the resulting 

pixel voltages summed. The values obtained for each flow rate for small bubbles are 

compared with the values obtained for large bubbles to observe the effect of flow rates 

and bubble size. Table 5.1 shows the sum of pixels for small bubbles and large bubbles 

corresponding to various volumetric flow rates.
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Flow Rates 
(1/min)

Sum of pixels for 
small bubbles (V)

Sum of pixels for 
large bubbles (V)

0 4.9 4.9
0.5 262.2 291.1
1 345.6 334.2

1.5 285.4 365.5
2 240.5 397.9

2.5 249.3 389.3
3 243.8 412

3.5 201.6 408.4
4 188 406.4

4.5 185.5 390.8
5 180.1 371.4

5.5 186.4 340.3
6 185.4 316.1

6.5 179.3 303.9
7 188.2 282.4

Table 5.1

The results in table 5.1 are shown graphically in figure 5.1 and discussed in section 5.4.
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Figure 5.1 Gas flow rate calibration graph - water flow rate 3 1/min
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5.3 Concentration profiles

The measurement system for concentration consists of thirty eight sensors. Ideally, with 

zero flow, all sensors should have zero output. In practice many of the sensors have an 

output voltage due to factors such as drift, intrinsic noise and offset in operational 

amplifiers. To reduce these errors all the sensors were sampled at 500 Hz for 0.44 

seconds with no gas flow at the start of each series of experiments. The root mean 

square voltage was then calculated for each sensor to provide a zero flow voltage. The 

zero flow voltages were used to correct the gas flow measurements for offset errors in 

each sensor.

The experiments were conducted with the laboratory lights switched off to ensure that 

the mains lighting did not affect the light receivers. Measurements were made by 

energising all thirty eight optical sensors and monitoring their outputs at several gas 

flow rates ranging from 0 1/min to 7 1/min. Throughout the experiment, water flowed 

upwards at a volumetric flow rate of 3 1/min. The data acquisition system was used to 

obtain two hundred and twenty two samples, with a sampling frequency of 500 Hz per 

channel, at each flow rate. These data were used to calculate two hundred and twenty 

two concentration tomograms.

After implementing the hybrid reconstruction algorithm (section 3.13), optical density 

measurements are expressed as voltages with respect to a two-dimensional co-ordinate 

frame defining a plane through the sensor array. Each point in this co-ordinate system 

corresponds to a real-world location lying on a plane through the pipe. Hence, bubble 

concentration estimates are registered with the pipe locations from which they arose.

The time series for one of the sensors, which interrogated the central cross-section of the 

pipe, is shown in figure 5.2. The sampling frequency used is 500 Hz. The bubbles
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injected from the base of the pipe consist of small bubbles generated at a volumetric flow 

rate of 0.5 litres/min.

O)

CO LO h -  a> r -
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oo cd o

Sample Number

Figure 5.2 Typical sensor output over time

The peaks in Figure 5.2 represent the dispersed phase (bubbles) which cut the light path 

coming from the light projectors.

5.3.1 Concentration profiles of small bubbles

The following subsections show a sequence of selected images representing the 

reconstructed fields of small bubbles flowing in water, which were generated at various 

volumetric flow rates. These results are discussed in section 5.4.

5.3.1.1 Flow rate of 0.5 1/min

A sequence of images representing small bubbles flowing at a volumetric flow rate of 0.5 

1/min, are shown on figures 5.3a to 5.3d.

0 0 0 0 0 0 0 0
0 0 0 0 0 9.06 0 0
0 0 0 0 0 0 0 0
0 0 0 0 8.59 9.54 0 0
0 0 0 0 8.82 11.00 0 0
0 0 4. .93 0 0 8.40 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 5.3a Matrix and concentration profile of the first sample representing 
small bubbles at 0.5 1/min
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0 0 0 0 0 0 0 O'
1.97 0 0 7.44 0 9.32 0 0
0 0 0 0 0 0 0 0
0 3.47 0 9.64 0 10.75 0 0
0 0 9.48 0 9.75 11.00 0 0
0 0 0 5.95 9.00 8.59 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Figure 5.3b Matrix and concentration profile of the second sample representing 
small bubbles at 0.5 1/min

0 0 0 0 0 0 0 O'
1.87 0 0 7.72 8.89 9.05 0 0
0 0 0 0 0 0 0 0
0 3.18 5.96 10.22 10.41 11.87 0 0

2.65 3.03 8.34 4.65 9.54 10.78 0 0
4.68 6.65 6.19 6.48 9.38 8.63 0 0
7.05 2.45 5.39 5.88 6.06 4.73 0 0

0 0 0 0 0 0 0 0

Figure 5.3c Matrix and concentration profile of the third sample representing 
small bubbles at 0.5 1/min

0 0 0 0 0 0 0 0 '
1.75 0 0 6.95 8.72 8.64 0 4.96
0 0 0 0 0 0 0 0
0 0 6.26 0 10.23 12.18 0 5.16
0 0 8.19 3.37 0 10.19 0 0

5.10 0 6.17 7.15 9.26 0 0 8.97
6.81 0 0 5.50 6.86 0 0 5.92

0 0 0 0 0 0 0 0

Figure 5.3d Matrix and concentration profile of the fourth sample representing 
small bubbles at 0.5 1/min

For the remainder of the concentration profile results for small bubbles only the pictorial 

image are presented.
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5.3.1.2 Flow rate of 3 1/min

A sequence of images representing small bubbles flowing at a volumetric flow rate of 3 

1/min, are shown on figures 5.4a to 5.4d.

Figure 5.4a Concentration profile of the 
first sample representing small bubbles at 
3 1/min

Figure 5.4b Concentration profile 
of the second sample representing 
small bubbles at 3 1/min

Figure 5.4c Concentration profile of the Figure 5.4d Concentration profile 
third sample representing small bubbles at of the fourth sample representing 
3 1/min small bubbles at 3 1/min

5.3.1.3 Flow rate of 5 1/min

A sequence of images representing small bubbles flowing at a volumetric flow rate of 5

1/min, are shown on figures 5.5a to 5.5d.
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Figure 5.5a Concentration profile of the Figure 5.5b Concentration profile of
first sample representing small bubbles at the second sample representing small
5 1/min bubbles at 5 1/min

Figure 5.5c Concentration profile of the Figure 5.5d Concentration profile of 
third sample representing small bubbles the fourth sample representing small 
at 5 I/min bubbles at 5 1/min

5.3.1.4 Flow rate of 7 1/min

A  s e q u e n c e  o f  i m a g e s  r e p r e s e n t i n g  s m a l l  b u b b l e s  f l o w i n g  a t  a  v o l u m e t r i c  f l o w  r a t e  o f  7  

1 / m i n ,  a r e  s h o w n  o n  f i g u r e s  5 . 6 a  t o  5 . 6 d .

Figure 5.6a Matrix and concentration Figure 5.6b Matrix and concentration 
profile of the first sample representing profile of the second sample
small bubbles at 7 1/min representing small bubbles at 7 1/min
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Figure 5.6c Matrix and concentration Figure 5.6d Matrix and concentration
profile of the third sample representing profile of the fourth sample
small bubbles at 7 1/min representing small bubbles at 7 1/min

5.3.2 Concentration profiles of large bubbles

The following subsections show a sequence of selected images of large bubbles flowing 

in water, which were generated at various volumetric gas flow rates. These results are 

discussed in section 5.4.

5.3.2.1 Flow rate of 0.5 1/min

A sequence of images representing large bubbles generated at a volumetric gas flow rate 

of 0.5 1/min, are shown on figures 5.7a to 5.7d.

'on:.* -itration Fr:5f

Figure 5.7a Matrix and concentration Figure 5.7b Matrix and concentration 
profile of the first sample representing profile of the second sample 
large bubbles at 0.5 1/min representing large bubbles at 0.5 1/min
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Figure 5.7c Matrix and concentration Figure 5.7d Matrix and concentration
profile of the third sample representing profile of the fourth sample
large bubbles at 0.5 1/min representing large bubbles at 0.5 1/min

5.3.2.2 Flow rate of 3 1/min

A  s e q u e n c e  o f  i m a g e s  r e p r e s e n t i n g  l a r g e  b u b b l e s  f l o w i n g  a t  a  v o l u m e t r i c  f l o w  r a t e  o f  3  

1 / m i n ,  a r e  s h o w n  o n  f i g u r e s  5 . 8 a  t o  5 . 8 d .

'.o n c a rr  ration Fr*il=

ip
Figure 5.8a Matrix and concentration 
profile of the first sample representing 
large bubbles at 3 1/min

Figure 5.8b Matrix and concentration 
profile of the second sample 
representing large bubbles at 3 1/min

Figure 5.8c Matrix and concentration Figure 5.8d Matrix and concentration 
profile of the third sample representing profile of the fourth sample 
large bubbles at 3 1/min representing large bubbles at 3 1/min
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5.3.2.3 Flow rate of 5 1/min

A  s e q u e n c e  o f  i m a g e s  r e p r e s e n t i n g  l a r g e  b u b b l e s  g e n e r a t e d  a t  a  v o l u m e t r i c  f l o w  r a t e  o f  5  

1 / m i n ,  a r e  s h o w n  o n  f i g u r e s  5 . 9 a  t o  5 . 9 d .

Figure 5.9a Matrix and concentration 
profile of the first sample representing 
large bubbles at 5 1/min

Figure 5.9b Matrix and concentration 
profile of the second sample 
representing large bubbles at 5 1/min

Figure 5.9c Matrix and concentration Figure 5.9d Matrix and concentration 
profile of the third sample profile of the fourth sample representing 
representing large bubbles at 5 1/min large bubbles at 5 1/min

5.3.2.4 Flow rate of 7 1/min

A  s e q u e n c e  o f  i m a g e s  r e p r e s e n t i n g  l a r g e  b u b b l e s  f l o w i n g  a t  a  v o l u m e t r i c  f l o w  r a t e  o f  7  

1 / m i n ,  a r e  s h o w n  o n  f i g u r e s  5 . 1 0 a  t o  5 .  l O d .
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Figure 5.10a Matrix and concentration Figure 5.10b Matrix and concentration
profile of the first sample representing profile of the second sample
large bubbles at 7 1/min representing large bubbles at 7 1/min

Figure 5.10c Matrix and concentration Figure 5.10d Matrix and concentration 
profile of the third sample representing profile of the fourth sample 
large bubbles at 7 1/min representing large bubbles at 7 1/min

5.3.3 Concentration profiles of small bubbles at higher frequency

The experiments conducted as in section 5.3.1 were repeated but the data acquisition 

system was used to obtain 600 samples, with a sampling frequency of 20 kHz per 

channel, for each flow measurement. This high sampling rate was used to try to identify 

the movement of individual bubbles through the measurement cross section. These 

experiments made use of the two orthogonal projections system consisting of 8 x 8 

optical fibre sensing arrays. The experiment was restricted to the 8 x 8  array for two 

reasons; firstly to enable a larger number of samples per channel to be collected and 

secondly to eliminate image registration problems due to the physical displacement of the 

8 x 8  and 1 1 x 1 1  arrays. The sequence of images for small bubbles flowing at a
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volumetric flow rate of 0.5 1/min, are shown on figures 5.11a to 5.lid . The results are 

discussed in section 5.4.

Figure 5.11a Matrix and concentration Figure 5.11b Matrix and concentration 
profile of the first sample representing profile of the second sample 
small bubbles at 0.5 1/min representing small bubbles at 0.5 1/min

ition Fi:fil;

Figure 5.11c Matrix and concentration Figure 5.1 Id Matrix and concentration 
profile of the third sample representing profile of the fourth sample 
small bubbles at 0.5 1/min representing small bubbles at 0.5 1/min

5.4 Discussion on concentration measurement

5.4.1 Gas flow rate calibration

The gas flow rate calibration graph (figure 5.1) shows the sum of voltages in all pixels 

within the flow pipe plotted against the volumetric flow rate of the bubbles for both small 

bubbles and large bubbles. The results shown in table 5.1 give a noise level of 4.9V, at 

zero flow, which corresponds to levels of 1.4 % of maximum flow reading for small 

bubbles and 1.2 % for large bubbles. The results obtained in section 5.2 indicate that the 

system reacts to large and small bubbles in a similar manner. However, saturation occurs
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at higher flow rates with large bubbles than small bubbles. Figure 5.1 shows saturation 

occurring at a gas flow rate of 1 1/min for large bubbles and 3 1/min for small bubbles. 

This result is discussed further in sections 5.4.2 and 5.4.3. Empirical equations have 

been fitted to the results. For small bubbles the equation used is

Sum o f pixels = -0.32*6 + 1.16x5 + 72.93x4 + 340.26*3 + 810.16*2 + 860.21* + 4.9 

where * is the gas flow rate in 1/min.

The equation used for the large bubbles is

Sum o f pixels = -0.3 lx6 + 7.39x5 -  67.63x4 + 302.38x3 -  694.29x2 + 196.1Ax + 4.9 

where * again is the gas flow rate in 1/min.

5.4.2 Small bubbles

The majority of measurements was made with circulating water to ensure that the 

bubbles flowed upwards in the pipe. Consideration of the Reynolds number shows the 

water is flowing laminarly. The Reynolds, Re number for water flowing through the rig 

at 3 1/min is given by:-

Velocity of water at 3 1/min in 80mm bore pipe is

3/60 x 10'3 AA1 7
v = ---------------— «0.0 l m /s

(0.08/2)2

If water density, p=  103 kg/m3, water velocity, v = 0.01 m/s, pipe diameter, d = 0.08 m, 

and water viscosity, Q at 20°C = 54 x 10‘5 kg/ms,

. _ pvd 103 x 0.01x0.08 1/1CAthen Rr -  - —  = --------------   = 1480
c C 54x10

For Re < 2300, the flow is laminar. So the water is flowing laminarly.
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The flowing water appeared to keep the small bubbles in the centre of the pipe. This 

means that the majority of bubbles are confined to the central part of the measurement 

cross-section and only affect a few sensors. As the flow rate increases the bubbles get 

closer together until the few sensors being affected became saturated. The diagrams 

(figures 5.12a and 5.12b) indicate the flow of small bubbles at two different volumetric 

flow rates.

Measurement
cross-section

4 t t

- J \ - )
( f r

K) Measurement
cross-section

o

o
o

Figure 5.12a Small bubbles at a gas Figure 5.12b Small bubbles 
flow rate below 1 1/min approximately at gas flow rates above

1 1/min

The gas flow rate calibration graph shows that initially from 0 to 1 1/min, the sum of the 

pixels increases, but from 1.5 1/min to 7 1/min, the sum of the pixels begins to decrease 

as the flow rate increases. Section 5.3.1 shows that the small gas bubbles are generally 

confined to the centre of the pipe. As the volumetric flow rate increases, more bubbles 

are released, resulting in only a few sensors being affected and as such, the sensors as 

well as the electronics have little time to recover from bubbles that flowed previously. 

Beyond 1 1/min, the graph shows saturation due to the large number of bubbles in the 

path of the optical fibre sensors.

In tomographic imaging the data sampling rate for the individual sensors can effect the 

images produced. The majority of the tomographic images were generated using a
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sampling rate of 500 Hz/sample (500 concentration tomograms/s). Section 5.3.3 shows 

that with a very high rate, 20 kHz/sample (20,000 concentration tomograms/s), the 

bubble is virtually stationary. Further work is required to optimise the sampling rate, 

which should be related to bubble velocity (chapter 6).

5.4.3 Large bubbles

Large bubbles occupy a much larger cross section of the conveyor than small bubbles 

and so the majority of the sensors detect the presence of the bubbles. For this reason 

higher gas flow rates are measurable before saturation effects become dominant. The 

sum of the pixels increases over the flow rate of 0 to 3 1/min as shown in figure 5.1. 

However, beyond the volumetric flow rate of 3 1/min, the sum of the pixels begins to 

decrease as shown in figure 5.1. The diagrams (figures 5.13a and 5.13b) indicate the 

flow of large bubbles at two different volumetric flow rates.

o oo C )<T" )r~')O Measurement
cross-section

Measurement
cross-section

o cj>
Figure 5.13a Large bubbles at a gas flow Figure 5.13b Large bubbles at gas
rate below 3 1/min flow rates above 3 1/min
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Chapter 6

Velocity Measurements

6.1 Introduction

Cross correlating the upstream sensor time series with the downstream sensor time 

series generates a correlogram. The peak position of the correlogram provides the time 

taken for markers within the flow to travel between the upstream and downstream 

measurement cross-sections [Beck & Plaskowski, 1987]. Since the distance between the 

upstream and downstream sensors is known, the velocity of the marker can be 

calculated. Two methods of cross-correlation were attempted. The first approach cross 

correlates the data from upstream and downstream sensors. This method provides an 

average bubble velocity at the specific section in the flow pipe being monitored. The 

second method uses the upstream and downstream sensor arrays to generate two 

sequences of concentration profiles using the hybrid layergram back-projection 

algorithm (section 3.13). Individual upstream and downstream pixels have their 

concentration time series cross-correlated. This approach enables the velocity profile at 

the measurement cross-section to be investigated. By cross correlating non-aligned 

pixels radial velocity or swirl can be detected.

6.2 Sensor-to-sensor correlation

For the velocity measurement based on sensor-to-sensor correlation, voltages 

representing the grey level concentration, Vglc, with time from one of the downstream 

sensor were recorded and are shown in figure 6.1a and that from the corresponding 

upstream sensor are shown in figure 6.1b . In this experiment so as to enable a good
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visual marker to be produced, the valve controlling the air supply was opened once for a 

few seconds and quickly closed. As a result, a large bubble of approximately 60 - 70 

mm in diameter and 20 to 30 mm tall was released. By cross-correlating the signals 

coming out of the two sensors placed 15 cm above each other, the correlogram shown in 

figure 6.1c is obtained. The sampling frequency of the data acquisition system was fixed 

at 100 Hz. The peak value of the correlogram is 0.558 and occurs at a parametric time 

shift of 54 units (each unit represents 10 ms) corresponding to a transit time of 540 ms. 

The velocity was calculated as 0.278 m/s.

co in 
. . v- to

T - c M C M c n m i j - T i - i n i n
S a m p le  n u m b er

5
_  4 
~  3oo> 2
> 1

0

Figure 6.1a Downstream sensor output

Sample number

Figure 6.1b Upstream sensor output

C ross correlogram

Figure 6.1c Cross-correlation of upstream and downstream sensors

The experiment was repeated using other sensors and the resulting correlogram is shown 

in figure 6.2. The peak value of the correlogram is 0.594 and occurs at a parametric time 

shift of 53 units (each unit represents 10 ms) corresponding to a transit time of 530 ms. 

From the correlogram, the velocity of the large bubble is calculated as 0.283 m/s. The
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correlogram peak is well defined in both figures 6.1c and 6.2. The results obtained are 

within 1 parametric time unit i.e. 54 and 53 time units, which is the resolution of the 

measurement.

Figure 6.2 Cross correlation of upstream and downstream sensors 

6.3 Pixel-to-pixel correlation

Pixel-to-pixel correlation has been carried out on flows containing large bubbles. Six 

hundred samples were obtained at a sampling rate of 100 Hz/sample for each sensor. 

Each block of measurements was used to calculate an upstream and downstream 

concentration profile (section 5.3). This was repeated for all six hundred samples. A 

time varying grey level was produced for each upstream and downstream pixel 

consisting of a sequence of six hundred values. Upstream pixel (4,4) and downstream 

pixels (3,3), (3,4), (3,5), (4,3), (4,4), (4,5), (5,3), (5,4) and (5,5) are considered for grey 

level cross correlation. The numbering of pixels in the flow pipe is shown in figure 6.3.

130



i 1’1 1,2.x
1,'3 1,4 1,5 ^ 6 ,1,7 1,8

2,1/
I

% 2 2,3 2,4 2,5 2,6 2,7 ,2,8

! / • '

3,2 3,3 3,4 3,5 3,6 3,7 3>
\

i
4,2 4,3 4,4 4,5 4,6 4,7 4,8'

I 5 ’ 1
5,2 5,3 5,4 5,5 5,6 5,7 5,8

1
;x6,i 6,2 6,3 6,4 6,5 6,6 6,7 6,8;

: 7,1 . 7,2
'

7,3 7,4 7,5 7,6 7,7 7,8

! 8,1
1

8,2 1
1 8,3 8,4 8,5 8j6., 8,7 8,8

Figure 6.3 Arrangement of pixels within the flow pipe

6.3.1 Pixel-to-pixel correlation on large bubbles

Figure 6.4a shows the voltage representing the grey level concentration, Vglc, with time 

for upstream pixel 4,4; figure 6.4b shows the corresponding voltage variation for 

downstream pixel 3,3. Cross-correlation of the upstream pixel 4,4 and downstream pixel

3,3 produced the correlogram shown in figure 6.4. The peak value of the correlogram is 

9.12 and occurs at a parametric time shift of 57 units (again each unit represents 10 ms) 

corresponding to a transit time of 570 ms. From the correlogram, the velocity of the 

large bubble is calculated as 0.263 m/s compared with 0.278 m/s for sensor-to-sensor 

correlation.

Sample Number

10

o> 4 
>  2

1l ^ i  . u J

n o i i n r - N o o i m i - s o o i i f l T - N
t ' - O T t C O T - W C O C M t D O C O l D O T j - t ' -

r r r N f i i w n n n ' f ' f i n i o i f l

Sample r u tte r

Figure 6.4a Upstream concentration Figure 6.4b Downstream concentration 
signal at pixel 4,4 signal at pixel 3,3
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Figure 6.4c Cross correlation of upstream concentration at pixel 4,4 and 
downstream concentration at pixel 3,3

This process of cross correlating upstream and downstream pixels was repeated and the 

results are tabulated in table 6.1.
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Correlogram

C ross correlogram

Upstream pixel 4,4; 
downstream pixel 3,3

Upstream pixel 4,4; 
downstream pixel 3,4

Peak
value

9.12

Cross correlogram 7.48

Parametric
delay

57

57

Time
delay
(ms)

Velocity
(ms'1)

570 0.263

570 0.263

Upstream pixel 4,4; 

downstream pixel 3,5

3.73 56

Cross correlogram

560 0.268
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Correlogram

Upstream pixel 4,4; 

downstream pixel 4,3

Cross correlogram

Upstream pixel 4,4; 

downstream pixel 4,4

Cross correlogram

Peak
value

10.37

I 5.90

200 300 400 500 600
Param etric tim e shift

2.17

100 200 300 400 500 600
Param etric tim e shift

Upstream pixel 4,4; 

downstream pixel 4,5

Parametric
delay

56

56

56

Time
delay
(ms)

Velocity
(m s1)

560 0.268

560 0.268

560 0.268
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Correlogram

Upstream pixel 4,4; 

downstream pixel 5,3

Cross correlogram

Upstream pixel 4,4; 

downstream pixel 5,4

Cross correlogram

J 2.25r

0 100 200 300 400 500 600
Param etric tim e shift

Upstream pixel 4,4; 
downstream pixel 5,5

Peak
value

C ross correlogram 9.31

7.67

2.50

Parametric
delay

57

57

57

Time
delay
(ms)
570

570

570

Velocity
(m s1)

0.263

0.263

0.263

Table 6.1
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The results presented in table 6.1 show that the velocities of the bubbles are similar even 

though the cross-correlations are carried out on different pixels. In all cases considered, 

the correlogram peak is well defined and the cross correlation of upstream and 

downstream pixel time histories appears to work satisfactorily. Table 6.2 summarises 

the velocities obtained using pixel-to-pixel correlation. Two interpretations of these 

results are possible. Firstly, the resolution in parametric time is 1 unit in 56 or 57 

corresponding to a resolution of 2 %. This means the velocity is 0.266 ms'1 with a 

tolerance of ± 0.005 ms'1 (i.e. 0.261 - 0.271 ms'1). Secondly, if the velocities are 

regarded as accurate measurements then pixels 3,5; 4,3; 4,4 and 4,5 show that a part of 

the bubble is moving with slightly larger velocity than in the other pixels.

The velocities obtained from pixel-to-pixel cross correlation are also similar to that 

obtained from sensor-to-sensor cross correlation.

Pixel (3,3

Velocity = 
0.263 iWs

Pixel (3,4

Velocity = 
0.263 m/s

Pixel (3,5)

Velocity = 
0.268 m/s

Pixel (4,3 
V e lo c ity ! 
0.268 m/

1 Pixel ( 4,4  
= Velocity 
i 0.268 m/

) Pixel (4,5)
= V elocity j= 
> 0.268 m/s

Pixel (5,3) 
V elocity = 
0.263 m/i

Pixel (5,4

Velocity = 
0.263 m/i

Pixel (5,5; 
V elocity == 
0.263 m/s

Table 6.2 Map of velocities obtained using pixel-to-pixel cross correlation for nine 
central downstream pixels

6.3.2 Pixel-to-pixel correlation on small bubbles

Several experiments have been carried out to measure the velocity of small bubbles. In 

the experiments, the distance between the upstream and downstream sensor planes is 

reduced to 3 cm. However, the results did not produce transit time measurements similar 

in value to that of large sized bubbles. This could be attributed to the fact that the sensor
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spacing is much larger than the size of the bubbles. A typical correlogram is shown in 

figure 6.5. There is no single peak, which can be identified for the purpose of 

calculating the velocity. This correlogram may arise because the small bubbles are very 

similar in size and have a reasonably regular frequency. Thus different bubbles may 

correlate with one another. To enable the system to perform cross-correlation on small

sized bubbles, the sensor spacing should be of the order of the bubble size or smaller 

than the expected bubble size (see section 7.3). At the relatively low water and bubble 

velocities used in this thesis, spatial filtering effects [Hammer & Green, 1982] are not 

relevant due to the high signal bandwidth of the system [Green et al, 1995].

The images are produced at a frame rate of 100 per second. Considering this as the 

sampling frequency, the corresponding Nyquist frequency is 50 frames per second. 

Small bubbles travelling at 0.263 m/s will have moved 5.3 mm. The small bubbles 

appear to be in the range 1 - 10mm, with a mean of 5mm. For the velocity 

measurements, the individual bubbles were well spaced i.e. approximately 15 - 20mm, 

so the possibility of image aliasing does not arise.

Figure 6.5 A correlogram obtained from pixel-to-pixel cross-correlation of small 
bubbles
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Chapter 7

Conclusions and suggestions for future work

7.1 Conclusions

An optical tomographic measurement system has been successfully designed and an 

initial evaluation of its performance made. The specific objectives of the thesis have 

been fulfilled as follows

• Chapter three presents an investigation on the interaction between a collimated beam 

of light and a spherical bubble. Models of an optical tomographic system using various 

projection geometries and the results of the modelling using layergram back-projection 

and hybrid reconstruction algorithms aimed at optimising the design of the tomography 

system (objectives one, two and three) are also presented.

• The optical fibre lens is modelled in chapter three and a description of its construction 

is described in chapter four (objective four).

• The transducer design is presented in chapter four (objective five).

• The work presented in chapter five shows that the measurement system is suitable for 

producing concentration profiles of the tomographic images (objective six).

• The work presented in chapter six shows that the system can also measure the velocity 

of the flow and determine the velocity profiles (objective seven).

• Suggestions for further research are presented in chapter seven (objective eight).
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7.2 Contribution to the field of process tomography

The combination of two orthogonal and two rectilinear projections system based on 

optical fibres is capable of making concentration measurements of small bubbles in 

water of diameter 1-10 mm and volumetric flow rates up to 1 1/min, and large bubbles in 

water of diameter 15-20 mm and volumetric flow rates up to 3 1/min on a hydraulic 

conveyor. Two arrays, each of thirty eight sensors, are capable of performing velocity 

measurements using the same gas bubbles by cross correlation. Tomograms of the 

concentration profile have been determined and the optical sensors are sensitive to 

bubbles of various sizes.

7.3 Suggestions for future work

• Ideally in an industrial environment, it would be preferable to use laser as the light 

source due to its monochromatic and coherent characteristics. It may be more cost 

effective to have two laser sources with associated high grade collimation, combined 

with a system of beam splitters allowing radiation to cover all the projections in the 

tomographic cross-section. Alternatively, optical fibres could be used as light channels 

to carry the light into the measurement section.

• Increase the number of views per light sources for each pixel, i.e. initially use 16 x 16 

orthogonal projections and 22 x 22 rectilinear projections to increase resolution. The 

projections should be arranged in the same plane or determine an algorithm which 

compensates for non-aligned projections. This algorithm could use velocity to determine 

transit time between projections.

• In this thesis the data acquisition system that was used sampled the sensors 

sequentially. This causes problems for both concentration and velocity profile
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reconstructions. Sampling all the sensors at the same instant would ensure that the data 

for a specific time were accurately related. It would ease the time registration of axially 

displaced projection data, because velocity measurement would provide the necessary 

time delay between projections. High speed sampling and analogue to digital conversion 

would provide time for the digital data to be read into the PC sequentially.

• The calibration of the sensors should be investigated. Ideally all the sensors should 

have the same zero and sensitivity to light variation. This could be checked by feeding 

light from a fixed source, via a mechanical chopper into an optical fibre and then to the 

electronics. All the optical fibres and associated amplifiers should be checked. Further 

thought should be given to checking/calibrating the measurement on line so that defects 

in the pipe may be compensated.

• Further investigations should be carried out on reconstruction algorithms. Different 

forms of filtering techniques should be investigated. The hybrid reconstruction 

algorithm should be developed for use with two component flows, where the conveyed 

component concentration is low i.e. measurement of crude oil concentration in water 

discharged by tankers flushing their oil storage tanks.

• An investigation should be carried out on capturing the flow using CCD (charge- 

coupled devices). Photographs of the motion of particles/droplets in a flow could be 

taken. CCDs can detect a broad spectrum of light of different intensities. The CCD 

video cameras could provide velocity information if the frame rate is known.

• Further work is required to optimise the lens curvature. The lens production fixture 

should be modified so that the lens surface is smoother, providing a more collimated 

beam and so that the fibre cladding is not affected by the surface heating process.
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• The current combination of on-line measurement and off-line computation should be 

replaced with an on-line measurement system. The concentration and cross correlation 

algorithms should be optimised for speed. If necessary some of the calculations should 

be carried out in parallel. Potential industrial users should be asked if they require on 

line images of concentration profile, which is heavy on computation and display time, 

compared with the concentration matrices of a single volume flow rate reading.

• Multi modality tomography should be investigated with in which the optical 

tomographic system can be combined with other types of sensing with the aim of 

comparing the accuracy of the measurements and increasing the understanding on the 

flow process.

• The cross correlation can be improved by hardware correlators or special digital signal 

processing chips embedded in the data acquisition system. To enable the system to 

perform cross-correlation on small-sized bubbles, the projection axial spacing should be 

of the order of the bubble size or smaller than the expected bubble size. Also, the 

number of optical fibres should be increased, possibly doubled, to maximise the 

probability of detecting the small bubbles. A dedicated data capture system should be 

employed to increase the data bandwidth.

• The electronic design of the system could be optimised to include fast data acquisition 

and signal processing chips. The sampling time of the data capturing system should be 

improved to allow information on higher velocity flows to be collected. Direct memory 

access could be incorporated so that more data can be stored to allow improved 

averaging of the correlations and voltage profiles. Correlations and averaging could be 

done by dedicated signal processing circuits, which would speed up the overall system.
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• The number of sensors in an array should be increased until there is no discernible 

difference in output value between adjacent pairs. This will allow the maximum amount 

of data to be collected for use in image reconstruction. Each sensor is providing a view, 

an increase in the number of views generally helps to improve the image resolution.

• Experiments on other arrangements of optical fibre sensing arrays such as two 

orthogonal, a combination of one orthogonal and two rectilinear, three and four fan- 

beam projections should be carried out in order to compare their accuracy and see 

whether measured results agree with the predictions in section 3.13.

• The electronics circuit should be redesigned to optimise the gain, bandwidth and 

signal to noise ratio using the latest, improved operational amplifiers which have higher 

bandwidth, lower noise and drift e.g. OPA 2137. Programmable gain amplifiers with 

low offset are needed to improve the receiver circuit.

• The measurement system should be tested on an industrial hydraulic flow rig to 

determine the concentration and velocity measurement limitations and accuracies. 

Different sizes and types of droplets should be used with the measurement system on 

the conveyor to investigate the range of materials which it is suitable. These 

measurements could also be used for an evaluation of the effects of droplet size.

• This project is confined to investigating bubbles flowing upwards in water. Other 

media such as oil, which has a different attenuation coefficient should be investigated. 

Investigations should also be carried out on the effect of actual operating processes in 

which the surfaces of the pipe may become fouled e.g. with viscous crude oil, which 

will reduce the sensitivity and the resolution of the sensor. For crude oil infra red light 

of an appropriate wavelength could be used.
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• The modelling (chapter 3) indicates that more accurate images were reconstructed 

when the modelled measurement system provided equal weighting for each pixel. 

Further modelling should be carried out to investigate different weighting, perhaps non

linear weighting, in the sensitivity matrix to allow for non-equal path lengths.

• The bubbles could be injected at different heights up the flow pipe to investigate the 

effect of pipe length on reproduction of flow regimes which are useful for developing 

process tomography systems.

• The bubbles will generally will reflecting and attenuating the light beam. Further work 

can be done on modelling and carrying out experiments on the effect of bubbles 

scattering the light. This may require some of the detectors to be mounted radially 

around the flow pipe.

• This investigation has been restricted to vertical flow. The system could be tested for 

flow moving in various directions i.e. horizontal, downwards vertical and the flow pipe 

inclined at different angles to the vertical.

• Application of image segmentation algorithms to the reconstructed images should be 

investigated, which may provide opportunities to determine specific features of the 

flow.

• The measurement system could be used with a wider range of concentrations and 

velocities than has been described in this work. It is expected that the error in 

measurement will increase when several droplets intercept the same beam 

simultaneously.

• The longer term aim of this project is to determine the volumetric flow rate of the 

conveyed phase. This can be achieved by combining the concentration profiles.

t = T

Volumetric flow rate =
t=o
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where Ct is the instantaneous concentration at time t, Vt is the velocity applicable to this 

concentration and K is a constant of proportionality.

• In this project, measurements were made on concentration and velocity profiles. 

Further thought should be given to characterising the droplet by modifying the 

transducer circuit and using more/smaller diameter optical fibres.

• A dedicated sensor calibration system should be designed. This could be based on a 

voltage controlled light source or laser light source, followed by a mechanical or 

electrical light chopper. The chopped light could be fed through the optical fibre system 

into the electronic sensor. In this manner both optical fibre and electronics could be 

calibrated (section 4.3.3). The dedicated system should be under the control of a PC, 

with automatic data logging of the required measurements.

• This thesis has considered both path length and optical attenuation models. However, 

many systems may have both effects present e.g. small bubbles or the edges of larger 

bubbles may prevent light from reaching the sensor (path length model) and some 

bubbles may simply cause an optical attenuation. A combination of path length and 

optical attenuation models should be investigated with the aim of predicting the effect of 

bubble size and concentration.
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Appendix A Results of LYGBP using the path length model

This section presents results obtained using modelling for several types of projection 

systems using the path length model. The results are divided into several parts

(a) Results for two rectilinear projections are shown in section A. 1.

(b) Results for the three 120° rectilinear projections are shown in section A.2.

(c) Results for four fan-beam projections are shown in section A. 3.

A .l Results for two rectilinear projections system

In this section the results of implementing LYGBP are presented for the two rectilinear 

projection system for the same four flow models as in sections 3.10.1 and 3.10.2. The 

grey level plots of the single pixel flow, two pixels flow, half flow and full flow models

using the LYGBP algorithm are 

respectively.

Figure A .la LYGBP for two 
rectilinear projections: single pixel flow 
model

in Figures A.la, A.lb, A.lc and A.Id

Figure A.lb LYGBP for two rectilinear 
projections: two pixels flow model
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Figure A .lc LYGBP for two Figure A.ld LYGBP for two
rectilinear projections: half flow model rectilinear projections: full flow model

A.2 Results for a combination of a combination of one orthogonal and two 

rectilinear projections system

In this section the results of implementing LYGBP are presented for a combination of 

one orthogonal and two rectilinear rectilinear projections for the same four flow models 

as in section 3.10.1. The grey level plots of the single pixel flow, two pixels flow, half 

flow and full flow models using the LYGBP algorithm are shown in Figures A.2a, A.2b, 

A.2c and A.2d respectively.

Figure A.2a LYGBP for three 
rectilinear projections: single pixel flow 
model

Figure A.2b LYGBP for three 
rectilinear projections: two pixels flow 
model
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Figure A.2c LYGBP for three Figure A.2d LYGBP for three 
rectilinear projections: half flow model rectilinear projections: full flow model

A.3 Results of four fan-beam projections system

In this section the results of implementing LYGBP in the case of four fan-beam 

projection system are presented for the same four flow models as in sections 3.10.1 and 

3.10.2. The grey level plots of the single pixel flow, two pixels flow, half flow and lull 

flow models using the LYGBP algorithm are shown in Figures A.3a, A.3b, A.3c and

A.3d respectively.

Figure A.3a LYGBP for four fan- 
beam projections: single pixel flow 
model

Figure A.3b LYGBP for four fan- 
beam projections: two pixels flow 
model

Figure A.3c LYGBP for four fan- 
beam projections: half flow model

Figure A.3d LYGBP for four fan- 
beam projections: full flow model
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Appendix B Results of LYGBP using the optical attenuation model

This section presents results for several types of projection systems using the optical 

attenuation model. The results are divided into several parts

(a) Results for two rectilinear projections are presented in section B. 1.

(b) Results for a combination of one orthogonal and two rectilinear projections are

presented in section B.2.

(c) Results for four fan-beam projections are presented in section B.3.

B.l Results for two rectilinear projections system

In this section the results of implementing LYGBP are presented for the two rectilinear 

projections system for the same four flow models as in section 3.10.1. The grey level 

plots of the single pixel flow, two pixels flow, half flow and full flow models using the 

LYGBP algorithm are shown in Figures B.la, B.lb, B .lc and B.ld respectively.

Figure B.la LYGBP for two Figure B.lb LYGBP for two 
rectilinear projections: single pixel flow rectilinear projections: two pixels flow 
model model

Figure B.lc LYGBP for two 
rectilinear projections: half flow model

Figure B.ld LYGBP for two 
rectilinear projections: full flow model
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B.2 Results for a combination of a combination of one orthogonal and two

rectilinear projections system

In this section the results of implementing LYGBP are presented for a combination of 

one orthogonal and two rectilinear projections system in the case of the optical 

attenuation model for the same four flow models as in section 3.10.1. The grey level 

plots of the single pixel flow, two pixels flow, half flow and full flow models using the 

LYGBP algorithm are shown in Figures B.2a, B.2b, B.2c and B.2d respectively.

Figure B.2a LYGBP for a
combination of one orthogonal and two 
rectilinear projections: single pixel flow 
model

Figure B.2b LYGBP for a
combination of one orthogonal and two 
rectilinear projections: two pixels flow 
model

Figure B.2c LYGBP for a
combination of one orthogonal and two 
rectilinear projections: half flow model

Figure B.2d LYGBP for a
combination of one orthogonal and two 
rectilinear projections: full flow model

B.3 Results of four fan-beam projections system

In this section the results of implementing LYGBP are presented for the four fan-beam 

projections system for the same four flow models as in section 3.10.1. The grey level
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plots of the single pixel flow, two pixels flow, half flow and full flow models using the 

LYGBP algorithm are shown in Figures B.3a, B.3b, B.3c and B.3d respectively.

Figure B.3a LYGBP for four fan- Figure B.3b LYGBP for four fan- 
beam projections: single pixel flow beam projections: two pixels flow 
model model

Figure B.3c LYGBP for four fan- Figure B.3d LYGBP for four fan- 
beam projections: half flow model beam projections: full flow model
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Appendix C Results of LYGBP using a combination of optical 
attenuation model and signal processing

In this appendix, the results of LYGBP using a combination of optical attenuation model 

and signal processing are presented for :

(a) two rectilinear projections (section C.l).

(b) a combination of one orthogonal and two rectilinear projections (section C.l).

(c) four fan-beam projections (section C.3).

C.l Results for two rectilinear projections system

In this section the results of implementing LYGBP are presented for the two rectilinear 

projections system in the case of the combination of optical attenuation model and signal 

processing for the same four flow models as in section 3.10. The grey level plots of the 

single pixel flow, two pixels flow, half flow and full flow models using the LYGBP 

algorithm are shown in Figures C.l a, C.lb, C.lc and C.ld respectively.

Figure C.la LYGBP for two Figure C.lb LYGBP for two 
rectilinear projections: single pixel flow rectilinear projections: two pixels flow 
model model
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Figure C.lc LYGBP for two Figure C.ld LYGBP for two 
rectilinear projections: half flow model rectilinear projections: full flow model

C.2 Results for a combination of one orthogonal and two rectilinear projections 

system

In this section the results of implementing LYGBP are presented for a combination of 

one orthogonal and two rectilinear projections system in the case of the combination of 

optical attenuation model and signal processing for the same four flow models as in 

section 3.10.1. The grey level plots of the single pixel flow, two pixels flow, half flow 

and full flow models using the LYGBP algorithm are shown in Figures C.2a, C.2b, C.2c 

and C.2d respectively.

Figure C.2a LYGBP for a
combination of one orthogonal and two 
rectilinear projections: single pixel flow 
model

Figure C.2b LYGBP for a
combination of one orthogonal and two 
rectilinear projections: two pixels flow 
model
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Figure C.2c LYGBP for a Figure C.2d LYGBP for a
combination of one orthogonal and two combination of one orthogonal and two 
rectilinear projections: half flow model rectilinear projections: full flow model

C.3 Results for four fan-beam projections system

In this section the results of implementing LYGBP are presented for the four fan-beam 

projections system in the case of the combination of optical attenuation model and 

electronic measurements for the same four flow models as in section 3.10.1. The grey 

level plots of the single pixel flow, two pixels flow, half flow and full flow models using 

the LYGBP algorithm are shown in Figures C.3a, C.3b, C.3c and C.3d respectively.

.........

Figure C.3a LYGBP for four fan-beam Figure C.3b LYGBP for four fan- 
projections: single pixel flow model beam projections: two pixels flow

model

161



Figure C.3c LYGBP for four fan-beam Figure C.3d LYGBP for four fan- 
projections: half flow model beam projections: full flow model
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Appendix D Tables of estimated reconstruction errors for two pixels 
flow, half flow and full flow models

The complete set of results for the path length modelling for the two pixels flow model 

is shown in Table D.l.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 688 100
2 Orthogonal Hybrid 16 100 100
2 Rectilinear LYGBP 22 267.6 130.1
2 Rectilinear Hybrid 22 0 0

2 Rectilinear/2 Orthogonal LYGBP 38 374.3 0
2 Rectilinear/2 Orthogonal Hybrid 38 0 0
1 Orthogonal/2 Rectilinear LYGBP 24 802.7 215.5
1 Orthogonal/2 Rectilinear Hybrid 24 100 100

3 fan-beam LYGBP 36 412.3 46.5
4 fan-beam LYGBP 48 716.3 51.3

Table D.l Estimated reconstruction errors: path length model

The complete set of results for the optical attenuation modelling for the two pixels flow 

model is shown in Table D.2.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0 .5  xpeak)

2 Orthogonal LYGBP 16 2396.7 2263.9
2 Orthogonal Hybrid 16 100 100
2 Rectilinear LYGBP 22 2008.8 1881.8
2 Rectilinear Hybrid 22 0 0

2 Rectilinear/2 Orthogonal LYGBP 38 1961 1802.6
2 Rectilinear/2 Orthogonal Hybrid 38 0 0
1 Orthogonal/2 Rectilinear LYGBP 24 2175.1 2017.8
1 Orthogonal/2 Rectilinear Hybrid 24 91 91

3 fan-beam LYGBP 36 1350.5 756.8
4 fan-beam LYGBP 48 1551.8 1200

Table D.2 Estimated reconstruction errors: optical attenuation model

The complete set of results for the combination of optical attenuation model and signal 

conditioning for the two pixels flow model is shown in Table D.3.
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Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th > 0.5 x  peak)

2 Orthogonal LYGBP 16 722.7 722.7
2 Orthogonal Hybrid 16 100 100
2 Rectilinear LYGBP 22 286.8 129
2 Rectilinear Hybrid 22 0 0

2 Rectilinear/ 2 Orthogonal LYGBP 38 403.7 -11.5
2 Rectilinear/ 2 Orthogonal Hybrid 38 0 0
1 Orthogonal/ 2 Rectilinear LYGBP 24 887.6 396.8
1 Orthogonal/ 2 Rectilinear Hybrid 24 -14.1 -14.1

3 fan-beam LYGBP 36 695.7 398.
4 fan-beam LYGBP 48 933.7 322.4

Table D.3 Estimated reconstruction errors: combination of optical attenuation 
model and signal conditioning

The complete set of results for the path length modelling for the half flow model is 

shown in Table D.4.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
Th >0.5  xpeak

2 Orthogonal LYGBP 16 3.5 -25.3
2 Orthogonal Hybrid 16 -22.4 -25.3
2 Rectilinear LYGBP 22 7.4 -22.3
2 Rectilinear Hybrid 22 -31.1 -37.1

2 Rectilinear/ 2 Orthogonal LYGBP 38 17.5 -21.8
2 Rectilinear/ 2 Orthogonal Hybrid 38 -19 .6 -25.3
1 Orthogonal/ 2 Rectilinear LYGBP 24 26.2 11.8
1 Orthogonal/ 2 Rectilinear Hybrid 24 -22 .2 -25.1

3 fan-beam LYGBP 36 23.1 -60.9
4 fan-beam LYGBP 48 63.0 -81.0

Table D.4 Estimated reconstruction errors: path length model

The complete set of results for the optical attenuation modelling for the half flow model 

is shown in Table D.5.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 30.2 16.1
2 Orthogonal Hybrid 16 -19.1 -23.9
2 Rectilinear LYGBP 22 40 30.7
2 Rectilinear Hybrid 22 -21 -25.7

2 Rectilinear/ 2 Orthogonal LYGBP 38 44.1 35
2 Rectilinear/ 2 Orthogonal Hybrid 38 -14.7 -19.7
1 Orthogonal/ 2 Rectilinear LYGBP 24 17.4 2.5
1 Orthogonal/ 2 Rectilinear Hybrid 24 -30.8 -36

3 fan-beam LYGBP 36 -15 -60.3
4 fan-beam LYGBP 48 -7.7 -50.1

Table D.5 Estimated reconstruction errors: optical attenuation model
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The complete set of results for the combination of optical attenuation model and signal

conditioning for the half flow model is shown in Table D.6.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 30.2 16.1
2 Orthogonal Hybrid 16 -19.1 -23.9
2 Rectilinear LYGBP 22 37.9 22.1
2 Rectilinear Hybrid 22 -16.4 16.4

2 Rectilinear/ 2 Orthogonal LYGBP 38 40.1 14.8
2 Rectilinear/ 2 Orthogonal Hybrid 38 -9.8 -9.8
1 Orthogonal/ 2 Rectilinear LYGBP 24 11.2 -18.1
1 Orthogonal/ 2 Rectilinear Hybrid 24 -26.6 -29 .6

3 fan-beam LYGBP 36 -30.5 -75.9
4 fan-beam LYGBP 48 -21.8 -54.2

Table D.6 Estimated reconstruction errors: combination of optical attenuation 
model and signal conditioning

The complete set of results for the path length modelling for the full flow model is 

shown in Table D.7.

Projections Algorithm No. o f  
Sensors

Error % 
(no 

threshold)

Error %
(Th >0 .5  xpeak)

2 Orthogonal LYGBP 16 -22.4 -25 .3
2 Orthogonal Hybrid 16 -22.4 -25 .3
2 Rectilinear LYGBP 22 -14.7 -14.7
2 Rectilinear Hybrid 22 -14.7 -14.7

2 Rectilinear/ 2 Orthogonal LYGBP 38 -17.9 -17.9
2 Rectilinear/ 2 Orthogonal Hybrid 38 -17.9 -17.9
1 Orthogonal/ 2 Rectilinear LYGBP 24 - 16.2 - 16.9
1 Orthogonal/ 2 Rectilinear Hybrid 24 - 16.2 - 16.9

3 fan-beam LYGBP 36 -49 .6 -68 .3
4 fan-beam LYGBP 48 -46.8 -64 .5

Table D.7 Estimated reconstruction errors: path length model

The complete set of results for the optical attenuation modelling for the full flow model 

is shown in Table D.8.



Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 -21.3 -25.9
2 Orthogonal Hybrid -21.3 -25.9
2 Rectilinear LYGBP 16 -20.5 -26.2
2 Rectilinear Hybrid 22 -20.5 -26.2%

2 Rectilinear/ 2 Orthogonal LYGBP 38 -20.9 -26.1
2 Rectilinear/ 2 Orthogonal Hybrid 38 -20.9 -26.1
1 Orthogonal/ 2 Rectilinear LYGBP 24 -26.8 -31.7
1 Orthogonal/ 2 Rectilinear Hybrid -26.8 -31.7

3 fan-beam LYGBP 36 -53.1 -70.4
4 fan-beam LYGBP 48 -48.1 -62.3

Table D.8 Estimated reconstruction errors: optical attenuation model

The complete set of results for the combination of optical attenuation model and signal

conditioning for the full flow model is shown in Table D.9.

Projections Algorithm No. o f  
Sensors

Error % 
(no threshold)

Error %
(Th >0.5  xpeak)

2 Orthogonal LYGBP 16 -7.7 -7.7
2 Orthogonal Hybrid 16 -7.7 -7.7
2 Rectilinear LYGBP 22 -6 .9 -6 .9
2 Rectilinear Hybrid 22 -6 .9 -6 .9

2 Rectilinear/ 2 Orthogonal LYGBP 38 -6.7 -6.7
2 Rectilinear/ 2 Orthogonal Hybrid 38 -6.7 -6.7
1 Orthogonal/ 2 Rectilinear LYGBP 24 -24.7 -26.6
1 Orthogonal/ 2 Rectilinear Hybrid 24 -24.7 -26.6

3 fan-beam LYGBP 36 -57.5 -85.8
4 fan-beam LYGBP 48 -49.6 -69.3

Table D.9 Estimated reconstruction errors: combination of optical attenuation 
model and signal conditioning
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Appendix E MATLAB program to reconstruct image using layergram 
back-projection algorithm

% 2 orthogonal projections
% Programme to determine the concentration profile and velocity of bubbles 
% Based on path length

% Calculate the voltage of the sensor 
% Voltage= 5 volts * beam length in pixel (3,3) /  100 mm

% Single pixel flow - for pixels other than 3,3 the voltage is 0

v6=0.5 
v l 1=0.5

% Two pixels flow
v3=0.5
v6=0.5
v l 1=0.5
vl4=0.5

% For Half Flow
vl=0.95
v2=1.55
v3=1.75
v4=1.9875
v5=1.9875
v6=1.75
v7=1.55
v8=0.95
v9=1.9
vl0=3.1
v l 1=3.5
vl2=3.975
vl3=0
vl4=0
vl5=0
vl6=0

% For Full Flow
vl=1.9
v2=3.1
v3=3.5
v4=3.975
v5=3.975
v6=3.5
v7=3.1
v8=1.9
v9=1.9
vl0=3.1
v l 1=3.5
v 12=3.975
vl3=3.975
v 14=3.5
vl5=3.1
vl6=1.9
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sl= [0  0 0 0 0 0 0 0 ;
0 0 0 0000  0;
0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 ;
0 0 0 0 0 0 0 0 ;
0 0 (9/74.4) (10/84) (10/84) (9/74.4) 0 0];

s2=[0 0 0 0 0 0 0 0;
0 0 0 0000  0;
0 0 0 0000  0;
0 0 0 0 0 0 0  0;
0 0 0 0000  0;
0 0 0 0000  0;
(1/18) (10/86.39) (10/100) (10/100) (10/100) (10/100) (10/86.39) (1/18); 
0 0 0 0 0 0 0 0];

s3=[0 0 0 0 0 0 0 0;
0 0 0 0000  0;
0 0 0 0 0 0 0  0;
0 0 0 0000  0;
0 0 0 0 0 0 0  0;
(7/74.4) (10/100) (10/100) (10/100) (10/100) (10/100) (10/100) (7/74.4); 
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

s4=[0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
(9.5/84) (10/100) (10/100) (10/100) (10/100) (10/100) (10/100) (9.5/84); 
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

s5=[0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
(9.5/84) (10/100) (10/100) (10/100) (10/100) (10/100) (10/100) (9.5/84); 
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

s6=[0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0  0;
(7/74.4) (10/100) (10/100) (10/100) (10/100) (10/100) (10/100) (7/74.4); 
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];
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s7=[0 0 0 0 0 0 0 0;
(1/18) (10/86.39) (10/100) (10/100) (10/100) (10/100) (10/86.39) (1/18); 
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0000  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

s8=[0 0 (9/74.4) (10/84) (10/84) (9/74.4) 0 0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

s9=[0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0  0;
(9/74.4) 0 0 0 0 0 0 0;
(10/84) 0 0 0 0 0 0 0;
(10/84) 0 0 0 0 0 0 0;
(9/74.4) 0 0 0 0 0 0 0;
0 0 0 0 0 0 0  0;
0 0 0 0 0 0 0 0];

sl0=[0 (1/18) 0 0 0 0 0 0;
0 (10/86.39) 0 0 0 0 0 0;
0 ( 10/ 100) 0 0 0 0 0 0 ;
0 ( 10/ 1 0 0 ) 0 0 0  0 0  0 ;
0 ( 10/ 100) 000  0 0 0 ;
0 (10/ 100) 0 0 0 0 0 0 ;
0 ( 1 0 / 8 6 . 3 9 ) 0 0 0 0 0 0 ;
0 (1/18) 0 0 0 0 0 0];

s i 1=[0 0(7/74.4) 0 0 0 0  0;
0 0 (10/ 1 00) 00  0 0 0 ;
0 0 (10/ 100)00  0 0 0;
0 0 (10/ 100)0  0 0 0 0 ;
0 0 (10/ 10 0)0 00  0 0;
0 0 ( 10/ 100) 0 0 0 0 0 ;
0 0 ( 10/ 100)00  0 0 0 ;
0 0 (7/74.4) 0 0 0 0 0];

sl2=[0 0 0 (9.5/84)0 0 0 0;
0 0 0 (10/ 100) 0 0 0 0;
0 0 0 (10/ 1 0 0 ) 0 0 0  0 ;
0 0 0 ( 10/ 100)0 0 0 0 ;
0 0  0 ( 10/ 100)0 0 0 0 ;
0 0 0 ( 10/ 100) 00  0 0;
0 0  0 ( 10/ 100)0 0 0 0 ;
0 0 0 (9.5/84) 0 0 0 0];
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sl3=[0 0 0 0  (9.5/84) 0 0 0; 
0 0 0 0 ( 10/ 100) 0 0 0 ;
0 0 0 0 (10/ 100) 0 0 0 
0 0 0 0 ( 10/ 1 0 0)0 00  
0 0 0 0 (10/ 100)0 0 0  
0 0 0 0 ( 10/ 100)0 00  
0 0 0 0 (10/ 100)0 00  
0 0 0 0 (9.5/84) 0 0 0 ]

sl4=[0 0 0 0 0 (7/74.4) 0 0; 
0 0  0 0 0 ( 10/ 100)0  0 ;
0 0 0 0 0 (10/ 100) 0 0; 
0 0 0 0 0 (10/ 100) 0 0 ;
0 00 0 0(10/100)00;
0 0000(10/100)00;
0 00 0 0(10/100)00;
0 0 0 0 0 (7/74.4) 0 0];

sl5=[0 0 0 0 0 0 (1/18) 0; 
0 0 0 0 0 0 (10/86.39) 0;
0 0000 0(10/100) 0;
00 0000(10/100) 0;
0 0 0 0  0 0 ( 10/ 100) 0 ;
0 0 0000(10/100) 0; 
0 0 0 0 0 0 ( 1 0 / 8 6 . 3 9 )  0;
0 0 0 0 0 0 ( 1 / 1 8 )  0];

sl6=[0 0 0 0 0 0  00;
00 0 0 0 0 0  0;
0 0 0 0 0 0 0 (9/74.4);
0 0  0 0 0 0 0 (1 0 /8 4 );
0 0 0 0 0 0 0 ( 1 0 / 8 4 ) ;
0 0 0 0 0 0 0 (9/74.4);
0000 0 0 0  0;
0 0 0 0 0 0 0 0];

% Sum of product o f voltage and area sensitivity

% Concentration= (sl7*v l7 ) + (sl8*vl8)+  (sl9*vl9) + (s4*v4) + (s5*v5)+(s6*v6)+(s7*v7) +(s8*v8) 
% +(s9*v9)+(sl0*vl0)+(sl I*v ll)+ (sl2*v l2 )+ (sl3*v l3 )+ (sl4*v l4 )+ (sl5*v l5 )+ (sl6*v l6 )

% concentration profile for flow in pixel (3,3)

conc_33=[0 0 0.0470 0 0 0 0
0 0 0.0500 0 0 0 0 0;

0.0470 0.0500 0.1000 0.0500 0.0500 0.0500 0.0500
0 0.0500 
0 0.0500 
0 0.0500 
0 0.0500 
0 0.0470

0
0
0
0
0];

0;

0.047;

% After thresholding > 0.5 x peak 
th_33=[0 0 0 0 0

0 0 0 0 0
0 0 0.1 0 0 
0 0 0 0 0
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0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0];

% Concentration profile for pixels (3,3) and (6,6)

conc_33_66=[0 0 0.0470 0 0 0.0470 0 0;
0 0 0.0500 0 0 0.0500 0 0;

0.0470 0.0500 0.1000 0.0500 0.0500 0.1000 0.0500 0.0470;
0 0 0.0500 0 0 0.0500 0 0;
0 0 0.0500 0 0 0.0500 0 0;

0.0470 0.0500 0.1000 0.0500 0.0500 0.1000 0.0500 0.0470;
0 0 0.0500 0 0 0.0500 0 0;
0 0 0.0470 0 0 0.0470 0 0];

% concentration profile for half flow

conc_half=[0 0.1722 0.4442 0.5626 0.1131 0.1149 0 0;
0.0861 0.5383 0.5050 0.5525 0.1550 0.1550 0.1794 0.0861
0.3945 0.4850 0.5250 0.5725 0.1750 0.1750 0.1750 0.1647
0.4510 0.5088 0.5488 0.5963 0.1988 0.1988 0.1988 0.2248
0.4510 0.5088 0.5488 0.5963 0.1988 0.1988 0.1988 0.2248
0.3945 0.4850 0.5250 0.5725 0.1750 0.1750 0.1750 0.1647
0.0861 0.5383 0.5050 0.5525 0.1550 0.1550 0.1794 0.0861

0 0.1722 0.4442 0.5626 0.1131 0.1149 0 0];

(5/0.5963)*conc_half

conc_halfa=[ 0 1.4439 3 7246 4.7174 0.9483 0.9634 0 0;
0.7220 4.5137 4.2344 4.6327 1.2997 1.2997 1.5043 0.7220
3.3079 4.0667 4.4021 4.8004 1.4674 1.4674 1.4674 1.3810
3.7817 4.2663 4.6017 5.0000 1.6669 1.6669 1.6669 1.8850
3.7817 4.2663 4.6017 5.0000 1.6669 1.6669 1.6669 1.8850
3.3079 4.0667 4.4021 4.8004 1.4674 1.4674 1.4674 1.3810
0.7220 4.5137 4.2344 4.6327 1.2997 1.2997 1.5043 0.7220

0 1.4439 3.7246 4.7174 0.9483 0.9634 0 0];

% concentration profile for full flow

conc_full=[0 0.1722 0.5591 0.6757 0.6757 0.5591 0.1722 0;
0.1722 0.7177 0.6600 0.7075 0.7075 0.6600 0.7177 0.1722
0.5591 0.6600 0.7000 0.7475 0.7475 0.7000 0.6600 0.5591
0.6757 0.7075 0.7475 0.7950 0.7950 0.7475 0.7075 0.6757
0.6757 0.7075 0.7475 0.7950 0.7950 0.7475 0.7075 0.6757
0.5591 0.6600 0.7000 0.7475 0.7475 0.7000 0.6600 0.5591
0.1722 0.7177 0.6600 0.7075 0.7075 0.6600 0.7177 0.1722

0 0.1722 0.5591 0.6757 0.6757 0.5591 0.1722 0];

% reciprocal o f the full flow matrix
r=  [ 0 5.8072 1.7886 1.4799 1.4799 1.7886 5.8072

5.8072 1.3933 1.5152 1.4134 1.4134 1.5152 1.3933
1.7886 1.5152 1.4286 1.3378 1.3378 1.4286 1.5152
1.4799 1.4134 1.3378 1.2579 1.2579 1.3378 1.4134
1.4799 1.4134 1.3378 1.2579 1.2579 1.3378 1.4134
1.7886 1.5152 1.4286 1.3378 1.3378 1.4286 1.5152
5.8072 1.3933 1.5152 1.4134 1.4134 1.5152 1.3933

0 5.8072 1.7886 1.4799 1.4799 1 7886 5.8072

0;
5.8072;
1.7886;
1.4799;
1.4799;
1.7886;
5.8072;
0];
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% r.*conc 33

filter 33=[0 0 0.0841 0 0 0 0 0;
0 0 0.0758 0 0 0 0 0;

0.0841 0.0758 0.1429 0.0669 0.0669 0.0714 0.0758 0.0841;
0 0 0.0669 0 0 0 0 0;
0 0 0.0669 0 0 0 0 0;
0 0 0.0714 0 0 0 0 0;
0 0 0.0758 0 0 0 0 0;
0 0 0.0841 0 0 0 0 0];

% r.*conc_33_66

filter_33_66=[0 0 0.0841 0 0 0.0841 00;
0 0 0.0758 0 0 0.0758 0 0;

0.0841 0.0758 0.1429 0.0669 0.0669 0.1429 0.0758 0.0841;
0 0 0.0669 0 0 0.0669 0 0;
0 0 0.0669 0 0 0.0669 0 0;

0.0841 0.0758 0.1429 0.0669 0.0669 0.1429 0.0758 0.0841;
0 0 0.0758 0 0 0.0758 0 0;
0 0 0.0841 0 0 0.0841 0 0];

filter_half=[0 1.0000 0.7945 0.8326 0.1674 0.2055 0 0;
0.5000 0.7500 0.7652 0.7809 0.2191 0.2349 0.2500 0.5;
0.7056 0.7349 0.7500 0.7659 0.2341 0.2500 0.2652 0.2946;
0.6674 0.7191 0.7342 0.7501 0.2501 0.2660 0.2810 0.3327;
0.6674 0.7191 0.7342 0.7501 0.2501 0.2660 0.2810 0.3327;
0.7056 0.7349 0.7500 0.7659 0.2341 0.2500 0.2652 0.2946;
0.5000 0.7500 0.7652 0.7809 0.2191 0.2349 0.2500 0.5;

0 1.0000 0.7945 0.8326 0.1674 0.2055 0 0];

for i=l:8  
for j= l:8  
Vxy(i,j)=0; 
end 
end

for i=l:8  
for j= l:8
Vxy(i,j)=conc_33_66(i,j);
end
end

figure
% surfc(Vxy); 
imagesc(Vxy); 

caxis([0 1])

colormap(hot) 
hold on 
colorbar
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grid, title('Concentration Profile')

% Cross-correlation programme

L=length(u); 
if  length(y)~=L,
error('kxcorr - arguments are not o f the same length') 
end
for i=l:L  

if  i = l ,  
ushft=u; 

else
ushft=[ushft(L, 1) ;ushft( 1: L-1,1)]; 

end
x(i)=sum(y.*ushft)/L;

% dimensions of y and ushft must agree

end

plot(x)
x=x';
[z,it]=max(x)

title ( ‘Cross correlogram’) 
xlabel ( ‘Parametric time shift’) 
ylabel ( ‘Cross correlation coefficient’)

% 100 Hz 
vl=0.03/(it*0.01)

% 500 Hz 
v2=0.03/(it*0.002)
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Appendix F C program for hybrid reconstruction algorithm

#include <stdio.h>
#include <conio.h>

#define SIZE 8
#define N_DIAGONALS ((SIZE * 2) - 1)
#defme N_SENSORS SIZE * 2 + N_DIAGONALS 
#defme N_PROJECTIONS 3

int sensor[N_SENSORS];
int sensor_map[N_SENSORS] [SIZE] [SIZE];
int pixel[SIZE][SIZE];

void main()
{

int i j,k,l; 
int s;

FILE *tomograf;
tomograf=fopen("tomograf.dat","w");

clrscr();
/* Generate sensitivity maps */
/* horiz sensor first */ 
for(s = 0; s < SIZE; s++)
{

for (i=0;i<SIZE;i++)
{

for(j=0;j<SIZE;j++)
{

for(l=0;l<((SIZE*2)-l);l++)
{
if ( i =  s)

sensor_map[s][j][i] = 1;
else

sensor_map[s][j][i] = 0;
}

}
}

}

/* Now vertical sensors*/ 
for(s = SIZE; s < 2 * SIZE; s++)
{

for (i=0;i<SIZE;i++)
{

for(j=0;j<SIZE;j++)
{

for(l=0;K((SIZE*2)-l);l++)
{

if ( j == s - SIZE)
sensor_map[s][j][i] = 1;

else

sensor_map[s][j][i] = 0; 
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#ifO

#endif

}
}

}
}
/* print sensitivity maps */

for ( k = 0; k <N_SENSORS; k++)
{

printf("Sensitivity map %d\n",k); 
for (i=0;i<SIZE;i++)
{

for(j=0;j<SIZE;j++)
{

for(l=0;l<((SIZE*2)-1 );1++)
{
printf("%d",sensor_map[k] [i] [j]); 
}
printf("\n");

}
printf("\n");

}
printf("—Vn");

}

/* set all sensors to 0 */ 
for(i = 0; i < N_SENSORS; i++) 
{

sensor[i] = 0;
}

/* read in sensor values */ 
sensor[0] = 0; 
sensor[l] = 1; 
sensor[2] = 1; 
sensor[3] = 1; 
sensor[4] = 1; 
sensor[5] = 1; 
sensor[6] = 1; 
sensor[7] = 1; 
sensor[8] = 1; 
sensor[9] = 1;

sensor[10
sensor[ll
sensor[12
sensor[13
sensor[14
sensor[15
sensor[16
sensor[17
sensor[18
sensor[19

sensor[20
sensor[21
sensor[22
sensor[23
sensor[24
sensor[25

=  1 
=  1 
= 1 
= 1 
=  0 
=  0 
=  0 
=  0 
=  0 
=  0

=  0 
=  0 
= 1 
= 1 
= 1 
=  0
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sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor
sensor

26] =
27] =
28] =

[29] =
[30] =
[31]=1
[32]=1
[33]=1
[34]=1
[35]=1
[36]=1
[37]=1
[38]=1

for( j = 0; j < SIZE; j++)
{

for( i = 0; i < SIZE; i++) 
{

/*

*/

printf("Doing pixel %d,%d\n",i j);
printf("Looking at sensors %d and %d\n",i,j+SIZE);

if  ((sensorfi] =  0) || (sensor[j+SIZE] == 0) || (sensor[SIZE*2+i+j] ==0 )) 
{

pixel[i][j] = 0;
/* printf("It's zero\n"); */

}
else
{

/*

sensor_map[i][j][i]);
printf("Sensor %d, value = %d, map = %d\n",i,sensor[i],

%d, map =printf("Sensor %d, value 
%d\n",j+SIZE,sensor[j+SIZE], sensor_map[j+SIZE][j][i]);

*/

pixel[i][j] += sensor[i] * sensor_map[i][j][i]; 
pixel[i][j] += sensor[j+SIZE] * sensor_map[j+SIZE][j][i]; 
pixel[i][j] += sensor[SIZE*2+i+j]* sensor_map[SIZE*2+i+j][j][i]; 

/* Not including diagonal in calculation ...Yet. */

}

printf("\nPixel map\n");

forG = 0 ; j <  SIZE; j++)
{

for( i = 0; i < SIZE; i++)
{

printf("%d ",pixel[i][j]);

}
printf("\n");
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