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Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) 

characterised by focal lesions of inflammation and demyelination, with subsequent 

axonal damage. Various factors contribute to the pathogenesis of MS, including the 

breakdown of the blood-brain barrier (BBB), and increased local expression of 

inflammatory cytokines, matrix metalloproteinases (MMPs) and adhesion molecules. 

Upregulation of a distintegrin and metalloproteinase (ADAM)-17 has been previously 

reported in MS lesional white matter, associated with endothelial cells, astrocytes and 

macrophages. ADAM-17 is also increased in the spinal cord of rats with experimental 

autoimmune encephalomyelitis (EAE) (an animal model of MS), suggesting a role for 

the enzyme in MS pathogenesis. ADAM-17 is responsible for the proteolytic cleavage 

of a number of membrane-bound proteins, including tumour necrosis factor (TNF) and 

the chemokine and adhesion molecule, fractalkine, both of which have been implicated 

in MS pathogenesis. To determine the functional role of ADAM-17 in MS pathogenesis, 

an adult human brain endothelial cell line, hCMEC/D3 (a model of the BBB), was 

studied to determine the relationship between ADAM-17, its inhibitor (tissue inhibitor of 

metalloproteinase (TIMP)-3), fractalkine, and a number of other proteins shed by the 

enzyme. This work revealed that under pro-inflammatory cytokine (TNF) treatment, 

fractalkine expression is dramatically increased at the mRNA and protein level as 

determined by real-time RT-PCR and immunocytochemistry, respectively, and is shed 

at high concentrations from the endothelium as determined by ELISA. ADAM-17 

expression was not significantly affected at the mRNA, protein, or activity level, 

suggesting other proteases play a role in fractalkine release, following TNF treatment 

of brain endothelial cells.

To further elucidate the relationship between ADAM-17 activity and fractalkine 

shedding, small interfering (si) RNA silencing of ADAM-17 was performed in the 

hCMEC/D3 endothelial cells line. This work revealed that despite knockdown of ADAM- 

17, fractalkine shedding was not significantly reduced. Again this suggests other 

mechanisms of regulating ectodomain shedding following TNF treatment are 

responsible for the release of fractalkine. Fractalkine expression in MS CNS tissue was 

observed in endothelial cells, astrocytes, macrophages and axons, however this 

expression was not significantly altered in comparison to control CNS white matter.

From the studies undertaken in this thesis, ADAM-17 is not the major sheddase 

of fractalkine from the CNS endothelium under pathological conditions. Further 

investigation into the mechanisms involved are required using both in vitro and in vivo 

methods. The observation of fractalkine shedding following cytokine treatment is 

another significant finding, as demonstrated here in vitro, which requires further 

investigation to understand the functional implications this may have in vivo.
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1.1 Multiple Sclerosis

1.1.1 Introduction

Multiple sclerosis (MS) is defined as an autoimmune disease of the central nervous 

system (CNS) which leads to demyelination, axonal damage and progressive 

neurological disability. These features are evident in and culminate with the 

plaque/lesion, which is the pathological hallmark of MS. Among the molecular 

components disturbed in MS are the expression of pro-inflammatory cytokines (Hofman 

et al., 1989; Woodroofe and Cuzner, 1993) and adhesion molecules (Bo et al., 1996), 

and the breakdown of the blood-brain barrier (BBB) (Kermode et al., 1990; Kirk et al., 

2003; Leech et al., 2007), all of which contribute to the recruitment of immune cells into 

the CNS, and suggest an altered BBB is important in the pathogenesis of the disease. 

Most of the understanding of MS is based upon conjecture from the animal model of 

MS, experimental autoimmune encephalomyelitis (EAE). Despite this paradigm and 

other histopathological studies in MS patients, the etiology and mechanisms of the 

induction of MS are not fully understood. As a consequence there is not yet a cure for 

this disease and treatment provides limited relief for the patient (Holmoy, 2007).

1.1.2 Clinical presentation and disease course in MS

MS plaques can occur anywhere in the CNS but predominate in the white matter. 

Plaques have a predilection for the optic nerves, brainstem, spinal cord and 

periventricular white matter. Dependent upon where the plaque resides within the CNS 

will determine the symptoms experienced by the patient. In general the disease 

normally initially presents with a single symptom, which can include blurred vision, 

double vision, numbness or tingling, or muscle weakness. Usually the patient makes a 

complete recovery from the first attack, but subsequent attacks over time usually leave 

some disability. As the disease continues the patient usually becomes progressively 

disabled (Oilier and Symmons, 1992).

MS is a heterogenous disease in terms of its presentation, pathology and 

disease course between patients (for review see Lassmann et al., 2001). In general, 

however, a patient who is diagnosed with MS can be initially clinically subcategorised 

as either having relapsing-remitting MS (RRMS) (these account for 85-90% of MS 

patients) (Figure 1.1 A) or primary progressive MS (PPMS) (Figure 1.1 B). In RRMS a 

relapse or attack is believed to be caused by the infiltration of immune cells into the 

CNS, which causes inflammation and oedema. These relapses can develop over hours 

or days and persist for several days or weeks. Gradually these attacks dissipate and 

the patient goes into remission (for review see Hafler, 2004). However, over the course 

of many attacks the patient accumulates various disabilities due to damage and 

destruction of axons. As time goes on a number of patients (approximately 65%) who
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were initially diagnosed with RRMS will go on to develop secondary progressive MS 

(SPMS) (Compston and Coles, 2008) (Figure 1.1 C). This is characterised by a 

significant reduction in enhanced gadolinium-diethylenetriamine penta-acetic acid (Gd- 

DTPA) lesions on a magnetic resonance imaging (MRI) (Gd-MRI) scan (Khoury et al., 

1994), decreased brain parenchymal volume (Filippi et al., 1995), and a decreased 

responsiveness to immunomodulatory therapy (for review see Hafler, 2004).

As the name implies, PPMS is progressive from the outset and tends to involve 

one predominant part of the CNS, namely the spinal cord (for review see Thompson et 

al., 1997). Unlike relapsing-remitting forms of the disease, PPMS normally presents 

itself with progressive paraparesis (weakness affecting the lower extremities) rather 

than with visual and sensory disturbances (for review see Thompson et al., 1997). The 

frequency of enhancement in Gd-MRI scans is significantly less in PPMS and as such 

has raised the question as to whether inflammation is less severe in this patient sub­

group. Indeed, it has been shown that inflammation in SPMS is significantly greater 

than in PPMS (Revesz et al., 1994). However, a more recent study has observed that 

active white matter lesions are indistinguishable between SPMS and PPMS in relation 

to the large amount of vessels with tight junction abnormalities, and in fact, tight 

junctional abnormality in inactive white matter lesions are more frequent in PPMS 

(Leech et al., 2007). The discrepancy in these findings, the authors believe, could be 

due to the duration of BBB damage and also lower sensitivity of the routine "single 

dose" Gd-MRI (Leech et al., 2007).

1.1.3 Diagnosis

Despite the heterogeneity of disease course in MS, there are a number of diagnostic 

tests that can be applied to diagnose MS. One defining feature is the presence of focal 

CNS lesions which are disseminated in space and time, i.e. events occurring within the 

CNS at different sites that occurred at least 30 days apart (Sobel and Moore, 2008). 

Normally the clinical evidence is enough to diagnose a patient, however, when cases 

present which have a degree of ambiguity, various tests can be performed. MRI 

abnormalities are not unique to MS patients, but are present in the white matter of 

approximately 95% of MS patients (Fig 1.2A). MRI can show both that the lesion is 

segregated anatomically, and also in time with the use of serial imaging which can 

reveal the appearance of new plaques. This can be used for diagnosis rather than 

waiting for the patient to have another clinical attack. The presence of oligoclonal 

bands (OCB) in the cerebrospinal fluid (CSF), after CSF is subjected to protein 

electrophoresis, represents intrathecal immunoglobulin (Ig) synthesis, which is 

observed in approxim ately 90% of MS patients and can be used as a d iagnostic
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Figure 1.1: Typical clinical courses of multiple sclerosis (MS). Most patients when 

diagnosed with MS are either subcategorised as having relapsing-remitting MS (RRMS) 

(A) or primary progressive MS (PPMS) (B). As time goes on, approximately 65% of 

patients with RRMS will go on to develop secondary progressive MS (SPMS) (C). 

(Reproduced with permission from Elsevier from Lublin, 2005).
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criterion (Fig 1.2B). In addition to these diagnostic criteria has been the contribution of 

studying evoked potentials (visual), delays of which are thought to represent the 

hampered saltatory conduction in demyelinated axons (Compston and Coles, 2008).

1.1.4 Genetic studies

Pedigree analysis studies have shown that MS is not inherited in a Mendelian pattern 

of single gene inheritance, instead it is thought several genes confer susceptibility to 

MS. The familial recurrence rate of MS is approximately 20%, and the affected relative 

is usually their sibling (Compston and Coles, 2008). The overall background age- 

adjusted risk of developing MS as a white northern European is 0.3% (Robertson et al., 

1996). If you have an affected first-degree relative with MS you have a 3% lifetime risk 

of developing the disease, whereas second-/third-degree relatives have a 1% lifetime 

risk factor (Robertson et al., 1996; Carton et al., 1997). Concordance rates in 

monozygotic twins can be as high as 25-30%, and 5% in dizygotic twins (Mumford et 

al., 1994; Wilier et al., 2003). Half-siblings have a lower age-adjusted risk of developing 

MS than full-siblings, and there is no change in the risk factor for half-siblings, whether 

they are reared together or separately (Ebers et al., 1995). Children of parents who are 

both affected by MS have a higher recurrence risk than children who have one parent 

affected by the disease (Ebers et al., 2000; Robertson et al., 1997). However, as 

monozygotic twins are approximately 70% discordant, genetics alone cannot explain 

the aetiology of the disease.

Since the 1970s it has been acknowledged that the human leukocyte antigen 

(HLA) genes are associated with MS. In most populations it has been found that MS is 

more commonly associated with DR2 (DRB1*1501 and DRB1*0602) (Olerup and Hillert, 

1991; Svejgaard, 2008), however in Sardinian populations this haplotype is rare (1.5%) 

(Marrosu et al., 2002) and thus its contribution in this population is slight. Instead DR3 

and DR4 show a stronger association with increased MS risk in the Sardinian 

population (Marrosu et al., 1998; 2002; Svejgaard, 2008). More recently a protective 

role has been reported to be conferred by HLA-C5 (Yeo et al., 2007) and HLA- 

DRB1*11 (Dean et al., 2008; Ramagopalan et al., 2007), and an increased 

susceptibility has been found to be associated with single nucleotide polymorphic (SNP) 

markers for the interleukin-2 (IL-2) and -7 (IL-7) receptor a chains (Gregory et al., 2007; 

Hafler et al., 2007; Lundmark et al., 2007). The latter SNP has been found to be 

located within the alternatively spliced exon 6 of IL-7R (‘C’ allele), which influences the 

amount of soluble and membrane-bound forms of the protein. The authors suggest that 

the ‘C’ allele of IL-7R associated with MS would probably decrease the expression of 

the membrane-bound form of IL-7Ra leading to an increase in the soluble form of the
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Figure 1.2: Diagnostic tests for MS. Magnetic resonance imaging (MRI) scan from a 

patient with relapsing-remitting MS (RRMS) (A). Lesions can be observed in the 

periventricular region (red arrows) (A). Intrathecal synthesis of immunoglobulins (Ig) is 

a feature of approximately 90% of MS patients and can be seen as oligoclonal bands 

(OCBs) when cerebrospinal fluid (CSF) is subjected to protein electrophoresis (B). 

Normal CSF has no defined bands (monoclonal) whereas MS patients display a more 

restricted number of bands (oligoclonal). Images reproduced from 

http://www.mstrust.org.uk
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receptor (Gregory et al., 2007). However, an increase in IL-7R and IL-7 mRNA in the 

cellular constituents of the CSF of MS patients, compared to other non-inflammatory 

neurological disorders (NIND) has been reported, which is thought could result in 

higher signalling that, in turn, would induce immune cell proliferation and survival 

(Lundmark et al., 2007). The exact role of IL-7R in MS pathogenesis has yet to be 

established.

1.1.5 Epidemiology o f MS

Like many other autoimmune conditions, MS is more common in females than in males, 

having a 1.5:1 predominance in the former (Sobel and Moore, 2008). It usually 

presents itself in individuals in their 20s or 30s and hence can have a detrimental 

impact on a person's life choices, both personally and professionally (Trapp and Nave, 

2008). Approximately 85,000 people in the UK currently have MS 

(http://www.mssociety.org.uk/). With increasing latitude, both in the Northern and 

Southern hemispheres, the incidence of MS increases. The precise cause of this 

equatorial resistance is unknown, however, it is postulated that the high incidence of 

MS in these areas coincides with the past migratory choices of Northern Europeans 

who have a high prevalence of MS (Bulman and Ebers, 1992). This theory is 

compounded by the fact that there are "resistant" groups existing in otherwise highly 

prevalent MS areas, such as Maoris in New Zealand (Skegg et al., 1987), and the 

Hutterites and Natives in western Canada (McFarlin and Lachmann, 1989). Other 

theories concerning the high incidence of MS in more temporal climates include the 

lack of vitamin D, which is thought to be linked to insufficient sunlight exposure, and/or 

the presence of an endemic infectious agent in these areas, which could be 

contributory (Miller et al., 1990; for review see Marrie, 2004; Hayes and Acheson, 

2008). In addition to this, and in support of MS having an environmental risk factor 

influencing its development, are studies which have shown that a person who migrates 

before the onset of puberty will inherit the adoptive country's prevalence risk of getting 

MS rather than their home country's risk. After the onset of puberty the person will 

retain their original country's risk factor (Gale and Martyn, 1995). Epstein-Barr virus 

(EBV) is also thought to be associated with MS. It is thought that an immune reaction 

against the virus inadvertently causes an attack upon myelin through the mechanism of 

molecular mimicry existing between the two proteins. It has been found that myelin and 

EBV share four DRB1* restricted T cell receptor peptide contacts, showing that 

molecular mimicry exists at the structural level between the two peptides (Lang et al., 

2002). Recently, it has been observed that almost 100% (21 of the 22 examined cases 

of MS) of MS patients brains display infiltrating B cells and plasma cells that are
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reactive for EBV, and that B cell follicles within the cerebral meninges of SPMS 

patients are chief sites for EBV persistence (Serafini et al., 2007).

1.1.6 Pathology

1.1.6.1 White matter pathology

The pathological hallmarks of MS are distinguished from other inflammatory disorders 

of the nervous system by the presence of large, multifocal, demyelinated plaques with 

a reactive glial scar formation (for review see Hafler, 2004; Lassmann et al., 2001). 

Most plaques reside within the white matter of the CNS, particularly within the 

periventricular white matter (Lucchinetti et al., 2005). Broadly speaking two types of 

plaques exist: the active lesion and the chronic inactive lesion. Active lesions, which 

are typically localised to the white matter, can be characterised by the presence of 

lipid-ladened macrophages, large reactive astrocytes, and an accompanying degree of 

perivascular inflammation (Figure 1.3). Affected areas demonstrate myelin pallor and 

the majority of axons are spared, however, if damage is severe enough axons will be 

destroyed or display irregular morphology. Macrophages that phagocytose the myelin 

remnants and debris are called Gitter cells, which are characterised by spherical nuclei, 

vacuolated cytoplasm, and distinct cell borders. Reactive astrocytes with prominent 

and polymorphic nuclei, and eosinophilic cytoplasm intermingle between these cells 

(Lucchinetti et al., 2005). It is believed that the actively demyelinating plaque or lesion 

can be defined by studying the chemical composition of the myelin degradation 

products and the expression of inflammatory activation antigens both within and by 

macrophages (Bruck et al., 1995). One to two days following phagocytosis, minor 

myelin proteins, such as myelin oligodendrocyte glycoprotein (MOG) or myelin- 

associated glycoprotein (MAG) are evident within macrophages. Whereas the major 

myelin proteins, such as myelin basic protein (MBP) and proteolipid protein (PLP), can 

be found within macrophages for six to ten days following myelin phagocytosis 

(Lucchinetti et al., 2005).

The chronic lesion is sharply confined, hypocellular and shows no evidence of 

active myelin breakdown. Fibrillary gliosis is a prominent feature of the inactive plaque, 

which is accompanied by a marked reduction in axonal density. Mature 

oligodendrocytes are either noticeably diminished or lacking in the chronic lesion. 

There may still be some evidence of inflammation, particularly in the perivascular 

region (Lucchinetti et al., 2005). Remyelination does occur in chronic lesions, however, 

this is usually incomplete and restricted to the plaque edge, or there may be more 

widespread remyelination throughout the chronic lesion. These types of lesions are 

referred to as shadow plaques and contain areas of reduced myelin staining called



& V ir

Figure 1.3: Pathological hallmarks of MS. MS lesion stained with Oil Red O (ORO) 

which stains lipid-laden macrophages (A) and with haematoxylin and eosin (H&E) 

which reveals the presence of inflammatory cuffs (B). Image A was taken at 

magnification x100 and was kindly provided by Dr. Helen Denney, BMRC, Sheffield 

Hallam University.
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myelin pallor, which result from a decrease in the ratio between the myelin sheath and 

the axonal diameter (Lucchinetti et al., 2005).

There are two schools of thought regarding lesion classification in MS, which 

are based upon either the stage of the lesion (for review see van der Valk and DeGroot,

2000) or the underlying pathological mechanisms (Lucchinetti et al., 2000). So far four 

major staging systems for MS lesions have been described (for review see van der 

Valk and De Groot, 2000). The Bo/Trapp staging system relies on the cellularity of the 

tissue to determine the type of lesion: (1) active lesions are described as being 

hypercellular; (2) chronic-active lesions have a hypocellular centre with a hypercellular 

rim; (3) and the chronic-inactive lesion is described as being hypocellular (Bo et al., 

1994; Trapp et al., 1998). This classification system works well on frozen and paraffin- 

embedded sections. The De Groot-van der Valk system is a modification of the 

Bo/Trapp system: it includes a category for (1) ‘pre-active’ lesions which are defined by 

clusters of microglial cells, (2) little inflammation and no demyelination; (3) active 

demyelinating; (4) active but not demyelinating; (5) chronic active (as according to the 

Bo/Trapp system); and (6) chronic-inactive (as according to the Bo/Trapp system) 

(Waesberghe et al., 1999). This system has proved more useful for MRI-sampled 

material (De Groot et al., 2001). The third system, called the Lassmann/Bruck system, 

utilised a large number of biopsy tissue and hence is best suited for classifying early 

on-set lesions. Five lesions have been identified using this system: (1) early active; (2) 

late active; (3) inactive lesions; (4) early remyelinating; and (5) late remyelinating 

(Bruck et al., 1994; 1995). The fourth staging system was brought about during a 

meeting in Vienna that was organised by Prof. H. Lassmann to convene experts in MS. 

The Vienna consensus described six lesions: (1) inflammatory and demyelinating; (2) 

inflammatory but not demyelinating; (3) inflammatory rim (hypocellular centre), and 

demyelinating; (4) inflammatory rim (hypocellular centre), not demyelinating; (5) no 

inflammation, but demyelinating; and (6) no inflammation, not demyelinating (Ferguson 

et al., 1997). The Vienna consensus has been described as being more of a descriptive 

system rather than a staging system (van der Valk and De Groot, 2000).

Only one group has tried to determine whether there was an underlying 

pathological mechanism that could define the MS lesion. The Lucchinetti group sought 

to determine if there was some heterogeneity in the active demyelinating plaque 

between and within patients using different immunohistochemical stains (Lucchinetti et 

al., 2000). Based on the following four criteria four different lesions were identified. 

They all have in common T lymphocyte and macrophage infiltrates, but were 

segregated on the basis of the following four criteria: (1) distribution of myelin protein 

loss; (2) the plaque geography and extension; (3) the pattern of oligodendrocyte 

destruction; (4) the presence of immunoglobulin (Ig) and activated complement
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deposits (Lucchinetti et al., 2000). Pattern I were mediated by T cells and macrophages 

alone, pattern II by immunoglobulin (Ig) and complement, pattern III were defined by 

the apoptosis of oligodendrocytes and the absence of Ig, complement and 

remyelination, whereas pattern IV where defined by oligodendrocyte dystrophy and the 

lack of remyelination. Lesion heterogeneity was observed between patients but not 

within the same individual (Lucchinetti et al., 2000). However, this classification system 

was based upon the analysis of biopsy tissue (n = 49) and some post-mortem tissue (n 

= 32) from patients with acute MS or acute MS exacerbations, predominantly with short 

disease duration.

Recently Breij et al. (2008) sought to verify the Lucchinetti classification system 

in active lesions from patients with established MS using post-mortem tissue. Using 

this criterion, chronic active lesions mainly manifested as type II lesions with deposition 

of Ig and complement on macrophages. Pattern III and IV, based upon oligodendrocyte 

apoptosis, were either absent or rare. In addition, established active MS lesions 

displayed homogeneity and lesion heterogeneity could not be confirmed, and also 

there was no heterogeneity between individuals with regard to Ig and complement 

immunoreactivity. The authors conclude that patients with established MS display a 

homogenous pattern of demyelination that is associated with antibody and 

complement-mediated phagocytosis, which they surmise is the predominant 

mechanism involved in ongoing demyelination in this type of MS. Lesion heterogeneity 

is thought to be a characteristic of acute MS/earliest phase of MS and thus not a typical 

feature of patients who have had a longer disease duration (Breij et al., 2008).

1.1.6.2 Grey matter pathology

Although MS is generally described as a disease of white matter, lesions within the 

grey matter are also known to occur. Unlike white matter lesions, grey matter 

involvement in MS is typified by less inflammation (lymphocyte and macrophage 

infiltration), and cortical lesions are less readily detectable using conventional MRI 

(Newcombe et al., 1991; Kidd et al., 1999; Bo et al., 2006). Recently, studies have 

been performed to determine the involvement of grey matter pathology in MS. 

Vercellino and colleagues (2005) used whole coronal sections from MS (RRMS = 3; 

SPMS = 3) and control (n = 6) patients brains to determine the extent and distribution 

of demyelinating lesions within the grey matter. Demyelinating lesions were observed 

in various areas, including the cerebral cortex, thalamus, basal ganglia and the 

hippocampus. Two SPMS cases showed a significant reduction in the amount of 

myelination (48 and 25.5%) and all cases showed a significant reduction in neuronal 

density (18-23%). The authors hypothesised that these alterations in the grey matter 

could contribute to disability and cognitive impairment in MS, and could account for the

11



poor correlation between clinical disability of SPMS patients and reduced Gd-MRI. 

Cortical demyelination has been found to be more commonly associated with SPMS 

and PPMS than acute and RRMS (Kutzelnigg et al., 2005). The number of grey matter 

lesions (n = 98) has been demonstrated to be almost equal to white matter lesions {n = 

70) using immunohistochemical staining for MBP, however, only 3% of these 

intracortical lesions were identified using MRI (Geurts et al., 2005).

1.1.7 Axonal injury in MS

MS is principally described as a demyelinating disease of the CNS, however, the chief 

cause of disability is the damage caused to the axons. Charcot, the French neurologist 

who first described MS, initially believed that the axons were relatively spared, but later 

described various axonal alterations and even destruction of the axons. He stated that 

the methodology of the time could not definitively exclude the presence of axonal 

degeneration (Kornek and Lassman, 1999). By 1915, it was generally accepted that 

axonal degeneration was a feature in MS lesions; this discovery was due to the 

establishment of Bielschowsky’s silver impregnation method (Kornek and Lassman,

1999). Injury to axons leads to the transection of the axon and the formation, at their 

proximal ends, of spheroids defined by the presence of terminal axonal ovoids (Trapp 

et al., 1998). Following transection, the distal segment of the nerve will undergo 

Wallerian degeneration, whilst the proximal part may die due to lack of connectivity to 

other neurons (for review see Zaffaroni, 2003). The majority of axons, which undergo 

transection, are demyelinated and reside in the lesion, however, there is evidence that 

axonal loss also occurs in normal white matter (Davie et al., 1997; van Walderveen et 

al., 1998).

The causes of axonal injury, like other features of MS, remain largely hidden. 

The study by Bitsch et al. (2000), which sought to discern whether the pathogenesis of 

axonal injury was distinct from demyelination, revealed that axonal damage, defined by 

the accumulation of amyloid precursor protein (APP), occurs in lesions under any 

demyelinating condition (active or inactive), and even during remyelination. Axonal 

damage also correlated with the infiltration of macrophages and CD8+ T lymphocytes, 

but not with the expression of tumour necrosis factor (TNF) and inducible nitric oxide 

synthase (iNOS) mRNA. It was thus concluded that axonal damage in MS occurs, in 

part, independently from demyelinating activity, and its pathogenesis may be different 

to demyelination mechanisms. In addition to this, it has been shown that axonal loss 

occurs irrespective of the absence or presence of Gd-MRI lesions (indicative of 

increased BBB permeability and associated inflammation (Katz et al., 1993)) (Filippi et 

al., 2003). Although, the axonal loss in patients with enhancing lesions was greater, it 

was not significantly so (Filippi et al., 2003). Studies that have sought to identify a
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biological marker for the neurodegenerative phase of MS have, however, found that 

axonal dysfunction and inflammation are not discrete processes; since L-neurofilament 

protein levels are higher in the CSF of MS patients when the CSF is taken the shorter 

the period of time after the last relapse (Lycke et al., 1998).

The timing of the majority of axonal damage has been found to occur at the 

early stages of the disease - within the first year of disease onset (De Stefano et al., 

2001; Kuhlmann et al., 2002). It is also notable that RRMS and SPMS patients show 

significantly higher levels of acute axonal damage in the early stages of the disease 

than after a disease course of 10 years or more, whereas PPMS patients show no 

significant differences over time (Kuhlmann et al., 2002). It is thought that the functional 

recovery, that normally accompanies an attack in the early stages of MS, is a product 

of various compensatory mechanisms, including sodium channel redistribution (Moll et 

al., 1991; Black et al., 1991) and brain plasticity (Waxman, 1997; Reddy et al., 2000). 

Within demyelinated areas of the CNS of MS patients, axons display four times the 

amount of sodium channels compared to normal white matter, which could account for 

the fast recovery and/or silent MS lesions (Moll et al., 1991). Recent studies have 

revealed that the expression of sodium channels differ between acute and chronic 

lesions, and may suggest that the underlying mechanism of axonal damage differ in 

these two lesion types (Black et al., 2007). Sodium influx can lead to the overwhelment 

of the Na+/K+ pump causing an inability to extrude sodium, which in turn leads to 

activation of the Na+/Ca2+ exchanger, causing increasing and toxic levels of intra- 

axonal calcium; demyelinated axons are particularly vulnerable to this mode of injury 

(Figure 1.4). To help prevent neurodegeneration in MS patients, the use of channel 

blockers has been proposed and initiated in clinical trials, however, the sudden 

withdrawal of the channel blockers in EAE led to exacerbations of the disease, which 

was accompanied by an increased inflammatory infiltrate, hence some of the clinical 

trials were halted (for review see Waxman, 2008).

1.1.8 Pathogenesis o f MS

Due to the presence of immune cell infiltrates within MS lesions and the insights from 

EAE, MS is regarded as an autoimmune disease. The inflammatory cuffs consist of 

mainly T lymphocytes, a few B cells and plasma cells, and extensive 

macrophage/microglial activation (Lucchinetti et al., 2005). It is believed that the 

disease process in MS is initiated by the increased migration of autoreactive 

lymphocytes across the BBB. T helper 1 cells (Th1 cells) have held most of the interest 

due to a number of factors, including the fact that they recognise antigens presented by 

HLA class II molecules, the gene that shows the strongest link with MS, Th1 cells are 

essential to the development of the animal model of MS, and a variety of Th1 cytokines

13
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can be observed in MS plaques (Woodroofe and Cuzner, 1993; for review see Holmoy 

and Hestvik, 2008). However, due to the failure of Th1-directed therapies for MS and 

the identification of a new subset of CD4+ Th cells, Th17 cells which synthesis the pro- 

inflammatory cytokine IL-17, this domination of the field has been questioned. CD4+ 

cells from MS patients (n = 30) show increased IL-17 production in comparison to 

controls (n = 14) (Vaknin-Dembinsky et al., 2006), and IL-17+ T cells have been 

demonstrated to be significantly increased in active (n = 11) rather than inactive (/? = 5) 

MS lesions (Tzartos et al., 2008). In addition IL-17, together with IL-22 (a cytokine 

product of Th17 cells), has been implicated in BBB disruption, and neuronal cell death, 

through the secretion of granzyme B (Kebir et al., 2007).

The antigen that is responsible for this autoimmune attack is unknown, but was 

thought to be myelin derived (Compston and Coles, 2008). However, what exactly 

initiates this attack in MS patients still remains a mystery not least because 

autoreactive lymphocytes can be found in healthy individuals. It is thought that immune 

regulation could be altered in MS (Figure 1.5), which could account for this lack of self 

tolerance. Subclasses of regulatory CD4+ T cells include, Tregs which express the 

transcription factor FOXP3, Tr1 cells, which secrete the cytokine IL-10, and Th3 cells, 

which secrete the cytokine, transforming growth factor (TGF)-(3. Tregs have been 

reported to be functionally impaired (in terms of reducing IFN-y production and cell 

proliferation of CD4+ CD25- responder T cells in a co-culture model) in MS patients 

with the relapsing-remitting subtype of the disease (Haas et al., 2005 (MS/control = 73); 

Viglietta et al., 2004 (MS = 15; control = 21); Venken et al., 2006 (MS = 31; control = 

20)), whereas secondary progressive patients have normal Treg function (Venken et al., 

2006). Lower FOXP3 levels and FOXP3-expressing cells are correlated with lower 

Treg cell suppressive capacity in RRMS (n = 55) than in controls (n = 73) and SPMS (/? 

= 15) (Venken et al., 2008). Tr1, or type 1, T regulatory cells exert their suppressive 

activity through the secretion of the potent immunosuppressive cytokine IL-10 (Moore 

et al., 2001; Roncarolo et al., 2001). Increased MRI lesion load and higher disability is 

associated with lower production of IL-10 in SPMS patients (MS = 37; control = 11) 

(Petereit et al., 2003) and CD46 (co-stimulatory molecule associated with 

differentiation)-induced Tr1 cells, secrete less IL-10 in MS patients (a? = 28) compared 

with healthy subjects {n = 18) (Astier et al., 2006). Interestingly, increased IL-10 

production is associated with disease remission in MS (Correale et al., 1995 (MS 

active/stable = 6; controls = 5; OND = 4); Clerici et al., 2001 (stable MS = 15; active MS 

= 27)).

Various groups have demonstrated that T cell activation responses can be 

initiated by various proteins including MBP (Bielekova et al., 2004), PLP (Bielekova et
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Figure 1.5: The working concept of the pathogenesis of MS. (i) Disease initiation: 

autoreactive T cells within the periphery become activated by antigen presenting cells 

(APCs) presenting myelin antigens (yellow) on major histocompatibility complexes 

(MHC) class II molecules, (ii) Loss of immunoregulation: reduction in immunoregulatory 

components of the immune system, such as CD4+ Tregs (red arrow), allows further 

activation of autoreactive T cells. Cells which would normally help downregulate 

inflammatory events, such as Tr1 and Th3 cells are reduced in MS (red arrows), 

whereas Th17 cells may help in mediating the inflammatory cascade with the 

production of IL-17 (black arrow) (iii) CNS inflammatory events: autoreactive T cells 

migrate into the CNS, where they recognise antigen presented by microglia, the local 

APCs. The production of T helper 1 cell (Th1) cytokines (TNF, IFN-y, and IL-2) are 

subsequently secreted causing an inflammatory cascade (Adapted from Hafler, 2004).
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al., 2004), MOG (Lindert et al., 1999; Bielekova et al., 2004) and myelin-sequestered 

alpha B crystallin (van Noort et al., 2000) from myelin preparations, and also that 

peripheral blood mononuclear cells (PBMCs) from MS patients show a higher antigen 

avidity than healthy controls, suggesting T cells play a vital role in MS pathogenesis 

(Bielekova et al., 2004). These cells were also more inclined to release pro- 

inflammatory cytokines when activated with myelin-specific proteins, which is 

appropriate if these cells are involved in the pathogenesis of MS (Bielekova et al., 2004; 

Hafler, 2004). Altered peptide ligand (APL) therapy using a peptide based upon MBP 

(amino acids (aa) 83-99), caused exacerbations of the disease in some patients, which 

was thought to be induced by the expansion of T cells that were specific for the APL 

peptide but also cross-reactive for the native MBP (Bielekova et al., 2000). Highlighting 

that MBP is encephalitogenic in MS.

Although MS is regarded mainly as a T-cell-mediated disease, B cells are also 

thought to play a role in the development of the MS plaque, as the presence of OCBs 

suggest an increased B cell response to an antigen present in the brain (Frohman et al., 

2006). Neuropathological studies have revealed that antibodies contribute to 

demyelination within the MS white matter lesion (Lucchinetti et al., 2000). Studies 

investigating the B cells localised within the CSF have found that the most abundant 

cell type within this compartment in MS patients are antigen-stimulated plasma blasts 

(Winges et al., 2007). These cells show a biased rearrangement for the VH4 gene 

segment (Qin et al., 1998; Owens et al., 2007), suggesting that the B cell response in 

MS is driven by the presence of antigen and is T-cell dependent (Holmoy and Hestvik, 

2008). Absent or reduced numbers of OCBs in the CSF at the time of diagnosis has 

been associated with a better prognosis for the patient (Avasarala et al., 2001). In 

addition the presence of B-cell follicles within the meninges of SPMS patients has been 

found to be associated with younger age of MS onset, more severe disease and 

adjacent subpial cortical lesions suggesting soluble factors from the follicles play a 

direct pathogenic role (Magliozzi et al., 2007).

The following sections will deal with the mediators which are involved in 

regulating the invasion of the peripherally activated autoreactive immune cells across 

the BBB and into the CNS.

1.2 Blood-brain barrier (BBB)

1.2.1 Basic structure

The blood-brain barrier (BBB) is an important cellular barrier maintaining a balanced 

physiological milieu within the CNS. The BBB is composed of the capillary basement 

membrane (BM), astrocyte end-feet which project onto and ensheath the vessels, and 

pericytes (PC) which are embedded in the BM (Figure 1.6). Three characteristics of the
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Figure 1.6: Schematic representation of the BBB in transverse section. In addition 

to the endothelial cell, the BBB is also comprised of astrocytic end-feet, pericytes and 

the basement membrane. Neurons also project onto the system. Tight junctions of the 

BBB endothelial cell distinguish it from other vascular endothelial cells within the 

periphery (Redrawn with permission from Cambridge University Press from Francis et 

al., 2003).
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BBB endothelial cells distinguish them from peripheral endothelial cells. Firstly, they 

lack fenestrations, secondly, their tight junctions (TJ) are more extensive and thirdly, 

they have few pinocytic transport vesicles (for review see Ballabh et al., 2004).

1.2.2 BBB endothelium tight junctions (TJs)

The main components responsible for the restrictive properties of the BBB are the TJs 

which reside in the most apical part of the plasma membrane. Three membrane 

proteins comprise the TJ: claudin, occludin, and junctional adhesion molecules (JAMs) 

(Figure 1.7). In addition to these, there are a number of cytoplasmic accessory proteins, 

which include zona occludens (ZO)-1, -2, -3, cingulin, and others (for review see 

Ballabh et al., 2004). These tight junctions confer a high transendothelial electrical 

resistance (TEER) of 1500-2000 Ocm2 and a decreased paracellular permeability (Butt 

et al., 1990). In comparison, non-barrier endothelial cells such as placental cells, which 

have to allow the exchange of substances between mother and child, have a TEER of 

22-52 Ocm2 (Jinga et al., 2000). At the higher end of the scale, urinary bladder 

epithelium have a TEER of 6000-30,000 Ocm2 to maintain the composition of urine 

(Powell, 1981). The brain still requires nutrients and oxygen and therefore employs 

mechanisms, which permit the exchange of substances without compromising the 

integrity of the system. Substances can pass through the BBB either through the 

endothelial cells (the transcellular pathway) or between the cells (the paracellular 

pathway) (Figure 1.8). The transcellular pathway involves three different mechanisms: 

passive diffusion, active transport and receptor-mediated endocytosis (Figure 1.8) (for 

review see Petty and Lo, 2002; Ballabh et al., 2004). The paracellular pathway, 

however, does not rely upon such mechanisms and instead, ions and solutes diffuse 

down their concentration gradient between cells. The paracellular space is almost 

completely obstructed by TJ which provide a gate function to the system. This gate 

function prevents substances with a molecular weight greater than 180 from passing 

through in such a manner (Mitic and Anderson, 1998; Stevenson and Keon, 1998; for 

review see Petty and Lo, 2002). Lateral diffusion between the apical and basolateral 

membrane is also monitored via the tight junctions and is known as the fence function. 

This maintains the protein and lipid polarity of the cell (Brown and Stow, 1996: 

Gumbiner, 1987; for review see Petty and Lo, 2002).

1.2.3 BBB disruption in MS

Disruption of the BBB, as detected by Gd-MRI scans, has been shown to precede 

clinicopathological evidence of new lesions, i.e. symptoms (clinical presentation) and 

abnormalities seen on MRI scans (pathological) (Kermode et al., 1990). Studies carried
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Figure 1.7: Schematic representation of the junctional proteins of the BBB. The

BBB junctional complex is comprised of the tight junction (TJ) and adherens junction 

(AJ). Claudin, occludin and junctional adhesion molecules (JAMs) comprise the 

membrane bound portion of the TJ, whereas proteins such as ZO-1 and ZO-2 comprise 

the cytoplasmic portion (Redrawn with permission from Elsevier from Ballabh et al., 

2004).
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Figure 1.8: Types of transport across the BBB. Substances can either enter the 

brain via the paracellular pathway (a) or using three different types of transcellular 

passage, including: passive diffusion (b), active transport (c) or receptor-mediated 

endocytosis (d). (Redrawn with permission from Nature Publishing Group from Abbott 

et al., 2006).
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out on brain capillaries in chronic silent MS lesions have suggested that BBB 

abnormalities persist, even in the absence of active inflammation (Kwon and Prineas, 

1994; Claudio et al., 1995). This was evident in the high percentage of pinocytic 

vesicles and a lower percentage of mitochondria in gliotic areas, which are 

characteristic of the systemic endothelium (Claudio et al., 1995). Other studies using 

post-mortem tissue have revealed that acute plaques show leakage of plasma proteins 

such as fibrinogen and a-2 macroglobulin, as well as breakdown of the BM, which is 

evident in the fragmentation of type IV collagen and laminin. Whereas normal 

appearing white matter (NAWM) and chronic inactive plaques do not display any 

structural defect in the BM, or serum protein leakage (Gay and Esiri, 1991). Recently, 

dysferlin (a muscle protein involved in cell membrane repair) has been identified as a 

new marker of a leaky BBB in both EAE and MS. In the former inflammatory disease, 

dysferlin was expressed in inflamed vessel endothelium, whereas in the latter its 

expression was highest within active lesions but was also observed in inactive plaques. 

Inflammation is thought to in part be responsible for dysferlin expression as it was 

induced in vitro in brain endothelioma cells by TNF (Hochmeister et al., 2006). In 

contrast to the Gay and Esiri paper (1991), Kirk et al. (2003) demonstrated, using 

fibrinogen leakage, that TJ abnormalities in SPMS and acute MS occur in vessel 

segments which are more commonly associated with active plaques (42%), but are 

also seen in inactive plaques (23%), NAWM (13%), normal controls (3.7%) and 

neurological controls (8%). The authors suggest that abnormalities in inactive plaques 

could represent either a failure in TJ repair or a continuing pathological process. In the 

NAWM they believe the abnormalities could correspond to pre-lesional change or 

secondary damage (Kirk et al., 2003). They also demonstrated that the vessels with the 

most TJ abnormality also had the most fibrinogen leakage (Kirk et al., 2003). Similar 

levels of abnormal endothelial TJs were recently reported by the same group in PPMS 

patients, with regards to the active white matter lesions (42%) and the NAWM (13%) 

(Leech et al., 2007). They also found that chronic lesions in PPMS (37%) showed 

endothelial abnormalities more frequently than their SPMS (23%) counterparts (Leech 

et al., 2007). A similar study by Vos and colleagues (2005) showed that disruption of 

the blood-brain barrier takes place also in diffusely abnormal white matter (DAWM) as 

well as in focal lesions as determined by fibrinogen leakage and enlargement of the 

perivascular space.

IFN-(3 is one of the only successful treatments administered to RRMS patients, 

however, its precise mode of action is not well documented. Despite this it has been 

shown to reduce relapse rate, relapse severity and the progression of disability in these 

patients. In addition the number of Gd-MRI lesions are reduced in IFN-(3 treated 

patients (The IFNB Multiple Sclerosis Study Group, 1995; PRISMS Study Group, 1998;
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Jacobs et al., 1996). One mode of action could be the stabilization of the BBB via 

decreasing the paracellular permeability and increasing the transendothelial electrical 

resistance (TEER) across the endothelial monolayer (Kraus et al., 2008). The 

stabilisation of the BBB by the administration of glucocorticoids, an effective treatment 

for MS relapses, has also been demonstrated in the newly established human brain 

endothelial cell line, hCMEC/D3 (Weksler et al., 2005). The application of the 

glucocorticoid hydrocortisone, increased the expression of occludin and claudin-5, 

which is thought to contribute to the three fold increase in TEER that was observed. In 

addition, the administration of hydrocortisone prevented TNF-induced degradation of 

TJ proteins (Forster et al., 2008).

1.3 Mediators of inflammation

1.3.1 Cytokines in MS

Cytokines are low relative molecular mass (RMM) proteins whose actions are generally 

mediated at close range and are involved in various biological processes, including cell 

proliferation, inflammation, immunity, migration, fibrosis, repair and angiogenesis. 

There are more than 100 of these small molecules, which are termed interleukins (IL), 

interferons (IFN), growth factors, and TNFs amongst others (Oppenheim, 2001; Vilcek 

and Feldmann, 2004).

A variety of cytokine mRNAs have been detected in CNS tissue of MS patients. 

These include IL-1a, IL-2, IL-4, IL-6, IL-10, IFN-y, TGF-(31 and 2, and TNF. IL-6, IFN-y 

and TNF were strongly expressed in perivascular inflammatory cuffs, whereas the 

other cytokines were more weakly expressed (Woodroofe and Cuzner, 1993). However, 

all cytokine mRNAs were more highly expressed in the perivascular cells compared to 

the parenchymal cells, which the authors propose, indicates that the cells that have 

crossed the BBB are the major source of cytokines in MS tissue (Woodroofe and 

Cuzner, 1993). Within actively demyelinating lesions, leukocytes and glial cells express 

a range of Th1-related cytokines, such as IFN-y, TNF or IL-2, which all have pro- 

inflammatory effects (Merrill, 1992). The majority of cytokines detected, increase the 

permeability of endothelial cells, but some have an opposing influence. TNF has been 

shown to induce either an increase or decrease in permeability of the BBB, and this 

dichotomy in behaviour is thought to be cell-type dependent (for review see Walsh et 

al., 2000). Mayhan (2002) demonstrated the former in cerebral microvasculature of 

Wistar-Furth rats. It was shown that the mechanism of induction of vascular 

permeability involved soluble guanylate cyclase and protein tyrosine kinase as its 

downstream targets. Within the CSF of MS patients, IL-1p and TNF were increased in 

active disease compared to inactive and other neurological diseases (Hauser et al., 

1990). IL-6, however, was undetectable in most MS CSF (Hauser et al., 1990). This

23



contrasts with other research groups who have reported an increase in IL-6 in the CSF 

of MS patients, which is more prominent in acute phases of the disease (Maimone et 

al., 1991).

1.3.1.1 TNF

TNF is a pleiotropic cytokine that is synthesized as a 26 kDa transmembrane precursor 

(pro-TNF) that is cleaved into a 17 kDa soluble form by ADAM-17 (Black et al., 1997; 

Moss et al., 1997; Maskos et al., 1998; Milla et al., 1999; Duan et al., 2003). TNF can 

have negative and positive effects within the CNS: it can be a critical mediator in 

demyelinating and neurodegenerative diseases but can also elicit regenerative and 

neuroprotective effects (Loddick and Rothwell, 1999; Allan and Rothwell, 2001). It has 

been shown to induce oligodendrocyte cell death in in vitro spinal cord explants 

(Selmaj and Raine, 1988).

As MS is regarded as an inflammatory disorder of the CNS, various studies 

have been performed to investigate the TNF expression levels in MS patients. In post­

mortem tissue, TNF is localised to astrocytes and macrophages at the lesional edge of 

the MS plaque, but is absent in brain tissue from normal and neurological control 

patients (Hofman et al., 1989). Significantly increased TNF levels have been observed 

in the CSF of chronic progressive MS patients in comparison to stable MS and other 

neurological disease controls. TNF levels showed a positive correlation with disease 

severity at the beginning of the study and also the progression of the disease, the latter 

suggesting that initial high levels of TNF would indicate a poor prognosis for the patient 

(Sharief and Hentges, 1991). An increase in TNF in the CSF of patients with active MS 

has also been reported by other groups (Hauser et al., 1990), however, other research 

has not corroborated these findings (Franciotta et al., 1989; Peter et al., 1991). Drulovic 

et al., (1997) studied the levels of TNF in the CSF of MS patients. TNF was detected in 

60% of MS patients tested, with an average of 10.1pg/ml (n = 15). However, non­

inflammatory neurological disease controls (NIND) showed similar levels with 9.5pg/ml 

(n = 4) of TNF. In patients with inactive MS, no TNF could be detected. However, a 

positive correlation was observed between the detection of TNF and the degree of 

disability shown in the MS patient (Drulovic et al., 1997). These discrepancies could be 

due to the different techniques employed and also the selection criteria for patients 

(Hauser et al., 1990; Sharief and Hentges, 1991). Interestingly, a high incidence of 

intrathecal TNF was not found to correlate with pleocytosis, thus it was concluded that 

TNF was CNS derived and not from the cells of the CSF (Hauser et al., 1990; Sharief 

and Hentges, 1991).

Serum TNF levels have been reported to be significantly lower than CSF levels 

in MS patients (Sharief and Hentges, 1991) or an elevated level could only be seen in a
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minority of patients (16%) (Peter et al., 1991). It has been reported that serum protein 

levels of TNF in RRMS patients do not differ from the levels observed in healthy 

controls and do not correlate with clinicopathological hallmarks of the disease (Martino 

et al., 1997). mRNA levels were also examined in PBMCs in this study, however no 

correlation could be found between levels of TNF mRNA and disease activity (Martino 

et al., 1997).

As a consequence of the strong association between MS and TNF, studies 

were carried out to investigate the effects of inhibiting TNF in murine EAE. Animals 

treated with anti-TNF antibodies did not show any clinical manifestations of EAE, and 

also had no pathological signs of the disease, i.e. demyelination and inflammation 

(Selmaj et al., 1991). Other studies have reported a decrease in severity of EAE using 

anti-TNF antibodies, which is proportional to the dose of immunoglobulin administered 

(Ruddle et al., 1990). In addition, the over expression of TNF in the murine CNS 

causes a demyelinating disease, which can be neutralised by the application of an anti- 

TNF antibody (Probert et al., 1995). The latter study suggested TNF could have a 

direct role in MS pathogenesis. The application of soluble TNF receptor 1 (TNFR1, see 

section 1.3.1.1.1) has also been shown to inhibit the clinical and pathological 

manifestations of EAE (Selmaj et al., 1995). The effective prevention of EAE by TNF 

inhibitors led to the application of anti-TNF therapies for treatment in MS patients. cA2, 

a mouse monoclonal antibody, was given to two young MS patients suffering an 

aggressive disease course and after administration of this treatment the number of Gd- 

MRI lesions increased concomitantly with the number of CSF leukocytes and the IgG 

index, suggesting anti-TNF therapy caused immune activation and an increase in 

disease activity (van Oosten et al., 1996). In addition, the prescription of the anti-TNF 

fusion protein, Etanercept, to treat a patient with juvenile rheumatoid arthritis (RA) led 

to the development of MS after 9 months of treatment, suggesting anti-TNF therapy 

could have caused the development of MS in this patient (Siccotte and Voskuhl, 2001). 

This unexpected failure in TNF therapy for MS patients led some researchers to 

investigate the role of TNF in nerve myelination, using a neurotoxicant model of 

demyelination using the toxin, cuprizone, and also using transgenic mice which had 

either alterations in TNF, or the TNF receptors 1 and 2 (TNFR2). TNF knockout (KO) 

mice showed a delay in their ability to remyelinate nerve fibres, which was associated 

with a decrease in oligodendrocyte progenitors and subsequently the number of mature 

oligodendrocytes. TNFR2 KOs, but not TNFR1 KOs, showed the same reduced cell 

proliferation, suggesting that TNF signalling through TNFR2 is responsible for 

oligodendrocyte regeneration. These surprising results suggested that the failure of 

anti-TNF therapy in MS patients could be due to the hampered remyelination caused 

by the decreased bioavailability of TNF (Arnett et al., 2001).
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Another protective function of TNF is its immunosuppressive ability. TNF- 

deficiency is associated with prolonged reactive myelin-specific T cell responses and 

exacerbated EAE. This study also demonstrated that the pro-inflammatory effects of 

TNF can be accounted for by TNFR1 and it is thus thought that blocking TNFR1 might 

be a more effective treatment for inhibiting the pro-inflammatory activities of TNF 

(Kassiotis and Kollias, 2001). More recently it has been demonstrated that transgenic 

mice which do not express the cleavage site of TNF and which only express the 

transmembrane (tm) form of TNF, show suppressed EAE onset and progression while 

maintaining the autoimmune suppressive properties of TNF (Alexopoulou et al, 2006). 

As tmTNF has a greater ability of activating TNFR2 and soluble TNF (solTNF) of 

activating TNFR1 (Grell et al., 1995; 1998), taken together these studies suggest that 

inhibiting the solTNF/TNFR1 pathway may be a more effective treatment strategy for 

MS patients.

1.3.1.1.1 TNF receptors

Part of the contrasting dual functionality of TNF is due to the two different TNF receptor 

subtypes it binds to, namely TNFR1 (also known as p55TNFR, p60, CD120a, 

TNFRSFIa) and TNFR2 (also known as p75TNFR, p80, CD120b, TNFRSFIb). TNFR1 

is a 55 kDa protein expressed by most cell types and its activation can be mediated by 

both the soluble (solTNF) and transmembrane form of TNF (tmTNF), but shows a 

preference for solTNF. TNFR2, however, is a 75 kDa protein and is expressed by cells 

of the immune system (including microglia) and also by endothelial cells, and is 

preferentially activated by tmTNF (Grell et al., 1995; 1998).

These single transmembrane glycoproteins are structurally similar but 

functionally distinct. They share 28% homology, most of which is situated in the 

extracellular domain (Figure 1.9). Their intracellular domains share almost no 

homology and are mostly unrelated, suggesting that the binding of TNF to these two 

receptors elicits different intracellular signals (Lewis et al., 1991; Tartaglia and Goeddel, 

1992; Grell et al., 1994). Two common features of the extracellular domains of TNFR1 

and 2 are the four tandemly repeated cysteine-rich motifs and an extracellular pre- 

ligand-binding assembly domain (PLAD) (Figure 1.9). The latter pre-complexes the 

receptors and encourages them to trimerize, particularly under the influence of TNF, 

which is also presented as a trimerized complex (MacEwan, 2002). One very important 

and obvious distinguishing feature of TNFR1 is the presence of a death domain (DD) at 

the carboxyl-end of the receptor, which along with other accessory proteins, carrying 

the same domain, signals for cell death (Figure 1.9). Both receptors have sequences 

that are capable of binding TNF receptor-associating factors (TRAFS) and adaptors,
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Figure 1.9: Schematic representation of TNFR1 and TNFR2. These receptors have 

28% sequence homology in their extracellular domains including the presence of four 

tandemly repeated cysteine-rich motifs. Their cytosolic domains have almost no 

sequence homology. TNFR1 contains a death domain (DD) which with other adaptor 

proteins signals cell death when TNF binds (Redrawn with permission from Elsevier 

from MacEwan, 2002).
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which transduce the TNF signal from the receptors to the signalling molecules within 

the cell (MacEwan, 2002).

The two receptors can act as transporters that chaperone TNF into the CNS. 

Pan and Kastin (2002) demonstrated that knocking out either of these receptors in 

mice reduced the influx of TNF into the brain, and if both receptors are knocked out this 

entry is totally abolished (Pan and Kastin, 2002). Interestingly Banks et al. (1995) 

demonstrated that incubating TNF with the soluble TNFR2 completely abolished 

transport of both human and murine TNF into the mouse brain. It was also shown that 

TNFR2 itself cannot cross the BBB (Banks et al., 1995). TNFR1 has been 

demonstrated to mediate cell death via both apoptosis and necrosis in a murine 

neuronal cell line, when cells are incubated with TNF and actinomycin D, which 

interferes with replication and transcription by binding to DNA duplexes (Sipe et al.,

1996). TNFR2 mRNA was not detected in this cell line, however its expression after 

stimulation with TNF was not analysed (Sipe et al., 1996).

TNFR1 has been described to be constitutively expressed in barrier associated 

structures of the CNS, including the microvasculature. Whereas its counterpart, TNFR2, 

is mainly expressed when the microvasculature is activated under stimulatory 

conditions (Nadeau and Rivest, 1999). Microglia, which are the primary producers of 

TNF at CNS inflammatory sites, have been shown to express both receptors (Dopp et 

al., 1997). However, astrocytes and oligodendrocytes predominantly express TNFR1 

(Dopp et al., 1997). TNFR2 mRNA expression in microglia is increased by both TNF 

and IFN-y, and signal transduction through TNFR2 inhibits signals transduced via 

TNFR1, either directly or indirectly (Dopp et al., 1997). Thus, it is believed that 

differential expression of these two receptors can determine the response of cells to 

TNF i.e. whether it has a proliferative, activational, or cytotoxic effect (Dopp et al.,

1997).

Martino et al. (1997) showed that the levels of soluble TNF receptors in serum 

of RRMS patients did not differ from the levels seen in healthy controls. However, when 

these molecules were examined at the molecular level i.e. the mRNA in PBMCs, both 

TNFR levels fluctuated significantly and peaked 6 weeks prior to clinicopathological 

evidence of the onset of an attack (Martino et al., 1997). In 1999, two papers were 

published demonstrating the shedding events of both TNFRs in MS patients. Jurewicz 

and colleagues (1999) measured the shedding of TNFRs from the cell surface of 

PBMCs, peripheral blood lymphocytes, and monocytes in three groups of MS patients: 

RRMS in relapse, RRMS in remission, and chronic progressive. The two receptors 

showed differential behaviour in MS patients in comparison to healthy volunteers. 

TNFR1 was shed at a lower rate, whereas TNFR2 was shed at significantly higher 

rates in MS patients (Jurewicz et al., 1999). The same year Franciotta et al. (1999)
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investigated the levels of the soluble receptors in the plasma and CSF of MS patients 

before and after treatment with methylprednisolone (MP), a corticosteroid. Plasma and 

CSF TNFR2 levels did not vary and were similar to the levels seen in controls. CSF 

TNFR1 levels, however, were higher in acute MS patients in comparison to controls, 

and these levels increased after MP treatment (Franciotta et al., 1999). Despite the 

disparity in results of the previous studies, it has been demonstrated that both 

receptors are up-regulated in the membrane bound form in the CNS in MS patients in 

macrophages and microglial cells in the region of the plaque edge (Sippy et al., 1995).

1.3.1.2 IL-1

In 1984 the cDNAs for both IL-1 a and IL-113 were cloned (for review see Feghali and 

Wright, 1997). Both IL-1 a and IL-1 (3 are synthesized as precursor proteins, however 

only IL-1 a is active in this form. IL-1 (3, however, is inactive and must be cleaved by the 

cysteine-aspartate protease, caspase-1. IL-1 mediates its biological effects through its 

membrane-bound receptor, IL-1RI (IL-1 receptor I) (for review see Simi et al., 2007). 

The biological activity of IL-1 can be modulated by the IL-1 receptor antagonist, IL-1Ra, 

which competes for IL-1 Rl, preventing IL-1 from binding (for review see Feghali and 

Wright, 1997). An increasing body of work suggests that IL-1 may be involved in 

various chronic neurodegenerative diseases.

IL-1 [3 has been reported to be increased in CSF of patients with active MS 

compared to inactive MS or other neurological diseases (OND) (Hauser et al., 1990). 

Other studies have not corroborated this result and have only seen increased serum 

levels of the protein in a minority of patients (6%) (Peter et al., 1991). Certain IL-1 

genotypes, or the balance between IL-1 and its receptor antagonist, IL-1Ra, have been 

found to be associated with disease severity/progression in MS (Mann et al., 2002). 

Chronic administration of IL-1 through a recombinant adenovirus vector results in BBB 

breakdown and extensive demyelination in rats, mimicking MS (Ferrari et al., 2004). 

The mechanism behind IL-1-induced BBB breakdown is associated with an induction of 

hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF)-A in 

astrocytes, which favour plasticity and permeability of the endothelial cells (Argaw et al., 

2006). IL-1Ra has been shown to reduce disease severity in EAE (Martin and Near, 

1995). Alternatively, IL-1 (3 knockout mice fail to remyelinate axons completely which is 

believed to be associated with a lack of production of insulin-like growth factor-1 (IGF-1) 

by microglia/macrophages and astrocytes, and a detrimental delay in mature 

oligodendrocyte differentiation. It was deduced from this study that IL-1 (3 induces the 

production of IGF-1 by glia and monocyte lineage cells, and may promote 

remyelination (Mason et al., 2001).
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1.3.1.3 IFN~y

IFN-y is the only cytokine to belong to the type II interferon family (Pestka et al., 2004). 

An increased expression of IFN-y has been shown to precede clinical attacks in MS 

(Beck et al., 1988; Lu et al., 1993), and also the injection of recombinant IFN-y into MS 

patients was found to exacerbate the disease (Panitch et al., 1987). IFN-y is localised 

within the immune cells of the perivascular cuffs in MS lesions (Woodroofe and Cuzner, 

1993; Simpson et al., 2000), but has also been found, to a lesser extent, within 

microglia and astrocytes at the plaque edge (Traugott and Lebon, 1988).

Despite the implications of IFN-y in MS pathogenesis, studies in EAE have 

revealed that IFN-y may also have a protective role in autoimmune diseases as IFN-y 

receptor KO mice experience a more severe disease than their wild-type littermates 

(Fabis et al., 2007). In addition, the delivery of IFN-y through a viral vector in murine 

EAE prevents the development of the chronic-progressive form the disease and is also 

associated with a more rapid recovery. The recovery phase of the disease was 

associated with an increase in apoptosis of CNS-infiltrating lymphocytes and an 

increased mRNA expression of TNFR1, thus the authors conclude that IFN-y 

expression is protective as it helps mediate the clearance of encephalitogenic T cells 

(Furlan et al., 2001). IFN-y is also thought to mediate its protective effects in EAE by 

inducing iNOS and hence nitric oxide (NO), which has an effect on a number of critical 

mediators of CNS inflammation and also apoptosis (Willenborg et al., 1999). 

Conversely, IFN-y has been shown to induce the expression of the chemokines 

CXCL10 and CCL5 to levels associated with EAE, however, these factors by 

themselves are not sufficient to recruit immune cells into the CNS and require 

peripheral infectious agent, e.g. pertusis toxin (Millward et al., 2007). Thus within the 

CNS, IFN-y appears to contribute to MS relapses, whereas in EAE, the cytokine 

appears to help mediate cell death of invading T cells, and is associated with recovery.

1.3.1.4 TGF-/31

Transforming growth factors (TGF-[3s) are a large family of pleiotropic cytokines which 

are evolutionarily conserved. Three TGF- (3 isoforms are known to exist in mammals: 

TGF-(31, TGF-(32, and TGF-(33. TGF-(31 belongs to the TGF-(3 superfamily, which 

includes activin/inhibins, bone morphogenic protein (BMP), and others which share the 

same structural and functional resemblances (for review see Goumans et al., 2009).

Various studies have investigated the expression of this cytokine to determine a 

correlation with MS (Mokhtarian et al., 1994; Soderstrom et al 1995). TGF-|3 has been 

found to be significantly down-regulated in lymphocytes of patients with clinically active 

MS compared to stable MS, other autoimmune controls and healthy controls 

(Mokhtarian et al., 1994). TGF-(32 has been observed predominantly in microglia in the
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cellular border of acute active lesions, whereas all three TGF-f3 isotypes have been 

found to be associated with astrocytes in the chronic active plaque (Peress et al., 1996). 

TGF-J3 has also been observed in the extracellular matrix surrounding blood vessels 

and shows an association with the endothelium in acute MS lesions (Cannella and 

Raine, 1995), but also shows the same expression profile in normal brain, suggesting a 

normal regulatory role at the level of the BBB (Brosnan et al., 1995). In EAE, high 

plasma levels of TGF-(3 are associated with the recovery phase of the disease 

(Iwahashi et al., 1997).

1.3.2 Chemokines

The chemokine (the word is a contraction of chemotactic cytokine) family consists of a 

large number of small (8-14 kDa) proteins, which display a wide variety of biological 

and pathological functions. Chemokines are further classified into four subfamilies 

based upon the position of two cysteine residues located near the amino terminus of 

the protein. These are: CXC, CC, C, and CX3C chemokine families (where X 

represents an intervening aa). The biological effects of chemokines are induced by 

binding to seven-transmembrane-domain G-protein coupled receptors (GPCR) on their 

target cells. The nomenclature for the ligands and receptors is indicated by its 

subfamily then a letter 'L' or 'R', respectively, and finally its particular number, e.g. 

CCL2 and CCR2, and CX3CL1 and CX3CR1 (Luster, 1998; Laing and Secombes, 

2004; for review see Ubogu et al., 2006).

Various chemokines have been implicated as playing a role in MS and EAE 

pathogenesis (Karpus and Ransohoff, 1998). The chemokine profiles in the CSF of MS 

patients have been shown to correspond to the cognate chemokine receptors 

expressed in MS lesions of post-mortem tissue. CXCL10 (IFN-y-inducible protein of 10 

kDa or IP-10), CXCL9 (monokine induced by IFN-y or Mig) and CCL5 (regulated on 

activation, normal T cell expressed and secreted or RANTES) are all significantly 

elevated in MS CSF during a clinical attack, which corresponds with CXCR3, an 

CXCL10 and CXCL9 receptor, and CCR5, a CCL5 receptor, expressed by immune 

cells in perivascular cuffs and areas of demyelination in MS brain lesions (Sorensen et 

al., 1999). CXCL10 and CXCL9 have also been found to be expressed in macrophages 

and astrocytes in active demyelinating lesions of MS patients, which bind to CXCR3 

expressing T cells in the perivascular cuffs. These two T cell chemoattractants are 

induced by IFN-y secreted by the T cells within the perivascular cuff (Simpson et al.,

2000). Correspondingly, within serum samples, there has been reported an increase in 

CXCR3+ T cells in RRMS patients, whereas PPMS patients showed an increase in 

both CXCR3+ and CCR5+ T cells, in comparison to controls (Balashov et al., 1999). 

Reactive hypertrophic astrocytes in post-mortem MS brain lesions have been
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implicated in the recruitment of demyelinating macrophages via the expression of the 

potent monocyte and T cell attracting chemokine, CCL2 (monocyte chemoattractant 

protein-1 orMCP-1) (Van DerVoorn et al., 1999).

In EAE, inhibition of CXCR4 activation via an antagonist is associated with 

enhanced CNS parenchymal leukocyte infiltrates, loss of the typical perivascular cuff, 

the loss of CXCL12 (CXCR4 ligand) polarisation on CNS endothelial cells, and 

increased disease severity. It was deduced from this work that the role of CXCL12 may 

be to contain the leukocytes within the perivascular space and therefore limit 

inflammation and thus have an anti-inflammatory role within the CNS (McCandless et 

al., 2006).

In vitro studies have shown that the chemokine CCL3 (MIP-1a), increases 

dendritic cell (DC) migration through brain microvessel endothelial cell monlayers, 

which in turn causes the reorganisation of occludin. However, this does not affect the 

barrier integrity as the TEER is not affected significantly (Zozulya et al., 2007). CCL5 

has been shown to facilitate the migration of T lymphocytes across immortalised 

human brain microvascular endothelial cells (Man et al., 2008).

1.3.2.1 Fractalkine (CX3CL1)

Fractalkine was the first and only chemokine identified to belong to the fourth class of 

chemokines, CX3C (Bazan et al., 1997). It is distinct in terms that the two N terminal 

cysteine residues are interrupted by a tripeptide (compare: C, CC, CXC) (Fig 1.10). 

Fractalkine is dichotomous, in addition to its role as a traditional chemokine, i.e. 

chemoattractant for cells of the immune system when it is shed from the membrane, it 

also plays a role in cell adhesion in its membrane-bound form (Bazan et al., 1997). 

Fractalkine has also recently been shown to have angiogenic properties (Volin et al.,

2001). The membrane-bound form has been localised to various cells of the body, 

including epithelial cells (Muehlhoefer et al., 2000; Lucas et al., 2001), endothelial cells 

(Bazan et al., 1997; Muehlhoefer et al., 2000), smooth muscle cells (Ludwig et al., 2002; 

Wong et al., 2002), dendritic cells (Papadopoulos et al., 1999; Kanazawa et al., 1999), 

neurons (Pan et al., 1997; Nishiyori et al., 1998; Harrison et al., 1998), astrocytes 

(Hulshof et al., 2003) and macrophages (Greaves et al., 2001). In 1997 the receptor for 

fractalkine (CX3CR1) was identified and shown to be expressed on T cells (Bazan et 

al., 1997; Imai et al., 1997), natural killer (NK) cells (Imai et al., 1997), monocytes 

(Bazan et al., 1997; Imai et al., 1997), microglia (Nishiyori et al., 1998), astrocytes 

(Maciejewski-Lenoir et al., 1999) and neurons (Meucci et al., 2000). It is thus proposed 

to play an important role in regulating leukocyte trafficking.

Fractalkine has been found in significant levels in the CSF and serum of 

patients with MS (Kastenbauer et al., 2003); although its role as a CSF chemokine was

32



CXXXC c

Sig Chem okine domain M ucin-like stalk TM Cyto

Figure 1.10: Domain structure of fractalkine. Note the CX3C motif in the chemokine 

domain that distinguishes it from other known chemokines. Sig, signal peptide; TM, 

transmembrane domain; Cyto, cytoplasmic domain.
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not considered to be significant. Despite this, various studies have shown that blocking 

the fractalkine - fractalkine receptor interface could have beneficiary effects upon the 

course of certain diseases. Suzuki and colleagues (2005) demonstrated that applying a 

neutralizing monoclonal antibody directed against fractalkine significantly reduced the 

functional and pathological hallmarks of experimental autoimmune myositis in mice. 

They also witnessed reduced T cell and macrophage infiltrates in the muscle when 

fractalkine was immunologically silenced. The soluble form of fractalkine has also been 

demonstrated to interfere with arrest of CD16+ monocytes onto endothelial cells; by 

pre-incubating monocytes with soluble fractalkine this caused a significant decrease in 

the number of CD16+ monocytes that could arrest onto fractalkine expressing human 

umbilical vein endothelial cells (HUVEC) cells (Ancuta et al., 2003). However, it has 

also been shown that preventing this interaction between fractalkine and its receptor 

could have detrimental effects upon disease. Mice suffering from EAE and deficient in 

the fractalkine receptor, through gene manipulation, show reduced recruitment of NK 

cells into the inflamed CNS, which was associated with an increase in EAE-related 

mortality, non-remitting spastic paraplegia, and hemorrhagic inflammatory lesions 

(Huang et al., 2006).

Fractalkine expression has been shown to be influenced by a number of 

cytokines. Rat aortic endothelial cells show an increased expression of membrane- 

bound fractalkine when stimulated with inflammatory cytokines, such as IL-1 and TNF 

(Garcia et al., 2000). TNF significantly increases fractalkine mRNA and protein 

expression in HUVECs (Moon et al., 2006). Fractalkine has been shown to be 

regulated by IFN-y in endothelial cells (Imaizumi et al., 2000). However, IFN-y-induced 

expression of fractalkine at the mRNA and protein level in HUVECs is inhibited by 

heparin in a concentration dependent manner (Hatakeyama et el., 2004). Heparin 

binds directly to IFN-y and partially blocks the interaction between IFN-y and its 

receptor (Hatakeyama et al., 2004). Blood mononuclear cell adhesion to IFN-y- 

stimulated HUVEC monolayers can be reduced by heparin (Hatakeyama et al., 2004) 

and is thus thought to help regulate leukocyte trafficking across the vascular 

endothelium (for review see Imaizumi et al., 2004). A disintegrin and metalloprotease 

(ADAM)-17 has been shown to mediate the inducible cleavage and shedding of 

fractalkine under phorbol 12-myristate 13-acetate (PMA)-stimulation (Garton et al., 

2001; Tsou et al., 2001) and ADAM-10 has been implicated as the mediator of 

constitutive cleavage of fractalkine (Hundhausen et al., 2003) (see section 1.5.7).
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1.4 Leukocyte recruitment to the endothelium

1.4.1 Adhesion molecules in MS

Adhesion molecules and chemokines (see 1.3.2) mediate the recruitment of immune 

cells into tissues through post-capillary venules (Man et al., 2007). Adhesion molecules 

include selectins, integrins, the JAM family and the endothelial cell-selective adhesion 

molecule (ESAM). Selectins expressed on the endothelium mediate the capture of 

leukocytes by interacting with glycosylated ligands on the leukocyte in a process known 

as tethering. This is a transient process, as cells under the shear forces of blood flow 

begin to roll, a process known as rolling. Under an activated state, the endothelial cells 

begin to express chemokines and adhesion molecules which in turn activate GPCR on 

the leukocyte, causing a conformational change in the leukocytes' integrins. These 

integrins can then interact with their cognate protein, e.g. vascular cell adhesion 

molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1), or JAM-1. This 

process results in the leukocyte attaching onto the endothelium (Man et al., 2007).

It has been well documented that normal human CNS microvessels do not 

express endothelial cell activation markers, but MS patients do, including VCAM-1, 

endothelial cell leukocyte adhesion molecule-1 (E-selectin) and ICAM-1 (Washington et 

al., 1994; Brosnan et al., 1995). The amount of inflammation in these areas shows a 

positive correlation with the increased expression levels of the adhesion molecules 

(Canella and Raine, 1995; Sobel et al., 1990; Washington et al., 1994). In addition, 

increased levels of soluble adhesion molecules have been reported during the relapse 

phase of RRMS, and SPMS (Baraczka et al., 1999; McDonnell et al., 1999; Dore-Duffy 

et al., 1995; Droogan et al., 1996; Kraus et al., 1998; Sharief et al., 1993; Tsukada et 

al., 1993). Recently, it has been reported that various adhesion molecules show 

variability in their expression profiles between different clinical MS subtypes and 

controls. The cell surface expression, on mononuclear cells, of very late antigen 4 

(VLA-4), lymphocyte function-associated antigen 1 (LFA-1) and ICAM-1 are increased 

in the blood and CSF of PPMS patients (n = 25) compared to controls (n = 11). ICAM-1 

also shows a higher expression in PPMS patients in comparison to SPMS patients (n = 

18) (Ukkonen et al., 2007).

MS patients treated with IFN-(B-1b show a significant increase in the levels of 

soluble VCAM-1 which correlate with a concomitant decrease in MRI lesions (Jensen 

et al., 2005). Levels of soluble ICAM-1, E-selectin, L-selectin and TNFR1 were not 

significantly altered during treatment (Calabresi et al., 1997). Cleavage and shedding of 

this receptor and adhesion molecules, apart from E-selectin, have been shown to be 

mediated by ADAM-17 (Peschon et al., 1998; Borland et al., 1999; Reddy et al., 2000; 

Garton et al., 2003). However ADAM-17 was not discovered until 1997 (Black et al.,

1997) and therefore was not investigated in the work by Calabresi and colleagues
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(1997). The fact that other targets of ADAM-17, apart from VCAM-1, are unaffected by 

IFN-(3-1b suggests that the mechanism of action of this cytokine is distinct from the 

other ligands. It has been shown that the method of action of IFN-(3-1b upon VCAM-1 

expression in endothelial cells is indirect via its' effect upon T cells (Calabresi et al.,

2001).

Endothelial cells isolated from human brain microvessels (HBMEC) showed 

significantly greater surface expression of VCAM-1, under inflammatory conditions 

produced using lipopolysaccharide (LPS), TNF or IL-1 (3. With LPS proving the most 

potent at inducing this effect, followed by TNF and then IL-1 (3. IFN-y did not influence 

VCAM-1 expression (Wong and Dorovini-Zis, 1995).

As a proof of concept of adhesion molecules being implicated in MS, in 2004 a 

humanised monoclonal antibody called Natalizumab (Tysabri, Biogen Idee Inc., 

Cambridge, MA and Elan Pharmaceuticals, Inc., San Diego, CA) directed against a4- 

integrin of VLA-4 was approved for treating RRMS. The antibody was designed to 

interfere with the interaction between VLA-4 and its ligand, VCAM-1, and thus prevent 

the migration of immune cells across the BBB (Yednock et al., 1992). Unfortunately the 

drug was withdrawn and the trials had to be stopped after two MS patients and one 

Crohn's disease patient treated with Natalizumab went on to develop progressive 

multifocal leukoencephalopathy (PML) after its co-administration with IFN-(3 (Stuve et 

al., 2007). The drug has since been approved to treat MS and Crohn's patients as a 

monotherapy in the US and European Community (Engelhardt and Kappos, 2008). 

Recent investigations into the effects of Natalizumab on immune cell responses in MS 

patients has revealed that each patient responds differently to the treatment, 

Natalizumab (standard intravenous infusion of 300mg) does not fully block surface 

expression of VLA-4, and the drug can also alter the activation threshold of the immune 

cells (Niino et al., 2006).

Studies are in agreement that ICAM-1 is increased in MS pathology. Bo et al. 

(1996) showed that MS brains (n = 11) had a significant increase in ICAM-1-positive 

vessels and that this increase was greater in MS lesions (81%) than in non-lesion 

areas (37%). Immunohistochemical examination of microvessels in MS patients have 

shown more numerous ICAM-1 positive vessels in white matter in comparison to 

control samples and normal-appearing, uninvolved MS white matter (Sobel et al., 1990). 

Immortalized FlUVECs (ECV304) subjected to cerebral microvasculature conditions, i.e. 

co-cultured with C6 astroglioma cells, show decreased barrier integrity and up- 

regulated ICAM-1, nine-fold more when exposed to TNF for 6-18 hours (Dobbie et al.,

1999). Most recently, it has been reported that ICAM-1 null mutant mice experience 

significantly attenuated EAE, which is characterised by a reduced spinal cord infiltrate 

with a concomitant reduction in IFN-y production (Bullard et al., 2007). This indicated
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that ICAM-1 is critical in the development of demyelinating diseases as other adhesion 

molecules e.g. VCAM-1, which were still expressed, could not compensate for its loss 

(Bullard et al., 2007). More recently, the combined knockdown of ICAM-1 and C3 (the 

central complement component) in mice with MOG-induced EAE have shown 

significantly worse disease severity than C3-/- mice alone and only a modest 

attenuation compared to wild-type mice (Smith et al., 2008). Emphasising that removal 

of factors implicated in MS will not necessarily ameliorate the disease.

Riekmann and colleagues (1995) found that soluble ICAM-1 inhibits 

attachment of lymphocytes to cerebral endothelial cells in vitro. A positive correlation 

was found in RRMS patients with Gd-MRI negative scans and high soluble ICAM-1 

serum levels compared to patients who had Gd-MRI positive scans (Trojano et al.,

1996). Both suggest that soluble adhesion molecules play an important role by 

restricting leukocyte extravastion across the BBB and the basis for this is a competitive 

mechanism with their membrane-bound counterparts (for review see Avolio et al., 

2003).

1.4.2 Leukocyte recruitment and extravastion

Under normal physiological conditions lymphocyte trafficking into the CNS is limited, 

however, in MS and its animal model, EAE, there is increased migration of immune 

cells. Leukocyte migration across the BBB is a multi-step process, whereby cells of the 

immune system firstly have to penetrate the endothelial cells and the underlying 

endothelial BM, followed by a transient stop in the perivascular space, before finally 

penetrating the parenchymal/astroglia BM to reach the brain parenchyma.

Bolton and colleagues (1998) demonstrated that leukocyte recruitment results 

in junctional disorganization and the subsequent breakdown of the BBB. This was 

associated with the loss of certain TJ proteins such as occludin and ZO-1 and the 

redistribution of vinculin, the adherens junctional protein. Immunocytochemical 

examination of human immunodeficiency virus-1 encephalitis (HIVE) brains (Dallasta et 

al., 1999) and brains from patients with cerebral malaria (Brown et al., 1999) also 

showed the same abnormalities in TJ proteins as described by Bolton et al. (1998). 

Recently it has been reported that in EAE mononuclear cells traverse the endothelium 

via the transcellular pathway, leaving the TJs undisturbed. It was also reported that the 

endothelial cells form filipodia-like protrusions which envelope the mononuclear cell, 

creating a pore through which the immune cell can reach the abluminal side of the 

endothelium (Wolburg et al., 2005). Various ECM proteins have been observed in the 

inflammatory cuffs of MS patients, including heparan sulphate proteoglycans (HSPGs) 

and heparan sulphate glycosaminoglycan sidechains (HS GAGs), which are thought to 

help mediate the influx/efflux of leukocytes by acting as a conduit network or reservoir
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for chemokines (van Horssen et al., 2005). Leukocytes penetrate the endothelial BM 

using integrin (B1-mediated processes. It was recently shown that macrophages are 

responsible for penetration of the second BM, the parenchymal/astroglial BM, using 

gelatinases (MMP-2 and MMP-9), which degrade dystroglycan (a protein which 

anchors astrocytic endfeet onto the BM). Inhibition of the proteolytic cleavage of this 

transmembrane receptor via knockout of MMP-2 and -9 confers resistance to EAE in 

mice (Agrawal et al., 2006).

1.4.2.1 MMPs

The MMPs belong to a large family of zinc-dependent metalloproteinases called the 

metzincins which are all structurally related. Other metzincin subfamilies include the 

ADAMs, bacterial serralysins and the astacins. Based upon substrate specificity and 

certain protein domains, the MMPs can be further subdivided into groups, which 

include the gelatinases, stromelysins, collagenases, membrane-type (MT)-MMPs and 

others (for review see Yong et al., 2001). MMPs are thought to be involved in 

facilitating the migration of immune cells into the CNS in MS by degrading extracellular 

components associated with the BBB.

Various MMPs have been found to be increased in the serum, CSF and CNS 

tissue of MS patients (Anthony et al., 1997; Agrawal et al., 2008). MMP-9 is of 

particular interest due to its increased expression in the serum of MS patients, 

especially during relapse and levels also correlated with the number of Gd-MRI lesions 

(Lee et al., 1999; Waubant et al., 1999). Recently, the activity of MMP-9 has been 

studied in MS patients and has shown that MMP-9 activity is increased in CSF and 

serum compared to controls. Also, an increase in serum MMP-9 activity and active 

MMP-9/TIMP-1 ratio corresponded to clincopathological signs of disease activity, 

suggesting that this assay could be used as a biomarker for disease activity in MS 

patients (Fainardi et al., 2006).

Concordantly, increased MMP levels have been observed in mice with EAE 

(Pagenstecher et al., 1998; Yong et al., 2007), and the application of MMP inhibitors 

can block the onset of the disease and can even reverse EAE (Hewson et al., 1995; 

Liedtke et al., 1998). Toft-Flansen et al. (2006) showed that the application of a broad- 

spectrum MMP inhibitor, Batimastat, in a mouse model of neuroinflammation, 

prevented the migration of leukocytes across the astroglial BM into the surrounding 

parenchyma. Instead the leukocytes accumulated in the perivascular space and there 

were no signs of disease, indicating that MMPs are essential for breaching the astroglia 

BM. Interestingly, leukocytes could still enter the perivascular space, indicating that 

MMPs are possibly not essential for migration across the endothelial cells and BM. In 

addition, dendritic cells (DC) are also not completely blocked from transmigrating
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across murine brain endothelial cell cultures in the presence MMP inhibitors (Zozulya 

et al., 2007), highlighting that MMPs are somewhat redundant in endothelial cell/BM 

transmigration of DCs also. The MT-MMPs have also been investigated by the Toft- 

Hansen group in EAE and observed that the regulation of expression of this subtype of 

MMPs in two models of the disease, i.e. immunization with MOG and adoptive transfer 

of MOG specific T cells, shows the same pattern. Whereby, MMP-14 and -25 were 

significantly up-regulated and MMP-15, -16, -17 and -24 were significantly down- 

regulated in both disease types. This pattern of expression was not found to be 

associated with the pro-inflammatory cytokines TNF, IL-1 [3 or IFN-y (Toft-Hansen et al., 

2007).

In vitro studies in rat primary CNS microvascular endothelial cells have revealed 

that MMP-2 and MMP-9 are constitutively expressed by these cells and that upon 24 

hour cytokine treatment with the pro-inflammatory cytokines, TNF and IL-1 (3, there was 

an up-regulation in MMP-9 activity, which was partially inhibited by the steroid, 

dexamethasone. In addition, this study also investigated the effects of active MMP-9 on 

the expression of the junctional protein, ZO-1, which after 1-6 hours treatment with the 

enzyme, resulted in a decrease in the intensity of the staining. This could be prevented 

by the addition of dexamethasone or an MMP inhibitor (KB8301) (Harkness et al., 

2000). An increase in MMP expression has also been observed in primary human brain 

microvascular endothelial cells under oxidative stress, a hallmark of neurodegenerative 

disorders, which has been shown to augment BBB permeability and monocyte 

migration. This was paralleled with the degradation of BM protein, collagen IV, and 

increased tyrosine phosphorylation of the TJ proteins: occludin, claudin-5 and ZO-1 

(Haorah et al., 2007).

1.5 ADAM-17

1.5.1 AD AM -17 structure

ADAM-17 was first identified in 1997 as the principal convertase of TNF and was thus 

named TNF-a converting enzyme or TACE (Black et al., 1997; Moss et al., 1997). 

ADAM-17 also belongs to the ADAM family of membrane-bound proteins (Killar et al., 

1999; Schldndorff and Blobel, 1999; Schlondorff et al., 2001) which together with snake 

venom metalloproteinases (SVMPs) make up the reprolysin family of zinc 

metalloproteinases. The ADAM family of proteins currently consists of more than 30 

members (for review see Mezyk et al., 2003). ADAM-17 shares a number of facets 

belonging to the majority of ADAMs. It is a multi-domain type I transmembrane protein 

that relies upon zinc for its catalytic activity, and also has a disintegrin-cysteine rich 

sequence (Fig 1.11) (Schldndorff and Blobel., 1999). The catalytic domain has a zinc- 

binding consensus motif (HELGHNFGAEHD), which coordinates the interaction of zinc
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with histidine residues, thus creating the active site of ADAM-17 (Black et al., 1997; 

Moss et al., 1997). The disintegrin-cysteine rich domains have been shown to play 

important roles in cell adhesion and migration (Zhang et al., 1998; Iba et al., 1999, 

2000; Wild-Bode et al., 2006). However, the disintegrin region of the ADAMs has 

recently been shown to be unavailable for protein binding, due to the conformation of 

the enzyme (Takeda et al., 2006). It is thus thought to play more of a structural role 

rather than as an integrin ligand (for review see Rocks et al., 2008). Like the MMPs, 

ADAM-17 is synthesized as an inactive pro-form, or zymogen, that is cleaved between 

its cysteine switch and catalytic domain to yield a mature, active enzyme (Figure 1.11) 

(Moss et al., 1997). Consistent with other ADAM proteases (Lum et al., 1998; Roghani 

et al., 1999), ADAM-17 has been shown to possess a furin-cleavage motif (RVKR214) 

between the pro-domain and the catalytic domain and is thus presumed to be activated 

by removal of the pro-domain by a furin-type proprotein convertase (Moss et al., 1997). 

However, a direct involvement of furin in the proteolytic processing of ADAM-17 was 

not demonstrated until 2003 when Peiretti and colleagues showed that upon furin 

inhibition, ADAM-17-processed substrates were reduced, which was subsequently 

rectified by the over-expression of furin. This is in agreement with immunocytochemical 

studies that have shown the intracellular localisation of ADAM-17 to be predominantly 

confined to perinuclear regions, which is indicative of the late Golgi compartment, 

which is also the subcellular localisation of furin (Schldndorff et al., 2000). It has also 

been recently shown that ADAM-17 is incorporated into lipid-rafts during transport 

through the Golgi apparatus where furin performs cleavage of the pro-domain (Tellier 

et al., 2006).

ADAM-17 is reported to be an 85kDa protein (Black et al., 1997; Moss et al.,

1997) expressed in various cell types, including monocytes, peripheral blood T cells, 

neutrophils, endothelial and smooth muscle cells (Black et al., 1997). Black and 

colleagues (1997) found no evidence of the pro-enzyme, however Schldndorff and 

colleagues (2000) reported a 100kDa form in THP-1 cells (monocytic cell line) that 

represented ADAM-17 with its pro-domain, which was later converted to a 70kDa 

protein in its mature state. The differences in RMM between the Black and Schldndorff 

studies could be due to the fact that the latter study deglycosylated ADAM-17 with a 

peptidase: A/-glycosidase F (PNGase), whereas the former did not. Also, Black and 

colleagues (1997) mention that there are slight variations in the RMM they observed on 

western blots for ADAM-17, which they credit to differential glycosylation of the protein, 

but could also represent the pro-form. Only the mature form of ADAM-17 is expressed 

on the cell surface, but not the zymogen (Doedens and Black, 2000; Schlondorff et al.,

2000).
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1.5.2 ADAM-17 as a sheddase

In addition to its ability to cleave TNF from its pro-form to its active soluble form, 

ADAM-17 also has been demonstrated to be the major physiological sheddase 

responsible for the ectodomain cleavage of some 50 transmembrane proteins including: 

TNFR2 (Peschon et al., 1998), TNFR1 (Reddy et al., 2000), macrophage colony- 

stimulating factor receptor (Rovida et al., 2001), and interleukin 1- receptor 2 (IL1-R2) 

(Reddy et al., 2000), CD40 (Contin et al., 2003), VCAM-1 (Garton et al., 2003), L- 

selectin (Peschon et al., 1998), the chemokine and adhesion molecule fractalkine 

(Garton et al., 2001), TNF-related activation-induced cytokine (TRANCE) (Lum et al., 

1999), transforming growth factor-a (TGF-a) (Peschon et al., 1998), and APP 

(Buxbaum et al., 1998). In 2006, it was demonstrated that ADAM-17 performs its 

shedding activities within the cholesterol-rich membrane microdomains, lipid rafts, and 

that upon cholesterol depletion this process is increased. This highlights the fact that 

cholesterol plays a significant role in regulating ADAM-17's shedding activities. The 

precise mechanism of this process was not investigated, but disruption of the lipid raft 

displaced the mature form of ADAM-17 into non-raft areas where the majority of 

ADAM-17 substrates were situated. Under normal physiological conditions, these 

substrates would not be available to the protease and the cleavage of substrates would 

be dependent upon the entry of ADAM-17 into the lipid-raft. Also, different proportions 

of substrates where found to be localised within the rafts, and it is believed protein 

partitioning, in such a manner, may be involved in regulating ADAM-17 substrate 

proteolysis (Tellier et al., 2006). Recently, it has been demonstrated that high-density 

lipoproteins (HDL) activate ADAM-17 dependent shedding by decreasing the 

cholesterol content of lipid rafts (Tellier et al., 2008).

1.5.3 Regulation o f ADAM-17 activity

The exact system employed to regulate shedding of membrane-bound proteins by 

ADAM-17 is still not clearly understood, however, experiments utilising cells which 

have a mutated ADAM-17 have provided useful tools to investigate ADAM-17 protease 

activity. Cells lacking the transmembrane portion (TM) of the protein and instead have 

a glycosylphosphatidylinositol (GPI)-binding polypeptide or a miscellaneous receptor 

show a great reduction in the shedding of TGF-a, but not TNF and L-selectin. The 

authors observed from this that the TM portion of ADAM-17 is important as a 

transmembrane anchor to bring about the cleavage of a broad diversity of substrates 

and also in terms of the amino acid sequence it carries, as different TM sequences 

differentially influence the substrates that are cleaved, e.g. TGF-a compared to TNF 

and L-selectin (Li et al., 2007). PMA has been found to be a general inducer of 

shedding for all ADAM-17 substrates, as have growth factors, ionophores and
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cholesterol depletion for the substrates examined (Pandiella and Massague, 1991; Fan 

et al., 2003; Matthews et al., 2003). So far, two intracellular signalling pathways have 

been cited as being important in regulating ectodomain shedding of transmembrane 

proteins: Erk and p38 MAP kinase. PMA-induced shedding involves the Erk-dependent 

mechanism, whereas the basal shedding of TGF-a and TNF requires the activity of p38 

MAP kinase (Fan and Derynck, 1999; Gechtman et al., 1999; Montero et al., 2002). As 

ectodomain shedding of transmembrane proteins involves intracellular activity some 

researchers deduced that the cytoplasmic domain of ADAM-17 must be an important 

facilitator of this process. However, constructs of ADAM-17 lacking the cytoplasmic 

domain show no loss of functional shedding ability (Fan et al.,2003; Reddy et al., 2000; 

Li and Fan, 2004). Surprisingly, especially in the context of the previous report, is the 

fact that the cytoplasmic domain of ADAM-17 is phosphorylated in response to 

shedding activators (Fan et al., 2003; Diaz-Rodriguez et al., 2002).

Interestingly, the disintegrin-cysteine rich domain has been implicated as an 

important regulator of ectodomain shedding: mutagenesis and functional studies using 

mutant Chinese hamster ovary (CHO) cells revealed that a point mutation in this region 

(Cys600) was detrimental to the shedding of TGF-a and TNF, either in the presence or 

absence of PMA. Amino acid substitution experiments, whereby this cysteine residue 

was replaced with one of the other 19 amino acids, did not restore shedding ability to 

this cell line. Suggesting that Cys600 is essential for the proteolytic activity of ADAM-17, 

perhaps through participating in disulfide bonding, which would be essential for both 

the processing and catalysis of ADAM-17 (Li and Fan, 2004).

1.5.4 Substrate specificity o f ADAM-17

As ADAM-17 can induce the shedding of approximately 50 substrates this has raised 

the question of what common properties do these proteins hold in their cleavage 

regions that they can all be shed by ADAM-17. ADAM-17 has been shown to 

preferentially cleave peptides that resemble the processing sites of TNF and TGF-a, 

but also cleaves peptides that are unlike these two proteins very efficiently (Black et al., 

2003). Peptide cleavage assays have revealed that a 20-residue peptide, which spans 

the cleavage site of TNF is cleaved solely between Ala76 and Val77 (Mohler et al., 1994) 

(Table 1.1). Other proteins shed by ADAM-17, however, are cleaved at sites discrete 

from the alanine-valine preference site of TNF. L-selectin is reported to be cleaved 

between lysine and serine amino acids (Kahn et al., 1994), APP is cleaved at a site 

between residues lysine and leucine (Buxbaum et al., 1998), whereas TNFR1 is 

cleaved between asparagine and valine (Reddy et al., 2000), and TNFR2 is shed by 

the cleavage between glycine and serine (Crowe et al., 1995) (Table 1.1). Threonine
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Table 1.1: Cleavage sites of ADAM-17 substrates. The arrow indicates where 

ADAM-17 cleaves the protein.

Substrate_________________Clevage site
TNF PLAQA 1 VRSSS

L-selectin QKLDK 1 SFSMI
APP VHHQK 1 LVFFA

TNFR1 PQIEN i VKGTE
TNFR2 MGPSPPAEG 1 STGDFAL
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and leucine are also acceptable substitutes for alanine and valine (Black et al., 2003). 

How ADAM-17 is able to cleave substrates with different primary sequences in the 

cleavage site is not exactly known, but suggests that there is not a common consensus 

motif which signals cleavage (Mezyk et al., 2003). In the case of L-selectin it has been 

shown that amino acid substitution in the cleavage site does not affect the cleavage 

process (Chen et al., 1995; Migaki et al., 1995; Stoddart et al., 1996). However, if 

amino acids are deleted in the proximal membrane region shedding will be eliminated, 

highlighting that the length of the proximal region is of more importance (Zhao et al.,

2001). Thus the conformation of the proteins could be an important factor influencing 

the type of substrates cleaved by ADAM-17. In addition to this, the extensive surface 

loops of ADAM-17 have also been hypothesised as being important factors influencing 

the substrate cleavage by ADAM-17 (Black et al., 2003).

1.5.5 ADAM-17 expression

ADAM-17 mRNA has been found in most tissues, for example, in the adult heart, 

skeletal muscle, thymus, small intestine and in the foetal brain, lung, liver and kidney 

and is said to be largely constitutively expressed (Black et al., 1997). ADAM-17 has 

been found to be predominantly localised to intracellular perinuclear compartments in 

COS-7 cells, which are fibroblast-like cells from the African green monkey (Schldndorff 

et al., 2000). Some diffuse staining, consistent with surface and endoplasmic reticulum 

staining patterns, was also observed (Schldndorff et al., 2000). However, no dual 

labelling experiments to confirm this co-localization were performed. ADAM-17 has 

also been reported to be co-localized with the actin cytoskeleton, along with FHL2 (four 

and a half LIM domain 2 protein), a LIM domain protein that is involved in multiple 

protein-protein interactions (adaptor/docking protein and regulation of transcriptional 

events), in cardiomyoblast cells. Subcellular fractionation experiments revealed that the 

mature form of ADAM-17 had a higher tendency to cosediment with the cytoskeleton 

rather than the pro-form. FHL2 deficiency resulted in the increased expression of 

ADAM-17, which in turn resulted in the reduced production of TNFR1 and TNFR2 

under PMA-treatment. Thus, FHL2 is involved in the regulation of activity and 

localisation of ADAM-17 (Canault et al., 2006).

1.5.6 TIMP-3 and the TIMP family of proteins

The tissue inhibitors of metalloproteases or TIMPs are a family of proteins that are 

made up of four members, TIMP-1, -2, -3, and -4. They share the same secondary 

structure of six loops that are held together by 6 disulphide bonds, which secure the 

protein into a wedge shape, that is similar to the Fab portion of immunoglobulins (for
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Figure 1.12: The three-dimensional structures of TIMPs. Here the ribbons 

secondary structure of TIMP-2 is used to demonstrate the wedge shaped conformation 

of the TIMPs. Disulphide bonds are shown in yellow. (Reproduced with permission 

from Elsevier from Brew et al., 2000).
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review see Crocker et al., 2004) (Figure 1.12). The TIMPs all bind tightly, although with 

varying affinity, to MMPs. They inhibit MMPs via noncovalent interactions in a 1:1 

stoichiometry (Gomis-Ruth et al., 1997). TIMP-3 is distinct in that it is the only TIMP to 

bind to the extracellular matrix (ECM) through sulphated glycosaminoglycans (GAGs) 

such as heparan- and chondroitin-sulphate (Yu et al., 2000). TIMP-3 is also unique in 

terms that it is the only TIMP to inhibit members of the ADAM family and has been 

found to be the endogenous inhibitor of ADAM-17 (Amour et al., 1998). TIMP-3 has 

been found to be highly expressed in the heart, kidney and thymus (for review see 

Crocker et al., 2004). Its' mRNA is also expressed in ventricular zones and 

subventricular zones of the embryo and postnatal rat brain, respectively (Jaworski and 

Fager, 2000). TIMP-3 expression coincides with areas of neurogenesis, such as along 

the rostral migratory stream (RMS) to the olfactory bulb, where it is expressed by 

astrocytes (Jaworski and Fager, 2000). In addition, an abundance of TIMP-3 mRNA in 

neocortical endothelial cells was also observed (Jaworski and Fager, 2000). TIMP-3 

expression has been described in Purkinje cell somata and processes in the adult rat 

cerebellum (Vaillant et al., 1999).

TIMP-3 has been shown to inhibit the inducible shedding of L-selectin from 

leukocytes (Borland et al., 1999) and VCAM-1 from cardiac endothelial cells through 

actions on ADAM-17 (Singh et al., 2005). The latter study also reported a down- 

regulation of TIMP-3 mRNA following simultaneous cytokine stimulation with TNF and 

IL-1 (3 (Singh et al., 2005). This is in agreement with Li and colleagues (1999) who 

previously demonstrated that protein and mRNA levels of TIMP-3 are down-regulated 

15 hours after TNF and IL-1 (3 simultaneous administration to cardiac cells, which could 

result in an equilibrium that is in favour of degradation of the ECM under inflammatory 

conditions. Bugno and colleagues (1999) also showed that administering TNF and IL- 

1(3 simultaneously almost completely blocked TIMP-3 expression in endothelial cells, 

and was down-regulated by TNF or IFN-y in astrocytes.

Mutations in the coding region of TIMP-3, that lead to alterations in the quantity 

of cysteine residues, have been found in Sorsby's fundus dystrophy (Weber et al., 

1994), which is a rare inherited degenerative disorder of the retina. Chong and 

colleagues (2003) showed there was a reduction in the mRNA expression of TIMP-3 in 

Sorsby retinal pigment epithelium cells. TIMP-3 also inhibits VEGF coordinated 

angiogenesis by hindering the association of VEGF to VEGF receptor-2 and thereby 

stopping downstream signalling, which would induce angiogenesis (Qi et al., 2003). 

Over expression of TIMP-3 results in a type II apoptotic pathway which is mediated via 

a Fas-associated death domain-dependent mechanism (Bond et al., 2002). It is thought 

that this inhibits shedding of death receptors (unidentified) by inhibiting MMPs that 

usually mediate the cleavage of death receptors and their ligands from cell surfaces
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(Wetzel et al., 2003). A positive cooperativity has been demonstrated between the 

extracellular region of ADAM-17 and the inhibitory domain of TIMP-3 (N-TIMP-3) (Wei 

et al., 2005) (Figure 1.13). Mutations such as amino acid substitutions or elongation of 

side chains, that prevent the interaction of the cysteine switch region with the catalytic 

zinc, proved to have insignificant effects upon the ADAM-17-TIMP-3 complex (Figure 

1.13), but interfered in the interaction of their matrix counterparts and TIMP-3. As such 

it was suggested that the mechanism of inhibition of ADAM-17 by TIMP-3 is possibly 

distinct from that of inhibiting MMPs (Wei et al., 2005).

1.5.7 ADAM-10

ADAM-10 (also known as MADM, mammalian disintegrin-metalloproteinase) shows a 

significant amount of sequence and structural homology to ADAM-17 (Black et al., 

1997; Rosendahl et al., 1997; Moss et al., 1997), and like ADAM-17 has also been 

studied for its ability to mediate ectodomain shedding of membrane-bound substrates. 

ADAM-10 is responsible for the constitutive shedding of a number of substrates which 

are also shed by ADAM-17, including fractalkine (Hundhausen et al., 2003) and APP 

(Allinson et al., 2004). ADAM-10 has been shown to mediate vascular permeability and 

transmigration of T-cells through HUVECs via vascular endothelial (VE)-cadherin 

proteolysis. Over expression of ADAM-10 in HUVECs, using a viral vector, resulted in 

the increased permeability for FITC-dextran of the endothelium (Schulz et al., 2008). 

ADAM-10 activity has been shown in vitro to be inhibited by TIMPs -1 and -3 (Amour et 

al., 2000). ADAM-10 is homologous to the neurogenic drosophila protein, kuzbanian 

(kuz), and is involved in neurogenesis itself via the shedding of various Notch ligands 

(Howard and Glynn, 1995; Rooke et al., 1996; Muraguchi et al., 2007). There has only 

been one study examining the expression of ADAM-10 in MS lesions (Kieseier et al., 

2003) and one in the EAE model of MS, the latter, however found that ADAM-10 was 

not dysregulated significantly at the mRNA level using quantitative real-time RT-PCR 

(qRT-PCR) and further investigation into this protein was not performed (Toft-Hansen 

et al., 2004). ADAM-10 has been found to be expressed by astrocytes in MS and in 

non-inflammatory CNS tissue as determined by immunohistochemistry. In chronic- 

active MS lesions, ADAM-10 was also found to be expressed by a few perivascular 

macrophages (Kieseier et al., 2003). ADAM-10 has been shown to be able to degrade 

MBP in vitro (Howard and Glynn, 1995; Amour et al., 2000), however its exact role in 

the pathogenesis of MS is not yet known.
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Tyr369

P ro33 ,

Lys76

Figure 1.13: Stereo front view of the catalytic domain of ADAM-17-N-TIMP-3 

complex. Green ribbon, catalytic domain of ADAM-17; purple sphere, catalytic site; 

orange ribbon, N-TIMP-3 domain. (Reproduced with permission from Elsevier from 

Wisniewska et al., 2008).
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1.5.8 ADAM-17 and disease

ADAM-17 has been implicated in diseases both as a detrimental and/or protective 

influence. In ulcerative colitis, functional ADAM-17 activity is increased, particularly in 

patients with clinically active disease (Brynskov et al., 2002). Patients were classed as 

being clinically active based upon the number of bowel movements per day, and/or the 

presence of pus or blood in the stool, with or without systemic symptoms such as 

weight loss or fever (Langholz, et al 1994). This increase in ADAM-17 activity has also 

been shown to increase TNF and iNOS in the animal model of inflammatory bowel 

disease (IBD). The increase of both these factors (TNF and iNOS) coincides with 

colonic damage, which can be ameliorated by B-1101, a preferred ADAM-17 inhibitor 

(Cofon et al., 2001). Prostatic cancer cell lines show an inverse expression of ADAM- 

17 and its natural inhibitor, TIMP-3, whereby the former is up-regulated and the latter 

was not detected at all (Karan et al., 2003).

ADAM-17's protective role is seen in the brain in ischemic preconditioning (IPC) 

experiments whereby protein expression is increased after IPC which coincides with a 

reduction in infarct volume that is inhibited by B-1101 or anti-TNF-a (Cardenas et al., 

2002). It has been shown that this neuroprotection is provided by shedding of TNF-a 

(Cardenas et al., 2002) which activates NF-kB, which in-turn could increase the 

expression of anti-apoptotic proteins such as Bcl-2 or decrease the activation of pro- 

apoptotic caspase-3. It has been subsequently shown by the same group that the up- 

regulation of TNF-a in IPC also induces the up-regulation of glutamate uptake and 

glutamate transporters in vitro (Romera et al., 2004). The high concentrations of 

glutamate released in cerebral infarction that usually lead to excitotoxic cell death (Choi 

and Rothman, 1990; Castillo et al., 1996) are therefore "mopped-up" during this 

process. This up-regulation of TNF-a is partially mediated by ADAM-17 and is thus 

credited with this neuroprotective mechanism in cortical neurons (Romera et al., 2004). 

In contrast Wang and colleagues (2004) found that inhibiting ADAM-17 with the novel 

inhibitor, DPFI-067517, actually provided a neuroprotective effect that reduced infarct 

size and neurological deficits and was credited to the reduced expression of soluble 

TNF-a in the rat brain. Flowever, the latter study used different inhibitors and different 

models to induce stroke from the former two studies and thus this could account for the 

discrepancy in results.

There have been numerous studies investigating the involvement of ADAM-17 

in the proteolytic processing of APP. ADAM-17 has been identified as one of the 

metalloproteinases responsible for APP's cleavage along the a-pathway and is 

therefore classed as an a-secretase (Slack et al., 2001; Allinson et al., 2004; for review 

see Kojro and Fahrenholz, 2005). ADAM-17 has been shown to play a minor role in 

APP shedding in SFFSY5Y (neuroblastoma cells) and HeLa cells (cervical cancer cells),
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whereas ADAM-10 is thought to be responsible for the constitutive shedding of APP. 

When ADAM-17 and ADAM-10 were independently reduced, with antisense 

oligonucleotides, APP shedding was reduced by 30% and 60%, respectively (Allinson 

et al., 2004). It has been shown that a-secretase APP cleavage occurs in the trans- 

Golgi network and that both ADAM-17 and -10 compete with (3-secretase (BACE, the 

enzyme responsible for the amyloidgenic pathway) for cleavage of APP (Skovronsky et 

al., 2000; 2001). Alzheimer's diseased brains show ADAM-17 expression in close 

proximity to amyloid plaques. However, normal brains show no significant up- or down- 

regulation of ADAM-17 expression in comparison to AD brains as might be expected if 

it is involved in the pathological processes of AD (Skovronsky et al., 2001).

1.5.9 ADAM-17 and MS

Despite the fact that ADAM-17 was first described as the major protease for cellular 

release of TNF-a in 1997 (Black et al., 1997) and, that TNF-a is a major 

immunomodulatory and pro-inflammatory cytokine, having a pathogenic role in a 

variety of CNS inflammatory diseases, including MS (Brosnan et al., 1988; Cimini et al., 

2003; Raine, 1995) there are few studies on the role of ADAM-17 in the pathogenesis 

of MS. The studies that have been reported have certain disparities in terms of the 

cellular localisation of ADAM-17, but they all report the expression of this protein in MS. 

ADAM17 mRNA has been found to be up-regulated in PBMCs in the blood of RRMS 

patients, which preceded the disruption of the BBB as assessed by MRI (Seifert et al.,

2002). Eleven RRMS patients were used in this study and it was found that patients 

that were positive for ADAM-17 mRNA in PBMCs had significantly higher mean 

numbers of lesions one month after sampling the cells (Seifert et al., 2002). More 

recently Comabella and colleagues (2006) investigated the protein expression of 

ADAM-17 in PBMCs of patients with different clinical subtypes of MS. No distinct trend 

of ADAM-17 expression was identified between PPMS, SPMS or RRMS patients 

(PPMS=20, SPMS=20 and RRMS=40). The main findings included a down-regulation 

of the enzyme in healthy controls and PPMS patients in comparison to patients with 

SPMS, and RRMS patients who were in clinical remission. Interestingly no significant 

differential expression of the protease was witnessed between RRMS patients who 

were in relapse (n = 20) compared to those who were in remission (n = 20) (Comabella 

et al., 2006).

T lymphocytes have been reported to be the primary producers of the enzyme 

in acute and chronic active MS plaques at post-mortem (n = 7) as detected by 

immunohistochemistry. ADAM-17 was also detected in the CSF of MS patients (n = 10), 

but not in NIND controls (n = 5) (Kieseier et al., 2003) by western blotting. Conversely, 

immunoreactivity for ADAM-17 was found to be associated with blood vessel
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endothelium, activated macrophages/microglia and parenchymal astrocytes in MS 

white matter (n = 19) by Plumb et al. (2006). The disparity in results between Kieseier 

et al (2003) and Plumb et al. (2006) has been discussed by Plumb and colleagues 

(2006) to be due to the use of different tissue fixation methods and the antibodies used 

to detect ADAM-17. Plumb et al. (2006) also showed an increase in the levels of 

ADAM-17 immunoreactivity in active lesions of patients with MS, which was associated 

with recent myelin breakdown as proven by the presence of lipid-laden activated 

macrophages (Plumb et al., 2006). The latter group also found ADAM-17 expression in 

endothelial cells in the naive and pre-diseased spinal cords of rats with EAE, which 

extends to astrocytes and macrophages during the peak and recovery phases of the 

disease (Plumb et al., 2005). TIMP-3 was down regulated in the latter model (Plumb et 

al., 2005).

1.6 Hypothesis

The increased expression ratio of ADAM-17 to its inhibitor, TIMP-3, in MS favours 

shedding of membrane bound proteins which could be beneficial or detrimental to the 

disease (Figure 1.14).

1.7 Aims of this thesis

The overall aim of this thesis is to elucidate the role of ADAM-17 in MS pathogensis, in 

particular ADAM-17s relationship with its inhibitor and proteins shed by the protease in 

an in vitro model of the BBB. This work will be expanded to determine the expression 

levels of ADAM-17 and its substrates in post-mortem human MS CNS tissue to see 

whether the expression levels witnessed in vitro replicate the in vivo situation. This will 

be determined by carrying out the following:

(i) Optimise culture conditions for the human brain endothelial cell line, 

hCMEC/D3.

(ii) Determine the expression levels of ADAM-17 and counterparts by 

hCMEC/D3 under control and inflammatory conditions.

(iii) Develop a method to knockdown ADAM-17 using small interfering RNA 

(siRNA) and to assess the functional effects this will have.

(iv) Determine the in vivo expression of ADAM-17 and fractalkine in control and 

MS CNS tissue by immunohistochemistry in relation to markers of inflammation 

and demyelination.

52



iii.
 T

he
 

A
D

A
M

-1
7/

TI
M

P-
3 

ex
pr

es
si

on
 

ra
tio

 
fa

vo
ur

s 
sh

ed
di

ng
 

of 
pr

ot
ei

ns
 

un
de

r 
the

 
in

fla
m

m
at

or
y 

co
nd

iti
on

s 
of 

M
S

■Q
O
O
s

□
□ □

□

□
□

I  □W
(0
<D
CL
Xa>
■a £
<D *7
(0 5
s <
o g  
c <

  4 -
o

CO

o

E
3

~Q)
.C+■»
O
~o
c
LU

CO
CO
CDt_
Q.
XQ)

TO
0
CO
0
CD
s—Oc

® o
^  CO 
CO (D

t r
Q .
X  
CD

TO 
0 
CO 
CO 
CD
o 
CD 

TO

CO 
C

co .2
TOc
oo

o
0
E
E
CO

TO
CD

<Q<
c 
o
CO 
CO 
CDI—
Cl 
X  
CD

TO 
CD 
CO 
CO 
CD

2 1  — h-
<0
COa>c
CDO)O
CO
Q.

C/3

<
a<

TJ
0
COOao

0L_
3O)

TO
0
£
0
CO
_QO
0L_
0

_co
0>
0

30 
.a1
0
c
CO
_Q
E
0
E

03C
TO
TO
0

± 3  CO

0 |
= 1 =5 39

0

0

CO

c  
o
CO 
CO
0 !_ 
Q. 
X  
0

TO 
0 
CO 
0 
0 L—c o

—  CD 
h- Q

co
0L_
03
O ’
CO
c
0

3
COc
0
o
I—
CL

03_c
TO
TO
0

JC
CO
COL_3
o>
0<*—
o

L—' 
0 i_
C
o
CO
CO
0l_
CL
X
0

COLU 
<
LU
TO c 
0 
L—
0

0 
E 
0

§ \—
C/3 :=

<
a
<
0

LU
<
LU

TO
0
£
0
CO

JDO
c
0
0

JO

03

E
COI
CL

0>
0

TO
0
CO
0
0i_
o
0

TO

TO
C
0

<Q<
0>

_0

TO
0
CO
0
0i_
o

c
0

0

CO
0
03
033
CO

o
Cl

co3o
’>
0i_
Cl

0

CO

0
03c
0

c
0
0I—
03

<□<
CO
0
0I—

H—'
CO

-O
3
CO

53



Chapter 2
Optimisation of cell culture conditions for the human adult brain endothelial cell line, 

hCMEC/D3.



2.1 Introduction

2.1.1 In vitro models of the BBB

Various parameters distinguish the endothelial cells that constitute the BBB from those 

that make up the other blood vessel walls within the periphery. The two most important 

factors include the presence of TJs, which confer an extremely high electrical 

resistance (Butt et al., 1990), and a slow rate of fluid-phase endocytosis (Rubin et al., 

1991). These have the overall effect of limiting paracellular and transcellular movement, 

respectively.

One of the major interests of BBB biology is understanding the regulation of 

BBB permeability. This is for several reasons: firstly, the development of candidate 

therapeutics that are able to cross the BBB freely. Secondly, understanding the 

mechanisms of undesired cell-trafficking into the brain in conditions, such as MS, HIV, 

and metastatic cancer, so that they can be manipulated In vivo. Thirdly, understanding 

neurological disorders which involve a compromised BBB, such as vasogenic brain 

oedema and MS (Rubin et al., 1991). Recapitulating the BBB in vitro must thus involve 

reproducing the structural and functional properties of the BBB in situ. As such, various 

attempts have been made to establish an in vitro model of the BBB. These have 

included the use of brain endothelial cells from various animal species, including rodent, 

porcine, and bovine (Rubin et al., 1991; Gaillard et al., 2001; Bzowska et al., 2004), as 

human brain endothelial cells are difficult to obtain due to ethical issues and post­

mortem delay. Studies that do use human tissue usually involve the use of endothelial 

cells from various sources including, the umbilical vein (HUVEC), appendix, aorta and 

lymph node (Chapman et al., 2000; Ancuta et al., 2003; Harkness et al., 2003; 

Bzowska et al, 2004; Brueckmann et al., 2006). Some studies do involve the use of 

human brain microvascular endothelial cells (HBMEC) prepared as primary cultures 

from patients (Cucullo et al., 2007), however, this type of cell culture can sometimes 

contain contaminant cell types and is not always reproducible.

Highlighting the importance of establishing a suitable in vitro model of the BBB, 

from an appropriate vascular bed, are various studies that have examined protein 

expression by different endothelial sources. The chemokine expression profile of 

endothelial cells has been shown to be tissue specific. This has been demonstrated by 

the Male group at The Open University who studied chemokine, chemokine receptor 

and adhesion molecule expression in primary HUVECs, lung, dermal, saphenous (leg 

vein) endothelial cells and a bone-marrow cell line (Hillyer et al., 2003). All cells 

expressed different chemokines and chemokine receptors, and did so at a stereotypical 

level for the endothelial type studied. However, the adhesion molecules that were 

examined showed inter-individual variability in their expression profiles, highlighting 

that some of the variability in expression in primary cells is due to the different donors
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and not typical of the cell source (Hillyer et al., 2003). In a recent study by the 

Ransohoff group, who investigated certain properties of an immortalised human brain 

microvascular endothelial cell line (THBMEC) in comparison to HUVECs, demonstrated 

the following: HUVECs show a punctate pattern of ZO-1 expression at cell contacts 

only, whereas THBMECs showed continuous occludin and ZO-1 expression; 

THBMECs also had a significantly higher TEER and lower solute permeability than 

their umbilical counterparts; THBMECs utilise the chemokine, CCL5, to facilitate T 

lymphocyte migration, whereas HUVECs did not (Man et al., 2008). In addition other 

groups have also described differences in behaviour concerning barrier function and 

responsiveness to TNF application in endothelial cells dependent upon their derivation, 

i.e. aortic versus brain endothelial cells, whereby brain endothelial cells are more 

responsive to TNF, and aortic to IL-1(3 and IFN-y (Harkness et al., 2003). In this 

present study a novel human brain endothelial cell line called hCMEC/D3 was used as 

a model of the BBB.

2.7.2 hCMEC/D3 cells as an In vitro model o f the BBB

The human brain endothelial cell line, hCMEC/D3 (Fig. 2.1), was developed by Weksler 

and colleagues (2005). Preconfluent primary brain endothelial cells in passage 0 were 

infected with a lentivirus. The cell line hCMEC/D3 was selected from one clonal 

population. hCMEC/D3 maintained a non-transformed phenotype, with no signs of 

senescence or de-differentiation, a normal diploid karyotype and the ability to form 

capillary-like cords on Matrigel (reconstituted extracellular matrix) for more than 100 

population doublings (33 passages). This cell line shows a number of phenotypic 

characteristics of endothelial and/or BBB cells including:

1. Formation of a tightly packed monolayer of elongated cells (Fig. 2.1);

2. Expression of a number of TJ proteins, including PECAM-1, VE-cadherin, |3- 

and y-catenins, ZO-1, JAM-A, and claudin-5;

3. Expression of a number of adhesion molecules and chemokine receptors 

either under basal conditions or after treatment with the pro-inflammatory 

cytokines IFN-y and TNF-a, including ICAM-1, ICAM-2, PECAM-1, and CD40;

4. Expression and functionality of various multidrug resistant proteins 

belonging to the ATP binding cassette (ABC) transporter family, including 

MDR1 (multidrug resistance 1 or P-glycoprotein), MRP1 (multidrug 

resistance associated protein), and BCRP (breast cancer resistance 

protein);

5. Greater restriction properties than other endothelial cell culture models of the 

BBB, including primary bovine brain endothelial cells and rat brain endothelial 

cell line, GPNT.
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This cell line recapitulates most of the unique properties of the BBB, despite the 

absence of coculturing with glial cells. It is the first example of an extensively 

characterised human brain endothelial cell line (Weksleret al., 2005).

2.1.3 Aims of the study

The aims of this study were to develop a suitable cell culture system for the human 

brain endothelial cell line, hCMEC/D3, which could be used to study gene expression 

of this cell line, under inflammatory conditions in subsequent experiments. This 

involved the identification of a suitable housekeeping gene and also determining 

whether growth factors in the media used to culture the cells could interfere with the 

expression of the genes of interest.
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Figure 2.1: Human adult brain endothelial cell line, hCMEC/D3, in culture. The

cells have an elongated shape and form a tight monolayer when confluent. 

Magnification x100.
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2.2 Materials and methods

2.2.1 Suppliers used in this chapter

Applied Biosystems, Lingley House, 120 Birchwood Boulevard, Warrington, WA3 

7QH, UK; Greiner Bio-One Ltd, Brunei Way, Stroudwater Business Park, Stonehouse, 

GL10 3SX, UK; Invitrogen, 3 Fountain Drive, Inchinnan Business Park, Paisley, PA4 

9RF, UK; Lonza, Muenchensteinerstrasser 38, CH - 4002, Basel, Switzerland; 

PeproTech EC Ltd, PeproTech House, 29 Margravine Rd., London, W6 8LL, UK; 

Roche Diagnostics Ltd, Bell Lane, Lewes, East Sussex, BN7 1LG, UK; Sigma- 

Aldrich, The Old Brickyard, New Rd., Gillingham, Dorset, SP8 4XT, UK; VWR 

International, Hunter Boulevard, Magna Park, Lutterworth, Leicestershire, LE17 4XN.

2.2.2 Semi-quantitative real-time reverse transcriptase-polymerase chain reaction 

(qRT-PCR)

2.2.2.1 RT-PCR

This technique allows the reverse transcription of RNA to DNA using an enzyme called 

reverse transcriptase (RT). Using random primers which anneal to the 3' end of a 

single strand of mRNA, the enzyme elongates the sequence using deoxynucleotide 

triphosphates (dNTPs) to produce a complementary DNA (cDNA) sequence. This is 

based upon RNA bases (A, U, G, C) pairing with their DNA counterparts (T, A, C, G). In 

terms of RT-PCR this can be described as the first step or the "first strand reaction".

PCR is a method which permits the amplification of DNA exponentially. Each 

cycle of the reaction causes exponential growth of the DNA product so that 2 DNA 

copies produce 4, which then produce 8, which then produce 16 etc. The DNA 

fragment that is amplified is dependent upon the primers used. Primers are short 

synthetic oligonucleotide strands that anneal to their complementary target DNA. 

Primers are designed to sit at the 3' and 5' ends of a specific DNA sequence, which 

when synthesised will be approximately 100 bases in length. This is termed the 

amplicon. The primers are thus called the forward and reverse primer. The DNA is 

heated to 95°C to break the hydrogen bonds and separate the DNA alpha-helix. The 

temperature is then reduced (to approximately 60°C) to allow annealing of the primers 

and a thermostable DNA polymerase to the DNA. The first heat-stable enzyme to be 

discovered to withstand PCR conditions was Taq polymerase and was first isolated 

from the bacterium Thermus aquaticus (hence the name Taq). Approximately 40 cycles 

of melting (heating) and cooling (annealing) allow millions of copies of the target DNA 

to be synthesised. This stage of the RT-PCR reaction can be described as the second 

step or "second strand reaction" (http://pathmicro.med.sc.edu/pcr/realtime-home.htm).

59

http://pathmicro.med.sc.edu/pcr/realtime-home.htm


2.2.2.2 Semi-quantitative real-time RT-PCR (qRT-PCR)

Real-time RT-PCR allows the quantification of mRNA in biological samples by 

analysing the kinetics of the PCR experiment. Whereas traditional PCR analyses the 

end-point of the reaction on an agarose gel. End-point PCR relies upon band size 

descrimination and due to the insensitivity of the ethidium bromide stain, that is used to 

visualise the DNA product, it is difficult to discern any differences that may be present. 

Real-time RT-PCR allows the quantification of PCR products based upon fluorescence 

emitted at every cycle of the reaction for each biological sample. However, in order to 

collect comparative values between samples it is important to take readings at the 

exponential phase of amplification of the DNA product for each sample. This is the 

most reproducible phase of the reaction. However, the abundance or rarity of the target 

will determine at which point readings are taken. This threshold, where all samples 

fluorescence intensity crosses, is called the threshold cycle or Ct value, and can be 

analysed in various mathematical equations to extrapolate the relative mRNA levels 

between the samples

(http://www3.appliedbiosystems.com/cms/qroups/mcb marketinq/documents/generald 

ocuments/cms 042484.pdf).

2.2.2.3 Controls for RT-PCR

When performing reverse transcription of RNA, two controls should be used. A "no 

template control" (NTC) should be performed, where RNAse-free water is substituted 

for RNA to rule-out cross contamination of reagents and surfaces with RNA. Also, a "no 

amplification control" (NAC) should be performed, which involves substituting the 

reverse transcriptase enzyme with RNAse-free water. This is to ensure there is no 

contamination of the sample with the final product 

(http://www.ambion.com/techlib/tn/102/17.html).

2.2.2.4 Primers

Primers are designed to be the reverse complement of a section of DNA, which will 

allow DNA polymerase binding and initiate DNA synthesis. When designing primers it 

is important to consider the sequence composition of the primers for the following 

reasons. The melting temperature (Tm) is the temperature below which primers 

associate with the template DNA and above which they disassociate from the template 

DNA. Primers should be between 18-25 bases, as the Tm increases with primer size. 

The primers should also not be too GC rich, but contain 40-60% G and C bases as this 

will also increase the Tm. To prevent primer dimers from forming, 3' ends should not be 

complementary. Primer self-complementary sequences should not reside in the 

oligonucleotide as these form secondary structures, such as hairpins. The 3' ends of
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the primers should also not contain runs of 3 or more G or C bases as this may result 

in mispriming and the wrong section of DNA being synthesised. The primers should be 

designed so that the amplicon crosses an exon-exon boundary, thus ensuring only 

DNA transcribed from mRNA is amplified. Thus, preventing any amplification of 

contaminating genomic DNA

(http://www.premierbiosoft.com/tech notes/PCR Primer Desiqn.html).

2.2.2.5 Taq Man probes

In addition to using forward and reverse primers to initiate DNA polymerase binding, 

TaqMan also utilises another oligonucleotide that binds an internal region of the 

amplicon between the forward and reverse primer (Fig 2.2). At the 5' end of the internal 

oligonucleotide a fluorescent reporter dye is attached and at the 3' end a quencher 

moiety. The proximity of these two molecules in the unhybridised state prevents 

fluorescence emission through a phenomenon known as Forster Resonance Energy 

Transfer (FRET). When PCR begins, and DNA polymerase binds the target amplicon 

on which there is a TaqMan probe bound, the 5' to 3' nuclease activity of the enzyme 

hydrolyses the probe. This results in the decoupling of the reporter and quencher and 

abolishing FRET. Thus, cleavage of the probe is directly proportional to the amount of 

fluorescence emitted, which increases with each cycle. There are many advantages to 

using the TaqMan system. Firstly, the use of three hybridization probes (forward and 

reverse primers, and internal oligonucleotide) instead of only two (forward and reverse 

primers) abolishes amplification of ambiguous DNA sequences. Secondly, if there are 

any primer-dimers in the system these will not result in the emission of false 

fluorescence as the TaqMan probe cannot bind 

(http://www.ambion.com/techlib/basics/rtpcr/index.html).

2.2.2.6 Endogenous control (housekeeping genes)

An endogenous control is required to act as a reference to normalise quantitation of a 

cDNA target for the amount of cDNA added to each reaction. Housekeeping genes are 

used as they are constitutively expressed and normally show little variability under 

most experimental conditions. Traditionally (3-actin, glyceraldehyde-3-phosphate 

(GAPDH) and ribosomal RNA (rRNA) are used as endogenous controls because they 

show relatively stable expression (Mullis and Faloona, 1987). However, many 

housekeeping genes have been shown to be more abundantly expressed than others, 

e.g. (3-actin and 18 Svedberg Units (S) rRNA (18S rRNA), or show altered expression 

in certain diseases, e.g. GAPDH under hypoxic conditions (Zhong and Simons, 1999).
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Step 1: Hybridisation
MGB

forward ^

Step 2: Polymerisation

5'
3;

reverse 5

Step 3: Displacement 

and cleavage ®L

Step 4: Fluorescence

Figure 2.2: TaqMan chemistry. Taqman chemistry, unlike conventional PCR, uses 

three hybridization probes: a forward primer, a reverse primer, and a minor groove 

binding (MGB) probe (Step 1). During polymerization, DNA polymerase (horizontal 

black arrow) synthesises the complementary strand of DNA (cDNA) (Step 2). As 5' to 3' 

nuclease activity of the enzyme continues along the DNA strand, the probe is displaced 

(strand displacement) and cleaved (cleavage) (Step 3). This results in the reporter 

(green) becoming detached from the quencher (red) and fluorescence being emitted 

and polymerization is completed (Step 4) (Adapted with permission from 

http://www3.appliedbiosystems.com/cms/qroups/mcb marketinq/documents/qeneraldo 

cuments/cms 042484.pdf).
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2.2.3 Cell culture conditions

2.2.3.1 Collagen coating

Collagen type I from rat tail (3.41 mg/ml) (VWR, U.K.) was used to coat plasticware for 

culturing hCMEC/D3. The solution was prepared by diluting the collagen 1:30 in 

autoclaved distilled H20  (dH20 ) and then filtering through a 0.2pm filter. This was done 

as previous culturing experiments had encountered contamination problems. Enough 

collagen solution was then placed on the plasticware to cover the bottom of the plate or 

flask. After 1 hour incubation at 37°C the solution was removed and the plasticware 

ready for direct seeding of cells.

2.2.3.2 General cell culture conditions

The human adult brain endothelial cell line, hCMEC/D3 (Weksler et al., 2005), was 

cultured on collagen type I from rat tail in EGM™-2 endothelial cell medium-2 basal 

media supplemented with hydrocortisone (1x10"4pl/ml), EGF vascular, gentamycin, 

ascorbic acid, human EGF, long R insulin-GF, heparin (all 2.5x10~4pl/ml), human FGF- 

(3 (1pl/ml) (Lonza, U.K.), penicillin (50units/ml) and streptomycin (50pg/ml) (Invitrogen, 

U.K.), and 2% heat inactivated foetal calf serum (HI FCS) (Invitrogen, U.K.). Exact 

concentrations of the supplements used in the media are unknown as EGM™-2 

endothelial cell medium-2 basal media and supplements is a commercial product of 

Lonza, U.K. Supplements were added at a concentration recommended by Dr. Ignacio 

Romero (Open University, Milton Keynes). The cells were maintained at 37°C with 5% 

C 0 2/95% air in a humidified environment. Media was replaced every 2-3 days until 

confluence was reached. Cells were subcultured using 0.5% trypsin and 0.2% EDTA 

(Sigma-Aldrich, U.K.).

2.2.3.3 Culture conditions for testing stability o f housekeeping genes

For qRT-PCR, cells were seeded in complete media at 1x105/500pl/well of a 24 well 

plate. After 24 hours the media was aspirated, cells washed with calcium and 

magnesium free-phosphate buffered saline (PBS, Invitrogen, U.K.), and fresh serum- 

free media containing 1, 10 or 100ng/ml TNF, IL-1|3, IFN-y orTGF-(31 (PeproTech, U.K.) 

was added. The cytokines were prepared according to the company that supplied them 

and stored at various stock solutions (TNF at 100gg/ml; IL-1(3 at 100pg/ml; IFN-y at 

100pg/ml and TGF-[31 at 50pg/ml). Serum-free media, without cytokine, was used as a 

control. Each condition was represented in triplicate and the experiments were 

repeated three times. After 24 hours of cytokine treatment, the cells were washed twice 

with PBS and RNA was extracted using TRI Reagent (Sigma-Aldrich, U.K.) following 

the manufacturer's guidelines (see section 2.2.3.1). (3-actin, GAPDH and cyclophilin A
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housekeeping genes were tested for their stability under the experimental conditions 

used later (see Chapter 3).

2.2.3.4 Culture conditions to test the effects o f growth factors

1x105cells/ml/well were seeded in 24 well plates in complete media containing FCS. 

After culturing for 24 hours, the media was aspirated and the cells washed twice with 

PBS. The media was replaced with either complete media or media containing all 

factors except VEGF and EGF, or heparin. In both instances FCS was absent. After 24 

hours, the cells were washed twice and mRNA was extracted using TRI Reagent 

(Sigma-Aldrich, U.K.) according to the manufacturer's guidelines. The experiment was 

carried out in triplicate and repeated three times.

2.2.4 RNA extraction and validation

2.2.4.1 RNA extraction

TRI® Reagent is a phenol-based homogenous solution used to isolate RNA, protein 

and DNA. The reagent contains a number of denaturants and RNase inhibitors. RNA 

was extracted according to the manufacturer’s guideline (Sigma-Aldrich, UK). Briefly, 

approximately 1ml of TRI Reagent per 10cm2 of the cell culture dish was added, the 

cell lysate passed through a 1ml pipette (Gilson) several times and allowed to stand at 

RT for 5 minutes. 0.2ml of chloroform per ml of TRI Reagent was then added, mixed, 

allowed to incubate at RT for approximately 10 minutes and then centrifuged at 12,000 

x g for 15 minutes at 4°C to facilitate the separation into the three organic phases. The 

colourless RNA phase was then transferred to a clean tube and 0.5ml of isopropanol 

per 1ml of TRI Reagent was added, mixed, incubated at RT for 7 minutes, and then 

centrifuged at 12, 000 x g for 10 minutes at 4°C. The supernatant was removed and the 

RNA pellet washed by adding 1ml of 75% ethanol/ml of TRI Reagent used in the initial 

sample preparation, vortexed and centrifuged at 7,500 x g for 5 minutes at 4°C. The 

pellet was then air-dried for 5-10 minutes, 10-20pl RNase-free water added and the 

sample stored at -80°C.

2.2.4.2 Native agarose gel electrophoresis o f RNA

In order to test the quality of the RNA extracted from the cells, RNA can be run on a 

native agarose gel and the 28S and 18S bands examined. The 28S rRNA band should 

be twice as bright as the 18S rRNA. A 2:1 (28S:18S) ratio of the RNA is a good 

indication that the RNA is intact

(http://www.ambion.com/techlib/append/supp/rna qel.html).

To form the agarose gel, 0.5g of agarose (Bioline, U.K.) was dissolved in 50ml 

TBE buffer (Tris base, boric acid, and EDTA) (89 mM Tris-HCI pH 7.8, 89 mM borate,
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2 mM EDTA) with 0.5|jl of ethidium bromide (10mg/ml) (Sigma-Aldrich, U.K.). Loading 

dye (Bioline, U.K.) was diluted 1:1 with each RNA sample and 2pl of the sample loaded 

onto the gel. Using TBE as the buffer, the gel was run at 100V for 30min. Serial images 

were captured using a UVP epi II dark room and using Labworks version 4.0.

2.2.5 Method

2.2.5.1 cDNA synthesis

1pl of RNA was reverse transcribed to cDNA using the following reagents: 4pl of 5x 

first strand buffer, 2pl of 1,6-dithiothreitol (DTT), 1pl deoxynucleotide triphosphates 

(dNTP), 0.5pl of RNase inhibitor, 0.5pl of random hexamers (A, T, G, C), 1pl 

Superscript II (all Invitrogen, UK) and 9pl of RNase and DNase free water (Sigma- 

Aldrich, UK). As controls, to ensure there was no genomic DNA or RNA contamination 

of the reagents, negative controls were also included with RNA or superscript II absent. 

15pl of mineral oil (Sigma-Aldrich, UK) was pipetted over the samples to create a layer 

that would prevent evaporation in the heating step. Samples were heated for 1 hour at 

42°C, followed by a step to heat inactivate the enzyme at 95°C for 5 minutes. Samples 

were then diluted with 10pl of water and stored at -20°C until analysis by qRT-PCR 

was performed.

2.2.5.2 qRT-PCR

Using the fluorescent TaqMan 5' nuclease assay (Applied Biosystems, U.K.) each 

cDNA sample was analyzed for expression of ADAM-17, TIMP-3, TNFR1, TNFR2, 

fractalkine, von Willebrand Factor (vWF), (3-actin, cyclophilin A and GAPDH by qRT- 

PCR. ADAM-17, TIMP-3 and substrates of the enzyme (TNFR1, TNFR2 and fractalkine) 

were studied here to determine whether their expression levels were affected by the 

culture conditions as their relationship to one another was to be studied in the following 

chapter (Chapter 3). vWF was studied as a phenotypic marker for endothelial cells. 

Each 10pl reaction consisted of 2x TaqMan Universal PCR Master Mix (Applied 

Biosystems, U.K.), 3.6pM for each primer, 1pM for the FAM labelled probe and 1pl of 

template cDNA. Each primer and probe set was designed by Applied Biosystems (U.K.) 

and selected on the basis that they crossed an exon-exon boundary, to prevent any 

amplification of contaminating genomic DNA. To ensure there was no genomic DNA or 

RNA contamination, negative controls were run in parallel without either superscript II 

or RNA. Reactions were carried out in a 384-well reaction plate (Greiner Bio-One, U.K.) 

using the Applied Biosystems 7900HT fast real-time PCR system (Applied Biosystems, 

U.K.). The thermal profile of the reaction was as follows: 50°C for 2 minutes, 95°C for 2 

minutes, and 40 cycles of denaturation at 95°C for 15 seconds and 

annealing/elongation at 60°C for 1 minute. The 2 minute heating step at 50°C, at the
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beginning of the process, is used to activate uracil-N-glycosylase (UNG), which will 

degrade any contaminating PCR product, containing uracil. At each stage of the 

process, emitted fluorescence was measured to later construct an amplification plot 

using ABI Prism 7900HT Sequence Detection System software version 2.2.1. Relative 

mRNA levels of the above genes were determined using the threshold cycle (CT) and 

the 2'ACt  method (Livak and Schmittgen, 2001). Where ACT is calculated using the 

following formulae: CT (target gene) - CT (Housekeeping gene) = ACT

2.2.5.3 Statistical analysis

qRT-PCR data was analysed using the non-parametric Mann Whitney U test. To carry 

out this test, 2'ACT for each sample was calculated to determine the relative gene 

expression. For housekeeping gene analysis the CT value was normalised to 

proliferation data and a Mann Whitney U test performed on the data. Each treated 

condition was then compared to the control. Statistical significance was set at p < 0.05 

and data are represented as mean ± SEM for the indicated number of experiments.

2.2.6 BrdU proliferation assay

Proliferation assays allow the assessment of cell numbers following cell division and to 

assess whether cytokines or growth factors influence cell proliferation. 5-Bromo-2'- 

deoxyuridine (BrdU) is a thymidine analogue which can be incorporated into the DNA 

of dividing cells instead of endogenous thymidine. Through the use of antibodies, and a 

DNA denaturing step, the BrdU can be detected in the cells that have proliferated and 

incorporated BrdU. This particular system relies upon the same methodology as an 

ELISA assay, whereby peroxidase linked to the anti-BrdU-POD (POD, peroxidase) 

reacts with the substrate 3,3',5,5'-tetramethylbenzidine (TMB) to create a colorimetric 

reaction (Roche).

2.2.6.1 Method

Using the Cell Proliferation ELISA BrdU kit (Roche, U.K.) cells were assessed for 

proliferation capacity under certain treatment regimes. Cells were seeded in complete 

media at 2x104cells/200pl/well of a 96-well plate (including growth factors and FCS). 

After 24 hours incubation, cells were washed twice with PBS and 200pl of the 

appropriate media, e.g. with test growth factors or cytokine, was added. Media without 

cells served as a blank control, which would be subjected to the complete BrdU 

procedure. The plate was incubated for a further 22 hours and then 10pM (20pl/well) of 

BrdU was added to each well. Following 2 hours incubation with BrdU, the media was 

removed and the plate dried at 60°C for 60 minutes. Cells were then fixed and 

denatured in a single step with 200pl/well of FixDenat and incubated at room
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temperature for 30 minutes. After removal of the FixDenat solution, 10Opil/well of the 

anti-BrdU-POD was added and left to bind for 90 minutes at room temperature. The 

antibody conjugate was then removed and the wells were rinsed 3 times with 

200pl/well of wash solution. Following the final wash, 10OjjI/well of substrate solution 

was added and left to develop for 30 minutes at room temperature. In order to stop the 

reaction, 25pl/well of sulphuric acid (2N H2S 0 4) was added and left for 1 minute before 

the absorbance was read at 450nm in a Wallac Victor2TM 1420 Multilabel Counter using 

Wallac 1420 software version 2.00 release 8. Absorbance values were calculated with 

the following formula: absorbance of test samples - blank control (culture medium + 

BrdU + anti-BrdU-POD).

2.2.6.2 Statistical analysis

Proliferation data was analysed using an unpaired student's t-test. Statistical 

significance was set at p <  0.05.
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2.3 Results

2.3.1 Optimising housekeeping genes

Of the 3 housekeeping genes tested only cyclophilin A and GAPDH could be detected 

by qRT-PCR technology. (3-actin was not found in any of the samples analysed. 

Following treatment with TNF, IL-1(3, IFN-y or TGF-(31 at 1, 10 or 100ng/ml both 

cyclophilin A and GAPDH fluctuated in comparison to their respective controls (Fig. 2.3 

A and B, respectively). Data was normalised to the proliferation response of 

hCMEC/D3 cells to the different cytokines and concentrations (Fig. 2.3 C). Both 

housekeeping genes responded similarly to the cytokine treatments with significant 

increases in expression after treatment with TNF at 10 and 100ng/ml, and IFN-y at 1, 

10 and 100ng/ml (p < 0.05) (Fig. 2.3.A and B). Both housekeeping genes showed a 

significant decrease in expression following treatment with TGF-(31 at 100ng/ml (p <

0.05) (Fig 2.3 A and B). Only cyclophilin A was down regulated at the mRNA level

when treated with IL-1 (3 at 1ng/ml (Fig. 2.3 A).

2.3.2 Testing the effects o f VEGF and EGF on mRNA expression

To determine whether VEGF and EGF influenced the expression levels of the genes of

interest, qRT-PCR was performed on hCMEC/D3 cells treated for 24 hours with media 

either +/- supplements. VEGF and EGF caused a decrease in the expression level of 

ADAM-17, which was significantly different from cells treated with media without these 

factors (p < 0.05) (Fig. 2.4 A). VEGF and EGF also caused a decrease in expression of 

TIMP-3, TNFR1 and TNFR2, however, none of these changes were significantly 

different from the cells not exposed to these factors (p > 0.05) (Fig 2.4 B-D). 

Fractalkine and vWF were up-regulated by the application of VEGF and EGF, but this 

increase was not significantly different from endothelial cells treated with media without 

VEGF and EGF (p > 0.05) (Fig 2.4 E and F, respectively).

2.3.3 Testing the effects o f heparin on mRNA expression

To determine whether heparin influenced the expression of the genes of interest, qRT- 

PCR was performed on hCMEC/D3 cells treated +/- heparin in the media for 24 hours. 

Removing heparin from the cell media caused a decrease in mRNA expression of all 

genes tested: ADAM-17, TIMP-3, TNFR1, TNFR2, fractalkine and vWF (Fig 2.5). This 

decrease in mRNA expression however, was only significantly different for TNFR1 in 

comparison to cells that had heparin in the cell culture media (p < 0.05) (Fig 2.5 C).

68



Cyclophilin A

JC

<°s

B
GAPDH

o 5- O)
re 4-szo
o 3* >
re 2- 
Cd

H nnfll Innnnnn I
[Cytokine]ng/ml [Cytokine] ng/ml

I TNF 
CZ3TGF-p1
□  IL-1P
□  IFN-y

c
1.400

-♦—TNF 
-a— IFN-y 

TGF-p1 
IL-1P

0.000
1 10 100 

[Cytokine]ng/ml
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Figure 2.4: Effects of VEGF and EGF on mRNA expression in hCMEC/D3 cells.

Relative mRNA expression of ADAM-17 (A), TIMP-3 (B), TNFR1 (C), TNFR2 (D), 

fractalkine (E) and von Willebrand Factor (vWF) (F) with either vascular endothelial 
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test. Data are presented as the mean (n = 3) ± SEM. Asterisk (*) denotes statistically 

significant differences (p < 0.05). Note the differences in scale.
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2.3.4 Testing the effects o f heparin on mRNA expression during treatment with IFN-y 

When endothelial cells were treated with IFN-y for 24 hours with heparin included in the 

cell culture media they showed lower mRNA expression levels for all genes tested 

except fractalkine compared to when they were treated with the cytokine without 

heparin in the cell culture media (Figure 2.6). This increase in gene expression without 

heparin occurred at all concentrations of IFN-y treatment. Fractalkine, however, 

showed a decrease in mRNA expression when treated with IFN-y at all concentrations 

when heparin was absent from the media (Figure 2.6 E). The increase in expression 

without heparin was significant (p < 0.05) for three of the genes tested: ADAM-17 at 

100ng/ml IFN-y, TNFR1 at 1 and 100ng/ml IFN-y, and TNFR2 at 1ng/ml IFN-y (Figure 

2.6 A, C and D, respectively).

2.3.5 The influence o f VEGF and EGF on cell proliferation

Cells treated with VEGF and EGF in the media had a significantly higher proliferation 

rate than cells treated with media lacking these components (p < 0.05) (n = 3). Cells 

treated with VEGF/EGF had an optical density (OD) of 1.35 (SEM ± 0.05) and cells 

lacking these supplements had an OD of 1.14 (SEM ± 0.04), suggesting these 

supplement are necessary for cell division.
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Figure 2.6: Effects of heparin on mRNA expression in hCMEC/D3 cells under 

interferon-Y (IFN-y) treatment. Relative mRNA expression of ADAM-17 (A), TIMP-3 

(B), TNFR1 (C), TNFR2 (D), fractalkine (E) and vWF (F) under IFN-y treatment with 

heparin (hatched bars) and without heparin (blank bars). Relative mRNA levels were 

calculated using the housekeeping gene, cyclophilin A, and the 2'ACT method, and 

using the non-parametric Mann Whitney U test. Data are presented as the mean (n = 3) 

± SEM. Asterisk (*) denotes statistically significant differences (p < 0.05). Note the 

differences in scale.
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2.4 Discussion

In standard PCR, up to eight housekeeping genes can be selected to test primer 

efficiency and stability under the various experimental conditions. The TaqMan system 

negates the need to test efficiency as the primers have already been optimised by the 

company (Applied Biosystems, U.K.). In this present study the stability of three 

housekeeping genes ((3-actin, cyclophilin A and GAPDH) was tested. (3-actin could not 

be detected in the cell line, hCMEC/D3. Other studies have also reported the lack of 

expression of (3-actin in newly isolated primary HUVECs and primary human placental 

microvascular endothelial cells (HPMEC) (Galustian et al., 1995). However, prolonged 

passage of immortalized human microvascular cell-line, HGTEN 21, and HPMEC, 

caused (3-actin to be expressed (Galustian et al., 1995). The cells used in this present 

study were used at high passages, between 27 and 33, but (3-actin could not be 

detected at any of these stages of the cell culture. It could be that the primer was faulty 

in some manner or that the cells contain a polymorphism for this gene which prevented 

annealing of the primer. Both cyclophilin A and GAPDH showed similar expression 

profiles under the various treatments in comparison to the control. Although there were 

some changes in expression of cyclophilin A and GAPDH under the different treatment 

regimes, these were minimal. The exception to this was the expression levels following 

treatment with 1ng/ml IFN-y, which caused a large increase in expression of both 

genes. After careful examination of this result it was decided that it was an anomaly, 

possibly due to an anomalous optical density reading in the BrdU assay. The increase 

in expression was observed in both genes, and only at 1ng/ml, not 10 or 100ng/ml. It is 

unlikely that IFN-y was having the same effect on both these unrelated genes. Thus 

Cyclophilin A was selected because it has been used in previous studies by a number 

of groups studying gene expression in a number of cell types, including endothelial 

cells, under various treatment regimes, e.g. VEGF (Gerritsen et al., 2003; Grenett et al., 

1999; Yang et al., 2002).

This part of the study was devised to determine whether various supplements 

could have an affect on ADAM-17, fractalkine and the other genes of interest mRNA 

expression in hCMEC/D3 cells. Previous studies have reported various effects due to 

the application of growth factors, which might mask the effects seen from applying 

cytokines (Majka et al., 2001; Bzowska et al., 2004; Hatakeyama et al., 2004). 

Culturing of endothelial cells requires a specific system consisting of many growth 

factors and supplements for their growth and maintenance. The particular endothelial 

cells used in these experiments required the addition of VEGF, EGF and heparin 

(Lonza, U.K.). In 2001, Majka et al. found that ADAM-17 and one of its ligands, TNFR1, 

were up-regulated at the mRNA level by VEGF at 10ng/ml, however, only ADAM-17 

was significantly up-regulated. In 2004, Bzowska et al. reported that ADAM-17 in
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endothelial cells (murine brain microvascular, and human appendix and lymph node) is 

up-regulated at both the transcriptional and translational level when stimulated with 

VEGF or EGF. In addition they reported that this up-regulation of ADAM-17 mRNA was 

increased when VEGF (at 30ng/ml) or EGF (at 25ng/ml) was combined with TNF-a 

(10ng/ml); highlighting the synergistic effects of the growth factors with the cytokine.

VEGF is a secreted homodimeric 45kD glycoprotein (Ferrara, 1995; Senger et 

al., 1993) whose receptors are exclusively expressed on endothelial cells (Pepper et al., 

1992; Goto et al., 1993). As well as stimulating endothelial cell growth, VEGF also 

increases the permeability of the microvasculature by disassembling tight junctions via 

reducing occludin expression and disrupting ZO-1 and occludin organisation (Ferrara, 

1995; Senger et al., 1993; Stephan and Brock, 1996; Thomas, 1996; Wang et al., 

2001). Here we have shown that VEGF and EGF modulate the mRNA expression of a 

number of proteins, however, only ADAM-17 was significantly altered in its expression. 

When treated with VEGF and EGF, ADAM-17 mRNA expression was significantly 

decreased (p < 0.05). This is contrary to other research groups who reported that upon 

VEGF or EGF treatment, ADAM-17 expression is increased at both the mRNA and 

protein level (Majka et al., 2001; Bzowska et al., 2004). However, these two studies did 

not determine the effects of both these growth factors administered at the same time, 

which could have a synergistic effect upon the expression of ADAM-17. This could 

account for the decrease in expression rather than the reported increase in expression 

of ADAM-17. In addition, it is not known at which concentration these factors are added 

to the growth media (company copyright laws). One vial of growth factor is 

recommended per bottle of media, however, the cells in this present study were 

cultured with a quarter of this amount. Private communication with the company (Lonza, 

UK) has confirmed that if the growth factors are added to the growth media at the 

recommended amount, the final concentration of VEGF would be around 10ng/ml and 

EGF would be less than 25ng/ml: both concentrations that elicit increased expression 

of ADAM-17 (Bzowska et al., 2004). Thus, as we used a quarter of the recommended 

amount the concentrations of VEGF and EGF were not sufficient to elicit increases in 

mRNA and protein expression of ADAM-17.

In addition, it has been shown that treatment of immortalised murine brain 

endothelial cells (MBE-SV) with TNF induces the secretion of VEGF from the cells; 

after 24 hours incubation with TNF the concentration of VEGF can reach 1ng/ml 

(Bzowska et al., 2004). Thus, it is impossible to exclude VEGF from the culture of 

endothelial cells when investigating the expression of genes under TNF treatment. 

Removal of VEGF and EGF from the media also caused a decrease in cell proliferation, 

thus to prevent this and to retain the phenotype of the cells these factors were kept in 

the media for subsequent experiments.
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It has been previously reported that IFN-y stimulates the expression of 

fractalkine in HUVEC endothelial cells (Imaizumi et al., 2000; 2004). However, in 2004 

it was found that this expression is inhibited in a concentration-dependent manner by 

heparin (Hatakeyama et al., 2004), which is believed to bind to IFN-y preventing it from 

interacting with its receptor. Heparin was administered at 4, 20 and 100pg/ml, however, 

the greatest concentration (100pg/ml) showed the most significant inhibitory effects. 

Heparin is an N-sulphated polysaccharide which is frequently used as an anticoagulant. 

In addition to this function, heparin and heparin-related molecules inhibit leukocyte- 

endothelial interactions by binding inflammatory proteins (Strunk and Colten, 1976; 

Matzner et al., 1984), chemokines (Miller and Krangel, 1992), and adhesion molecules 

(Skinner et al., 1991; Watt et al., 1993; Diamond et al., 1995; Koenig et al., 1998). 

These include the cytokines IL-1 (Ramsden and Rider, 1992) and IFN-y (Lortat-Jacob 

and Grimaud, 1992). The binding of heparin and heparan sulphate to IFN-y has been 

shown to result in reduced bioavailability and activity at the cell surface of this cytokine 

(Daubeneret al., 1995).

A dense layer of proteoglycans cover the luminal surface of the vascular 

endothelium, the main functional components of which are polyanionic GAGs. The 

most abundant endothelial GAG is heparan sulphate, which is structurally and 

biosynthetically related to heparin and chondroitin sulphate (Kjellen and Lindahl, 1991). 

Heparin has been shown to inhibit IFN-y-induced expression of fractalkine in HUVEC 

monolayers, but has no effect on the IL-1 (3-induced expression of fractalkine 

(Hatakeyama et al., 2004). Similarly, heparin reduces adhesion of blood mononuclear 

cells to IFN-y-stimulated HUVEC monolayers, but has no effect on the IL-1 (3-induced 

adhesion of mononuclear cells (Hatakeyama et al., 2004). Heparin prevents the action 

of IFN-y by either directly binding IFN-y, or by partially blocking the binding of IFN-y to 

its receptor, which in turn prevents downstream signalling via STAT1 (Hatakeyama et 

al., 2004). To determine whether heparin in the cell culture media could affect the 

expression levels of fractalkine and the other genes of interest induced by IFN-y 

treatment, the mRNA expression levels of the genes of interest either in the presence 

or absence of heparin were investigated. Heparin caused an increase in mRNA 

expression in the genes of interest in the endothelial cells in comparison to cells not 

treated with heparin. However, this increase in expression was only significantly 

different in TNFR1 mRNA expression (p < 0.05). Next, to determine whether heparin 

could interfere with IFN-y-induced mRNA expression levels, IFN-y was applied to cells 

with or without heparin in the media. For all genes, apart from fractalkine, the absence 

of heparin under IFN-y treatment caused an increase in mRNA expression, indicating 

that heparin could be interfering with the action of IFN-y on the cells, either by binding 

to the cytokine itself or by partially blocking the binding of IFN-y to its receptor
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(Hatakeyama et al., 2004). This increase in mRNA expression, however, was only 

significant in three of the genes studied. It is not known at what concentration heparin 

is used in the present system, however, personal communications with the company 

(Lonza, UK) that supplies the media and supplements has confirmed that the 

concentration of heparin is below 100pg/ml, the concentration that significantly reduced 

mononuclear cell adherence and abolished fractalkine mRNA expression under IFN-y 

treatment (Hatakeyama et al., 2004). A quarter of the recommended concentration 

supplied was used in this study and it is thus presumed that the final concentration in 

this system is greatly below that used by Hatakeyama and colleagues (2004). In 

conclusion, heparin itself increased mRNA expression levels of the genes of interest, 

however, during IFN-y treatment it reduced the effects of the cytokine. However, 

heparin's effect on the system was not significantly different for the majority of genes 

examined. Thus a greater increase in the expression levels of the genes of interest 

may be observed had heparin been removed from the system.

This chapter of the thesis was undertaken to establish a cell culturing system 

for the human brain endothelial cell line, hCMEC/D3, which would be suitable for 

subsequent experiments involving this cell line. This entailed identifying a suitable 

housekeeping gene for qRT-PCR and determining the effects of growth factors on the 

expression of the genes of interest. From this work the major findings can be thus 

summarised:

• Cyclophilin A is a stable housekeeping gene under inflammatory conditions and 

is suitable for the analysis of gene expression using qRT-PCR.

• Removal of VEGF and EGF from the media only elicited a significant increase 

in mRNA expression of ADAM-17.

® Removal of heparin from the media caused a significant decrease in mRNA

expression of TNFR1.

• Retaining heparin in the media during IFN-y treatment reduced the effects of 

the cytokine in all genes analysed except fractalkine. This was significant for 

ADAM-17, TNFR1, and TNFR2.

In conclusion, Cyclophilin A is a suitable housekeeping gene for qRT-PCR experiments 

to analyse gene expression under inflammatory conditions. As VEGF, EGF and 

heparin did not consistently significantly affect the expression levels of the genes of 

interest, and in the case of heparin, even under an IFN-y treatment regime, these 

factors were retained in the cell culture medium under the experimental conditions 

described in subsequent chapters 3 and 4.
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Chapter 3
Effects of inflammatory cytokines on the expression of ADAM-17, TIMP-3 and 

substrates shed by the protease in the human adult brain endothelial cell line, 

hCMEC/D3.



3.1 Introduction

ADAM-17 protein expression has previously been demonstrated in vivo in endothelial 

cells in normal human brain (Goddard et al., 2001) and is up-regulated in MS white 

matter (Plumb et al., 2006). An up-regulation of ADAM-17 mRNA in endothelial cells 

and astrocytes in spinal cords of rats with EAE has also been reported (Plumb et al.,

2005). BBB endothelial cells are specialised to act as a physical and physiological 

barrier between the CNS and the circulation. Diffusion of substances and cell migration 

across the BBB is regulated by both tight junctions and the low expression of adhesion 

molecules on the endothelium. In MS, endothelial cells demonstrate TJ abnormalities 

(Kirk et al., 2003) and increased levels of cell adhesion molecules (Sobel et al., 1990; 

Washington et al., 1994; Bo et al., 1996).

The breakdown of the BBB has been associated with the actions of various 

cytokines, including TNF. In vitro studies have revealed that TNF increases the 

expression of various adhesion molecules (Wong and Dorovini-Zis, 1995; Dobbie et al., 

1999) and causes a decrease in barrier integrity, resulting in increased permeability of 

the endothelial cell monolayer (Dobbie et al., 1999; for review see Walsh et al., 2000). 

TNF is produced by an array of cells including monocytes, macrophages and NK cells 

(Delves et al., 2006). TNF has been found to be localised to astrocytes and 

macrophages within the MS plaque border (Flofman et al., 1989) and is also expressed 

by leukocytes within the perivascular cuff (Merrill, 1992; Woodroofe and Cuzner, 1993). 

An increased expression of TNF in the CSF of patients with active disease (Hauser et 

al., 1990) and in progressive forms of the disease, compared to stable MS (Sharief and 

Hentges, 1991) has been reported. Other pro-inflammatory cytokines implicated in MS 

pathogenesis include: IL-1(3, which is secreted by monocytes and macrophages 

amongst others (Delves et al., 2006), and has been found to be increased in the CSF 

of MS patients with active disease (Hauser et al., 1990) and is associated with BBB 

breakdown and demyelination in rats (Ferrari et al., 2004); and IFN-y, which is 

produced by T lymphocytes (Delves et al., 2006), has been found to be increased 

preceding relapses (Beck et al., 1988; Lu et al., 1993) and is found within the 

inflammatory cuffs of MS patients (Woodroofe and Cuzner, 1993; Simpson et al., 2000). 

Dysregulation of cytokine expression in MS is not restricted to pro-inflammatory 

mediators but is also observed in anti-inflammatory cytokines: TGF-(3 has been shown 

to be significantly down-regulated in lymphocytes of MS patients with clinically active 

disease compared to stable MS (Mokhtarian et al., 1994), and has been observed in 

microglia within the plaque edge of acute active lesions (Peress et al., 1996) and 

surrounding the blood vessels within the ECM of acute lesions (Cannella and Raine, 

1995). Increased expression of TGF-(3 is associated with the recovery phase in EAE 

(Iwahashi et al., 1997).
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ADAM-17 is the major convertase of pro-TNF, however, the function of ADAM- 

17 in the pathogenesis of MS is unknown. In other neurological conditions, ADAM-17 

has been described as having beneficial and/or deleterious effects. In AD, the protease 

acts as an alpha-secretase, which produces the neuroprotective species of APP 

(Allinson et al., 2004). In stroke, however, ADAM-17’s role is speculative; increased 

expression of ADAM-17 in the animal model of stroke coincides with reduced brain 

infarction, due to increased production of TNF, which is prevented with inhibition of 

ADAM-17 (Cardenas et al., 2002). Ischemic preconditioning (IPC) was induced in this 

model using transient middle cerebral artery occlusion (tMCAO) followed by occlusion 

of the ipsilateral common carotid artery (CCA). ADAM-17 expression was examined 

following IPC using western blotting, and the levels of TNF in brain homogenates 

examined following IPC using an ELISA assay (Cardenas et al., 2002). TNF has been 

shown in vitro to induce the up-regulation of glutamate transporters and glutamate 

uptake which prevented excitotoxic cell death (Romera et al., 2004). However, other 

studies have found inhibiting ADAM-17 and thereby reducing TNF, has a 

neuroprotective effect in the animal model of stroke (Wang et al 2004). In the latter 

study a blood clot was introduced in the CCA to induce stroke, 24 hours later, the brain 

was removed and homogenised in lysis buffer and the supernatant subjected to an 

ELISA assay for TNF. ADAM-17 was not examined directly in this study, but the 

application of an ADAM-17 inhibitor (DPH-067517) resulted in a reduction in TNF and 

reduced infarct size. The differences between the latter study and that of Cardenas and 

colleagues (2002) is discussed as possibly being due to the different models used to 

study ischemic stroke, i.e. IPC versus ischemic injury, and the use of different ADAM- 

17 inhibitors (Wang et al 2004).

3.1.2 Aims of the study 

The aims of this chapter were:

(i) to investigate gene expression of ADAM-17, TIMP-3, fractalkine and other proteins 

shed by the protease, under control and various inflammatory conditions at the mRNA 

level using qRT-PCR in the human adult brain endothelial cell line, hCMEC/D3;

(ii) to investigate the protein expression of ADAM-17, TIMP-3 and fractalkine using 

immunocytochemistry, and also the expression of ADAM-17 pro- and mature forms by 

western blotting in hCMEC/D3;

(iii) to elucidate the functional role of ADAM-17, by studying the shedding activities of 

ADAM-17 by hCMEC/D3 using an ELISA assay for fractalkine (one of the membrane- 

bound substrates of ADAM-17);

(iv) to elucidate the enzyme activity of ADAM-17 in hCMEC/D3 under control and pro- 

inflammatory conditions using a bioassay.
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3.2 Materials and methods

3.2.7 Suppliers used in this chapter

Abeam, 332 Cambridge Science Park, Cambridge, CB4 OFW, UK; Chemicon, 

supplied through Millipore; Anaspec, Cambridge Bioscience, 24/25 Signet Court, 

Newmarket Rd., Cambridge, CB5 8LA, UK; Fischer Scientific Inc, Bishop Meadow 

Rd., Loughborough, Leicestershire, LE11 5RG, UK; GE Healthcare UK Ltd., Pollards 

Wood, Nightingales Lane, Chalfont Street Giles, Buckinghamshire, UK; Millipore, The 

Science Centre, Eagle Close, Chandlers Ford, Hampshire, S053 4NF, UK; Molecular 

Devices, 1311 Orleans Drive, Sunnyvale, CA 94089-1136, U.S.A; Molecular Probes, 

supplied through Invitrogen; NUNC, supplied through Fischer Scientific Inc; R&D 

Systems, 19 Barton Lane, Abdingdon Science Park, Abingdon, Oxon, 0X14 3NB, UK; 

Vector Laboratories, 3 Accent Park, Bakewell Rd., Orton Southgate, Peterborough, 

UK; Whatman, 27 Great West Rd., Brentford, Middlesex, TW8 9BW, UK; or as 

otherwise stated in Chapter 2 section 2.2.1.

3.2.2 Cell culture

For full details see Chapter 2 (see section 2.2.3).

3.2.3 qRT-PCR

For full details see Chapter 2 (see section 2.2.5.2).

3.2.3.7 Experimental conditions for testing gene expression

For qRT-PCR, cells were seeded in complete media at 1x105/500pl/well of a 24 well 

plate (Fischer Scientific, U.K.). After 24 hours the media was aspirated, cells washed 

with 1ml of PBS (Invitrogen, U.K.), and fresh serum-free media containing 1, 10 or 

100ng/ml TNF, IL-1(3, IFN-y orTGF-(31 (PeproTech, U.K.) was added. Cells cultured in 

serum-free media without cytokine were used as a control. Each condition was 

performed in triplicate and the experiments were repeated three times. After 24 hours 

of cytokine treatment, the cells were washed twice with PBS, and RNA was extracted 

using TRI Reagent (Sigma-Aldrich, U.K.) following the manufacturer's guidelines (see 

Chapter 2 section 2.2.4.1).

3.2.3.2 Statistical analysis for qRT-PCR data

qRT-PCR data was analysed using the non-parametric Mann Whitney U test. To carry 

out this test, 2~ACT for each sample was calculated to determine the relative gene 

expression. Each treated condition was then compared to the control. Significance was

81



set at p < 0.05 and the data are presented as mean ± SEM for the indicated number of 

experiments.

3.2.4 Immunocytochemistry

3.2.4.11mmunofluorescence microscopy

Antibodies have been employed to detect the subcellular localisation of proteins (or 

antigen) in cells and tissues. The detection of antigens using antibodies in cultured 

cells is known as immunocytochemistry (ICC), whereas the detection of antigens in 

tissues is known as immunohistochemistry (IHC). Immunofluorescence relies upon the 

coupling of fluorophores/fluorochromes to antibodies, which when bound to the antigen 

of interest and excited by a light source (usually UV light) reveal the subcellular location 

of the antigen of interest (Figure 3.1). Before antibody application, the cells/tissue must 

be prepared by fixation, permeabilization and sometimes blocking with a protein such 

as albumin. Fixatives preserve the cellular morphology and the antigenicity of the 

protein/antigen of interest. Fixatives can work in two main ways: the formation of 

crosslinkages (e.g., aldehydes such as glutaraldehyde or formalin) or protein 

denaturation by coagulation (e.g., acetone and methanol). Permeabilization, using a 

detergent such as Triton X-100 or Tween-20 (fixatives such as acetone or methanol do 

not require a permeabilization step), allows free passage of the antibodies across the 

plasma membrane. A blocking step using an irrelevant protein such as albumin or 

using serum from the secondary host (see Indirect immunofluorescence) is sometimes 

used to block non-specific binding of IgG to the tissue or cells, particularly to Fc 

receptors (FcR). In between each step the cells/tissue are washed with an appropriate 

buffer to remove unbound reagents. Antigens can be detected by this method using 

antibodies that are labelled either directly or indirectly (Figure 3.1). Appropriate controls 

should be run in parallel which can include the omission of a primary antibody to 

determine the non-specific staining pattern of the secondary antibody or an isotype 

control which will reveal the non-specific binding of the primary antibody (Delves et al.,

2006).

3.2.4.2 Direct immunofluorescence

In this method the antibody used to locate the antigen of interest is directly coupled to 

the fluorophore/fluorochrome (Figure 3.1). This technique is limited as only a certain 

amount of antibodies can access the antigen of interest. However, this technique is 

employed in flow cytometry, which is a more sensitive technique for the detection of 

antigens.
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A
Direct method

Tissue/cell

B
Indirect method

Tissue/cell

O Fluorochrome
conjugate

D Primary antibody

Secondary
antibody

Antigen

Figure 3.1: Schematic representation of immunocytochemical detection of 

antigens on tissue and cells using antibodies. Antigens can be detected with the 

use of either a directly (A) or an indirectly (B) conjugated antibody, whereby an 

unlabelled primary antibody is used to detect the antigen and then a secondary 

antibody is used to detect the primary antibody.
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3.2.4.3 Indirect immunofluorescence

This type of immunofluorescence, called the double-layer technique, is most commonly 

employed. Two antibodies are used to visualise the target antigen: the primary 

antibody, which is directed against the target antigen; the secondary antibody, which is 

directed against the species Ig that was used to raise the primary antibody (Figure 3.1). 

So for example, a monoclonal mouse anti-ADAM-17 antibody will be applied to cells or 

tissue, which is then visualised using a fluorochrome-conjugated rabbit anti-mouse 

immunoglobulin (Ig) serum. This technique has a number of advantages: in the first 

instance, several fluorescently labelled secondary antibodies can bind the primary 

antibody, and thus the fluorescence intensity is brighter than the direct method; 

secondly, the purchase of one secondary antibody can be sufficient to suit an array of 

primary antibodies, thus limiting cost; thirdly, more than one protein can be detected 

within the same cell in the same experiment. The primary antibodies, however, must be 

raised/generated in different species, otherwise the secondary antibody will not be able 

to discriminate between the two primary antibodies and hence the antigens of interest. 

The fluorophores, which are conjugated to the secondary antibodies must also have 

distinct emission wavelengths when carrying out labelling of different antigens within 

the same sample so as to avoid overlapping otherwise discrimination between the 

antigens will not be possible. For example, to simultaneously detect ADAM-17 and 

fractalkine within the same cell, one antibody could be generated in mouse and one in 

rabbit. Fluorescently labelled species-specific Ig (e.g., goat anti-rabbit and goat anti­

mouse) can then be used to compare the relative positions and/or expression levels of 

the two different proteins (Delves et al., 2006).

3.2.4.4 Confocal laser scanning microscopy (CLSM)

Unlike fluorescence microscopy, which utilises a UV light source and a number of 

different reflectors to view the fluorescently-tagged proteins, confocal laser scanning 

microscopy (CLSM) utilises a different system. The overall effect of this system is to 

exclude any out of focus light that is emitted from the surrounding cells/tissue in the 

planes above and below the target object. This allows the user to obtain a high- 

resolution optical image. This is achieved in two ways: firstly, the microscope uses a 

concentrated light source, a laser, which excites the fluorochromes at a specific 

wavelength; secondly, the placement of "pinholes" in front of the laser and the detector 

excludes "out of focus" light (Figure 3.2). The CLSM consists of a conventional 

fluorescence microscope which is attached to a confocal scanning unit. The confocal 

scanning unit consists of scanning mirrors, a laser, wavelength-selective filters, a 

pinhole aperture, and a photomultiplier detector. Light from the laser is directed through
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Figure 3.2: Schematic diagram of the confocal laser scanning microscopy (CLSM) 

system. Lasers and the use of two appropriately placed pinholes have the overall 

effect of rejecting out-of-focus light and create a sharp confocal image. Illumination 

from the laser is directed down the phototube to the sample by a number of scanning 

mirrors (not shown). Fluorescence light emitted by the sample passes back up through 

the phototube, "descanned" by the scanning mirrors and passes through the dichroic 

mirror (reflected laser light is removed here) to the pinhole aperture. Light emitted from 

the focal plane (— ) passes through the pinhole to the photomultiplier tube (PMT) 

(detector), but all other light ( ) is rejected (Adapted from Murray, 2005).
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the phototube of the microscope. Rapidly oscillating scanning mirrors deflect the laser 

light so that it sweeps across the specimen in a "raster" pattern. Emitted fluorescent 

light from the sample passes back up the phototube where it is "descanned" by the 

scanning mirrors. The light then passes through a dichromatic beam splitter, which 

removes any reflected laser light, and then to the pinhole aperture. After passing 

through the pinhole, the light is collected by a detector (photomultiplier tube (PMT)) and 

converted into an electrical signal, which is recorded by a computer (Figure 3.2). Visual 

(nonconfocal) inspection of the specimen is provided by use of the usual binocular 

eyepieces with a sliding prism and the use of a UV lamp. A confocal microscope only 

differs from a light microscope in that both the field of view of the objective lens and the 

region of illumination have been limited to a single point in the same focal (confocal) 

plane (Murray, 2005). Another advantage of the CLSM is that is can perform a Z-stack, 

which allows an organelle/cell/tissue to be reconstructed in 3D. By carrying out a series 

of automated X-Y scans in the Z-axis, a series of images can be compiled to view, for 

example, a cell from its apical to its basal surface, which can then be manipulated and 

rotated (Delves et al., 2006; for review see Stephens and Allan, 2003).

3.2.4.5 Method

As TNF at 100ng/ml elicited the most potent response in hCMEC/D3 cells at the mRNA 

level, in three of the genes of interest, namely ADAM-17, TIMP-3 and fractalkine, the 

protein expression under this treatment regime was assessed. TNFR2 was also 

significantly increased but not as great as fractalkine, thus expression of the protein 

was restricted to the three genes. For ICC, cells were seeded at 5x104cells/250pl/well 

of an 8-well glass chamber slide (NUNC, Labtech International, U.K.) in complete 

media for 24 hours. Following two wash steps with PBS, the media was replaced with 

serum-free media, with or without 100ng/ml TNF. Following 24 hours stimulation, cells 

were processed for ICC analysis of proteins. Each condition was performed in triplicate 

for each protein examined. Cells were washed with PBS and fixed with either ice-cold 

acetone for 10 minutes or fresh 4% paraformaldehyde (PFA) for 15 minutes. Fresh 4% 

PFA was prepared by dissolving 2g of PFA powder (Sigma-Aldrich, U.K.) in 25ml of 

dH20  and heated to 60°C whilst stirring with a magnetic stirrer on a hot plate. Before 

the solution reached 60°C a couple of drops of NaOH (1M) were added to alter the pH 

to aid dissolving. Once heated to 60°C, the solution was removed from the hot plate, 

and filtered through filter paper (Whatman) into 25ml 0.2M phosphate buffer. Once 

cooled the pH was adjusted to 7.2. The solution was stored at 4°C for a maximum of 2 

weeks.
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Cells fixed with acetone were air dried for 15 minutes and then washed. Cells 

fixed with 4% PFA were washed 3 times for 5 minutes each with PBS after aspirating 

the PFA. Cells were treated with blocking solution containing 1% bovine serum albumin 

(BSA) (Sigma-Aldrich, U.K.) and 3% goat serum (Sigma-Aldrich, U.K.) for 30 minutes 

at RT. Cells fixed with 4% PFA were permeabilised with 0.2% Triton X-100 during the 

blocking step. The cells were stained for ADAM-17, TIMP-3 and fractalkine using 

monoclonal mouse anti-human ADAM-17 (R&D Systems, U.K.), polyclonal rabbit anti­

human TIMP-3 (Abeam, U.K.) and monoclonal mouse anti-human fractalkine (R&D 

Systems, U.K.), respectively. Preliminary experiments were performed to determine the 

optimum concentration required for ICC; each antibody was diluted within a range of 

that recommended by the supplier (Table 3.1). All antibodies were diluted 1:200 in 

blocking solution and incubated overnight at 4°C. Cells were washed and bound 

primary antibody visualised using Alexa Fluor® 568 conjugated to either goat anti­

mouse IgG (for monoclonal antibodies) or goat anti-rabbit IgG (for polyclonal antibodies) 

secondary antibodies (Molecular Probes, USA) diluted 1:500 in PBS and incubated at 

RT for 90 minutes. Following three wash steps in PBS, the cells were mounted in 

Vectashield™ hardset mounting media with 4',6-diamidino-2-phenylindole (DAPI) 

(Vector Laboratories, U.K.) as a nuclear counterstain. Images were captured using a 

Zeiss 510 laser-scanning confocal microscope. Omission of the primary antibody 

served as a negative control.

3.2.5 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blotting

3.2.5.1 Principles o f SDS-PAGE and western blotting

SDS-PAGE is a technique which allows the separation of proteins based upon their 

RMM by passing a current through the matrix in which they are loaded. SDS is an 

anionic detergent, which means when it is dissolved, its molecules carry a negative 

charge. For every 1g of protein, 1.4g of SDS binds to it, thus the amount of SDS which 

binds is proportional to the size of the protein. When SDS binds to the protein it 

denatures it and allocates a net negative charge, which will cause the protein to 

migrate towards the positively charged electrode in an electric field. Polyacrylamide 

gels contain a cross-linker such as bisacrylamide, which forms bonds between two 

polyacrylamide molecules, forming a porous matrix through which the proteins migrate. 

The concentration of the acrylamide determines the speed at which the proteins move 

through the gel. Lower concentrations of acrylamide are better at resolving high RMM 

proteins and higher concentrations are better at resolving low RMM. Once a current is
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Table 3.1: Determination of the optimal concentration of antibodies used in the 

immunocytochemical detection of ADAM-17, TIMP-3 and fractalkine in hCMEC/D3 

cells, under control and pro-inflammatory conditions. The optimum concentration 

for each antibody used in this experiment is highlighted in bold.

Antibody

Antibody
type

(Species) Supplier Cat No.

Antibody
dilutions
tested

R&D
ADAM-17 Monoclonal

(mouse)
Systems MAB9302 1 in 10 

1 in 20 
1 in 50 
1 in 100 
1 in 200

TIMP-3 Polyclonal
(rabbit)

Abeam ab2169 1 in 50 
1 in 100 
1 in 200

R&D
Fractalkine Monoclonal

(mouse)
Systems MAB3651 1 in 10 

1 in 20 
1 in 50 
1 in 100 
1 in 200

Alexa fluor 568 goat anti­ Molecular
mouse IgG N/A Probes A-11004 1 in 500

Alexa fluor 568 goat anti­ Molecular
rabbit IgG N/A Probes A-11011 1 in 500



passed through the gel, proteins migrate based upon their size due to the constant 

mass to charge ratio. In order to determine the size of the migrated proteins, standards 

of known mass are separated on each gel alongside the sample. Comparisons can 

then be drawn as to the RMM of the protein under investigation.

Western blotting is a technique which employs the same principles as ICC to 

detect specific proteins within a complex mixture of proteins. Once proteins are 

separated via SDS-PAGE, proteins are transferred onto a membrane (typically 

nitrocellulose or polyvinylidene difluoride (PVDF)) by passing a current through the gel. 

The membrane is then probed using antibodies specific for a certain antigen of interest. 

As with ICC, membranes must be blocked to prevent non-specific binding of the 

antibodies. This is usually done using 5% non-fat milk powder or BSA. To ensure any 

differences in protein concentration between samples does not affect semi-quantitative 

analysis of protein expression, a control antibody to a commonly expressed protein, e.g. 

actin, is used to normalise loading of samples (Delves et al., 2006).

3.2.5.2 Protein extraction for western blotting

For the western blots, protein was extracted according to the manufacturer's guidelines 

using TRI Reagent (Sigma-Aldrich, U.K.). TRI Reagent was used for protein extraction 

for western blotting as previous work within this laboratory has detected ADAM-17 

expression in tissue using this method (Plumb et al., 2005; 2006). Following the 

separation of the solution into the three organic phases (see Chapter 2 section 2.2.4.1) 

the RNA was removed and the DNA precipitated by adding 0.3ml of 100% ethanol/ml 

of TRI reagent, mixed, left to incubate for 2-3 minutes at RT and then centrifuged at 

2,000 x g for 5 minutes at 4°C. The protein containing supernatant was then removed 

to a fresh tube and 1.5ml of isopropanol/ml of TRI Reagent was added, mixed and 

allowed to stand for at least 10 minutes at RT. Following a centrifugation step at 12,000 

x g for 10 minutes at 4°C, the supernatant was aspirated, and the protein pellet was 

washed 3 times with 0.3M guanidine hydrochloride/95% ethanol solution, using 2ml/ml 

of TRI Reagent. During each wash step the pellet was stored in wash solution for 20 

minutes at RT and then centrifuged at 7,500 x g for 5 minutes at 4°C. Following 3 

washes, 2ml of 100% ethanol was added and the protein pellet vortexed. The sample 

was allowed to stand at RT for 20 minutes and subsequently centrifuged at 7,500 x g 

for 5 minutes at 4°C. The pellet was dried for 5-10 minutes and dissolved in 1% SDS. 

Any insoluble material was removed by centrifugation of the mixture at 10,000 x g for 

10 minutes at 4°C and the supernatant was transferred to a clean eppendorf tube and 

stored at -20°C.
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3.2.5.3 Protein determination

The protein concentration of each sample was determined using the bicinchoninic acid 

(BCA) assay. This method relies upon the formation of a Cu2+-protein complex under 

alkaline conditions, followed by the reduction of the Cu2+ to Cu1+. Various amino acids 

and the peptide bond within the protein are responsible for the reduction of Cu2+ to Cu1+ 

including cysteine, cystine, tryptophan and tyrosine. Under alkaline conditions, BCA 

forms a purple-blue complex with Cu1+ and provides a method of monitoring the 

reduction of Cu2+by proteins at an absorbance of 570nm. The amount of protein in the 

sample is proportional to the amount of reduction. A protein of known concentration, 

such as BSA is used as a standard at different concentrations (0-4mg/ml for example). 

This can then be used to construct a standard curve and the unknown protein 

concentrations of the samples can be extrapolated from the standard curve using the 

formula of the gradient of the curve. There are a number of advantages in using the 

BCA assay, such as the stable formation of the colour complex, its compatibility with a 

number of detergents, and it is applicable to a broad range of protein concentrations 

(http://www.siqmaaldrich.com/Area of Interest/Life Science/Proteomics and Protein 

Expr /Protein Analysis/Protein Quantitation/Bicinchoninic Acid Kit.html).

BCA provided as a solution (Sigma-Aldrich, U.K.) was mixed with copper 

sulphate solution (CuS04 • 5H20) (4% w/v) (Sigma-Aldrich, U.K.) at a ratio of 50:1. 

Using a 96 well plate, 20pl of sample or standard, diluted in an appropriate buffer, was 

added per well followed by 200pl of the BC AC uS04 solution. Standards (BSA) were 

assayed in triplicate, whereas the samples were assayed in duplicate. Following a 30 

minute incubation, the plate was read at a wavelength of 570nm. Data was then plotted 

in Microsoft® Office Excel 2003 SP3 to construct a standard curve (Figure 3.3).

3.2.5.4 Optimisation of the western blotting technique

Various parameters had to be altered in order to optimise the western blotting detection 

method. These included:

1. Using actin as a standard to normalise protein loading. Recent publications 

claimed that (3-actin is an unsuitable loading control for western blot analysis as 

it cannot detect differences in actin protein levels (between the ranges of 1.88 

and 7.5pg) (Dittmer and Dittmer, 2006). To ensure this was not the case with 

the antibody used in these experiments, serial dilutions of hCMEC/D3 protein at 

similar concentrations that would be used in the experiment (0.75, 1.5 and 3pg) 

were separated by SDS-PAGE and probed for actin on a western blot.
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Figure 3.3: Representative standard curve used to determine the protein 

concentration of unknown samples. BSA was used as a standard. Using the optical 

density (OD) of the unknown protein sample which corresponds to y in the formula for 

the gradient of the curve, the concentration (x) can be determined by rearranging the 

equation to x = (y-0.0304)/0.3668.

91



2. Finding a suitable antibody to detect ADAM-17. Various antibodies against 

ADAM-17 were tested (Table 3.2) for their ability to detect the mature and pro­

form of the protease. Protein extracted from human peripheral blood leukemia T 

cell line (JURKAT), or the human hepatocellular carcinoma cell line (HepG2) 

(kindly provided by S. Turner, BMRC), were used as positive controls.

3.2.5.5 Determination o f ADAM-17 protein expression in hCMEC/D3 cells under control 

and pro-inflammatory conditions by SDS-PAGE and western blotting 

In order to prepare the protein sample for SDS-PAGE, 100pl sample was mixed with 

50pl NuPAGE LDS (Lithium Dodecyl Sulfate, this is used instead of SDS as it is less 

viscous) sample buffer (4x concentrate), 20pl NuPAGE sample reducing agent (both 

Invitrogen, U.K.) and 30pl water. The samples were then boiled for 4 minutes at 99°C. 

3pg of sample or 3pl of protein ladder (SeeBluePlus2 molecular weight marker, 

Invitrogen, U.K.) were loaded per well of a NuPAGE 10% Bis-Tris gel and run in 

NuPAGE MOPs SDS running buffer using an Invitrogen Novex Mini-Cell (Invitrogen, 

UK) at 150V for approximately 60 minutes, until the dye reached 1cm from the end of 

the gel.

To transfer the proteins to a nitrocellulose membrane, wet-blotting was 

performed using a TE Series transfer tank (Hoefer®) at approximately 100V for 60 

minutes in NuPAGE transfer buffer containing 10% methanol and 0.1% NuPAGE 

antioxidant (Invitrogen, U.K.). Following transfer, blots were immediately placed in 

blocking solution consisting of Tris-buffered saline (TBS; 20mM Tris, pH 7.4/0.9% NaCI; 

Sigma), 5% non-fat dry milk powder and 0.05% Tween 20 for 90 minutes at room 

temperature on a platform shaker. Blots were then washed with TBS-Tween (TBS-T) 

three times for 10 minutes each, with shaking.

To determine a suitable ADAM-17 antibody various antibodies were tested at 

different concentrations: T-5442 (Sigma-Aldrich, U.K.), Ab39162 (Abeam), MAB9302 

(R&D Systems), AB19027 (Chemicon, U.K.) (Table 3.2). Each membrane was then 

probed overnight at 4°C with different antibodies diluted in TBS-T containing 5% milk 

powder. The following day, the blots were washed again three times for 10 minutes 

each in TBS-T to remove any unbound antibody. The blots were incubated at room 

temperature for 120 minutes with goat anti-rabbit IgG (Sigma; at 1:80,000; for 

polyclonal antibodies) conjugated to horseradish peroxidase (HRP). The blots were 

then subjected to two intervals of three washes each for 5 minutes, firstly with TBS-T 

and then with TBS alone. Antibody binding was detected using an enhanced 

chemiluminescence Plus (ECL) kit (GE Healthcare, U.K.), which was left to develop for 

5 minutes at room temperature. Blots were then placed in a UVP epi II dark room and
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Table 3.2: Antibodies tested to determine their suitability to detect the pro- and 

mature forms of ADAM-17 using western blotting. Each antibody was tested at 

various concentrations in line with those recommended by the supplier.

Antibody
Antibody type and 

Species Company Cat No. Dilutions tested

ADAM-17 Polyclonal (rabbit) Sigma-Aldrich T-5442 1 in 500 
1 in 1000 
1 in 2000

ADAM-17 Polyclonal (rabbit) Abeam Ab39162 1 in 1000 
1 in 2000 
1 in 5000 

1 in 10,000
ADAM-17 Monoclonal (mouse) R&D Systems MAB9302 1 in 250 

1 in 500 
1 in 1000

ADAM-17 Polyclonal (rabbit) Chemicon AB19027 1 in 250 
1 in 500 

1 in 1000
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10 serial images were captured at every 1 minute 30 seconds interval using Labworks 

version 4.0. Following visualisation of the experimental protein the membranes were 

washed with TBS and stripped using stripping solution (Millipore, U.K.) for 15 minutes 

at RT. Following a blocking step, the membranes were probed for actin using the same 

method as described above. The rabbit anti-actin antibody (1:1000, Sigma-Aldrich, 

U.K.) was visualised with the same goat anti-rabbit IgG antibody described above. 

Actin was used to normalise protein loading.

Once the optimal antibody was selected (AB19027, polyclonal anti-ADAM-17, 

Chemicon, CA, at 1:250) the protein from cells treated under control and pro- 

inflammatory conditions were subjected to SDS-PAGE and western blotting. At any one 

time, three gels with the same samples were run in parallel, one gel was probed using 

the anti-ADAM-17 antibody, one was used as a negative control (omission of the 

primary antibody) and the final gel was used as a blocking peptide control (Table 3.3). 

The latter was used to confirm the specificity of the anti-ADAM-17 antibody. This 

peptide (200pg/ml) was used at the same volume as the antibody (as recommended by 

the supplier; both adding the same concentration or volume as the antibody elicited the 

same outcome). The antibody and the peptide were diluted together in 200pl TBS and 

placed in a 37°C incubator for 30 minutes. The solution was then centrifuged at 9,200 x 

g for 15 minutes at 4°C. The supernatant was then diluted in 4.8ml TBS-T with 5% milk 

powder and added to the membrane. The membrane was then subjected to the same 

immunostaining protocol as detailed above. Semi-quantitative analysis of the bands 

was carried out by densitometry using Labworks version 4.0, and the data normalised 

to actin and then the respective control using the following formulae: (target band/actin 

band)/control target band.

3.2.5.6 Verification of protein transfer

In order to verify protein transfer, the membrane was stained with Ponceau S (3- 

Hydroxy-4-(2-sulfo-4- [4-sulfophenylazo]phenylazo) -2, 7-naphthalenedisulfonic acid 

sodium salt) (0.1% Ponceau S (w/v) in 5% (v/v) acetic acid) (Sigma Aldrich, UK) for 5 

minutes, which allows the reversible staining of protein bands on the membrane. The 

bands are not apparent until the membrane is rinsed with deionised water. An image 

was then captured. To completely remove the staining and proceed with the 

immunostaining, the membrane was washed with TBS-T (0.05%) twice for 10 minutes 

each. As a positive control for the presence of protein before transfer, another gel with 

the same samples was run in parallel and stained with Coomassie blue (0.25%) 

(Sigma-Aldrich, U.K) dissolved in a mixture of methanol (45%) (Fisher Scientific, UK) 

and acetic acid (10%) for several m inutes and then de-stained with a m ixture of
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Table 3.3: Antibodies and blocking peptide used to detect ADAM-17 in 

hCMEC/D3 under control and pro-inflammatory conditions. The antibody titre of 

each antibody was determined in preliminary expriments. The optimum concentration 

for each antibody used in this thesis is highlighted in bold.

Antibody/Peptide

Antibody 
type and 
Species Company Cat No. Dilutions tested

ADAM-17 Polyclonal
(rabbit)

Chemicon AB19027 1 in 250
1 in 500 

1 in 1000
Blocking peptide N/A Chemicon AG909 1 in 250

Actin
polyclonal

(rabbit) Sigma A5060 1 in 1000*
HRP goat anti­

rabbit IgG
polyclonal

(goat) Sigma A9169 1 in 80,000*

* dilutions previously determined and described in Haddock et al., 2006.
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methanol (5%) and acetic acid (7%) for several hours until bands were visible. The 

transferred gel is also stained in the same manner to ensure all separated proteins had 

been transferred to the nitrocellulose membrane.

3.2.5.7 Statistical analysis of western blot data

Densitometric data was analysed using a parametric one-way ANOVA followed by 

Dunnett's multiple comparison test. Each treated sample was compared to the control. 

Significance was set at p < 0.05 and the data are presented as mean ± SEM for the 

indicated number of experiments.

3.2.6 Enzyme-Linked Immunosorbent Assay (ELISA) for determining fractalkine levels

3.2.6.1 Principles of the ELISA assay

ELISAs also utilise specific antibodies, but in this technique they are used to determine 

the presence and concentration of a protein in a sample, e.g. in cell culture 

supernatants, serum or CSF. Like ICC and IHC the process involves a series of 

blocking and wash steps and relies upon the fact that antibodies, as with all proteins, 

can attach to the plastic 96-well microtitre plate. The most used immunoassay is the 

two antibody 'sandwich ELISA' also known as an antigen-capture assay (Fig 3.4). 

Following immobilization of the antibody on the microtitre plate, unbound protein- 

binding sites on the plate are blocked using an appropriate protein. Following a wash 

step, the sample containing the antigen to be measured is added and incubated for a 

few hours to allow the antibody to capture the protein of interest. Following further 

wash steps to remove unbound sample, a detection antibody, which is also directed 

against the protein of interest, is applied. The capture and detection antibodies must 

detect discrete epitopes on the protein of interest so that they do not compete for the 

same binding sites. The detection antibody in this instance is biotinylated and will thus 

bind the streptavidin-HRP complex. Upon application of an appropriate substrate a 

colourimetric product is created. By using a range of standards of known concentration 

of the particular protein to be assayed, the concentration of the unknown samples can 

be determined (Delves et al., 2006;

http://www.millipore.com/druqdiscoverv/dd3/elisa kits).

3.2.6.2 Protein extraction using Cel Lytic for examination by ELISA

For the ELISA assay, CelLytic™ (Sigma-Aldrich, U.K.), proprietary detergent of Sigma- 

Aldrich, was used to extract total cell protein from the cells, so as to determine the cell 

bound fractalkine as this solubilises proteins and can be used for such protein capture 

methods. Protein extraction requires efficient cell lysis and solubilisation of proteins, 

whilst preventing protein degradation and/or reagent interference with protein
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Biotinylated
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antibody

Streptavidin-HRP
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Figure 3.4: Sandwich ELISA. Capture antibodies bind the target protein, which is 

subsequently detected using a biotinylated detection antibody. Streptavidin-HRP 

(horseradish peroxidase) is applied and then upon the application of a substrate 

solution (tetramethyl benzidine (TMB)) a colorimetric product is created. The level of 

colour is an indicator of the quantity of target protein in the sample (image adapted 

from http://www.bendermedsvstems.com/bm imaqes/29/hiqh-sensitivitv-fiqure-1 .jpg 

and http://www.cellsianal.com/ddt/elisa.html).
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immunoreactivity. Protease inhibitors can be added to lysis buffers, which inhibit a 

broad range of proteases and phosphatases; this prevents the action of endogenous 

enzymes that are capable of degrading proteins present in the extract. The protease 

inhibitor cocktail used in combination with CelLytic in this study included inhibitors of 

serine, cysteine and metalloproteinases (Sigma-Aldrich, U.K.) (see Table 3.4).

3.2.6.3 Experiment to determine cell-bound and shed fractalkine levels following 24 

hour treatment with TNF

For the ELISA, cells were seeded at 5x105 cells/2.5ml/well of a collagen coated 6-well 

plate and treated as previously described with either serum-free medium or, TNF at 1, 

10 or 100ng/ml. Each treatment was performed in triplicate. Following 24 hour 

treatment, the supernatant was collected, pulse centrifuged at 200 x g and stored at - 

20°C for subsequent analysis of secreted fractalkine by ELISA. Total protein from the 

cells was extracted using 450pl of CelLytic™ with 50pl protease inhibitor cocktail 

following the manufacturers' guidelines. Cells were washed twice with PBS and 500pl 

of lysis buffer was added. The plates were then placed on a rocking shaker at room 

temperature (RT) for 15 minutes. Following this, cells were scraped from the cell 

culture plate and the cell suspension collected in a microcentrifuge tube and 

centrifuged for 15 minutes at 13,400 x g. The protein containing supernatant was then 

transferred to a chilled tube and stored at -80°C until analysis by ELISA.

3.2.6.4 Time course study to examine the relationship between cell-bound and shed 

fractalkine under TNF treatment

To study the expression levels of fractalkine following 1 to 48 hours of TNF treatment, 

2x105 cells/ml/well of a collagen coated 12-well plate were seeded in complete media. 

Cells were left for 24 hours, washed with PBS and then treated with serum-free media 

or serum-free media with 1, 10, or 10Ong/ml TNF and left to incubate for 1 ,6 ,12 , 24, or 

48 hours. Following the appropriate incubation period, the cell supernatant was 

collected, centrifuged and the supernatant from this stored at -20°C until analysis by 

ELISA could be performed. The cells were washed twice with PBS, 225pl with 25pl 

protease inhibitors was added and the protein extracted as described above (see 

3.2.5.3).

3.2.6.5 Fractalkine ELISA

Fractalkine in cell supernatants and extracts from cells was measured using a 

fractalkine DuoSet ELISA assay (R&D Systems, U.K.) (Figure 3.4). The DuoSet is 

designed to detect the chemokine domain of human fractalkine (N terminus). The 

assay was performed as recommended by the manufacturer. To prepare the 96 well
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Table 3.4: Protease inhibitor cocktail composition used in combination with

CelLytic for protein extraction.

Inhibitor Type of protease Example
AEBSF - [4-(2- 

Aminoethyl)benzenesulfonyl 
fluoride hydrochloride] Serine

Trypsin, chymotrypsin, plasmin, 
kalikrein, thrombin

Aprotinin Serine

Trypsin, chymotrypsin, plasmin, and 
kalikrein; human leukocyte 

elsatase, but not pancreatic 
elastase

Bestatin hydrochloride Aminopeptidase
Leucine aminopeptidaseand alanyl 

aminopeptidase
E-64 - [N-(trans- 

Epoxysuccinyl)-L-leucine 4- 
guanidinobutylamide] Cysteine

Calpain, papain, cathepsin B, and 
cathepsin L

EDTA Metalloprotease

Leupeptin hemisulphate salt
Serine and 

cysteine
Plasmin, trypsin, papain, and 

cathepsin B
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plate for the ELISA assay, 100pl/well of the capture antibody (4pg/ml) was added, the 

plate sealed and left to incubate overnight at RT. The following day the unbound 

antibody was aspirated and the plate washed three times with PBS-Tween 20 (0.05%, 

PBS-T). After the final wash, the plate was inverted and blotted against a paper towel 

to ensure the removal of any remaining wash buffer. The plates were then blocked with 

1% BSA in PBS for 1 hour at RT. After another wash step, 10Opil/well of samples or 

standards were added in duplicate, the plate sealed and left to incubated at RT for 2 

hours. Following another wash step, 100pl/well of the detection antibody (500ng/ml) 

was added, the plate sealed and left to incubate for 2 hours at RT. Following washing, 

100pl/well of streptavidin-HRP was added, the plate sealed and left to incubate at RT 

for 20 minutes. After aspiration and washing, 100pl/well of substrate solution was 

added and left to incubate at RT for 20 minutes. To stop the reaction, 50pl/well of 2N 

H2S 0 4was added and the plate gently shaken to ensure thorough mixing. The optical 

density of each well was read at 450 and 570nm in a Wallac V ic t o r 2TM 1420 Multilabel 

Counter using Wallac 1420 software version 2.00 release 8. Absorbances at 570nm 

were subtracted from absorbance values at 450nm to correct for optical imperfections 

in the plate, which would affect the test optical density readings. Each standard and 

sample was assayed in duplicate and the mean value taken. Fractalkine concentrations 

were then calculated from a seven point standard curve (Figure 3.5) using 2-fold serial 

dilutions and a minimum standard of 0.625ng/ml and a maximum of 20ng/ml fractalkine. 

Fractalkine expression levels were calculated per mg of total cellular protein, which 

was determined using the BCA method (see section 3.2.5.3).

3.2.6.6 Statistical analysis o f ELISA data

ELISA data was analysed using a parametric one-way ANOVA followed by Tukey 

multiple comparison test, so that comparisons could be made between the groups. 

Significance was set at p < 0.05 and the data are presented as mean ± SEM for the 

indicated number of experiments.

3.2.7 Sensolyte™ 520 TACE Activity Kit

3.2.7.1 Principles o f the enzyme activity kit

The SensoLyte™ 520 TACE activity kit consists of a QXL™520/5-FAM FRET substrate 

whose sequence is derived from the cleavage site of TACE (LAQAVRSSSR) (Jin et al., 

2002) (Figure 3.6). In its intact form, the peptides' 5-FAM fluorescence is quenched by 

QXL™520, however, upon cleavage by active TACE, these two molecules separate 

resulting in an increase in 5-FAM fluorescence. Fluorescence can be measured at 

excitation/emission wavelength of 490nm/520nm, respectively.
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Figure 3.5: Representative standard curve used to determine the concentrations 

of fractalkine in cell lysates and supernatants from hCMEC/D3 cells.
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FRET substrate

&

ADAM-17

Cat Dis-Cys TM Cyto

Figure 3.6: Schematic representation of the Sensolyte™ 520 TACE Activity Kit.

The QXL™520/5-FAM FRET substrate, whose sequence is derived from the cleavage 

site of TACE, is cleaved by active ADAM-17 to release the 5-FAM molecule from the 

quenching QXL™520 molecule. Thus, enzyme activity in the sample is directly 

proportional to the level of fluorescence produced. Domains of ADAM-17: Cat, catalytic 

site; Dis-Cys, disintegrin-cysteine rich domain; TM, transmembrane domain; Cyto, 

cytoplasmic domain.
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3.2.7.2 Protein extraction for determining the activity levels o f TACE under pro- 

inflammatory conditions using SensoLyte™ TACE activity assay

To determine the levels of ADAM-17 enzyme activity in total cell lysates and membrane 

fractions of hCMEC/D3 cells, 5x105 cells /2ml/well of 6-well plate and 1.3x10® cells/6ml 

in a T25 flask, respectively, were seeded for 24 hours in complete media. After 24 

hours, the media was aspirated and the cells washed twice with PBS. Cells were 

treated with either serum-free media or serum-free media supplemented with TNF at 1, 

10, or 100ng/ml for 24 hours. After 24 hours treatment, total protein was extracted 

using assay buffer (AnaSpec, Inc., CA, USA) containing 0.1% Triton X-100 (Sigma- 

Aldrich, U.K.) and by scraping the cells from the culture plate. The cell suspension was 

collected in a microcentrifuge tube and placed on a shaker for 10 minutes at 4°C. 

Following this, the cell suspension was centrifuged for 10 minutes at 2,500 x g at 4°C 

and the supernatant collected and stored at -80°C until use. To extract protein from 

membrane fractions, the cells were washed twice with PBS and 1ml of ice cold PBS 

with 10% protease inhibitors (Sigma-Aldrich, U.K.) (Table 3.4) was added. Following 5 

freeze-thaw cycles, the cells were scraped from the culture flask and centrifuged at 

16,000 x g at 4°C for 20 minutes. The pelleted membranes were then washed with 

PBS, centrifuged at 16,000 x g at 4°C for 10 minutes and resuspended in assay buffer. 

Protein concentrations were determined using the BCA method (see section 3.2.5.3).

3.2.7.3 Enzyme activity assay to determine the activity levels o f TACE in hCMEC/D3 

ceils under pro-inflammatory conditions

To determine the levels of ADAM-17 enzyme activity, 50pl of lysates or membrane 

fractions from cells, either treated with TNF at various concentrations or without, were 

added to a 96-well black plate (Fisher Scientific, U.K.). Following a 10 minute 

incubation at RT to allow the samples to equilibrate to RT, 50pl of substrate solution 

was added per well and the reagents were gently mixed for 30 seconds on a shaker. 

Following a 60 minute incubation step, the fluorescence intensity of each sample was 

measured at an excitation/emission wavelength of 490nm/520nm using a SpectraMax 

M5e using SoftPro version 5.2 (Molecular Devices, U.K.) (University of Sheffield). Each 

control and sample were assayed in duplicate and the mean value taken. Purified 

TACE (Millipore, U.K.) was used as a positive control. RFU levels were normalised 

against protein concentrations to take into account any differences in cell numbers 

between culture flasks.

3.2.7.4 Statistical analysis of enzyme activity data

Enzyme activity data was analysed using a parametric one-way ANOVA followed by 

Tukey's multiple comparison test. Comparisons were made between each of the
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groups. In all instances, significance was set at p < 0.05 and the data are presented as 

mean ± SEM for the indicated number of experiments.
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3.3 Results

3.3.1 qRT-PCR analysis o f mRNA expression following cytokine treatment of human 

adult brain endothelial cells, hCEMC/D3.

In order to understand the functional activity of ADAM-17 in endothelial cells, ADAM-17, 

TIMP-3 and a number of substrates of ADAM-17 (TNFR1, TNFR2, and fractalkine) 

were selected for testing mRNA expression levels in hCMEC/D3 cells, under different 

cytokine treatment regimes. vWF was selected as a marker for endothelial cells. To this 

end a number of cytokines known to be dysregulated in MS, and also to be produced 

by T cells and macrophages, which are stereotypical of the perivascular cuffs in MS 

pathology, were selected to determine which elicited the greatest effects. qRT-PCR 

analysis revealed that all genes examined, ADAM-17, TIMP-3, TNFR1, TNFR2, 

fractalkine and vWF were constitutively expressed in the human adult brain endothelial 

cell line, hCMEC/D3. Some of these genes were differentially expressed when cells 

were treated with TNF, IL-1(3, IFN-y and TGF-(31 at 1, 10 and 100ng/ml.

ADAM-17 mRNA expression increased, but not significantly upon cytokine 

treatment with TNF and TGF-(31, but remained at control levels when treated with IL-1 (B 

and IFN-y (p > 0.05) (n = 3) (Figure 3.7 A). There was an apparent, but non-significant, 

increase in TIMP-3 mRNA expression when stimulated with TNF and IFN-y, whereas it 

decreased non-significantly when cells were treated with IL-1 (3 and TGF-(31 (p > 0.05) 

(n = 3) (Figure 3.7 B).

TNFR1 showed little fluctuation under any of the treatment conditions in 

comparison to the control. Treatment with IL-1 (3 at 100ng/ml, however, caused a small, 

but significant down-regulation by 14% (± 0.05 SEM) of TNFR1 mRNA compared to the 

control (p < 0.05) {n = 3) (Figure 3.7 C). TNFR2 mRNA expression was significantly up- 

regulated 3.6 fold (± 0.38 SEM) when cells were treated with TNF at 100ng/ml (p < 

0.05) (n = 3). IFN-y non-significantly increased TNFR2 mRNA expression, whereas IL- 

1(3 and TGF-(31 caused a non-significant down-regulation in mRNA expression at all 

concentrations (Figure 3.7 D). Fractalkine mRNA expression was significantly 

increased when cells were stimulated with TNF and IFN-y at all concentrations (p < 

0.05) (n = 3) (Figure 3.7 E). Means of 52.0 (± 3.69 SEM), 143.0 (± 49.43 SEM) and 

170.8 (± 23.69 SEM) fold were detected at 1, 10 and 100ng/ml TNF, respectively. IFN- 

y at 1, 10 and 100ng/ml caused fractalkine mRNA expression to increase to means of

6.3 (±2.68 SEM), 17.5 (± 6.99 SEM) and 23.2 (± 5.76 SEM) fold, respectively (Figure

3.7 E). Fractalkine mRNA levels were unaffected by treatment with IL-1 (3 and TGF-(31 

(p > 0.05). vWF mRNA expression levels fluctuated slightly under cytokine treatment 

(Figure 3.7 F), however, none of these fluctuations reached significance (p > 0.05) {n = 

3).
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Figure 3.7: qRT-PCR analysis of ADAM-17 (A), TIMP-3 (B), TNFR1 (C), TNFR2 (D), 

fractalkine (E) and von Willebrand factor (vWF) (F) mRNA expression under 

control and inflammatory conditions in the human adult brain endothelial cell 

line, hCMEC/D3. Data are represented as the mean (n = 3) ± SEM. Statistically 

significant differences are indicated by one (*) asterisks which denotes a significance of 

p < 0.05. Note scale of figure E.
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In summary, TNF elicited the most prominent effects upon hCMEC/D3 cells 

causing an up-regulation in mRNA expression in the majority of genes studied, 

highlighting that the cells were more responsive to this cytokine. IFN-y also elicited 

significant increases in mRNA expression in hCMEC/D3 cells whereas IL-1 (3 and TGF- 

(31 were very limited in their effects upon the endothelial cell line and tended to cause a 

down-regulation in the expression of the genes of interest. In summary hCMEC/D3 

cells are responsive to TNF> IFN-y > IL-1(3> TGF-(31 (Table 3.5).

3.3.2 Immunocytochemical detection of ADAM-17, TIMP-3 and fractalkine under 

control and stimulatory conditions

As treatment with TNF at 100ng/ml (Table 3.5) caused an increase in mRNA synthesis 

of some of the genes of interest in this study, particularly fractalkine, protein expression 

in cells after treatment with this concentration of TNF was assessed by ICC.

When cells were fixed with acetone, ADAM-17 was found to be located diffusely 

within the cell cytoplasm (Figure 3.8 i A-D). Under control conditions, ADAM-17 was 

also observed to cluster in perinuclear compartments which, upon TNF treatment 

(100ng/ml), appeared to disperse (compare Figure 3.8 i A and C with B and D). The 

intensity of ADAM-17 staining did not appear to alter under TNF treatment (Figure 3.8 i 

B and D), however, it did induce a filamentous distribution (arrows, Figure 3.8 i D). 

When the cells were fixed with 4% PFA, ADAM-17 expression was observed to occur 

in a pattern that resembled a cytoskeletal distribution (Figure 3.8 ii A-D). Upon TNF 

application the amount and pattern of expression did not alter (Figure 3.8 ii B and D).

TIMP-3 expression appeared in a punctate pattern throughout the cell 

regardless of the fixative used to prepare the cells for ICC (Figure 3.9 i A-D and Figure

3.9 ii A-D). Upon TNF treatment, TIMP-3 showed no change in expression levels or in 

distribution (Figure 3.9 i B and D, and Figure 3.9 ii B and D).

Both acetone and PFA induced a diffuse fractalkine staining pattern within the 

endothelial cells, both under control and TNF conditions (Figure 3.10 i A-D and Figure

3.10 ii A-D). Following TNF treatment the expression levels of fractalkine increased 

greatly which was apparent after acetone fixation (Figure 3.10 i B and D), but not after 

PFA fixation (Figure 3.10 B and D). The background staining shown in Figure 3.10 i A- 

D and Figure 3.10 ii A-D could be due to shedding of fractalkine from the cells and its 

subsequent attachment to the chamber slide whilst in culture, which was then 

subsequently immunocytochemically stained, since there was no non-specific 

background seen when staining with the other antibodies, and also in the negative 

controls in the absence of the primary antibody.
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Table 3.5: Tabular representation of Figure 3.5 showing the altered gene 

expression in hCMEC/D3 cells, under inflammatory conditions. Each gene is 

represented showing the cells response following the application of each cytokine for 

24 hours. The responses are summarised as either increases (f), decreases (|)o r no 

response (-) to the individual cytokine. Significant fluctuations are indicated by an 

asterisks (*).

TNF IL-1 p IFN-y TGF-P1

ADAM-17 T - - t
TIMP-3 T 1 t 4
TNFR1 - 4* - -

TNFR2 4 t 4
Fractalkine /j.* - -

vWF - - - -
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3.3.3 Determination of the ability o f anti-actin antibody to distinguish between different 

protein concentrations on western blots

Western blot analysis of actin in protein extracted from hCMEC/D3 cells revealed that 

the antibody distinguished between the different concentrations of protein within the 

sample (Figure 3.11 and 3.12). When 0.75pg/ml of protein was loaded only a faint 

band appeared, and as the concentration of protein increased to 1.5 and 3pg/ml the 

band intensity also increased. Thus, this actin antibody was able to differentiate protein 

concentrations and was therefore used as a loading control for the western blotting 

analysis to confirm equal protein loading between sample lanes.

3.3.4 Selection o f a suitable antibody for ADAM-17 detection by western blotting

To find a suitable antibody which would detect the pro- and mature forms of ADAM-17, 

various antibodies from different suppliers were tested (Table 3.2). However, most of 

the antibodies tested appeared to produce multiple or unexpected protein bands (Table 

3.6). It was found that AB19027 was a suitable antibody for detecting the pro- and 

mature form of ADAM-17. However, as well as detecting the pro- and mature forms of 

the protein, a band of approximately 60kDa was also detected. To determine whether 

this was either specific or non-specific a blocking peptide was used. After incubation of 

the antibody with its cognate peptide and applying it to the membrane, the band of 

60kDa remained visible, whereas the other two bands corresponding to the two forms 

of ADAM-17 disappeared (Figure 3.13). This antibody was thus used in the western 

blotting detection of ADAM-17, however, the band at 60 kDa was not included in the 

analysis. .

3.3.5 Western blot analysis of ADAM-17 expression by hCMEC/D3 cells following TNF 

treatment

Western blot analysis of ADAM-17 expression in hCMEC/D3 cells revealed bands at 

approximately 100 and 80kD (Figure 3.14), which correspond to the pro- and mature 

form of ADAM-17, respectively (Moss et al., 1997; Schlondorff et al., 2000; Peiretti et 

al., 2003). Both these bands disappeared when the antibody was incubated with its 

cognate blocking peptide or when the primary antibody was omitted, demonstrating 

that the staining for ADAM-17 was specific. Densitometric analysis of the two forms of 

ADAM-17, independently or combined, showed no significant increase in the pro-form 

(Figure 3.15 A), mature form (Figure 3.15 B) or both isoforms (Figure 3.15 C) of ADAM- 

17 with increasing cytokine concentration, although there was a trend to suggest that 

protein levels increase at 100ng/ml TNF (Figure 3.15) (p > 0.05).
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Figure 3.11: Determination of the sensitivity of the anti-actin antibody to 

distinguish different protein concentrations on western blots. Total cell protein 

from human adult brain endothelial cells, hCMEC/D3, was loaded at three different 

amounts and separated by SDS-PAGE, and the membrane probed with a rabbit 

polyclonal antibody against actin. An increase in band intensity can be seen with 

increasing concentrations of protein.

Actin as a loading control
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Figure 3.12: Semi-quantitation of actin at three different protein concentrations.

Different amounts of total protein from hCMEC/D3 cells were separated by SDS-PAGE, 

following western blotting for actin using a polyclonal antibody the integrated optical 

density was calculated (IOD).
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Table 3.6: Antibodies tested to determine ADAM-17 expression in hCMEC/D3 

cells using western blotting.

Antibody Cat 
No. Company

Antibody type 
and Species Dilution

Expected 
bands (kDa)

Outcome
(kDa)

Ab39162 Abeam
Polyclonal

(rabbit) various 93-110
Multiple 60- 

100

MAB9302
R&D

Systems
Monoclonal

(mouse) various ectodomain 40-60

T-5442 Sigma
Polyclonal

(rabbit) various 80-130
80, 100 and 

191

AB19027 Chemicon
Polyclonal

(rabbit) various 80-130
60, 80 and 

100

NB: Each antibody was individually tested at a range of concentrations (see section 

3.2.5.5).

Without blocking peptide With blocking peptide Negative

kD a C 1 10 100 C 1 10 100 C 1 10 100

100—^
80

60

Figure 3.13: Specificity of AB19027 at detecting the pro-form and mature form of 

ADAM-17 in hCMEC/D3 cells. In the absence of the blocking peptide the antibody 

detected three bands at 60, 80 and 100kDa. However, when the antibody was 

incubated with its cognate blocking peptide prior to application to the blotting 

membrane, the two bands at 80 and 100kDa disappear whereas the 60kDa band is still 

apparent. Thus, detection of the higher molecular mass proteins are specific, whereas 

the lower band represents non-specific binding. A negative control was also included to 

show there was no non-specific binding of the secondary antibody. Total protein was 

extracted from cells under control (C) and TNF treatment at 1 (1), 10 (10), and 

100ng/ml (100).
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Figure 3.14: Western blot analysis of ADAM-17 expression in hCMEC/D3 cells 

under control and TNF treatment. Both the pro-form (100kD) and the mature form of 

ADAM-17 (80kD) can be seen. Actin was used as a loading control. Data are 

representative of three replicate experiments.

[TNF]ng/m l

ADAM -17

115



Pro-ADAM-17

B

control 1 10 100
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Figure 3.15: Densitometric analysis of western blot of pro-ADAM-17 (A), mature 

ADAM-17 (B) and both pro- and mature ADAM-17 (C) expression in hCMEC/D3 

cells under control and TNF treatment. The integrated optical density (IOD) of each 

band was normalised to actin and then to their respective controls. Data are 

represented as the mean of individual blots from three separate experiments (n = 3) ± 

SEM. No significant difference was observed between cells under control conditions 

and those treated with TNF, at all concentrations.
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3.3.6 Relationship between cell-bound and shed fractalkine in endothelial cells in the 

presence or absence of TNF, as determined by ELISA

With increasing concentrations of TNF, the amount of cell associated fractalkine 

increased in hCMEC/D3 cells, measured in cell extracts by ELISA. Under control 

conditions a mean of 23.7ng fractalkine/mg total cell protein was detected in the cell 

lysates (n = 3) (Figure 3.16 A). This was not significantly different from cells treated 

with 1ng/ml TNF (p > 0.05). However, when cells were treated with 10 or 100ng/ml TNF, 

significant increases were observed with mean values of 73.5 (p < 0.001) and 78.3 (p < 

0.001) ng fractalkine/mg total cell protein, respectively (n = 3). Significant differences 

were also observed between cells treated with 1ng/ml of TNF and cells treated with 10 

and 100ng/ml TNF (p < 0.001). No significant difference was observed between cells 

treated with 10 and 100ng/ml TNF (p > 0.05) (Figure 3.16 A).

The amount of fractalkine shed into the supernatant by cells also increased with 

increasing concentrations of TNF (Figure 3.16 B). Under control conditions, fractalkine 

levels were below the detection limit of the assay. Treatment with 1, 10, or 100ng/ml 

TNF caused significant levels of fractalkine to be shed; mean values of 210.4 (p < 0.05),

472.2 (p < 0.001), and 775.7 (p < 0.001) ng fractalkine/mg total cell protein were 

detected, respectively {n = 3). Significant differences were also observed between cells 

treated with TNF at 1ng/m! and cells treated with 10ng/ml (p < 0.05) and 100ng/ml (p < 

0.001) of TNF. A significant difference was also observed between cells treated with 10 

and 100ng/ml of TNF (p < 0.01).

The ratio of cell associated to shed fractalkine was calculated. Under control 

conditions the mean ratio of cell associated to shed fractalkine was 1:0. Treatment with 

TNF at 1, 10, or 100ng/ml caused significant increases in this ratio to 1:5.8 (p < 0.01), 

1:6.4 (p < 0.01), and 1:9.9 (p < 0.001), respectively. No significant difference was 

observed between cells treated with 1 and 10ng/ml TNF (p > 0.05), however there was 

a significant difference between cells treated with 1 and 100ng/ml TNF (p < 0.05). No 

significant differences were observed between cells treated with 10 and 100ng/ml TNF 

(p > 0.05).

3.3.7 Time course study to determine the relationship between cell-associated and 

shed fractalkine following TNF treatment in h CM EC/D 3 cells

Following TNF treatment over the different time periods the levels of cell-associated 

and shed fractalkine showed a trend to increase with increasing concentrations of the 

cytokine. After 1 hour treatment with TNF at 1, 10, 100ng/ml, 23.5, 43.1 and 47.2ng 

fractalkine/mg protein were detected in cell lysates, compared to 30.2ng fractalkine/mg 

protein under control conditions; there was a slight decrease in the amount of cell-
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Figure 3.16: Enzyme-linked immunosorbant assay (ELISA) determination of 

fractalkine expression by hCMEC/D3 cells under control and TNF treatment. Cell 

associated (A) and shed (B) fractalkine data are represented as the mean (n = 3) ± 

SEM. To analyse significant differences between the groups data were analysed by 

ANOVA followed by a Tukey post-hoc test. Statistically significant differences are 

indicated by one (*) or two (**) asterisks where the former denotes significance of p < 

0.05 and 0.01, and the latter significance of p < 0.001 compared to control conditions. 

The black asterisks indicate differences between the controls, the red indicate 

differences between groups and treatment with 1ng/ml of TNF, and the green asterisk 

differences between groups and treatment with 10ng/ml of TNF. Note the scale 

difference between the figures.
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associated fractalkine in comparison to the control after 1 hour treatment with 1ng/ml 

TNF (Figure 3.17). Significant differences were detected between cell lystes from cells 

treated with 1 and 100ng/ml TNF (p < 0.05). At this same time point, 17.2ng 

fractalkine/mg protein was detected in cell supernatants from the same cell cultures. 

These levels increased to 48.6, 74.8, and 93.3ng fractalkine/mg protein following 

treatment with TNF at 1, 10 and 100ng/ml of TNF, respectively (Figure 3.17). 

Significant differences were detected between cells under control conditions and cells 

treated with 10 (p < 0.01) and 100ng/ml (p < 0.001), and between cells treated with 1 

and 100ng/ml TNF (p < 0.05).

Following 6 hours treatment with TNF, cell lysates from cells under control 

conditions expressed 22.0ng fractalkine/mg protein, which increased to 34.7, 45.1, and 

78.7ng fractalkine/mg protein following treatment with 1, 10, and 100ng/ml TNF, 

respectively (Figure 3.17). The amount of fractalkine shed into supernatants at this time 

point under control conditions was below the detectable limit of the assay as too were 

the levels after treatment with TNF at 1ng/ml; however, following 6 hours treatment with 

TNF at 10 and 100ng/ml 105.5 and 185.9ng fractalkine/mg protein were detected, 

respectively (Figure 3.17). Both the cell associated and shed fractalkine showed the 

same pattern of statistically significant differences: levels of fractalkine under control 

conditions significantly differed from cells treated with TNF at 10 (p < 0.01) and 

100ng/ml (p < 0.001); in addition, cell associated and shed fractalkine in cells treated 

with 100ng/ml TNF was significantly higher than cells treated with 1ng/ml TNF (p < 

0.001); and in cells treated with 100ng/ml TNF significantly more fractalkine was 

detected in comparison to cells treated with 10ng/ml TNF (p < 0.05). In addition to 

these differences, the amount of shed fractalkine was significantly higher in cells 

treated with TNF at 10ng/ml in comparison to cells treated with 1ng/ml (p < 0.01).

Due to an experimental error, the data for the 12 hour treatment group was not 

analysed.

Following 24 hour treatment with TNF, 19.4ng fractalkine/mg protein were 

detected in cell lysates under control conditions, which increased to 24.2, 54.9 and 

76.6ng fractalkine/mg protein following treatment with 1, 10 and 100ng/ml of TNF, 

respectively (Figure 3.17). The amount of shed fractalkine in cell supernatants after 24 

hours TNF treatment was below the detectable limit of the assay under control 

conditions, but was detected at 47.7, 194.3 and 325.5ng fractalkine/mg protein 

following treatment with 1,10 and 100ng/ml of TNF, respectively (Figure 3.17). Again 

the same patterns of significant difference were observed in cell associated and shed 

fractalkine at this time point: cells treated with 10 and 100ng/ml TNF showed 

significantly higher levels of fractalkine in comparison to control conditions (both p <
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Figure 3.17: Time course study of the effects of TNF on cell bound and shed 

fractalkine in hCMEC/D3 cells. Cells were cultured for 1 hr, 6hr, 12hr, 24hr and 48hr 

with TNF at various concentrations. Following this period the cell supernatant was 

harvested and the total cell protein extracted, and both were subjected to a fractalkine 

ELISA assay. Results from the 12 hour time course are absent due to an experimental 

error. Data are represented as the mean (n = 3) ± SEM. Statistically significant 

differences are indicated by one (*) or two (**) asterisks, where the former denotes 

significance of p < 0.05 or 0.01, and the latter significance of p < 0.001 compared to 

control conditions. Note the scale difference between graphs.
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0.001) and treatment with TNF at 1ng/ml (both p < 0.001); and significant differences 

were also detected between cells treated with TNF at 10 and 100ng/ml (both p < 0.001). 

In addition, significantly higher levels of fractalkine were detected in cell supernatants 

in cells treated with TNF at 1ng/ml in comparison to control conditions (p < 0.01).

After 48 hours under control conditions 44.7ng fractalkine/mg protein were 

detected in cell lysates. Following 48 hour treatment with TNF at 1, 10, and 100ng/ml,

36.2, 107.2, and 130.4ng fractalkine/mg protein were detected in the cell lysates, 

respectively (Figure 3.17). In comparison to cells under control conditions, the levels of 

fractalkine, which were cell associated, was significantly increased after 48 hours 

treatment with TNF at 10 (p < 0.01) and 100ng/ml (p < 0.001); this trend in significance 

levels was also observed in comparison to cells treated with TNF at 1ng/ml. The 

amount of fractalkine detected in the cell supernatant under control conditions was low 

at 15.6ng/mg protein, however following TNF treatment with 1,10,  and 100ng/ml of 

TNF, this rose to 121.0, 505.8, and 860.1ng fractalkine/mg protein, respectively (Figure 

3.17). Significant differences in the amount of shed fractalkine were observed in 

comparison to the control and cells treated with 10 (p < 0.05) and 100ng/ml TNF (p < 

0.01), and also between cells treated with 1 and 100ng/ml TNF (p < 0.01).

3.3.8 Determining ADAM-17 activity in hCMEC/D3 cells following TNF treatment 

ADAM-17 activity was determined in membrane fractions and total cell lysates from 

human adult brain endothelial cells treated with TNF at various concentrations for 24 

hours using a FRET assay. Purified ADAM-17 served as a positive control and the lysis 

buffer as a negative/background control. Under control conditions 14.5 RFU/pg protein 

was observed in cell membrane fractions (Figure 3.18 A). After treatment with TNF at 1, 

10, and 100ng/ml the activity levels of ADAM-17 in membrane fractions decreased 

non-significantly to 11.5, 11.6 and 11.8 RFU/pg protein, respectively, in comparison to 

cells under control conditions (p > 0.05) (Figure 3.8 A). This decrease in enzyme 

activity was also observed in total cell lysates, were an RFU of 58.6 was observed 

under control conditions, which decreased non-significantly in comparison to the 

control to 52.9, 46.4, and 52.3 upon treatment with TNF at 1, 10 and 100ng/ml, 

respectively (p > 0.05) (Figure 3.18 B). Any differences in cell numbers were accounted 

for by correcting values for activity by total cellular protein and could not be responsible 

for the decrease in ADAM-17 activity.
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Figure 3.18: ADAM-17 enzyme activity in hCMEC/D3 cells under control and TNF 

treatment. Membrane fractions (A) and total cell lysates (B) show a non-significant 

decrease in ADAM-17 enzyme activity under TNF treatment when compared to control 

conditions (p > 0.05).
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3.4 Discussion

In this present study, qRT-PCR revealed that ADAM-17, TIMP-3, TNFR1, TNFR2, 

fractalkine and vWF were all constitutively expressed in the human adult brain 

endothelial cell line, hCMEC/D3. Under inflammatory conditions, each gene showed 

differential expression, however, TNF elicited the greatest response on three of the 

genes of interest, namely ADAM-17, TIMP-3 and fractalkine, the latter being 

substantially and significantly up-regulated under these conditions. Thus, further 

analysis at the translational level was restricted to these genes and this cytokine. 

ADAM-17 mRNA and protein expression increased upon TNF treatment, as detected 

by qRT-PCR and western blotting, respectively, however neither of these increases 

reached significance. Another group has reported an increase in ADAM-17 at the 

mRNA level using Northern blot analysis and also at the protein level using western 

blot analysis following 24 hour TNF treatment (10ng/ml) in murine brain endothelial 

cells (Bzowska et al., 2004). Conversely, Majka et al. (2002) did not observe an 

increase in ADAM-17 mRNA in murine retinal endothelial cells following 24 hour TNF 

treatment (1ng/ml) as analysed by RT-PCR. The immunocytochemical analysis of 

ADAM-17 under control and TNF conditions revealed a cytoplasmic staining which was 

diffuse after acetone fixation and cytoskeletal after PFA fixation. Previous reports have 

reported that ADAM-17 is localised within perinuclear compartments in COS-7 cells 

(Schlondorff et al., 2000), but it also associates with actin in cardiomyoblast cells 

(Canault et al., 2006), which is in agreement with the present findings after acetone 

and PFA fixation, respectively. ADAM-17 has also been reported to associate with, and 

carry out its shedding activities, in lipid rafts (Tellier et al., 2006). Further assessment of 

hCMEC/D3 cells using dual labeling for ADAM-17 and antibodies against lipid rafts (e.g. 

Flotillin, a lipid raft-associated protein) could be performed to ascertain if this 

association exists in hCMEC/D3 cells.

TIMP-3 mRNA levels increased, but the protein levels did not change after TNF 

treatment, as shown by qRT-PCR and immunocytochemistry, respectively. Another 

study has reported a decrease in TIMP-3 mRNA and protein expression in endothelial 

cells upon cytokine treatment (Singh et al., 2005). However, this study used different 

treatment periods and different combinations of cytokines. Singh and colleagues used 

a cardiac endothelial cell line, which was co-treated with TNF (10ng/ml) and IL-1 (3 

(10ng/ml). qRT-PCR analysis after 8 and 24 hours treatment revealed that TIMP-3 

expression was down-regulated under these conditions. However, they did not study 

the effects of single cytokine treatment. An antagonistic relationship has been 

demonstrated between TNF and IFN-y in endothelial cells, whereby the latter can 

depress the effects of the former when administered together (Hillyer et al., 2003). In 

vivo studies from this laboratory have also reported a down-regulation of TIMP-3
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mRNA in peak EAE rat spinal cord white matter (Plumb et al., 2005). In this thesis, 

TIMP-3 expression in endothelial cells alone was examined whereas in vivo other cells 

types, including neurons and astrocytes, contribute to TIMP-3 expression levels 

(Jaworski and Fager, 2000; Vaillant et al., 1999). Despite this, it does not appear as 

though the increase in TIMP-3 mRNA and protein has had a significant inhibitory 

influence on the shedding activities of ADAM-17 or other sheddases, as evidenced by 

the shedding of fractalkine following TNF treatment.

TNF caused a significant increase in fractalkine mRNA and protein expression, 

and a significant increase in shedding from endothelial cells. It has been well 

documented that fractalkine expression increases in endothelial cells that are treated 

with inflammatory cytokines (Garcia et al., 2000; Imaizumi et al., 2004; Moon et al.,

2006). Moon et al. (2006) demonstrated significant increases in mRNA and protein 

expression of fractalkine in HUVECs when treated with TNF (10ng/ml). An induction of 

membrane-bound fractalkine, as determined by western blotting, has also been 

observed in rat aortic endothelial cells after TNF treatment, which was found to be 

dependent upon the transcription factor, NF-kB. However, shed fractalkine was not 

detected in the supernatant of these cultures (Garcia et al., 2000). Cell-associated 

fractalkine was observed in this present study without cytokine treatment, and was 

increased by the application of TNF and also significant increases in the amount shed 

into the supernatant under TNF treatment was observed. These discrepancies between 

this present study and that of Garcia and colleagues (2000) could be due to the 

different systems used to detect fractalkine at the protein level, i.e. western blotting 

versus an ELISA assay. The immunocytochemical detection of fractalkine in 

hCMEC/D3 cells, revealed a vesicular and cytoplasmic staining under control 

conditions, which was increased upon TNF treatment. Previous studies have shown 

that fractalkine inhabits two distinct compartments in human bladder carcinoma cells 

(ECV) cells: diffusely on the plasma membrane and in a punctate perinuclear 

compartment (Liu et al., 2005). The cell surface expression of fractalkine could not be 

achieved by ICC methods in this present study, however the punctate pattern of 

distribution was witnessed when cells were fixed with acetone.

ADAM-17 has been shown to be responsible for the induced shedding of 

fractalkine from the cell membrane of ECVs, HUVECs and murine fibroblast cells 

(Garton et al., 2001; Tsou et al., 2001), which can be accounted for by an 

accompanying increase in ADAM-17 enzymatic activity that occurred under stimulatory 

conditions (Doedens et al., 2003). A peptide-cleavage assay revealed that under basal 

conditions enzymes other than ADAM-17 were responsible for processing of a TNF 

processing-site peptide (DNP-SPLAQAVRSSSR-amide), a similar peptide was used in 

this thesis to determine ADAM-17 enzyme activity. However, upon stimulation with
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PMA an increase in peptide cleavage, that was ADAM-17-dependent, was observed 

(Doedens et al., 2003). The authors proved that ADAM-17 was responsible for this 

increase in peptide cleavage in a number of ways. Firstly, they utilized an immortalized 

mouse monocytic cell line which had a deletion for the Zn++-binding site in the catalytic 

domain of ADAM-17. This mutation had no effect on the cleavage rate in untreated 

cells, and treatment with PMA did not increase the generation of the cleavage product. 

Thus, the authors deduced that the PMA-induced activity must be ADAM-17-dependent. 

They also deduced from their work that peptide processing can be divided into two 

components: non-ADAM-17-dependent basal activity and PMA-induced activity that is 

ADAM-17-dependent. Secondly, treatment of ADAM-17 expressing cells with 

hydroxamate IC-3, a metalloprotease inhibitor that inhibits ADAM-17, slightly reduced 

the production of the peptide-cleavage product under basal conditions. However, under 

PMA treatment, IC-3 completely blocked the production of the peptide-cleavage 

product. Thirdly, the addition of TIMP-1 which inhibits most MMPs and in particular, 

ADAM-10, but not ADAM-17, had no effect on the basal or the PMA-induced peptide 

cleavage. However, treatment with ADAM-17's endogenous inhibitor, TIMP-3, 

produced similar effects as IC-3 (Doedens et al., 2003).

The authors also performed surface biotinylation experiments to determine the 

abundance of ADAM-17 on the cell surface under basal and PMA-treatment. PMA- 

treated cells displayed similar levels of ADAM-17 expression on the cell surface, which 

was reduced upon longer treatment with PMA (Doedens et al., 2003). Thus, an 

increase in ADAM-17-dependent cleavage does not necessarily equate to an increase 

in protein expression, but instead could be due to an increase in enzyme activity. 

Indeed, protein levels of ADAM-17 could be decreased due to internalisation and 

subsequent degradation (Doedens et al., 2000). ADAM-17 is decreased on the cell 

surface of THP-1 and JURKAT cells under PMA treatment, which is also a feature of 

other cell lines, and not merely restricted to hematopoietic cell lines, and is not due to 

shedding of the metalloprotease but due to internalisation, which could be a regulatory 

mechanism to control the shedding activity of ADAM-17 (Doedens et al., 2000). The 

overall level of ADAM-17 within the cells under PMA treatment was reduced in these 

experiments, as shown through western blotting, which thus suggests that ADAM-17 is 

degraded once it is endocytosed (Doedens et al., 2000). Thus this could explain why 

ADAM-17 protein expression was not significantly increased in hCMEC/D3 cells under 

TNF treatment. However, when cells were assessed for their levels of ADAM-17 

activity under TNF treatment conditions in the current study, an increase in enzyme 

activity could not be found.

SensoLyte™ is sold as an ADAM-17 enzyme activity assay, however, the 

specificity of the assay is questionable as other ADAMs, such as ADAM-10 also have
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similar substrate specificity as ADAM-17. The substrate is described as being derived 

from a sequence surrounding the cleavage site of ADAM-17, however, MMPs such as 

MMP-1, -9 and -13 have also been shown to cleave this substrate (Jin et al., 2002). 

However, the consumption of the substrate by these proteases was found to be less 

than 10% (Jin et al., 2002). Another enzyme activity assay (InnoZyme TACE Activity Kit, 

Merck Chemicals Ltd., U.K.), which utilised a monoclonal antibody to capture ADAM-17 

in the cell homogenate lysate, before addition of the substrate was tested in this study, 

but was incompatible with various plate readers and could not be used. It is also 

notable that an increase in shedding could be dependent upon an increase in substrate 

availability and concentration, not merely the enzyme; fractalkine protein expression 

was increased upon TNF treatment, which could have caused a shift in the reaction 

rate to favour the enzyme reaction. However, despite the limitations of the enzyme 

activity assay used in this study, it is notable that PMA-induced shedding could be 

different to TNF-induced shedding of fractalkine. PMA has been widely used as a 

tumour promotor in cancer research and as an activator of Protein Kinase C (PKC) 

(Saitoh and Dobkins, 1986), whereas TNF-induced expression of fractalkine is 

mediated through NF-kB, and not PKC or PKA (Garcia et al., 2000; Ahn et al., 2004; 

Moon et al., 2006). Hence the activation of fractalkine shedding seems likely to be 

mediated through the same pathway, however, previous reports in rat aortic endothelial 

cells have not observed an increase in shed fractalkine under TNF treatment and the 

involvement of NF-kB (Garcia et al., 2000). Recent work has revealed that protease 

activity is stimulation type-dependent; treatment of COS-7 cells with the ionophore, 

ionomycin, causes fractalkine to be shed by ADAM-10 (Hundhausen et al., 2007). It is 

therefore possible that TNF-induced shedding could activate ADAM-10 protease 

activity or another enzyme. To further investigate the involvement of ADAM-10 and/or - 

17 in fractalkine shedding, inhibition studies could be performed using TIMP-1 and -3 to 

determine whether fractalkine shedding is reduced. TIMP-1 should inhibit ADAM-10, 

whereas TIMP-3 should inhibit both ADAM-10 and -17. Although this would not 

exclusively prove the involvement of these proteases, as these inhibitors have other 

substrates, e.g. MMPs, it may help give some insight into the mechanism of fractalkine 

shedding.

ADAM-10 has been reported to cleave fractalkine in ECV, murine and primate 

fibroblast cells, however it has been shown to be responsible for constitutive, not PMA- 

induced shedding (Hundhausen et al., 2003). The mechanism of TNF-induced 

shedding of fractalkine in hCMEC/D3 may be regulated by cathepsin S, the latter has 

recently been identified as a protease for fractalkine shedding in dorsal root ganglia 

neurons (Clark et al., 2007). MMP-2 has also been found to mediate the shedding of 

fractalkine in murine embryonic fibroblasts (Dean and Overall, 2007). ADAM-17 has
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recently been implicated as a mediator in the conversion of MMP-2 from its inactive 

form to its active form (Godz et al., 2009), thus although MMP-2 could be involved in 

fractalkine shedding it does not appear that ADAM-17 activity has increased under TNF 

treatment conditions, to increase the production of the active form of MMP-2. Although 

TIMP-3 protein was detected and it inhibits ADAM-17 in a 1:1 stoichiometry, it also acts 

on other metalloproteinases including ADAM-10 (Amour et al., 2000; Kashiwagi et al., 

2001), and thus from the evidence reported here it appears the levels expressed are 

not sufficient to inhibit the shedding of fractalkine.

It is notable that an increase in fractalkine mRNA under IL-1(3 treatment was not 

observed in hCMEC/D3 cells, as reported by other groups in other endothelial cells 

(Bazan et al., 1997; Garcia et al., 2000). This could be due to the different endothelial 

cell types used in previous studies. Indeed other authors have described differences in 

behaviour concerning barrier function and responsiveness after TNF application in 

endothelial cells, which is dependent upon their source e.g. aortic versus brain 

endothelial cells. Brain endothelial cells were shown to be more responsive to TNF 

treatment, whereas aortic endothelia were more sensitive to IL-1 (3 and IFN-y (Harkness 

et al., 2003). Recent work on hCMEC/D3 cells has shown that the cells are responsive 

to IL-1 a, and therefore must express the IL-1RI and have the ability to react to IL-1 (3 as 

they act upon the same receptor (Afonso et al., 2007). IL-113 also induced a significant 

down-regulation of TNFR1 at 100ng/ml in this work, so the lack of responsiveness is 

not due to an inability of the cells to respond to IL-1 (3.

Fractalkine’s dual functionality allows it to interact with cells of the immune 

system via its membrane-bound form and/or shed form through its receptor, CX3CR1. 

In EAE, microglial and peripheral leucocytes positive for CX3CR1 are recruited to the 

inflamed lesions of the CNS via membrane-bound CX3CL1 (Sunnemark et al., 2005). 

However, in MS patients, membrane-bound fractalkine is not increased in brain tissue 

(Hulshof et al., 2003), but is shed at significant levels into the CSF and serum 

(Kastenbauer et al., 2003). Shedding of fractalkine from cell membranes in the CNS of 

MS patients could have a deleterious or protective mechanism. Fractalkine, in its shed 

form, is a potent chemoattractant for monocytes and T cells (Bazan et al., 1997). In 

addition, it can have autocrine effects on CX3CR1-expressing HUVEC endothelium by 

increasing the expression of ICAM-1, which in turn facilitates adhesion of neutrophils to 

the endothelium (Yang et al., 2007). Cell-bound and shed fractalkine also initiate 

platelet degranulation and surface expression of P-selectin, which promotes 

recruitment of leukocytes (Schafer et al., 2004; Schulz et al., 2007). Indeed, various 

studies have shown that blocking or abolishing the fractalkine - CX3CR1 interaction 

has beneficial effects upon the course of animal models of stroke and idiopathic 

inflammatory myopathy (Soriano et al., 2002; Suzuki et al., 2005). Generation of mice
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deficient in fractalkine and subjected to transient focal cerebral ischemia had a 28% 

reduction in infarct size and a lower mortality rate, in comparison to their wild-type 

littermates (Soriano et al., 2002). Using a monoclonal antibody against fractalkine 

significantly reduces the histopathological myositis score, the number of necrotic 

muscle fibres, and the infiltration of CD4+ and CD8+ T cells and macrophages in mice 

with experimental autoimmune myositis (Suzuki et al., 2005). Treatment with this 

antibody also down-regulated mRNA expression of TNF, IFN-y, and perforin in the 

muscles (Suzuki et al., 2005). These reports would thus support a role for fractalkine in 

cell recruitment.

Alternatively, shed fractalkine could act to reduce inflammation by masking 

CX3CR1-expressing leukocytes, preventing them from binding to the activated 

endothelium. Saturating the receptor with fractalkine, results in reduced immune cell 

infiltrates (e.g. monocytes, NK cells) as these cells cannot attach the fractalkine 

expressed on HUVECs or ECV monolayers (Ancuta et al., 2003; Chapman et al., 

2000b; Imai et al., 1997). Shedding of other adhesion molecules has also been shown 

to have a protective role in MS. Soluble ICAM-1 (slCAM-1) reduces lymphocyte 

attachment to cerebral endothelial cells in vitro (Riekmann et al., 1995) and high 

slCAM-1 serum levels correlate with Gd-MRI negative scans in relapse-remitting MS 

patients (Trojano et al., 1996). A recent report has also revealed that fractalkine could 

modulate leukocyte diapedesis by shedding from the endothelium which would 

facilitate the detachment of bound PBMCs (Hundhausen et al., 2007). However, 

silencing the fractalkine receptor in EAE results in increased EAE-related mortality, 

non-remitting spastic paraplegia and hemorrhagic inflammatory lesions, which is 

thought to be due to impaired recruitment of NK cells (Huang et al., 2006). Thus the 

protective or pathogenic role of fractalkine in MS and other inflammatory disorders 

requires further investigation.

In conclusion, increased expression and shedding of fractalkine by human adult 

brain endothelial cells following TNF activation of the endothelium, as demonstrated 

here, could regulate the attraction and T cell/monocyte load in CNS inflammation in MS. 

Whether fractalkine is beneficial (leukocyte blocking) or detrimental (chemoattractant) 

to this process in MS will require further investigation, e.g. migration assays. Evidence 

provided here suggests that this process is not regulated by an increased activity of 

ADAM-17, but instead could be due to regulatory mechanisms discrete from this 

system.
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Chapter 4
Optimisation of ADAM-17 knockdown in hCMEC/D3 cell line using siRNA technology



4.1 Introduction

TNF is one of the major pro-inflammatory cytokines implicated in a number of 

inflammatory diseases including, RA, Crohn's disease and MS. As such it has been 

targeted by therapeutic agents to “treat” a number of these diseases. Anti-TNF 

treatment has been shown to be effective in the animal model of MS, EAE, whereby 

blocking the actions of TNF reduced or alleviated symptoms of the disease (Ruddle et 

al., 1990; Selmaj et al., 1991). Flowever, when this treatment was translated to treat 

MS patients it resulted in compounding the disease rather than alleviating it (Van 

Oosten et al., 1996). ADAM-17 mediates the release of TNF, and is increased in MS 

white matter (Plumb et al., 2006) and in the spinal cord of EAE rats (Plumb et al., 2005), 

however, the exact role of ADAM-17 in MS pathogenesis is unknown. Another 

mechanism of reducing the bioavailability of TNF would be to knockdown the 

expression of ADAM-17, its natural convertase. However, as ADAM-17 sheds a 

number of substrates not only implicated in disease pathogenesis, e.g. immune 

modulation through cytokines and chemokines (Black et al., 1997; Moss et al., 1997; 

Garton et al., 2001; Tsou et al., 2001), but also normal physiological functions, e.g. 

development and angiogenesis (for review see Reiss and Saftig, 2009), this must be 

investigated first in vitro to understand the effects of reduced ADAM-17 activity on 

endothelial cell function.

Ectodomain shedding is involved in a number pathophysiological processes, 

including inflammation, cell degeneration and apoptosis, and oncogenesis (for review 

see Dello Sbarba and Rovida, 2002) and can be induced by a number of factors 

including PMA, ionophores, growth factors, cholesterol depletion and cytokine 

treatment (Pandiella and Massague, 1991; Fan et al., 2003; Matthews et al., 2003; 

Singh et al., 2005). Ectodomain shedding provides a post-translational mechanism by 

which membrane protein's surface expression can be down-regulated and their 

function modulated. In the case of fractalkine, ectodomain release determines whether 

the molecule acts as an adhesion molecule or as a chemokine. Cytokine-induced 

ectodomain shedding has not been investigated extensively, which with regards to MS, 

is surprising given that a number of pro-inflammatory cytokines have been found to be 

expressed within the inflammatory cuffs (Woodroofe and Cuzner, 1993) and therefore 

can directly activate the CNS endothelium inducing the shedding of a number of 

membrane-bound molecules, which are reported to be increased in MS patient serum, 

e.g. fractalkine (Kastenbauer et al., 2003). Fractalkine has been found to be 

proteolytically cleaved by ADAM-17 under PMA-induction (Garton et al., 2001; Tsou et 

al., 2001), whereas ADAM-10 is responsible for its constitutive shedding (Hundhausen 

et al., 2003). The physiological counterpart of PMA is unknown however, and previous 

work (Chapter 3) has shown that following TNF administration, an increase in
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fractalkine shedding is not associated with an increase in ADAM-17 activity, suggesting 

that under cytokine treatment, ADAM-17's role as a fractalkine sheddase is limited 

(Hurst et al., 2009).

4.1.1 Aims of the study

To investigate the functional role of ADAM-17 in fractalkine shedding from hCMEC/D3 

cells, under pro-inflammatory conditions by knocking down the expression of the gene 

at the mRNA and protein level using siRNA technology.
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4.2 Materials and methods

4.2.1 Suppliers used in this chapter

Bioline Ltd, 16 The Edge Business Centre, Humber Road, London NW2 6EW; 

Dharmacon, Unit 9 Atley Way, North Nelson Industrial Estate, Cramlington, 

Northumberland, NE23 1WA, UK; Dako UK Ltd., Denmark House, Angel Drove, Ely, 

Cambridgeshire, CB7 4ET, UK; or as otherwise stated in Chapter 2 section 2.2.1 or 

Chapter 3 section 3.2.1.

4.2.2 RNA interference (RNAi)

RNAi is a naturally occurring phenomenon in eukaryotic cells involved in cellular 

defense against viral invasion, transposon expansion, and post-transcriptional 

regulation (Zamore, 2001; Tuschl, 2001; Sharp, 2001; McManus and Sharp, 2002; 

Hannon, 2002; Hutvagner and Zamore, 2002). RNAi is also known as gene silencing, 

and is a technique which allows the down-regulation of a gene of interest, by 

incorporating double stranded RNA (dsRNA), which has a complementary sequence to 

the target mRNA into a living cell. There are various dsRNAs that can initiate gene 

silencing in mammalian cells using RNAi, including synthetic small interfering RNAs 

(siRNAs), endoribonuclease-prepared siRNAs (esiRNAs), and short hairpin RNAs 

(shRNAs) (Snove and Rossi, 2006). Gene regulation using siRNA machinery has not 

been found to occur naturally within mammals, but appears to be controlled by 

microRNAs (miRNAs), which bind miRNA binding sites, predominantly located on the 3' 

untranslated region (UTR) on mRNAs (Pillai, 2005).

4.2.1.1 Basic principles of siRNA induced gene knockdown

Small interfering RNAs (siRNAs) are synthetic dsRNA duplexes which are 21-23 

nucleotides (nt) long that are base-paired with 2-nt 3’ overhangs at each end (Figure 

4.1). They are usually designed to be fully complementary to their target mRNA. One 

strand of the dsRNA duplex is selectively incorporated into the RNA-induced silencing 

complex (RISC) by RNase III and/or other components of the RNAi machinery. This 

strand is known as the guide strand, as it acts as a guide RNA to direct the RISC to the 

complementary mRNAs. It is also the antisense strand to the targeted mRNA. Its base- 

paired complementary sense strand, known as the passenger strand, is degraded upon 

incorporation of the guide strand into RISC (Figure 4.1). mRNAs with a perfect or near­

perfect complementary sequence to the guide strand are recognised by the catalytic 

RISC and are cleaved. Cleavage occurs at a site exactly 10 nt upstream from the nt 

opposite the most 5’ nt of the guide strand. The target mRNA fragments are then 

subsequently degraded by cellular nucleases, which results in knockdown in the 

expression of the corresponding gene (Figure 4.1) (Pei and Tuschl, 2006).
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Figure 4.1: Basic principles of small interfering RNA (siRNA) induced gene 

knockdown. The siRNA duplexes consist of a guide strand (black) and a passenger 

strand (blue), which have 2-nucleotide (nt) 3' overhangs at each end. Upon selective 

incorporation of the guide strand into the RNA-induced silencing complex (RISC) the 

passenger strand is degraded. The guide strand then directs the RISC to the 

complementary mRNA, which is then cleaved by the catalytic RISC at a site precisely 

10 nt upstream from the most 5' nt of the guide strand (scissors). The mRNA fragments 

of the target gene are then subsequently degraded by cellular nucleases, resulting in 

knockdown of the gene of interest (Adapted from Pei and Tuschl, 2006).
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4.2.1.2 Positive and negative controls to validate siRNA knockdown

For each experiment, controls should be run. As a positive control for siRNA 

knockdown, cells are transfected with siRNA directed towards a housekeeping gene, 

such as GAPDH. The negative control or off-target control is a scrambled sequence, 

which bears no homology to the human, mouse or rat genome. The negative control 

should have no effect on GAPDH expression, both at the transcriptional and 

translational level, and acts as a baseline for measuring the effects of the GAPDH 

siRNA. As the negative control contains the same reagents as the samples with 

specific siRNA, it can be used to determine any nonspecific effects such as off-target 

siRNA effects, cytotoxicity of the transfection agent and/or the siRNA, or inadequate 

transfection conditions. In addition to these two controls, a buffer-only control should 

also be included in the experiment. This consists of media containing siRNA buffer, but 

lacking transfection agent and siRNA.

4.2.1.3 Determining siRNA knockdown efficiency and cytotoxicity

Two parameters are essential when determining transfection efficiency: mRNA levels 

and also cell viability. In addition to this, protein levels of the gene of interest can also 

be assessed. A >70% gene knockdown with <15% cell death should be expected from 

a successful transfection experiment. In cases where insufficient gene knockdown is 

observed and cytotoxicity is high, the protocol should be adjusted by altering the 

concentration of the transfection agent and siRNA, altering the exposure time of the 

cells to the reagents, and also by determining the optimal cell density (optimal 

confluency for transfection is 30-80%) (Figure 4.2) 

(http://www.ambion.eom/techlib/tn/121/9.html).

4.2.2 Cell culture conditions

4.2.2.1 Determination of the optimal volume of DharmaFECT 1 to be used for siRNA 

gene knockdown of ADAM-17, using qRT-PCR

In order to determine the optimal volume of transfection reagent required to facilitate 

ADAM-17 gene knockdown in hCMEC/D3 cells, 5x104 cells/500pl/well of a 24 well 

plate were seeded in complete media without antibiotics. After 24 hours in culture, the 

media was aspirated, the cells washed twice with PBS, and antibiotic-free media with 

100nM of siRNA and either 0.5, 1.0, or 1.5pl/well of DharmaFECT 1 was added. 

Antibiotic-free media with an appropriate amount of siRNA dilution buffer (1x siRNA 

buffer (100mM KCI, 30mM HEPES-pH 7.5, 1.0mM MgCI2), Dharmacon) was used as a 

control. DharmaFECT is a lipid transfection reagent, which complexes with siRNAs to 

facilitate their transfer into cells. DharmaFECT 1 was selected on the basis that it has
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Step 1:
Determine the amount of transfection agent 

required for siRNA delivery

Acceptable levels of 
knockdown and cell viability 

No further optimisation
Step 2:

Excessive cytotoxicity
Replace medium at 6 and 24hr 

after transfection

Acceptable levels of 
knockdown and cell viability 

No further optimisation

Knockdown insufficient

Step 3:
Determine amount of siRNA

Acceptable levels of 
knockdown and cell viability 

No further optimisation

Knockdown insufficient

Step 4:
Determine optimal plating density of cells

Figure 4.2: siRNA optimisation steps to ensure optimum gene knockdown and 

minimal cell death. At each step the level of gene knockdown and cytotoxicity was 

assessed. Only if acceptable knockdown and cytotoxicity levels are obtained can the 

experimental protocol proceed.
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been previously used to transfect HUVEC cells with siRNA (Dharmacon, Lafayette). 

The siRNA oligonucleotides were supplied from the siGENOME™ collection 

(Dharmacon) and designed to target either ADAM-17 (ON-TARGETplus SMARTpool; 

accession number NM_003183) or GAPDH (accession number NM_002046) mRNA 

sequence. As negative controls, a siGENOME non-targeting siRNA pool (Dharmacon) 

(catalogue number D-001206-14-05) and siGENOME RISC-free control siRNA 

(Dharmacon) (catalogue number D-001220-01-05) were selected. RISC-free controls 

are non-targeting siRNAs with an impaired ability for RISC interaction. After 24 hours 

culturing, either the media was aspirated and replaced with antibiotic-free media so that 

the cells could be cultured for a further 24 hours (this limits cell death due to exposure 

to the siRNA reagents), or the media was aspirated and the cells rinsed twice with PBS 

and the RNA extracted using TRI Reagent (Sigma-Aldrich, U.K.) (see Chapter 2 

section 2.2.4.1). qRT-PCR was carried out as explained previously (see Chapter 2 

section 2.2.5.2) using primer and probe sets designed against ADAM-17, Cyclophilin A 

and GAPDH (Applied Biosystems, U.K.). Each experiment was carried out in triplicate. 

Cyclophilin A expression was also examined to determine its suitability as 

housekeeping gene.

4.2.2.2 Validation of RNA using native agarose gel electrophoresis and SYBR green as 

an RNA dye

To determine the integrity of the RNA extracted from the cells, native agarose gels 

were run after each RNA extraction. In this case, however, SYBR green (Sigma-Aldrich, 

U.K.) was used as an RNA dye instead of ethidium bromide. The agarose gel was 

prepared as previously described (see Chapter 2 section 2.2.4.2), however, instead of 

adding ethidium bromide to the gel, 2pl of SYBR green was added to 1pl of RNA and 

2pl of DNA loading dye (Bioline, U.K.). The total 5pl was then loaded into a well of the 

agarose gel. The RNA was then electrophorised for 15 minutes at 100V. Serial images 

were captured using a UVP epi II dark room on the SYBR green setting and using 

Labworks version 4.0.

4.2.2.3 Assessment of ADAM-17 protein expression after 72 hours of siRNA gene 

knockdown using western blotting

In order to determine the optimal volume required to facilitate ADAM-17 gene 

knockdown in hCMEC/D3 cells, 2.5x105 cells/2ml/well of a 6 well plate were seeded in 

complete media without antibiotics. Each experiment was performed in triplicate. After 

24 hours, the media was aspirated, the cells washed twice with PBS, and antibiotic-free 

media with 100nM siRNA against ADAM-17, GAPDH, non-target control, RISC-free 

were added. Antibiotic-free media and media with buffer alone served as controls. After
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24 hours, the media was aspirated and replaced with antibiotic-free complete media 

(this limits cell death due to exposure to the siRNA reagents) and the cells cultured for 

a further 48 hours, at which point the cells were washed twice and the total cell protein 

was extracted using TRI Reagent (Sigma-Aldrich, U.K.) (see Chapter 3 section 3.2.5.2). 

SDS-PAGE and western blotting was performed as previously described (see Chapter 

3 section 3.2.5.5). GAPDH was detected using a monoclonal antibody (Abeam, U.K., 

Ab8245) at 1:5000 in TBS-T with 5% non-fat milk powder overnight at 4°C, and 

subsequently using a polyclonal rabbit anti-mouse Ig HRP secondary antibody at 

1:1000 (Dako, U.K., P0161).

4.2.2.4 Assessment of fractalkine shedding by ELISA and ADAM-17 protein expression 

by western blotting after 72 hours siRNA gene knockdown and 24 hour TNF treatment 

To determine whether the protein knockdown of ADAM-17 had had an effect on 

fractalkine shedding, an ELISA assay on shed fractalkine in the cell supernatant was 

performed. However, as fractalkine shedding was previously shown to be optimally 

induced following TNF treatment (Chapter 3 section 3.3.6 and 3.3.7) the cells were 

subsequently treated with TNF at 100ng/ml for a further 24 hours following 72 hour 

siRNA treatment. hCMEC/D3 cells were seeded at 2.5x105 cells/2ml/well of a 6 well 

plate in complete media without antibiotics. After 24 hours, the media was aspirated, 

the cells washed twice with PBS, and antibiotic-free media with 100nM siRNA against 

ADAM-17, GAPDH, non-target control was added. Antibiotic-free media and media with 

buffer alone served as controls. Each experiment was performed in triplicate. After 24 

hours, the media was aspirated and replaced with antibiotic-free complete media so 

that the cells could be cultured for a further 48 hours, at which point the cells were 

washed twice with PBS and the media replaced with 100ng/ml TNF in serum- and 

antibiotic-free media. Following 24 hours, the cell supernatant was collected, 

centrifuged at 300 x g and the supernatant stored at -20°C until analysis by ELISA 

could be performed (see Chapter 3 section 3.2.6.5). The total cell protein was extracted 

using TRI Reagent (Sigma-Aldrich, U.K.) and analysed by western blotting (see 

Chapter 3 section 3.2.5).

4.2.2.5 Statistical analysis of data

qRT-PCR data was analysed using 2'ACT relative expression values and the non- 

parametric Mann Whitney U test. ELISA data was analysed using a parametric one­

way ANOVA followed by Tukey multiple comparison test, so that comparisons could be 

made between each of the groups. Significance was set at p < 0.05 and the data are 

presented as mean ± SEM for the indicated number of experiments.
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4.3 Results

4.3.1 Stability of cyclophilin A under siRNA treatment

To determine whether cyclophilin A would be a suitable housekeeping gene under 

siRNA treatment, the gene was analysed following treatment with 100nM non-targetting 

siRNA and various volumes of DharmaFECT 1. This revealed that following 24 hours 

treatment with DharmaFECT 1 at 0.5-1.5pl/well of a 24 well plate, cyclophilin A 

expression levels fluctuated compared to the buffer-only control, but not significantly so 

(p > 0.05) (Figure 4.3). Thus, cyclophilin A was used to normalise data.

4.3.2 Determination of the optimal volume of reagent to be used for siRNA gene 

knockdown of ADAM-17

To determine the optimal volume for gene knockdown in hCMEC/D3 cells, cells were 

initially treated for 24 hours with siRNA against ADAM-17, GAPDH and a non-target 

control with 0.5, 1, or 1.5pl/well of DharmaFECT 1 transfection reagent. Cells treated 

with buffer alone were used as a control. Following 24 hours treatment with the siRNA 

and 0.5, 1, or 1.5pl/well of transfection reagent, ADAM-17 mRNA expression 

decreased significantly by 25%, 55%, and 60%, respectively (p < 0.05) (Figure 4.4 A). 

GAPDH decreased significantly by 55%, 83%, and 85% using the same volumes of 

DharmaFECT 1 (p < 0.05) (Figure 4.4 B). The non-target control fluctuated but 

remained at around the buffer control levels, with non-significant increases of 111%, 

105%, and 111%, respectively (p > 0.05) (Figure 4.4 C).

4.3.3 Twenty four versus forty eight hour treatment with siRNA to determine the optimal 

concentration of DharmaFECT 1

As the silencing of ADAM-17 did not reach a 70% reduction with any of the 

concentrations of transfection reagent after 24 hours of culturing with the siRNA in 

hCMEC/D3 cells, an experiment was performed to determine whether 48 hours siRNA 

treatment would elicit a greater effect. As such, cells were treated with the same 

concentration of siRNA against ADAM-17 and between 0.5 and 1.5pl/well of 

DharmeFECT 1 reagent. After 24 hours culturing with the siRNA, ADAM-17 mRNA 

expression decreased significantly by 50%, 70% and 69% with 0.5, 1.0 and 1.5pl/well 

of transfection reagent, respectively (p < 0.05) (Figure 4.5 A). After 48 hours treatment 

with siRNA, ADAM-17 mRNA expression was significantly reduced by 64%, 73%, and 

69% using 0.5, 1.0 and 1.5pl/well of transfection reagent, respectively (p < 0.05) 

(Figure 4.5 B). As ADAM-17 mRNA expression decreased by 73% using 1pl/well of 

DharmaFECT 1 after 48 hours in culture, this concentration of transfection reagent and 

time period for incubation with the siRNA were chosen for subsequent analysis of 

mRNA.
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Figure 4.3: Expression levels of cyclophilin A after 24 hour treatment with 100nM 

non-targetting control siRNA and various concentrations of DharmaFECT 1. The

cells were treated for 24 hours and then the RNA extracted and analysed by qRT-PCR. 

Data are represented as the mean (n = 3) ± SEM. Cyclophilin A expression was not 

significantly affected by any of the amounts of transfection reagent compared to the 

buffer-only control (p > 0.05).
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Figure 4.4: Determination of the optimal volume of transfection reagent, 

DharmaFECT 1, for gene knockdown of ADAM-17 in hCMEC/D3 cells using 

siRNA technology. Between 0.5 and 1.5pl per well of transfection agent were used in 

combination with 100nM of siRNA against ADAM-17 (A), GAPDH (B) or a non-targeting 

scrambled RNA sequence (C), which were used as positive and negative controls, 

respectively. The cells were treated for 24 hours and then the RNA extracted and 

analysed by qRT-PCR. Data are represented as the mean (n = 3) ± SEM. An asterisk 

indicates statistically significant differences of p < 0.05 (*) between treated samples 

and the control.
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Figure 4.5: Time course study on the effects of different concentrations of 

DharmaFECT 1 transfection reagent on ADAM-17 mRNA expression in 

hCMEC/D3 cells using 100nM of siRNA. Cells were treated for either 24 (A) or 48 (B) 

hours with 0.5 to 1.5pl/well of DharmaFECT 1 reagent in combination with 100nM of 

ADAM-17 siRNA. The RNA was then extracted and analysed by qRT-PCR. Data are 

represented as the mean {n = 3) ± SEM. An asterisk indicates statistically significant 

differences p < 0.05 (*) between treated samples and the control.
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4.3.4 siRNA knockdown o f ADAM-17, including all controls, following 48 hour treatment 

with siRNA and 1 pl/well o f DharmaFECT 1

The effects of knocking down ADAM-17 mRNA expression using 1pl/well of 

transfection reagent after 48 hours was repeated, including all controls for GAPDH, 

non-target control, and RISC-free control (Figure 4.6). After 48 hours treatment with 

siRNA and 1 pl/well of DharmaFECT 1, ADAM-17 mRNA expression was significantly 

reduced by 61% (p < 0.05) and GAPDH significantly reduced by 96% (p < 0.05) 

(Figure 4.6). The mRNA levels of GAPDH following non-target control and RISC-free 

treatment were non-significantly reduced by 7% and 11%, respectively (p > 0.05) 

(Figure 4.6).

4.3.5 Knockdown of ADAM-17 protein expression in hCMEC/D3 cells following 72 hour 

treatment with siRNA

Protein expression following siRNA treatment was analysed after 72 hours (Figure 4.7). 

Following 72 hours treatment with siRNA against ADAM-17, the prominent 100 and 

80kDa bands, which correspond to the pro- and mature form of ADAM-17, respectively, 

were reduced (Figure 4.7), indicating that protein knockdown was successful. GAPDH, 

RISC-free, non-target control, buffer only and media only controls had no effect on the 

level of protein expression of ADAM-17 (Figure 4.7). Expression of GAPDH was also 

determined by western blotting and showed a reduction in expression after 72 hours 

treatment with siRNA against GAPDH (Figure 4.7). Cells treated with siRNA against 

ADAM-17, RISC-free, or non-target control, and buffer-only and media only controls 

showed no altered expression levels in the amount of GAPDH protein (Figure 4.7).

4.3.6 Effects on ADAM-17 protein expression and fractalkine shedding following siRNA 

knockdown and TNF treatment in hCMEC/D3 cells

Following 72 hours siRNA treatment, and a further 24 hour treatment with TNF, ADAM- 

17 protein expression was reduced comparable to that obtained in the 72 hour time 

course (compare Figures 4.7 and 4.8). The controls, GAPDH, non-target control, 

buffer-only and media only elicited no effect on ADAM-17 protein expression. Protein 

levels of GAPDH were also examined at this time point and after TNF treatment and 

showed a reduction in expression following treatment with siRNA against GAPDH. No 

difference in expression levels of GAPDH were observed by the controls (Figure 4.8).

To determine the effects of knocking down ADAM-17 expression on the 

shedding of fractalkine, an ELISA assay on fractalkine levels in the cell supernatant 

was performed from cells, which had been treated for 72 hours with siRNA and then a 

subsequent 24 hours with TNF at 100ng/ml (Figure 4.9). Cells treated initially with
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[siRNA] 100nM/well

Figure 4.6: Knockdown of ADAM-17 gene expression in hCMEC/D3 cells using 

1 pl/well of DharmaFECT 1 reagent for 48 hours. GAPDH was used as a positive 

control and the non-target and RISC-free siRNAs were used as negative controls. Data 

are represented as the mean (rt -  3) ± SEM. An asterisk indicates statistically 

significant differences p < 0.05 (*) between treated samples and the control.
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Figure 4.7: Protein expression in hCMEC/D3 cells following siRNA treatment or 

under control conditions. Cells were treated with siRNA (100nM) for 72 hours 

against ADAM-17 or GAPDH, or media with a RISC-free (RF), non-target control, 

buffer only or media only control. Following 72 hours siRNA knockdown total cell 

protein was extracted and immunoreactivity for ADAM-17 and GAPDH was carried out 

by western blotting. ADAM-17 immunoreactivity revealed bands at 100 and 80kDa, 

corresponding to the pro- and mature forms of the protein, respectively. Following 

ADAM-17 siRNA addition to the cells, a reduction in ADAM-17 at the protein level was 

observed. GAPDH siRNA addition to the cells, which acted as a positive control, 

resulted in a reduction of the housekeeping gene at the protein level. Protein 

expression levels of ADAM-17 and GAPDH were not altered under any of the control 

conditions (RF, non-target, buffer or media). Actin was used as a loading control. Data 

are representative of three replicate experiments.
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Figure 4.8: Protein expression in hCMEC/D3 cells following TNF treatment with 

siRNA knockdown or under control conditions. Cells were treated with siRNA 

(100nM) for 96 hours against ADAM-17 or GAPDH, or media with a non-target control, 

buffer only or media only control was added. In the last 24 hours of treatment TNF at 

100ng/ml was added. ADAM-17 immunoreactivity revealed bands at 100 and 80kDa, 

corresponding to the pro- and mature forms of the protein, respectively. Following 

ADAM-17 siRNA addition to the cells, a reduction in ADAM-17 at the protein level was 

observed. GAPDH siRNA addition to the cells, which acted as a positive control, 

resulted in a reduction of the housekeeping gene at the protein level. Protein 

expression levels of ADAM-17 and GAPDH were not altered under any of the control 

conditions (Non-target, buffer or media). Actin was used as a loading control. Data are 

representative of three replicate experiments.
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Figure 4.9: Effects on TNF-induced fractalkine shedding in hCMEC/D3 cells 

following siRNA knockdown of ADAM-17 expression. Cells were treated for 72 

hours under control conditions (media or buffer-only control) or with siRNA against a 

non-target control (negative control), GAPDH (positive control) or ADAM-17. The media 

was then replaced with serum- and antibiotic-free media containing 100ng/ml of TNF 

and incubated for 24 hours. The cell supernatant was then removed and stored for later 

analysis by ELISA. Data are represented as the mean ( a? = 3) ± SEM. No significant 

difference was observed between any of the groups (p > 0.05).
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media or buffer only control media showed comparable concentrations of fractalkine in 

the cell supernatant following TNF application, at 41.5 and 42.8 ng fractalkine/mg 

protein, respectively (Figure 4.9). Cells treated with a non-target control or GAPDH 

siRNA produced reduced levels of fractalkine following TNF application, at 33.3 and

36.3 ng fractalkine/mg protein, respectively, in comparison to the media and buffer 

controls (Figure 4.9). However, cells treated with siRNA against ADAM-17 and 

subsequently with TNF showed a further reduction in the shedding of fractalkine at 25.7 

ng fractalkine/mg protein in comparison to the controls (Figure 4.9). No significant 

difference was observed between the groups (p > 0.05).
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4.4 Discussion

MS pathology is associated with both an increased expression of inflammatory 

cytokines within the serum and the inflammatory cuffs of patients, which can cause the 

activation of the endothelium and subsequently the up-regulation of adhesion 

molecules. Fractalkine expression in endothelial cells has been shown to be induced 

by a number of cytokines including TNF, IFN-y and IL-1 (Bazan et al., 1997; Garcia et 

al., 2000; Imaizumi et al., 2000; Flatakeyama et al., 2004). Flowever, there are few 

reports on the shedding of the chemokine following TNF treatment. Shedding of 

fractalkine by brain endothelial cells following TNF treatment was demonstrated in 

Chapter 3 (section 3.3.6), however, ADAM-17 expression and activity could not 

account for this following TNF treatment (Hurst et al., 2009). To fully elucidate the role 

of ADAM-17 in MS pathogenesis and in fractalkine shedding following pro-inflammatory 

cytokine treatment, siRNA knockdown of ADAM-17 was performed.

It was firstly important to establish the optimal conditions for knocking down 

ADAM-17. To this effect, the mRNA was examined following 24 hour treatment with 3 

concentrations of DharmaFECT 1 transfection reagent. Following 24 hour treatment, 

none of the ADAM-17 levels were reduced by 70%, a level specified by the supplier to 

produce a functional effect. Therefore, a comparative study of 24 and 48 hours 

treatment was performed. Following 24 and 48 hour treatment with the siRNA, ADAM- 

17 levels were on this occasion reduced by 70% and 73%, respectively, when treated 

with 1 pl/well of a 24-well plate, thus this concentration was chosen to study the protein 

levels. As the 48 hour incubation period produced a stronger reduction in ADAM-17 

mRNA expression, it was decided to use the 48 hour incubation period for further 

analysis of mRNA. Reduced expression levels at the translational level should be 

evident between 72 and 96 hours of siRNA treatment. As fractalkine shedding is 

induced under TNF treatment, it was decided to knockdown ADAM-17 expression for 

72 hours and then replace the media with media containing TNF at 100ng/ml and leave 

for a further 24 hours. Firstly, to determine whether ADAM-17 expression was indeed 

knocked down at the 72 hour time point, the protein expression at this time point was 

examined by western blotting. This revealed that ADAM-17 expression at the protein 

level was significantly reduced following 72 hours of siRNA knockdown. Following TNF 

treatment, ADAM-17 expression at the protein level was also knocked down. 

Fractalkine shedding into the cell supernatant was also examined, and revealed that 

although shedding of fractalkine is reduced upon knockdown of ADAM-17 it was not 

significantly so. This suggests that other proteases may contribute to the shedding of 

fractalkine under TNF treatment or that there is a residual amount of ADAM-17 which 

has not been knocked down, which is sufficient to maintain the shedding of fractalkine. 

The percentage of cells that were transfected with the siRNA was not determined in

148



this present study as equipment to facilitate the viewing of siGLO® fluorescent control 

reagents (fluorescent RNA duplexes, which allow visual inspection of transfection 

efficiency) was not available. Future studies could be performed using siGLO® to 

determine the efficiency of transfection should the equipment become available. It 

could also indicate that 70% knockdown of ADAM-17 is not sufficient to elicit a 

decrease in fractalkine shedding.

Ectodomain release of proteins can be mediated by a number of factors 

including, PMA (Dello Sbarba and Rovida, 2002), ionophore (Hundhausen et al., 2007), 

growth factor administration (Subramanian et al., 1997), and more recently cholesterol 

depletion (Matthews et al., 2003; Tellier et al., 2006; 2008). However, the shedding 

activities following cytokine treatment has received little attention (Ludwig et al., 2002; 

Singh et al., 2005). With regards to fractalkine, there are few studies to date which 

have investigated shedding and the sheddase responsible for this proteolytic activity 

under cytokine treatment. This is somewhat surprising given that TNF is expressed by 

T cells and macrophages within the perivascular cuff of MS lesions (Woodroofe and 

Cuzner, 1993) and fractalkine is found in significant levels in the serum of MS patients 

(Kastenbauer et al., 2003). ADAM-17 has been described as mediating the inducible 

shedding of fractalkine under PMA treatment (Garton et al., 2001; Tsou et al., 2001), 

whereas ADAM-10 mediates shedding of the chemokine under ionophore treatment 

(Hundhausen et al., 2003). Cathepsin S has also been shown to act as a protease for 

fractalkine in dorsal root ganglia neurons (Clark et al., 2007) and MMP-2 mediates the 

shedding of the chemokine in murine embryonic fibroblast cells (Dean and Overall,

2007). As knocking down ADAM-17 expression only slightly reduced fractalkine 

shedding following TNF treatment in endothelial cells, it is likely another protease(s) 

contributes to the release of the chemokine under TNF treatment, e.g. ADAM-10, 

cathepsin S or MMP-2. Future studies would need to be carried out to determine 

whether these enzymes mediate shedding of fractalkine in a cytokine environment, i.e. 

independent/combined siRNA knockdown of the proteases.

In addition as ADAM-17 is associated with the shedding of various other 

membrane-bound proteins associated with inflammation it will be necessary to expand 

this research and examine other proteins which may have been affected by the 

knockdown of ADAM-17. However, as the enzyme activity was not significantly 

changed following TNF treatment (Chapter 3 section 3.3.8) and siRNA treatment did 

not significantly reduce fractalkine shedding, it is likely other substrates of ADAM-17 

may not be affected by ADAM-17 knockdown. Instead it appears likely TNF activates 

another protease responsible for fractalkine release. It has been shown that treatment 

of murine endothelial cells with siRNA that targets ADAM-17 show a significant 

reduction in the amount of soluble VCAM-1 (sVCAM-1) when treated with IL-1 (3 and
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TNF (Singh et al., 2005). This could suggest that ADAM-17 activation requires co­

treatment with multiple cytokines. This would also be more representative of the in vivo 

environment in the CNS in MS were many cytokines are differentially expressed within 

MS tissue and serum (Beck et al., 1988; Merrill, 1992; Lu et al., 1993; Woodroofe and 

Cuzner, 1993; Mokhtarian et al., 1994). It is also notable that the present work supports 

the previous work in chapter 3, whereby the increase in shedding of fractalkine under 

TNF treatment does not coincide with an increase in expression or activity of ADAM-17 

and therefore it is likely another protease is responsible for this activity.

Recent studies using siRNA knockdown of ADAM-17 in HUVECs, to determine 

the enzyme's role in angiogenesis, have revealed that ADAM-17 plays a significant role 

in determining cell morphology, proliferation and in vitro angiogenesis (Gooz et al., 

2009). siRNA induced ADAM-17 silencing, resulted in a significant reduction in cell 

proliferation and also under subconfluent conditions HUVECs appeared irregular in 

shape and avoided cell-cell contact. This behaviour was accounted for by lack of 

shedding of adhesions molecules by ADAM-17, e.g. VCAM-1 (Garton et al., 2003). 

This particular aspect of hCEMC/D3 cells was not investigated in this present study, 

however, the cells were seeded at 50% confluency, in-line with the guidelines of 

Dharmacon to facilitate transfection. When the cells reached confluency, it was not 

observed that cells avoided cell-cell contact. Further investigation into these aspects of 

ADAM-17 knockdown is required. It was also observed in the study by Gobz and 

colleagues (2009) that ADAM-17 can mediate the conversion of MMP-2 from an 

inactive form to an active form and MMP-2 has also been found to induce fractalkine 

cleavage (Dean and Overall, 2007). Inhibiting ADAM-17 in this present study did not 

have a significant effect upon fractalkine shedding, either through ADAM-17's direct 

action upon fractalkine or indirectly through MMP-2 activation. Thus, another enzyme 

such as ADAM-10 or cathepsin S could be facilitating fractalkine cleavage.

Reducing TNF bioavailability has long been an attractive treatment for 

autoimmune conditions and has been successful to a degree in RA and Crohn's 

disease. Inhibiting TNF proved successful in treating EAE (Ruddle et al., 1990; Selmaj 

et al., 1991; Selmaj et al., 1995). However, the administration of anti-TNF treatment 

elicited exacerbations in MS (van Oosten et al., 1996) and has even possibly resulted 

in the development of MS in a small number of patients who were being treated for RA 

(Sicotte and Voskuhl, 2001). Reduced bioavailability is associated with reduced 

remyelination ability, and prolonged responses from myelin-reactive T cells (Arnett et 

al., 2001; Kassiotis and Kollias, 2001). The pro-inflammatory effects of TNF are 

mediated through TNFR1 (Kassiotis and Kollias, 2001) and transgenic mice who 

cannot produce soluble TNF and thus only express transmembrane TNF show 

suppressed EAE onset and progression, while maintaining the autoimmune
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suppressive properties of TNF (Alexopoulou et al, 2006). Thus it is thought that 

inhibiting the soluble TNF/TNFR1 pathway may be a more effective treatment for 

diseases such as MS. Inhibiting ADAM-17 would thus be an attractive treatment for MS, 

as this would prevent the solubilisation of TNF whilst retaining the membrane-bound 

form of the cytokine intact. However, it must also be noted that ADAM-10 can cleave 

TNF (Lunn et al., 1997; Rosendahl et al., 1997), and could possibly take over this 

activity if ADAM-17 is silenced. Inhibitors of ADAM-17 have already been produced to 

treat autoimmune diseases such as RA, however, either their efficacy was not sufficient 

or they resulted in hepatoxicity due to the accumulation of transmembrane TNF, 

TNFR1 and TNFR2 (for review see Moss et al., 2008; McCoy and Tansey, 2008). In 

addition, it must also be noted that ADAM-17 is responsible for the cleavage of an 

array of membrane-bound substrates not only detrimentally implicated in disease but 

also beneficial; ADAM-17 is an a secretase which mediates the production of the non- 

amyloidgenic species of APP (Allinson et al., 2004). Thus, if ADAM-17 was inhibited 

within the brain this may result in the production of the amyloidgenic protein, causing 

AD.

In conclusion siRNA technology is a useful tool to examine the functional role of 

proteins, the application of which in this study, revealed that ADAM-17 knockdown 

does not significantly reduce the shedding of fractalkine from the human adult brain 

endothelial cell line, hCMEC/D3. This work and that described in Chapter 3 suggests 

that ADAM-17 does not account for the majority of fractalkine release under pro- 

inflammatory conditions and that other proteases must be involved. Future work is 

required to determine whether ADAM-10, cathepsin S, MMP-2 or an unidentified 

enzyme is responsible for this.
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Chapter 5
Expression of ADAM-17 and fractalkine in post-mortem human control and MS brain 

tissue



5.1 Introduction

ADAM-17 has been found to be localised to various tissues of the body, including the 

normal human CNS (Goddard et al., 2001). Within the CNS it is restricted to endothelial 

cells and astrocytes (Goddard et al., 2001; Plumb et al., 2006). In MS white matter and 

the spinal cord of rats with EAE, the levels of ADAM-17 have been found to be up- 

regulated (Plumb et al., 2005; 2006). ADAM-17 mediates not only the release of 

soluble TNF, but also sheds fractalkine which has also been implicated in MS 

pathogenesis (Kastenbauer et al., 2003).

In the CNS fractalkine expression is restricted to endothelial cells, astrocytes 

and neurons (Bazan et al., 1997; Pan et al., 1997; Harrison et al., 1998; Nishiyori et 

al., 1998; Muehlhoefer et al., 2000; Hulshof et al., 2003). Fractalkine has been 

implicated in various pathologies, both within the CNS and also within the periphery. 

Increased levels of fractalkine have been detected intrathecally in HIV-infected patients, 

particularly those experiencing CNS complications, including HIV encephalopathy and 

myelopathy (Sporer et al., 2003). Fractalkine has been implicated in the inflammatory 

process of RA (Ruth et al., 2001), and atherosclerotic, diabetic and transplant vascular 

diseased arteries, all display positive immunogenecity for fractalkine, suggesting 

fractalkine may play a significant role in these diseases (Wong et al., 2002). 

Fractalkine has also been implicated in MS pathogenesis as it shows an increase in 

expression in the CSF and serum of patients with MS (Kastenbauer et al., 2003). 

However, in one study, expression levels of fractalkine in astrocytes in MS brains 

shows no altered regulation in comparison to control tissue. This was in spite of 

evidence that cultured human astrocytes show an increase in expression of fractalkine 

under pro-inflammatory conditions (Hulshof et al., 2003). Expression of fractalkine in 

the human brain endothelium in the latter study reported that: "fractalkine was 

moderately expressed on endothelial cells from normal control and MS patients" 

(Hulshof et al., 2003). Except for this report there are no comprehensive reports on the 

expression of fractalkine by endothelial cells in the human CNS in MS brain tissue. This 

work could provide an important insight into the role of fractalkine within the human 

CNS endothelium during MS pathogenesis. As the BBB acts as an interface between 

the blood and the brain, fractalkine's role as an adhesion molecule or a chemokine 

could be an important influence upon leukocyte recruitment within the CNS. The 

previous chapter (Chapter 3) reported that high levels of fractalkine were expressed 

and shed from human adult brain endothelial cells in vitro following TNF treatment, 

which would suggest that within the cytokine milieu of the perivascular cuff, fractalkine 

expression could be dysregulated dependent upon the extent of inflammation.
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5.1.1 Aims of the study

The aims of this study were to undertake a preliminary investigation into the expression 

levels of fractalkine in control and MS patient post-mortem brains. In addition to this, 

the expression levels of ADAM-17 were also investigated to see whether fractalkine 

and ADAM-17 showed any relationship in their expression levels and/or co-localisation.
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5.2 Materials and methods

5.2.1 Suppliers used in this chapter

Leica Microsystems Ltd, Davy Avenue, Knowlhill, Milton Keynes, MK5 8LB, 

Buckinghamshire, UK; Novocastra Laboratories, Balliol Business Park, Benton Lane, 

Newcastle Upon Tyne, NE12 8EW, UK; R A Lamb Ltd., Units 4 & 5 Parkview 

Inducstrial Estate, Alder Close, Lottbridge Drove, Eastbourne, East Sussex, BN23 6QE; 

or as otherwise stated in Chapter 2 (2.2.1), Chapter 3 (3.2.1) and Chapter 4 (4.2.1).

5.2.2Tissue

15 blocks of snap frozen autopsy brain tissue from 5 MS patients and 5 normal control 

patients where obtained from The UK Multiple Sclerosis Tissue Bank, Charing Cross, 

London, UK (registered charity no. 207495) for use in this study. From the MS patients, 

10 blocks were obtained: 5 macroscopically determined lesional blocks and 5 

macroscopically determined NAWM blocks (Table 5.1). Informed consent and ethical 

approval for this study was obtained through the Multi-Centre Research Ethics 

Commitee (MREC) (see Appendix I). All MS tissue was obtained from patients who 

where diagnosed with SPMS, and who had a mean disease course of 27 years (range 

8-39). Mean ages at the time of death were: MS, 58 years (range 46-64); controls, 81 

years (range 64-92) (Table 5.1). MS was confirmed clinically and neuropathologically.

The UK Multiple Sclerosis Tissue Bank prepared the tissue for this part of the 

study by dividing the brain tissue into grid reference sections. Tissue blocks were 

prepared by the tissue bank by first cutting the whole brain into an anterior and 

posterior portion by dissecting through the mamillary bodies (Figure 5.1). One 

centimetre coronal slices were then cut through the entire brain. Slices were numbered 

based upon whether the slice was derived anteriorly to the mamillary bodies and 

therefore from the frontal pole, or posteriorly to the mamillary bodies and therefore from 

the occipital pole. The former were numbered A1, A2 etc and the latter were numbered 

P1, P2 etc. The coronal slices were then laid on a grid and divided into 2cm2 blocks, 

frozen by immersion in isopentane, pre-cooled on dry-ice and then stored in air-tight 

containers at -85°C (Dr. Abhi Vora, The UK Multiple Sclerosis Tissue Bank). Each 

patient is given an ID code and the four digits following that pertain to the coronal 

section and the grid reference where the tissue block was taken from, e.g. MS130 

P2D3, is patient ID: MS130, and the coronal section is P2 and therefore derived from 

the second section posterior to the mamillary bodies, and the block was taken from grid 

co-ordinates D3 (Figure 5.1).

10pm cryostat (Leica) sections from each block were cut at -20°C and mounted 

onto Polysine™ coated slides and stored at -80°C until further histological and 

immunohistochemical analysis was performed.
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5.2.3 Tissue characterisation

To determine the extent of inflammation, demyelination and cellular reactivity, various 

stains were employed. To determine the extent of inflammation haematoxylin and eosin 

(H&E) stain was performed. Demyelination was determined using Oil red O (ORO) 

positivity and MOG immunoreactivity. An antibody directed against HLA-DR was used 

to determine the activation status of microglia, macrophages, T cells and B cells. Stains 

for these markers and for the target proteins of interest were carried out on serial 

sections from each block and examined within the white matter regions of the tissue.

5.2.3.1 Haematoxylin and eosin staining (H&E)

H&E stain is a method commonly used in histology. Haematoxylin stains cell nuclei a 

black/purple colour. Eosin Y, which is a pink/red dye stains cytoplasmic components of 

the cell (Stevens and Lowe, 1997).

10pm frozen sections were allowed to air dry for 30 minutes at RT, fixed in 4% 

PFA (see Chapter 3 section 3.2.4.5) at RT for 5 minutes, washed, and then placed in 

filtered Harris's haematoxylin for 1 minute. Slides were then rinsed in running tap water 

until the water ran clear and then placed in eosin Y for 2 minutes. Following another 

wash step in tap water, the sections were dehydrated in a series of graded ethanol at 

the following concentrations: 50%, 70%, 80% and 95%. Slides were placed in each 

ethanol grade for 2 minutes. Following 4 changes of xylene (Sigma-Aldrich, UK), the 

sections were mounted in DPX mountant (Sigma, Aldrich, UK).

5.2.3.2 Oil red O staining (ORO)

ORO stain is a fat soluble dye (lysochrome) used to stain neutral triglycerides and 

lipids dark red on frozen sections. ORO is commonly employed to identify lipid-laden 

macrophages that have engulfed myelin and areas of demyelination, a characteristic of 

MS (Kirk et al., 2003; Plumb et al., 2006). Other techniques involve using luxol fast blue 

(LFB) or periodic acid-Schiff (PAS) reaction staining to delineate areas of 

demyelination and the presence of phagocytic macrophages (Boyle and McGeer, 1990; 

De Groot et al., 2001). ORO solution was prepared by dissolving 1g of ORO powder 

(Sigma-Aldrich, U.K) in 60% triethyl phosphate (TEP) (Sigma-Aldrich, UK) and heating 

to 100°C on a hot plate for 5 minutes. The mixture was stirred continuously using a 

magnetic stirrer, and the temperature not allowed to exceed 110°C. The resulting 

mixture was filtered through filter paper (Whatman) whilst it was hot and then again 

when it had cooled. The mixture was stored at RT for up to a month.

Frozen sections were prepared for ORO staining in the same manner as for 

H&E staining, except they were fixed in 4% PFA for 1 hour at 4°C. Following the 

fixation step, the sections were rinsed in tap water, rinsed briefly in 60% TEP, and then
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placed in filtered ORO solution for 10-15minutes at RT. The sections were then rinsed 

briefly in 60% TEP, followed by tap water. Nuclei were counterstained with Harris's 

haematoxylin (20% v/v) for 30 seconds, washed in deionised H20 (dH20), and mounted 

in aqueous mountant, glycerol gelatin (Sigma-Aldrich, UK).

5.2.3.3 Sudan black B staining (SBB)

SBB is a stain which, like ORO, is a fat soluble dye (lysochrome) that stains neutral 

triglycerides and lipids blue-black. SBB can be used to quench autofluorescence, which 

in brain tissue is normally a product of lipofuscin, a break-down product of old red blood 

cells (Goddard et al., 2001). Autofluorescence from this source is usually visible 

between the excitation range 360-647nm, and appears as small punctate, intracellular 

structures (http://www.uhnresearch.ca/facilities/wcif).

SBB solution was prepared by dissolving 1g of SBB powder in 70% ethanol, 

continuously stirred at RT in the dark for 2 hours, and then filtered through filter paper 

(Whatman). The mixture was stored at 4°C for a maximum of 2 months.

5.2.4 Tissue grading

5.2.4.1 H&E and ORO stains

To determine the extent of inflammation and demyelination, H&E and ORO tissue 

stains, respectively, were observed and graded on a + to +++ (ORO) or to ++++ (H&E) 

scale. For H&E, grade + was interpreted as few immune cell infiltrates around the 

blood vessels and grade ++++ had a large burden of immune cell infiltrates around the 

vessel (Figure 5.2). For ORO, grade + was interpreted as the presence of a few ORO 

positive cells and grade +++ had a large number of ORO positive cells (not seen in the 

tissue blocks used in this thesis) (Figure 5.3). If the tissue lacked inflammatory or ORO 

positive cells the tissue was graded as negative.

5.2.4.2 HLA-DR reactivity

To determine the type of inflammatory activity within the tissue blocks a HLA-DR 

staining was employed. HLA-DR is a cell surface receptor encoded by the human 

leukocyte antigen complex on chromosome 6 region 6p21.31. It is a major 

histocompatibility complex (MHC) class II (Delves et al., 2006). There are very low 

levels of MHC class II detected in normal brains and thus any reactivity in this tissue 

type was graded + (Figure 5.4 A and B), however, in autoimmune disease expression 

is increased particularly in and around active MS lesions (Boyle and McGreer, 1990; 

Bo et al., 1994). To determine the type of activity within the tissue samples, the Bo et al. 

(1994) system of MHC class II classification was used. Whereby, in actively 

demyelinating lesions, the distribution of HLA-DR is evenly distributed and was graded
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Figure 5.3: Oil red O (ORO) staining showing the grades of lipid-laden 

macrophages observed in the white matter tissue used in this study. Either no 

ORO positive cells where observed (A) (MS100 A2C2) or a few ORO positive cells 

graded as + were diffusely scattered in areas of demyelination (B) (MS090 P2B3). 

Scale bar is 200ijm.
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Figure 5.4: HLA-DR staining of white matter tissue showing the different grades 

of cellular activation. Grade + shows a low level of expression of HLA-DR positivity (A 

(CO20 P2B2) and B (0014  P2C3)); grade ++ shows an even distribution of HLA-DR 

reactivity, which is increased compared to control tissue (C (MS109 A1C2) and D 

(MS109 A1D1)), and which was also increased in the region of blood vessels (BV) due 

to perivascular inflammatory cells surrounding the BV (D); grade +++ showed 

increased HLA-DR reactivity (E (MS090 P2B3) and F (MS090 P2B3)), which was 

increased at the lesional edge (arrows), these types of lesions were typically classified 

as chronic-active lesions. Note that A and C-F images where taken at the same 

magnification and have a scale bar of 200ijm. The scale bar in image B is 50gm.
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++ (Fig 5.4 C and D); in chronic-active lesions HLA-DR positive cells are restricted to 

the lesional edge rather than centrally and were graded +++ (Fig 5.4 E and F); whereas 

in chronic-inactive lesions there is little/no HLA-DR reactivity within the lesion, at the 

edges, or outside the demyelinated region (not seen in this study) (Bo et al., 1994).

5.2.4.3 MOG reactivity

MOG staining was also employed to determine the extent of demyelination in the tissue 

blocks (Fig 5.5). MOG is a glycoprotein that is specific to the CNS and is expressed on 

the surface of myelin sheaths and oligodendrocytes (Brunner et al., 1989). 

Immunohistochemical examination of MOG can reveal the extent of 

demyelination/remyelination in CNS tissue, and thus be an indicator of the type of 

lesion. For example in the chronic plaque there is no evidence of active myelin 

breakdown, whereas in active plaques marked pallor of myelin is evident (Lucchinetti et 

al., 2005).

5.2.4.4 Classification criteria using all markers

Using H&E, ORO, HLA-DR and MOG staining, MS lesions where classified into two 

distinct subclasses, either active or chronic-active. Using MOG as a marker for 

demyelination it could be determined whether there was complete absence of MOG in 

the lesion, or whether there was partial loss. If the tissue fitted the former criteria the 

tissue was classified as chronic, however, if there was partial loss the lesion was 

classed as active if there was inflammation, as determined using H&E, as well. In 

addition to this the cellular reactivity was assessed using HLA-DR: in the case of the 

chronic lesion if the lesion had positive HLA-DR staining at the lesional edge, the tissue 

was classed as active; in the case of the active lesion, the HLA-DR staning was seen 

throughout the tissue. This classification was also made using the presence of lipid­

laden macrophages, which were witnessed at the lesion edge in chronic-active lesions.

5.2.5 Immunohistochemistry

5.2.5.1 Single immunofluorescence

Immunohistochemistry was carried out as previously described (Plumb et al., 2006), 

but with some modifications. Briefly, for each antibody the optimal concentration was 

determined by trying a range of dilutions in line with the recommendations of the 

manufacturer, except anti-vWF and HLA-DR, which were previously optimised within 

the laboratory by Dr. H. Denney, and also the anti-MOG antibody which was provided 

as a gift by Dr. S. McQuaid and used at his recommended dilution. In addition, different 

concentrations of goat serum were used to prevent non-specific binding, and eventually
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Figure 5.5: Myelin oligodendrocyte glycoprotein (MOG) staining of control (A and 

B) and MS (C-F) tissue to determine the extent of demyelination. Control tissue 

showed a uniform pattern of expression of MOG (A (C011A1B5) and B (C019 P1B2)). 

Active lesions (C (MS074 A1C6) and D (MS074 A1C6)) showed a disrupted MOG 

staining pattern with clearly demarcated lesional borders (arrow, C) but not complete 

MOG breakdown. Chronic-active lesions (E (MS090 P2B3) and F (MS090 P2B3)) had 

complete MOG loss in the lesional centre (asterisk) and clearly demarcated lesional 

borders (arrows, E and F). Scale bar is 50/jm.
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a concentration was used that was recommended by G. Arnott (Sheffield Hallam 

University). Slides were removed from the -80°C freezer and allowed to thaw and dry 

for 30 minutes at RT. Slides were then placed in ice cold acetone for 10 minutes to fix 

the tissue. The sections were then allowed to dry for 15 minutes at RT. A wax pen 

(Vector Laboratories, U.K.) was used to retain the antibody on the tissue. The primary 

antibody was applied in 125pl of 0.3% normal goat serum in PBS and allowed to 

incubate overnight at 4°C (see Table 5.2 for individual antibody concentrations). For 

HLA-DR and MOG staining, the primary antibody was diluted in PBS without goat 

serum. The following day, sections were washed three times for 5 minutes with PBS 

with shaking, and the secondary antibody applied and allowed to incubate for 1 hour at 

RT in the dark (see Table 5.2 for individual antibody concentrations). After another 

wash step, slides were incubated in SBB for 5 minutes at RT, rinsed with PBS eight 

times and mounted in Vectashield hardset mounting media with DAPI (Vector 

Laboratories, UK) using a coverslip (22x50mm). All incubations were performed in a 

humidified immunochamber (R A Lamb Ltd., U.K.). At no point after re-hydration were 

the tissue sections allowed to dry out. For controls, the primary antibody was 

substituted with an isotype/class control or omission of the primary antibody, and the 

procedure carried out as described above to determine the extent of non-specific 

staining.

5.2.5.2 Dual immunofluorescence

The first part of the staining procedure was carried out as described above, however, 

following the addition of the secondary antibody and the subsequent wash step, the 

second primary antibody was applied and allowed to incubate at RT for 1 hour in the 

dark. Following another wash step, the slides were then incubated with the appropriate 

secondary antibody for 1 hour at RT in the dark, washed, stained with SBB, rinsed and 

then mounted in Vectashield hardset mounting media with DAPI (as above). Controls 

were run in parallel, whereby an isotype control, class control or omission of the 

primary antibody was used as the primary antibody and then the secondary antibody 

applied, as described above. Either the control antibodies were applied in correct order 

or the primary antibody controls were swapped around to determine any cross­

reactivity of the secondary antibodies with the primary antibodies.

5.2.5.3 Image analysis and capture

Tissue grading was carried out on an Olympus BX60 microscope which had a light and 

fluorescence function. For lesion classification, images were captured using a 

ColorView Soft Imaging system camera on an Olympus BX51 microscope and using 

the software cellAD version 2.3. Other images were captured using a Zeiss 510 CLSM.
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5.3 Results

5.3.1 Tissue classification

All MS patient blocks displayed varying degrees of perivascular cuffs (Table 5.3). Most 

patients displayed cuffs graded at +/++, except one patient block (MS130 P2F4), which 

had perivascular cuffs of grade +++/++++ (Table 5.3). Only one patient block (MS090 

P2B3) showed ORO positive lipid-laden macrophages at the lesion border, but these 

were very sparse and the block was graded + (Table 5.3). Only 2 patient blocks 

displayed chronic-active lesions, i.e. MOG loss and a rim of HLA-DR positive cells 

bordering the lesion (MS090 P2B3 and MS130 P2D3). The other blocks had MOG loss 

but did not display ORO positive macrophages, HLA-DR reactivity was increased but 

these cells did not form a hypercellular rim bordering the lesion, these blocks were thus 

classified as active lesions (Table 5.3). As such there was no NAWM to make a 

comparison with, and thus areas that were approximately, and at least, 1cm away from 

the demyelinated region were examined for the expression of ADAM-17 and fractalkine 

in a peri-lesional area as a comparison to the lesional area.

5.3.2 Determining the level o f background staining

In order to determine the level of background staining from the controls, each antibody 

that was used in this study was examined in peri-lesional white matter and the 

corresponding antibody control was then examined within the same region. HLA-DR 

reactivity was observed within discrete regions, whereas its respective isotype control 

(lgG2b) showed no reactivity with the tissue (Fig 5.6 A and B). The anti-MOG antibody 

showed a homogenous staining pattern, whereas omission of the primary antibody 

control showed no background staining from the secondary antibody (Fig 5.6 C and D). 

vWF localised to blood vessels, whereas its isotype control (lgG1 kappa) tended to 

show a homogenous red hue over the whole of the tissue but did not stain any areas 

which would resemble blood vessels (Fig 5.6 E and F). The polyclonal antibodies for 

both ADAM-17 and fractalkine were of the same class, thus the same IgG class was 

used as a control. No isotype control was available for the monoclonal antibodies for 

ADAM-17 and fractalkine, so omission of the primary antibody served as a negative 

control. The monoclonal antibody for ADAM-17 tended to localise to blood vessels but 

showed a little astrocytic staining within the parenchyma, as did the polyclonal antibody 

(Fig 5.7 A and B). The monoclonal antibody showed more staining for the parenchymal 

cells and the polyclonal antibody for fractalkine localised to blood vessels (Fig 5.7 C 

and D). Again omission of the primary antibody did not show any background staining 

from the secondary antibody for the monoclonal antibodies (Fig 5.7 E).The rabbit IgG 

controls showed some staining within the tissue, but this was of a lesser degree than 

the positive staining (Fig 5.7 F).
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Cell Marker Isotype/Negative
HLA-DR I  B

Ig G I kappa

Figure 5.6: Peri-lesional white matter (MS109 A1D1) showing the cell markers 

used to characterise the tissue and their respective isotype/negative controls.

HLA-DR (A) was used to demonstrate cellular activation, MOG (C) was used to 

determine the extent of myelination and von Willebrand Factor (vWF) (E) was used to 

identify blood vessels. For HLA-DR (B) and vWF (F), isotype controls were used at the 

same concentration as the primary antibody. Omission of the primary antibody served 

as a negative control for the MOG staining (D). Immunohistochemical examination of 

each protein was carried out on serial sections from each tissue block. Scale bar is 

20/jm.
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Monoclonal antibodies Polyclonal antibodies
ADAM-17 I  B ADAM-17
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Fractalkine
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Figure 5.7: Peri-lesional white matter (MS109 A1D1) showing the different 

antibody combinations to demonstrate ADAM-17 and fractalkine expression.

ADAM-17 expression was determined using a monoclonal (A) and polyclonal antibody 

(B), and fractalkine expression using a monoclonal (C) and polyclonal antibody (D). 

Omission of the primary antibody was used as a control for the monoclonal antibody

(E), whereas a rabbit polyclonal IgG was used as a control for the polyclonal antibody

(F). Immunohistochemical examination of each protein was carried out on serial 

sections from each tissue block. Scale bar is 20/jm.
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5.3.3 Selection of appropriate antibodies to study expression o f AD AM -17 and 

fractalkine

To determine which antibody combination to use for examining the dual expression of 

ADAM-17 and fractalkine, the monoclonal and polyclonal antibodies for both proteins 

was examined in each tissue type. Within the control tissue, monoclonal anti-ADAM-17 

staining appeared to more readily stain astrocytic processes (Figure 5.8 A) whereas 

the polyclonal antibody tended to stain cell bodies (Figure 5.8 B). The monoclonal 

antibody against fractalkine tended to also stain parenchymal structures such as 

astrocytic processes whereas the polyclonal antibody against fractalkine more visibly 

stained blood vessels. The same patterns were observed in peri-lesional white matter 

tissue, whereby the monoclonal antibodies stained the astrocytic processes but the 

polyclonal antibodies tended to stain cell bodies and blood vessels (refer back to 

Figure 5.7 A-D). The same patterns were seen in lesional tissue (Figure 5.9 A-D) and 

within perivascular cuffs (Figure 5.10 A-D).

As ADAM-17 has been reported to localise within astrocytes, endothelial cells 

and macrophages (Goddard et al., 2001; Plumb et al., 2006) and fractalkine was seen 

more readily in blood vessels, which was of interest due to the in vitro studies on 

hCMEC/D3 endothelial cells in the previous chapters, it was decided to study ADAM-17 

using the monoclonal antibody and fractalkine using the polyclonal antibody.

5.3.4 Expression of ADAM-17 and fractalkine in blood vessels o f MS and control CNS 

white matter using polyclonal antibodies

ADAM-17 expression within blood vessels of control white matter generally showed a 

homogenous pattern of distribution (Figure 5.11), but also appeared to aggregate at the 

basolateral regions of the endothelial cells of the blood vessel. The pattern of 

distribution did not usually show a preference for the luminal or abluminal surface of the 

vessel. In some instances, where the expression of ADAM-17 was increased on the 

abluminal side of the vessel, it appeared to be associated with the glial limitans. 

Fractalkine expression within blood vessels of control white matter also showed an 

even distribution (Figure 5.11), and did not aggregate at the basolateral interfaces of 

the endothelial cells. Fractalkine expression sometimes appeared as bright punctate 

vesicles within the cells. The chemokine/adhesion molecule was generally not 

observed to polarise to either the luminal or abluminal surfaces of the blood vessel.
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Monoclonal Antibodies Polyclonal Antibodies

ADAM-17ADAM-17 I  R

Fractalkine

Figure 5.8: White matter control tissue (C014 P2C3) showing the different 

antibody combinations to demonstrate ADAM-17 and fractalkine expression 

using monoclonal (red) and polyclonal (green) antibodies. ADAM-17 expression 

was determined using a monoclonal (A) and polyclonal antibody (B), and fractalkine 

expression using a monoclonal (C) and polyclonal antibody (D). Isotype and negative 

controls were run in parallel. Immunohistochemical examination of each protein was 

carried out on serial sections from each tissue block. Scale bar is 20/jm.
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Figure 5.9: White matter lesional border (MS090 P2B3) showing ADAM-17 and 

fractalkine immunoreactivity using monoclonal (red) and polyclonal (green) 

antibodies. ADAM-17 expression was determined using a monoclonal (A) and 

polyclonal antibody (B), and fractalkine expression using a monoclonal (C) and 

polyclonal antibody (D). Isotype and negative controls were run in parallel. 

Immunohistochemical examination of each protein was carried out on serial sections 

from each tissue block. Scale bar is 20ijm.
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Monoclonal Antibodies
ADAM -17

Polyclonal Antibodies
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Figure 5.10: White matter perivascular cuff (MS130 P2F4) showing ADAM-17 and 

fractalkine immunoreactivity using monoclonal (red) and polyclonal (green) 

antibodies. ADAM-17 expression was determined using a monoclonal (A) and 

polyclonal antibody (B), and fractalkine expression using a monoclonal (C) and 

polyclonal antibody (D). Isotype and negative controls were run in parallel. 

Immunohistochemical examination of each protein was carried out on serial sections 

from each tissue block. Scale bar is 20/jm.
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The amount of perivascular cuffing around the blood vessels within the MS 

white matter tended to be of a grade + or ++ except for one case were grades of 3+ 

and 4+ where observed (MS130 P2F4). ADAM-17 expression in 1+/2+ blood vessels, 

using the polyclonal antibody, revealed that ADAM-17 showed a homogenous pattern 

of expression (Figure 5.12), which was not polarised to either the luminal of abluminal 

wall of the vessel. In some instances, ADAM-17's expression appeared increased with 

a heterogenous pattern of expression, which corresponded to the basolateral interfaces 

of the endothelial cells; this altered pattern of expression did not correspond to an 

altered expression of MOG and HLA-DR. Fractalkine expression also showed a 

homogenous, non-polarised expression pattern, and showed a stronger expression 

pattern within the cells of the cuff (Fig 5.12). The cuff that showed a heterogenous 

pattern of expression for ADAM-17 also showed a heterogenous expression pattern for 

fractalkine. Two inflammatory cuffs of +++/++++ were examined (MS130 P2F4), and 

revealed a very bright and intense ADAM-17 staining on the endothelium, which was 

not as homogenous as in the other vessels in this section. Fractalkine expression 

within this vessel was weakly expressed. The other vessel with a perivascular cuff 

showed a homogeous, less bright staining pattern for ADAM-17. The fractalkine 

staining within this cuff was dispersed and observed also within the lumen of the vessel.

Within the lesional tissue, ADAM-17 expression was homogenous and 

sometimes appeared increased (Figure 5.13). An increase in expression could not be 

found to be associated with an increase in HLA-DR reactivity however. Fractalkine was 

also homogenously expressed (Figure 5.13). A similar homogenous pattern of 

expression of ADAM-17 and fractalkine was also observed within the peri-lesional 

white matter (Figure 5.14)

5.3.5 Expression o f ADAM-17 and fractalkine in the parenchyma and perivascular cuffs 

using dual labelling

To determine dual expression of ADAM-17 and fractalkine, the expression of the 

proteins was examined using monoclonal and polyclonal antibodies, respectively. In 

control tissue, ADAM-17 expression within the parenchyma was mainly associated with 

astrocytic processes, and was increased in astrocytes of the glial limitans (Figure 5.15). 

Fractalkine expression within the white matter parenchyma tended to localise to cell 

bodies, which belonged to the ADAM-17 expressing cell processes; ADAM-17 was also 

observed in the same cell bodies but was less intense than the cell process staining 

(Figure 5.15). In addition, fractalkine was observed to stain axonal processes; these 

also faintly stained positive for ADAM-17, but not as intense as the astrocytic 

processes.
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When ADAM-17 expression was examined in perivascular cuffs of grades +/++, 

using the monoclonal antibody, staining was evident in astrocytes and appeared 

increased in the glial limitans (Figure 5.16). In some instances astrocytic staining was 

more continuous and in others it was intermittent and difficult to determine whether it 

was astrocytic. Fractalkine expression was more homogenous and was increased 

within the cells of the cuff (Figure 5.16). In two inflammatory cuffs of +++/++++ (MS130 

P2F4), ADAM-17 expression using the monoclonal antibody showed a bright, intense 

staining which was increased in the glial limitans whereas fractalkine expression within 

this vessel was weak. The other vessel showed a bright staining pattern for ADAM-17 

but was difficult to distinguish endothelial cells from the cells in the perivascular cuff.

Within chronic-active lesions, ADAM-17 expression was visibly up-regulated in 

agreement with the previous report by Plumb et al., (2006), and was most prominent in 

astrocytes (Figure 5.17). Fractalkine expression within this type of lesion appeared to 

co-localise with macrophages in the active border, and was also seen within long 

processes adjacent to the lesion (Figure 5.17 and 5.18), which could correspond 

neuronal processes but cell-type specific markers would need to be utilised to confirm 

this statement. Fractalkine was also observed in other cell types but without cell-type 

specific markers it was difficult to distinguish the phenotype of these cells. Fractalkine 

appeared moderately expressed within this tissue type. Within the peri-lesional white 

matter, ADAM-17 staining was clearly reduced and fractalkine expression appeared to 

be mainly localised to blood vessels (Figure 5.19). The lack of macrophages within this 

area contributed to the decrease in expression of fractalkine.

Within active lesions, ADAM-17 expression was seen within astrocytes and 

appeared increased around the glial limitans. Fractalkine expression within this lesion 

type, however, was reduced and appeared to be mainly localised to blood vessels and 

other cell types, which were difficult to distinguish (Figure 5.20). Within the peri-lesional 

white matter of this tissue type, ADAM-17 expression within the parenchymal 

astrocytes sometimes was more interrupted and fractalkine expression showed the 

same pattern of distribution as within the chronic lesion (Figure 5.20).
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Adjacent to lesion Within lesion
ADAM-17 ADAM-17

FractalkineFractalkine I  E
1 * I

U D17+

20 ̂

D17+FKNI F

20 pm

AD17+FKN

/ '

CD
c/> 
o '
3
CD
CL

to
CD

Figure 5.18: Dual expression of ADAM-17 and fractalkine next to and within the 

white matter MS lesion (MS090 P2B3). ADAM-17 (A, D and G) expression was 

examined using a monoclonal antibody and fractalkine (B, E and H) expression was 

examined using a polyclonal antibody. The composite images are shown (C, F and I). 

Adjacent to the MS plaque, fractalkine can be seen in axonal processes (B and E, 

arrows), whereas within the plaque, fractalkine was observed in cell bodies (H). 

Immunohistochemical examination of each protein was carried out on serial sections 

from each tissue block. Scale bar is 20/jm.
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5.4 Discussion

Previous work has demonstrated that fractalkine is localised to various cells of the CNS, 

however, only one study has completed a comprehensive study of fractalkine 

expression in the human MS brain; this was restricted to studying astrocytic expression 

of the chemokine/adhesion molecule (Hulshof et al., 2003). ADAM-17 expression has 

also been studied within the MS brain and is increased in expression within lesions 

(Plumb et al., 2006).

Here, the expression of fractalkine in human control and MS brain tissue was 

studied in relation to ADAM-17 expression. Previous work has shown that fractalkine 

expression is expressed at the luminal side of the endothelium in coronary and in larger 

cerebral blood vessels (Harrison et al., 1999; Pan et al., 1997). This present study 

found that fractalkine is expressed homogenously throughout the blood vessel, 

sometimes showing a polarised distribution at the endothelium, but this was infrequent. 

This could be due to the fact that fractalkines expression was examined in post­

capillary venules and not the larger cerebral blood vessels. Other studies have 

reported an up-regulation of fractalkine on cerebral endothelial cells during CNS 

inflammation, e.g. during EAE (Pan et al., 1997; Fischer et al., 2000). Fractalkine is 

also up-regulated in response to treatment with various pro-inflammatory cytokines that 

have been implicated with MS pathogenesis (Bazan et al., 1997; Garcia et al., 2000; 

Imaizumi et al., 2000; Hatakeyama et al., 2004). Fractalkine expression was 

moderately expressed in all tissue types and only showed a decrease in expression in 

active lesions in this study. Low expression levels of the chemokine/adhesion molecule 

have been reported in endothelial cells in the colon of Crohn's and ulcerative colitis 

patients (Lucas et al., 2001). Fractalkine was expressed constitutively both within the 

blood vessels and parenchyma of control tissue. This is interesting given that in vitro 

studies of endothelial expression of fractalkine reported it to only be induced by various 

cytokines (Bazan et al., 1997), suggesting the chemokine is only expressed under 

pathological conditions. Other cells of the parenchyma expressed fractalkine, but 

further dual labelling should be performed with various cell type specific markers, e.g. 

neurons, macrophages, etc, to determine their phenotype. Within the chronic-active 

lesion fractalkine appeared to stain cell bodies whereas adjacent to this area, and next 

to the lesion border, fractalkine was observed to stain neuronal processes. Cells at the 

active border of chronic-active lesions were also positive for fractalkine, which is in 

agreement with the previous study by Hulshof et al. (2003), which reported a weak 

immunoreactivity for fractalkine in macrophages in this region.

As expected ADAM-17 expression was increased in MS lesions, as this has 

already been reported (Plumb et al., 2006), however, the previous study quantified the 

data using an inclusion method, i.e. grade + corresponds to purely endothelial
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expression; grade ++ endothelial and astrocytic expression; +++ abundant expression 

in the parenchyma (Plumb et al., 2006), however, in this present study increased 

expression was examined by comparing vessels alone. ADAM-17 expression within 

blood vessels was generally homogenously expressed, occasionally showing an 

aggregation at what appeared to be the abluminal surface of the endothelial cells. 

When ADAM-17 expression was compared between the different grades of 

inflammation, in only one instance was ADAM-17 expression increased in an 

inflammatory cuff of +++/++++ (MS130 P2F4) compared to similar grades and +/++ 

graded inflammatory cuffs. Suggesting this could be a localised phenomenon, or could 

signify that with increasing inflammatory burdens surrounding blood vessels, ADAM-17 

is up-regulated. Due to restrictions in the study, e.g. focusing upon post-capillary 

venules, only 2 blood vessels of this grade where observed; the other vessel of this 

grade did not show an increase in ADAM-17 expression. Further tissue needs 

examining with varying grades of inflammation to determine whether this single 

observation is biologically significant. As ADAM-17 is responsible for the shedding of 

TNF (Black et al., 1997; Moss et al., 1997) and fractalkine (Garton et al., 2001) and 

both of these are involved in attraction and extravasation of leukocytes, it is reasonable 

to hypothesise that an increase in endothelial ADAM-17 expression could result in an 

increased shedding of these inflammatory mediators, which in turn would cause the 

attraction and migration of immune cells into the CNS. Thus, the level of ADAM-17 

expression could be directly proportional to the extent of inflammation, i.e. amount of 

immune cells within the perivascular cuff.

To better understand the role of fractalkine in MS, research could be extended 

to the animal model of MS, EAE. Whereby, fractalkine expression could be knocked 

down. However, caution must be emphasised when interpreting experimental results 

from EAE with regard to fractalkine, as murine T cells are unresponsive to fractalkine, 

suggesting that they lack the CX3CR1 receptor (Haskell et al., 2001). Also it does not 

appear that fractalkine plays a prominent role in EAE as CX3CR1 -deficient mice and 

wild-type litter mates have a similar disease severity (Haskell et al., 2001). However, 

altered peptide ligand (APL) treated mice show a decreased expression of fractalkine, 

which correlates with reduced inflammation in PLP-induced EAE mice (Fischer et al., 

2000). The findings of Chapter 3 and that of other groups (Hulfshof et al., 2003; 

Kastenbauer et al., 2003) suggest that fractalkine may act more as a chemokine than 

an adhesion molecule in the CNS under pro-inflammatory and pathological conditions. 

Fractalkine could be acting on CNS cells if it was shed from the abluminal surface of 

the endothelium, however as has previously been reported, there is a greater amount 

of serum fractalkine than CSF fractalkine in MS patients (Kastenbauer et al., 2003). 

This highlights that endothelial cell secretion of fractalkine occurs predominantly into
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the lumen of the blood vessel, but other cells could also contribute to the levels of 

fractalkine within serum. None-the-less, fractalkine expression is up-regulated in brain 

inflammation (Pan et al., 1997) and the brain has been shown to be the greatest 

"reservoir" for the chemokine, whereby aqueous brain extracts have been shown to 

contain greater than 3000pg/mg of the chemokine (Cardona et al., 2006; Pan et al., 

1997). Secreted fractalkine in the CNS could be acting upon local microglia causing the 

secretion of MMPs which facilitate the breakdown of the BBB and also the destruction 

of MBP in MS as has previously been reported (Gijbels et al., 1993). Fractalkine has 

also been shown to mediate cell survival of microglia by inhibiting Fas ligand-induced 

cell death in vitro (Boehme et al., 2000).

Fractalkine expression within the brain is restricted to discrete regions, which 

include the cortex, hippocampus, caudate putamen, thalamus, and olfactory bulb, but is 

absent or significantly reduced in cerebellum, brainstem and white matter regions, 

including the corpus collosum and fimbria/fornix (Harrison et al., 1998). Fractalkine has 

been shown to stimulate chemotaxis and elevated intracellular calcium levels in 

microglia. Under pathological conditions, i.e. facial motor nerve axotomy, it was shown 

that microglia take up a perineuronal position, which is accompanied by a decrease in 

fractalkine mRNA by the motor neurons and the synthesis of different isoforms of the 

chemokine (Harrison et al., 1998). Fractalkine has been shown to be rapidly cleaved 

from cultured primary cortical neurons following glutamate excitotoxic stimuli. This 

preceded cell death by 2-3 hours and is thought to help mediate the migration of 

microglia and monocytes to the site of injury (Chapman et al., 2000a). Conversely, 

CX3CR1 knockout mice experience more extensive neuronal cell loss and microglial 

activation than their littermate controls in various neurodegenerative paradigms, 

suggesting that fractalkine signalling is an essential regulator of inflammatory 

neurotoxicity within the CNS. It is thought that fractalkine normally provides a tonic 

effect upon the microglia, limiting their activation in the healthy CNS (Cardona et al., 

2006; Kerschensteiner et al., 2009). Microglia are thought to contribute to 

neurodegeneration upon their activation, which results in the production of various 

cytotoxic molecules, including proteases, reactive oxygen species, NO, prostaglandins 

and cytokines (for review see Gao et al., 2003), and are believed to be characteristic of 

certain neurodegenerative diseases, including AD, AIDS dementia and MS (Spranger 

and Fontana, 1996). Fractalkine has been shown to suppress NO, IL-6 and TNF 

production, and significantly reduce neuronal cell death, by LPS +/- IFN-y activated 

microglia in a dose-dependent manner, suggesting fractalkine can act as an anti­

inflammatory chemokine (Zujovic et al., 2000; Mizuno et al., 2003). Fractalkine is also 

thought to act directly on neurons to promote cell survival as hippocampal neurons 

exposed to the HIV-1 envelope protein, gp120mB, are rescued from cell death when
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cultured with fractalkine (Meucci et al., 2000). In EAE, no significant difference in 

expression levels or distribution of fractalkine mRNA in neurons has been reported 

between affected and unaffected rodents brains (Schwaeble et al., 1998). The same 

unaltered transcription pattern has been observed in the rodent model of ischemic 

stroke, suggesting that neuronal fractalkine mRNA levels are impervious to 

neuroinflammatory processes (Chapman et al., 2000a). Fractalkine has been shown to 

increase the secretion of MMP-2 and TIMPs -1 and -2 following 24 hour treatment of 

human foetal microglial cell line, CHME3, with various concentrations of the chemokine 

(Cross and Woodroofe, 1999). It also increased MMP-9 secretion by primary rat brain 

microglia (Cross and Woodroofe, 1999). With regards to MMP-2 this is interesting 

given that MMP-2 mediates the cleavage of fractalkine in murine embryonic fibroblast 

cells (Dean and Overall, 2007), suggesting that fractalkine shedding provokes a 

positive feedback loop whereby it activates one of its proteases resulting in more 

release of the chemokine.

Other roles of fractalkine within MS could be as an angiogenic chemokine. MS 

lesions are typically centred on blood vessels (for review see Kirk et al., 2004) and 

fractalkine has been cited as being angiogenic in RA, whereby removal of fractalkine 

from synovial fluid from RA patients significantly inhibited angiogenic activity of human 

dermal microvascular endothelial cells in matrigel (Volin et al., 2001). Other angiogenic 

factors have also been implicated in playing a detrimental role in MS, such as VEGF, 

which is upregulated in acute and chronic MS plaques, and the administration of VEGF 

in MBP immunized rats provokes an inflammatory response in the brain (Proescholdt et 

al., 2002). In addition, a significant increase in the number of vessels in chronic, 

demyelinating EAE lesions, succeeds an increased expression of VEGF (Kirk and 

Karlik, 2003), and VEGF concentrations are significantly higher in MS patients in 

relapse, which coincides with spinal cord lesions on MRI (Su et al., 2006). Similar 

studies could be performed to determine whether there is a relationship with fractalkine, 

VEGF, and lesion formation in MS.

In conclusion, further experiments should be performed to fully elucidate the 

phenotype and expression levels of fractalkine expressing cells in relation to ADAM-17 

in MS and control tissue. The study should be expanded to assess tissues with varying 

degrees of inflammation to determine whether ADAM-17 up-regulation corresponds 

with a larger inflammatory burden. Also, blocks with active demyelinating lesions, as 

characterised by the presence of lipid-laden macrophages, should be included to 

determine the expression levels of fractalkine within this tissue type.
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6.1 General discussion

Previous work has demonstrated that ADAM-17 expression is increased in MS white 

matter lesions (Plumb et al., 2006) and that ADAM-17 mRNA expression is increased 

in the spinal cords of rats with EAE (Plumb et al., 2005). This present work sought to 

determine the functional role of an increased expression of ADAM-17 in the 

pathogenesis of MS. Using a newly developed in vitro model of the BBB, the human 

adult brain endothelial cell line, hCMEC/D3 (Weksler et al., 2005), the expression 

levels of ADAM-17, TIMP-3, and various substrates shed by the enzyme were studied 

at the molecular level under cytokine treatment regimes. This work revealed that of the 

substrates studied, only fractalkine was consistently significantly up-regulated at the 

mRNA level following TNF treatment. ADAM-17 and TIMP-3 expression were also 

increased, but not significantly so. In addition the expression of these three genes 

(ADAM-17, TIMP-3, and fractalkine) was studied at the translational level, which 

revealed only fractalkine was increased and this was accompanied by an increase in 

the shedding of the protein, but not an increase in the enzyme activity of ADAM-17. An 

increased expression of TNF has been observed in the perivascular cuffs (Woodroofe 

and Cuzner, 1993) and in the CSF (Hauser et al., 1990) of MS patients, however, this 

was also in conjunction with a number of other cytokines, including IFN-y and IL-6 

(Woodroofe and Cuzner, 1993). Thus, it cannot be assumed that the increase in 

ADAM-17 expression as witnessed in MS and EAE has been adequately replicated in 

vitro. Instead there are a number of cytokines expressed under inflammatory conditions 

in MS patients, which may contribute to the increased expression of ADAM-17 seen in 

the MS plaque, not merely the expression of one cytokine. It is also notable that the 

increase in ADAM-17 protein expression previously reported by Plumb et al. (2006), 

was quantitated using an inclusion method, whereby scores of ADAM-17 intensity was 

determined based upon cell types that expressed the protein. Thus, Plumb et al. (2006) 

did not per se say there was an increased expression of ADAM-17 within endothelial 

cells rather that more cell types expressed ADAM-17 within the inflammatory lesions.

None-the-less, the work of this thesis revealed an important observation: that 

under TNF cytokine treatment, fractalkine shedding is induced and increased in a 

dose-dependent manner, which cannot be accounted for by an increased expression or 

activity of ADAM-17. There are few studies examining ectodomain shedding of 

membrane-bound proteins under cytokine inducible conditions (Ludwig et al., 2002; 

Singh et al., 2005), instead most studies have used PMA, the physiological counterpart 

of which is unknown, to study this phenomenon. However, given that MS is an 

inflammatory disease and that a number of adhesion molecules and chemokines are 

found within the serum and CSF of these patients it is important to understand what 

role cytokines may play in inducing enzyme mediated ectodomain shedding. This
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finding was also of interest due to the lack of involvement of ADAM-17, which has been 

cited as being responsible for the inducible cleavage of fractalkine following PMA 

treatment (Garton et al., 2001; Tsou et al., 2001). Thus, this raises questions as to 

whether other enzymes involved in fractalkine shedding, e.g. ADAM-10 (Hundhausen 

et al., 2003), cathepsin S (Clark et al., 2007), MMP-2 (Dean and Overall, 2007) or as 

yet an unidentified enzyme, could instead be activated under TNF treatment. Cellular 

expressed ADAM-17 is proposed to respond to PMA stimulation by showing an 

increase in enzyme activity and not an increase in protein expression (Doedens et al., 

2003), however, this was not observed in this current study following cytokine 

activation. Other mechanisms of regulation could be involved in mediating the activity 

of enzymes and shedding of their cognate proteins. ADAM-17 has been found to co- 

localise within lipid-rafts, where it is thought ectodomain shedding is regulated (Tellier 

et al., 2006). Fractalkine, however, does not associate with these cholesterol-rich 

domains and upon cholesterol depletion fractalkine does not redistribute, unlike ADAM- 

17 (Durkan et al., 2006; Tellier et al., 2006). In intestinal epithelial cells, fractalkine is 

found to associate with caveolae, which are vesicular invaginations of the plasma 

membrane that are associated with a number of signalling pathways (Muehlhoefer et 

al., 2000). It is also notable that an increase in the substrate concentration could be 

enough to favour enzymatic activity and shedding of the membrane-bound proteins as 

this will alter the reaction rate. With increasing substrate concentrations, there would be 

an increase in the reaction rate of the enzyme until saturated: an increase in fractalkine 

protein expression was observed by ICC and ELISA in Chapter 3, which could have 

been enough to favour shedding of the protein instead of an increase in the activity of 

ADAM-17. It was also observed that knocking down or silencing ADAM-17 using siRNA 

technology (Chapter 4) did not completely abolish or significantly reduce shedding of 

fractalkine, suggesting another protease or mechanism is involved with the release of 

the chemokine/adhesion molecule.

Fractalkine is expressed on neurons (Pan et al., 1997; Nishiyori et al., 1998; 

Harrison et al., 1998), astrocytes (Hulshof et al., 2003) and endothelial cells (Bazan et 

al., 1997; Muehlhoefer et al., 2000) within the CNS whereas its receptor is expressed 

on T cells (Bazan et al., 1997; Imai et al., 1997), NK cells (Imai et al., 1997), monocytes 

(Bazan et al., 1997; Imai et al., 1997), microglia (Nishiyori et al., 1998), astrocytes 

(Maciejewski-Lenoir et al., 1999) and neurons (Meucci et al., 2000). These expression 

patterns both within the CNS and immune systems, between the ligand and its cognate 

receptor, strongly suggest fractalkine plays a significant role in neuro-immune cross 

talk, particularly in CNS disorders (Kerschensteiner et al., 2009).

As fractalkine is expressed on the endothelium and various immune cells, 

fractalkine has been cited as being important in regulating leukocyte trafficking into the
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CNS. Fractalkine is a potent chemoattractant (Bazan et al., 1997) and blocking the 

interaction of fractalkine with its receptor has been shown to be beneficial at reducing 

or preventing disease in animal models of stroke and idiopathic inflammatory myopathy 

(Soriano et al., 2002; Suzuki et al., 2005) (Figure 6.1). In addition, the autocrine effects 

of fractalkine, acting back upon the CX3CR1-expressing endothelium, results in the 

expression of ICAM-1 which facilitates neutrophil recruitment (Yang et al., 2007) 

(Figure 6.1), suggesting fractalkine has pro-inflammatory properties. Alternatively, shed 

fractalkine can act to saturate CX3CR1 preventing further attachment of immune cells 

to the fractalkine expressing endothelium and preventing CX3CR1-expressing cells 

from migrating into the CNS (Ancuta et al., 2003; Chapman et al., 2000b; Imai et al., 

1997) (Figure 6.1), suggesting a protective function. Fractalkine has also been found to 

have angiogenic properties (Volin et al., 2001) and could also play a role in blood 

vessel formation in MS, which could be detrimental to the disease.

Within the CNS, fractalkine possesses anti-inflammatory properties by reducing 

the microglial production of inflammatory cytokines (Zujovic et al., 2000; Mizuno et al., 

2003) and providing a tonic effect upon microglia preventing their activation (Cardona 

et al., 2006) (Figure 6.1), ultimately preventing neurodegeneration. However, 

fractalkine also stimulates the release of MMPs by microglia (Cross and Woodroofe, 

1999), which could contribute to breakdown of the BBB, facilitating leukocyte infiltration 

(Figure 6.1). Fractalkine also causes the chemoattraction of microglia to site of injury 

(Chapman et al., 2000a) (Figure 6.1). Fractalkine is increased in the serum and CSF 

(Kastenbauer et al., 2003) of MS patients, however, no dysregulation has been 

observed in the CNS tissue of MS patients (Hulshof et al., 2003). Studies performed to 

elucidate the role of fractalkine in MS pathogenesis using EAE, suggest fractalkine is 

important for recruitment of NK cells. The lack of CX3CR1-expressing NK results in 

CNS haemorrhages, lack of functional recovery and a higher mortality rate (Huang et 

al., 2006). In agreement with this finding is the observation that MS patients are 

deficient in circulating CX3CR1+ NK cells, however MRI activity levels increase in 

association with the number of circulating CX3CR1+ NK cells, suggesting the role of NK 

in MS is complex (Infante-Duarte et al., 2005).

TNF has long been implicated in MS (Brosnan et al., 1988), however it has 

been shown that administering anti-TNF treatment to patients with MS exacerbates 

rather than ameliorates the disease course (Van Oosten et al., 1996). Inhibition of 

localised TNF production may be an effective method of preventing the harmful effects 

of TNF. One strategy to reduce TNF bioavailability might be to modulate ADAM-17 

activity. Reducing the bioavailability of TNF by knocking down ADAM-17 expression 

and therefore activity might be a possible target to treat MS as this will prevent the
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production of soluble TNF, implicated in the detrimental effects of the cytokine seen in 

MS, whilst retaining the membrane-bound form of the cytokine, which may be 

protective (Alexopoulou et al, 2006).

However the functional role of ADAM-17 in the pathogenesis of MS is as yet still 

unknown; it has many properties that are indicative of both a pathogenic and 

neuroprotective role. On the negative side it mediates the solubilisation of membrane- 

bound TNF (Black et al., 1997; Moss et al., 1997), however it is also a sheddase for a 

number of other membrane proteins including the TNF receptors (Peschon et al., 1998; 

Reddy et al., 2000), which could act to sequester soluble TNF and thereby prevent 

cellular activation. It is also a sheddase for fractalkine which when administered in its 

soluble form to monocytes prevents the arrest of these cells onto endothelial cells 

(Ancuta et al., 2003). Thus, up-regulation of ADAM-17 could inhibit both the adhesion 

and extravasation of cells of the immune system into the CNS by blocking the 

interaction of these cells and the endothelium via solubilisation of fractalkine. However, 

fractalkine is also a potent chemokine (Bazan et al., 1997) and would therefore also 

recruit immune cells. ADAM-17 has also been implicated in other neurological 

processes and deemed to have a neuroprotective role as it has been shown to be 

involved in the processing of APP along the a-pathway, although this is not thought to 

be a constitutive role of ADAM-17 (Allinson et al., 2004). Conversely it has been shown 

to be up-regulated in EAE (Plumb et al., 2005), but its actual role in the pathogenesis in 

EAE is unknown. Due to this dual functionality of ADAM-17 and the fact that it has a 

vast array of substrates any attempts at utilizing this protease as a therapeutic tool for 

MS must be viewed with some trepidation. Hence, further investigations into the 

functional role of ADAM-17 and fractalkine both in physiological and pathological 

conditions are necessary.

6.2 Addressing the hypothesis o f the thesis

The original hypothesis of this thesis was that an increased expression ratio of ADAM- 

17 to TIMP-3 as observed in MS and EAE (Plumb et al., 2005;2006) would favour the 

shedding of various substrates of ADAM-17 (Chapter 1, Figure 1.14). This thesis 

determined that the inflammatory conditions experienced in MS favour the shedding of 

fractalkine, however, this is not related to an increase in expression or activity of 

ADAM-17 or a decreased expression of TIMP-3. To further elucidate the role of ADAM- 

17 and fractalkine in MS, the following work could be carried out.
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6.3 Future work

6.3.1 In vitro work using hCMEC/D3

The work of this thesis has tried to recapitulate the in vivo expression of ADAM-17 in 

endothelial cells using a novel endothelial cell line, hCMEC/D3. To further determine 

the control of expression of this enzyme, experiments using combinatorial 

administration of cytokines to the cells to determine whether this alters the expression 

of ADAM-17, TIMP-3 and substrates shed by the protease further should be performed. 

This may better replicate the in vivo situation where a number of cytokines are 

expressed by T cells within the perivascular cuff, which act upon the endothelium.

To elucidate the protease responsible for fractalkine shedding following TNF 

treatment the expression of ADAM-10, cathepsin S and MMP-2 could be studied at the 

mRNA and protein level, and siRNA knockdown of the proteins performed to determine 

what effect this has upon fractalkine shedding, following TNF treatment.

In addition, it will be important to determine the shedding mechanism of ADAM- 

17 and/or another protease, e.g. whether proteins associate within lipid-rafts to carry 

out their shedding activities. This association should also be examined under control 

and TNF treatment to determine whether inflammation affects this localisation.

6.3.2 In vivo work using post-mortem human brain tissue from The UK Multiple 

Sclerosis tissue Bank

Preliminary findings of this thesis cannot conclusively determine whether fractalkine 

expression is altered in MS patients' brains. The level of demyelination as determined 

by the presence of lipid-laden macrophages within the MS blocks was not extensive 

nor was the level of inflammation. Tissue blocks containing varying degrees of 

inflammation and demyelination should be studied to determine whether this reveals 

any differences in fractalkine expression. Certain aspects of the expression of ADAM- 

17 and fractalkine within MS tissue warrant further investigation. Such as an increased 

expression of ADAM-17 in the endothelium of grade +++/++++ perivascular cuffs, and 

the expression of fractalkine in axons next to the active border and also within 

macrophages of the active rim. Dual immunofluorescence for fractalkine using neuronal 

and macrophage markers should be performed to conclusively determine the 

phenotype of these positive cells. In light of the relationship between neuronal 

fractalkine and microglial CX3CR1, further studies should also investigate the 

microglial expression of CX3CR1.

As ADAM-17 does not mediate the cleavage of fractalkine under TNF treatment 

in vitro, this suggest another protease could be responsible for this. Further 

investigation into the expression of other proteases associated with fractalkine release,
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such as ADAM-10, cathepsin S and MMP-2, in control and MS CNS tissue should be 

performed to determine their relationship to the chemokine/adhesion molecule.

6.3.3 Patient samples

To determine the functional role fractalkine might play in immune cell recruitment 

across the endothelium in MS, human blood samples from control and MS patients 

could be obtained. Fractalkine expression in hCMEC/D3 cells could be induced by 

cytokine treatment and the leukocytes from the patient samples could be allowed to 

attach to the fractalkine expressing endothelium. This would help determine whether 

MS patients show an increased propensity for their lymphocytes to attach to fractalkine 

expressing endothelial cells, and also the phenotypes of the cells, e.g. NK, T cells, 

which do attach. Pre-incubation of the leukocytes with fractalkine could be carried out 

to determine whether this prevents attachment of the cells to the endothelium. This 

work could also be extended to carry out migration assays on the patient samples 

towards fractalkine. Assays with and without siRNA knockdowns of the protease 

responsible for fractalkine release could also be carried out to determine the effects 

this has on leukocyte attachment and migration.

6.4 Summary

Increased expression of ADAM-17 in MS and EAE suggests that the protease plays a 

significant role in MS pathogenesis. ADAM-17 cleaves approximately 50 membrane- 

bound proteins, which have various physiological and pathological properties, e.g. in 

inflammation. The chemokine and adhesion molecule, fractalkine, has also been 

implicated in MS pathogenesis and is proteolytically cleaved by ADAM-17. Fractalkine 

expression and shedding was increased in this study following pro-inflammatory 

cytokine treatment in human endothelial cells, but this was not accompanied by an 

increase in the expression or activity of ADAM-17, suggesting the protease may not be 

responsible for this role under inflammatory conditions. Further investigation into the 

function of ADAM-17 using siRNA knockdowns of the protein confirmed the previous 

findings, showing that silencing ADAM-17 expression in endothelial cells does not 

significantly affect fractalkine shedding. In vivo analysis of ADAM-17 and fractalkine in 

human MS brain tissue revealed that fractalkine is not altered in the CNS endothelium 

in MS, but further investigation using CNS tissue with different degrees of activity 

(inflammation and demyelination) tissue is required before a firm conclusion can be 

made. This thesis has highlighted fractalkine as a major chemokine expressed by CNS 

endothelium under inflammatory conditions. Further work on the function of endothelial 

derived fractalkine are warranted to elucidate its role in MS pathogenesis.
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