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Abstract

Currently, much research is focused on the corrosion of reinforcement in concrete 
members. However, none addresses the problems associated with the residual strength 
of reinforced concrete beams exhibiting both main and shear reinforcement corrosion 
simultaneously. The aim of this research, therefore, was to determine the residual 
strength of corroded reinforced concrete beams where various degrees of reinforcement 
corrosion is present in both the main and shear reinforcement. This may provide a 
better understanding of the performance of deteriorated reinforced concrete beams in 
service.

One of the main causes of concrete deterioration is corrosion of the steel reinforcement 
and thus a reduction of the residual service life. In general, corrosion of reinforcement 
is believed to affect the structural performance of concrete elements in two ways. 
Firstly, by reducing the rebar cross sectional area, and secondly, by loss of bond 
strength between the concrete and steel reinforcement and resulting growth of cracks 
due to the formation of corrosion products at concrete/reinforcement interface.

The experimental programme was carried out to provide information on the loss of 
strength resulting from corrosion to the main and shear reinforcement. Corrosion was 
induced by means of external power supplies. The test programme was divided into 
three series. Series I was devised to determine the residual flexural strength of 
reinforced concrete beams where different diameters of main (high yield) reinforcement 
were subjected to varying degrees of accelerated corrosion (shear strength was provided 
by mild steel shear reinforcement which remained unaffected by corrosion). Series II 
was devised to determine the residual shear strength of reinforced concrete beams where 
the shear (mild steel) reinforcement was subjected to varying degrees of accelerated 
corrosion (flexural strength was provided by high yield steel which was protected from 
corrosion). Finally, Series III was devised to determine the residual strength of 
reinforced concrete beams where both the main (high yield) and shear (mild steel) 
reinforcement were simultaneously corroded and the effect of this on the performance 
of the beam was determined. In total, 116 beams were subjected to accelerated 
corrosion using an impressed current imposed on the reinforcement. Each beam was 
loaded to failure to determine the strength loss. Four degrees of corrosion were 
targeted, ranging from 0% (control) to 15%, in increments of 5%.

The results of the laboratory tests determined the significance of both main and shear 
reinforcement corrosion on the performance of deteriorated reinforced concrete beams. 
In addition, simplified analytical equations were developed which may assist the 
engineer in assessing the residual strength of corroded reinforced concrete beams.
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Notation

The great majority of the symbols listed below are essentially those used in the current 

British Design Practice. Less frequently used symbols and symbols which have 

different meanings in different contexts are defined where they are used.

A atomic weight of iron

Ac cross sectional area of concrete

As cross sectional area o f tensile reinforcement

As cross sectional area of hanger bars

Asv total cross sectional area of shear reinforcement

a slope of M t ( C o r r ) / M c  against percent of corrosion

b width of beam

bw breadth of section

(3 intercept (or M t ( C o r r / M c  ratio)

c cover to main steel reinforcement

CSA cross sectional area

d  effective depth

d  depth from compression face to centroid of compression reinforcement

D diameter of the main steel reinforcement

x v



Notation

E° electrode potential under standard conditions

Ec modulus of elasticity of concrete

Es modulus of elasticity of steel

Epitting pitting potential

8cll maximum strain in concrete

ss strain in reinforcement

f c concrete strength in compression

f cu cube compressive strength of concrete

f s tensile stress in steel reinforcement

f y yield stress in tensile reinforcement

f y yield stress in compression reinforcement

fyv characteristic strength of the shear reinforcement

F Faraday’s constant

Fcc force in the concrete in compression

Fsc force in the steel in compression

(/>' diameter of the compressive steel reinforcement

i current density

I  corrosion current

Mc maximum moment of resistance of the compression zone

Mt(o) moment of resistance of the control beam in the tensile zone



Mt(Corr) moment of resistance of the corroded beam in the tensile zone

M  design ultimate moment

Peon average failure load of control specimens in the laboratory

PuU ultimate failure load from laboratory beam tests

P design shear force due to ultimate loads

R corrosion rate

p steel ratio

sv centre to centre of spacing of shear reinforcement

5  depth of idealised compressive stress block

T time

2RT/D % degree of corrosion

(p nominal perimeter of the steel bar

v design shear stress at a cross section

vc design concrete shear stress

V ultimate shear force

x depth to neutral axis

z lever arm

x v i i



Glossary

These definitions are not full, accurate scientific or dictionary definitions and may be 

incomplete if used outside the context of the subject of corrosion of steel in concrete.

Acid

A solution that (among other things) attacks steel and other metals and reacts with 

alkalis forming a neutral product and water.

Alkali

A solution that (among other things) protects steel and other metals from corrosion and 

reacts with acids forming a neutral product and water.

Anode

The site of corrosion in an aqueous corrosion cell (a combination of anodes and 

cathodes).

An external component introduced into a cathodic protection system to be the site of 

oxidation reaction and prevent corrosion of the metal object to be protected.

x v i i i



Glossary

Carbonation

The process by which carbon dioxide (CO2) in the atmosphere reacts with water in 

concrete pores to form carbonic acid which then react with the alkalis in the pores, 

neutralising them. This can then lead to the corrosion of the reinforcing steel.

Cathode

The site of a charge balancing reaction in a corrosion cell.

The protected metal structure in a cathodic protection system.

Cathodic protection

A process of protecting a metal object or structure from corrosion by the installation of 

sacrificial anode or impressed current system that makes the protected object a cathode 

and thus resistant to corrosion.

Cathodic protection anode

A cathodic protection anode for steel in concrete can be a conductive paint or other 

conductive material that will adhere to concrete, or a metal mesh or other conductive 

material that can be embedded in a concrete overlay on the surface of the structure to be 

protected. Anodes may be impressed current or sacrificial.

x ix



Glossary

Cement (paste)

Portland cement is a mixture of alumina, silica, lime, iron oxide and magnesia ground to 

a fine powder, burned in a kiln and ground again. Cement paste is the binding agent for 

mortar and (Portland cement) concrete after hydration.

Chloride

The negative ion in salt, found in sea salt, de-icing salt and calcium chloride admixture 

for concrete. Chloride ions promote corrosion of steel in concrete but are not used up 

by the process so they can concentrate and accelerate corrosion.

Chloroaluminates

Chemical compounds formed in concrete when chlorides combine with the C3A in the 

hardened cement paste. These chlorides are no longer available to cause corrosion. 

Sulphate resisting cements have a low C3A content and are more prone to chloride 

induced corrosion than normal Portland cement based concretes.

Concrete

Portland cement concrete is a mixture of cement, fine and coarse aggregates and water. 

The water reacts with the cement to bind the aggregates together.

x x



Glossary

Corrosion

The process by which a refined metal reverts back to its natural state by an oxidation 

reaction with the non-metallic environment (e.g. oxygen and water).

Galvanic corrosion

The difference in electrochemical potential between two or more dissimilar metals in 

electrical contact and in the same electrolyte causes electron flow between them. Attack 

of the more noble metal or metals usually decreased, and corrosion of the more active 

metal is usually increased.

Half cell

Usually a pure metal in a solution of (fixed) concentration. The half reaction of the 

metal ions dissolving and reprecipitating creates a steady potential when linked to 

another half cell. Two half cells make an electrochemical cell that can be a model for 

corrosion. Reference half cells are connected to reinforcing steel to measure 'corrosion 

potentials' that show the corrosion condition of the steel in concrete.

Impressed current cathodic protection

A method of cathodic protection that uses a power supply and an inert (or controlled 

consumption) anode to protect a metallic object by making it cathode.

x x i



Glossary

Incipient anode

An area of steel in a corroding structure that was originally cathodic due to the action of 

local anode. When the local anode is treated by patch repairing, the incipient anode is 

no longer protected and starts to corrode.

Ion

An atom or molecule with electrons added or subtracted. Ionic compounds like salt 

(calcium chloride) are composed of balanced ions (CaCl2=Ca2++2Cf). Some ions are 

soluble (e.g. Ca , Cl , Fe ) which can be important for transport through concrete.

Ionic current

An electric current that flows as ions through an aqueous medium (e. g. concrete pore 

water), as opposed to an electronic flow of electrons through a metal conductor.

iR drop

Electrical current passing through a solution of finite resistance generates a voltage. 

This is superimposed on the half cell potential and must be subtracted to get accurate 

readings in linear polarisation and in cathodic protection. This is most easily done by 

'instant off measurements of potentials taken within a few seconds of switching off the 

current.

x x i i



Glossary

Oxidation

The process of removing electrons from an atom or ion. The process:

F e ^ F e 2++2e“

Fe2+->Fe3++e~

is the oxidation o f iron to its ferric (Fe2+) and ferric (Fe3+) oxidation state. Oxidation is 

done by an oxidising agent, of which oxygen is only one of many.

Passivation

The process by which steel in concrete is protected from corrosion by the formation of a 

passive layer due to the highly alkaline environment created by the pore water. The 

passive layer is a thin lOxlO-10 m, dense layer or iron oxides and hydroxides with some 

mineral content, that is initially formed as bare steel is exposed to oxygen and water, but 

then protects the steel from further corrosion as it is too dense to allow the water and 

oxygen to reach the steel and continue the oxidation process.

pH

A measure of acidity and alkalinity based on the fact that the concentration of hydrogen 

ions [H+] (acidity) times hydroxyl ions [OFT] (alkalinity) is 10 14 moles/1 in aqueous 

solutions:

[H+] [OH ] = lx l0~14 

PH = -log[H+] 

pH + pOH =14

x x i i i



Glossary

i.e. a strong acid has pH=l (or less), a strong alkali has pH=14 (or more), a neutral 

solution has pH=7. Concrete has a pH of 12 to 13. Steel corrodes at pH 10 to 11.

Reduction

Chemically this is the reverse of oxidation. The incorporation of electrons into a non- 

metal oxidising agent when a metal is oxidised. When oxygen (O2) oxidised iron (Fe) 

to Fe it receives the electrons that the iron gives up and is itself reduced:

0 2+4e'-> 202~

2e+ H 20 + i  0 2-»20H~

are reduction reactions.

Pore (water)

Concrete contains microscopic pores. These contain alkaline oxides and hydroxides of 

sodium, potassium and calcium. Water will move in and out o f the concrete saturating, 

part fdling and drying out the pores according to the external environments. The 

alkaline pore water sustains the passive layer if not attacked by carbonation or chlorides.

Reference electrode

An alternative name for a half cell.

x x iv



Glossary

Reinforced concrete

Concrete containing a network of reinforcing steel bars to make a composite material 

that is strong in tension as well as in compression. Smaller volumes of material can 

therefore be used to make beams, bridge spans, etc. compared with unreinforced 

concrete, brick or masonry.

Rust

The corrosion product of iron and steel in normal atmospheric conditions. Chemically 

it is hydrated ferric oxide FeiCb.f^O. It has a volume several times that of the iron that 

was consumed to produce it.

Sacrificial anode cathodic protection

A system of cathodic protection that uses a more easily corroded metal such as zinc, 

aluminium or magnesium to protect a steel from corrosion. No power supply is 

required, but the anode is consumed.

Steel

An alloy of iron with up to 1.7% carbon to enhance its physical properties.

XXV



Glossary

Titanium mesh anode

A type of impressed current anode consisting of an expanded titanium mesh coated by a 

corrosion resistant film of mixed metal oxides. After being fixed to the concrete surface 

the mesh is covered with concrete or mortar.

x x v i
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Chapter 1

Introduction

1.1 Introduction

The development of reinforced concrete by French engineers in the middle of the 19 

century was one of the major advances in the history of construction Most of today's 

concrete construction relies on the composite interaction of concrete and steel, which is 

aided by the near equivalence of their thermal expansion characteristics. In general, 

reinforced concrete has proved to be a highly successful material in terms of structural 

performance. However, there have been numerous examples o f the durability problems 

arising from the corrosion of reinforcement in concrete structures, mostly due to poor 

quality concrete, poor design and workmanship, inadequate cover to reinforcement, 

chlorides in the concrete or combinations of these. These have led to various forms of 

corrosion induced damage such as cracking and spalling, resulting in reductions in 

structural capacity.

When steel reinforcement corrodes, corrosion products generate tensile stresses in the 

concrete. Concrete is very strong in compression but weak in tension, the tensile 

strength being only about 10 percent of the compressive strength. Therefore tensile 

cracks are readily nucleated and propagated as a resu lt3. The development of corrosion 

products along the bar surface may affect the failure mode and ultimate strength of 

flexural members due to two causes: firstly, due to a reduction in the degree of bar
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confinement caused by an opening of longitudinal cracks along the reinforcement and, 

secondly, due to significant changes at the steel-concrete interface caused by changes in 

the surface conditions of the reinforcing steel. The changes in the surface conditions 

due to corrosion are characterised initially by changes in the roughness of the surface, 

then, by development of less firm adherent interstitial layers of corrosion products 

between concrete and steel and, eventually, by local damage in terms of heavy pitting 

and degradation in the profile of the bar ribs 4.

1.2 Scope of research

Reinforcement corrosion in concrete structures is the biggest durability problem facing 

the UK at present. In the press release, the Building Research Establishment estimated 

the direct cost of reinforcement corrosion to the UK economy to be around £550M per 

year 5 since repair and maintenance is required to increase the service life of the 

structure 6’7’8’9.

Corrosion of reinforcing bars is one of the main causes which induces deterioration of 

concrete beams, thus reducing their residual service life. For example, the collapse of 

the Berlin Congress Hall in 1980 (Figure 1.1) 10 and a parking garage in Minnesota, 

USA in 1984 (Figure 1.2) 10 are examples of spectacular failures due to a reduction in 

residual strength due to corrosion of the steel reinforcement.

Furthermore, the sudden collapse of part of a car park in Wolverhampton, UK in 1997, 

which was built using the American developed lift slab technique, Figure 1.3 11 and a 

footbridge in North Carolina, USA in 2000, Figure 1.4, are also examples of problems 

associated with reinforcement corrosion. Upon inspection of the footbridge in

2
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Figure 1.1 The collapse of the Berlin Congress Hall, 1980

Figure 1.2 Collapse of a salt damaged parking garage in Minnesota, 1984
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Figure 1.3 Collapse of a car park in Wolverhampton, UK, in 1997

Figure 1.4 Collapse of a footbridge in North Carolina, USA, in 2000
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Figure 1.4 after collapse, high levels of calcium chloride were found in grout used in the 

construction 12.

Clearly, corrosion of the reinforcing bars is one of the main causes of deterioration of 

reinforced concrete beams. Corrosion affects both the main and shear reinforcement, 

therefore it is important to know the effect this will have on the residual strength of the 

member. Consequently, catastrophic failure such as those mentioned earlier can be 

controlled through better knowledge of the flexural and shear capacities of deteriorating 

members.

1.3 Scope of present investigation

This study contributes to understanding the effect of reinforcement corrosion on the 

behaviour of reinforced concrete structures. Currently, much research is focused on 

corrosion in reinforced concrete members. However, the problems associated with the 

residual strength of corroded reinforced concrete beams have not been fully addressed. 

To date extensive research has been undertaken to assess flexural strength of corroded 

reinforced concrete beams, but to date, there is no evidence of research being conducted 

on the shear strength. Furthermore, the influence of both main and shear reinforcement 

corrosion occurring concurrently also needs to be investigated to determine its effect on 

the performance of the member. Therefore, the aim of this research was to determine 

the residual strength of corroded reinforced concrete beams when the main and shear 

reinforcement are subjected to varying degrees of corrosion. Analytical models are 

developed to predict the behaviour of deteriorated reinforced concrete elements. This 

will provide a better understanding of the performance of such beams in practice.

In order to fulfil the aim of the present investigation, the overall objectives, were to:

5
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• investigate the chemical processes involved in corrosion of steel reinforcement;

• determine the techniques involved in accelerating corrosion in reinforced concrete 

members in the laboratory;

• investigate the residual strength of reinforced concrete beams subjected to

different percentages o f main steel corrosion;

• investigate the residual strength of reinforced concrete beams subjected to

different percentages of shear reinforcement corrosion;

• investigate the residual strength of reinforced concrete beams subjected to

different percentages of both main and shear reinforcement corrosion;

• develop analytical models to predict the behaviour of deteriorated reinforced 

concrete beams on the basis of the laboratory experiments.

1.4 Thesis layout

The thesis attempts to bring together results which will be used to assist the bridge 

engineer in the assessment of reinforced concrete structures exhibiting reinforcement 

corrosion.

This thesis is divided into thirteen chapters. An introduction to the thesis is given in 

Chapter 1.

Chapter 2 includes a brief discussion of the principles of metallic corrosion and the 

basic deterioration mechanisms in reinforced concrete structures. Chapter 3, presents 

the optimisation of the corrosion process.

6
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The detailed experimental programme, including materials used and experimental 

procedures and techniques, is described in Chapter 4.

Chapter 5 presents experimental results obtained from the first test series. Included is 

research on the influence of corrosion on the main reinforcement of simply supported 

beams (shear strength was provided by mild steel links which remained unaffected by 

corrosion). The degree of under reinforcement was varied (8 , 10 and 12 mm diameter 

main steel was used) and each was subjected to differing percentage of corrosion 

(0 -  15% in 5% increments).

Chapter 6  presents results on the second test series. The shear reinforcement was 

subjected to varying percentage of corrosion (0 -  15% in 5% increments) in order to 

determine its affect on the shear capacity. The main steel remained unaffected 

throughout.

In Chapter 7, the experimental results obtained from the third test series are presented. 

The residual strength of reinforced concrete beams is determined when the main and 

shear reinforcement are simultaneously subjected to varying degrees of reinforcement 

corrosion (0 -  15% in 5% increments).

Chapters 8 , 9 and 10 presents the experimental results obtained from three series 

(Series I, Series II and Series III respectively) of tests, the analysis of test data, 

interpretation and discussion on the results.

Analytical models are derived in Chapter 11 which predict the residual strength of 

corroded reinforced concrete beams.

Chapter 12 presents the main conclusions from the study and recommendations are 

given for future research. References used in the thesis are listed in Chapter 13.

7



Appendix A summarises the design data. The publications to date arising from the 

results of this research are given in Appendix B.
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Chapter

Literature Review

2.1 Introduction

The increase in the scale of the problem of deterioration of reinforced concrete members 

can be illustrated by the number o f publications concerned with the science of 

reinforced concrete decay and its mechanism. However, it is not the intention of the 

present study to deal with causes, remedies or mechanisms of corrosion of the 

embedded reinforcing steel or the subsequent deterioration of the concrete. The main 

aim is to determine the structural performance of these deteriorated members.

In the light of the objectives stated in Chapter 1, the survey of previous research and 

related documents and reports presented herein has been confined to the specific area of 

structural integrity assessment of corrosion damaged, flexural members. In the present 

chapter, two areas of previous research work relevant to the present study are examined 

and discussed. These comprise:

• Theoretical, numerical and experimental work done specifically on the 

assessment of strength and characteristic behaviour of reinforced concrete beams 

damaged by the corrosion of tensile reinforcement;

• Similar work done on reinforced concrete beams where the tensile reinforcement 

is completely debonded from the adjoining concrete and shear reinforcement is 

not provided.
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2.2 History of concrete

The development of concrete as a construction material dates back several thousand 

years to the days of ancient Egyptians, the Greeks and the Romans. These early 

concrete compositions were based on lime, although the Romans are known for their 

development of pozzolanic cement and lightweight concrete 13. Apart from brief 

revivals over the years, there was little further development until the eighteen century 

when the industrial revolution evolved. Later in the nineteen century, the technique of 

reinforced concrete was introduced. The credit for introduction of steel as a 

requirement is variously attributed to Joseph Aspdin 1824, William Wilkinson 1854, 

Lambot in 1855 for ferrocement boats, to Monier in 1867 and to Hennebique in 1897 

who built the first reinforced concrete frame building in Britain at Weaver’s Mill, 

Swansea. Notable steps forward in this century have been introduction of prestressed 

concrete by Freyssinet in the 1940s, the extensive use of reinforced concrete during 

World War II, the rapid post-war concrete building expansion prompted by shortages of 

steel, the motorway building boom of the 1960s involving concrete pavements and 

bridges, and most recently, the contribution of structural concrete to modern offshore 

structures 14.

2.3 Properties of reinforced concrete

Concrete may be described as a graded range of stone aggregate particles bound 

together by a hardened cement paste 15. The main chemical constituents of Portland 

cements are lime (CaO), which composes 60% -  67% of the total, silica (SiCh), which 

forms 17% -  25% and alumina (A I2 O 3 ), which may constitute 3% -  8 %. The rest are
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iron oxide (Fe2 0 3 ), magnesia (MgO), sulphur trioxide (S 03) and sodium (Na2 0 ) and 

potassium (K2O) oxides 16. Concrete strength is derived from the hydration of the 

cement by water. The cement constituents progressively crystallize to form a gel or 

paste which surrounds the aggregate particles and binds them together. For any given 

condition of test, the strength of a workable concrete mix is dependent on a number of 

parameters, mainly the cement content and the water/cement ratio.

The tensile strength of concrete is only about 10 percent of the compressive strength 13. 

Therefore, reinforcement is designed to carry these tensile forces, which are transferred 

by bond between the interfaces of the two materials 17’18,19.

Reinforced concrete is a strong durable building material that can be formed into many 

varied shapes and sizes. Its utility and versatility is achieved by combining the best of 

features of concrete and steel. The materials are more or less complimentary; the steel 

is able to provide the tensile strength and probably some of the shear strength while the 

concrete, strong in compression, protects the steel to give durability and fire 

resistance 14.

2.4 Mechanism of concrete deterioration

Deterioration of the concrete is rarely due to one isolated cause, and concrete can suffer 

from various mechanisms of deterioration 13. Environmental processes may cause salts, 

oxygen, moisture or carbon dioxide to penetrate the concrete cover and eventually lead

on 01 00 ot 0/i
to corrosion of embedded steel reinforcement ’ ’ ’ ’ .A s  the steel corrodes, apart 

from the resulting loss in its cross sectional area, the corrosion products expand in

OS 96 97 9ft 90
volume causing cracking ’ ’ ’ ’ , rust staining and spalling of the concrete

cover 3’ 4. The detrimental role that corrosion of embedded steel rebars plays in the
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service life o f reinforced concrete is well documented 10, costing the UK an estimated 

£550m per annum. The problem is also widespread in overseas, i.e. it has been reported 

that corrosion costs in the USA alone are estimated to be close to $300 billion a year, or 

approximately 3.2% of the USA gross domestic product 30. Over the past 25 years, a 

number of methods for assessing the state of corrosion of reinforcing steel have been 

under development, but to date difficulties in accuracy and reliability are still present31. 

Consequently a reliable and accurate corrosion tool that can be used to survey 

reinforced concrete structures is required.

2.5 Principles of corrosion

2.5.1 Introduction

The word corrosion means the destruction of a material under the chemical or 

electrochemical action of the surrounding environment 32,33,34. It is well known that 

iron, unless adequately protected, corrodes easily and is transformed into rust. 

Corrosion phenomena are very complex ’ . Corrosion obeys the thermodynamic

laws; metals tend to return to the state in which they are found in nature. Metals 

gradually destroy under the action of water, air and other atmospheric agents. They 

corrode and transform themselves into substances similar to the mineral ores from 

which they were originally extracted 22,37.

2.5.2 Chemical and electrochemical reactions

The lack of success in applying chemical thermodynamics to corrosion is principally 

due to the fact that the phenomena of metallic corrosion in aqueous solutions are not
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only chemical but also electrochemical, in which the moist concrete forms the

O O Q Q

electrolyte, the possible electrochemical reactions taking place on embedded steel ’ .

A chemical reaction is a reaction in which only chemical bodies participate (neutral 

molecules or positively and negatively charged ions).

dissolution of water vapour 2 H2O = 2 H2 + 0 2

electrolytic dissolution of liquid water H20  = H+ + OH“

precipitation of ferrous hydroxide Fe++ + 20H ” = Fe(OH ) 2

corrosion of iron with evolution of hydrogen Fe + 2H+ = Fe++ + H2

An electrochemical reaction is a reaction in which both chemical and free electric 

charges take part (e.g. negative electrons dissolved in metallic electrode). Such 

reactions are oxidations if they proceed in the direction which corresponds to the 

liberation of negative charge; they are reductions if they proceed in the direction 

corresponding to the absorption of negative charge.

oxidation of hydrogen gas into hydrogen ions H2 -> 2H+ + 2e^

reduction of oxygen gas into hydroxide ions O2 + 41^0  + 4e“ -» 40FT

oxidation of iron to ferrous ions Fe —» Fe++ + 2e^

oxidation of ferrous ions to ferric ions Fe -» Fe +e

When emphasizing the dependence of pH and potential, it is useful to write the 

equilibrium of precipitation of ferrous hydroxide as Fe++ + 2 H2O = Fe(0 H) 2  + 2H+, 

where pH measures the effect of H+ ions, the electrode potential measures the effect of 

charge 40,41.

13
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2.5.3 General condition of corrosion, immunity and passivity

It is convenient to use a graphical means to study such a complex phenomena (see 

Figure 2.1), thermodynamically represented by a simplified Pourbouix diagram. Then

^ s h e

1.2

0.8 FeC

Ee(OH)0.4

0

0.4
FeCI

0.8

1.2

2 4 6 80 10

Figure 2.1 Electrochemical equilibria of the iron -  water system 42

all the competing and simultaneous reactions, both chemical and electrochemical, can 

be studied. It has been possible to establish one such graphical method with the use o f  

diagrams of electrochemical equilibria, drawn as a function of pH (abscissa) and 

electrode potential (ordinate). The left portion of these diagrams represents acid media 

and the right portion alkaline media; the top portion represents oxidizing media and the 

bottom reducing media. The region below the dotted line (a) represents the

14
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circumstances under which the water may be reduced with the evolution of hydrogen 

under pressure of 1 atmosphere; the region above the dotted line (b) represents the 

circumstances under which water may be oxidized with evolution of oxygen; and the 

region between the two lines (a) and (b) represents the circumstances in which both this 

reduction and oxidation are impossible. Water then is thermodynamically stable and 

this region represents the region of thermodynamic stability of water under 1 atm 

pressure.

Depending on the actual conditions of the pH and electrode potential, Figure 2.1 shows 

that the oxidation of iron may give rise to soluble products -  green ferrous ions, Fe++, 

yellow ferric ions, Fe+++, and green dihypoferrite ions, F e0 2H“ -  or to insoluble 

products -  white ferrous hydroxide Fe(OH) 2 (unstable relative to black magnetite, 

Fe3C>4) and brown ferric oxide Fe2(>3 , which may be variously hydrated and is the main 

constituent of rust. Iron is corroding in the presence of an iron free solution when the 

quantity of iron that this solution may dissolve is greater than a given low value (e.g., 

1(T6 g-atoms / litter or 0.056 ppm), and conversely iron may be rendered passive if it 

becomes covered by a protective insoluble oxide of hydroxide (e.g., Fe2C>3). Then the 

lines which are drawn in Figure 2.1 corresponding to a solubility of metal and its oxide 

equal to 10 6 delineate various regions or areas. There are two areas where corrosion is 

possible (areas of corrosion), and area where corrosion is impossible (area of immunity 

or cathodic protection), and an area where passivation is possible (area o f passivation), 

Figure 2.2. This assumes that the insoluble products, Fe2 0 3  and Fe3C>4 , are sufficiently 

adherent and impermeable that corrosion of the underlying metal is essentially stifled 

and the metal is then “passive”.

15
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PASSiVATiON

.MOMiTE

Figure 2.2 Cartoon diagram for iron from Christmas message from Pourbaix 42

Diagram of electrochemical equilibria of the iron -  water system at 25°C may be 

deduced by assuming that passivation results either from the formation of a film of 

Fe2 0 3  or from the formation of a films of Fe2 C>3 and Fe3C>4 10,43. The region of stability 

of iron is entirely below the region of stability of water under atmospheric pressure.

In other words, regardless of the pH of the solution, metallic iron and water are not 

simultaneously thermodynamically stable at 25°C under a pressure of 1 atm. The 

simultaneous stability of iron in the presence of water at 25°C is only attained at 

pressures high enough to depress the equilibrium potential o f the H20  -  H2 system 

(represented for 1 atm by line (a), in Figure 2.1) below the equilibrium potential of the 

Fe -  Fe3 0 4  system. This stability is attained only at pH values between 10 and 12 for
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pressures greater or equal to 750 atm. At lower pressure iron always tends, if  it is not 

passivated, to be corroded with reduction of water and evolution of hydrogen. This 

corrosion o f iron gives rise to the dissolution of metal mainly with the formation of  

green ferrous ions Fe++ (reaction 1) or dihypoferrite ions Fe02H_ (reaction 2) which are 

also green, depending on whether the pH is greater or less than 10.6. At values of pH 

below about 6 to 7, these ions may change to black magnetic iron oxide, or magnetite 

Fe3 C>4 (reaction 3) or into white ferrous hydroxide Fe(OH)2 (reaction 4). Because area 

of stability o f magnetite, Fe3 C>4 , Fe(OH)2 will be thermodynamically unstable with 

respect to Fe3 C>4 and will tend to transform to this substance (reaction 5). In the 

presence of oxygen ferrous ions and magnetite may be oxidized to ferric oxide Fe2 0 3  

(or ferric hydroxide Fe(OH) 3  (reaction 6 and 7).

Reaction 1 Fe -> Fe’1-1’ + 2e“

2H+ + 2e_ -»  H2 

Fe + 2H+ Fe++ + H2

Reaction 2 Fe + 2H20  -> Fe02H“ + 3H+ + 2e~

2H+ + 2e_ -»  H2

Fe + 2H20  -> Fe02H~ + H+ + H2

Reaction 3 3Fe++ + 4H20  —> Fe3 0 4  + 8H+ + 2e

2H+ + 2e“ -> H2

3Fe++ + 4H20  Fe30 4 + 6H+ + H2

17
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Reaction 4 Fe++ + 2H20  -» Fe(OH)2 + 2H4

Reaction 5 3Fe(OH ) 2 ->• Fe30 4 + 2H20  + 2H+ + 2e~

2H+ + 2e“ -> H2

3Fe(OH)2 -> Fe30 4 + 2H20  + H2

Reaction 6  4Fe++ + 12FI20  -> 4Fe(OH ) 3 + 12H+ + 4e~

0 2 + 4H+ + 4e~ -> 2H20

4Fe++ + 0 2 + 10H2O 4Fe(OH)3 + 8Hh

Reaction 7 4 Fe3C>4 + 2 H2O —> 6 Fe2 0 3  + 4H+ + 4e

0 2 + 4H+ + 4e" -> 2H20

4 F e 3 0 4  +  O 2 - >  6Fe2C>3

Corrosion of iron is possible in two regions, roughly triangular in shape, which 

correspond to the dissolution of metal with the formation of ferrous and dihydroferrite 

ions, respectively. Such corrosion by dissolution will affect the entire metal surface and 

so will be of a general nature.

The metal may be protected against this corrosion by lowering its electrode potential to 

the region of immunity (in which case there will be cathodic protection, obtainable by 

intervention of a reducing action) or by raising its electrode potential into the region of 

passivation (in which case there will be protection by passivation, obtained by 

intervention of an oxidizing action).

18
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In the case of protection by immunity, the metal will be thermodynamically stable and, 

as a result, will not corrode; it will possess a truly metallic surface. Since water is not 

stable under the conditions of electrode potential and pH corresponding to this state of 

immunity, this protection will only be achieved by continuous consumption of external 

energy which causes hydrogen evolution on the iron.

Passivity is defined as a state of metal in which the rate of ionization in a given 

condition is much less than the rate at a less oxidizing condition. The mechanism of the 

passive film formation and its growth on the steel in concrete is not exactly the same as 

that of the steel directly in alkaline solution. However, the appreciation of the passivity 

of steel directly in an alkaline solution is important for understanding the passivity of 

steel in concrete which has highly alkaline pore solution. In this case of protection by 

passivation the metal itself will not be stable, but will be covered by a stable oxide film 

(Fe3 0 4  or Fe2C>3 according to the conditions of potential or pH). The protection will be 

perfect or imperfect depending on whether or not this film perfectly shields the metal 

from contact with the solution. In the case of imperfect position, corrosion only affects 

the weak points of the passive film and therefore has a localized character. Water being 

stable under the conditions of electrode potential and pH which correspond to the state 

of passivation 10, this state will be attained without consumption of external energy; the 

solution needs only be sufficiently oxidizing for the electrode potential o f the metal to 

be maintained permanently in the passivation region.

2.6 Corrosion initiation due to chloride attack

It is well documented that the intrusion of chloride ions in reinforced concrete can cause

•r- , • . * 3, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56corrosion if oxygen and moisture are present * » » » * * » ' » • * * * .
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Chloride ions may be introduced into concrete in a variety of ways, such as during 

manufacturing as intentional or accidental intrusion or by penetration from an external 

source. In concrete, chloride ions may be present in various forms such as:

• Free chloride ions in pore solution;

• Chloride loosely bonded to hydrates of calcium silicate;

• Chloride strongly bonded to hydrates of calcium aluminates.

It is principally only the free chloride ions that influence the corrosion process. There 

is, however, a general lack of information about the level of chloride likely to remain 

un-combined for a long period in the solution phase.

The concept of critical chloride level or corrosion threshold for steel in concrete has 

been suggested by a number of investigators using variety of experimental techniques. 

There is some evidence that the hydroxyl ion concentration of concrete has an influence 

on the critical chloride level 37,58,59. The Building Research Establishment categorise 

the chloride ion content (% by weight of cement) in terms of corrosion risk as follows:

• Less than 0.4% -  low risk;

• Between 0.4 -  1.0% -  medium risk;

• More than 1 % -  high risk.

It is highly recognised that chloride has negligible influence on the pH of concrete. The 

enhancement of the C3A content reduces the chloride content within the cement but the 

optimum level has not been established. The chloride complex with C3A, however, 

becomes unstable when carbonation occurs which tends to liberate chloride ions. On 

the other hand, the diffusion kinetics of chloride ions in hardened concrete is a decisive
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factor in relation to corrosion risk. Investigations have confirmed that diffusion is 

strongly influenced by cement type and fineness, the ion exchange capacity o f the 

system, and the curing of the concrete surface. The effect of water/cement ratio is only 

limited to a surface layer of the concrete and to short duration of chloride exposure. It 

was reported 60 that the high cement content and low water/cement ratio of the mixes do 

not present a barrier to the penetration of chlorides into concrete.

The precise mechanism by which depassivation occurs is still a subject of contention. 

Either the chloride ions convert the insoluble iron oxides to soluble ion chlorides which 

diffuse away and destroy the passive film or ions are absorbed on the metal surface and 

promote the hydration and dissolution of metal ions.

2.7 Corrosion initiation due to carbonation of concrete

Carbonation is the process whereby concrete is attacked by atmospheric carbon dioxide. 

More specifically, carbonation is a chemical reaction between one of the main hydration 

products of cement in concrete, calcium hydroxide, and carbon dioxide from the 

atmosphere. A simplified equation for the reaction can be given as:

Ca(OH)2 + C 0 2 -> C aC03 + H20

Essentially, carbonation begins at the outer surface of a concrete element and progresses 

inwards. The rate of progress of this carbonation front is affected by many factors, 

some of which are external to the concrete and some internal.

Although the reaction in the carbonation process is a chemical one, the rate at which this 

reaction takes place depends on physical factors, and the process is considered to be one
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of diffusion of carbon dioxide into any concrete pores which afford a continuous 

passage from the external atmosphere.

In pure air, carbon dioxide makes up approximately 0.03% by volume compared with 

about 20.5% by volume of oxygen. Since carbonation is a diffusion controlled process, 

it may be assumed that the rate of carbonation will vary in direct proportion to the 

approximate square root of the concentration of carbon dioxide in the air.

The mechanism which relates the relative humidity in the atmosphere to the rate of 

carbonation is not clear. It is, however, generally accepted that at very high relative 

humidity, the rate of carbonation decreases significantly 61. The mechanism put forward 

for this decrease is the blocking of pores in the concrete by water which has condensed 

within them. It may be thought that the dry atmosphere would allow the rapid 

evaporation of water produced by the carbonation reaction, thereby promoting rapid 

carbonation. However, this evaporation would depend on the temperature. An increase 

in the ambient temperature will allow the reaction rate of the carbonation process to 

increase and will also increase the rate of diffusion of the carbon dioxide through the 

concrete.

Diffusion is the process by which matter is transported from one part of a system to 

another as a result of random molecular motions leading to a more uniform 

concentration of those molecules. The diffusion of carbon dioxide into concrete 

depends on the diffusion properties of the concrete, i.e. the diffusivity. The diffusivity 

will depend on the capillary pores and continuity of such pores in the concrete. A 

measure of these capillary pores and their continuity can be obtained from the 

permeability of concrete to the gas concerned. For good quality naturally occurring 

aggregates, the porosity is generally reasonably low and therefore the porosity of the
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concrete is more dependent on the porosity of the hardened cement paste which 

surrounds the aggregate particles.

An increase in the cement content in the concrete directly slows the rate of carbonation.

As was stated earlier the porosity of the hardened cement paste is the main factor that 

contributed to the diffusivity of the concrete and this porosity depends on the 

compaction of the concrete and water/cement ratio of the concrete 62.

2.8 Bond between steel and concrete

The development of corrosion products along the bar surface affects the ultimate 

strength of flexural members through a significant loss of bond between steel and 

concrete 20,63’64’65’66’67’68,69’70. The mechanical pressure due to volume of expansion 

of corrosion products causes cracking along the reinforcing bar called longitudinal 

cracking. The crack starts from the surface of reinforcement and expands in width as it 

proceeds to the concrete surface. When the crack reaches the concrete surface, the 

width at the reinforcement has become wide enough to introduce oxygen and water to 

accelerate corrosion. Cracking of concrete cover and reduction of reinforcement- 

concrete bond due to reinforcement corrosion cause concern about the performance and 

serviceability of structures 66.

An investigation programme on an existing structure was carried o u t20. The age of the 

reinforced concrete building was about nine years, and a considerable amount of 

degradation due to corrosion of steel such as cover concrete cracking and spalling along 

the reinforcing steel and exudation of rust juice was observed especially at the eaves. It 

was found that the ribbed bars did not show much change in bond strength with 

corrosion. It was concluded from this investigation that the most important structural
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properties such as yield strength and ultimate tensile strength which are required for the 

reinforcing steel, remained unchanged unless cover concrete cracking due to the 

corrosion was found. The detrimental effects started at the stage when the concrete 

cover cracked. The occurrence of the cover concrete cracking accelerated very rapidly 

the corrosion of the reinforcing steel thereafter, and was a direct cause of the 

degradation of the structural and the functional properties of the reinforced concrete 

structure.

Furthermore, the bond strength was measured after an embedded bar was corroded 

electrolitically 19. Cylindrical concrete specimens with ribbed bars of 9, 19, and 25 mm 

diameter were used. The concrete contained different amounts of calcium chloride of 

0.5, 1.0 and 5.0% by weight of cement. These specimens were exposed to a direct 

current to simulate the corrosion on the surface of the reinforcing steel. It was clear that 

the bond strength increases with increase in the amount of corrosion and the bond 

strength of a corroded specimen becomes two to three times larger than that of an 

uncorroded specimen. The ratio of the bond strength decreases after the amount of 

corrosion reaches level at which the concrete cover cracks but most of the specimens 

still sustain strength ratios well above 100. It was suggested that the corrosion had a 

rather favourable effect on the bond strength until the amount reaches the cracking 

level. It was concluded that the ratio of bond strengths was high with greater cover 

thickness. It was also concluded that the rate of corrosion was increased in proportion 

to the chloride content and with decrease of bar diameter. The influence of 

water/cement ratio and the cover thickness was not remarkable.

Similar laboratory studies were carried out 4, where the specimens used were 150 mm 

cube with 10, 14 and 20 mm diameter bars embedded centrally to give cover/diameter
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9(c/d) ratio of 7.5, 5.36 and 3.75 respectively. A constant current density of 2 mA/cm 

was used in order to simulate corrosion. The bond behaviour relative to the four stages 

of corrosion: non-corrosion, corrosion corresponding to pre-cracking, cracking and 

post-cracking levels, was studied. The bond strength in the case of pullout tests 

increased with the increase of corrosion up to about 1.0%. With the further increase of 

corrosion, the bond strength declined consistently and become negligible at, for 

example, 8.5% post-cracking corrosion for 10 mm bar. It was concluded that cover to 

diameter is a very definitive corrosion protection factor because about 4% and 1% 

corrosion was needed to crack the reinforced concrete members with c/d values of 7 and 

3, respectively. It was finally concluded that the amount of corrosion which causes the 

cracking of the cover concrete was a very important measure to judge the life and 

soundness of reinforced concrete structures.

• 71Furthermore, it was reported that the bond strength went up to 1.2 times that of non

corroded control specimen when the corrosion was simulated by impressing the voltage 

of 3 volts versus a saturated calomel electrode. The bond strength in pullout specimens 

was significantly affected by the level of corrosion, while the reduction in bond strength 

in the case of beams was much less than that in the pullout specimens. Pullout 

specimens showed about 1 0 % decrease in bond strength at the cracking stage which 

occurred at 2.2% corrosion. In the post-cracking stage, the bond strength was reported 

to be reduced to 24% of that of non-corroded control specimen at 12% corrosion. 

Corrosion caused a significant increase in the value of mid-span deflection of beams.

Using the same galvanostatic technique 72, deterioration mechanism of concrete 

structures was investigated. The test specimens were reinforced concrete beams with 

the dimensions of 10 x 10 x 40 cm and 10 x 10 x 70 cm and the corrosion was induced
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by applying a direct current of 167 mA. It was found that the bond between a bar and 

concrete failed as a result of corrosion and cracks were formed from the boundary of the 

bars and concrete. The rate of corrosion increased when these cracks reached the 

surface forming the longitudinal crack along the bar. After the formation of the 

longitudinal crack, the bond between the bar and concrete was reduced, but there was no 

indication of the value of the bond strength corresponding to the cracking stage. It was 

concluded that the effect of corrosion of reinforcing steel bars on the load carrying 

capacity of concrete members was quite large compared to the strength reduction of the 

bar itself.

Investigation on the deterioration of flexural bond in reinforced concrete structures 

under combined effects of exposure to marine environments under heavy sustained 

loads was carried out . The reinforced concrete beams with dimensions of 76 x 152 x 

914 mm were loaded to develop specific crack widths, and loadings were then 

maintained to simulate service condition. Corrosion was accelerated electrochemically 

by applying a constant current density of 5 and 10 mA/cm2. It was reported that the 

time of initiation of crack was three times more for the beams with 5 mA/cm2 in 

comparison with beams with 10 mA/cm . The reduction of the ultimate strength was 

only about 12% for the beams subjected to 5 mA/cm current, while the reduction of 

ultimate strength was about 50% for beams with 10 mA/cm2. When the flexural cracks 

remain open during the entire corrosion process, there was practically no effect on 

corrosion rate with different crack widths.

Another study 74 where conversion of corrosion rate values to loss of load carrying 

capacity suggested that aspects such as bond, steel mechanical properties and presence
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of cracks should be elucidate in order to assess the damage due to corrosion of a 

structure.

10

Further , the appreciable reduction in load carrying capacity of concrete members on 

account of corrosion can not be explained by the reduction of the tensile strength of the 

bars alone, but cracks formed due to corrosion play an important role in changing the 

load carrying mechanism.

Tests on debonded beams with very long lengths of debonded tensile reinforcement 

showed the increased demand on the bond of the remaining short embedded lengths, 

resulting in the ultimate anchorage failure of the damaged beams. Large gaps between 

debonded tensile reinforcement and adjacent concrete have also shown to influence and 

subsequently reduce ultimate load capacity, even in cases where the debond length is 

completely confined within a constant moment region. This is due to differential 

deformation of the debonded steel strain at ultimate load.

A new strain compatibility criteria was used in the analysis 75 of damaged reinforced 

concrete beams with debonded tensile reinforcement, based on concrete and steel 

deformations along the entire length of debonded reinforcement. Reduction in ultimate 

load capacity of debonded beams result as a consequence to switch from under 

reinforced failure of the sound beams to an over reinforced failure of the damaged 

beam, due to the reduced debonded steel strain at ultimate load. It was described by the 

authors that the load capacity reduction of the damaged reinforced concrete beams 

depends on percentage of reinforcement, the length and position of the delamination and 

the moment distribution along the member.

The loss of bond strength was caused by the opening of longitudinal cracks along the 

reinforcement due to radial tensile stress induced at the steel-concrete interface by the
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expansive products of corrosion. Bond strength of corroding reinforcement was shown 

to increase with increasing degree of corrosion. A maximum increase of 25% occurs at 

0.4% corrosion. Beyond 0.4% degree of corrosion, bond strength decreases sharply ’ ’

71,76, 77

A reduction of 10 -  25% in rebar cross section has been suggested to cause 

serviceability failure. The value of the reduction of the cross section remains between 

10% and 35% for corrosion ranging from 5% to 20%. The loss of bonding with 

concrete due to the formation of expansive corrosion products has been identified as the 

primary cause of flexural strength loss of corroding beams 78,79,80.

The interactive corrosion cracking bond relationship tends to become all the more 

relevant with reinforcing bar corrosion becoming a predominant global deterioration 

factor in concrete structures. This sort of problem is becoming more prevalent with the 

use of ultimate strength design in order to utilize the full capacity o f reinforcement in 

concrete and thus, results in structures with smaller quantities of steel.

It can be seen from the above that the limited data available on the effects of corrosion 

on bond strength are conflicting. The author is of the opinion that these conflicts arises 

from different bond test techniques and different rates of corrosion. The lateral is 

considered to be highly important as the available data has been obtained at different 

rates of corrosion varying from those which cause cracking in a few hours to long term 

field test.
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2.9 Reinforced concrete beams damaged by corrosion of tensile reinforcement

2.9.1 Previous experimental work

Previous research concerned with the experimental investigation of the strength 

assessment and general characteristics of corrosion damaged reinforced concrete beams 

have dealt with the simulation of reinforcement corrosion in two distinct ways:

• Controlled corrosion of reinforcing bars by the use of electrolysis (exposing the 

reinforced concrete beams to chloride solution while applying direct current to the 

steel bars, thereby accelerating the corrosion process);

• Including the consequences of tensile steel corrosion as a feature of the 

manufacture of the reinforced concrete beams, leaving specific lengths of tensile 

reinforcing steel exposed and without cover, simulating the degradation of bond 

between concrete and steel and spalling concrete cover, but without loss in steel 

cross sectional area.

2.9.2 Corrosion simulation by the use of electrolysis

I'X
A series of tests were conducted on 14 reinforced concrete beams, using electrolysis 

to investigate the deterioration of flexural bond in reinforced concrete structures under 

combined effects of exposure to marine environment and heavy sustained load. O f the 

14 rectangular beams tested, 8  of the beams were reinforced with a single 16 mm 

diameter steel bar continuously over the entire span; and the remaining six, were 

divided into three pairs reinforced with a single 16 mm diameter steel bar having 1 0 0  

mm, 150 mm or 200 mm overlapping at mid-span respectively. Shear reinforcement 

was not provided in either of the beams. The tests involved:
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• Loading reinforced concrete beams to develop specific crack widths and 

maintaining the loads to simulate service conditions (loading arrangements: single 

point load at mid-span);

• Exposing the loaded beams to sea water;

• Using electrolysis to accelerate the corrosion of reinforcements, for an 8  day 

period, with impressed currents of 5 mA/cm2 and 10 mA/cm2.

For the beams designed with continuous reinforcement, a reduction in moment capacity 

was observed due to longitudinal cracking. The average percentage decrease in moment 

capacity was 12% and 50%, for the beams subjected to 5 mA/cm2 and 10 mA/cm2 

impressed current respectively. Beams with 5 mA/cm2 impressed current failed in 

flexure with the formation of two cracks near mid-span. Beams with 10 mA/cm2 

impressed current failed by shear bond with the formation of a single crack.

For the beams designed with a lapped splice, ultimate moment capacity was a function 

of the magnitude of tension developed at the overlap, which in turn, depends on the 

capacity of the ultimate bond stress. In the case of reinforcement corrosion, the ultimate 

bond stresses depend on the level of deterioration due to longitudinal crack. The test 

results of these beams, which all failed in shear bond, indicated a 32 -  36% reduction of 

moment capacity mainly due to the deterioration of flexural bond in the corroded 

specimens. This study formed only a preliminary study into finding the strength of a 

structure after it is damaged by the development of corrosion cracks. Experimental 

results demonstrated clearly the potential problems of stray current corrosion in the 

reinforced concrete structures, placing emphasis on the effect of a longitudinal crack on 

the flexural bond strength, resulting in potential reductions in ultimate load capacity.
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Further, investigation into the influence of longitudinal cracking due to reinforcement

01

corrosion on characteristics of rectangular reinforced concrete members was reported . 

Beams with spans of 140 cm, 120 cm and 100 cm (shear span/depth ratios of 3.43, 2.89 

and 2.29 respectively) were tested under two point loading. Electrolysis in conjunction 

with spraying with chloride solution was used to induce longitudinal cracking. It was 

observed that in the corroded beams, the flexural cracks occurred concentrically in the 

pure moment span and the number of flexural cracks in the shear span was less than that 

of the sound beam. The yield strengths of the corroded beams with potential 

longitudinal cracks were scarcely reduced in comparison with sound control beams and 

only reduced by 4% at ultimate load. Further, a somewhat rapid reduction in strength of 

corroded beams was observed in comparison with the uncorroded equivalents, when 

subjected to reverse cyclic flexure in the post yield stage.

The development of corrosion products along the reinforcing bar surface and the 

associated opening of longitudinal cracks affects the failure mode and ultimate strength 

of flexural members through a significant loss of bond between concrete and 

reinforcement 4. It also reiterated the fact that little has been done to evaluate the effect 

of bar surface changes due to corrosion, on ultimate strength of flexural members. 

Twelve beam specimens, designed originally to fail in flexure, with differing degrees of 

even spread corrosion (measured as the loss of metal relative to the original bar weight) 

along the length of reinforcement were tested as simply supported beams under a two 

point loading with a total span of 900 mm and shear spans of 300 mm. All corroded 

beams failed in flexure, with yielding of tensile reinforcement prior to final crushing of 

concrete; the same mode of failure as their non corroded counterparts. A 12% reduction 

in ultimate load capacity was measured for the most highly corroded beam tested,
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attributed possibly to the reduction in bar cross sectional area. The stiffness of the 

beams was shown by the tests to reduce with the increasing corrosion intensity.

It was reported elsewhere on the mechanical behaviour and the failure mechanisms of 

reinforced concrete beams damaged by corrosion of reinforcement. Experimental 

loading and bond tests were performed on reinforced concrete specimens damaged with 

an accelerated galvanostatic method, causing uniform corrosion of the whole body of 

tensile reinforcement. The degree of corrosion was recorded as the number of days, an 

electric current density of 0.5 mA/cm was applied to the reinforcements. No shear 

reinforcement was provided. Reductions in stiffness, load carrying capacity and 

flexural cracking were observed in the damaged reinforced concrete beams compared to 

the non-corroded. Changes in the properties and behaviour of the corroded reinforcing 

bars were confirmed by pullout tests which demonstrated the deterioration of bond 

strength, and by punching shear tests which verified the inadequate transmission of 

stresses between reinforcing steel and surrounding concrete, due to cracking in the axial 

direction to the bar cross sections, caused by swelling of the corrosion products which 

generate internal stresses, manifesting as longitudinal cracks along the side of the 

corroded reinforced concrete beams.

o o
More recently, a further study was conducted aimed at evaluating the influence of 

rebars corrosion on the collapse mechanism of reinforced concrete beams. Nine beams 

have been designed, constructed, artificially corroded and tested. Four point bending 

tests where performed with the loading span appropriately selected to display transfer 

from bending to shear failure. The obtained experimental results were compared with 

the analytical ones, accounting for a number of parameters potentially affected by 

corrosion such as, besides the steel diameter, the stress and elongation of longitudinal
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and transverse reinforcement, cover delamination, etc. The good agreement with 

similar specimens reported in the technical literature pointed out by the comparisons 

allows validating the analytical procedure.

The studies in Table 2.1 show the various methods and degrees o f corrosion stimulation 

of tensile reinforcement adopted by researchers in their investigation o f the behaviour of 

the corrosion damaged reinforced concrete beams.

Table 2.1 Summary of experimental tests on corroded beams 83

Authors
b

(cm)

h

(cm)

L

(cm)

tensile

bars

corrosion 

(loss %)*

capacity 

(loss %)

Umoto et a l.84 100 200 2100 2016 2w 17
Tachibana et a l.82 150 200 2000 2016 5w -

n i

Cabrera et al. 125 160 1000 2012 9a 20
O f

Rodriguez et al. 150 200 2300 2010 14d 33
• o c

Rodriguez et al. 150 200 2300 4012 10d 25
Mangat et a l.86 100 150 910 2010 10d 25
Castel et al. 79 150 280 3000 2012 10a 20

*  w =weight loss, a =bar area loss, d ~ bar diameter loss

Bond properties in each of the studies are therefore subject to considerable scatter and 

subsequently, constructive quantitative conclusions cannot be made. However, the 

studies are unified in their description of the behavioural characteristics o f corrosion 

damaged beams as compared to their fully bonded equivalents, comprising: possibility 

of reduction in ultimate load capacity, reduction in flexural stiffness and reduction in 

flexural cracking, with fewer but wider cracks.
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However, in order to enable practical quantitative conclusions to be made concerning 

strength assessment of corrosion damaged beams, a unified approach needs to be 

adopted for the corrosion process and period. In addition, the remaining bond strengths 

of corroded reinforcement need to be determined and associated with the possible 

reductions in load capacity. Unfortunately, at present, non destructive techniques for 

the calculation of the extent of the degradation of bond and cross sectional area are not

n c
available. In some cases , it has already been suggested that the engineer would be 

wise to assume the complete loss of bonding and subsequent shear stress transfer 

between steel and concrete.

2.9.3 Model of steel corrosion

Investigations on the structural effects of loss of cover to the main steel of 7 reinforced

On
concrete beams was carried out . In addition, a control, fully bonded beam was also 

tested. The simulation of spalling of concrete cover to main bars was conducted by 

casting beams with the bars half embedded and others in which “the bars barely 

contacted the concrete”, implying as fully exposed. All beams were cast in an upside 

down position, either pouring fresh concrete just below the level of main tensile bars or 

to the level of the bar centres. The length o f the half or “more or less fully” exposed 

bars (three 16 mm bars of high yield, deformed steel) extended over the whole of a clear 

span, but were fully covered for a length of approximately 2 0 0  mm beyond each support 

(anchorage length). Static loading tests were conducted on the 3.0 m long beams (cross 

sectional dimensions 150 x 300 mm with 30 mm cover to main steel, if  present), simply 

supported on spans of approximately 2.7 m and subjected to concentrated load at mid

span. Compression and shear reinforcement of 6  mm high yield steel were also 

provided. The loss of structural performance, in case of beams with half embedded
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main steel was very slight, failing in the same flexural tension mode (tensile yielding of

the main reinforcement prior to the crushing of the concrete at mid-span) as the control

beam full length and depth of cover concrete, with similar stiffness and crack patterns.

Of the remaining four beams with no cover to tensile steel, only one failed in flexural

compression mode, surprisingly, with no loss of load carrying capacity. Although the

authors report that no apparent yielding of the tensile reinforcement was detected prior

to concrete compression failure in this beam, the fact that the beam suffered no loss in

load capacity indicates that yielding must have been imminent. The remaining 3

damaged beams were reported to have collapsed as a result of anchorage failure, with

reductions in strength ranging from 12% to 44%, reduced stiffness and much reduced

flexural cracking. The authors failed to draw quantitative conclusions due to

insufficient data available and more importantly, due to considerable scatter of the

reinforcement bond properties of the damaged test beams. However, they made the

following statements concerning the effects of a reduction of bond along tensile

reinforcement in damaged reinforced concrete beams as compared to normal fully

bonded equivalent: the number of cracks formed is limited partly because the force

transferred to the concrete between early cracks is insufficient to produce new cracks

between them and partly due to the increased depth of compression zone at sections

toward the support (tied arch behaviour); the formation of shear cracks is inhibited as

the teeth of concrete between flexural cracks are subjected to reduced bond forces; the

increased main steel forces and the loss of tension suffered by the concrete cause

increased deflection; the greater elongation also reduced the depth of the compression

zone at the section of maximum moment; the reduced bond leads to an increase in the

main steel force to be anchored at supports or beyond section of zero moment. The

benefit of reduced or total absent of shear cracks along shear spans was recognised in
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special cases of inadequate provision of shear reinforcement. More importantly, the 

effects of reduced concrete compression depth at the section of maximum moment and 

the increased demand on reinforcement bond along the anchorage lengths were 

highlighted for their tendency to reduce ultimate strength of the damaged members by 

producing premature flexural compression or anchorage failures. A test programme 88 

was carried out at The Queen’s University of Belfast with the aim of developing a more 

comprehensive explanation of the relationship between ultimate capacity and anchorage 

length.

Further, research investigated the effectiveness of different repair materials 6’ 89 and 

surface preparation with simulated faults caused by corrosion of main steel. In the cases 

where debonded tensile reinforcement are in contact with adjacent concrete, the 

effectiveness of any debond length within a region of constant moment is negligible, 

since strains in the steel and adjacent concrete at any section within the constant 

moment region are identical, as in the case of an undamaged, fully bonded beams. 

Thus, such damaged beams suffer from reduction in load capacity. Therefore, the 

position and length of debond relative to the loading pattern and the presence of any gap 

between debonded tensile reinforcement and the adjacent concrete are therefore 

important parameters which require consideration in the strength assessment of 

debonded beams.

2.10 Previous theoretical work

A fairly simple theory is presented which provides means of predicting certain 

characteristics of simply supported reinforced concrete beams that experience two point 

loading with their main reinforcement fully exposed in a symmetrical fashion about the
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mid-span 90. Such an analysis is relevant when, in the course of the patch repair 

process, the concrete cover and steel-concrete bond are removed prior to application of 

the patch repair materials. Encouraging correlations have been found between the 

theoretical predictions and some previously reported large scale test data for ultimate 

loads of reinforced concrete beams. The final numerical results throw some light on the 

perhaps initially puzzling experimental observation previously reported that the ultimate 

loads of beams with exposed main reinforcement can increase significantly if nominal 

top steel (in the form of, for example 2 x 6  mm diameter bars), such as is invariably 

used for holding stirrups in place, is used. Representative results provided identified the 

relative influence of changes in various design parameters such as concrete cube 

strength, depth of removal of concrete, and the length of exposed main reinforcement on 

the flexural strength of reinforced concrete beams with fully exposed main 

reinforcement over part of their span.

2.11 Reinforced concrete beams damaged by corrosion of shear reinforcement

The shear stress at failure is far from being constant even in the case of the same 

concrete, cross section, and reinforcement 91. The transformation of a reinforced 

concrete beam into a tied arch may occur suddenly or may develop gradually 92. The 

transformation of the reinforced concrete beam into a tied arch certainly weakens the 

comb-like structure. However, this does not mean that the remaining arch collapses 

immediately when the loading exceeds the capacity of the concrete. Because the 

strength of the concrete is lowest in tension, the cracks are always normal to the 

direction of principal tensile stresses. Good bond creates closely spaced cracks, while 

poor or non-existent bond results in only a few cracks or no cracks at all in the part
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where shear force exists. Enhanced bond means lower diagonal load carrying

93capacity .

There is a possibility that members with corroded shear reinforcement will not achieve 

their full flexural capacity due to premature shear failure. Corrosion can reduce the 

shear load carrying capacity earlier and, sometimes, at a faster rate than it reduces the 

flexural load carrying capacity. In real structures, shear links have lower cover than 

flexural reinforcement and will start to corrode first. It has been reported elsewhere 5 

that the effects of corrosion on the shear strength are not straightforward, but 

nevertheless, this will be investigated in the current study.

There is a relationship between corrosion and bond deterioration. It has been confirmed

that the presence of uncorroded stirrups have a significant influence on the residual

bond strength of main steel when it is subjected to high corrosion levels 21. However, 

2 1 *the research did not determine the bond strength of the main steel when the shear 

reinforcement was also subjected to corrosion, hence this will be investigated in the 

current investigation.

2.12 Conclusion

From the review of literature concerning the laboratory and field testing of corroded 

reinforced concrete beams, quantitative conclusions have not been possible due to the 

extent of scatter in the bond properties of the damaged beams. However, the tests have 

clearly shown the effect of tensile reinforcement bond degradation on the behaviour of 

reinforced concrete beams, resulting in:

• possible reduction in load capacity;
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•  reduction in flexural stiffness;

• reduction in flexural cracking, with fewer but wider cracks.

As reviewed in the above, very little work has been done to evaluate the effect of 

reinforcement steel corrosion on the strength of flexural members. The literature is 

found to be contradictory on some points. Confusion arises about the influence of 

thickness of concrete cover on the rate of corrosion.
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Chapter 3

Optimisation o f the Corrosion Process

3.1 Introduction

A short programme of preliminary tests was devised and conducted to validate the 

accelerated corrosion method in the laboratory and to determinate the actual percentage 

of corrosion on the steel reinforcement.

Preliminary design and testing was conducted on reinforced concrete beams with main 

reinforcement of high yield steel, top hanger bars made of mild steel and stirrups made 

of stainless steel as described is Section 3.5 of this chapter.

After necessary modifications and adjustments, final tests on corroded and control 

reinforced concrete beams were subsequently performed (Chapters 5 to 7).

3.2 Accelerated corrosion

3.2.1 Introduction

In order for the corrosion process to take a place, there must be differences in potential; 

anodic and cathodic surface zones o f the steel must be connected electrically and 

electrolytically, i.e. a flow of electrons and ions between them must be possible. The 

electrolytic connection is represented by the concrete. Anodic dissolution o f iron must 

be possible due to depassivation of the steel surface, sufficient oxygen must be available 

at the cathode resulting from continuous diffusion of oxygen from the surface o f the
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concrete to the steel surface acting as the cathode. The measurement o f the potential 

between the anodes, or the reinforcement, and the noble cathode gives further 

information on the onset of corrosion.

3.2.2 Laboratory simulation

After the curing process, the beam specimens were immersed in artificial seawater in a 

plastic tank. A 3.5% C aC f solution (see Chapter 4) was used as the electrolyte. The 

direction of the current was arranged so that the reinforcing steel served as the anode 

while a cooper plate counter electrode was positioned in the tank to act as a cathode. 

The schematic drawing of the arrangement is shown in Figure 3.1.

Steel Rebar (Anode) 

Concrete Beam

Power Supply

-3.5 %CaCb Solution

Cu Plate (Cathode) 

Plastic Tank

Figure 3.1 Accelerated corrosion apparatus

A constant current density of 1 mA/cm was passed over the reinforcement surface and 

the total impressed current was adjusted for each specimen to maintain this current 

density for bars of different diameters. The current density of 1 mA/cm2 was adopted 

on the basis of pilot tests to provide desired levels of corrosion in a reasonable time.
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The current supplied to each specimen was checked on a daily basis and any drift was 

corrected.

The relationship between corrosion current density and the weight of metal lost due to 

corrosion was determined by applying Faraday's Law (Equation 3.1):

where:

A c o  = weight loss due to corrosion in (g),

A  =  atomic weight o f iron (56 g),

I -  electrical current in (A), 

t  =  time in (sec.),

Z = valence o f iron which is 2,

F  =  Faraday's constant (96 500 coulombs).

The metal weight loss due to corrosion can also be expressed as:

A x l x tA CO = -------------------
Z x F

Equation 3.1

A c o  = a x S x y Equation 3.2

where:
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a  = rebar surface area before corrosion (cm2),

5 =  material loss (cm),

y = density o f material (7.86 g/cm ).

The corrosion current can be expressed as:

1 =  ( i ) x ( a )  Equation 3.3

where:

i  = corrosion current density (Amp/cm ).

Therefore, combining Equations 3.1, 3.2 and 3.3 gives:

„ A x l x t  A x i x a x t  _
a x o x v  = -----------= ---------------- Equation 3.4

Z x F  Z x F

Substituting known values into Equation 3.4. gives:

_ A x i x t  5 6 x ? x 3 6 5 x 2 4 x 6 0 x 6 0  .
o  = ------------ = ----------------------------------- = 1165 x i  (cm/year)

y x Z x F  7 .86x2x96500

Equation 3.5
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Rewriting Equation 3.5, where R is defined as the material loss per year (cm/year), 

gives:

R = 1 1 6 5 x i  (cm/year) Equation 3.6

As an example, for a corrosion rate, /, o f 1 (mA/cm2), R ,  equals 1.165 (cm/year) (from 

equation 3.6).

If, in a reinforced concrete structure, the period o f corrosion after initiation is T years, 

then

Metal loss after T y e a r s  =  R * T (cm) Equation 3.7

Therefore

2 x R x T
%  reduction in rebar diameter in T  y e a r s  = --- —-----x 100 Equation 3.8

The expression [ 2 x R x ( T / D ) ] % ,  which represents reduction in rebar diameter due to 

corrosion over T  years, is also defined as the degree of reinforcement corrosion.
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The corrosion rate adopted in these investigations was 1 (mA/cm2). The target degree 

of corrosion, [2*Rx(T/D)]% , ranged between 0% (control) and 20% in increments 

of 5%.

3.3 Methods of accelerated corrosion

When the specimen is subsequently immersed in C aC f solution, the chloride ions will 

penetrate the mortar very rapidly together with the water as it is drawn in by capillary 

suction. The unhydrated cement can then begin to react and will be affected by the 

presence of the C f  ions which will have a greater chance of being chemically bound 

than if they penetrated fully hardened cement paste and may also have an accelerating 

effect on the hydration. The longer the period of moist curing, the slower will be the 

penetration of chlorides, but the degree of chemical binding can also be expected to be 

lower. The initiation time for corrosion increases approximately linearly with an 

increasing period of moist curing. On the other hand, any increase in chemical binding 

is not reflected in higher critical chloride concentration for corrosion and, in fact, the 

tendency is the opposite.

There are several methods available to study the accelerated corrosion of steel 

reinforcement in the laboratory. The galvanostatic method was used in this study to 

simulate the field conditions. The method involves passing a direct current through the 

reinforcement to accelerate corrosion. The galvanostatic corrosion is carried out whilst 

the beam is unloaded, which is quite different from the corrosion in actual structures. 

The corrosion by galvanostatic method is general, whereas actual structures have some 

specific areas that are more prone to corrosion. Thus in the latter case, there is always 

the possibility of pitting corrosion whereas the cross sectional area of the reinforcing
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bars could be significantly reduced, thereby reducing the tensile strength of the 

reinforcing bars. However, to ensure consistency of results in this investigation, the 

steel reinforcement was subjected to general corrosion only, which allows easier 

repeatability compared to pitting corrosion.

According to standard corrosion theory, steel embedded in concrete is largely in a 

protected state because of the alkalinity of the matrix. The corrosion rate depends on 

the ratio of the cathodic area to the anodic area 94, 95,96,97. In this investigation, the 

potential was measured every day to ensure that the steel was corroding. The potential 

cannot be measured directly, as the available measuring devices can measure only a 

difference in potential. To overcome this limitation, a Saturated Calomel Electrode 

(SCE) was added to the system by means of a suitable salt bridge. The potential of the 

SCE is (by arbitrary definition) zero. The potential for the concrete beams in this study 

ranged between -340 mV and -300 mV which represents the active state (see Table

3.1).

Table 3.1 Active and passive condition of steel rebar

E (mV vs SCE) Condition of rebars

> - 2 2 0 Passive

Between -220 and -270 Active or Passive

< -270 Active

where E is the rebar potential (mV),

SCE is Saturated Calomel Electrode (reference electrode).
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3.4 Validation of accelerated corrosion method

Preliminary tests were carried out before commencing the formal research programme 

to confirm the reliability of the accelerated corrosion technique.

The aim of this was to determine the actual percentage reductions in reinforcing bar 

diameter and compare these with the calculated percentage reductions. The degree of 

corrosion (as a percentage of reduction in reinforcing bar diameter) is defined by the 

expression 2RT/D percent, where R is the rate of corrosion in mm/year, D is the 

reinforcing bar diameter in mm, and T is the time in years after corrosion initiation (see 

Section 3.2.2).

3.4.1 Corrosion of reinforcing bars in saline solution

Figure 3.2 show reinforcement bars undergoing accelerated corrosion using specialist 

equipment in the laboratory in order to verify the corrosion model. In this situation, the 

bars were anodic and therefore corroded while the copper plate was cathodic. 

Electrolyte was a 3.5% C aC f solution. Since there was no protective layer, there was 

no initiation time, i.e. corrosion occurred immediately after the current flow.

The degree of corrosion was measured both as gravimetric weight loss and reduction in 

the diameter of the reinforcing bars. With regards to the gravimetric weight loss 

method, the steel reinforcement was weighted before the specimens were corroded. A 

predefined corrosion rate was applied to the reinforcing bars over a specified period of 

time. Upon completion of the corrosion period, the reinforcing bars were removed from 

the solution, cleaned with a wire brush and re-weighed. The percentage loss in weight 

was subsequently calculated.
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Figure 3.2 Reinforcement bars under corrosion

The second method to determine the percentage corrosion was similarly performed, 

except that the average rebar diameter both before and after corrosion was measured 

and the loss was determined from a reduction in the diameter.

Referring to Table 3.2, four degrees of corrosion were investigated at this stage, i.e., 1.0,

1.5 (twice), 5.0 (twice) and 10.0 percent reduction in bar diameter (see column 1, Table

3.2). The length of reinforcing bar was varied between 350 mm and 650 mm (column 

2, Table 3.2). Two reference methods were chosen to monitor the accelerated corrosion 

process. Method I involved measuring the reduction in reinforcing bar diameter.
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Hence, the diameter of the reinforcing bar was measured before corrosion acceleration 

at 10 locations along the bar and the average diameter was calculated (column 3, 

Table 3.2). After the accelerated corrosion period, the bars were removed from the 

concrete and cleaned with a wire brush and the diameter was re-measured as before and 

the average diameter was determined (column 4, Table 3.2). The actual loss in bar 

diameter is given in column 5. Column 6, Table 3.2 shows the theoretical loss in 

diameter as calculated in Section 3.2.2. Column 7 in Method I (Table 3.2) shows the 

percentage difference between the measured and actual loss in diameter for the 

reinforcing bars.

Method II (Table 3.2) takes into account the gravimetric weight loss in the bar after 

corrosion. The weight of reinforcing bar was measured before acceleration of corrosion 

(column 8, Table 3.2), whereas the weight of the bar after corrosion is recorded in 

column 9. The actual metal weight loss due to corrosion is given in column 10. The 

theoretical metal weight loss, as calculated in Section 3.2.2 is given in column 11. The 

difference between actual weight loss in the reinforcing bar and the theoretical weight 

loss is given as a percentage in column 12.

The results showed that Method I (reduction in bar diameter) is not a reliable method, as 

shown by the significant error (Av=42.6%, column 7) between the calculated reduction 

in the reinforcing bar diameters and the measured reduction in reinforcing bar diameters 

at the end of the corrosion inducing period.

This is due to the fact that it is difficult to measure accurately the diameter of the 

reinforcing bars both before, and especially after, the corrosion period. Also, the 

diameter of the steel bars is not perfectly circular hence this exaggerates the error even 

more. Furthermore, the presence of ribs also makes it difficult to measure the diameter
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accurately. Method II (Gravimetric weight loss) is a reliable method since the error is 

substantially less (Av=9%, column 12, table 3.2) between the theoretical weight loss 

and the measured weight loss after the corrosion inducing period (although the 

percentage difference for the 1% test is higher at 28.83%). Therefore, in this research, 

the gravimetric weight loss method was employed as a means of monitoring the actual 

loss in the reinforcing bar diameters.

3.4.2 Corrosion of reinforcing bars in concrete

Further, in order to model the corrosion process in reinforcement bars in concrete, small 

specimens were cast prior to the preliminary test in order to verily the model and to 

establish the necessary time to break the protective passive layer. Figure 3.3 show 

reinforced concrete specimens undergoing accelerated corrosion using specialised 

equipment in the laboratory.

The aim of this investigation was to establish the additional time to the onset of 

corrosion. The time required to induce a specified loss in bar diameter was calculated 

from Equation 3.8. It was estimated that the additional time required to establish the 

onset of corrosion was between four to ten days. Therefore, once the time required for 

corrosion to occur had elapsed, an additional four days was initially added to the 

duration. The steel was then broken out for examination and re-weighed. This process 

was repeated with an additional day for the onset of corrosion being added to the 

duration. It was established from this trial and error method that an additional seven 

days was required for the onset of corrosion to occur.
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Figure 3.3 Corrosion of the reinforcement in small concrete prisms 

3.5 Design of test beams using stainless steel

A combination of stainless and carbon steel was used to study the behaviour of corroded

n o

reinforced concrete beams. The aim was to employ stainless steel as reinforcement 

where the steel was to remain uncorroded. Carbon steel was used where the 

reinforcement was subjected to the accelerated corrosion technique.

3.5.1 Preliminary beams details

Preliminary investigations were conducted on beam specimens following the 

completion of the trials described in Sections 3.4.1 and 3.4.2. The Construction
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Materials laboratory at Sheffield Hallam University was used to cast and test the beams. 

Reinforced concrete beams of 500 mm length with a cross section of 100 mm deep and 

100 mm wide were used. Beams were cast using standard cast iron prism moulds. 

Preliminary Series I was used to determine the influence of corrosion on the main steel 

only and therefore, determine if the procedure is successful. A concrete mix was 

designed to give 28 day cube strength of 50 N/mm2 and a slump 30 -  60 mm. After 

casting, the samples were kept for 24 hrs at 20°C in 95% ± 5% relative humidity (RH) 

before demolding. The specimens were then stored at 20°C in 100% RH (water tank) 

for an additional 27 days and, thereafter, in the laboratory atmosphere at approximately 

50% RH for the duration of corrosion acceleration.

3.5.2 Preliminary Series I

Preliminary Series I was used to study the effect of main steel corrosion on the flexural 

strength of the beam. The main steel was subjected to different degrees of accelerated 

corrosion whereas the shear reinforcement (stainless steel) was to remain free from 

corrosion. The stainless steel used was type 304 (18-8) austenitic steel. A detailed X - 

Ray analysis was performed by the Materials & Engineering Research Institute at 

Sheffield Hallam University, to determine the chromium and nickel content.

In total, 10 beam specimens, measuring 100 x 100 mm in cross section and 500 mm in 

length were cast and tested in Preliminary Series I 99 (see Figure 3.4 and 

Table 3.3). Beam specimens were cast from a 0.44 water/cement ratio concrete having 

an average tested compressive strength of 68 MPa. Beams were reinforced with either 

2T8 (4 specimens), 2T10 (4 specimens) or 2T12 (2 specimens) main steel in the tensile 

zone and 8 mm stainless steel 100, 101 shear reinforcement at 50 mm or 55 mm centres
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Table 3.3 Preliminary test programme

Number of Preliminary Specimens

Preliminary Series I

Shear Reinforcement:

8 mm Stainless Steel (Uncorroded)

Main Reinforcement:

8, 10, 12 mm High Yield Steel (Corroded)

8 mm 10 mm 12 mm

Ta
rg

et
 %

 
C

or
ro

si
on 0% 2 2 2

5% 2 2 -

Totals
4 4 2

10

(see Figure 3.4). The target corrosion was either 0% (control) or 5%. Two 6 mm plain 

mild steel hanger bars were used in the compression zone to support the shear 

reinforcement.

Corrosion to the main steel reinforcement was induced through a galvanostatic 

electrolyte corrosion technique (see Figure 3.5) as described in Section 3.3.

This ensured that the diameter of the main steel was reduced by up to 5% (Table 3.3).
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:\\\\\\\

Figure 3.5 Accelerated corrosion of reinforcing steel in the laboratory

When the circuit is completed between two electrodes, the main bars behave as anodic 

and dissolve while the external cooper plate behave as cathodic and is subject to plating 

out. The process was monitored on a daily basis to ensure that there was no short 

circuit. When the cell is short circuited, both electrodes have the same potential and 

there will be an associated limiting corrosion current. The relative areas of main bars 

and cooper plate were carefully chosen. The principle that the large cathode to anode 

area ratio can be disastrous, while a small cathode to anode area ratio of a potentially 

damaging couple can, at times, be tolerated.
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After applying a predetermined amount of current to the beams to cause corrosion, the 

structural behaviour was examined by loading to failure. The specimens were tested as 

simply supported beams under four point bending with a total span of 500 mm and 

shear span of 100 mm as shown in Figure 3.6 and Figure 3.7. The loading rate of the 

testing machine was 12 kN/min.

Figure 3.6 Preliminary beam under test
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Figure 3.7 Schematic drawing for preliminary beam test

3.5.3 Performance of preliminary Series I

One degree of corrosion (5%) was applied (column 1, Table 3.4) to two different beam 

types (column 2, Table 3.4) and the resulting performance was compared with the 

control specimens not exposed to any corrosion. The designation used in column 2 of 

Table 3.4 fully identifies each beam. The first part gives the number, type and diameter 

of main reinforcement (2T8, 2T10 or 2T12) followed by the target degree o f corrosion 

in percentage. The second part represents the number of shear reinforcement and 

diameter, percentage corrosion (in this case 0%) and cover in mm, e.g. 9D8/0/20.

Two specimens were cast of each beam type (column 3, Table 3.4). A corrosion rate o f 

1 mA/cm was applied to the corroded specimens (column 4). The corrosion duration in 

hours, which is the time taken to complete the corrosion of the reinforcement to the 

desired degree, is given in column 5.
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Table 3.4 Experimental program for preliminary beam Series I

Degree of 

corrosion 

%

Beam number
No. of 

specimens

Corrosion

Rate

(mA/cm2)

Corrosion

duration*

(hrs)

0 ) (2) (3) (4) (5)

0%

(Control)

2T8/0+9D8/0/20 2 - -

2T10/0+9D8/0/20 2 - -

2T12/0+10D 8/0/20 2 -

5%
2T8/5+9D8/0/20 2 1 318.4

2T10/5+9D8/0/20 2 1 356.0

*  includes in itiation time

At 28 days after casting, the beams with 0% corrosion (control) were tested under four 

point bending to determine their load -  deflection curves and their ultimate flexural 

strength. The corroded specimens were tested at 42 days and 45 days for 2T8 and 2T10 

respectively, in order to achieve the desire level of corrosion. Average load -  deflection 

relationships for the beam specimens were obtained by averaging the results of two 

specimens tested.

3.6 Discussions of the preliminary results

Ten reinforced concrete beams were designed, constructed, artificially corroded and 

tested. The beams were of the same geometry, however, the tensile rebars diameter and

8 4  o c

the corrosion level ’ were varied. As the intention was corrosion on main 

reinforcement only, the specimens were designed with main reinforcement made of high 

yield carbon steel and stirrups made from stainless steel which remained uncorroded.
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After the test were performed the steel bars were taken out for examination. This was 

done by removing the concrete manually where extra care was taken so no mechanical 

damage was done to the steel and the cage was then re-assembled. It was evident that 

since the connection between the main bars and the stirrups was not protected, the 

current was spread between the anode (main deformed bars) and the rest of the 

reinforcement cage at a degree which could not be determined experimentally. 

Corrosion percentage in the shear reinforcement could not been calculated from mass 

losses as it could be misleading when deterioration was highly localized, (i.e. heavy 

pitting corrosion). The weight loss for the main bars was determined as degree of 

corrosion. Due to the pitting corrosion, an insignificant portion of the current went 

through the main steel, therefore, the target corrosion was not achieved. Figure 3.8 

shows the severe pitting that occurred at the stainless steel shear reinforcement.

Since the aim of this work was to corrode only the main reinforcement, this method of 

using stainless steel shear reinforcement was discarded for the main series of beams due 

to susceptibility to pitting corrosion of the stainless steel.

3.7 Further experimental work

Further to the results in the previous section, it was decided that the cathodic area is to 

be reduced and the connection between main reinforcement and stirrups improved, so 

that the current is passed only through the main reinforcement and therefore, leaving the 

shear reinforcement in a protected state.
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Figure 3.8 Stainless steel stirrups exhibiting pitting corrosion 

3.7.1 Method I

Investigations were done using epoxy paint. The paint was used at the points of contact 

between the main and shear reinforcement. Two beams were cast and cured as 

described in Section 3.5.1. Corrosion was accelerated as before and the main 

reinforcement was broken out and examined. However, this method was disregarded as 

the paint was not sufficient to provide the desired protection. The shear reinforcement 

was corroded at a rate which was not possible to establish.
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3.7.2 Method II

A Sika Latex, which is a modified styrene butadiene emulsion, was also tried as a 

means of protecting the shear reinforcement from corrosion. It was applied at the points 

of contact as described in Section 3.7.1 (Method 1). Due to its polymeric action, 

mortars containing Sika Latex have superior adhesion, good compressive strengths and 

considerably improved flexural and tensile strengths. In addition, Sika Latex mortar has 

greatly reduced water permeability, improved resistance to chemicals and to abrasion; 

are non-toxic and non-corrosive. Before application, it was ensured that the surface 

was sound, clean and free from oils. All loose material was removed using a 

mechanical abrasion. The following composition was used: Sika Latex one part, water 

one part, cement one part, washed fine sand one part. Further two beams were cast, 

corroded and tested to verify this model. After the steel bars were removed from the 

concrete and visually examined, it was evident that it did not provide sufficient 

protection when high constant current was passed. Therefore, Sika Latex was also 

disregarded from the experiments.

3.7.3 Method III

A sealed electrical connection was provided by heat sealable shrinkage plastic tubing 

(with an integrally bonded adhesive inner lining, designed to provide a permanent 

encapsulation for protection against moisture). Shrink wrap was applied at the points o f 

contact between the main bars and the shear reinforcement as well as the bent-up 

portion of the main reinforcement. Manufactured from an irradiated polyolefin 

material, the sleeving has a specially formulated adhesive inner wall which melts when 

heated and is forced into steel interstices by the shrinking action of the outer wall. 

When cooled, the sleeving becomes a semi-flexible, tough homogenous encapsulate

6 2
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with a controlled wall thickness. The sleeving will shrink to 33% of its supplied 

diameter when heated above 125°C. It contains high mechanical and electrical strength 

and resistance to water. Also, when used as a cap, it ensures that the steel ends are 

waterproof and permit long term storage without risk of moisture penetration. It is a 

medium wall moulded cap internally coated with an adhesive sealant. Installation is 

simple, the cap is centred over the end of the steel and on application of heat the cap 

shrinks to form a reliable seal.

A further two beams were cast, cured, corroded and tested in a similar manner to those 

described in Section 3.5.1. When current was applied, the circuit was completed 

between the two electrodes, the main bars behaved as an anode and dissolved whilst the 

cage behaved as a cathode and was subject to plating out. This method was verified by 

examining the steel after testing as described previously. In this instance, the main bars 

corroded to the desired levels, whereas the shear reinforcement remained protected and 

uncorroded.

3.8 Concluding remarks

Based on the preliminary investigations described in this chapter, the final test beams 

for the main programme were designed using only carbon steel with the use of shrink 

wrap at the points of contact between the main and shear reinforcement. The time to the 

onset of corrosion was also established. Full details of the main test beams are given in 

Chapters 5, 6 and 7.
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Chapter 4

Detailed Experimental Programme

4.1 Introduction

Reinforced concrete structures that are properly designed generally exhibit excellent 

durability throughout their lifetime. However, there are numerous examples where 

problems have occurred due to the corrosion of the steel reinforcement in the structures 

due to poor design and workmanship, in addition to exposure to aggressive 

environments such as motorway bridges, car parks and marine structures. These 

structures have required premature and costly repair, remediation or even replacement.

The aim of this research, therefore was to determine the residual strength of corroded 

reinforced concrete beams when both the main and shear reinforcement is subjected to 

varying degrees of corrosion.

4.2 Objectives of investigation

The principle objectives of the experimental work were to:

1) investigate the influence of concrete cover in corrosion damaged reinforced 

concrete beams;

2) study the influence of various degrees of main reinforcement corrosion on the 

structural performance of reinforced concrete beams;
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3) study the influence of various degrees of shear reinforcement corrosion on the 

structural performance of reinforced concrete beams;

4) study the effect of both main and shear reinforcement corrosion on the structural 

performance of corroded reinforced concrete beams;

5) develop analytical models to predict the residual strength of corrosion damaged 

beams.

4.3 Details of experimental programme

The Construction Materials laboratory at Sheffield Hallam University was used to carry 

out the investigations. Three series of beam were tested to fulfil the objectives of the 

project. Series I determined the influence of corrosion on the main steel only (74 beams 

were tested, Table 4.1), Series II investigated the influence of corrosion on the shear 

reinforcement only (8 beams, Table 4.1), whereas Series III investigated the 

performance of reinforced concrete beams which exhibited both main and shear 

reinforcement corrosion (34 beams, Table 4.1). A total of 116 beams (Table 4.1) were 

tested.

Under reinforced concrete beams of 910 mm length with a cross section of 150 mm 

deep and 100 mm wide were used in the investigation. Beams were cast using standard 

cast iron prism moulds. Each beam was reinforced with two high yield steel bars of 

either 8 mm, 10 mm or 12 mm diameter. Shear reinforcement consisted of 6 mm 

diameter mild steel stirrups. The stirrups were supported by 6 mm diameter mild steel 

hanger bars in the compression zone.
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The concrete mix design, in accordance with British Cement Association (BCA) 

methods is given in the standard form in Table 4.2. The concrete mix proportions by 

weight were 1 : 1.49 : 2.88 (cement, fine aggregates, coarse aggregates). The 

water/cement ratio was 0.44.

Fine and coarse aggregates were oven dried at 100°C for 24 hours to eliminate the free 

water content and then maintained dry prior to their use (normally three days after 

drying). Di -  hydrate Calcium Chloride (CaCb) was added to the mix (3% by weight of 

cement, adopted from a previous research) in order to promote corrosion of the steel 

reinforcement. The aggregates and cement were dry mixed in a mechanical mixer for 

one minute. The water was then added gradually. As CaCb was used it was necessary 

for it to be dissolved in the mixing water prior to pouring into the mixer. This wet mix 

was then stirred for a further 2.5 minutes. In order to incorporate any dry material a 

further hand stirring of the wet mix was necessary. The mix was then placed in steel 

moulds in three layers, each layer being carefully compacted on a vibrating table. The 

specimens were then placed in the mist curing room (20°C and 95% ± 5% RH) 102 for 

24 hours. The samples were demolded after 1 day and cured in water at 20°C for a 

further 27 days (28 days in total) and, thereafter, under laboratory conditions 

(approximately 50% ± 5% RH, 20°C) whilst awaiting exposure to the accelerated 

corrosion technique.

Two specimens were prepared and tested for each investigation. The transfer of 

samples from 100% RH to the laboratory atmosphere results in a drying out of the 

mortar. Thus, the samples were stored at 100% RH for one day prior being subjected to 

accelerated corrosion.
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Table 4.2 Concrete mix design form

Table 1 Concrete mix design form
Job title: Research Experimental Programme

Stage Item

Reference
or
calculation

1 1.1 Characteristic strength Specified I 50
N/mm2
at 28 days

Proportion defective - %

1.2 Standard deviation Fig 3 N/mm2 or no data - N/mnr

1.3 Margin Cl (k =  -  ) _ x -  = N/mm2
or

Specified - N/mm2

1.4 Target mean strength C2 _ + N/mm2
1.5 Cement type
1.6 Aggregate type: coarse 

Aggregate type: fine

1.7 Free-water / cement ratio

Specified

Table 2, Fig 
4

0PC/SRPG/RHPG 
Crushed / uncrushed 
Crushed / uncrushed

0.44
1.8 Maximum free-water /  
cement ratio

Specified
0.45

}

Use the lower value 0.44

2.1 Slump or Vebe time Specified
2.2 Maximum aggregate size Specified

2.3 Free-water content Table 3

Slump _
20-5 mm graded

30-60 mm or Vebe time 3-6
20 mm

180 kg/m3

3.1 Cement content C3

3.2 Maximum cement content Specified

3.3 Minimum cement content Specified

3.4 Modified free-water/cement ratio

180

kg/m3

kg/m3 
use 3.1 if < 3.2

use 3.3 if > 3.1

400

0.44 409.1 kg/m3

409.1 kg/m3

0.44

4.1 Relative density of aggregate 
(SSD)

4.2 Concrete density

4.3 Total aggregate content

Fig 5 

C4

2.60

2377.9 -  409.1

known/assumed

180

= 2376.9 kg/m3

= 1787.8 kg/m3

5.1 Grading of fine aggregate
5.2 Proportion of fine aggregate

5.3 Fine aggregate content

5.4 Coarse aggregate content

Percentage passing 600 pm sieve 

Fig 6
70

34

C5 1788 0.34

1788 - 607.9

%
%

607.9 kg/m3

1179.9 kg/m3

Cement Water Fine aggregate Coarse aggregate (kg)
Quantities (kg) (kg or L) (kg) 10mm 20mm 40mm

per m3 (to nearest 5 kg) 410 180 60S - 1180 -

per trial mix of 5x10 3m3 2 0.9 3 - 5.9 -

Items in italics are optional limiting values that may be specified (see Section 7) 

1 N/m nr = 1 MN/m2 = 1 Mpa (see footnote to Section 3).

6 8



^riapier D etailed Experimental Programme

For each mix, six cube specimens (100 mm x 100 mm x 100 mm) were cast and tested 

in compression at 28 days in accordance with BS 1881: Part 116: 1983. Each mix 

represents the average of the three cubes tested at the age of 28 days and the average of 

the three cubes tested on the day of the beam test.

4.4 Materials

4.4.1 Cement

Portland cement was supplied by Castle Cement Ltd., Stamford, Lincolnshire.

The chemical composition of the cement, tested in accordance with BS 12 103 by Castle 

Cement Ltd. is given in Table 4.3.

4.4.2 Aggregates

The aggregates used in the investigation were supplied by Tarmac Roadstone Ltd., 

Nottingham. Coarse aggregates consisted of 20 -  5 mm graded quartzite whereas the 

fine aggregate consisted of medium grade sand. Grading curves of the aggregates are 

given in Figures 4.1 and 4.2. These were determined in accordance with BS 882 104.

The density of fully compacted concrete is depending upon free water content and 

relative density of the combined aggregate in saturated surface condition (SSC) 105. 

When no information is available an approximation can be made by assuming a value of

2.6 for uncrushed aggregates. Also the water absorption is relatively low and therefore 

was not taken into account.
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Table 4.3 Chemical composition of Portland cement by Castle Cement Ltd.

C o m p o u n d  %

CaO 64.92

S i0 2 21.07

A12 0 3 5.05

Fe203 3.03

S 0 3 2.85

MgO 1.09

K20  0.76

Na20  0.14

Cl 0.02

Loss on ignition 0.60

Non detected 0.47

Total 100.00

C e m e n t  c o m p o u n d s

Tricalcium Silicate (C3S) 54.40

Dicalcium Silicate (C2 S) 20.10

Tetracalcium Aluminoferrite (C4AF) 6.20

Tricalcium Aluminate (C3A) 9.80
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4.4.3 Di -  hydrate Calcium chloride

Portland cement concrete normally provides both a very good chemical and physical 

protection to all embedded steel. The chemical protection is primarily provided by the 

high alkaline nature of the pore water (pH 13.0 -  13.5), where the steel becomes 

electrochemically passivated. In addition, a physical protection is provided by the 

concrete, either by retarding or preventing the penetration of aggressive species like 

chlorides or carbon dioxide to the steel-concrete interface.

When chlorides penetrate concrete, some of it is bound either in the form of Friedel’s 

salt (3CaO • AI2O3 • CaCb • IOH2O) or physically adsorbed to the amorphous calcium 

silicate hydrates (CSH). Thus, it is only the remaining free chlorides that represent a 

risk depassivation and corrosion of the steel.

For accelerated corrosion testing on embedded steel in concrete, chlorides are often 

added to the fresh concrete mixture. In addition to breaking down the passive film on 

embedded steel, the level of chloride content in concrete also influences the electrical 

resistivity of the concrete and, hence, the kinetics of the reinforcement corrosion, as 

long as the corrosion process is under resistance control. While there is a general 

agreement in the literature that the binding of chlorides in concrete is higher when 

CaC f is added to the fresh concrete, in comparison with NaCl, the effect of different 

chloride sources on the concrete resistivity is not well known. Friedel’s salt is formed 

from calcium aluminate hydrate and a soluble chloride source after: CaCl2(aq) + 

3Ca0.Al2 0 3 .6H20(s) + 4H20  -> 3 CaO.Al2O3 .CaCl2 .1 0 H2O(s).

The addition of sodium chloride to the fresh concrete will increase the pH, and this 

effect is well documented in the literature. It is also well documented that an increased
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alkalinity will activate the cement hydration and will give a more dense paste structure 

with smaller pores compared with that of non-activated cements.

In order to lessen the electrical resistance of concrete and to control the rate of 

corrosion, 3% calcium chloride by weight of cement was chosen in all the series of 

tests. As reported in the literature when CaCh was added to the fresh mortar, the 

amount of dissolved hydroxyl ions or pH level was reduced. The acid capacity for 

Ca(OH) 2  or amount of Ca(OH) 2  was decreased and the acid capacity for CSH and/or 

FriedeTs Salt was increased 106.

Calcium chloride used in the investigation was in flake form supplied by J. Preston Ltd., 

Sheffield, England.

4.4.4 Steel reinforcement

Deformed high yield steel bars of grade 460 with 8, 10 and 12 mm diameter were used 

as main reinforcement in the experimental investigation described in Chapters 5, 6 and 

7. Hanger bars and stirrups were standard 6 mm mild steel bars, grade 250. The steel 

was supplied by Derim Steels Ltd., Chesterfield, Derbyshire.

4.5 Potential inspection technique for steel in concrete

The accelerated corrosion technique was tested by making an electrical connection 

between the voltmeter and the exposed steel reinforcement (Figure 4.3). A flat surface 

was filed on the reinforcing bar and the electrical cable was attached to the steel 

reinforcement with self tapping screws, making sure that an electrical circuit was 

formed between the voltmeter and steel reinforcement (tested with a DC resistivity
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Digital v o l t m e t e r

R e i n f o r c e m e n t  b a r
P l a s t i c  t a n k

C o n c r e t e  b e a n

E l e c t r o d e . / ’

3 ,5“/  CaClP s o l u t i o n / /  / /  / /  / /  / /  / /  //~77

Figure 4.3 Monitoring of the accelerating corrosion technique

meter between two points on the reinforcement cage). Measurements were made in 

both a forward and reverse direction (i.e. with the connections reversed). A resistance 

of less than IQ indicated that the steel circuit is continuous. Connecting the reference 

electrode to the negative terminal of the voltmeter and the reinforcing steel to the 

positive terminal gives a potential indication and therefore indicates that accelerated 

corrosion is possible.

4.5.1 Reference electrode

The reference electrode was a Saturated Mercury / Mercury Chloride (Calomel) 

Electrode (see Figure 4.4). The reference electrode was calibrated against another
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Figure 4.4 Standard Calomel reference electrode

saturated calomel electrode to ensure that a stable reading of potential difference is 

obtained before use. The test verified that the potential difference was not greater than 

20 mV.

4.5.2 Digital voltmeter (ISO-TECH IDM97/97RMS)

The digital voltmeter (DVM) used in the investigation (see Figure 4.5) has high input 

impedance so that current flowing through the reference electrode does not cause 

disturbance or affect its potential. The voltmeter has a resolution ± 1 V, although values
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MOLD O  St,St

BEEP GUARD'” 
AUTO POWER OFF 
SEALED CASE

uAmA

-PUSEO-

Figure 4.5 Digital voltmeter

can be recorded to the nearest 5 V. The potential drop along the cable from the 

reinforcing steel to the voltmeter was less then 0.1 mV when measured between two 

previously calibrated reference electrodes.

4.5.3 Power supply

To accelerate the corrosion process, direct current was impressed on the steel bars 

embedded in beam specimens using an integrated system incorporating power supply
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with a built in ammeter to monitor the current (PL 330 QMD), and a potentiometer to 

control the current intensity.

4.6 Instrumentation

The following section describes the use of instrumentation implemented during 

experimental testing of the beams, to measure the magnitude of applied load and 

deflection.

The electrical measuring instruments were switched on an hour prior to testing to attain 

a true balance.

4.6.1 Load measurement

Load measurements were taken by 3000 kN load cell connected to amplifier with low 

pass filter which in turn connected to a load cell power supply and digital balancing and 

monitoring unit. The amplifier was calibrated to ensure a direct reading of the applied 

load on the digital monitoring unit, with an accuracy of 0.1 kN.

4.6.2 Deflection measurement

Deflections were measured at mid-span for all beams via data loggers with an accuracy 

of 0 . 0 1  mm.
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Chapter

Influence o f Main Steel Corrosion on Structural Performance 

(Series I)

5.1 Introduction

Reinforced concrete is widely used in construction due to its versatility and durability 

when properly designed and placed. In general, the environment provided by concrete 

protects the reinforcing steel. This is due to the high pH environment present in 

Portland cement pore solution which passivates the steel 10. Corrosion of the steel 

reinforcement will not occur unless an external agent changes the normal passive state 

of the steel in this alkaline environment. When this occurs, corrosion becomes a subject 

of technical and scientific interest as well as of economic interest. It was reported that 

over £550 million is spent annually in the UK on refurbishment as the tendency is to 

repair a structure to increase its design life rather than demolish and replace 107.

The expansive products of reinforcement corrosion cause cracking, rust staining and 

spalling of the cover zone which can lead to serviceability failure of structures during 

their design life . Additionally, corrosion results in a loss of reinforcement cross 

sectional area and bond, and therefore, a loss in load carrying capacity of the structural 

element. A survey of bridge stock in the UK revealed that 75% is contaminated with 

chlorides which in time will cause reinforcement corrosion 108,109. In such cases, repair 

is necessary to increase the service life of the m em ber6’ no.
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5.2 Objectives of test programme

The literature review carried out suggested that there is insufficient information 

available to enable a realistic assessment of deteriorated structural elements in concrete 

bridges. In many instances, data is available in the literature, but it is either conflicting 

or in a form which is not readily usable in assessment. There is a particular need for 

systematic analysis of the various ways of investigating corrosion to determine which 

methods realistically predict the process of corrosion in real structures.

It is recognised that the corrosion of steel in reinforced concrete can cause serious loss 

of structural performance. In particular, loss of bond between the steel and concrete can 

cause catastrophic failure. The series of beam tests described in this chapter were 

devised to determine the flexural strength of reinforced concrete beams in which the 

bond between the reinforcement and the concrete was impaired as a result o f corrosion 

to the reinforcement. The test programme was designed to provide information on the 

influence of corrosion on the structural performance of deteriorated beams. Therefore, 

the aim of this series of tests is to establish the residual strength of under reinforced 

beams exhibiting main reinforcement corrosion.

5.3 Experimental programme

5.3.1 General

The mechanism of corrosion of steel in concrete is well documented in the literature and 

the factors which contribute to the initiation and subsequent rate of corrosion are well 

understood. Similarly, procedures for detection and repair of corroded structures are 

well established. However, the structural effects of corrosion have not received the

8 0
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same degree of attention and there is very little guidance available to bridge assessors to 

enable the load capacity of deteriorated structures to be determined. Where serious 

deterioration is present, the methods of incorporating the resulting structural effects, 

such as use of estimated section loss or the application of condition factors, are very 

crude. It is to be expected that, in general, a deteriorated bridge will not be allowed to 

remain in poor condition indefinitely. It is, however, necessary to be able to take 

account of deterioration in strength calculations in order to assess the immediate need 

for traffic restrictions or temporary strengthening.

Previous research reported in the literature suggests that loss in strength due to general 

corrosion can be estimated by allowing for a loss of cross section of the steel 

reinforcement ’ . However, for the reinforced concrete to behave as a composite

member, adequate bond between the concrete and reinforcement must be maintained. 

The presence of steel corrosion can be detrimental to this bond as well as the possible 

disruption of the concrete surrounding the bar arising from the expansiveness of the 

corrosion products. The loss of bond can reduce the effectiveness of the member in 

both flexure and shear. The general conclusion of the literature review is that, while 

small amounts of corrosion can have a beneficial effect, the eventual cracking of the 

concrete cover can have a significant detrimental effect on the bond and can, in extreme 

cases, lead to catastrophic failure.

For deformed bars, the main component of the bond is the interlock between the 

deformations and the surrounding concrete. When cover is low and where no transverse 

steel is present, failure occurs by splitting of the concrete and the bond strength depends 

on the tensile strength of the concrete. Where splitting of the concrete is prevented, 

either by adequate cover or the provision of transverse steel, the concrete between the
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ribs shears from the surrounding concrete. In this case, the bond strength is a function 

of the strength of the concrete in direct shear. This pullout type of failure occurs for 

plain bars irrespective of cover as it is loss of adhesion bond which leads to failure 111,

112, 113, 114,115

The effects of corrosion on the bond between the steel and concrete has been examined 

by various authors using widely different techniques, ranging from the mechanical 

blocking out of concrete to simulate loss of cover and/or bond, to the use of impressed 

current as well as the addition of salt to the mix water of concrete. In most cases, the 

experimental tests were pullout tests, where a length of reinforcement was imbedded in 

concrete and measurements made of the tensile force required to pull the bar from the 

concrete. A limited number of beam tests have been carried out, mostly with 

mechanical simulation of loss of cover and/or bond 116,117,118.

The structural consequences are very dependent on the cover provided to the concrete. 

It should be noted that the degree of cracking and spalling associated with loss of bond 

may be sufficient to render the structure unserviceable before strength is seriously 

affected. Knowledge of residual strengths would still be required, however, in order to 

decide on immediate action, e.g., weight restrictions, as well as future maintenance

, 119, 120, 121strategy

In this investigation, the main steel in reinforced concrete beams was subjected to an 

accelerated corrosion technique in the laboratory using one of the several methods 

available. The galvanostatic method was used in this study to simulate the field 

conditions. The method involves passing a direct current through the reinforcement to 

accelerate corrosion. The galvanostatic corrosion is carried out whilst the beam is 

unloaded, which is different from the corrosion in actual structures. The corrosion by

8 2
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galvanostatic method is general, whereas actual structures have some specific areas that 

are more prone to corrosion. Thus, in the latter case, there is always the possibility of 

pitting corrosion whereby the cross sectional area of the reinforcing bars could be 

significantly reduced, thus reducing the tensile strength of the reinforcing bars. 

However, to ensure consistency of results in this investigation, the steel reinforcement 

was subjected to general corrosion only, which allows easier repeatability compared to 

pitting corrosion.

According to standard corrosion theory, steel embedded in concrete is largely in a 

protected state because of the alkalinity of the matrix. The corrosion rate depends on 

the ratio of the cathodic area to the anodic area. In this investigation, the potential was 

measured every day to ensure that the steel was corroding. The potential cannot be 

measured directly, as the available measuring devices can measure only a difference in 

potential. To overcome this limitation, a Saturated Calomel Electrode (SCE) was added 

to the system by means of a suitable salt bridge. The potential for the steel 

reinforcement in this study ranged between -750 mV and -500 mV which represent the 

active state of corrosion process.

5.3.2 Beam specimens

A total of seventy four reinforced concrete beams were tested to examine the influence 

of main steel diameter and reinforcement cover on the flexural behaviour of deteriorated 

beams. Details of test specimens are given in Figure 5.1. Beams were 910 mm long 

with a cross section of 100 mm wide and 150 mm deep. All specimens were detailed 

for flexural failure; sufficient shear reinforcement were provided to ensure adequate 

shear capacity at the anticipated maximum load of the corroded beam. Each beam was
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reinforced with either two 8  mm, 1 0  mm or 1 2  mm diameter reinforcing bars, with 

cover to the stirrups either 20 mm, 30 mm or 50 mm (26 mm, 36 mm or 56 mm to the 

main steel).

Main reinforcement consisted of high yield (ribbed) bars with a nominal characteristic 

strength of 460 N/mm . Shear reinforcement was 6  mm diameter plain round mild steel 

bars with yield strength of 250 N/mm at either 85 mm, 80 mm or 65 mm spacing for 20 

mm, 30 mm and 50 mm cover respectively. Hanger top bars for all beams consisted of 

two 6  mm diameter plain round mild steel bars with a yield strength of 250 N/mm . 

Electrical continuity between the reinforcing bars was ensured by connecting the bars at 

the end.

In all, 74 beams were cast, cured corroded and tested. The designation used in this 

thesis to describe each beam is of the form 2T8/0+10D6/0/30. The first part describes 

the main steel (e.g. 2T8/0) and the second part the shear reinforcement (e.g. 10D6/0/30). 

Regarding the main steel, the number, type and diameter of the main bar, (“T” for high 

tensile steel) is given, followed by the target corrosion, where “0 ” indicates no corrosion 

(or control beams). The second part identifies the shear reinforcement where in this 

example, ten number, 6  mm diameter mild steel shear reinforcement are used with 0 % 

corrosion and 30 mm cover.

The following parameters were examined:

• Influence of corrosion level (up to 20% loss of steel cross section) on structural 

performance;

• Effect of different bar diameters ( 8  mm, 10 mm and 12 mm);
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• Influence of cover (26 mm, 36 mm and 56 mm to the main steel) on structural 

performance of deteriorated members due to corrosion.

Through the testing care was taken to ensure that all the beams in the series contained 

concrete of similar quality and strength. This was done by following the same 

procedures of drying aggregates, mixing, casting and curing each time. Cubes were 

taken at the same time of casting from all mixes used and tested to determine the 

concrete strength at the time of testing. In all, 444 cubes were tested, with strengths in 

the range 42.8 -  6 6 . 6  N/mm . The mean steel strength was found from tensile tests on 

uncorroded samples (see Appendix A).

5.3.3 Process of accelerated corrosion

In order to determine the effect of reinforcement corrosion on the flexural capacity of 

reinforced concrete beams, corrosion was accelerated by applying a current to the 

reinforcement and immersing partially the beam in a salt bath containing a 3.5% salt 

solution of CaCb. The saline solution was maintained in the tank to a depth of 130 mm, 

Figure 5.2, (volume: 10 litres) and was replaced weekly as, after that time, the chloride 

ion concentration became significantly reduced. In general, a current of 406 mA, 

494 mA and 596 mA was applied for beams reinforced with 2T8, 2T10 and 2T12 

respectively, representing a current density of about 1 mA/cm . This current density 

was adopted on the basis of pilot tests to provide desired levels of corrosion in a 

reasonable time. The current density was kept low (1 mA/cm2) in order to simulate 

general behaviour of structures with naturally occurring corrosion. The results from 

such tests are conservative, due mainly to the more uniform distribution of corrosion at 

the critical section. Natural corrosion would tend to be less uniform, thus reducing the
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Figure 5.2 Reinforced concrete beams undergoing main reinforcement corrosion

likelihood of loss of bond occurring along the entire anchorage length. The method, 

however, does offer the significant advantage of repeatability and control to the 

experimental process.

The current supplied to each specimen was checked on a daily basis and any drift was 

corrected. To complete the circuit, the direction of the current was selected so that the 

main reinforcing steel served as the anode and the hanger bars and the stirrups acted as 

the cathode.
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The beams were corroded as described in above, except for the twenty five beams 

which were left uncorroded and tested as control specimens. The progress of each beam 

was monitored as the corrosion process proceeded. Longitudinal cracking of the cover 

concrete occurred at various times, depending on the type of bar and depth of concrete 

cover.

The first sign of corrosion was rust staining on the surface of the concrete which first 

appeared after a few of days. Cracking was first observed on the low cover beams 

(2T8/5/20, 2T10/5/20, 2T12/5/20) after 5 days. Once the beams had cracked, lumps of 

iron oxide formed on the beam, (see Figure 5.3).

Figure 5.3 Iron oxide formation on the beams after corrosion
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It was found after removing the specimens from the tank that all beams had some 

longitudinal cracking to various degrees.

5.3.4 Test configuration and procedure

Before the application of load, the test beams were inspected carefully for any cracks 

due to shrinkage or corrosion and then transferred to the testing rig.

The beams were placed on simple supports, spanning 750 mm, with four point bending 

with load applied at a shear span of 250 mm. Figure 5.4 shows the loading 

configuration and instrumentation used for the load tests. The load was applied with a 

hydraulic pump and jack reacting against a cross head which was tied down using two 

Macalloy bars. A 3000 kN load cell was placed in line with the loading jack to measure 

the applied load. The loading rig had a maximum capacity of about 150 kN.

As the test was in load control (i.e. 5 kN/min) it was possible to record the exact failure 

load and central deflection.

The behaviour of the beam was monitored using a Celesco displacement gauge placed 

under the beam. The displacement gauge and load cell readings were powered and 

monitored using a data logging system.

The reinforcement was then taken out by removing the concrete manually where extra 

care was taken so no mechanical damage was done to the steel.

Recovery of the reinforcement for examination revealed that the corrosion occurred 

between the cathodic shear reinforcement placed throughout the length of the beams 

(see Figure 5.5). In general, the steel section was lost from the bottom of the bars, with 

no pitting taking place.
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Figure 5.4 Loading configuration and instrumentation of a test beam

Figure 5.5 Reinforcement cage after corrosion
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5.4 Influence of corrosion on the main steel reinforcement on the flexural 

performance

Control specimens, with no corrosion, were tested for comparison. Four degrees of 

main steel corrosion only were targeted, namely 0%, 5%, 10% and 15% loss of section 

by weight, based on a combination of Faraday’s law and the experience of previous 

research. These nominal degrees of corrosion were approximate and were used in the 

designation of the beam number, for example, see column 1, Table 5.1 (and also 

reinforcement was cleaned prior to casting with Diammonium hydrogen citrate (which 

is citric acid diammonium salt, 1,2,3 -  Propanetricarboxylic acid, 2 -  hydroxyl-, 

diammonium salt; gas No.: 3012-65-5 with molecular weight; 226.19 and chemical 

formula: (NH4)2HC6H507) for about 20 minutes at room temperature and then rinsed 

with acetone and stored in a desiccator. The main steel reinforcement was wire brushed 

and the initial weight was recorded (column 2, Tables 5.1 to 5.3). Subsequent to the 

load tests, the beams were demolished and the reinforcement was recovered for visual 

examination and evaluation of the weight loss resulting from the corrosion process 

(column 3, Tables 5.1 to 5.3). The weight loss recorded in Tables 5.1 to 5.3 (column 4) 

was determined by taking 810 mm, 800 mm and 780 mm of corroded lengths of bar for 

2T8, 2T10 and 2T12 respectively and de-scaling it to remove the corrosion products. 

The choice of sample was made by taking the whole length of heavily corroded bar 

from the beam specimens being tested, so that the recorded weight loss represents the 

overall section loss in the reinforcement. The great scatter in the measured weight loss 

figure results from the non uniformity of the corrosion and the uncertainty of the 

corrosion process.
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The accelerated corrosion set up meant that the current flow through the test beams per 

series was affected by the length of the current path (beam specimens undergoing 

accelerated corrosion were electrically connected in series), see Figure 5.6.

Figure 5.6 Beam specimens electrically connected in series
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5.4.1 Beams reinforced with 2T8 main steel

The control specimens (zero percent corrosion) were tested at the age of 28 days but the 

deteriorated beams were tested at 42, 48 and 54 days for the 5, 10 and 15% target 

corrosion respectively due to the time taken to reach the desired levels of corrosion. All 

specimens were tested under four point bending as shown in Figure 5.5, to determine 

the ultimate flexural strength. Premature shear failure was prevented by sufficient shear 

reinforcement.

The first load tests were carried out on the control specimens and these behaved as 

expected and in accordance with the design procedures of BS 8110 (British Standards 

Institutions). Failure of all 30 beams was in flexure; no shear failure occurred.

Upon completion of the corrosion period and flexural testing, the reinforcing bars were 

removed from the concrete as shown in Figure 5.4, cleaned and re-weighed. The 

percentage loss in weight was subsequently calculated. The resulting degree of 

corrosion in this investigation, 2RT/D %, ranged between 0% (control) and 18.5 % 

(column 5, Table 5.1). The corrosion damage was generally spread along the length of 

the bars. For the purpose of calculations, general rather then pitting corrosion was 

assumed.

The actual corrosion calculated as described in Chapter 3 is also given along with the 

ultimate load at failure. It is clear from the ultimate loads given in Table 5.1 (column 6 ) 

that the strength of the beams decrease with increasing main steel corrosion (compare 

the control load of beam 2T8/0+10D6/0/20 with that of 2T8/15+10D6/0/20, with actual 

corrosion to the main steel of 18.5% the ultimate load decreases from 57.40 kN to 20.57 

kN). This is also applicable to the other two categories (36 and 56 mm cover to the 

main steel, Table 5.1) which also show significant reductions in ultimate strength due to
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corrosion. Column 8  in Table 5.1 also shows that the failure of each beam in the three 

categories (26, 36 and 56 mm cover to the main steel) was flexural.

In all cases, the actual percentage of corrosion was used in the analysis of data as 

opposed to the target corrosion. This led to a better correlation between flexural 

performance and degree of corrosion as there was some variation between target and 

actual values (Table 5.1). Detailed analysis of this Series is presented in Chapter 8 .

5.4.2 Beams reinforced with 2T10 main steel

The control specimens (zero percent corrosion) were also tested at the age of 28 days 

but the deteriorated beams were tested at 43, 51 and 59 days for the 5, 10 and 15% main 

steel target corrosion respectively due to the time taken to reach the desired levels of 

corrosion. All specimens were tested under four point bending as described in section 

5.4.1, shown in Figure 5.5, to determine the ultimate flexural strength. Premature shear 

failure was also prevented by sufficient shear reinforcement.

The first load tests were carried out on the control specimens and these behaved as 

expected and in accordance with the design procedures of BS 8110 (British Standards 

Institutions). Failure of all 36 beams was in flexure; no shear failure occurred.

Upon completion of the corrosion period and flexural testing, the reinforcing bars were 

also removed from the concrete, cleaned and re-weighted. The percentage loss in 

weight was subsequently calculated. The resulting degree of corrosion in this 

investigation, 2RT/D %, ranged between 0% (control) and 14.4% (column 5, 

Table 5.2).

The corrosion damage was generally spread along the length of the bars. For the 

purpose of calculations general rather then pitting corrosion was assumed.
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It is clear from the ultimate loads given in Table 5.2 that the strength of the beams 

decrease with increasing main steel corrosion (compare the control load of beam 

2T10/0+12D6/0/50 with that of 2T10/14.4+12D6/0/50, the ultimate load decreases from 

62.36 kN to 39.90 kN). This is also applicable to the other two categories (26 and 

36 mm cover to the main steel, Table 5.2) which also show significant reductions in 

ultimate strength due to corrosion.

In all cases, the actual percentage of corrosion was used in the analysis of data as 

opposed to the target corrosion as there was some variation between target and actual 

values (Table 5.2). Detailed analysis is presented in Chapter 8 .

5.4.3 Beams reinforced with 2T12 main steel

In this group of eight beams, the control specimens (zero percent corrosion) were tested 

at the age of 28 days but the deteriorated beams were tested at 44, 54 and 63 days for 

the 5, 10 and 15% target main steel corrosion respectively due to the time taken to reach 

the desired levels of corrosion after the initiation period. All specimens were tested 

under four point bending as shown in Figure 5.5, to determine the ultimate flexural 

strength. Premature shear failure was prevented by sufficient shear reinforcement 

which in this case consisted of 24 links.

The first load tests were carried out on the control specimens and these behaved as 

expected and in accordance with the design procedures o f BS 8110 (British Standards 

Institutions). Failure of all 8  beams was in flexure; no shear failure occurred.

The resulting degree of corrosion in this investigation, 2RT/D %, ranged between 0% 

(control) and 5.9% (column 5, Table 5.3). The corrosion damage was generally spread 

along the length of the bars mainly due to the low percentages of corrosion.

1 0 2
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It is clear from the ultimate loads given in Table 5.3 that the strength of the beams 

decrease with increasing main steel corrosion (compare the control load of beam 

2T12/0+24D6/0/50 with that of 2T12/5.9+24D6/0/50, the ultimate load decreases from 

79.33 kN, the average between the two control beams, to 50.7 kN).

The actual percentage of corrosion was also used in the further analysis of data 

(Chapter 8 ) as opposed to the target corrosion.

5.5 Conclusions

5.5.1 Conclusions from accelerated corrosions tests

The use of impressed current was a practical and convenient method of producing 

corroded specimens for examining the structural effects of reinforcement corrosion. 

The first sign of corrosion was rust staining on the concrete surface, followed by 

longitudinal cracking in the concrete cover.

The corrosion tended to occur along the whole length of the main steel. The damage 

was generally spread along the bottom of the bars, with variable section loss along the 

bar. General corrosion was evident rather than localised pitting corrosion. The weight 

loss obtained was approximately as expected.

The time to first cracking depended, as expected, on cover and type of bar. There was 

no evidence to suggest that deformed bars are more susceptible to corrosion.

5.5.2 Conclusions from load tests

The presence of longitudinal cracking resulting from the corrosion of reinforcement 

does not necessarily mean loss of strength. The beams with target corrosion of 5%
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suffered negligible strength loss, even where longitudinal cracking was present over the 

length of beam. Failure was ductile and in flexure. There was no evidence of bond 

failure. The strength of these beams could have been accurately assessed by making 

due allowance for section loss in the evaluation of moment capacity.

First evidence of bond failure occurred in the beams with target corrosion of 10%. This 

evidence consisted of horizontal cracking of the beam along the line of the 

reinforcement both bottom and side, as the load test proceeded, suggesting local bond 

failure. Failure was ductile and in flexure.

The series of beams with the highest corrosion suffered significant strength loss. In 

these tests, the beams collapsed as a result of bond failure. Further beams failed as a 

result of fracture of the reinforcing bars at a location of heavy section loss.

5.5.3 Conclusions from cover variations

The main conclusions from the results reported in this chapter are as follows:

• the cracking in the cover concrete was more severe at 56 mm cover to the main 

steel compared to 26 mm cover to the main steel at similar levels of main steel 

reinforcement corrosion;

• deteriorated reinforced concrete beams suffer the most reduction in flexural 

strength when the beams are designed with high reinforcement cover and are 

subjected to high levels of main steel corrosion.

5.5.4 Conclusions from diameter variations

The main conclusions from the results reported in this chapter are as follows:
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• reinforced concrete beams show a loss in residual flexural strength with 

increasing corrosion of the main steel reinforcement;

• beams reinforced with larger diameter main steel experience a higher reduction 

in flexural strength than beams designed with smaller diameter main steel at 

similar degrees of corrosion;

• the cracking in the cover concrete was more severe in beams reinforced with 

2T12 mm compared to those reinforced with 2T8 mm even at lower levels of 

main steel reinforcement corrosion.
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Chapter 6

Influence o f Shear Reinforcement Corrosion on Structural 

Performance (Series II)

6.1 Introduction

There is a possibility that members with corroded shear reinforcement will not achieve 

their full flexural capacity due to premature shear failure. Corrosion can reduce the 

shear load carrying capacity earlier and, sometimes, at a faster rate than it reduces the 

flexural load carrying capacity. In real structures, shear reinforcement has lower cover 

than flexural reinforcement and will start to corrode first. Good bond creates closely 

spaced cracks, while poor or non existent bond results in only a few cracks or no cracks 

at all in the part where shear force exists. It has been reported elsewhere 5’ 93 that the 

effects of corrosion on the shear strength are not straightforward, but nevertheless, this 

will be investigated in the current study.

Corrosion of reinforcing steel can, therefore, cause serious loss of structural 

performance and can lead to catastrophic failure. This series of beam tests were 

developed to determine the influence of shear reinforcement corrosion on the structural 

performance of reinforced concrete beams. In these beams, the structural performance 

was not only affected, by loss of steel cross section, but also by impairment of the bond 

between the reinforcement and the concrete.
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6.2 Objectives of test programme

This series of beam tests (test Series II) was developed to determine the influence of 

shear reinforcement corrosion on the flexural performance of reinforced concrete 

beams. The test programme was designed to provide information on the influence of 

corrosion on the structural performance of deteriorated beams. Therefore, the aim of 

this series of tests is to establish the residual strength of under reinforced beams 

exhibiting shear reinforcement corrosion only.

6.3 Experimental programme

6.3.1 Beam specimens

Details of the beams used in the experimental programme are given in Figure 6.1. The 

beams measured 910 mm in length with a 100 mm x 150 mm cross section. Each beam 

was reinforced longitudinally with either two 8  mm or two 1 2  mm diameter deformed 

reinforcing bars, which remained uncorroded, with 50 mm cover to the shear 

reinforcement. Shear reinforcement were 6  mm diameter plain bars at 65 mm spacing. 

Electrical continuity between the reinforcing bars was ensured by connecting the 

exposed bars with screw connectors (see Figure 6.2). The shear reinforcement were 

connected to the main and hanger bars in a manner that ensured the electrical circuit 

between the corroded links and uncorroded reinforcement was broken. This was done 

by using plastic tie wire and shrink wrap over the uncorroded bars at the points of 

contact with the shear reinforcement as described in Section 3.7.3 and shown in 

Figure 6.3.
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Chapter 0 Influence o f  Shear Reinforcement Corrosion on Structural Performance (Series II)

Figure 6.2 Electrical connections between the shear reinforcement and the power 

supply

The extended length of the shear reinforcement was also covered with shrink wrap in 

order to prevent severe section loss in this area.

There were two different beam types (uncorroded main reinforcement of either 2T8 or 

2T12 and corroded 12D6 shear reinforcement) and four different degrees of corrosion. 

In all, sixteen beams were tested.

The following parameters were examined:

• Influence of corrosion (up to 15% loss of reinforcing steel cross section) on 

the structural performance;

1 1 0
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Figure 6.3 Reinforcing cage used for beam Series II

• Effect of different main steel diameters.

By following the same pattern of mixing, casting and curing, care was taken to ensure 

that all the beams in the series contained concrete of the same quality. Cubes were 

taken at the time of casting from all mixes and tested to determine the concrete strength 

at the time of testing the beams. In all, 96 cubes were tested. The concrete strength 

used in the analysis was, therefore, the actual strength at the time of testing and not the 

28 day design value.
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6.3.2 Process of accelerated corrosion

The process of corrosion was accelerated by immersing the beam in a salt bath and 

applying a small current to the shear reinforcement. A current of 480 mA, representing 

a current density of about 1 mA/cm , was employed, to simulate naturally occurring 

corrosion in the field. The conclusion in the literature is that results from such tests are 

conservative, due mainly to the more uniform distribution of the corrosion at the critical 

section (see Figure 6.4). Natural corrosion would tend to be less uniform, thus reducing 

the likelihood of loss of bond occurring along the entire anchorage length. The method 

does offer the significant advantage of repeatability and control to the experimental 

process. The current was applied directly to the shear reinforcement. The cathode 

consisted of the two main bars, placed along the full length of the beam. To complete 

the circuit, the beam was fully immersed in a tank containing a 3.5% C aC f solution. 

The saline solution was maintained in the tank to a depth of 

150 mm so that the shear reinforcement were fully submerged.

Four degrees of corrosion were targeted 0% (control), 5%, 10% and 15% loss of cross 

section by weight, based on a combination of Faraday’s Law (see section 3.2.2) and the 

experience of previous research (Chapter 3). These nominal degrees o f corrosion were 

approximate and are used in the designation of the beam. Once the first set of corroded 

beams were tested and demolished, the time and current required to deteriorate 

subsequent beam specimens was reviewed. This was to ensure that steel reinforcement 

was sufficiently corroded to produce a level of corrosion as close as possible to the 

target corrosion.
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Figure 6.4 Shear reinforcement corrosion 

6.3.3 Test configuration and instrumentation

The control specimens (zero percent corrosion) were tested at the age of 28 days but the 

deteriorated beams were tested at 42, 48 and 54 days for the 5, 10 and 15% target 

corrosion respectively due to the time taken to reach the desired levels of corrosion.

The loading configuration was devised to investigate the structural behaviour of beams 

with corroded shear reinforcement and was generally similar to the previously reported 

tests for flexure (Chapter 5). The beams were placed on a simple supports, spanning 

750 mm, with four point bending (see Figure 6.5).
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Figure 6.5 Beam in the loading rig during testing

The load was applied with a hydraulic pump and jack reacting against a cross head 

which was tied down using two Macalloy bars. A 3000 kN capacity load cell was 

placed in line with the loading jack to measure the applied load. The loading rig had a 

maximum capacity of about 150 kN.

The behaviour of the beam was monitored using a Celesco displacement gauge placed 

under the beam. The load cell and the displacement gauge were powered and monitored 

using an Orion data logging system. Figure 6.5 shows the loading configuration and 

instrumentation used for the load tests.
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For the first set of eight beams (2T8 longitudinal reinforcement), the position of the load 

was applied 250 mm from the support (i.e. a shear span of 250 mm). The second set of 

eight beams (with 2 T 1 2  longitudinal reinforcement) were tested at the same shear span 

(250 mm). This shear span was chosen so that the theoretical failure mode was flexure. 

These tests were used to determine whether the mode of failure changed from flexure to 

shear as the level of corrosion in the shear reinforcement increases.

6.4 Test results and discussion

All the beams were corroded as described in Section 6.3.2. The beams were corroded in 

series of six, each series containing two beams of the same target corrosion. Details of 

the overall effect of the corrosion are given in Tables 6.1 and 6.2. The designation used 

in this thesis to describe each beam is of the form 2T8/0+12D6/0/50 or 

2T12/0+12D6/0/50, as given in column 1 in Table 6.1 and 6.2. The first part refers to 

the number, type and diameter of main steel e.g. 2T8 or 2T12 (deformed bars) with no 

corrosion and hence /0, whereas in the second part of the identification, 12D6 is the 

number type and diameter (plain rolled mild steel) of the shear reinforcement. The 

target corrosion of the shear reinforcement was 0%, 5%, 10% and 15%, based on weight 

loss and this is indicated in the identity e.g. 12D6/0 (i.e. 0% corrosion or control). The 

cover to the shear reinforcement is 50 mm for all beams.

Subsequent to the load tests, the beams were demolished and the reinforcement was 

recovered for visual examination and evaluation of the weight loss resulting from the 

corrosion process. The weight loss recorded in Tables 6.1 and 6.2 was determined by 

taking 350 mm of corroded lengths of the shear reinforcement and de-scaling them
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using Clark’s solution to remove the corrosion products. The recorded weight loss 

represents the overall section loss in the shear reinforcement. The resulting degree of 

corrosion in this investigation, 2RT/D %, ranged between 0% (control) and 23.2% 

(column 5, Table 6.1 and 6.2). The scatter in the measured weight loss figures results 

from the accelerated corrosion set up as described in Section 5.4 and shown in 

Figure 5.6.

The corrosion of each beam was monitored as the corrosion process proceeded. 

Longitudinal and vertical cracking of the cover concrete occurred, depending on the 

degree of corrosion of the shear reinforcement. It was difficult to observe the 

development of cracks due to the corrosion products in the salt bath obscuring the view. 

Nevertheless, it was possible to determine when rust staining first appeared and when 

significant corrosion cracking developed. It was then possible to relate the visual 

evidence of corrosion to the estimated section loss which was calculated on the basis of 

linear section loss during the corrosion process. The following conclusions were made:

• First visual signs of corrosion were the formation of rust spots on the concrete 

corresponding to positions of the links; this occurred at 0.5% to 3.5% section loss;

• Whilst some minor pitting occurred, the corrosion was generally uniform, with 

the steel section generally lost on the side of the bars closest to the cathode.

The corrosion damage was generally spread along the length of the bars. Where serious

section loss occurred, it was in the form of localized pitting corrosion rather then

general corrosion. This mainly occurred at higher percentages of corrosion. For the

purpose of calculations general rather then pitting corrosion was assumed. The ultimate

load at failure is given in column 6 , Table 6.1 and 6.2. Column 7 in Table 6.1 and 6.2

shows P uit / P COn, where P uit is the ultimate load obtained from testing the beams in the
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laboratory (those exhibiting shear reinforcement corrosion) and Pcon is the average 

failure load of control specimens (0% corrosion to the shear reinforcement). Column 8  

in Table 6.1 and 6.2 indicate the failure mode. Further analysis of the results will be 

given in Chapter 9.

6.5 Conclusions

These conclusions were drawn from the tests reported in this chapter.

• For shear reinforcement corrosion, staining first occurred at about 1% corrosion, 

with cracking occurring at about 3%;

• Shear reinforcement was very susceptible to corrosion at bends. For the majority 

of corroded specimens, there were a few links which suffered 1 0 0 % local section 

loss in these areas as the bends have been work hardened and therefore more 

susceptible to corrosion;

• The beams with the most severe corrosion suffered significant strength loss. In 

most of the cases of severe strength loss, failure was precipitated as a result of 

local section loss;

• The presence of shear reinforcement helped maintain integrity of the beam even 

when they were severely corroded;

• Shear reinforcement with the least cover were more susceptible to loss of bond 

due to corrosion. The possibility of bond failure can be identified by the presence 

of serious corrosion cracking.
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Chapter

Influence o f Main and Shear Reinforcement Corrosion on 

Structural Performance (Series III)

7.1 Introduction

In the beams subjected to corrosion, an account has been given to the possible changes 

of the failure mechanisms. In fact, as highlighted by some of experimental tests 85, 

beams designed to obtain bending failure can show shear collapse for certain levels of 

the rebars and stirrups corrosion. Similarly, a ductility base design can be destroyed by 

brittle failure when corrosion attack induces strain localisation in the rebars 122. 

Consequently a preliminary investigation has been carried out aiming to highlight the 

failure mechanism when varying the geometrical factors and percentage of corrosion. 

In agreement with the results of the literature, the following effects of corrosion have 

been considered: variation of the diameter of the steel rebars, diameter reduction of the 

main and shear reinforcement due to corrosion and concrete cover variation.

7.2 Objectives of test programme

This series of beam tests (test Series III) was developed to determine the influence of 

both main and shear reinforcement corrosion on the structural performance of 

reinforced concrete beams. In these beams, the structural performance was affected not 

only by loss of steel cross section, but also by impairment of the bond between the 

reinforcement and the concrete.

1 2 0
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7.3 Experimental programme

The work in this chapter reports an experimental study aimed at evaluating the influence 

of rebar corrosion on the collapse mechanism of reinforced concrete beams. Eighteen 

additional (to those already tested in Series I and II) beams were designed, constructed, 

artificially corroded and tested. Four point bending tests where performed with the 

loading span appropriately selected to display transfer from flexure to shear failure. The 

comparisons allow evaluating the combined role of corrosion of main and shear 

reinforcement corrosion in reducing the structural capacity in view of suggesting 

appropriate calibration of conventional design formulas for corroded structures.

7.3.1 Beam specimens

Details of the beams used in the experimental programme are given in Figure 7.1. 

Three groups of corroded beams were chosen as test specimens for the final programme 

of testing. These comprised of 2T8/0 (5, 10, 15%) and either 12D6/5/50, 12D6/10/50 or 

12D6/15/50. Concerning beam size, span, loading conditions and reinforcement 

detailing, all beams in the final testing programme followed precisely those tested in 

Series I and Series II stages. The important exceptions, were that each beam was 

reinforced longitudinally with two 8  mm diameter deformed reinforcing bars, which 

were corroded in increments of 5% (i.e. 0%, 5%, 10% and 15%) and the shear 

reinforcement were 6  mm diameter plain bars at 65 mm spacing, which were also 

corroded to the same degree as the main bars.

7.3.2 Material properties

The concrete mix proportions used in the construction of Series III test beams is given
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in Chapter 4. Also, the reinforcement used in Series III was found to exhibit a slightly 

different strength to those used during the test Series I and II, shown in Appendix A. In 

order to eliminate an over reinforced failure, the concrete mix proportions were chosen 

in order to ensure an under reinforced failure.

Care was taken to ensure that all beams in the series contained concrete of the same 

quality. Cubes were taken at the time of casting from all mixes and tested to determine 

the concrete strength at the time of testing the beams. In all, 108 cubes were tested. 

The concrete strength used in the analysis was, therefore, the actual strength at the time 

of testing and not the 28 day design value.

7.3.3 Instrumentation

The use of instrumentation and the range of measurements made during Series III 

testing were similar to those of the Series I and II test beams as described below:

• For all beams, only the applied load and the mid-span deflections were recorded;

• Deflections were measured at mid-span for all beams with the use of a single 

potentiometer displacement transducer connected to a displacement transducer 

power supply and conditioning unit connected to the automatic data logger.

7.3.4 Test configuration and procedure

Thick steel plates of 50 mm width were stuck to the upper and underside of the beam at 

the positions of load and support with a layer of quick hardening Plaster of Paris, for the 

stable bedding of the beam hinged supports.

Load was applied at a rate 5 kN/min. The deflection readings were taken constantly as 

the load increased. The appearance of the first crack was carefully observed and the
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load was recorded. The possible appearance and propagation of all cracks were marked 

on the surface of the beam and recorded against the load. At onset of failure, the 

hydraulic jack was pumped at a uniform rate. Load and central deflection 

measurements at the failure were then recorded automatically.

7.3.5 Process of accelerated corrosion

The main bars and the shear reinforcement served as the anode and the hanger bars with 

an additional external copper plate served as a cathode. Electrical continuity between 

the reinforcing bars was ensured by connecting the exposed bars with screw connectors 

(see Figure 7.2).

Figure 7.2 Exposed main and shear reinforcement
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The shear reinforcement were connected to the main bars using plastic cable ties. The 

electrical circuit between the corroded shear reinforcement and corroded main 

reinforcement was broken. This was ensured by using adhesive lined heat shrinkable 

tubing over the shear reinforcement at the points of contact with the main bars (see 

Figure 7.1 and 7.2). In order to investigate the corrosion of the links, the part of contact 

of the shear reinforcement with the top hanger bars was also covered with adhesive 

lined heat shrinkable tubing, so that the electrical circuit was also broken. As the anode 

area was greater (main and shear reinforcement) than the cathode (top hanger bars), an 

additional cathodic area which consisted of a copper plate was also provided.

As the level of electrolyte, in this case 3.5% CaCb solution, was maintained at 150 mm, 

precaution was taken to sleeve part of the stirrups to avoid a short circuit and also 

prevent intensive corrosion on the border of the different environment, which was 

created where the bars exited the concrete.

Specimens were cured for 28 days under water, before galvanostatic corrosion was 

performed using equipment as shown in Figure 7.3 in combination with a linear power 

supply shown in Figure 7.4. Hence, the main bars and the shear reinforcement were 

corroded independently of each other.

The current was kept at a constant value of 406 mA for the main bars and 48 mA for the 

shear reinforcement. The current was passed for a period of 7, 14 and 21 days for the 

main bars and 5, 10 and 16 days for the shear reinforcement, in addition to the seven 

day initiation period (Chapter 3).

A similar schedule of accelerated corrosion was applied as in Series I and II as four 

degrees of corrosion were targeted 0% (control), 5%, 10% and 15% loss of cross section
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Figure 7.3 Transformer Rectifier (TR)

by weight, based on a combination of Faraday’s Law and the experience of earlier 

investigations. Once the first set of corroded beams were tested and demolished, the 

time and current required to deteriorate subsequent beam specimens was reviewed. 

This was to ensure that steel reinforcement was sufficiently corroded to produce a level 

of corrosion as close as possible to the target corrosion.

Subsequent specimens were then removed from the corrosion tank and tested. After all 

tests had been completed, the reinforcing bars were removed from the specimens, and
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Figure 7.4 Precision linear power supplies
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the main bars were wire brushed and the shear reinforcement chemically cleaned with 

diammonium hydrogen citrate and the weight loss due to corrosion was measured.

7.4 Influence of corrosion on the flexural performance

The effect of corroded main steel reinforcement (2T8) and influence of shear links 

reinforcement corrosion (12D6) on the residual capacity were examined in this test 

series.

Figure 7.5 shows the cracks that are formed in the beams as a result of the galvanostatic 

corrosion process. A similar behaviour was observed during the corrosion of the all test 

Series III beams. The cracks were first formed along the stirrups and then along the 

main reinforcing bars.

Subsequent to the load tests, the beams were demolished and the reinforcement was 

recovered for visual examination and evaluation of the weight loss resulting from the 

corrosion process (Figures 7.6 and 7.7). Table 7.1 show the results from testing 18 

beams in flexure in the laboratory. These nominal degrees of corrosion were 

approximate and are used in the designation of the beam identification listed in Table 

7.1. Weight loss was determined by de-scaling the reinforcement, weighing the clean 

bars and comparing with the uncorroded steel cage (column 3 and 7, Table 7.1). This 

method gave the average section loss over the length of the specimen rather than the 

localised section loss (column 4 and 8 , Table 7.1).

The corrosion of each beam was monitored using a digital voltmeter and a standard 

Calomel reference electrode and any drift was adjusted on a daily basis as the corrosion 

process proceeded. Longitudinal and vertical cracking of the cover concrete occurred
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Figure 7.5 Deteriorated reinforced concrete beam exhibiting both main and shear 

reinforcement corrosion under test

and was dependant on the degree of corrosion of the main and shear reinforcement. It 

was difficult to observe the development of cracks due to the corrosion products in the 

salt bath obscuring the view. Nevertheless, it was possible to determine when rust 

staining first appeared and when significant corrosion cracking developed.

First visual signs of corrosion were the formation of rust spots on the concrete 

corresponding to positions of the shear reinforcement; this occurred at 0.5% to 3.5% 

section loss.
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Figure 7.6 Deteriorated main reinforcement bars after corrosion

The reason for the early cracking in this series can be attributed to the smaller overall 

cover to the shear reinforcement.

Whilst some minor pitting occurred, the corrosion was generally uniform, with the steel 

section generally lost on the side of the bars closest to the cathode.

All beams had longitudinal cracking along the main reinforcement. Where shear 

reinforcement corrosion was present, vertical cracking also occurred to various degrees. 

The weight loss recorded in Table 7.1, columns 4 and 8  was determined by taking 810 

and 350 mm of corroded lengths of the main and shear reinforcement respectively and
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Figure 7.7 Shear reinforcement with most severe corrosion

de-scaling them using wire brush and Clark’s solution to remove the corrosion 

products. The recorded weight loss represents the overall section loss in the main and 

shear reinforcement. The resulting degree of corrosion in this investigation, 2RT/D %, 

ranged between 0% (control) and 25.7% for the main reinforcement and between 0% 

and 27.6% for the shear reinforcement (column 5 and 9 respectively, Table 7.1). The 

scatter in the measured weight loss figures results from the non uniformity o f the 

corrosion, the uncertainty of the corrosion process and set up of the accelerated 

corrosion technique as described in Chapter 5, Section 5.4.
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The corrosion damage was generally spread along the length of the bars. Where serious 

section loss occurred, it was in the form of localized pitting corrosion rather then 

general corrosion. This mainly occurred at higher percentages of corrosion. For the 

purpose of calculations general rather then pitting corrosion was assumed. The actual 

corrosion calculated as described in Chapter 4 is also given along with the ultimate load 

at failure (column 10, Table 7.1). Column 1 1  in Table 7.1 shows P uit / Peon, where P uit is 

the ultimate load obtained from testing the beams in the laboratory (those exhibiting 

main and shear reinforcement corrosion) and PCOn is the average failure load of control 

specimens (0 % corrosion to the main and shear reinforcement), in this case the results 

obtained in Chapter 5 were used. Column 12 in Table 7.1 indicates the failure mode. 

Further analysis of the results and failure mode will be given in Chapter 10.
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Chapter

Experimental Results and Discussion -  Series I  

(Main reinforcement corrosion)

8.1 Introduction

In present day reinforced concrete design, the structure is more likely to be subjected to 

loads closer to the design loads, as indicated by reducing the reinforcement factor of 

safety from 1.15 to 1.05. It was found that, in the case of general corrosion, 

investigated in this study by the gravimetric method, there could be substantial 

reduction in the load carrying capacity and the ductility of the beams, even though the 

tensile strength of the bars may not be greatly affected.

Most of the papers published so far deal with the mechanism of the corrosion process,

i  a - j  1 0 / 1  i  ' i c  \ r)

protection of structures and field survey of deteriorated concrete structures ’

197 19R 19Q . The available literature on the structural implications of corrosion on 

parameters like the load carrying capacity, etc. is rather limited. The results presented 

in this chapter will contribute to determining the influence of main steel corrosion on 

the residual strength of reinforced concrete beams.

8.2 Aim

The main objectives of the laboratory work in the test series were to evaluate the

influence of main bar diameter subjected to different degrees of corrosion on the

residual strength. This chapter includes experimental results and analytical
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considerations of different parameters such as cover, uniform corrosion and different

main steel diameters.

8.3 Critical overview of the test methodology

The set up described in Chapter 3 for inducing corrosion in reinforcement, which was 

employed throughout the experimental programme of this thesis, may be referred to as a 

driven corrosion cell, whereas a natural corrosion cell is present in the environmentally

1 TO 1T 1induced corrosion cell ’ in the field. There are some differences in the mechanisms 

by which each of the two corrosion cells proceed. One difference is that, in a natural 

cell, the anodic and the cathodic reactions take place at the reinforcement surface 

(anodic and cathodic sites are adjacent to each other), whereas, in a driven cell, the

1 T9reinforcing steel serves as the anode . Further, in a natural corrosion cell, oxygen 

reduction is likely to be the predominant cathodic reaction whereas hydrogen evolution 

reaction is likely to be the predominant cathodic reaction in the driven corrosion cell 132.

These differences in the mechanisms by which the two corrosion cells proceed can lead 

to significant differences in the mechanics of the corrosion product formation process. 

In the case of a natural corrosion cell, Fe2+ from reinforcement corrosion will combine 

with OFT from the cathodic reaction of oxygen reduction and the corrosion products 

will form only at the steel-concrete interface; the surrounding concrete is to crack when 

the pressure build up due to the accumulation of corrosion products exceeds a critical 

value. On the other hand in the case of a driven corrosion cell, Fe2+ from reinforcement 

corrosion will combine with free OH from the immediate concrete pore solution to 

form the corrosion product Fe(OH)2 , which will cause the pH of the pore solution to

1 T9drop accordingly . When all the free hydroxyl ions, OH”, from the pore solution at
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the steel-concrete interface are combined with Fe2+ to form Fe(OH)2 , ferric ions, Fe2+,

from further corrosion at the steel surface, will travel to a distance into the concrete

cover zone to combine with free OH” at another alkaline rich location. So on and so

forth, at each distance, when all of the free OH” in the pore solution are consumed in the

• 9-4-formation of Fe(OH)2 , Fe from further reinforcement corrosion will travel further into 

the concrete cover zone in search of alkaline rich sites to combine with free OH” to form 

Fe(OH)2 . As a result, the formation of the corrosion product Fe(OH ) 2  tends to move as 

a front in the outwards direction (away from the reinforcement-concrete interface and 

towards the electrolyte in the corrosion apparatus). Therefore, rust stains appear on the 

concrete surface after a relatively shorter period of time compared to that in the case of 

natural corrosion cell, and is not necessarily an indication of severe corrosion 132. The 

rapidly changed colour of the electrolyte (CaCb) in the corrosion apparatus from 

colourless to brownish red, which was always observed during inducing corrosion in 

reinforcement of all test specimens, supports the hypothesis of outward front like 

movement of Fe(OH) 2  formation.

The structural performance of corrosion damage concrete members may differ 

significantly depending on which type of corrosion cell is involved in the process of 

inducing corrosion in reinforcement. For example, in the case of a driven corrosion 

cell, the formation of corrosion products is not confined only to the reinforcement- 

concrete interface but, in fact, as described earlier, it can be occur at locations at 

different sites of high stress intensity due to the accumulation of corrosion products may 

exist. The presence of these sites of high stress intensity in the concrete cover zone can 

lead to possible initiation of cracks away from the reinforcement-concrete interface, and 

can also affect the mechanics of crack propagation in a way that the result will be more
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severe crack patterns in the cover zone and poorer mechanical performance of the 

concrete member.

It may be concluded, therefore, that for the same level of reinforcement corrosion, 

deterioration of the concrete cover zone associated with driven corrosion cell are likely 

to be more severe than associated with the natural corrosion cell. Furthermore, the 

structural reliability of reinforced concrete beams determined on the basis of driven 

cells may be an under estimate of natural performance, and therefore, will be on the safe 

side.

It was assumed uniformity of corrosion along length of corroded bars, because the 

current was applied through the cage (main bars were anodic and stirrups and hanger 

bars were cathodic) covering the entire length of the corroding bars, it can be expected 

that the corrosion will be uniform along the entire embedded lengths. However, the 

presence of deformation and variation in permeability due to cracking resulted in some 

non-uniformity. It was assumed that the variation is acceptable considering the number 

of variables, such as non-uniformity of concrete, deformations in steel bars, and 

cracking of concrete.

8.4 Structural performance of corrosion damaged beams under four point 

bending test

Reinforced concrete beams were design and constructed as described in Chapter 5 and 

the results of the design are attached at the end of this thesis (see Appendix A, Tables 

A. 1.1 to A. 1.3).
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The following sections describe the behaviour under load of the 910 mm beam

specimens and the effect of the induced corrosion to the main reinforcement only.

Strengths are related to the ultimate capacity of control (uncorroded) beams for flexure

and shear. For direct comparison with the test results, mean values o f strength as

obtained from concrete cube and steel tensile tests were used in this analysis. For

corroded beams, account was taken only of the section loss in steel cross section and for

the purposes of this analysis the nominal actual section loss was used.

8.4.1 Beam Series I reinforced with 2T8 main steel reinforcement

8.4.1.1 Load / Deflection

Average load -  deflection relationships for the beam specimens of Series I, reinforced 

with 2T8 tensile reinforcement are shown in Figures 8.1 to 8.3. These beams were 

subjected to different degrees of corrosion and were tested under four point bending. 

Each degree of corrosion was selected to provide a predefined percentage reduction in 

the rebar diameter within a short time scale. Each curve in regards to the control 

specimens represents the average of two beam specimens.

The load -  deflection relationships for the beam specimens of Series I (2T8/Corr%) 

were obtained and the results are given Table 8.1. Table 8.1 shows the results from 

testing 30 beams in flexure in the laboratory. The cover to the main steel used in this 

test series was varied from 26, 36 and 56 mm (column 1). Each beam is identified by 

the amount of main steel, target corrosion and cover, e.g 2T8/5+12D6/0/50 indicates 

that the main steel is 2T8 with 5% target corrosion whereas the shear reinforcement is 

12D6, remained uncorroded and the cover is 50 mm, column 2. The actual corrosion

139









c  nap ter 8 Experimental Results and Discussion -  Series I

(Main reinforcement corrosion)

Table 8.1 Beam Series I (2T8/Corr%) test results

Cover Beam Identification

Actual 

Main bars 

Corrosion

Stiffness
Ultimate

Load Failure Mode

mm % kN/mm kN
a ) (2 ) (3) (4) (5) (6 )

2T8/0+10D6/0/20 0 17.8 57.40 Flexure

2T8/0+10D6/0/20 0 16.5 54.10 Flexure
4—> 
cn 2T8/5+10D6/0/20 1 . 0 15.5 52.75 Flexure

*«3
g 2T8/5+10D6/0/20 1.4 14.8 54.70 Flexure
o -(—> 2T8/5+10D6/0/20 2.3 13.1 43.78 Flexure
<L>
>o 2T8/10+10D6/0/20 3.4 15.2 50.12 Flexure
O

a
a
<N

2T8/10+10D6/0/20 8.9 13.7 41.10 Flexure

2T8/15+10D6/0/20 1 0 . 0 13.1 34.98 Flexure

2T8/15+10D6/0/20 15.5 1 1 . 2 19.23 Flexure

2T8/15+10D6/0/20 18.5 5.6 20.57 Flexure

2T8/0+10D6/0/30 0 13.9 50.40 Flexure

1)
2T8/0+10D6/0/30 0 13.7 55.20 Flexure

<u-(->
V3 2T8/5+10D6/0/30 0 . 8 14.9 56.80 Flexure
a
g 2T8/5+10D6/0/30 0.9 12.9 52.10 Flexure
o-t-> 2T8/5+10D6/0/30 1.4 1 1 . 1 45.03 Flexure
<u>o 2T8/5+10D6/0/30 4.6 12.9 44.60 Flexure
o

a 2T8/10+10D6/0/30 8.5 12.9 34.70 Flexure
a

CO
2T8/10+10D6/0/30 9.6 10.3 34.20 Flexure

2T8/15+10D6/0/30 15.0 8 . 0 24.57 Flexure

2T8/15+10D 6/0/3 0 17.8 5.9 20.90 Flexure
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Table 8.1 Beam Series I (2T8/Corr%) test results (Continued...)

Cover Beam Identification

Actual 

Main bars Stiffness
Ultimate

Load Failure Mode
Corrosion

mm % kN/mm kN
(i) (2 ) (3) (4) (5) (6 )

2T8/0+12D6/0/50 0 9.6 40.00 Flexure

<D 2T8/0+12D6/0/50 0 9.0 42.70 Flexure
<D+->cn 2T8/5+12D6/0/50 2.7 8.7 42.91 Flexure

g 2T8/5+12D6/0/50 3.5 8.5 39.24 Flexure
O-*-> 2T8/5+12D6/0/50 5.3 6.3 33.23 Flexure
<D>o 2T8/10+12D6/0/5 0 6.9 6 . 6 34.58 Flexure
O
a 2T8/10+12D6/0/50 7.7 6.7 33.48 Flexure
B
Vo to 2T8/10+12D6/0/50 8.9 5.9 26.34 Flexure

2T8/15+12D6/0/5 0 15.1 1 . 2 17.08 Flexure

2T8/15+12D6/0/50 16.4 1 . 2 1 0 . 1 0 Flexure

(calculated as described in Chapter 3) is also given in column 3 along with the 

ultimate load at failure, column 5. The stiffness calculated from the slopes of the 

load -  deflection curves (Figures 8.1 to 8.3) is shown in column 4. Column 6  in 

Table 8.1 shows that the failure of each beam was flexural.

The load -  deflection curves of the corroded beams show that the reinforcement 

corrosion tends to reduce the stiffness of the concrete beam and this trend is more 

pronounced at higher degrees of reinforcement corrosion. For example, referring to 

Figure 8.1 and Table 8.1, beam 2T8/18.5+10D6/0/20 exhibits the lowest stiffness of 

5.6 kN/mm, whereas the controls 2T8/0+10D6/0/20 has a stiffness of 17.75 kN/mm.
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It is clear from Figures 8.1 to 8.3 that, as the degree of reinforcement increase, the

average deflection at failure decreases. For example the deflection of the control

2T8/0+12D6/0/50 was 8.2 mm, whereas 2T8/16.4+12D6/0/50 was 5 mm. An

explanation to this behaviour may be that the formation of micro cracks in the

concrete due to reinforcement corrosion alters the mechanical behaviour of the

concrete beam to an extent that causes the beam to fail before the concrete is able to

develop its full plastic deformation.

The effect of corrosion degree on the overall stiffness of corroded flexural member is 

illustrate in Figure 8.4, which presents stiffness of corroded beams damaged by 

different degrees of corrosion, induced to 2T8 at different covers to the main 

reinforcement. Figure 8.4 clearly indicate that, for the whole range of corrosion 

levels employed in the investigation, the reduction in the beam stiffness due to 

reinforcement corrosion decreased with increasing degree of main reinforcement 

corrosion.

8.4.1.2 Residual flexural strength

It is clear from the ultimate loads given in Table 8.1 that the strength of the beams 

decrease with increasing main steel corrosion (compare the control load of beam 

2T8/0+10D6/0/20 with that of 2T8/18.5+10D6/0/20, the ultimate load decreases 

from 57.40 kN to 20.57 kN). This is also applicable to the other two categories (36 

and 56 mm cover to main steel, Table 8.1) which also show significant reductions in 

ultimate strength due to corrosion.

To gain a better understanding of the influence o f corrosion on the flexural strength
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of the deteriorated beams, Figures 8.5 to 8.7 show the relationship between Puit / PCOn 

and the degree of corrosion to the main steel reinforcement. Puit is the ultimate load 

obtained from testing the beams in the laboratory (those exhibiting main steel 

corrosion) and Pcon is the average failure load of the control specimens (0 % corrosion 

to the main steel reinforcement). In all cases, the actual percentage of corrosion was 

used in the analysis of data as opposed to the target corrosion. This led to a better 

correlation between flexural performance and degree of corrosion as there was some 

variation between target and actual values (Table 8.1). Referring to Table 8.2, 

comparisons are made between Puit / Pcon and the degree of corrosion at arbitrary 

values of 4, 10 and 16% corrosion (calculated from the best fit equations in Figures

8.5 to 8.7). It is evident from Table 8.2 that the variation of the cover results in only 

a small difference in residual strength at 4 and 10% for beam categories 26, 36 and 

56 mm cover to the main steel (84, 8 6  and 90% at 4% corrosion and 63, 65 and 62% 

at 10% corrosion respectively). However, at 16% corrosion, the beams with 26 and 

36 mm cover exhibit a residual strength of 41 and 43% respectively whereas the 

beam with 56 mm exhibits a lower residual strength of only 33%. Therefore, based 

on these results, it appears that beams designed with high reinforcement cover suffer 

a higher reduction in flexural strength when exposed to significant reinforcement 

corrosion (up to 15% loss of cross section). However, further analysis is carried out 

in Chapter 11 and it is shown that cover has only a secondary influence on 

performance when considered against other characteristics such as moments of 

resistance in tension and compression and percent of reinforcement.
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Table 8.2 Comparison of residual strength at different covers and degrees of

corrosion

Degree of 

Corrosion
Pult / Peon (%)

(%)
Cover to main steel

26 mm 36 mm 56 mm

4 84 8 6  90

1 0 63 65 62

16 41 43 33

It was also evident during testing that the time taken for the first crack to develop 

was dependant on cover. For example, the beams with 26 mm cover cracked at 5% 

corrosion whereas the beams designed with 56 mm cover cracked at a higher degree 

of corrosion (10%). However, cracking was more severe for beams with 56 mm 

cover than for beams with 26 mm cover at similar degrees of corrosion, thereby 

leading to a lower residual strength (see Figures 8 . 8  (a) to (d)).

Figures 8.5 to 8.7 clearly show that reinforcement corrosion tends to reduce the 

average flexural load capacity of the beam significantly. This behaviour may be 

attributed to reduced cross sectional area of reinforcement due to corrosion, and also 

to inadequate transmission of stresses between concrete and reinforcement resulting 

from reduced bond strength at concrete-reinforcement interface due to the 

accumulation of corrosion products at the interface. However, at corrosion degrees 

of 5% and beyond, it is clear from Table 8.1 and Figures 8.5 to 8.7 that the average 

flexural load capacity decreased with increasing corrosion rate, which may be 

explained in terms of the cracks initiated in concrete matrix due to the formation of

151



^napier  <5 Experimental Results and Discussion -  Series I

(Main reinforcement corrosion)

I
C.LS mH

Figure 8 . 8  (a) Control beam crack pattern at ultimate load

Figure 8 . 8  (b) Beam 2T8/18.45+10D6/0/20 crack pattern at ultimate load level
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Figure 8 . 8  (c) Beam 2T8/17.76+10D6/0/30 crack pattern at ultimate load level

Figure 8 . 8  (d) Beam 2T8/16.35+12D6/0/50 crack pattern at ultimate load level
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corrosion products becoming wider and increased in number with higher corrosion

rates, resulting in more deterioration in bond strength.

The relation between Puit and 2RT/D % was fitted by a linear relationship given as 

follows:

P u it= [p x (C o rr% )+ l]P con

where

Puit is the failure load of the corroded beams 

P is the slope

Corr % is degree of corrosion of the main reinforcement

PC0I1 is the failure load of the control beams

Regression analysis of the test data gave the correlation coefficient ranging from 

0.93, 0.95 and 0.91 for covers 26 mm, 36 mm and 56 mm respectively. These good 

correlation coefficient indicate that there is a strong positive relationship between the 

ratio of flexural load of corroded beam to that of non-corroded control beam and the 

amount of corrosion.

The main conclusions from the results reported in this section are as follows:

• reinforced concrete beams show a loss in residual strength with increasing 

corrosion of the main steel reinforcement;

• the cracking in the cover concrete was more severe at 56 mm cover compared 

to 26 mm cover at similar levels of main steel reinforcement corrosion;

• deteriorated reinforced concrete beams in this test appear to suffer the most 

reduction in flexural strength when designed with high reinforcement cover
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and are subjected to high levels of main steel corrosion, but more data is

required.

8.4.2 Beam Series I reinforced with 2T10 main steel reinforcement

8.4.2.1 Load / Deflection

Similarly as in Section 8.4.1, load -  deflection curves for beam Series I which were 

reinforced with 2T10 main steel in the tensile zone are plotted in Figures 8.9 to 8.11.

These beams were subjected to different degrees of main steel corrosion and were 

tested under four point bending. Each degree of corrosion was selected to provide a 

predefined percentage reduction in the rebar diameter within a short time scale. Each 

curve in regards to the control specimens represents at least the average of two beam 

specimens.

The load -  deflection relationships for the beam specimens of Series I (2T10/Corr%) 

were obtained and the results are given Table 8.3. Table 8.3 showed the results from 

testing 36 beams in flexure in the laboratory. The cover to the main steel used in this 

test series was varied as reported in the previous section, from 26, 36 and 56 mm 

(column 1). Each beam is identified by the amount of main steel, target corrosion 

and cover, e.g 2T10/5+12D6/0/50 indicates that the main steel is 2T10 with 5% 

target corrosion whereas the shear reinforcement is 12D6, remained uncorroded and 

the cover is 50 mm, column 2. The actual corrosion (calculated as described in 

Chapter 3) is also given in column 3 along with the ultimate load at failure, column
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Table 8.3 Beam Series I (2T10/Corr%) test results

Cover Beam Identification
Actual

Corrosion
Stiffness

Ultimate

Load
Failure

Mode
mm % kN/mm kN
a ) (2) (3) (4) (5) (6)

2T10/0+10D6/0/20 0 22.1 84.63 Flexure

2T10/0+10D6/0/20 0 89.40 Flexure

2T10/0+10D 6/0/20 0 87.45 Flexure

o 2T10/0+10D6/0/20 0 88.80 Flexure
a>

■+->
C/3 2T10/0+10D 6/0/20 0 96.50 Flexure
C

*e30 2T10/0+10D6/0/20 0 86.50 Flexure
O

4-> 2T10/0+10D6/0/20 0 85.02 Flexure
<u>o 2T10/0+10D 6/0/20 0 78.40 Flexure
o
B
r-<

2T10/2.6+10D 6/0/20 2.6 21.8 68.50 Flexure
S

VO
<N

2T10/4.0+10D6/0/20 4.0 18.0 65.30 Flexure

2T10/4.2+10D6/0/20 4.2 20.4 86.98 Flexure

2T10/4.5+10D6/0/20 4.5 19.0 82.50 Flexure

2T10/6.5+10D6/0/20 6.5 17.1 64.48 Flexure

2T10/7.5+10D 6/0/20 7.5 11.8 62.70 Flexure

2T10/0+10D6/0/30 0 16.5 75.65 Flexure

2T10/0+10D6/0/30 0 73.30 Flexure

2T10/0+10D6/0/30 0 76.30 Flexure

<U
2T10/0+10D6/0/30 0 74.30 Flexure

<L>4->
C/3 2T10/0+10D6/0/30 0 79.70 Flexure
G

'S3
g

2T10/0+10D6/0/30 0 77.90 Flexure
o4-* 2T10/0+10D6/0/30 0 74.80 Flexure
a>>o 2T10/2.3+10D6/0/30 2.3 18.4 70.49 Flexure
o
a 2T10/2.5+10D6/0/30 2.5 18.7 69.42 Flexure
a

VO
CO

2T10/3.3+10D6/0/30 3.3 17.4 70.66 Flexure

2T10/3.4+10D6/0/30 3.4 17.1 90.35 Flexure

2T10/6.7+10D6/0/30 6.7 15.5 57.66 Flexure

2T10/8.3+10D6/0/30 8.3 15.8 55.24 Flexure

2T10/9.2+10D6/0/30 9.2 16.2 53.99 Flexure
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Table 8.3 Beam Series I (2T10) test results (Continued...)

Cover Beam Identification
Actual

Corrosion
Stiffness

Ultimate

Load
Failure

Mode
mm % kN/mm kN
(i) (2 ) (3) (4) (5) (6 )

D 2T10/0+12D 6/0/50 0 9.6 61.42 Flexure
<D

+->
t/5 2T10/0+12D6/0/50 0 63.30 Flexure
£ h

s
g 2T10/5.7+12D6/0/50 5.7 5.0 63.00 Flexure
0 2T10/6.1+12D6/0/50 6 . 1 5.1 55.00 Flexure
<L>>O 2T10/7.7+12D6/0/50 7.7 9.4 47.70 Flexure
O
a 2T10/9.5+12D6/0/50 9.5 9.3 50.30 Flexure
B

VO
i n

2T10/10.2+12D6/0/50 1 0 . 2 7.9 42.80 Flexure

2T10/14.4+12D6/0/50 14.4 7.3 39.90 Flexure

5. The stiffness calculated from the slopes of the load -  deflection curves (Figures 8.9 

to 8.11) is shown in column 4. Column 6  in Table 8.3 shows that the failure of each 

beam was flexural.

The load -  deflection curves of the corroded beams show that the reinforcement 

corrosion tends to reduce the stiffness of the concrete beam and this trend is more 

pronounced at higher degrees of reinforcement corrosion. For example, referring to 

Figure 8.9 and Table 8.3, beam 2T10/7.5+10D6/0/20 exhibits the lowest stiffness of 

11.8 kN/mm, whereas the controls 2T10/0+10D6/0/20 has a stiffness of 22.1 kN/mm.

The effect of corrosion degree on the overall stiffness of corroded flexural member is 

illustrate in Figure 8.12, which presents stiffness of corroded beams damaged by 

different degrees of corrosion, induced to 2 T 1 0  at different covers to the main
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reinforcement. Figure 8.12 does not clearly indicate a relationship in support of the 

findings reported in Section 8.4.1.1. Further analysis, therefore, will be carried out in 

Chapter 11.

The experimental arrangements are shown in Figures 8.13 (a) to (c) where beams are 

under test. The beams are loaded according to a four point bending test to get uniform 

bending at the central part of the beam and uniform shear in the outer parts.

Figure 8.13 (a) Beam 2T10/7.5+10D6/0/20 crack pattern at ultimate load level
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Figure 8.13 (b) Beam 2T10/6.7+10D6/0/30 crack pattern at ultimate load level

Figure 8.13 (c) Beam 2T10/6.1+12D6/0/50 crack pattern at ultimate load level
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8.4.2.2 Residual strength

It is clear from the ultimate loads given in Table 8.3 that the strength of the beams 

decrease with increasing main steel corrosion (compare the control load of beam 

2T10/0+10D6/0/20 with that of 2T10/7.5+10D6/0/20, the ultimate load decreases from 

85.00 kN to 62.70 kN). This is also applicable to the other two categories (36 and 56 

mm cover to main steel, Table 8.3) which also show significant reductions in ultimate 

strength due to corrosion.

Figures 8.14 to 8.16 show the relationship between Pui/Pcon and the degree of corrosion 

to the main steel reinforcement. Puit is the ultimate load obtained from testing the beams 

in the laboratory (those exhibiting main steel corrosion) and P con is the average failure 

load of the control specimens (0% corrosion to the main steel reinforcement). In all 

cases, the actual percentage of corrosion was used in the analysis of data as opposed to 

the target corrosion. Referring to Table 8.4, comparisons are made between P uit/Pcon and 

the degree of corrosion at arbitrary values of 5, 7.5 and 10% corrosion (calculated from 

the best fit equations in Figures 8.14 to 8.16). It is evident from Table 8.4 that the 

variation of in cover results in only a small difference in residual strength at 4 and 10% 

for beam categories 26, 36 and 56 mm cover to the main steel (83, 8 6  and 8 8 % at 5% 

corrosion and 74, 79 and 82% at 7.5% corrosion respectively). At 10% corrosion, the 

beams with 26, 36 and 56 mm cover exhibit a residual strength of 65, 72 and 76% 

respectively. Therefore, based on these results, it appears that beams designed with low 

reinforcement cover suffer a higher reduction in flexural strength when exposed to 

significant reinforcement corrosion (up to 1 0 % loss of cross section).
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Table 8.4 Comparison of residual strength at different covers and degrees of

corrosion

Degree of 

Corrosion
Puit / Peon (% )

(%) Cover to main steel

26 mm 36 mm 56 mm

5 83 8 6  8 8

7.5 74 79 82

1 0 65 72 76

The relation between Puit and 2RT/D % was fitted by a linear relationship given as 

follows:

Puit = [px(Corr % )+l]Pcon

where

Puit is the failure load on the corroded beams 

(3 is the slope

Corr % is degree of corrosion of the main reinforcement 

PCOn is the failure load of the control beams

Regression analysis of the test data gave the correlation coefficient ranging from 0.37, 

0.52 and 0.75 for covers 26 mm, 36 mm and 56 mm respectively. These correlation 

coefficients do not give as strong and positive relationship as it was previously found 

for beams reinforced with 2T8. However, this part of the results will be further 

analysed in Chapter 11.

The main conclusions from the results reported in this section:
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• reinforced concrete beams show a loss in residual strength with increasing 

corrosion of the main steel reinforcement;

• the cracking in the cover concrete was more severe at 50 mm cover compared to 

2 0  mm cover at similar levels of main steel reinforcement corrosion.

8.4.3 Beam Series I reinforced with 2T12 main steel reinforcement

Concrete beams reinforced with 2T12 main reinforcement were corroded to determine 

the residual capacity in a similar manner to those described in Sections 8.4.1 and 8.4.2. 

To ensure that the beams failed in flexure, double stirrups were provided to prevent 

shear failure.

The experimental arrangements are shown in Figure 8.17 where beam is under test.

Figure 8.17 Beam 2T 12/5.9/50 crack pattern at ultimate load level
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8.4.3.1 Load / Deflection

Figure 8.18 shows the applied load -  central deflection relationships for beams 

reinforced with two 1 2  mm tensile reinforcement subjected to different degrees of

corrosion at 50 mm cover to shear reinforcement (only one depth of cover was tested in 

this batch of beams).

It was also observed that owing to the fact that double stirrups were used in the 

manufacturing of the beam specimens, less severe cracking patterns o f the concrete 

cover zone was evident. Also beam specimens of Series I were associated with nearly 

the same deflection compared to the controls of the same series.

The effect of corrosion rate on the overall stiffness of corroded flexural member is 

illustrated in Figure 8.19, which presents stiffness of corroded beams damaged by 

different degrees of main steel corrosion. Figures 8.19 clearly indicate that, for the 

whole range of corrosion levels employed in the investigation, the reduction in the beam 

stiffness due to reinforcement corrosion decreased with increasing degree of corrosion 

as expected.

8.4.3.2 Flexural strength

Table 8.5 shows the results from the testing 8  beams reinforced with 2T12 in flexure in 

the laboratory. Each beam is identified by the amount of main steel, actual corrosion 

and cover (e.g. 2T12/5.9+24D6/0/50). The actual corrosion (calculated as described in 

Chapter 3) is also given along with the ultimate load at failure. Table 8.5 also shows 

that the failure of each beam was flexural.
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It is clear from the ultimate loads given in Table 8.5 that the strength of the beams 

decrease with increasing main steel corrosion (compare the control load of beam 

2T12/0+24D6/0/50 with that of 2T12/5.9+24D6/0/50, the ultimate load decreases from 

average an 81.68 kN to 50.70 kN).

Table 8.5 Beam Series I (2T12/Corr%) test results

Cover Beam Identification
Actual

Corrosion
Stiffness

Ultimate

Load
Failure

Mode
mm % kN/mm kN
(i) (2 ) (3) (4) (5) (6 )

i 4<D 2T12/0+24D6/0/50 0 15.6 76.98 Flexure
<D-I—>
C/3 2T12/0+24D 6/0/5 0 0 81.68 Flexure
’c3
a 2T12/1.3+24D6/0/50 1.3 15.0 73.80 Flexure
o 2T12/1.7+24D6/0/50 1.7 14.7 70.80 Flexure
<L>>o 2T12/2.5+24D6/0/5 0 2.5 1 1 . 8 63.60 Flexure
o
a 2T12/3.1+24D6/0/50 3.1 11.4 57.30 Flexure
a
IT3 2T12/4.2+24D6/0/50 4.2 11.3 61.70 Flexure

2T12/5.9+24D 6/0/5 0 5.9 9.9 50.70 Flexure

To gain a better understanding of the influence of corrosion on the flexural strength of 

the deteriorated beams, Figure 8 . 2 0  show the relationship between Puit / Peon and the 

degree of corrosion to the main steel reinforcement. Puit is the ultimate load obtained 

from testing the beams in the laboratory (those exhibiting main steel corrosion) and PCOn 

is the average failure load of the control specimens (0 % corrosion to the main steel 

reinforcement). In all cases, the actual percentage of corrosion was used in the analysis 

of data as opposed to the target corrosion. This led to a better correlation between
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flexural performance and degree of corrosion as there was some variation between 

target and actual values.

A strong linear relationship was also found between the degree of corrosion and 

Puit / Peon (correlation coefficient 0.89). However, the results will be further analysed 

in Chapter 11.

8.5 Conclusions

The results of this series will be analysed further in order to develop analytical model 

in Chapter 11.

8.5.1 General

The following conclusions were drawn from the experimental results of Series I 

reported in this chapter:

• For main reinforcement corrosion, the first sign o f corrosion was rust staining 

on the concrete surface, followed by longitudinal cracking in the concrete 

cover;

• The time to first cracking depended, as expected, on cover and main

reinforcement diameter. The beams with larger diameters deformed bars

corrosion tended to crack earlier than those with smaller diameters, possible

because of the greater surface area. There is no evidence in the literature to 

suggest that deformed bars are more susceptible to corrosion;
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• The presence of longitudinal cracking resulting from the corrosion of 

reinforcement up to 5% did not necessarily mean significant loss of flexural 

strength;

• The series of beams with the heaviest corrosion suffered significant strength 

loss. In most of the cases of serious strength loss, failure was precipitated as a 

result of local section loss.

8.5.2 Flexure

• For the flexure tests, the loss of strength increased as the degree of corrosion 

increased;

• The beams with target corrosion of 5% suffered negligible strength loss, even 

where longitudinal cracking was present over the length of the beam. Failure 

was ductile and in flexure;

• The bars with the least cover were more susceptible to loss of bond due to 

corrosion. The possibility of bond failure can be identified by the presence of 

serious corrosion cracking;

• First evidence of bond failure occurred in the beams with a target corrosion of 

12%. This evidence consisted of horizontal cracking of the beam along the 

line of the reinforcement as the load test proceeded, suggesting local bond 

failure. In all beams, failure was ductile and in flexure;

• The capacity of beams with main steel corrosion only was actually enhanced 

by the presence of shear reinforcement, even more where the corrosion was
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heavy (15%). This strength enhancement did not occur for beams without

shear reinforcement as reported elsewhere in the literature;

• The presence o f shear reinforcement helped maintain integrity of the beam.

8.5.3 Load -  Deflection

• Flexural deflection at service load increased with increasing corrosion degree. 

That may be explained in terms of the pressure build up at the reinforcement- 

concrete interface, due to the accumulation of corrosion products, being 

increased with increasing corrosion degree, resulting in wider cracks in the 

concrete cover zone, hence reduced stiffness;

• Owing to the fact that four leg steel stirrups were used in the manufacturing of 

the beam specimens reinforced with 2 T 1 2  main reinforcement, led to less 

severe cracking patterns in the concrete cover zone, the beams specimens were 

associated with the lowest deflections compared to the beams of the other 

groups;

• The effect of area of reinforcement on the stiffness of the concrete beam is 

clearly manifested when comparing the performance of the beam specimens 

reinforced with 2T12 with those reinforced with 2T8 and 2T10 main 

reinforcement. The beams reinforced with 2T8 are associated with higher 

deflections compared to the beams reinforced with 2 T 1 2  main reinforcement.

8.5.4 Further discussion

A simplified model for predicting the residual strength of corroded reinforced 

concrete beams will be presented in Chapter 11.
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The residual flexural capacity of beams was determined following induced

accelerated corrosion in the reinforcement within between 336 and 840 hours. Such

corrosion periods are gross reduction of actual corrosion periods of many years

which may occur in real practice to produce the same degree of corrosion. These

differences in accelerated and normal corrosion periods can have significant

influence on residual strength. Longer corrosion periods allow the corrosion

products to be dissipated gradually in the pore structure of the concrete matrix,

thereby reducing the radial stresses exerted at the rebar-concrete interface. In the

case of accelerated corrosion, however, the rapid production of corrosion products

allows little time for their dissipation in the pore structure. This will result in greater

residual stresses at the interface resulting in more extensive cracking and debonding

than may occur in real practice. The predictive models delivered from the laboratory

tests, therefore, should result in conservative values of residual strength.
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9.1 Introduction

Most of the papers published so far deal with the mechanism of the corrosion process 

133,134, protection of structures and field survey of deteriorated concrete structures. The 

literature on the structural implications of corrosion on parameters like the load carrying 

capacity when only shear reinforcement is corroded, is not available. The results 

presented in this chapter will contribute to determining the influence of shear steel 

corrosion on the structural performance of reinforced concrete beams.

9.2 Aim

The main objectives of the laboratory work were to evaluate the influence of different 

degrees of corrosion on the shear strength of reinforced concrete beams. This chapter 

includes experimental results and analysis of different parameters such as the effect of 

uniform shear reinforcement corrosion in beams with different main steel diameters.

9.3 Structural performance of beams exhibiting shear reinforcement corrosion

Reinforced concrete beams were designed and constructed as described in Chapter 6  

(see Tables A.2.1 and A.2.2 in Appendix A). Beams were reinforced longitudinally
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with two deformed 8  mm and 1 2  mm bars respectively and reinforced for shear with

6  mm plain steel links. Cover to the shear reinforcement was 50 mm. Covers of 20 mm

and 30 mm were not used as this was considered inappropriate due to the time scale of

the project.

The test results reported here for sixteen reinforced concrete beams in order to examine 

the influence of shear reinforcement corrosion on behaviour and ultimate load capacity. 

The variables included in this test series were percentage of main reinforcement, 

effective depth of the beam and degree of shear reinforcement corrosion.

Tables 9.1 and 9.2 summarise the capacity and failure mode. Column 1 of Tables 9.1 

and 9.2 shows that the cover to the shear reinforcement used in this test series was 50 

mm (column 1). Column 2 of Tables 9.1 and 9.2 give the beam identification according 

the target corrosion e.g. beam 2T8/0+12D6/15/50 indicates that the main steel is 2T8 

with 0% corrosion whereas the shear reinforcement is 12D6, target corrosion is 15% 

and cover is 50 mm. Column 3 gives the actual shear reinforcement corrosion measured 

as described in Section 3.3. The stiffness calculated from the slopes of the load -  

deflection curves (Figure 9.1) is shown in column 4. The ultimate load capacity at 

failure is given in column 5. Column 6  in Tables 9.1 and 9.2 shows that the failure of 

each beam was flexural, except for the two beams which were heavily corroded to 

around 25% (of the shear reinforcement) exhibited shear failure.

Referring to Tables 9.1 and 9.2, the actual corrosion (column 2) varied from the target 

corrosion, especially for beams designed with 2T12. This was due to the accelerated 

corrosion set up which can vary from test to test (see Figure 5.6).
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Table 9.1 Beam Series II (2T8/0+12D6/Corr%/50) test results

Cover Beam Identification

Actual

Links

Corrosion

Stiffness

Ultimate

Test

Load
Failure Mode

mm % kN/mm kN
(i) (2 ) (3) (4) (5) (6 )

2T8/0+12D6/0/50 0 10.3 40.00 Flexure
C/5

•a 2T8/0+12D6/0/50 0 1 0 . 0 42.70 Flexure

o 2T8/0+12D6/5/50 4.9 1 0 . 1 41.11 Flexure
s-l
< D> 2T8/0+12D6/5/50 9.2 5.5 40.59 Flexure
oo
£ 2T8/0+12D6/10/5 0 9.4 5.2 39.09 Flexure
G
a 2T8/0+12D6/10/5 0 9.8 8.3 39.71 Flexure

2T8/0+12D6/15/50 18.7 6 . 8 35.07 Shear

2T8/0+12D6/15/50 23.2 5.3 34.44 Shear

Table 9.2 Beam Series II (2T12/0+12D6/Corr%/50) test results

Actual Ultimate

Cover Beam Links Stiffness Test Failure Mode
Identification Corrosion Load

mm % kN/mm kN
(i) (2 ) (3) (4) (5) (6 )

2T12/0+12D6/0/20 0 16.6 78.30 Flexure
C/5

-a 2T12/0+12D 6/0/5 0 0 16.0 84.14 Flexure

o 2T12/0+12D6/5/50 0 16.4 82.70 Flexure
Vh
< D> 2T12/0+12D6/5/50 0.7 15.8 79.7 Flexure
oo
G 2T12/0+12D6/10/50 1 . 1 15.3 81.5 Flexure
G
a 2T12/0+12D6/10/5 0 1 . 8 13.3 76.5 Flexure

2T12/0+12D6/15/50 2 . 6 12.7 69.4 Flexure

2T12/0+12D6/15/50 6 . 1 1 2 . 2 55.8 Flexure
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As for the previous beams, the cracking due to corrosion was marked on each beam. In

general, the cover concrete was cracked at all reinforcement positions. This consisted

of vertical cracking at all link positions.

For this design, the beams were expected to fail in flexure, although there was not much 

margin between flexural and shear capacity. Corroded beams failed in flexure and only 

in very high degrees of corrosion in shear e.g. 2T8/0+12D6/18.7/50 and 

2T8/0+12D6/23.2/50. Figures 9.1 and 9.2 show the types of failure. In all cases 

calculated flexural load capacity was achieved during various load tests.

Figure 9.1 Beam 2T8/0+12D6/23.2/50 crack pattern at ultimate load level
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Figure 9.2 Beam 2T12/0+12D6/6.1/50 crack pattern at ultimate load level

The following sections describe the behaviour under load of the 910 mm beam 

specimens and the effect of the induced corrosion to the shear reinforcement only. 

Strengths are related to the ultimate capacity of control (uncorroded) beams for flexure 

and shear. For direct comparison with the test results, mean values of strength as 

obtained from cube and tensile tests were used in this analysis (see Appendix A, Table 

A.2). For corroded beams, account was taken only of the section loss in steel cross 

section and for the purposes of this analysis the nominal actual section loss was used.
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9.3.1 Beam Series II reinforced with 2T8 main steel reinforcement

9.3.1.1 Load -  central defection relationships

Typical load -  deflection curves are shown in Figure 9.3. Figure 9.3 shows that the 

degree of corrosion (2RT/D %) induced in the shear reinforcement at a constant rate 

1 mA/cm has negligible influence on the load -  deflection curves. For example beam 

2T8/0+12D6/9.8/50 suffered on average 95% ultimate load reduction compared to the 

control. The same corrosion rate when used to induce a higher degree of corrosion of 

23.2% (Figure 9.3) lead to load -  deflection curves being not much more corrosion 

degree dependent. This is evident in beam 2T8/0+12D6/23.2/50 where the load 

reduction is around 83%.

To gain a better understanding of the performance of the beams when shear 

reinforcement is subjected to corrosion, Figure 9.4 shows the impact of shear 

reinforcement corrosion on the stiffness. Referring to Figure 9.4, the beam stiffness, 

obtained from the slope of the load deflection curves in Figure 9.3, is plotted against the 

degree of shear reinforcement corrosion. Generally, for percentages o f corrosion, up to 

about 15%, there is some variation in stiffness (for example, 10.0 kN/mm at 4.9% shear 

reinforcement corrosion to 5.5 kN/mm at 9.2% shear reinforcement corrosion). 

However, the stiffness decreases rapidly thereafter and the mode of failure changes 

from flexure to shear at high (>18%) degrees of shear reinforcement corrosion.

9.3.1.2 Residual flexural strength

In general under four point bending, the control beams exhibited a classical bending 

failure of an under reinforced beam whereas the failure mode of the corroded beams
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was controlled by bond failure. At a high degree of shear reinforcement corrosion 

(20%), the failure mode changed from flexure to shear as shown in Figure 9.1 as 

discussed in Section 9.3.1.1.

It can be seen from Figure 9.5 that with the increase of degree of corrosion, the load 

capacity reduces. As reported in the literature 7 , plain steel improves the bond when 

corrosion is up to 5% and this could explain the slight increase in the stiffness. At a 

corrosion degree of about 1 0 % and higher, the stiffness begins to decrease.

It can be seen from Figure 9.5, that even when links were corroded at 23.2% the 

reduction in load capacity was negligible. Failure of these beams (high shear 

reinforcement corrosion) was by shear. This type of failure as reported 123, occurred in 

beams with high spacing of the shear reinforcement, close to the effective depth. Two 

main reasons could explain this type of failure, which was produced before the crushing 

of the concrete by bending:

• The significant reduction of shear reinforcement section;

• The reduction of the effective depth of the concrete section at shear span, due to 

the spalling of the top concrete cover (20 mm). This spalling was produced by 

the shear stress, due to the loading of the beam.

9.3.2 Beam Series II reinforced with 2T12 main steel reinforcement

9.3.2.1 Load -  central defection relationships

Average load -  deflection relationships for the beam specimens of Series II reinforced 

with 2T12 tensile reinforcement and 12D6 shear reinforcement subjected to different
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degrees of corrosion and 50 mm cover to the shear reinforcement, under four point 

bending tests are shown in Figure 9.6.

To gain a better understanding of the performance of the beams when shear 

reinforcement is subjected to corrosion, Figure 9.7 shows the impact of shear 

reinforcement corrosion on the stiffness. Referring to Figure 9.7, the beam stiffness, 

obtained from the slope of the load deflection curves in Figure 9.6, is plotted against the 

degree of shear reinforcement corrosion. Generally, increasing the percentages of 

corrosion, lead to decrease in stiffness (for example, 16.0 kN/mm at 0% shear 

reinforcement corrosion to 12.2 kN/mm at 6.1% shear reinforcement corrosion). 

However, due to the limited data it was not possible to establish where the mode of 

failure will change from flexure to shear and how the failure mode will relate to the 

stiffness.

9.3.2.2 Residual flexural strength

Figure 9.8 show the relationship between the degree of corrosion to the shear 

reinforcement and the flexural load capacity of corroded beams as a percentage of the 

average load capacity of the corresponding control beams, (P uit /  P COn)- Puit is the 

ultimate load obtained from testing the beams in the laboratory (those exhibiting shear 

reinforcement corrosion) and P COn is the average failure load of the control specimens 

(0% corrosion to the shear reinforcement and main steel), (see Table 9.2).

Figure 9.8 show a clear relationship between the degree of corrosion and the reduction 

in flexural strength. The results show that higher values of flexural load capacity are 

associated with degree of shear reinforcement corrosion to up to 2 .6 %, where the

189



C
ha

pt
er

 
9 

E
xp

er
im

en
ta

l 
R

es
ul

ts
 

an
d 

D
is

cu
ss

io
n 

- 
Se

ri
es

 
II

*3

?  1
* I»- ou
U L- c^ s ®a j: . .n « 3
+  T3 SO  <o —
n  "2 o

H 4>
>
oU

« « cr g

o o o o o o o o o o

(N>1) PB0 1

Fi
gu

re
 

9.6
 

Lo
ad

 
- 

de
fle

ct
io

n 
cu

rv
es

 
of 

co
rro

de
d 

co
nc

re
te

 
be

am
s 

of 
Se

rie
s 

II 
un

de
r 

fo
ur

 p
oi

nt
 b

en
di

ng
 

te
st



Ch
ap

te
r 

9 
E

xp
er

im
en

ta
l 

Re
su

lts
 

an
d 

D
is

cu
ss

io
n 

- 
Se

rie
s 

II

§

o  -o I/O o
v® U
V. o  cfc U B 
o .. Eu *- jr*3 ®

V© «  1/3o r . .H <« . 2  
+ -o .sO " -
00 O S H fc u Ci O « 
~  2  o
~ S U «* ..'£ C
41 '£03 «

§

0 4

0 4

0 4

VO

0 4

VO00 o VO00 04

V?ft'v

u

(U IU I /^ )  SS3UJJIJS

a#o
‘So
o
fc
oo
"S<D
B<uoVh

cSfl
<DtH
c3ox
C/3

T3

C/3
C/30)

sS

<DXI
tx • ̂X
C/3
aO

'o
P4

Os

Os
0)

. 1





^nupier y Experimental Results and Discussion -  Series II

(Shear reinforcem ent corrosion)

reduction in the load capacity was to around 85%. This is due the fact that the shear 

reinforcement was made of plain steel and the corrosion helped maintain the integrity of 

the concrete through increased bond .

However due to the limited data further analysis was not carried out on these series for 

the scope of this thesis.

The following conclusions were drawn from the experimental results of Series II 

reported in this chapter:

• Corrosion of the shear reinforcement modifies the type of failure in concrete 

beams with usual ratios of reinforcement. Whereas non corroded beams failed by 

bending, heavily deteriorated beams (23.2% corrosion to shear reinforcement) 

failed by shear;

• The presence of shear reinforcement helped maintain integrity of the beam even 

where they were heavily corroded;

• There was little influence of shear reinforcement corrosion on the load carrying 

capacity for corrosion of around 5%;

• The reduction in the load carrying capacity was higher for beams reinforced with 

bigger diameter, e.g. 2T12 in comparison with 2T8 (Figures 9.8 and 9.5).

9.4 Final remarks

More research is needed due to insufficient data to deal with different aspects related to 

the performance of concrete beams with corroded shear reinforcement. Further analysis 

on the effect of shear reinforcement corrosion on the shear strength and the effect of
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reduced tensile properties of the shear reinforcement on the structural performance, are 

considered in the recommendations presented in Chapter 12.
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Chapter

Experimental Results and Discussion -  Series III 

(Main and shear reinforcement corrosion)

10.1 Introduction

Concrete structures which have suffered from corrosion to the steel require maintenance 

to increase their service life. However, it is difficult to make a decision as when repair 

is required without knowing how much the capacity has been reduced due to 

deterioration. Shear reinforcement normally corrodes first as it is nearer to the concrete 

surface but main steel, too can be affected simultaneously if the corrosion products 

penetrate deep into the concrete. This chapter discusses the results of test beams where 

accelerated corrosion was induced to both main and shear reinforcement in the 

laboratory.

10.2 Aim

The main objectives of the laboratory work were to evaluate the influence o f corrosion 

to the main and shear reinforcement on the residual strength of simply supported beams. 

This chapter includes experimental results of beams tested with parameters such as 

varying degrees of uniform corrosion to both the main and shear reinforcement.
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10.3 Flexural testing

Reinforced concrete beams were design and constructed as described in Chapter 7 and 

the results of the design are attached at the end of this thesis (see Appendix A, Table 

A.3).

After accelerating the predetermined amount of corrosion to the main and shear 

reinforcement, the beams were tested under four point bending to determine their load -  

deflection curves and their ultimate flexural strength. The outputs from the testing 

machine and the transducer were connected to a chart recorder to plot the load -  

deflection curves. The load -  deflection relationships for the beam specimens o f Series 

III were obtained and the results are given Table 10.1. Table 10.1 shows that the cover 

to the shear reinforcement used in this test series was 50 mm (column 1). Covers of 20 

mm and 30 mm were not used as this was considered inappropriate due to the time scale 

of the project. The beam identification according the target corrosion is given in 

column 2, e.g 2T8/5+12D6/10/50 indicates that the main steel is 2T8 with 5% target 

corrosion whereas the shear reinforcement is 12D6, target corrosion is 10% and cover is 

50 mm. The actual corrosion calculated as described in Chapter 3 is given, for main 

bars in column 3 and for the shear reinforcement, column 4. The stiffness calculated 

from the slopes of the load -  deflection curves (Figure 10.1) is shown in column 5. The 

ultimate load capacity at failure is given in column 6 . Column 7 in Table 10.1 shows 

that the failure of each beam was flexural, except for the two beams which were heavily 

corroded to around 25% (of the main and shear reinforcement) exhibited shear failure.
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Table 10.1 Beam Series III (2T8/Corr %+12D6/Corr %/50) test results

Cover Beam Identification

Actual 

Main bars 

Corrosion

Actual

Shear

links

Corrosion

Stiffness
Ultimate

Load
Failure

Mode

mm % % kN/mm kN
(i) (2 ) (3) (4) (5) (6 ) (7)

2T8/5+12D6/5/50 6.5 4.3 9.5 33.64 Flexure

2T8/5+12D6/5/50 2.9 3.0 8.5 40.27 Flexure

2T8/10+12D6/5/50 4.8 5.6 1 0 . 0 33.69 Flexure

2T8/10+12D6/5/5 0 5.3 6.5 9.1 31.86 Flexure

2T8/15+12D6/5/50 25.7 24.7 4.5 11.07 Shear

2T8/15+12D6/5/50 25.7 27.6 4.3 8.96 Shear

2T8/5+12D6/10/50 8.3 6.3 6 . 1 33.32 Flexure
g

2T8/5+12D6/10/50 3.1 3.8 7.7 36.29 Flexure

Jm<D>oo
2T8/10+12D6/10/50 4.1 3.9 8.9 33.44 Flexure

2T8/10+12D6/10/50 4.7 8 . 2 8 . 1 32.65 Flexure
s
a 2T8/15+12D6/10/50 7.8 4.5 6 . 8 26.69 Flexure
oIT)

2T8/15+12D6/10/50 8 . 8 9.1 6 . 8 27.25 Flexure

2T8/5+12D6/15/50 10.7 1 2 . 0 5.3 25.32 Flexure

2T8/5+12D6/15/50 1 1 . 8 14.2 6 . 8 26.56 Flexure

2T8/10+12D6/15/50 6.7 9.4 11.4 44.04 Flexure

2T8/10+12D6/15/50 7.9 8 . 2 6.9 27.54 Flexure

2T8/15+12D6/15/50 6.9 7.4 9.0 30.54 Flexure

2T8/15+12D6/15/50 6.9 4.0 8 . 1 32.11 Flexure
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10.3.1 Load -  deflection curves

Typical load -  deflection curves are shown in Figure 10.1. Figure 10.1 shows that the 

degree of corrosion (2RT/D %) induced in the main and shear reinforcement at a 

constant rate 1 mA/cm has marked influence on the load -  deflection curves. The same 

figure shows that the influence of degrees of corrosion of the main and shear 

reinforcement of up to 3.0% on the load -  deflection curves is negligible. For example 

beam 2T8/2.9+12D6/3.0/50 and beam 2T8/3.1+12D6/3.8/50 suffered on average 95% 

ultimate load reduction compared to the control. The same corrosion rate when used to 

induce a higher degree of corrosion of 10% (Figure 10.1) lead to load -  deflection 

curves being much more corrosion degree dependent. This is evident in beams 

2T8/10.7+12D6/12.0/50 and beam 2T8/11.8+12D6/14.2/50 where the load reduction is 

around 50%.

To gain a better understanding of the performance of the beams when both main and 

shear reinforcement are subjected to corrosion, Figures 10.2 and 10.3 show the impact 

of simultaneous corrosion on the stiffness. Referring to Figure 10.2, the beam stiffness, 

obtained from the slope of the load deflection curves in Figure 10.1, is plotted against 

the degree of main reinforcement corrosion. Generally, for low percentages of 

corrosion, up to about 7%, there is some variation in stiffness (for example, 7.7 kN/mm 

at 3.1% main steel corrosion to 11.4 kN/mm at 6.7% main steel corrosion). However, 

the stiffness decreases rapidly thereafter and the mode of failure changes from flexure to 

shear at very high (>25%) degrees of corrosion.

Referring to Figure 10.3, the same beams (Series III) are considered but the stiffness is 

compared to the degree of corrosion of the shear reinforcement. In this instance, a
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(M ain an d  shear reinforcem ent corrosion)

degree of corrosion of 14.2% on the shear reinforcement is reached and failure of the 

beam is nevertheless, flexural. Only at very high levels of corrosion at around >25% in 

both the main (Figure 10.2) and shear reinforcement (Figure 10.3) does the mode of 

failure change from flexure to shear.

For comparison, the stiffness -  corrosion relationship is shown in Figure 10.4 for 

Series III when corrosion to both main and shear reinforcement is considered together. 

These results (and those in Figures 10.2 and 10.3) show that the stiffness of the beam is 

reduced to about 46% when both corrosion to the main and shear reinforcement is 

present.

10.3.2 Flexural strength

In general under four point bending, the control beams exhibited a classical bending 

failure of an under reinforced beam whereas the failure mode of the corroded beams 

was controlled by bond failure. At about 60% of the failure load for all corroding 

beams (between 5 and 10% corrosion), horizontal splitting of the concrete occurred 

along the tensile reinforcement interface. At about 90% of the ultimate load, one 

vertical crack appeared in the mid-span of the beam, which led to failure. At a high 

degree of main and shear reinforcement corrosion (25%), the failure mode changed 

from flexure to shear as shown in Figures 10.5 and 10.6 as discussed in Section 10.3.1.

Figure 10.7 shows the relationship between the degree of main reinforcement corrosion 

(2RT/D%) and the flexural load capacity o f corroded beams as a percentage of the 

average load capacity of the corresponding control beams, (Puit / Peon)- A similar graph 

is plotted in Figure 10.8 except that the percentage of corrosion of the shear
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L^napier iu Experimental Results and Discussion -  Series III

(Main and shear reinforcement corrosion)

Figure 10.5 Beam 2T8/8.8/50+12D6/9.1 crack pattern at ultimate load level

Figure 10.6 Beam 2T8/25.7/50+12D6/27.6 crack pattern at ultimate load level
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reinforcement is plotted against (Puit / PCOn)- These graphs show a clear relationship 

between the degree of corrosion and the reduction in flexural strength. The results show 

that higher values of flexural load capacity are associated with degree of shear 

reinforcement corrosion to up to 5%. This is due the fact that the shear reinforcement 

was made of plain steel and the corrosion helped maintain the integrity o f the concrete 

through increased bond.

Figures 10.7 and 10.8 show the relationship between the degree of main and 

reinforcement corrosion and the flexural load capacity, as a percentage of the control 

beam, of beam Series III which were corroded at a rate 1 mA/cm2. Linear scatter 

between the results of individual beams is evident (coefficients of correlation 0.92, 

Figure 10.7 and 0.86, Figure 10.8).

This good correlation coefficient indicate that there is a strong positive relationship 

between the ratio of flexural load of failure of corroded beam to that of control beam 

and the amount of corrosion.

The following conclusions were drawn from the experimental results of Series III 

reported in this chapter:

• The shear reinforcement helped maintain integrity of the beam even if  they were 

heavily corroded;

• Beams with shear reinforcement corrosion suffered negligible strength loss as can 

be concluded from Figures 10.7 and 10.8. These graphs show that shear 

reinforcement corrosion do not lead to a significant reduction of Puit / PCOn ratio 

(concluded in test Series II);
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• As it was previously reported (Chapter 9), corrosion of the shear reinforcement 

modifies the type of failure. Whereas control beams failed by bending, heavily 

deteriorated beams (both main and shear reinforcement of about 25%) failed by 

shear.

10.4 Final remarks

All data reported in this chapter support previously reported data in Chapter 9. Test 

data was insufficient to make conclusions in regards of the failure mode. Therefore 

more test data is required before more rigorous analysis is to be undertaken for these 

test series. Due to time limitation this analysis was not carried further for the purpose of 

this thesis. However, the compatible data will be used to support the analysis carried 

out on test Series I in Chapter 11.
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Chapter 11

Analytical Modelling o f Experimental Data

11.1 Introduction

The ability to predict the residual strength of concrete structures is becoming 

increasingly important as the nation’s infrastructure ages. The problems with steel 

reinforcement corrosion highlights the need for the service life (the period of time over 

which it is assumed that a structure will be used for its intended purpose with 

anticipated maintenance but without major repair being necessary) to be addressed at 

the design stage. The environment to which the concrete will be exposed is a key factor 

in designing for a given service life.

Decisions on whether to repair or to demolish structures may depend on the estimated 

service life. The estimation of the remaining service life of corroding structures is 

mainly based on empirical or qualitative models and on the subjective experience and 

expertise of the engineer. These methods primarily involve the use of mathematical 

models and life time extrapolations based on corrosion current measurements. In the 

assessment of an existing concrete structure, engineers may have to evaluate the 

capacity of a beam with reinforcement corrosion. A quantitative model could not be 

found in the literature to assist the engineer in conducting this assessment.

The methodology presented here relates the loss in steel cross section to the loss in load 

carrying capacity of reinforced concrete beams. It is a simplified method o f predicting
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the residual flexural strength of simply supported reinforced concrete beams with steel 

reinforcement corrosion.

11.2 Current method of residual life prediction

The increasing age of the bridge stock throughout Europe has highlighted the problems 

associated with deterioration in existing structures. Surveys have indicated that the 

main reasons for deterioration, besides normal wear and tear, are the increasing weights 

and volume of traffic using the road network, and adverse environment conditions such 

as exposure to chlorides and freeze thaw attack. The magnitude of the capital 

investment in European bridge stock requires that effective maintenance is required to 

ensure that the bridges are kept in safe service at minimum cost. The assessment 

methods currently being used do not normally include reliable techniques for the 

evaluation of the structural consequences of deterioration 135,136.

• • • 127 12 &It is clear from previous published work ’ that the corrosion of steel due to chloride 

contamination and the carbonation of concrete is a serious problem in bridges. Other 

forms of deterioration such as alkali silica reaction, freeze thaw action and sulphate 

attack are also common. In this thesis, simplified models for taking account of 

corrosion deterioration are developed for use in general assessments o f deteriorated 

reinforced concrete beams.

The general practice of accounting for deterioration is by using actual section 

dimensions as measured on site or obtained from design data, and modifying the 

material properties based on material tests or NDT methods. Taking account of 

deterioration, in general, depends on the knowledge and experience of the assessing 

engineer. In the case of the UK, there are assessment documents 1 3 9 , 1 4 0 , 141 relating to
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deterioration arising from chloride induced corrosion. These documents tend to be 

general in nature and contain little quantitative guidelines.

Due to the lack of quantitative information on the structural behaviour of beams 

suffering reinforcement corrosion, a quantitative model based on structural analysis 

does not exist but is urgently needed.

The general steps currently involved in the detailed assessment of any deteriorated 

structure are:

A decision to appraise a structure in detail is usually triggered by observations taken 

during routine inspection. The purpose of the appraisal must be established at the onset, 

since it dictates the scope of the investigation and the measurements to be taken. 

Normally, it breaks down to the following component parts:

• A general appraisal of the structure, covering geometry, material properties and 

any physical deterioration. Usually this includes crack pattern analysis as an aid 

to establishing the causes of deterioration. There may be a number of causes and 

clear identification is important;

• Measurements to establish the general environment. For corrosion, local micro

climate is crucial, including the concrete cover;

• A progressive diagnostic approach to establish the current state (and likely future 

extent) of damage due to the dominant deterioration mechanism.

Situations may be encountered in which the remaining strength of concrete can only be 

estimated by predicting its original life using a service life model. Such a situation 

could arise where the concrete can not be inspected or samples taken due to 

inaccessibility or to potential hazard involved with its inspection. This would
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necessitate obtaining or estimating the values of the material properties required to solve 

the model.

In general, this work is carried out by specialists but guidance 1 4 2 , 1 4 3 , 144 is available and 

procedures well established.

For corrosion in particular, measurement of the concrete cover is important together 

with moisture conditions. Progressive diagnosis may then follow involving a mix of 

site measurement and detailed laboratory analysis:

• Define current levels of safety and serviceability;

• Estimate rate of future deterioration;

• Estimate time to minimum technical performance (calculate critical section, i.e. 

establish minimum technical performance). Currently in use is BD 21/01 145;

• Decision of remedial action and future management;

• Discussion with client and owners.

The key to this is the assembly of representative data and the interpretation of that data, 

in moving towards a realistic structural assessment. This process requires judgement to 

be made against limiting criteria. This is not straightforward, and the model developed 

in this thesis puts forward a suggestion on how it may be done.

11.3 British code BS 8110 and design of concrete structures EC2

The current British Standard BS 8110 146 for design of reinforced concrete structures is 

due to be withdrawn by 2010 and will be replaced BS EN 1992-2:2005 Eurocode 2 

Design of Concrete Structures 14?. The design of flexural elements to EC2 is very 

similar to that of BS 8110 as shown in Figures 11.1 (a) and (b) and the reinforcement
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provision dictates the mode of failure of a concrete beam in bending. The section fails 

due to yielding of the steel reinforcement (under reinforced) and the failure mode is far 

more ductile resulting in large deformations, cracking and spalling of concrete on the 

tension face.

neutral axis

Section Strain Stress

Figure 11.1 (a) EC2 stress block 148

=  0.0035

s= 0 .9 x

neutral axis

Section Strain Stress

Figure 11.1 (b) BS 8110 stress block l 4 8 ' 149
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11.4 Analysis of a doubly reinforced rectangular section

The analysis presented in this chapter is based upon the current design standard, BS 

8110, since beams which are currently showing signs of distress in the field would have 

been designed in accordance with one of its predecessors. The ultimate moment of 

resistance of the cross section is calculated from the following data and factors of safety 

are excluded for research purposes.

11.4.1 Design for moment of resistance

For equilibrium of the tensile and compressive forces on the section, see Figure 11.1 (b) 

Fst = Fcc + Fsc Equation 1 1 . 1

where

Fst is the ultimate force in tensile reinforcement taken as: Fst = f y xAs, where f y is the

yield stress of the tensile reinforcement and As is the area of tensile steel

Fcc is the ultimate concrete compression force taken as: 0.67xfcux b xs, where f cu is a

characteristic strength of the concrete, b is the width of the beam and 5  is the stress 

block depth

Fsc is the ultimate force in compression reinforcement taken as: Fsc = f y xAs , where f y 

is the yield stress of the compression reinforcement and As is the area of compression 

steel (hanger bars)

Therefore, Equation 11.1 can be re-written

f y xAs = 0.67xf cux b xs+fy'xAs' Equation 11.2
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Therefore, Equation 11.2 can be re-written

f y X A ~ f y * 4  . 1 1 ^
s  1 — -----------   [ m m ]  Equation 11.3

0.67 x f ^ x b

As shown in Figure 11.2:

d  = 1 5 0 - c - t  [ m m ]  

t  = ( j > ' + D / 2  [ m m ]  

z  = d - s / 2  [ m m ]  

d ’ =  2 0 + < F + < f > ' / 2  [ m m ]

Figure 11.2 Cross sectional area of reinforced concrete beams used in the analysis

Taking the moments about the tension steel As, the ultimate design moment is given by 

the following equation

M c  =  F s c  x ( d - d ) + F c c  xz Equation 11.4

The maximum value for z is 0 . 7 7 5 * d  as given in BS 8110 146.

The ultimate concrete design stress is 0 . 6 7 x f c l/ y c  where the factor 0.67 relates the cube 

crushing strength to the flexural strength o f concrete 150 and y c is the partial safety factor

for the strength of concrete for designing members cast in situ (normally 1.5).

iC Gi
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F sc  =  y ,X fy Equation 11.5

Fcc = (0.67 xfcu/yc)  x b*s Equation 11.6

Substituting Equation 11.5 and Equation 11.6 into Equation 11.4 gives

Mc = ys xfy,'xAs'x(d-d)+ [(0.67xf cl/yc) *b *s] x(0.775 *d) [kNm]

Equation 11.7

For the purpose of analysis, the material partial factor of safety, ys and yc are taken as 

unity (the actual steel stress at yielding was adopted from tests), substituting these into 

Equation 11.7 and taking s = 0.45 xd  gives

Equation 11.8

Equation 11.8 was used to calculate the maximum compressive moment of resistance of 

the beams, Mc.

11.4.2 Design for shear resistance

The design shear stress, v, at cross section should be calculated from

Mc = [0.234xfcuxbxc? + f y'xAs'x(d-d)] xlO'6 [kNm]

V = [N/mm2] Equation 11.9

where

V is the ultimate shear force in kN

bw is the width of the beam web in mm

d  is the effective depth in mm
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Large shearing forces are also liable to cause crushing of the concrete along the 

direction of the principal compression stresses, and therefore at the face of support the 

average shear stress should never exceed 0.8 * r fcu or 5 N/mm2 which ever is lesser.

The shear stress, vc, which the concrete on its own can resist, is derived from the 

expression

vc = 0.79x(100'xAs/(bw'xd))I/3 *(400/d)I/4 *ym Equation 11.10

where

the term As is the area of longitudinal tension reinforcement 

ym is factor of safety equal to 1.0, not 1.25

Shear reinforcement in the form of vertical links was provided in accordance with the 

minimum areas as given by BS 8110.

(vc+0.40)< v <5 N/mm2

The area of shear reinforcement in was calculated from:

Asv=bwxsvx(v-vc)/fyv [mm2]  Equation 11.11

where

Asv is the cross sectional are of the two legs of the stirrup in mm2

sv is the spacing of the stirrups in mm

f yv is the characteristic strength of the stirrups in N/mm2

The spacing of the shear reinforcement in the direction of the span should not exceed 

0.75*d [mm].

Figure 11.3 shows the schematic representation of stress due to external loading.
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Reinforced concrete beam

(a)
0.080 m 0.250 m 0.250 m 0.250 m 0.080 m

(b)

(c)

0.250 P 0.250 P

Figure 11.3 Schematic representation of stress due to external loading

(a) loading configuration

(b) shear force diagram, Q [kN]

(c) bending moment diagram, M [kNm]

218



L^napter 11 Analytical M odelling o f  Experimental Data

11.5 Characteristics of reinforced concrete beams

In reinforced concrete beam design " ,  the moment of resistance in the tensile zone, Mt(o) 

is designed to be less than the moment of resistance in the compressive zone, Mc. 

Designing beams in this manner ensures a ductile failure at yielding. The level of under 

reinforcement can depend upon the preferences of the designer in complying with 

design and construction constraints, codes and availability of materials such as steel 

diameters and bar lengths. The quantity of tensile steel in a rectangular section can vary 

between a minimum of 0.13% to a maximum of 4% of the gross cross sectional area 

when designing in accordance with BS 8110. The designer will specify the number, 

type and diameter of steel reinforcement bars required to satisfy the area of steel 

required. The arrangement of the reinforcing bars is constrained by practical 

considerations such as construction tolerances, clearance between bars and available bar 

size and length. In addition, the cover to the steel can also vary from 20 mm to 70 mm 

depending on the exposure conditions and fire resistance requirements.

This means that beams can possess different levels of under reinforcement (or M t(o/Mc 

ratios). Once in service, this ratio is further influenced by corrosion of the steel 

reinforcement as cracking and spalling of the cover concrete will decrease the moment 

of resistance in the tensile zone.

Despite the majority of reinforced concrete structures meeting or exceeding their 

intended service life 151, many undergo some maintenance and repair 152, 153. Studies 

have been conducted which led to design procedures for enhanced design life 110,154, but 

nevertheless, repairs to such structures are costly.
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11.6 Effect of corrosion on the flexural capacity of reinforced concrete beams

The ultimate aim is to develop analytical models for the deterioration process which can 

be used as a part of the general assessment procedure to enable a reliable estimate of 

load carrying capacity to be produced and used in an overall bridge management 

system.

The purpose of the analysis in this section, therefore, is two fold: firstly, to investigate 

the influence of M t(o/Mc on residual flexural strength of corroded beams and secondly, 

to determine which detailing parameters (e.g. size and percentage of steel 

reinforcement, cover) influence M t(o/Mc. Consideration of the implications o f detailing 

on the residual strength of corroded flexural members may help reduce the enormous 

repair costs in Europe each year.

A successful understanding of the influence of the design parameters listed above will 

contribute to the development of analytical procedures for predicting the residual 

service life of reinforced concrete beams.

11.6.1 Characteristics of beam Series I

A total of 74 beams with main steel corrosion, were tested in Series I. The main 

variables (Table 11.1) were main steel diameter (consisted of either two diameter 8 , 10 

or 12 mm) and cover to main reinforcement (either 26, 36 or 56 mm). Each beam was 

tested independently. All beams contained non corroded shear reinforcement.

11.6.2 M t( o / M c relationship for various degrees of corrosion

An idealised stress block was used to analyse the section to determine the maximum 

compressive moment of resistance, Mc, as shown in Figure 11.1 (b).
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Table 11.1 Variables in test programme.

Main

Steel

Cover to main 

reinforcement 

(mm)

c/d

Target

Corrosion

(%)

26 3.3

2T8 36 4.5

56 7.0

26 2 . 6 0 -1 5 %
2T10 36 3.6 in increments

56 5.6 of 5%

2T12 56 4.7

Table 11.2 gives geometric details and material properties for the beams under 

consideration. In addition, similar properties from beams tested by other researchers are 

also presented to extend the Mt(o/Mc range of beams considered 4’ 78,86, 155. Some of 

these beams were reinforced in the tensile zone only and the shear capacity was 

enhanced via other means. In addition, certain details were unavailable from the 

publications, for example, actual yield strength for the steel reinforcement, precise cover 

information etc. and these were estimated by the authors from the information given. 

The corrosion rate applied to corrode the steel ranged from 0 . 1 - 2  mA/cm2 as opposed 

to 1 mA/cm employed in this investigation which may have an influence on the overall 

performance. Nevertheless, these results were included to support the data presented in 

this section.
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Equation 11.8 was used to calculate the maximum compressive moment of resistance of 

the beams, M c. The tensile moment at failure due to increasing levels of corrosion was 

obtained from Mpcon) = 0.250x(Puj/2) (Figure 11.3) where Puit is the ultimate load from 

laboratory beam tests. The relationship Mt(c0rr/Mc against the actual percentages of 

corrosion for the beams in Series I are shown in Figures 11.4 to 11.10. These graphs 

show that a higher degree of corrosion lead to a reduction in the M t(Corr/M c ratio.

Regression analysis of the test data gave the correlation coefficient ranging from 0.95 to

0.88 for beams reinforced with 2T8 (Figures 11.4 to 11.6), 0.73 to 0.88 for beams 

reinforced with 2T10 (Figures 11.7 to 11.9) and 0.57 for beams reinforced with 2T12 

(Figure 11.10).

Figure 11.11 shows a summary of the results from beams reinforced with 2T8, 2T10 

and 2T12 main steel and three different covers to the main steel (26 mm, 36 mm and 56 

mm respectively, Figures 11.4 to 11.10). The relationship is generally a linear decrease 

in Mt(Corr/Mc with increasing percentages of corrosion. The equation for the line of best 

fit is tabulated along with the coefficient of correlation (R2). Beams 2T12/56 (Figure 

11.11) exhibit the lowest correlation of the beams under consideration 0.57.

In addition, Figure 11.12 shows the relationship between Mt(c0rr/Mc and percentages of 

corrosion for beam Series III.

The summary results of the regression analysis are shown in Table 11.3. These fairly 

good values of correlation coefficients for beams reinforced with 2T8 and 2T10 indicate 

that there is a strong relationship between the ratio of bending moment of corroded 

beams to that of moment in compression and the amount of corrosion.
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K^napier 11 Analytical Modelling oj Experimental Data

Table 11.3 Results of regression analysis

Main

reinforcement

diameter

Cover

[mm]
a P

Correlation

coefficient

R2

2T8 26 -1.23 35.34 0.95

2T8 36 -1.52 44.13 0.90

2T8 56 -2.11 50.79 0.88

2T10 26 -2.66 57.36 0.73

2T10 36 -2.67 59.81 0.73

2T10 56 -2.74 80.88 0.87

2T12 56 -4.24 82.21 0.57

As reported in Chapter 9 and 10, there was little influence on the residual flexural 

strength when shear reinforcement were corroded to around 5%. Therefore, the data 

presented in Figure 11.12 is also used to support the data from beam Series I (Figures

11.4 to 11.10).

Beams are reinforced with 2T8 main steel and 12D6 exhibiting corrosion ( < 5%), with 

cover to the main steel of 56 mm. The relationship is generally a linear decrease in 

M t ( C o r r / M c  with increasing percentages o f corrosion. The equation for the line o f best fit 

is almost identical to beam Series I, reinforced with 2T8 and cover to the main steel o f  

56 mm.

In addition, Figure 11.13 shows the relationship between M t(c orr/ M c and percentages o f  

corrosion for beams tested by other researchers. In instances where full details were 

unavailable from the data presented to enable M c to be estimated, for example, cover to 

the steel, an estimate was made for the purpose of utilising the data.
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Figure 11.13 Comparison with other researchers
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The best fit equation and R2 is also given for each of the four relationships and show 

very good agreement.

Concentrating on Figure 11.11, beams reinforced with smaller steel diameters tend to 

exhibit a lower Mt(c0rr/Mc ratios at zero percent corrosion [.Mt(c0nj = ^t(O) for control 

beams (0 % corrosion), hence Mt(o) will be used to identify the tensile moment of 

resistance at 0% corrosion]. For example, beam 2T12/56 exhibits the highest M t(o/Mc 

ratio at 0% corrosion (86.91%) whereas beam 2T8/26 exhibits a ratio of only 36.31%. 

The influence of lower M t(o/Mc ratios on the flexural strength of corroded beams will be 

considered in Section 11.6.3.

Referring to the tables in Figures 11.11 and 11.13, the relationship between Mt(corr/M c 

and percent of corrosion is generally in the form

Mt(Corr/Mc = a x (Corr % )+ ft Equation 11.12

where:

Mpcon) is the flexural moment of resistance of corroded beam 

Mc is the maximum moment of resistance in the compression zone 

a is the slope of the line of best fit 

(Corr %) is the amount of corrosion 

P is the intercept (Mt(Corr/Mc)  ratio

The slopes (a) generally tend to increase in negativity for beams with higher M t(o/Mc 

ratios. For example, the slope of beam 2T8/26 is -1.23 whereas the slope for beam 

2T12/56 is -4.24. Steeper slopes, therefore, mean that beams suffer a more rapid
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decrease in flexural strength with higher corrosion. However, in order to optimise the 

design of beams for enhanced performance in a corrosive environment, the main 

parameters which influence the slopes in Figures 11.11 and 11.13 (M t( o / M c ratios), 

cover to the main steel and percentages o f main reinforcement are summarised in Table

11.4 and analysed in the next section.

Table 11.4 Overall comparisons

Identification
M t( o / M c

(%)
Slope a *

Cover

(mm)

Steel

reinforcement

l O O x A J b x h

(%)

2T8/26 36.3 -1.23 26 0.67

2T8/36 39.4 -1.52 36 0.67

2T8/56 45.9 -2.11 56 0.67

2T10/26 59.5 -2.66 26 1.05

2T10/36 63.3 -2.67 36 1.05

2T10/56 81.5 -2.74 56 1.05

2T12/56 86.9 -4.24 56 1.51

Mangat et al 2T10/20 86 60.2 -3.52 20 1.05

Mangat et al 2T8/21 78 44.0 -3.18 21 0.67

Al Sulamani et al 1T12/29 4 38.1 -1.11 29 0.50

Rodriguez et al 2T10/20 155 25.4 -0.43 23 0.52
* Slopes from  Figures 11.11 and 11.13

11.6.3 Designing for durability

Figure 11.14 shows the relationship between the slopes, a  (Table 11.4) against M t( o / M c. 

Lower M t( o / M c ratios generally correspond with lower slopes, meaning that these beams

2 3 6
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will not suffer rapid deterioration when corrosion occurs. The aim of the designer, 

therefore, should be to specify beams with low M t(o/Mc ratios. This is achieved by 

considering the influence of parameters such as the quantity and diameter of main steel 

and cover in the design as outlined below.

Referring to Figure 11.15, the percentage of main steel reinforcement (lOOxAs/b^h) is 

plotted against M t(o)/Mc for the eleven types of beams under consideration. The linear 

relationship shows that lower percentages of main steel results in lower Mt(o)/Mc, which 

is beneficial in the event of corrosion to the main steel. Therefore, the designer should 

aim to reinforce the section with percentages as close as possible to the allowable 

minimum (0.13%). However, the designer should not reduce the percentage of main 

steel by simply increasing the cover and therefore increasing the section size (b*h). 

Referring to Figure 11.16, the cover to the main steel is plotted against M t(o)/Mc.

The scattered nature of the points indicates that an increase in cover to the main steel 

does not necessarily lead to lower M t(0)/Mc ratios. Therefore, sufficient cover should be 

provided to meet the requirements of the design code for durability and fire resistance, 

but not unnecessarily increased simply to reduce the percentage of reinforcement.

The added benefits, therefore, of reducing the quantity of steel are that material costs 

will be lower due to less reinforcement in the section and smaller diameter corroding 

bars will exert lower rupture forces at the steel-concrete interface 156. It has also been 

reported that bond strength decreases with increased bar diameter, so smaller diameter 

bars will help minimise the effect of corrosion induced bond deterioration 156.
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11.6.4 Residual tensile moment of resistance

The data presented in this chapter also allows an estimate of the residual tensile moment 

of resistance of corroded beams to be obtained. Design values such as M t (o) and M c  will 

be available to the engineer, hence by rearranging Equation 11.12, M t ( c o rr ) can be 

estimated from:

( M t ( C o r r )/ M c)  %  =  a x ( C o r r % )  + ( M t( o ) / M c) %  Equation 11.13

where M t ( o / M c  is the intercept p. Multiplying Equation 11.13 by M c  and dividing by 

100 (since Equation 11.13 is in percentage terms) gives

M t (C o rr)  =  [ M c x  a x ( C o r r % ) / l  0 0  +  M t ( o J  Equation 11.14

where C o r r %  is the actual corrosion of the main steel in the beam in service and a  is 

obtained from Figure 11.14 or estimated from the line of best fit as follows:

a  =  0 . 0 6 [ ( M t (o ) / M c) % ]  -  0 . 8 9  Equation 11.15

A factor of safety should also be applied to Equation 11.14 ( y c)  which, for concrete, is 

normally taken as 1.5. Therefore, substituting y c  into Equation 11.14 gives:
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Mt(Corr) = [Mc*ax(Corr% )/l 00 + Mt(0)]  /  yc Equation 11.16

Therefore, through the application of Equation 11.16, the engineer will be able to assess 

the residual strength (moment of tensile resistance) of a corroded reinforced concrete 

beam once the level of corrosion (Corr%) in the main steel is obtained from a field 

inspection in addition to having design data such as Mt(0) and Mc.

Several means of measurement (Corr%) and testing in the field are available. They 

include measurement of electrical resistivity, measurement of surface water absorption, 

determination of ultrasonic pulse velocity and exposing reinforcement. The Half Cell 

technique used for measuring corrosion potentials is well known and will locate areas of 

high corrosion risk. The polarisation resistance technique measure the change in 

potential divided by the applied current is implemented in portable devises 157.

11.7 Conclusions

The scope for study into corrosion damaged reinforced concrete elements is vast. 

Extensive research into concrete and steel corrosive processes, the action of corrosion 

products on concrete cracking, methods of surveying, identifying damaged regions, 

repairing techniques and materials have already been made. However, the objectives of 

the present study as set out in Chapter 1 were bom out of the fact that very little 

previous work had been done to provide assistance to engineers responsible for 

structural integrity assessment of concrete structures impaired by reinforcement 

corrosion.

242



Chapter i l

A n alytica l M odelling o f  E xperim ental D ata  

As the data available in Series II and III was rather limited, only Series I was fully

analysed.

The main conclusions from the results reported in this chapter are as follows:

• Reinforcement corrosion in concrete has a marked effect on both the flexural load 

capacity and deflection of beams. At a degree of corrosion (2RT/D)% of 15%, for 

example, the residual strength reduces to about 30% of the flexural capacity of 

control beam;

• The reduction in rebar cross section has an insignificant effect on the residual 

flexural strength of beams. The reduction in flexural strength is primarily due to 

the loss of bond of breakdown of the steel -  concrete interface;

• Beams designed with lower M t(o/Mc ratios generally do not rapidly deteriorate

when subjected to corrosion of the main steel reinforcement;

• Lower M t(o/Mc ratios can be achieved in beam design through:

1 . keeping the percentage of main steel reinforcement as close as possible to 

0.13%

2 . specifying smaller diameter reinforcing bars;

• Cover to the main steel reinforcement generally do not have an influence on the 

Mt(o/Mc ratio hence sufficient cover should be provided as required by the code to 

protect against corrosion;

• There was not found a correlation between Mt(o/Mc ratios and stiffness;

• The percentage of steel reinforcement should be decreased through specifying

smaller areas of steel and not unnecessarily increasing the size of the section;
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• Specifying smaller diameter bars will help to enhance the interfacial bond with 

the concrete and minimise the effects corrosion induced deterioration;

• An estimate of the residual tensile moment of resistance of corroded beams can be 

obtained from:

M t(Corr) = [Mcx a x (Corr%)/l 00 + Mt(0)]  /  yc

where

Mt(Corr) is the flexural moment of resistance of corroded beam 

a is the slope of the line of best fit 

(Corr %) is the amount of corrosion

Mc is the maximum moment of resistance of the concrete in the 

compression zone

Mt(0) is the flexural moment of resistance o f control beam

yc is factor of safety for concrete (normally 1.5)

If possible, the conclusions derived and the results measured should be verified by some 

amount of field testing on real structures.
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Chapter 12

Conclusions and Recommendations

12.1 Introduction

The experimental results produced from this investigation have been presented and 

thoroughly discussed in the preceding chapters of the thesis. A summary of the main 

conclusions and findings developed in these previous sections is presented below. 

Further, through the current study, it has become apparent that there are several aspects 

of the work that would benefit from further investigation into the residual strength of 

corroded reinforced concrete members and these are also summarised in this chapter.

12.2 Conclusions

Based on the results of the experimental programme presented in this thesis, the 

following conclusions are summarised below.

12.2.1 Conclusions from experimental design

• As the aim of this research was to replicate as much as possible the real 

situations, the beams were designed for both bending and shear. The 

incorporation of corrosion resistant stirrups in the design of the reinforced 

concrete beams (Series I) increase the reliability of the experimental results.

• The use of stirrups in the manufacturing of a concrete beams leads to less severe 

cracking patterns in the concrete cover.
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• The use of stirrups in the reinforced concrete beams has a significant influence 

on the residual strength obtained for high corrosion levels.

• In order to minimise the effect of corrosion induced bond deterioration it is 

advisable at the design stage to choose a greater number of rebars with smaller 

diameter rather than a smaller number of greater diameter.

12.2.2 Conclusions from accelerated corrosion tests

• The use of impressed current was a practical and convenient method of 

producing corroded specimens for examining the structural effects of 

reinforcement corrosion.

• The first sign of corrosion was rust staining on the concrete surface, followed 

by longitudinal cracking in the concrete cover. Where cover was low, cracking 

occurred at weight losses of about 0.8%. Where cover was greater, cracking 

first appeared at corrosion values of about 2 %.

• Corrosion tended to occur, between the cathodic links.

• Where the corrosion did occur, the damage was generally spread along the 

bottom of the bars, with variable section loss along the bar. Where serious 

section loss occurred, it was in the form of general corrosion rather than 

localised pitting corrosion. Therefore, general corrosion was assumed for the 

purpose of this research.

• The time to first cracking depended, as expected, on cover and type of 

corroded bar. The beams with main steel corrosion only tended to crack earlier 

than those with link reinforcement corrosion, possible because of the greater
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surface area. There is no evidence to suggest that deformed bars are more 

susceptible to corrosion.

• For the same level of corrosion, deterioration of the concrete cover associated 

with the laboratory accelerated corrosion process is likely to be more severe 

than that found in the field. However, the structural reliability of reinforced 

concrete beams determined in the laboratory is an under estimate, and 

therefore is on the safe side.

12.2.3 Conclusions from load tests

• The presence of longitudinal cracking resulting from the corrosion of 

reinforcement does not necessarily mean loss of strength.

• The beams with actual corrosion of the main steel of around 2.5% suffered 

negligible strength loss, even where longitudinal cracking was present over 

the length of the beam. Failure was ductile and in flexure. There was no 

evidence o f bond failure.

• First evidence of bond failure occurred in the beams with an actual corrosion 

of the main steel of about 10%. This evidence consisted of horizontal 

cracking of the beam along the line of the main reinforcement as the load test 

proceeded, suggesting local bond failure. In all beams failure was ductile 

and in flexure.

• In the series of beams with heaviest shear reinforcement corrosion (actual 

corrosion of around 2 0 %) the beams failed in shear.
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12.2.4 Performance of corroded reinforced concrete beams

• The average flexural load capacity of a concrete beam is reduced significantly 

due to main reinforcement corrosion.

• Reinforcement corrosion tends to reduce the stiffness of the reinforced 

concrete beam significantly at higher degrees of reinforcement corrosion.

• Generally, the deflection at ultimate load increases with increasing corrosion 

degree.

• The reduction in rebar cross section has an insignificant effect on the residual 

flexural strength of beams. The reduction in flexural strength is primarily due 

to the loss of bond of breakdown of the steel -  concrete interface.

12.2.5 Practical implications

• Reinforcement corrosion in concrete has a marked effect on both the flexural 

load capacity and deflection of beams. At a degree of corrosion (2RT/D %) of 

15%, for example, the residual strength reduces to about 30% of the flexural 

capacity of control beam.

• Beams designed with lower M t(o/Mc ratios generally do not rapidly deteriorate 

when subjected to corrosion of the main steel reinforcement.

• Lower M t(o/Mc ratios can be achieved in beam design through:

keeping the percentage of main steel reinforcement as close as possible 

to 0.13%

specifying smaller diameter reinforcing bars
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• Cover to the main steel reinforcement generally do not have an influence on 

the M t(o/Mc ratio hence sufficient cover should be provided as required by the 

code to protect against corrosion.

• The percentage of steel reinforcement should be decreased through specifying 

smaller areas of steel and not unnecessarily increasing the size of the section.

• Specifying smaller diameter bars will help to enhance the interfacial bond 

with the concrete and minimise the effects corrosion induced bond failure.

• An estimate of the residual tensile moment of resistance of corroded beams 

can be obtained from:

Mt(con) = [Mcxa.x(Corr%)/100 + Mt(0)]  /  yc

where

Mt(Corr) is the flexural moment of resistance of corroded beam

a = 0.06[(M t(o) /  Mc) % ] -  0.89 (is the slope of the line of best fit)

(Corr %) is the amount of corrosion (obtainable from field inspections)

Mc is the maximum moment of resistance of the concrete in the compression 

zone (obtainable from the design data)

Mt(0) is the flexural moment of resistance of control beam (obtainable from the 

design data)

yc is factor of safety for concrete (normally 1.5)
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12.3 Recommendations

There are areas of further study that have the possibility to expand the findings of this

research, but which could not be pursued during the timescale and scope of this project.

These are listed below as a series of recommendations:

• Data on the influence of corrosion on the strength in existing corroded structures 

is very limited. It would be very useful if more data is made available on the 

actual corroded structures. This will help developing a correlation between 

laboratory results and data from existing structures.

• More data is needed to evaluate the effect of stirrups corrosion on the flexural and 

shear capacity.

• A laboratory investigation is required to verify the effect of reinforcement 

corrosion on the mechanical characteristics of the steel.

• A detailed analytical study is needed on the residual strength of reinforced 

concrete beams concerning the mechanical characteristics of the reinforcing steel.

• A laboratory study is required to determine the influence of corrosion on the 

moments of resistance of continuous beams.

• A laboratory study is also required to determine the influence of corrosion on the 

moments of resistance of “T” sections.

12.4 Final remarks

The scope for study into corrosion damaged reinforced concrete members is vast.

Extensive studies into concrete and steel corrosive processes, the action of corrosion
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products on concrete cracking, methods for surveying, identifying damaged regions, 

repairing techniques and materials have already been made. However, the objectives of 

the present programme of study as set in Chapter 1 were bom out of the fact that very 

little research had been done to provide assistance to engineers responsible for structural 

integrity assessment of reinforced concrete structures impaired by reinforcement 

corrosion. One of the aims of this research, therefore, was to present the data in a 

simplified form which can be easily understood and employed by busy practicing 

engineers.

The present investigation has therefore been successful in providing substantial insight 

into the behaviour of corroded reinforced concrete beams, previously not available to 

structural assessment engineers. It is trusted that the important conclusions and 

recommendations for future study presented herein will be addressed and promote the 

much needed research required for the understanding of the behaviour of corroded 

reinforced concrete flexural members. It is hoped that this research will greatly enhance 

the expertise of engineers dedicated to the structural integrity assessment of corrosion 

damaged reinforced concrete members in order to prescribe the best and most efficient 

form of remedial treatment.

However, further analysis will be carried out and the results will be published in 

appropriate journals, as the scope of this thesis was bigger than anticipated.
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