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ABSTRACT

In this thesis a mathematical model o f the long-period fibre grating (LPG) sensor has 

been developed. Numerical simulation o f the LPG transmission spectrum behavior is 

studied when changing the refractive index of the ambient. The attenuation bands are 

seen to shift to shorter wavelengths as the surrounding index is increased from 1 (air) 

to 1.45 (near fibre cladding index). The results show that the long-period grating is very 

sensitive to changes in the surrounding index, especially when this index value 

approaches that of the cladding. This model shows for the first time that the coupling 

wavelength will shift even when the surrounding index is higher than the cladding 

index. Numerical results for cladding mode propagation constants, transmission spectra 

and resonance wavelengths are presented and compared with published data whenever 

appropriate. The proposed mathematical model can be used as a simulation tool to 

investigate LPG as a sensor. The LPG fibre when coated with a material and exposed to 

external analytes will change its refractive index ( n3), which in turn causes a shift in the 

transmission spectrum. This model can be applied to assist in the development o f 

chemical sensors based on long-period fibre gratings.
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CHAPTER 1 INTRODUCTION

Fibre Bragg gratings are becoming very important elements in the field o f optical fibre 

communications and sensing. The property and application o f short-period fibre Bragg 

gratings are introduced first, to provide a stepping stone in understanding the 

operational characteristics o f long-period gratings.

A fibre Bragg grating (FBG) is a periodic perturbation of the refractive index along a 

small section o f the fibre length and is formed by exposure o f the core to an intense UV 

optical interference pattern. The refractive index change An is positive in germanium 

doped single mode fibre with a magnitude ranging between 10-5 to 10-3, and the length 

o f FBG is normally within the region of 1-20 mm. When a light beam is coupled into 

one end o f the fibre containing a Bragg grating, a small amount o f this light is reflected. 

All the reflected light combine coherently to one large reflection at a particular 

wavelength when the grating period is equal to one half the wavelength o f the input 

light as shown in Fig. 1.1. The Bragg wavelength, or resonance condition o f the grating, 

is given by the expression

Ab = 2neffK  (1-1)

where A is the grating pitch and neff is the effective index of the core. This is referred

to as the Bragg condition, and the wavelength at which this reflection occurs is called 

the Bragg wavelength. Light signals at wavelengths other than the Bragg wavelength, 

which are not phase matched, are essentially transparent. Therefore, light propagates 

through the grating with negligible attenuation or signal variation, and only those 

wavelengths that satisfy the Bragg condition are affected and strongly back reflected. 

The ability to accurately present and maintain the grating wavelength is a fundamental
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feature and hence an advantage of the fibre Bragg gratings.

R
i

</>c
<d

Reflection Wavelength

Fibre Bragg grating

Light in

Fibre Cladding

Light out

1-20 mm

Incident light 
Wavelength

Transmission
Wavelength

Fig. 1.1. A schematic diagram of a fibre Bragg grating.

Grating-based fibre sensors can be divided into two types: the fibre Bragg grating 

(FBG) or short-period grating and the long-period grating (LPG) or transmission 

gratings. Similar to FBG the LPG is a fibre with an ultraviolet (UV)-induced 

modulation of the index of refraction in the core, with typical modulation depth of 10'4 

or greater, a period A between 100-500 pm and a length of 1-50 mm. The long period 

grating couples the guided fundamental mode in a single-mode fibre to forward- 

propagating cladding modes [Vengsarkar et al 1996], The LPG couples light from core 

into cladding at a specific wavelength in accordance with the relation:



where ncore is the effective index o f the core mode, and n[fad is the effective index o f the

n ,h axially symmetric cladding mode. Once in the cladding, the light quickly decays due 

to scattering losses, leaving loss bands in the guided core mode observed at the output. 

Fig. 1.2 shows a schematic diagram of a typical long-period grating.

Long-period grating
<  ^

iCore

1  1-r-AZ , A_t_Al  L/_ light outLight in

1-50 mm

COco
c

Incident light ^ Transmission
Wavelength Wavelength

Fig. 1.2. A Schematic diagram of a typical long-period fibre grating.

1.1 Historical Developments

Optical fibre has already revolutionised telecommunications. Today, a single fibre-optic 

cable can transmit tens of millions of phone calls, data files, and video images. Optical 

fibres are hair-thin strands of glass that can guide light over a long distance. The fibre 

has an inner core surrounded by an outer cladding. Both the core and the cladding are 

usually made of silica glass, but the core has been made photosensitive by including
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dopant such as germanium to increase its refractive index. The fibre is encased in a 

plastic coating to protect it.

The refractive index of the core can be modulated along the length of the fibre by 

exposing the core o f the fibre to a pair o f interfering beams o f ultraviolet light. Hill and 

co-workers, at the Canadian Communications Research Centre in Ottawa, have 

discovered this phenomenon in 1978 [Hill et al 1978]. The phenomenon is called 

photosensitivity, which involves changing the refractive index o f an optical waveguide 

on exposure to the external UV light source. Hill et al (1978) have used the interference 

pattern o f two counter-propagating beams of blue-green light (488 or 514 nm) to form a 

refractive index grating on the core of germanium doped single-mode fibre. Such 

grating couples light from the forward-propagating LP0i fundamental mode to the 

reverse-propagating LP0i mode at a wavelength for which the phase-matching condition 

for mode coupling is satisfied [Hill et al 1978]. For the grating fabricated by Hill and 

co-workers, the reflection wavelength, also referred to as Bragg wavelength, was made 

equal to the writing UV wavelength since the grating was written by launching light in 

the fibre core. Thus, the application of these gratings in the visible spectrum has limited 

their use in communication systems at 1.31 pm, until late 1980s when the transverse 

holographic method for grating fabrication was proposed by Melts et al [Bhatia 1996]

In 1988, Meltz and co-workers [Meltz, et al 1989], at the United Technologies Research

Centre in Connecticut, USA, have shown that a strong index o f refraction change

occurred when a germanium-doped fibre was exposed to direct UV light close to 5 eV.

This coincides with the absorption peak o f a germania-related defect at a wavelength

range of 240-250 nm. They have made a Bragg grating in a fibre by illuminating the

fibre from the side with two beams o f ultraviolet light. The UV light had a wavelength
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of 240 nm. Where the two UV light beams overlapped they interfered with each other to 

create a pattern of bright and dark stripes which made a grating in the fibre. The Bragg 

grating spacing is controlled by the angle between the two light beams; thus making 

reflectance possible at any wavelength. Even though the writing wavelength was at 244 

nm, grating could be fabricated to reflect at any wavelength, thus permitting their use in 

modem telecommunication and sensor systems [Othonos and Kalli 1999]. Formation of 

a controlled grating in a fibre has therefore become possible and enabled the fabrication 

o f a small grating o f a finite length. This side-writing technique is easy, efficient and 

enables mass production o f fibre gratings.

A new type o f fibre grating called long-period fibre grating (LPG) was first presented 

by Vengsarkar and co-workers in 1996 as band-rejection filters [Vengsarkar et al 1996]. 

In these gratings the forward propagating fundamental core mode is coupled to various 

forward propagating cladding modes. At the same time, it has been shown that the 

coupling wavelengths shift when the external refractive index changes [Bhatia and 

Vengsarkar 1996]. Since then the LPG has been used as a novel fibre device in both 

telecommunications as a gain flattening and band rejection filter, and in the sensor field 

as a temperature, strain and refractive index sensor.

1.2 Recent Progress

Fibre optical sensors have many operational advantages over existing conventional 

electromechenical sensors. Fibre Bragg grating sensor technology has become one of 

the most progressive sensing topics of this decade in the field o f optical fibre sensor 

technologies as they are capable o f measuring a wide range o f parameters [Grattan and 

Sun 2000, Hill and Melts 1997, Erdogan 997, Othonos and Kalli 1999, Kashyap 1999,



Rao 1999, Hotate 1997, Kersey 1997]. Typically, at 1.5 pm the wavelength strain 

responsivity is ~1 pm/ne (pico-meter per nano-strain), with a wavelength shift o f 15

pml 0C for temperature sensing [Othonos and Kalli 1999]. The fibre Bragg grating 

sensor has several advantages over all other fibre optic sensors; it is constructed from a 

single, unweakened fibre, with a linear measured response, including potentially low- 

cost and unique wavelength-multiplexing capacity.

Long-period grating can be used for temperature, strain, and index of refraction sensing 

[Bhatia 1996, Patrick et al 1998] and for simultaneous measurement o f temperature and 

axial strain [Bhatia 1999]. Rapid progress has been made in chemical sensor [Patrick et 

al 1997], structure analysis and control [Vries et al 1998], medical application [Othonos 

and Kalli 1999] and biochemical sensors [Zhang 1999].

Fibre gratings now have broad applications in optical fibre products and networks. 

Gratings are incorporated in optical fibre devices for wavelength division multiplexing 

and dispersion compensation in many telecommunications applications [Giles 1997, 

Othonos and Kalli 1999, Kashyap 1999].

1.3 Tasks of the Project

The general objective of this research project is to develop a mathematical model for a 

long-period grating sensor and the use o f MATLAB to implement the simulation. This 

includes:

1. Understanding the optical properties of fibre gratings, studying the mechanisms of 

fibre photosensitivity and fibre grating fabrication.
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2. A comprehensive and detailed study of fibre Bragg grating (FBG) sensors and long- 

period grating (LPG) sensors.

3. Developing a mathematical model for index sensors based on long-period fibre 

grating using MATLAB programming.

4. Modelling o f some practical examples for sensor applications. The results will be 

compared with data obtained from existing literature. The developed model can be used 

as a powerful tool for developing an LPG chemical sensor.

1. 4 Thesis Outline

The outline of this thesis is as follows. Chapter 2 covers fibre photosensitivity, 

fabrication of fibre grating and fibre Bragg grating property and theory. Chapter 3 will 

present the fibre Bragg grating applications, while Chapter 4 is devoted to the long- 

period fibre grating sensors and Chapter 5 presents modelling o f the long-period grating 

sensor methods. In chapter 6 concluding remarks are included and future work is 

outlined.
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CHAPTER 2 FIBRE BRAGG GRATING PROPERTY AND

THEORY

2.1 Introduction

Photosensitivity is a very important aspect of the fibre grating phenomena. This chapter 

is a review of the literature on photosensitivity and fabrication o f fibre gratings. Section

2.3 will introduce the principles of coupling mode theory and the diffraction grating 

allowing an easier understanding o f fibre grating theory.

2.2 Photosensitivity and Fabrication of Fibre Gratings

2.2.1 Photosensitivity in Optical Fibre

Photosensitivity in optical fibre refers to a permanent change in the index o f refraction 

o f the fibre core when exposed to light with a characteristic wavelength and intensity 

that depends on the core material [Othonos and Kalli 1999]. Initially, photosensitivity 

was thought to be a phenomenon only associated with optical fibres having a large 

concentration o f germanium (Ge) in the core and which was photoexcited with 240-250 

nm ultraviolet (UV) light. Following many years of research, however, photosensitivity 

has been observed through photo-excitation at different UV wavelengths in a wide 

variety of different fibres, many of which do not have germanium as the only dopant 

and some of which contain no germanium at all. Nevertheless, germanium-doped 

optical fibre remains one of the most important materials for the fabrication o f devices 

utilising photosensitivity.



2.2.2 Physical Mechanism Behind Photosensitivity

The precise principles of photosensitivity and the accompanying refractive index change 

have yet to be fully understood. It is clear that no single model can explain all the 

experimental results, as there are several microscopic mechanisms at work [Othonos 

and Kalli 1999]. There are many theories that have been formulated in order to explain 

the phenomenon o f photosensitivity, two of which are explained in the following 

sections.

2.2.2.1 Colour-Centre Model

Defects are important to optical fibres because their absorption bands cause harmful 

transmission losses; these defects are called colour-centres [Othonos and Kalli 1999]. 

There is considerable evidence that photosensitivity of optical fibres is due to defect 

formation inside the Ge-doped core o f silica fibres. The fibre core is often doped with 

germania during manufacturing in order to increase its refractive index and introduce an 

index step at the core-cladding interface. Typically the Ge concentration is 3-5% and is 

often increased to improve photosensitivity [Agrawal 1995]. The normal molecular 

structure of silica is tetrahedral, with each silicon atom being singly bonded to four 

oxygen atoms. In quartz, this tetrahedral forms a regular lattice, but in glass, they form a 

disordered structure. Since germanium atoms have the same valency they can replace 

the silicon atoms in the glass structure. The presence of Ge atoms leads to formation of 

oxygen-deficient bonds (such as Si-Ge, and Ge-Ge bonds) which act as defects in the 

silica matrix. This forms a defect band with an energy gap o f about 5eV (energy 

required to break the bond), and 244 nm radiation from an excimer laser can break these 

defects such as Ge (1) and Ge (2) [Agrawal 1995]. The Ge (1) centre is an electron



trapped at a Ge atom co-ordinated to four O-Si next-nearest-neighbour atoms, while the 

Ge(2) centre is an electron trapped at a Ge atom co-ordinated to one O-Ge 

(= Ge-O-Ge =) and three O-Si next-nearest-neighbour atoms [Othonos and Kalli 1999] 

as shown in Fig. 2.1.

Unpaired
electron

GODC 2-coordinated Ge
GODC wrong band GeE'

O O xygen

Fig. 2.1. A schematic of the GeE' centre, Ge(l) and Ge(2) electron trap centres [Othonos 

and Kalli 1999].

The presence of GeE' centres is crucial for the above physical mechanism of 

photosensitivity. Possible photochemical reaction for GeE' centre formation is as 

follows:

A Ge-Si (or Ge-Ge) bond is ionised by UV radiation; the bond is broken, resulting in a 

GeE' centre, a positive charged Si or Ge centre and free electron [Archambault 1994], as 

shown in Fig. 2.2. This electron may be retrapped at another defect site.

Most fibres show an increase in the population of GeE' centres after UV exposure. The

change in the population of GeE' centres cause change in the UV absorption spectrum

Aa, which lead to a change in the refractive index directly through the Kramers-Kronig

relation [Othonos and Kalli 1999], expressed as:
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1 7  Aa„AX)
&nlff(A) = — P /  dX 

# 2t t 2 J0 l - ( l / i ’)2
(2.1)

where P  stands for the principle part of the integral, X is the wavelength, and 

A a ejr(A)\s the effective change in the absorption coefficient of the defect, given by

Lt

A a eff (A) = (1 / L ) j  Aa(A, z) dz (2 .2)

where L is the sample thickness. This takes into account the fact that the bleaching 

beam is strongly attenuated as it passes through the sample, thus bleaching does not 

occur uniformly with increasing depth, and Aa eff (A) may be modelled as a Gaussian

distribution. Eq. 2.1 may be used to calculate the index change that is induced by 

bleaching of the absorption bands. The boundaries are set to Al and A2, the limits o f the 

spectral range within which absorption change takes place and X' is the wavelength for 

which the refractive index is calculated. Typically the index change An (A) is about 10'4 

in the 1.3-1.6 |am wavelength range, but can exceed 10'3 in fibres with high Ge 

concentration [Agrawal 1995],

o  +

o Oxygen, Silicon or Germanium, Germanium,

Fig. 2.2. The GeO defect of germania-doped silica, in which the atom adjacent 

to germanium is either a silicon or another germanium. It can absorb a photon 

to form a GeE' defect. The GeE' defect shows the extra electron (associated 

with the Ge atom), which may be free to move another GeE' hole site, or one of 

the Ge(n) defect centres [After Kashyap 1999],



Indeed fibre cores with a large concentration of Ge atoms are found to be more 

photosensitive and lead to larger index changes simply because Aa is large in Eq. 2.1. 

Support for this model also comes from recent observations that photosensitivity (the 

amount o f index change) can be enhanced by two orders o f magnitude by soaking the 

fibre in hydrogen gas at high pressures (200 atmospheres) and at room temperature. 

Presumably the density of Ge-Si oxygen-deficient bonds increases because hydrogen 

can recombine with oxygen atoms.

2.2.2.2 Permanent Electric Dipole Model

The dipole model is based on the formation of built-in periodic space-charge electric 

fields by the photo-excitation of defects. Photo-ionisation of the Germanium-oxygen 

deficient centre (GODC), Ge-Si, or Ge-Ge, creates positively charged GeE' hole-centres 

and free electrons as shown in Fig. 2.2. The defect is fixed to the matrix whereas the 

electron has enough energy to escape, diffusing away and getting trapped at 

neighbouring Ge (1) and Ge (2) sites to form negatively charged Ge (1)“ and Ge (2)” 

respectively. The GeE' trapped holes and G e(l)"and Ge(2)“ trapped electrons result in 

electric dipoles with spacing o f the order o f several angstroms( A ). Each resulting 

dipole will produce a static dc polarisation field that extends over molecular lengths 

[Othonos and Kalli 1999].

The internal electric field E(x) locally modifies the refractive index in accordance with 

[Saleh and Teich 1991]:

An = - ~ « 3rZ?(jt) (2.3)

where E(x) is the internal electric field, n and r are the appropriate values o f refractive
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index and electro-optic coefficient for the material.

During the writing process of a Bragg grating, when the fibre is exposed to a UV 

interference pattern, the free electrons in the high intensity regions will diffuse until 

they are trapped by defects in the low intensity regions. This redistribution o f charges 

within the fibre will create periodic space-charge electric fields. There is a 7i/2 phase 

shift o f the index change relative to the interference pattern of the UV light (Othonos 

and Kalli 1999) as shown in Fig. 2.3.

Nonuniform light 

Nonuniform light § § I  § § § § § f

Photoionization

Diffusion

Recombination at traps

Electric field

Refrative index 
grating

+ + + + ------- + + -
— + + + + + + —
— + + _~ + + X- + +
— + + __ + + ZZ —ZI + + :z~ + + —
— + + 3“ + + = = + + =:

carrier
density

Fixed-
charge
density

Fig. 2.3. Response o f a photorefractive material to a sinusoidal spatial 

pattern [Bahaa and Saleh 1991]

From Fig. 2.3 we can see that the two coherent light beams intersect in an electro-optic 

crystal, forming an interference pattern. Electrons are excited where the intensity is 

large and migrate to regions of low intensity. The electric field associated with the 

resultant space charge operates through the electro-optic effect to produce a refractive 

index grating. § is the phase shift (in radians) between the light interference pattern and 

index grating (Yariv 1997).



2.2.23 Enhanced Photosensitivity in Silica Optical Fibres by Hydrogen 

Loading

Since the discovery of photosensitivity and the first demonstration of grating formation 

in germanosilicate fibres, there have been considerable efforts made towards 

understanding and increasing the photosensitivity in optical fibre. Standard single-mode 

telecommunications fibres, doped with 3% germanium, typically display index changes 

o f about 3x10 “5. In general, increasing the doping level at high temperatures can result 

in large index changes o f about 5X10-4. Increases in the photoinduced index

modulations to values of the order o f 10"3 and higher have been realised via low 

temperature hydrogen loading (hydrogenation).

Lemaire and co-workers [Lemaire, et al 1993] were the first to report a simple and 

highly effective approach for achieving a very high UV photosensitivity in optical fibres 

using low temperature hydrogen treatment prior to UV exposure. Fibres are soaked in

hydrogen gas at temperatures ranging from 2 0 -7 5  °C and pressures from 20-750 atm 

( typically 150 a tm ), which results in diffusion of hydrogen molecules into the fibre 

core. Permanent changes in the fibre core index o f 10‘2 are possible.

High-temperature hydrogen treatment reduces germania, producing an enhanced 

concentration of GeO molecules. The addition o f hydrogen to Ge-doped glass leads to 

the breakdown of the Si-O-Ge bonds, resulting in the formation o f Si-OH bonds and 

germanium-oxygen deficiency centre (GODC), both of which lead to increase in the 

index o f refraction [Bhatia 1996]. Chemically, the reduction process may occur as 

follows [Kashyap 1999]:
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—  Ge — O — S i—  + 1/2 H2 ____ ^  —  G e e + OH — Si —

The other suggested reaction is the formation of GeH and OH ions from a Ge(2) defect. 

The GeH is responsible for the change in the refractive index via the Kramers-Kronig 

rule. The possible route may be as follows [Kashyap 1999]:

H

—  Ge — O — G e—  + H2 ____ ^  —  G e e + H — O — Ge —

One advantage of hydrogen loading is the fabrication of Bragg gratings in any 

germanosilicate and germanium-free fibres. Another advantage is thermal treatment 

offers a simple method to obtain index modulation without resorting to the conventional 

method of irradiating the fibre with ultra-violet radiation [Bhatia 1996].

2.2.3 Fabrication of Fibre Grating

Typical long period gratings are fabricated by creating a periodic modulation o f the 

refractive index in the core of the fibre. This is accomplished by exposing a fibre with 

germanium-doped core to ultraviolet (UV) light at wavelength o f 244 nm or 248 nm, 

using one of three typical methods: (1) Holographic interferometry,

(2) Phase/Amplitude mask and (3) Point -by point writing [Zhang 1999]. For detailed 

technology see references by Othonos and Killi [1999] and Kashyap [1999].

15



2 . 2 . 3 . 1  Holographic Interferometer Technology

In the holographic interferometry method, two beams from the same light source are 

made to interfere on the core of the photosensitive fibre as shown in Fig. 2.4.

UV laser Beam
Beam splitter

MirrorMirror

UV Beam UV Beam

Cladding

m

^F ringes
Core

Fig. 2.4. A schematic diagram of holographic interferometer for fibre grating 

fabrication.

The grating period depends on the writing wavelength, and the half angle 0 between the 

intersecting UV laser beams. The relation between them can be represented by 

[Agrawal 1995]:
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A = l uv / 2 sin 0 (2.4)

where A,uv is the wavelength o f the UV laser light. The LPG period A is controlled by 

adjusting the angle 0 between the two laser beams.

Although the UV radiation covers both the fibre cladding and core, the index variation 

occurs only in the fibre core, because only the germanium-doped fibre core possesses 

sufficient photosensitivity to produce a permanent refractive index shift [Hill 1978].

The advantage of this approach is that it offers complete flexibility for producing LPG 

with various lengths and periods.

2.2.3.2 Phase-Mask Technology

In the Phase-mask method a laser beam passes through a phase or amplitude mask 

which is a diffractive optical element used to split the incoming beam into two 

diffraction orders, +1 and -1, with an equal power level, as shown in Fig. 2.5.

<rF laser
248nm Mirror

u
Cylindrical Lens T Amplitude Mask

□ 4*
IIIIIIIIIIII OSA

Broadband
Source UV photosensitive 

Fiber

Fig. 2.5.a. A schematic of phase-mask method [Oct. 2000, URL:

http://samsungelectronics.com/products/fiberoptics/d31 .html]
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The advantages o f the phase mask technology are that it is not sensitive to

environmental conditions such as vibrations, and thus fibre gratings can be mass

produced with more consistent results as they do not depend on the set-up

configurations. The main disadvantage is that different phase masks are required if the

resonant wavelengths of the grating period are changed.

UV light

Fibre

Maskn jiJT R iT J irL rir i

Gratin

Fig. 2.5.b. Diffraction pattern of UV light onto fibre through amplitude mask.

In long period grating fabrication, the most commonly used methods employ amplitude 

masks made from chrome. The chrome amplitude mask cannot stand very high UV 

laser power, as the high-density UV laser beam will damage the chrome mask.

Recently O/E LAND INC developed a high power metal mask for long-period gratings. 

The new metal mask can stand an UV laser beam intensity of 30 times greater than 

normal Chromium masks [http://www.o-eland.com /AmplitudeMasks.html].

2.2.3.3 Point by Point Writing

The third LPG fabrication method is point-by-point writing as shown in Fig. 2.6.

18
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The focused laser beam passes through a slit onto the fibre as the fibre moves forward 

step by step. Each step moves the fibre exactly a distance equal to the desired 

periodicity A. Since the periodicity of LPGs are large (on the order o f hundreds of 

micrometers), it is easy to control the step size by using a computer controlled step- 

motor. The advantage of point-by-point writing method is the ease of changing the 

LPG's periodicity allowing the production of very long LPGs [Zhang 1999],

UV Beam

Step forward

Fig. 2.6. Point-by-point writing [After Zhang 1999]

2.3 Fibre Bragg Gratings Theory

2.3.1 Coupling Mode Theory

Coupled mode theory is the theoretical approach that has been most widely applied to

investigations of interactions likely to occur within an optical waveguide.

The coupling mode theory is one of the most popular techniques utilised in describing

the behaviour of Bragg gratings, mainly due to its simplicity and accuracy in modelling

the optical properties of most fibre gratings. This section does not provide a derivation

of the coupling mode theory since it is well described in the literature [Yariv 1973,
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Huang 1986, Hall 1987, Marcuse 1991, Agrawal 1995, and Erdogan 1997], The 

derivation in this section closely follows the work given by Erdogan [Yariv 1973],

Consider the optical fibre of Fig. 2.7 that is disturbed by a perturbation of period A 

along the fibre axis, originating at z = 0 and terminating at z  = L. This perturbation can 

be caused by a period variation in the core index.

Unperturbed
region

Cladding

Core

Cladding

Perturbed
region

Unperturbed
region

z = 0 z = L

Fig. 2.7. Illustration of an optical fibre under perturbation. The 

perturbation exists from z — 0 to z = L.

Consider two modes denoted by a and b travelling along the positive z direction with 

discrete propagation constants p a and fib, respectively, such that,

a(z,t) = A (z)ei(0)t-M  (2 .5)

b{z,t) = B{z)eKat-f)bZ) ( 2 .6)

where co is the angular frequency and A(z) and B(z) are complex normalised amplitudes 

that are independent of z in a loss-less unperturbed fibre. The presence o f a disturbance 

that causes the two modes to exchange energy such that A(z) and B(z) become function 

o f the variation of the propagating distance. The objective of coupling mode theory is to 

find the variation in A(z) and B(z) as a function of z  [Bhatia 1996], Without resorting to
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detailed mathematical analysis we can outline the basic coupling mode theory. The 

complex amplitudes A(z) and B(z) in this case are no longer constant but will be found 

to depend on z. They will be shown below to obey relations o f the type [Yariv 1973]:

BA
—  = k ^ B e ^  ( 2.7 ) 
az

JD
—  = khaA e ti4-’ (2 .8 )  
az

where kab and kba are termed as the cross-coupling coefficients (or coupling constants) 

and dictate the magnitude of coupling between the two modes. A is the phase mismatch 

between the propagating modes and is typically the difference in their propagation 

constant and is modified to:

= (2 .9 )
A

An analysis o f the coupling mode equations reveals that for synchronous transfer of 

power between the two modes, the value o f A should ideally be o f zero value. Using 

Eq. 2.9 we obtain what is commonly termed as the phase-matching condition between 

the two modes [Bhatia 1996].

A /? = # , - # ,=  ^  (2 .1 0 )
A

where Ap  is their differential propagation constant.

23.1.1 Co-Directional Coupling

This is the case where modes a and b carry power in the same direction. The total power

carried by modes a and b is given by |^4(z)|2 and |#(z)|2, respectively. Since in lossless

system, there is no variation in the total power in the z direction, the conservation of

total power is thus expressed as [Yariv 1973]:
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( 2 .1 1 )

K b = - h l

We can manipulate Eq. 2.7 and 2.8 to obtain:

( 2.12 )

where, * denoted the complex conjugate. Assuming that only mode b carries power at z 

= 0, the boundary conditions are:

fl(0) = 0 (2 .1 3 )

b(fi) = A (2 .1 4 )

which can be used to solve the coupling mode equations. Thus the complex modal 

amplitudes can be written as [Yariv 1997]:

A(z) = A ■ 2k"b
V4 k 2 + A2

/  Az

e ' 2' sm ^ 4 k 2 + A2 jz (2 .1 5 )

and

/  Az

B(z) = Ae ^2 ; <lcos i |V 4 * 2 +A2 Iz — I
V4A2 +A2

sin 4£2 + A2 Iz (2 .1 6 )

where

* 2 = M 2 (2 .1 7 )

The eigenmodes can now be obtained by substituting the values o f the complex 

amplitudes A(z) and B(z) in Eqs. 2.5 and 2.6. The power in the two modes are given by 

[Bhatia 1996]:

sm

p„(z) = |^(z)|2 = p 0

1 1,

r

kzA\ + -
V 1 ( 2 .1 8 )

and
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where 8 -  A /2  is called the detuning parameter and Pq is the incident power in 

eigenmode b (Po = Pb (0) = |A|2). Hence we see that the two modes have sinusoidal 

variations in the propagating power. The frequency and magnitude of power coupling is 

a function o f the detuning ratio 8  / k . Fig. 2.8 depicts the variation in the incident power 

normalised values of Pa and Pb as function of k z  for two different values o f detuning 

ratio. From Fig. 2.8 it is evident that under the condition of phase-mismatch ( 8  *  0 ), 

the mode coupling is small and become negligible for 8 / k »  1.

0
£oQ
"O
0
N
03
E
o

1

7 t /20 71

k z

Fig. 2.8 Variation of the power of the two co-propagating eigenmodes a and b 

involved in coupling for phase-mismatched ( 8  / k -  2 ) case. The values are 

normalised to the incident power in mode b {Pb = Po) [After Bhatia 1996],

On the other hand, at phase match condition ( 8  = 0 ), Eqs. 2.18 and 2.19 can be 

modified to yield:

Pa(z) = P0 sin2(kz )  (2.20)



Pb(z) = P0 cos2(kz) (2.21)

The above equations predict a large degree of interaction between the two modes 

depending on the value of the coupling coefficient. This is confirmed by Fig. 2.9, which 

shows that the modes are continuously exchanging power in the region of perturbation 

with a spatial period given by n t h .

At z -  0 , all o f the power is in the b mode. For z > 0 ,  the power oscillates back and 

forth (periodically) between the waveguides. In particular, coupling transfer from

71
waveguide b to waveguide a occurs at a distance/, = —  known as the transfer length

2k

[Hall 1987].

Pb(z)/Po

Fig. 2.9. Variation of the power of two co-propagating eigenmodes (a) and 

(b) involved in coupling for phase-matched ( 8 Ik  -  0 ) case. The values are 

normalised to the incident power in mode b (Pb = Po)  [After Bhatia 1996],

The modal interaction terminates at z = L, where the perturbation ceases to exist. At that 

point, the ratio C ( C< 1) of the power in mode (a) to that originally in (6)can be 

determined from Eq. 2.18 and 2.19 as [Hall 1987]:
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where 8  is the detuning parameters) = —

the grating and L  is the grating length.

At z = L , the normalised power Tt, remaining in mode b is simply given by 

Tb = l-C .  For most applications the length L o f the perturbation region is constant 

while the coupling coefficient k  is varied to achieve complete power transfer from mode 

b to a. Although the maximum power transfer occurs when kL = m jd l , where m is an 

integer, the device operation is typically optimised for m=1, which yield k = r ilL  

[Bhatia 1996]. The coupling constant (k) in LPG is proportional to the UV-induced core 

index change (An) and is typically increased to maximise the power transfer to the 

cladding mode. Thus An (and hence, k) is increased until the condition kL = T ill is met 

[Vengsarkar et al 1996].

2.3.1.2 Contra-Directional Coupling

In this case the propagation in unperturbed medium is considered where the propagation 

o f mode a towards the left (- z) and mode b towards right (+ z) is described by:

a (z ,t) = A(z)e‘<m,+/<"1) (2.23 )

6 (z ,0  = S (z)ei<" ' /'‘2) (2.24)

where A and B are constants and J3n and fit are the respective propagation constants o f 

the two modes. A periodic perturbation can lead to power exchange between the two 

modes. Conservation of total power can be expressed as [Yariv 1973]:

A - A  —A
, k  is the coupling constant for



The relation between the cross-coupling coefficients is modified to

(2.26)

so that

dA
dz

(2 .2 7 )

dB *
~ T  =  k ba A edz

( 2.28)

where * denotes the complex conjugate. In this case we take the mode b with an 

amplitude B(0) to be incident at z = 0 on the perturbation region which occupies the 

space between z  — 0 and z = L. Since mode a is generated by the perturbation we have 

a(L) = 0. With these boundary conditions the solution o f Eq. 2.27 and 2.28 is given by 

[Yariv 1973]:

A(Z)  = B(  0)
— A Sum r id L/uau----

2 2

(2.29)

B(Z)  = B(  0)
-  A sirm

2
Asirm

Asinh - ( z - L )  +zXcosh — ( z - L )

2

(2.30)

where S  = V4 k 2 -  A2 , k = | kab

Under phase-matching conditions A = 0 , gives:

(2.31)

(2.32)

A plot o f modes power |i?(z)|2 and |^4(z)|2 for this case is shown in Fig. 2.10.
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Fig. 2.10. The transfer of power from an incident forward wave B(z) to a 

reflected wave A(z) for the case of contra-directional coupling for the 

phase-matched (A = 0) condition [After Bhatia 1996],

The reflectivity R = \ B(z = 0) / A (z  = 0 ) |2 is given by [Hall 1987]:

R =
sinh2(*Z,Vl-A2M 2)

cosh2 (fc lV lT i2/Jfc2) -  A2 / *7 

The normalised residual power Tin  the mode b at z =L is T  = 1 -7? [Bhatia 1996], 

By setting A = 0 in Eq. 2.33, the maximum reflectivity (R msx ) is given by [Agrawal

(2.33)

1995]:

R   = tanh1 kL (2.34)

For kL = 2 ,7?max = 0.93. The condition kL>  2 with k  = 2;r£ n ! k  ( S n  is a value of peak 

induced-index change) can be used to estimate the grating length required for high 

reflectivity. For S n  ~10'4and A =  1.55 pm, L should exceed 5 mm to yield kL>  2 

[Agrawal 1995],

Comparing the co-directional coupling equations (Eqs. 2.7 and 2.8) with the contra-

directional coupling equations (Eqs. 2.27 and 2.28), the only difference found is the

minus sign in the second equation of each pair [Hall 1987].
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The coupled-mode formalism is not restricted to problems for which only two waves 

propagate. The restriction that only two modes propagate is usually an approximation.

The number of equations increases with the number of propagating modes, which 

means that exact analytical solutions are few and far between when more than two 

modes propagate. Analysis of general coupled mode theory formalism is given in 

Appendix 4.

2.3.2 Diffraction Grating

Before deriving the theory of fibre Bragg gratings, it is important that the principle of 

diffraction gratings are understood. Diffraction grating is an optical component, which can be 

made of a transparent plate with a periodically varying thickness or a periodically graded 

refractive index. Consider here a diffraction grating made of a thin transparent plate placed in 

the z = 0 plane, the thickness of which varies periodically in the x  direction with a period A. 

This plate converts an incident plane wave of wavelength X, travelling at a small angle 0 / with 

respect to the z-axis, into several plane waves travelling at small angles with respect to each 

other, as shown in Fig. 2.11.

x

Fig. 2.11. A thin transparent plate with periodically varying thickness serves 

as a diffraction grating [Saleh 1991].
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In Fig. 2.11, the do is the thickness of the thin transparent plate. The diffraction grating 

equation is expressed as [Saleh 1991]

X
9 m = 9 z + m — , m =0, ± 1, ± 2 , . . with the z-axis, (2.35)

A

where m is called the diffraction order.

The diffracted waves are separated by an angle 9 = X / A. The above grating equation is 

valid in the paraxial approximation (when all angles are small). This approximation is 

applicable when the period A is much greater than the wavelength X, and in this case the 

angle of diffraction will be small. In the more general analysis of thin diffraction 

gratings, without the use of the paraxial approximation, the incident plane wave is 

converted into several plane waves at angles 9 m satisfying the following equation 

[Saleh 1991]:

X
sin $m  ~ sin 9 / + m — (2.36)

A

A fibre Bragg grating is simply an optical diffraction grating (see Fig. 2.12) and thus its 

effect upon a light wave incident in the grating at an angle 9i can be described by the 

familiar diffraction equation [Erdogan 1997]:

X
n sin 92 = n sin 9i + m — (2.37)

A

where 92 is the angle of the diffracted wave.

ni

nx >n

n

X

m = 0
n

m  =  - 1

Fig. 2.12. The diffraction of a light wave by a grating [Erdogan 1997].
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This equation predicts only the angles at which constructive interference occurs, but it is 

nevertheless capable of determining the wavelength at which a fibre grating most 

efficiently couples light between two modes.

2.3.3 Fibre Bragg Grating

In fibre Bragg gratings (also called reflection or short-period gratings), coupling 

occurs between modes travelling in opposite directions. Fig. 2.13 illustrates reflection 

by a Bragg grating of a mode with a bounce angle o f 0i into the same mode travelling in 

the opposite direction with a bounce angle of 02 = -0 i.

m = -1 m-  0

P2 -  -  Pi

-----------------------►Pi
— f « - l C X D O O O O P  

n  2 n  2 n n ci 2 n n CO
° X X X

Fig. 2.13. Ray-optic illustration of core-mode Bragg reflection by a fibre 

Bragg grating. The p axes below the diagram demonstrate the grating 

condition in Eq. 2.37 for m = -1 [Erdogan 1997].

We may rewrite Eq 2.37 for guided modes as

n sin 02 = n sin 0i + m — ,
A

multiplying both side by —  , gives

2k  . A 2n  . A 2n  X 
—  n sm 02 = —  n sm 0i + —  m — 
X X X A
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Since the mode propagation constant p is simply p = (2tc / X) nejjt where neff  = nc0 sin0, 

neff  is the effective refractive index of core, and nco is its refractive index, then

271 271
—  neff2 = —-n e ffj+ m —
A A A

Since k = , this gives:
X

k n eff2 = k n ef f i + m ^ -

/ } 2 = p x + m ^ L  (2.38)
A

For first-order diffraction, which usually dominates in a fibre grating, m = - 1. This 

condition is illustrated on p  axis shown in Fig. 2.13. The solid circles represent bound 

core modes (nci < nejf < nco), the open circles represent bound cladding modes 

(1< neff < nci ), and hatched regions represent the continuum o f radiation modes. 

Negative p  value describes modes that propagate in the opposite direction. By using 

Eq. 2.38 and recognising p  2 < 0, the resonant wavelength for reflection o f a mode of 

index neffj into a mode of index neff2 is derived as follows:

Since neff = — , and k —— , then Eq. 2.38 can be rewritten as follows
k k

P2 p x 2nL-L- = —  + m —  
k k  kA

"■ k  ( ^ ) A
A

4- ^neff2 ~ nejyi+ m —

and remembering p  2< 0, ifw  = - l

X
neff2= neffi+  (-1) — (2 .39)

A
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If the two modes are identical (neffi = -  nejf2\  we get the familiar result for the Bragg 

reflection:

X = 2 yieffiA = 2 nef/A  (2.40)

Fibre phase gratings are produced by exposing optical fibre to a spatially varying 

pattern of ultraviolet intensity. The optical properties of a fibre grating are essentially 

determined by the variation of the induced index change S  nejf  along the fibre axis z.

Fig. 2.14 illustrates the main type of fibre Bragg gratings

Sn•ff

(b)Sn z

(C) (0

Fig. 2.14. Common types of fibre gratings as classified by variation of the induced 

index change along the fibre axis, including: (a) uniform with positive only index 

change, (b) Gaussian-apodized, (c) raised-cosine-apodized with zero-dc index change, 

(d) chirped, (e) discrete phase shift (of n), and (f) superstructure [Erdogan 1997 a].

When a phase grating is induced in a fibre, it exists only in the fibre core, changing the 

core index ( nx) to nj (z) but leaving the cladding ( ncl) and surrounding («3) indices 

unchanged, as follows [Erdogan 1997 b]:

nfr, z):

nx (z) = nx + Snefr (z)< 1 + v cos
2k
— z + M z) 
A

n ,

r < a x 
ax < r < a 2 

r > a.
(2.41)
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where a] is the core radius, a2 is the cladding radius, n{ is the unperturbed core index,

A is the period of the grating, 5  nefj(z) describes the profile of the "dc" induced-index 

change, averaged over a grating period. $ (z) describes the grating chirp, and v is the 

induced-index fringe modulation, where 0<  v < 1, as shown in Fig. 2.15.

v 5 n ej}

v S n ej}

z

Fig. 2.15. A diagram showing the ultraviolet-induced refractive index change in 

the core for a grating with a Gaussian profile along the fibre z-axis.

Here we will merely outline the fibre Bragg grating transmission and long-period 

grating transmission without resorting to detailed mathematical analysis. The 

reflectivity of uniform Bragg grating of length L with constant modulation amplitude 

and period is given by [Erdogan 1997a]:

P =
-k s in h ( \lk 2 -  o 2 L \

& sm h (^k2 -  o 2 L) + i ^ k 2 -  a 2 cosh{ ^ k 2 -  a 2 L) (2.42)

where a  is calculated from

s  1 d(j)cr = 5  + cr -
2 dz

The detuning 8  is defined as:

(2.43)
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8  = p - 7L = p - p D 
A

(2.44)

where XD = 2neffA  is the design peak reflection wavelength, cr is the “dc” coupling 

coefficient defined by:

If the grating is uniform along z, then 8neff is a constant and d(j)l d z -  0, and thus 

k , cr, and a  are constants.

Using Eq. 2.42, a number of Bragg grating reflectivity plots can be generated as shown 

in Fig. 2.16 and Fig. 2.17. The plots were generated using MATLAB, and the 

parameters used are: Grating length: 0.84 xlO ”3 m, Centre wavelength: 1.286xl0“6m, 

Wavelength range: 1.286x10 6 -  1.290x10 6 m.

The MATLAB codes are given in Appendix 3.1.

(2.45)

and A: is the "ac" coupling constant defined by:

(2.46)

0.7 

2  0.6

0.8

0.9

0.3

1.282 1.284  1.286
W avelen gth

1.288 1.29
x 10

-6

Fig. 2.16. Calculated reflection of a Bragg grating
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The fibre Bragg grating reflectivity increases and it becomes narrower as the fibre 

Bragg grating length increases as shown in Fig. 2.17.

The MATLAB codes are given in Appendix 3.2.

100

80

60

40

20

1.288 ^  
1.284

x 10
Wavelangth (m)

1.28
•4

Grating length (m) x 10

Fig. 2.17. Reflectivity versus wavelength for a range of fibre Bragg grating 

lengths.

2.3.4 Long-Period G rating

Fibre Bragg gratings can be broadly classified into two types: the Bragg grating (also

called the reflection or short-period grating), in which coupling occurs between modes

travelling in opposite directions; and long-period gratings (also called transmission

gratings). Diffraction by transmission grating of a mode with a bounce angle o f 0i into a

co-propagating mode with a bounce angle of 02 is illustrated in Fig. 2.18. In this

illustration the first mode m = 0 is a core mode while the second is a cladding mode

• • 2 7Z(m =1). Since p 2, in this case, is positive, Eq. 2.38 (J3 2 — P  1 + m —  ) predicts the
A

resonant wavelength for a long-period grating as:
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k  = ( n co- n ci )  A (2.47)

For co-propagating coupling at a given wavelength, evidently a much longer grating 

period A is required than for counter-propagating coupling [Erdogan 1997 a].

Light in

A
— ^

A ii
 1 A

/  \ 
Core

y
/

Vi m = -1
Cladding

Light out

•Pi

2tc 2 tinc[ 2nnco
X X X0

Fig. 2.18. Cladding-mode coupling by a fibre transmission grating. The (3 axes 

below the diagram demonstrate the grating condition in Eq.2.38 for m = -1 

[after: Erdogan 1997 a].

For a long period grating, transmission can be approximately determined by using 

expressions derived in the literature [Hall 1987] for co-directional mode coupling. The

ratio of power coupled into the « th-cladding mode ( P j n)(L))  to the initial power

contained in the guided LPoi mode (Poi) is given by [Vengsarkar et al  1996]:

P..

k Z X L . . \ \  + c l-co

c l-co

(2.48)

V̂ m-01 J

where 8  is the detuning parameter given by:

36



where p core is the propagation constant of fibre core and f idad is that o f fibre cladding. 

L is the grating length and k ĉ °  is the coupling constant for the long-period grating. 

Details for the calculation of k ĉl™ can be found in the literature [Erdongan 1997a]. The 

coupling constant is proportional to the UV-induced index change, which forms 

the grating and is typically increased to maximise the power transfer to the cladding 

mode. Thus Aw and hence are increased until the condition L - n  12 is met.

Using MATLAB, the ratio of coupling power (Eq. 2.48) has been calculated and the 

results are shown in Fig. 2.19. The figure below was plotted using the MATLAB code 

given in Appendix 3.3.

■— V  v
1.5 1.55 1.6 1

W avelength

Fig. 2.19. Calculated ratio of power coupled into the cladding mode to the 

initial power contained in the guided LPoi mode through uniform long 

period gratings, with kL = n  12 (solid line) and kL = 37r 12 (dashed line).

The transmission of long-period grating is given by the following expression:



Using Eq. 2.48 and the relation sin2 X  + cos2 X  = 1, give:

sin

T  =1LPG l

k £ S U i+ 7 C.I-CO
V m -01  y

1 +
7 C.l-C.o

V m -01  y

= COS t £ ! U i  + t r/-co
V wi-oi y

+ suT i .  c l-co  j  
A'm-01 1 + S  "

i  c l-co
v m-oi y

sm C o T ^ l i  + 7 c / - c o
V m-01 y

1+ ■t c l-co
V m -o i  y

= COS m -01 1 + c l-co
v^m -o i y

+
( K - o ^ y + s 2

sm 7 C/-CO J
m -01  ^ 1 1 + g  V

c/-co
v ^m -o i  y 

(2.50)

Eq. 2.50 can also be re-written in the form [Erdogan 1997a]:

-Z/.PG — cos 7 Cl-co j
1 + f 5  ]m -01 j  c l-co  

V m -01  y\l
+

f  7 c l-co
m -01

sm

1 +

K - md~™LM +
r 8  Y

f/-co
V ̂ m-01 y

(2.51)

In order to check whether the MATLAB code used to plot the TLPG is correct, it is 

necessary to compare the calculated transmission spectrum with those measured 

experimentally [Erdogan 1997a]. Fig. 2.20 shows the calculated transmission for a 

relatively weak grating that couples the LPoi core mode to the lower-order cladding 

mode in a standard dispersion-shifted fibre (aneff = 0.0042). The grating is 50 mm long 

and has a coupling-length product o f kL = 0.39. The MATLAB codes used to plot the
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long-period grating transmission are given in Appendix 3.4

1.571.535 1 .545 1.555 1 .1.525
W avelength(um )

Long-Period Fibre Gratings T an sm ission

Fig. 2.20. Calculated transmission through a uniform long-period grating.

The results shown in Fig. 2.20 reveal a very good agreement with the experimentally 

measured values given in Fig. 2.21, suggesting that the code is correct.

1.00

Measured
Theory

0 .9 5 -

0 .80

1530 1540 1550 1560 1570
W avelen g th  (nm)

Fig. 2.21. Measured (dotted line) and calculated (solid line) transmission 

through a uniform cladding-mode transmission grating [Erdogan 1997a],
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CHAPTER 3 FIBRE BRAGG GRATING APPLICATIONS

3.1 Introduction

The use of fibre Bragg grating in both sensing and communications applications will be 

presented in this chapter. Fibre grating sensor applications focus on temperature, strain, 

index and chemical sensing, while their use in communications applications focuses on 

fibre amplifiers, dispersion compensation, filters and wavelength division multiplexers / 

demultiplexers. It is noteworthy that no other single device has had such important 

applications in both sensing and optical communications fields simultaneously. Section

3.2 deals with FBG in sensor applications while section 3.3 is devoted to Bragg grating 

in the field of communications.

3.2 Fibre Bragg Grating (FBG) Sensors

FBG sensors are one o f the most exciting developments in the field of optical fibre 

sensors in recent years. The main reason for this is that fibre Bragg grating sensors have 

a number of distinguished advantages over conventional fibre optic sensors, including 

potentially low-cost and unique wavelength-multiplexing capacity.

Fig. 3.1 shows a typical reflection spectrum of Bragg grating. The parameters o f interest 

are as follows:

Centre wavelength: 830 nm ± 5.0 nm,

FWHM (full width half maximum): 1 nm ± 0.2 nm 

Reflectivity > 90%

Fibre type: York SM800
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Refractive index of core 1.45 ± 0.01 

Diameters of core and cladding 5/125 jam 

Index modulation of grating is typically 0.0008 

Length of FBG 1 cm 

Period o f grating 368 + 3 nm.

9.00E-10

8.00E-10 -J LL830-2

7.00E-10

6.00E-10

|  5.00E-10

^  4.00E-10

£  3.00E-10
$*  2.00E-10

1.00E-10

O.OOE+OO
828 828.5 829 829.5 830 830.5 831 831.5 832

Wavelength (nm)

Fig. 3.1. Typical reflection spectrum of Bragg grating.

The Bragg grating resonance, which is the centre wavelength o f the back-reflected light 

from a Bragg grating, depends on the effective index of refraction o f the core and the 

periodicity of the grating. The effective index of refraction, as well as the periodic 

spacing between the grating planes, will be affected by changes in strain and 

temperature. The following is a theoretical detail o f FBG for temperature and strain 

sensors.

3.2.1 Fibre Bragg grating temperature sensor

The basic principle o f operation commonly used in a fibre Bragg grating-based sensor
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system is to monitor the shift in the wavelength of the reflected “Bragg” signal as a 

result o f temperature change. The Bragg wavelength or the resonance condition of a 

grating is given by:

XB = 2nejj-A (3-1)

where ncff is the effective index of refraction in the core and A is the grating period.

Launching a spectrally broadband source of light into the FBG sensor, results in grating 

reflecting a narrowband spectral component at the Bragg wavelength. In the transmitted 

light this spectral component is missing, as depicted in Fig. 3.2.

Imput spectrum  Reflected T ransm itted signal
C om ponent

T em perature induced 
"  sh ift -----

FBG se n so rsC oupler

■ i i i i i  i

Optical
Spectrum
Analyzer

Optical
S pectrum
Analyzer

B roadband
Optical
S ource

Fig. 3.2. Typical FBG temperature sensor [After Kersey, et al 1997],

The bandwidth of the reflected signal, which has typical values between 0.05 - 0.3 nm 

in most sensor applications, depends on several parameters, in particular the grating 

length. Perturbation of the grating results in a spectral (Bragg wavelength) shift, which 

can be detected either in the reflected or transmitted spectrum [Kersey et al 1997].

For a temperature change of AT, the corresponding wavelength shift A/lb is given by 

[Rao 1997]:
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AAB = Ab(1 + £)AT  (3.2)

where £ is  the fibre thermo-optic coefficient. For silica fibres, the wavelength- 

temperature sensitivities have been measured with a value o f about 6.8 pm °C~1 for 

FBGs with 800 nm central wavelength [Morey et al 1989], whereas those measured for 

1.55 jam FBGs were about 13 pm °C_1 [Rao 1995].

The dependence o f the Bragg wavelength on temperature can be given by the following 

detailed expression [Rastogi 1997]:

AAb = {(</A / dT) / A + (dn / dT) /  «} • XBAT  (3.3)

The first part of this expression relates to the thermal expansion coefficient o f the fibre, 

and is approximately 0.55 x 10-6 °C~1 for silica, whereas the second term, is due to the 

thermal dependence o f the refractive index. The latter represents the thermo-optic 

coefficient, with an approximate value of 8.6 x 10-6 °C_1 for the germania-doped, 

silica-core fibre, and it accounts for approximately 95% of the observed shift.

Fig. 3.3 shows the shift in wavelength o f a 1.3 pm fibre Bragg grating with temperature

over a range 5 °C to 85 ° C . The normalized thermal responsivity at constant strain is 

gives by:

J L ^ i  = 6.67xlO “6 "C' 1 (3.4)
XB ST

A wavelength resolution of about 1 ppm (0.001 nm) is thus required (at a Ab ~1.3 pm) 

in order to resolve a temperature change o f nearly 0.1 °C [Kersey 1997].

43



0.7

0.6

c  0.5

£  0.4

E* 0.3
CD

tZ 0.2

Temperature, °C

Fig. 3.3. Temperature response of FBG sensor [Rastogi 1997]

3.2.2 Fibre Bragg Grating Strain Sensor

The strain response arises due to both the physical elongation of the sensor (and thus the 

corresponding fractional change in the grating pitch) and the change in fibre index due 

to photoelastic effects. The shift in the Bragg wavelength with strain can be expressed 

by:

AXb = (1 ~Pe) Sz (3.5)

where Sz is the applied strain, and p e is an effective photoelastic coefficient term which 

is given by

pe— {nef f /2)[P12 — p{Pn + ^ 2)] (3.6)

where PtJ coefficients are the Pockel's coefficients of the strain-optic tensor, p is 

Poisson's ratio and neff is the effective index of refraction of the core. For a typical 

germanosilicate optical fibre Pu = 0.113, Pn = 0.252, p = 0.16, and nejj  = 1.482. The 

factor p e has a numerical value of about 0.22 for fused silica. Fig. 3.4 shows the 

measured strain response of a 1.3 pm FBG.
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Fig. 3.4. Strain response of FBG sensor [Rastogi 1997].

3.2.3 Fibre Bragg G rating Chemical Sensor

The FBG can be used for chemical sensing based on the fact that the central wavelength 

o f an FBG varies with refractive index change, i.e. chemical concentration change, via 

the evanescent field interaction between the FBG and the surrounding ambient [Rao 

1999]. Meltz and co-workers have written an FBG onto an etched D-shaped fibre by 

reducing the layer below the flat surface of D fibre from its original thickness o f 16 pm 

to less than 2 pm, and have estimated the cladding layer thickness above the grating to 

be about 0.5 microns. Using this method it may be possible to resolve a refractive index 

variation of 5x1 O'6 [Meltz 1996].

The principle o f a FBG chemical sensor can be explained as follows:

Any change in the effective refractive index of a propagating mode will cause a

corresponding change in the Bragg wavelength. If the evanescent field o f the fibre

extends beyond the cladding into a superstrate or if the cladding is porous, then it will

be sensitive to the refractive index of the material within or around the fibre cladding

layer. As long as the mode remains guided, that is, as long as the modified index does
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not exceed the core value, then the Bragg spectrum will be shifted and one can measure 

the refractive index o f the superstrate or the modified porous cladding [Meltz 1996].

A new type o f fibre grating, the long-period grating has been discovered to be more 

sensitive to refractive index changes of the material around the grating cladding when 

compared with FB G 's [Bhatia and Vengsarkar 1996]. More details o f index sensors are 

given in Chapter 4 and Chapter 5.

3.3 Fibre Grating in Communications

FBGs have emerged as important components in a variety of lightwave applications. 

They have revolutionised the means by which light is processed within the fibre. It is 

clear that the FBG has opened the way to all-fibre devices in communications. The 

following are examples o f fibre grating application in the field o f communications.

3.3.1 Fibre Amplifiers

It is now widely accepted that optical amplifiers have revolutionised the field o f optical 

communications. The most widely used optical amplifiers are erbium-doped fibre 

amplifiers (EDFAs) which operate in the important third low-loss communication 

window around 1.5 pm. Fibre photosensitivity and specifically fibre Bragg grating 

technology has dramatically improved erbium-doped fibre amplifier performance over 

the past few years, in the areas of pump laser wavelength stabilisation, pump reflectors, 

and gain wavelength flattening. Fibre Bragg gratings have now established themselves 

as important devices in the erbium-doped fibre amplifier system.
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3.3.1.1 Erbium Doped Fibre in EDFA

The EDFA has a fibre segment a few meters long which is heavily doped with ion o f the 

rare earth element erbium (and also co-doped with Al and Ge), and may be excited by a 

number of optical frequencies 514 nm, 532 nm, 667 nm, 800 nm, 980 nm and 1480 nm. 

The shortest wavelength, 514 nm excite erbium ions to the highest possible energy 

level. From this level, they may drop to one of four intermediate metastable levels.

From the lowest metastable level, they finally drop to the initial (ground) level, emitting 

photons of wavelength around 1550 nm. Similar activity takes place with the remaining 

wavelengths, although the number of metastable levels decreases as the wavelength 

becomes longer. Finally, the longer wavelength 1480 nm, excites ions to the lowest 

metastable level from which they drop directly to the ground level. Fig. 3.5 illustrates 

the two lowest and most important energy excitation and spontaneous emission for 

erbium. The two convenient excitation wavelengths are 980 nm and 1480 nm. When 

980 nm or 1480 nm source propagates through an EDFA fibre, erbium ions are excited 

and stimulated emission takes place releasing photon energy in the wavelength range 

1520 to 1620 nm [after: Kartalopoulos 2000],

E2

Excited erbium atoms at high energy level

-  O --------------

980 nm source

Ei

1480 nm source0 - 0

Atoms at metastable 
energy level (~10msec)

K
Stimulated 
emission 
1520-1620 nm

Erbium atoms at ground state level 

Fig. 3.5. Principle of spontaneous emission of erbium; only the two lower levels 

are shown. 47



3.3.1.2 The Erbium Doped Fibre Amplifiers (EDFAs)

An EDFA amplifier with integral LPG is constructed from coupling devices, erbium- 

doped fibre, an LPG and two isolators, etc as shown in Fig. 3.6. The EDFA exhibits the 

following features, a high gain, low pump power, high saturation power, extremely low 

polarization sensitivity, low noise and low inter-channel cross talk. They can be used as 

power amplifiers, in-line amplifiers, as well as pre-amplifiers. EDFAs can provide high 

gain over a bandwidth as wide as 80 nm and output power as high as +37 dBm. 

Erbium-doped fibre amplifiers can simultaneously amplify weak light signal at 

wavelengths across their entire operating range. Fig. 3.6 shows a schematic o f such a 

system. The principle is as follows:

A weak optical signal enter from the left, passing through an optical isolator, which 

prevents light scattering within the optical amplifier from leading back down the input 

fibre and potentially generating noise. It then enters a coil of doped fibre, typically 

several meters long. Light from a pump laser operating at 980 nm or 1480 nm 

illuminates the doped fibre, exciting erbium atoms along its length. The light signal then 

stimulates the excited atoms to emit light at the signal wavelength and in phase with the 

signal. Another optical isolator keeps scattered light from the output fibre from going 

back into the fibre amplifier.

Weak signal
input Isolator

Tap coupler 

Input monitor

WDM

Erbium Doped Fibre 

LPG

lit
(a)

WDM

Amplified 
Isolator signal output

'N T a p  coupler^ ®

Output monitor

Pump laser Pump laser

Fig. 3.6. Schematic of typical EDFA with long-period grating gain flattening filter.

[after: 1999/2000 Fibre Optic Catalogue, Laser 2000 (UK) Ltd.].
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The useful optical bandwidth of the amplified lightwave systems is limited because of 

the gain-narrowing characteristics o f optical amplifiers. Erbium-doped silica fibre 

amplifiers show gain peaking at 1530 nm and 1560 nm and the useful bandwidth may 

be reduced to less than 10 nm, see Fig. 3.7(a). In WDM systems the fibre amplifier is 

carrying multiple wavelengths, and needs some equalisation scheme to maintain a 

uniform gain at all wavelengths. As a solution, optical filters are added in order to 

reduce the intensity o f the wavelengths that are amplified most strongly.

Significant progress in gain flattening has been achieved using long -period fibre 

gratings as filters in erbium-doped fibre amplifiers (see Fig. 3.7.(d)). Unlike short- 

period fibre Bragg grating, long-period fibre gratings work by phase matching the 

guided-core mode to cladding modes in the fibre, inducing non-reflective loss. The

phase matching condition of the long-period grating, /3C0(/1) (/I) = 2it I A , is

satisfied for a number o f fibre cladding modes, so there are several resonance 

( Fig.3.7.(b)) in the loss spectrum with 60-100nm spacing. Typical grating pitch and 

index change in long-period grating equalisers for use in the 1550 nm wavelength 

region are 400-500 jam  and 5x10‘4, respectively. Recently, 22dB gain with 1 dB 

flatness from 1528 to 1568 nm has been demonstrated using long-period grating 

equalisers [Wysocki, 1997]. In another experiment, a 0.2 dB gain ripple over 30nm was 

achieved [Zyskind 1997]. These results greatly enhance the WDM capacity o f amplified 

lightwave system and may in the future enable practical tera bit per second transmission 

through a single-mode fibre [Onaka, et al 1996].
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Fig. 3.7. Application of LPG in EDFA gain flattening filter (GFF).

[after: Samsung Electronics Co.,Ltd.,

http://samsungelectronics.com/products/fiberoptics/d31 .html].

Fig. 3.7 shows that EDFA BW without LPG gain flattening filter only 10 nm, ldB 

flatness is obtained (Fig. 3.7(a)). Adding LPG gain flattening filter to EDFA BW results 

in 35 nm, ldB flatness (Fig. 3.7(d)).

3.3.2 Fibre Ram an Amplifiers

Recent advances in grating technology and the development o f high-power diode pump

lasers have revived interest in Raman fibre amplifiers. Raman can provide amplification

at both the 1.3 pm and 1.5 pm windows. Raman amplifiers possess many attractive

features such as low noise, polarisation insensitive gain, and the ability to achieve
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amplification in ordinary germanosilicate transmission fibre. Raman amplifiers have 

been successfully used as pre-amplifiers, power amplifiers and distributed amplifiers in 

a number of digital and analogue (single channel/WDM) transmission experiments.

Fibre Raman amplifiers were considered to be the main technology for optical 

amplification. They may be obtained from a simple cascaded Raman resonator [Grubb 

1994]. The linear cavity of the 1300 nm amplifier is shown in Fig. 3.8.

Germanosilicate fibre

1300 nm 
signal input 1240  1175  1117 1117  1175  1240  1064

WDM

FBG FBG FBG FBG FBG FBG FBG

1310/1064
1300 nm 
signal output

1064 nm 
pump input

Fig. 3.8. Schematic of 1.3 pm Raman amplifier utilising a series o f Bragg 

gratings as the high reflectors to the various Stokes-lines [After Grubb 1994].

This system uses WDM couplers and a set of gratings to allow gain in the 1300 nm 

window when pumped by a 1064 nm source. The gain is available at the fourth Stokes 

wavelength. These amplifiers have gains as high as 40 dB with saturated output powers 

of 24 dBm. With high germania concentration (higher Raman gain), the pump power 

can be lowered to 300 mW while providing a gain of 25 dB [Dianov 1995].

A cascaded Raman resonator amplifier system was the first silica fibre-based optical 

fibre amplifier to be demonstrated at 1300 nm with a gain of 40 dB and an output power 

of +24 dBm. Fig. 3.8 shows a schematic of such system, where laser light at 1060 nm 

generated from a high-power cladding-pumped fibre laser is injected into a long length
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of germanosilicate fibre. At both ends o f the fibre there are highly reflective Bragg 

gratings, with centre wavelengths at the first three Stokes-lines starting at 1060 nm. This 

configuration converts the fundamental pump light (1060 nm) efficiently to light at 

1240 nm. When a signal at 1300 nm is injected through this structure, it will experience 

amplification since it is designed to be at the next Stokes Raman shift from the 1240 nm 

pump light [Othonos Kalli 1999]. The optical spectrum with five Stokes lines is shown 

in Fig. 3.9.

A Raman amplifier wavelength range from 1.1 to 2.0 pm is possible. Since cladding- 

pumped laser can be varied by nearly 100 nm, one can efficiently down-convert to 

virtually any arbitrary wavelength with the use of the appropriate fibre Bragg gratings. 

Clearly, Bragg gratings are playing an important role in Raman amplifier technology 

and are having a strong impact in communications lightwave applications [Othonos and 

Kalli 1999].
840 mW
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Fig. 3.9. Stimulated Raman scattering (SRS) spectrum showing generation o f 

five Stokes lines Si to S5 by using 1060 nm pump pulses. Vertical line shows the 

pump output. Peak power was measured though a monochromator with 1.5 nm 

resolution [After Cohen and Lin 1978].
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3.3.3 Chirped Bragg Gratings Compensate for Dispersion

With the advent of long-haul high-capacity systems operating at high speeds, chromatic 

dispersion effects can be a real problem. Dispersion effects occur as different 

wavelengths as signal propagate at different speeds along the optical fibre. The problem 

is exacerbated in high-speed dense wavelength division multiplexing (DWDM) 

networks because they rely on wavelength in the 1550 nm widow where dispersion is 

the highest. Dispersion broadens the signal pulse thus increasing the bit-error rate. As 

network data rates increase, chromatic dispersion in a standard single-mode fibre 

becomes the main factor limiting performance. At data rates o f 2.5 Gbit/s, a signal can 

be transmitted without significant degradation for distances up to 1000 km, This 

distance however drops sharply to 60 km at 10 Gbit/s and to a mere 15 km distance at 

20 Gbit/s.

In addition, a large portion of the world wide installed base of fibre is of the older 

variety, optimised for transmission at 1310 nm. Such fibre exhibits high chromatic 

dispersion of about 17 ps/nm-km when used to transmit at the more commonly used 

telecom wavelength of 1550 nm, as shown in Fig. 3.10 [Jama 1996].

D=17 ps/nm/km

1300 nm 1550 nm

Fig. 3.10. Relative time delay through conventional transmission fibre as

a function of wavelength [After Ciles 1997].
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Upgrading existing lightwave systems to 10 Gbit/s channels usually requires dispersion 

compensations often using long lengths of dispersion-compensating fibre [Nuyt, et al 

1997]. A severe shortcoming o f dispersion-compensating fibre is evident when multiple 

optically amplified DWDM channels are launched into its small core at an optical 

amplifier site. Another disadvantage o f dispersion-compensating fibre is its high 

attenuation which is 0.6 dB / km (three times that o f non-dispersion-compensating fibre) 

[Ohn and Donohue, Sep 2000. URL: http://www.e-tek.com/products/articles.htm]. 

Taking all these issues into account, it becomes necessary to seek other alternative 

technology for dispersion compensation.

One attractive technology for dispersion compensation is the linearly chirped fibre 

Bragg grating. Bragg gratings provide dispersion compensation for 1550 nm 

telecommunications networks without introducing non-linear effects, allowing 

increased data rates. The grating serves as a selective delay line, which delays the 

wavelengths that travel faster through the fibre until the other wavelengths catch up.

The spacing of the grating is chirped (gratings that have a non-uniform period along 

their length are therefore known as chirped.), increasing along its length, so it reflects 

different wavelengths at different points along the fibre. Suppose, for example, that the 

longer wavelengths in a pulse arrived first and the shorter wavelengths arrived last. We 

could stack a series of gratings along a fibre with the short period facing the incident 

light, Then the shorter wavelength Xshon reflected at the near end o f grating and the 

longer wavelengths Xiong at the far end. Thus, the longer wavelength must travel further 

within the gratings before they are reflected, thereby experiencing an additional time 

delay with respect to the shorter wavelength, as shown in Fig. 3.11. Based on this 

picture one may be write a simple expression for the group delay dispersion o f a linear 

chirped grating o f length given as:
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r = 2"-* L^ . , [Pi]  (3.7)

where ncff is the effective refractive index for the mode propagating in the fibre core and 

Lgratingls length of the grating. The average dispersion Dave o f the grating is 

correlated to the delay t  and the bandwidth of the grating through:

D ™ = 1  f l  = T T ’ [ps / nm]  (3.8)
^ lon g  short ^

where AA is the chirp of the grating and Along and Ashort are the longest and shortest 

wavelengths respectively imprinted in the grating [Ibsen et al 1999],

Grating spacing increases

L p r n t i n p

Input light

Reflected light

^-long-m ax

Fig. 3.11. Schematic representation of the principle of dispersion in chirped grating. 

A series of gratings with different spacing can serve as a delay line to compensate for 

dispersion.

From Eq. 3.8 it can be seen that the dispersion for a 100 km length of standard fibre 

with 17 ps/nm km dispersion at 1550 nm may be compensated over a bandwidth of 

A/l = 0.2 nm by linearly chirped grating of approximately 3.5 cm in length [Othonos
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The enormous growth rate of data in commercial and domestic networks forces an ever 

increasing demand for capacity onto the backbone networks. With the recent expansion 

in line rate to 10 Gbit/s and the realisation o f optical amplification, the limitation for 

information throughput is now dispersion rather than loss. Fibre grating offers an 

alternative to tens o f kilometres o f Dispersion Compensating Fibre (DCF) which is a 

speciality fibre and therefore is more expensive. Nortel’s (Northern Telecom) 

innovative solution is a speciality fibre which has a reflective grating structure written 

in the core using ultra-violet laser holography. The significance of increasing the grating 

length to 2.4 metres is that it allows more DWDM channels to be transmitted on the 

same fibre. This breakthrough was achieved at Nortel's R& D facilities in Harlow. 

Nortel's longest dispersion compensating grating fibre in the world has given the 

customers a compact, passive and cost-effective method of maximising the full 

bandwidth capacity.

The following is an example of a new product for dispersion compensating from E-TEK 

Dynamics, Inc. Their ITU Fixed Dispersion Compensator with a low group delay ripple 

and high centre wavelength accuracy, provides an effective solution to chromatic 

dispersion in most high bit rate DWDM networks.

Typical Performance (E-TEK.com)

Centre Wavelength Range: 1526 nm~l 565 nm on ITU grid 

Dispersion over: -0.5 dB bandwidth 200 ps/nm~1700 ps/nm

Insertion Loss: 1.0 dB

Bandwidth: 0.5 nm @1300 ps/nm, 1.0 nm@700 ps/nm



Package Dimensions 220 mm (L) x 18.5 mm (W) x 10 mm (H)

3.3.4 Fibre G rating Band-Pass Filters

Band -pass filters are considered one of the most fundamental devices in 

multi wavelength optical networking and in most communication systems where 

wavelength demultiplexing is required. There are several techniques for fabricating 

these band-pass filters utilising Bragg gratings.

3.3.4.1 Basic Bragg Grating Filter

One of the most basic filters may be constructed by simply splicing or inscribing a fibre 

grating to a 50:50 (3dB) fibre coupler (Fig. 3.12). This is one of the simplest methods of 

accessing the narrowband signal reflected by fibre Bragg grating. The disadvantage is 

obviously that the reflected signal suffers a 6 dB loss by passing through the coupler 

twice.

A

>

FBG ___ ^  X

Coupler
A,b ^ 3dB

Fig. 3.12. Basic Bragg Gratings Filters showing input (port 1) and output

(ports 2 and 3) [After Othonos and Killi 1999],
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Moreover, half of the out-of-band signal is also lost and the return loss is only 6 dB. For 

most systems applications these drawbacks are unacceptable, and more elaborate 

solutions must therefore be employed.

3.3.4.2 Circulator-Based Filters

Optical circulators are non-reciprocal bulk optics components with multiple input and 

output ports. Fig. 3.13 shows a high-performance add/drop filter which can be obtained 

simply by attaching a fibre grating to the second port of a 3-port circulator. With port 1 

as the input, the wavelength channel reflected by the grating is transmitted through port 

3 while the out-of-band signals are transmitted through the grating on port 2. 

Commercially available circulators have very high port-to-port isolation (typically 50- 

60 dB) and thus give the filters excellent wavelength isolation and return loss. However, 

circulators are very expensive and have high insertion losses (1-2 dB port to port), 

which would make an all-fibre solution more suitable in many applications [Othonos 

and Killil999].

i ̂  A,-X,b

7

Circulator

X

Fig. 3.13. Circulator-based filter
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3.3.4.3 Add/Drop Multiplexer Based on Bragg Gratings in Twin-Core 

Fibre Mach-Zehnder Interferometer

One of the key components in new multi-channel telecom systems is an optical 

add/drop multiplexer. To minimize the balance requirements of a Mach-Zehnder 

interferometer in the add/drop multiplexers, a twin-core fibre based system has been 

proposed and demonstrated [Bethuys 1998], A specially designed twin-core fibre, 

where each core has the specifications of standard single mode fibre, has been 

developed. Two identical fibre Bragg gratings and two couplers arranged in Mach- 

Zehnder configuration are constructed into the twin core fibre, as shown in Fig. 3.14. 

The principle is such that light is launched at the input ports and splits equally between 

the two arms of the twin core fibre section. The Bragg gratings reflect a specified 

wavelength channel. The reflected wavelength recombines and exits as a dropped 

channel. From symmetry considerations, the added function must also require the same 

condition. An add channel enters through the add port, splits equally, reflects off the 

grating, recombines and joins the remaining wavelengths through the output.

Identical  Bragg gratings

Twin core fibre

Fig. 3.14. Schematic of the Add/Drop multiplexer based on Bragg gratings in 

Twin-core fibre Mach-Zehnder interferometer [1999/2000 Fibre Optic Catalogue, 

Laser 2000 Ltd.UK].

Added
channels

Droppe
channels

Output
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The cladding-mode coupling losses for each passed channel were measured to be under 

0.3 dB. At the Bragg wavelength, extinction was near 29 dB and 0.8 nm, and the 

bandwidth was measured at 20 dB in the transmitted spectrum. Furthermore, isolation 

between the add and the output ports at the Bragg wavelength was measured to be at 

least 30 dB. Several o f these new twin core systems can be cascaded (one for each 

wavelength) to form a complete DWDM system. So this kind add/drop multiplexer may 

play an important role in communications networks.

3.3.5 Fibre Bragg Gratings Applications in Dense Wavelength Division 

Multiplexer (DWDM) Systems

The hybrid DWDM device combines fibre Bragg gratings and dielectric-coated band­

pass filters and can meet the required specification in various cost-effective structures. 

Fig. 3.15 is an example of a hybrid demultiplexer.

An eight-wavelength optical input signal passes through an isolator to a 3-dB coupler 

and is split into two equal output arms. Each of the output arms has four apodized fibre 

Bragg gratings for a 0.4 nm channel spacing with a high reflectivity to block the optical 

signals at the four alternative wavelengths. The same structures can be used to extend 

DWDM multiplexers and demultiplexer from 8 channels to 16, 32, or 64, by 

proportionally adding more fibre Bragg gratings on the two arms o f the 3-dB fibre 

coupler and on port 2 of the two optical circulators.
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Fig. 3.15. Hybrid dense wavelength division demultiplexer, each with a channel 

spacing o f 0.4 nm. The system is constructed by incorporating fibre Bragg gratings 

and dielectric-coated band-pass filters [Othonos and Kalli 1999].
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CHAPTER4 LONG - PERIOD GRATING SENSORS

4.1 Introduction

Long-period gratings were first presented by Vengsarkar and co-workers ini 996 as 

band-rejection filters [Vengsarkar 1996a], and later as gain equalizers of Erbium-doped 

fibre amplifiers (EDFA) [Vengsarkar 1996b, 1996c]. At the same time, they showed 

that the coupling wavelengths shift with the external refractive index change [Bhatia 

1996]. Since then many other authors have reported that the LPG has been used as 

novel fibre sensors in the temperature, strain and refractive index sensing field [Kersey 

1997, Patrick 1998]. The LPG can also be used for structural analysis and control 

[Vries, et al 1998], biosensors [Zhang 1999] and recently Bhatia has shown that the 

LPG can be used as a multi-parameter sensor [Bhatia 1999]. This chapter gives a review 

o f temperature, strain and index sensors and the development o f a model for an index 

sensor and chemical gas sensor.

Long-period fibre gratings are photo-induced fibre devices with the period o f the order 

o f hundreds of micrometers as shown in Fig. 4.1.

I A n n .D ariM H

Cladding

Core
Cladding Fundamental 

Guided Mode Cladding Mode

Stopped Jacket

Jacket

Jacket

Fig. 4.1. Coupling of the fundamental guided mode to cladding modes in an LPG. A is the

periodicity of the refractive index modulation in the fibre core. [Tolpegin 1997]
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For a single-mode fibre, when a broad band light passed through the LPG, narrow light 

bands centred at given wavelength are coupled into the fibre cladding. These cladding 

modes decay rapidly as they propagate along the fibre owing to the lossy cladding 

coating interface. The wavelengths at which the coupling from the guided fundamental 

mode to the cladding modes occur are dependent on the periodicity A and the photo­

induced index change An of the grating, according to the following phase matching 

condition [Vengsarkar 1996]:

r)'7T
P c o r e - P {n\ i a d = - —  (4.1)

A

Where p core denoted the propagation constant o f the fundamental mode in the fibre

core, and p {n) dad denotes the propagation constant o f the n th cladding mode o f the fibre 

cladding. Considering the relation o f /? = 2%neff l  X, where neff is the effective index of 

the mode, Eq. 4.1 can be represented using the effective indices o f the corresponding 

modes as [after: Patrik 1998]:

^ > = { nc , r M i ) - n J n\ X t) y  (4.2)

where A(n)i is the n th coupling wavelength, «rore(^() is the effective index o f the core,

nciad(n)(^i)  is the effective index of the n th cladding mode and A is the period o f the 

LPG. Fig. 4.2 shows a typical LPG spectrum, which is measured using an HP 7095 IB 

Optical Spectrum Analyzer. The peak absorption occurs at X = 1.371807 pm. It shows

the phase matching between the guided core mode and I0 lh forward propagating 

cladding mode.

The specifications o f the LPG fibre used are listed in Table 4.1.
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Table 4.1: CIII Boron (not hydrogenated) LPG fibre specifications

Param eter Value
Core index ni 1.458
Cladding index n2 1.455
Core radius 2.625 pm
Cladding radius 62.5 pm
Pitch of the grating 325 pm
Index modulation 1.295x1 O'4
Length o f LPG 5 cm

1.49
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-21

1.471807
-23

Wavelength (|!im)

Fig. 4.2 Typical transmission of

4.2. T em perature Sensor

The sensitivity of a long-period grating to temperature can be examined by expanding 

Eq. 4.2 to yield [Bhatia 1999]:

d/1 _ dX
dT d[Sneff)

d tl4 t  d n cl

dT dT
. dX 1 dL

+ A ------------
dA L dT

(4.3)

where L is the length of the grating, dncff = ncore -  nclad is the differential effective

index, and the ordinal m has been dropped for the sake of simplicity.

The two terms on the right hand side o f Eq. 4.3 separated by the + sign represent the 

contributions to the thermal sensitivity o f the grating due to the change in the
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differential effective index and the grating periodicity, and will henceforth be referred to 

as the material and waveguide effects, respectively [Bhatia 1996]. The material 

contribution arises from the change in the indices of refraction o f the core and the 

cladding due to temperature and is a function of the composition o f the fibre. The 

waveguide contribution has its basis in the thermal sensitivity o f the grating periodicity 

and can be negative or positive depending strongly on the slope dX / dA  o f the 

characteristic curve corresponding to the appropriate cladding mode. The wavelength 

shift due to the material effect can similarly have either polarity and its magnitude is a 

function of the relative change between the effective indices of the guided and cladding 

modes. For a standard long-period grating with periodicity of hundreds o f micrometers, 

the material effect typically dominates the waveguide contribution to the temperature - 

induced shift [Bhatia 1999].

Bhatia [Bhatia and Vengsarkar 1996] showed that the temperature response o f LPG can 

be either positive or negative: with a negative temperature response as low as -0.2 nm 

°C'1 and a positive response reaching +0.15 nm °C'1.

30  -

Ec 25  -

20 -

®  1 5 -  
©

| 10 - 
£
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50 100 250150 200

Temperature (°G)

Fig. 4.3. Shift in third-order coupling band width temperature for a long-period 

grating in 980 nm single-mode fibre (•) and for a conventional Bragg grating 

(dashed line) [Bhatia and Vengsarkar 1996].
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Figure 4.3 shows that the long-period grating temperature sensor is more sensitive than 

the Bragg gating sensor. This can be seen in the hybrid fibre Bragg grating /long period 

fibre grating sensor which is presented by Patrick and co-workers in which they use 

hybrid fibre Bragg grating /long-period fibre grating sensor for simultaneous strain and 

temperature measurement. They have shown that the LPG wavelength shifts for strain 

and temperature were 0.5 pm /pe and 60 p m /°C , compared with 1 pm/ps and 9pm/ ° C , 

give a well-conditioned transformation and resulting in strain and temperature errors of 

±9ps and ±1.5 ° C , respectively [Patrick et al 1996].

The Long period grating has rather different temperature and strain response coefficient 

compared with the Bragg grating. This is because the Bragg grating wavelength is 

linearly proportional to the grating period, which is multiplied by the effective refractive 

index o f the core. Whereas the long period grating wavelength is proportional to the 

grating period multiplied by difference in index o f refraction between the core and the 

cladding [Othonos and Kalli 1999].

4.3. Axial Strain Sensor

The sensitivity o f a long-period grating to axial strain e  can be studied by expanding 

Eq. 4.2 and re-arranging to yield [Bhatia 1999]:

where the two term on the right hand side can again be divided into material (first term) 

and waveguide (second term) contributions. In this case the two contributions can have 

either polarity depending on the grating period and the order of the cladding mode. The 

waveguide effect can be significant and is a function o f the local slope dX / dA  for a

d/i d/i f  dneff dn A  dX
  r ----1------- — + A ---- (4.4)
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particular cladding mode [Bhatia 1996]. Moreover, the two contributions can be equal 

in magnitude but opposite in polarity, resulting in a strain-insensitive grating that can be 

employed as a pure temperature sensor [Bhatia et al 1997].

Long period grating strain sensor is found to be more sensitive than Bragg grating strain 

sensor. Fig. 4.4 shows that long period grating has a strain coefficient o f \ 5 2 \ n m l % £ , 

which is almost twice that o f Bragg grating at the same wavelength 8 3 n m /% £ .
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Strain (gs)
Fig. 4.4. Shift in the fourth-order coupling band with axial strain for long-period 

grating in fibre (type Coming FLEXCOR) (solid circles) and a Bragg grating fibre 

(dashed line) [Bhatia and Vengsarkar 1996].

4.4. Index of Refraction Sensor

Fibre Bragg gratings have previously been proposed as refractive index sensors for 

chemical analysis by etching the cladding of the fibre to within a few micrometers of 

the core, as introduced in Chapter 3 "Fibre Bragg gratings chemical sensors". The 

etching o f the cladding reduces the strength of the fibre and makes it susceptible to 

damage under harsh environmental conditions [Bhatia 1996].
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It is clear that effective indices of cladding modes are strong function of the surrounding 

index Any change in the surrounding refractive index will modulate the propagation 

constants of cladding modes J3{n) dad and the effective refractive indices of the cladding

modes (X ,) .

From Eq. 4.2 it can be seen that when ndad (A,) changes, the coupling wavelength 

A (n)i will shift. This is the fundamental theory of the long-period grating index sensor.

The LPG index sensor was first presented by Bhatia [Bhatia and Vengsarkar 1996], who 

showed that when the surrounding index changes, an LPG shift o f 62.4 nm and an 

average resolution of 7.69xl0"5 is possible in the 1.404-1.452 index range, as shown in 

Fig. 4.5.
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Index of refraction
Fig. 4.5. The wavelength shift in the fifth-order coupling band with refractive index 

of ambient material for a grating in Corning standard 1310 nm fibre. The shift is 

with reference to the spectral position with air as the surrounding medium.

Patrick and co-workers [Patrick et al 1998] have demonstrated the change in coupling 

wavelength of a long-period grating attenuation band with changes in external
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index of refraction, experimentally investigating the spectral response from 723 = 1 to 

723 = 1.72. Coupling to seven distinct cladding modes can be seen in the Fig. 4.6. The 

wavelengths of the attenuation bands at 723 = 1 are indicated by the dotted lines.

As the external index was increased from 723 = 1 to 723 = 1.44, the principle effect was a 

blue-shift o f the centre wavelength o f the bands, which was particularly pronounced in 

the longest wavelength bands. Between 723 = 1.45 and n3 = 1.46, an abrupt change in the 

spectrum characteristic was observed. At this point the cladding modes would be 

expected to no longer be discrete guided modes, and the coupling spectrum spreads and 

the coupling almost disappears for the higher order modes. For 723 > 1.46 coupling to 

cladding modes structure re-appears, with the highest order bands increasing in strength 

with increasing index. The shortest wavelength coupling bands remain visible over the 

full range o f indices [Patrick et al 1998].

If  the surrounding index is higher than the cladding index, n3 > nclad, the propagation 

constant o f the cladding mode becomes complex and the mode becomes a leaky mode. 

Detailed discussion can be found in Section 5.3 "Modelling o f Long-Period Grating 

Index Sensors".
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Fig. 4.6. (a) Broad-band transmission spectrum of A = 275 pm LPG for n3 

ranging from = 1 to «3 = 1.45. (b) Broad-band transmission spectrum of 

A = 275 pm LPG for n3 ranging from = 1.46 to n3 = 1.72.dotted lines indicate 

attenuation band wavelength at = 1 [Patrick, et al 1998].
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CHAPTER 5 MATHEMATICAL MODELLING OF 

LONG-PERIOD GRATING SENSORS

5.1 Foundation of Theory

The concept of a “mode” is the most basic one in the wave theory o f optical fibre, and it 

is also the foundation of the modelling o f LPG sensors. This section will provide 

derivations o f the core mode and cladding modes, closely following the work by Okoshi 

[Okoshi 1982] and Davis [Davis 1996].

5.1.1 Wave Equations in Cartesian Coordinates

When considering an electromagnetic wave having angular frequency co and 

propagating in the z direction with phase constant f t , the electric and magnetic field can 

be expressed as:

E = Re{ Eo(x,y)exp[/(co/-pz)] }, (5.1)

H = Re{ Ho(x,y)exp[/(co/-pz)] }, (5.2)

where E is the electric field,

H is the magnetic field,

P is the propagation constant,

For the Cartesian components of Eq and Ho, Maxwell’s equations are:

Curl E = -  zcop H, (5.3)

Curl H = icon E> (5.4)

Eq. 5.3 becomes:
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Curl E = VxE =
x y  z 

d/dx d/dy d/dz 
E. E„ E.

Curl E = (
dE dEy  , ,dEx dE2\ _ l f dEy dEr ^_

■ ) zdy dz dz dx dx dy

= -z'cojxHx x -m\xHy y -m\xHz z , (5.5)

Since the two sides o f the equation are the same, the vector component values are same, 

thus:

8EI dEy
dy dz

dE, dE,
dz dx

dEy dE,
dx dy

=  -m\iHx (5.6)

= -icop/Ty, (5.7)

= (5.8)

Eq. 5.1 shows that z dependence on Ey is exp[i (cot -  j3z)\, if  not omitted this gives: 

dEy dEy exp [i{cot -  J3z)\ Ey d exp [i{cot -  J3z)]
dz dz

Substituting -ipE y into Eq. 5.6 yields:

dE_

dz
= -i/5E

dy
{-ipE  ) =  -icop/Zx

dE.
+  ij3Ev = -icop//x, (5.9)

Similarly
dEx _ dExQxp [i(cot -  pz)\
dz dz

Substitute -  PEX into Eq. 5.7 yields:

dE
■■ WE, + - r L=dx

~PE X

(5.10)

Using the same method Eq. 5.4 gives:
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+ i/3H = icos£Xi
dy

(5.11)

dH
-i/3H x - — ^ = m s E y, (5.12)

OX

dHy dHx . „
—  -------- =ioos Ez (5.13)

dx dy

Using Eqs. 5.9, 5.10, 5.11, and 5.12 components Ex, Ey< Hx and Hy can all be expressed in 

terms o f Ez and Hz as follows:

From Eq. 5.10 we get: 

dFz
H y = ( + i/}E! )/(icon) (5.14)

dx

Substituting Eq. 5.14 into Eq. 5.11 gives 

dH dEz
- T f -  + i /3 (— — + ifiEJ/(ia>ju)=iaeEx,

dy dx

0  dEz 13 ^
— -  + ------------= /cosE^-i E  , two side multiplied by cqjj, , using s  = £0n 2,

dy cqjli dx (Ofj.

give:

dHz dEz , 2 2
o) î — -  + P — — = kd ju0sEx - i f i  E x 

dy dx
2-= i(co juq£ - / 3  )Ex =i(a> ju0£0n -  f3 )E

1 f a dEs dH  1 ( 0EZ dHz
— ;----------- ;-------- t ~ ( P ---- +  C0M — ) =  — ------------ z - { P — -  +  coli— 5
i(co ju0£0n - p  ) dx dy i(k n -  f t  ) dx dy

i dE dHz
Pt dx dy

Ex = - — ( P ^  + a>M^r-)  (5-15)

In the same manner:

„ i dEz dHz
E y = - — J  ( / ?— — ), (5.16)

p  dy dx

i ,  a dHz dE,
— r ( P  CO£ 5

Pt dx dyH*=- —  (P  —  (5.17)
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(5.18)
Pt dy dx

where

/?,2 = *V - p 1 (5.19)

k 2 = o) 2e0/a0 , (5.20)

and n denotes the refractive index o f the medium. The parameter p t is called the 

transverse phase constant or transverse wave number.

Substituting Eqs. 5.17 and 5.16 into Eq. 5.13, results in:

dH dHx d dHz dEz . d , i , n dH z dEz >
— — -  =  — ( T(P ------+ cqs— - ) --------(------ T(P ----- - - c o s — z~)

dx dy dx p t dy dx dy p t dx dy

= icosEz,

iP d2H z i d 2E z ip  d 2H z i d 2E z
COS  ---1---- ----------------- —COS-----r— — lC08b7

p t dxdy p 2 dx p 2 dxdy p 2 dy:

i d 2E  i d 2E  . 
cos—  tCOS— J- = i COSE,

P ?  ^  P t 2 &

^ E  + ̂  + P ,Ez = 0 (5.21)
dx2 dy2

and substituting Eqs. 5.15 and 5.16 into Eq. 5.8 gives:

^  + ̂  + A H 2 = 0  (5.22)
dx2 dy2 '

5.1.2 Wave Equation in Cylindrical Coordinates

For the analysis of wave propagation in an optical fibre, which is axially symmetric, the 

wave equations are rewritten in terms of cylindrical coordinates.
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X
Fig. 5.1. Definition of cylindrical coordinates

The basic relations between the cylindrical and rectangular coordinates are [Wangsness 

1979]:

x = r cos(p, (5-23)

^  = rsincp, (5-24)

z = z, (5.25)

r = (x2 + y 2)m, (5.26)

tan (p=y/x, (5 27)

Er = Ex cos#? + Ey sin#?, (5 28)

Eq, = -Ex  sin#? + Ey cos#?, (5.29)

From above relations we obtain:

dEz dEz dr + dEz dip x dEz y  dEz
dx dr dx d(p dx r dr r 2 dip

d2E , d , x d E z  y  dEz . £_   ( ±------ —)
dx2 dx r dr r 2 dtp

d ,x. dEz x d Ez d y  dEz y  d Ez— ( _ ) --- — -|----------------- (-±—)----     5 ̂ V ?  ̂ -.2 V .2' „2

(5.30)

dx r dr r dr2 dx r 2 d(p r 2 d(p1
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dx dr 1 ~~
 r ~ X   AT? a 2 j?  0 - y2r  —  (x2 + V 2 )  22x  0 2 7 7dx dx dEz + x d  Ez 2 dEz y  d E z

r dr r dr r4 d(p r dcp

_ 1 x 2 dEz x d 2Ez dr d 2E z dcp 2xy dEz y  ,d 2E z dr d 2E z dcp
r r 3 dr r dr2 dx drd(p dx r 4 d(p r 2 drd(p dx d(p2 dx

1 x 2 dEz [ x x d 2Ez y d 2E z 2 x yd E z y  x d 2E z y  d 2E z
r r 3 dr r r dr2 r 2 drdcp r 4 d(p r 2 r drdcp r 2 d(p2

(5.31)

dEz = dEz dr < dEz dcp ^ y  dEz  ̂ x  dEz ^  ^
dy dr dy d(p dy r dr r 2 d(p

d 2E  d y  dEz x  dE
 — = — (-  h - )
dy2 dy r dr r 2 dcp

d y  dE y  d2Ez d x  dE x  d2E
dy r dr r dr2 dy r 2 dcp r 2 dcp1

+  ~ —  +    *- +  ■
r 2 dr r dr2 r4  d(p r 2 d(p2

_ 1 x 2 dEz y  d 2Ez dr d2E z dcp 2x y d E z x  d2E z dr d 2E z dcp
r r 3 dr r dr2 dy drdcp dy r 4 dcp r 2 drdcp dy dcp2 dy

1 y 2 dEz t y  y d2Ez  ̂ x  d 2E z 2x y d E z [ x , y d 2E z  ̂ x  d 2E z
r r 3 dr r r dr2 r 2 drdcp r 4 dcp r 2 r drdcp r 2 dcp2

(5.33)

Maxwell’s equations are rewritten in terms of the cylindrical coordinates, substituting 

Eqs. 5.31 and 5.33 into Eq. 5.21 gives:

.2 3  „ Cl2 T 7 -  . .  a 2  rr n . ^ . A T ?  .  a 2  t?  a 2.1 x dEz x .x d Ez y d E  2xy dE. y  .x d E. y  d E. )  + —(   =-) + —   1 — (  ̂ 1. ^
r r 3 dr r r dr2 r 2 drd<p r 4 dcp r 2 r drdcp r 2 dcp2

A y 2 dEz y  y  d2Ez x  d 2E z  ̂ 2 xy dEz x , y d 2E T x  d 2E
+ (-------+ —(— T 1 -  + — T -r—)  r T “  + T ( _ 7 7  + T 7 1r r dr r r dr r drdcp r dcp r r drdcp r dcp

+  P t E z =  0
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In the same way:

d 2H z  1 dHz  1 5 2f f  .  „  „
- r r + — r + — - r r + P ' H ' =Q (5-35>or r or r dcp 

We look for a separable solution o f the form:

£ z( r ^ )  = R(r)®(^) (5.36)

The z  dependence o f Ez is emt'^z, as before, but this factor will be omitted for simplicity. 

Substituting Eq. 5.36 into Eq. 5.34 gives:

2R \ r )  R \r )  0 2 ®"(<z>)r2— — + r — —  + B.r = — ^  (5.37)
R R 1 O

For Eq. 5.37 to be satisfied each side is independently equal to a constant, since the left- 

hand side is only a function of r, and the right-hand side is only a function o f cp. The 

following equation may be derived:

+ + = v 2 (5 38)
R R

which is usually written as:

R" + - ^ -  + (fi,2 - ~ ) R  = 0 (5.39)
r or r

and

q>"
= v (5.40)

The general solution of Eq. 5.40 is:

® (cp) = N sin (v cp) + M cos (v cp) (5.41)

v must be a positive or negative integer, or zero, so that the function ®(#>) is single 

valued:
77



i.e., 2ri) = O(^).

Eq. 5.39 is called Bessel’s equation. Its solutions are Bessel functions, which are the 

cylindrical geometry equivalents o f the real or complex exponential solutions.

In the core region, r < a {a is the radius of fibre core), the general solution o f Eq. 4.43 

is:

R(r) = A Jm($t r) + B Ym ( p, r), ( where p, is rea l) (5.42)

where Jm{$t r) is the Bessel function o f the first kind and Ym ( p, r) is the Bessel function 

o f the second kind(The Bessel function of the second kind Ym ( ptr) is also written as 

A^(ptr) in some texts).

In the cladding region, r> a, the general solution of Eq. 5.39 is:

R(r) = C Im (|p/|r) +DKm ( |p, | r), ( Where p,is imaginary ) (5.43)

Where Im (|pt|r), Km( |p,| r) are modified Bessel functions o f the first and second kinds 

respectively. These are monotonically increasing (Im (|p,|r)) and decreasing (Km ( |pr | r)) 

functions o f r. In the core, we expect an oscillatory form of the axial field to be 

appropriate. Since the function Ym (p, r) -»  - oo as r->0, as shown in Fig. 5.3, we reject 

Ym ( p/ r) as physically unreasonable. Only the Jm (pz r) variation needs to be retained as 

shown in Fig. 5.2.

The fields in the cladding must decay as we go further away from the core. Since 

Im (|P/| r) -»  co as r-> oo, as shown in Fig. 5.4. These functions are rejected since they are 

physically unreasonable. Only the Km (|P/| r) variation is reasonable as shown in 

Fig. 5.5, and needs to be retained.

In these solutions, m is the azimuthal mode number and A, B, C and D  are arbitrary 

constants.
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*$3 ;v* &"*Modified Bessel

Fig. 5.2. Bessel function of the first kind.

Bessel function second kinds
— i— .!

0.5

■1.5

Fig. 5.3. Bessel function of second kind

Fig. 5.4. Modified Bessel function of the first kind.
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Modified B esse l function o f the secon d  kind

a

K2(x)

K3(x)*100’

3.50.5 1.5

Fig. 5.5. Modified Bessel function of the second kind.

5.1.3 Electromagnetic Field in the Core and Cladding

Assuming temporarily that two sets of solutions (TM-type solutions) are present in 

which:

E. =
AJm(fia )win<p

CKm(\pt2\)smn<p

H ,=  0

And (TE-type solutions)

H . =
' BJm(Pa )ca&n<p 
B K j \ p l2\)cosrt<p

(for r < a),
(for r > a),

(throughout),

{for r < a), 
{for r > a \

Ez = 0 (throughout)

where suffixes 1 and 2 denote the core and cladding regions, respectively.

(5.44)
(5.45)

(5.46)

(5.47)
(5.48)

(5.49)
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5.1.3.1 Field in the Core

Let us write down the full variation of the fields in the core as:
ur

EZ = A J m( — ) sinmcp, 
a

(5.50)

Substituting Eqs. 5.15, and 5.16 into Eq. 5.17 we get: 

E r = E x coscp + E  sincp

i , n dE dH i dEz dHz .
— ( P ^ ^  + cop — —) cos cp {— ~ K P —----- &>//——)sm  (p)

p , 5x 8y P, sy dx

i 0 dE i dH i dEz . i dHz .
~ P ~ — coscp - - —p cop ^  c o sc p - -—p p ^ —smcp +cop— —̂-—sin ^

P, dx P, f y  P, dy P, dx
i or8Ez 8EZ . s i 8HZ 8H Z .
— p  cos <p + sin cp) -  -ppp cop cos cp — sin cp)

P t dy p tl ' ' dy

using Eqs. 5.23, 5.24, 5.30 and 5.32 gives:

dx

E r = - — r P  (
( x  dEz y  dEz y  dEz x  dE

Pt \ r  dr r dcp
) cos cp + t +

r dr r dcp
-)sin cp)

p ;
cop

y  dHz x  dHz x  dHz y  dHz . ^
(— Ti  + “T - r - £- ) c o s p - (  

r or r dcp r dr r 2 dcp
)sin cp)

p ;
p

8E 1 . 8E2 . 8E . 1 dE, . P
cos cp------ cos^? — sin cp----- cos^  + sm#?— -sm#> + —cos^z?— Lsin cp)

dr r dcp dr r dcp

+ cop
r . 8HZ 1 8Hz 8H . 1 . 8HZ . N
sin cp----- cos cp +—cos cp— -coscp-coscp— Lsm ^  + - s m ^  -smcp

dr r dcp dr r dcp

—l— (/?(cos cp cos cp + sin cp sin $?)— L + cop—(cos cp cos cp + sin cp sin cp)
Pt

i (  „dE

p ;

dr 

1 d H '

dJF
dcp

P — — + cop 
dr r dcp

using Eq. 5.44 and Eq. 5.47 it gives:



1 1 P A T  ( U r \ U  ' m  D T  ( U Y \  •pA Jm (— ) —sin m cp -  cop — B Jm (— ) sin m (p 
a r r a

a

E,  =
/  t il \  y  f  ! \  2  Ttl V /w /a a {ula) r a

sin mcp (5.51)

Using the same method the following expressions are derived on:

E<p=
{ul a)4 a u /a

cos mcp (5.52)

Hz = B J m( — ) cos mip, 
a

(5.53)

^  «r
/  / \  2 nt \  s / /W V /{u/a) r a u la  a

cos mcp (5.54)

^  « r ) + b ^ 2L Jm(p L )
/ tn \  s  /  i \ 2  w v 'u la  a {ula) r a

cos mcp, (5.55)

where the normalized transverse constant in the core region is given as:

u 2 = Imj2 - / ? 2, (5.56)

5.13.2 Field in the Cladding Region

The electronic field propagating is E-direction within the cladding region is given as:

Ez= C K m{ — ) sinm6, 
a

(5.57)

Er=
w /a { w /a y  r a

sin m(p (5.58)

Efp= ( ^ ) - D ^ K '  ( ^ )
{w !a)‘ w! a

cos mcp, (5.59)

Hz = D K m{ — ) cos m(p, 
a
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Hr = c J ^ 2 _ l l K m (— ) + D E - K ' m (— )
{ul a) r a u la a

cosm(p , (5.61)

H 9=
w / a {u! a)‘

smm^>, (5,62)

where the normalized transverse attenuation constant in the cladding region is given as:

w 2 = J32 ~ kn 2 (5.63)

5.1.4 Mode Propagation Constant— Exact Solutions

The propagation constants are determined by the boundary conditions (conditions for 

the continuity of fields) at the core -cladding boundary (r = a):

£ 2core = £'zdaddins, (5.64)

E ™ e = E ; bm "s, (5.65)

l CorC /'Z?)core  —  r r  c la d d in gU; (5.66)

H core = ̂ cladding ^

s,EzmK = si £ / Iadding, (5.68)

jU lH zcore= f i 2H zd,"1'iia\  (5.69)

where suffixes 1 and 2 again denote the core and cladding regions, respectively. In 

nonmagnetic material, jux = ja2 = p 0 as in Eq. 5.69.

Let r = a in Eqs. 5.50 —  5.55, and Eqs. 5.57 —  5.62, and then substituting these into 

Eqs. 5.64, 5.66, 5.67 and 5.68, the A, B , C and D  must satisfy the following:

J m{ u ) - C K m{w) = 0, (5.70)

B J m (u) - D K m (w) = 0, (5.71)

{u la) r a u la  a (w /a ) r a w /a  a

(5.72)
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J P S I r  <lUT\  Og l m ,  , U T X . ^ J P S 2 / Wr
,  ,  A 2  m \  )  ^  / m  V '  s  / \ 2(u/a) r a w/ a  a (u/a) ru/ a  a

K m(— ) = 0,
a

(5.73)

[M]-

i4
5

C
£>

=  0 (5.74)

For the so-called non-trivial solution to exist for the column vector [X B, C, D]

det [M\ = 0, (5.75)

It can be shown that the use of this relationship yield the following mode condition that 

determines the propagation constant.

0

(u/a)
iP e\

. L A , ( - )u/ a  a
,ur,

0

j . w

ja p o „ ,ur\
I m \ )u/a a

jcQUoSx m wr
/ / \2 m\ )(u/a) r a 

=  0

~ K m(w)

0

(w/a)  
j f i s  2

w! a

0

- K J w )

w/ a  a

(w! a)‘

j a p o ,u>\
/ m  V /w /a a

j®Mo ™ r (ur 
J m V J(u! a)‘

0
j P  rn

(w/a)2 r 
iP ^i

wr 
* » ( — )a

 12.
/ 77! (  )w/ a  a

~ K m(w)

------------— A  771 ( -------- )w /a  a
ja)ju0s 2 m K  wr
( w/ a)2 r m a

~ K m(w)

0
j P  m

(u/a)2 r

(— )u/ a a
,ur,

J.(M)
jaP o p (w \

I m \  )u/ a a
ja)liQ£\ m nr
/ / \ 2 m '  '(w/a) r a

~ K m (w)

 — A (— )w /a  a
ja)/j0£2 m wr
(  /  \ 2 771 (  )(w /a )  r a
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= / . ( « ) / .(«)

j P  m wr
K m(— )(w/a)'

iP s 2 .wr ,
, - n , ( — )w /a  a

J W o 
 7“ ^  « )w /a  a
j c o ^ S j m  wr
( / \2 m v /(w /a ) r a

- K m( w)

J W o  p , w \
/  m V /w /a a 

j 'W o  m_j ^

i p(w /a)
jP s 2

a

(u! ay — r K ’» (— )w /a  a

j p
(w /a)'

■//fo p fUr.
/ m v /  w/<2 a

J W o  ,wr
 T“ a  m (— )w /a  a
M i ' "  j r  ,w r
/ / \2 mV /(w /a ) r  a

j P  rn ur_ ja>/iQ or
/  /  \  2  m \  )  , m  V /(u! a) r a u /a  a

ja)li0£\ m w \
2 w V // 7W V )u /a  a (u /a )  r

 ̂ (w /a ) r m a (w /a ) r m a w /a  m a w /a a

r

f JWo p  rUr\  JP^l ^  , Wr  ̂ . JW o m  r , Ur  ̂ iP  m r , Wr^
m \ ) t m \ ) , / x 2 v / ✓ /  ̂9 m v 3

V u /a a w /a  a (u /a )  r a (w /a )  r

jp£\ r, Mr.j6)jU0

v

j P  m T rur^jcoju0£2 m ^  ,wr,
a

.wr \
i / ^  ( - ) ^ p L^ ’„ (— )(u /a )  r a (w /a) r a u / a  a w /a  a

K 2m(w)
j P  m ur jco/aq£x m ur jp £ x ur ja)ju0 ur

J J - )
v (u /a )2 r a (u /a )2 r 

Since r  = a , we get:

• U - )  + ( ~ ) ™ A ,  ( - )a u /a  a u /a  a
=0

r 2 A , \  2 /„A O)/U0£2m ^  t 2 f ^  f , 2  ^ / ^ 0 ^ 2m(w)
w

+ r m( u ) K ^ m(w)
w

+ J m(u) K m(w )J m( u ) K ’m(w) W o  £2 
uw

u w a w
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K ' M
a>ti0s 2

uw
-  Jliu)  K 2 (w) Moeim' + J ' 2,„(u) K i  (w) &Vo£\

since = ju2 = juQ we get:

J 2m( u ) K '2m( w ) ^ — + J m(u) K m{ w )J 'm{u )K \(w )-
s .m

w uw

U W

J 2M  K l  ( w ) ^ - -  J l ( U) K l  ( w ) 4 m
w

( w p
w w w

£,l?f

■V(«0 *„'(*)
u J i i i )  wKm(w)

J m\u )  K m\w )
6  i “T” G ■

1 u j ( u )  2 w K l w )
= m

h2 + w2 £ \ 2 +  2

or

J m\ u ) + K m\w )
u J ( u ) wKm{w)

-V(«) ,■ -r'
^ 2  w K m ( W )

1 1 Y  1 1
 T + “^ 2  W W J

HI — +  2
\ U  W  j

(5.76)

With the refractive index given as:

C _ £*//

P V e o M o
(5.77)

where C and V are the speed o f light in vacuum and in a medium, respectively, and £ 

and ju denote the permittivity and permeability o f that medium,

Mo M\ Mi j 

We obtain the following relations:

(5.78)

£ \  — £ 0 ,

£1 ~ £ô 2 »

(5.79)

(5.80)
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Finally:

+ K m'(w)
u j m(u) w K ( w )

«i - V ( « )  +
n, u j m(.u) w K J w )

2 1 1 'i
(  2 

n \ 1 1
\

=  m ~ 7 * ------7 2 +  2
Ku w  J y n 2 U W J

(5.81)

Eq. 5.81 together with u = (k2n 2 -  /?2 )2 a and w = (/I2 - k 2n22 V a , is a transcendental 

function of p for each m .

5.1.4.1 Core Mode Propagation Constants-Weakly Guiding Approximation

Yl — Yl
Under the weakly guiding approximation, determined by A = —----- - « 1  and nx &n2,

Eq. 5.81 can be simplified. In view of A « 0 and nx ~ n 2, the left-hand side o f Eq. 5.81

is virtually replaceable by
/ „ »  . K . ' iw )

+
yuJm(u) wKm(w)

, while its right-hand side is already in

( X i y
the form of square m 2 —  + —-  . Taking the square root for both sides result is:

\ u  w J

'  1  _ U
\ u 2 W 2 J

(5.82)
uJm(u) wKm{w)

Even for a simple expression like Eq. 5.82 a further simplification is still possible, as 

outlined below:

since J  m+\(u) + J  m-\(u) = 2{m/u) J  m{u), (5.83)

K  /fJ+i(w) -  K n;.i(w) = 2(n /w )K m{w\ (5.84)

(5.85)

,
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2 = (5.87)

- 2  K m' = K m_t + K mn, (5.88)

then the following relations are derived:

f m(u) \  (•/„., («) -  («»  1 (•/„., (« )+ • /„ , («»

^ » ( M )  U j m ( U )  K I M

j  m
 ______2 U____________ — m- 1 171

uJm(U) uJm U2 ’

f m  (u) \  (•/„,-, (») -  • /„ , («)) -  1  ( ^ - ,  («) + («))

111 m (M) U J M

( - ) / . ( « ) )  J)  11 j  ™. 1 A/i

uJm (U) uJm 11

Using the same method gives:

a : ’„ ( vi>) _  a : , , . ,  w
wAT_(w) wAL w2 ’

(5.89)

"+1 +-2§-, (5.90)

(5.91)

= - ^  + 4 ,  (5.92)
wKm(w) wKm w

Eq. 5.82 gives two sets of solutions for the positive and negative signs. When the sign is 

positive, using Bessel formulas, inserting Eq. 5.90 and Eq. 5.92 into Eq. 5.82 gives: 

■Vfr), , ,  K m\w )  _  J m+X [ m K m+1 _ „  ( I  | 1 >|
u j m(u) wKm(w) uJm u 2 wKm w 2 U 2 w2,

_ £ n 1±L =  ^ jn ± L  , 5  9 3 n

uJ wKm m

Those modes whose propagation constants are given as the solution to this equation are 

called EH modes.
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In a similar way, when consider the negative sign in Eq. 5.82, and inserting Eq. 5.89 and 

Eq. 5.91 into Eq. 5.82 gives:

, K ,„ 'M  . m K,~m+ 1 m  (  1 1  ^H = h— —------------ —---------- = —m \ ------1-----
uJm(u) wKm(w) uJm u 2 wKm w2 U 2 w2y

uJ„ wK„
(5.94)

or u —— = w- (5.95)
J  m - 1 K m - \

Those modes whose propagation constants are given as the solution to this equation are 

called HE modes.

5.1.4.2 Graphical Methods for Solving HE u Core Mode

The basic idea for carrying out a graphics analysis is either to plot two curves in order to 

search for the cross-over, or to display a single curve against a real axis to produce 

possible zero-crossings. Here Eq. 5.95 is taken as an example to show how a general 

strait forward graphics method could be useful for allocating the solution o f a 

transcendental equation like Eq. 5.95

Rewriting Eq. 5.95, and setting m = 1 for calculating the HEu  core mode, we have:

u J ^ = w E M
J 0(u) K 0(w)

where u 2 =kn{2 - / ? 2, w2 =j32 - k n 22

Eq. 5.96 is evaluated using MATLAB and the results for both the left-hand side and 

right-hand side are shown in Fig. 5.6.

The parameters used are: X = 1.550 pm, a\ = 2.635 pm, n\ = 1.458, «2 = 1.45, 

and «2 k  < p < n\k. The MATLAB codes used are given in Appendix 3.5.
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Fig. 5.6. The plot of uJi(u)/Jo(u) And w^(w)/ATo(w)with the 

crossing corresponding to the solution HEn mode of Eq. 5.96.

At a point where both curve cross, it corresponds to the HE n core mode, which is equal 

to 5.887xl06.

Another Graphical method for solving core HEn  mode is outline below.

In order to display a single curve against a real axis to produce possible zero-crossings 

Eq. 5.99 can be rewritten as

f  = u J « ! ± - w E M .  (5.97)
7 ./„(«) K 0(w)

A plot ofEq. 5.97 against f i is  shown in Fig. 5.7. Once again, at / =  0, the HEn  core 

mode of 5.887xl06. is obtained as in above.
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Fig. 5.7. Plot / =  uJ\ {ii)lJQ(u)-wK(w)IKo{w) a single curve to produce 

zero-crossing corresponding to the solution of HEn mode of Eq. 5.97.

The MATLAB codes used are given in Appendix 3.6-1.

MATLAB is also used to calculate the HEn  mode and the value obtained is 

5886929.131863, which agrees well with the result obtained graphically (see Fig. 5.7), 

the MATLAB code used is given in Appendix 3.6-2.

The custom that Eq. 4.93 is called EH modes and Eq. 4.95 called HE modes was 

established as early as the 1930s. There is no strong reason for the terminology. It is 

worth stating, however, that in EH modes the axial magnetic field Hz is relatively 

strong, whereas in HE modes the axial electric field Ezis relatively strong [Okoshi 

1982]. The designation of HE and EH modes in other textbook is based on the relative 

contribution o f Ez and Hz to a transverse component (e.g. Er or E^) of the field [Yariv 

1997]. In EH modes, Ez makes the large contribution, while Hz makes the large 

contribution to the HE modes. The HEn mode can propagate at any wavelength, the
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next modes which can propagate are TEoi and TMoi modes, while EH modes are higher 

order modes as is shown in Fig. 5.8. In single-mode fibre, only one HEn mode can 

propagate.

HE

TM,
TE,

HE;

EH

HE

HE;

Fig. 5.8. Normalized propagation index, n^f = pA, / 2n, as a function o f the 

normalized frequency parameter V, for some of the lowest-order modes of 

step-index fibre [Gowar 1993].

5.1.4.3 HE Cladding Modes

Eq. 5.81 will yield cladding modes, but using graphical methods to find the HE mode 

values are not as easy as in the case of core modes. It is necessary therefore to develop 

another better method to determine the cladding modes. Letting r = a in Eqs. 5.50 —  

5.55 and Eqs. 5.57 —  5.62, and substituting into Eqs. 5.64, 5.65, 5.66 and 5.67 then A, 

B, C and D  must satisfy:

A J m(u) - C K m(w) = 0 , (5.98)
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(5.99)

A_ J i m  ur_ _ BJWhj, ^  + C_JS_JL j j ^ _ D A  p  ^  = 0,
/  / \  2 /w v /  / jti \  /  ,  / \  2 w '  '  / /n '   ̂ 7(u /a )  r a u / a  a (w /a )  r a w / a  a

(5.100)

w /a a (w /a) r  a w /a  a (w /a) r a

(5.101)

[ M \

A
B
C
D

=  0 (5.102)

o

j P  m
( u / a ) 2 r

^ A A ~ )u / a  a

J A - )

■ U « )

ja>Bo , ,  f ur
/ ml / u / a  a

j f i  m ^
(u /a)

o

(w/a)'  
jcDSi wr
— T ~ k  m (— )w /a  a

~ K mM

jtD/io ( wr
 ~ K m (---- )w / a  a 
j P  »  w

(w! a)

Using the same method in deriving Eq. 5.81 gives:

■V(«) . f n l2J m'(u) + n22K m'(w)^
KuJm(u) wKm(w) uJm(u) wKm(w)

=  m ‘
iV  r o

v d  +

2^2 r p \ 2

V W y
, (5.103)

Eq. 5.103 together with Eq. 5.56 and Eq. 5.63, are a transcendental function o f P for 

each value of m . Here the integer m denotes the mode order, whereas the parameter p 

is the propagation constant o f the hybrid mode, k  stands for the wave number (defined 

for free space), and w and ware the arguments o f the Bessel functions J m and K m .

Eq. 4.105 is widely quoted as the eigenvalue equation of the hybrid HE and EH modes, 

which is accurate for an all-dielectric waveguide, whether weakly guided or not [Tsao 

1992]. In the circular waveguide, the solutions are separated into two classes. The two
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classes in the solutions can be obtained by noting that Eq. 5.103 is quadratic in 

J 'm ( u ) /u J { u ) ,  and when we solve for this quantity, it will yield two different equations 

corresponding to the two roots o f the quadratic equation. The eigenvalues resulting from 

these two equations yield the two classes of solutions that are designated conventionally 

as the EH and HE modes.

By solving Eq. 5.103 for T m (u ) /uJ (u ) ,  gives:

A .  («)
uJ(u)

(  2 , 2  ̂nx +n2

2 nx w K ( w )
+

(  2 , 2Vnx +n2

2 nx
+

m 2 f p \ Y i  i
w K m ( w ) )  U J 2 + 2  \ w  u

(5.104)

Using the Bessel function relations:

m
J ' m («) = - J aH (u) +  ~ J m (a) (5.105)

Eq. 5.104 gives the formula for the EH modes:

ni  +n2 K m'(w)
uJ  (u) 2n. wKm (w)

+ <
m

~~2
^ n 2 - n 2  ̂

2 n 2
K m\w )

KwKm(w)j
< m £

\ n\k j
+

\ 2

(5.106)

When the Bessel function relation is used

m
(5.107)

The resulting HE modes are [after Yarivl997]:

J m - n 2 +n22 K m'(w) 
uJ(u) 2 n 2 w K ( w )

+
m

2
V 2 Ylx J

K ' ( w) A  c

wKm(w)
+

mfi  
\ n\k j Kw 2 + u 2

(5.108)

For a given set o f the parameters k0,a l ,a2,nx, and n2, the eigenvalue equation can be 

solved numerically to determine the propagation constant p  . The factor p  is the
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z component of the wave propagation constant k  and is the main parameter o f interest 

in describing fibre modes ( where the free-space wave number k  is defined as 

k  = co / c = 2tt / X , and Z is the vacuum wavelength o f the optical field osillating at the 

frequency co) [Agrawal 1997].

For guided modes f t  can only assume certain discrete values, which are determined 

from the requirement that the mode field satisfy Maxwell’s equations and the electronic 

and magnetic field boundary conditions at the core -cladding interface [Keiser 1991].

A mode is uniquely determined by its propagation constant f t  . It is useful to introduce 

a quantity neff  = /? I k , called mode index or effective index and having the physical 

significance that each fibre mode propagates with an effective refractive index neff  

whose value lies in the range n{> ne/f> ri2 . A mode ceases to be guided when ne/f < n2 . 

This can be understood by noting that the optical field of guided modes decays 

exponentially inside the cladding layer [Agrawal 1997].

Eq. 5.108 is evaluated using MATLAB graphical method to obtain the HE cladding 

modes and the result over HE cladding modes in the range ni k  < p c  n\k  are shown in 

Fig. 5.9.

The MATLAB codes used are given in Appendix 3.7-1.
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Fig. 5.9. A plot of Eq. 5.108 giving all the HE;W cladding modes.

In LPG sensor most of the time, only the first eight modes are more useful to simulate 

the coupling wavelength. Fig. 5.10. shows the first eight HE cladding modes.

HE15

HEE 18
0.5

HE12L-0.5

HE

5.864 5.866 5.868 5.87 5.872 5.874 5.876 R

Focus on the first part HE cladding mode range x 106

Fig. 5.10. A plot showing the first eight HE cladding modes
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A more accurate but time consuming method to exactly determine the p  values from the 

graph is by manually selecting the zero crossing points using the cursor, which the 

program include and utilising the 'Zoom in' (which gives greater resolution), 'format 

long' and 'ginput' commands to print these values on screen. It was noteworthy that the 

first zero crossing point from the right hand side o f the graph gives the HEn cladding 

mode, and the second gives the HE12 cladding mode, etc.

MATLAB is used to calculate the HE cladding mode values, as shown below.

HE1,1=5877693.052145,

HE1,2= 5877157.562610,

HE1,3= 5876194.005741,

HE1,4= 5874801.976170,

HE1,5= 5872980.663165,

HE1,6= 5870729.661358,

HE1,7= 5868048.160015,

HE1,8= 5864935.753771,

The MATLAB codes used to calculate HE cladding mode values are given in Appendix 

3.7-2.

5.2 Long-Period Grating Periodicity Prediction

In this section the method of long-period grating periodicity prediction has been 

presented. From the long-period grating phase matching equation, the relationship 

between grating periodicity and coupling wavelength can be plotted. Using this result 

the period required to couple a given wavelength X can be predicted.

Now one can predict the wavelength at which the mode coupling will be enabled by a 

particular grating period. The LPG periodicity at different resonance wavelengths can 

be obtained according to the phase-matching condition given by Eq. 4.1
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- 0 % , = - f  ) °r Eq. 4.2 (*■>, = (» „ . W - » £ ,  Theoretical

determination o f the relationship between grating periodicity and wavelengths is 

explained as follows:

1). The first step involves the calculation of the propagation constants o f the guided core 

mode and the various cladding modes of a fibre at a specific wavelength Xi . Normally it 

could be sufficient to calculate only the first ten cladding modes.

2). Using the phase matching condition /?COre(i) -  P îld (0  = 271 / v l, a set o f periods yl(/j) 

can be obtained, e.g. from first cladding mode we get the A(1), and from second cladding 

mode get yl(2) ,etc.

3). Step 2 is repeated for several different resonance wavelengths, e.g. 1300 nm, 1400 

nm and 1500 nm etc.

4). Using Excel package, the results o f coupling wavelength versus LPG periodicity can 

be plotted as shown in Figs. 5.11 and 5.12.

The MATLAB codes are given in Appendix 3.8.

The fibre is described by the following parameters: 

m  = 1.458+An/2 = 1.458+ (3.6xl0'4)/2, n2 = 1.45, n3 = 1.0, cq = 2.625 nm, 

ai -  62.5 pm.

A = (n\ -  ri2) / n\ = 0.0055,

Note: An = 3.6x1 O'4 is the peak induced-index change of the LPG.

The results of calculation also are given in Table 5.1 and 5.2.
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Table 5.1: The relationship between the grating periodicities and resonance 

wavelengths (consider the peak induced-index change A/7 = 3.6x1 O'4in the co re)

Wavelength, nm 1100 1200 1300 1400 1500 1600 1700
Period (mode 1), (im 262.95 320.41 390.59 476.822 583.4 715.688 880.587
Period (mode 2), nm 260.03 315.74 383.16 465.085 564.86 686.523 834.755
Period (mode 3), |im 257.82 312.07 377.15 455.282 548.97 660.866 793.458
Period (mode 4), jim 252.87 304.33 365.16 436.945 521.2 619.289 732.118
Period (mode 5), nm 249.55 298.86 356.34 422.916 499.17 585.166 680.094
Period (mode 6), nm 243.22 289.25 342 401.88 468.92 542.635 621.805
Period (mode 7), |im 238.75 282.06 330.7 384.515 442.81 504.249 566.822
Period (mode 8), nm 231.67 271.67 315.82 363.729 414.57 467.068 519.503
Period (mode 9), pm 226.13 263.01 302.66 344.299 386.69 428.258 467.134
Period (mode 10), nm 218.85 252.73 288.57 325.583 362.67 398.529 431.749
Period (mode 11), |im 212.4 242.94 274.24 305.302 334.91 361.786 384.751
Period (mode 12), nm 205.36 233.39 261.71 289.467 315.65 339.262 359.438
Period (mode 13), nm 198.18 222.86 246.87 269.306 289.23 305.842 318.591
Period (mode 14), (im 191.69 214.38 236.23 256.466 274.36 289.3 300.889

1700

1600

C1500
JC
O)
C1400

■51300

1200

1100
770 870370 470 570 670170 270

Period m

Fig. 5.11. Theoretical determination of the relationship between the grating 

periodicities and resonance wavelengths, considering the peak induced-index 

change in the core index.
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Table 5.2: The relationship between the grating periodicities and resonance

wavelengths (without considering the peak induced-index change in the core index)

Wavelength, nm 1100 1200 1300 1400 1500 1600 1700
Periods(mode 1), f̂ m 272.45 332.74 406.58 497.612 610.46 751.003 926.736
Periods(mode 2), jam 269.33 327.71 398.56 484.843 590.22 718.999 876.178
Periods(mode 3), 266.95 323.74 392.02 474.153 572.84 690.734 830.498
Periods(mode 4), 261.66 315.43 379.12 454.34 542.72 645.593 763.788
Periods(mode 5), |inn 258.08 309.54 369.59 439.131 518.75 608.396 706.955
Periods(mode 6), .̂m 251.33 299.26 354.21 416.548 486.27 562.725 644.502
Periods(mode 7), 246.54 291.53 342.05 397.823 458.08 521.306 585.241
Periods(mode 8), îm 239.01 280.48 326.21 375.702 428.07 481.876 535.251
Periods(mode 9), |am 233.1 271.22 312.12 354.891 398.25 440.428 479.476
Periods(mode 10), |am 225.4 260.34 297.22 335.144 372.96 409.276 442.587
Periods(mode 11), 218.53 249.91 281.96 313.581 343.5 370.384 393.032
Periods(mode 12), (im 211.12 239.85 268.8 297 323.42 347.018 366.918
Periods(mode 13), p.m 203.49 228.7 253.09 275.705 295.59 311.938 324.203
Periods(mode 14), (im 196.69 219.82 241.98 262.362 280.21 294.914 306.105

1700

HE1 14

1600

HE1 1
|  1500

C 1400 0)
0)
>(0;> 1300

1200

1100
770 870370 470 570 670170 270

Period

Fig. 5.12. Theoretical determination of the relations between grating 

periodicities and resonance wavelengths, without considering the peak induced- 

index change in the core index.
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From Fig. 5.11 and 5.12 it can be seen that for a higher core refractive index, the period 

o f LPG needs to be shorter for the same coupling wavelength. For the example given in 

Fig. 5.11 the core index is 1.45818, for the LPG to couple a wavelength o f 1.5 pm, the 

required period is 499.17 pm. In Fig. 5.12 where the core index is 1.458, the required 

grating period is 518.75 pm in order to couple the same wavelength.

5.3. Modelling of Long-Period Grating Index Sensors

The long-period grating is a spectral loss element that couples light out o f an optical 

fibre at a particular wavelength based on the grating period, fibre refractive index, and 

the refractive index o f the surrounding environment. The LPG sensor is most sensitive 

when the refractive index o f the surrounding ambient index is close to that o f the 

cladding index. In practical uses, sometimes the refractive index o f the surrounding 

medium is higher than that of the fibre cladding, for example in the chemical 

concentration sensor and some coating materials used for gas sensors. Thus it is 

necessary to develop a model to satisfy all possibilities.

5.3.1 LPG Index Sensors in the Literature

There have been a number of published work concerning index sensors in which the 

surrounding index ( n3) change has been considered but limited to values lower than the 

LPG cladding index ( ncl) [Bhatia 1996, Patrick et al 1998, Bhatia 1999].

The case for which n3 > nc[ is referred to as the leaky or hollow dielectrical waveguide 

[Marcuse 1991]. Previous work for a leaky dielectrical waveguide in a long period 

grating is summarized as follows:
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1) Patrick and his co-works [Patrick, et al 1997] have first demonstrated chemical 

sensors based on a long-period fibre grating response to a change in n3. They have 

measured the changes in the loss spectrum of an LPG when the index of refraction of 

the surrounding medium varied over a range o f n3 =1.00 to 1.72. For

1.47 < n3 < 1.72 the transmission o f the resonance X decreased smoothly between the

two spectra as shown in Fig. 5.13. They show that an LPG sensor based on this 

external refractive index response can be used to determine the concentration of 

antifreeze in water.

m■o
-  -10 c o

8 -15 
E
c -20 <o

1 . 7 2

1 . 4 5

-25 1.00

-30
1470 1480 1490 1500 1510

Wavelength, nm

Fig. 5.13. Transmission spectrum of the fifth resonance X measured for five values of 

n3. The value of n3 is indicated next to each line of the spectra [Patrick, et al 1997].

2) Lee and co-works [Lee et al 1997] have presented a graphical method for the analysis 

o f the displacement of the resonant peaks o f a long-period fibre grating induced by a 

change of ambient index. They stated that for ambient index near the refractive index of 

the cladding all modes disappear or weaken greatly. With an ambient index larger than 

the cladding index, the resonance peaks re-appear at wavelengths slightly longer than 

those measured in ambient air. The wavelength of the re-appearing peak has no further 

dependence on the ambient index.
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3) In a paper entitled "Demonstration of long-period-grating efficient couplings with an 

external medium of a refractive index higher than that o f silica". Duhem and co-works 

have discussed the experimental results of the LPG's response to different media of 

refractive index higher than that of silica [Duhem et al 1998]. They have evaluated the 

features of LPG's surrounded by several liquid media for several kinds of fibre. The 

study was focused on the determination of the coupling intensities in different types of 

fibre.

4) Stegall and Erdogan have published two papers, "Long-Period Fibre-Grating Devices 

Based on Leaky Cladding Mode Coupling"[Stegall and Erdogan 1997], and "Leaky 

Cladding Mode Propagation in Long-Period Fibre Grating Devices" [Stegall and 

Erdogan 1999]. They have investigated leaky-mode propagation of the cladding modes 

o f an optical fibre through coupling with a long-period fibre grating [1999, 1997]. A 

one-dimensional ray propagation model was applied. Where the

Fig. 5.14. Ray picture of leaky mode in a "hollow" dielectric 

waveguide [Stegall and Erdogan 1999].

leaky propagation can be approximated using a ray model in a one-dimensional (planar) 

waveguide, as depicted in Fig. 5.14. Since untitled, transversely uniform fibre gratings 

permit significant coupling to occur only between modes of the same azimuthal 

symmetry (here HEiv and EHiv which have a circularly symmetric intensity 

distribution), they were able to model these fairly accurately using a planar-waveguide

103



model o f a single polarisation (here TE polarisation). The essence of this model is that 

the mode experiences Fresenel reflection at the interface between the cladding and the 

surrounding. For the leaky waveguiding situation, the dispersion relation no longer has 

purely real solutions. One way to determine the real portion o f the mode propagation 

constants is to restrict the transverse propagation constants to correspond to constructive 

interference for a plane wave propagating down the waveguide. Mode-like propagation 

is then described by plane waves associated with the rays that have incident angles Qm 

given by cos( 6m) = m k  / 2D«ci, where m is as an integer, D is the waveguide width 

(corresponding to the fibre diameter).The associated transverse propagation constant f>m 

is then given by:

where k  is the fiee-space wave number.

As the ray bounces at the interface, some leak of the light occurs as described by the 

field reflection coefficient:

with 6 being the angle of incidence.

An intuitive method for defining the loss that results from this leakage is to determine

(5.109)

r = (5.110)

the distance L that the mode propagates before the power drops by a factor o f 1/e2,

yielding

L = - (5.111)
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which is valid for He < r <1. Here Lb is the longitudinal distance separating successive 

bounces, or Lb =Z)tan(#). The experimental measurements were compared to a transfer- 

matrix model to estimate the cladding mode losses. Losses are measured using an all­

fibre Mach-Zehnder mode interferometer. Stegall and Erdogan [1999] stated that the 

measured losses are somewhat greater than predicted by the simple theory.

5) Duhem and co-workers [Duhem et al 2000] state that the resonant wavelength in 

leaky configuration is independent on the external index, and that the operation 

principles o f a LPG sensor can only be based on the coupling intensity variations with 

the external index.

5.3.2 Methods of Modelling Long-Period Grating Index Sensor

This subsection focuses on the study of an LPG coupling wavelength shift when the 

surrounding index changes to values even greater than the cladding index. It presents a 

numerical method to calculate the leaky HE cladding modes, in which the results agree 

with the published experimental data.

The first step when modelling the refractive index sensors is to calculate the refractive 

index of the core and the refractive index of cladding, respectively. The core mode is 

not affected by the surrounding index change, so at a specific wavelength A,., the HE

core mode is obtained by using Eq. 5.96. For H E n core mode m = 1,

I 2 2 2 Y/2w, = ax nco -  P  core) is the normalized transverse phase constant in the core and

wx = ax {j3 core k 2ncl2) is the normalized transverse attenuation constant in the core,

where k = 2n  / A-, ax is the core radius and Pcore is the propagation constant o f the core
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mode. The core effective index is obtained using ncorc (2[) = ^ corc .
k

For calculation o f the cladding modes, the standard multimode waveguide formula is 

used ignoring the effect of the core, treating the cladding as a core o f multimode fibre 

and the ambient or coating material as a fibre cladding in the LPG region. Cladding 

modes classification are as follows:

5.3.2.1 Case 1: n3 <ncl

When n3 < ncl, this is a total internal reflection condition. The HE cladding mode 

expression is obtained from the well-known eigenvalue equation Eq. 5.108.

( 2 2 2 Y/2For H E ln cladding modes, m = 1, where u2 = a2 \k nclad -  p  dad J is the normalized 

transverse phase constant o f the cladding, w2 = a 2(j32 dad -  &2«32) 2 is the normalized

transverse attenuation constant, v = (u2 + w22)1/2 is the normalized frequency and a2 is 

the cladding radius. The cladding effective indices are obtained from the equation 

Eq. 5.112:

b (")cm(A,) = ^ < ),lad . (5.112)
k

5.3.2.2 Case 2: n3 = n cl

When the surrounding index is approximately equal to the cladding index n3 = ncl, the

distinct loss bands disappear since the cladding modes get converted to radiation mode

loss [Vikram and Vengsarkar 1996]. There are a few dB of broadband radiation-mode

coupling losses, but no distinct resonance [Stegall 1999].
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5.3.2.3 C ase 2: n3 >nd

For the case n3 > ncl, the cladding modes no longer experience total internal reflection

and are referred to as leaky modes. Now we treat the fibre waveguide as a hollow 

circular dielectric waveguide, the cross-section of which is illustrated in Fig. 5.15. Here 

a2 is the radius of the hollow guide (corresponding to the fibre cladding radius), nd is 

the hollow index (corresponding to the fibre cladding index) and n3 is corresponding to 

the index of the surrounding medium or coating material.

Fig. 5.15. Cross-section of a hollow circular waveguide where n3 > nd

In this case Eq. 5.108 is still valid provided we take into consideration that the 

quantities J3dad,u2,w2 and vhave complex values and the Bessel functions may have

complex arguments [Adams 1981]. If the propagation constant j3dad becomes complex, 

then it is necessary to consider lossy or leaky modes. For complex j3dad, its real part f3r 

equals the phase velocity o f the specified mode, whereas the imaginary part /?, 

represents its loss rate [Tsao 1992], Using MATLAB, both graphical and numerical 

methods can calculate the real and imaginary parts of the propagation constant o f the 

leaky cladding modes.

However, for circular waveguides, Adams [Adams 1981] has shown that, by making

107



certain approximations, f iclad can be expressed in terms of a real part and a power 

attenuation coefficient a  as given by:

P c l a d  — P r

la
(5.112)

where

\ ( (l + 0.25 V "1
2 ^ akncl j

(5.113)

and

a  = (»32 + nc l )  
a k n j ^ n *  - n (

I H—  
v 4 y

n  for HE modes (5.114)

where / = 1,2,3,.

Typically in a single mode fibre, a long-period grating couples the fundamental core 

mode to a co-propagating cladding mode at coupling wavelengths given by Eq. 4.2.

4 n) = { nc o M ) - nciad(n)w )  A, where A1}'0 is the n ,h coupling wavelength, «rore(A ) is

the effective index o f the core, nc/ad(,,) (At.) is the effective index o f the n th cladding

mode and A is the pitch of the LPG period. It is clear from this equation that when n3

changes, the propagation constant o f cladding modes J3{n)dad and the effective

refractive index o f cladding modes ncltJ ‘n) (A .) , will change also, and as the

nciad(,)> (^ i) changes, the coupling wavelength A(n)i will shift. According to this theory 

the long-period grating index sensor can be modeled,

Eqs. 4.2, 5.96 and 5.108 are used to obtain a simulation results for the LPG resonance

wavelength shift versus the surrounding refractive index. This is obtained for the

1th cladding mode, as shown in Figs. 5.16 and 5.17. The parameters are: core index

nx = 1.458, cladding index n2 =1.45, the core and cladding radii are 2.625 /u m and
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shift versus, the refractive index of the surrounding refractive is shown in Fig. 5.16. 

The MATLAB codes are given in Appendix 3.9.

E -10
C -15 
jfcf -20
IE -25
</> -30
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O) -40 
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~  -70
§■ -7S O -80
°  -85

-90
-95

-100
1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7

Index of refrection of the surroungding medium (n3)

Fig. 5.16. Simulation results obtained for long-period grating coupling wavelength 

shift o f the 7th resonance mode versus n3 on a wide range of refractive index.

It can be seen from Fig. 5.16, for n3 > shift in coupling wavelength is large and 

negative, whereas at n3 ~ n2, the A 1  is very large.

Fig. 5.16 shows that the very sensitive region occurs when n3 is close to the cladding 

index ncl and when the n3 changes from 1.4499965 to 1.449997 (i.e. An = 5 x l 0“7). 

The coupling wavelength shift shows a dramatic change from a sharp decrease to a 

value slightly higher than the coupling wavelength in air, with AX values ranging from 

-96 .10  nm to + 0.45 nm. The "switching properties" in this sensitive region have a 

potential application in the communications and sensor fields. When n3 > ncl, the leaky 

cladding modes coupling wavelengths are slightly longer than initial coupling 

wavelength when the index of surrounding material n3 = 1 (in air). It was shown that

when n3 > ncl, the theoretical leaky coupling wavelengths shift smoothly, but when n3



is higher than a critical value which is around 1.486, the coupling wavelength is 

decreased. Fig. 5.17 shows the enlarged section o f Fig. 5.16 for the range o f index 

values n3 >1.45 . When the surrounding index n3 is higher than that o f cladding 

(n 3 > n2), the LPG coupling wavelength A. will experience a shift. For n3 =1.7 , the 

shift in the wavelength is 1.3 nm as compared to the case when n 3 = 1. This spectral 

shift is very small but is still measurable using a spectrum analyser with sufficiently 

high resolution.

I  1-6
^  1.4

1.2
.486

(0 1.0

0.8

|  0 6  
«  0.4

O) 02
I  0 ,
3o

- • 1.450

1.751.50 1.55 1.60 1.65 1.701.45

Index of refraction of surrounding medium, n3

Fig. 5.17. Theoretical results revealing that when the surrounding index is 

higher than cladding index, the LPG resonance wavelength will still shift.

This result shows a good agreement with the experimentally measured data as shown in

IMS 1410 1309 1330 1340 |5«0
Wavelength (ran)

Fig. 5.18. Experimentally measured LPG transmission spectra for

several surrounding indices [Stegall and Erdogan 1999].
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The following is a flow chart, which shows the process o f calculating the value o f the 

wavelength shift when n3 changes (using two layers HE cladding modes equation).

The parameters used are:

Flexcor 1060 Fibre data (Bhatia, 1996):

Difference in index of refraction A: 0.45 %,

Numerical aperture NA: 0.14,

Core radius: 2.5 pm and ri2 = 1.45,

Cladding diameter: 125 ± 2 and n\ -  1.45656937670071,

A (i) > L P G  p e r io d  
A (i-1 ) < L P G  p e r io d

Y E S
N o

X = [ X , ( i ) + A , ( i - 1 ) ] / 2

F o r  s p e c i a l  ri3 

F ir s t  g u e s s  X (i)

C a lc u la te :  

k=27i /  A,(i)

Hcore= Pcore/ k

n <n)d a d = P (n)c l a d / k

A (i)= X (i) /(n C0re- n <n)Ciad)

Fig. 5.19. A flow chart showing the calculation process associated with the 

modelling of LPG index sensor.

5.3.3 Results and Discussion

This section gives the detailed modelling method of the long period grating index
111



sensor. Using this model it is possible to simulate the long period grating coupling 

wavelength shift when the ambient index changes from 1 to 1.74 (see Fig. 5.16) and 

possibly higher values. These results reveal that when the surrounding index is higher 

than that o f the LPG cladding, i.e., n2 >1.45, the coupling wavelength will still

experience a measurable spectral shift. This is the first time that such results have been 

obtained through mathematical modelling, while previous literature has tackled the 

problem on an experimental basis only. Some published data also state that the 

wavelength has no further dependence on the ambient index when n3 > ncl [Lee, et al

1997] and that the resonance wavelengths do not shift when the value o f the external 

refractive index is changed [Duhem, et al 1998], This new result can be applied to the 

modelling of chemical gas sensors, since in most gas sensors, the index of refraction of 

the coating material is higher than the cladding index.

For the same LPG sensor element the higher modes show greater coupling wavelength 

shifts than the lower modes, as Fig. 5.20 shows.

1400

£ 1380  
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£  1340
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£
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o
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Fig. 5.20. LPG coupling wavelength shift as a function of the surrounding index 

of refraction, showing that the 1th mode shift is larger than the 6th mode shift.
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From Fig. 5.21 it can be seen that the sensitivity dk  / du?, changes with the different 

refractive index values «3. The 1th mode (kj)  is more sensitive than the 6th mode ike) 

when the surrounding index of refraction changes. This is due to the fact that the 

separation between higher mode values is larger than that between lower modes (see 

Fig. 5.10), thus when n3 changes, the higher mode values change more than the lower 

modes. Hence the higher mode coupling wavelength shift is greater than that for the 

lower mode.

8000

7000
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2000

1000

7th mode T7^S

6 th mode

1.41 1.431.415 1.42 1.425

Refractive index n3 

Fig. 5.21. Sensitivity dk  / dn3 as a function of index of refraction n3.

When n3 > nd the coupling wavelength shift for the higher mode is larger than that for

the lower mode, a result that can be seen in Fig. 5.22.
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Fig. 5.22. A diagram showing that the 1th mode coupling wavelength shift is 

larger than that of the 6th mode.

5.4 Modelling of Long-Period Grating Gas Sensors

Since the refractive indices of all gases are smaller than that of the cladding, and are 

approximately equal to l, it was necessary to select affinity coating materials or polymer 

films to be coated onto the fibre cladding. As the coating absorbs target molecules, its 

index of refraction changes, causing a shift in the wavelength of the coupled light. This 

wavelength change is demodulated to determine the target gas concentration and 

enabling a real-time monitoring of the environmental conditions. For most coating 

materials, refractive index values are higher than that of the cladding (n3 >1.45).

5.4.1 Modelling of Toluene Gas Sensor Based on Long-Period Gratings

Most fibre grating-based sensors are used for strain and temperature sensing. Recently

efforts has been focused on modelling novel sensors for gas detection based on long-
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period fibre gratings, where the fibre cladding can be coated with an organic material 

that changes its refractive index on exposure to an external agent. The change in the 

coating refractive index will result in a change in the effective refractive index o f the 

fibre cladding. This in turn will affect the higher order modes, which are travelling at 

the core-cladding interface. The effect would be a shift in the wavelength and 

amplitude of the transmission, especially in the higher order modes. This can be 

monitored by observing the transmission spectrum of the LPG. A mathematical 

modelling will be used in order to fully investigate this sensor.

The principle o f operation of long period gratings when used as gas sensing elements 

is based on index of refraction changes of the coating material (n3) due to adsorption 

of target gas molecules. As a result the cladding modes and coupling coefficients will 

change, with the former causing the attenuation bands to shift, while the latter results 

in different peak losses in the fibre transmission spectrum, as shown in Fig. 5.23.

Light in

/  o  VA*' 'vA  V a*' -v
Coating

Gas

Cladding

Incident light U  
wavelength coating '

✓ v V 'y  \  * / W r /  O

Light out 
I

T f
Transmission
wavelength

Gas

Fig. 5.23. Optical fibre long-period grating gas sensing element and the 

associated LPG transmission shift.
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The most common air pollutants are NO*, CO, SO2, alkanes, and volatile organic 

compounds (e.g., benzene, toluene, and xylene) [Boisde' and Hamer 1996].

The above model can be used to simulate the LPG gas sensor in which the coating 

material index is higher than that o f the cladding. The coating material proposed to be 

used here is phosphorilated calix-4-resorcinarene ( PC [4] RA) prepared by Langmuir- 

Blodgett (LB) method. This material has been the subject of refractive index 

measurements using surface plasmon resonance (SPR) technique and published recently 

by Nabok and co-workers [Nabok, et al 1997].

The values of both the thickness and the refractive index (nejj) o f PC [4] RA LB films 

are obtained by fitting the measured SPR curves to Fresnel reflection formula and are 

given in Table 5.3.

Table 5.3: Values of the thickness and effective refractive index (nefj) of PC [4] RA 

LB films on exposure to toluene gas as obtained from SPR data fitting.

N um ber of LB layers Initial state neff Post adsorption neff Post recovery nej f
2 (Testl) 1.457 1.507 1.465
4 (Test2) 1.452 1.503 1.476
8 (Test3) 1.464 1.515 1.470
Mean values 1.458 1.508 1.470

The above data was used in this model to calculate the LPG coupling wavelength o f the 

1th leaky mode shift, and the results are shown in Fig. 5.24.
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Fig. 5.24. Simulation results of the 1th leaky mode shift when PC[4]RA LB films 

were exposed to toluene gas using testl, test 2 and test 3 data.

The data given in Table 5.3 shows that the index of refraction of the coating material is 

higher than that of the cladding (n cl). However this method is capble o f calculating the

wavelength shift for each one of the given tests. The experimentally measured index 

changes of the coating material on expoure to toluene vapour is shown to agree well 

with those predicted by the current model.

Post adsorptionPost recovery
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Initial state1.31
^  1.1 

|  1
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Fig. 5.25. Simulation results of the 7th leaky mode shift when the PC[4]RA LB films 

were exposed to toluene vapour using mean values of Table 5.3 data. Coupling 

wavelength shift versus LB film index changes is further enlarged in the inset.
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From Fig. 5.25, the obtained values of the wavelength shift appeared to be small (about 

0 .02 -0 .14nm),  but it can still be detected by using an optical spectrum analyser of 

sufficient resolution. Research is currently underway in order to perform coating of 

different materials for long-period grating gas sensors.

5.4.2 Modelling of NO2 Gas Sensor Based on Long-Period Gratings

An optical sensor based on reflectometric measurements using polysiloxane with azo 

dye side-chains as the sensing layer for the detection o fN 0 2 gas, has been developed at 

the Centre for Molecular and Biomolecular Electronics (CMBE) in Coventry 

University. A value of index of refraction in air of about 1.575 has been found at 

wavelength A = 800nm (see Fig. 5.26).

no2
100 ppm1.7-o

Air

600 650 750 800700550

w a v e le n  g th  /  n m

Fig. 5.26. Dispersion curves of refractive index for polysiloxane LB film with and 

without NO2 [2000, URL: http://www.nes.cov.ac.uk/Research/CMBE/gassens.htm]

Employing the model developed for the LPG chemical sensor and by using the data

from Fig. 5.26 for the surrounding refractive index «3,the shift in the wavelength is

simulated and the results are shown in Fig. 5.27. For an index change of 0.095, a

resonance shift o f about 0.1 nm can still be detected using spectrum analysers o f high
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resolution (see Fig. 5.27).

2.75

c  2.73
1.575

2.70

3 2.65

2.63

n 2.60
1.67

o 2.58

2.55
1.525 1.55 1.575 1.6 1.625 1.65 1.675
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Fig. 5 .27. Simulation results for an NO2 gas sensor based on long-period 

gratings showing a coupling wavelength shift when the coating material is 

exposed to 100 ppm NO2 gas.

The above two examples show that the model can be used to assist in the development

of an environmental monitoring chemical sensor based on long-period gratings, with the

chemical coating material refractive index being higher than that of the index of

cladding (n3).

5.4.3 Discussion of Simulation Results of LPG Gas Sensors

It has been shown that the developed model of long-period grating index sensor can be 

used to simulate gas sensors with different coating materials. Generally speaking, the 

shift in the higher mode-coupling wavelength is found to be greater than that for the 

lower modes when the ambient index w3 changes. This is due to the fact that the 

separation between the higher mode values is larger than that between the lower modes, 

as was shown in Fig. 5.10. For example the shift of 7th mode coupling wavelength is 

found to be larger than the calculated shift o f the 6th mode, as was shown in Fig. 5.20.
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However, when the period of LPG is increasing, the lower mode-coupling wavelength 

shift (A X) is found to increase when n3 changes. This means that lower leaky modes 

such as the 6 th mode can still be employed to simulate a gas sensor, as demonstrated by 

the following example:

The calculation of the LPG coupling wavelength of the 6 th leaky mode demonstrates a 

wavelength shift of about 0.32 nm and 0.08 nm, for LPG fibre with grating periods of 

570 pm and 290 pm, as shown in Figs. 5.28 and 5.29 respectively. From these results it 

can be seen that a fibre grating of the same characteristics but with different periods, 

will show a different degree of shift in the coupling wavelengths as a result o f using the 

same coating material on exposure to the same analyte. In other words, the longer the 

period, the greater the shift o f the wavelength (fibre data used are: ai=2.5xl0~6, a2 = 

62.5x10hS, n\ = 1.45657, nci= 1.45, and A = 510jum  and 290jum). From Fig. 5.28, it

can be seen that the calculated values of the wavelength shift are small (about 0.32 nm -

0.19 nm). However such values can still be detected when an optical spectrum analyser 

of sufficient resolution (about 0.01 nm) is employed.

Post recovery Post adsorption

Initial stateO 2.3 “I- - - - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - - T- - - - - - - - - - - - - - - - - - - 1

1.45 1.46 1.47 1.48 1.49 1.5 1.51 1.52
Index of coating material PC-4-LB

Fig. 5.28. Simulated results o f the 6 th LPG coupling wavelength shift when 

PC[4]RA LB films are exposed to toluene vapour; period o f grating is 570 pm.
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Fig. 5.29. Simulated 6 th LPG coupling wavelength shift when PC[4]RA LB 

films are exposed to toluene vapour; period of grating is 290 \im.

Figs. 5.28 and 5.29 show that when /?3 is slightly greater than ncI, the coupling 

wavelengths will shift to longer values as n3 increases.

5.5 Modelling of Long-Period Grating Transmission Spectrum as a Function of 

Surrounding Index of Refraction

When the surrounding index of refraction 113 changes not only does the LPG coupling 

wavelength shift, but there is also a variation in the LPG transmission amplitude. This 

subsection will introduce a model for calculating the amplitude changes and plotting the 

LPG transmission spectra.

Erdogan introduced the equations to calculate the three layer cladding modes 

(considering the core, cladding and surrounding indices) which are expressed as 

[Erdogan 1997b]:

« ,= « , '  (5 115)

where
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The following definitions have been used in Eqs. 5 .116-5 .117:

cr, =  H  neff / Z o

<j 2 — i I nejpZ0

Z 0 = ^M o/£ o = 377Q

(5.118)

(5.119)

(5.120)

1 1
=21 2 2 

22 ., 22.
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1 1
1132 =  T  + ------2 »

W , 22.3 2

22,2 = (2;r / X)2( n 2 ~ n e/ ) ,

u2 = (2x1 X)2( n 2 - n e/ ) ,

w32 = (2 n l X f ( n J  - n 2) ,

J  =

K  =

J i '(u\a\)
uxJ t (uxax)

w3A'/ (w3fl2)

Pi (r) = J t i u ^ N ,  (u2ax) - J l (u2ax )N l (u2r ), 

Qiir) = J t (u2r)N  J ^ ( u ^ N ^ r ) ,

n W  = J , \ u 2r)N l (u2ax) - J , ( u 2ax)N t '(u2r ) ,

(5.122)

(5.123)
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(5.125)
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(5.129)
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5,(r)  = J l '(u2r)N l '(u2al) - J l '(u2al)N l '(u2r ) , (5.131)

where I is an azimuthal number, J t , Yl denote the / ,;*-order Bessel functions o f the first 

and second kinds respectively, and I I and K l denote the / //!-order modified Bessel 

functions o f the first and second kinds, respectively.

The following are recursive relations governing Bessel and modified Bessel functions 

[Tsao 1992]:

J M (uir ) = ~J 'i (*qr) + (//w,.r).7/ (w/r), (5.132)

J m (uir ) = J \  (uir ) + Q iutr)JA uir)> (5.133)

Yi+M i r) = ~Y 'i (uir ) + (f l u ^ Y ^ u f , ) (5.134)

Yi-1 ( V )  = J \  (u{r ) + ( / /u ir )J l (u{r ), (5.135)

0 / r ) = r i (w;r ) -  0  / W V i  ('wir)> (5.136)

11-1 (wir ) = r i (wir) + Q / wir)I i (5.137)

^ /-i (wfr) = - K \  (w.r) -  (/ / wir)K l (w,-r), (5.138)

k m  ( w i r )  =  ( u i r )  +  ^ 1 W i r ) K l ( W i r ) ’ (5.139)

Equation 5.117 for <J0 as appeared in Erdogan's article [Erdogan 1997, Eq. (7)] contains 

an error, as was confirmed by the author himself [E-mail from Prof. Erdogan o f the 

University of Rochester, USA, and Dr. Allsop o f Aston University, UK]. The last two 

terms in the numerator of the equation (Eq. 7 as appeared in Erdogan 1997] should be 

preceded by minus signs instead of positive signs.

Using the above cladding and core mode equations, the MATLAB model for calculating 

the coupling wavelength shift when surrounding index n3 changes can be developed.

123



These MATLAB results show that when ni -  1, the coupling wavelength is 

As =1.5669 jum  (core mode coupling to the 5th cladding mode) and when «3 = 1.447, 

the value o f the coupling wavelength is As = 1 .5 3 9 //m . The specifications o f the LPG 

fibre used are listed in Table 5.3.

Table 5.3 LPG fibre specifications

Parameter Value
a core index 1.458
a cladding index 1.45
a value of peak induced-index change in the core lxlO"4
core radius 2.625 jum
cladding radius 62.5 jum
a grating pitch 570 jum

The following equation is used to directly calculate the coupling constant [Erdogan 

1997b]:

O 'jr nb
. 1 / 2

yZ0«2V 1 + 2b A

nx u j

u 2 -  V 2( l - b ) /a {
1 + E,lv

uxJ x{uxax) r-— — J Q(uxa j)
c /j(F V l-^ )

(5.140)

where E Xvcl is the field normalization constant (for detailed calculation o f E Xvcl, see 

Erdogan 1997b). The coupling constant can be calculated for particular set o f 

parameters. The total power (P) carried by the cladding mode is the sum o f the power 

carried by the core (Pi), cladding (P2) and the surrounding region (P3), i.e.,

P = P1 + P2 + P3 = 1W . The results are shown in Fig. 5.30.

Equation 5.140 is used in the MATLAB code without the inclusion o f its detailed 

derivation in this thesis. The following section shows the development o f a model to
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calculate and plot the LPG transmission amplitude changes for different values o f 

ambient index (ns).
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Fig. 5.30. Coupling constant divided by a (z )  for the 168 cladding modes in a 

typical fibre, showing odd and even modes separately [Erdogan 1997 b].

The MATLAB code used to determine the coupling constant (Eq. 5.140) is given in 

Appendix 3.12. The parameters used are shown in Table 5.4 

Table 5.4 Data used for LPG transmission spectrum calculation.

Param eter Value
a core index 1.458
a cladding index 1.45
a value of peak induced-index change in the core lxlO"4
core radius 2.625 jum
cladding radius 62.5 jum
a grating pitch 570 jum
For «3 1
Coupling wavelength 1.5669 pm
Coupling constant (z) 0.4725x106

For «3 1.447
Coupling wavelength 1.539pm
Coupling constant k ^ i  (z) 0.4262x106
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Using the above data and Eq. 2.51 a plot o f the LPG transmission spectrum for different 

values of n2 is shown in Fig. 5.31. The MATLAB codes for the plots shown in Fig. 

5.31. are given in Appendices 10, 11 and 12.

r - 3
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n3=1.4472  -5
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LPG transm ission wavelength, fim

Fig. 5.31. Long-period grating transmission spectra which show that when 

surrounding index n3 is changed, the coupling wavelength shifts, and the 

transmission amplitude also changes.

Figure 5.31 shows that when the surrounding index o f refraction n3 is increased without 

exceeding the cladding index (ncl) value, the long-period grating coupling wavelength 

shifts to a shorter wavelength and the LPG transmission amplitude also decreases.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1  Conclusion

The main realisation o f this project has been the establishment of a model for index 

sensors using the long-period fibre grating. This model can assist the development of 

LPG chemical concentration and gas sensors. This thesis has introduced the general 

fibre grating theory and also presented the recent fibre Bragg grating and long-period 

grating applications in the sensing and communications fields. Fibre grating sensors 

have many practical applications. This thesis focuses on temperature, strain and index 

sensing applications.

The historical development of the fibre Bragg grating has been introduced in Chapter 1, 

especially the long-period grating, and the recent progress made in its use in connection 

with applications for both sensing and communications.

In Chapter 2 the photosensitivity in fibre grating technology has been reviewed and the 

colour centres and permanent electric dipole models have been introduced and used to 

explain the physical mechanism behind photosensitivity. Three LPG fabrication 

methods, viz. , holographic interferometer, phase-mask and point by point, have been 

discussed and finally the diffraction grating principles have been discussed in order to 

give a better understanding of the fibre Bragg grating (short period grating) and long- 

period grating phenomena.

Recent applications of fibre Bragg grating in both sensing and communications fields

have been the subject of Chapter 3. In the sensing field, temperature, strain, index of

refraction and chemical sensing have been highlighted, whereas in communications
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applications emphasis has been placed on fibre amplifiers, dispersion compensation, 

filters and wavelength division multiplexing.

Chapter 4 has mainly presented the development of long-period gratings in the field of 

sensors. It covered long-period grating temperature, axial strain and index o f refraction 

sensors.

The foundations of modelling o f LPG sensor theory is presented in Chapter 5, which 

included the propagation constants and effective indices of the fibre core and cladding 

equations, and utilising both graphical and numerical methods in details. The method of 

long-period grating periodicity prediction has been presented. It gives the detailed 

modelling method of the coupling wavelength calculation and the use o f MATLAB 

codes for the long period grating index sensor. A flow chart for the calculation methods 

has also been given. Using this method it is possible to simulate the long period grating 

coupling wavelength shift when the ambient index changes over a wide range. It was 

demonstrated that even for surrounding index of refraction higher than that o f the fibre 

cladding, the long-period grating sensor coupling wavelength will still shift and can be 

measured. These new results can be applied to the modelling o f the chemical sensors, 

since in most cases, the index of refraction of the coating material is higher than the 

cladding index. Modelling and simulation of the long-period grating transmission 

spectrum and the effect of index o f refraction changes have been discussed in a great 

detail. Using this method, the results have shown that attenuation bands did change 

when the surrounding index of refraction was lower than the fibre cladding refractive 

index.

The modelling results obtained throughout this thesis were compared with the reported 

work and have shown a close agreement. The model developed is viewed a powerful

128



tool in analysing and designing optical sensors based on long-period fibre gratings.

6. 2 F u ture  W ork

The work presented in this thesis has demonstrated the potential o f long period fibre 

gratings (LPG) as sensing elements to determine changes in the surrounding ambient 

index o f refraction, and can therefore be used as environmental monitoring system. The 

work, which is based on the mathematical modelling of the behaviour LPG-based 

sensing elements, has extended the range o f operation o f such a system by incorporating 

coating materials with index of refraction higher than that of the LPG cladding. It has 

been shown that LPG transmission spectral shift as well as variation in its intensity can 

be measured which reflects the index changes o f the surrounding ambient.

The coupling constant kf~_™ introduced in Eq. 5.140 has been restricted to the condition 

n3 < ncl. However, changes in LPG transmission attenuation bands have been found to 

be more sensitive than the LPG coupling wavelength shifts when n3 > ncl. Since the 

latter represents the condition found in most practical situations, it is therefore necessary 

to continue the development o f models for simulating LPG index sensors which take 

into account coating materials with index of refraction higher than that o f the cladding.

It is also noteworthy that the developed model only considers the changes in the index 

o f refraction o f the coated materials irrespective o f its thickness. However it is desirable 

to further investigate how the refractive index changes with the thickness o f the coating 

layers. The model can therefore be developed to take into account both the thickness 

and index of refraction o f the coated materials and their corresponding effects on the 

LPG transmission spectrum.
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IT.2.4
M odelling o f long period grating based fibre 
sensor
R lion . 'I. Ghassemlooy. A K H assan. A Nabok. K P 
Dowker
Sheffield Hall ant Uni versify. UK

Long period gratings (I.PG s) were first presented by 
YYVngsarkar A.M. and co-workers in 1996 as baml-rejeetion 
fillers. Since then the LPG hits been used as a novel 
fibre device in both  telecom m unications as a gain flattening 
and band rejection filter, and in the sensor field as 
tem pera tu re  and stra in  sensor. A long period grating  is a 
pholoinduced periodic s tru c tu re  which, using I V exposure 
through an am plitude mask, is w ritten  in the core of 
com m unication fibre w ithout rem oving the cladding. The 
fundam ental guided mode propagating  along the core is 
coupled into forward propagating  cladding modes. These 
modes are  very Sensilive to the changes of the refractive 
index of the m aterial surrounding the cladding. In this 
article a m athem atical model of the LPG sensor has been 
developed. T he model is luised on Eigenvalue equations, 
coupled mode theory and o ther LPG related equations. 
Numerical sim ulation of the LPG  transm ission spectrum  
behaviour is studied  when changing the am bient refractive 
index. R esults show th a t the long period grating  is 
very sensitive to surrounding index n3 changes, especially 
when n3 approaches the value of the cladding index. 
'I'he associated graph functions display the shift of the 
attenuation  bands to sh o rte r wavelength as the surrounding 
index is increased from n 3 = l (air) to  n3=1.40 (near fibre 
cladding index). T his m athem atical model can be used 
to sim ulate different coating m aterials, which will change 
refractive index when they react with special target gas. 
and to assist the developm ent of LPG based environm ental 
m onitoring sensors.

IT.2.5
D igital Synthetic-H eterodyne D etection  o f 
D ynam ic Pressure in an O ptical Fibre Cavity 
Sensor
M .J. Connelly, R. Kenny*, M. Whelan*
U niversity u f  Limerick, Ireland
*1S!S. European Comm ission Joint Research Centre. Ita ly

1. INTRODUCTION

O ptical cavity sensors work on the principal of interferom et- 
ric det ect ion of the phase difference, caused by some external

in terest the sensor is used to m easure dynam ic pressure. A 
laser diode is used as t he optical source. T he laser bias cur­
ren t is m odulated at a single frequency. 'The laser output 
is tran sm itted  down an  optical fibre to  an external cavity. 
T he fibre end is partia lly  reflective so some of the light is 
reflected back down the  fibre. T h e  ou tpu t light from the 
fibre is formed into a  parallel beam  by a lens and travels 
through free space for a  sh o rt d is tance  prior to reflection 
by a  flexible m em brane. T h e  m em brane has high reflec­
tivity. As the m em brane flexes the  cavity length will vary 
and hence the phase difference betw een the reflected light 
waves. T he intensity of the  reflected light is a function of 
the phase difference. T he reflected light travels back down 
the fibre where it. is converted to an  electrical signal by an 
optical receiver. 'The electrical signal is then processed to 
o u tp u t a signal p roportional to the  dynam ic pressure on the 
m em brane. This type of sensor has m any possible applic a­
tions including a m in iature surveillance microphone and a 
medical sensor to m onitor b rea th ing . T h e  advantage of the 
sensor is th a t the sensor head is po ten tia lly  replaceable. Its 
construction  is simple w ith po ten tia lly  low m anufacturing 
cost. T he laser, optical receiver and  signal processing com­
ponents can be located to g e th er in a  un it rem ote from the 
sensor head. Various techniques exist for recovering a signal 
p roportional to the dynam ic p ressure [l]. The Synthetic- 
H eterodyne technique is considered here  [2-3]. It a powerful 
m ethod  for overcoming the in terfe rom etric  failing problem. 
In this p ap er this technique is im plem ented on a digital sig­
nal processor and analysed w ith respect to noise and d isto r­
tion. Experim ental resu lts  are also presented .

11. D IG ITA L IM PL E M E N T A T IO N  A N D  E X PE R IM E N ­
TAL RESULTS

T he synthetic-heterodyne schem e can be im plem ented by 
analog circuitry  o r digitally. T h e  d ig ital m ethod makes the 
scheme m ore am enable to  control by com puter. A practical 
system  was constructed  using a tem p e ra tu re  stabilized DFB 
laser. T he laser was biased to  give an  input power of I mW 
into th e  fibre. A bulk ex ternal cavity  w ith a length of 10 
cin was used. A m irror m ounted  on an  accelerom eter is 
used as the  flexible m em brane. For evaluation purposes, 
the accelerom eter was driven by a  sinusoidal voltage at 
100 Hz to  em ulate a  sinusoidal cavity  displacem ent. A 
m odulation curren t am p litude  of 3.6 niA was required to 
give the optim um  sensitiv ity  for th e  cavity length used. 
T he m odulation cu rren t frequency was 2.4 kHz. A Iow- 
noise optical receiver was used to  d e tec t the re tu rn  optical 
signal from  the external cavity. T h e  receiver signal is passed 
through an anti-aliasing filter, a  D C  blocking capacito r 
and amplified before acquisition and  signal processing on a 
dSPA C E  DS1102 digital signal processing card . A schem atic 
d iagram  of the digital im plem en ta tion  of the schem e is 
shown in Fig. 1. Signals on the  dSPA C E  card can be 
displayed in real tim e on a  personal com puter. A /I)  and 
D /A  converters with 12-bit resolu tion  were used. T he 
laser m odulation cu rren t is ob ta ined  by passing a sinusoidal 
voltage generated by the  DS1102 th rough  a sm oothing low- 
pass filter and a  vo ltage-to-current converter. 'The acquired 
signal is shown in Fig. 2. T h e  o u tp u t phase signal from 
the dSPA C E card is passed th rough  a  sm oothing low- 
pass filter. A display of th e  de tec ted  phase signal (before 
D /A  conversion) is shown in Fig. 2. T he signal is, as 
expected, a  sinusoid a t  100 Hz. I 'h e  waveform exhibits 
sh arp  jum ps. T his is due to  quan tisa tio n  effects inherent in 
the  sam pling process. T his effect can be rem oved through 
the  use of a  soothing low-pass filter. 'I'he waveform also 
has a  low-frequency d rift com ponent. T h is is probably 
due to therm al variations in the  cavity  and low- frequency 
am bient vibrations. O ther frequencies w ithin the detec tion  
bandw idth  of 550 Hz. were successfully detec ted .
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Abstract. In this article a mathematical model o f optical fibre long-period grating 
(LPG) sensors has been developed. Numerical simulation o f the LPG coupling 
wavelength behaviour is studied. Especially, we present the use o f a hollow circular 
waveguide method to model the LPG coupling wavelength shift when the index o f the 
surrounding material is higher than that o f the cladding. This model can be used to 
simulate an LPG gas sensor.

Keywords: long-period grating, core mode, cladding mode, leaky mode, index sensors

1. Introduction

Long-period gratings (LPGs) were first presented by Vengsarkar and co-workers in i996 
as band-rejection filters [12]. At the same time, it has been shown that the coupling 
wavelengths shift with the external refractive index change [13]. Since then the LPG has 
been used as a novel fibre device in both telecommunications as a gain flattening and 
band rejection filter, and in the sensor field as a temperature, strain and refractive index 
sensor.

An LPG is a photoinduced periodic structure which is written in the core o f a 
communication fibre using UV exposure through an amplitude mask. The fundamental 
guided mode propagating along the core is coupled to the forward propagating cladding 
modes. These modes are very sensitive to changes in the refractive index o f the 
surrounding material; especially when the index is close to the cladding index.

Since the refractive indices of all gases are much less than that o f the cladding, and in 
order to develop a gas sensor, it is necessary to find a thin polymer film which is coated 
on the fibre cladding. The refractive index of the coated film will change due to the 
absorption of target gas molecules. However, the refractive indices o f most coating 
materials are higher than the fibre cladding index (1.45). Therefore it is necessary to 
develop a model that can to satisfy each case.

The case where the ambient index of refraction (723) is higher then the cladding index 
(fid) is referred to as a leaky or hollow dielectrical waveguide [5]. In previous works 
using the leaky waveguide formula in LPGs are: Patrick and co-workers demonstrated 
chemical sensors based on an LPG response to external refractive index, using index oil 
with on index o f refraction ranging from 1.40 to 1.72 [8]. Lee and co-workers presented 
a graphical method for the analysis o f the displacement o f the resonant peaks o f the 
LPG by a change o f ambient index [4]. Duhem and co-workers experimental study o f 
the LPG's response to different media o f refractive index higher than that o f silica,
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focused on determining the coupling intensities in different types of fibre [2]. Stegall 
and Erdogan estimate the cladding mode losses by using a one-dimensional (planar) 
waveguide approximation [10].

The present work introduces a method of modelling LPG sensors and presents a 
numerical method to calculate the leaky HE cladding modes. In developing this model 
the core, cladding and surrounding material dispersion effects have been ignored for the 
sake of simplicity. The LPG coupling wavelength shift is then examined when the 
surrounding index is larger than that o f the cladding. Finally a numerical example o f the 
simulated an LPG gas sensor is given.

2. Theory

2.1. Optical fibre long-period grating (LPG)

Typically in a single mode fibre, an LPG couples the fundamental core mode to a co- 
propagating cladding mode at a coupling wavelength give by [9]

=(ncoM)-n'J"}W y  (1)
where A(n),- is the nth coupling wavelengths, ncore(/l(.) is the effective index o f the core ,

nclad{n) (A;) is the effective index of the nth cladding mode and A is the pitch o f the LPG 
period.

2.2. Core mode

The core mode is not affected by the surrounding index change, so at a specific 
wavelength the HE core mode is obtained using Eq.2 [6]

.. . . .  K m ( W l )u . ------------= w .-------------  (2)

( 2 2 2 Y/2For H E n core mode m = 1, ul = ax \k nco -  p  COre  j is the normalized transverse

phase constant and w1 = ax [fl1 core -  k 2ncl2) is the normalized transverse attenuation
constant in core, where k  = I n ! , ax is the core radius and Pcore is the propagation 
constant o f core mode. The core effective index is obtained using Eq.3.

= (3)k

2.3. Cladding mode

When calculating the cladding modes the two layer standard multimode waveguide 
formula is used ignoring the effect o f the core, treating the cladding as a core o f 
multimode fibre and the ambient or coating material as a fibre cladding in the LPG 
region.

Cladding modes classification:
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2.3.1. Case 1: n3 < ncl
When n3 < ncl, this is a total internal reflection condition. From the well-known 
eigenvalue equation, obtained an HE cladding mode expression is obtained [14]:

_ k / 2 +»32R , '0 :> )
U 2J m ( U 2 ) 2 > h / W 2 K , J W 2 )

m {n,2 - n c,2)Km'(w2) 

2ncl2w2K m(w2)
+

m v2 J3t
\2

clad

yU22w22ncok j
(4)

(  2 2 2 Y' 2For H E lw cladding modes, m = 1, where w2 = a2 ̂  nclad -  p  dad J is the normalized 

transverse phase constant, w2 = a2{p2dad - k 2n ^ y  is the normalized transverse

attenuation constant in cladding region, v = (u2 + w22)1/2 is the normalized frequency 
and a2 is the cladding radius. The cladding effective indices are obtained from the 
following Eq.5.

nWcuQ I,) = (5)

2.3.2. Case 2: n3 = ncl

When the surrounding index is approximately equal to the cladding index, the distinct 
loss bands disappear since the cladding modes get converted to radiation mode loss 
[13]. There are a few dB of broadband radiation-mode coupling losses, but no distinct 
resonance [10].

2.3.3. Case3: n3 > ncl

For the case n3 > ncl, the cladding modes no longer experience total internal reflection 
and are referred to as leaky modes. Now the fibre waveguide is treated as a hollow 
circular dielectric waveguide, the cross-section of which is illustrated in Figure 1, where 
a2 is the radius of the hollow guide (corresponding to the fibre cladding radius), the 
hollow index is ncl (corresponding to the fibre cladding index) and n3 is corresponding 
to the index of surrounding medium or coating material.

Figure 1. Cross-section of hollow circular waveguide where n3 > nci
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In this case Eq.5 is still valid provided we take into consideration that the quantities 
Pdad->u2»w 2 ’v have complex values and the Bessel functions may have complex 
arguments [1]. If  the propagation constant J3clad becomes complex, then it is necessary 
to consider lossy or leaky modes. For complex J3clad, its real part f ir equals the phase 
velocity o f the specified mode, whereas the imaginary part /3i represents its loss rate 
[11]. Using MATLAB, both graphical and numerical method can calculate the real and 
imaginary parts o f propagation constant of leaky cladding modes.

However, for circular waveguides, Adams [1] has shown that, by making certain 
approximations, p clad can be expressed in terms of its real part and power attenuation 
coefficient a  as given by:

ia

where

P c la d  ~  P r

P r  = k t l , 1 - 1
2

(/ + 0.25).

V akn

n . _  ( » 3  2 + » / )

a k n j i jn *  - n c

cl J

/ + — \n
I  4  J

for HE modes

(6)

(7 )

(8)

where / = 1,2,3,

3. Modelling results and discussion

From Eqs.l to 5 it can be seen that by changing the surround index (n 3) to be higher 

than that of cladding, the LPG coupling wavelength A.(z) will experience a shift. For 
n3 = 1.7 the shift in the wavelength AA,« 2.5 nm as compared to the case when n3 = 1. 
This spectral shift is very small but is still measurable using a spectrum analyser.

Eqs.l to 5 are used to obtain simulation results for the LPG resonance wavelength shift 

versus the surrounding refractive index. This is obtained for the 1th order cladding 

mode, as shown in Figure 2. The parameters used are; core index nx =1.458, cladding 

index n2 =1.45, the core and cladding radii are 2.625 // m and 62.5 ju m, respectively, 

and the pitch of the grating is 290 // m.

Figure 2 shows that the very sensitive region occurs when n3 is close to ncl and when

the n3 changes from 1.4499965 to 1.449997(i.e. An = 5 x 10"7), the coupling wavelength 
shift shows a dramatic change from a sharp decrease to a sharp increase, with values 
from -96.10 nm to +0.45 nm. The "switch properties" in this sensitive region have a 
potential application in the communications and sensor fields. When n3 > ncl, the leaky
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cladding modes coupling wavelengths are slightly longer than initial coupling 
wavelength when the index of surrounding material n3 = I (in air).

£ -10 
C  -15 
C -20 
£  -25
w -30
f) ‘35
C -40
"  -450)> -50
™ EEj  -55 
0 -60 
“  -65
ra -70 
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-95 

-100

Index of refrective of surroungding medium n3

Figure 2. Simulation obtained LPG coupling wavelength of 1th resonance shift versus 

n3 on a wide range.
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Figure 3. Theoretical results revealing that when the surrounding index is higher than 
cladding index, the LPG resonance wavelength still shifts.

It was shown that when n3 > ncl, the theoretical leaky coupling wavelengths shift 
smoothly, but when n3 is higher than certain value which is around 1.486, the coupling 
wavelength is decreased. This result shows a good agreement with experimentally 
measured data as shown in Figure 4.
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 (I) n = 1.000

 (2) n=  1.408

 (3) n -  1.420
a2
S

 W n *  1.448

(5) n = 1.450 

— (6) n »  1.486

 (7 )n *  1.574

— • (8) n =  1.661 

 (9) n «  1.734

|

14(0 1500 1530
Wavelength (nm)

1540

Figure 4. Experimentally measured LPG transmission for several surrounding indexes. 
[10]

Leaky cladding coupling loss can be calculated but it is out o f the scope o f the present 
work. Detail can found in the literature [10].

4. Modelling simulation of gas sensor

Since in most LPG gas sensors the refractive index of the coating materials are higher 
than the cladding index (n cl ~ 1.45), it is useful to be able to apply the above model to 
simulate an LPG gas sensor.

Data of a coating material called phosphorylated calix-4-resorcinolarene (PC-4-RA) are 
used in the present work [3]. Index o f refraction of thin films o f PC-4-RA deposited by 
Langmuir-Blodgett (LB) technique has been determined by the method o f surface 
plasmon resonance (SPR). On exposure to toluene vapour o f concentration in the range
0.1-5% in volume, the index of refraction of PC-4-RA films changes as follows:

initial state is 1.458,
post adsorption to toluene is 1.508,
post recovery is 1.470.

Using this model the LPG coupling wavelength o f 7th leaky mode shift was calculated. 
The results are shown in Figure 6. The calculated values o f the wavelength shifts are 
small as shown in Figure 5. However with the use of optical spectrum analysers o f 
sufficient resolution it is possible to detect such small changes.

From Figure 5 the obtained shift value is small (about 0.14 nm and 0.02 nm), this value 
can be detected by optical spectrums analyses of sufficient resolution. Currently some 
coating material for LPG gas sensor is under investigation in our research group.
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Figure 5. Simulated 1th leaky mode shift when the coating material PC- 4-RA films 
exposed to toluene. Inset to shows an enlarged section showing the coupling wavelength 
shift versus LB film index change.

5. Conclusion

In the leaky waveguide LPG, resonance wavelengths shift have been simulated. The 
modelling results show that when the refractive index of the surrounding medium is 
higher than the cladding index, the resonant wavelength shift will be towards to longer 
wavelength compared to the case =1. In this case when n3 is higher than a certain 
value e.g. nz = 1.486, direction of the shift changes back towards the shorter wavelength 
value. This model can be used to assist the development of environmental monitoring 
chemical sensors based on the LPG, in which the refractive index o f the coating 
material is higher than that of the cladding.
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Appendix 3.1 MATLAB code used to determine the fibre Bragg grating reflectivity,

for Fig. 2.16.

c l e a r  a l l
1=0.84*10A (-3);
A=l.28 6/2/1.46*10A (-6) ;
k=pi*l.2*10A (-3)/(1.286*10A (-6));
r=l.282*10A (-6) :1*10A (-11) :1.290*10A (-6);
db=2*pi*l.46./r-2*pi*l.46/(1.286*10A (-6)) ;
s=sqrt(kA2-db.A2);
R=kA2*sinh(s.*1).A2 ./(db.A2 .*sinh(s.*1).A2 

+s.A2 .*cosh(s.*1).A2); 
plot(r,R) 
hold on
xlabel('wavelangth') 
ylabel('relectivity(%)1)

Appendix 3.2 M A T L A B  code used to determ ine increase the fibre B ragg grating 

reflectiv ity  w ith  grating length, for F ig. 2.17.

c l e a r  a l l  
clear,elf
xa=0.2*10A (-3):0.1*10A (-4):0.9*10A (-3); 
ya=l.28*10A (-6) :1*10A (-10) :1.29*10A (-6); 
k=pi*l.2*10A (-3)/(1.286*10A (-6));
[x,y]=meshgrid(xa, ya) ;
db=2*pi*l.46./y-2*pi*l.46/(1.286*10A (-6)); 
s=sqrt(kA2-db.A2);
z = 1 0 0 ' .  * k A2 * s i n h  ( s  . * x )  . A2 . /  ( d b . A2 . * s i n h  ( s  . * x )  . A2 

+ s . A2 . * c o s h ( s . * x ) . A2 ) ; 
p l o t 3 ( x , y , z ) 
x l a b e l ( ' g r a t i n g 1 ) 
y l a b e l ( 1w a v e l a n g t h ' )  
z l a b e l ( ' r e l e c t i v i t y ( %) ' )

Appendix 3.3 M A T L A B  code used to calculated the ratio of power

coupled into cladding mode to the initial power contained in the guided 

LPoi mode through uniform long period gratings, for Fig. 2.19.

c l e a r  a l l
x=1370*10A (-9) :4*10A (-11) :1750*10A (-9);%Wavelength range 
L=25e-003;%Grating length 
P=600*10A (-6);%period 
xm=1550e-009;%designed wavelength
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%k=(pi/xm)*0.32*le-004;%k.*L=pi/2; 
k=3*pi/(2*L);%Coupling coefficient 
%Neff =3.1000e-003;
DNeff= 0.00258333333333;
s=pi*DNeff.*(1./x-l/xm);%s=l/2(Bcore-Bcladding-2*pi/A) 
P=((sin(L.*sqrt(kA2+s.A2))).A2 ./(1+(s./k).A2)); 
plot(x,P,'b'); 
hold on
x=1370*10A (-9):4*10A (-11): 1750*10A (-9);%Wavelength range
L=25e-003;%Grating length
P=600*10A (-6);%period
xm=1550e-009;%Designed wavelength
k=pi/(2*L);%Coupling coefficient
DNeff= 0.00258333333333;%
s=pi*DNeff.*(1./x-l/xm);%s=l/2(Bcore-Bcladding-2*pi/A)
P=((sin(L.*sqrt(kA2+s.A2))).A2./(l+(s./k),A2)); 
plot(x, P, ' r ' ) ; 
hold on

Appendix 3.4 MATLAB code used to determine the long period grating transmission 

for Fig. 2.20.

c l e a r  a l l
x=1525*10A (-9):4*10A (-11):1575*10A (-9);%Wavelength range 
L=50e-003;%Grating length 
A=600*10A (-6);%period 
xm=1545e-009;
k=0.39/L;%coupling coefficient 
Neff= 0.0042;
s=pi*Neff.*(1./x-l/xm);%s=l/2(Bcore-Bcladding-2*pi/A)
T = (((sin(L.*sqrt(kA2+s.A2))) .A2./(l+(k./s) .A2) )+(cos(L.*sqr 
t(kA2+s.A2))).A2);
%transmition 
plot ( x , T , 'b'); 
hold on

Appendix 3.5 MATLAB code used to determine the HEn core mode o f Eq.4.99 for 

Fig.5.6. The plot of uJi(u)/Jo(u) And wK(w)/Ko(w)with the crossing 

corresponding to the solution HE] i mode.

c l e a r  a l l
A=1.550*10A (-6); %wavelength 
al=2.625*10A (-6);%Core radius 
nl=l.458;%Core index 
k=2*pi./A;
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B=n2*k:n2*k/le+004:nl*k;% B range 
neff=B/k;% x=B propagation constant
u=sqrt (kA2*nlA2-B. A2) *al; %Normalized effective index 
w=sqrt(B.A2-kA2*n2A2)*al;%V number
LHS=u.*(besselj(1, u)./besselj(0,u));%Left hand side 
RHS=w.* (besselk(1,w)./besselk(0,w));%Right hand side 
f=LHS-RHS;
plot(B,LHS,1+b1,B,RHS,' *r 1 ) 
grid;

Appendix 3.6-1 MATLAB code used to determine the HEn core mode o f Eq.5.97 for

Fig.5.7. plot f  = uJ i(u)/Jo(u)-wK(w)/Kq(w) a single curve to produce

zero-crossing corresponding to the solution o f HEn mode

A=1.550*10A (-6); %wavelength 
al=2.625*10A (-6);%Core radius 
nl=l.458;%Core index 
n2=l.45;%Cladding index 
k=2*pi./A;
B=n2*k:n2*k/le+006:nl*k; % B range 
neff=B/k;% x=B propagation constant
u=sqrt(kA2*nlA2-B.A2)*al;%Normalized effective index 
w=sqrt(B.A2-kA2*n2A2)*al;%V number
LHS=u.* (besselj(1,u)./besselj(0,u));%Left hand side
RHS=w.*(besselk(1,w)./besselk( 0 , w ));%Right hand side
f=LHS-RHS;
plot(B,f , 1.m1)
grid

Appendix 3.6-2 MATLAB code used to determine the value of HEn core mode
c l e a r  a l l

A=1.550*10A (-6); %wavelength 
al=2.625*10A (-6);%Core radius 
nl=l.458;%Core index 
n2=l.45;%Cladding index 
k=2*pi./A;
B=n2*k:n2*k/le+004:nl*k;% B range 
neff=B/k;% x=B propagation constant
u=sqrt(kA2*nlA2-B.A2)*al;%Normalized effective index 
w=sqrt(B.A2-kA2*n2A2)*al;%V number
LHS=u.*(besselj(1,u)./besselj(0,u));%Left hand side
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RHS=w.*(besselk(1, w)./besselk(0,w));%Right hand side 
f=LHS-RHS; 
zeros=0; 
index = 1; 
for i=l:length(B)-1 

if (f(i)*f(i+l)<0) 
zeros=zeros+l;
Bco(index) = (B(i)+B (i+1))/ 2 ;  

fval(index)=(f(i)+f(i+l))/2; 
index=index+l;

end
end
for k = 1:length(Bco)

sent = sprintf(1HE1,%d= %f, F value: %0.4f', k,Bco(k), 
fval(k));

disp(sent);
end
total modes=zeros

Appendix 3.7-1 MATLAB code used to determine the HE cladding modes of 

Eq.5.108, for Fig.5.9.

clear all 
A=1.55e-006 
al=2.625e-006; 
a2=62.5e-006; 
k=2*pi/A; 
n2=l.45; 
n3=l;
x=n2*k:-n2*k/le+005:n3*k;% x is propagation constant range. 
w=a2*sqrt((x.*x)- (n3*n3).*(k.*k)); 
u=a2*sqrt(((n2*n2).*(k.*k))-(x.*x)) ;
%v=sqrt(u.A2+w.A2);
%ul=a2.*sqrt((n2*n2.*k.*k)-((n3.*k)* (n3.*k)));
JJ=BESSELJ(0,u)-(l./u).*BESSELJ(l,u);
KK=-BESSELK(0,w)-(1./w).*BESSELK(1,w);
HEL=(BESSELJ(0,u)./(u.*BESSELJ(1,u)));
R=sqrt(((n2A2-n3A2)/(2*n2A2))A2 .*(KK./ (w.*BESSELK(1,w))).A2 
+(x/(n2*k)).A2.*(l./u.A2+l./w.A2).A2);
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HER=-(((n2A2+n3A2)/(2*n2A2))A2).*(KK./ (w.*BESSELK(1,w)))
+(l./u.A2-R);
y=HEL-HER;
plot(x, y,'b')
grid
zeros=0;
index = 1;
for j=l:length(x)-1

if (( y ( j ) * y ( j + i ) < 0 )  ) &(  (y ( j ) <0.  l )  & (y ( j + l )  <0 - 1))
%&(abs(y(j)-y(j+l))<0.1)) 

zeros=zeros+l;
Bel (index) = (x(j)+x(j+l) ) /2; 
yval(index)= (y(j)+y(j+l))/2; 
index=index+l;

end
end
for kk = 1:length(Bel)

sent = sprintf('Cladding modes:HE1 , %d= %f, F:%0.4f', 
kk,Bcl(kk), yval(kk)); 

disp(sent);
end
total modes=zeros

Appendix 3.7-2 The MATLAB codes used to calculate HE cladding mode values

clear all 
A=1550*10A (-9); 
k=2*pi./A; 
a2=62.5*10A (-6); 
n2 =1.45; 
n3=l ;
x=n2*k:-nS^k/le+OO?:0.997*n2.*k;% range of propagation 
constant
%x=n2*k:-n3*k/le+6:n3*k;
%x=5.877e+00 6:-n3*k/le+7:0.998*n2.*k;
%B22=1.0e+00 6 *5.908 0:0.001*n3.*k:n2.*k; 
w=a2*sqrt((x.*x)- (n3*n3).*(k.*k)); 
u=a2^sqrt(((n2*n2).*(k.*k))-(x.*x));
%v=sqrt(u.A2+w.A2);
%ul=a2.*sqrt((n2*n2.*k.*k)-((n3.*k)* (n3.*k))); 
JJ=BESSELJ(0,u)-(l./u).*BESSELJ(1,u);
KK=-BESSELK(2,w)+(l./w).*BESSELK(1,w);
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HEL=(BESSELJ(0,u)./(u.*BESSELJ(1,u)));
R=sqrt(((n2A2-n3A2)/ (2*n2A2))A2 .*(KK./ (w.*BESSELK(1,w))).A2 
+ (x/(n2*k)).A2.*(l./u.A2 + l./w.A2).A2) ;
HER=-(((n2A2+n3A2)/(2*n2A2))A2).*(KK./ (w.*BESSELK(1,w)))
+(l./u.A2-R);
f=HEL-HER;
plot(x, f, 'b')%,x,HEL, ’y 1, x,HER, 'g 1 ) 
hold on
%B values are obtained where f crosses x axis, (i.e.f=0)
zeros=0;
index = 1;
for i=l:length(x)-1

if ((f(i)*f(i+1)<0)&(((f(i)*f(i+1))A2)<0.00001)) 
zeros=zeros+l;
Bval(index)= (x(i)+x(i+1))/2; 
fval(index)=(f(i)+f(i+1))/2; 
index=index+l;

end
end
for k = 1:length(Bval)

sent = sprintf(1HEl,%d= %f, F:%0.4f', k,Bval(k), 
fval(k));

disp(sent);
end
total_modes=zeros
grid

Appendix 3.8 MATLAB code used to determine the long-period grating 

periodicity prediction for Table 5.1 and Fig. 5.11:

clear all
for A=l.le-006:0.le-006:1.7e-00 6; 
al=2.625*10A (-6); 
a2=62.5*10A (-6);
nl=l.458+3.6e-004/2;%3.6e-004 is value of peak induced- 
index change in core 
n2=l.45;
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n3=l ;
Z0=377; 
k=2*pi./A;
x=n2*k:-n2*k/le+007:0.994*n2*k;%1.0e+00 6 *5.87717 05069124 4%
B range
B2=n2*k;
B3=n3*k;
neff=x./k;% x=B propgation constent 
b=(neff.A2-n2A2)./(nlA2-n2A2);
V=(2*pi/A)*al*sqrt(nlA2-n2A2) ; 
dl=(neff./Z0)*i;%(8) 
d2=(neff.*Z0)*i; %(9)
ul=sqrt((2*pi/A)A2*(nlA2-neff.A2)) ;% (12),j=l 
u2=sqrt((2*pi/A)A2*(n2A2-neff.A2));%(12) , j=2 
w3=sqrt((2*pi/A)A2*(neff.A2-n3A2));%(13) 
u21=l./u2.A2-l./ul.A2;%(10) 
u32=l./w3.A2+l./u2.A2;%(11)
JJ1=(1/2).*(besselj(0,ul*al)-besselj(2,ul*al));
%diffrective Of BESSELJ J'(u2*a2)
KK1=-(1/2).*(besselk(0,w3*a2)+besselk(2,w3*a2));%K'(u2*a2) 
J=JJ1/(ul.*besselj(l,ul*al));%(14)
K=KK1/(w3.*besselk(1,w3*a2));%(15)
JJ21=(1/2)*(besselj(0,u2*al)-besselj(2, u2*al));%diffrective 
Of BESSELJ'(u2*al)
JJ22=(1/2)*(besselj(0,u2*a2)-besselj{2, u2*a2)) ; %diffrective 
Of BESSELJ'(u2*a2)
NN21=(1/2)*(bessely(0,u2*al)-bessely(2,u2*al));%diffrective 
Of BESSELY'(u2*al)
NN22=(1/2)*(bessely(0/u2*a2)-bessely(2, u2*a2)) ; %diffrective 
Of BESSELY'(u2*a2)
pl=besselj(I,u2*a2).*bessely(1,u2*al)- 
besselj(1,u2*al).*bessely(1,u2*a2);%(16) 
ql=besselj(1,u2*a2) .*NN21-JJ21.*bessely(1, u2*a2);%(17) 
rl=JJ22.*bessely(1,u2*al)-besselj(1,u2*al) .*NN22;% (18) 
sl=JJ22.*NN21-JJ21.*NN22; %(19)
AA=u2.*(J.*K+(dl.*d2.*u21.*u32)./(n2A2*al*a2)).*pl 
-K.*ql+J.*rl-(1./u2).*sl;
B=-u2.*((u32./(n2A2.*a2)).*J-(u21./(nlA2*al)).*K).*pl 
+(u32./(nlA2*a2)).*ql+(u21./(nlA2*al)).*rl;
G0=(l./d2).*AA./B;%(6)
G0imag=imag(GO) ;
C=u2.*((u32/a2).*J-(n3A2.*u21./ (n2A2*al)).*K).*pl 
- (u32/a2).*ql-(u21/al).*rl;
D=u2.*((n3A2/n2A2)*J.*K+dl.*d2.*u21.*u32/(nlA2*al*a2)).*pl 
- (n3A2/nlA2) .*K.*ql+J.*rl-(n2A2 ./(nlA2 .*u2)) .* s1;
Gl=dl.*C./D;%(7)
Glimag=imag(Gl);
%y=G-Gl; %G=G1 
y=G0imag-Glimag;
plot(x,y,'b ',x,GOimag,'r ',x,Glimag,'g '),grid; 

zeros=0;
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index = 1; 
for i=l:length(x)-1 

if
((y(i)*y(i+1)<0)&((abs(y(i)))<0.01)&((abs(y(i+1)))<0.01)) 

zeros=zeros+l;

Bel(index)= (x(i)+x(i+1))/2; 
yval(index)= (y(i)+y(i+1))/2; 
index=index+l;

end
end
%Core mode 
k=2*pi./A;
B=n2*k:n2*k/le+007:nl*k;% B range 
%x= 1.0e+006 * 5.88689304224413;%Bcore value
neff=B/k;% x=B propgation constent 
b=(neff.A2-n2A2)/(nlA2-n2A2) ;
V=k*al*sqrt(nlA2-n2A2) ;
YL=V.*sqrt(1-b).*(besselj(1,V.*sqrt(1-b))
./besselj(0,V.*sqrt(1-b)));
YR=V.*sqrt(b),*(besselk(l,V.*sqrt(b))
./besselk(0,V.*sqrt(b))); 
f=YL-YR;
%plot(B,YL, 1r 1 , B, YR, 1g 1 , B, f, 'y'),grid; 
zeros=0; 
index = 1; 
for i=l:length(B)-1 

if (f(i)*f(i+l)<0) 
zeros=zeros+l;

Bco(index)=(B(i)+B(i+l))/2; 
fval(index)=(f(i)+f(i+l))/2; 
index=index+l ;

end
end
for k = 1:length(Bco)

sent = sprintf(1HE1,%d= %f, F value: %0.4f', k,Bco(k), 
fval(k));

disp(sent);
end
total_modes=zeros 
A %LPG peak wavelength 
k=2*pi./A;
Period=[le+006*A./ (Bco/k-Bcl/k)]% Wavelength unit is pm 
end

Appendix 3.9 MATLAB code used to determine the long-period grating coupling

wavelength resonance shift versus n2 on a wide range of refractive index 

for Fig. 5.16.
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clear all 
n3=l. 4

A=1.39e-00 6:le-10:1.6e-006; 
for jj=l:length(A);

sent = sprintf(1 First guss Wavelength=, %11.9e',
A (j j ) ) ;

disp(sent); 
k=2*pi/A(j j); 
a2=62.5e-006; 
n2 =1.45;
x=n2*k:-k/le+007:0.998*n2*k;% x is propagation constant 
range.
w=a2*sqrt((x.*x)- (n3*n3).*(k.*k)); 
u=a2*sqrt(((n2*n2). * (k. *k))-(x.*x));
%v=sqrt(u.A2+w.A2) ;
%ul=a2.*sqrt((n2*n2.*k.*k)-((n3.*k)* (n3 . *k) ) ) ; 
JJ=BESSELJ(0,u)- (l./u).*BESSELJ(l,u);
KK=-BESSELK(0,w)-(1./w).*BESSELK(1,w);
HEL=(BESSELJ(0,u)./(u.*BESSELJ(1,u)));
R=sqrt(((n2A2-n3A2)/(2*n2A2))A2 .*(KK./ (w.*BESSELK(1,w))).A2 
+(x/(n2*k)).A2.*(l./u.A2+l./w.A2).A2);
HER=-(((n2A2+n3A2)/(2*n2A2))A2).*(KK./ (w.*BESSELK(1,w)))
+(l./u.A2-R);
y=HEL-HER;
figure(1)
plot(xf y,'r ');
Title(1 Cladding modes')
xlabel('x ')
ylabel ( ' y=HEL-HER ')
grid
zeros=0;
index = 1;
for j=l:length(x)-1

if ( (y (j) *y (j+l)<0) & (y (j)>0) & (y(j+l)<0) ) 
zeros=zeros+l;
Bel (index) = (x(j)+x(j+l) ) /2; 
yval(index)= (y(j)+y(j+l))/2; 
index=index+l;

end
end
for k = 1:length(Bel)

sent = sprintf('Cladding modes:HE1,%d= %f, F:%0.4f', 
k,Bcl(k), yval(k)); 

disp(sent);
end
total_modes=zeros

%Core mode 
al=2.5*10A (-6); 
a2=62.5*10A (-6); 
nl=l.45656937670071; 
n2=l.45;
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k=2*pi/A(j j);
B=n2*k:n2*k/le+7:nl*k;% B range 
%x= 1.0e+006 * 5.88689304224413;%Bcore value
neff=B/k;% x=B propgation constent 
b=(neff.A2-n2A2)/(nlA2-n2A2);
V=k*al*sqrt (nlA2-n2A2) ;
YL=V.*sqrt(1-b).*(besselj(1,V.*sqrt(1-b))
./besselj (0,V.*sqrt(1-b))) ;
YR=V.*sqrt(b).*(besselk(1,V.*sqrt(b))
./besselk(0,V.*sqrt(b)));
f=YL-YR;
figure(2)
plot(B,f,1r 1);
Title ('Core mode') 
xlabel('B ') 
ylabel(' f=YL-YR ') 
grid 
zeros=0; 
index = 1; 
for i=l:length(B)-1 

if (f(i)*f(i+l)<0) 
zeros=zeros+l;
Bco(index)=(B(i)+B(i+l))/2; 
fval(index)= (f(i)+f(i+1))/2; 
index=index+l;

end
end
for kk = 1:length(Bco)
sent =sprintf('HE1,%d= %f, F:%0.4f', kk,Bco(kk), fval(kk));

%sent = sprintf('HE1,%d= %f , F value: %0.4f', 
k,Bco(kk), fval(kk)); 

disp(sent);
end
total_modes=zeros
%Period
DP=454.le-006;% DP=design period of LPG 
I=Bcl./Bel;
BBco^Bco.*1; 
k=2*pi/A(jj);
C P (jj)= A (jj)/(BBco(6)/k-Bcl(6)/k)% CP=Calculate Period 
% Bel(6) is just calculate HE1,6 cladding mode 

if (CP(j j)>DP & CP(j j-1)<DP)
Wavelength(jj)=(A(jj)+A(jj-1))/2 
Period(j j) = ( CP(jj)+ CP(jj-l))/2 
sent =

sprintf('FindWavelength= %11.9e', (A(jj)+A(jj-1))/2); 
disp(sent); 
stop 
end

end
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Appendix 3.10 MATLAB code used to determining the Long-period grating

transmissions value(core mode, cladding mode and coupling

wavelength)which show that when surrounding index n3 is changed,

the coupling wavelength shifts, and the transmission amplitude also

changws, for Fig. 5.31.

% MATLAB code for calculation the coupling wavelength 
(three layer
% cladding mode) when n3 changes:

% Cladding mode 
clear all 
format long; 
n3=l.4472%:0.01:1.55; 
for 1=1:length(n3);

A=l.5669026*10A (-6):0.1*10A (-8):1.9*10A (-6); 
for jj=l:length(A);

sent = sprintf('A=, %11.9e', A (j j)); 
disp(sent); 

al=2.625*10A (-6); 
a2=62.5*10A (-6);
nl=l.458+le-004/2;%le-004 is value of peak induced-index 
change in core 
n2=l.45;
Z0=377; 
k=2*pi/A(j j);
x=n2*k:-n2*k/le+007:0.998*n2*k;%l.0e+00 6 *5.8771705069124 4%
B range
B2=n2*k;
B3=n3*k;
neff=x/k;% x=B propgation constent 
b=(neff.A2-n2A2)/(nlA2-n2A2);
V=(2*pi/A(j j))*al*sqrt(nlA2-n2A2) ; 
dl=(neff/ZO)*i;%(8) 
d2=(neff*Z0)*i;%(9)
ul=sqrt((2*pi/A(jj))A2*(nlA2-neff.A2));%(12), j=l 
u2=sqrt((2*pi/A(jj))A2*(n2A2-neff.A2));%(12),j=2 
w3=sqrt((2*pi/A(jj))A2*(neff.A2-n3A2) ) ;%(13) 
u21=l./u2.A2-l./ul.A2; %(10) 
u32=l./w3.A2 + l./u2.A2;% (11)
JJ1=(1/2).*(besselj(0,ul*al)-besselj(2,ul*al));
%diffrective Of BESSELJ J'(u2*a2)
KK1=-(1/2).*(besselk(0,w3*a2)+besselk(2,w3*a2));%K'(u2*a2) 
J=JJ1/(ul.*besselj(l,ul*al) ) ; %(14)
K=KK1/(w3.*besselk(1,w3*a2)) ;%(15)
JJ21=(1/2)*(besselj(0,u2*al)-besselj(2, u2*al));%diffrective 
Of BESSELJ'(u2*al)
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JJ22=(1/2)* (besselj(0,u2*a2)-besselj(2,u2*a2));%diffrective 
Of BESSELJ’(u2*a2)
NN21=(1/2)*(bessely(0,u2*al)-bessely(2,u2*al));%diffrective 
Of BESSELY’(u2*al)
NN22=(1/2)*(bessely(0,u2*a2)-bessely(2,u2*a2));%diffrective 
Of BESSELY'(u2*a2)
pl=besselj(I,u2*a2).*bessely(1, u2*al)-
besselj(1,u2*al).*bessely(1,u2*a2);%(16)
ql=besselj(I,u2*a2).*NN21-JJ21.*bessely(1, u2*a2);%(17)
rl=JJ22.*bessely(1,u2*al)-besselj(1,u2*al).*NN22;%(18)
sl=JJ22.*NN21-JJ21.*NN22; %(19)
AA=u2.*(J.*K+(dl.*d2.*u21.*u32)./(n2A2*al*a2)).*pl 
-K.*ql+J.*rl-(1./u2).*sl;
B=-u2.*((u32./(n2A2.*a2)).*J-(u21./(nlA2*al)). *K). *pl 
+ (u32./ (nlA2*a2)).*ql+(u21./(nlA2*al)). *rl;
G0=(l./d2).*AA./B;%(6)
G0imag=imag(GO);
C=u2.*((u32/a2).*J-(n3A2 .*u21./(n2A2*al)). *K). *pl 
- (u32/a2) .*ql- (u21/al) . *rl;
D=u2.*((n3A2/n2A2)*J.*K+dl.*d2.*u21.*u32/(nlA2*al*a2)).*pl 
- (n3A2/nlA2).*K.*ql+J.*rl-(n2A2 ./(nlA2 .*u2)).*sl; 
Gl=dl.*C./D;%(7)
Glimag=imag(Gl);
%y=G-Gl; %G=G1 
y=GOimag-Glimag;
plot (x, y, 1 b ', x, GOimag, ' r ' , x, Glimag, ' g ' ) , grid; 
zeros=0; 
index = 1; 
for i=l:length(x)-1 

if
((y(i)*y(i+l)<0)&((abs(y(i)))<0.01)&((abs(y(i+1)))<0 - 01)) 

zeros=zeros+l;
Bel(index)=(x(i)+x(i+l))/2; 
yval(index)= (y(i)+y(i+1))/2; 
index=index+l;

end
end
%Core mode 
k=2*pi./A(j j);
B=n2*k:n2*k/le+007:nl*k; % B range 
%x= 1.0e+006 * 5.88689304224413;%Bcore value
neff=B/k;% x=B propgation constent 
b=(neff.A2-n2A2)/ (nlA2-n2A2);
V=k*al*sqrt(nlA2-n2A2) ;
YL=V.*sqrt(1-b).*(besselj(1,V.*sqrt(1-b))
./besselj(0,V.*sqrt(1-b)));
YR=V.*sqrt(b).*(besselk(1,V.*sqrt(b))
./besselk(0,V.*sqrt(b))); 
f=YL-YR;
%plot(B,YL,1r ',B,YR,'g 1,B,f,1y '),grid; 
zeros=0; 
index = 1;
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for i=l:length(B)-1 
if (f(i)*f(i+l)<0) 

zeros=zeros+l;
Bco(index) = (B(i)+B(i+l) ) /2; 
fval(index)=(f(i)+f(i+l))/2; 
index=index+l;

end
end
for k = 1:length(Bco)

sent = sprintf('HE1, %d= %f, F value: %0.4f', k,Bco(k), 
fval(k));

disp(sent);
end
total_modes=zeros 
%Period 
DP=570e-006; 
k=2*pi/A(j j);
C P (jj)= A (jj)/(Bco/k-Bcl(5)/k)% for cladding mode 2
0, 0, 0,
' 5  0  0

DP=570e-006;
if (CP(1,j j)>DP & CP(j j-1)<DP)

W(l, j ) = (A (j j ) +A( j j-1) ) /2 
P(l,jj) = (CP(jj)+CP(jj-l))/2 
end

end
end

Appendix 3.11 MATLAB code used to determining the Long-period grating

transmissions which show that when index n3 change from «3 = 1 to «3 = 

1.447, the coupling wavelength shifts, and the transmission amplitude 

also changws, for Fig. 5.31.

clear all 
% n3=l,
x=1.4:4*10A (-4):1.7 %wavelangth range 
wave=l.5669026
L=25e+003;%LPG period Length p m
A=570;% pitch of period
KK= 0.4725 %coupling constant
dn=le-004 %
k=dn*KK
kk=2*pi/wave % wave number
Bco=5.823285, % propagation constant in core 
Bcl=5.811457, % propagation constant in cladding 
Neff =Bco./kk-Bcl./kk; 
xm=wave;%peak wavelength
s=pi.*Neff.* (1./x-1./xm);%s=l/2(Bcore-Bcladding-2*pi/A)
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T=10.*LOG10(((sin(L.*sqrt(kA2+s.A2)) ) . A2 . / (1+(k./s) . A2) ) + (c 
os(L.*sqrt(kA2+s.A2))).A2);%transmition 
plot(x, T, 'm1); 
hold on

% n3=l.447
x=l.4:4*10A (-4):1.7%wave range 
wave= 1.5390
L=25e+003;%period Length 
A=570;%period
KK=0.4262 %Coupling constant km_01cl~co
dn=le-004%3.6e-004
k=dn*KK
kk=2*pi/wave
Bco=5.929245
Bcl=5.917883
Neff =Bco./kk-Bcl./kk;
xm=wave;%peak wavelength
s=pi.*Neff.*(1./x-1./xm);%s=l/2(Bcore-Bcladding-2*pi/A)
T=10.*LOG10(((sin(L.*sqrt(kA2+s.A2)) ) .A2 ./(1+(k./s) .A2)) + (c 
os(L.*sqrt(kA2+s.A2))).A2);%transmition 
plot ( x ,  T, 'c 1); 
hold on

c l —CO

Appendix 3.12 MATLAB code used to determine the coupling constant km_QX

for Eq.5.140.

%Cladding modes 
clear all 
format short; 
al=2.625; 
a2=62.5; 
nl=l.458; 
n2=l.45; 
n3=l ;
Z0=377;
A=1.55;%Wavelength 
k=2*pi./A;
x=n2':*rk:-n3*k/le+007 :n3*k; % x is propagation constant range.
neff=x./k;% x=B propagation constant
V=(2*pi/A)*al*sqrt(nlA2-n2A2);
dl=(neff./Z0)*i;%Eq.(8)
d2=(neff.*Z0)*i;%Eq.(9)
ul=sqrt((2*pi/A)A2.* (nlA2-neff.A2)) ;%Eq. (12),j=l 
u2=sqrt((2*pi/A)A2 .*(n2A2-neff.A2));%Eq.(12), j =2 
w3=sqrt((2*pi/A)A2 .* (neff.A2-n3A2));%Eq.(13) 
u21=l./u2.A2-l./ul.A2;%Eq.(10) 
u32=l./w3.A2+l./u2.A2;%Eq.(11)
JJ1=(1/2). * (besselj(0,ul*al)-besselj(2, ul*al));
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%diffrective of BESSELJ J'(ul*al)
KK1=-(1/2). * (besselk(0,w3*a2)+besselk(2,w3*a2));%K'(w3*a2) 
J=JJ1./(ul.*besselj(1,ul*al));%Eq.(14)
K=KK1./(w3.*besselk(1,w3*a2));%Eq.(15)
JJ21=(1/2). * (besselj(0,u2*al)-besselj(2,u2*al));
%diffrective of BESSELJ'(u2*al)
JJ22=(1/2).* (besselj(0,u2*a2)-besselj{ 2 , u2*a2)); 
%diffrective of BESSELJ'(u2*a2)
NN21=(1/2). * (bessely(0,u2*al)-bessely(2,u2*al));
%diffrective of BESSELY'(u2*al)
NN22=(1/2) .*(bessely(0,u2*a2)-bessely(2, u2*a2));
%diffrective of BESSELY'(u2*a2)
pl=besselj(I,u2*a2) .*bessely(1, u2*al) -
besselj(l,u2*al).*bessely(1,u2*a2);%Eq.(16)
ql=besselj(I,u2*a2).*NN21-JJ21.*bessely(1,u2*a2);%Eq.(17)
rl=JJ22.*bessely(1, u2*al)-besselj(l,u2*al).*NN22;%Eq.(18)
sl=JJ22.*NN21-JJ21.*NN22; %Eq.(19)
AA=u2.*(J.*K+(dl.*d2.*u21.*u32)./(n2A2*al*a2)). *pl- 
K.*ql+J.*rl-(1./u2).*sl;%Eq.(6) numerator 
B=-u2.*((u32./(n2A2.*a2)).*J-(u21./(nlA2*al)). *K).*pl 
+(u32./(nlA2*a2)).*ql+(u21./(nlA2*al)). *rl;
%Eq.(6) denominator 
G0=(l./d2).*AA./B;%Eq.(6)
G0imag=imag(GO);
C=u2.*((u32/a2).*J-(n3A2 .*u21./(n2A2*al)).*K).*pl 
-(u32/a2).*ql-(u21/al),*rl;%Eq.(7) numerator 
D=u2.*((n3A2/n2A2)*J.*K+dl.*d2.*u21.*u32/(nlA2*al*a2)).*pl 
- (n3A2/nlA2).*K.*ql+J.*rl-(n2A2 ./(nlA2 .*u2)). *sl;
%Eq.(7) denominator 
Gl=dl.*C./D;%Eq.(7)
Glimag=imag(G1); 
y=GOimag-Glimag; 
figure(1)
plot(x,y, 'b ' , x,GOimag,'r ', x,Glimag, 'g '),grid;
hold on
zeros=0;
index = 1;
for j=l:length(x)-1

if ((y(j)*y(j+1)<0)& (abs(y(j)-y(j+1))<0.1)) 
zeros=zeros+l;
Bel (index) = (x(j)+x(j+l) )/2; 
yval(index)= (y(j)+y(j+1))/2; 
index=index+l;

end
end
for k = 1:length(Bel)

sent = sprintf('Cladding modes:HE1,%d= %f, F:%0.4f', 
k,Bcl(k), yval(k)); 

disp(sent);
end
total modes=zeros

162



%Calculate the field normalization constant Elv
x=Bcl;
k=2*pi./A;
neff=x/k;% x=B propgation constent 
V=(2*pi/A)*al*sqrt(nlA2-n2A2) ; 
dl=(neff./ZO)*i;%Eq.(8) 
d2=(neff.*Z0)*i;%Eq.(9)
ul=sqrt((2*pi/A)A2 .*(nlA2-neff.A2));%Eq.(12),j=l 
u2=sqrt((2*pi/A)A2 .*(n2A2-neff.A2));%Eq.(12),j=2 
w3=sqrt((2*pi/A)A2.* (neff.A2-n3A2));%Eq.(13) 
u21=l./u2.A2-l./ul.A2;%Eq.(10) 
u32=l./w3.A2+l./u2.A2;%Eq.(11)
JJ1=(1/2).*(besselj(0,ul*al)-besselj(2,ul*al));
%diffrective Of BESSELJ J ’(ul*al)
KK1=-(1/2).*(besselk(0,w3*a2)+besselk(2,w3*a2));
%K'(w3*a2)
J=JJ1./ (ul.*besselj(l,ul*al)) ;%Eq. (14)
K=KK1./(w3.*besselk(1,w3*a2));%Eq.(15)
JJ21=(1/2).*(besselj(0,u2*al)-besselj(2,u2*al)); 
%diffrective Of BESSELJ'(u2*al)
JJ22=(1/2). * (besselj(0,u2*a2)-besselj(2,u2*a2)); 
%diffrective Of BESSELJ'(u2*a2)
NN21=(1/2) .*(bessely(0,u2*al)-bessely(2, u2*al));
%diffrective Of BESSELY'(u2*al)
NN22=(1/2) .* (bessely(0,u2*a2)-bessely(2,u2*a2));
%diffrective Of BESSELY'(u2*a2) 
pl=besselj(I,u2*a2).*bessely(1,u2*al)- 
besselj(1,u2*al).*bessely(1,u2*a2);%(16) 
ql=besselj(I,u2*a2).*NN21-JJ21.*bessely(1,u2*a2);
%Eq.(17)
rl=JJ22.*bessely(l,u2*al)-besselj(l,u2*al).*NN22;
%Eq.(18)
sl=JJ22.*NN21-JJ21.*NN22; %Eq.(19)
AA=u2.*(J.*K+(dl.*d2.*u21.*u32)./(n2A2*al*a2)).*pl- 
K.*ql+J.*rl-(1./u2).*sl;%Eq.(6) numerator 
B=-u2.*((u32./(n2A2.*a2)).*J-(u21./(nlA2*al)).*K).*pl 
+ (u32./(nlA2*a2)).*ql+(u21./(nlA2*al)). *rl;
%Eq.(6) denominator 
G0=(l./d2).*AA./B;%Eq.(6)
J011=besselj \—i fd -X \—i 3o

Jlll=besselj (l,ul*al)
J211=besselj (2,ul*al)
J311=besselj (3,ul*al)
J021=besselj (0,u2*al)
J022=besselj (0,u2*a2)
J121=besselj (1,u2*al)
J122=besselj (1, u2*a2)
J221=besselj (2,u2*al)
J222=besselj ( 2 , u2*a2)
J321=besselj (3, u2*al)
J322=besselj (3,u2*a2)
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N021=bessely(0,u2*al);
N022=bessely(0,u2*a2);
N121=bessely(1,u2*al);
N122=bessely(1,u2*a2);
N221=bessely(2,u2*al);
N222=bessely(2,u2*a2);
N321=bessely(3,u2*al); .
N322=bessely(3,u2*a2) ;

OJ=a2A2.*(J222.A2-J122.*J322)-alA2. *(J221.A2-J121.*J321); 
ON=a2A2 .*(N222.A2-N122.*N322)-alA2 .*(N221.A2-N121.*N321); 
OJN=a2A2 .*(J222.*N222-(1/2).*(J122.*N322+J322.*N122))- 
al.A2.*(J221.*N221-0.5*(J121.*N321+J321.*N121));
OOJ=a2A2 .*(J222.A2+J122.A2)-alA2.*(J221.A2+J121.A2); 
OON=a2A2 .*(N222.A2+N122.A2)-alA2 .*(N221.A2+N121.A2); 
OOJN=a2A2 .*(J022.*N022+J122.*N122)- 
alA2 .*(J021.*N021+J121.*N121) ;

Q=OJ.*N121.A2+ON.*J121.A2-2*OJN.*J121.*N121;%Eq.(B4) 
QQ=OOJ.*N121.A2+OON.*J121.A2-2.*OOJN.*J121.*N121;%Eq.(B5) 
R = (1/4).*OJ.*(N221-N021).A2+(1/4).*ON.*(J221-J021).A2 
-(1/2).*OJN.* (N221-N021).*(J221-J021);%Eq.(B6)
RR=(1/4).*00J.* (N221-N021).A2+(1/4).*OON.*(J221-J021).A2 
-(1/2).*00JN.*(N221-N021).*(J221-J021);%Eq.(B7)
S=(1/2).*0J.*N121.* (N021-N221)+(1/2).*0N.*J121.*(J021- 
J221)- (1/2) .*0JN.*(N121.*(J021-J221)
+J121.* (N021-N221));%Eq.(B8)
SS=(1/2).*00J.*N121.* (N021-N221)+(1/2).*00N.*J121.*(J021- 
J221)-(1/2).*00JN.*(N121.*(J021-J221)+J121.*(N021- 
N221));%Eq.(B9)

Pll=(neff/Z0-((neff*Z0.*G0.A2)/(nlA2))
+(1+(neff.A2)/(nlA2)).*imag(GO));%part of Eq.(B2)
P12=(neff/ZO-((neff*Z0.*G0.A2)/(nlA2))
-(1+(neff.A2)/(nlA2)).*imag(GO));%part of Eq.(B2)
Pl=((pi*alA2.*ul.A2)/4).*(Pll.*(J211.A2- 
J111.*J311)+P12.*(J011.A2+Jill.A2));%Eq.(B2) 
u21=l./u2.A2-l./ul.A2;%Eq.(10)
J=JJ1./(ul.*besselj(1,ul*al)) ; 
dl=(neff./ZO)*i;%Eq.(8) 
d2=(neff.*Z0)*i;%Eq.(9)
F2=J-(u21.*d2.*G0)/(nlA2*al);
G2=G0.*J+u21.*dl/al; 
ne2=(1+neff.A2/n2A2);
P21=(neff/Z0.*F2.A2-(neff*Z0/n2A2).*G2.A2).*(Q+QQ);
%part of Eq.(B3)
P22=(1./(u2.A2)).*(neff/ZO
-neff.*Z0.*n2A2.*G0.A2/nlA4).*(R+RR); %part of Eq.(B3) 
P23=ne2.*F2.*imag(G2).*(Q-QQ)
+ne2.*(n2A2)./(nlA2 .*u2.A2).*imag(GO).*(R-RR);
%part of Eq.(B3)
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P24=ne2.*(((n2A2.*imag(GO))./(nlA2.*u2)).*F2 
+1./u2.*imag(G2)).*(S-SS);%part of Eq.(B3)
P25=((2*neff./u2) .*( (ZO.*G0/(nlA2)) .*G2 
- (1/ZO) .*F2) .*(S+SS));%part of Eq. (B3)
P2=((piA3*alA2.*ul.A4.*u2.A2.*J111.A2)/16).*(P21+P22+P23 
-P24+P25);%in Eq(B3):(P21+P22+P23-P241+'P25);
K032=besselk(0,w3*a2);
K132=besselk(1,w3*a2) ;
K232=besselk(2,w3*a2) ;
K332=besselk(3,w3*a2); 
ne3=l+neff.A2/n3A2;
F3=-F2.*pl+(l./u2) . *ql;
G3=-(n3A2/n2A2).*(G2.*pl+(n2A2 .*G0./(nlA2 .*u2)),*ql);
P31=((neff*Z0/n3A2).*G3.A2-(neff/ZO).*F3.A2
-ne3. *F3.*imag(G3)).*(K232.A2-K132.*K332);%part of Eq.(B16) 
P32=(((neff*Z0/n3A2).*G3.A2-(neff/ZO).*F3.A2 
+ne3.*F3.*imag(G3)).*(K032.A2-K132.A2));%part of Eq.(B16) 
P3=((piA3.*alA2.*a2A2.*ul.A4.*u2.A4.*J111.A2)./(16.*w3.A2 .* 
K132.A2)).*(P31+P32);%Eq.(B16)
Elv=sqrt(1./(P1+P2+P3) ) ;
%plot(Bel,Elv,'r1) 
hold on

%Core mode
A=1.55;%LPG peak wavelength 
al=2.625;%Core radia 
a2=62.5;%Cladding radia 
nl=l.458;%Core index 
n2=l.45;%Cladding index 
n3=l;%Souround index 
k=2*pi./A;
B=n2*k: n2*k/1000000 : nl*k; % B range 
neff=B/k;% x=B propgation constent
b=(neff.A2-n2A2)/(nlA2-n2A2);%Normalized effective index
V=k*al*sqrt(nlA2-n2A2);%V number
YL=V.*sqrt(1-b).*(besselj(1,V.*sqrt(1-b))
./besselj(0,V.*sqrt(1-b)));%Eq.(1) Left side 
YR=V.*sqrt(b).*(besselk(1,V.*sqrt(b))
./besselk(0,V.*sqrt(b)));%Eq.(1) Right side 
f=YL-YR;
%plot(B,f,1g '),grid;
%plot(B, YL,'r ',B,YR,' k' , B, f,' r ' ) ,grid; 
hold on 
zeros=0; 
index = 1; 
for j=l:length(B)-1 

if (f (j)*f (j+l)<0) 
zeros=zeros+l;
Bco (index) = (B(j)+B(j+l) ) /2; 
fval(index)= (f(j)+f(j+1))/2; 
index=index+l;

end
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end
for k = 1:length(Bco)

sent = sprintf('Core mode:HE1,%d= %f, F value: %0.4f', 
k,Bco(k), fval(k)); 

disp(sent);
end
total_modes=zeros 
%Plot coupling constant Kcl-co 
m=l:length(x) ; 
figure(2)
A=1.55; 
k=2*pi./A; 
neffco=Bco/k;
b=(neffco.A2-n2A2)/(nlA2-n2A2);%Normalized effective index 
D=(nl-n2)/nl;
Kl=((pi*b)/ (Z0*n2*sqrt(l+2*b*D)))A0.5;
K2=(nlA2 .*ul)./(ul.A2-(VA2*(1-b)/ (alA2)));
K3=(1+(d2.*G0)/(nlA2) ) ;
K4=ul.*BESSELJ(1, ul*al) ;
K5=BESSELJ(0,V*sqrt(1-b))/BESSELJ(1,V*sqrt(1-b));
K6=((V*sqrt(1-b))/al) .*BESSELJ(0, ul*al) ;
Kclco=abs(k.*K1.*K2.*K3.*Elv.* (K4.*K5-K6))%Eq.(36) 
plot(m,Kclco,1*r'),grid; 
hold on
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Appendix 4 General Coupled Mode Theory Formalism

The derivation in this section closely follows the work by Erdogan [Erdogan 1997], 

which begins by writing the transverse component of the electric field in the ideal-mode 

approximation to coupled-mode theory as a superposition of the ideal modes (the modes 

in an ideal waveguide where no grating perturbation j exist). Given that the modes are 

labelled index j, we then have:

E j  (x , y, z, 0  = X  \Aj (z) ex p (^ .z )+  B } (z) exp(- iP jZ % / (x, y )  exp(- icot) (A. 1)
j

Where the coefficients A /z)  and B /z)  are slowly varying amplitudes of the jth  mode 

Travelling in the +z and -z  directions, respectively, and the propagation constants (3 is

simply p  = (2tc/A) nejf. The transverse mode field e . (x ,y )  might describe the bound-

core mode or they might describe cladding modes. While the modes are orthogonal in 

an ideal waveguide and hence, do not exchange energy, the presence of a dielectric 

perturbation causes the modes to be coupled such that amplitudes Aj and Bj o f the jth 

mode evolve along the z-axis according to:

^ -  = « '2 X (* V  + J V )e x p [ i(& - / ? > ] + & (*V  - K kj! )exp[-i{p i + j3j)z]
“ z  k k

(A.2)

^  At [Kk;  - K t; )exp[;(A + p j > ] - [Kk;  + K k; )exp[-i[pk -  p t )z]
WZ k k

(A.3)

in Eq. A.2 and Eq. A.3, K k- (z) is the transverse coupling coefficient between modes j 

and k given by:

K u (z ) = ^  \\d x d y ks (x, y , z)ekt (x, y )  * e *Jt (x, y )  (A.4)
oo
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Where A s  is the perturbation to the permittivity, approximately A s  = 2nSn when 

S n « n .  The longitudinal coefficient K kJz is analogous to K kJ‘, but generally

K kj2 «  K kj for fibre modes, and thus this coefficient is usually neglected.

In most fibre gratings the induced index change Sn(x ,y ,z)  is approximately uniform 

across the core and non-existent outside the core. We can thus describe the core index 

by an expression:

8nco-ejf 00  = 8nc„_efr (z>11 + v cosco -e ff
2n
~A

Z +  <j){z) (A. 5)

where 8nco_eff is the “dc” index change spatially averaged over a grating period, v is the

fringe visibility o f the index change, A is the period, and <fi(z) describes grating chirp. 

If  we define two new coefficients

^ k j^ )  = ~ f ~ S n C0{z) \\dxdyekt( x ,y ) * e ’j,(x ,y ) (A.6)

^i/(z) = T cr*;(z) (A.7)

Where <Jkj (z) is a “dc” (period-averaged) coupling coefficient and k kj (z) is an “ac’ 

coupling coefficient, then the general coupling coefficient can be written:

K J  (z) = cjkj (z) + 2 kkj (z) cos
2 n  
~ A

z  + (j){z) (A. 8)

Eqs.A.2 - A.8 are the coupled-mode equations that we use to describer fibre-grating 

spectra.
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