Sheffield Hallam University

Unidirectional solidification studies of ingot mould cast irons

HORNBY, Sara A.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19826/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19826/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.

ProQuest Number: 10699995

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10699995

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

UNIDIRECTIONAL SOLIDIFICATION STUDIES

OF

INGOT MOULD CAST IRONS

by

SARA ANN HORNBY, B.Sc., A.I.M. TECH., TECH. C.E.I.

This thesis is submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy in Industrial Metallurgy of the Council of National Academic Awards. The work was carried out at Sheffield City Polytechnic, Department of Metallurgy, in collaboration with Swinden Laboratories, British Steel Corporation.

February 1980

Shiries City POLYTECHAIC LIBRAR POND STREET 7903634

CONTENTS

			Page
Figure	1.	The Iron-Carbon Equilibrium Diagram	1
	2.	A Schematic Cooling Curve for a Hypoeutectic Grey	
		Cast Iron	2
	3.	The Influence of Cooling Rate on the Temperature of	
		Solidification of the Eutectic in Cast Iron	3
	4.	The Effect of Nucleation Rate on the Eutectic Solid-	
		ification Temperature with Various Rates of Cooling	4
	5.	The Effect of Silicon on the Eutectic Equilibrium	
		Freezing Temperatures (after Morrogh (l))	5
	6.	The Effect of Chromium on the Eutectic Equilibrium	
		Freezing Temperatures (after Morrogh (l))	6
	7.	Sectional Views of the Furnace as used in the Initial	
		Experiments	7
	7A.	Sectional Views of the Finally Modified Furnace	8
	8.	A Sectional Plan View of the Furnace	9
	9.	A Detailed Sectional View of the Mould Inside the	
		Furnace used in the Initial Experiments	. 10
	9A	A Detailed Sectional View of the Mould Inside the	
		Finally Modified Furnace	11
Table	l	Materiel Compositions	12
Plates	l an	d 2 Experimental Apparatus	13
	3 an	d 4	14
	5 an	d 6	15
	7 an	d 8	16
	9 an	d 10 .	17
	11	•	18
	12 a	nd 13	19
	14		20
	15 a	nd 16	21
•	17		22
Table	2	Mould Preheating Furnace Specifications	23
	3.	Crucilite Element Specifications	24
	4.	Radial Temperature Distribution within the Mould Cavity	
		in the Presence of the Original Vitreosil Diffuser	24
Figure	10.	Overall Furnace Circuit Diagram	25
	11.	Circuit Diagram for the Middle Furnace Elements	26
	12.	Circuit Diagram for Top and Bottom Furnace Elements	27
	13.	The Internal Profile of the Mould	28

Table	5.	Mould Specifications	29
	6.	Molochite Suspension	29
	7.	Copper Chill Specifications	29
	8.	Thermocouple Assemblies	30
	9.	The Effect of Carbon 'Pick-Up' on the Composition of	
		Induction Melted Cast Iron	31
	10.	The Variation of Carbon, Sulphur and Manganese Content	
		with Holding Time After Melting in a Pre-Heated 'Zircon'	
		Coated Graphite Susceptor - Melt Practice A	32
	11.	A Summary of the Procedures for Melts 6-17	33
	12.	Analytical Methods	34
	13.	Specified Performance Data - Credshire 500 Analogue	
		Scanner	35
	14.	Performance Data - 220 Drive Cassette Unit	36
Figure	s 14-	-21 Cooling Curves for the White Iron Melts	37-44
Plate	18.	Fractured Casting from Melt 7	45
	19.	Fractured Casting from Melt 8	46
	20.	Fractured Casting from Melt 10	47
	21.	Fractured Casting from Melt 12	48
	22.	Fractured Casting from Melt 13	49
	23.	Fractured Casting from Melt 14	50
	24.	Fractured Casting from Melt 16	51
		Introduction to White Iron Microstructures	52
	25 a	and 26. Melt 16 Microstructures	53
	27.	Fractured Casting from Melt 17	54
	28 a	and 29.) Melt 17 Microstructures	55
	30 a	and 31.)	56
	32 a	and 33.)	57
	34		58
Table	15.	Cast Compositions for the Grey Iron Melt Programme -	
• X		15a. Low Nitrogen Melts	59
		15b. High Nitrogen Melts	60
		Introduction to Cooling Curves - Figures 22 to 60	61
Figure	es 22-	-60. Grey Iron Melt Programme Cooling Curves	62-100
Table	16.	The Cooling Rate (^O C/min) for the ll60-ll00 ^O C	
		Temperature Range	101
	17.	The Cooling Rate (^O C/min) for the ll60-700 ^O C	
		Temperature Range	102
	18.	Actual Thermocouple Displacement (mm).	103
	19.	Statistical Analysis of Cooling Rates for Thermocouples	
		in the Aim Positions (Table 8b).	104

•

		with Distance from the Chill/Metal Interface	105
		62. The Variation of Overall Cooling Rate Between $1160-700^{\circ}C$	
		with Distance from the Chill/Metal Interface	106
	Plate	35. Fractured Castings for the Low Nitrogen Melt Programme	107
		Introduction to the Grey Iron Microstructures	108
,	Plates	36 to 39	109
		40 to 43	110
		44 and 45	111
		46 to 48	112
		49 to 51	113
		52 to 55	114
		56 to 58	115
		59 Additional Base Low Nitrogen Casts	116
		60 to 62	117
		63 and 64	118
		65 to 68	119
		69 and 70	120
		71 to 74	121
		75 to 78	122
		79 to 82	123
		83 to 86	124
		87 to 89	125
		90 to 93	126
		94 to 96	127
		97 to 100	.1.28
		101 to 104	129
	Table	20. Microstructural Criteria for the Low Nitrogen Grey	
		Iron Castings	130
	Plates	105 to 108	131
		109 to 112	132
		113 to 116	133
		117 to 120	134
		121 to 124	135
		125 to 128	136
	•	129 to 132	137
		133	138
		134 to 136 Additional Low Nitrogen Casts	139
	Table	21. Microstructural Criteria for the Additional Castings	140
	Plates	137 and 138	141
	· .	139 Fractured Castings for the High Nitrogen Melt Programme	142

	Table	22.	Microstructural Criteria for the High Nitrogen Grey	
			Iron Castings	143
	Plates	140	to 142	144
		143	to 145	145
		146	to 148	146
		149	to 152	147
		153	and 154	148
		155	The Fractured Casting of Melt Ala	149
		156	to 159	150
	•	160	to 162	151
		163	to 166	152
		167	to 170	153
		171	to 174	154
		175	to 178	155
		179	to 182	156
		183	to 186	157
		187	to 189	158
•		190	and 191 Fractured Castings of Additional High Nitrogen	
			Casts	159
		192		160
			Scanning Electron Micrographs	
		193		161
		194		162
		195		163
		196		164
		197		165
		198		166
		199		167
			Introduction to Plate 200	168
		200		169
			Introduction to Plate 201	170
		201		171
			Introduction to Plate 202	172
		202		173
		203		174
			Introduction to Plate 204	175
		204		176
	Table	23.	Equivalent Cooling Rates (^O C/min) for the Low Nitrogen	
			Casts' Microstructural Criteria Given in Table 20 for	
			the 1160-1100 ⁰ C Temperature Range	177

-

• •

•

•

.

Table 2	24.	Table 23 Subdivided into General Groups According to the	
		Effect of Titanium Additions on the Solidification	
		Mode (^O C/min)	178
2	25.	Equivalent Cooling Rates (^O C/min) for the High Nitrogen	
		Casts' Microstructural Criteria in Table 22 for the	
		1160-1100 ⁰ C Temperature Range	179
	26.	Table 25 Subdivided into General Groups According to	
-		the Effect of Titanium Additions on the Solidification	
		Mode ([°] C/min)	180
Figure	63.	The Effect of Titanium Concentration on the Maximum	
		Cooling Rate for the Formation of the Graphitic Eutectic	
		Cells	181
	64.	The Effect of Titanium Concentration on the Maximum	
		Cooling Rate for the Formation of Streamer Graphite	182
	65.	The Effect of Titanium Concentration on the Maximum	
		Cooling Rate for the 'Grey' Start	183
Table	27.	Equivalent Cooling Rates ($^{ m O}$ C/min) for the Microstructural	
		Criteria for the Additional Casts in Table 21 for the	
		1160-1100 ⁰ C Temperature Range	184
	28.	Equivalent Cooling Rates (^O C/min) for the Microstructural	
		Criteria for the Low Nitrogen Casts in Table 20 for the	
		1160-700 ⁰ C Temperature Range	185
	29.	Equivalent Cooling Rates (^O C/min) for the Microstructural	
		Criteria for the High Nitrogen Casts in Table 21 for the	
		1160-700 ⁰ C Temperature Range	186
Figure	66.	The Manganese-Sulphur Equilibria for the Liquid Ingot	
		Mould Cast Iron from Appendix 2	187

.

-

i

Figure 1 : The iron-carbon equilibrium diagram .

The iron-Fe $_3$ C system.

The iron-graphite system .

Figure 2 : A schematic cooling curve for a hypoeutectic grey

cast iron.

Time -----

Figure 3 : The influence of cooling rate on the temperature of solidification of the eutectic in cast iron .

Cooling Rate ----

Figure 4 : The effect of nucleation rate on the eutectic solidification temperature with various rates of cooling.

Cooling Rate -----

- Iron1 : A cast iron which has not been inoculated.
- Iron 2 : An inoculated cast iron with a nucleation rate greater than that of Iron 1.

Figure 5 : The effect of silicon on the eutectic equilibrium freezing temperatures (after Morrogh [1]).

J

Figure 6 : The effect of chromium on the eutectic equilibrium freezing temperatures (after Morrogh [1]).

Figure 7 : Sectional views of the furnace as used in the initial experiments.

.

Figure 8 : A sectional plan view of the furnace .

Figure 9 : A detailed sectional view of the mould inside the furnace used in the initial experiments.

Figure 9A : A detailed sectional view of the mould inside the finally modified furnace .

					Ö	ILISOAW	N (MASS	PER CI	(TNE								
MATERIEL	Fe	υ	S1	С4	Mn	N	N2 N2	μţ	Mo	Сr	TI	щ	MgO	A1203	CaO	sto ₂	FeO
Warner Iron I	95.86	3.74	0.11	0.025	0.18	0.025		0.045	0.015								
White Iron II	97.003	2.2	0.04	0.162	0.415	0.18						•					
B.S.C.Base Iron III	94.706	3.8	I.2 3	0.02	0.2	0.04	0.0036										
Iron Sulphide	75.3					24.7											
High N ₂ FeMn	11.67	0.68	0.54		81.3		5.81								•		
Low N ₂ FeMn	17.09	0.10	1.11		81.7					<u></u>							
High C FeCr	22.78	5.93	1.69							69.6							
Ferrotitanium	84.75										15.25	·····					
Chromium									<u> </u>	9 0 .8							
Ferroboron	80											20					
Rammed H.F. Lining													34.6	10.0	2.0	1.8	1.3
								<u>.</u>									
]		

.

TABLE I - MATERIEL COMPOSITIONS

The two central bricks are removed to show the ceramic mould seated upon the vitreosil diffuser within the furnace hot zone. The bricks have been deepened, by addition of insulating cement and a thin layer of brick, to compensate for the lowering of the mould into the furnace hot zone (Section 3.2.1). The Cruciliteelements (2 sets of 4 pairs) intersect at right angles.

PLATE 2

The ceramic mould is held rigidly in place in the furnace cavity by inserting a Kaowool plug between the mould and the two central insulating bricks.

Unidirectional heat flow is induced by the presence of a water cooled copper chill held in position at the base of the mould by a clamp stand. A steel furnace support permits the location of the copper chill and connection of the thermocouples to the compensating leads.

PLATE 4

The supported copper chill and the modified (earthed) thermocouple arrangement (Section 3.10.2). All thermocouples and compensating leads are wrapped with aluminium foil and earthed via an external source (See Plate 17).

The mould preheating furnace, the Credshire 500 Analoguer and the 200 cassette unit. The furnace's outer removable Sandanyo cover provides protection for the Crucilite heating elements and electrical connections.

PLATE 6

The protective Sandanyo cover is removed permitting access to the mould cavity (prior to the modifications (see Plate 9)), the 16 Crucilite rods and the electrical connections.

The two central bricks removed to expose the Crucilite heating rods and vitreosil diffuser in the furnace hot zone. These bricks were deepened to compensate for repositioning the mould in the furnace hot zone to prevent thermal losses via the feeder head (see Section 3.2.1).

PLATE 8

The mould in position in the furnace. A Kaowool seal between the mould and the deepened central bricks ensures mould rigidity and prevents metal penetration to the hot zone during teeming. The number 8 thermocouple position is just visible at the top of the vertical sample section, on the furnace diagonal.

A 237.5mm square hole cut in the furnace's outer Sandanyo cover permits access to the furnace hot zone without necessitating total removal of the cover.

PLATE 10

The Kaowool seal between the mould and the bricks prevents metal penetration to the hot zone and ensures mould rigidity. The new arrangement for access to the hot zone and the earthing of the melt (Sections 3.2.1 and 3.10.2 respectively) is evident.

A Kaowool insert, placed on top of the two central bricks and the melt earthing wire, reestablishes the thermal insulation at the top of the furnace partially destroyed by the 'access' hole. The central Kaowool plug situated in the area above the feeder head is supplemented by an insulating brick.

PLATES 12 AND 13

The ceramic mould with Pt./Pt. 13% Rh. thermocouples cemented in position (Table 6b) using 'KOS' thermal cement. The cement seal prevents metal penetration from the mould cavity to the furnace hot zone. The thermocouple wires are silica sheathed.

Teeming the molten cast iron from the transfer ladle to the mould situated in the mould preheating furnace.

The two rear panels which complete the 'isothermal box' at the rear of the data logger are removed to show the patchboards and the thermocouple connections.

PLATE 16

25

The two panels in position at the rear of the data logger. The compensating leads protrude through the foam plastic gland which completes the isothermal chamber.

The furnace and the rear of the Credshire 500 Analogue Scanner. The isothermal chamber is complete and the thermocouple compensating leads are earthed via an aluminium foil sheath which, together with the melt earth lead (Plates 10 and 11), is connected to the external earth.

-

TABLE 2 - MOULD PREHEATING FURNACE SPECIFICATIONS

PARAMETER	HORIZONTAL DIMENSIONS (mm)	DEPTH (mm)
Sandanyo Furnace Base	650 square	18.78
External Sandanyo Cover	601 square	306.8
Original Access Hole	95 diameter	
Final Access Hole	243 square	
Internal Sandanyo Box (Hot Zone Casing)	436 square	305.5
Outer Brickwork	406 square	305
Brick Size (Hot Zone)	101.5 square	75.1
Top 2 Removable Bricks	225.3 x 112.65	75.1
Hole in Removable Bricks	95 diameter	75.1
Hot Zone Cavity	107.8 square	225.3
Original Diffuser	70 diameter	197
Final Diffuser	70 diameter	177.8

TABLE 3 - CRUCILITE ELEMENT SPECIFICATIONS

PARAMETER	DIMENSIONS (mm)
Rod Rod Hot Zone Length	10.0 diam. x 540 length 184.2
Horizontal Axial Spacing	127.0
Vertical Axial Spacing	25.4
Vertical Displacement of Basal Elements	12.7

TABLE 4 - RADIAL TEMPERATURE DISTRIBUTION WITHIN THE MOULD CAVITY IN THE PRESENCE OF THE ORIGINAL VITREOSIL DIFFUSER

DISPLACEMENT* TEMPERATURE IN ^O C								
mm (inches)	THERMOCOUPLE POSITION W.R.T. HEATING RODS							
	(a)	(a)	(b)	(b)	(c)	(c)		
254 (10)	830	837	863	861	790	779		
228 . 6 (9)	896	920	914	90 9	890	889		
203.2 (8)	935	961	949	947	950	945		
177.8 (7)	978	986	983	980	982	981		
152.4 (6)	1001	1000	1001	1000	1001	1001		
127 (5)	1007	1008	1006	1008	1007	1008		
101.6 (4)	1008	1009	1009	1010	1010	1011		
76.2 (3)	1008	1007	1007	1007	1008	1009		
50.8 (2)	1001	987	1000	992	997	1004		
25.4 (1)	985	986	985	987	982	992		
0 (0)	949	956	954	952	949	958		

* The 'displacement' of the thermocouple hot junction is measured vertically from the pseudo-chill interface.

20

TABLE 5 MOULD SPECIFICATIONS

MOULD COMPONENT	HEIGHT (mm)	INTERNAL DIAMETER (mm)
Feeder Head	50.8	Upper 76.2 Lower 38.1
Sample Section	190.5	38.1
Chill Seat	25.4	44.5
Overall	267.0	-

TABLE 6 MOLOCHITE SUSPENSION

Solution Composition (cm ³	³) :	4546 Syton; 6 Lissapol; 12 Octanol
Specific Gravity	:	1.85 (LOO mesh suspension)
Powder Specifications	:	200 and 100 mesh
· · · · ·		

TABLE 7 COPPER CHILL SPECIFICATIONS

,

CHILL PARAMETERS	HEIGHT (mm)	EXTERNAL DIAMETER (mm)
Overall	88.9	-
Locating Section	25.4	44.5
Base Section	63.5	63.5
Inlet Pipe/ Chill Face Separation	9.5	_

INITIAL ASSEMBLY	POSITION IN MOULD	FINAL ASSEMBLY
(a)	mm (inches)	(b)
k	190.5 (7.5)	
	177.8 (7)	8
j	152.4 (6)	
i	127.0 (5)	7
h	101.6 (4)	
	88.9 (3.5)	6
g	76.2 (3)	
f	63.5 (2.5)	5
е	50.8 (2)	
đ	38.1 (1.5)	4
c	25.4 (1)	3
b	12.7 (1.5)	2
a	0 (0)	1

TABLE 8 THERMOCOUPLE ASSEMBLIES

Thermocouples: Pt - Pt, 13% Rh; 0.50mm diameter wire

.

TABLE 9 - THE EFFECT OF CARBON 'PICK-UP' ON THE COMPOSITION

OF INDUCTION MELTED CAST IRON

	CARBO	N CONTE	nt (ma	COMMENTS	
SUSCEPTOR SPECIFICATION	s	AMPLING	G TIME	BASE MELT III	
(MELT NUMBER)	0	5	10	.15	(TABLE 1)
Cold Uncoated (1)	-	4.36	-	4.57	Excessive Carbon
Hot Uncoated (2)	4.12	4.35	4.40	4.40	the use of 'Zircon' coated Susceptors.
'Zircon' Coated (3)	3.68	3.78	3.79	3.792	Spalling prior to melting the metal.
Hot 'Zircon' Coated (4)	3.69	3.64	3.742	3.84	Spalling prior to charge addition.

		-			
	a TCM KS	COMPOS	M) NOITI	ASS &)	COMMENTS
MELT NO.	JAMFLE TIME (Mins)	υ	ß	ЧШ	BASE MELT COMPOSITION III - TABLE 1
	0	4.24	0.492	0.18	S Addition as FeS, Table l = l.65%
	Ŋ	4.24	0.645	0.18	Total S = 1.668%. S loss = 0.018% (15 mins.)
ហ	10	4.19	1.425	0.15	Mn addition = 0. Total Mn = 0.2 %
	15	4.13	1.650	0.17	Mn loss = 0.03% (15 mins)
•					
,	0	4.26	0.176	0.88	S Addition = 0.185%. Total S = 0.203%
	Ŋ	I	I	I	S Loss: (gain 0.013% after lo mins.)
و	10	4.57	0.216	0.88	Mn Addition (High N_2 Fe-Mn Table 1) = 0.8 mass [§] Mn.
	15	I	I	I	Total Mn = 1.00%. Mn loss 0.12% (lo mins.)
	•	•			•

TABLE 10 - THE VARIATION OF CARBON, SULPHUR AND MANGANESE CONTENT WITH HOLDING TIME AFTER MELTING IN A PRE-HEATED 'ZIRCON' COATED GRAPHITE SUSCEPTOR - MELT PRACTICE A

·

TABLE II. A SUMMARY OF THE PROCEDURES FOR MELTS 6 TO IT.

a a de de la

COMMENTIS	Mould supported outside the furnace by clamp stands. This demonstrated effectiveness of KOS cement in sealing the T/Cs and Cu chill in place casting was used to develop the fracture technique.	Cooling rates were generally too high. The furnace 'switch-off' times delayed. The cooling curves show heat loss from the top of the casting incomplete filling of the featur head	D/L malfunction. Complete cooling curves were only obtained for T/Cs . U' only. The fracture showed evidence of non-unidirectional heat flo ensate for this the mould preheating furnace was sectionalised.	The melt tan-out" due to the mould cracking.	Inflections on the cooling curves showed the effectiveness of section the furnace on reducing the cooling rate. The D/L malfunctioned after	No cooling curves were obtained due to the D/L malfunctioning.	The melt 'ran-out' due to the mould cracking, possibly as a result of temperature required for the addition of Bi to the melt. Hereafter, ch additions are to be made to adhieve a white iron structure.	Variations of ± 600°C indicated that the data logger had malfunctioned casting exhibited a good unidirectional alignment of structure.	The data logger malfunction precluded the obtaining of cooling curves. casting was very porous and was subsequently melted down for Melt 15.	The melt was earthed through the no. 8 T/C via a C.R.Ot. The D/L perfo satisfactorily. Inflections on the cooling curves concurrent with the switch-off times suggests excess heat input. The 'switch-off' times mu further delayed. The cast structure was satisfactory.	The melt was earthed via the D/L patch-board. The performance was sati Cooling curve inflections suggest the need for further reducing the 's times of the top elements. The cast was reheated and the output from th T/C was monitored via 0.6 . Roo. The cast structure was satisfactory.	The data logger was not earthed. The melt was isolated from earth by s the clamp stand on a Sandanyo board. The D/L performed satisfactorily. positioning of the no. 7 and 8 thermocouples suggests heat loss from the the casting. Hereafter a Kaouvol plug is to be placed above the feeder	The earthing of the system was as for melt IG. The no. 7 and 8 T/Gs . we electrically insulated by Silicn sheaths. Temperature variations of \pm observed. Inflections encountered on all cooling curves indicate a nee further reduce the furnace 'switch-off' times to 0,12,20 mins Structure
COLOUR	Grey	Grey	White	1	1	Grey	1	White	1	White	White	White	White
FR ACT PLATE NO.	1	18	61	1	1	20	1	21	11	22	23	23	27
FIGURE NUMBER	1	14	15	1	16	1	1	17	1 1	18	61	20	21
DATA LOGGER (3.10)	Ţ	н	I	1	ເນ	2	ເນ	ಣ	ରା ରା	ຎ	2	ຸດາ	ನು
IONS OFF-TIME (ALNS.) (3.3)	1	Ω	18	1	5, 24, 42.	13,41,58	13,41,58	6,24,38	11	5, 33, 4I	0,14;31	0,14,25	0,14,25
C C C C C	1	1150	IIEO	1150	II50	II50	1150	I250	I250 I250	I250	I250	I250	I250
FURNACE (CONSTRUCTION (3.3)	Unsectioned	E	=	T	KOULD	Sectioned	F	z	= =	=	=	=	E
T/C. POSI- TION TABLE 8	I27mm only	đ	đ	.е	N THE	ف	م	æ	<u>م</u> م	q	q	q	م ا
POU- RING C.	1250	1320	I240	I240	NETAL 1	I250	1480	1300	1310 1310	1310	1310	I300	1315
ADDITIONS TABLE I F. S. F. Mn F. Cr. as Fecr: PURE	0.185% S 0.878% Mn	I	3% pure Cr.	1	IOFILE - NO	1	0.001% Bi FeCr. Pure	2.71% 2.6%	3.03% 2.89% 3.03% 2.89%	3.09% 2.50%	I.80% I.00% 2.8% from melt (I3)	3.24% 2.33%	3.10% 2.40%
 IRON COMPO- SITION TABLE I	III	I	г	II	IA DNIT	II	II	H	(12) II&III	III	(I3) II&III	III	III
MELT PRAC TICE (3.7)	Y	Å	Y	A A	ACE COO	V	́д,	8	æ	£	m	£	A
ND.	9	7	œ	6	FURN	10	H	12	13	14	15	16	LI

D/L - Data Logger T/C - Thermocouple

C.R.O. - Cathode Ray Oscilloscope

• •

.

ELEMENT	SEPARATION METHOD	ABSORPTION	TITRANT	COMMENTS
Carbon + (error - 1% of reported composition)	Roasting turnings to produce CO + CO_2	Dimethyl Formanide Methanolamine (to absorb H ₂ O) and indicator	Non-aqueous. Tetrabutyl ammonium hydroxide (N/10) *Problems could be incurred if graphite is weighed with iron.	The titrant severs the CO + CO ₂ bonds with hexagonals thus altering the alkalinity*
Sulphur ₊ (error - 1% of reported composition)	Roasting turnings to produce SO ₂	Weak peroxide. solution	Sodium tetraborate	
Phosphorus (error - 0.002%)	Turnings dissolved to precipitate the phosphomolybdate which removes alkalinity	Standard caustic soda solution	Back titration - Nitric acid to end Point.	Back titration produces alkalinity which is proportional to the phosphorus percentage
Chromiun (error - (0.005%)	Turnings produce Cr 7 by oxidation on hot plate.	Cr 7 reduced to Cr 3 with ferrous ammonium sulphate.	Back titrate with excess iron sulphide solution which reoxid- ises chromium to Cr 7 state.	Solution colour changes from green to yellow.
Silicon (error - 1% of reported composition)	Silicon (turnings) burning at 900 ^o C. factor compensating	is hydrated to silica The silica remaining for the oxygen. (In	; filtered on to a pulp pad,carbon is weighed and converted to silico homogeneity causes problems).	aceous material is removed by 1 percent by multiplying by a
Manganeşe (error - 1% of reported composition).	Colourimetric. Tur absorption spectrop	nings dissolved in sp hotometer.	ekka acid $(H_2SO_4 + H_3PO_4)$. The ma	genta solution is analysed on an
Titanium (error - 1% of reported composition	Colourimetric. Tur yellow (time is req Segregation is like Time dependent titra	nings are dissolved i uired for completion) ly in the sample. An ation.	n sulphuric acid; Hydrogen peroxid ; The solution is analysed on an al alysis is viable for soluble and t	s is used to colour the solution ssorption spectrophotometer. otal but not combined titanium.
Nitrogen	Kjeldahl process. E samples (Performed]	rror impossible to as by B.S.C.).	certain as stated (3.10.2). This '	vas performed on both types of
Titanium	Both wet and spectr The result guoted i	ographic methods were s for total and solub	used by B.S.C. using turnings and le titanium.	white samples respectively.

TABLE 13 - SPECIFIED PERFORMANCE DATA

CREDSHIRE 500 ANALOGUE SCANNER

Max. Signal Input	:	100 volts
Туре	:	D.C. or Peak A.C.
Channel Arrangement	:	100 Dipole (5 x 20)
Max. Scan speed	:	10 Channels/sec
Min. Scan speed	:	l Channel/sec
Scan Mode	:	Auto or Manual
Max. No. Channels	:	999

TABLE 14 - PERFORMANCE DATA - 220 DRIVE CASSETTE UNIT.

.

Character Storage	50,000
Single Line Accommodation	70 Characters
Out-put Format	9 Characters/Channel
Print-out Format/Channel:	Characters
Channel No.	2
Polarity	1
Temperature	5
Space	1)
Time	4 at each line end
Max. Word Count	(70 - 4 =) 66
Word Count/Line - Present Work	4
Total Scan	2 Lines

.

.

•

.

٢

••••••

.

-42-

-44-

•••

-46-

. .

C1. 127.1mm (19.05mm)

x 16

6.28⁰C/Min

C1. 127.1mm (9.525mm) x 63

6.28°C/Min

PLATE 85

C1. 177.8mm (19.05mm)

x 16

4.43⁰C/Min

PLATE 86

C1. 181mm (28.6mm) x 16

4.35⁰C/Min

-123-

PLATE 79 B1. 182mm (36.6mm) x 32

4.29⁰C/Min

<u>PLATE 80</u> C1. 33.5mm (7mm) x 16

32.51°C/Min

PLATE 81

C1. 63.5mm (9.525mm)

x 16

12.33⁰C/Min

PLATE 82

C1. 89mm (14mm) x 63

9.79⁰C/Min

B1. 89mm (26.1mm) x 63

PLATE 76

'B1. 127.1mm (28.6mm)

x 63

9.79⁰C/Min

6.28⁰C/Min

PLATE 77 B1. 127.1mm (31.1mm) x 63

6.28⁰C/Min

PLATE 78 B1. 177.8mm (28.6mm) x 63

4.43⁰C/Min

PLATE 71 B1. 38.1mm (29.6mm) x 63 PLATE 72 B1. 63.5mm (30.1mm) x 16

25.62⁰C/Min

12.33⁰C/Min

PLATE 73

B1. 64.5mm (29.6mm)

x 16

12.11⁰C/Min

PLATE 74 Enlargement of Plate 73 x 160

12.11⁰C/Min

PLATE 69 A3. 177.8mm (19.05mm) x 16

,

4.43[°]C/Min

PLATE 70 A3. 177.8mm (15mm) x 16

4.43⁰C/Min

.

PLATE 65 A3. 38.1mm (9.525mm) x 160

25.62⁰C/Min

<u>PLATE 66</u> A2. 25.4mm (9.525mm) x 16 48.10⁰C/Min

<u>PLATE 67</u> A3. 63.5mm (19.05) x 16 12.33⁰C/Min PLATE 68 A2. 89mm (19.05mm) x 16

9.79⁰C/Min

-118-

A1c. 0mm (10mm L.H.S.)

x 16

.

635⁰C/Min

PLATE 64 Enlargement of Plate 63 x 63

635⁰C/Min

PLATE 60 A1a. 45mm (9.525mm) x 16

21.18⁰C/Min

PLATE 61

Ala. 158mm (18.05mm)

x 16

5.50°C/Min

ċ

<u>PLATE 62</u> A1b. 81mm (17mm) x 16

10.42⁰C/Min

.

.

ADDITIONAL BASE LOW NITROGEN CASTS

.

Cast Ala

Cast A1b

Cast A1c

÷

PLATE 56 A1. 185mm (19.05) x 160

4.17⁰C/Min

PLATE 57 A1. 185mm (9.525mm) x 63

4.17⁰C/Min

<u>PLATE 58</u> A1. 185mm (10mm) x 160

4.17⁰C/Min

ŀ

A1. 89mm (19.05mm)

x 16

9.79⁰C/Min

PLATE 53

Enlargement of Plate 52

x 63

9.79⁰C/Min

PLATE 54

A1. 127.1mm (19.05mm) x 63

6.28⁰C/Min

<u>PLATE 55</u> A1. 177.8mm (9.525mm) x [.]63

4.43⁰C/Min

PLATE 49 A1. 89mm (9.525mm)

x 16

.

9.79⁰C/Min

PLATE 50

Enlargement of Plate 49

x 160

9.79⁰C/Min

<u>PLATE 51</u> A1. 127.5mm (9.525mm)

x 32

6.17⁰C/Min

A1. 63.5mm (34.1mm)

x 16

12.33⁰C/Min

PLATE 47

Enlargement of Plate 46

x 160

12.33⁰C/Min

PLATE 48

Enlargement of Plate 46

x 160

12.33⁰C/Min

<u>PLATE 44</u> A1. 38.1mm (9.525mm) x 16

25.62⁰C/Min

PLATE 45 Enlargement of Plate 44 x 160

25.62⁰C/Min

PLATE 41

Enlargement of Plate 40

x 63

A1. 25.4mm (19.01mm) **x** 16

48.1°C/Min

48.1°C/Min

PLATE 42

A1. 38.1mm (28.5mm)

x 63

25.62⁰C/Min

PLATE 43

Enlargement of Plate 42 x 160

25.62⁰C/Min

-109-

PLATE 36 A1. Omm (19.05mm) x 16

635⁰C/Min

<u>PLATE 37</u> A1. 12.7mm (19.01mm) x 16

123.97⁰C/Min

PLATE 38

Enlargement of Plate 37 x 63

123.97⁰C/Min

PLATE 39

Enlargement of Plate 37 x 160

123.97⁰C/Min

.

The details of the following microstructures, etched in 2% nital, are given as follows:-

Cast number, distance from the chill, (distance from the T/C edge) and magnification.

Cooling rate through the 'solidification arrest' - $1160^{\circ}C - 1100^{\circ}C.$

The photographs are orientated with the chill/metal interface towards the bottom of the plates.

Fractured Castings for the Low Nitrogen Melt Programme

Figure 62 : The variation of overall cooling rate between 1160 and 700°C with distance from the chill-melt interface.

100

STATISTICAL ANALYSIS OF COOLING RATES 10+ H+ + 1

-

isti-			Therm	ocouple	Number ()TT-09TT)	00°C)			ц Г	ermocoup	le Numbe	r (1160-	(20002)	
uo	r-i	5	3	4	5	9	7	8	Ч	5	3	4	5	9	2
	635	123.97	48,10	25.62	12.33	9.79	6.28	4,43	156,48	35.97	18.59	11.83	6.67	8,81	7.78
	057711-	1474.75	145.07	35.71	2.28	1,92	0.58	0.34	6166.65	56.23	23.99	0.39	46•0	0,1+8	0.38
	343.15	38.4	12.04	5.98	1.51	1.39	0.76	0.59	78.53	7.50	4.90	0.63	0.97	0.69	0.61
2	672.57	75.27	23.61	17.1L	2.96	2.72	1.49	1.15	153 <u>.</u> 92	1 ⁴ .70	9,60	1, - 23	1.91	1. 36	1,20
966	1307.57	48.70	12.17	37.33	15.29	12.51	7.77	5.58	0 ⁴ 012	50.67	28.19	13,06	11.58	10.17	86.98
	635	123.97	48.10	25.62	12.33	67.6	6.28	4.43	156.48	35.97	18,59	11,637	9,67	8 , 81	7.78
<u>8</u>	206.52	199.24	24.49	13.91	9.37	7.07	ł•79	3.28	2.56	21.27	8.99	10.60	7.76	7.45	6.58
960	3.1165	2_2994	1.8556	1.5271	1,1844	1.0973	1. 0.8904	garithmi 0.7466	ic Values 2.4919	1. 70 ¹ 48	1,4501	1.1159	1.0637	1,0073	0.9533
	2.3028	2.0933	1.6822	1.4086	1.0910	8066.0	0.7980	0.6464	2,1945	1.5559	1.2693	1.0730	0.9854	0.9450	0.8910
10	1.5748	1.6875	1.3890	1.1433	0.9717	0.8494	0.6803	0.5159	0.4085	1.3278	0.9538	1.0253	0.8899	0.8722	0.8182

is the mean of those melts whose thermocouples coincide with the aim positions. ١X

v is the variance of the cooling rates.

is the standard deviation.

6

Where

is the statistical significance limit - any results exceeding (X⁺ 1.966) will be statistically significant 1.96**6**

, .

TADUE 10

ACTUAL THERMOCOUPLE DISPLACEMENT (mm)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
A10 15.9 27.4 38.1 63.5 89 127.17 177.8 A20 12.7 25.4 38.1 63.5 89 127.7 177.8 A30 12.7 25.4 38.1 63.5 89 127.7 177.8 B10 12.7 25.4 38.1 63.5 89 127.17 177.8 B20 12.7 25.4 38.1 63.5 89 127.17 177.8 B30 12.7 25.4 38.1 63.5 89 127.17 177.8 B30 12.7 25.4 38.1 63.5 89 127.17 177.8 B30 12.7 25.4 38.1 63.57 89 127.17 177.8 C10 12.7 25.4 38.1 63.57 89 127.17 177.8 C23 15.7 27.4 40.1 63.57 89 127.17 178.0 C3 4.5 14 26.4 38.1 63.57 89 127.17 178.0 E10 12.7 25.4 38.1 63.57 89 127.17 178.0 E20 12.7 25.4 38.1 63.57 89 127.17 178.0 E33 12.7 25.4 38.1 63.57 89 127.17 178.0 E40 12.7 25.4 38.1 63.57 89 127.17 178.0									
F_3 3 15.7 31.0 41.0 66 92 130.17 181 $G1$ 1.5 14.5 29.5 44.0 63.57 92 127.17 178 $G2$ 1.0 12.7 28.0 41.0 65.5 89 127.17 178 $G3$ 5.0 12.7 25.4 47.6 63.5 95.5 134.5 182 $A1'$ 2.5 $ 25.4$ 39 $ 127.1$ 179 $A2'$ 3.5 12.7 28.4 42.5 63.5 89 127.17 178 $A3'$ 6.5 12.7 29.0 41.0 65 $ 177.1$ 178 $B1'$ 2.0 13.7 25.4 38.1 65.57 89 127.17 178 $B2'$ 0 12.7 25.4 38.1 63.5 89 127.17 178 $B2'$ 0 12.7 25.4 38.1 63.5 89 127.17 178 $B3'$ 0 12.7 25.4 38.1 63.5 89 127.17 178 $C2'$ 2 14 29 41.6 64.5 87 127.17 178 $C2'$ 2 14 29 41.6 63.5 89 127.17 178 $D1'$ 4 16 32 39.6 61 89 123.17 177.8 $D1'$ 4 16 32 39.6 61 89 129	31.5								
ADDITIONAL CASTS									
Ala - 17 30 45 70 87 125 125 Alb 0 12.7 25.4 38.1 63.5 81 135 185.5 Alc - - - 25.4 38.1 63.7 89 127.1 177.5 Cla NO GRAPH - - - - 177.5									
F2a 0 12.7 25.4 38.1 63.7 89 127.17 178 Ala' 7 20 32.5 46 63.5 89 133.5 - B3a' 3 12.7 25.4 38.1 63.5 89 127.17 178 C2a' NO GRAPH 0 0 0 0 0 0 0 0									

;

HE COOLING RATES (°C/MIN) FOR THE 1160° - 700°C TEMPERATURE RANGE

- <u></u> -	t Thermocouple Number								
•	1	2	3	4	5	6	7	8	
	85.87 128.80 153.33 201.25 357.78 94.71 189.41 357.78 169.47 233.33 189.76 64.4 111.04 322.00 460.0 61.92 115.00 109.15 134.17 94.71 15.83 178.89 57.00 268.33 89.44 137.02 191.67	23.50 32.20 45.35 46.07 38.28 41.92 5.20 45.35 41.92 5.20 35.27 5.20 35.27 352.27 352.27 352.29 352.29 353.22 24.29 353.22 24.29 353.22 48.33 38.88 38.88 38.88 38.88 38.38 38.89 32.24 32.27 30.67	14.57 15.33 29.54 16.608 25.76 12.253 14.090 14.90 14.90 14.90 14.90 14.90 14.90 14.90 14.90 14.90 15.568 19.88 14.82 12.12 16.68 14.82 12.12 16.68 29.82	11.50 11.38 12.20 10.81 11.97 12.48 13.59 15.86 11.80 11.42 12.39 13.86 12.15 12.11 10.59 11.22 13.70 9.25 11.46 12.88 12.15 12.11 10.59 11.22 13.70 9.25 11.46 12.88 11.14 10.88 12.06 10.06 11.38 11.38 13.55 16.60	9.61 9.25 10.06 8.77 9.88 9.50 10.66 8.80 9.94 9.31 9.94 9.31 9.64 9.39 10.39 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.46 9.37 10.37 10.46 9.37 10.46 9.37 10.46 9.37 10.37 10.46 9.37 10.46 9.37 10.57 10.57 10.56 8.80 9.59 10.56 8.80 9.59 10.56 8.97 10.56 8.97 10.56 8.97 10.56 8.97 10.56 8.97 10.56 10.56 8.97 10.56 10.56 10.56 8.97 10.56 8.97 10.56 10.56 8.97 10.56 8.97 10.56 8.97 10.56 8.97 10.56 10.57 10.56 8.97 10.56 10.57 10.56 10.57 1	8.52 8.47 9.47 8.558 9.13 8.9568 10.13 8.977 9.9960 8.5266 8.266 8.10 9.17 8.8597 8.507 8.507 8.507 8.507 8.507 8.507 8.507 8.507 9.7399 8.507 8	8.09 7.89 7.97 7.96 167 7.88 7.97 7.10 999 97 7.96 8.87 7.77 8.87 7.79 6.88 8.77 7.96 6.68 8.87 7.79 6.68 8.87 7.79 6.68 8.87 7.95 12 8.93 52 8.93 52 8.00 8.00 8.00 7.00 8.00 7.00 7.00 7.00	7.18 7.08 7.08 7.76 7.76 7.76 7.76 7.76 7.76 7.76 7.7	
		-	ADD	ETIONAL C	ASTS	· ·			
la lb lc 3a	- - - NO	- 47.35 42.93 GRAPH	16.26 24.39	10.59 17.22	8.50 14.12	8.52 12.83	7.82 11.03	6.97 10.09	
1a 2a 1a' 3a' 2a'	78.54 189.41 73.8 - NO	26.18 67.08 20.13 42.93 GRAPH	17.50 20.13 12.93 20.00	11.03 13.76 9.79 11.71	8.99 10.13 9.61 9.50	8.19 9.12 8.90 8.50	8.24 8.05 8.05 7.42	6.44 6.91 7.52 6.64	

. •
	Thermocouple Number							
st. ●	1	2	3	4	5	6	7	8
1 312312312312312312312313123	+ 420 840 1400 5200 4205 8600 25250 420 5420 25250 420 5420 420 5420 420 5420 420 5420 420 5420 420 5400 5000 50000 5000 5000 5000 5000 5000 5000 5000 5000 5000	93.33 105.0 168.0 120.0 105 76.36 140 168 150 140 93.3 120 210 89.36 84 140 168 120 210 89.36 84 140 168 120 210 87.5 76.36 70 76.36 120 140	30 38.18 46.67 38.18 35.49.41 54.62 74.68 56.2 30.52 52.50 52.	22.95 22.22 23.6 26.25 27.1 30 28 35 28.97 40 30 28 27.1 24.71 27.70 24.71 26.25 19.09 16.80 25.45 28.97 33.6 20.49 28.00 35.00	12.17 12.8 15.7 14.48 13.13 15.85 13.77 10.24 13.77 10.63 12.55 14.0 10.37 12.35 14.0 10.37 12.35 12.675 12.75 12.75 12.75 12.755	10.5 8.57 8.94 9.66 9.13 10.5 12.73 8.62 9.13 10.63 9.77 10.5 9.77 8.94 7.57 7.18 13.13 8.57 10.00 9.23 9.13 8.66 10.77 7.18 10.37 10.50 11.35	5556639 66666666676545666 666655567 666655567 70545666 66655567 70545666 66655567	4.19 3.925 7.733 4.40 6.957 7.334 4.40 6.957 7.334 4.40 6.957 7.334 4.40 6.957 7.334 4.40 6.957 7.334 4.40 6.957 7.335 7.00 7.755 4.52 7.335 9.357 - 00 3.7554 5.40 5.53 - 00 3.5554 5.53 - 00 3.5554 5.55 - 00 3.5554 - 555 -
ADDITIONAL CASTS								
la lb lc la 2a 3a a' a'	- 300 420 - 420	175 100 84 ≈280 NO GRAPH 76.36	56 44.21 70.0 52.5 40.0 70.0	26.25 15.11 76.25 32.31	8.7 17.14 13.13 14.0 11.20 16.8	- 10.19 9.27 8.84 10.0 8.24 10.24	6.77 5.32 10.91 6.18 5.68 6.27	4.52 4.04 4.26 4.16 7.64
a'		NO GRAPH		,				>

.

- 100 -

- 97-

- 96 -

-95-

-92-

-90-

-89-

• .

-85-

- 84-

-82-

- 81-

-79-

.

с. К. -73-

- 72-

.

- 71-

-70-

-68-

-67-

-66-

-05-

V2

COOLING CURVES FOR THE GREY

IRON MELT PROGRAMME (FIGURES 22-60)

The following cooling curves have been obtained from the grey iron melt programme castings and are correlated as follows:-

LOW NITROGEN CASTINGS

HIGH NITROGEN CASTINGS

Figure No.	Cast No.
22	Ala
23	Alb
24	Alc
25	Al
26	A2
27	A3
28	Bl
29	в2
30	В3
31	Cl
32	C2
33	C3
34	Ela
35	El
36	E2
37	E3
38	Fl
39	F2a
40	F2
41	F3
42	Gl
43	G2
44	G3

Figure No.	Cast No.
45	Ala
46	Al'
47	A2'
48	A3'
49	Bl'
50	B2'
51	B3a'
52	в3'
53	C1'
54	C2'
55	C3'
56	Fl'
57	F2'
58	F3'
59	Dl'
60	D3 '

Table 15 - Continued

				Elen	ients					Cooling	Fracture
Si Ti	Ťi		N	Ч	Si	Mn	Cr	В	Al	Figure	No.
TABLE 15b HIG	E 15b HIG	ប	H NITRO	DGEN MEI	TS						
0.02 -	1		.0112	0.02	0.95	0.83	0.07	0.004	<0.001	45	159
0.03 - 0	1		0.012	0.02	1.04	0.86	0.05	0.005	<0.001	46	139
0.05 - 0	1		0.0118	0.02	1.00	0.89	0.05	0.005	<0.001	47	139
- 60.0	1		0.010	0.02	0.92	0.82	0.06	0.005	<0.001	48	139
0.18 0.093 0	0.093 0	0	.0084	.015	0.87	0.87	0.07	0.005	0.001	49	13.9
0 160.0 90.0	0 160.0	0	1600.	0.01	0.95	0.85	.035	0.003	0.001	50	139
0.11 0.094 0.	0.094 0.	Ó	.015	0.02	0.90	0.86	0.04	0.005	0.001	51	ı
.115 0.090 0.	0.090 0.	Ó	600	0.02	0.84	0.80	0.06	0.005	0.002	52	139
0.02 0.120 0	0.120 0.	0	600.	0.02	0.85	0.74	0.05	0.005	<0.002	53	139
0.05 0.112 0	0.112 0	0	.010	0.02	0.84	0.78	0.05	0.005	0.002	54	139
0.06 0.130 0.	0.130 0.	Ö	010	0.02	0.79	0.825	0.05	0.005	0.002	I	ı
0.10 0.130 0.	0.130 0.	Ö	600.	0.02	0.83	0.80	0.06	0.005	0.002	55	139
0.26 0.180 0	0.180 0	0	.008	0.018	0.78	0.82	0.06	0.005	0.001	59	139
0.15 0.210 C	0.210 0	0	600.0	0.016	0.89	0.80	0.05	0.004	0.004	60	139
.021 0.410 0	0.410 0	0	600.0	0.01	0.80	0.74	0.05	0.003	0.001	56	139
0.06 0.380 0	0.380	0	1600.0	0.02	0.78	0.80	0.03	0.003	0.002	57	139
0.10 0.380 C	0.380 C	0	1600.0	0.02	0.75	0.79	0.07	0.001	0.002	58	139

amm
togr
E
Melt
Iron
Grey
the
for
tions
mposi
S
Cast
1
15
Table

					Elemen	lts					Cooling	Fracture
Cast	υ	S	Ti	z	д	Si	Wn	Cr	В	Al	Curve Figure	Plate No.
		TAB	LE 15a	LOW NITR	OGEN ME	LTS						
Ala	3.42	0.02	1	0.005	0.02	0.97	0.86	0.11	0.003	0.001	22	59
Alb	3.55	0.02	I	0.0048	0.02	1.17	0.84	0.08	0.003	<0.001	23	59
Alc	4.02	0.02	1	0.0056	0.02	1.16	0.87	0.08	0.003	<0.001	24	59
Al	3.90	0.02	4	0.0064	0.02	1.01	0.80	0.09	0.005	<0.001	25	35
A2 -	3.80	0.045	1	0.0057	.026	1.05	0.82	0.08	0.004	<0.001	26	35
A3	3.80	0.104	1	0.006	0.02	0.95	0.80	0.08	0.003	<0.001	27	35
Bl	3.65	0.03	160.0	0.0047	0.02	0.94	0.85	0.06	0.002	0.002	28	35
B2	3.75	0.06	0.091	0.004	0.02	0.955	0.92	0.05	0.005	0.001	29	35
B3	3.65	0.10	.0915	0.0051	0.02	0.91	0.85	0.06	0.005	0.001	30	35
CI	3.75	0.015	0.143	0.0044	0.02	1.00	0.80	0.04	0.003	0.002	31	35
C2	3.80	0.068	0.137	0.0049	0.02	1.04	0.80	0.04	0.003	0.002	32	35
CJ	3.80	0.110	0.137	0.0046	0.02	0.95	0.80	0.04	0.002	0.001	33	35
Ela	3.80	0.02	0.293	0.0038	0.02	1.01	.825	0.08	0.004	0.002	34	133
El	3.65	0.022	0.330	0.005	0.02	0.80	0.76	0.05	0.005	0.001	35	35
E2	3.60	0.045	0.316	0.005	.019	0.80	0.70	0.05	0.003	100.0	36	35
E3	3.70	0.098	0.316	0.004	.018	0.87	0.80	0.05	0.003	0.002	37	35
E3a	3.52	0.120	0.340	0.004	0.02	0.90	0.80	0.05	0.003	0.002	1	134
FL	3.60	0.024	0.390	0.0041	0.01	0.90	0.81	0.04	0.002	0.007	38	35
F2a	3.75	0.050	0.390	0.0046	0.02	0.97	0.76	0.05	0.002	0.002	39	136
F2	3.60	0.050	0.390	0.0045	0.01	0.94	0.80	0.04	0.004	0.002	40	35
F3	3.70	0.100	0.377	0.0047	0.02	0.99	0.77	0.04	0.002	0.002	41	35
GI	3.80	0.017	0.490	0.004	0.02	0.90	0.85	0.06	0.003	0.004	42	35
G2	3.80	0.060	0.408	0.003	0.02	1.20	0.78	0.08	0.004	0.001	43	35
G3	3.80	0.100	0.435	0.003	0.02	1.02	. 805	0.08	0.004	0.001	44	35

timme

t

Melt 17, 101.6mm (9.525mm) x40

PLATE 33

Melt 17, 177.8mm (9.525mm) x 40

.

Melt 17, 35mm (9.525mm) X 50

PLATE 31

Melt 17, 63.5mm (9.525mm) X 50

上のないことで	and the second
Bar the riteria Barta Barta	
ANTAR SALES BANK TH	
CALC STOTEMENT STATE	
ALCON THE SHE SHE AND	
	The second
2. 新教堂的第三人称单	
WHERE THE PROPERTY AND INCOMENT	
Langt Here and and	
The file of the file of	
い 中国 出来をきた 四王 同時に うり	A TALL ALL DE CARACTERINE AND A CARACTERISTIC
THE WAY AND ADDRESS	
Ar contrast de la service de la constanta	the second of the second of the light of the second of the
	a second second second and a second
	大量的 (A) A MAIN MARK (A) - 440 (A) - 441 (A) - 444 (A) - 445 (A)
S 1 PH 41 2/5 1	and the state of the
	自己,在 自己的问题,是一些问题,但是是是一个问题,
Statistical English	在14年代的文化的中国,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日,19月1日
The William A State	
第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
SZI - INC. SLEVENS	THE REPORT OF THE REPORT OF THE PARTY OF THE
TAL	
Tomat Antipart Contact Las	1 MORANA TAGA TO A VALUE AND A TAGANA AND AND AND AND AND AND AND AND AND
WERE LINE THE T	
Contraction of the second	
NAMES OF TAXABLE PARTY	こう 一部
	A SALE TO BE AN OWNER THE AND A SALE THE
	the second s
III III III III IIII IIII IIIIIIIIIIII	
IMANTA HEAL	
Laurel Luce The Lot At As	AND THE REAL PROPERTY AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO

• .

Melt 17, Omm (9.525mm)

X 50

PLATE 29

Melt 17, 10mm (9.525mm)

X 50

Melt 16, Omm (9.525mm)

X 50

PLATE 26

Melt 16, 12.7mm (9.525mm)

x 50

The details of the following microstructures, etched in 2% nital, are given as follows:-

- 22-

Cast number, distance from the chill, (distance from the T/C edge) and magnification.

The photographs are orientated with the chill/metal interface towards the bottom of the plates.

-124-

<u>PLATE 87</u> C1. 185mm (32.1mm) x 63

4.17⁰C/Min

PLATE 88

C1. 181mm (20.5mm)

x 16

4.35°C/Min

PLATE 89 C1. 181mm (20.5mm)

x 63

4.35°C/Min

PLATE 90 G1. Omm (28.6mm) x 16

635⁰C/Min

PLATE 91 G1. 44mm (28.6mm) x 16

21.88⁰C/Min

PLATE 92

F1. 63.5mm (32.1mm) x 16

12.33⁰C/Min

PLATE 93

G1. 118mm (25.1mm) x 16

6.89⁰C/Min

PLATE 94 E1. 89mm (34.1mm) x 63

9.79⁰C/Min

PLATE 95

F1. 89mm (30.1mm) x 16

9.79⁰C/Min

PLATE 96 Enlargement of Plate 95

x 63

9.79⁰C/Min

G1. 89mm (19.05mm)

x 16

9.79⁰C/Min

PLATE 98

E1. 127.1mm (21.1mm) x 16

6.28°C/Min

PLATE 99 Enlargement of Plate 98

x 63

6.28⁰C/Min

PLATE 100

Enlargement of Plate 98 x 160

6.28°C/Min

1

F1. 127.1mm (35.1mm) x 16 <u>PLATE 102</u> G1. 136mm (25.6mm) x 16

6.28⁰C/Min

.

5.82⁰C/Min

÷

 PLATE 103
 PLATE 104

 F1. 177.8mm (24.6mm)
 Enlargement of Plate 103

 x 16
 x 160

 4.43°C/Min
 4.43°C/Min

Sulphur			Cast G	froups		-
Levels	A	B	C	E	F	G
1	12.7	12.7	26	38.1	38.1	38.1
2	12.7	25.4	25.4	38.1	38.1	25.4
3	27.4	38.1	26.4	30.4	12.7	28.7

Table 20(a) Streamer Graphite Start (mm)

Sulphur			Cast (Froups		
Levels	A	B	C	E	F	G
l .	25.4	38.1	33.5	44	63.5	75
2	25.4	49.1	38.1	73	5 <u>8</u>	38.1
3	63.5	63.5	38.1	63.5	50	47.6

Table 20(b) 'Grey' Start (mm)

Sulphur		•	Cast (Groups		
Levels	A	В	C	E	F	G
1	63.5	64.5	89	127.1	127.1	136
2	63.5	76.1	63.7	141	116	127.1
3	73.5	107.1	90.5	127.1	127.1	127.1

Table 20(c) GraphiticCell Start (mm)

Sulphur			Cast	Groups		
Level	A	B	C	Έ	F	G
1	A	D	A/D	D	D	D
2	A	A/D	A/D	D	D/Deg.	D/Deg.
3	A/D	A/Dpred	A/D	D	Dpred/ A/Deg.	D/Deg.

Table 20(d) Type of Graphite at 177.8mm

pred.*predominantly

deg.=degenerate

B2. 63.5mm (28.6mm) x 16

12.33[°]C/Min

PLATE 106

B2. 112mm (28.6mm) x 160

7.38⁰C/Min

PLATE 107

B2. 127.1mm (28.6mm)

x 63

6.28°C/Min

<u>PLATE 108</u> B2. 127.1mm (33.1mm) x 32

6.28⁰C/Min

PLATE 110

B2. 178mm (19.05mm)

x 63

4.40°C/Min

5.25⁰C/Min

B3. 153.6mm (34.1mm)

x 160

<u>PLATE 111</u> B3. 184mm (30.10mm) x 16

4.25°C/Min

PLATE 112 B3. 178mm (31.1mm)

x 16

4.40°C/Min

C2. 45.1mm (28.6mm)

x 16

PLATE 114 C2. 145mm (27.1mm) x 16

21.18⁰C/Min

5.52°C/Min

PLATE 115

C2. 187mm (19.05mm)

x 63

4.15°C/Min

PLATE 116

Enlargement of Plate 115 x 160

4.15[°]C/Min

PLATE 118

Enlargement of Plate 117

x 63

C3. 38.1mm (22.1mm)

x 16

25.62⁰C/Min

25.62⁰C/Min

PLATE 119 C3. 164mm (33.1mm) x 16 <u>PLATE 120</u> E2. 42.5mm (5mm) x 160

4.84⁰C/Min

22.91⁰C/Min

-134-

<u>PLATE 121</u> E3.63.5 mm (35.1mm) x 160 <u>PLATE 122</u> E3.127.1mm (19.05mm) x 160

12.33⁰C/Min

6.28°C/Min

PLATE 123

F2. 70mm (9.525mm) x 16

11.56⁰C/Min

<u>PLATE 124</u> F2. 181.5mm (26.1mm)

x 63

4.32⁰C/Min

F3. 66mm (9.525mm) x 16 PLATE 126

F3. 63.7mm (19.05mm)

x 63

12.02⁰C/Min

12.30⁰C/Min

PLATE 127

F3. 127.1mm (9.525mm) x 32

6.28⁰C/Min

PLATE 128

F3. 177.8mm (11mm) x 16

4.43⁰C/Min

G2. 65.5mm (22.6mm)

x 16

11.97⁰C/Min

PLATE 130

Enlargement of Plate 129 x 63

11.97⁰C/Min

PLATE 131

G2. 127.1mm (22.1mm)

x 63

6.28°C/Min

<u>PLATE 132</u> G2. 177.8mm (15.0mm) x 160

4.43°C/Min

ADDITIONAL LOW NITROGEN CASTS

PLATE	134
	فتفجيها

Cast Ela

PLATE 135 Cast E3a

PLATE 136

Cast F2a

	Cast Groups						
Criteria	Ala	Alb ·	Alc	Ela	E3a	F2a	
treamer Start (mm)	17	>12.7 <25.4	-	12.7	63.5	25.4	
Grey' Start (mm)	54	20	· -	63.5	178	52.1	
ell Start (mm)	70	50	0	127.1		100	
raphite at 177.8mm	A & D	A & Dpred	Large A	D & Deg.	D & Deg. round T/C	D	

Table 21 a Low Nitrogen Melts

Criteria		Cast Groups				
		Ela'	B3a'	C2a'		
(a) Streamer Start	(mm)	25.4	25.4	12.7		
(b) 'Grey' Start	(mm)	38.1	63.5	38.1		
(c) Cell Start	(mm)	127.1	127.5	127.1		
(d) Graphite at 177	•8mm	A & Small amount D	A & D	Fine A & D & Deg.		

Table 21 b High Nitrogen Melts

<u>PLATE 137</u> E3a 177.8mm (6mm) x 160

4.43⁰C/Min

÷

PLATE 138 F2a 64.8mm (9.525mm)

. .

x 63

12.08⁰C/Min

FRACTURED CASTINGS FOR THE HIGH NITROGEN MELT PROGRAMME

ىنى ئەرىرەرى

•

. . . .

MICROSTRUCTURAL CRITERIA FOR THE HIGH NITROGEN GREY IRON CASTINGS

Sulphur		Cas	st Groups		
Level	A	В'	C'	D'	۳۱
1	25.4	38.1	16.7	16.0	38.1
2	25.4	25.4	12.7	_	38 . l
. 3	29.0	15.5	21.5	25.4	28.4

Table 22a Streamer Graphite Start (mm)

Sulphur	Cast Groups				
Level	A'	B'	C'	D'	F'
1	41.1	89	38.1	39.6	-
2	42.5	38,1	38.1		-
3	63.5	38.1	38.1	57	130.2

Table 22b 'Grey' Start (mm)

Sulphur	Cast Groups				
Level	A1	B' _	C'	D'	F'
1	89	105	63.7	89	127.1
2	89	63.5	63.5	-	106
3	127.1	89.0	92	89	130.2

Table 22 c Graphitic Cell Start (mm)

Sulphur	Cast Groups				
Level	A • 77	B'	C'	D'	۲۲
_ 1	A	Feathery D & Deg.	Deg. & A	A & Some D & Deg.	Deg.
2 [.]	A	A & D	A & Bit D	· -	Deg. D
3.	A & Deg. & Broad	A/D/ Deg./ Mesh	کD and A	A and Broad D	Deg
Table 22 d Graphite Type at 177.8 (mm)					

PLATE 140 A1' 89mm (28.1mm) x 32

1

9.79⁰C/Min

PLATE 141 Enlargement of Plate 140 x 160

9.79⁰C/Min

PLATE 142

A1' 187mm (31.6mm)

x 160

4.15⁰C/Min

PLATE 143 A1° 179mm (34.1mm) x 160 (Enlargement of Plate 144)

4.37⁰C/Min

PLATE 144

A1' 179mm (34.1mm)

x 16

4.37⁰C/Min

PLATE 145 A1° 179mm (9.525mm) x 32

4.37°C/Min

PLATE 146 A1[•] 179mm (19.05mm) x 63

4.37⁰C/Min

PLATE 146A

Enlargement of Plate 146 x 160

4.37⁰C/Min

PLATE 147 A2° 63.5mm (9.525mm)

x 63

12.33⁰C/Min

<u>PLATE 148</u> A2° 127.1mm (19.05mm) x 160

6.28⁰C/Min

A2* 177.8mm (19.05mm)

x 63

4.43[°]C/Min

PLATE 150

A2* 182mm (22.6mm) x 160

4.29°C/Min

PLATE 151 A2° 177.8mm (9.525mm) x 160

4.43[°]C/Min

PLATE 152 A3° 63.5mm (9.525mm) x 160

12.33⁰C/Min

1 - /

A3' 177.8mm (35.1mm) x 160

4.43⁰C/Min

PLATE 154 A3' 181mm (28.6mm) x 63 •

4.35⁰C/Min

THE FRACTURED CASTING OF CAST A1a

1

.

· ·

-149-

PLATE 156 A1a' 38.1mm (5mm) x 160

25.62⁰C/Min

<u>PLATE 157</u> B1^{*} 89mm (16mm) x 16

9.79⁰C/Min

÷

PLATE 158	PLATE 159	
B1' 89mm (16mm)	B1 [•] 127.1mm (28.6mm)	
x 160	x 63	
9.79 [°] C/Min	6.28 [°] C/Min	

-150-

B1° 177.8mm (28.6mm)

x 63

4.43⁰C/Min

PLATE 161

B2¹ 42.5mm (9.525mm)

x 16

22.91⁰C/Min

<u>PLATE 162</u> B2' 38.1mm (10mm) x 160 25.62[°]C/Min

PLATE 163 B2[°] 63.5mm (31.5mm) **x** 160

12.33⁰C/Min

PLATE 164 B2¹ 89mm (33.1mm) x 32

9.79⁰C/Min

B2' 177.8mm (1.5mm) x 63

4.43⁰C/Min

PLATE 166 25.4mm (19.05mm) в3' x 160

48.10⁰C/Min

PLATE 165

B3° 63.5mm (19.05mm)

-

x 63

12.33⁰C/Min

PLATE 168

Enlargement of Plate 167

x 160

12.33⁰C/Min

PLATE 169

B3[°] 89mm (19.05mm)

9.79⁰C/Min

<u>PLATE 170</u> B3' 127.1mm (27.6mm) x 63 6.28^oC/Min

ج

PLATE 171 B3° 177.8mm (12.5mm) x 160

4.43°C/Min

PLATE 173

C1° 127.1mm (31.1mm)

x 63

6.28°C/Min

PLATE 174 C1' 177.8mm (5mm) x 32

4.43⁰C/Min

<u>PLATE 175</u> C2' 177.8mm (24.6mm) x 63

4.43⁰C/Min

PLATE 176

C3° 177.8mm (23.1mm)

x 16

4.43^{°O}C/Min

<u>PLATE 177</u> D1° 63.5mm (23.6mm) x 160

12.33⁰C/Min

<u>PLATE 178</u> D1' 63.5mm (19.05mm) x 160

12.33⁰C/Min

D1' 89mm (15mm) x 63 9.79[°]C/Min PLATE 180 D1' 181.5mm (9.525mm) x 160

4.32⁰C/Min

<u>PLATE 181</u> D3' 89mm (8.5mm) x 160 9.79⁰C/Min <u>PLATE 182</u> D3' 89mm (10mm) x 160

.

9.79⁰C/Min

D3'. 177.8mm (19.05mm)

x 16

4.43⁰C/Min

PLATE 184

F1'. 127.1mm (9.525mm) x 63

6.28⁰C/Min

.

<u>PLATE 185</u> F1'. 166.5mm (9.525mm) x 160

4.76[°]C/Min

<u>PLATE 186</u> F2[°]. 177.8mm (19.05mm) x 16

4.43°C/Min

.

<u>PLATE 187</u> F3^e. 130.2mm (31.1mm) x 160

'.

6.14⁰C/Min

. . .

PLATE 188

F3^{*}. 130.2mm (26.1mm)

x 160

6.14⁰C/Min

<u>PLATE 189</u> .F3'. 181mm (15.5mm) x 63

4.35⁰C/Min

FRACTURED CASTINGS OF ADDITIONAL

· ·

HIGH NITROGEN CASTS

.

PLATE 190 Cast B3a°

PLATE 191

Cast C2a'

Melt G3 152.4 - 177.8mm x480

 (a) Spectrum of Inclusion A shows the inclusion to be complex manganese titanium sulphide of the stoichiometry (Mn,Ti)S.

(b)	Spectrum	of	Inclusio	n B	shows	:-	
	Sulphur	inte	gration	peak	heigh	t	

Sulphur integration peak height	6263
the background sulphur	397
	5866
Titanium integration peak height	12,120
the background titanium	340
	11,780

indicating a titanium : sulphur ratio of 2:1. Thus the stoichiometry of the titanium sulphide inclusion is Ti_2S .

P193

Inclusion A from Plate 193. X8320

EDAX Scans for

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Show the inclusion to be basically MnS with a complex titanium inclusion at the centre. This complex is both titanium sulphide and possibly titanium carbonitride, cyanonitride or carbosulphide.

Inclusion B from Plate 193. X 4160

EDAX Scans for

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Confirm that Inclusion B is titanium sulphide of the Ti₂S configuration.

EDAX scans for:

- (a) Manganese
- (b) * Sulphur
- (c) Titanium

Show three MnS, one duplexed (TiMn)S and the rest complex titanium inclusions, in a pearlitic matrix.

G3 152.4mm - 177.8mm. X 480

EDAX Scans for

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Show one MnS, one duplexed (MnTi)S, four Ti_2S and complex titanium inclusions in pearlite and associated with graphite.

PLATE 198

G3 152.4mm - 177.8mm. X2080

- EDAX Scans for
- (a) Manganese
- (b) Sulphur
- (c) Titanium

Show one MnS and seven complex titanium inclusions in a pearlitic matrix.

EDAX Scans for

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Show five Ti₂S, two duplexed (MnTi)S, one MnS and complex titanium inclusions in both pearlite and cementite with some graphite.

163mm.

F3'

X 520

EDAX Scans for

(a) Manganese

(b) Sulphur

(c) Titanium

Show three MnS, four Ti₂S and thirty one complex titanium inclusions in a pearlitic matrix with 'D' type and a few compacted graphite flakes in the interdendritic spaces.

(c)

(Ь)

x520

. . .

F3' 163mm.

EDAX Scans for

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Shows seven MnS, four Ti₂S, two duplexed (TiMn)S and thirteen complex titanium inclusions in a ledeburitic matrix with 'D' type streamer graphite. The inclusions are mainly in the pearlite but some are visible in the cementite. None appear to be associated with the graphite.

(c)

F3' 127.1mm X 1040

EDAX scans for:

- (a) Manganese
- (b) Sulphur
- (c) Titanium

Show one MnS and ten complex titanium inclusions both in a cementite and a pearlite matrix.

(c)

PLATE 203

Bl' 166mm. X 130

This shows Ti₂S, MnS and complex titanium inclusions and represents the overall area of which a specific, central area is shown in Plate 204.

PLATE 204

-175-

Enlargement of a central region in Plate 203. X 2080

EDAX Scans for

(a) Manganese

(b) Sulphur

(c) Titanium

Show one MnS and two complex titanium inclusions in a pearlitic matrix.

EQUIVALENT COOLING RATES (C/MIN) FOR THE LOW WITHOUS CASTS

MICROSTRUCTURAL CRITERIA GIVEN IN TABLE 20

FOR THE 1160-1100°C TEMPERATURE RANGE

Sulphur	Cast Groups							
Level	A	В	С	E	F	G		
l	123.97	123.97	47.86	25.62	25.62	25.62		
2	123.97	48.10	48.10	25.62	25.62	48.10		
3	43.65	25.62	46.24	38.02	123.97	40•74		

Table 23a Streamer Graphite Start

Sulphur		Cast Groups				
Level	A	В	C	E	F	G
1	48.10	25.62	32.36	21.88	12.33	10.96
2	48.10	18.84	25.62	11.22	11.75	25.62
3	12.33	12.33	25.62	12.33	18.20	18.20

Table 23b 'Grey' Start

Sulphur	Cast Groups								
Level	A	В	C (1) ²⁰¹	E	F	G			
l	12.33	12.16	9•79	6.28	6.28	5.89			
2	12.33	10.96	12.33	5.69	7.03	6.28			
3	11.22	7.85	9•55	6.28	6.28	6.28			

,

Table 23c Graphitic Eutectic Cell Start

EFFECT OF TITANIUM ADDITIONS ON THE SOLIDIFICATION MODE (°C/MIN)

							-
	A	В	C		E	F	G
1	123.97	123.97	47.86		25.62	25.62	25.62
2	123.97	48.10	48.10		25.62	25.62	48.10
3	43.65	25.62	46.24		38.02	123.97	40.74
·	I	I]	[III	
-	T	able 24a 'S	Streamer	G	raphite	Start	
	·						
	A	В	C		E	F	G
1	48.10	25.62	32.36		21.88	12.33	10.96
2	48.10	18.84	25.62		11.22	11.75	25.62 [.]
3	12.33	12.33	25.62		12.33	18.20	18.20
	I]]				III	
		Table	24b 'G	re	y' Start	<u>.</u>	
	A	В	C		E	F	G
1	12.33	12.16	9•79		6.28	6.28	5.89
2	12.33	10.96	12.33		5.69	7.03	6.28
3	11.22	7.85	9•55		6.28	6.28	6.28
	I	IJ				III	
	Tabl	e 24c Gra	phitic 2	Eυ	tectic C	ell Star	<u>t</u>
ti	·						
	A ·	В	C		E	F	G
1	A	$\sum_{i=1}^{n} \mathbf{D}_{i}$	A/D		D	D	D -
2	-A	A/D	A/D		D	D/Deg.	D/Deg.
3	A/D	A/riesh & Dpred.	A/D		D	Dpred/A/ Deg.	D/Deg.
	I	II	-			III	
Table 24d Graphite Type at 177.8mm							

EQUIVALENT COULING RATES (C/MIN) FOR THE HIGH NITRUGEN CASTS'

MICROSTRUCTURAL CRITERIA IN TABLE 22 FOR THE

1160-1100°C TEMPERATURE RANGE

Sulphur Level		Cast Group						
	A '	A' B' C' D' I						
l	48.10	25.62	92.26	95.50	25.62			
2	48.10	48.10	123.97		25.62			
3	40.74	100.00	63.10	48.10	41.69			

Table 25a 'Streamer' Graphite Start

Sulphur Level	Cast Group						
	A'	A' B' C' D' F'					
`	23.99	9•79	25.62	25.12	-		
. 2	22.91	25.62	25.62		-		
3	12 .3 3	25.62	25.62	15.14	6.17		

Table 25b 'Grey' Start

Sulphur Level	Cast Group					
	Α'	B '	C'	י <u>ת</u>	F '	
1	9.79	8.00	12.33	9.79	6.28	
2	9.79	12 .3 3	12.33	-	7•94	
· 3	6.28	9.79	9.44	9.79	6.17	

Table 25c Graphitic Eutectic Cell Start

EFFECT OF TI ADDITIONS ON THE SOLIDIFICATION MODE (^OC/Min).

	A'	в′	C '	_ D'	F '				
1	48.10	25.62	92.66	95.50	25.62				
2	48.10	48.10	123.97	-	25.62				
3	40.74	100.00	63.10	48.10	41.69				
	I II III								
	Table 26a 'Streamer' Graphite Start								

	A'	
1	23.99	
2	22.91	
3	12.33	
	Τ	

Β'	C1 -	D'
9.79	25.62	25.12
25.62	25.62	-
25.62	25.62	15.14
	TT	

F′

6.17

III

Table 26b 'Grey' Start

1//	A'	B'	C'	D'	F ′ ·
1	9.79	8.00	12.33	9.79	6.28
2	9.79	12.33	12.33	-	7.94
3	6.28	9.79	9.44	9.79	6.17
	I		II		III

Table 26c Graphitic Eutectic Start

	A'	в'		Cʻ	D'	F'		
1	A	D/Deg.	De	5 & A	Apred/D/ Deg.	Deg.		
2	A	Apred/1	D Apr	ed/D	-	Deg./D		
3	A & Deg. Broad	A/D/Deg Mesh	/ Dpr	red/A	A & Broad D	Deg.		
	I II III							
	Table 26d Graphite Type at 177.8mm							

Figure 63 :

cooling rate for the formation of graphitic eutectic cells.

(a) 'Low' nitrogen castings :

Figure 64 : The effect of titanium concentration on the maximum cooling rate for the formation of streamer graphite.

Figure 65 : The effect of titanium concentration on the maximum cooling rate for the 'grey' start.

(a) 'Low' nitrogen castings :

(b) 'High' nitrogen castings :

EQUIVALENT COOLING RATES (°C/Min) FOR THE MICROSTRUCTURAL

CRITERIA FOR THE ADDITIONAL CASTS IN TABLE 21 FOR THE

1160-1100°C TEMPERATURE RANGE

	Criteria	Ala	Alb	Alc	Ela	ЕЗа	F2a
a)	Streamer Start	91.20	(123.97)48.1	-	123.97	12.33	48.10
b)	'Grey' Start	16.03	72.44	-	12.33	4.43	16.98
c)	Graphitic Cell Sta	rt 11.48	18.16	-	6.28	· 	8.433
d)	Graphité Type at 177.8mm	Pred D/A	Pred D/A	Large A	D& Deg	D&Deg	D

Table 27a Low Nitrogen Additional Casts

Criteria	Ala'	B3a'	C2a'
(a) Streamer Start	48.1	48.1	123.97
(b) 'Grey' Start	25.62	12.33	25.62
(c) Cell Start	4.43	6.427	6.28
(d) Graphite Type at 177.8mm	A/V.little D	A/V.little D	Fine A/Deg.D

Table 27b High Nitrogen Additional Casts

EQUIVALENT COOLING RATES (~C/Min) FOR THE MICROSTRUCTURAL CRITERIA FOR THE LOW NITROGEN CASTS IN TABLE 20 FOR THE 1160 - 700°C TEMPERATURE RANGE

V////	A
1	35•97
2	35.97
3	17.38

Ι

В	C
35•97	18.20
18.59	18.59
11.83	18.11
	II

E	F	G
11.83	11.83	11.83
11.83	11.83	18.59
15.56	35.97	16.60

Table 28a 'Streamer' Graphite Start

III

	A
1	18.59
2	18.59
3	9.67
1	I

В	C
11.83	13.80
21.88	11.83
9.67	11.83
	II

E	F	G
31.62	9.67	9.33
9.441	9.036	11.83
9.67	17.78	24.55
	III	~_ `

Table 28b 'Grey' Start

			•				
	A	В	√ C		E	F	G
1	9.67	9.55	8.81		7.78	7.78	7.586
2	9.67	9.162	9•55		7.551	8.035	7.78
3	9•33	- 8.299	8.71		7•78	7.78	7.78
	I		II	• 1		III	
				• •			

Table 28c Graphitic Cell Start

А В C Ε \mathbf{F} G D D A/D D 1 Α D 2 A/D A/D D/Deg. D D/Deg. Α 3 A/D A/D Pred/ ,A/D Dpred/A/ D D/Deg. Mesh Deg. Ι II III Table 28d The Graphite Type at 177.8mm

EQUIVALENT COOLING RATES (^OC/Min) FOR THE MICROSTRUCTURAL CRITERIA FOR THE HIGH NITROGEN CASTS IN TABLE 22 FOR THE 1160-700^OC TEMPERATURE RANGE

				_	
1	B'	C '	D'		۲ ۱
59	11.83	18.62	19.14		11.83
59	18.59	35.97	-		11.83
52	31.62	22.91	18.54		16.75
	1	II			III
	<u>Table 29a</u>	Streamer	Graphit	e S	tart
		·····		n 1	
	B'	C'	D'		王 」

B '	C'	D'
8.81	11.83	11.64
11.83	11.83	-
11.83	11.83	10.07
	II	

<u></u> μ,
-
7•709
III

Β'

8.356 9.67 8.81

	Α'			
1	8.81			
2	8.81			
3	7•78			
Τ				

 • • • • • • • • • • • • • • • • • • •			
C'	D'		Е '
9.55	8.81		7.78
7.78	-		8.318
8.71	8.81		7.709
II		' 1	III

Figure 66 : The manganese-sulphur equilibria for the liquid ingot mould cast iron , from Appendix 2 .

noitulos ni 2 % ssem