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Abstract

Thermal barrier coatings (TBC's) are used to protect gas turbine blades from environmental 
degradation as well as to increase thermodynamic efficiency. Most TBC systems consist o f 
a ceramic thermal barrier coating such as partially stabilized zirconia adhering to an 
oxidation resistant bond coat, which in turn is bonded to the turbine blade. This is required 
since partially stabilised zirconia will not readily bond to superalloys. However, the TBC 
can fail in service either by bond coat oxidation or thermal expansion mismatch between 
the bond coat and the TBC.

A systematic literature survey has shown that the superalloy substrate material, type o f 
bond coat selected, with the coating application techniques i.e. thermal spray or Electron 
Beam PVD (EBPVD) plays a fundamental role in determining the failure mechanisms 
involved.

This program of work is concerned with the development o f coatings with enhanced 
temperature capabilities for turbine blade applications by understanding the fundamental 
mechanisms responsible for adhesion between the nickel based turbine blade and zirconia 
based TBC. An understanding o f the bonding mechanisms will allow the design o f 
advanced coating systems with increased operating temperatures.

This program o f work introduces the Glow Discharge Optical Emission Spectroscopy 
(GDOES) technique, an atomic emission technique used for both bulk and depth profile 
analysis, which had not previously been applied to TBC’s, and SEM and TEM in order to 
enhance understanding o f failure modes in TBC systems and adhesion process.

The results obtained from the studies indicate that the GDOES technique can be applied to 
depth profile bond coats and exposed TBC systems both qualitatively and semi- 
quantitatively. GDOES has been able to detect elements such as silicon and sodium that are 
in the ppm levels which are difficult / impossible to detect using EDX systems, and are 
very important in coating developments. In addition, as a preliminary guide GDOES has 
shown Ti diffusion from the superalloy substrate into the bond coat to be detrimental 
towards coating adhesion on most o f the systems studied.

The results o f SEM and cross-sectional TEM on selected bond coat systems has shown the 
low cost Pt bond coat microstructure system to consist o f TBC, A bC ^bond  coat and 
CMSX-4 superalloy substrate in all cases. The intermediate layer between the TBC and 
bond coat consists o f AI2O3 which has been identified as responsible for maintaining the 
adhesion. Also identified is evidence o f Ti segregation at the AI2 O 3 / bond coat interface, 
known to lead to decohesion in coatings. Failure in the low cost Pt bond coat system has 
been identified as the decohesion between the interfacial layer o f  AI2 O3 and the bond coat.

The program o f studies has enabled failure mechanisms and factors affecting bonding to be 
identified in low cost Pt bond coat systems, so that in future better coating systems with 
enhanced properties can be designed This should also ensure that improved reliability in 
engines and increased service life o f turbine blades be achieved.
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Chapter 1 - Introduction

1.1 The Need for Thermal Barrier Coatings
Turbine operating temperatures in advanced gas turbine engines will continue to increase in 

order to meet the need for greater performance and higher operating efficiencies [1 ,2 ]. 

However, longer operating lifetimes and a reduction in turbine blade degradation are also 

high priority requirements. As a result o f these conflicting needs increasing operating 

temperatures will require advanced coatings .

Thermal protection required by the turbine blade can be provided by ceramic thennal 

barrier coatings (TBC’s) [3]. The most common thermal barrier coating system currently 

used consists o f a low thermal conductivity ceramic coating such as partially stabilized 

zirconia (Zr0 2 ), deposited onto an oxidation and corrosion resistant Co-Ni-Cr-Al-Y bond 

coat on the Ni-based superalloy substrate [4,5]. Normally, the adhesion o f the TBC to the 

Ni-based superalloy is p o o r , so therefore a bond coat which acts as a ‘glue’ to improve 

adhesion is provided [6 ]. Such TBC and bond coat systems offer good wear and corrosion 

resistance. The thermal barrier coatings however, have a limited life span , as it degrades 

allowing the ceramic to spall [7] leaving the substrate exposed to the high temperature 

environment [ Figures 1].

The lifetime o f the thermal barrier coating is limited by two main failure mechanisms, 

namely (i) thermal expansion mismatch between bond coat and TBC and (ii) bond coat 

oxidation; both o f these can cause failure o f the TBC [8 ].
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However, the main mechanisms o f bonding at the interface level between the bond coat and 

TBC is not completely understood. This programme o f work will develop knowledge to 

enhance the critical understanding o f the bonding mechanisms, particularly at the 

interface level. This knowledge will then be applied to the design o f turbine blades for 

enhanced resistance to thermal and mechanical degradation.

1.2 Temperature / Time Specification

For TBCs to be certified within aeroengines, they must first reach the temperature / time 

specification set within Rolls-Royce. Currently, Rolls-Royce have designed their next 

generation o f engines to run at 1150°C that equates to an interface temperature at the 

bondcoat / TBC interface, within the high pressure turbine section, to be 1250°C. This is 

the temperature to which the bondcoat / TBC will be subjected to, on take o ff power for a 

large jet airliner. Taking into account the expected life o f the superalloy blade, and the time 

that the engine will spend at full take off power, the life o f the TBC at this temperature 

needs to be in excess o f 25 hours. This includes a 70% safety margin for the total lifetime. 

[12 ]

1.3 Bond Coat System

Corrosion protection coatings fall into two groups, identified by their application method, 

namely diffusion and overlay.In the diffusion coating application process, aluminium reacts 

at the surface o f the substrate, forming a layer o f monoaluminide. For nickel based 

superalloys, this is nickel aluminide ( NiAl). The coating technique hence provides a 

surface enrichment o f aluminium ( often together with chromium and / or silicon ) which
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results in the formation o f protective surface oxide films of AI2O 3 , Cr2 0 3  and SiC>2 . This 

type o f coating is modified to some extent by the elements contained in the substrate as the 

diffusion process takes place, and may be further modified by additions o f other metallic 

elements intentionally added during the coating application process ( for example, platinum 

is often added to improve corrosion resistance). [ 1 0 ]

MCrAlX Overlay coatings, in which M represents a base metal Ni, Co ,Fe or some 

combination o f these elements, and X represents either a rare earth element or some other 

element such as Y or Zr with a high chemical reactivity for oxygen and are widely used on 

superalloy turbine components. In these coating alloys, the Al provides the primary 

oxidation protection through formation o f a slow-growing protective oxide 

scale; the Cr functions principally to increase the effective chemical activity o f the Al; the 

X ( most commonly the element Y ) improves the adherence o f the alumina scale.

During thermal cycling, the base metal or alloy, M, provides compatibility with the 

substrate alloy. Overlay coatings have some significant advantage over diffusion 

treatments, most notably the ability to provide a larger reservoir o f  Al for protective 

scale formation and less dependence on the underlying alloy composition. [ 1 1 ]

Both diffusion and overlay have been tried as bond coat application methods in order to 

sustain higher gas temperatures. These coatings have had to be modified in order to retain 

TBC adhesion. The addition o f Pt to these overlay coatings has extended the temperature 

capabilities to a point where they are now used to raise the temperature in older engines, by 

the fitting o f TBC protected parts. A new type o f coating has been developed, where Pt is
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wet plated onto the superalloy substrate ( CMSX-4 ) directly. This has led to the so called 

low cost bondcoat system ( LCBC). Once plated, the sample is then heat treated in a 

vacuum furnace for 1 hour at 1150°C. Research is now underway to further improve these 

systems in order to reach the targets o f 1250°C.[12]

1.3.1 Thermal Barrier Coatings

Ceramic coatings ( TBC’s ) are applied over these protective ( bond coats ) coatings with > 

the aim o f creating a barrier to the high temperature environm ent. Application technique 

includes plasma spray / EBPVD etc. These coatings rely upon the use o f  low thermal 

conductivity materials which can reduce metal operating temperatures by as much as 200°C 

. This leads to significant increases in the creep and thermal fatigue 

lives o f the turbine blade component. Alternatively, it allows higher turbine entry 

temperatures, or reduced cooling air leading to improved efficiency. [13]

1.4 Degradation Mechanism

The degradation processes o f TBC’s was fundamentaly assessed by means o f a 

comprehensive literature review [14, 15,16,17,18,19]. During varying test conditions the 

most significant findings have been compiled in this thesis. Failure o f T B C s might arise 

from the thermal expansion mismatch between the components, mechanical stresses 

induced by thermal gradients, ceramic sintering, phase transformation, bond coat oxidation, 

bond coat inelasticity, corrosive and erosive attack, residual stress due to deposition and 

adverse component geometry. Among these the life time o f the coating is limited by three 

main parameters:
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• interdiffusion o f substrate / coating ( solid -  state diffusion )

• excessive bond coat oxidation

• mis-match o f thermal expansion coefficient

1.4.1 Interdiffusion

Diffusion o f aluminium into the base metal and base-metal elements into the coating 

reduce the concentration o f aluminium that is available for forming alumina. A protective, 

oxide can no longer re-form after spallation once the aluminium 

concentration falls below a certain level. The basic concepts o f diffusion are well 

understood for simple systems, and the diffusion o f complex, multi-element systems 

containing multiple phases can be formally described [15]. Obtaining actual interdiffusion 

coefficients and predicting the interdiffusion in these systems is a formidable task. 

Consequently, reliance on empirical measurements o f interdiffusion 

is necessary and usually is sufficient for engineering purposes.

1.4.2 Bondcoat Oxidation

Oxygen can easily diffuse to the metallic bond coat owing to the high porosity, 

segmentation and ionic conductivity o f the Zr0 2  top coat. The bond coat suffers 

oxidation attack. An oxide layer builds up between the bond coat and top coat and the 

relative expansion causes internal stresses at the interface. W hen the oxide layer 

reaches a critical thickness, cracking can occur and with increasing oxidation, attack the 

ceramic which spalls off. Bond coat oxidation influences thermal shock resistance; with 

increasing oxidation, the number o f thermal shock cycles to failure is reduced [16].
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1.4.3 Thermal expansion mismatch

The thermal shock resistance o f TBC’s is controlled by the thermal expansion mismatch 

between the zirconia top coat and the metallic substrate.

TBCs with yttria partially stabilised zirconia top coats show better thermal shock 

resistance than top coats with other chemical compositions [ 17] . By segmentation o f the 

ceramic top coat or optimisation o f the porosity, further improvement o f the thermal shock 

resistance is possible [18,19].

1.5 Programme of Work

The work detailed in this thesis is concerned with the development o f coatings with 

enhanced temperature capabilities for turbine blade applications by understanding the 

fundamental mechanisms responsible for adhesion between the nickel based turbine blade 

and the zirconia-based TBC. An understanding o f  the bonding mechanisms will allow the 

design o f advanced coating systems with increased operating temperatures.

This thesis reports on the development o f the Glow Discharge Optical Emission 

Spectroscopy (GDOES) technique, which is an atomic emission technique used for both 

bulk and depth profile analysis, which had not previously been applied to TB C s. SEM and 

TEM have been used in order to enhance understanding o f failure modes in TBC systems 

and adhesion process i.e.to understand the thermal degradation process by carrying out a 

“layer-by- layer” analysis o f a range o f bondcoats, those already in use and experimental 

bondcoats under development. The ability o f GDOES to provide information about coating 

thickness, elemental distribution, elemental segregation, interfaces and interfacial
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contamination, for example by Si, Na etc, all within a single technique and with such speed 

cannot readily be matched by any other techniques. Also the sensitivity o f GDOES down to 

ppm levels is important in identifying contaminants that are difficult to detect using 

electron probe techniques ( SEM -E D X ), which are important for coating improvements.

The overall aim o f the SEM/TEM work is to supplement the GDOES work programme, in 

evaluating coating systems from a micro structural aspect. For example, examine the 

interface structure in more detail using SEM in order that the chemistry o f  features down to 

'micron sizes' on the surfaces can be defined and how it affects bonding mechanisms. Also 

the use o f cross-sectional TEM foils to characterise the changes in coating microstructure 

through the thickness o f the coating, and coating micro structure from the bond coat 

interface to the outer surface for both as processed and specimens exposed to a high 

temperature service environment.

Furthermore, to use cross-sectional TEM specimens to investigate the bondcoat / ceramic 

interface , to search for any additional information about coating adhesion mechanisms and 

elemental segregation etc. Also to use EDX to carry out localised chemical analysis 

( complex m icrochem istry) o f the interface region etc and relate to GDOES findings and 

cyclic performance o f coatings. In addition, to establish what influences bonding quality at 

the substrate/ coating interface; the chemical -metallurgical interactions ( diffusion , 

reactions ) to help in finalising proposed failure mechanisms .
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Chapter 2 - Literature Review

2.1 Substrate Materials

The main alloy substrate material included in this study was the single crystal CMSX-4, 

however other substrate materials such as the directionally solidified alloy MAR M002 and 

a third generation single crystal material RR3000 (CMSX-10) have been compared. It is 

important to understand the substrate material-coating chemistry, for example, for a given 

coating, the protective nature o f the oxide scale development upon exposure to elevated 

temperatures can vary from one substrate to another depending upon its chemical 

composition [20]. Particularly at temperatures greater than or equal to 1000°C, elements in 

the substrate can diffuse into the coating, resulting in a significant effect on its behaviour 

[21].

In order to gain in-depth knowledge o f failure involved in the coatings, a review o f 

superalloy metallurgy, the substrate materials with their respective chemical compositions, 

the role o f alloying elements and the respective microstructures is considered in detail.

2.1.1 Superalloy Metallurgy

A superalloy is an alloy developed for elevated temperature service, usually based on 

Group VIII A elements, where relatively severe mechanical stressing is encountered and 

where surface stability is frequently required. The term 'superalloy' was first used shortly 

after World War II to describe a group o f alloys developed for use in turbo-chargers and 

aircraft turbine engines that required high performance at elevated temperatures. These



alloys usually consist o f various formulations made from the following elements: Fe,Ni,Co 

and Cr , as well as lesser amounts o f W,Mo,Ta,Nb,Ti and Al. The most important 

properties o f the superalloys were long-term strength at temperatures above 650°C and 

resistance to hot corrosion and erosion [85, 28 ].

Superalloys consist o f austenitic face-centered cubic (f.c.c.) matrix phase gamma (y) plus a 

variety o f secondary phases.

Gamma (y): The continuous y matrix is a face-centered-cubic (f.c.c.) nickel-based austenitic 

phase that usually contains a high percentage o f solid-solution elements such as Co, Cr,

Mo, and W.

Gamma Prime (y’): The primary strengthening phase in nickel-based superalloys is N i3 (Al, 

Ti), and is called gamma prime (y’). It is a coherently precipitating phase (i.e., the crystal 

planes o f the precipitate are in registry with the gamma matrix) with an ordered Lb (f.c.c.) 

crystal structure. The close match in matrix / precipitate lattice parameter ( ~0-l% ) 

combined with the chemical compatibility allows the y' to precipitate homogeneously 

throughout the matrix and have long - term stability. Interestingly, the flow stress o f  the 

increases with increasing temperature up to about 650°C. In addition, y' is quite ductile and 

thus imparts strength to the matrix without lowering the fracture toughness o f  the alloy.

The secondary phases are the carbides MC, M 2 3C6 , M 6C, and M 7C3 (rare) in all superalloy 

types and gamma prime y' f.c.c. ordered M 3 (Al, Ti) intermetallic compound in nickel and
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iron-nickel superalloys. The superalloys derive their strength from solid solution hardeners 

and precipitating phases. Carbides may provide limited strengthening directly ( e.g through 

dispersion hardening ) or more commonly , indirectly ( e.g. by stabilizing grain boundaries 

against excessive shear) [ 86,87,88 ].

2.1.2 Superalloy systems

The three major classes o f superalloys are nickel-, iron-, and cobalt- based alloys [ 8 6  ]. , 

Fe-Ni Base

The most important class o f Fe-Ni base superalloys includes those alloys which are 

strengthened by intermetallic compound precipitation in a f.c.c matrix. The most common 

precipitates is y', typified by A-286, V-57 or Incoloy 901, but some alloys precipitae y" , 

typified by Inconel 718.

Co-Base

The Co-base superalloys are invariably strengthed by a combination o f  carbides and solid 

solution hardeners. The essential distinction in these alloys is between cast and wrought 

structures. Cast alloys are typified by X-40 and wrought alloys by Haynes 25 .

Ni-Base

Ni - based alloys can be either solid solution or precipitation strengthened. Solid solution 

strengthened alloys , such as Hastelloy X , are used in applications requiring only modest

10



strength. In the most demanding applications, such as hot sections o f gas turbine engines, a 

precipitation strengthed alloy is required.

The principal microstructural variables o f superalloys are: (a) the precipitate amount and its 

morphology; (b) grain size and shape; and (c) carbide distribution [27].

2.1.3 The role of individual constituents in superalloys

Superalloys contain a variety o f elements in a large number o f combinations to produce 

desired effects. Outlined here are some o f the effects o f the most commonly used elements .

Nickel

This element is the base constituent o f blade alloys. It forms stable, high-melting-point 

intermetallic compounds with aluminium (NiAl, M 3AI). It is prone to destructive 

interaction with sulphur with which it can form a low-melting-point eutectic system.

Cobalt

Cobalt in Ni-base alloys plays a key role in raising the y’ solvus temperature. As already 

explained earlier phase is the key factor responsible for the extraordinarily useful high 

temperature properties o f Ni-based superalloys. Interactions o f cobalt with sulphur are less 

destructive than they are for nickel.
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Aluminium

Aluminium is a major constituent o f the Ni-base alloy, it forms the (y*) N i3 (Al,Ti). It 

provides a reservoir from which the alumina scale is repeatedly replenished. Aluminium 

enhances oxidation resistance.

Chromium

Chromium provides good oxidation and hot corrosion resistance and solid solution 

strengthening in Ni-base alloys.

Other elements such as Mo, Ta, W, Re are added to provide strength within the Ni-base 

alloys. However, minor elements (C, B) are added to form carbides and borides; these 

elements plus others (Ce,Mg) are added for purposes o f tramp element control [86,28].

2.1.4 Processing

The material and casting technique improvements that have taken place during the last 50 

years have enabled superalloys to be used first as equiaxed castings in the 1940's, then as 

directionally solidified (DS) materials during the 1960s and finally as single crystal (SC) in 

the 1970s. Each casting technique advancement has resulted in higher use temperatures.

A review o f each technique is outlined here with potential alloy examples.

2.1.4.1 Directionally Solidified Superalloys (DS)

In DS processing, columnar grains are formed parallel to the growth axis. In Ni-based 

alloys, the natural growth direction is along the <100> crystallographic direction. This
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morphology is accompolished by pouring liquid metal into a mould that contains a water - 

cooled bottom plate. Solidification first occurs at the bottom plate, after which the mould is 

slowly withdrawn from the furnace, allowing the metal inside to directionally solidify from 

bottom to top. A typical example o f a DS system is MAR-M002 which is a directionally 

solidified alloy . A particular characteristic o f this alloy is the patented addition o f hafnium 

[24,25,26], some 2 mass % by modifying the solidification sequence. In particular, hafnium 

is rejected from the solidifying dendrites during casting and concentrates in the 

interdendritic regions thereby increasing the quantity and coarsening the form o f the y-y' 

eutectic. Hafnium also modifies the size, distribution, and composition o f the grain 

boundary carbides, producing a finer dispersion, that helps to prevent the common 

intergranular creep failure and increase the life o f turbine components.

The exceptional properties o f DS alloy are due to:

1. The alignment or elimination o f any weak grain boundaries oriented transverse to the 

eventual loading direction.

2. The low elastic modulus associated with the <100> directions enhances thermal 

mechanical fatigue resistance in areas o f constrained thermal expansion - particularly 

turbine vanes.

2.1.4.2 Single Crystal Superalloy (SC)

SC alloys developed during the 1970s were a spin -off from the technological advances 

made in the DS casting processes. SC casting are produced in a similar fashion to DS by 

selecting a single grain, via a grain selector. During solidification, this single grain grows to
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encompass the entire part. Single crystals obtain their outstanding strength through the 

elimination o f grain boundaries that are present in both equiaxed and directionally 

solidified materials [2 0 ].

The superiority o f single-crystal over polycrystalline superalloys is due to:

• higher melting temperature with heat treatment for increased creep strength.

• the absence o f grain boundaries which act as failure initiation site.

• low modulus < 1 0 0 > oriented solidification texture that provides significant 

enhancements in thermal fatigue resistance [23].

Typical SC alloys CMSX-2, CMSX-3, and CMSX-4 (CMSX= Connor-Muskegon Single 

Crystal Alloys) have been developed to replace directionally solidified MAR-M002 in 

applications where increased creep, tensile, and fatigues strength is required. Since in the 

thesis CMSX-4 has been used, further particulars are discussed here.

2.1.4.3 CMSX-4 Alloy

This is a second generation nickel-base single crystal superalloy containing 3 mass % 

rhenium (Re) and 70% volume fraction o f coherent y’ precipitate strengthening phase. It's 

finely balanced composition and offers an attractive range o f  properties in turbine airfoil 

applications. In particular the alloy’s combination o f high strength in relation to creep- 

rupture, mechanical and thermal fatigue, good phase stability following extensive high 

temperature, stressed exposure and oxidation, hot corrosion, and coating performance are
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attractive for turbine engine applications where engine performance and turbine airfoil 

durability are o f prime importance [2 2 ].

2.1.4.4 RR3000 Alloy

RR3000 (CMSX-10) alloy is a third generation single crystal casting material, which is 

used in demanding turbine engine blading applications. The flight engine certified alloy is 

characterized by its 6  mass % rhenium content, high additive refractory element level, and 

its relatively low levels o f chromium employment. Based on published data, the alloy is 

thought to exhibit the highest creep strength and resistance to fatigue o f any production Ni- 

base, cast single crystal superalloy.

RR3000 alloy provides an approximate 30°C improved creep strength relative to the second 

generation CMSX-4 alloy. Furthermore, its low cycle and high cyclic fatigue strength is as 

much as 2-3 times better than the best alternatives. Moreover, the alloy also develops an 

attractive blend o f tensile and impact strengths, foundry performance, heat treatability, and 

environmental properties characteristics, most notably, the alloy provides surprisingly good 

hot corrosion resistance, despite its relatively low chromium content (2-3 mass %). 

Additionally, the alloy performs extremely well in both the aluminide and Pt-aluminide 

coated conditions [ 89 ].
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2.2 Coating Systems

Bond coats for TBC's

The gas turbine engine provides one o f the harshest environments challenging material 

systems today. Engine components are subject to rigorous mechanical loading conditions, 

high temperatures and corrosive or erosive media. Historically, engine manufactures have 

applied protective coatings to increase the durability and performance o f superalloys. Field 

experience as well as the development o f processing technologies has led to the evolution 

o f many new improved coating systems for a variety o f engine component applications. In 

the case o f combustor and turbine areas, diffusion and overlay coatings such as aluminides, 

platinum aluminides, or MCrAlY overlay coating (where M=Co, Ni, or Fe), have been 

developed for oxidation and/or corrosion resistance and also are used widely as bond coats 

for Thermal Barriers Coatings (TBC's) [11].

TBCs normally consisting o f a low thermal conductivity zirconia stabilized by 

Y2O3, are usually produced in one o f two ways, either by Air Plasma Spraying (APS) or by 

Electron Beam Physical Vapor Deposition (EBPVD). One over riding aspect with regard 

to the adoption o f TBC technology is the underlying “bond coat” which establishes a 

thermally grown oxide at the bond-coat or ceramic interface to maintain TBC adhesion. 

This bond coat promotes good coating durability under thermal cycling conditions.

Continuous refining and development o f the process and the coating materials has led to the 

extensive use o f ceramic coatings in other industrial units. The movement towards higher
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turbine operating temperatures and a wide range o f fuels, often with significant impurity 

levels, has highlighted the diversity o f degradation mechanisms which can contribute to 

coating failure and spallation.

As exposure conditions become more complex and exacting, the need to understand these 

mechanisms becomes more pressing as they provide the key to the successful development 

o f new coating systems.

The bond coat contains oxide-forming elements, i.e. Al and Cr. The alumina and chromia 

formed at high temperatures give protection against oxidation. On the other hand, it was 

found that the lifetime o f TBC with yttria stabilized zirconia overlay was reduced by the 

reaction o f yttria with sulphur:

Y 20 3+ 3 S 0 3= (2Y)3++ (3S 04)“

Bond-coats can be classified into two categories: diffusion and overlay coatings.

2.2.1 Aluminide Bond Coats 

Diffusion Coating

Diffusion coatings are deposited either by heating components to be treated in contact with 

the powder coating material in an inert atmosphere (solid-state diffusion) or by heating 

them in an atmosphere o f a volatile compound o f the coating material (out-contact gas- 

phase deposition, or chemical vapour deposition). Solid-state diffusion methods include
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pack cementation, which is the most widely employed diffusion coating method. Diffusion 

coatings include aluminium (aluminizing), chromium (chromizing), and silicon 

(siliconizing). Substrate materials include nickel and cobalt-base superalloys, steels 

(including carbon, alloy and stainless steels), and refractory metals and alloys.

Blades and vanes made from nickel and cobalt base materials are used in the hot sections o f 

all gas turbines and coated to enhance resistance to hot corrosion. The most widely us,ed 

coatings are those based on the intermetallic compounds NiAl and CoAl, which are formed 

by the diffusion interaction o f aluminium with surfaces o f the nickel and cobalt alloys, 

respectively.

Aluminizing

Pack diffusion coating may be considered as a CVD process carried out with the aid o f a 

powder mixture (pack), in or near which the part to be coated (substrate) is immersed or 

suspended, containing the element or elements to be deposited (source), a halide salt 

(activator), and an inert diluent such as alumina (filler). W hen the mixture is heated, the 

activator reacts to produce an atmosphere o f source element(s) halides which diffuse in the 

pack and transfer the source element(s) to the substrate on which the coating is formed.

Diffusion o f the gaseous halides takes place across a aluminium-depleted zone that forms 

as a result o f transport o f aluminium into the coating under the action o f the partial pressure 

gradients which exist between the pack and coating surface [31,32]. Aluminium is
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transported mainly by the diffusion o f AlX(g), where X signifies a halide to the coating 

surface where the reaction:

3AlX(g)= 2Al(s)+ AlX 3(g)

occurs. The Al(s) diffuses to form more coating while AlX 3(g) diffuse back and reacts with 

Al(l) in the pack to regenerate AlX(g). In packs activated with NH4F (or AIF3) , AIF3 

appears as a solid at the operating temperature, and its vapor pressure is uniform throughput 

the pack. The constituent therefore does not diffuse in the gas phase. Aluminum is 

transported primarily by the diffusion o f AlF(g) to the coating surface where deposition 

takes place by the reaction:

3AlF(g)= 2Al(s) + A1F3 (s)

The A 1F3 (s) that is formed deposits as crystalline solid at the surface, some o f which may 

adhere to the coating. The supply o f AlF(g) is maintained by the reverse reaction in the 

pack.

In packs activated with a sodium halide such as NaCl, NaX(l) appears as a condensed phase 

in the pack. Aluminium deposition occurs mainly by the diffusion o f Na(g) and AlX(g) to 

the coating surface where a reaction o f the type:

AlX(g) + Na(g) = Al(s) + NaX(l)

occurs with the deposition o f N aX (l) at the surface [33].
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Chromizing

Although many o f the same principles apply to chromizing as to aluminizing packs, the fact 

that chromium halides are less stable than aluminium halides introduces several new factors 

[34,35]. In ammonium halides activated chromizing packs, CrX2 (l) appears as a condensed 

phase. The major constituents in the gas phase in equilibrium with chromium in the pack 

are CrX 2(g), CrXs(g), HX(g), and H 2 (g). The partial pressure o f HX(g) is high enough so 

that hydrogen reduction occurs according to the reaction:

CrX 2 (g) + H 2(g) = Cr(s) + 2HX(g)

At the coating surface there is an important mechanism for the deposition o f chromium. 

Since the free energies o f formation o f  FeX 2 and CrX2 are comparable, if  the substrate is an 

iron-base alloy the exchange reaction also occurs.

CrX 2 (g) + Fe(s) = Cr(s) + FeX 2 (g)

The FeX 2(g) diffuses back into the pack where the reverse reaction leads to the deposition 

o f Fe(s) on the particles o f the source alloy, thus changing its composition, while the Cr(s) 

diffuses into the coating in this case, the weight o f the substrate does not change 

significantly since it loses one atom o f iron for every atom o f chromium gained.
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In summary, in the diffusion coating application process, aluminium reacts at the surface o f 

the substrate, forming a layer o f monoaluminide. For nickel based superalloys, this is nickel 

aluminide (NiAl). The coating technique hence provides a surface enrichment o f aluminium 

(often together with chromium and/or silicon) which results in the formation o f protective 

surface oxide films o f AI2O3, C^Cb, and Si0 2 . This type o f coating is modified to some 

extent by the elements contained in the substrate as diffusion process takes place, and may 

be further modified by additions o f other metallic elements intentionally added during the 

coating application process (for example, platinum is often added to improve corrosion 

resistance). [ 1 0 ]

2.2.2. Overlay Bondcoats

Diffusion-type coatings, used successfully on early gas turbine, were tied to the substrate 

composition, micro structure and design. Later some changes were introduced:

i) In superalloy composition, such as reduction in Cr and increase in other refractory

metal.

ii) In microstructure, by casting with more segregation.

iii) In design, by air-cooling and with thin walls (which introduced higher thermal

stress).

These changes required coating which were more independent o f the substrate. Overlay 

coatings met this necessity.
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Overlay coating also overcome the restriction encountered in diffusion coating, especially 

the variant, viz. Cr/Al, Ta+Cr or the Pt-aluminides all o f each give better stability and 

oxide-hot corrosion resistance than Al alone. Nowadays, MCrAlY (where M is Ni, Co, Fe) 

is the more commonly overly type use in the aerospace industry. The cobalt, nickel and 

chromium in the intermediate coating provide a high melting point need. Also, aluminium, 

chromium and yttrium provide resistance to oxidation by forming a thin, tenacious oxide 

layer.

McrAlY overlay used in gas turbines are usually Ni and/or Co with high Cr, 5-15% Al and 

Y addition around less than 1% for stability during cyclic oxidation. They are multi-phase 

alloys with ductile matrix, e.g. gamma Co-Cr, containing a high fraction o f brittle phase 

e.g. beta CoAl. The Cr provides oxidation hot corrosion resistance but too much Cr affects 

substrate phase stability. The success o f most overlay coating is the presence o f  active 

elements such as Y or H f which promote alumina layer adherence during thermal cycling, 

giving increased coating protectiveness at lower Al levels. Yttrium mostly appears along 

grain boundaries if  a MCrAlY is cast but is homogeneous if  plasma sprayed. Thus M CrAlY 

with 12% Al are more protective than the more brittle diffusion aluminides with 30% Al.

Influence of composition on the oxidation resistance of MCrAlY coating

The different types o f compositions as shown below will give different thermal and 

oxidation resistance to the overlay coating:
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I. Co-30Cr-5Al-0.5Y

II. Co-23Cr-12Al-0.35Y

III. Ni-40Cr-5Al-0.4Y

It has been concluded that a CoCrAlY coating o f high chromium and low aluminium, 

content will offer protection under the engine conditions specified up to somewhat mpre 

than 30000 hours. The high chromium content o f NiCrAlY overlay coating type with a 

nickel base should be thermochemically advantageous when compared with a cobalt base 

material at lower temperatures, because the SO3 partial pressure required for N a2 SC>4 - 

N 1SO4 melt formation is one order o f magnitude higher than that required for N a2 S0 4 - 

C0 SO4 liquid. Therefore, it is not clear why the performance o f the high chromium 

NiCrAlY overlay was worse than that o f the lower chromium CoCrAlY, but the reason may 

be related to the greater stability o f the nickel sulphides at lower temperature. Thus, the 

performance o f the CoCrAlY overlay coatings was superior to NiCrAlY [36].

Properties of MCrAlY coating which affect TBC life

Recent studies have shown that a significant difference in TBC life can be achieved for 

different bond coats that exhibit little or no difference in oxidation behaviour. These data 

suggest that bond coat properties other than oxidation resistance can also influence TBC 

life.
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The roughness o f the bond-coat/ceramic interface is the factor which must be considered in 

any description o f bond-coat behaviour, as the thermal cycle durability o f any given bond- 

coat/ceramic coating system increases with increasing interfacial roughness. This has often 

been attributed to an improvement in interfacial adhesion based on a mechanical keying 

mechanism o f bonding. This proposal might be valid if  failure as a result o f thermal cycling 

occurred at the bond-coat/ceramic interface, but as the failures are predominantly cohesive 

within the ceramic coating adjacent to the bond interface, this cannot be the correct 

explanation. It is far more likely that the geometrical effects on the transmission o f stresses 

across the interface are more important in affecting durability than any alteration to the 

bond strength. Bond-coat powder size and spray parameters may be adjusted to produce 

bond-coat surfaces that have significant levels o f surface roughness. However, care must be 

taken so that higher levels o f porosity do not develop in the bond-coat which would reduce 

its oxidation resistance [37,38].

The bond strength o f thermal barrier coatings decreases with increasing coating thickness. 

This is because the thicker coating causes higher tensile edge stresses and will increase the 

tendency for debonding. Hence it will reduce the applied stress required to cause 

debonding. It is also noted that this behaviour occurs without an increase in coating residual 

stresses for thicker coatings. Therefore, a thicker coating will be more likely to have a 

lower bond strength than a thinner coating with the same level o f residual stress. The bond 

strength o f the coating is important for the use o f MCrAlY coating. Debonding can take 

place at the coating-substrate interface after a certain number o f thermal cycles if  the 

adhesive strength is poor [37].
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Stress relaxation o f the bond coat for plasma spray coating results in a significant increase 

in the out-of-plane residual stress generated at the bond coat interface. Since out-of-plane 

tensile stresses cause delamination o f the ceramic layer, stress relaxation o f the bond-coat is 

expected to have a deleterious effect on the TBC life [40].

Substrate material, test temperature, cycle profile, test environment, nature o f  top 

coat/bond-coat adherence, are other variables that influence the durability o f thermal barker 

coatings. Studies are currently underway to investigate these effects.

In summary, MCrAlX overlay coatings, in which M represents a base metal o f Ni, Co, Fe 

or some combination o f these elements, and X represents either a rare earth element or 

some other element such as Y or Zr with high chemical reactivity for oxygen, are widely 

used on superalloy turbine components. In these coating alloys, the Al provides the primary 

oxidation protection through formation o f a slow-growing protective oxide scale. The Cr 

functions principally to increase the effective chemical activity o f the Al, the X (most 

commonly the element Y) improves the adherence o f the alumina scale during thermal 

cycling, and the base metal alloy, M, provides compatibility with the substrate alloy. 

Overlay coatings have some significant advantage over diffusion treatments, most notably 

the ability to provide a larger reservoir o f Al for protective scale formation and less 

dependence on the underlying alloy composition [1 1 ].

2.2.3. Low Cost Bond-coat Systems (LCBC)

Both diffusion and overlay bond coats were tried for TBC’s, however, with today’s higher 

temperatures these coatings have had to be modified in order to retain TBC adhesion. The
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addition o f Pt to these coatings has extended the temperature capabilities to a point where 

they are now used to raise the temperature in older engines, by the fitting o f TBC protected 

parts. A new type o f coating has been developed, where Pt is electroplated onto the 

superalloy substrate (CMSX-4) directly. This has led to the so called low cost bond coat 

system (LCBC). Once plated, the sample is then heat treated in a vacuum furnace for 1 hour 

at 1150°C. Research is now under way to further improve these systems in order to reach 

the targets now demanded (bond-coat/TBC interface, within the high pressure turbine 

section, to be 1250°C) [ 1 2 ].

2.2.4. Thermal Barrier Coatings

Ceramic coatings (TBC's) are applied over these protective bond coats. The ceramic layer is 

usually partially stabilized zirconium oxide, typically 250pm thick. [11,13]

Its primary function is to act as a thermal barrier between the hot combustion gas and the 

turbine metal surface. This is achieved by means o f the very low thermal conductivity o f 

the ceramic coating (approx. two orders o f  magnitude lower than that o f the superalloy 

substrate). The result is up to a 250pm thick coating. This reduction in metal temperatures 

has several benefits, namely:

• Decrease in maximum tensile stress

• Decreased creep rates (i.e. increased creep rupture life)

• Increased thermal fatigue life (due to less severe transient thermal strains)

• Reduced metal oxidation rates
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These benefits allow the engine designer flexibility to incorporate one or a combination o f 

the following:

• Increase the gas temperature (turbine entry temperature), allowing the engine to

operate more efficiently.

• Maintain the same operating temperature but with improvements in component life.

• The cooling air consumption can be reduced by around 30% for the same metal

temperature

As mentioned above, the large majority o f TBC systems are based around a partially 

stabilized zirconium oxide layer. In its pure form, ZrC>2 undergoes a phase transformation at 

998°C, (monoclinic-^tetragonal). The result is a 9% volume increase which generates large 

stresses, resulting in fracture and spalling o f the coating. For this reason pure ZrC>2 is not 

used. However, additions such as magnesium oxide or yttrium oxide act to stabilize the 

tetragonal phase to produce the partially stabilized zirconium oxide. A typical addition o f 

8 % yttria will stabilize the tetragonal phase at RT. The result is a material that has a 

superior resistance to thermal cracking.

For a given coating system, the main parameters affecting a coating's performance is the 

chemistry and microstructure. The coating chemistry is determined by the alloying 

additions required to stabilize the tetragonal phase, whilst the microstructure is prim arily a 

function o f the coating application technique.

27



The two commonly used techniques for the application o f partially stabilised zirconia (PSZ) 

ceramic coatings are:

• Plasma spray deposition

• Electron beam-physical vapor deposition (EB-PVD)

The plasma spray technique has been dominant over the past 20 years; however, recent 

advances in technology have resulted in the EB-PVD route largely superceding the plasma 

spray route.

These application techniques produce markedly different microstructures; typical examples 

are shown in figures 2.2.4a,b.

In the plasma spray deposition technique ( figure 2.2.4c) , a plasma is generated by an 

electric arc in the carrier gas (usually Ar and H2). The plasma temperature is in the range o f  

6000-12000°C with a velocity o f 200-600ms'1. The ceramic powder is injected into the 

plasma stream and is rapidly melted. The molten ceramic droplets impact on to the 

substrate and solidify allowing subsequent deposition to build up the required thickness o f  

the layer [30,41].

The second o f the commonly used application techniques is EB-PVD. Briefly, an electron 

beam impinges on a target ingot resulting in vapourisation o f the target material. The 

component to be coated is suspended in the vapour and rotated to allow even coverage. The
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vapour condenses on the component surface, resulting in the growth o f a crystalline layer. 

The entire process is performed in a vacuum. A schematic illustration o f  the EB-PVD 

technique is shown in figure 2.2.4 d.

The major advantages o f EB-PVD technique is the resulting strain tolerant columnar grain 

structure which allows accommodation and distribution o f stresses resulting from thermal 

cycling by expansion o f the loosely adhered columns into the gaps. The EB-PVD technique 

also produces denser coatings than the plasma spraying technique and hence has superior 

erosion resistance. The technique is also fast, deposition o f a 200pm thick coating can be 

achieved in just 1 0  minutes.

Finally, the durability o f a TBC system depends on not only the properties o f  the ceramic 

coating, but also the strength o f  the ceramic-metal and the oxidation resistance o f the 

metallic bond coat layer.
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2.3 The Role of Various Elements in Coating Development

Some elements can have beneficial effects, however others can be detrimental. The role and 

effect o f the following elements on TBC / Bondcoat will be reviewed: Pt, Re, Y, Hf.

2.3.1 Role of Platinum

It has been a common industrial practice to incorporate Pt in the aluminide coating structure 

to improve scale adhesion [42], although the mechanism by which Pt exerts its beneficial 

effect is not well understood.

It has been shown that Pt modified coatings possess improved cyclic oxidation resistance 

because the Pt enriched zone o f the coating promotes selective oxidation o f  aluminium with 

minimal effects o f other elements in the coatings. The purer alumina scales have slower 

growth rates, which result in longer exposure times before the interlayer thickness reaches a 

point where spalling o f the oxide occurs. Long term exposures under cyclic conditions 

result in substrate elements affecting oxidation behaviour.

The high affinity o f Pt for Al is one o f the necessary characteristics that results in the 

observed improved coating performances. This results in platinum aluminum phases that 

favour selective oxidation, exclude other elements from the coating surfaces, and may also 

impart some diffusional stability to the aluminide coatings. However, after long exposure 

substrate elements do affect coating performances and coating lives are shorter for 

substrates with higher concentrations o f molybdenum and tungsten [9 9 ]
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Additionally, it has been shown that Pt improves the protective nature o f aluminide coating 

by eliminating chromium-rich precipitates from the outer coating layer and preventing 

refactory transition elements such as vanadium from diffusing into the outer coating layer 

[44].

2.3.2 Effect of Yttrium

Yttrium is a rare earth metal and has been in use for many years. Its main application is as 

an active element within many ceramic structures. Thermal barrier coatings and other 

refractory ceramics have utilised the high melting point (i.e. 1495-1522 °C) and other 

attractive properties to improve the service life o f many engineering applications.

Some o f the principal effects o f yttrium are as follows:

• Modifies oxide microstructure

• Forms intermediate oxide layer (Y2O3)

• Acts as a mechanical key effect

• Reduces the accumulation o f oxide- alloy intervoids

• Acts as a preferential nucleation site for oxidation

• Promotes preferential cationic and anionic diffusion in the scale

Modifies oxide microstructure

The distribution o f Y within a ceramic structure (AI2O3 for example) occurs in three main 

areas, these being as a solid solution, an oxide layer and at grain boundaries. The 

percentage o f Y found in solid solution is only a trace and the oxide layer (Y2O3) will be

31



discussed later. Therefore, this section is concerned with the distribution o f Y at the grain 

boundaries as this has a significant affect on the TBC.

Y has a tendency to segregate at the grain boundaries, this being due to the higher energy 

levels at these regions and therefore enabling nucleation to occur more efficiently. The Y 

addition acts in a similar manner to that o f carbides on metallic structures. The pinning o f 

the grain boundaries refines the micro structure, which improves mechanical properties at, 

elevated operating temperatures. These additions o f Y (usually in the order o f 8 -wt%) 

stabilize the structure, therefore maintaining a similar microstructure to that observed at 

room temperature and avoid phase transformation with severe conflicts o f expansion / 

contraction.

An example o f this is the addition o f Y to zirconia which has favorable effects on the 

microstructure. The pure zirconia structure is monoclinic up to a temperature o f 1100° C 

where upon it transforms to the tetragonal form. This phase change causes a 9% volume 

increase, that results in high stresses and subsequent failure o f the component. The addition 

o f Y 2O3 , CaO or MgO inhibits this phase transformation, therefore enabling the 

structure/component to operate at higher temperature with the risk o f phase transformation 

reduced [45].

Forms intermediate oxide layer

The Y reacts with oxygen during the spraying process, where the inward diffusion o f 

oxygen forms an yttria-oxide (Y2O3) layer. A layer, that is in the region o f 5pm  in thickness
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forms towards the outer surface o f the sprayed TBC. This oxide layer acts as a diffusion 

barrier in preventing the penetration o f heat through to the substrate.

Figures 2.3.2 a and b summarise the composition o f the coating surface. As can be seen, the 

coating consisted o f a Ni-rich (3 phase ( B2-type superlattice; a=o.291nm) dispersed in a 

Co-rich solid-solution matrix phase (f.c.c; a=0.357nm). Alloying elements present in the 0 

phase included Co and Cr.

Acts as a Mechanical key effect/reduces oxide growth rate

The adhesion o f the TBC to the substrate is aided with the use o f the bond coating, which is 

applied prior to spraying. However, the coating itself is required to bond strongly to prevent 

spallation during service. The Y additions act in several beneficial ways in forming a 

stronger more stable structure. The Y-rich oxide forms 'pegs' that extend into the ceramic 

coating (AI2O3, ZrC>2 etc.) and the applied bond coat enabling a far stronger bond to form, 

this has been shown in a number o f  studies [45,10,13]. It has also been proven in previous 

studies that AI2O3 and Y2O3 form an excellent adhesion between the two constituents; this 

therefore reduces the likelihood o f disintegration o f the coating during service.

Relatively new studies have revealed that the higher the initial tensile stresses prior to 

oxidation in the coating, the better the scale adherence. This is due to the compressive 

stresses formed during oxidation and therefore counteract the initial tensile stresses, i.e. 

reducing the bonding o f the coating [7].

33



2. 3. 3 Hafnium

The oxidation o f the nickel-based and cobalt-based alloys is described in some detail, from 

which it is clear that alloys forming Q 2 O3 scales are unlikely to be satisfactory at 

temperatures above 900°C because o f volatilization o f the scale. Alloys that form AI2O3 

scales are thus more oxidation-resistant, but there are problems with spalling o f the scale on 

thermal cycling or stressing, and eventually depletion o f the substrate with respect to A1 

will prevent re-formation o f the protective scale.

The addition o f reactive elements such as hafnium or its oxide improves adhesion and thus 

is beneficial [ 46 ].

Hafnium, is an important element for oxide scale adherence effects and is occasionally 

added at low levels (approximately 0.1 mass%) to superalloy compositions. It has been 

added to improve oxidation performance and is not intended to affect the mechanical 

properties o f the alloy. Moreover, based on the results o f the previous studies [8 ], hafnium 

derived from a superalloy substrate and present at solid solution levels in aluminide 

coatings was also found to strongly improve oxidation performance. However, above solid 

solubility levels in the coating, beneficial effects did not occur.

Hence for enhanced oxidation resistance, a strong incentive exists for including low levels 

o f hafnium both in the superalloy substrates as well as in protective coatings. However, the 

optimum levels o f hafnium for the greatest benefit must be identified.
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To determine the optimum hafnium levels, cyclic oxidation tests have been used in the pack 

Aluminide coatings (high temperature/ low aluminum activity and low temperature/ high 

aluminum activity) [9]. The results o f this cyclic oxidation testing o f the pack aluminide 

coatings are presented in the figure 2.3.3(a) and (b). For any given substrate, the oxidation 

behaviour o f both the low temperature/high aluminum activity and the high 

temperature/low aluminium activity coatings were very similar.

For both aluminide coatings, an optimal hafnium content o f about 0.5wt% in the substrate 

was clearly indicated, in both figures 2 and 3. For hafnium contents in the alloy on either 

side o f this level, coated substrate oxidation performance suffered. With either too little 

(0 . 1  wt%) or no hafnium in the substrate alloy, oxidation resistance was significantly 

reduced. With too much hafnium in the alloy, i.e., l-2wt% , oxidation resistance also 

suffered but not as badly as when little or no hafnium was present.

2.3.4 Summary of Hf, Y Roles

In summary additions o f Y and Hf, substantially improve the bonding capability o f the 

alumina films to the substrate. Even after extensive research the actual mechanisms by 

which these elements interact and supress the S in the substrate is unknown but many 

theories have been put forward and include [46]:

1. Reactive elements act as vacancy sinks to supress void formation at the alloy/oxide 

interface.

2. Reactive elements form oxide pegs at the alloy/oxide interface.
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3. Reactive elements tie up sulphur in the alloy and prevent it from segregating to the 

alloy/oxide interface and weakening an otherwise strong bond.

The adherence o f scale is always very important in service conditions where alloys are 

subjected to thermal cycles o f heating and cooling. [11]. The formation o f adherent slowly 

growing protective oxide scales is critical for high temperature applications. On the basis o f 

low volatility, relative chemical inertness and slow growth characteristics, AI2O3 is the , 

scale o f choice. Hence to ensure the formation o f protective AI2O3 scales, coatings enriched 

in aluminum are normally applied to structural hardware. However, even though protective 

AI2O3 scales are formed on enriched aluminium containing coatings during elevated 

temperature exposure, these scales have a reputation for exfoliation on thermal cycling 

because the supply o f aluminium in the coating layer is limited and would be rapidly 

depleted by exfoliation. Once significant depletion has occurred, less noble and faster- 

growing less protective oxide scales form, leading to the relatively rapid degradation o f the 

hardware component. [11]. At a sufficiently high concentration o f reactive element in the 

surface layer o f the substrate , the adherence o f the alumina scale to the substrate becomes 

excellent. In addition, the protective properties o f the scale are also improved. [12]. In 

general, a small amount o f Y addition is beneficial to scale adhesion rather than significant 

addition [13].

2. 3. 5 Role of Rhenium

There exists very limited information on the role o f  Re in bond coat developments. 

However, in a recent paper it has been shown that the addition o f Re considerably
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decreased the oxidation rates o f  NiCoCrAlY- type overlay coatings, but even more 

markedly improved the thermal cyclic fatigue behaviour [47].

It is suggested that the improvement against oxidation and corrosion is due to the formation 

o f  a CrRe- rich alpha- phase below the oxidation layer; this phase influences the activity o f  

A1 to produce a dense AI2 O3 oxide layer. The additional phase in comparison to the three- 

phase mixture o f the old MCrAlY coating is probably the reason for the improved thermal 

mechanical properties o f  MCrAlY coatings containing Re. However, further work needs to 

be carried out to fully understand the precise role that Re takes in improving both the 

microstructure and how the improvements are originated in the coating [14].
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2.4 Effect of Residual Elements and Contaminants on Thermal Barrier Coatings

2.4.1 Sulphur

Sulphur and its derivatives are the most common pollutants found in high temperature 

application environments[48] . A thermal barrier coating which experiences this 

environment for example in turbines is always in contact with these corrosive additives 

which come from the fuel. It will associate with sodium from the turbine environment and 

will form very corrosive Na2S0 4  [49,50].

The lifetime o f TBC with yttria stabilized zirconia overlay is reduced by the wear resulting 

from reaction o f Yttria with sulphur. The reaction is shown as the following equation [4]:

3Y20 3 + 3 S 0 3 -> 6 Y+ + 3 S 0 42'

The sulphur also segregates to the bond coating o f the TBC, which weakens the cohesive 

bond between the scale and the adjacent metal and thereby increases the tendency o f the 

scale to exfoliate under thermal condition [51]. For example in gas turbines, the corrosive 

Na2 S0 4  that deposits will dissolve the protective oxide. It forms a sulphur phase over a 

wide range o f SO3 and O2 in the alloy which will destroy or prevent the formation o f  a 

protective oxide scale.

The reaction between AI2O3 (which is an important compound in the bond coat) and 

Na2 SC>4 will form NaAlCb or A FC SC ^ which has considerable effect on the oxidation rate
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o f the coating. In this reaction, AI2O3 will either donate oxygen ions to or accept oxygen 

ions from the Na2S0 4  as shown in the reaction equation below:

AI2O3 + O2' —> 2 AIO2 ’

AI2O 3 -> 2A13+ + 3 0 2’

When Na2S0 4  is present in condensed form as opposed to the vapour, it appears that the , 

Na2S0 4  mostly serves as a barrier to oxygen and affects the equilibrium stage.Hence hot 

corrosion occurs as the cause o f the reactions that destroy AI2 O3 that protects the substrate 

from corrosive substances. This condensed form can occur when the turbine temperature is 

increased up to 800°C, although the melting point o f Na2 S0 4  is at 883°C [6 ].

This above illustrates why sulphur is very harmful to the top coat and bond coat o f the TBC 

for high temperature applications. The best solution to this problem is the complete removal 

o f the sulphur and this can be achieved in many ways [52].

Repeated oxidation and polishing o f for example a pure NiCrAl alloy, lowered the sulphur 

content from 1 0  to 2  parts per million by weight (ppmw), presumably by removing the 

segregated interfacial layer after each cycle. Total scale spallation changed to total retention 

after 13 such cycles, with no changes in the scale or interfacial morphology.

Another effective way o f suppressing the segregation o f  sulphur is by hydrogen annealing . 

The physical processes o f actually achieving an effective thermal barrier coating via the 

methods o f sulphur removal are continuously improving as technology is continuously
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advancing. If  a thermal barrier coating is to perform to its maximum potential the element 

o f sulphur has to be either fully removed, or suppressed to eliminate its detrimental effects . 

This therefore will ensure that the coating will last its full working life. The effect o f  

sulphur on LCBC has not been studied. W hether it is beneficial or detrimental needs to be 

evaluated.

In summary sulphur is a contaminant in all metal alloys that can severely affect the strength 

o f the material. At elevated temperatures, it can thermally diffuse to grain boundaries, 

coating interfaces, and ultimately, to the free surface. In the case o f TBC’s and in particular 

AI2O3 protective coatings o f Ni-based superalloys used for je t engine blades, the sulphur 

segregates to the coating interface and weakens the bond causing massive spallation o f 

oxide layer.

2.4.2 Silicon and its oxides

The thermal cycling resistance o f plasma sprayed zirconia -7  wt.% yttria thermal barrier 

coatings (TBC’s) has been examined as a function o f silica impurity level [54].

The properties o f zirconia and other ceramic materials can be strongly affected by silica 

impurities [54]. From a common observation, many ceramic materials when examined by 

transmission electron microscopy (TEM) showed that there was a distinct amorphous grain 

boundary phase present as a result o f sintering additives or powder impurities [55].

In bulk zirconium based ceramics, silica segregates to grain boundaries, then excessive 

amounts o f silica is collected at the triple point [54]. One o f the examples that has been 

found is Y-TZP (Yttria-stabilized tetragonal Zirconium polycrystal). The amorphous phase
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that is present in Y- TZP is Si0 2  rich and is due to contamination from two principle 

traditional milling media. At high sintering temperatures, a liquid phase which remains as a 

glass upon cooling is formed by a combination o f these and other trace impurity oxides. 

Y 2O3 and possibly some Zr0 2  from the surrounding grain have also been found in this glass 

phase in Y-TZP [55].

The silica content in this glass phase not only leads to a change in the size and shape o f , 

grains, but it also dissolves Y 2O3 from the Zr0 2 -Y2 0 3  grain boundary region leading to 

localized destabilization. Since the concentration o f  the Y 2O3 in the glassy grain boundary 

is low, the high concentration o f Y2O3 in the Y 203-Z r02  phase will diffuse to low 

concentration o f SiC>2 glassy grain boundary. This will affect the property o f the structure 

phase since Y 2O3 is very important in stabilizing the ZrC>2 for use at certain application 

temperatures [56]. The lower the amount o f Y2O3, the less stable is ZrC>2 at high 

temperature.

Silicate liquid phase acts as a sintering aid for partially stabilized zirconia. The excess 

liquid phase can accommodate the thermal expansion mismatch in the tetragonal phase.

The faceted tetragonal ZrC>2 grains with a minimum o f glassy phase would be expected to 

have the highest toughness as well as transform to monoclinic. Rounded comers o f the 

grains reducing stress concentration typified by shape faceted comers [54].

The high temperature flow stress can be lowered by a small addition o f grain boundary 

glassy phase. The flow stress is most effectively lowered by the lithium silicate glass. The
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tetragonal zirconia polycrystal (TZP) which contains 5 wt. % lithium silicate glass deform 

superplastically even at 1100°C [57].

Silica can cause dramatic increase in sintering rates [54] and decrease in electrical 

conductivity [58]. It may also lead to increased creep rates, as has been observed with 

silicon-based ceramics [59]. This is due to naturally brittle properties o f glassy phase which 

have low creep resistance.

Silica impurities are also common in zirconia plasma spray powders and therefore may 

similarly influence the properties o f plasma sprayed Zr0 2 -Y2 0 3  thermal barrier coatings 

[60,61]. In addition to the effects observed for bulk ceramics, silica present in plasm a spray 

powder affect the tendency o f a sprayed powder particle to stick to the target, thereby 

affecting the as-deposited micro structure and porosity o f the coating [62]. Increased 

sintering rates, increased creep rates, and a change in as-sprayed density all could act to 

increase residual stresses and decrease the thermal cycle life o f the ceramic layer o f a TBC.

The addition o f silica also yield a small, but statistically significant, decrease in coating 

density and an increase in surface roughness with increasing levels o f silica[54].

To summarise, silica is classed as an impurity in Zirconia based TB C ’s and can have a 

large effect on its physical properties [63]. Less than 1 mass % can drastically affect the 

thermal cyclic properties o f the TBC, leading to a reduction in the number o f  thermal cycles 

to failure (plasma spray coatings). It is known that silica, present in small concentrations,
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will tend to segregate to the grain boundaries o f a bulk ceramic modifying the grain 

structure and orientation. Silica can dissolve Yttria and segregate to grain boundaries whilst 

increasing thermal creep rates [63]. In a recent paper [64] the results o f an investigation on 

a TBC shows the complex microchemistry o f the fracture surfaces, where segregation o f 

bulk dissolved impurities such as Si, Al, Fe, and Na o f the stabilizing yttrium oxide takes 

place from 1170K. The small area x-ray photoelectron spectroscopy (SAXPS) and small- 

area-x-ray-induced auger electron spectroscopy (SAXAES) results indicate that chemical 

composition o f the segregated phase is ascribable to an infinite chain silicate o f sodium 

with a variable presence o f Fe, Y, and Al as a function o f temperature. The SIMS ion 

images suggest, further, that the aluminium and yttrium segregate both at the silicate 

segregated regions as well as separately.

2.4.3 Effects of Sodium and Phosphorus

Sodium is classed as an impurity in TBC. There exits very little information regarding the 

effect o f Na & P on the performance o f bond-coats and TBC’s, although it is known that Na 

can cause hot corrosion as a result o f  the potential level within fuels (0.5 ppm). Also there 

exists no information as regards use o f  GDOES to investigate sodium effects. In a recent 

paper [64], however, (SAXPS), (SAXAES) and secondary ion mass spectrometry (SIMS) 

have been used to investigate segregation phenomena at fracture surfaces o f 8  mass % 

Y 2 0 3 -Zr0 2  plasma-spray thermal barrier coatings as a function o f temperature up to 1620K.
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2.5 Degradation of Thermal Barrier Coatings

The degradation process o f TBCs was studied by means o f a comprehensive literature 

review [65,66,16,17,19]. During varying test conditions the most significant findings have 

been compiled in this thesis. Failure o f TBC’s may arise from the thermal expansion 

mismatch between the components, mechanical stresses induced by thermal gradients, 

ceramic sintering, phase transformation, bond-coat oxidation, bond coat in-elasticity, 

corrosive and erosive attack, residual stress due to deposition, and adverse component 

geometry.

Among these, the life time o f the coating is limited by three main parameters:

• interdiffusion o f substrate/coating (solid-state diffusion)

• excessive bond coat oxidation

• mismatch coefficient o f thermal expansion

2.5.1 Interdiffusion

Diffusion o f aluminium into the base metal and base-metal elements into the coating, 

reduce the concentration o f aluminium in the coating that is available for forming alumina. 

A protective oxide layer can no longer re-form after spallation once the aluminium 

concentration falls below a certain level. The basic concepts o f diffusion are well 

understood for simple systems, and the diffusion o f complex, multi-element systems 

containing multiple phases can be formally described [6 6 ]. Obtaining actual interdiffusion 

coefficients and predicting the interdiffusion in these systems is a formidable task.
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Consequently, reliance on empirical measurements o f interdiffusion is necessary and 

usually sufficient for engineering purposes.

Degradation of Diffusion Coating 

NiAl Alloy

During initial exposure to an oxidizing environment, NiAl type coatings often form Y-AI2 O 3 

scale that tends to spall o ff easily. Then a more dense adherence scale o f 0 C-AI2O3 forms , 

and protects the interior from further oxidation. This film will perform outstanding 

protection when its mechanical integrity is maintained. Unavoidable thermal cycling 

imposes alternate tensile and compressive stresses on the oxides, causing shearing and 

spalling to occur. This leads to some Al loss from the surface creating a depleted zone 

immediately underneath. Although the spallation, depletion, and replenishment o f the 

original Al-rich NiAl coating gradually converts to a hypostoichiometric (Ni-rich) NiAl. 

Additional stresses that generate during cooling from a martensite transformation will 

further enhance the degradation process. At certain critical compositions, the coating is no 

longer a single-phase and y '- ^ A l  begins to precipitate. Appearance o f  y' in the coating is 

responsible for changing the oxidation mode, since it oxidizes to give NiO and/or NiO- 

AI2O3 spinels, since mass transport is normally easier in these oxides than in AI2O 3 the 

coating begins to oxidize at an increased rate. Oxides such as NiO are often observed in 

porosity during growth. For this reason the appearance o f y' in Ni-Al based coatings marks 

the beginning o f its demise [67].
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If the coating is exposed to a further extent, y' + y phase will be precipitated. The y phase 

is more susceptible to oxidation than the y' phase and forms a voluminous, porous, 

multiphase, non-protective scale. Obviously, the coating is undergoing composition and 

structural changes and the substrate does not remain inactive. W ith the help o f diffusion 

force, during early stage o f the life o f a coating, Al is expected to enter the Ni substrate 

from the coating, but as the coating degrades to assume a Ni-rich composition, Ni begins to 

enter the coating from the substrate, and leads to kirkendall void formation immediately , 

behind the coating-substrate interface [6 8 ].

Degradation of Overlay Coating 

MCrAlY Alloys

The extension o f aluminized coating life with respect to degradation is rarely achieved by 

Al alone. In its simplest form it is a dual metal system such as Ni-Al, Co-Al, Cr-Al or Pt-Al 

and at most complex like M CrAl-Xl or MCrAl-X2 (overlay coating).

Chromium is an essential additive in all aluminide systems as it influences the stability, 

coherence and continuity o f the a-A l layer or as major component or minor component 

beneath the chromia layer. The function o f MCrAl coating is to be able to form a 

protective barrier layer o f a-A l and chromia. Degradation means failure o f these coatings 

o f its coherence composition and cannot repair or sustain the barrier layer. The actual rate 

o f the failure mechanism depends on the interaction o f several parameters: the environment 

composition, particulate effect/velocity, and temperature [69].
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The degradation pattern o f NiCrAl or CoCrAl systems change very drastically when the 

corroding environment changes from oxide O2 to SCh/NaCl environment coherence and 

subscale composition. However, in pure O2 environment the NiCrAl alloys have more 

protective and adherent ability than CoCrAl alloys.

2.5.2 Bond Coat Oxidation

Oxygen can easily diffuse to the metallic bond coat owing to the high porosity, 

segmentation and ionic conductivity o f the Zr0 2  topcoat. The bond coat suffers oxidation 

attack. An oxide layer builds up between the bond coat and top coat and the relative 

expansion causes internal stresses at the interface. When the oxide layer reaches a critical 

thickness, cracks can first be observed; with increasing oxidation attack, the ceramic spalls 

off. Bond coat oxidation influences thermal shock resistance; with increasing oxidation, the 

number o f thermal shock cycles to failure is reduced [70].

Spalling mechanism in TBC’s

The spalling mechanism o f TBC’s can take many forms and the major mechanisms have 

not as yet been identified [70,71]. However, a general mechanism has been recognised and 

this can be broken down into two areas - initiation and propagation.

Initiation of Spalling of Thermal Barrier Coatings

Initiation o f the spallation mechanism can occur in several different ways. Oxidation o f 

thermal barrier coatings occur generally between the bond coat and the top coat. Oxygen 

diffuses through the TBC due to porosity, segmentation, and ionic conductivity, and
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attacks the metallic bond coat. Oxide builds up at the interface and when it reaches a 

critical thickness it causes the top coat to crack (See fig. 2.5.2 ( a ) ) [16]. Oxide grains 

protrude into these cracks and also into imperfections such as pores in the top coat, causing 

the top coat to begin to split up.

Oxidation o f the bond coat can have the effect o f decreasing its ductility through the 

formation o f additional oxides at the top coat/bond-coat interface [71]. This is detrimental 

to the TBC because in a coating that has not been oxidized, stresses caused by differences 

in the coefficient o f thermal expansion (CTE) o f bond-coat and top coat are relieved by 

plastic flow o f the bond coat. If  the ductility is reduced by oxides then the bond-coat cannot 

flow as freely and so cracking may occur [63].

Propagation and Spalling

There are four propagation and spalling mechanisms that apply to the top-coat o f a thermal 

barrier coating. After the initiation o f spalling o f the top coat at sites adjacent to protruded 

NiO pegs, spalling may continue to propagate via one o f the following routes:

• Along lamellar splats in the top coat (route 1)

• Along the top-coat/bond-coat out-grown oxide scale interface (route 2)

• Along the bond-coat out-grown spinel oxides/AhCb interface (rout3)

• Along the bond-coat out-grown AI2O3 /metallic bond-coat interface (route 4)

All o f these routes can be seen in figure 2.5.2(b) [71].
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In thermally cycled specimens, spalling is hardly observed to propagate through routes 

three and four. Generally, spalling takes place through routes one and two, that is, along 

lamellar splats within the top-coat and along the top-coat/bond-coat out-grown oxide scale 

interface. This is due to the bond-coat being able to ‘relax’ after heating and negates the 

possibility o f cracks forming at the bond-coat out-grown spinel oxides 

(Ni [CrAl]2 0 4 ) / AI2O3 or bond-coat out-grown AI2 O3 / metallic bond-coat interfaces.

However, for isothermally exposed specimens, inter-facial bond-coat oxidation induced 

stresses cannot be relieved by operationally induced cracks. This leads to spalling o f the 

top-coat by propagation through the bond coat out-grown spinel oxides/A^Ch and bond- 

coat out-grown AhCVmetallic bond-coat interfaces.

Nevertheless, the effects o f spalling can be reduced by the application o f  an AI2 O3 diffusion 

barrier. This is applied to the bond-coat by a reactive sputtering process prior to the top

coat being applied. The thickness o f this diffusion barrier varies from 2 to 5 pm. W ith this 

diffusion barrier the oxidation behaviour is strongly influenced. The thicker the diffusion 

barrier, the lower the oxidation attack o f the bond-coat [16]. The diffusion barrier slows the 

growth rate o f the oxide-layer, and after 250 operating hours the thickness o f the thermally 

grown oxide layer can be reduced by as much as 70% [16 ].
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This means that the volume expansion due to oxidation attack is also reduced and therefore 

the stresses inherent to this system are also reduced. This means that the life o f the 

component is increased.

With the use o f a diffusion barrier the oxidation resistance o f the bond-coat and the 

adhesives strength o f the ceramic top-coat are both increased. This means that failure due to 

spalling o f the top-coat is decreased.

Residual Stress

Degradation can be significantly increased by residual stresses that depend on a variety o f 

mismatch strains and their resulting mismatch stresses. Liquid-solid volume shrinkage is 

often large in ceramics (not < 1 0 % for Zr0 2 ), resulting in large tensile stesses in all coating 

processes. Subsequent porosity leads to stress concentrations but under normal cooling they 

are not a source o f residual stress [ 1 0 ].

2.5.3 Thermal Expansion Mismatch

The thermal shock resistance o f TBC’s is controlled by the thermal expansion mism atch 

between the zirconia top coat and the metallic substrate (figure 2.5.3). TB C ’s with yttria 

partially stabilized zirconia top coats show better thermal shock resistance than top coats 

with other chemical compositions [18]. By segmentation o f the ceramic top coat or 

optimization o f the porosity, further improvement in thermal shock resistance is possible 

[19,20].
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Elastic Anisotropy

Any textured coating, local or throughout, will have mismatch strains. These result from the 

elastic anisotropy that occurs in essentially all crystalline materials; they are considerably 

enhanced by any thermal expansion anisotropy (i.e. materials not o f cubic structure). Solid 

deposition processes such as sputtering and chemical vapour deposition commonly 

produces textured coatings [10]. Cubic zirconia’s elastic anisotropy is unknown. Coatings 

exhibiting the best adherence and resistance to thermal cycling have a random texture 

(elastic anisotropy effects are minimized) [16].

Phase transformations

Zirconia is polymorphic, it is monoclinic from RT to 1100°C, tetragonal to 2370°C, and 

cubic to 2680°C. The unusually large (~ 9 vol. %) tetragonal-monoclinic expansion o f 

unstabilized zirconia is a source o f very large stresses. Transformation occurs along one 

crystal axis, therefore the effect is greatly increased by texturing. Partial stabilization, 

using 6 - 8  wt. % yttria, reduces the transformation temperatures and minimizes this effect. 

Optimum stabilizing precipitates are ~ 0.2 microns, larger particles result in microcracking. 

The transformation toughens the matrix via crack tip blunting therefore hindering crack 

propagation [16].

Transformation still partly occurs with partially stabilized zirconia, but PSZ’s thermal 

shock resistance and linear thermal expansion coefficients are superior to fully stabilized 

zirconia’s. Zirconia may suffer stabilizer loss during processing or thermal/corrosive 

exposure. Y2O3 has higher stability in zirconia than MgO or CaO and is therefore preferred.
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No Y 2 O3 loss occurred in plasma sprayed zirconia coating on a turbine vane after 300 hours 

service with an average vane temperature o f  670°C. Non-uniform stabilizer distribution, 

occurring during processing or usage, may result in formed regions o f  the monoclinic phase 

[10,16].
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2.6 Bonding Mechanisms

The bonding mechanisms at the coating/substrate interface and between the particles 

making up the coating is an area which in many cases is still subject to speculation [65,72]. 

It generally suffices to state that both mechanical interlocking and diffusion bonding occur.

Bonding Mechanisms:

• Mechanical keying or interlocking.

• Diffusion bonding.

•  Other adhesive, chemical and physical bonding mechanisms-oxide films etc.

Factors affecting bonding and subsequent build up o f  the coating:

• Cleanliness

•  Surface area

• Surface topography or profile

•  Temperature (thermal energy)

• Time (reaction rates & cooling rates etc.)

• Velocity (Kinetic energy)

• Physical & chemical properties

• Physical & chemical reactions
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There exists currently no published literature on the bonding mechanisms involved in 

LCBC systems currently under development at Rolls Royce. However, information on 

other bond-coats mentioned in literature surveys exists and is reviewed below and will be 

used in a basis o f study o f bonding mechanisms for the proposed LCBC systems.

Various models have been proposed in order to predict coating performance. The two 

principal models for the diffusion coatings examine the roles o f oxide scale spallation and 

interdiffusion. The diffusion model proposed by Smialek and Lowell [73] notes that in 

cyclic oxidation tests, significant differences are observed in the behaviour o f comparable 

thickness o f bulk NiAl and aluminide coatings on various nickel base superalloys. They 

concluded that as a result o f interdiffusion, the aluminium level is decreased to the level 

where spinel oxides form, and then spallation becomes the predominant cause o f the 

continued loss o f alumina. Thus, while diffusion may not account for most o f  the 

aluminium lost in a severely degraded coating, it is responsible for the initiation o f the 

coating degradation process.

The alternative model [73] relates spallation o f the scale to the magnitude o f the stresses 

associated with the differences in coefficients o f thermal expansion between the oxide and 

the substrate and the weakness o f the bond between the oxide and the substrate. The 

continuous repetition o f formation and spallation leads to aluminium depletion and a 

resultant acceleration o f oxidation. This same model is also used for overlay coating.
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Chapter 3 

3.0 Experimental Development
Low cost bond coat (LCBC) systems with additions to substrate and coatings were 

characterised to increase understanding o f failure modes in TBC systems and adhesion 

process. These systems are described in detail as part o f the experimental developments. 

The sample productions were carried out at Rolls Royce and were received in button form 

for characterisation using techniques such as GDOES, SEM and TEM.

3.1 Coating Systems 

The Production of Low Cost Bond-coats

These bond-coats have been developed specifically for TBC’s. The basis o f the bond-coat 

is a simple thin layer o f Pt electroplated onto the surface o f the superalloy substrate. In all 

cases the superalloy used was CMSX-4, the composition o f which is given in figure 3.1a 

with a comparison to alloy RR3000.

Figure 3.1a Typical composition o f alloys CMSX-4 and RR3000

Alloy Nominal Composition mass %

Ni Co Ta Cr W Al Re Ti Mo H f

CMSX-4 Bal. 9.6 6.5 6.4 6.4 5.6 3 1 0 . 6 0 . 1

RR3000 Bal. 9.5 8.5 6 . 2 6.5 5.5 6 0.3 0 . 6 0 . 1
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The sample is then heat treated in a vacuum furnace for 1 hour at 1150°C. A Ni based y/y' 

region is then formed at the surface o f the substrate. The y' phase is the bright phase that 

can be seen after etching ( Figure 3.1(b)). This y' phase is a N i3Al(Ti, Pt) phase with almost 

the same structure as the y phase but has a slight misfit with the matrix.

The simple low-cost system has been tested before at Rolls-Royce but not extensively. The 

systems tested in this thesis include the base low-cost and several enhanced versions o f this 

type o f coatings.

3.1.1 LCBC with additions to substrate

The first enhanced low-cost systems to be tested, used reactive element additions to the 

substrate to see what effect they had on the TBC life. Some o f the compositions/systems 

used include:

• Pt + CMSX-4

• Pt + CMSX-4 + La

• Pt + CMSX-4 + Y + La

• Pt + CMSX-4 + Ce

The results from the isothermal soaks o f the button test specimens can be seen in the 

thermal cycling results chapter 5.
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3.1.2 LCBC with additions to coatings -Sputtered additions

These samples were produced by ion sputtering a thin layer o f Ni ( acts as a carrier ) 

usually 2pm containing different active element additions ( Ni + X where, X= active 

element ), directly onto the substrate before the Pt layer was applied.

For this coating process an inert gas, usually argon, will flow into the process chamber o f a 

Physical Vapour Deposition (PVD) coating machine with a pressure below 1 Pa. By 

application o f a DC voltage or AC voltage a glow discharge will be started within the gas 

environment. The chamber walls are polarized as the anode, the coating material - called 

target- as the cathode. The inert gas ions generated in the glow discharge are accelerated to 

the negative target and sputter atoms and molecules from the target primarily by 

momentum transmission. The sputtered particles expand within the vacuum chamber and 

condense on the substrates ( CMSX-4) as well as on the other surfaces in the chamber. The 

test samples were then subjected to a diffusion heat treatment in a vacuum furnace at 

1150°C for.The aim was to form through diffusion a y/y' layer which should be 

strengthened by X. The composition/systems used are shown in page 58. The objectives 

were to try and answer:

• What role does the active element play in improving coating performance?

• Does it really combine with the surface?

• What would be the maximum level o f active element addition?

• The diffusion process involved
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3.1.3 Process Parameters / Compositions

Table 3.1.3 : Enhanced Low Cost Bond-coats

As Processed 

Sample Code

Cyclically 

Tested to 

Failure Code

Coating System

- 422.NB.100 Reference

227/1 422.GB.500 Sputtered Ni + 0.23wt% H f

227/2 422.HA.300 Sputtered Ni + 2.27wt% H f

227/3 422.IB.700 Sputtered Ni + 6.10wt% Y

227/7 422.PB.700 Sputtered Ni + 0.5wt% Y

227/9 422.TB.700 Sputtered Ni + 0.58wt% Y + 1.60wt% H f

227/11 422.VB.700 Sputtered Ni + 0.43wt% Y + 1.75wt% H f

- 422.DB.100 CMSX-4 + 22-26 ppm Ce

- 422.C B.100 CMSX-4 + 20-25 ppm La + Low cost

- 422.BB.100 CMSX-4 + 8-14 ppm Y + 12-18 ppm La

227/6 - CMSX-4 + Y

228/1 - CMSX-4 + 6 - 8  ppm Y + 11-13 ppm La

228/7 - CMSX-4 + Pt

227/5 - Sputtered thin McrAlY + Pt

228/3 - CMSX-4 + Ce + Pt

228/2 - CMSX-4 + La + Pt

227/4 - Sputtered thin MCrAlY
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3.2 Analytical Characterization

The characterization o f bond-coats and TBC is essential for quality control and research 

and development purposes. The techniques available include; scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), x-ray fluorescence spectroscopy (XRF), 

x-ray diffraction (XRD), and glow discharge optical emission spectroscopy (GDOES).

It is possible to characterize the bond-coats and TBC’s in terms o f microstructure, phase 

equilibria, composition, and crystal structure, to gain a full evaluation o f bonding and 

possible failure mechanisms.

3.2.1 Techniques Description 

XRD

X-ray diffraction is used to identify the types o f phases present in powder, as-sprayed and 

heat treated coatings. XRD relies upon the diffraction o f x-rays according to Bragg’s law 

[74]. A diffraction pattern gives information about the crystal structure and lattice 

parameter o f constituent phases. A very useful feature o f XRD is to identify the preferred 

orientation o f growth during coating manufacture. W hether this be the prominent growth 

direction o f a single grain or to identify areas o f growth occurring at different rates w ithin 

the same layer. This technique is capable o f  analyzing each layer in multi-layered coating 

systems including extremely thin oxide films and interface microstructures.

X-Ray diffraction patterns were obtained on a selected bond-coat in the as processed and 

failed condition to determine phases present using an X-ray diffractometer Philips model 

PW1820 which is software controlled from a PC. The wavelength X o f the monochromatic
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Cu k a  radiation is 1.54060x1 O' 10 m. The optimum voltage was found to be 12kV and the 

current 35mA in order to obtain peaks from the bond-coat. The peaks obtained were 

analyzed using computerized data processing facilities at Rolls-Royce pic. The results 

obtained are shown in figures 3.2.1.

XRF

XRF is a method for the elemental analysis o f solids and liquids. The technique involves , 

irradiating the sample with an intense beam o f x-rays, causing the emission o f fluorescent 

x-rays, characteristic o f the sample composition. The elements commonly detected range 

from sodium to uranium, but lighter elements from boron to fluorine may also be detected. 

The advantages o f XRF include; quantitative analysis o f bulk elemental composition, trace 

analysis to ppm levels, and is non-destructive [75].

Thermal Cyclic Testing

The thermal cycling o f bond-coats has been conducted at Rolls Royce to see how bond- 

coats perform at high temperatures.

Thermal cyclic test data was collected at 1135°C, each cycle being 1 hour at temperature 

and a 10 minute forced air cool. They represent the number o f cycles required to cause the 

EB-PVD ceramic to spall, there is no applied external load. It is worth noting that the 

results can only really be compared to results from a like test and do not represent how the 

samples would perform at higher temperatures. Blocks with arrows attached represent the 

test piece is still on test and has not as yet failed (figures 5.1 & 5.2 ).
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SEM

The SEM is used primarily to study the surface, or near surface structure o f bulk 

specimens, since the magnification and depth o f field are superior, compared with optical 

microscopy. The SEM typically operates at 2 to 50 kV; a range o f 15 to 25 kV is common 

for most metallurgical and ceramic applications. The electromagnetic lenses in the column 

are used to form a small-diameter electron probe (> 5nm in diameter for most SEMs). A set 

o f scan coils raster the electron probe over the specimen surface as an electron beam scans 

the inside o f the Cathode Ray Tube (CRT) screen. At each point in the sample struck by the 

incident electron beam, several electron/specimen interactions occur that produce a number 

o f different measurable signals, such as secondary electrons, back-scattered electrons, and 

characteristic x-rays.

The SEM can produce detailed photographs which can then be used for image analysis, 

producing statistical plots o f the size and distribution o f features on a surface.

The SEM can also be used to provide compositional information using EDX (energy 

dispersive X-ray analysis) analysis, to give qualitative and quantitative elemental 

information or WDX (wavelength dispersive) to provide more accurate quantitative 

elemental composition. The limitations o f SEM being that analysis is restricted to the near 

surface, and compositional analysis is elemental, which makes distinctions between phases 

difficult [69].

Microstructural investigation o f bond coat and also selected thermal barrier coatings 

(RT31) were carried out using a Philips fully computerized electron microscope -XL40.

61



Energy dispersive X-ray analysis was made using Oxford Instruments hardware and 

software.

TEM

TEM typically operates at a voltage exceeding 60kV; 100, 120, or 200kV. TEM provides 

information about the internal structure o f thin specimens .The TEM can be used to 

produce electron diffraction patterns, either spot or ring [76] which can provide informatipn 

regarding crystal structure, lattice parameter and crystal orientation.

The main disadvantage o f TEM is the thin specimen size, which makes sample preparations 

difficult, however, the major advantage being the possible examination o f layered or zoned 

microstructures.

A Philips C M 20 analytical microscope (200kV) equipped with EDX facilities for 

microanalysis, mapping and electron-diffraction facilities for selected area diffraction, 

convergent beam etc. was employed. Selected bond coat samples with a 2.5 jam TBC were 

studied to develop a suitable method o f study in terms o f sample preparation, ion-beam 

thinning and analytical assessments.

3.2.2 Ion Beam Thinning Process Developments for the Study of Low Cost Bondcoats 

Sample Preparations Procedure:

The preparation o f the transverse thin foil involves three sequential steps: sectioning, 

mechanical thinning to 20 jam and final ion-beam thinning to electron transparency. The
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various components (superalloy, bond-coat, thermal barrier top coat) thin at different rates 

under standard ion beam thinning conditions. A sequential step with the bond-coat thinning 

procedure had to be put in place in order for TEM assessment. The final technique 

developed that gave consistent samples is outlined below, first covering some theory which 

is essential in understanding this procedure.

Theory of lon-Beam Thinning
In recent years specimen preparation by ion-milling has become popular especially in 

dealing with composite systems and organic or inorganic regimes where other approaches 

to forming thin electron transparent sections are untenable. O f course any method for 

fonning an electron transparent thin section which does not alter the regime nor create 

artifacts contributing to observations o f the regime is acceptable. This includes smashing 

ceramic into flakes or shards or stripping thin layers from bulk specimens, cleaving small 

pieces, or other approaches. But to observe the interface between a ceramic fibre in a metal 

matrix or an insulating layer on a semiconductor normally precludes these approaches as 

well as any kind o f electropolishing [77].

The principle o f ion-beam thinning is extremely simple. A beam o f inert gas ions or atoms 

is directed at the specimen from which it removes surface atoms in a process known as 

sputtering. If  this can be achieved without the creation o f artefactual damage then ion-beam 

thinning is an ideal method for preparation o f  foils from both conducting and non

conducting materials.
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Sputtering will occur when ions carrying more than about 100 eV o f energy hit a surface. 

The number o f atoms ejected by each incident ion or atom is known as the sputtering yield, 

Y. In general, Y, and hence the thinning rate increases as the ion energy increases and as 

the atomic mass of the specimen decreases. The desire for high sputtering yield but no 

chemical change in the specimen dictates the use o f argon. Lighter inert gasses (helium and 

neon) thin more slowly and heavier inert gases (krypton and xenon) are too expensive. 

Figure 3.2.2.a. shows the relationship between ion energy and sputtering yield. Initially, Y 

increases with ion energy but eventually at high energies the incident ion is deposited far 

below the surface and fewer surface atoms are ejected. The optimum energy is thus 

somewhere in the range 1-10 keV, and a value between 3 and 5 keV is generally used.

Automatic termination o f thinning is available as above, as thinning o f a single 50pm thick 

disc can take several hours, i.e. Thinning occurs at a few tenths o f  microns per hour [78].

Cross sectional preparation for transmission electron microscopy
The coated specimen used for cross-sectional analysis had to be carefully prepared in order

to get successful results reflecting the real microstructure and composition o f the tested 

specimen [79,82].

In general the specimen preparation procedure developed is the following [79]:

• Specimens are cut into 0.5mm x 1.2mm x 3.0 mm slices as shown in figure 

3.2.2.b
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• Sectioned slices are mechanical ground and polished on one side to a thickness 

o f 100pm and a finish o f 1pm.

• The reverse side is further thinned and polished to make a foil with thickness o f  

10 to 20pm and a finish o f  1pm, figure 3.2.2 ( b to h ).

• Final thinning for electron transmission is performed using argon ion-beam 

thinning, which basically consists o f 3 thinning stages ( rough polish) 

performed by both guns separating with a low angle o f ion incidence at starting 

10° to 5°, with different keV :

Stage 1

Accelerating voltage o f  5.5/6 keV with a current of7-10pA  and both guns separately 

with a low angle o f  ion incidence 10° for 30 min .This produces very quick wear, in fact 

reduced sample thickness from 20pm to 10/5pm.

Stage 2

Accelerating voltage o f  5 keV with a current o f  7-10pA and both guns separately with a 

low angle o f ion incidence 7° for long as necessary until a hole appears in the sample.
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Accelerating voltage o f 4 keV with a current o f 7-10pA and both guns separately with a 

low angle o f ion incidence 5° for long as necessary until the hole is enlarged and thin 

enough for all areas to be studied: substrate, bond coat and TBC.

Stage 3

Final polishing stage is more o f a cleaning step, as follows: Use an accelerating voltage o f

2.5 keV with a current o f 7-10pA and both guns separately with a low angle o f ion 

incidence 10° for 1.5min.

It is very important to note that the TEM sample preparation time is significantly reduced 

as a result o f having thinned the cross section mechanically down to 15-20pm. Also, use o f 

a clamp type specimen holder had the advantage shown compared to the glued on method 

( see figure 3.2.2.C ).

3.3 GDOES Depth Profile Analysis to Investigate Bond coats and TBCs

3.3.1 General Overview and Analytical Requirements

GDOES is an analytical technique used in the study o f solid surfaces and surface films. It 

provides chemical composition data from both the surface and sub-surface regions. GDOES 

is an atomic emission technique relying on the excitation o f atoms within the sample being 

analyzed (figure 3.3.1.a & b ). The solid sample is sputtered under vacuum into the form o f 

a low-pressure gas. The atomic species are excited by an energy source and decay by 

emitting characteristic light which is analysed by a Polychromator to determine chemical 

composition (figure 3 .3 .1(b)). Sputtering rates o f between one micron and tenths o f
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microns per minute are possible depending on the size o f the sampling area and equipment 

parameters. Minimal sample preparation, easy operation plus rapid results enable low cost 

material characterization.

GDOES in addition to detecting all metals it is also capable o f detecting non-metallic 

elements, namely O, N, H, S, P, and B, all o f which have limited detectability by other 

analytical techniques. W ith respect to TBC’s non-metallic are o f great interest when 

considering oxidation/corrosion products. A major application for GDOES is depth 

profiling, which can provide concentration profiles down to depths o f between lOnm and 

100pm (figure 3 .3 .1(d)). This process can provide both qualitative and quantitative 

information as follows: Chemical composition o f the coating and substrate; coating 

thickness; layer homogeneity; interface quality; elemental diffusion at the interface and 

type o f contamination and penetration depth at the surface and /or interface [82,83,84].

The glow discharge spectroscopy work on bond-coats was carried out on a LECO GDS-750 

QDP glow discharge spectrometer.

The following optimized operating conditions shown in table 3.3.1(e) were used. Both 

qualitative and quantitative studies were performed, qualitative studies produced a plot o f 

the intensity over time for a given element.
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Chapter 4 Results: GDOES Studies

4.1 Development of Quantitative GDOES Depth Profile Analysis to Investigate 
Bondcoats and TBCs

4.1.1 GDOES Quantification Process Route

GDOES quantification was split into two parts: determination o f the sputtered depth from 

the sputtering time and sputter rates o f individual elements; and determination o f the 

chemical content from the emission line intensities. The sputter rates can be calibrated from 

sputter depth measurements. The emission line intensities are dependent on the voltage, 

current and sputtering rates, as well as the chemical composition. Normally the intensity 

calibration is performed using certified reference materials o f known chemical 

composition. During depth profile quantification the analyzed composition is normalized to 

100%.

The steps involved in setting up a quantification program for the superalloy turbine blade 

assessment are shown in figure 4.1.1a and the necessary optimised condition in figure 3.3.1 

(e).

4.1.2 Standards and Pre-compositional Analysis

A total o f 49 calibration standards were used to calibrate the superalloy turbine blade 

coatings quantitative program, covering most o f the elements in the coatings. In order to 

ensure that reliable results were obtained, the standards were selected so as to cover the
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elemental concentration range in the coatings. Table 4.1.2 shows an overview o f the 

calibration elements and analytical range with the selected standards.

EPMA using WDS was used to perform chemical analyses on both the CMSX-4 and R T31 

samples to enable comparisons to be made with GDOES and XRF results.

As the substrate alloys and coatings were multi-phased systems, a straight forward single , 

line scan would contain a lot o f scatter as different phase compositions were crossed by the 

scanning electron beam. In order to reduce this problem a series o f ‘point’ analyses at one 

micron intervals were taken. At each point the beam of the probe was ‘rastered’ along a 50 

pm line normal to the line produced by the series o f analyses to form a ‘ladder’ scan. This 

enabled an average band (50pm wide) to be assessed.

4.1.3 General GDOES Analysis of Bond-coat and TBCs

The time-intensity curves and calculated quantification depth concentration profiles for 

CMSX-4 superalloy substrate are shown in figures 4.1.3a,b,c,d. Only elements Ni, Co, Al, 

(major ones) and Ti, Hf, W (minor ones) have been shown for the sake o f  clarity. The 

tendency for the lines to rise as time and depth increases is due to matrix effects resulting 

from differences in elemental sputtering rates at appropriate locations o f isolated particular 

spectral wavelengths.

The crater produced during the analysis o f CMSX-4 after 60 and 1000 seconds are shown 

in figures 4.1.3 e(i,ii) and their measurement by laser profiling is shown in figures 4.1.3 (f).
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It can be seen that the bottom o f the crater in figures 4.1.3 (i) is quite planar, while some re- 

sputtering o f material has created a lip around the rim after 1 0 0 0  seconds.

The laser profile depth measurement shows a good correlation to the calibrated depth 

values obtained from fig 4.1.3 c,d, with errors o f the order o f 10-15%. The roughness o f the 

bottom o f the crater normally increases linearly with time, which is one o f the factors 

limiting the depth resolution. This necessitates a compromise between good depth 

resolution and high intensity spectral lines when selecting operating parameters.

The results o f the GDOES and EPMA analyses are compared to the composition 

determined by XRF in table 4.1.3.h . Both results showed a good correlation, with the 

GDOES results generally closer than those o f EPMA, although there were some obvious 

discrepancies which require investigation; the values obtained for nickel, between the 

spectral lines. The GDOES equipment is also not currently able to detect rhenium (Re), 

although Re is present in CMSX-4)

The trace obtained from the thermal barrier system (figures 4 .1 .3 .i) clearly distinguishes 

the different interfacial regions seen in the cross-sectional view (figures 4.1.3.j ). The 

elements identified within these regions agree with the EPMA analysis (fig 4.1.3.k ), with 

both techniques highlighting the yttrium concentrated at the ceramic/bond-coat and very 

low concentrations o f elements such as sulphur, boron, carbon, and phosphorus. The results 

can also be obtained more rapidly with minimum sample preparation.
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The current semi-quantitative program set up for turbine blade coating analysis is limited 

by the number o f  standards and calibration points used (table 4.1.2 ). For example, with a 

minimum o f two calibration points it is thus possible to obtain a straight calibration line. It 

is, however, recommended to use a minimum o f 5 calibration samples. The more 

calibration samples are used, then the easier to detect an inaccurate calibration sample, and 

if  necessary, to make appropriate correction or deletion. In addition, extra elemental 

channel such as Re and additional elements need to be installed.
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4.2 GDOES: investigation of LCBC System with Additions to Substrate / Coating

4.2.1 Standard LCBC system with platinum additions -  effect of Pt variability

Addition o f Pt to bondcoats such as diffusion aluminide coatings is known to improve their 

performance capability as surface protection systems for gas turbine blades [1]. Platinum is 

found to improve the coating ability to develop purer a-alumina scale o f a slower growth 

rate [2-5], Although the underlying mechanism is not fully understood, most evidence 

points out that the role o f Pt is to improve the diffusional stability o f the coating restricting 

outward diffusional transport o f substrate elements, particularly transition metals [2-5].

Platinum is first electrolytically plated onto the CMSX-4 superalloy substrate. Platinum 

plating is a complex process involving the electrochemical deposition o f platinum metal 

onto superalloy components with complex shapes. Before plating, the turbine blades 

undergoes thorough cleaning and polishing cycles. This is essential to ensure binding o f  the 

platinum layer to the superalloy substrate. The blades are then mounted on a rack and 

checked to ensure high conductivity. As only certain parts o f the turbine blades are to be 

plated, layers o f resin are then applied to the blade root to mask it during the plating 

process. The parts are then rinsed in de-ionised water and further cleaned in an ultrasonic 

bath.
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Platinum is then deposited in the plating tank. De-ionised water is first added to the tank, 

and the pH adjusted by the addition o f ammonia. A platinum salt complex ,

Pt(NH 3) 2 (NO 2) 2, is then dissolved in the solution. As de-ionised water is a poor 

conductor o f electricity, several phosphate salts are added to improve electrical 

conductivity. These also aid pH control. Finally, the entire bath is heated to between 80 and 

90°C. As a number o f variables can adversely affect the plating thickness and quality, the 

system is stringently monitored. Temperature and pH are determined using appropriate , 

sensors. The composition o f the bath is routinely monitored using x-ray fluorescence (XRF) 

and atomic adsorption spectroscopy (AAS) and the required compounds replenished by 

addition o f chemicals. Once the tank is ready and the temperature is between 80 and 90°C, 

the rack o f blades is placed between two insoluble platinised titanium anodes. The blades 

act as the cathode o f the electrical circuit. The platinum-based solution completes the 

circuit. Passing a current through the circuit leads to the decomposition o f the platinum salt 

into platinum cations and residual anions. The positively charged platinum ions are drawn 

towards the negative cathode, which in this case is the turbine blade, and a thin platinum 

layer deposits here. Adjusting the current density, platinum concentration and the plating 

time allows precise control o f the coating thickness. This process deposits thin, adherent, 

crack-free, ductile layers o f platinum onto the superalloy substrate [ 39].

A diffusion heat treatment process is carried out at 1150°C for 1 hour after Pt plating in 

order to develop the low cost bond coat.
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The objective of this work was two fold: (1) to determine whether GDOES was able to 

detect Pt and also distinguish between the different Pt thicknesses, because variation in 

bond coat performance under the same conditions and anode type could limit the 

application o f TBC systems. (2) to determine how the cyclic performance o f LCBC systems 

is affected by the Pt thickness variation and its overall effect on degradation mechanisms.

Presented in fig 4.2.1 are the GDOES Pt depth profiles for several selected Pt plated 

samples studied on a CMSX-4 substrate under different plating conditions and also in the 

heat treated and cyclically failed conditions as supplied from Rolls Royce. It should be 

noted that condition o f plating has a direct affect on average number o f cycles to cause 

failure o f coating ( see chapter 5). The following plating conditions were applied: AHD 928 

( new tank containing pure plating solutions with new anode); E20 (old tank with a new 

anode with heavily used plating solution ); AHE63 (average plating solution tank with a 

new anode).

The following comments can be deduced from the depth profiles shown in the figures 4.2.1:

(i) GDOES is able to detect and also differentiate between the different levels o f Pt 

additions. Therefore, it is possible to highlight a failure in coating if  it is due to thickness 

variation ( figures 4.2.1a,b,c). Also shown are the elemental profiles o f Ni, Ti, Cr A1 from 

bulk materials on each curves.
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(ii) New tank (cleaner solution) shows more tighter control in the Pt thickness than the 

other two E20 and AHE63 as seen from the GDOES depth profile comparisons.

(iii) Pt thickness in all cases after 10pm o f plating and heat treatment at 1150°C shows a 

sharp drop as expected and increased diffusion into the substrate, whilst Ni shows a rise and 

reaches a plateau as expected, entering bulk material ( CMSX-4 substrate, fig 4.2.1 d ,e ,f ). 

In addition, it will be observed that other elements such as Ti, W, Cr, A1 diffused from the 

substrate to form the coating. Also, it is observed that the A1 profile can be observed in , 

general to be higher than that o f the substrate, sufficient to selectively form the alumina 

scale, necessary to bond the thermal barrier coating.

(iv) From the results o f GDOES for all three different conditions studied it will be noticed 

that cleanliness o f solution and anode type plays a key role in determining final coating 

thickness.

(v) GDOES depth profiles o f the failed samples (figures 4.2 .1  g ,h ,i) shows in all cases 

higher levels o f Ti,W,Ta diffusion at the bond coat / alumina oxide interface. These are 

undesirable elements which reduce the protective nature o f the oxide scale. Also observed 

is a drop in the A1 level compared to initial coating composition.
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4.2.2 Yttrium and Hafnium -  Coating Additions

Active elements, such as yttrium and hafnium, added at low levels on alumina forming 

alloys have been shown to improve oxide scale adherence markedly on thermal cycling 

[45]. However, the actual role the active element plays has been subject to a great deal o f 

debates as discussed in [45,10,13]. Several mechanisms proposed to account for improved 

cyclic performance include ( 1 ) oxide pegs which form and anchor the scale to the substrate 

[7], (2) increased scale plasticity produced by the alteration o f the scale structure,(3) 

grading the mechanical property differences between the scale and the substrate, (4) 

modification o f the scale growth mechanism and (5) elimination o f pore formation by 

vacancy coalescence effects and improved chemical bonding between the scale and the 

substrate [7].

It was the objective o f this study to understand the role o f active elements on the cyclic 

performance o f various low cost bond coat systems with different levels o f additions to 

the coating ( see table 3.1 ), using the GDOES technique.

The procedure briefly involves the ion sputtering o f a thin layer o f Ni each containing the 

different active elements directly to the substrate prior to Pt plating and heat treatment to 

develop the coating.

GDOES was employed to study the chemistry o f  these coating systems i.e. the elemental 

depth profiles clearly demonstrate differences after the improved chemical bonding 

between substrate and scale ( see figures: 4.2.2.a,b,c,d,e,f,g,h,I,j,k,l,m,n,o,p ). The
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plots are qualitative (i.e. signal intensity versus time o f sputtering). All plots are between 

400 and 800 seconds o f sputtering time to provide sufficient necessary information to study 

the chemical bonding.

GDOES was able to clearly distinguish between the different levels o f H f additions 

(0.23mass% -sample 422GB500 and a combination o f 0.58mass%Y and 1.6mass%Hf in 

sample 422TB700). However, GDOES was not able to detect Y < 0.5 mass % but was 

detectable only when concentrated to higher levels, for example 6  mass % (sample 422IB 

700).

It was evident that a higher level addition o f Y ( 6  mass % ) to the bond coat, was not 

generally beneficial in terms o f thermal cyclic test results ( see table 5.1 ) as compared to 

minimal addition o f ( 0.5 mass % ). However, it will be observed that there is a slight shift 

o f Y concentration towards the bond coat / alumina interface progressing from as processed 

to failed sample in these cases.

Comparisons o f the GDOES curves for samples 422IB700 ( 285 cycles ) and 422PB700 

(375) cycles showed the effect o f Ta , Ti and W diffusion on failure. These elements are 

thought to be detrimental when diffused through the bondcoat [ 1 1 ], they tend segregate at 

the oxide scale and reduce the protective nature o f the oxide scale.
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4.3 GDOES : Investigation of the effects of residual and contaminants in LCBC

Systems

4.3.1 Effect of Silicon

It has been shown in reference [63 ] that silica content has a direct effect on the life and 

performance o f TBC. TBC life increases with decreasing silica level. Silica based 

impurities tend to segregate to grain boundaries with excessive amounts collecting at 

triple points. Silica at the grain boundaries leads to changes in the size and shape o f grainsi 

[56] and it may dissolve Y 2O 3 from the Zr0 2 -Y2 0 3  grain boundary regions leading to 

localized destabilization . Silica can also cause ZrC>2 polycrystal superplasticity dramatic 

increases in sintering rates and decreases in electrical conductivity . It may also lead to 

increased creep rates, as has been observed with silicon -based ceramics [62].

The surface o f the CMSX-4 superalloy is normally grit blasted prior to Pt plating in order 

to free the surface from grease and oxides and any other contaminants.The objective is to 

ensure that increased mechanical and chemical bonding is obtained, for the bond coat 

formation [45]. In addition for the final ceramic deposition another grit 

operation is performed.

The grit blasting process is carried out using mainly two types o f alumina grit: brown and 

pink alumina. The window parameter for the gritting stage was wide and movement within 

this resulting in the part to part variation observed. The parameters are set at: 20-30psi and 

220 AI2O3 grit ( brown or pink type). This allows considerable variation especially on the 

distance the component was held away from the gritting nozzle which remained undefined.

78



Under the worse conditions o f high pressure and short working distance there was a real 

danger o f removing the Pt layer.

Considerable variation in the development o f LCBC has been observed in the past during Pt 

addition to the base alloy CMSX-4 and it has been thought that after analysis o f the 

process route, the most likely cause o f the variability was silicon contamination . The 

objective o f this work is to assess whether silicon has any effect on the adhesion o f the 

thermal barrier coating (TBC).

W ork at Rolls Royce using EPMA has been unable to detect silicon, because it is below the 

detection limit o f the instrument. GDOES results presented in figure 4.3.1a shows Si 

present in the as processed samples at the coating substrate interface. It should be noted 

these samples heat treated at Chromalloy (C U K )), however in the failed samples the Si- 

flattened ( fig 4.3.1b ). Initial thoughts were that the Si was coming from the gritting stage / 

heat treatment atmosphere. To eliminate the gritting effect, samples o f both the pink and 

brown alumina gritted coatings were depth profiled. It is known that from certification pink 

which is more pure alumina grit contains less Si than brown. Results o f GDOES traces as 

shown in fig 4.3.1c,d clearly showed Si to be present in both , at similar levels. This proved 

that the Si must be coming from either the processing or the actual CMSX-4 substrate 

material. Substrate material depth profiled results are shown in fig 4 .3 .le  and indicate little 

or no presence o f Si.
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In order, to understand the effect o f silicon during cyclic testing for example, whether 

there is any diffusion o f silicon taking place, results are shown on a failed LCBC ( fig 

4.3.1b . The results show the silicon to be leveling o ff towards the substrate in the GDOES 

trace, suggesting that diffusion was taking place. However, results obtained from similar 

LCBC samples that were heat treated at Rolls-Royce and CUK and then cyclic tested 

showed no difference in cyclic performance.

4.3.2 Effect of Sodium

Sodium has already been mentioned in the literature section and is regarded as an impurity. 

The presence o f sodium has been shown both in the as processed and heat treated state by 

both GDOES and XRF techniques ( fig4.3.2a and b and table 4.3.2.d) on LCBC. Results 

show that sodium is present on the surface and as depth increases it does not follow the 

platinum profile as observed for phosphorous rather the sodium level decreased.

The sodium is most likely to originate from the salt used in the electroplating process. This 

salt contains Na, N ,0  and potentially P, C, S and Si.

Accepting that the GDOES results are correct, then it correlates with sodium already 

mentioned in reference 64, where it was demonstrated that the chemical composition o f a 

segregated phase o f TBC is ascribable to an infinite chain silicate o f sodium. The actual 

quantity present is unknown, it must be above 50 ppm ( GDOES detection capability).
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Also it can be observed from fig 4.3.2(c) that sodium diffuses inwards i.e towards substrate 

from high to low concentration after heat treatment.

4.3.3 Effect of Phosphorus

The aim was to check LCBC for presence o f phosphorus, which is an impurity in bond 

coats, and understand its role in the degradation process. However, during the investigation 

the GDOES traces showed phosphorus interference i.e. there was an overlap between the , 

platinum and the phosphorus line observed.

To confirm that it was a true interference pure Pt and Pt deposited by PVD process on a 

stainless steel substrate and a variety o f LCBC samples were depth profiled and GDOES 

traces ( figs 4.3.3a,b,c) examined. In all cases the phosphorus signal followed the Pt trace.
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Chapter 5

Thermal Cycling Test Results

Thermal cyclic test data was collected at 1135°C, each cycle being 1 hour at temperature 

and a 10 minute forced air cool. This isothermal test condition selection was based on a 

laboratory simulation o f the high temperature period likely to be experienced by a typical 

engine The test cycle is continued until the number o f cycles required to cause the EB- 

PVD ceramic to spall is reached. The test is conducted with no applied external load. It is, 

worth noting that the results can only really be compared to results from a like test and do 

not represent how the samples would perform at higher temperatures. Data points as seen in 

figures 5.1 and 5.2 with arrows attached represent test pieces that are still on test and have 

not as yet failed.

Test data are shown for: Enhanced LCBCs with; additions to coatings, additions to 

substrate, Pt variability samples and data for the effect o f different types o f alumina grit.

Table 5.0 Enhanced LCBCs average cycles to failure 

Fig 5.1 Enhanced LCBC with additions to coatings 

Fig 5.2 Enhanced LCBC with additions to substrate

Fig 5.3 Pt variability studies- effect o f plating tank conditions and Pt thickness variation 

Fig 5.4 Comparison o f the effect o f pink and brown alumina grit on LCBC

Table 5.0 Shows the LCBC systems studied with the calculated average cycles to failure. 

Data were collected at Rolls Royce over a period o f few months using the specifically 

designed quench rig. Test samples were removed from the hot zone o f the cyclic furnace
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and forced cooled, in order to attain as high thermal transients as possible during testing.

For reproducibility samples had to be placed into the same region o f the furnace during 

heating and to the same position for optimal cooling. Also shown is a reference standard 

low cost sample ( 422NB100) without any additions either to the coating or to the 

substrate.

Best performances in terms o f average cycles to failure was shown by samples 422PB700, ( 

sputtered Ni+0.5mass% Y); 422TB700 ( sputtered Ni+ 0.58%Y+1.60mass%Hf) and 

422VB700 (sputtered Ni+0.43mass%Y+1.75mass%Hf). These results show that it is 

critical to have the right amount o f yttrium or yttrium and hafnium combinition additions 

for improved performance.

Fig 5.1 Shows the data for selected sample each with an active elements addition to the 

coating. Note in all cases the 'enhancement' was added prior to the LCBC being applied 

over the top. Comparing the four systems shown it will be noticed that in the Ni+low H f 

sytem, two out o f the six samples were surviving indicating better performance than the 

others. It will be noticed that in ranking terms o f cyclic performance Ni+low H f system 

shows the best performance and Pt+Y is the lowest.

Fig 5.2 illustrates four systems studied with additions o f La , Ce and La+Y to the substrate ( 

CMSX-4) with a standard LCBC coating. Two o f the systems were similar except one was 

a disc and the other a pin system. Arrows indicate test that have not failed
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for the La and La+Y systems. The results show that La had better results than Ce additions.

Fig 5.3 illustrates a comparison o f electroplated Pt variability plated under differing 

conditions at Rolls Royce. It has been established at Rolls Royce that plating conditions 

had a direct affect on the performance o f the coatings. New tank and old anodes show 

better results than the rest. It will be demonstrated later that the variation in cycles to failure 

is linked directly to the Pt plating thickness as correlated by the GDOES studies.

Fig 5.4 Shows two types o f grit that were studied: brown and pink alumina that were used 

to clean the substrate surface. From the data shown there was no major differences between 

the pink and brown grits. Also there was no major differences between samples that were 

gritted at Rolls Royce and CUK.

84



Chapter 6  Results: Thermal Ageing Studies of the LCBC System

A key feature for expanding the use o f TBC is increased spallation life and reduced 

spallation life variability. In order to understand the degradation process a common 

technique used is to thermally expose the coating at a temperature in excess o f the working 

temperature to accelerate the degradation process. Degradation is measured by the degree 

o f inter-diffusion, the growth o f spinel oxides and general spallation. This experiment has 

been designed to expose the as-manufactured bond coat base line composition shown 

below to a series o f thermal exposures o f 4hrs, 16hrs and 25 hrs at 1150°C.

Base line composition: ( CMSX-4 +Y+La) + 10pm Pt bondcoat + 2.5pm CN33 (TBC)

The precise experimental details are given in chapter 3. The chemical inter-diffusion 

process is described in section 6.1, with GDOES studies displaying the depth concentration 

profiles from the TBC to the substrate .The macroscopic description o f the coatings is given 

in section 6.2. The sub-microscopical details afforded by the TEM technique, especially 

understanding of the thermally grown oxide (TGO) and its interaction with the TBC and 

bond coat are given in 6.3.

6.1 GDOES studies

GDOES depth profile analyses showed the coating composition and evolution o f the 

different layers for ageing times o f 0, 4, 16, 25 hours at 1150°C ( figures 6.1(a)i to 6.1 ( d ) i . 

This technique reveals any heterogeneity in the coatings and elemental migration at
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the interface. It will also detect segregation o f defects to interfaces that result in changes to 

local properties o f the interfaces such as chemical composition structure and diffusion 

processes involved. It was the objective o f this work to examine the way in which 

segregation occurs with time at temperature during the ageing treatment, and also to assess 

the capability o f using a direct current source rather than radio frequency during GDOES 

depth profile analysis, such that quantitative assessment could be performed on those 

samples with non conducting layers. However, it was proven that the direct current source 

was capable o f depth profiling through the approximate 2.5 pm thick CN33 ceramic TBC 

layer without the need for the radio frequency source.

The Zr/Y concentration profiles (fig 6.1(a)ii to fig 6 . l(d)ii) were clearly shown for all the 

samples at the TBC / AI2O3 interface as expected. However, some initial general 

observations showed that diffusion o f other important elements had taken place progressing 

from 0 to 25 hours.

The AI2O3 ( TGO) layer that forms beneath the TBC plays an important role in determining 

the performance o f the TBC. The GDOES traces were enlarged in the TGO region to 

establish improved understanding o f the degradation process.

General Observation: 0- 25 hours

Observations for a semi-quantitative GDOES approach are reported here because 

qualitative analysis limits the absolute comparability o f the results. Comparability is a 

general problem, especially for investigations over a long time period, but also for
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different sensitivity settings. Contamination o f the Glow Discharge Lamp, the optical 

system and a drift o f the spectrometer also lead to drifts in signal intensities. Therefore, it 

was necessary to implement quantitative analysis to produce absolute comparable results 

[8 4 ] .

It is evident from the as received sample (fig 6 .1a(i)), that the Pt had diffused into the 

CMSX-4 substrate after heat treatment at 1150°C to form y / f  structure ( low cost bond 

coat). Also observed was the diffusion o f Ti from the substrate into the bond coat, showing 

a double peak. However, it is rather difficult to predict what is happening within the bond 

coat / alumina / TBC interfaces . Ta is behaving similarly to Ti, however there are no 

double peaks. W is substantially lower in composition and is again showing diffusion 

towards the bond coat Zr/ Y interface and so is Mo.

Exposing for 4, 16 and 25 hours ( figs 6.1b(i), 6.1c(i), 6 .1d(i)) results in diffusion o f  Ni,

Al, Cr outward from the substrate towards the bond c o a t, whilst Zr, Y and Pt diffuses 

inwards. Examination o f individual profiles reveals that Pt, Al, Ni, profiles stabilize after 

16, 25 hours, whilst most o f the inter-diffusion appeared to occur within the first 4 hours o f 

exposure, as indicated by the change in concentration o f both Ni and Pt. However, with 

continued exposure there is no real change to the Pt and Ni depth profiles.

The Pt average bond coat coverage is 35 pm in the as received sample with a peak 

concentration o f 60 -70 wt %; this is due to the initial deposition. However, when aged 

there is evidence o f diffusion further into the substrate as shown in figs 6 .1 b, 6 .1 c to
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65 - 85 pm and also flattens out to peak concentration o f 40-50%. The outward diffusion o f 

Al is a sign o f weakness. Depletion o f Al from substrate will cause imbalance, i.e. oxide 

thickness growth; imbalance in coating will lead to spallation. There is a large 

concentration o f Al at the bondcoat after continued exposures but it is difficult to predict 

the exact concentration level. In addition , there is a continuous build up o f Ti with 

continued exposure o f the bond coat.

From all o f the general observations it is very difficult to predict what exactly happens 

with in the first 10 pm , in all cases. This region o f the TBC/ A L203 is obviously o f  real 

interest in understanding the bonding mechanism within TBCs.

Specific Depth Analysis ( First lOum in all samples)

Figures 6 .la(ii), 6 . lb(ii), 6.1c(ii), 6 . ld(ii) shows the elemental depth profiles o f Ni, Cr,

Al, Ti, Pt, Y,Zr with continued exposure for the first 10 pm layer o f all the samples. 

Interestingly Ti has diffused through from the substrate towards the bond coat into the 

AI2 O3 region and with continued thermal exposure there is Ti ( which is degrading to bond 

coat adhesion as confirmed in reference [ 1 2 ]) enrichment at the bond coat / AI2O3 interface 

affecting the purity o f alumina layer. Pt, however, diffused through as indicated by a fall in 

concentration increasing towards the bond coat. Ni diffusion increased with exposure 

towards the bond coat / AI2O3 interface. A marked growth in the Al thickness is observed at 

the TBC /AI2O3 interface from 0 to 4 hours. Then with continued exposure upto 25 hours 

there was a decrease in thickness. Both the Zr / Y diffused with exposure, however there is 

quite a difference in the level o f diffusion between 4, 16 and 25 hour profiles.



6.2 Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Analysis 

(EDX) studies

Coating Morphology and Thickness

The first sample represents the base condition ( as received ) without extended thermal 

exposure and represents the coating as manufactured . The coating substrate consisted o f 

three layers, TBC, alumina, bondcoat, as illustrated in the backscattered electron SEM 

images o f Fig 6.2 (a)i at 500 and 1000 magnification. The initial coating was developed by 

interaction with the superalloy substrate material i.e. 10 pm Pt plated onto the surface of 

CMSX-4 +Y+La by electroplating. Thereafter a diffusion heat treatment step was carried 

out at approximately 1150°C for 1 hour so as to cause the platinum layer to diffuse into the 

substrate. Platinum diffusion and the subsequent structural changes that forms the bond 

coat consists o f two different phases, a bright phase rich in platinum, and the dark phase 

depleted in platinum as indicated by the EDX analysis, with also Ni and Al present. Both 

phases have been identified as Pt-rich y’ and Pt depleted y [1]

Once formed the bond coat was subjected to vacuum heat treatment, for example a 

temperature o f 1080°C, to form an alumina layer that provides both a resistance to further 

oxidation and a bonding surface for the TBC.
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The ceramic thermal barrier layer in this particular case 2.5 pm to enable GDOES study is 

applied by electron beam PVD and as a re su lt, has a columnar grained micro structure. The 

columnar grains or columns as can be seen are oriented approximately normal to the 

surface o f the substrate. Between the individual columns are micron sized gaps ( dark 

regions )extending from the outer surface o f the ceramic layer toward ( within a few 

microns) the alumina layer.

The presence o f inter-columnar gaps reduces the effective modulus (increase compliance ) 

o f the stabilized zirconia layers in the plane o f the coating. Increased compliance provided 

by the gaps enhances coating durability by eliminating or minimizing stresses associated 

with thermal gradient and superalloy / zirconia thermal expansion mismatch strains in the 

stabilized zirconia layer [ 1 ].

However, after 4, 16 and 25 (figures 6.2(b)i, 6.2(c)i and 6 .2(d)i) hours exposure at 1150°C, 

there was evidence o f clear differences between the samples. The bond coat thickness 

increased as shown in the microstructures for 4, 16 and 25 hrs soak indicating coating 

growth by inter-diffusion . There, was however, a marked increase in coating thickness 

after 4 hours o f aging thermal treatment, and then the coating thickness remained 

unchanged with continued aging to 25 hours.

Coating Composition

Figure 6 .2 (a)ii, 6.2(b)ii, 6.2(c)ii and 6.2(d)ii shows EDX spectra o f phase compositions 

from the baseline composition and 4, 16, 25 hrs aged samples. From the EDX spectra it
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will be noticed that there was outward diffusion o f nickel during exposure, shown by the 

increase in concentration at the outermost coating layer ( bond c o a t). In the as received 

condition, most o f the platinum was concentrated in the bond coat. However, after thermal 

exposure the platinum diffused inwards, as indicated by the increase in concentration in the 

EDX spectra. In contrast there was no significant change in Al. Whilst the Cr concentration 

in the outer coating layer increased, it decreased in the matrix o f the inter-diffusion zone.

Observation from the EDX spectra shows several other elements that were found to diffuse 

into the bond coat during thermal exposure. For example in the as received condition the 

outer most coating layer was relatively free o f W and Ti. However, after thermal exposure 

for 4, 16 and 25 hrs both elements were detected in the outer most coating layer as shown 

in the EDX and SEM micro structures. Although it was possible that H f and Ta had diffused 

into the coating, their concentrations were too low to be detected by EDX.

X-Ray Mapping

Figures 6.2(a)iii to 6.2(d)iii shows the backscattered electron images(BSI) and 

corresponding x-ray mapping images illustrating the initial and progressive ageing (4, 16 

and 25 hours ) distribution o f various elements along a cross-section o f low cost Pt bond 

coat on alloy CMSX-4.
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From figure 6.2(a)iii, as indicated by the mapping images o f O and Al, the average 

thickness o f the interfacial oxide layer is about 0.3 -0.5 microns. However, the oxide 

thickness does far exceed this value at localised positions. From the Al map it will be 

noticed that two areas o f major Al concentrations, one at the alumina /TBC interface and 

another within the bond coat area. Within the bond coat the Al is in a grit particle form. 

These grits are most likely remaining after the gritting process completion, prior to 

electroplating with Pt to form the bond coat. These grit particles could lead to an imbalance 

in the Al concentration. The material below is depleted in Al and will have a modified 

composition. The elements Ni, Cr and Co are concentrated mainly within the substrate, as 

expected. The Pt, however is concentrated within the bond coat as expected. The Zr/Pt 

peaks are difficult to separate, however, if  the L-line o f Pt is subtracted, the Zr layer is 

obtained as expected within the outer surface. The degrading elements Ti, Ta, W are 

concentrated within the bond coat and substrate, without any enrichment within the Al 

layer.

Figure 6.2(b)iii shows the elemental maps after 4 hours ageing at 1150°C. There has been 

an increase in the thickness o f the AI2O3 at the alumina /TBC interface. The bond coat is 

more defined with the 'finger formation' rich in Pt as expected but however, depleted in Cr, 

Co. There however seems to be some Co, Cr concentration in the Alumina layer, possibility 

o f spinel formation. The Ni has homogenised within the substrate and bond coat. Ti is very 

finely dispersed at very low concentration throughout the susbstrate, bondcoat and alumina 

layer. The Zr layer is concentrated within the outer surface as expected. W /Ta 

concentration is very low and unable to be deteced.
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Progressing from figure 6.2(c)iii -  16 hours ageing to figure 6.2(d)iii - 25 hours , there is 

little change in the maps except more Ni diffusion towards the bondcoat and alumina layer, 

which can form unwanted spinels that are degrading to bond coats.

Characterization o f surface scale ( AI7O3)

In all the samples studied an alumina layer was detected. However, following thermal 

exposure for 4,16 and 25 hours soak it did reveal changes in the thickness. During the 

very short 4 hours exposure period there is a rapid growth in the alumina layer from 0.3 pm 

to 2.2pm  followed by a slight decrease to 25 hours (table 6.2).

The presence o f other elements such as Ti, Cr, Ni, Co that may be damaging to the 

adhesion o f the TBC were shown in the EDX analysis for each sample.

6.3 TEM / Interfacial Analysis

At higher magnifications, micro structural details within the TGO interfacial region can be 

resolved, which will increase understanding o f the degradation process, in order to improve 

thermal cyclic resistance. Presented are results for 0, 4, 16 and 25 hrs ageing treatment.

The as received sample (0 hrs) with no ageing treatment figure 6.3a [plate x f l-1 1] 

consisted o f TBC , alumina, bond coat and superalloy, as observed using SEM. There is 

variation in the thickness o f AI2 O3 across the coating. The ceramic coating exhibits a 

columnar structure. The AI2O3 scale, which was about 0.3 -0.5 microns thick and observed 

in fig6.3a [plate x fl-1 4], with the selected area diffraction pattern (SAD)
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showing typical diffuse rings corresponding to a poly-crystalline material. A number o f 

finely dispersed dark phase particles were scattered throughout the AI2O3 layer (Thermally 

Grown Oxide- TGO). EDX analysis o f the dark particles showed it to be rich in Pt, Cr, Zr 

and Y than pure AI2O3 , and also present was Cu which originated from the Cu grid used in 

TEM specimen preparation, with the major peak being Al. No other elements were detected 

through the TGO layer. The Cu is most likely sputtered from the ion beam thinning 

process, as it is not present within the bond coat.

Extending into the bond coat present were AI2O3 pegs, suggesting mechanical interlocking 

[ fig6.3a -plate x fl-1 5]. On EDX analysis the bond coat was as expected richer in Pt, Ni, 

Cr, Co and a little Al. This could be a Pt-rich y'-phase. Similar observations in SEM 

investigations within the bond coat shows a possible two different phases that have been 

identified with varying elemental compositions: dark and light [fig 6.3a plates x fl-16  ], 

dark phase o f the bond c o a t, EDX shows Cr, Co, peaks which are known to be degrading 

to the bond coat. The lighter phase o f the bond coat composition was depleted in Ti. Also 

identified were grit particles with composition rich in Al. These were particles left 

embedded after initial grit blasting the superalloy prior to Pt plating to create the bond 

coat.

After 4 hours the AI2O3 scale had grown to a thickness o f 2.35 microns [ fig6.3b -plate 212- 

11]. It is most likely that aluminium is diffusing out from the bond coat /substrate. The 

AI2O3 was comprised o f a mixed grain size that were fine and equiaxed at the TBC/ AI2O3 

interface, with columnar at the AI2O3 / bond coat interface. This two zoned
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structure is in agreement with earlier studies [4,5]. Interfacial regions o f the microstructure 

between AI2O3 / bond coat was very sharp [ fig 6.3b -plate 212-13], without any voids 

present, indicating good adhesion. Otherwise interfacial voids can weaken the alumina -  

bond coat interface and lead to scale spallation upon cooling. Also, the interfacial region 

between TBC / AI2O3 was sharp again [fig 6.3c -plate 212-15] without any voids, and a 

triple point bonding indicating good adhesion.

After 16 hrs ageing the top ceramic coating exhibited a columnar morphology, not a fully 

dense structure, and a rough surface profile [ fig 6.3c -plate 415-12]. There were no voids 

present at the ceramic-alumina interfacial region. The AI2 O3 interlayer again shows a mixed 

two zoned structure [ fig 6.3c-plate 415-13]. The measured AI2O3 layer thickness is 2.2 

micron. The AI2O3 layer is coarse close to the bond AI2O 3 / bond coat interface and 

becomes fine towards the surface ceramic layer where it forms as an intermixing layer [ fig 

6.3c- plate 415-13]. Bright field imaging o f the alumina grains and grain boundaries show 

no void present in the micro structure. Dark phase precipitate particles observed in as 

received and 4 hours samples were increasing. Within the bond coat alumina grit particles 

were also observed. The interfacial region betweenA^Cb / bond coat was very sharp 

without any voids,again indicating good adhesion [ fig 6.3c -plate 415-14].

Finally, after 25 hrs o f ageing the measured thickness o f the AI2O3 layer is 1.45 -  2.2 

microns. Again similar to 4 and 16 hours ageing treatment the AI2O3 region shows a mixed 

grained structure with coarser and fine grains present [ fig 6.3d -plate 314-13]. The 

intermixing AI2O3 layer present at the AI2O3 / bond coat interface shows that Ti, W, Ni, Cr 

diffused through into AI2O3, which eventually would lead to bond coat degradation
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because o f the formation o f  spinels [ fig 6.3d -plate 314-15], However, the coarse AI2 O3 

towards the AI2 O3 / ceramic interface is still free from Ti, except for a little Ni. Also 

observed were AI2 O3 pegs projecting into the bond coat, suggesting mechanical inter

locking o f the coating.
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Chapter 7 : Discussion

7.1 Quantitative GDOES analysis technique development for investigation of 

substrate and bond coat compositions

Technique selection

In the field o f TBC characterisation, surface analysis plays a key role in explaining oxide , 

bonding mechanisms and degradation modes for thermal barrier and environmental 

protection coating systems.

To describe the process it is necessary, through basic considerations to choose the proper 

analysis techniques. These considerations include [91] :

• the expected homogenity o f  the TBC

• selection o f representative sample positions

• the technological range o f interest for lateral and depth resolution

• the appropriate number o f analyses to get representative results

• the expected accuracy for the analytical result

• efficiency and economy o f the analytical work

Several surface analysis techniques such as electron spectroscopy for chemical analysis 

(E S C A ), auger electron spectroscopy and secondary ion mass spectroscopy are currently
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available to accurately determine coating composition. Unfortunately, investigations via 

these techniques are time consuming, expensive and require highly skilled operators.

However, GDOES is a fast, easy to operate analytical procedure, which produces detailed 

information at a lower cost than the other methods, with sensitivity down to approximately 

50 ppm; the technique is also capable o f quantitative depth profile analysis [92].

In this section the GDOES results o f both qualitative and quantitative analysis o f  bond 

coats under development are discussed, with issues raised on calibrations, quantitative 

technique developments, interfacial segregation study and an ensuing explanation o f the 

global bonding mechanism.

Qualitative analysis

Several new bond coat compositions with rare earth additions such as yttrium, hafnium, and 

combinations o f yttrium and hafnium are shown in chapter 4, designed to deliver higher 

temperature requirements in aero-blade applications. The GDOES technique has been able 

to successfully detect both yttrium and hafnium additions. However, there are detection 

capability limitations. The minimum detection capability established in this work was 

approximately 0.5 mass % addition. The detection capability was dependant on the 

instrument setting parameters, set-up sequence, available Glow Discharge Lamp control 

settings, such as pre-pumping time and argon float time. GDOES, however, as already 

shown in chapter 4, clearly shows diffusion o f the detrimental elements Ti, Ta, W
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from the substrate and subsequent enrichment at the interface between bondcoat / alumina 

for failed samples containing both Y, H f and a combination o f Y and H f . This is in 

agreement with Sprague and Cocking findings [11] where Ti and W were shown to diffuse 

from the substrate into the coating, reducing the protective nature o f the oxide scale on M- 

Cr-Al-X coatings for superalloys. Furthermore, there was diffusion o f other substrate 

elements Cr, Al, Co, Mo, Mn, Ni in various quantities towards the interface, which could 

form spinels, that are known to be detrimental to the bond coat [ 11 ]. It should be noted , 

th a t , in order to develop a relationship between depth and quantity, a quantitative 

programme needed to be established. This would also enable location o f elements 

accurately for compositional improvements, in order to predict a coating chemistry that 

minimizes interdiffusion.

Quantitative analysis

The absolute comparability o f the bond coat results was limited by the use o f qualitative 

GDOES depth profile analysis. Comparability can be a problem, especially for 

investigations over a long time period and large depths, but also different sensitivity 

settings. In addition a drift o f the spectrometer also leads to drifts in signal intensities. 

Therefore, it is essential to set up quantitative analysis for comparability.

The quantitative analysis approach developed for the bond coat using multi-matrix 

calibration is explained in chapter 3 and neglects Re and does not deal with interferences 

from phosphorus, as will be explained in the calibration section. The semi-quantitative
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analysis program developed here can be used to explain structural and chemical 

transformation as follows:

It is evident from the results presented in chapter 6 figure 6.1a(ii),6.1b(ii),6.1c(ii),6.1d(ii) 

on the as-received and aged samples that most o f the interesting interaction in explaining 

a failure mechanism was taking place within the first 10 pm analyzed volume. If  the four 

samples were compared: 0, 4,16, and 25 hours exposure, it will be noticed that there was a 

gradual enrichment o f Ti at the bond coat/ alumina interface with ageing treatment. In 

addition there was a build up o f other elements such as Ni,Cr,Co also as shown in 

reference [11] which leads to the formation o f spinels, which can degrade the alumina 

leading to coating spallation. This is the first time to the authors knowledge this has been 

shown from a global perspective using the GDOES depth profile characterization technique 

on a LCBC system.

Calibration of technique

For GDOES depth profiling o f the bondcoat, it has been shown that the depth resolution 

depends mainly on the form o f the erosion crater [94]. The crater produced during the 

analysis o f  CMSX-4 is shown in fig 4.1.3(e)i, 4.1.3(e)ii and its measurement using Dektak 

laser profiling is shown in fig 4.1.3(f)i and 4.1.3(f)ii. It can be seen that the bottom o f  the 

crater is quite planar, while some re-sputtering o f material has created a lip around the rim. 

The laser profile depth measurement shows a good correlation to the calibrated depth value 

obtained from fig 4.1.3(e)i and fig 4.1.3(e)ii, with errors o f the order o f  10-15%. The 

roughness o f the bottom o f the crater normally increases linearly
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with time, which is one o f the factors limiting the depth resolution. This necessitates a 

compromise between good depth resolution and high intensity spectral lines when selecting 

operating parameters.

The results o f the GDOES and Electron Probe Micro Analysis (EPMA) analyses are 

compared to the composition determined by XRF in table 4.1.3(h) . Both results showed a 

good correlation, with the GDOES results generally closer than those o f EPMA, although 

there were some obvious, discrepancies which require investigation; the value obtained for 

Ni, Ta, H f and Pt are inaccurate and may be due to interference between the spectral lines.

The current semi-quantitative programme used in this analysis is limited by the number o f 

reference calibration standards available; a greater number o f standards would increase the 

accuracy. Also, in addition installation o f an extra elemental channel such as rhenium 

would enable improvements in the semi-quantitative programme. It was observed that 

there was an interference o f Pt on the P line ( i.e. we see a P signal when analysing pure Pt 

). Since P is a lower spectral resolution in the spectrometer and Pt with higher 

concentration, generally the interference is severe. Measurement o f Pt however, with EDX 

as shown in chapter 4 is in agreement with that o f the GDOES depth profile. In order to 

resolve the interference o f Pt/P it would be necessary to select suitable wavelengths and re

calibrate the spectrometer. This was not deemed possible due to practical constraints.
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Technique Novelty

The current semi-quantitative program developed can be used in order to explain bonding 

mechanisms globally within LCBC systems. The technique as it currently stands is able to 

determine coating thickness, rough composition, show segregant presence of 

contamination at the interface, which may result in poor surface cleaning or migration of 

elements during the coating process, as already shown in chapter 4 and 6 . The technique is 

fast, reliable, and cost effective compared to EDX, which can be very time consuming.

Also it has been proven that a direct current source can be used for depth profiling thin 2.5 

pm TBC coated samples, instead o f the need for radio frequency, which is very time 

consuming.

Global Bonding Mechanism

Growth o f the TGO (alumina) is a dominant phenomenon controlling bonding mechanisms 

in low cost Pt bond coats. The bond coat, in the low cost bond coat system comprises a 

relatively large local Al reservoir provided by the substrate, such that alumina forms in 

preference to other oxides. The formation o f  alumina at high temperature has been studied 

[118-120] and it has been shown that growth proceeds through y,<5,0 and finally a-alumina. 

The growth rates o f the metastable phases are generally faster than the stable high 

temperature a-alumina phase. It is generally agreed that the 0-alumina transforms to a- 

alumina in a few hours at 1,000°C. Although if  Y or Ti ions are present then the 0-form can 

transform to a-alumina more quickly [118] or, when larger ions such as Y, Zr, H f or La are 

present be stabilised for longer periods [120]. The alumina layer for the LCBC system was 

formed during a vacuum heat treatment at 1080°C . A protective scale o f AI2O 3 cannot be
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maintained when the aluminium concentration falls below a critical level, usually cited as 

approximately 4 to 5 mass percent aluminium[l 1,66]. The preference for alumina relates to 

its low growth rate and superior adherence. The chemistry and microstructure o f the bond 

coat are crucial, because o f their influence on the structure and morphology o f the TGO 

[90].

Characteristic elemental compositions for the as processed bond coat and bond coat surface 

exposed by the failure are summarized in chapter 4.

This work has contributed to knowledge by showing evidence from the GDOES depth 

profiles that failure was accompanied by significant inter-diffusion between the substrate 

and bond coat as indicated by a marked increase in Ni concentration and decrease in Pt 

concentration. Inter-diffusion resulting in a change in chemical composition o f the bond 

coat surface resulted in phase changes as indicated in the SEM microstructures o f aged 

samples figures 6.2b(i),6.2c(i),6.2c(i),6.2d(i). For all the low cost Pt bond coat systems 

studied, the bond coat surface at failure showed increased Ti, Cr and Co concentration. 

This outward diffusion o f transition metals led to the formation o f non protective oxides 

degrading the adherence o f AI2 O3 . This is in agreement with work reported by John 

E.Schilbe [95]. Also, since the CMSX-4 alloy is essentially free o f C, strong carbide 

forming elements potentially Ta and Ti, are available to diffuse as described into the bond 

coat and be oxidized.This leads to nucleation o f voids at the oxide/bond coat interface 

causing decohesion o f the oxide.
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Chapter 7.2 Bonding Mechanism Factors

The performance o f LCBC systems is determined by the TGO (AI2O 3) scale that forms 

beneath the TBC. The oxide scale adherence is an important key factors that distinguishes 

the coating performances. There are many numerous factors involved in determining the 

adhesion process between the a  - AI2O3 and the alloy substrate and the bond coat. The 

following factors outlined below are important, however only a select few that would be , 

helpful towards understanding bonding mechanism have been studied:

• substrate composition

• rare earth additions to coating

• ageing treatment

• minor elements

• role o f silicon

• role o f interdiffusion

• stress generation in the scale

• metal-oxide thermal expansion mismatch

• growth stresses generated isothermally

It is shown from chapters 4,5,6 results that from the above main factors that are 

contributing in the formation o f 'ideal scale ' and adhesion to substrate there are mainly 

three important ones: (i) no major redistribution o f alloying elements within the metal
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substrate . (ii) segregation o f Zr to the metal-scale interface and the scale grain boundaries, 

and (iii) ability to tolerate stresses generated in the scale.

In order to develop predictive failure modelling to suggest improvements in coating 

composition such that improved performance is achieved, the following selected factors: 

substrate composition, rare earth addition to bond coats, ageing treatment, role o f  silicon, 

minor element roles from above were studied in-depth using analytical characterisation , 

techniques such as GDOES, SEM, XRD, and TEM and the findings are outlined in the 

following sections.
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7.2.1 Effect of Additions to Substrate (LCBC form ation )

Additions of Platinum

The addition o f Pt to the aluminide coating is recognized as being beneficial to scale 

adhesion (9, 10). However, the role o f Pt in improving scale adhesion is not well 

understood. In this case, the outer coating layer contains intermetallic phases such as PtAl2 , 

Pt2Al3 or PtAl depending on the type o f coating [97]. Earlier studies suggest that platinum 

excludes refractory transition elements such as molybdenum, vanadium and tungsten from 

the outer coating layer [98], which promotes selective oxidation o f aluminum [99]. A 

number o f other Pt-related mechanisms have been proposed, including : mechanical keying 

o f the scale[100], rapid self-healing o f AI2 O3 [101], modification o f aluminide Al content 

[44], and suppression o f void formation along the oxide-metal interface. In order, to 

explain this in detail for LCBC systems, the initial microstructure o f the as received LCBC 

will be described, followed by thermal stability effects and a study o f localised variations 

within bond coats and comparison to literature review with present findings.

Microstructure of the as received condition

Low Cost Pt bond coats are developed by a reaction between Pt and the alloy substrate ( in 

this case CMSX-4) which results in a mixture o f Pt-rich y'- phase and a N i -rich  solid 

solution containing Pt ( y- phase) [12]. A typical microstructure o f the low cost Pt bond 

coat in the backscattered electron image from an as received sample is shown in figure 6 .2 . 

It is observed that the coating layer o f about 28pm  in thickness is separated from the alloy 

substrate by an alloy depleted zone free from the cuboidal y' - phase. Evidently as can be
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seen from figure 6.1a(i), GDOES result show that, this zone had resulted from depletion in 

Al during the coating cycle involving formation o f  y'- phase within the coating layer. The 

bond coat generally consisted o f a rather continuous layer o f y'- phase containing islands o f 

y- phase nearer the surface. However, nearer the alloy substrate ( CMSX-4), the y'- phase 

became discontinuous and assumed a lamellar morphology. This interdiffusion process 

between Pt and the CMSX-4 substrate leads to a significant change, as already shown here 

in the coating composition and structure, which has been observed similarly in a platinum 

aluminized nickel -base superalloy system [1 0 2 ].

Thermal Stability of the Bond coat

A typical microstructure o f a low cost Pt bond coat cross section is shown in figure 

3.1 (b)(ii) at the time o f failure and GDOES depth profiles figures 4.2.2 b and 4.2.2 d. It was 

evident from both micro structures and GDOES depth profiles that interdiffusion had taken 

place, as was also shown in a platinum aluminized nickel -base superalloy system [ 1 0 2 ]. 

Thermal cyclic exposure results are shown in figure 5.3 which shows a typical link between 

the manufacturing process and cycles to failure o f a typical average 10 pm Pt plated bond 

coat specimens with TBC. The thermal exposure caused the coating layer to grow prior to 

spallation and the y/y' structure to coarsen relative to the as -  received condition.

It is evident from the GDOES results, however that the cause o f variation in the bond coat 

thermal stability results is a direct result o f the variation in Pt plating thickness. Also it is an 

indication a thinner coating can reform alumina scale for longer periods compared to less 

thickness ones. From a manufacturing perspective the most promising source o f tighter
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control in Pt thickness providing good thermal stability performance seems to be the use o f 

a combination of new tank and new anodes.

In view o f coating performance it seems that longer life is achievable with a thicker Pt-rich 

layered coating, because it would be more likely to provide better diffusional stability.

Localised variation in Bond coat

It has been observed during the SEM study o f bond coats that there is a localized variation 

within the bond coat due to Pt -thickness variation as already shown in chapter 4 . The 

thickness o f the bond coat varies across the coating region. The thickness o f the alumina 

layer was about 2-3 pm. Normally, however, the thickness o f this alumina oxide layer 

developed to act as a glue between the TBC and bond coat is about 1 pm. This localized 

variation could lead to surface structure variation and compositional differences o f the bond 

coat leading to differences in oxidation rate from one region to another. In addition this 

would cause variations in the movement o f transition metals from the CMSX-4 substrate to 

the alumina layer, which is an important source o f variability in bond coat performance. So, 

during exposure the adhesion o f TBC to the alumina would vary from one location to 

another in accordance with the local thickness and volume fraction o f  Pt-rich y- phase in the 

bond coat.
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Sum m arized effects o f addition to substrate

Variation in the manufacturing process can lead to variation in the Pt thickness which in 

turn can lead to bond coat variations as was shown from the thermal cyclic data and also by 

GDOES assessment.

Pt variation can lead to changes in diffusivities, as observed in the GDOES elemental depth 

profiles figures 4.2.1 which in turn can affect movements o f transition elements from the , 

substrate. From an oxidation standpoint, these transition elements have the potential to 

accelerate the growth and degrade the adherence o f  the protective alumina scale [11]. So 

therefore, maintaining the purity o f  the alumina oxide layer is essential to obtaining good 

interface bond strengths and preventing spallation o f  the ceramic layer.
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7.2.2 Effect o f additions to coating

The effects o f yttrium and hafnium concentration in low cost bond coats on the cyclic 

furnace life o f thermal barrier coatings were studied. It is claimed that minor but critical 

additions o f rare earth (Y,Hf) active elements, either individually or in combinations to 

AI2O3 forming alloys and coating systems, improve the protective nature o f the scale 

[103,104]. That would prevent the diffusion o f detrimental elements such as Ti, W. The 

underlying operating mechanisms have been subject to a great deal o f debate as discussed 

in the literature review section [103,104,105,106].

It is the objective o f this discussion section to clarify the role o f Y ,H f in coating 

developments. Also to ascertain the location and amount present, in order to help build a 

knowledge basis for correct addition levels to optimise LCBC systems.

The evaluations carried out were on disc specimens in cyclic furnace tests at 1135°C, each 

cycle being 1 hour at temperature and a 10 minute forced air cool. The test cycle continued 

until the number o f cycles required to cause the TBC to spall is reached.

On the basis o f the data obtained in this study, it was established that the presence o f  and 

concentration o f yttrium and hafnium in the bond coating is very critical. W ithout yttrium 

and hafnium in the low cost bond coat, the thermal barrier systems failed very rapidly. The 

optimization o f yttrium and hafnium concentrations in low cost bond coats led to a very 

significant improvement o f the low cost bond coat system.
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It is evident from the thermal cyclic results described in chapter 5 , table 5 -average cycles 

to failure, that a 0.5 mass % Y addition to LCBC shows a higher resistance to spallation, 

than 6 . 1 0  mass % addition and also when compared to the reference low cost bond coat 

sample without any additions. However, the H f addition did not seem to make a great 

difference. Detailed examination o f the qualitative GDOES curves for the above samples in 

terms o f the elemental diffusion revealed that there was a change in diffusion chemistry i.e. 

transport o f elements from the coating to substrate and vice versa via Y, H f additions. The 

right addition level is critical in improving the cyclic performance.

Comparison o f 0.5 mass% Y with that o f the 6.0 mass% Y addition, the major difference as 

observed from the GDOES curve is the increased Ti diffusion from the substrate to coating 

in the 6.0 mass% sample. This suggests that a significant increase in either the yttrium 

concentration in the bond coatings or the yttria concentration in zirconia results in a 

significant decrease in the life o f the TBC. Although a large yttrium peak is observed in the 

6.0 mass% sample the GDOES technique is incapable o f detecting below 0.5mass% Y; a 

global picture emerges o f the bonding mechanisms in terms o f diffusion chem istry as 

already described in section 7.1.

The SEM microstructural studies combined with GDOES o f the tested specimens showed 

the microscopic location o f Y to be located at the bondcoat / alumina interface and also 

within the a  - AI2O3 scale. It was also visually observed that the coated specim en having 

the yttrium free bond coat failed at the substrate- bond coating interface. The coating scale 

consists o f a  - AI2O3 ( rhom bedral); a= 0.476nm and c= 1.299nm as shown from
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XRD of the failed specimen. Observed are regions o f a less protective spinel -type oxide 

isomorphous with M AI2O4 ( cubic a = 0.794nm ) and expected to be o f the type ( Co, Ni) ( 

Al, Cr)20 4 [12].

It is evident from the experimental results presented here that for LCBC, yttrium and 

hafnium additions could with the correct addition improve the protective nature o f  the scale 

by more than one mechanism as described below.

Formation o f Y-rich oxide pegs could improve the mechanical adherence o f the scale to the 

coating as proposed in a number o f studies[107]. It is possible that oxidation o f  Y into Y- 

rich oxide could occur by inward diffusion o f O. Both outward diffusion o f Al and inward 

diffusion o f O are believed to contribute to growth o f a- AI2O3 scale [8 ,2 1 ].

The presence o f a small Y concentration within (X-AI2O3 scale in solid solution could 

decelerate the kinetics o f Al lattice diffusion reducing the scale growth rate [108]. In the 

meantime, segregation o f Y to grain boundries o f a-AhCb scale could have a num ber o f 

beneficial effects on its protective nature. For example this could maintain a scale o f  a fine

grained structure improving its elevated mechanical strength.

Another possible effect o f this segregation could be filling voids or pores along grain 

boundries o f the scale improving its cohesion [109,110]. Diffusional transport along grain 

boundaries influencing scale, growth rate[l 1 1 , 1 1 2 ] could also be modified by the presence 

o f Y reducing the scale growth rate and in turn the extent o f growth stresses [105,109].
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7.2.3 Effect o f Silicon and contam inants on LC BC system s

The effects o f silicon concentration in low cost bond coats on the cyclic furnace life o f 

thermal barrier coatings were studied. The effect o f silicon on LCBC has been shown to be 

negligible, as illustrated from the results o f chapter 5 for thermal cyclic performance results 

for both pink and brown alumina. This is in contradiction with what has been shown in the 

literature section 2.3, where it has been shown that silica content has a direct effect on the 

life and performance o f TBC. TBC life increases with decreasing silica level [54]. In 

addition, there were no observed differences in the optical micro structures for both pink 

and brown alumina grit.

Silicon was initially thought to have originated from the alumina grit. However, it has been 

demonstrated by both pink and brown alumina grit GDOES depth profiles that it rather 

originates as a contamination from the heat treatment process, perhaps most likely from the 

silica bricks or from the heat treatment atmosphere. Although silicon does diffuse through 

during heat treatment when forming the low cost bond coat, silicon is thought to be in the 

ppm range and EPMA has been unable to detect silicon, because it is below the detection 

limit o f the SEM instrument. The silicon tended to concentrate at the coating / substrate 

interface as shown by GDOES, possibly leading to a loss in interfacial adhesion. From the 

results in chapter 4 and figures 5.4 it has not been possible to see any real effect o f silicon, 

so therefore, the variation within bond coats cyclic performance could be due to the other 

observed factors such as Pt thickness variation or Y ,H f addition levels as mentioned in the 

earlier discussion parts.The programme o f work carried out using GDOES / SEM and
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thermal cyclic results has eliminated silicon as a potential variable contaminant source, as 

initially thought, although silicon is at the ppm level.

The role o f silicon needs to be established from an in-depth microstructural aspect using 

TEM , so that additional information on understanding the degradation process can be 

established with the current GDOES data, such that a minimal acceptable level can be set.

In order to set-up acceptable levels o f silicon, the current quantitiative GDOES programme 

set-up would have to be re-calibrated with new silicon containing standards having variable 

levels o f silicon used. This would truly be a faster technique than EPMA, where further 

development work needs to be done. Also work needs to be done in order to identify using 

XRD whether silicon occurs as an element or as silica and what roles it plays.

Sodium, a residual from the Pt - electroplating process, has successfully been identified 

using GDOES depth profiling to be present in the LCBC system. This is in confirmation 

with previous findings using XPS and other techniques mentioned [64]. It is known to 

cause hot corrosion, however the level present, which must be above the 50ppm GDOES 

limitation is perhaps not sufficient to show any effects. Also, the GDOES results would 

have to be quantified with correct standards similar to Si, in order to show any real 

effects.The results o f GDOES shows that Na diffused through from the surface into the 

bond coating. This is likely to cause poisoning o f the TGO layer where maintenance o f the 

purity o f the TGO layer is essential for good adhesion o f  TBC and also improved thermal 

cyclic resistance.

114



7.2.4 Effect o f ageing treatm ent on L ow  C ost bond Coat

The effect o f ageing the LCBC at 1150°C has not been studied in the past. Therefore, this 

study was undertaken in order to enable development o f a basic understanding o f the 

mechanisms governing durability, such that a technical base could be established for further 

improvements in bond coat technology. Initially a technique had to be perfected for the 

production o f thin foil films for TEM examination o f the aged samples, as demonstrated ip 

chapter 3. Such evidence and determination o f various phases present, plays an important 

role in determining bonding mechanisms in LCBC systems. Also TEM enables the direct 

imaging o f the TGO to search for further information on bonding mechanisms.

During the ageing treatment at 1150°C for 4, 16 and 25 hours inter-diffusion processes 

occurred progressively within the LCBC system. It is observed that the aging treatment 

caused the coating layer to grow in thickness, and the y /y' structure to coarsen relative to 

the as-received condition (figures 6 .2 a,b,c,d backscattered electron images), which could 

be explained in terms o f inter-diffusion between the coating and alloy substrate as shown in 

the SEM microstructures and also confirmed by GDOES and TEM results.This is in 

agreement with findings shown in references [73,113] in a bond coat and superalloy 

system. There is also observed an increase in the Ni concentration during ageing towards 

the AI2O3 interface which can lead to a phase transformation within the bond coat. 

However, the Pt located initially in the outer layer o f the coating diffuses inwards, and as 

shown in the SEM mappings figures 6.2(ii), is homogenously distributed. However, as the 

ageing progresses there is a large decrease in the Pt at the outer surface, whilst increased
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within the bond coat. This would affect the phases formed, ultimately affecting bonding 

mechanisms.

After TBC depostion on superalloys, the coating is subjected to vacuum heat treatment at, 

for example a temperature o f 1080°C, to form a thin a-AhCb - based film on the metal / 

ceramic interface. This so called thermally grown oxide (TGO) provides a high adhesion 

bond (chemical bond) between the TBC (YSZ) layer and the bond coat. Thus, development 

o f advanced TBC systems requires design o f improved bond coatings that form virgin 

AI2O3 scales with optimized adhesion and minimized growth rates [117].

The rapid growth o f the AI2O3 layer after 4 hours o f ageing which is aided by oxygen 

diffusion and aluminium consumption, leads to changes in the bond coat composition and 

microstructure as illustrated in the GDOES, SEM and TEM results. This is caused by 

depletion o f Al in the bond coat, which therefore allows the less active elements, Cr, Ni and 

Co, to form a-Cr2 0 3  and (Ni,Co)(Cr,Al) 2 0 4  spinel, which would increase the stress in 

TBCs and induce cracking in the AI2O3 layer [114]. However, after 16 and 25 hours there is 

a slight decrease in the AI2O3 layer which could be due to a number o f reasons. In the early 

stages o f oxidation, demand for oxygen cannot be met and the rate o f growth o f alumina 

layer is determined by oxygen transport through the ceramic topcoat. As a consequence, the 

alumina thickens more slowly than it would under conditions o f unconstrained access but 

its growth rate will be constant ( 4 hours ageing ). However, at some longer time the 

balance o f  supply and demand switches such that sufficient oxygen becomes available to 

permit alumina growth at its intrinsic rate. Over this later period, the growth rate will
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decrease with time. The nett effect is that the final alumina thickness will be less than in the 

absence o f a topcoat and that, over the entire period o f oxidation, the rate o f growth will 

appear to decrease with increasing ageing time ( 16 and 25 hours ageing) [116].

In some cases, the outward growth component incorporates some o f the TBC into the TGO- 

spallation at interfaces or inside the zirconia. This is where some o f the spalled Al is likely 

disappearing. The depletion o f aluminum results in phase changes in the bond coats. The , 

ability o f the bond coat to continue to support the growth o f an AI2O3 scale depends on the 

activity and the total amount o f Al available in the coating. When the Al concentration in 

the bond coat falls below the level at which AI2O3 can be formed, other faster growing 

oxides o f the elements in the bond coat will form preferentially [ 1 1 ].

Measurement o f the growth in alumina as shown in the table 6.3 is debatable. Deciding the 

correct interface within quantitative GDOES is limited by GDOES resolution, as already 

mentioned in chapter 3 and 4. However, the measurement o f the depth using TEM 

microstructure has assisted in the process as well as an, estimation o f growth layer using 

SEM.

The alumina present has been shown in LCBC , just like other systems, to be amorphous in 

nature. This is directly evident from the selected area diffraction pattern, which gives rise to 

a series o f faint rings fig 6.3a plate XF1-14. However, a continuous and dense AI2O3 layer 

formed by the selective oxidation would suppress the transport o f  oxygen through the 

AI2O3 layer, resulting in the outward diffusion o f metal ions (such as Cr3+, N i2+ and Co2++)
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through the AI2O3. The metal ion would form the oxides within the pre-existing AI2O3 near 

the ceramic coating [68]. This would ensure better adhesion of TBC.

It is evident from the results illustrated that the coarse AI2O3 towards the AI2O3 / ceramic 

interface is still free from Ti, except a little Ni. Also observed are AI2O3 pegs projecting 

into the bond coat, suggesting mechanical inter locking of the coating, hence improving 

adhesion.

In summary, cross-sectional TEM, along with GDOES and SEM were used to support 

findings, to characterize the coating microstructurally and chemically in details from the 

bond coat interface to the outer surface (TBC). Important observations include an alumina 

interfacial region between the bond coat and the ceramic layer, which is believed to provide 

a strong adhesion between the two layers. This has been observed in references 

[42,114,117] in both EBPVD and also Plasma sprayed TBC with other types o f bondcoat 

systems. Therefore, this work has found that low cost bond coats must have a similar type 

of bonding mechanism operating.

The metallic coating must also form an adherent, slow -growing external AI2O3 layer 

beneath the overlying low thermal conductivity ceramic top coat. The ability of the coating 

to reform a protective TGO or scale in the event of spallation is no longer the key. It is 

much more important that the scale be developed with a minimum of transient oxides and 

that it have near -perfect adhesion to limit spallation of the ceramic top coat, thereby 

achieving a long TBC lifetime [96].
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Also it has been shown from the experimental observations suggesting that one failure 

mode is associated with a compositional change in the TGO from AI2O3 to a mixture o f  

chromia and spinel and that this in turn is associated with depletion o f  Al from the 

Bondcoat and concurrent enrichment o f Co, Ni, and Cr in the oxide [115].
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7.3 Proposed failure mechanisms within LCBC systems

The research work conducted on LCBC systems so far has identified potential factors, such 

as the variation in Pt thickness , rare earth content (Y ,Hf conten t) and residual elements. 

Ageing treatments have a pivotal role in explaining the degradation process using various 

analytical characterisation techniques, including the expansion of the novel GDOES 

technique giving the ability to analyze in ppm. This section will focus on developing 

possible failure prediction models.The failure mechanisms involve the thermally grown 

oxide (TGO), the TGO / bond coat (BC) interface and / or the thermal barrier coating 

(TBC). Current understanding is that these mechanisms are activated prim arily by the stress 

state caused by the residual compressive stress in the TGO.

In LCBC systems it has been demonstrated both by using the quantitative GDOES, SEM 

and TEM techniques, that there is considerable diffusion taking place at the thermally 

cycled test temperature o f 1150°C. This can allow chemical damage at the TGO /Bond coat 

interface , leading to a loss o f interfacial adhesion. It was observed that the y- phase o f the 

bond coat on alloy CMSX-4 seems to provide an active source o f Ti to diffuse into the 

alumina surface and be oxidised to Ti0 2 , degrading the adherence o f the AI2O 3 scale ( SEM 

/TEM microstructure and EDX data in chapter 6 ).This has been observed in several 

references [42,11], and the effect is critically dependent upon the exact Ti co n ten t. Also, 

during thermal exposure at 1150°C, the y'-phase o f the bond coat on alloy CMSX-4 was 

converted from Pt-rich into Ni-rich ( mass % basis ) as a result o f interdiffusion between 

the coating and substrate . However, here in this LCBC system it has been shown
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(chapter 6.3) that after 25hrs o f ageing that the bonding is still intact, although 

considerable substrate elements have diffused through, suggesting the bond coat to be quite 

good. Also almost zero sulphur was observed using GDOES. This could be due to the fact 

that grit blasting o f the bond coat surface had a significant impact, in terms o f removal o f 

surface impurities (especially S ), as well as acceleration o f a  - alumina nucleation.

During high temperature ageing treatments, it has been shown that there is an increase in , 

the oxide thickness, initially followed by stabilisation (see table 6.3), which elevates the 

elastic energy available to drive debonding. Control o f the TGO thickness is vital in 

maintaining the adhesion o f the TBC.

Oxide pegging clearly indicates how important mechanical keying effect can be in 

improving thermal cyclic resistance. Extending into the bond coat present were AI2O3 pegs, 

suggesting mechanical interlocking [ fig6.3a -plate xfl-15].

Failure mechanisms operating in LCBC can be summarized as follows:

Firstly, as the growth mechanism for TGO is from exposure o f surface aluminium at 

temperature, the movement o f aluminium to the surface will continue until sufficient 

depletion ( see GDOES results in figure 6.1) o f the aluminium within the base material has 

occurred to stop any formation, at this point failure o f the oxide layer will occur. The 

spallation o f the oxide coating can occur on cooling and thermal cycling advances the 

process, but is dependent on the process used.
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Secondly, during screening o f candidate LCBC bond coats for TBC (see table 5.0) and 

referenced GDOES depth profiles in chapter 4 for characterisation o f enhanced LCBC 

systems, it has been shown that there is considerable diffusion o f Ti and other transition 

elements , leading to formation o f degrading oxides at the TGO/bond coat interface.This 

leads to decohesion between the interfacial layer o f AI2O3 scale and the bond coat.

Thirdly, given initial variation in Pt content o f the LCBC, the results from chapter 4 and 5, 

suggest that during thermal exposure at 1150°C , the y'-phase of the bond coat on alloys 

CMSX-4 continued to lose Pt and gain Ni at the same rate. This adding variation in 

diffusion rates leads to eventual degradation.

Fourthly, the performance capability o f the low-cost Pt bond coat is a sensitive function o f 

the base material in this case CMSX-4 alloy substrate chemistry with regards to diffusion o f 

elements from the base. Also phases present within the bond coat play a key role in 

determining diffusion o f elements from the substrate and vice versa. They are responsible 

for retaining or blocking elemental movement. Therefore, increasing the life o f the bond 

coat.
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7.4 Proposed Improvements

The research work has identified several key factors for improving the adhesion o f the TBC 

to the turbine blade as mentioned in the discussion section. Some potential strategies to 

form more adherent alumina scale in LCBC systems that would enable increased cyclic 

performance would be:

Alternate Substrate ( RR3000)

It has been shown that the higher Ti content o f alloy CMSX-4 caused the 

y- phase to act as an active source o f Ti to diffuse into the bond coat surface and be 

oxidized hence degrading the adherence o f AI2O3 scale and in turn accelerating failure o f 

the coating system. However, if  for example RR3000, which is a third generation single 

crystal casting material, which as can be seen from table 3.1 (a) has a lower Ti content than 

CMSX-4 is used as an alternative, the Ti would most likely be partitioned to the y'-phases 

with its lower content.

Modification to bond coat composition

The best bond coat identified was 0.5mass% addition Y on a CMSX-4 substrate. This bond 

coat in combination with RR3000 may result in great improvements in thermal cyclic 

resistance. The Ti would be held in the y' and the Y would be available to form pegs to 

increase thermal cyclic resistance, therefore also, maintaining the purity o f the alumina 

scale, that is preventing the formation o f spinels. Further, investigation o f  the bond coat 

micro structures or phases which may inhibit diffusion o f elements from the substrate into
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the alumina scale or identification o f roles o f elements such as H f ( alone or in combination 

Y ) which is detrimental to scale adhesion from a microstructural aspect.

Alternate Pt-deposition techniques

The Pt-plating o f the substrate (CMSX-4) has disadvantages in terms o f possible 

contamination from the platinum salt, Pt(NH 3) 2(NO 2) 2 , which is added for plating. Also 

as de-ionised water is a poor conductor o f  electricity, several phosphate salts are added to, 

improve electrical conductivity within the bath. This may lead to contamination from the 

plating salt, and also thickness variations as already shown, which has been shown to cause 

variability in LCBC systems. Physical Vapour Deposition ( PVD), would perhaps be an 

alternative means o f Pt deposition, where there is better control o f  the thickness.

Control of alumina growth

Simulated ageing treatment studies has shown there to be growth in the alumina grains, due 

to oxygen and Al diffusion. Control o f the growth is vital in improving the thermal cyclic 

resistance. Also design o f a LCBC system with an alumina based on a natural limitation 

that alumina scales thicker than approximately 5-8 pm will not remain ideally adherent and 

thus cannot support the TBC. The approach would be to set a barrier layer below the TBC 

against diffusion o f oxygen toward the bond coat and substrate. In such case, the tendency 

o f formation o f the TGO to grow would be minimized, thus increasing cyclic resistance. 

Therefore, ceramics with a lower oxygen diffusivity than Yttria Stabilised Zirconia (YSZ) 

would be a good candidate. The other alternative would be to have a plentiful supply o f Al, 

thus when alumina spalls it is readily formed again, thus maintaining TBC adhesion.
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Chapter 8

Conclusions

The following conclusions may be drawn from the research work completed within this

thesis:

GDOES Analysis

• The work conducted in the investigation o f bondcoats and ageing treatment o f low cost 

platinum bond coats on TBC's has shown GDOES, which had not been previously 

applied to be a useful analytical tool for characterisation.

• Comparing GDOES to other analytical techniques such as WDX, EDX, it has the 

following advantages: little or no sample preparation required; it reduces matrix effects 

and normalises sample to sample inconsistencies; because successive surface layers are 

removed offers compositional depth profiling; due to the small cathode to anode 

distance, sputtering occurs over a narrow volume resulting in uniform sample erosion 

over analysed area giving good resolution when used for depth profiling; sensitivity 

down to approximately 50 ppm. However GDOES has limitations: need a solid 

relatively flat sample that will make a vacuum tight seal; liquids are not possible to 

analyse and powders are difficult; range o f elements that can be anlysed by one 

spectrometer is limited to a maximum o f 44; a dc supply is used so samples must be 

electrically conductive; RF sources are available , but qualitative depth profiling is not 

yet possible.
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• GDOES can clearly distinguish between the various bond coat systems studied.

• Our GDOES system is unable to detect La, Ce and Re and also cannot detect yttrium 

less than 0.5% by mass.

• GDOES has helped to identify Ti, Ta ,W elements diffusing from the substrate towards 

bond coats as the damaging elements in bond coat development.

• GDOES is able to detect other contaminant elements O, C and S which will lead to 

process improvements.

• GDOES has shown that the presence o f Si which comes from the gritting process in 

bond coats which is very difficult to detect using an EPMA technique. However, cyclic 

performance data has shown it not to be detrimental, as there is no change in cylces to 

failure for two potential systems under consideration.

• GDOES has shown the presence o f sodium in bond coats and also possible sodium 

diffusion.

• GDOES has shown variability in Pt levels within Low cost bond coats. Variability plays 

a key role in determining the thermal cyclic performance o f this type o f coating.
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• GDOES has been proven to be very successful in depth profiling the low cost bondcoat 

with a thin layer o f TBC deposit, with a dc source, rather than the need for a RF. It has 

been possible to investigate segregation o f elements at interfaces using this method.

• Segregation o f the following damaging elements are evident on the aged sample's 

interfaces TBC / AI2O3 and AI2O3 / Bond coat: Ti, W, Ta. As the ageing treatment 

increases there is evidence o f increasing diffusion o f those elements towards the 

interfaces.

Thermal Cycling Tests

• Thermal cyling testing has been shown to be a very useful way o f ranking bond coats.

• The best bond coats identified from the thermal cyling test were the ones with La 

present in the substrate and yttium present in the bond coats. These coatings can 

typically maintain adhesion o f TBC for 250 hours at a temperature o f 1150°C on a 

CMSX-4 superalloy substrate.

Morphological Analysis

• The intermediate layer between the TBC and the bond coat consists o f  AI2O 3 w hich is 

responsible for maintaining the adhesion. In the sample with no age treatment (0-hours ) 

the structure o f AI2O 3 is very fine. However, there is a variation in the thickness across 

the coating. Also evident is a Ti peak, which grows with ageing . Ti present is known to 

degrade bonding at the interfaces.
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• There is evidence of growth in the AI2O3 layer with ageing time.

• There is evidence o f  diffusion o f Zr into the AI2O3 and so adhesion between TBC / 

AI2O3 must be chemical. Also there is evidence o f pegging from the bond coat into the 

A I2O 3 , which is good for maintaining mechanical adhesion o f the coating.

• At 25 hour aging treatm ent, the coating is still intact, although there is growth in th e , 

AI2O3 layer.

• There is evidence o f grit particles in the AI2O3 layer, which can lead to stress cracking 

o f the coating.

• Evidence o f Ti/W segregation at the AI2O3 / bond coat interface is known to lead to 

decohesion o f the coating.

Failure Mechanisms / Bonding Factors

• From the thermal cycling / GDOES / SEM and TEM studies it has been shown that 

failure in low cost Pt bond coat systems is decohesion between the interfacial layer o f 

AI2O3 and the bond coat.

• Outward diffusion o f Ti, W, Ta into the bond coat, leads to the formation o f  oxides 

which degrade the adherences o f AI2O3 and the bond coat.
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• Surface condition o f alloy substrate and variation in the thickness o f  Pt layer, as shown 

from GDOES / SEM studies, are identified as important sources o f  variability in TBC 

bonding.

•  Performance o f low cost bond coat systems can be concluded to be a function o f  alloy 

substrate chemistry.

Overall Conclusion

• This study has been very successful in developing GDOES and Thin foil TEM as a 

characterisation tool in the study o f  bond coat systems.

•  The program o f  studies has enabled failure mechanisms and bonding factors to be 

identified in low cost Pt bond coat systems , such that in the future coating systems with 

enhanced properties can be designed. This should also ensure in future that improved 

reliability in engines and increased service life o f  turbine blades is achieved.
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Chapter 9 

Further W ork

Suggestion for further work in this area o f research are as follows:

• GDOES analysis: Re /Rh channel installation: There is a need for GDOES to be able to 

detect these elements, as they can be o f benefit for coating developments. The main 

problem is that there is no channel currently available on the rowland circle, because it 

is to its full capacity (48  elem ents) and Re can only be installed as a filter channel 

instead o f fluorine. The possibilities should be assesed in conjunction with LECO, the 

equipment supplier.

• GDMS Studies: Detection and quantification o f very low level elements such as S, O, 

C, Y , impossible to detect in very low concentrations using GDOES. This will help in 

coating process improvements.

• XRD Studies: Identify and quantify compound formations within low cost Pt bond 

coats using the XRD technique before and after thermal age treatment to help increase 

understanding and also support current research.
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• Substrate Chemistry: As already shown in low cost Pt bond coats the performance is 

dependent on the substrate chemistry, it would be very appropriate to investigate 

alternative available substrates such as RR3000, as potentials with currently available 

low cost Pt bond coats. This is to help slow down the diffusion process and prevent 

spinel formation, in order to make the coating more stable. Thus higher life expectancy 

would be obtained.

• TEM Investigation: Determine EDX on sample 212 to help in comparative process.

• TEM Investigations:Determine by point analysis the elemental cpomposition across 

coatings on all aged samples, so that a full comparison may be made with GDOES 

findings.

• TEM Investigations: Characterise in more detail the AI2O3 scale in new and current 

compositions in order to help identify phases and spinels. This should help in 

developing more cyclic resistant coatings.

• Interface Engineering: Overall, future work should concentrate on the interfaces 

engineering in greater detail using current techniques developed and techniques 

currently not utilised such as GDMS, SIMS, FEG. This will enable a better 

understanding o f impurity segregation, its relationship to cylic performance on new 

compositions and current compositions, so that real improvements can be gained.
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Figure 1. Atypical EBPVD coated turbine blade [122]
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Figure 2.2.4 (a) Plasma spayed Zr02 coating [123]
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Figure 2.2.4 (b) EBPVD Zr02 Coating [123]
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Figure 2.2.4 (c) Schematic illustration of the plasma spray 
deposition technique [123]
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Figure 2.2.4 (d) Schematic illustration of the EBPVD 
technique [124]
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Figure 2.3.2 : (a) chemical composition of the matrix 
phase; (b) chemical composition of the /? -  phase 
[93]

Chemical Composition of the p-Phase 

Atomic-%- Weight3 .

Ni 41.00 51.19
Co 18.02 22.48
A! 35.42 20.22
Cr 5.56 6.12

Cr
CoC3*

Chemical Composition of the Matrix Phase

Atomic %. Weteht_&

Co 38.47 41*52
Ni 29.38 31.59
Cr 22.44 2L37
A1 9.05 4.47
Y 0.65 1.06
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Figure 2.3.3 (a) High temperature/Low activity pack aluminide coated 
specimens tested in 1180°C cyclic oxidation.
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Figure 2.3.3 (b) Low temperature /  High activity pack aluminide coated 
specimens tested in 1180°C cyclic oxidation.
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Figure 2.5.2 (a) Initiation of spalling of TBC [8]
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Figure 2.5.2 (b) The four propagation modes of spalling 
in TBC's [127]
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Figure 2.5.3. Thermal expansion of Z r02 .8w t% Y 203 and IN 738 Vs
Temperature [8]
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Figure 3.1(b) Back scattered images of LCBC microstructures:

(i) as processed

(ii) failed condition
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Figure3.2.1(a) X-ray diffraction pattern derived from the surface of a LCBC 
after removal of the top coat (as received condition)
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Figure3.2.1(b) X-ray diffraction pattern derived from the surface of 
a LCBC exposed by failure (288 hours of exposure at 1150°C).
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Figure 3.2.2 (a) The variation in ion milling rate and 
implantation depth as a function of 

incident angle [78]
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Figure 3.2.2 (b) Specimen preparation for TEM analysis [80]
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Figure 3.3.1 (a) Glow discharge sputtering process
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Figure 3.3.1 (b) Glow discharge lamp
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Figure 3.3.1 (c) Light dispersion and detection
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Figure 3.3.1 (d) Depth ranges for various surface analytical methods
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Table 3.3.1 (e) Analysis parameters used

Evacuation time 10 sec

Argon flushing time 20 sec

Prebum time 60 sec

Interval delay 0

Bum time 0

Numner of repititions 0

Compensation 5 sec

Integration time 10 sec

GDL operating time 11

Prebum excitation 700 V

Integration excitation 700 V; 30 mA

Flow rate in digits 400

Evacuate until 10E-3 mBar

Anode diameter 4 mm

Profile duration (depends on sample) 300-1000 sec
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Table 4.1.2 Calibration Overview

Analyte Analytical range Matrix Element in Calibration 
points used

Ni 1.99-64.69%
Ni Fe grades; Aluminide coatings; 
Pure Ni; MCrAlY 29

Cr 0.23-8.78% Superalloy: Marmoo2, CMSX-4 
Low alloy steel; Pure Co

7

A1 0.00-17.91%
Aluminide coating; Superalloys 
Pure A1 16

Ti 0.11-1.44%
Superalloys; Aluminide coatings 
Pure Ti

10

Pt 0.00-99.99%
Pure Pt;
Aluminide coatings

4

Y 0.00-99.99%
Pure Y
MCrAlY coating

2

Co 0.38-9.42% Pure Co; High alloy steel; 
Aluminide coating 19

Mo 0.30-9.41% Low alloy steel grades 
High alloy steel grades

11

W 0.20-9.65%
Superalloys 
Aluminide coatings 9

Ta 1.13-6.48%
Superalloys 
Aluminide coatings

4

Hf 0.07-1.27% Superalloy grades 2

Zr 0.00-97.67% Pure Zirconia 1

Si 0.05-2.69%
Cast iron; High alloy steel 
Superalloy grades 17

P 45.2-225.8 ppm
Low alloy steel grades 
High alloy steel grades

13

B 4.27-27.12% BTiAIN
N i-B

2

S 30.1-378.6 ppm
High alloy steel grades 
Low alloy steel grades

8

C 0.00-3.35% Cast iron grades; High alloy 
grades; Low alloy steel grades

14

0 0.00-26.60% FeO 1
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Figure 4.1.3 (e) (i) SEM micrograph of crater at 60 sec

Figure 4.1.3 (e) (ii) SEM micrograph of crater at 1000 sec
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Figure 4.1.3 (f) (i') Laser profile of crater at 60 sec
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Figure 4.3.1 (a) GDOES depth profile of as processed LCBC showing Si profile

Figure 4.3.1 (b) GDOES depth profile of as failed LCBC showing Si p ro file



Figure 4.3.1 (c) GDOES depth profile of as processed LCBC showing Si profile 
( pink gritted -  heat treated at CUK)

tss.s 7S2J5 aw.fl » - S  <&.< 620.fl C37JS

Figure 4.3.1 (d) GDOES depth profile of as processed LCBC showing Si profile 
( Brown gritted -  heat treated at CUK)
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Fig 
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and 
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pin 
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test that have 

not failed.
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Fig 
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Figure 
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Figure 
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Figure 6.2(ii) SEM BSI and corresponding EDX of LCBC
on alloy CMSX-4 ; (a) base line condition
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Figure 6.2(ii) SEM BSI and corresponding EDX of LCBC
on alloy CMSX-4 ; (a) 4 hours ageing
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Figure 6.2(ii) SEM BSI and corresponding EDX of LCBC
on alloy CMSX-4 ; (a) 16 hours ageing



Figure 6.2(ii) SEM BSI and corresponding EDX of LCBC
on alloy CMSX-4 ; (a) 25 hours ageing
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Figure 
6.2(iii) 

BSI and 
corresponding 

X-ray 
m

apping 
im

ages 
illustrating 

the 
distribution 

of various 
elem

ents 
along 

a 
cross-section 

of low 
cost 

Pt bond 
coat on 

alloy 
C

M
S

X
-4; ( a) 

base 
line 

condition
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Figure 
6.2(iii) 

BSI and 
corresponding 

X-ray 
m

apping 
im

ages 
illustrating 

the 
distribution 

of various 
elem

ents 
along 

a 
cross-section 

of low 
cost 

Pt bond 
coat on 

alloy 
C

M
S

X
-4;(b) 4 

hrs 
ageing
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Figure 
6.2(iii) BSI and 

corresponding 
X-ray 

m
apping 

im
ages 

illustrating 
the 

distribution 
of various 

elem
ents 

along 
a 

cross-section 
of 

low 
cost 

Pt bond 
coat on 

alloy 
C

M
S

X
-4;(c) 

16 
hrs 

ageing
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Figure 
6.2(iii) 

BSI and 
corresponding 

X-ray 
m

apping 
im

ages 
illustrating 

the 
distribution 

of various 
elem

ents 
along 

a 
cross-section 

of low 
cost 

Pt bond 
coat on 

alloy 
C

M
S

X
-4;(d) 25 

hrs 
ageing
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Figure 
6.3a 

(plate 
X

F
1-11): BF 

im
age 

at 50K 
m

agnification: All 3 
layers 

of coating 
with 

selected 
X-ray 

energy 
dispersive 

analysis 
of AI203 

and 
TB

C
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Figure 
6.3a 

(plate 
X

F
1

-1
4

): A 
DF 

Im
age 

at 200K 
m

agnification 
of the 

A
l20

3 
layer. D

etection 
of a 

possible 
dark 

phase 
particles 

in 
A

l20
3 

and 
corresponding 

EDX 
pattern. A 

SAD 
pattern 

of this 
layer shows 

typical diffuse 
rings 

corresponding 
to 

a 
poly 

crystalline 
m

aterial confirm
ing 

its 
A

l20
3. Possible 

dark 
phase 

particles 
is 

richer 
in 

P
t.C

r.Zr 
and 

Y. EDX 
in 

standarA
I20

3 
is 

norm
ally 

free 
from 

Cr, C
o, although 

still rich 
in 

Zr.



v '/ '^  ’

V ■̂'•1r . - ; : . :̂  ^- " c: Y.Y.':-j. > (f': .-•’; .

' - v  •• ' - i
• / - ■ h f  r . '  -■; .■

. ..r: v^ - ’- ■■■.
'J' jl i " ■ •' '■
;  ; .A- •

-<

•a
=r
0
C/3
CD

:r f V

®B 8
'■VYriW'! '

3 H
03 CQ 
CQ C

i  3
o' O)
52. w 
o' “

I I
§ CD

I  X 
CQ 2  
■o A 
°  3CO —
g; a  
o n

73 5'
CQ 0

0
ro o  o  
X

3 
03 >  CQ

F3 3. 
O g3 
co g
o

CD

s-o
0

CDO
0
Q .
O
O
0

m 
o  
X 
13 m cd D rj, 

X O

w' 3 0
Q.o

0T
0
—s
0
C/3

0
X
■Q
0

0
Q.

o
0

>
ro
O
CO

dT
0
-i
o
0

U or 
0

Z  Q- 
— • 0
O s-
o l r  
O  03 

C/3 
00 

0 a. -a
■ I
5  Q.

£*2> 
_ i w
31 °
55- 03 
o O
O T1

216

30
CQ
0
0

ro03o
X-



CD

~a
CD
3-
cV
0

217

Figure 
6.3a 

(plate 
X

F
1-16): BF 

im
age 

at 
15k 

m
agnification 

in 
bond 

coat 
region. S

everal grit 
particles 

observed 
w

hich 
have 

been 
confirm

ed 
by 

EDX 
to 

be 
Al and 

O 
rich. Also 

observed 
light 

and 
dark 

phases 
w

ithin 
the 

bond 
coat 

region. Lighter 
phase 

of 
bond 

coat 
com

position 
is 

not 
rich 

in 
Ti w

hilst 
darker 

show
s 

a 
sm

all peak.
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Figure 
6.3b: 4 

hours 
ageing 

(Plate 
212-11): 

BF 
Image 

at 11.5K 
m

agnification: Low 
m

agnification 
to 

corner all regions. There 
is 

evidence 
of growth 

in 
the 

Al20
3 region. There 

is 
mixed 

grain 
size 

within 
the 

Al20
3 

region 
with 

finer at interface 
between 

TBC
/AI20

3. However, coarser at BC/AI20
3 interface.
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Figure 
6.3b: 4 

hours 
ageing 

(Plate 
212-15): BF 

Image 
at 150K 

m
agnification 

: Showing 
Al20

3 / TBC 
interface. Very 

sharp 
interfacial region 

without any 
voids 

indicating 
good 

adhesion.
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Figure 
6.3c: 16 

hours 
ageing 

(Plate 
415-13): (i)BF 

Image 
at 27.5K 

m
agnification 

: Alum
ina 

interlayer of equiaxial m
icrostructure. The 

alum
ina 

is 
coarse 

close 
to 

the 
substrate 

and 
becom

es 
fine 

towards 
the 

surface 
ceram

ic 
layer where 

it presents 
as 

an 
interm

ixing 
layer. Also 

shown 
(ii) BF 

Image 
at 66K 

: 
M

agnified 
image 

of alum
ina 

grains 
and 

grain 
boundries. No 

voids 
were 

involved 
in 

the 
m

icrostructure.
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Figure 
6.3c: 16 

hours 
ageing 

(Plate 
415-14): BF 

Image 
at 88K 

m
agnification 

: Sharp 
interface 

between 
the 

alum
ina 

and 
bond 

coat, and 
also 

a 
triple 

point.
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Figure 
6.3d: 25 

hours 
ageing 

(Plate 
314-13): BF 

Image 
at 27.5K 

m
agnification 

: A 
series 

of plates 
showing 

TBC
/AI20

3 and 
bond 

coat region.



Figure 
6.3d 

(Plate 
314-15): BF 

Im
age 

at 27.5K 
m

agnification:T
B

C
/A

I20
3/Bond 

coat regions, interm
ixing 

betw
een 

the 
bond 

coat and 
alum

ina, EDX 
show

s 
that C

r,N
i diffused 

through, which 
eventually 

lead 
to 

bond 
coat degradation. Coarse 

alum
ina 

is 
still pure, except a 

little 
N

i.
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ABSTRACT
Glow discharge optical emission spectroscopy (GDOES) has been developed to investi
gate thermal barrier and environmental coatings. Qualitative analysis o f thermal barrier 
and environmental coating has shown that this technique exhibits considerable potential. 
Work has been conducted to quantify the results. This involved the preparation o f well 
documented calibration standards for alloy systems containing up to fifteen elements.
The advantages o f the technique lies in its ability to analyze up to 44  elements ranging 
from hydrogen to uranium with a lateral resolution in the order o f tens o f nanometers.

Results w ill be presented identifying the elemental distribution across the coating in
terface which will be compared with results from quantitative analysis conducted using 
scanning electron microscopy and X-ray fluorescence technique. The results w ill be dis
cussed in terms o f the GDOES technique sensitivity/limitations and elemental interference 
encountered and possible optimisation in developing this technique for understanding 
degradation mechanisms involved in thermal barrier and environmental coatings.

INTRODUCTION

Glow discharge optical emission spectroscopy (GDOES) is a powerful and versatile 
technique for the bulk analysis of ferrous and non-ferrous alloys with a sensitivity 
down to approximately 50 ppm; the technique is also capable of quantitative depth 
profile analysis.1,2 This paper describes the work currently underway to apply the 
GDOES technique to understand the oxide bonding mechanisms and degradation modes 
for thermal barrier and environmental protection coating systems.

Overlay coatings of the MCrAlX type in which M represents a base metal of Ni, 
Co, Fe or some combination of elements, and X represents either a rare earth element 
or some other element such as Y or Zr with a high chemical reactivity for oxygen, have 
many applications in the fields of high temperature and environmental protection. In 
addition variants of the coatings are used to create the bond between turbine blades 
and thermal barrier coatings, which are usually stabilised zirconia. The mechanisms
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of bonding and the effects on the performance of the blades are not completely under
stood as yet.

Several analytical methods are available for the analysis of bonding mechanism and 
degradation process. Electron probe microanalysis is often used to characterise the 
composition of turbine blade coatings by analysing the cfoss'section of the specimen. 
Scanning electron microscopy is used for microstructural assessment and X-ray dif
fraction for structural analysis. Other more sensitive techniques available include SIMS 
and AES but they are less convenient due to the high~cost and the need to handle the 
specimen in ultrahigh vacuum. Thus, a more convenient method such as GDOES would 
be useful for understanding the role of low concentration elements.

THEORY

Glow Discharge Optical Emission Spectroscopy 
Glow discharge spectroscopy is an atomic emission technique that relies on the exci
tation of atoms within the sample being analysed. It allows both qualitative and quan
titative determination of metal and non-metal elemental composition as a function of 
depth.

If sufficient energy is transferred to an atom from the sample by an argon atom from 
a glow discharge, an increase in electron energy can occur such that a higher energy 
level orbital transition takes place to provide an excited state and a lower energy level 
vacancy. This state is unstable and the atom relaxes back to the ground state by the 
transition of an electron to fill the vacancy, normally accompanied by the liberation ol 
the excess energy in the form of a photon of wavelength (Fig. 1) defined by the equa
tion:

X = hdE \-E 2

where; E l and E2 are energy states, h is Planck’s constant, c is the Speed of light an 
X is wavelength.

Each element has different electron orbital energy levels, the wavelength o f th 
photon emissions will therefore be characteristic of the elements present within th 
sample and the intensities of the emission lines will be proportional to the number o 
emission quanta and hence elemental concentration.

To produce clean line spectra without significant contribution from continuum e 
ergy in the form of thermal radiation or lattice vibrations, the atoms m ust be in th 
form of a low pressure gas, volatilised from a solid within a vacuum chamber.3

Glow discharge spectroscopy has a number of benefits over the more commonl 
used analytical techniques:4

1. The layer-by-layer removal o f sample material allows both qualitative and qua 
titative depth profile analysis.

2. Very little or no sample preparation is required for bulk solids.
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Fig. 1 Principle o f excitation and em ission.4

3. It naturally separates the removal of atoms from the solid surface (atomisation), 
from the subsequent excitation and ionisation of those atoms, thus reducing ma
trix effects and normalising sample-to-sample inconsistencies.

4. Due to the small cathode to anode distance, sputtering occurs over a narrow vol
ume resulting in uniform sample erosion over the analysed area giving good reso
lution when used for depth profiling.

5. The excitation and emission layer is also thin, minimising self-absorption and 
giving a linear relationship between intensity and concentration, with sharp emis
sion lines.

The glow discharge lamp utilised in this technique is based on a design by Grimm 
(Fig. 2). Basically, it consists of a small vacuum chamber with a hollow cylindrical 
anode 4 mm in diameter with the sample to be analysed acting as the cathode at one 
end. The outside of the anode cylinder is vacuum pumped and bled with a working gas 
(argon). The other end of the cylinder contains a lens through which the photon emis
sion is detected via a polychromator. Typically operating conditions are -500 to -1500 
V and 20 to 200mA , giving a sputtering rate in the range 10 to 100 nm per second.

Sputtering Process
The glow discharge sputtering process operates as follows (Fig. 3). The glow dis
charge lamp provides a low pressure argon environment over the sample. A high nega
tive potential -500V to -1500 V is typically applied to the low pressure environment 
which causes breakdown of the discharge gas, normally argon, whose ions are then 
accelerated across the dark space and impact on the cathode (sample) surface, thereby 
ejecting primarily neutral atoms and electrons, although some ions and polyatomic 
species are also released. In addition to the ions striking the cathode, the charge-ex
change processes in the dark space create fast atoms that also can cause sputter abla
tion. Through these sputtering steps, the solid sample yields an atom population that 
diffuses across a thin dark space into the adjacent negative glow, where collisions with 
electrons metastable atoms and other energetic species cause excitation and ionisation 
of a fraction of the sample atom, creating species that are analytically useful.5



132 H ig h  T em per a tu r e  S u rfa ce  E n g in e e r in g

ft-tfstg set!

atfiidecn lttcd

Incytittr

Fig. 2 Glow discharge lamp.4

*o vtcvum  pKDp atm p it
[cathode]ifWectd 

*  cxettc

U^oVchro«a(bf^,vS J ^ j  otomi rd ix  
* •  ky notttTafl Rtft

•fSO ft lOnc
tanaarrf
turtico

Fig. 3 Sputtering in the glow discharge lamp.4

concave leflectfve 
diffraction grating

Rowland d rd e

photomultiplier

illt  a ttem b lyexit silts

focusing len s

^V.Hght Irom
glow discharge

/  ,uentrance tilt

Fig. 4 Light em ission and measurement.

Light Emission and Measurements 
A polychromator (Fig. 4) based on the Rowland focusing property, separated by a 
window at the end of a glow discharge lamp is used to detect emitted photons.4 

The basic arrangement of a polychromator is as follows:

i a collimator or focusing lens to render the light rays parallel.
ii an entrance slit that provides a narrow optical image.
iii a concave reflective diffraction grating to disperse the light.
iv exit slits at the appropriate locations to isolate particular spectral wavelengths.
v photomultiplier tubes behind these slits to detect the light, amplify and convert it

into an electrical signal for monitoring.
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Glow discharge sputtering is strongly dependent on the working gas. sample com
position and the applied parameters: current, voltage and pressure. Careful adjustment 
and monitoring of these parameters is vital for controlling surface analysis or rate of 
depth profiling and for quantification of collected results.

GDOES can be used to depth profile non-conductive coatings but the main require
ments is to have a radio frequency (RF) source.

EXPERIMENTAL

To assess the capability of the GDOES technique to analyse complex materials, CMSX- 
4, a nickel-based superalloy used in turbine blade manufacture, and a CoNiCrAlY 
overlay coating (RT31), used for environmental protection and as a bondcoat for ce
ramic thermal barriers, were assessed by GDOES, electron probe microanalysis 
(EPMA) and X-ray fluorescence (XRF).

The glow discharge spectroscopy was carried out on a LECO GDS-750 QDP glow 
discharge spectrometer. The following optimised operating conditions shown in Table 
1 were used. Both qualitatitative and quantitative studies were performed. Qualitative 
studies produced a plot of the intensity over time for given elements.

Table 1 Operating conditions for GDOES

Evacuation time 10 sec

Argon flushing time 20 sec

Prebum time 60 sec

Interval delay 0

Bum time 0

Numner of repititions 0

Compensation 5 sec

Integration time 10 sec

GDL operating time 11

Prebum excitation 700 V

Integration excitation 700 V; 30 mA

Flow rate in digits 400

Evacuate until 10E-3 mBar

Anode diameter 4 mm

Profile duration (depends on sample) 300-1000 sec
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GDOES quantification was split into two parts: determination of the sputtered depth 
from the sputtering time and sputter rates of individual elements; and determination of 
the chemical content from the emission line intensities. The sputter-rates can be cali
brated from sputter depth measurements. The emission line intensities are dependent 
on the voltage, current and sputtering rates, as well as the chemical composition. Nor
mally the intensity calibration is performed using certified reference materials of known 
chemical composition. During depth profile quantification the analysed composition 
is normalised to 100%. There are quite a number of steps involved in setting up a 
quantification program. Figure 5 gives an outline of the steps involved for superalloy 
turbine blade coatings.

A total of 49 calibration standards were used to calibrate the superalloy turbine 
blade coatings quantitative program covering must of the elements in the coatings. In 
order to ensure reliable results were obtained, the standards were selected so as to 
cover the elemental concentration range in the coatings. Table 2 shows an overview of 
the calibration elements and analytical range with the selected standards.

EPMA using WDS was used to perform chemical analyses on both the CMSX-4 
and RT31 samples to enable comparisons to be made with GDOES and XRF results 
(the XRF results were supplied by Rolls-Royce).

As the substrate alloys and coatings were multiphased systems a straight forward 
single line scan would contain a lot of scatter as different phase compositions were 
crossed by the scanning electron beam. In order to reduce this problem a series of 
‘point’ analysis at one micron intervals along a straight line were taken. At each point 
the beam of the probe was ‘rastered’ along a 50 pm line normal to the line produced by 
the series of analyses to form a ‘ladder’ scan. This enabled an average band (50 pm 
wide) to be assessed.

RESULTS AND DISCUSSION

The time-intensity curves and calculated quantification depth concentration profiles 
for CMSX-4 superalloy substrate are shown in Figs 6 and 7. Only elements Ni, Co, A1 
(major ones) and Ti, Hf, W (minor ones) have been shown for the sake of clarity. The 
tendency for the lines to rise as time and depth increases is due to matrix effects result
ing from differences in elemental sputtering rates.

The crater produced during the analysis o f CMSX-4 after 60 and 1000 seconds are 
shown in Figs 8(a) and (b), and their measurement by laser profiling is shown in Figs 
9(a) and (b). It can be seen that the bottom of the crater in Fig. 8(a) is quite planar, 
while some re-sputtering of material has created a lip around the rim after 1000 sec
onds. The laser profile depth measurement shows a good correlation to the calibrated 
depth values obtained from Figs 7(a) and(b), with errors of the order of 10-15%. The 
roughness of the bottom of the crater normally increases linearly with time,6 which is 
one of the factors limiting the depth resolution. This necessitates a compromise be
tween good depth resolution and high intensity spectral lines when selecting operat
ing parameters.
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T im e-intensity trace on CMSX-4 showing Co and minor elements Ti, H f and W.
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Table 2 Calibration standards overview

Analyte Analytical range Matrix Element in Calibration 
points used

Ni 1.99-64.69% Ni Fe grades; Aluminide coatings; 
Pure Ni; MCrAlY 29

Cr 0.23-8.78% Superalloy: Marmoo2, CMSX-4 
Low alloy steel; Pure Co 7

A1 0.00-17.91% Aluminide coating; Superalloys 
Pure A1 16

Ti 0.11-1.44% Superalloys; Aluminide coatings 
Pure Ti 10

Pt 0.00-99.99%
Pure Pt;
Aluminide coatings 4

Y 0.00-99.99%
Pure Y
MCrAlY coating 2

Co 0.38-9.42% Pure Co; High alloy steel; 
Aluminide coating 19

Mo 0.30-9.41% Low alloy steel grades 
High alloy steel grades 11

W 0.20-9.65% Superalloys 
Aluminide coatings 9

Ta 1.13-6.48% Superalloys 
Aluminide coatings

4

Hf 0.07-1.27% Superalloy grades 2

Zr 0.00-97.67% Pure Zirconia 1

Si 0.05-2.69%
Cast iron; High alloy steel 
Superalloy grades

17

P 45.2-225.8 ppm Low alloy steel grades 
High alloy steel grades

13

B 4.27-27.12% BTiAIN
N i-B 2

S 30.1-378.6 ppm High alloy steel grades 
Low alloy steel grades 8

C 0.00-3.35% Cast iron grades; High alloy 
grades; Low alloy steel grades

14

0 0.00-26.60% FeO 1
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Fig. 7 (a) Depth-concentration profile on CMSX-4 showing major elements Ni, A1 and Co, 
(b) Depth-concentration profile on CMSX-4 showing Co and minor elements Ti, H f and W.

Fig. 8 (a) SEM micrograph o f crater at 60 sec, (b) SEM micrograph o f crater at 1000 sec.
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Fig. 9 (a) Laser profile o f  crater at 60 sec, (b) laser profile o f  crater at 1000 sec.

Table 3 Comparison o f  XRT, EPM A and GDOES com positions for CM SX-4.

Ni Cr A1 Ti Pt Co Mo W Ta Hf Zr Si Y B O Re C p

XRF
analysis 60.82 6.3 5.83 0.98 0.012 9.46 0.6 6.32 6.52 0.1 0.005 0.03 2.71

EPMA
analysis 59.9 6.7 6.3 1.1 9.6 0.6 6.1 6.4 0.1 3.7

GDOES
analysis 64.51 6.39 5.89 1.09 0.431 9.11 0.55 6.07 5.4 0.47 0.009 0.029 0.02 0 0 - 0.001 0.007

1000.I B20.0

Fig. 10 GDOES depth profile through TBC system.
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Fig. 11 Cross-sectional view o f TBC.

The results of the GDOES and EPMA analyses are compared to the composition 
determined by XRF in Table 3. Both results showed a good correlation, with the GDOES 
results generally closer than those of EPMA, although there were some obvious dis
crepancies which require investigation; the values obtained for nickel, tantalum, haf
nium and platinum are inaccurate and may be due to interference between the spectral 
lines. The GDOES equipment is also not currently able to detect rhenium.

The trace obtained from the thermal barrier system (Fig. 10) clearly distinguishes 
the different interfacial regions seen in the cross-sectional view (Fig. 11). The ele
ments identified within these regions agree with the EPMA analysis (Fig. 9), with 
both techniques highlighting the yttrium concentrated at the ceramic/bondcoat and 
bondcoat/substrate interfaces. GDOES does have the advantage of better sensitivity to 
very low concentrations of elements such as sulphur, boron, carbon and phosphorus. 
The results can also be obtained more rapidly with minimum sample preparation.

The current semi-quantitative program set up for turbine blade coating analysis is 
limited by the number of standards and calibration points used (see Table 2). For 
example with a minimum of two calibration points it is thus possible to obtain a straight 
calibration line. It is however, recommended to use a minimum of 3 to 5 calibration 
samples. The more calibration samples are used, then the easier to detect an inaccurate 
calibration sample and if necessary to make appropriate correction or deletion. In 
addition extra elemental channel such as Re and additional elements needs to be in
stalled.

A study was performed on a few selected superalloy turbine blade coatings to as
sess elemental interference in GDOES traces. Cross-over of emitted wavelengths can 
result in ‘ghost’ profiles being produced. Currently further investigations are underway 
to identify and overcome any interference problems.

The work conducted so far has shown GDOES to be a very useful analytical tool for 
the characterisation of turbine blade coatings. The large sample area analysis with 
GDOES, as compared to EPMA, SIMS and AES where microscopic areas are in-
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Fig. 12 EPM A analysis o f TBC system.

volved is good for obtaining a better representative average result. A semi-quantitative 
GDOES program has been developed and with further work to resolve the problems 
seen with elemental interferences, an improved quantitative method will enable a much 
broader understanding of the role of trace elements in the bonding and degradation 
mechanisms of both thermal barrier and environmental coating systems.
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A Sl.FrM

quantitative data  obtained with these methods, SEM and 
w ith traditional surface analytical techniques are being used 
to  test the topography theories. In the case of semiconduc
tors, m ost studies have concentrated on Si, GaAs and InP. 
Recently other electronic materials, such as SiGe have been 
studied.

A Sl.FrM .6
C om parison  o f  Spring and A utum n Tim e
C ollected  O u td oor Aerosol Particles A nalysed
w ith  D ep th -R eso lv in g  SNM S
J. Goschnick, C. Natzeck, M. Sommer
In stitu t fur Instrum entelle A nalytik, Forschungszentrum
Karlsruhe fur Technik und Umwelt, Karlsruhe, D-76021,
G erm any

Atmospheric aerosol particles are of significant influence 
to  the chem istry of the atmosphere. Emission processes 
and the interaction w ith the environment often cause a 
depth distribution o f the chemical compounds within the 
particles. T hus, the analysis of the chemical composition 
of the particles as  well as the analysis of their depth 
structure is of great importance for the understanding of 
atm ospheric processes. Moreover the reactivity of elements 
depends on the current compounds, so the analysis of aerosol 
particles should give also information on the depth structure 
of the com pounds. To obtain this information Secondary 
Ion/N eutral M ass Spectrometrie (SIMS, SNMS) was applied 
on aerosol particles collected from outdoor air and deposited 
on indium foil.

T he particles were collected in five size ranges (0.2- 
10 m) w ith a cascade impactor at the site of the 
Forschungszentrum Karlsruhe during an autumnal fine 
weather period. Electron microscpic images were used 
to determ ine the particle size distribution of the samples. 
T he finest particles (<  0.35 m) had a nitrogen and sulfur 
containing shell on a carbon core and originate mainly from 
traffic soot. T he core of the coarse (>  2 m) particles consists 
of probably geogenic material (Mg, Al, Si- Oxide). Moreover 
these particles showed an intermediate layer containing Na, 
covered itself by an organic surfacelayer.

T he results agree with the analysis of outdoor particles 
collected at the sam e location but in spring time four years 
ago, where the nitrogen and sulfur containing surface layer 
was found to be due to ammonium sufate.

A Sl.FrM .7
G D O E S A n alysis  o f Therm al Barrier Coatings 
for A p p lica tion  in  Gas Turbine B lades
A Hoque, J Cawley, MD Bramhall, D Rickerby*, J 
Higgins*
M aterials Reseeuch Institu te, Sheffield Hallam University, 
Sheffield, SI 1W B, U K
*Surface C oatings and Technology , Rolls Royce pic,
Derby, D E24 8BJ, U K

Glow Discharge Optical Emission Spectroscopy (GDOES) is 
a very powerful and rapid analytical technique to determine 
the concentration distribution in surface-treated materials 
and coatings. The major advantages of this technique tire 
the ability to analyse up to multiple elements ranging from 
hydrogen to uranium with a lateral resolution in the order 
of tens of nanometers.

This paper outlines the potential uses of GDOES in 
understanding the degradation modes of thermal barrier 
coating system s, as used in the aerospace industry to 
extend the life of turbine components. In such systems, 
T B C  performance is very sensitive to the choice of 
bondcoat (an intermediate layer deposited between the 
ceramic top coat and underlying substrate) and to chemical 
interactions between the bondcoat and substrate. Through

understanding of the chemical interactions which occur 
at the bondcoat/ceram ic interface, a number of factors, 
which are centred to TBC  performance, have been identified. 
The underlying mechanisms which govern ceram ic/m etal 
bonding will be reviewed.

[1] W Grimm, Spectrochimica Acta, 1968,22B,443
[2] O Dessene, A Quentmeier and H Bubert, Fresenius- Journal

of Analytical Chemistry, 1993, 3.46:340-345
[3] RK Marcus, Glow Discharge Spectroscopies, Plenum  Press,

1993

ASl.FrM .8
Low Energy N itrogen  Ion B om bardm ent o f  
G aAs.
J Kudjoe, JB Malherbe*
D epartm ent o f  Physics, U niversity o f the N orth, Sovenga, 
0727, South Africa
*D epartm ent o f  Physics, U niversity o f  Pretoria, Pretoria, 
0002, South Africa

The nitridation process of the GaAs (100) surface is studied. 
This is done by low energy (0.5-5.0 keV) nitrogen ion  
bombardment in tin AES system . T he extent of nitridation  
for the different bombardment energies is determ ined  
using AES. Auger depth profile of the im planted nitrogen  
is obtained by subsequent in situ argon bombardm ent. 
From these profiles the experimented projected ranges and 
straggling for the different ion energies have been determ ined  
and compared with other theoretical models.
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K eynote

Quantitative information from energy dispersive X-ray analysis in the 
Transmission Electron Microscope.
J Titchm arsh.
D epartm ent of Materials, University of Oxford, UK.

K eynote

Atom Probe characterisation of high temperature materials.
R Thom son and M K Miller.
Loughborough University, Loughborough, UK.

K eynote

Quantitative aspects of electron energy loss spectroscopy and imaging.
R Brydson.
University of Leeds, Leeds, UK.

Tea/Coffee

Quantification of precipitates in a 10% chromium steel by means of TEM  and 
EFTEM .
P Hofer, H  Cerjak and P Warbichler.
Technical University Graz, Austria.

Quantitative evaluation of particle size distributions of different phases in steel 
P92 exposed at 600°C and 650°C using EFTEM.
M  H atterstrand and H-O Andren.
Chalm ers University of Technology, Goteborg, Sweden.

Quantitative analysis of niobium carbo-nitrides in a stabilised stainless steel.
J Kallqvist and H-O Andren.
Chalm ers University of Technology, Goteborg, Sweden.

Quantitative mapping and depth profiling of polymeric and ceramic coatings 
using Raman Spectroscopy.
J Yarwood.
Sheffield Hallam University, Shefifeld, UK.

C onference D inner

Wednesday 24th November

SESSIO N  6
A p p lica tio n s

K eynote

Characterisation of microstructural evolution for creep modelling. 
B A Shollock and M  McLean.
Im perial College, London, UK.

R W Vanstone.
ALSTOM  Energy Ltd., Rugby, UK.

Statistical prediction of inclusion sizes in 
H Atkinson.
University of Sheffield, Sheffield, UP 

Tea/Coffee

The evaluation of cleanness of advancea 
P N Quested.
National Physical Laboratory, Teddi;

Statistical assessment of corrosion morpl 
component life prediction.
J R Nicholls, N  J Simms and J E.Oal 
Cranfield University, Cranfield, UK.

The development of de-alloyed zones dm 
microstructure and spallation behaviour. 
S Osgerby.
National Physical Laboratory, Teddii

Microstructure changes of base material 
heat resistant steel.
Yu K Petrenya*, S Ya Mikhailov* am 
*The Polzunov Central Boiler and T  
Russia.
*Lenenergo, St. Petersburg, Russia.

Electron microscopy and depth profile a> 
turbine blade applications.
A Hoque*, J Cawley*, D S Rickerby 
*Sheffield Hallam University, Sheffie 
* Rolls Royce Pic, Derby, UK.

Metallography via deformation simulat 
E J Palmiere.
University of Sheffield, Sheffield UK 

Lunch

SESSIO N 7
F u tu re P ro sp ec ts

Discussion on future developments and 
x-ray microanalysis and image analysis

C lose o f  conference

Scope
This is the fourth in a series of meetings, planned in association 
with the High Temperature Materials Performance Committee of 
the Institute of Materials, concerned with the effects of service 
exposure on the microstructure and properties of high 
temperature materials. A knowledge of the microstructural 
evolution and stability of materials in service is essential in order 
to assess their full potential operational performance and to assist 
in the development of new alloys suitable for more advanced 
service applications.

The first three meetings in this series, have been concerned with 
the microstructural development and stability of high chromium 
creep resistant steels for high temperature power plant 
applications, microstructural stability of high temperature creep 
resistant steels and nickel based alloys and the modelling of 
microstructural evolution in creep resistant materials.

The focus of this fourth meeti 
microscopy and will concentre 
microstructure and properties 
measure microstructural parai

Along with a call for papers, k 
by international experts on hij 
applications.

This important conference wi 
engineers and metallurgists fr< 
is anticipated that through a f( 
the industry relating to the coi 
properties of materials which ■ 
be highlighted and discussed.
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